# detection **Repository Path**: a75929/detection ## Basic Information - **Project Name**: detection - **Description**: 囊获了一些常用的目标识别的算法 - **Primary Language**: Python - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-09-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 目标识别-图像处理中的霸王龙 === ![Images](https://img.shields.io/badge/%E7%9B%AE%E6%A0%87%E8%AF%86%E5%88%AB-%E6%8C%81%E7%BB%AD%E6%9B%B4%E6%96%B0%E4%B8%AD-ff69b4?style=plastic&logo=appveyor) # 1. 项目总览 在这个项目中,我们实现了SSD,RFB,FSSD,YOLOV3,YOLOV4以及YoloV3+ASFF。硬件使用的是Tesla P4 GPU # 2.物体检测总体指标(SSD, RFB与FSSD) V = PASCAL VOC 2012+2014 C = MS COCO 2017 ## 2.1.SSD ### 2.1.1.VGG16 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [76.2%](mAP/ssd/voc/vgg16.txt) :+1: | - | - | [79.2%](mAP/ssd512/voc/vgg16.txt):+1: | - | - | | V | ![Images](results/ssd/VOC/vgg16_sn_300.jpg) | - | - | ![Images](results/ssd/VOC/vgg16_sn_512.jpg) | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.1.2.Resnet50 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [80.1%](mAP/ssd/voc/resnet50.txt):+1: | - | - | - | - | - | | V | ![Images](results/ssd/VOC/resnet50_sn_300.jpg) | - | - | - | - | - | | C | [25.0%](mAP/ssd/coco/resnet50.txt) :+1: | - | - | - | - | - | | C | ![Images](results/ssd/COCO/resnet50_sn_300.jpg) | - | - | - | - | - | ### 2.1.3.Resnet152 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [73.4%](mAP/ssd/voc/resnet152.txt) :+1: | - | - | - | - | - | | V | ![Images](results/ssd/VOC/resnet152_sn_300.jpg) | - | - | - | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.1.4.Darknet19 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [74.3%](mAP/ssd/voc/darknet19.txt):+1: | - | - | - | - | - | | V | ![Images](results/ssd/VOC/darknet19_sn_300.jpg) | - | - | - | - | - | | C | [20.5%](mAP/ssd/coco/darknet19.txt) :+1: | - | - | - | - | - | | C | ![Images](results/ssd/COCO/darknet19_sn_300.jpg) | - | - | - | - | - | ### 2.1.5.mobilenetv1 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [72.7%](mAP/ssd/voc/mobilenetv1.txt):+1: | - | - | - | - | - | | V | ![Images](results/ssd/VOC/mobilenetv1_sn_300.jpg) | - | - | - | - | - | | C | [18.8%](mAP/ssd/coco/mobilenetv1.txt) :+1: | - | - | - | - | - | | C | ![Images](results/ssd/COCO/mobilenetv1_sn_300.jpg) | - | - | - | - | - | ## 2.2.RFB ### 2.2.1.VGG16 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [79.0%](mAP/rfb/voc/vgg16.txt):+1: | - | - | [79.7%](mAP/rfb512/voc/vgg16.txt):+1: | - | - | | V | ![Images](results/rfb/VOC/vgg16_sn_300.jpg) | - | - | ![Images](results/rfb/VOC/vgg16_sn_512.jpg) | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.2.2.Resnet50 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | - | - | - | - | - | - | | V | - | - | - | - | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.2.3.Resnet152 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | - | - | - | - | - | - | | V | - | - | - | - | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.2.4.Darknet19 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [76.2%](mAP/rfb/voc/darknet19.txt):+1: | - | - | - | - | - | | V | ![Images](results/rfb/VOC/darknet19_sn_300.jpg) | - | - | - | - | - | | C | [22.4%](mAP/rfb/coco/darknet19.txt) :+1: | - | - | - | - | - | | C | ![Images](results/rfb/COCO/darknet19_sn_300.jpg) | - | - | - | - | - | ### 2.2.5.mobilenetv1 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [73.8%](mAP/rfb/voc/mobilenetv1.txt):+1: | - | - | - | - | - | | V | ![Images](results/rfb/VOC/mobilenetv1_sn_300.jpg) | - | - | - | - | - | | C | [19.0%](mAP/rfb/coco/mobilenetv1.txt) :+1: | - | - | - | - | - | | C | ![Images](results/rfb/COCO/mobilenetv1_sn_300.jpg) | - | - | - | - | - | ## 2.3.FSSD ### 2.3.1.VGG16 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [77.9%](mAP/fssd/voc/vgg16.txt):+1: | - | - | - | - | - | | V | ![Images](results/fssd/VOC/vgg16_sn_300.jpg) | - | - | - | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.3.2.Resnet50 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [74.0%](mAP/fssd/voc/resnet50.txt) :+1: | - | - | - | - | - | | V | ![Images](results/fssd/VOC/resnet50_sn_300.jpg) | - | - | - | - | - | | C | [26.6%](mAP/fssd/coco/resnet50.txt) :+1: | - | - | - | - | - | | C | ![Images](results/fssd/COCO/resnet50_sn_300.jpg) | - | - | - | - | - | ### 2.3.3.Resnet152 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [74.1%](mAP/fssd/voc/resnet152.txt) :+1: | - | - | - | - | - | | V | ![Images](results/fssd/VOC/resnet152_sn_300.jpg) | - | - | - | - | - | | C | - | - | - | - | - | - | | C | - | - | - | - | - | - | ### 2.3.4.Darknet19 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [78.2%](mAP/fssd/voc/darknet19.txt):+1: | - | - | - | - | - | | V | ![Images](results/fssd/VOC/darknet19_sn_300.jpg) | - | - | - | - | - | | C | [25.2%](mAP/fssd/coco/darknet19.txt) :+1: | - | - | - | - | - | | C | ![Images](results/fssd/COCO/darknet19_sn_300.jpg) | - | - | - | - | - | ### 2.3.5.mobilenetv1 | - | $300 \times 300$ | $300 \times 300$ | $300 \times 300$ | $512 \times 512$ | $512 \times 512$ | $512 \times 512$ | | ------- | ------------ | -------- | ------------ | ------------ | -------- | ------------ | | - | SmoothL1+nms | Diou+nms | Ciou+diounms | SmoothL1+nms | Diou+nms | Ciou+diounms | | V | [73.5%](mAP/fssd/voc/mobilenetv1.txt):+1: | - | - | - | - | - | | V | ![Images](results/fssd/VOC/mobilenetv1_sn_300.jpg) | - | - | - | - | - | | C | [22.8%](mAP/fssd/coco/mobilenetv1.txt) :+1: | - | - | - | - | - | | C | ![Images](results/fssd/COCO/mobilenetv1_sn_300.jpg) | - | - | - | - | - | # 3.物体检测总体指标(YOLOV3, YOLOV4, YOLOV3+ASFF) # 4.总体介绍 每个网络都分为网络结构,数据整理与损失函数三个部分,其它的基本一样。 ## 4.1.SSD,RFB与FSSD ### 4.1.1.数据整理 这三个网络在训练数据处理方面是同一个方法,为[SSD.py](ELib/dataset/SSD.py) ### 4.1.2.网络结构 这三大网络,背后的骨干网络Backbone都是一样的,包括VGG16, Resnet50, Resnet152, MobileNetV1, MobileNetV2等等。 不同的是这三个网络对于骨干网络的Feature Maps的获取层数与处理不同。 ### 4.1.3.损失函数 这三大网络的损失函数是一样的,为[Multibox.py](ELib/loss/multibox.py) ## 4.2.YOLOV3与YOLOV4 # 捐助