# MachineLearning **Repository Path**: CodeMan-P/MachineLearning ## Basic Information - **Project Name**: MachineLearning - **Description**: Machine learning resources - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-19 - **Last Updated**: 2020-12-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 机器学习资源 Machine learning Resources **致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!** *快速开始学习:* - 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,大概了解机器学习来龙去脉 - 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 - 参照Youtube机器学习红人Siraj Raval的视频+代码可以帮助你更好地进入状态! - [原Youtube地址需要梯子](https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D) | [百度网盘](https://pan.baidu.com/s/1jICGJFg) - 来自国立台湾大学李宏毅老师的机器学习和深度学习中文课程,强烈推荐:[课程](http://speech.ee.ntu.edu.tw/~tlkagk/courses.html) - 最后,你可能想真正实战一下。那么,请到注明的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) - 想看别人怎么写代码?[机器学习经典教材《PRML》所有代码实现](https://github.com/ctgk/PRML) - [机器学习算法Python实现](https://github.com/lawlite19/MachineLearning_Python) - 另外,对于一些基础的数学知识,你看[深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese)就够了。这本书同时也是**深度学习**经典之书。 - 来自南京大学周志华小组的博士生写的一本小而精的[解析卷积神经网络—深度学习实践手册](http://lamda.nju.edu.cn/weixs/book/CNN_book.html) - - - [计算机视觉这一年:这是最全的一份CV技术报告](https://zhuanlan.zhihu.com/p/31430602) [深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese) **[深度学习最值得看的论文](http://www.dlworld.cn/YeJieDongTai/4385.html)** **[最全面的深度学习自学资源集锦](http://dataunion.org/29975.html)** **[Machine learning surveys](https://github.com/metrofun/machine-learning-surveys/)** **[快速入门TensorFlow](https://github.com/aymericdamien/TensorFlow-Examples)** [自然语言处理数据集](http://abunchofdata.com/datasets-for-natural-language-processing/)   [Learning Machine Learning? Six articles you don’t want to miss](http://www.ibmbigdatahub.com/blog/learning-machine-learning-six-articles-you-don-t-want-miss) [Getting started with machine learning documented by github](https://github.com/collections/machine-learning) - - - ## 预备知识 Prerequisite - [学习知识与路线图](https://metacademy.org/) - [MIT线性代数课堂笔记(中文)](https://github.com/zlotus/notes-linear-algebra) - [概率与统计 The Probability and Statistics Cookbook](http://statistics.zone/) - Python - [Learn X in Y minutes](https://learnxinyminutes.com/docs/python/) - [Python机器学习互动教程](https://www.springboard.com/learning-paths/machine-learning-python/) - Markdown - [Mastering Markdown](https://guides.github.com/features/mastering-markdown/) - Markdown is a easy-to-use writing tool on the GitHu. - R - [R Tutorial](http://www.cyclismo.org/tutorial/R/) - Python和Matlab的一些cheat sheet:http://ddl.escience.cn/f/IDkq 包含: - Numpy、Scipy、Pandas科学计算库 - Matlab科学计算 - Matplotlib画图 - 深度学习框架 - Python - [TensorFlow](https://www.tensorflow.org/) - [Scikit-learn](http://scikit-learn.org/) - [PyTorch](http://pytorch.org/) - [Keras](https://keras.io/) - [MXNet](http://mxnet.io/)|[相关资源大列表](https://github.com/chinakook/Awesome-MXNet) - [Caffe](http://caffe.berkeleyvision.org/) - [Caffe2](https://caffe2.ai/) - Java - [Deeplearning4j](https://deeplearning4j.org/) - Matlab - [Neural Network Toolbox](https://cn.mathworks.com/help/nnet/index.html) - [Deep Learning Toolbox](https://cn.mathworks.com/matlabcentral/fileexchange/38310-deep-learning-toolbox) - - - ## 理论 Theory - ### 深度学习 Deep learning - ### [强化学习 Reinforcement learning](https://github.com/allmachinelearning/ReinforcementLearning) - ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) - ### [分布式学习系统 Distributed learning system](https://github.com/allmachinelearning/Deep-Learning-System-Design) - - - ## 应用 Applications - ### 计算机视觉/机器视觉 Computer vision / machine vision - ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) - ### 语音识别 Speech recognition - ### 生物信息学 Bioinfomatics - ### 医疗 Medical - ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) - ### [人工智能(多智能体) Artificial Intelligence(Multi-Agent)](http://ddl.escience.cn/f/ILKI) - - - ## 文档 notes - [综述文章汇总](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/survey_readme.md) - [近200篇机器学习资料汇总!](https://zhuanlan.zhihu.com/p/26136757) - [机器学习入门资料](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/MLMaterials.md) - [MIT.Introduction to Machine Learning](http://ddl.escience.cn/f/Iwtu) - [东京大学同学做的人机交互报告](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/FieldResearchinChina927-104.pdf) - [人机交互简介](https://github.com/jindongwang/HCI) - [人机交互与创业论坛](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E4%BA%BA%E6%9C%BA%E4%BA%A4%E4%BA%92%E4%B8%8E%E5%88%9B%E4%B8%9A%E8%AE%BA%E5%9D%9B.md) - [职场机器学习入门](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/%E8%81%8C%E5%9C%BA-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%85%A5%E9%97%A8.md) - [机器学习的发展历程及启示](http://mt.sohu.com/20170326/n484898474.shtml), (@Prof. Zhihua Zhang/@张志华教授) - [常用的距离和相似度度量](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/distance%20and%20similarity.md) - - - ## 课程与讲座 Course and talk ### 机器学习 Machine Learning   [台湾大学应用深度学习课程](https://www.csie.ntu.edu.tw/~yvchen/f106-adl/index.html) - [神经网络,机器学习,算法,人工智能等 30 门免费课程详细清单](http://www.datasciencecentral.com/profiles/blogs/neural-networks-for-machine-learning)   - [斯坦福机器学习入门课程](https://www.coursera.org/learn/machine-learning),讲师为Andrew Ng,适合数学基础一般的人,适合入门,但是学完会发现只是懂个大概,也就相当于什么都不懂。省略了很多机器学习的细节 - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks), Coursera上的著名课程,由Geoffrey Hinton教授主讲。 - [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细 - [CMU 10-702 Statistical Machine Learning](http://www.stat.cmu.edu/~larry/=sml/), 讲师是Larry Wasserman,应该是统计系开的机器学习,非常数学化,第一节课就提到了RKHS(Reproducing Kernel Hilbert Space),建议数学出身的同学看或者是学过实变函数泛函分析的人看一看 - [CMU 10-715 Advanced Introduction to Machine Learning](https://www.cs.cmu.edu/~epxing/Class/10715/),同样是CMU phd级别的课,节奏快难度高 - [机器学习基石](https://www.coursera.org/course/ntumlone)(适合入门)。国立台湾大学[林轩田](https://www.coursera.org/instructor/htlin) - [机器学习技法](https://www.coursera.org/course/ntumltwo)(适合提高)。国立台湾大学[林轩田](https://www.coursera.org/instructor/htlin) - [Machine Learning for Data Analysis](https://www.coursera.org/learn/machine-learning-data-analysis), Coursera上Wesleyan大学的Data Analysis and Interpretation专项课程第四课。 - Max Planck Institute for Intelligent Systems Tübingen[德国马普所智能系统研究所2013的机器学习暑期学校视频](https://www.youtube.com/playlist?list=PLqJm7Rc5-EXFv6RXaPZzzlzo93Hl0v91E),仔细翻这个频道还可以找到2015的暑期学校视频 - 知乎Live:[我们一起开始机器学习吧](https://www.zhihu.com/lives/792423196996546560),[机器学习入门之特征工程](https://www.zhihu.com/lives/819543866939174912) ### 深度学习 Machine Learning - 斯坦福大学Feifei Li教授的[CS231n系列深度学习课程](http://cs231n.stanford.edu/)。Feifei Li目前是Google的科学家,深度学习与图像识别方面的大牛。这门课的笔记可以看[这里](https://zhuanlan.zhihu.com/p/21930884)。 - [CS224n: Natural Language Processing](http://cs224n.stanford.edu). Course instructors: Chris Manning, Richard Socher. ### 强化学习 Machine Learning - [CS 294 Deep Reinforcement Learning, Fall 2017](http://rll.berkeley.edu/deeprlcourse/). Course instructors: Sergey Levine, John Schulman, Chelsea Finn. - [UCL Course on RL](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) - [CS234: Reinforcement Learning](http://web.stanford.edu/class/cs234/index.html). 暂无视频 - - - ## 相关书籍 reference book - [Hands on Machine Learning with Scikit-learn and Tensorflow](https://my.pcloud.com/publink/show?code=XZ9ev77Zk2l6xcMtfIhHm7mRKAYhISb6sl3k) - 入门读物 [The Elements of Statistical Learning(英文第二版),The Elements of Statistical Learning.pdf](http://ddl.escience.cn/ff/emZH) - [机器学习](https://book.douban.com/subject/26708119/), (@Prof. Zhihua Zhou/周志华教授) - [统计学习方法](https://book.douban.com/subject/10590856/), (@Dr. Hang Li/李航博士) - [一些Kindle读物](http://ddl.escience.cn/f/IwWE): - 利用Python进行数据分析 - 跟老齐学Python:从入门到精通 - Python与数据挖掘 (大数据技术丛书) - 张良均 - Python学习手册 - Python性能分析与优化 - Python数据挖掘入门与实践 - Python数据分析与挖掘实战(大数据技术丛书) - 张良均 - Python科学计算(第2版) - Python计算机视觉编程 [美] Jan Erik Solem - python核心编程(第三版) - Python核心编程(第二版) - Python高手之路 - [法] 朱利安·丹乔(Julien Danjou) - Python编程快速上手 让繁琐工作自动化 - Python编程:从入门到实践 - Python3 CookBook中文版 - 终极算法机器学习和人工智能如何重塑世界 - [美 ]佩德罗·多明戈斯 - 机器学习系统设计 (图灵程序设计丛书) - [美]Willi Richert & Luis Pedro Coelho - 机器学习实践指南:案例应用解析(第2版) (大数据技术丛书) - 麦好 - 机器学习实践 测试驱动的开发方法 (图灵程序设计丛书) - [美] 柯克(Matthew Kirk) - 机器学习:实用案例解析 - [数学](https://mega.nz/#F!WVAlGL6B!mqIjYoTjiQnO4jBGVLRIWA ): - Algebra - Michael Artin - Algebra - Serge Lang - Basic Topology - M.A. Armstrong - Convex Optimization by Stephen Boyd & Lieven Vandenberghe - Functional Analysis by Walter Rudin - Functional Analysis, Sobolev Spaces and Partial Differential Equations by Haim Brezis - Graph Theory - J.A. Bondy, U.S.R. Murty - Graph Theory - Reinhard Diestel - Inside Interesting Integrals - Pual J. Nahin - Linear Algebra and Its Applications - Gilbert Strang - Linear and Nonlinear Functional Analysis with Applications - Philippe G. Ciarlet - Mathematical Analysis I - Vladimir A. Zorich - Mathematical Analysis II - Vladimir A. Zorich - Mathematics for Computer Science - Eric Lehman, F Thomson Leighton, Alber R Meyer - Matrix Cookbook, The - Kaare Brandt Petersen, Michael Syskind Pedersen - Measures, Integrals and Martingales - René L. Schilling - Principles of Mathematical Analysis - Walter Rudin - Probabilistic Graphical Models: Principles and Techniques - Daphne Koller, Nir Friedman - Probability: Theory and Examples - Rick Durrett - Real and Complex Analysis - Walter Rudin - Thomas' Calculus - George B. Thomas - 普林斯顿微积分读本 - Adrian Banner - [Packt每日限免电子书精选](http://ddl.escience.cn/f/IS4a): - Learning Data Mining with Python - Matplotlib for python developers - Machine Learing with Spark - Mastering R for Quantitative Finance - Mastering matplotlib - Neural Network Programming with Java - Python Machine Learning - R Data Visualization Cookbook - R Deep Learning Essentials - R Graphs Cookbook second edition - D3.js By Example - Data Analysis With R - Java Deep Learning Essentials - Learning Bayesian Models with R - Learning Pandas - Python Parallel Programming Cookbook - Machine Learning with R --- ## 其他 Miscellaneous - [机器学习日报](http://forum.ai100.com.cn/):每天更新学术和工业界最新的研究成果 - [机器之心](https://www.jiqizhixin.com/) - [集智社区](https://jizhi.im/index) - - - ## 如何加入 How to contribute 如果你对本项目感兴趣,非常欢迎你加入! - 正常参与:请直接fork、pull都可以 - 如果要上传文件:请**不要**直接上传到项目中,否则会造成git版本库过大。正确的方法是上传它的**超链接**。如果你要上传的文件本身就在网络中(如paper都会有链接),直接上传即可;如果是自己想分享的一些文件、数据等,鉴于国内网盘的情况,请按照如下方式上传: - (墙内)目前没有找到比较好的方式,只能通过链接,或者自己网盘的链接来做。 - (墙外)首先在[UPLOAD](https://my.pcloud.com/#page=puplink&code=4e9Z0Vwpmfzvx0y2OqTTTMzkrRUz8q9V)直接上传(**不**需要注册账号);上传成功后,在[DOWNLOAD](https://my.pcloud.com/publink/show?code=kZWtboZbDDVguCHGV49QkmlLliNPJRMHrFX)里找到你刚上传的文件,共享链接即可。 ## 如何开始项目协同合作 [快速了解github协同工作](http://hucaihua.cn/2016/12/02/github_cooperation/) [及时更新fork项目](https://jinlong.github.io/2015/10/12/syncing-a-fork/) #### [贡献者 Contributors](https://github.com/allmachinelearning/MachineLearning/blob/master/contributors.md) > ***[文章版权声明]这个仓库是我开源到Github上的,可以遵守相关的开源协议进行使用。这个仓库中包含有很多研究者的论文、硕博士论文等,都来源于在网上的下载,仅作为学术研究使用。我对其中一些文章都写了自己的浅见,希望能很好地帮助理解。这些文章的版权属于相应的出版社。如果作者或出版社有异议,请联系我进行删除(本来应该只放文章链接的,但是由于时间关系来不及)。一切都是为了更好地学术!***