# MobileNet_SSD_OpenCV_TensorFlow **Repository Path**: adam1iu/MobileNet_SSD_OpenCV_TensorFlow ## Basic Information - **Project Name**: MobileNet_SSD_OpenCV_TensorFlow - **Description**: No description available - **Primary Language**: Unknown - **License**: BSD-3-Clause - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-06-04 - **Last Updated**: 2022-08-15 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MobileNetV1/V2_SSD for the DNN modul of OpenCV ![output image]( https://qengineering.eu/images/V1_FPS.png ) ## A example of OpenCV dnn framework working on a bare Raspberry Pi with TensorFlow models.
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)

Paper: https://arxiv.org/abs/1611.10012

Special made for a bare Raspberry Pi 4 see [Q-engineering deep learning examples](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html) ------------ Training set: COCO
Size: 300x300
Frame rate V1 : 3.19 FPS (RPi 4)
Frame rate V1_0.75: 4.98 FPS (RPi 4)
Frame rate V2 : 2.02 FPS (RPi 4)
Frame rate V2 Lite: 3.86 FPS (RPi 4)
------------ ## Dependencies.
To run the application, you have to: - A raspberry Pi 4 with a 32 or 64-bit operating system. It can be the Raspberry 64-bit OS, or Ubuntu 18.04 / 20.04. [Install 64-bit OS](https://qengineering.eu/install-raspberry-64-os.html)
- OpenCV 64 bit installed. [Install OpenCV 4.5](https://qengineering.eu/install-opencv-4.5-on-raspberry-64-os.html)
- Code::Blocks installed. (```$ sudo apt-get install codeblocks```) ------------ ## Installing the app. To extract and run the network in Code::Blocks
$ mkdir *MyDir*
$ cd *MyDir*
$ wget https://github.com/Qengineering/MobileNet_SSD_OpenCV_TensorFlow/archive/refs/heads/master.zip
$ unzip -j master.zip
Remove master.zip and README.md as they are no longer needed.
$ rm master.zip
$ rm README.md

Your *MyDir* folder must now look like this:
Traffic.jpg
COCO_labels.txt
frozen_inference_graph_V1.pb (download this file from: https://drive.google.com/open?id=1sDn1guYV6oj-AeYuC-riGRh4kv9XBTMz )
frozen_inference_graph_V2.pb (download this file from: https://drive.google.com/open?id=1EU6tVcDNLNwv-pbJUXL7wYUchFHxr5fw )
ssd_mobilenet_v1_coco_2017_11_17.pbtxt
ssd_mobilenet_v2_coco_2018_03_29.pbtxt
TestOpenCV_TensorFlow.cpb
MobileNetV1.cpp (can be use for V2 version also)
------------ ## Running the app. To run the application load the project file TestOpenCV_TensorFlow.cbp in Code::Blocks. More info or
if you want to connect a camera to the app, follow the instructions at [Hands-On](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html#HandsOn).

![output image]( https://qengineering.eu/images/V1_075_FPS.png ) ![output image]( https://qengineering.eu/images/V2_FPS.png ) ![output image]( https://qengineering.eu/images/V2_Lite_FPS.png ) ------------ [![paypal](https://qengineering.eu/images/TipJarSmall4.png)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=CPZTM5BB3FCYL)