# hyperspectral_deeplearning_review **Repository Path**: algo_coding/hyperspectral_deeplearning_review ## Basic Information - **Project Name**: hyperspectral_deeplearning_review - **Description**: Code of paper "Deep Learning Classifiers for Hyperspectral Imaging: A Review" - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-08 - **Last Updated**: 2021-11-08 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Deep Learning Classifiers for Hyperspectral Imaging: A Review ![](https://img.shields.io/github/stars/mhaut/hyperspectral_deeplearning_review.svg) ![](https://img.shields.io/github/forks/mhaut/hyperspectral_deeplearning_review.svg) ![](https://img.shields.io/github/issues/mhaut/hyperspectral_deeplearning_review.svg) The Code for "Deep Learning Classifiers for Hyperspectral Imaging: A Review". [https://www.sciencedirect.com/science/article/pii/S0924271619302187] ``` M. E. Paoletti, J. M. Haut, J. Plaza and A. Plaza. Deep Learning Classifiers for Hyperspectral Imaging: A Review International Society for Photogrammetry and Remote Sensing DOI: 10.1016/j.isprsjprs.2019.09.006 vol. 158, pp. 279-317, December 2019. ``` ![reviewHSI](https://github.com/mhaut/hyperspectral_deeplearning_review/blob/master/images/paviaclasf.png) ### Example of use ``` # Without datasets git clone https://github.com/mhaut/hyperspectral_deeplearning_review/ # With datasets git clone --recursive https://github.com/mhaut/hyperspectral_deeplearning_review/ cd HSI-datasets python join_dsets.py ``` ### Run code Go to algorithms folder and run ``` # Training from scratch python .py --dataset IP # Example: python svm.py --dataset IP --tr_percent 0.15 # Fine-tuning (not recommended) : python pretrained_cnn.py --dataset IP --arch # Example: python pretrained_cnn.py --dataset IP --arch VGG16 # Transfer learning , two steps: python transfer_learning.py --dataset1 IP --dataset2 SV --arch --search_base_model python transfer_learning.py --dataset1 IP --dataset2 SV --tr_samples 2 --use_val --arch --use_transfer_learning # Example: python transfer_learning.py --dataset1 IP --dataset2 SV --arch CNN2D40bands --search_base_model python transfer_learning.py --dataset1 IP --dataset2 SV --tr_samples 2 --use_val --arch CNN2D40bands --use_transfer_learning ``` #### Other parameters Dimensionality reduction **- - components** [number] ``` python .py --dataset IP --components 40 ``` You can change the proposed parameters **- - set_parameters** [parameters] ``` python svm.py --dataset IP --set_parameters --C 2 --g 0.01 ``` You can use validation set **- - use_val** by default is 10%, you can change it **- -use_val - -val_percent** [percent] ``` python cnn1d.py --dataset IP --use_val --val_percent 0.10 ``` Example: ``` python cnn1d.py --dataset IP --components 40 --set_parameters --epochs 100 --batch_size 32--use_val --val_percent 0.10 ```