# Medical-image-reconstruction-and-synthesis **Repository Path**: Heconnor/Medical-image-reconstruction-and-synthesis ## Basic Information - **Project Name**: Medical-image-reconstruction-and-synthesis - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-10-18 - **Last Updated**: 2023-11-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: reconstruction, GenerativeAdversarialNetworks, ImageTranslation ## README # Medical-image-reconstruction-and-synthesis ## Paper: Please see: A Generalized Dual-Domain Generative Framework with Hierarchical Consistency for Medical Image Reconstruction and Synthesis (Communications Engineering 2023) Paper Link: https://doi.org/10.1038/s44172-023-00121-z ## Introduction: This is the PyTorch implementation for low-dose PET reconstruction and PET-CT synthesis. ![Image](https://github.com/ZhangJD-ong/Iterative-Cycle-consistent-Semi-supervised-Learning-for-fibroglandular-tissue-segmentation/blob/main/img/Framework1.png) ## Requirements: * python 3.10 * pytorch 1.12.1 * tensorboard 2.10.1 * simpleitk 2.1.1.1 * scipy 1.9.1 * odl ## Setup ### Dataset * Paritial data are released in this project for debugging and testing, including paired low-dose/standard-dose PET images, and paired PET/CT images. * To test the reconstruction and synhtesis models, you need to put the data in ./data/Datasets/: ``` ./data ├─test.txt ./data/Datasets ├─1 ├─CT.nii.gz └─PET.nii.gz ├─2 ├─CT.nii.gz └─PET.nii.gz ... ``` * The format of the test.txt is as follow: ``` ./data/test.txt ├─'1_0' ├─'1_1' ├─'1_2' ... ├─'1_19' ├─'2_0' ... ``` ### Well-trained Model * The well trained model can be downloaded via: https://drive.google.com/drive/folders/1zwQkCnctDeEh60hnkDDqROaRcRz7ycr8?usp=sharing * The well-trained model should be placed in ./Test/Saved_MODEL ## Citation If you find the code useful, please consider citing the following papers: * Zhang et al., A Generalized Dual-Domain Generative Framework with Hierarchical Consistency for Medical Image Reconstruction and Synthesis, Communications Engineering (2023), https://doi.org/10.1038/s44172-023-00121-z * Zhang et al., Mapping in Cycles: Dual-Domain PET-CT Synthesis Framework with Cycle-Consistent Constraints, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2022), https://doi.org/10.1007/978-3-031-16446-0_72