# flask-tacotron2-tts-web-app **Repository Path**: X-CCS/flask-tacotron2-tts-web-app ## Basic Information - **Project Name**: flask-tacotron2-tts-web-app - **Description**: flask+tornado based NVIDIA tacotron2+waveglow tts web app - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-12-08 - **Last Updated**: 2021-09-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Flask-Tacotron2-TTS-Web-App This repo was forked from [NVIDIA/Tacotron2](https://github.com/nvidia/tacotron2) for inference test only (not for training). Because I didn't know flask well, I forked [CodeDem/flask-musing-streaming](https://github.com/CodeDem/flask-music-streaming). If you want to test **NVIDIA Tacotron2** models in ` jupyter notebook`, you better try inference model [NVIDIA/Tacotron2](https://github.com/nvidia/tacotron2) . ![example](example.png) ## Requirements `python 3.6` `CUDA 10.0` `pytorch 1.1.0` `tensorflow 1.13.1` ## Installation 1. Install requirements [CUDA 10.0](https://developer.nvidia.com/cuda-10.0-download-archive), [PyTorch 1.1.0](https://pytorch.org/get-started/locally/) 2. `pip install -r requirement.txt` 3. clone this repo:` https://github.com/NVIDIA/waveglow.git` or `git submodule init; git submodule update` 4. you may need models tacotron2, waveglow both : 1. NVIDIA/Tacotron2's model for inference demo: [Tacotron 2](https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view?usp=sharing) , [WaveGlow](https://drive.google.com/file/d/1WsibBTsuRg_SF2Z6L6NFRTT-NjEy1oTx/view?usp=sharing) 2. or My trained [models](https://drive.google.com/file/d/1H790Ho3XWFdAtxuY74SxDMIYzjl4zu-x/view?usp=sharing): Tacotron2: English_90k_steps(ljspeech dataset), Korean_162k_steps(kss dataset) Waveglow: waveglow_152k_steps using Korean dataset **If you get this error** ``` ModuleNotFoundError: No module named 'tacotron2.layers' ``` **try this step** ``` export PYTHONPATH="$PYTHONPATH:/path/to/flask-tacotron2-tts-web-app" ``` ## Usage `python app.py` or You can test tts on console: `python console_test.py` in `config.json`, you can change models' path. ## Results You can see `Warning! Decoder Max` on console. In this case, your synthesized audio will have 11 seconds length and weired sounds. This problems many happen in my korean trained model, but hardly happen in my english trained model. I can't find any difference from synthesized audio between `waveglow_256channels.pt`(waveglow demo) and my `waveglow_152k` . ​ ​