# 2022-Machine-Learning-Specialization **Repository Path**: TerryPro/2022-Machine-Learning-Specialization ## Basic Information - **Project Name**: 2022-Machine-Learning-Specialization - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-09-11 - **Last Updated**: 2024-09-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 2022-Machine-Learning-Specialization 吴恩达2022新版机器学习 machine learning specialization 课程官网:https://www.coursera.org/specializations/machine-learning-introduction bilibili:https://www.bilibili.com/video/BV19B4y1W76i github:https://github.com/kaieye/2022-Machine-Learning-Specialization 课程代码及测验内容已更新完毕 欢迎pull request,无论是补充学习文件还是优化md笔记 交流群:772590431 ## 课程大纲 Machine learning specialization课程共分为三部分 - 第一部分:Supervised Machine Learning: Regression and Classification - 第二部分:Advanced Learning Algorithms - 第三部分:Unsupervised Learning: Recommenders, Reinforcement Learning 课程slides地址:https://www.deeplearning.ai/courses/machine-learning-specialization/?utm_campaign=mls-video-series&utm_medium=video&utm_source=youtube#course-slides Machine Learning Specialization by Andrew Ng in 2022 Course website:https://www.coursera.org/specializations/machine-learning-introduction bilibili:https://www.bilibili.com/video/BV19B4y1W76i github:https://github.com/kaieye/2022-Machine-Learning-Specialization Course code and test content have been updated Welcome to pull requests, whether it is to supplement learning files or markdown notes ## Course Outline Machine learning specialization is divided into 3 parts - Part 1:Supervised Machine Learning: Regression and Classification - Part 2:Advanced Learning Algorithms - Part 3:Unsupervised Learning: Recommenders, Reinforcement Learning The second part is currently Uploaded slides:https://www.deeplearning.ai/courses/machine-learning-specialization/?utm_campaign=mls-video-series&utm_medium=video&utm_source=youtube#course-slides ## 环境配置 按照操作系统类型安装python(官方使用的环境为3.7.6),安装方式各异。安装成功后在cmd/bash中定位到该文件夹,并使用如下命令安装依赖。 ```text pip install -r requirements.txt ``` mac/linux用户需将pip切换成pip3