diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/LICENSE b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..3d332846513a88288e46b761887e8fc21804f4c4
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
\ No newline at end of file
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/README.md b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..dfdee14469356e0148b7b49f01797e5fb7fc810e
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/README.md
@@ -0,0 +1,256 @@
+# BasicVSR_plusplus模型-推理指导
+
+
+- [概述](#ZH-CN_TOPIC_0000001172161501)
+
+ - [输入输出数据](#section540883920406)
+
+
+
+- [推理环境准备](#ZH-CN_TOPIC_0000001126281702)
+
+- [快速上手](#ZH-CN_TOPIC_0000001126281700)
+
+ - [获取源码](#section4622531142816)
+ - [准备数据集](#section183221994411)
+ - [模型推理](#section741711594517)
+
+- [模型推理性能&精度](#ZH-CN_TOPIC_0000001172201573)
+
+ ******
+
+# 概述
+
+BasicVSR++通过设计二阶网格传播和流引导的可变形对齐来重新设计BasicVSR,使信息能够更有效地传播和聚合,[论文链接](https://arxiv.org/abs/2104.13371)。
+
+- 参考实现:
+
+ ```
+ url=https://github.com/open-mmlab/mmediting.git
+ commit_id=6ac402ec4545398662f043186688a40fb2e97d5f
+ code_path=https://github.com/open-mmlab/mmediting/tree/master/configs/restorers/basicvsr_plusplus
+ model_name=BasicVSR_plusplus
+ ```
+
+## 输入输出数据
+
+- 输入数据
+
+ | 输入数据 | 数据类型 | 大小 | 数据排布格式 |
+ | -------- | -------- | ------------------------- | ------------ |
+ | input | RGB_FP32 | 1 x 14 x 3 x 64 x 112 | NCDHW |
+
+
+- 输出数据
+
+ | 输出数据 | 数据类型 | 大小 | 数据排布格式 |
+ | -------- | -------- | -------- | ------------ |
+ | output1 | FLOAT32 | 1 x 14 x 3 x 256 x 448| NCDHW |
+
+
+# 推理环境准备
+
+- 该模型需要以下插件与驱动
+
+ **表 1** 版本配套表
+
+ | 配套 | 版本 | 环境准备指导 |
+ | ------------------------------------------------------------ | ------- | ------------------------------------------------------------ |
+ | 固件与驱动 | 22.0.3 | [Pytorch框架推理环境准备](https://www.hiascend.com/document/detail/zh/ModelZoo/pytorchframework/pies) |
+ | CANN | 6.0.RC1 | - |
+ | Python | 3.7.5 | - |
+ | PyTorch | 1.8.1 | - |
+ | 说明:Atlas 300I Duo 推理卡请以CANN版本选择实际固件与驱动版本。 | \ | \ |
+
+
+
+# 快速上手
+
+## 获取源码
+
+1. 获取源码。
+
+ ```
+ git clone https://github.com/open-mmlab/mmediting.git
+ ```
+
+2. 安装依赖。
+
+ ```
+ pip3 install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
+ pip3 install -U openmim
+ mim install mmcv-full
+
+ cd mmediting
+ git reset --hard 6ac402ec4545398662f043186688a40fb2e97d5f
+ git apply ../basicvsr_plusplus.patch
+ pip3 install -r requirements.txt
+ pip3 install -v -e .
+ cd ..
+ pip3 install -r requirements.txt
+ ```
+
+## 准备数据集
+
+1. 获取原始数据集。(解压命令参考tar –xvf \*.tar与 unzip \*.zip)
+
+ 模型推理使用Vimeo90K数据集,数据集介绍参考[官网链接](http://toflow.csail.mit.edu/),测试数据集[下载链接](http://data.csail.mit.edu/tofu/testset/vimeo_super_resolution_test.zip)
+
+ 下载后将vimeo_super_resolution_test.zip放在当前工作目录。
+
+2. 数据预处理,将原始数据集转换为模型输入的数据。
+
+ 数据预处理命令如下。
+
+ ```
+ unzip -d ./data/ vimeo_super_resolution_test.zip
+ mv ./data/vimeo_super_resolution_test ./data/vimeo90k
+ mv ./data/vimeo90k/low_resolution ./data/vimeo90k/BIx4
+ mv ./data/vimeo90k/target ./data/vimeo90k/GT
+
+ python3 ./mmediting/tools/data/super-resolution/vimeo90k/preprocess_vimeo90k_dataset.py ./data/vimeo90k/sep_testlist.txt
+ mv ./data/vimeo90k/meta_info_Vimeo90K_GT.txt ./data/vimeo90k/meta_info_Vimeo90K_test_GT.txt
+
+ python3 basicvsr_plusplus_preprocess.py \
+ ./mmediting/configs/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_4x2_300k_vimeo90k_bi.py \
+ ./pre_data
+ ```
+
+ 生成并保存为bin文件,保存目录为`./pre_data`。
+
+
+## 模型推理
+
+1. 模型转换。
+
+ 使用PyTorch将模型权重文件.pkl转换为.onnx文件,再使用ATC工具将.onnx文件转为离线推理模型文件.om文件。
+
+ 1. 获取权重文件。
+
+ 权重文件为:basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth,[获取链接](https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth)
+ 将获取的权重文件放在当前工作路径下,参考命令:
+
+ ```
+ wget https://download.openmmlab.com/mmediting/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth
+ ```
+
+ 2. 导出onnx文件。
+
+ 1. 使用pytorch2onnx.py导出onnx文件。
+
+ 运行pytorch2onnx.py脚本。
+
+ ```
+ python3 mmediting/tools/pytorch2onnx.py \
+ mmediting/configs/restorers/basicvsr_plusplus/basicvsr_plusplus_c64n7_4x2_300k_vimeo90k_bi.py \
+ ./basicvsr_plusplus_c64n7_8x1_300k_vimeo90k_bi_20210305-4ef437e2.pth \
+ restorer \
+ data/vimeo90k/BIx4/00001/0266/ \
+ --output-file ./basicvsr_plusplus.onnx
+ ```
+
+ 获得basicvsr_plusplus.onnx文件。
+
+ 3. 使用ATC工具将ONNX模型转OM模型。
+
+ 1. 配置环境变量。
+
+ ```
+ source /usr/local/Ascend/ascend-toolkit/set_env.sh
+ ```
+
+ 2. 执行命令查看芯片名称($\{chip\_name\})。
+
+ ```
+ npu-smi info
+ #该设备芯片名为Ascend310P3 (自行替换)
+ 回显如下:
+ +-------------------+-----------------+------------------------------------------------------+
+ | NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page) |
+ | Chip Device | Bus-Id | AICore(%) Memory-Usage(MB) |
+ +===================+=================+======================================================+
+ | 0 310P3 | OK | 15.8 42 0 / 0 |
+ | 0 0 | 0000:82:00.0 | 0 1074 / 21534 |
+ +===================+=================+======================================================+
+ | 1 310P3 | OK | 15.4 43 0 / 0 |
+ | 0 1 | 0000:89:00.0 | 0 1070 / 21534 |
+ +===================+=================+======================================================+
+ ```
+
+ 3. 执行ATC命令。
+
+ ```
+ atc --framework=5 \
+ --model=./basicvsr_plusplus.onnx \
+ --input_shape="input:1,14,3,64,112" \
+ --output=./basicvsr_plusplus_bs1 \
+ --input_format=NCHW \
+ --log=error \
+ --soc_version=Ascend${chip_name}
+ ```
+
+ - 参数说明:
+
+ - --model:为ONNX模型文件。
+ - --framework:5代表ONNX模型。
+ - --output:输出的OM模型。
+ - --input\_format:输入数据的格式。
+ - --input\_shape:输入数据的shape。
+ - --log:日志级别。
+ - --soc\_version:处理器型号。
+
+ 运行成功后生成`basicvsr_plusplus_bs1.om`模型文件。
+
+2. 开始推理验证。
+
+ 1. 安装ais_bench推理工具。
+
+ 请访问[ais_bench推理工具](https://gitee.com/ascend/tools/tree/master/ais-bench_workload/tool/ais_infer)代码仓,根据readme文档进行工具安装。
+
+ 2. 执行推理。
+
+ ```
+ python3 -m ais_bench --model=basicvsr_plusplus_bs1.om --input=./pre_data/vimeo90k/BIx4 --output=./ --outfmt=NPY --batchsize=1
+ ```
+
+ - 参数说明:
+
+ - --model:om模型。
+ - --input:输入数据路径。
+ - --output:推理结果路径。
+ - --batchsize:om模型的batchsize。
+
+ 推理后的输出默认在当前目录下。
+
+
+ 3. 精度验证。
+
+ 调用`basicvsr_plusplus_postprocess.py`脚本将om模型的推理结果。
+
+ ```
+ python3 basicvsr_plusplus_postprocess.py ./pre_data ${output_path}
+ ```
+
+ 第一个参数为预处理数据路径,第二个参数${output_path}为推理工具生成的推理结果路径。
+
+ 4. 性能验证。
+
+ 可使用ais_bench推理工具的纯推理模式验证不同batch_size的om模型的性能,参考命令如下:
+
+ ```
+ python3 -m ais_bench --model=basicvsr_plusplus_bs1.om --loop=20 --batchsize=1
+ ```
+
+ - 参数说明:
+ - --model:om模型。
+ - --loop:模型推理次数。
+ - --batchsize:om模型的batchsize。
+
+
+# 模型推理性能&精度
+
+调用ACL接口推理计算,性能参考下列数据。
+
+| 芯片型号 | Batch Size | 数据集 | 精度 | 性能 |
+| --------- | ---------- | ---------- | ---------- | --------------- |
+| Ascend310P | 1 | Vimeo90K | PSNR=35.04, SSIM=0.9198 | 2.27 fps |
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus.patch b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus.patch
new file mode 100644
index 0000000000000000000000000000000000000000..24c347f2ff5a30d39e811b35809c661b299b5b7d
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus.patch
@@ -0,0 +1,161 @@
+diff --git a/mmedit/models/backbones/sr_backbones/basicvsr_pp.py b/mmedit/models/backbones/sr_backbones/basicvsr_pp.py
+index 082cf618..790a1f34 100644
+--- a/mmedit/models/backbones/sr_backbones/basicvsr_pp.py
++++ b/mmedit/models/backbones/sr_backbones/basicvsr_pp.py
+@@ -368,6 +368,52 @@ class BasicVSRPlusPlus(nn.Module):
+ f'But received {type(pretrained)}.')
+
+
++class DeformConv2dFunction(torch.autograd.Function):
++ @staticmethod
++ def forward(ctx,
++ input,
++ weight,
++ offset,
++ bias,
++ stride=1,
++ padding=0,
++ dilation=1,
++ groups=1,
++ deform_groups=1):
++ output_size = [input.shape[0], weight.shape[0]]
++ for d in range(input.dim() - 2):
++ in_size = input.size(d + 2)
++ kernel = dilation * (weight.size(d + 2) - 1) + 1
++ output_size.append((in_size + (2 * padding) - kernel) // stride + 1)
++ out = torch.randn(output_size).to(input.dtype)
++ return out
++
++ @staticmethod
++ def symbolic(g,
++ input,
++ weight,
++ offset,
++ bias,
++ stride,
++ padding,
++ dilation,
++ groups,
++ deform_groups):
++ return g.op(
++ "DeformableConv2D",
++ input,
++ weight,
++ offset,
++ bias,
++ strides_i=[stride,stride],
++ pads_i=[padding,padding],
++ dilations_i=dilation,
++ groups_i=groups,
++ deformable_groups_i=deform_groups)
++
++deform_conv2d = DeformConv2dFunction.apply
++
++
+ class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
+ """Second-order deformable alignment module.
+
+@@ -425,8 +471,15 @@ class SecondOrderDeformableAlignment(ModulatedDeformConv2d):
+
+ # mask
+ mask = torch.sigmoid(mask)
+-
+- return modulated_deform_conv2d(x, offset, mask, self.weight, self.bias,
+- self.stride, self.padding,
+- self.dilation, self.groups,
+- self.deform_groups)
++ offset_x = offset[:, 0::2, :, :]
++ offset_y = offset[:, 1::2, :, :]
++ offset = torch.cat([offset_y, offset_x, mask], dim=1)
++ return deform_conv2d(x,
++ self.weight,
++ offset,
++ self.bias,
++ self.stride[0],
++ self.padding[0],
++ self.dilation[0],
++ self.groups,
++ self.deform_groups)
+diff --git a/mmedit/models/common/flow_warp.py b/mmedit/models/common/flow_warp.py
+index 7083230d..d34c9cd8 100644
+--- a/mmedit/models/common/flow_warp.py
++++ b/mmedit/models/common/flow_warp.py
+@@ -3,6 +3,36 @@ import torch
+ import torch.nn.functional as F
+
+
++class GridSampler(torch.autograd.Function):
++ @staticmethod
++ def forward(ctx,
++ x,
++ grid,
++ mode='bilinear',
++ padding_mode='zeros',
++ align_corners=False):
++ output_size = x.shape
++ out = torch.randn(output_size).to(x.dtype)
++ return out
++
++ @staticmethod
++ def symbolic(g,
++ x,
++ grid,
++ mode,
++ padding_mode,
++ align_corners):
++ return g.op(
++ "GridSample",
++ x,
++ grid,
++ mode_s=mode,
++ padding_mode_s=padding_mode,
++ align_corners_i=align_corners)
++
++grid_sample = GridSampler.apply
++
++
+ def flow_warp(x,
+ flow,
+ interpolation='bilinear',
+@@ -41,10 +71,5 @@ def flow_warp(x,
+ grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0
+ grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0
+ grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3)
+- output = F.grid_sample(
+- x,
+- grid_flow,
+- mode=interpolation,
+- padding_mode=padding_mode,
+- align_corners=align_corners)
++ output = grid_sample(x, grid_flow, interpolation, padding_mode, align_corners)
+ return output
+diff --git a/tools/pytorch2onnx.py b/tools/pytorch2onnx.py
+index 4bf524c7..46eafa33 100644
+--- a/tools/pytorch2onnx.py
++++ b/tools/pytorch2onnx.py
+@@ -73,7 +73,8 @@ def pytorch2onnx(model,
+ keep_initializers_as_inputs=False,
+ verbose=show,
+ opset_version=opset_version,
+- dynamic_axes=dynamic_axes)
++ dynamic_axes=dynamic_axes,
++ enable_onnx_checker=False)
+ print(f'Successfully exported ONNX model: {output_file}')
+ if verify:
+ # check by onnx
+@@ -192,6 +193,15 @@ if __name__ == '__main__':
+ data = dict(merged_path=args.img_path, trimap_path=args.trimap_path)
+ elif model_type == 'restorer':
+ data = dict(lq_path=args.img_path)
++ data['lq_path'] = [
++ 'data/vimeo90k/BIx4/00001/0266/im1.png',
++ 'data/vimeo90k/BIx4/00001/0266/im2.png',
++ 'data/vimeo90k/BIx4/00001/0266/im3.png',
++ 'data/vimeo90k/BIx4/00001/0266/im4.png',
++ 'data/vimeo90k/BIx4/00001/0266/im5.png',
++ 'data/vimeo90k/BIx4/00001/0266/im6.png',
++ 'data/vimeo90k/BIx4/00001/0266/im7.png']
++ data['key'] = '00001/0266'
+ data = test_pipeline(data)
+
+ # convert model to onnx file
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_postprocess.py b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_postprocess.py
new file mode 100644
index 0000000000000000000000000000000000000000..81f3d41df9fcbb89df2e0f25884444f3145de7e6
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_postprocess.py
@@ -0,0 +1,67 @@
+# Copyright 2023 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import torch
+import argparse
+import numpy as np
+
+from tqdm import tqdm
+from mmedit.core import tensor2img
+from mmedit.core.evaluation import psnr, ssim
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='basicvsr_plusplus data preprocess.')
+ parser.add_argument('pre_path', help='save bin path')
+ parser.add_argument('res_path', help='results path')
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+
+ gt_path = "{}/vimeo90k/GT".format(args.pre_path)
+ res_path = args.res_path
+
+ eval_result = dict()
+ eval_result['PSNR'] = 0
+ eval_result['SSIM'] = 0
+
+ for root, dirs, files in os.walk(res_path):
+ for idx, f in enumerate(tqdm(files)):
+ res = torch.from_numpy(np.load(f"{res_path}/{f}"))
+ gt = torch.from_numpy(np.load(f"{gt_path}/{f.replace('_0.', '.')}"))
+
+ t = res.size(1)
+ res = 0.5 * (res[:, t // 4] + res[:, -1 - t // 4])
+
+ res_img = tensor2img(res)
+ gt_img = tensor2img(gt)
+
+ psnr_val = psnr(res_img, gt_img, 0, convert_to='y')
+ ssim_val = ssim(res_img, gt_img, 0, convert_to='y')
+
+ eval_result['PSNR'] += psnr_val
+ eval_result['SSIM'] += ssim_val
+
+ psnr_res = eval_result['PSNR'] / len(files)
+ ssim_res = eval_result['SSIM'] / len(files)
+
+ print(f"The results of postprocess: PSNR={psnr_res}, SSIM={ssim_res}")
+
+
+if __name__ == '__main__':
+ main()
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_preprocess.py b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_preprocess.py
new file mode 100644
index 0000000000000000000000000000000000000000..c733cee85362f53bbb8b21929048dced1ed14f4a
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/basicvsr_plusplus_preprocess.py
@@ -0,0 +1,72 @@
+# Copyright 2023 Huawei Technologies Co., Ltd
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import mmcv
+import torch
+import shutil
+import argparse
+import numpy as np
+
+from tqdm import tqdm
+from mmcv import Config
+from mmedit.datasets import build_dataloader, build_dataset
+
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='basicvsr_plusplus data preprocess.')
+ parser.add_argument('config', help='config file path')
+ parser.add_argument('pre_path', help='save bin path')
+ args = parser.parse_args()
+ return args
+
+
+def main():
+ args = parse_args()
+
+ data_path = "{}/vimeo90k".format(args.pre_path)
+ lq_path = "{}/vimeo90k/BIx4".format(args.pre_path)
+ gt_path = "{}/vimeo90k/GT".format(args.pre_path)
+
+ if not os.path.exists(data_path):
+ os.makedirs(lq_path)
+ os.makedirs(gt_path)
+ else:
+ shutil.rmtree(data_path)
+ os.makedirs(lq_path)
+ os.makedirs(gt_path)
+
+ cfg = Config.fromfile(args.config)
+ dataset = build_dataset(cfg.data.test)
+
+ loader_cfg = {
+ **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data),
+ **dict(
+ samples_per_gpu=1,
+ drop_last=False,
+ shuffle=False,
+ dist=False),
+ **cfg.data.get('test_dataloader', {})
+ }
+
+ data_loader = build_dataloader(dataset, **loader_cfg)
+
+ for idx, data in enumerate(tqdm(data_loader)):
+ data_name = data['meta'].data[0][0]['key'].replace('/', '_')
+ np.save(f"{lq_path}/{data_name}.npy", data['lq'].numpy())
+ np.save(f"{gt_path}/{data_name}.npy", data['gt'].numpy())
+
+
+if __name__ == '__main__':
+ main()
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/modelzoo_level.txt b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/modelzoo_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..55d7316449715cd754664e780e12ebef020b48be
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/modelzoo_level.txt
@@ -0,0 +1,4 @@
+FuncStatus:OK
+PerfStatus:PERFECT
+PrecisionStatus:OK
+ModelConvert:OK
\ No newline at end of file
diff --git a/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/requirements.txt b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..334c8b67f270ca5cd4c806ada2607b13b95c9b16
--- /dev/null
+++ b/ACL_PyTorch/contrib/cv/super_resolution/BasicVSR_plusplus/requirements.txt
@@ -0,0 +1,3 @@
+-r mmediting/requirements/runtime.txt
+-r mmediting/requirements/tests.txt
+onnx==1.13.0
\ No newline at end of file