代码拉取完成,页面将自动刷新
同步操作将从 CodeGod/MindSpore分类套件 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import mindspore as ms
import mindspore.nn as nn
from mindspore import Model
from mindcv.models import create_model
from mindcv.data import create_dataset, create_transforms, create_loader
from mindcv.loss import create_loss
from config import parse_args
def validate(args):
ms.set_context(mode=args.mode)
# create dataset
dataset_eval = create_dataset(
name=args.dataset,
root=args.data_dir,
split='val',
num_parallel_workers=args.num_parallel_workers,
download=args.dataset_download)
# create transform
transform_list = create_transforms(
dataset_name=args.dataset,
is_training=False,
image_resize=args.image_resize,
crop_pct=args.crop_pct,
interpolation=args.interpolation,
mean=args.mean,
std=args.std
)
# load dataset
loader_eval = create_loader(
dataset=dataset_eval,
batch_size=args.batch_size,
drop_remainder=False,
is_training=False,
transform=transform_list,
num_parallel_workers=args.num_parallel_workers,
)
# create model
network = create_model(model_name=args.model,
num_classes=args.num_classes,
drop_rate=args.drop_rate,
drop_path_rate=args.drop_path_rate,
pretrained=args.pretrained,
checkpoint_path=args.ckpt_path)
network.set_train(False)
# create loss
loss = create_loss(name=args.loss,
reduction=args.reduction,
label_smoothing=args.label_smoothing,
aux_factor=args.aux_factor)
# Define eval metrics.
eval_metrics = {'Top_1_Accuracy': nn.Top1CategoricalAccuracy(),
'Top_5_Accuracy': nn.Top5CategoricalAccuracy()}
# init model
model = Model(network, loss_fn=loss, metrics=eval_metrics)
# validate
result = model.eval(loader_eval)
print(result)
if __name__ == '__main__':
args = parse_args()
validate(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。