# pytorch-lightning-gans **Repository Path**: Heconnor/pytorch-lightning-gans ## Basic Information - **Project Name**: pytorch-lightning-gans - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-07-19 - **Last Updated**: 2024-07-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: tutorial, GenerativeAdversarialNetworks ## README # PyTorch Lightning GANs [![DOI](https://zenodo.org/badge/202523756.svg)](https://zenodo.org/badge/latestdoi/202523756) [![GitHub license](https://img.shields.io/github/license/nocotan/pytorch-lightning-gans)](https://github.com/nocotan/pytorch-lightning-gans/blob/master/LICENSE) ![GitHub Repo stars](https://img.shields.io/github/stars/nocotan/pytorch-lightning-gans?style=social) ![GitHub code size in bytes](https://img.shields.io/github/languages/code-size/nocotan/pytorch-lightning-gans) ![GitHub issues](https://img.shields.io/github/issues/nocotan/pytorch-lightning-gans) Collection of PyTorch Lightning implementations of Generative Adversarial Network varieties presented in research papers. ## Installation ```bash $ pip install -r requirements.txt ``` ## Example The minimum code for training GAN is as follows: ```python from pytorch_lightning.trainer import Trainer from models import GAN model = GAN() trainer = Trainer() trainer.fit(model) ``` or you can run the following command: ```bash $ python models/gan.py --gpus=2 ``` ## Implementations * ACGAN: Auxiliary Classifier GAN (Odena et al.) * BEGAN: Boundary equilibrium generative adversarial networks (Berthelot et al.) * DCGAN: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (Radford et al.) * GAN: Generative Adversarial Networks (Goodfellow et al.) * LSGAN: Least squares generative adversarial networks (Mao et al.) * WGAN: Wasserstein GAN (Arjovsky et al.) * WGAN-GP: Improved Training of Wasserstein GANs (Gulrajani et al.) ## Acknowledgements This repository is highly inspired by [PyTorch-GAN](https://github.com/eriklindernoren/PyTorch-GAN) repository. ## References * Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014. * Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). * Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional image synthesis with auxiliary classifier gans." International conference on machine learning. PMLR, 2017. * Berthelot, David, Thomas Schumm, and Luke Metz. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017). * Mao, Xudong, et al. "Least squares generative adversarial networks." Proceedings of the IEEE international conference on computer vision. 2017. * Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." Proceedings of the 34th International Conference on Machine Learning-Volume 70. 2017. * Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." Advances in neural information processing systems. 2017. ## Citation ```bibtex @software{https://doi.org/10.5281/zenodo.4404867, doi = {10.5281/ZENODO.4404867}, url = {https://zenodo.org/record/4404867}, author = {Masanari Kimura}, title = {pytorch-lightning-gans}, publisher = {Zenodo}, year = {2020}, copyright = {Open Access} } ```