# cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection **Repository Path**: HEART1/cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection ## Basic Information - **Project Name**: cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection - **Description**: code and model of Pyramid Feature Selective Network for Saliency detection - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-05-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # cvpr2019_Pyramid-Feature-Attention-Network-for-Saliency-detection Source code for our CVPR 2019 paper "Pyramid Feature Attention Network for Saliency detection" by Ting Zhao and Xiangqian Wu. ([ArXiv paper link](https://arxiv.org/abs/1903.00179)) ![Pipline](image/pipline.png) ## Download Saliency Maps We provide our saliency maps of benchmark datasets used in the paper for convenience. Google: [link](https://drive.google.com/file/d/1s70Cb6_Z6cZqwiHgUw1ps19N00LC_HCz/view?usp=sharing) Baidu: [link](https://pan.baidu.com/s/1TljFZb3pFkl3IRoCYZFe4Q) extraction:9yt5 ## Setup Install dependencies: ``` Tensorflow (-gpu) Keras numpy opencv-python matplotlib ``` ## Usage: ``` train: python train.py --train_file=train_pair.txt --model_weights=model/vgg16_no_top.h5 test: jupyter notebook run dome.ipynb ``` ## Result ![quantitative](image/visual%20comparisons.png) ![table](image/table.png) ![visual](image/quantitative%20comparisions.png) ## If you think this work is helpful, please cite ``` @inproceedings{zhao2019pyramid, title = {Pyramid Feature Attention Network for Saliency detection}, author={Ting Zhao and Xiangqian Wu}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2019} } ```