# RLFN **Repository Path**: ByteDance/RLFN ## Basic Information - **Project Name**: RLFN - **Description**: Winner of runtime track in NTIRE 2022 challenge on Efficient Super-Resolution - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-08-26 - **Last Updated**: 2026-02-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Residual Local Feature Network Our team (ByteESR) won the **first place** in Runtime Track (Main Track) and the **second place** in Overall Performance Track (Sub-Track 2) of [NTIRE 2022 Efficient Super-Resolution Challenge](https://data.vision.ee.ethz.ch/cvl/ntire22/). | model | Runtime[ms] | Params[M] | Flops[G] | Acts[M] | GPU Mem[M] | | :----: | :----: | :----: | :----: | :----: | :----: | | RLFN_ntire | 27.11 | 0.317 | 19.70 | 80.05 | 377.91 | ## Open-Source For commercial reasons, we don't release training code temporarily, please refer to [EDSR framework](https://github.com/sanghyun-son/EDSR-PyTorch) and our paper for details. - [x] Paper of our method [[arXiv]](https://arxiv.org/abs/2205.07514) - [x] Report of our performance [[NTIRE22 official report]](https://arxiv.org/abs/2205.05675) - [x] The pretrained model and test code in challenge. ## Testing We modified the [official test code](https://github.com/ofsoundof/IMDN). To reproduce our result in the ESR challenge, please install PyTorch >= 1.5.0. run `python test_demo.py` to generate image results. All test results will be saved in the folder `data/DIV2K_test_LR_results`