# RapidLatexOCR **Repository Path**: PolarisF/RapidLatexOCR ## Basic Information - **Project Name**: RapidLatexOCR - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-11-12 - **Last Updated**: 2023-11-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

Rapid ⚡︎ Latex OCR

 
PyPI SemVer2.0
### Introduction - `rapid_latex_ocr` is a tool to convert formula images to latex format. - **The reasoning code in the repo is modified from [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR), the model has all been converted to ONNX format, and the reasoning code has been simplified, Inference is faster and easier to deploy.** - The repo only has codes based on `ONNXRuntime` or `OpenVINO` inference in onnx format, and does not contain training model codes. If you want to train your own model, please move to [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR). - If it helps you, please give a little star ⭐ or sponsor a cup of coffee (click the link in Sponsor at the top of the page) - Welcome all friends to actively contribute to make this tool better. - ☆ [Model Conversion Notes](https://github.com/RapidAI/RapidLatexOCR/wiki/Model-Conversion-Notes) ### [Demo](https://swhl-rapidlatexocrdemo.hf.space)
### TODO - [ ] Rewrite LaTeX-OCR GUI version based on `rapid_latex_ocr` - [x] Add demo in the hugging face - [ ] Integrate other better models - [ ] Add support for OpenVINO ### Installation 1. pip install `rapid_latext_ocr` library. Because packaging the model into the whl package exceeds the pypi limit (100M), the model needs to be downloaded separately. ```bash pip install rapid_latex_ocr ``` 2. Download the model ([Google Drive](https://drive.google.com/drive/folders/1e8BgLk1cPQDSZjgoLgloFYMAQWLTaroQ?usp=sharing) | [Baidu NetDisk](https://pan.baidu.com/s/1rnYmmKp2HhOkYVFehUiMNg?pwd=dh72)), when initializing, just specify the model path, see the next part for details. |model name|size| |---:|:---:| |`image_resizer.onnx`|37.1M| |`encoder.onnx`|84.8M| |`decoder.onnx`|48.5M| ### Usage - Used by python script: ```python from rapid_latex_ocr import LatexOCR image_resizer_path = 'models/image_resizer.onnx' encoder_path = 'models/encoder.onnx' decoder_path = 'models/decoder.onnx' tokenizer_json = 'models/tokenizer.json' model = LatexOCR(image_resizer_path=image_resizer_path, encoder_path=encoder_path, decoder_path=decoder_path, tokenizer_json=tokenizer_json) img_path = "tests/test_files/6.png" with open(img_path, "rb") as f: data = f. read() result, elapse = model(data) print(result) # {\frac{x^{2}}{a^{2}}}-{\frac{y^{2}}{b^{2}}}=1 print(elapse) # 0.4131628000000003 ``` - Used by command line. ```bash $ rapid_latex_ocr -h usage: rapid_latex_ocr [-h] [-img_resizer IMAGE_RESIZER_PATH] [-encdoer ENCODER_PATH] [-decoder DECODER_PATH] [-tokenizer TOKENIZER_JSON] img_path positional arguments: img_path Only img path of the formula. optional arguments: -h, --help show this help message and exit -img_resizer IMAGE_RESIZER_PATH, --image_resizer_path IMAGE_RESIZER_PATH -encdoer ENCODER_PATH, --encoder_path ENCODER_PATH -decoder DECODER_PATH, --decoder_path DECODER_PATH -tokenizer TOKENIZER_JSON, --tokenizer_json TOKENIZER_JSON $ rapid_latex_ocr tests/test_files/6.png \ -img_resizer models/image_resizer.onnx \ -encoder models/encoder.onnx \ -dedocer models/decoder.onnx \ -tokenizer models/tokenizer.json # ('{\\frac{x^{2}}{a^{2}}}-{\\frac{y^{2}}{b^{2}}}=1', 0.47902780000000034) ``` ### Changlog - 2023-09-13 v0.0.4 update: - Merge [pr #5](https://github.com/RapidAI/RapidLatexOCR/pull/5) - Optim code - 2023-07-15 v0.0.1 update: - First release ### Code Contributors

### Contributing - Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change. - Please make sure to update tests as appropriate. ### [Sponsor](https://swhl.github.io/RapidVideOCR/docs/sponsor/) If you want to sponsor the project, you can directly click the **Buy me a coffee** image, please write a note (e.g. your github account name) to facilitate adding to the sponsorship list below.
### License This project is released under the [MIT license](./LICENSE).