# CVPR2020-OOH **Repository Path**: AI52CV/CVPR2020-OOH ## Basic Information - **Project Name**: CVPR2020-OOH - **Description**: This is the repository of the implemantation of cvpr 2020. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 6 - **Created**: 2021-04-06 - **Last Updated**: 2021-04-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Object-Occluded Human Shape and Pose Estimation from a Single Color Image (CVPR2020 Oral) ## Introduction This is the offical implentation of 'Object-Occluded Human Shape and Pose Estimation from a Single Color Image' (CVPR2020 Oral). [[Project Page](https://www.yangangwang.com/papers/ZHANG-OOH-2020-03.html)] ![figure](https://images.gitee.com/uploads/images/2020/0601/202625_9aa5f92b_5505182.png "pipeline1.png") ## Environment This code is based on Python 3.7, CUDA 10.0, cuDNN 7.6 on Windows10. ## Getting Started Clone the repo: ``` git clone https://gitee.com/seuvcl/CVPR2020-OOH.git ``` Install the requirements using conda: ``` conda create -n occlusion python=3.7 conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch pip install -r requirements.txt ``` ## Running the Demo First, you need download the trained model from [here](https://seueducn1-my.sharepoint.com/personal/yangangwang_seu_edu_cn/_layouts/15/onedrive.aspx?originalPath=aHR0cHM6Ly9zZXVlZHVjbjEtbXkuc2hhcmVwb2ludC5jb20vOmY6L2cvcGVyc29uYWwveWFuZ2FuZ3dhbmdfc2V1X2VkdV9jbi9FczZrRnZHTzJXMUdxRDJnbzVQQUF5MEItZlcxZUprVWxYQzVCTHA5dGd1VGpnP3J0aW1lPVNLenl2c1ZGMkVn&id=%2Fpersonal%2Fyangangwang%5Fseu%5Fedu%5Fcn%2FDocuments%2F3DOH50K%2Fmodel) and put it in ```trained_model``` folder. Then, download the official [SMPL](http://smplify.is.tue.mpg.de/) model and [preprocess](https://github.com/CalciferZh/SMPL) the neutral model to support pytorch implementation. Finally, put the generated ```model.pkl``` in ```data``` folder. To test on your own image, you can edit the ```cfg_files\demo.yaml``` and run: ``` python demo.py --config cfg_files\demo.yaml ``` ## Dataset We provide the [3DOH50K dataset](https://pan.baidu.com/s/1j1pYGCoPjlbpIBt0Nn1l_g) (extraction code **\[hb1d\]**), which is the first real 3D human dataset for the problem of human reconstruction and pose estimation in occlusion scenarios. Visualizing 3DOH50K: ``` python utils/visualize.py --base_dir /PATH/TO/THE/3DOH50K ``` ## Citation ``` @inproceedings{ooh20, title = {Object-Occluded Human Shape and Pose Estimation from a Single Color Image}, author = {Tianshu, Zhang and Buzhen, Huang and Yangang, Wang}, booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)}, year = {2020} } ``` ## References PyTorch implementation of SMPL model is from [CalciferZh](https://github.com/CalciferZh/SMPL).