# PiCANet-Implementation **Repository Path**: HEART1/PiCANet-Implementation ## Basic Information - **Project Name**: PiCANet-Implementation - **Description**: Pytorch Implementation of PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 1 - **Created**: 2019-04-20 - **Last Updated**: 2021-12-17 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PiCANet-Implementation Pytorch Implementation of [**PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection**](https://arxiv.org/abs/1708.06433) ## New method on implementing PiCANet * [Issue#9](https://github.com/Ugness/PiCANet-Implementation/issues/9) * Conv3d version is deleted.   * batchsize 1  * batchsize 4  # Top 10 Performance Test with F-score (beta-square = 0.3) batchsize:4 * [Issue#9](https://github.com/Ugness/PiCANet-Implementation/issues/9) | Step | Value | Threshold | MAE | |---------|---------|-----------|---------| | 214000 | 0.8520 | 0.6980 | 0.0504 | | 259000 | 0.8518 | 0.6510 | 0.0512 | | 275000 | 0.8533 | 0.6627 | 0.0536 | | 281000 | 0.8540 | 0.7451 | 0.0515 | | 307000 | 0.8518 | 0.8078 | 0.0523 | | 383000 | 0.8546 | 0.6627 | 0.0532 | | 399000 | 0.8561 | 0.7882 | 0.0523 | | 400000 | 0.8544 | 0.7804 | 0.0512 | | 408000 | 0.8535 | 0.5922 | 0.0550 | | 410000 | 0.8518 | 0.7882 | 0.0507 | # Execution Guideline ## Requirements Pillow==4.3.0 pytorch==0.4.1 tensorboardX==1.1 torchvision==0.2.1 numpy==1.14.2 ## My Environment S/W Windows 10 CUDA 9.0 cudnn 7.0 python 3.5 H/W AMD Ryzen 1700 Nvidia gtx 1080ti 32GB RAM ## Execution Guide - For training, - Please check the Detailed Guideline if you want to know the [dataset](#pairdataset-class) structure.
usage: train.py [-h] [--load LOAD] --dataset DATASET [--cuda CUDA] [--batch_size BATCH_SIZE] [--epoch EPOCH] [-lr LEARNING_RATE] [--lr_decay LR_DECAY] [--decay_step DECAY_STEP] [--display_freq DISPLAY_FREQ] optional arguments: -h, --help show this help message and exit --load LOAD Directory of pre-trained model, you can download at https://drive.google.com/file/d/109a0hLftRZ5at5hwpteRfO1A6xLzf8Na/view?usp=sharing None --> Do not use pre-trained model. Training will start from random initialized model --dataset DATASET Directory of your Dataset --cuda CUDA 'cuda' for cuda, 'cpu' for cpu, default = cuda --batch_size BATCH_SIZE batchsize, default = 1 --epoch EPOCH # of epochs. default = 20 -lr LEARNING_RATE, --learning_rate LEARNING_RATE learning_rate. default = 0.001 --lr_decay LR_DECAY Learning rate decrease by lr_decay time per decay_step, default = 0.1 --decay_step DECAY_STEP Learning rate decrease by lr_decay time per decay_step, default = 7000 --display_freq DISPLAY_FREQ display_freq to display result image on Tensorboard- For inference, - dataset should contain image files only. - You do not need `masks` or `images` folder. If you want to run with PairDataset structure, use argument like ```--dataset [DATAROOT]/images``` - You should specify either logdir (for TensorBoard output) or save_dir (for Image file output). - If you use logdir, you can see the whole images by run tensorboard with `--samples_per_plugin images=0` option
usage: image_test.py [-h] [--model_dir MODEL_DIR] --dataset DATASET [--cuda CUDA] [--batch_size BATCH_SIZE] [--logdir LOGDIR] [--save_dir SAVE_DIR] optional arguments: -h, --help show this help message and exit --model_dir MODEL_DIR Directory of pre-trained model, you can download at https://drive.google.com/drive/folders/1s4M-_SnCPMj_2rsMkSy3pLnLQcgRakAe?usp=sharing --dataset DATASET Directory of your test_image ""folder"" --cuda CUDA cuda for cuda, cpu for cpu, default = cuda --batch_size BATCH_SIZE batchsize, default = 4 --logdir LOGDIR logdir, log on tensorboard --save_dir SAVE_DIR save result images as .jpg file. If None -> Not save- To report score, - dataset should contain `masks` and `images` folder. - You should specify logdir to get PR-Curve. - The Scores will be printed out on your stdout. - You should have **model files** below the model_dir. - Only supports model files named like **"[N]epo_[M]step.ckpt"** format.
usage: measure_test.py [-h] --model_dir MODEL_DIR --dataset DATASET [--cuda CUDA] [--batch_size BATCH_SIZE] [--logdir LOGDIR] [--which_iter WHICH_ITER] [--cont CONT] [--step STEP] optional arguments: -h, --help show this help message and exit --model_dir MODEL_DIR Directory of folder which contains pre-trained models, you can download at https://drive.google.com/drive/folders/1s4M-_SnCPMj_2rsMkSy3pLnLQcgRakAe?usp=sharing --dataset DATASET Directory of your test_image ""folder"" --cuda CUDA cuda for cuda, cpu for cpu, default = cuda --batch_size BATCH_SIZE batchsize, default = 4 --logdir LOGDIR logdir, log on tensorboard --which_iter WHICH_ITER Specific Iter to measure --cont CONT Measure scores from this iter --step STEP Measure scores per this iter step# Detailed Guideline ### Pretrained Model You can download pre-trained models from https://drive.google.com/drive/folders/1s4M-_SnCPMj_2rsMkSy3pLnLQcgRakAe?usp=sharing ## Dataset ### PairDataset Class * You can use CustomDataset. * Your custom dataset should contain `images`, `masks` folder. - In each folder, the filenames should be matched. - eg. ```images/a.jpg masks/a.jpg``` ### DUTS You can download dataset from http://saliencydetection.net/duts/#outline-container-orgab269ec. * Caution: You should check the dataset's Image and GT are matched or not. (ex. # of images, name, ...) * You can match the file names and automatically remove un-matched datas by using `DUTSDataset.arrange(self)` method * Please rename the folders to `images` and `masks`. ### Directory & Name Format of .ckpt files
"models/state_dict//<#epo_#step>.ckpt"
* The step is accumulated step from epoch 0.