# DeepFM_with_PyTorch **Repository Path**: Python_Ai_Road/DeepFM_with_PyTorch ## Basic Information - **Project Name**: DeepFM_with_PyTorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-04-16 - **Last Updated**: 2022-04-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # DeepFM_with_PyTorch A PyTorch implementation of DeepFM for CTR prediction problem. ## Usage 1. Download Criteo's Kaggle display advertising challenge dataset from [here][1]( if you have had it already, skip it ), and put it in *./data/raw/* 2. Generate a preprocessed dataset. ./utils/dataPreprocess.py 3. Train a model and predict. ./main.py ## Output ## Reference - https://github.com/nzc/dnn_ctr. - https://github.com/PaddlePaddle/models/tree/develop/deep_fm. - DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, Huifeng Guo, Ruiming Tang, Yunming Yey, Zhenguo Li, Xiuqiang He. [1]: http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/