# keras-applications **Repository Path**: algo_coding/keras-applications ## Basic Information - **Project Name**: keras-applications - **Description**: Reference implementations of popular deep learning models. - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-11-08 - **Last Updated**: 2025-02-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Keras Applications [![Build Status](https://travis-ci.org/keras-team/keras-applications.svg?branch=master)](https://travis-ci.org/keras-team/keras-applications) Keras Applications is the `applications` module of the Keras deep learning library. It provides model definitions and pre-trained weights for a number of popular archictures, such as VGG16, ResNet50, Xception, MobileNet, and more. Read the documentation at: https://keras.io/applications/ Keras Applications may be imported directly from an up-to-date installation of Keras: ``` from keras import applications ``` Keras Applications is compatible with Python 2.7-3.6 and is distributed under the MIT license. ## Performance - The top-k errors were obtained using Keras Applications with the **TensorFlow backend** on the **2012 ILSVRC ImageNet validation set** and may slightly differ from the original ones. The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), and Xception (299x299). * Top-1: single center crop, top-1 error * Top-5: single center crop, top-5 error * 10-5: ten crops (1 center + 4 corners and those mirrored ones), top-5 error * Size: rounded the number of parameters when `include_top=True` * Stem: rounded the number of parameters when `include_top=False` | | Top-1 | Top-5 | 10-5 | Size | Stem | References | |----------------------------------------------------------------|-------------|-------------|-------------|--------|--------|---------------------------------------------| | [VGG16](keras_applications/vgg16.py) | 28.732 | 9.950 | 8.834 | 138.4M | 14.7M | [[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py) | | [VGG19](keras_applications/vgg19.py) | 28.744 | 10.012 | 8.774 | 143.7M | 20.0M | [[paper]](https://arxiv.org/abs/1409.1556) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py) | | [ResNet50](keras_applications/resnet50.py) | 25.072 | 7.940 | 6.828 | 25.6M | 23.6M | [[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt) | | [ResNet101](keras_applications/resnet.py) | 23.580 | 7.214 | 6.092 | 44.7M | 42.7M | [[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-101-deploy.prototxt) | | [ResNet152](keras_applications/resnet.py) | 23.396 | 6.882 | 5.908 | 60.4M | 58.4M | [[paper]](https://arxiv.org/abs/1512.03385) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua) [[caffe]](https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt) | | [ResNet50V2](keras_applications/resnet_v2.py) | 24.040 | 6.966 | 5.896 | 25.6M | 23.6M | [[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) | | [ResNet101V2](keras_applications/resnet_v2.py) | 22.766 | 6.184 | 5.158 | 44.7M | 42.6M | [[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) | | [ResNet152V2](keras_applications/resnet_v2.py) | 21.968 | 5.838 | 4.900 | 60.4M | 58.3M | [[paper]](https://arxiv.org/abs/1603.05027) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py) [[torch]](https://github.com/facebook/fb.resnet.torch/blob/master/models/preresnet.lua) | | [ResNeXt50](keras_applications/resnext.py) | 22.260 | 6.190 | 5.410 | 25.1M | 23.0M | [[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) | | [ResNeXt101](keras_applications/resnext.py) | 21.270 | 5.706 | 4.842 | 44.3M | 42.3M | [[paper]](https://arxiv.org/abs/1611.05431) [[torch]](https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) | | [InceptionV3](keras_applications/inception_v3.py) | 22.102 | 6.280 | 5.038 | 23.9M | 21.8M | [[paper]](https://arxiv.org/abs/1512.00567) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) | | [InceptionResNetV2](keras_applications/inception_resnet_v2.py) | 19.744 | 4.748 | 3.962 | 55.9M | 54.3M | [[paper]](https://arxiv.org/abs/1602.07261) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) | | [Xception](keras_applications/xception.py) | 20.994 | 5.548 | 4.738 | 22.9M | 20.9M | [[paper]](https://arxiv.org/abs/1610.02357) | | [MobileNet(alpha=0.25)](keras_applications/mobilenet.py) | 48.418 | 24.208 | 21.196 | 0.5M | 0.2M | [[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) | | [MobileNet(alpha=0.50)](keras_applications/mobilenet.py) | 35.708 | 14.376 | 12.180 | 1.3M | 0.8M | [[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) | | [MobileNet(alpha=0.75)](keras_applications/mobilenet.py) | 31.588 | 11.758 | 9.878 | 2.6M | 1.8M | [[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) | | [MobileNet(alpha=1.0)](keras_applications/mobilenet.py) | 29.576 | 10.496 | 8.774 | 4.3M | 3.2M | [[paper]](https://arxiv.org/abs/1704.04861) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.py) | | [MobileNetV2(alpha=0.35)](keras_applications/mobilenet_v2.py) | 39.914 | 17.568 | 15.422 | 1.7M | 0.4M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [MobileNetV2(alpha=0.50)](keras_applications/mobilenet_v2.py) | 34.806 | 13.938 | 11.976 | 2.0M | 0.7M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [MobileNetV2(alpha=0.75)](keras_applications/mobilenet_v2.py) | 30.468 | 10.824 | 9.188 | 2.7M | 1.4M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [MobileNetV2(alpha=1.0)](keras_applications/mobilenet_v2.py) | 28.664 | 9.858 | 8.322 | 3.5M | 2.3M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [MobileNetV2(alpha=1.3)](keras_applications/mobilenet_v2.py) | 25.320 | 7.878 | 6.728 | 5.4M | 3.8M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [MobileNetV2(alpha=1.4)](keras_applications/mobilenet_v2.py) | 24.770 | 7.578 | 6.518 | 6.2M | 4.4M | [[paper]](https://arxiv.org/abs/1801.04381) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v2.py) | | [DenseNet121](keras_applications/densenet.py) | 25.028 | 7.742 | 6.522 | 8.1M | 7.0M | [[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) | | [DenseNet169](keras_applications/densenet.py) | 23.824 | 6.824 | 5.860 | 14.3M | 12.6M | [[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) | | [DenseNet201](keras_applications/densenet.py) | 22.680 | 6.380 | 5.466 | 20.2M | 18.3M | [[paper]](https://arxiv.org/abs/1608.06993) [[torch]](https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) | | [NASNetLarge](keras_applications/nasnet.py) | 17.502 | 3.996 | 3.412 | 93.5M | 84.9M | [[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py) | | [NASNetMobile](keras_applications/nasnet.py) | 25.634 | 8.146 | 6.758 | 7.7M | 4.3M | [[paper]](https://arxiv.org/abs/1707.07012) [[tf-models]](https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py) | ## Reference implementations from the community ### Object detection and segmentation - [SSD](https://github.com/rykov8/ssd_keras) by @rykov8 [[paper]](https://arxiv.org/abs/1512.02325) - [YOLOv2](https://github.com/allanzelener/YAD2K) by @allanzelener [[paper]](https://arxiv.org/abs/1612.08242) - [YOLOv3](https://github.com/qqwweee/keras-yolo3) by @qqwweee [[paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) - [Mask RCNN](https://github.com/matterport/Mask_RCNN) by @matterport [[paper]](https://arxiv.org/abs/1703.06870) - [U-Net](https://github.com/zhixuhao/unet) by @zhixuhao [[paper]](https://arxiv.org/abs/1505.04597) - [RetinaNet](https://github.com/fizyr/keras-retinanet) by @fizyr [[paper]](https://arxiv.org/abs/1708.02002) ### Sequence learning - [Seq2Seq](https://github.com/farizrahman4u/seq2seq) by @farizrahman4u - [WaveNet](https://github.com/basveeling/wavenet) by @basveeling [[paper]](https://arxiv.org/abs/1609.03499) ### Reinforcement learning - [keras-rl](https://github.com/keras-rl/keras-rl) by @keras-rl - [RocAlphaGo](https://github.com/Rochester-NRT/RocAlphaGo) by @Rochester-NRT [[paper]](https://doi.org/10.1038/nature16961) ### Generative adversarial networks - [Keras-GAN](https://github.com/eriklindernoren/Keras-GAN) by @eriklindernoren