# EGNet **Repository Path**: HEART1/EGNet ## Basic Information - **Project Name**: EGNet - **Description**: EGNet:Edge Guidance Network for Salient Object Detection (ICCV 2019) - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-08-29 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # EGNet EGNet:Edge Guidance Network for Salient Object Detection (ICCV 2019) ### For training: 1. Clone this code by `git clone https://github.com/JXingZhao/EGNet.git --recursive`, assume your source code directory is`$EGNet`; 2. Download [training data](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex); 3. Download [initial model](https://pan.baidu.com/s/1dD2JOY_FBSLzjp5tUPBDBQ) (8ir7); 4. Change the image path and intial model path in run.py and dataset.py; 5. Start to train with `python3 run.py --mode train`. ### For testing: 1. Download [pretrained model](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5); 2. Change the test image path in dataset.py 3. Generate saliency maps for SOD dataset by `python3 run.py --mode test --sal_mode s`, PASCALS by `python3 run.py --mode test --sal_mode p` and so on; ### Pretrained models, datasets and results: | [Page](https://mmcheng.net/jxzhao/) | | [Training Set](https://pan.baidu.com/s/1LaQoNRS8-11V7grAfFiHCg) (fsex) | | [Pretrained models](https://pan.baidu.com/s/1s35ZyGDSNVzVIeVd7Aot0Q) (2cf5) | | [Saliency maps](https://pan.baidu.com/s/1M_dqPJ08oaYWge_zZnHSTQ) (54gi) | ### If you think this work is helpful, please cite ```latex @inproceedings{zhao2019EGNet, title={EGNet:Edge Guidance Network for Salient Object Detection}, author={Zhao, Jiaxing and Liu, Jiangjiang and Fan, Dengping and Cao, Yang and Yang, Jufeng and Cheng, Ming-Ming}, booktitle={The IEEE International Conference on Computer Vision (ICCV)}, month={Oct}, year={2019}, } ```