# TorchLeet **Repository Path**: Heconnor/TorchLeet ## Basic Information - **Project Name**: TorchLeet - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-03-28 - **Last Updated**: 2025-04-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: tutorial ## README
Robot Image

🐦 Follow me on Twitter • 📧 Feedback

Buy Me A Coffee


TorchLeet is a curated set of PyTorch practice problems, inspired by LeetCode-style challenges, designed to enhance your skills in deep learning and PyTorch. ## Table of Contents - [TorchLeet](#torchleet) - [Table of Contents](#table-of-contents) - [Question Set](#question-set) - [🟢Easy](#easy) - [🟡Medium](#medium) - [🔴Hard](#hard) - [Getting Started](#getting-started) - [1. Install Dependencies](#1-install-dependencies) - [2. Structure](#2-structure) - [3. How to Use](#3-how-to-use) - [Contribution](#contribution) - [Authors:](#authors) ## Question Set ### 🟢Easy 1. [Implement linear regression](https://github.com/Exorust/TorchLeet/blob/main/e1/lin-regression.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e1/lin-regression_SOLN.ipynb) 2. [Write a custom Dataset and Dataloader to load from a CSV file](https://github.com/Exorust/TorchLeet/blob/main/e2/custom-dataset.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e2/custom-dataset_SOLN.ipynb) 3. [Write a custom activation function (Simple)](https://github.com/Exorust/TorchLeet/blob/main/e3/custom-activation.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e3/custom-activation_SOLN.ipynb) 4. [Implement Custom Loss Function (Huber Loss)](https://github.com/Exorust/TorchLeet/blob/main/e4/custom-loss.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e4/custom-loss_SOLN.ipynb) 5. [Implement a Deep Neural Network](https://github.com/Exorust/TorchLeet/blob/main/e5/custon-DNN.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e5/custon-DNN_SOLN.ipynb) 6. [Visualize Training Progress with TensorBoard in PyTorch](https://github.com/Exorust/TorchLeet/blob/main/e6/tensorboard.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e6/tensorboard_SOLN.ipynb) 7. [Save and Load Your PyTorch Model](https://github.com/Exorust/TorchLeet/blob/main/e7/save_model.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/e7/save_model_SOLN.ipynb) ### 🟡Medium 1. [Implement an LSTM](https://github.com/Exorust/TorchLeet/blob/main/m1/LSTM.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m1/LSTM_SOLN.ipynb) 2. [Implement a CNN on CIFAR-10](https://github.com/Exorust/TorchLeet/blob/main/m2/CNN.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m2/CNN_SOLN.ipynb) 3. [Implement parameter initialization for a CNN]() [(Solution)]() 4. [Implement an RNN](https://github.com/Exorust/TorchLeet/blob/main/m3/RNN.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m3/RNN_SOLN.ipynb) 5. [Use `torchvision.transforms` to apply data augmentation](https://github.com/Exorust/TorchLeet/blob/main/m4/augmentation.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m4/augmentation_SOLN.ipynb) 6. [Add a benchmark to your PyTorch code](https://github.com/Exorust/TorchLeet/blob/main/m5/bench.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m5/bench_SOLN.ipynb) 7. [Train an autoencoder for anomaly detection](https://github.com/Exorust/TorchLeet/blob/main/m6/autoencoder.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/m6/autoencoder_SOLN.ipynb) ### 🔴Hard 1. [Write a custom Autograd function for activation (SILU)](https://github.com/Exorust/TorchLeet/blob/main/h1/custom-autgrad-function.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h1/custom-autgrad-function_SOLN.ipynb) 2. Write a Neural Style Transfer 3. [Write a Transformer](https://github.com/Exorust/TorchLeet/blob/main/h3/transformer.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h3/transformer_SOLN.ipynb) 4. [Write a GAN](https://github.com/Exorust/TorchLeet/blob/main/h4/GAN.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h4/GAN_SOLN.ipynb) 5. [Write Sequence-to-Sequence with Attention](https://github.com/Exorust/TorchLeet/blob/main/h5/seq-to-seq-with-Attention.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h5/seq-to-seq-with-Attention_SOLN.ipynb) 6. [Quantize your language model](https://github.com/Exorust/TorchLeet/blob/main/h6/quantize-language-model.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h6/quantize-language-model_SOLN.ipynb) 7. [Enable distributed training in pytorch (DistributedDataParallel)] 8. [Work with Sparse Tensors] 9. [Implement Mixed Precision Training using torch.cuda.amp](https://github.com/Exorust/TorchLeet/blob/main/h9/cuda-amp.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h9/cuda-amp_SOLN.ipynb) 10. [Add GradCam/SHAP to explain the model.](https://github.com/Exorust/TorchLeet/blob/main/h10/xai.ipynb) [(Solution)](https://github.com/Exorust/TorchLeet/blob/main/h10/xai_SOLN.ipynb) **What's cool? 🚀** - **Diverse Questions**: Covers beginner to advanced PyTorch concepts (e.g., tensors, autograd, CNNs, GANs, and more). - **Guided Learning**: Includes incomplete code blocks (`...` and `#TODO`) for hands-on practice along with Answers ## Getting Started ### 1. Install Dependencies - Install pytorch: [Install pytorch locally](https://pytorch.org/get-started/locally/) - Some problems need other packages. Install as needed. ### 2. Structure - `/`: Easy/Medium/Hard along with the question ID. - `/qname.ipynb`: The question file with incomplete code blocks. - `/qname_SOLN.ipynb`: The corresponding solution file. ### 3. How to Use - Navigate to questions/ and pick a problem - Fill in the missing code blocks `(...)` and address the `#TODO` comments. - Test your solution and compare it with the corresponding file in `solutions/`. **Happy Learning! 🚀** # Contribution Feel free to contribute by adding new questions or improving existing ones. Ensure that new problems are well-documented and follow the project structure. # Authors ## Stargazers over time [![Stargazers over time](https://starchart.cc/Exorust/TorchLeet.svg?variant=adaptive)](https://starchart.cc/Exorust/TorchLeet)