diff --git a/PyTorch/built-in/audio/ESPnet2_for_PyTorch/README.md b/PyTorch/built-in/audio/ESPnet2_for_PyTorch/README.md index 516d0157b94fe9a5f042c61e210d1777ab577e22..35cff29eed47535fcac32cdc9e4555a8ce90f648 100644 --- a/PyTorch/built-in/audio/ESPnet2_for_PyTorch/README.md +++ b/PyTorch/built-in/audio/ESPnet2_for_PyTorch/README.md @@ -31,11 +31,10 @@ ESPNet是一套基于E2E的开源工具包,可进行语音识别等任务。 **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | - | PyTorch 1.11 | - | + | Torch_Version | 三方库依赖版本 | + |:-------------:| :----------------------------------------------------------: | + | PyTorch 1.11 | - | + | PyTorch 2.1 | - | - 环境准备指导。 @@ -172,14 +171,12 @@ ESPNet是一套基于E2E的开源工具包,可进行语音识别等任务。 **表 2** 训练结果展示表 -| NAME | 精度模式 | CER | FPS | Epochs | Torch_version | -|-------- |-------------|:-------|--------| :------------ |-------- | -| 1p-竞品 | 混合精度 | - | 196.86 | 1 | - | -| 8p-竞品 | 混合精度 | 95.4 | 398.8 | 50 | - | -| 1p-NPU(非ARM) | 混合精度 | - | 101.04 | 1 | 1.8 | -| 8p-NPU(非arm) | 混合精度 | 95.5 | 399.7 | 50 | 1.8 | -| 8p-NPU(ARM) | 混合精度 | 95.4 | 540 | 50 | 1.8 | -| 8p-NPU(ARM) | FP32 | 95.4 | 670 | 50 | 1.8 | +| NAME | 精度模式 | CER | FPS | Epochs | Torch_version | +|--------------|-------------|:-------|--------| :------------ |-------- | +| 1p-竞品 | 混合精度 | - | 196.86 | 1 | - | +| 8p-竞品 | 混合精度 | 95.4 | 398.8 | 50 | - | +| 1p-NPU | - | 751.37 | - | - | 1.11 | +| 1p-NPU | - | 700.96 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/audio/Wenet_Conformer_for_Pytorch/README.md b/PyTorch/built-in/audio/Wenet_Conformer_for_Pytorch/README.md index 55fd9c1dd63983bc344d9a07496e96053bf52961..98164266afec1d46c141f66df54f95a0bde9db0d 100644 --- a/PyTorch/built-in/audio/Wenet_Conformer_for_Pytorch/README.md +++ b/PyTorch/built-in/audio/Wenet_Conformer_for_Pytorch/README.md @@ -141,21 +141,21 @@ Wenet是一款开源的、面向工业落地应用的语音识别工具包,主 **表 2** conformer训练结果展示表 -| NAME | Error | FPS(iters/sec) | Epochs | AMP_Type | Torch_Version | -|:-------------:| :---: |:--------------:|:------:|:--------:|:-------------:| -| 8p-GPU | - | 800.44 | 15 | fp32 | 1.11 | -| 8p-Atlas A2 | - | 526.34 | 15 | fp32 | 1.11 | -| 8p-GPU | - | 958.98 | 15 | fp32 | 2.1 | -| 8p-Atlas A2 | - | 830.49 | 15 | fp32 | 2.1 | +| NAME | Error | FPS(iters/sec) | Epochs | AMP_Type | Torch_Version | +|:-----------:| :---: |:--------------:|:------:|:--------:|:-------------:| +| 8p-竞品A | - | 800.44 | 15 | fp32 | 1.11 | +| 8p-Atlas 800T A2 | - | 526.34 | 15 | fp32 | 1.11 | +| 8p-竞品A | - | 958.98 | 15 | fp32 | 2.1 | +| 8p-Atlas 800T A2 | - | 830.49 | 15 | fp32 | 2.1 | **表 3** whisper训练结果展示表 | NAME | Error | FPS(iters/sec) | Epochs | AMP_Type | Torch_Version | |:-------------:| :---: |:--------------:|:------:|:--------:|:-------------:| -| 8p-GPU | - | 746.39 | 15 | fp32 | 1.11 | -| 8p-Atlas A2 | - | 667.62 | 15 | fp32 | 1.11 | -| 8p-GPU | - | 748.85 | 15 | fp32 | 2.1 | -| 8p-Atlas A2 | - | 789.31 | 15 | fp32 | 2.1 | +| 8p-竞品A | - | 746.39 | 15 | fp32 | 1.11 | +| 8p-Atlas 800T A2 | - | 667.62 | 15 | fp32 | 1.11 | +| 8p-竞品A | - | 748.85 | 15 | fp32 | 2.1 | +| 8p-Atlas 800T A2 | - | 789.31 | 15 | fp32 | 2.1 | **表 4** conformer result * Feature info: using fbank feature, dither, cmvn, online speed perturb diff --git a/PyTorch/built-in/cv/classification/CRNN_for_PyTorch/README.md b/PyTorch/built-in/cv/classification/CRNN_for_PyTorch/README.md index 0e2d863a5b1861fa442d963a74157dc8c79dcb1c..5707ae832adfba23bd5bc5f91e4da8c87a211b01 100644 --- a/PyTorch/built-in/cv/classification/CRNN_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/classification/CRNN_for_PyTorch/README.md @@ -142,10 +142,12 @@ CRNN (Convolutional Recurrent Neural Network) 于2015年由华中科技大学的 **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :----: | :---: | :-------: | :----: | :------: | :-----------: | -| 1p-NPU | - | 11733.53 | 1 | O2 | 1.8 | -| 8p-NPU | 0.75 | 106510.27 | 100 | O2 | 1.8 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :----: | :---: |:----------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 14758.65 | - | - | 1.11 | +| 8p-NPU | - | 109015.73 | - | - | 1.11 | +| 1p-NPU | - | 14078.58 | - | - | 2.1 | +| 8p-NPU | - | 110879.797 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/cv/classification/EfficientNetV2_for_PyTorch/README.md b/PyTorch/built-in/cv/classification/EfficientNetV2_for_PyTorch/README.md index 42527935115ffbb5a241549f711b2221b52d7ef7..23aaca0d127bf4c938f87e1e5fbe2dd4f2f129dc 100644 --- a/PyTorch/built-in/cv/classification/EfficientNetV2_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/classification/EfficientNetV2_for_PyTorch/README.md @@ -38,10 +38,10 @@ EfficientNetV2是Efficient的改进版,accuracy达到了发布时的SOTA水平 **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | pillow==8.4.0 | - | PyTorch 1.8 | pillow==9.1.0 | + | Torch_Version | 三方库依赖版本 | + |:-------------:|:-------------:| + | PyTorch 1.11 | pillow==9.1.0 | + | PyTorch 2.1 | pillow==9.1.0 | - 环境准备指导。 @@ -51,9 +51,6 @@ EfficientNetV2是Efficient的改进版,accuracy达到了发布时的SOTA水平 在模型源码包根目录下执行命令,安装模型对应PyTorch版本需要的依赖。 ``` - pip install -r 1.5_requirements.txt # PyTorch1.5版本 - - pip install -r 1.8_requirements.txt # PyTorch1.8版本 ``` > **说明:** >只需执行一条对应的PyTorch版本依赖安装命令。 @@ -152,15 +149,12 @@ EfficientNetV2是Efficient的改进版,accuracy达到了发布时的SOTA水平 **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :--: | :----: | :------: | :-----------: | -| 1p-竞品V | - | 533 | 1 | O1 | 1.8 | -| 8p-竞品V | 82.34 | 4100 | 350 | O1 | 1.8 | -| 1p-NPU-ARM | - | 602 | 1 | O1 | 1.8 | -| 8p-NPU-ARM | 82.19 | 4100 | 350 | O1 | 1.8 | -| 1p-NPU-非ARM | - | 602 | 1 | O1 | 1.8 | -| 8p-NPU-非ARM | 82.19 | 4500 | 350 | O1 | 1.8 | - +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :---: |:-------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 1110.2 | - | - | 1.11 | +| 8p-NPU | - | 6879.25 | - | - | 1.11 | +| 1p-NPU | - | 1100.73 | - | - | 2.1 | +| 8p-NPU | - | 6914.44 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/cv/classification/MobileNetV3-Large_ID1784_for_PyTorch/README.md b/PyTorch/built-in/cv/classification/MobileNetV3-Large_ID1784_for_PyTorch/README.md index 9c7d7173cb98c74bdee92db78a8b30f0ade60632..ea070183118e0b1a1a1d86fbb269bd15c0b2ac64 100644 --- a/PyTorch/built-in/cv/classification/MobileNetV3-Large_ID1784_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/classification/MobileNetV3-Large_ID1784_for_PyTorch/README.md @@ -165,12 +165,12 @@ MobileNetV3结合了MobileNetV1的深度可分离卷积、MobileNetV2的Inverted **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :-----: | :----: | :---: | :----: | :------: | :-------: | -| 1p-竞品V| - | - | 1 | O2 | 1.5 | -| 8p-竞品V| 74.0 | 3885 | 600 | O2 | 1.5 | -| 1p-NPU | - | 1660.49 | 1 | O2 | 1.8 | -| 8p-NPU | 73.5 | 6879.23 | 600 | O2 | 1.8 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :-----: | :----: |:-------:| :----: | :------: | :-------: | +| 1p-NPU | - | 1916.25 | - | - | 1.11 | +| 8p-NPU | - | 9894.58 | - | - | 1.11 | +| 1p-NPU | - | 1825.02 | - | - | 2.1 | +| 8p-NPU | - | 9451.71 | - | - | 2.1 | diff --git a/PyTorch/built-in/cv/classification/ResNet50_ID4149_for_PyTorch/README.md b/PyTorch/built-in/cv/classification/ResNet50_ID4149_for_PyTorch/README.md index 04fa2c12f104f6c7e3984be75903c1058cb045ee..a8a3f49b83f5754158de25072a81cd666c691aca 100644 --- a/PyTorch/built-in/cv/classification/ResNet50_ID4149_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/classification/ResNet50_ID4149_for_PyTorch/README.md @@ -40,8 +40,6 @@ ResNet是由微软研究院的Kaiming He等四名华人提出,是ImageNet竞 | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | pillow==8.4.0 | - | PyTorch 1.8 | pillow==9.1.0 | | PyTorch 1.11 | pillow==9.1.0 | | PyTorch 2.1 | pillow==9.1.0 | @@ -53,9 +51,6 @@ ResNet是由微软研究院的Kaiming He等四名华人提出,是ImageNet竞 在模型源码包根目录下执行命令,安装模型对应PyTorch版本需要的依赖。 ``` - pip install -r 1.5_requirements.txt # PyTorch1.5版本 - - pip install -r 1.8_requirements.txt # PyTorch1.8版本 pip install -r 1.11_requirements.txt # PyTorch1.11版本 @@ -190,13 +185,13 @@ ResNet是由微软研究院的Kaiming He等四名华人提出,是ImageNet竞 # 训练结果展示 **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -|:-:|:-:|:-:|:-:|:-:|:-:| -| 1p-NPU | - | 1680 | 1 | O2 | 1.8 | -| 8p-NPU A1 | 76.63 | 11910 | 90 | O2 | 1.8 | -| 8p-NPU A2 | 76.63 | 14900 | 90 | O2 | 1.8 | -| 16p-NPU | 76.69 | 30000 | 90 | O2 | 2.1 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +|:-:|:-:|:-----:|:-:|:-:|:-:| +| 1p-NPU | - | 1678 | - | - | 1.11 | +| 8p-NPU | - | 13212 | - | - | 1.11 | +| 1p-NPU | - | 1678 | - | - | 2.1 | +| 8p-NPU | - | 13255 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/cv/classification/Resnet50_Cifar_for_PyTorch/README.md b/PyTorch/built-in/cv/classification/Resnet50_Cifar_for_PyTorch/README.md index 2c4184f0db372982dce59c2015ff9a55a8cbe458..27d6660aab9d0d95b3099f107b2573707b582303 100644 --- a/PyTorch/built-in/cv/classification/Resnet50_Cifar_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/classification/Resnet50_Cifar_for_PyTorch/README.md @@ -40,8 +40,6 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 Op | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | | PyTorch 1.11 | - | | PyTorch 2.1 | - | @@ -116,11 +114,9 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 Op ``` bash ./test/train_performance_1p.sh # batchsize=16 单卡性能 bash ./test/train_performance_1p_bs32.sh # batchsize=32 单卡性能 - bash ./test/train_performance_1p_bs256.sh # batchsize=256 单卡性能 bash ./test/train_full_1p.sh # batchsize=16 单卡精度 bash ./test/train_full_1p_bs32.sh # batchsize=32 单卡精度 - bash ./test/train_full_1p_bs256.sh # batchsize=256 单卡精度 ``` - 单机8卡训练 @@ -129,11 +125,9 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 Op ``` bash ./test/train_performance_8p.sh # batchsize=16 8卡性能 bash ./test/train_performance_8p_bs32.sh # batchsize=32 8卡性能 - bash ./test/train_performance_8p_bs256.sh # batchsize=256 8卡性能 bash ./test/train_full_8p.sh # batchsize=16 8卡精度 - bash ./test/train_full_8p_bs32.sh # batchsize=32 8卡精度 - bash ./test/train_full_8p_bs256.sh # batchsize=256 8卡精度 + bash ./test/train_full_8p_bs32.sh # batchsize=32 8卡精度 ``` 注意:模型训练所需要的数据集(cifar100)脚本会自动下载,请保持网络畅通。如果已有数据集,也可用传参的方式传入,如以下命令: @@ -208,25 +202,21 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 Op | NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | batch_size | Device | |:------:|:-----:|:-----:|:------:|:--------:|:-------------:|:----------:|:------:| -| 1p-NPU | - | 4196 | 2 | O2 | 1.8 | 512 | 910 | -| 8p-NPU | 61.65 | 32507 | 200 | O2 | 1.8 | 4096 | 910 | -| 1p-NPU | - | 390 | 2 | O2 | 1.8 | 16 | 910 | -| 1p-NPU | - | 233 | 3 | O2 | 1.8 | 32 | 910 | -| 8p-NPU | 80.0 | 1523 | 2 | O2 | 1.8 | 128 | 910 | -| 8p-NPU | 80.0 | 1706 | 200 | O2 | 1.8 | 256 | 910 | -| 1p-NPU | - | 2844 | 2 | O2 | 1.11 | 256 | 910 | -| 8p-NPU | - | 16925 | 2 | O2 | 1.11 | 2048 | 910 | +| 1p-NPU | - | 4266 | 2 | O2 | 1.11 | 256 | Atlas | +| 8p-NPU | - | 33032 | 2 | O2 | 1.11 | 2048 | Atlas | +| 1p-NPU | - | 4571 | 2 | O2 | 1.2 | 256 | Atlas | +| 8p-NPU | - | 33032 | 2 | O2 | 1.2 | 2048 | Atlas | > **说明:** 该模型默认在二进制场景下进行训练。 **表 3** vNPU训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | | Torch_Version | batch_size | Device | -|:------: |:-----:|:-----:|:------:|:-:|:-------------:|:----------:|:-------:| -| 1p-NPU-ARM | 88.517| 2007 | 90 | | 2.1 | 16 | 910B | -| 1p-vNPU-ARM| 88.638 | 1372 | 90 | | 2.1 | 16 | 910B | -| 1p-NPU-A+X | 88.322 | 1984 | 90 | | 2.1 | 16 | 910B | -| 1p-vNPU-A+X| 88.450 | 969 | 90 | | 2.1 | 16 | 910B | +| NAME | Acc@1 | FPS | Epochs | | Torch_Version | batch_size | Device | +|:-----------:|:-----:|:-----:|:------:|:-:|:-------------:|:----------:|:-------:| +| 1p-NPU-ARM | 88.517| 2007 | 90 | | 2.1 | 16 | Atlas 800T A2 | +| 1p-vNPU-ARM | 88.638 | 1372 | 90 | | 2.1 | 16 | Atlas 800T A2 | +| 1p-NPU-X86 | 88.322 | 1984 | 90 | | 2.1 | 16 | Atlas 800T A2 | +| 1p-vNPU-X86 | 88.450 | 969 | 90 | | 2.1 | 16 | Atlas 800T A2 | 同等超参下,vNPU能满足精度要求 diff --git a/PyTorch/built-in/cv/detection/DB_ID0706_for_PyTorch/README.md b/PyTorch/built-in/cv/detection/DB_ID0706_for_PyTorch/README.md index 3fd314c80d9613081bb8d80acace3cc211ab4e10..a5d843e8a7b1186d60ad2123e6eb4a3135d0804c 100644 --- a/PyTorch/built-in/cv/detection/DB_ID0706_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/detection/DB_ID0706_for_PyTorch/README.md @@ -41,10 +41,8 @@ DB(Differentiable Binarization)是一种使用可微分二值图来实时文字 | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | pillow==8.4.0 | - | PyTorch 1.8 | pillow==9.1.0 | - | PyTorch 1.11 | - | - | PyTorch 2.1 | - | + | PyTorch 1.11 | pillow==9.1.0 | + | PyTorch 2.1 | pillow==9.1.0 | - 环境准备指导。 @@ -78,10 +76,6 @@ DB(Differentiable Binarization)是一种使用可微分二值图来实时文字 在模型源码包根目录下执行命令,安装模型对应PyTorch版本需要的依赖。 ``` - pip install -r 1.5_requirements.txt # PyTorch1.5版本 - - pip install -r 1.8_requirements.txt # PyTorch1.8版本 - pip install -r 1.11_requirements.txt # PyTorch1.11版本 pip install -r 2.1_requirements.txt # PyTorch2.1版本 @@ -173,14 +167,12 @@ DB(Differentiable Binarization)是一种使用可微分二值图来实时文字 **表 2** 训练结果展示表 -| NAME | Precision | FPS | Epochs | AMP_Type | Torch_Version | -|:----:|:---------:|:----:|:------: | :-------: |:---:| -| 1P-竞品V | - | - | 1 | - | 1.5 | -| 8P-竞品V | - | - | 1200 | - | 1.5 | -| 1P-NPU-ARM | - | 20.19 | 1 | O2 | 1.8 | -| 8P-NPU-ARM | 0.907 | 88.073 | 1200 | O2 | 1.8 | -| 1P-NPU-非ARM | - | 20.265 | 1 | O2 | 1.8 | -| 8P-NPU-非ARM | - | 113.988 | 1200 | O2 | 1.8 | +| NAME | Precision | FPS | Epochs | AMP_Type | Torch_Version | +|:----:|:---------:|:-------:|:------: | :-------: |:---:| +| 1p-NPU | - | 30.528 | - | - | 1.11 | +| 8p-NPU | - | 210.123 | - | - | 1.11 | +| 1p-NPU | - | 29.926 | - | - | 2.1 | +| 8p-NPU | - | 205.123 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/cv/detection/Faster_Mask_RCNN_for_PyTorch/README.md b/PyTorch/built-in/cv/detection/Faster_Mask_RCNN_for_PyTorch/README.md index f5ab10c06963989c87139e058e2d06138cba92d2..deaf6e218b4748f3592f39fbb7b51617fbbe1dfd 100644 --- a/PyTorch/built-in/cv/detection/Faster_Mask_RCNN_for_PyTorch/README.md +++ b/PyTorch/built-in/cv/detection/Faster_Mask_RCNN_for_PyTorch/README.md @@ -243,14 +243,16 @@ FasterRCNN是一个业界领先的目标检测网络,他继承了FastRCNN的 **表 2** 训练结果展示表 mask_rcnn结果 -| NAME | Acc@1 | FPS | Iters | AMP_Type | Torch_Version | -| :-----: | :---: | :---: | :----: | :------: | :-----------: | -| 1p-竞品V| - | - | 400 | - | 1.5 | -| 8p-竞品V| 32.7 | - | 10250 | O2 | 1.12 | -| 1p-NPU | - | 6.071 | 400 | O2 | 1.8 | -| 8p-NPU | 32.4 | 42.933 | 10250 | O2 | 1.8 | + +| NAME | Acc@1 | FPS | Iters | AMP_Type | Torch_Version | +| :-----: | :---: |:-------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 7.578 | - | - | 1.11 | +| 8p-NPU | - | 54.9517 | - | - | 1.11 | +| 1p-NPU | - | 7.508 | - | - | 2.1 | +| 8p-NPU | - | 53.685 | - | - | 2.1 | faster_rcnn结果 + | NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | | :-----: | :---: | :---: | :----: | :------: | :-----------: | | 1p-竞品V| - | - | 3000 | - | 1.5 | @@ -259,12 +261,13 @@ faster_rcnn结果 | 8p-NPU | 26.6 | 88.901 | 11250 | O2 | 1.8 | vNPU环境下faster_rcnn结果比对 -| NAME | Acc@1 | FPS | train_steps | | Torch_Version | batch_size | Device | -|:------: |:-----:|:-----:|:------:|:-:|:-------------:|:----------:|:-------:| -| 1p-NPU-ARM | 0.328| 16.229 | 90000 | | 2.1 | 8 | 910B | -| 1p-vNPU-ARM| 0.327 | 11.509 | 90000 | | 2.1 | 8 | 910B | -| 1p-NPU-A+X | 0.324 | 14.288 | 90000 | | 2.1 | 8 | 910B | -| 1p-vNPU-A+X| 0.326 | 11.075 | 90000 | | 2.1 | 8 | 910B | + +| NAME | Acc@1 | FPS | train_steps | | Torch_Version | batch_size | Device | +|:------------:|:-----:|:-----:|:------:|:-:|:-------------:|:----------:|:-----------------------------------------:| +| 1p-NPU-ARM | 0.328| 16.229 | 90000 | | 2.1 | 8 | Atlas 800T A2 | +| 1p-vNPU-ARM | 0.327 | 11.509 | 90000 | | 2.1 | 8 | Atlas 800T A2 | +| 1p-NPU- X86 | 0.324 | 14.288 | 90000 | | 2.1 | 8 | Atlas 200T A2 Box16 | +| 1p-vNPU- X86 | 0.326 | 11.075 | 90000 | | 2.1 | 8 | Atlas 200T A2 Box16 | 同等超参下,vNPU能满足精度要求 # 版本说明 diff --git a/PyTorch/built-in/nlp/Bert-Squad_ID0470_for_PyTorch/README.md b/PyTorch/built-in/nlp/Bert-Squad_ID0470_for_PyTorch/README.md index fdbd367ad1f3f9224e23c56b4c3b8d20367b1e33..bfb053ef231aea6d7dcccd7828500da3d0eeb765 100644 --- a/PyTorch/built-in/nlp/Bert-Squad_ID0470_for_PyTorch/README.md +++ b/PyTorch/built-in/nlp/Bert-Squad_ID0470_for_PyTorch/README.md @@ -170,12 +170,12 @@ BERT-Large模型是一个24层,1024维,24个自注意头(self attention he **表 2** 训练结果展示表 -| NAME | F1 | FPS | Epochs | AMP_Type | Torch_Version | -| :-----: | :--: | :--: | :--: | :--: | :--: | -| 1p-bert-large | - | 121 | 1 | O2 | 1.8 | -| 1p-bert-base | - | 333 | 1 | O2 | 1.8 | -| 8p-bert-large | 90.87 | 833 | 2 | O2 | 1.8 | -| 8p-bert-base | 87.011 | 2602 | 2 | O2 | 1.8 | +| NAME | F1 | FPS | Epochs | AMP_Type | Torch_Version | +| :-----: | :--: |:----:| :--: | :--: | :--: | +| 1p-NPU | - | 311 | - | - | 1.11 | +| 8p-NPU | - | 2447 | - | - | 1.11 | +| 1p-NPU | - | 312 | - | - | 2.1 | +| 8p-NPU | - | 2463 | - | - | 2.1 | # 公网地址说明 diff --git a/PyTorch/built-in/nlp/Bert_Chinese_ID3433_for_PyTorch/README.md b/PyTorch/built-in/nlp/Bert_Chinese_ID3433_for_PyTorch/README.md index 8b0c83d321a755c0fc17f76fdc9d2717e71d38c3..50552236f711723cebf8e5c12f8ec8595e37d772 100644 --- a/PyTorch/built-in/nlp/Bert_Chinese_ID3433_for_PyTorch/README.md +++ b/PyTorch/built-in/nlp/Bert_Chinese_ID3433_for_PyTorch/README.md @@ -38,8 +38,6 @@ BERT的全称是Bidirectional Encoder Representation from Transformers,即双 | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | | PyTorch 1.11 | - | | PyTorch 2.1 | - | @@ -241,13 +239,12 @@ BERT的全称是Bidirectional Encoder Representation from Transformers,即双 **表2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :--: | :----: | :------: | :-----------: | -| 1p-竞品V | - | - | 3 | O2 | 1.5 | -| 8p-竞品V | 0.59 | 898 | 3 | O2 | 1.5 | -| 1p-NPU | - | 128.603 | 3 | O2 | 1.8 | -| 8p-NPU | 0.59 | 936.505 | 3 | O2 | 1.8 | - +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :---: |:--------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 171.644 | - | - | 1.11 | +| 8p-NPU | - | 1352.878 | - | - | 1.11 | +| 1p-NPU | - | 171.687 | - | - | 2.1 | +| 8p-NPU | - | 1357.106 | - | - | 2.1 | # 版本说明 ## 变更 diff --git a/PyTorch/built-in/nlp/Fairseq_Transformer_wmt18_for_PyTorch/README.md b/PyTorch/built-in/nlp/Fairseq_Transformer_wmt18_for_PyTorch/README.md index 58ba045ba23f40b36568227da53d0ffc4a8e912a..ddae022d4dd150666deb9b5a217f2460f73b3a5f 100644 --- a/PyTorch/built-in/nlp/Fairseq_Transformer_wmt18_for_PyTorch/README.md +++ b/PyTorch/built-in/nlp/Fairseq_Transformer_wmt18_for_PyTorch/README.md @@ -40,9 +40,10 @@ Fairseq Transformer wmt18模型是Fairseq套件中基于Transformer结构的翻 **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.11 | - | + | Torch_Version | 三方库依赖版本 | + |:-------------:| :----------------------------------------------------------: | + | PyTorch 1.11 | - | + | PyTorch 2.1 | - | - 环境准备指导。 @@ -175,11 +176,13 @@ Fairseq Transformer wmt18模型是Fairseq套件中基于Transformer结构的翻 **表 3** en_de数据集训练结果展示表 | NAME | MODE | Bleu | WPS | Epochs | AMP_Type | Torch_Version | -| :---: |------|:-----:|:----:| :---: | :---: | :---: | -| 8p-竞品A | fp16 | 41.14 | 450k | 20 | - | 1.11 | -| 8p-NPU | fp16 | 41.17 | 170k | 20 | - | 1.11 | -| 8p-竞品A | fp32 | 41.12 | 334k | 20 | - | 1.11 | -| 8p-NPU | fp32 | 41.21 | 223k | 20 | - | 1.11 | +| :---: |------|:-----:|:----:| :---: | :---: |:-------------:| +| 8p-竞品A | fp16 | 41.14 | 450k | 20 | - | 1.11 | +| 8p-NPU | fp16 | 41.06 | 211k | 20 | - | 1.11 | +| 8p-NPU | fp16 | 41.06 | 199k | 20 | - | 2.1 | +| 8p-竞品A | fp32 | 41.12 | 334k | 20 | - | 1.11 | +| 8p-NPU | fp32 | 41.04 | 223k | 20 | - | 1.11 | +| 8p-NPU | fp32 | 41.04 | 221k | 20 | - | 2.1 | > **说明:** >由于该模型默认开启二进制,所以在性能测试时,需要安装二进制包,安装方式参考《[Pytorch框架训练环境准备](https://www.hiascend.com/document/detail/zh/ModelZoo/pytorchframework/ptes)》。 diff --git a/PyTorch/built-in/nlp/Longformer_for_PyTorch/README.md b/PyTorch/built-in/nlp/Longformer_for_PyTorch/README.md index bf28b6115c3adc40e27b3b8c95d562188906ce0d..05fd958cd79cf1812ab106403eb787e92006ff36 100644 --- a/PyTorch/built-in/nlp/Longformer_for_PyTorch/README.md +++ b/PyTorch/built-in/nlp/Longformer_for_PyTorch/README.md @@ -133,12 +133,12 @@ Longformer改进了Transformer传统的self-attention机制,是一种可高效 **表 2** 训练结果展示表 -| NAME | Perplexity | FPS | Epochs | Torch_Version | -|:-:|:-:|:-:|:-:|:-:| -| 1p-竞品V | - | - | 3 | 1.11 | -| 8p-竞品V | 3.0527 | 213.03 | 3 | 1.11 | -| 1p-NPU | - | - | 3 | 1.11 | -| 8p-NPU | 3.0603 | 130.68 | 3 | 1.11 | +| NAME | Perplexity | FPS | Epochs | Torch_Version | +|:-:|:-:|:------:|:-:|:-:| +| 1p-NPU | - | - | - | - | 1.11 | +| 8p-NPU | - | 157.22 | - | - | 1.11 | +| 1p-NPU | - | - | - | - | 2.1 | +| 8p-NPU | - | - | - | - | 2.1 | # 公网地址说明 diff --git a/PyTorch/built-in/others/CLIP_for_PyTorch/README.md b/PyTorch/built-in/others/CLIP_for_PyTorch/README.md index f38f49261898998880e1d56e1af7484249e13d53..2ebce4bae57c766692bf70ab28c1fde8c925f2be 100644 --- a/PyTorch/built-in/others/CLIP_for_PyTorch/README.md +++ b/PyTorch/built-in/others/CLIP_for_PyTorch/README.md @@ -37,11 +37,10 @@ CLIP (Contrastive Language-Image Pre-Training,以下简称 CLIP) 模型是 Ope **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | - | PyTorch 1.11 | - | + | Torch_Version | 三方库依赖版本 | + |:-------------:| :----------------------------------------------------------: | + | PyTorch 1.11 | - | +- | PyTorch 2.1 | - | - 环境准备指导。 @@ -187,14 +186,12 @@ CLIP (Contrastive Language-Image Pre-Training,以下简称 CLIP) 模型是 Ope **表 2** 训练结果展示表 -| NAME | eval loss | FPS | AMP_Type | Epochs | Batch Size | -| :--------: |:---------:|:--------:| :------: | :----: | :--------: | -| 1p-竞品A | 1.7202 | 510 | O2 | 3 | 64 | -| 1p-NPU | 1.6863 | 440 | O2 | 3 | 64 | -| 1p-NPU_arm| 1.6863 | 310 | O2 | 3 | 64 | -| 8p-竞品A | 1.5994 | 3340 | O2 | 3 | 64 | -| 8p-NPU | 1.5812 | 2800 | O2 | 3 | 64 | -| 8p-NPU_arm| 1.5812 | 2200 | O2 | 3 | 64 | +| NAME | eval loss | FPS | AMP_Type | Epochs | Batch Size | +| :--------: |:---------:|:-------:| :------: | :----: | :--------: | +| 1p-NPU | - | 383.862 | - | - | 1.11 | +| 8p-NPU | - | 2904.65 | - | - | 1.11 | +| 1p-NPU | - | 396.208 | - | - | 2.1 | +| 8p-NPU | - | 2924.63 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/built-in/rl/MAPPO_for_PyTorch/README.md b/PyTorch/built-in/rl/MAPPO_for_PyTorch/README.md index c8bb84dad767744fe412b9b038d5e9fffc72e5cf..a5811e35b159079e9923dd39813494cf9a8da205 100644 --- a/PyTorch/built-in/rl/MAPPO_for_PyTorch/README.md +++ b/PyTorch/built-in/rl/MAPPO_for_PyTorch/README.md @@ -40,6 +40,7 @@ | Torch_Version | 三方库依赖版本 | | :--------: |:------------------------------------------------------------:| | PyTorch 1.11 | absl-py==1.4.0; gym==0.17.2; protobuf==3.20.0; wandb==0.10.5 | + | PyTorch 2.1 | - | - 环境准备指导。 diff --git a/PyTorch/built-in/rl/PPO_for_Pytorch/README.md b/PyTorch/built-in/rl/PPO_for_Pytorch/README.md index 798cb3c26a45629c37253fe169608a5a1a56343e..34ff02145ff4862dd975768a711826bef0630c3b 100644 --- a/PyTorch/built-in/rl/PPO_for_Pytorch/README.md +++ b/PyTorch/built-in/rl/PPO_for_Pytorch/README.md @@ -40,6 +40,7 @@ | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | | PyTorch 1.11 | Box2D==2.3.2 Box2D-kengz==2.3.3 gym==0.15.4 | + | PyTorch 2.1 | - | - 环境准备指导。 @@ -96,10 +97,10 @@ **表 2** 训练结果展示表 -| NAME | FPS | MAX Training TimeSteps | Average Reward | -| ----------- | ------ | ---------------------- | -------------- | -| 1p-竞品V | 585.37 | 3000000 | 197.75 | -| 1p-NPU-910 | 284.02 | 3000000 | 256.06 | +| NAME | FPS | MAX Training TimeSteps | Average Reward | +|--------------| ------ | ---------------------- | -------------- | +| 1p-竞品V | 585.37 | 3000000 | 197.75 | +| 1p-NPU-Atlas | 284.02 | 3000000 | 256.06 | # 公网地址说明 diff --git a/PyTorch/contrib/audio/wav2vec2.0/README.md b/PyTorch/contrib/audio/wav2vec2.0/README.md index 31bee838077f5cea9d91815506f55672ea3d8e8b..d747520c49bef5b5a71c8564e6ec8ad3ae84254f 100644 --- a/PyTorch/contrib/audio/wav2vec2.0/README.md +++ b/PyTorch/contrib/audio/wav2vec2.0/README.md @@ -30,13 +30,14 @@ Wav2vec2.0是Meta在2020年发表的无监督语音预训练模型。它的核 ## 准备环境 -- 当前模型支持的 PyTorch 版本和已知三方库依赖如下表所示。 + 当前模型支持的 PyTorch 版本和已知三方库依赖如下表所示。 **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.11 | - | + | Torch_Version | 三方库依赖版本 | + |:-------------:| :----------------------------------------------------------: | + | PyTorch 1.11 | - | + | PyTorch 2.1 | - | - 环境准备指导。 @@ -137,12 +138,12 @@ Wav2vec2.0是Meta在2020年发表的无监督语音预训练模型。它的核 **表 2** 训练结果展示表 -| Name | wer | FPS | Epochs | AMP_Type | Torch_Version | -| :----: | :---: | :--: |:----: | :---: | :--: | -| 1P-竞品V | - | 5524.7 | - | - | 1.5 | -| 8P-竞品V | 5.443 | 44493.3 | - | - | 1.5 | -| 1P-NPU | - | 4869.8 | - | - | 1.8 | -| 8P-NPU | 5.546 | 33463.9 | - | - | 1.8 | +| Name | wer | FPS | Epochs | AMP_Type | Torch_Version | +| :----: | :---: |:-------:|:----: | :---: | :--: | +| 1p-NPU | - | 7641.03 | - | - | 1.11 | +| 8p-NPU | - | 66513.6 | - | - | 1.11 | +| 1p-NPU | - | 7373.43 | - | - | 2.1 | +| 8p-NPU | - | 66346.9 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/contrib/cv/classification/HRNet_ID1780_for_PyTorch/README.md b/PyTorch/contrib/cv/classification/HRNet_ID1780_for_PyTorch/README.md index 8e5cde46a08583444729b285f4e10fa4334e9023..7ae759547988661032c1ee4b055ee9a9ab16613b 100644 --- a/PyTorch/contrib/cv/classification/HRNet_ID1780_for_PyTorch/README.md +++ b/PyTorch/contrib/cv/classification/HRNet_ID1780_for_PyTorch/README.md @@ -37,8 +37,6 @@ HRNet,是一个用于图像分类的高分辨网络。通过并行连接高分 | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | | PyTorch 1.11 | - | | PyTorch 2.1 | - | @@ -153,12 +151,12 @@ HRNet,是一个用于图像分类的高分辨网络。通过并行连接高分 **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :--: | :----: | :------: | :-----------: | -| 1p-竞品V | - | - | 1 | - | 1.5 | -| 8p-竞品V | - | - | 100 | - | 1.5 | -| 1p-NPU | - | 84.1 | 1 | O2 | 1.8 | -| 8p-NPU | 76.65 | 533.2 | 100 | O2 | 1.8 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :---: |:------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 813.9 | - | - | 1.11 | +| 8p-NPU | - | 4749.7 | - | - | 1.11 | +| 1p-NPU | - | 773.9 | - | - | 2.1 | +| 8p-NPU | - | 4856.1 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/contrib/cv/classification/InceptionV3_ID1596_for_PyTorch/README.md b/PyTorch/contrib/cv/classification/InceptionV3_ID1596_for_PyTorch/README.md index eb42482582dfc792be4c01ce1faad47a26a8ed04..0b199dda355eb84900c7f4bc170491a977001206 100644 --- a/PyTorch/contrib/cv/classification/InceptionV3_ID1596_for_PyTorch/README.md +++ b/PyTorch/contrib/cv/classification/InceptionV3_ID1596_for_PyTorch/README.md @@ -166,12 +166,12 @@ GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为Incep ## Inception_v3 training result -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :--: | :----: | :------: | :-----------: | -| 1p-竞品V | - | 769.965 | 1 | O2 | 1.5 | -| 8p-竞品V | 79.634 | 5298.088 | 240 | O2 | 1.5 | -| 1p-NPU | - | 811.51 | 1 | O2 | 1.8 | -| 8p-NPU | 78.12 | 6487.75 | 240 | O2 | 1.8 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :---: |:--------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 1119.81 | - | - | 1.11 | +| 8p-NPU | - | 8787.471 | - | - | 1.11 | +| 1p-NPU | - | 1166.723 | - | - | 2.1 | +| 8p-NPU | - | 8812.33 | - | - | 2.1 | # 版本说明 ## 变更 diff --git a/PyTorch/contrib/cv/classification/MAE_for_PyTorch/README.md b/PyTorch/contrib/cv/classification/MAE_for_PyTorch/README.md index 189d42dce307efc3492847f26d51785bbcacb835..c499ea43601ffbbb96eb921ad4dd3d0fb481a26d 100644 --- a/PyTorch/contrib/cv/classification/MAE_for_PyTorch/README.md +++ b/PyTorch/contrib/cv/classification/MAE_for_PyTorch/README.md @@ -172,22 +172,21 @@ MAE的设计虽然简单,但已被证明是一个强大的、可扩展的视 **表 2** MAE-Base Pre-Training Result -| NAME | LOSS | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :------: | :------: | :------: | :------: | :------: | -| 1p-竞品V | - | 320 | 1 | - | 1.5 | -| 1p-NPU | - | 328 | 1 | O2 | 1.8 | -| 8p-竞品V | 0.4107 | 2399 | 400 | - | 1.5 | -| 8p-NPU | 0.4107 | 2515 | 400 | O2 | 1.8 | +| NAME | LOSS | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :------: |:-------:| :------: | :------: | :------: | +| 1p-NPU | - | 445.56 | - | - | 1.11 | +| 8p-NPU | - | 3463.49 | - | - | 1.11 | +| 1p-NPU | - | 463.54 | - | - | 2.1 | +| 8p-NPU | - | 3538.01 | - | - | 2.1 | **表 3** MAE-Base Fine-Tuning Result -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :------: | :------: | :------: | :------: | :------: | -| 1p-竞品V | - | 218 | 1 | - | 1.5 | -| 1p-NPU | - | 306 | 1 | O2 | 1.8 | -| 8p-竞品V | 83.07 | 1538 | 100 | - | 1.5 | -| 8p-NPU | 83.34 | 2263 | 100 | O2 | 1.8 | - +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :------: |:-------:| :------: | :------: | :------: | +| 1p-NPU | - | 450.38 | - | - | 1.11 | +| 8p-NPU | - | 3310.27 | - | - | 1.11 | +| 1p-NPU | - | 465.035 | - | - | 2.1 | +| 8p-NPU | - | 3538.01 | - | - | 2.1 | **表 4** MAE-Large Fine-Tuning Result | NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | diff --git a/PyTorch/contrib/cv/pose_estimation/Lightweight_OpenPose/README.md b/PyTorch/contrib/cv/pose_estimation/Lightweight_OpenPose/README.md index d75a2ab13c4a2480296f16bf975a5ae380ca8eda..013ff0c5d5740fc51ad472baf97bc7a83ee141fe 100644 --- a/PyTorch/contrib/cv/pose_estimation/Lightweight_OpenPose/README.md +++ b/PyTorch/contrib/cv/pose_estimation/Lightweight_OpenPose/README.md @@ -220,13 +220,11 @@ Lightweight_OpenPose是对原OpenPose模型的改进版。在基本思想方面 step-3阶段结果 | NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :------: | :----: | :------: | :-----------: | -| 1p-竞品V | - | 254.017 | 1 | O1 | 1.5 | -| 8p-竞品V | 0.413 | 1536.977 | 280 | O1 | 1.5 | -| 1p-NPU-ARM | - | 403.674 | 1 | O1 | 1.8 | -| 8p-NPU-ARM | 0.4289 | 2538.278 | 280 | O1 | 1.8 | -| 1p-NPU-非ARM | - | 475.648 | 1 | O1 | 1.8 | -| 8p-NPU-非ARM | - | 1214.179 | 280 | O1 | 1.8 | +| :------: | :---: |:--------:| :----: | :------: | :-----------: | +| 1p-NPU | - | 646.97 | - | - | 1.11 | +| 8p-NPU | - | 2950.817 | - | - | 1.11 | +| 1p-NPU | - | 644.608 | - | - | 2.1 | +| 8p-NPU | - | 3005.633 | - | - | 2.1 | 8p-NPU上各阶段训练后的模型精度 diff --git a/PyTorch/contrib/cv/semantic_segmentation/DeeplabV3_for_Pytorch/README.md b/PyTorch/contrib/cv/semantic_segmentation/DeeplabV3_for_Pytorch/README.md index 991d8631a1c55d7321a493b14da6d417d93ddde7..4815ffde082089ed9b1780a31396cf49e9772507 100644 --- a/PyTorch/contrib/cv/semantic_segmentation/DeeplabV3_for_Pytorch/README.md +++ b/PyTorch/contrib/cv/semantic_segmentation/DeeplabV3_for_Pytorch/README.md @@ -35,11 +35,10 @@ DeepLabV3是一个经典的语义分割网络,采用空洞卷积来代替池 **表 1** 版本支持表 - | Torch_Version | 三方库依赖版本 | - | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | - | PyTorch 1.11 | - | + | Torch_Version | 三方库依赖版本 | + |:-------------:| :----------------------------------------------------------: | + | PyTorch 1.11 | - | +- | PyTorch 2.1 | - | - 环境准备指导。 @@ -179,10 +178,11 @@ DeepLabV3是一个经典的语义分割网络,采用空洞卷积来代替池 **表 2** 训练结果展示表 -| NAME | aACC | mIoU | FPS | Train_Step | AMP_Type | Torch_Version | -| :-----: | :---: | :--: | :----: | :------: | :------: | :------: | -| 1p-NPU | - | - | 8.78 | 1000 | O2 | 1.8 | -| 8p-NPU | 96.13 | 78.98 | 75.135 | 7000 | O2 | 1.8 | +| NAME | aACC | mIoU | FPS | Train_Step | AMP_Type | Torch_Version | +| :-----: | :---: |:-------:| :----: | :------: | :------: | :------: | +| 1p-NPU | - | 14.806 | - | - | 1.11 | +| 8p-NPU | - | 115.593 | - | - | 1.11 | + # 版本说明 diff --git a/PyTorch/contrib/nlp/albert_ID0335_for_PyTorch/README.md b/PyTorch/contrib/nlp/albert_ID0335_for_PyTorch/README.md index f50004dcd6a49a27b88c947a3db79695aa2929a3..27e60d3e3fff43b7718649dce8eac6905ee7e2e4 100644 --- a/PyTorch/contrib/nlp/albert_ID0335_for_PyTorch/README.md +++ b/PyTorch/contrib/nlp/albert_ID0335_for_PyTorch/README.md @@ -38,8 +38,6 @@ Albert是自然语言处理模型,基于Bert模型修改得到。相比于Bert | Torch_Version | 三方库依赖版本 | | :------------: | :------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | | PyTorch 1.11 | - | | PyTorch 2.1 | - | @@ -150,12 +148,12 @@ Albert是自然语言处理模型,基于Bert模型修改得到。相比于Bert **表2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :------: | :---: | :--: | :----: | :------: |:-------------:| -| 1p-竞品V | 0.927 | 517 | 2 | O1 | 1.5 | -| 8p-竞品V | 0.914 | 3327 | 7 | O1 | 1.5 | -| 1p-NPU | 0.932 | 445.21 | 2 | O2 | 1.11 | -| 8p-NPU | 0.927 | 3111.56 | 7 | O2 | 1.11 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +| :------: | :---: |:-------:| :----: | :------: |:-------------:| +| 1p-NPU | - | 1042.69 | - | - | 1.11 | +| 8p-NPU | - | 6479.72 | - | - | 1.11 | +| 1p-NPU | - | 1025.36 | - | - | 2.1 | +| 8p-NPU | - | 6394.05 | - | - | 2.1 | # 版本说明 diff --git a/PyTorch/contrib/nlp/roberta_for_PyTorch/README.md b/PyTorch/contrib/nlp/roberta_for_PyTorch/README.md index a8830c87ec7bebed3225b04e0cc62153fc281354..762ae1cdfce4139440bd6727b31c55294a5e4522 100644 --- a/PyTorch/contrib/nlp/roberta_for_PyTorch/README.md +++ b/PyTorch/contrib/nlp/roberta_for_PyTorch/README.md @@ -40,8 +40,6 @@ RoBERTa 在模型规模、算力和数据上,都比 BERT 有一定的提升。 | Torch_Version | 三方库依赖版本 | | :--------: | :----------------------------------------------------------: | - | PyTorch 1.5 | - | - | PyTorch 1.8 | - | | PyTorch 1.11 | - | | PyTorch 2.1 | - | @@ -157,14 +155,13 @@ RoBERTa 在模型规模、算力和数据上,都比 BERT 有一定的提升。 **表2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | -| :-----: | :---: | :--: | :----: | :----: | :----: | -| 1p-竞品V | 0.927 | 397 | 1 | - | 1.5 | -| 8p-竞品V | 0.943 | 2997 | 10 | - | 1.5 | -| 1p-NPU-ARM | 0.938 | 553.997 | 1 | O2 | 1.8 | -| 8p-NPU-ARm | 0.969 | 4414.01 | 10 | O2 | 1.8 | -| 1p-NPU-非ARM | - | 565.29 | 1 | O2 | 1.8 | -| 8p-NPU-非ARm | - | 4861.44 | 10 | O2 | 1.8 | +| NAME | Acc@1 | FPS | Epochs | AMP_Type | Torch_Version | +|:------:| :---: |:-------:|:------:|:--------:|:-------------:| +| 1p-NPU | - | 902.265 | - | - | 1.11 | +| 8p-NPU | - | 7111.11 | - | - | 1.11 | +| 1p-NPU | - | 879.05 | - | - | 2.1 | +| 8p-NPU | - | 7078.64 | - | - | 2.1 | + # 版本说明 diff --git a/PyTorch/dev/perf/ShuffleNetV2_iflytek_for_Pytorch/README.md b/PyTorch/dev/perf/ShuffleNetV2_iflytek_for_Pytorch/README.md index 2e04acfb0cea2a747f676dedb31457f367fa776e..f6f8652138b4a4e827be9d1bd7799a0f06615ea3 100644 --- a/PyTorch/dev/perf/ShuffleNetV2_iflytek_for_Pytorch/README.md +++ b/PyTorch/dev/perf/ShuffleNetV2_iflytek_for_Pytorch/README.md @@ -37,6 +37,7 @@ ShuffleNetV2是一个改进ShuffleNetV1的轻量级的网络,为了解决在 | Torch_Version | 三方库依赖版本 | |:--------------------------------:| :----------------------------------------------------------: | | PyTorch 1.11 | pillow==9.5.0, torchvison==0.12.0 | + | PyTorch 2.1 | pillow==9.5.0, torchvison==0.12.0 | - 环境准备指导。 @@ -148,10 +149,12 @@ ShuffleNetV2是一个改进ShuffleNetV1的轻量级的网络,为了解决在 **表 2** 训练结果展示表 -| NAME | Acc@1 | FPS | Epochs | Data_Type | Torch_version | -| :-----: |:------:|:-------:|:------:|:---------:|:-------------:| -| 8p-竞品V | 63.054 | 3806.69 | 90 | FP32 | 1.11 | -| 8p-NPU | 62.714 | 5851.42 | 90 | FP32 | 1.11 | +| NAME | Acc@1 | FPS | Epochs | Data_Type | Torch_version | +|:------:|:-----:|:--------:|:------:|:---------:|:-------------:| +| 1p-NPU | - | 2015.75 | - | FP32 | 1.11 | +| 8p-NPU | - | 10611.4 | - | FP32 | 1.11 | +| 1p-NPU | - | 2081.3 | - | FP32 | 1.2 | +| 8p-NPU | - | 10502.56 | - | FP32 | 1.2 | # 版本说明