# Paddle-CLIP **Repository Path**: AgentMaker/Paddle-CLIP ## Basic Information - **Project Name**: Paddle-CLIP - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-05-11 - **Last Updated**: 2021-05-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Paddle-CLIP ![GitHub forks](https://img.shields.io/github/forks/AgentMaker/Paddle-CLIP) ![GitHub Repo stars](https://img.shields.io/github/stars/AgentMaker/Paddle-CLIP) ![GitHub release (latest by date including pre-releases)](https://img.shields.io/github/v/release/AgentMaker/Paddle-CLIP?include_prereleases) ![GitHub](https://img.shields.io/github/license/AgentMaker/Paddle-CLIP) A PaddlePaddle version implementation of CLIP of OpenAI. [【origin repo】](https://github.com/openai/CLIP/) ## Install Package * Install by pip: ```shell $ pip install paddleclip ``` * Install by wheel package:[【Releases Packages】](https://github.com/AgentMaker/Paddle-CLIP/releases) ## Requirements * wget * ftfy * regex * paddlepaddle(cpu/gpu)>=2.0.1 ## Quick Start ```python import paddle from PIL import Image from clip import tokenize, load_model # Load the model model, transforms = load_model('ViT_B_32', pretrained=True) # Prepare the inputs image = transforms(Image.open("CLIP.png")).unsqueeze(0) text = tokenize(["a diagram", "a dog", "a cat"]) # Calculate features and probability with paddle.no_grad(): logits_per_image, logits_per_text = model(image, text) probs = paddle.nn.functional.softmax(logits_per_image, axis=-1) # Print the result print(probs.numpy()) ``` [[0.9927937 0.00421065 0.00299568]] ## Zero-Shot Prediction ```python import paddle from clip import tokenize, load_model from paddle.vision.datasets import Cifar100 # Load the model model, transforms = load_model('ViT_B_32', pretrained=True) # Load the dataset cifar100 = Cifar100(mode='test', backend='pil') classes = [ 'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm' ] # Prepare the inputs image, class_id = cifar100[3637] image_input = transforms(image).unsqueeze(0) text_inputs = tokenize(["a photo of a %s" % c for c in classes]) # Calculate features with paddle.no_grad(): image_features = model.encode_image(image_input) text_features = model.encode_text(text_inputs) # Pick the top 5 most similar labels for the image image_features /= image_features.norm(axis=-1, keepdim=True) text_features /= text_features.norm(axis=-1, keepdim=True) similarity = (100.0 * image_features @ text_features.t()) similarity = paddle.nn.functional.softmax(similarity, axis=-1) values, indices = similarity[0].topk(5) # Print the result for value, index in zip(values, indices): print('%s: %.02f%%' % (classes[index], value*100.)) ``` snake: 65.31% turtle: 12.29% sweet_pepper: 3.83% lizard: 1.88% crocodile: 1.75% ## Linear-probe evaluation ```python import os import paddle import numpy as np from tqdm import tqdm from paddle.io import DataLoader from clip import tokenize, load_model from paddle.vision.datasets import Cifar100 from sklearn.linear_model import LogisticRegression # Load the model model, transforms = load_model('ViT_B_32', pretrained=True) # Load the dataset train = Cifar100(mode='train', transform=transforms, backend='pil') test = Cifar100(mode='test', transform=transforms, backend='pil') # Get features def get_features(dataset): all_features = [] all_labels = [] with paddle.no_grad(): for images, labels in tqdm(DataLoader(dataset, batch_size=100)): features = model.encode_image(images) all_features.append(features) all_labels.append(labels) return paddle.concat(all_features).numpy(), paddle.concat(all_labels).numpy() # Calculate the image features train_features, train_labels = get_features(train) test_features, test_labels = get_features(test) # Perform logistic regression classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=0) classifier.fit(train_features, train_labels) # Evaluate using the logistic regression classifier predictions = classifier.predict(test_features) accuracy = np.mean((test_labels == predictions).astype(np.float)) * 100. # Print the result print(f"Accuracy = {accuracy:.3f}") ``` Accuracy = 79.900 ## Pretrained Models Download * [RN50](https://bj.bcebos.com/v1/ai-studio-online/6ffc89246e974a809e6e4b40fdb58063a112a0153e674dae8ed5b6dfe5d46d86?responseContentDisposition=attachment%3B%20filename%3DRN50.pdparams) * [RN50x4](https://bj.bcebos.com/v1/ai-studio-online/9f874e0174da48ffbd7c17e77b1fb278632620a9995e476ba873e334caec9037?responseContentDisposition=attachment%3B%20filename%3DRN50x4.pdparams) * [RN101](https://bj.bcebos.com/v1/ai-studio-online/484592d98c584785bc8f6f9f7badbf4a9fb7a96f6102470697ed974e8eeee2a9?responseContentDisposition=attachment%3B%20filename%3DRN101.pdparams) * [ViT_B_32](https://bj.bcebos.com/v1/ai-studio-online/eb5e4dbf1ec142caa003a27cefd510ef46a8a6c3932a4d60bfecb3f3ab746c02?responseContentDisposition=attachment%3B%20filename%3DViT-B-32.pdparams)