# DEADiff **Repository Path**: ByteDance/DEADiff ## Basic Information - **Project Name**: DEADiff - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-04 - **Last Updated**: 2026-02-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations (CVPR 2024)
            _**[Tianhao Qi*](https://github.com/Tianhao-Qi/), [Shancheng Fang](https://tothebeginning.github.io/), [Yanze Wu✝](https://tothebeginning.github.io/), [Hongtao Xie✉](https://imcc.ustc.edu.cn/_upload/tpl/0d/13/3347/template3347/xiehongtao.html), [Jiawei Liu](https://scholar.google.com/citations?user=X21Fz-EAAAAJ&hl=en&authuser=1),
[Lang Chen](https://scholar.google.com/citations?user=h5xex20AAAAJ&hl=zh-CN), [Qian He](https://scholar.google.com/citations?view_op=list_works&hl=zh-CN&authuser=1&user=9rWWCgUAAAAJ), [Yongdong Zhang](https://scholar.google.com.hk/citations?user=hxGs4ukAAAAJ&hl=zh-CN)**_

(*Works done during the internship at ByteDance, ✝Project Lead, ✉Corresponding author) From University of Science and Technology of China and ByteDance.
## 🔆 Introduction **TL;DR:** We propose DEADiff, a generic method facilitating the synthesis of novel images that embody the style of a given reference image and adhere to text prompts.
### ⭐⭐ Stylized Text-to-Image Generation.

Stylized text-to-image results. Resolution: 512 x 512. (Compressed)

### ⭐⭐ Style Transfer.

Style transfer results with ControlNet.

## 📝 Changelog - __[2024.4.3]__: 🔥🔥 Release the inference code and pretrained checkpoint. - __[2024.3.5]__: 🔥🔥 Release the project page. ## ⏳ TODO - [x] Release the inference code. - [ ] Release training data. ## ⚙️ Setup ```bash conda create -n deadiff python=3.9.2 conda activate deadiff conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia pip install git+https://github.com/salesforce/LAVIS.git@20230801-blip-diffusion-edit pip install -r requirements.txt pip install -e . ``` ## 💫 Inference 1) Download the pretrained model from [Hugging Face](https://huggingface.co/qth/DEADiff/tree/main) and put it under ./pretrained/. 2) Run the commands in terminal. ```python3 python3 scripts/app.py ``` The Gradio app allows you to transfer style from the reference image. Just try it for more details. Prompt: "A curly-haired boy" ![p](https://github.com/Tianhao-Qi/DEADiff_code_private/assets/37017794/bc0ebbf5-9bc9-4397-a0f6-dc291527571d) Prompt: "A robot" ![p](https://github.com/Tianhao-Qi/DEADiff_code_private/assets/37017794/4b7bb264-aabb-42ae-bdc3-c20ebae5c0e6) Prompt: "A motorcycle" ![p](https://github.com/Tianhao-Qi/DEADiff_code_private/assets/37017794/f23f8c4f-b72e-463c-9855-9767941e4932) ### ➕ Style Transfer with ControlNet We support **style transfer with structural control** by combining DEADiff with [ControlNet](https://github.com/lllyasviel/ControlNet). This enables users to guide the spatial layout (e.g., edges or depth maps) of the generated images, while transferring the visual style from a reference image. To perform style transfer with ControlNet, please download the following pretrained models: - `control_sd15_canny.pth`: [Download](https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/control_sd15_canny.pth) → place it under `./pretrained/` - `control_sd15_depth.pth`: [Download](https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/control_sd15_depth.pth) → place it under `./pretrained/` - `dpt_hybrid-midas-501f0c75.pt` (for depth estimation): [Download](https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt) → place it under `ldm/controlnet/annotator/ckpts/` These checkpoints are required for Canny and Depth-based ControlNet stylization modes. Then run the following commands in terminal. ```python3 # Canny-based control python3 scripts/app_canny_control.py ``` ```python3 # Depth-based control python3 scripts/app_depth_control.py ``` ## 📢 Disclaimer We develop this repository for RESEARCH purposes, so it can only be used for personal/research/non-commercial purposes. **** ## ✈️ Citation ```bibtex @article{qi2024deadiff, title={DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations}, author={Qi, Tianhao and Fang, Shancheng and Wu, Yanze and Xie, Hongtao and Liu, Jiawei and Chen, Lang and He, Qian and Zhang, Yongdong}, journal={arXiv preprint arXiv:2403.06951}, year={2024} } ``` ## 📭 Contact If your have any comments or questions, feel free to contact [qth@mail.ustc.edu.cn](qth@mail.ustc.edu.cn)