1 Star 0 Fork 205

陈小龙/MindSpeed-MM_1

forked from Ascend/MindSpeed-MM 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
pretrain_qwen2vl.py 5.31 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain QWEN2VL."""
from copy import deepcopy
import mindspeed.megatron_adaptor # noqa
import torch
from megatron.core import mpu
from megatron.core.enums import ModelType
from megatron.training import get_args, print_rank_0
from megatron.training.utils import average_losses_across_data_parallel_group
from mindspeed_mm.configs.config import mm_extra_args_provider
from mindspeed_mm.data import build_mm_dataloader, build_mm_dataset
from mindspeed_mm.data.data_utils.utils import build_iterations
from mindspeed_mm.models.qwen2vl_model import Qwen2VLModel
from mindspeed_mm.training import pretrain
from mindspeed_mm.utils.transformer_model_config import get_model_config
from mindspeed_mm.patchs import dummy_optimizer_patch # noqa
def model_provider(pre_process=True, post_process=True):
"""Builds the model."""
args = get_args()
print_rank_0("building QWen2VL model ...")
vlm_config = deepcopy(args.mm.model)
# distinguish model construct stage when pipeline parallel
vlm_config.pre_process = pre_process
vlm_config.post_process = post_process
if vlm_config.image_encoder:
vlm_config.image_encoder.vision_encoder = get_model_config(vlm_config.image_encoder.vision_encoder)
vlm_config.image_encoder.vision_projector = get_model_config(vlm_config.image_encoder.vision_projector)
vlm_config.text_decoder = get_model_config(vlm_config.text_decoder)
model = Qwen2VLModel(vlm_config)
model.freeze(freeze_image_encoder=getattr(vlm_config.image_encoder.vision_encoder, 'freeze', True), \
freeze_image_projection=getattr(vlm_config.image_encoder.vision_projector, 'freeze', True))
else:
vlm_config.text_decoder = get_model_config(vlm_config.text_decoder)
model = Qwen2VLModel(vlm_config)
return model
def get_batch(data_iterator):
"""Generate a batch."""
if data_iterator is not None:
batch = next(data_iterator)
else:
raise ValueError("Data iterator is None. Unable to retrieve batch.")
input_ids = batch['input_ids'].to(torch.cuda.current_device())
labels = batch['labels'].to(torch.cuda.current_device())
attention_mask = batch['attention_mask'].to(torch.cuda.current_device())
has_image = 'pixel_values' in batch and 'image_grid_thw' in batch
has_video = 'pixel_values_videos' in batch and 'video_grid_thw' in batch
if has_image or has_video:
if has_image:
pixel_values = batch['pixel_values'].to(torch.cuda.current_device())
image_grid_thw = batch['image_grid_thw'].to(torch.cuda.current_device())
if has_video:
pixel_values = batch['pixel_values_videos'].to(torch.cuda.current_device())
image_grid_thw = batch['video_grid_thw'].to(torch.cuda.current_device())
else: # 只有文本
pixel_values = None
image_grid_thw = None
batch = {
'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask,
'pixel_values': pixel_values,
'image_grid_thw': image_grid_thw
}
return batch['input_ids'], batch['labels'], batch['attention_mask'], batch['pixel_values'], batch['image_grid_thw']
def loss_func(output_tensor):
"""Loss function."""
args = get_args()
loss = output_tensor['loss'].mean()
loss_dir = {}
if args.log_tps:
B, S, _ = output_tensor['logits'].shape
dp_size = torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
tokens_per_sample = torch.tensor(S, device=output_tensor['logits'].device) / dp_size
torch.distributed.all_reduce(tokens_per_sample, group=mpu.get_data_parallel_group())
loss_dir["tokens per sample"] = tokens_per_sample
averaged_loss = average_losses_across_data_parallel_group([loss])
loss_dir["loss"] = averaged_loss[0]
loss = loss.unsqueeze(0).clone()
return loss, loss_dir
def forward_step(data_iterator, model):
"""Forward step."""
input_ids, labels, attention_mask, pixel_values, image_grid_thw = get_batch(data_iterator)
output_tensor = model(input_ids=input_ids, pixel_values=pixel_values, image_grid_thw=image_grid_thw,
attention_mask=attention_mask, labels=labels)
return output_tensor, loss_func
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
data_config = args.mm.data
train_dataset = build_mm_dataset(data_config.dataset_param)
train_dataloader = build_mm_dataloader(train_dataset, data_config.dataloader_param,
process_group=mpu.get_data_parallel_group(),
dataset_param=data_config.dataset_param,
consumed_samples=args.consumed_train_samples,)
train_dataloader, val_dataloader, test_dataloader = build_iterations(train_dataloader)
return train_dataloader, val_dataloader, test_dataloader
if __name__ == "__main__":
train_valid_test_datasets_provider.is_distributed = True
pretrain(
train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step,
extra_args_provider=mm_extra_args_provider,
args_defaults={"dataloader_type": "external"},
)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/ascend-cxl/MindSpeed-MM_1.git
git@gitee.com:ascend-cxl/MindSpeed-MM_1.git
ascend-cxl
MindSpeed-MM_1
MindSpeed-MM_1
master

搜索帮助