# RLFN
**Repository Path**: ByteDance/RLFN
## Basic Information
- **Project Name**: RLFN
- **Description**: Winner of runtime track in NTIRE 2022 challenge on Efficient Super-Resolution
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-08-26
- **Last Updated**: 2026-02-02
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Residual Local Feature Network
Our team (ByteESR) won the **first place** in Runtime Track (Main Track) and the **second place** in Overall Performance Track (Sub-Track 2) of [NTIRE 2022 Efficient Super-Resolution Challenge](https://data.vision.ee.ethz.ch/cvl/ntire22/).
| model | Runtime[ms] | Params[M] | Flops[G] | Acts[M] | GPU Mem[M] |
| :----: | :----: | :----: | :----: | :----: | :----: |
| RLFN_ntire | 27.11 | 0.317 | 19.70 | 80.05 | 377.91 |
## Open-Source
For commercial reasons, we don't release training code temporarily, please refer to [EDSR framework](https://github.com/sanghyun-son/EDSR-PyTorch) and our paper for details.
- [x] Paper of our method [[arXiv]](https://arxiv.org/abs/2205.07514)
- [x] Report of our performance [[NTIRE22 official report]](https://arxiv.org/abs/2205.05675)
- [x] The pretrained model and test code in challenge.
## Testing
We modified the [official test code](https://github.com/ofsoundof/IMDN). To reproduce our result in the ESR challenge, please install PyTorch >= 1.5.0.
run `python test_demo.py` to generate image results.
All test results will be saved in the folder `data/DIV2K_test_LR_results`