# Deep-Learning-End-to-End-Digital-Modulation-Classification-and-Demodulation-System **Repository Path**: YangNuoCheng/Deep-Learning-End-to-End-Digital-Modulation-Classification-and-Demodulation-System ## Basic Information - **Project Name**: Deep-Learning-End-to-End-Digital-Modulation-Classification-and-Demodulation-System - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-01 - **Last Updated**: 2024-04-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Deep Learning End to End Digital Modulation Classification and Demodulation System - Conducted data processing using MATLAB signal toolbox, which calculate cummulants and gen- erate labeled QPSK, 8PSK, 16QAM train and test dataset (including different signal-to-noise ratio) - Built modulation recognition model using Multilayer Perceptron, for data with SNR above 15db, the accuracy rate is close to 100%. - Built demodulation model using Convolutional Neural Network and generated confusion matrix, for data with SNR above 20db, the accuracy rate is close to 100%. - Parameter tuning, using relu activation function, softmax crossentropy loss function, adam opti- mization algorithm and adjusting learning rate, which increase the convergence speed and improve classification accuracy. - Cascaded two models to achieve end-to-end modulation and demodulation