# densepose **Repository Path**: Yang_Feng1/densepose ## Basic Information - **Project Name**: densepose - **Description**: Dense Human Pose Estimation In The Wild - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-05-06 - **Last Updated**: 2024-10-14 ## Categories & Tags **Categories**: ai **Tags**: None ## README # DensePose: **Dense Human Pose Estimation In The Wild** _Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos_ [[`densepose.org`](https://densepose.org)] [[`arXiv`](https://arxiv.org/abs/1802.00434)] [[`BibTeX`](#CitingDensePose)] Dense human pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human body. DensePose-RCNN is implemented in the [Detectron](https://github.com/facebookresearch/Detectron) framework and is powered by [Caffe2](https://github.com/caffe2/caffe2).
In this repository, we provide the code to train and evaluate DensePose-RCNN. We also provide notebooks to visualize the collected DensePose-COCO dataset and show the correspondences to the SMPL model. ## Important Note **!!! This project is no longer supported !!!** DensePose is now part of Detectron2 (https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose). There you can find the most up to date architectures / models. If you think some feature is missing from there, please post an issue in [Detectron2 DensePose](https://github.com/facebookresearch/detectron2/tree/master/projects/DensePose). ## Installation Please find installation instructions for Caffe2 and DensePose in [`INSTALL.md`](INSTALL.md), a document based on the [Detectron](https://github.com/facebookresearch/Detectron) installation instructions. ## Inference-Training-Testing After installation, please see [`GETTING_STARTED.md`](GETTING_STARTED.md) for examples of inference and training and testing. ## Notebooks ### Visualization of DensePose-COCO annotations: See [`notebooks/DensePose-COCO-Visualize.ipynb`](notebooks/DensePose-COCO-Visualize.ipynb) to visualize the DensePose-COCO annotations on the images:
--- ### DensePose-COCO in 3D: See [`notebooks/DensePose-COCO-on-SMPL.ipynb`](notebooks/DensePose-COCO-on-SMPL.ipynb) to localize the DensePose-COCO annotations on the 3D template ([`SMPL`](http://smpl.is.tue.mpg.de)) model:
--- ### Visualize DensePose-RCNN Results: See [`notebooks/DensePose-RCNN-Visualize-Results.ipynb`](notebooks/DensePose-RCNN-Visualize-Results.ipynb) to visualize the inferred DensePose-RCNN Results.
--- ### DensePose-RCNN Texture Transfer: See [`notebooks/DensePose-RCNN-Texture-Transfer.ipynb`](notebooks/DensePose-RCNN-Texture-Transfer.ipynb) to localize the DensePose-COCO annotations on the 3D template ([`SMPL`](http://smpl.is.tue.mpg.de)) model:
## License This source code is licensed under the license found in the [`LICENSE`](LICENSE) file in the root directory of this source tree. ## Citing DensePose If you use Densepose, please use the following BibTeX entry. ``` @InProceedings{Guler2018DensePose, title={DensePose: Dense Human Pose Estimation In The Wild}, author={R\{i}za Alp G\"uler, Natalia Neverova, Iasonas Kokkinos}, journal={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2018} } ```