# R3Det_Tensorflow
**Repository Path**: BlueBuger/R3Det_Tensorflow
## Basic Information
- **Project Name**: R3Det_Tensorflow
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 2
- **Forks**: 0
- **Created**: 2020-04-13
- **Last Updated**: 2020-12-19
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object
## Abstract
[R3Det](https://arxiv.org/abs/1908.05612) is based on [Focal Loss for Dense Object Detection](https://arxiv.org/pdf/1708.02002.pdf), and it is completed by [YangXue](https://yangxue0827.github.io/).
## Pipeline

## Performance
More results and trained models are available in the [MODEL_ZOO.md](MODEL_ZOO.md).
### DOTA1.0
| Model | Backbone | Training data | Val data | mAP | GPU | Image/GPU | Anchor | Reg. Loss| lr schd | Data Augmentation | Configs |
|:------------:|:------------:|:------------:|:---------:|:-----------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.22 | **1X** GeForce RTX 2080 Ti | 1 | H | smooth L1 | 1x | No | cfgs_res50_dota_v4.py |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.79 | 8X GeForce RTX 2080 Ti | 1 | H | smooth L1 | **2x** | No | cfgs_res50_dota_v8.py |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | **ResNet101_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 64.19 | 1X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 1x | No | cfgs_res101_dota_v9.py |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | **ResNet152_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 65.79 | 8X GeForce RTX 2080 Ti | 1 | H | smooth L1 | 2x | No | cfgs_res152_dota_v12.py |
| | | | | | | | | | | | | |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 61.94 | 1X GeForce RTX 2080 Ti | 1 | R | smooth L1 | 1x | No | cfgs_res50_dota_v1.py |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) (baseline) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 62.25 | **8X** GeForce RTX 2080 Ti | 1 | R | smooth L1 | **2x** | No | cfgs_res50_dota_v10.py |
| [RetinaNet](https://github.com/DetectionTeamUCAS/RetinaNet_Tensorflow_Rotation) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 68.65 | 1X GeForce RTX 2080 Ti | 1 | R | [**iou-smooth L1**](https://arxiv.org/abs/1811.07126) | 1x | No | cfgs_res50_dota_v5.py |
| | | | | | | | | | | | | |
| [R3Det](https://arxiv.org/abs/1908.05612) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 65.73 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_v1.py |
| [R3Det*](https://arxiv.org/abs/1908.05612) | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 67.20 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_v2.py |
| [R3Det](https://arxiv.org/abs/1908.05612) | **ResNet101_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 71.69 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 3x | Yes | - |
| [R3Det](https://arxiv.org/abs/1908.05612) | **ResNet152_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 72.81 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | **4x** | Yes | - |
| [R3Det*](https://arxiv.org/abs/1908.05612) | **ResNet152_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 73.74 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | **4x** | Yes | - |
| | | | | | | | | | | | | |
| **R3Det++** | ResNet50_v1d 600->800 | DOTA1.0 trainval | DOTA1.0 test | 69.07 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 2x | No | cfgs_res50_dota_r3det_plusplus_v2.py |
| R3Det++ | **ResNet152_v1d** 600->800 | DOTA1.0 trainval | DOTA1.0 test | 74.41 | 8X GeForce RTX 2080 Ti | 1 | H + R | smooth L1 | 4x | Yes | - |
| R3Det++ | ResNet152_v1d **MS** | DOTA1.0 trainval | DOTA1.0 test | 76.56 | 4X GeForce RTX 2080 Ti | 1 | H + R + more | smooth L1 | 6x | Yes | cfgs_res152_dota_r3det_plusplus_v1.py |
[R3Det*](https://arxiv.org/abs/1908.05612): R3Det with two refinement stages
**The performance of all models comes from the source [paper](https://arxiv.org/abs/1908.05612).**
### Visualization

## My Development Environment
**docker images: docker pull yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3**
1、python3.5 (anaconda recommend)
2、cuda 10.0
3、[opencv(cv2)](https://pypi.org/project/opencv-python/)
4、[tfplot 0.2.0](https://github.com/wookayin/tensorflow-plot) (optional)
5、tensorflow-gpu 1.13
## Download Model
### Pretrain weights
1、Please download [resnet50_v1](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz), [resnet101_v1](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz) pre-trained models on Imagenet, put it to data/pretrained_weights.
2、**(Recommend in this repo)** Or you can choose to use a better backbone, refer to [gluon2TF](https://github.com/yangJirui/gluon2TF).
* [Baidu Drive](https://pan.baidu.com/s/1GpqKg0dOaaWmwshvv1qWGg), password: 5ht9.
* [Google Drive](https://drive.google.com/drive/folders/1BM8ffn1WnsRRb5RcuAcyJAHX8NS2M1Gz?usp=sharing)
## Compile
```
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace (or make)
cd $PATH_ROOT/libs/box_utils/
python setup.py build_ext --inplace
```
## Train
1、If you want to train your own data, please note:
```
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
```
2、Make tfrecord
For DOTA dataset:
```
cd $PATH_ROOT\data\io\DOTA
python data_crop.py
```
```
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord.py --VOC_dir='/PATH/TO/DOTA/'
--xml_dir='labeltxt'
--image_dir='images'
--save_name='train'
--img_format='.png'
--dataset='DOTA'
```
3、Multi-gpu train
```
cd $PATH_ROOT/tools
python multi_gpu_train_r3det.py
```
## Eval
```
cd $PATH_ROOT/tools
python test_dota_r3det.py --test_dir='/PATH/TO/IMAGES/'
--gpus=0,1,2,3,4,5,6,7
```
## Tensorboard
```
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
```


## Citation
If this is useful for your research, please consider cite.
```
@article{yang2019r3det,
title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
author={Yang, Xue and Liu, Qingqing and Yan, Junchi and Li, Ang and Zhang, Zhiqiang and Yu, Gang},
journal={arXiv preprint arXiv:1908.05612},
year={2019}
}
@inproceedings{xia2018dota,
title={DOTA: A large-scale dataset for object detection in aerial images},
author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={3974--3983},
year={2018}
}
```
## Reference
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet