# deeplearning-models **Repository Path**: Locoti/deeplearning-models ## Basic Information - **Project Name**: deeplearning-models - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-19 - **Last Updated**: 2021-06-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ![Python 3.7](https://img.shields.io/badge/Python-3.7-blue.svg) # Deep Learning Models A collection of various deep learning architectures, models, and tips for TensorFlow and PyTorch in Jupyter Notebooks. ## Traditional Machine Learning - Perceptron    [TensorFlow 1: [GitHub](tensorflow1_ipynb/basic-ml/perceptron.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/basic-ml/perceptron.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb)] - Logistic Regression    [TensorFlow 1: [GitHub](tensorflow1_ipynb/basic-ml/logistic-regression.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/basic-ml/logistic-regression.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb)] - Softmax Regression (Multinomial Logistic Regression)    [TensorFlow 1: [GitHub](tensorflow1_ipynb/basic-ml/softmax-regression.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/basic-ml/softmax-regression.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb)] - Softmax Regression with MLxtend's plot_decision_regions on Iris    [PyTorch: [GitHub](pytorch_ipynb/basic-ml/softmax-regression-mlxtend-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression-mlxtend-1.ipynb)] ## Multilayer Perceptrons - Multilayer Perceptron    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mlp/mlp-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/mlp/mlp-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb)] - Multilayer Perceptron with Dropout    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mlp/mlp-dropout.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/mlp/mlp-dropout.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb)] - Multilayer Perceptron with Batch Normalization    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/mlp/mlp-batchnorm.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb)] - Multilayer Perceptron with Backpropagation from Scratch    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb)] ## Convolutional Neural Networks #### Basic - Convolutional Neural Network    [TensorFlow 1: [GitHub](tensorflow1_ipynb/cnn/cnn-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-basic.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb)] - Convolutional Neural Network with He Initialization    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-he-init.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb)] #### Concepts - Replacing Fully-Connnected by Equivalent Convolutional Layers    [PyTorch: [GitHub](pytorch_ipynb/cnn/fc-to-conv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb)] --- #### AlexNet - AlexNet on CIFAR-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb)] #### DenseNet - DenseNet-121 Digit Classifier Trained on MNIST    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-densenet121-mnist.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-densenet121-mnist.ipynb)] - DenseNet-121 Image Classifier Trained on CIFAR-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-densenet121-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-densenet121-cifar10.ipynb)] #### Fully Convolutional - Fully Convolutional Neural Network    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-allconv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb)] #### LeNet - LeNet-5 on MNIST    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-mnist.ipynb)] - LeNet-5 on CIFAR-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-lenet5-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-cifar10.ipynb)] - LeNet-5 on QuickDraw    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-lenet5-quickdraw.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-quickdraw.ipynb)] #### MobileNet - MobileNet-v2 on Cifar-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-mobilenet-v2-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-quickdraw.ipynb)] - MobileNet-v3 small on Cifar-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-mobilenet-v3-small-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-quickdraw.ipynb)] - MobileNet-v3 large on Cifar-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-mobilenet-v3-large-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-lenet5-quickdraw.ipynb)] #### Network in Network - Network in Network CIFAR-10 Classifier    [PyTorch: [GitHub](pytorch_ipynb/cnn/nin-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb)] #### VGG - Convolutional Neural Network VGG-16 Trained on CIFAR-10    [TensorFlow 1: [GitHub](tensorflow1_ipynb/cnn/cnn-vgg16.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-vgg16.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb)] - VGG-16 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb)] - VGG-16 Dogs vs Cats Classifier    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-cats-dogs.ipynb)] - Convolutional Neural Network VGG-19    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-vgg19.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb)] #### ResNet - ResNet and Residual Blocks    [PyTorch: [GitHub](pytorch_ipynb/cnn/resnet-ex-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb)] - ResNet-18 Digit Classifier Trained on MNIST    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb)] - ResNet-18 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb)] - ResNet-34 Digit Classifier Trained on MNIST    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb)] - ResNet-34 Object Classifier Trained on QuickDraw    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet34-quickdraw.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-quickdraw.ipynb)] - ResNet-34 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb)] - ResNet-50 Digit Classifier Trained on MNIST    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb)] - ResNet-50 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb)] - ResNet-101 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb)] - ResNet-101 Trained on CIFAR-10    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet101-cifar10.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-cifar10.ipynb)] - ResNet-152 Gender Classifier Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb)] --- ## Normalization Layers - BatchNorm before and after Activation for Network-in-Network CIFAR-10 Classifier    [PyTorch: [GitHub](pytorch_ipynb/cnn/nin-cifar10_batchnorm.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10_batchnorm.ipynb)] - Filter Response Normalization for Network-in-Network CIFAR-10 Classifier    [PyTorch: [GitHub](pytorch_ipynb/cnn/nin-cifar10_filter-response-norm.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10_filter-response-norm.ipynb)] ## Metric Learning - Siamese Network with Multilayer Perceptrons    [TensorFlow 1: [GitHub](tensorflow1_ipynb/metric/siamese-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb)] ## Autoencoders #### Fully-connected Autoencoders - Autoencoder (MNIST)    [TensorFlow 1: [GitHub](tensorflow1_ipynb/autoencoder/ae-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-basic.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb)] - Autoencoder (MNIST) + Scikit-Learn Random Forest Classifier    [TensorFlow 1: [GitHub](tensorflow1_ipynb/autoencoder/ae-basic-with-rf.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-basic.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-basic-with-rf.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb)] #### Convolutional Autoencoders - Convolutional Autoencoder with Deconvolutions / Transposed Convolutions    [TensorFlow 1: [GitHub](tensorflow1_ipynb/autoencoder/ae-deconv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-deconv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb)] - Convolutional Autoencoder with Deconvolutions and Continuous Jaccard Distance    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-deconv-jaccard.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-jaccard.ipynb)] - Convolutional Autoencoder with Deconvolutions (without pooling operations)    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv-nopool.ipynb)] - Convolutional Autoencoder with Nearest-neighbor Interpolation    [TensorFlow 1: [GitHub](tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-conv-nneighbor.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb)] - Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on CelebA    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb)] - Convolutional Autoencoder with Nearest-neighbor Interpolation -- Trained on Quickdraw    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb)] #### Variational Autoencoders - Variational Autoencoder    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-var.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb)] - Convolutional Variational Autoencoder    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-conv-var.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb)] #### Conditional Variational Autoencoders - Conditional Variational Autoencoder (with labels in reconstruction loss)    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-cvae.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb)] - Conditional Variational Autoencoder (without labels in reconstruction loss)    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb)] - Convolutional Conditional Variational Autoencoder (with labels in reconstruction loss)    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb)] - Convolutional Conditional Variational Autoencoder (without labels in reconstruction loss)    [PyTorch: [GitHub](pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb)] ## Generative Adversarial Networks (GANs) - Fully Connected GAN on MNIST    [TensorFlow 1: [GitHub](tensorflow1_ipynb/gan/gan.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/gan/gan.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb)] - Fully Connected Wasserstein GAN on MNIST    [PyTorch: [GitHub](pytorch_ipynb/gan/wgan-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/wgan-1.ipynb)] - Convolutional GAN on MNIST    [TensorFlow 1: [GitHub](tensorflow1_ipynb/gan/gan-conv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/gan/gan-conv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb)] - Convolutional GAN on MNIST with Label Smoothing    [TensorFlow 1: [GitHub](tensorflow1_ipynb/gan/gan-conv-smoothing.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv-smoothing.ipynb)]    [PyTorch: [GitHub](pytorch_ipynb/gan/gan-conv-smoothing.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb)] - Convolutional Wasserstein GAN on MNIST    [PyTorch: [GitHub](pytorch_ipynb/gan/dc-wgan-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/dc-wgan-1.ipynb)] - "Deep Convolutional GAN" (DCGAN) on Cats and Dogs Images    [PyTorch: [GitHub](pytorch_ipynb/gan/dcgan-cats-and-dogs.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/dcgan-cats-and-dogs.ipynb)] - "Deep Convolutional GAN" (DCGAN) on CelebA Face Images    [PyTorch: [GitHub](pytorch_ipynb/gan/dcgan-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/dcgan-celeba.ipynb)] ## Graph Neural Networks (GNNs) - Most Basic Graph Neural Network with Gaussian Filter on MNIST    [PyTorch: [GitHub](pytorch_ipynb/gnn/gnn-basic-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gnn/gnn-basic-1.ipynb)] - Basic Graph Neural Network with Edge Prediction on MNIST    [PyTorch: [GitHub](pytorch_ipynb/gnn/gnn-basic-edge-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gnn/gnn-basic-edge-1.ipynb)] - Basic Graph Neural Network with Spectral Graph Convolution on MNIST    [PyTorch: [GitHub](pytorch_ipynb/gnn/gnn-basic-graph-spectral-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gnn/gnn-basic-graph-spectral-1.ipynb)] ## Recurrent Neural Networks (RNNs) #### Many-to-one: Sentiment Analysis / Classification - A simple single-layer RNN (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_simple_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb)] - A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb)] - RNN with LSTM cells (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb)] - RNN with LSTM cells (IMDB) and pre-trained GloVe word vectors    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb-glove.ipynb)] - RNN with LSTM cells and Own Dataset in CSV Format (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb)] - RNN with GRU cells (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb)] - Multilayer bi-directional RNN (IMDB)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_lstm_bi_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_bi_imdb.ipynb)] - Bidirectional Multi-layer RNN with LSTM with Own Dataset in CSV Format (AG News)    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_bi_multilayer_lstm_own_csv_agnews.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_bi_multilayer_lstm_own_csv_agnews.ipynb)] #### Many-to-Many / Sequence-to-Sequence - A simple character RNN to generate new text (Charles Dickens)    [PyTorch: [GitHub](pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb)] ## Ordinal Regression - Ordinal Regression CNN -- CORAL w. ResNet34 on AFAD-Lite    [PyTorch: [GitHub](pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb)] - Ordinal Regression CNN -- Niu et al. 2016 w. ResNet34 on AFAD-Lite    [PyTorch: [GitHub](pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb)] - Ordinal Regression CNN -- Beckham and Pal 2016 w. ResNet34 on AFAD-Lite    [PyTorch: [GitHub](pytorch_ipynb/ordinal/ordinal-cnn-beckham2016-afadlite.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-beckham2016-afadlite.ipynb)] ## Tips and Tricks - Cyclical Learning Rate    [PyTorch: [GitHub](pytorch_ipynb/tricks/cyclical-learning-rate.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb)] - Annealing with Increasing the Batch Size (w. CIFAR-10 & AlexNet)    [PyTorch: [GitHub](pytorch_ipynb/tricks/cnn-alexnet-cifar10-batchincrease.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cnn-alexnet-cifar10-batchincrease.ipynb)] - Gradient Clipping (w. MLP on MNIST)    [PyTorch: [GitHub](pytorch_ipynb/tricks/gradclipping_mlp.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/gradclipping_mlp.ipynb)] ## Transfer Learning - Transfer Learning Example (VGG16 pre-trained on ImageNet for Cifar-10)    [PyTorch: [GitHub](pytorch_ipynb/transfer/transferlearning-vgg16-cifar10-1.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/transfer/transferlearning-vgg16-cifar10-1.ipynb)] ## Visualization and Interpretation - Vanilla Loss Gradient (wrt Inputs) Visualization (Based on a VGG16 Convolutional Neural Network for Kaggle's Cats and Dogs Images)    [PyTorch: [GitHub](pytorch_ipynb/viz/cnns/cats-and-dogs/cnn-viz-grad__vgg16-cats-dogs.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/viz/cnns/cats-and-dogs/cnn-viz-grad__vgg16-cats-dogs.ipynb)] - Guided Backpropagation (Based on a VGG16 Convolutional Neural Network for Kaggle's Cats and Dogs Images)    [PyTorch: [GitHub](pytorch_ipynb/viz/cnns/cats-and-dogs/cnn-viz-guided-backprop__vgg16-cats-dogs.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/viz/cnns/cats-and-dogs/cnn-viz-guided-backprop__vgg16-cats-dogs.ipynb)] ## PyTorch Workflows and Mechanics #### Custom Datasets - Custom Data Loader Example for PNG Files    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-dataloader-png/custom-dataloader-example.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-dataloader-png/custom-dataloader-example.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- CSV files converted to HDF5    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Face Images from CelebA    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from Quickdraw    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Drawings from the Street View House Number (SVHN) Dataset    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-svhn.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Asian Face Dataset (AFAD)    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-afad.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-afad.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Dating Historical Color Images    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader_dating-historical-color-images.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader_dating-historical-color-images.ipynb)] - Using PyTorch Dataset Loading Utilities for Custom Datasets -- Fashion MNIST    [PyTorch: [GitHub](pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb)] #### Training and Preprocessing - Generating Validation Set Splits    [PyTorch: [GitHub](pytorch_ipynb/mechanics/validation-splits.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/validation-splits.ipynb)] - Dataloading with Pinned Memory    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb)] - Standardizing Images    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-standardized.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb)] - Image Transformation Examples    [PyTorch: [GitHub](pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb)] - Char-RNN with Own Text File    [PyTorch: [GitHub](pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb)] - Sentiment Classification RNN with Own CSV File    [PyTorch: [GitHub](pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb)] #### Improving Memory Efficiency - Gradient Checkpointing Demo (Network-in-Network trained on CIFAR-10)    [PyTorch: [GitHub](pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb)] #### Parallel Computing - Using Multiple GPUs with DataParallel -- VGG-16 Gender Classifier on CelebA    [PyTorch: [GitHub](pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb)] - Distribute a Model Across Multiple GPUs with Pipeline Parallelism (VGG-16 Example)    [PyTorch: [GitHub](pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb)] #### Other - PyTorch with and without Deterministic Behavior -- Runtime Benchmark    [PyTorch: [GitHub](pytorch_ipynb/mechanics/deterministic_benchmark.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/pytorch_ipynb/mechanics/deterministic_benchmark.ipynb)] - Sequential API and hooks    [PyTorch: [GitHub](pytorch_ipynb/mechanics/mlp-sequential.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/mlp-sequential.ipynb)] - Weight Sharing Within a Layer    [PyTorch: [GitHub](pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb)] - Plotting Live Training Performance in Jupyter Notebooks with just Matplotlib    [PyTorch: [GitHub](pytorch_ipynb/mechanics/plot-jupyter-matplotlib.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/plot-jupyter-matplotlib.ipynb)] #### Autograd - Getting Gradients of an Intermediate Variable in PyTorch    [PyTorch: [GitHub](pytorch_ipynb/mechanics/manual-gradients.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb)] ## TensorFlow Workflows and Mechanics #### Custom Datasets - Chunking an Image Dataset for Minibatch Training using NumPy NPZ Archives    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb)] - Storing an Image Dataset for Minibatch Training using HDF5    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb)] - Using Input Pipelines to Read Data from TFRecords Files    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/tfrecords.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb)] - Using Queue Runners to Feed Images Directly from Disk    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/file-queues.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb)] - Using TensorFlow's Dataset API    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/dataset-api.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb)] #### Training and Preprocessing - Saving and Loading Trained Models -- from TensorFlow Checkpoint Files and NumPy NPZ Archives    [TensorFlow 1: [GitHub](tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb) | [Nbviewer](https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb)]