# Kafka-sample-study **Repository Path**: Protector_hui/kafka-sample-study ## Basic Information - **Project Name**: Kafka-sample-study - **Description**: No description available - **Primary Language**: Java - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-26 - **Last Updated**: 2021-03-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## 3.1 前言 毕竟是要搭建环境和简单实用,所以文中有大量的代码和配置文件。 前置条件:你的电脑已经安装 Docker 主要内容: 1. 使用 Docker 安装 2. 使用命令行测试消息的生产和消费消息队列功能使用 3. zookeeper和kafka可视化管理工具 4. Java 程序中简单使用Kafka ## 3.2 使用 Docker 安装搭建Kafka环境 ### 3.2.1 单机版 **下面使用的单机版的Kafka 来作为演示,推荐先搭建单机版的Kafka来学习。** > “ > > 以下使用 Docker 搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose 。当然,你也可以按照官方提供的来:https://github.com/wurstmeister/kafka-docker/blob/master/docker-compose.yml 。 > > ” 新建一个名为 `zk-single-kafka-single.yml` 的文件,文件内容如下: ```yaml version: '2.1' services: zoo1: image: zookeeper:3.4.9 hostname: zoo1 ports: - "2181:2181" environment: ZOO_MY_ID: 1 ZOO_PORT: 2181 ZOO_SERVERS: server.1=zoo1:2888:3888 volumes: - ./zk-single-kafka-single/zoo1/data:/data - ./zk-single-kafka-single/zoo1/datalog:/datalog kafka1: image: confluentinc/cp-kafka:5.3.1 hostname: kafka1 ports: - "9092:9092" environment: KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181" KAFKA_BROKER_ID: 1 KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO" KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1 volumes: - ./zk-single-kafka-single/kafka1/data:/var/lib/kafka/data depends_on: - zoo1 ``` 运行以下命令即可完成环境搭建(会自动下载并运行一个 zookeeper 和 kafka ) ```bash docker-compose -f zk-single-kafka-single.yml up ``` 如果需要停止Kafka相关容器的话,运行以下命令即可: ```bash docker-compose -f zk-single-kafka-single.yml down ``` ### 3.2.2 集群版 > “ > > 以下使用 Docker 搭建Kafka基本环境来自开源项目:https://github.com/simplesteph/kafka-stack-docker-compose 。 > > ” 新建一个名为 `zk-single-kafka-multiple.yml` 的文件,文件内容如下: ```bash version: '2.1' services: zoo1: image: zookeeper:3.4.9 hostname: zoo1 ports: - "2181:2181" environment: ZOO_MY_ID: 1 ZOO_PORT: 2181 ZOO_SERVERS: server.1=zoo1:2888:3888 volumes: - ./zk-single-kafka-multiple/zoo1/data:/data - ./zk-single-kafka-multiple/zoo1/datalog:/datalog kafka1: image: confluentinc/cp-kafka:5.4.0 hostname: kafka1 ports: - "9092:9092" environment: KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka1:19092,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181" KAFKA_BROKER_ID: 1 KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO" volumes: - ./zk-single-kafka-multiple/kafka1/data:/var/lib/kafka/data depends_on: - zoo1 kafka2: image: confluentinc/cp-kafka:5.4.0 hostname: kafka2 ports: - "9093:9093" environment: KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka2:19093,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9093 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181" KAFKA_BROKER_ID: 2 KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO" volumes: - ./zk-single-kafka-multiple/kafka2/data:/var/lib/kafka/data depends_on: - zoo1 kafka3: image: confluentinc/cp-kafka:5.4.0 hostname: kafka3 ports: - "9094:9094" environment: KAFKA_ADVERTISED_LISTENERS: LISTENER_DOCKER_INTERNAL://kafka3:19094,LISTENER_DOCKER_EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9094 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: LISTENER_DOCKER_INTERNAL:PLAINTEXT,LISTENER_DOCKER_EXTERNAL:PLAINTEXT KAFKA_INTER_BROKER_LISTENER_NAME: LISTENER_DOCKER_INTERNAL KAFKA_ZOOKEEPER_CONNECT: "zoo1:2181" KAFKA_BROKER_ID: 3 KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO" volumes: - ./zk-single-kafka-multiple/kafka3/data:/var/lib/kafka/data depends_on: - zoo1 ``` 运行以下命令即可完成 1个节点 Zookeeper+3个节点的 Kafka 的环境搭建。 ```bash docker-compose -f zk-single-kafka-multiple.yml up ``` 如果需要停止Kafka相关容器的话,运行以下命令即可: ```bash docker-compose -f zk-single-kafka-multiple.yml down ``` ## 3.3 使用命令行测试消息的生产和消费 一般情况下我们很少会用到 Kafka 的命令行操作。 1. **进入 Kafka container 内部执行 Kafka 官方自带了一些命令** ```bash docker exec -it containerID bash ``` 2. **列出所有 Topic** ```bash root@kafka1:/# kafka-topics --describe --zookeeper zoo1:2181 ``` 3. **创建一个 Topic** ```bash root@kafka1:/# kafka-topics --create --topic test --partitions 3 --zookeeper zoo1:2181 --replication-factor 1 Created topic test. ``` 我们创建了一个名为 test 的 Topic, partition 数为 3, replica 数为 1。 4. **消费者订阅主题** ```bash root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test send hello from console -producer ``` 我们订阅了 名为 test 的 Topic。 5. **生产者向 Topic 发送消息** ```bash root@kafka1:/# kafka-console-producer --broker-list localhost:9092 --topic test >send hello from console -producer > ``` 我们使用 `kafka-console-producer` 命令向名为 test 的 Topic 发送了一条消息,消息内容为:“send hello from console -producer” 这个时候,你会发现消费者成功接收到了消息: ```bash root@kafka1:/# kafka-console-consumer --bootstrap-server localhost:9092 --topic test send hello from console -producer ``` ## 3.4 IDEA相关插件推荐 ### 3.4.1 Zoolytic-Zookeeper tool 这是一款 IDEA 提供的 Zookeeper 可视化工具插件,非常好用!我们可以通过它: 1. 可视化ZkNodes节点信息 2. ZkNodes节点管理-添加/删除 3. 编辑zkNodes数据 4. ...... 实际使用效果如下: ![Image](https://mmbiz.qpic.cn/mmbiz_jpg/iaIdQfEric9TxOAqcx5LKnjAWPjjbtYbsDgnibfLrXLx0fvqVwzryqqQ60I6DCVpZxV876b8rYnlicwo4BYTNI7ORw/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1) 使用方法: 1. 打开工具:View->Tool windows->Zoolytic; 2. 点击 “+” 号后在弹出框数据:“127.0.0.1:2181” 连接 zookeeper; 3. 连接之后点击新创建的连接然后点击“+”号旁边的刷新按钮即可! ### 3.4.2 Kafkalytic IDEA 提供的 Kafka 可视化管理插件。这个插件为我们提供了下面这写功能: 1. 多个集群支持 2. 主题管理:创建/删除/更改分区 3. 使用正则表达式搜索主题 4. 发布字符串/字节序列化的消息 5. 使用不同的策略消费消息 实际使用效果如下: ![Image](https://mmbiz.qpic.cn/mmbiz_jpg/iaIdQfEric9TxOAqcx5LKnjAWPjjbtYbsDzS4r45EXnTdibWutkKRAzOib45QictkQsu0JjxWsFL7JLhp7R4KvlJrEg/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1&wx_co=1) 使用方法: 1. 打开工具:View->Tool windows->kafkalytic; 2. 点击 “+” 号后在弹出框数据:“127.0.0.1:9092” 连接; ## 3.5 Java 程序中简单使用Kafka > 代码地址:https://github.com/Snailclimb/springboot-kafka/tree/master/kafka-intro-maven-demo 1. **新建一个Maven项目** 2. **`pom.xml` 中添加相关依赖** ```xml org.apache.kafka kafka-clients 2.2.0 ``` 3. **初始化消费者和生产者** `KafkaConstants`常量类中定义了Kafka一些常用配置常量。 ```java public class KafkaConstants { public static final String BROKER_LIST = "localhost:9092"; public static final String CLIENT_ID = "client1"; public static String GROUP_ID_CONFIG="consumerGroup1"; private KafkaConstants() { } } ``` `ProducerCreator` 中有一个 `createProducer()` 方法方法用于返回一个 `KafkaProducer`对象。 ```java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringSerializer; import java.util.Properties; /** * @author shuang.kou */ public class ProducerCreator { public static Producer createProducer() { Properties properties = new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST); properties.put(ProducerConfig.CLIENT_ID_CONFIG, KafkaConstants.CLIENT_ID); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName()); return new KafkaProducer<>(properties); } } ``` ConsumerCreator 中有一个`createConsumer()` 方法方法用于返回一个 `KafkaConsumer` 对象 ```java import org.apache.kafka.clients.consumer.Consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.serialization.StringDeserializer; import java.util.Properties; public class ConsumerCreator { public static Consumer createConsumer() { Properties properties = new Properties(); properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, KafkaConstants.BROKER_LIST); properties.put(ConsumerConfig.GROUP_ID_CONFIG, KafkaConstants.GROUP_ID_CONFIG); properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); return new KafkaConsumer<>(properties); } } ``` 4. **发送和消费消息** ```java public class Main { private static final String TOPIC = "test-topic"; public static void main(String[] args) { sendMessage(); consumeMessage(); } static void sendMessage() { Producer producer = ProducerCreator.createProducer(); ProducerRecord record = new ProducerRecord<>(TOPIC, "hello, Kafka!"); try { //send message RecordMetadata metadata = producer.send(record).get(); System.out.println("Record sent to partition " + metadata.partition() + " with offset " + metadata.offset()); } catch (ExecutionException | InterruptedException e) { System.out.println("Error in sending record"); e.printStackTrace(); } producer.close(); } static void consumeMessage() { Consumer consumer = ConsumerCreator.createConsumer(); // 循环消费消息 while (true) { //subscribe topic and consume message consumer.subscribe(Collections.singletonList(TOPIC)); ConsumerRecords consumerRecords = consumer.poll(Duration.ofMillis(1000)); for (ConsumerRecord consumerRecord : consumerRecords) { System.out.println("Consumer consume message:" + consumerRecord.value()); } } } } ``` 5. **测试** 运行程序控制台打印出: ``` Record sent to partition 0 with offset 20 Consumer consume message:hello, Kafka! ```