# pyImageClassification **Repository Path**: Rothschild-hhu/pyImageClassification ## Basic Information - **Project Name**: pyImageClassification - **Description**: Image Feature Extraction and Classification Using Python - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-05 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Sentimagi Python Image Analysis Library ## Requirements sudo apt-get install python-skimage sudo pip install svgwrite sudo apt-get install python-pywt ## General This library can be used for general image classification and feature extraction. ## Feature extraction: ### Extract and plot features from a single file ``` python featureExtraction.py -featuresFile sampledata/spectrograms/music/m_5_r_139.png ``` ### Extract features from two files and compare ``` python featureExtraction.py -featuresFilesCompare sampledata/spectrograms/music/m_5_r_139.png sampledata/spectrograms/speech/kill_bill_2_speech_17.png ``` ### Extract features from a set of images stored in a folder ``` python featureExtraction.py -featuresDir sampledata/spectrograms2/music/ ``` ### Extract features from a set of directories, each one defining an image class ``` python featureExtraction.py -featuresDirs spectrograms sampledata/spectrograms/music sampledata/spectrograms/speech ``` (Features are stored in file "sectrograms_features") ## Training and testing classification - regression models: ### Train an image classification model Models are trained from samples stored in folders (one folder per class). Examples: * kNN model training ``` python train.py -train knn knnSpeechMusicSpecs sampledata/spectrograms/music sampledata/spectrograms/speech ``` The above example trains a kNN classification model, does cross validation to estimate the best parameter (k value) and stores the model in a file (named knn3Classes). * SVM model training ``` python train.py -train svm svmSpeechMusicSpecs sampledata/spectrograms/music sampledata/spectrograms/speech ``` The above example trains an SVM classification model, does cross validation to estimate the best parameter (C value) and stores the model in a file (named svmSentimentAds). ### Classify an unknown image examples ``` python train.py -classifyFile knn knnSpeechMusicSpecs sampledata/music.melodies_snatch_0081.png python train.py -classifyFile knn knnSpeechMusicSpecs sampledata/s_30_r_335.png ```