代码拉取完成,页面将自动刷新
同步操作将从 ImportMengjie/mimo-receiver 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import logging
import os
from dataclasses import dataclass
import torch
from torch.nn import Module
from torch.utils.data import DataLoader
from loader import CsiDataloader, BaseDataset
from loader import DataType
from loader import DenoisingNetDataset
from loader import DetectionNetDataset
from loader import InterpolationNetDataset
from model import BaseNetModel
from model import DenoisingNetLoss
from model import DenoisingNetModel
from model import DenoisingNetTee
from model import DetectionNetLoss
from model import DetectionNetModel
from model import DetectionNetTee
from model import InterpolationNetLoss
from model import InterpolationNetModel
from model import InterpolationNetTee
from model import Tee
from utils import AvgLoss
import utils.config as config
# from torchsummary import summary
@dataclass()
class TrainParam:
lr: float = 0.001
epochs: int = 10000
momentum: float = 0.9
batch_size: int = 64
use_scheduler: bool = True
stop_when_test_loss_down_epoch_count = 20
class Train:
save_dir = 'result/'
save_per_epoch = 5
def __init__(self, param: TrainParam, dataset: BaseDataset, model: BaseNetModel, criterion: Module,
teeClass: Tee.__class__, test_dataset: BaseDataset):
self.param = param
self.model = model
self.criterion = criterion
self.teeClass = teeClass
self.losses = []
if config.USE_GPU:
self.model = self.model.cuda()
self.criterion = self.criterion.cuda()
# dataset.cuda()
# test_dataset.cuda()
self.dataset = dataset
self.dataloader = DataLoader(dataset, param.batch_size, True)
self.test_dataset = test_dataset
self.test_dataloader = None
if self.test_dataset:
self.test_dataloader = DataLoader(self.test_dataset, param.batch_size)
def get_save_path(self):
return Train.get_save_path_from_model(self.model)
def reset_current_epoch(self):
if os.path.exists(self.get_save_path()):
model_info = torch.load(self.get_save_path())
if 'epoch' in model_info:
model_info['epoch'] = 0
torch.save(model_info, self.get_save_path())
def train(self, save=True, reload=True, ext_log: str = ''):
self.losses.clear()
current_epoch = 0
test_loss = []
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.param.lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=self.param.epochs)
model_info = None
if reload and os.path.exists(self.get_save_path()):
model_info = torch.load(self.get_save_path())
if 'state_dict' in model_info:
self.model.load_state_dict(model_info['state_dict'])
# optimizer.load_state_dict(model_info['optimizer'])
scheduler.load_state_dict(model_info['scheduler'])
current_epoch = model_info['epoch']
self.model.train()
self.model.double()
# logging.info('model:')
# summary(self.model)
avg_loss = AvgLoss()
test_avg_loss = AvgLoss()
while True:
for items in self.dataloader:
tee = self.teeClass(items)
tee.set_model_output(self.model(*tee.get_model_input()))
loss = self.criterion(*tee.get_loss_input())
avg_loss.add(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
self.losses.append(avg_loss.avg)
avg_loss.reset()
if current_epoch % 10 == 0:
logging.info(
'epoch:{} avg_loss:{};{}'.format(current_epoch, self.losses[-1], ext_log))
if self.test_dataloader and current_epoch % self.param.stop_when_test_loss_down_epoch_count == 0 and current_epoch >= self.param.epochs:
for items in self.test_dataloader:
tee = self.teeClass(items)
tee.set_model_output(self.model.eval()(*tee.get_model_input()))
loss = self.criterion(*tee.get_loss_input())
test_avg_loss.add(loss.item())
test_loss.append(test_avg_loss.avg)
test_avg_loss.reset()
logging.warning('test loss:{} in epoch:{}'.format(test_loss[-1], current_epoch))
if len(test_loss) > 1 and test_loss[-1] > test_loss[-2]:
logging.error('test loss down [-2]{}, [-1]{}'.format(test_loss[-2], test_loss[-1]))
break
self.model.train()
if self.param.use_scheduler:
scheduler.step()
if save and (current_epoch % Train.save_per_epoch == 0):
# save model
if model_info is None:
model_info = {}
model_info['epoch'] = current_epoch + 1
model_info['state_dict'] = self.model.state_dict()
model_info['optimizer'] = optimizer.state_dict()
model_info['scheduler'] = scheduler.state_dict()
model_info['train_state'] = self.model.get_train_state()
torch.save(model_info, self.get_save_path())
current_epoch += 1
@staticmethod
def get_save_path_from_model(model: BaseNetModel):
return os.path.join(Train.save_dir, model.basename(), '{}.pth.tar'.format(str(model)))
def train_denoising_net(data_path: str, snr_range: list, ):
csi_dataloader = CsiDataloader(data_path, factor=2)
dataset = DenoisingNetDataset(csi_dataloader, DataType.train, snr_range)
test_dataset = DenoisingNetDataset(csi_dataloader, DataType.test, snr_range)
model = DenoisingNetModel(csi_dataloader)
criterion = DenoisingNetLoss()
param = TrainParam()
param.loss_not_down_stop_count = 10
param.epochs = 10
param.lr = 0.001
train = Train(param, dataset, model, criterion, DenoisingNetTee, test_dataset)
train.train()
def train_interpolation_net(data_path: str, snr_range: list, pilot_count: int):
csi_dataloader = CsiDataloader(data_path)
dataset = InterpolationNetDataset(csi_dataloader, DataType.train, snr_range, pilot_count)
test_dataset = InterpolationNetDataset(csi_dataloader, DataType.test, snr_range, pilot_count)
model = InterpolationNetModel(csi_dataloader, pilot_count)
criterion = InterpolationNetLoss()
param = TrainParam()
train = Train(param, dataset, model, criterion, InterpolationNetTee, test_dataset)
train.train()
def train_detection_net_2(data_path: str, snr_range: list, modulation='bpsk', save=True, reload=True, retrain=False):
refinements = [.5, .1, .01]
csi_dataloader = CsiDataloader(data_path, factor=10000)
model = DetectionNetModel(csi_dataloader, csi_dataloader.n_r * 2, True, modulation=modulation)
test_dataset = DetectionNetDataset(csi_dataloader, DataType.test, snr_range, modulation)
criterion = DetectionNetLoss()
param = TrainParam()
param.batch_size = 100
param.use_scheduler = False
dataset = DetectionNetDataset(csi_dataloader, DataType.train, snr_range, modulation)
train = Train(param, dataset, model, criterion, DetectionNetTee, test_dataset)
current_train_layer = 1
over_fix_forward = False
if not retrain and reload and os.path.exists(train.get_save_path()):
model_infos = torch.load(train.get_save_path())
if 'train_state' in model_infos:
current_train_layer = model_infos['train_state']['train_layer']
over_fix_forward = not model_infos['train_state']['fix_forward']
logging.warning('load train state:{}'.format(model_infos['train_state']))
for layer_num in range(current_train_layer, model.layer_nums + 1):
if not over_fix_forward:
logging.info('training layer:{}'.format(layer_num))
train.param.epochs = 100
train.param.lr = 0.001
model.set_training_layer(layer_num, True)
train.train(save=save, reload=reload,
ext_log='snr:{},model:{}'.format(-1, model.get_train_state_str()))
train.reset_current_epoch()
over_fix_forward = False
logging.info('Fine tune layer:{}'.format(layer_num))
train.param.epochs = 100
learn_rate = train.param.lr
for factor in refinements:
train.param.lr = learn_rate * factor
model.set_training_layer(layer_num, False)
train.train(save=save, reload=reload,
ext_log='snr:{},model:{},lr:{}'.format(-1, model.get_train_state_str(), param.lr))
train.reset_current_epoch()
def train_detection_net(data_path: str, training_snr: list, modulation='qpsk', save=True, reload=True, retrain=False):
refinements = [.5, .1, .01]
lr = 1e-3
def get_nmse(model: DetectionNetModel, dataset: DetectionNetDataset):
nmses = {}
for snr in range(0, 30, 2):
n, var = dataset.csiDataloader.noise_snr_range(dataset.hx, [snr, snr + 1], True)
y = dataset.hx + dataset.n
A = dataset.h.conj().transpose(-1, -2) @ dataset.h + var * torch.eye(dataset.csiDataloader.n_t,
dataset.csiDataloader.n_t)
b = dataset.h.conj().transpose(-1, -2) @ y
x = dataset.x
# x = dataset.csiDataloader.get_x(dataset.dataType, dataset.modulation)
# x = torch.cat((x.real, x.imag), 2)
b = torch.cat((b.real, b.imag), 2)
A_left = torch.cat((A.real, A.imag), 2)
A_right = torch.cat((-A.imag, A.real), 2)
A = torch.cat((A_left, A_right), 3)
x_hat, = model(A, b)
nmse = (10 * torch.log10((((x - x_hat) ** 2).sum(-1).sum(-1) / (x ** 2).sum(-1).sum(-1)).mean())).item()
nmses[snr] = nmse
return nmses
csi_dataloader = CsiDataloader(data_path, factor=1000)
model = DetectionNetModel(csi_dataloader, csi_dataloader.n_r * 2, True, modulation=modulation)
if retrain and os.path.exists(Train.get_save_path_from_model(model)):
model_info = torch.load(Train.get_save_path_from_model(model))
model_info['snr'] = training_snr[0]
model_info['epoch'] = 0
model.set_training_layer(1, True)
model_info['train_state'] = model.get_train_state()
torch.save(model_info, Train.get_save_path_from_model(model))
criterion = DetectionNetLoss()
param = TrainParam()
param.batch_size = 100
param.use_scheduler = False
training_snr = sorted(training_snr, reverse=True)
if reload and os.path.exists(Train.get_save_path_from_model(model)):
model_info = torch.load(Train.get_save_path_from_model(model))
if 'snr' in model_info and model_info['snr'] in training_snr:
logging.warning('snr list:{}, start snr:{}'.format(training_snr, model_info['snr']))
training_snr = training_snr[training_snr.index(model_info['snr']):]
test_dataset = DetectionNetDataset(csi_dataloader, DataType.test, [5, 40], modulation)
def train_fixed_snr(snr_: int):
dataset = DetectionNetDataset(csi_dataloader, DataType.train, [snr_, snr_ + 1], modulation)
train = Train(param, dataset, model, criterion, DetectionNetTee, test_dataset)
model_infos = None
current_train_layer = 1
over_fix_forward = False
if reload and os.path.exists(train.get_save_path()):
model_infos = torch.load(train.get_save_path())
if 'train_state' in model_infos:
current_train_layer = model_infos['train_state']['train_layer']
over_fix_forward = not model_infos['train_state']['fix_forward']
logging.warning('load train state:{}'.format(model_infos['train_state']))
if save:
if model_infos is None:
model_infos = {}
model_infos['snr'] = snr_
torch.save(model_infos, train.get_save_path())
for layer_num in range(current_train_layer, model.layer_nums + 1):
if not over_fix_forward:
logging.info('training layer:{}'.format(layer_num))
train.param.epochs = 100
train.param.lr = 0.001
model.set_training_layer(layer_num, True)
train.train(save=save, reload=reload,
ext_log='snr:{},model:{}'.format(snr, model.get_train_state_str()))
train.reset_current_epoch()
over_fix_forward = False
logging.info('Fine tune layer:{}'.format(layer_num))
train.param.epochs = 100
learn_rate = train.param.lr
for factor in refinements:
train.param.lr = learn_rate * factor
model.set_training_layer(layer_num, False)
train.train(save=save, reload=reload,
ext_log='snr:{},model:{},lr:{}'.format(snr, model.get_train_state_str(), param.lr))
train.reset_current_epoch()
return dataset
for snr in training_snr:
param.lr = lr
dataset = train_fixed_snr(snr)
# logging.warning('NMSE Loss:{}'.format(get_nmse(model, dataset)))
if save and os.path.exists(Train.get_save_path_from_model(model)):
model_infos = torch.load(Train.get_save_path_from_model(model))
model_infos.pop('train_state')
torch.save(model_infos, Train.get_save_path_from_model(model))
if __name__ == '__main__':
logging.basicConfig(level=20, format='%(asctime)s-%(levelname)s-%(message)s')
train_denoising_net('data/spatial_16_16_64_100.mat', [5, 100])
# train_interpolation_net('data/3gpp_16_16_64_5_5.mat', [50, 51], 4)
# train_detection_net('data/gaussian_16_16_1_100.mat', [60, 50, 20])
# train_detection_net('data/gaussian_16_16_1_1.mat', [30, 20, 15, 10], retrain=True, modulation='qpsk')
# train_detection_net_2('data/gaussian_16_16_1_1.mat', [5, 60], modulation='bpsk', retrain=True)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。