代码拉取完成,页面将自动刷新
# coding:utf-8
"""
tf.demo07_build_neural_network
Created on 2016/12/9 14:45
@author: GuoYufu
@group : OceanHorn
@contact: OceanHorn@163.com
"""
from tf_demo06_define_addLayer import *
import numpy as np
if __name__ == "__main__":
x_data = np.linspace(start=-1, stop=1, num=300)[:, np.newaxis]
noise = np.random.normal(loc=0, scale=0.05, size=x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(dtype=tf.float32, shape=[None, 1])
ys = tf.placeholder(dtype=tf.float32, shape=[None, 1])
layer1_outputs = add_layer(inputs=xs, in_size=1, out_size=10, activation_function=tf.nn.relu)
prediction_layer_outputs = add_layer(inputs=layer1_outputs, in_size=10, out_size=1, activation_function=None)
loss = tf.reduce_mean(
tf.reduce_sum(
tf.square(ys - prediction_layer_outputs), reduction_indices=[1]
)
)
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
initialize = tf.global_variables_initializer()
with tf.Session() as session:
session.run(initialize)
for i in range(1001):
session.run(train_step, feed_dict={xs: x_data, ys:y_data})
if i % 20 == 0:
print session.run(loss, feed_dict={xs: x_data, ys:y_data})
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。