diff --git a/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/readme.md b/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/readme.md index 1b5653c87677baa033be72cfedeea61d26248d40..0475466d671a7e138f162ca545ed4b4b8ed7816a 100644 --- a/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/readme.md +++ b/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/readme.md @@ -41,3 +41,10 @@ python3.7 run_deeplab.py - 原始图像、GPU分割、NPU分割效果对比如下:
调用deeplab模型后,原始图片被分割为:背景、皮肤、鼻子、眼睛等部分。 + +### 性能达标 + +| Name | FPS | +| ------ | ---- | +| GPU-1p | 20.9 | +| NPU-1p | 21.5 | diff --git a/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/run_deeplab.py b/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/run_deeplab.py index 41de24d34f976d9844f0f08275fd5349a0bc63d7..a40089791e6093a70c2b57682431e410842e8404 100644 --- a/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/run_deeplab.py +++ b/PyTorch/contrib/cv/semantic_segmentation/FFHQ_ID2978_for_Pytorch/run_deeplab.py @@ -21,6 +21,7 @@ import torch import torch.nn as nn from pdb import set_trace as st from PIL import Image +from tqdm import tqdm from torchvision import transforms import deeplab from data_loader import CelebASegmentation @@ -35,6 +36,12 @@ dataset_root = "ffhq_aging128x128" assert torch.npu.is_available() assert os.path.isdir(dataset_root) +option = {} +option["ACL_OP_COMPILER_CACHE_MODE"] = "enable" # cache功能启用 +option["ACL_OP_COMPILER_CACHE_DIR"] = "./my_kernel_meta" # cache所在文件夹 +print("option:",option) +torch.npu.set_option(option) + dataset = CelebASegmentation(dataset_root, crop_size=513) print("len(dataset)", len(dataset)) print("dataset.CLASSES", dataset.CLASSES) @@ -58,7 +65,7 @@ device = "npu" model = model.to(device) model.eval() -for i in range(len(dataset)): +for i in tqdm(range(len(dataset))): inputs = dataset[i] # inputs = inputs.npu() inputs = inputs.unsqueeze(0).to(device)