# Kafka-sample-study
**Repository Path**: Protector_hui/kafka-sample-study
## Basic Information
- **Project Name**: Kafka-sample-study
- **Description**: No description available
- **Primary Language**: Java
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2021-03-26
- **Last Updated**: 2021-03-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## 3.1 前言
毕竟是要搭建环境和简单实用,所以文中有大量的代码和配置文件。
前置条件:你的电脑已经安装 Docker
主要内容:
1. 使用 Docker 安装
2. 使用命令行测试消息的生产和消费消息队列功能使用
3. zookeeper和kafka可视化管理工具
4. Java 程序中简单使用Kafka
## 3.2 使用 Docker 安装搭建Kafka环境
### 3.2.1 单机版
**下面使用的单机版的Kafka 来作为演示,推荐先搭建单机版的Kafka来学习。**
> “
>
> 以下使用 Docker  搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose  。当然,你也可以按照官方提供的来:https://github.com/wurstmeister/kafka-docker/blob/master/docker-compose.yml 。
>
> ”
新建一个名为 `zk-single-kafka-single.yml` 的文件,文件内容如下:
```yaml
version: '2.1'
services:
  zoo1:
    image: zookeeper:3.4.9
    hostname: zoo1
    ports:
      - "2181:2181"
    environment:
      ZOO_MY_ID: 1
      ZOO_PORT: 2181
      ZOO_SERVERS: server.1=zoo1:2888:3888
    volumes:
      - ./zk-single-kafka-single/zoo1/data:/data
      - ./zk-single-kafka-single/zoo1/datalog:/datalog
  kafka1:
    image: confluentinc/cp-kafka:5.3.1
    hostname: kafka1
    ports:
      - "9092:9092"
    environment:
      KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
      KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
      KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
      KAFKA_BROKER_ID: 1
      KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
    volumes:
      - ./zk-single-kafka-single/kafka1/data:/var/lib/kafka/data
    depends_on:
      - zoo1
```
运行以下命令即可完成环境搭建(会自动下载并运行一个 zookeeper 和 kafka )
```bash
docker-compose -f zk-single-kafka-single.yml up
```
如果需要停止Kafka相关容器的话,运行以下命令即可:
```bash
docker-compose -f zk-single-kafka-single.yml down
```
### 3.2.2 集群版
> “
>
> 以下使用 Docker 搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose  。
>
> ”
新建一个名为 `zk-single-kafka-multiple.yml` 的文件,文件内容如下:
```bash
version: '2.1'
services:
  zoo1:
    image: zookeeper:3.4.9
    hostname: zoo1
    ports:
      - "2181:2181"
    environment:
        ZOO_MY_ID: 1
        ZOO_PORT: 2181
        ZOO_SERVERS: server.1=zoo1:2888:3888
    volumes:
      - ./zk-single-kafka-multiple/zoo1/data:/data
      - ./zk-single-kafka-multiple/zoo1/datalog:/datalog
  kafka1:
    image: confluentinc/cp-kafka:5.4.0
    hostname: kafka1
    ports:
      - "9092:9092"
    environment:
      KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
      KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
      KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
      KAFKA_BROKER_ID: 1
      KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
    volumes:
      - ./zk-single-kafka-multiple/kafka1/data:/var/lib/kafka/data
    depends_on:
      - zoo1
  kafka2:
    image: confluentinc/cp-kafka:5.4.0
    hostname: kafka2
    ports:
      - "9093:9093"
    environment:
      KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka2:19093,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9093
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
      KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
      KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
      KAFKA_BROKER_ID: 2
      KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
    volumes:
      - ./zk-single-kafka-multiple/kafka2/data:/var/lib/kafka/data
    depends_on:
      - zoo1
  kafka3:
    image: confluentinc/cp-kafka:5.4.0
    hostname: kafka3
    ports:
      - "9094:9094"
    environment:
      KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka3:19094,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9094
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT
      KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL
      KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"
      KAFKA_BROKER_ID: 3
      KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"
    volumes:
      - ./zk-single-kafka-multiple/kafka3/data:/var/lib/kafka/data
    depends_on:
      - zoo1
```
运行以下命令即可完成 1个节点 Zookeeper+3个节点的 Kafka 的环境搭建。
```bash
docker-compose -f zk-single-kafka-multiple.yml up
```
如果需要停止Kafka相关容器的话,运行以下命令即可:
```bash
docker-compose -f zk-single-kafka-multiple.yml down
```
## 3.3 使用命令行测试消息的生产和消费
一般情况下我们很少会用到 Kafka 的命令行操作。
1. **进入 Kafka container 内部执行 Kafka 官方自带了一些命令**
   ```bash
   docker exec -it containerID bash
   ```
2. **列出所有 Topic**
   ```bash
   root@kafka1:/# kafka-topics --describe --zookeeper zoo1:2181
   ```
3. **创建一个 Topic**
   ```bash
   root@kafka1:/# kafka-topics --create --topic test --partitions 3 --zookeeper zoo1:2181 --replication-factor 1
   Created topic test.
   ```
   我们创建了一个名为 test  的 Topic, partition 数为 3, replica 数为 1。
4. **消费者订阅主题**
   ```bash
   root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test
   send hello from console -producer
   ```
   我们订阅了 名为 test  的 Topic。
5. **生产者向 Topic 发送消息**
   ```bash
   root@kafka1:/# kafka-console-producer --broker-list localhost:9092 --topic test
   >send hello from console -producer
   >
   ```
   我们使用 `kafka-console-producer` 命令向名为 test  的 Topic 发送了一条消息,消息内容为:“send hello from console -producer”
   这个时候,你会发现消费者成功接收到了消息:
   ```bash
   root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test
   send hello from console -producer
   ```
## 3.4 IDEA相关插件推荐
### 3.4.1 Zoolytic-Zookeeper tool
这是一款 IDEA 提供的 Zookeeper 可视化工具插件,非常好用!我们可以通过它:
1. 可视化ZkNodes节点信息
2. ZkNodes节点管理-添加/删除
3. 编辑zkNodes数据
4. ......
实际使用效果如下:

使用方法:
1. 打开工具:View->Tool windows->Zoolytic;
2. 点击 “+” 号后在弹出框数据:“127.0.0.1:2181” 连接 zookeeper;
3. 连接之后点击新创建的连接然后点击“+”号旁边的刷新按钮即可!
### 3.4.2 Kafkalytic
IDEA 提供的 Kafka 可视化管理插件。这个插件为我们提供了下面这写功能:
1. 多个集群支持
2. 主题管理:创建/删除/更改分区
3. 使用正则表达式搜索主题
4. 发布字符串/字节序列化的消息
5. 使用不同的策略消费消息
实际使用效果如下:

使用方法:
1. 打开工具:View->Tool windows->kafkalytic;
2. 点击 “+” 号后在弹出框数据:“127.0.0.1:9092” 连接;
## 3.5 Java 程序中简单使用Kafka
> 代码地址:https://github.com/Snailclimb/springboot-kafka/tree/master/kafka-intro-maven-demo
1. **新建一个Maven项目**
2. **`pom.xml` 中添加相关依赖**
   ```xml
   
       org.apache.kafka
       kafka-clients
       2.2.0
   
   ```
3. **初始化消费者和生产者**
   `KafkaConstants`常量类中定义了Kafka一些常用配置常量。
   ```java
   public class KafkaConstants {
       public static final String BROKER_LIST = "localhost:9092";
       public static final String CLIENT_ID = "client1";
       public static String GROUP_ID_CONFIG="consumerGroup1";
       private KafkaConstants() {
   
       }
   }
   ```
   `ProducerCreator` 中有一个 `createProducer()` 方法方法用于返回一个  `KafkaProducer`对象。
   ```java
   import org.apache.kafka.clients.producer.KafkaProducer;
   import org.apache.kafka.clients.producer.Producer;
   import org.apache.kafka.clients.producer.ProducerConfig;
   import org.apache.kafka.common.serialization.StringSerializer;
   
   import java.util.Properties;
   
   /**
    * @author shuang.kou
    */
   public class ProducerCreator {
   
   
       public static Producer createProducer() {
           Properties properties = new Properties();
           properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST);
           properties.put(ProducerConfig.CLIENT_ID_CONFIG, KafkaConstants.CLIENT_ID);
           properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
           properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
           return new KafkaProducer<>(properties);
       }
   }
   ```
   ConsumerCreator 中有一个`createConsumer()` 方法方法用于返回一个  `KafkaConsumer` 对象
   ```java
   import org.apache.kafka.clients.consumer.Consumer;
   import org.apache.kafka.clients.consumer.ConsumerConfig;
   import org.apache.kafka.clients.consumer.KafkaConsumer;
   import org.apache.kafka.common.serialization.StringDeserializer;
   
   import java.util.Properties;
   
   public class ConsumerCreator {
   
       public static Consumer createConsumer() {
           Properties properties = new Properties();
           properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST);
           properties.put(ConsumerConfig.GROUP_ID_CONFIG, KafkaConstants.GROUP_ID_CONFIG);
           properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
           properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
           return new KafkaConsumer<>(properties);
       }
   }
   ```
4. **发送和消费消息**
   ```java
   public class Main {
       private static final String TOPIC = "test-topic";
   
       public static void main(String[] args) {
           sendMessage();
           consumeMessage();
       }
   
       static void sendMessage() {
           Producer producer = ProducerCreator.createProducer();
           ProducerRecord record =
                   new ProducerRecord<>(TOPIC, "hello, Kafka!");
           try {
               //send message
               RecordMetadata metadata = producer.send(record).get();
               System.out.println("Record sent to partition " + metadata.partition()
                       + " with offset " + metadata.offset());
           } catch (ExecutionException | InterruptedException e) {
               System.out.println("Error in sending record");
               e.printStackTrace();
           }
           producer.close();
       }
   
       static void consumeMessage() {
           Consumer consumer = ConsumerCreator.createConsumer();
           // 循环消费消息
           while (true) {
               //subscribe topic and consume message
               consumer.subscribe(Collections.singletonList(TOPIC));
   
               ConsumerRecords consumerRecords =
                       consumer.poll(Duration.ofMillis(1000));
               for (ConsumerRecord consumerRecord : consumerRecords) {
                   System.out.println("Consumer consume message:" + consumerRecord.value());
               }
           }
       }
   }
   ```
5. **测试**
   运行程序控制台打印出:
   ```
   Record sent to partition 0 with offset 20
   Consumer consume message:hello, Kafka!
   ```