# objectdetection-saliency-maps **Repository Path**: Ruoyu_chen/objectdetection-saliency-maps ## Basic Information - **Project Name**: objectdetection-saliency-maps - **Description**: Based on the mmdetection framework, compute various salience maps for object detection. - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-10-30 - **Last Updated**: 2022-10-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Object Detection Saliency Maps Based on [mmdetection](https://github.com/open-mmlab/mmdetection) framework. You need to install MMDetaction first, follow here: [get_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md) ## 1. Grad-CAM > Selvaraju, Ramprasaath R., et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization." International Journal of Computer Vision 128.2 (2020): 336-359. Paper Url: [https://arxiv.org/abs/1610.02391](https://arxiv.org/abs/1610.02391) ![](images/GradCAM/Grad-CAM.png) Supported Object Detection Algorithm:
Yolo V3 Paper: [https://arxiv.org/abs/1804.02767](https://arxiv.org/abs/1804.02767) Step by step see: [gradcam-yolov3.ipynb](tutorial/gradcam-yolov3.ipynb) ```angular2html python gradcam-yolov3.py \ --config \ --checkpoint \ --image-path \ --bbox-index 0 \ --save-dir images/GradCAM/YOLOV3 ``` Visualization: | ![](images/GradCAM/YOLOV3/0000008_02499_d_0000041-bbox-id-0.jpg) | ![](images/GradCAM/YOLOV3/0000008_02499_d_0000041-bbox-id-1.jpg) | ![](images/GradCAM/YOLOV3/0000008_02499_d_0000041-bbox-id-2.jpg) | | ---- | ---- | ---- | | ![](images/GradCAM/YOLOV3/9999962_00000_d_0000088-bbox-id-0.jpg) | ![](images/GradCAM/YOLOV3/9999962_00000_d_0000088-bbox-id-1.jpg) | ![](images/GradCAM/YOLOV3/9999962_00000_d_0000088-bbox-id-2.jpg) |
## 2. D-RISE > Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I. Morariu, Ashutosh Mehra, Vicente Ordonez, Kate Saenko; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 11443-11452 Paper Url: [https://openaccess.thecvf.com/content/CVPR2021/html/Petsiuk_Black-Box_Explanation_of_Object_Detectors_via_Saliency_Maps_CVPR_2021_paper.html](https://openaccess.thecvf.com/content/CVPR2021/html/Petsiuk_Black-Box_Explanation_of_Object_Detectors_via_Saliency_Maps_CVPR_2021_paper.html) ![](images/DRISE/DRISE.png) Supported Object Detection Algorithm:
Yolo V3 Paper: [https://arxiv.org/abs/1804.02767](https://arxiv.org/abs/1804.02767) Step by step see: [drise-yolov3.ipynb](tutorial/drise-yolov3.ipynb) ```angular2html python drise-yolov3.py \ --config \ --checkpoint \ --image-path \ --bbox-index 0 \ --save-dir images/DRISE/YOLOV3 ``` Visualization: | ![](images/DRISE/YOLOV3/0000008_02499_d_0000041-bbox-id-0.jpg) | ![](images/DRISE/YOLOV3/0000008_02499_d_0000041-bbox-id-1.jpg) | ![](images/DRISE/YOLOV3/0000008_02499_d_0000041-bbox-id-2.jpg) | | ---- | ---- | ---- | | ![](images/DRISE/YOLOV3/9999962_00000_d_0000088-bbox-id-0.jpg) | ![](images/DRISE/YOLOV3/9999962_00000_d_0000088-bbox-id-1.jpg) | ![](images/DRISE/YOLOV3/9999962_00000_d_0000088-bbox-id-2.jpg) |