# annotated_deep_learning_paper_implementations **Repository Path**: MarkburtOS/annotated_deep_learning_paper_implementations ## Basic Information - **Project Name**: annotated_deep_learning_paper_implementations - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-04-22 - **Last Updated**: 2025-04-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai) [![Sponsor](https://img.shields.io/static/v1?label=Sponsor&message=%E2%9D%A4&logo=GitHub&color=%23fe8e86)](https://github.com/sponsors/labmlai) # [labml.ai Deep Learning Paper Implementations](https://nn.labml.ai/index.html) This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations, [The website](https://nn.labml.ai/index.html) renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better. ![Screenshot](https://nn.labml.ai/dqn-light.png) We are actively maintaining this repo and adding new implementations almost weekly. [![Twitter](https://img.shields.io/twitter/follow/labmlai?style=social)](https://twitter.com/labmlai) for updates. ## Paper Implementations #### ✨ [Transformers](https://nn.labml.ai/transformers/index.html) * [Multi-headed attention](https://nn.labml.ai/transformers/mha.html) * [Transformer building blocks](https://nn.labml.ai/transformers/models.html) * [Transformer XL](https://nn.labml.ai/transformers/xl/index.html) * [Relative multi-headed attention](https://nn.labml.ai/transformers/xl/relative_mha.html) * [Rotary Positional Embeddings](https://nn.labml.ai/transformers/rope/index.html) * [Attention with Linear Biases (ALiBi)](https://nn.labml.ai/transformers/alibi/index.html) * [RETRO](https://nn.labml.ai/transformers/retro/index.html) * [Compressive Transformer](https://nn.labml.ai/transformers/compressive/index.html) * [GPT Architecture](https://nn.labml.ai/transformers/gpt/index.html) * [GLU Variants](https://nn.labml.ai/transformers/glu_variants/simple.html) * [kNN-LM: Generalization through Memorization](https://nn.labml.ai/transformers/knn) * [Feedback Transformer](https://nn.labml.ai/transformers/feedback/index.html) * [Switch Transformer](https://nn.labml.ai/transformers/switch/index.html) * [Fast Weights Transformer](https://nn.labml.ai/transformers/fast_weights/index.html) * [FNet](https://nn.labml.ai/transformers/fnet/index.html) * [Attention Free Transformer](https://nn.labml.ai/transformers/aft/index.html) * [Masked Language Model](https://nn.labml.ai/transformers/mlm/index.html) * [MLP-Mixer: An all-MLP Architecture for Vision](https://nn.labml.ai/transformers/mlp_mixer/index.html) * [Pay Attention to MLPs (gMLP)](https://nn.labml.ai/transformers/gmlp/index.html) * [Vision Transformer (ViT)](https://nn.labml.ai/transformers/vit/index.html) * [Primer EZ](https://nn.labml.ai/transformers/primer_ez/index.html) * [Hourglass](https://nn.labml.ai/transformers/hour_glass/index.html) #### ✨ [Low-Rank Adaptation (LoRA)](https://nn.labml.ai/lora/index.html) #### ✨ [Eleuther GPT-NeoX](https://nn.labml.ai/neox/index.html) * [Generate on a 48GB GPU](https://nn.labml.ai/neox/samples/generate.html) * [Finetune on two 48GB GPUs](https://nn.labml.ai/neox/samples/finetune.html) * [LLM.int8()](https://nn.labml.ai/neox/utils/llm_int8.html) #### ✨ [Diffusion models](https://nn.labml.ai/diffusion/index.html) * [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html) * [Denoising Diffusion Implicit Models (DDIM)](https://nn.labml.ai/diffusion/stable_diffusion/sampler/ddim.html) * [Latent Diffusion Models](https://nn.labml.ai/diffusion/stable_diffusion/latent_diffusion.html) * [Stable Diffusion](https://nn.labml.ai/diffusion/stable_diffusion/index.html) #### ✨ [Generative Adversarial Networks](https://nn.labml.ai/gan/index.html) * [Original GAN](https://nn.labml.ai/gan/original/index.html) * [GAN with deep convolutional network](https://nn.labml.ai/gan/dcgan/index.html) * [Cycle GAN](https://nn.labml.ai/gan/cycle_gan/index.html) * [Wasserstein GAN](https://nn.labml.ai/gan/wasserstein/index.html) * [Wasserstein GAN with Gradient Penalty](https://nn.labml.ai/gan/wasserstein/gradient_penalty/index.html) * [StyleGAN 2](https://nn.labml.ai/gan/stylegan/index.html) #### ✨ [Recurrent Highway Networks](https://nn.labml.ai/recurrent_highway_networks/index.html) #### ✨ [LSTM](https://nn.labml.ai/lstm/index.html) #### ✨ [HyperNetworks - HyperLSTM](https://nn.labml.ai/hypernetworks/hyper_lstm.html) #### ✨ [ResNet](https://nn.labml.ai/resnet/index.html) #### ✨ [ConvMixer](https://nn.labml.ai/conv_mixer/index.html) #### ✨ [Capsule Networks](https://nn.labml.ai/capsule_networks/index.html) #### ✨ [U-Net](https://nn.labml.ai/unet/index.html) #### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html) #### ✨ Graph Neural Networks * [Graph Attention Networks (GAT)](https://nn.labml.ai/graphs/gat/index.html) * [Graph Attention Networks v2 (GATv2)](https://nn.labml.ai/graphs/gatv2/index.html) #### ✨ [Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html) Solving games with incomplete information such as poker with CFR. * [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html) #### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html) * [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with [Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html) * [Deep Q Networks](https://nn.labml.ai/rl/dqn/index.html) with with [Dueling Network](https://nn.labml.ai/rl/dqn/model.html), [Prioritized Replay](https://nn.labml.ai/rl/dqn/replay_buffer.html) and Double Q Network. #### ✨ [Optimizers](https://nn.labml.ai/optimizers/index.html) * [Adam](https://nn.labml.ai/optimizers/adam.html) * [AMSGrad](https://nn.labml.ai/optimizers/amsgrad.html) * [Adam Optimizer with warmup](https://nn.labml.ai/optimizers/adam_warmup.html) * [Noam Optimizer](https://nn.labml.ai/optimizers/noam.html) * [Rectified Adam Optimizer](https://nn.labml.ai/optimizers/radam.html) * [AdaBelief Optimizer](https://nn.labml.ai/optimizers/ada_belief.html) * [Sophia-G Optimizer](https://nn.labml.ai/optimizers/sophia.html) #### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html) * [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) * [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) * [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html) * [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html) * [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html) * [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html) * [DeepNorm](https://nn.labml.ai/normalization/deep_norm/index.html) #### ✨ [Distillation](https://nn.labml.ai/distillation/index.html) #### ✨ [Adaptive Computation](https://nn.labml.ai/adaptive_computation/index.html) * [PonderNet](https://nn.labml.ai/adaptive_computation/ponder_net/index.html) #### ✨ [Uncertainty](https://nn.labml.ai/uncertainty/index.html) * [Evidential Deep Learning to Quantify Classification Uncertainty](https://nn.labml.ai/uncertainty/evidence/index.html) #### ✨ [Activations](https://nn.labml.ai/activations/index.html) * [Fuzzy Tiling Activations](https://nn.labml.ai/activations/fta/index.html) #### ✨ [Langauge Model Sampling Techniques](https://nn.labml.ai/sampling/index.html) * [Greedy Sampling](https://nn.labml.ai/sampling/greedy.html) * [Temperature Sampling](https://nn.labml.ai/sampling/temperature.html) * [Top-k Sampling](https://nn.labml.ai/sampling/top_k.html) * [Nucleus Sampling](https://nn.labml.ai/sampling/nucleus.html) #### ✨ [Scalable Training/Inference](https://nn.labml.ai/scaling/index.html) * [Zero3 memory optimizations](https://nn.labml.ai/scaling/zero3/index.html) ### Installation ```bash pip install labml-nn ```