# SuperResolutionFMCW **Repository Path**: PolarisF/super-resolution-fmcw ## Basic Information - **Project Name**: SuperResolutionFMCW - **Description**: 2022年研究生数学建模竞赛A题代码 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2022-10-10 - **Last Updated**: 2024-07-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # super-resolution-fmcw ## Features * 参考文献[1]中fig12,fig13的样式,给出了基于python Numpy 与 Matplotlib的实现, 具体查看 [MIMO_FMCW_定位图.ipynb](QA\MIMO_FMCW_定位图_Q3.ipynb) Several DOA estimation method (Eg: MUSIC CBF Capon etc.). * Range FFT. * Some related works form other projects. 1. **MIMO_FMCW_定位图.ipynb:** \ 图的实现思路是参考文献[1]中的 *FIGURE_12* ,对应到本题中,我们生成的为 range-angle 图,我们首先得到数据的距离估计,然后在 range-angle 图中对应的距离处 赋值计算得到的角度频谱 便可以得到。 2. **RangeFFT.py** \ 通过rangeFFT对信源的距离进行估计 对所有 阵元(86个)的估计估计值取平均,通过matplotlib 可视化 >**Note:** .... some other features will be added in the future (sorry \*_\*) ## Some results DOA_estimation ![DOA_estimation](README_imgs/img_show01.png) Pos_estimation_q1 ![Pos_estimation_q1](README_imgs/img_show02.png) Pos_estimation_q2 ![Pos_estimation_q2](README_imgs/img_show03.png) Pos_estimation_q4 ![Pos_estimation_q4](README_imgs/img_show04.png) Range_FFT ![Range_FFT](README_imgs/img_show05.png) ## References [1] X. Li, X. Wang, Q. Yang and S. Fu, "Signal Processing for TDM MIMO FMCW Millimeter-Wave Radar Sensors," in IEEE Access, vol. 9, pp. 167959-167971, 2021. [IEEE](https://ieeexplore.ieee.org/document/9658500) \ [2] Signal Processing for TDM MIMO FMCW Millimeter-Wave Radar Sensors \ [3] 张小飞,阵列信号处理及MATLAB实现,北京:电子工业出版社,87-193,2015 \ [4] 张小飞,阵列信号处理的理论和应用,北京:国防工业出版社,77-151,2010 \ [5] 王永良,空间普估计理论与算法,北京:清华大学出版社,40-49,2004 \ [6] 甄佳奇,超分辨侧向理论以及性能优化技术,北京:人民邮电出版社,52-78,2018 ## Code References https://github.com/morriswmz/doa-tools \ https://github.com/morriswmz/doatools.py \ https://github.com/ZHOUYI1023/awesome-radar-perception \ https://github.com/petotamas/pyArgus