# SdBAN **Repository Path**: HEART1/SdBAN ## Basic Information - **Project Name**: SdBAN - **Description**: Code "SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-10-22 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss Tensorflow based keras implementation of "SdBAN: Salient Object Detection Using Bilateral Attention Network with Dice Coefficient Loss" ### Qualitative Evaluation ### Quantative Eavaluation ## Getting Started ### Installation - Clone thos repository ``` git clone https://github.com/tiruss/Salient_Code.git ``` - You can install all the dependencies by ``` pip install -r requirements.txt ``` ### Download datasets - Download training datasets [[DUTS-TR]](http://saliencydetection.net/duts/download/DUTS-TR.zip) from the link - Download [[HKU-IS]](https://sites.google.com/site/ligb86/hkuis) for test from the link - Other datasets can download from the link [[sal_eval_toolbox]](https://github.com/ArcherFMY/sal_eval_toolbox) Thank you for the awesome evaluation toolbox! ### Run experiments from pretrained weight - Download pretrained weight from the link - [[Google drive]](https://drive.google.com/drive/folders/1uaMF84-0zohQ2rHi9mF3xWX4D4FgmN0Y?usp=sharing) [[Baidu drive]]() Baidu drive will be updated soon. - Run test.py ``` python test.py --weight [pretrained weight] --input_dir [test_img_dir] --output_folder "outputs" ``` - Pre-computed salinecy maps can download from the link - [[Google drive]](https://drive.google.com/open?id=15aWO3ig2XJajUxvjdx8yiGgeo8MNi-Nj) [[Baidu drive]]() Baidu drive will be updated soon. ### Train from scratch - DUTS-TR is our traning set for pair comparison - Run train.py ``` python train.py --img_folder [DUTS-TR img dir] --label_folder [DUTS-TR label dir] --epoch --batch_size --num_gpu