# experimenting-with-sort **Repository Path**: HEART1/experimenting-with-sort ## Basic Information - **Project Name**: experimenting-with-sort - **Description**: Experimenting with sort different classical tracking algorithms for real time multiple object tracking (MOT) - **Primary Language**: Python - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-07-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Experimenting with SORT Experimenting with [**sort**](https://github.com/abewley/sort) different classical tracking algorithms for realtime multiple object tracking (MOT). ## Description: - This is an experiment on [**Oxford Town Centre Dataset**](http://www.robots.ox.ac.uk/~lav/Research/Projects/2009bbenfold_headpose/project.html) to compare between ***kalman filter tracker** (a motion model)* and ***dlib correlation tracker** (an appearance model)* in the domain of realtime tracking of multiple objects (pedestrians) in a video sequence (MOT). - We used the same data association techniques of [**sort**](https://github.com/abewley/sort). ## Results: - Dlib correlation tracker: https://youtu.be/tMuX5TP6uqA - Kalman tracker: https://youtu.be/SKXk6uB8348 ----------------------------------------------------- ### Note: - The *detector/ground truth* was used only for *~40%* of the time. - We noticed from the above outputs that *Kalman tracker* is ***more robust in highly occluded scenes.*** - *Kalman tracker* is also about ***10x faster***, and so it is more suitable for realtime MOT. ## Dependencies: - [`Python 2.7x`](https://www.python.org/download/releases/2.7/) - [`dlib`](https://pypi.python.org/pypi/dlib) - [`scikit-learn`](http://scikit-learn.org/stable/) - [`scikit-image`](http://scikit-image.org/download) - [`FilterPy`](https://github.com/rlabbe/filterpy) ## Usage: - To test with dlib tracker *(default is kalman)*: ``` python main.py --dlib ``` - To save frames with tracking output: ``` python main.py --save ``` - To disable online tracking display: ``` python main.py --NoDisplay ```