# 期中考可视化 **Repository Path**: NFUNM076/mid ## Basic Information - **Project Name**: 期中考可视化 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-01 - **Last Updated**: 2024-12-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
import pandas as pd
# 氮氧化物排放量(吨)
df1=pd.read_csv('C:/Users/15713/Desktop/R/Friday/import/A.csv')
df1
省份排放量2017=list(zip(list(df1.地区),list(df1['2017年'])))
省份排放量2017
# 钢材产量(万吨)
df2=pd.read_csv('C:/Users/15713/Desktop/R/Friday/import/B.csv')
df2
钢材产量2017=list(zip(list(df2.地区),list(df2['2017年'])))
钢材产量2017
from pyecharts.charts import Bar
def bar_datazoom_inside() -> Bar:
c = (
Bar()
.add_xaxis(list(df1.地区))
.add_yaxis("氮氧排放量",list(df1['2017年']), color=Faker.rand_color())
.set_global_opts(
title_opts=opts.TitleOpts(title="2017年各地氮氧排放量"),
datazoom_opts=opts.DataZoomOpts(type_="inside"),
)
)
return c
bar_datazoom_inside().render_notebook()
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import EffectScatter
from pyecharts.globals import SymbolType
def effectscatter_base() -> EffectScatter:
c = (
EffectScatter()
.add_xaxis(list(df2.地区))
.add_yaxis("钢材产量", list(df2['2017年']))
.set_global_opts(title_opts=opts.TitleOpts(title="2017年各地钢材产量"))
)
return c
effectscatter_base().render_notebook()
from pyecharts.datasets import register_files
register_files({"myTheme": ["themes/myTheme", "js"]})
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Map
def map_base() -> Map:
c = (
Map()
.add("氮氧化物排放量示意图",省份排放量2017, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="2017年中国省份氮氧化物排放量"),
visualmap_opts=opts.VisualMapOpts(max_=1000000),
)
)
return c
map_base().render_notebook()
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Map
def map_base() -> Map:
c = (
Map()
.add("钢材产量示意图",钢材产量2017, "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="2017年中国省份钢材产量"),
visualmap_opts=opts.VisualMapOpts(max_=10000),
)
)
return c
map_base().render_notebook()