From a07f40a7186e47aa34c5f1e3566a8351f45cc887 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Fri, 2 Dec 2022 18:42:06 +0800
Subject: [PATCH 01/10] add readme
---
.../UNet3D_ID0057_for_TensorFlow/README.md | 12 ++++++++++++
1 file changed, 12 insertions(+)
diff --git a/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/README.md
index 14ca65481..1209d2ef9 100644
--- a/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/README.md
@@ -10,18 +10,30 @@
## 基本信息
**发布者(Publisher):Huawei**
+
**应用领域(Application Domain): Instance Segmentation**
+
**版本(Version):1.1**
+
**修改时间(Modified):2021.7.19**
+
**大小(Size):664K**
+
**框架(Framework):TensorFlow 1.15.0**
+
**模型格式(Model Format):ckpt**
+
**精度(Precision):Mixed**
+
**处理器(Processor):昇腾910**
+
**应用级别(Categories):Research**
+
**描述(Description):利用unet网络进行医学图像分割训练代码**
+
+
## 概述
该网络基于之前的 u-net 架构,它使用一个收缩编码器分析整个图像,使用一个连续扩展解码器产生全分辨率分割。虽然 u-net 是一个完全 2D 架构,本文提出的网络采用 3D 数据作为输入并使用相应的 3D 操作处理它们,特别是3D 卷积、3D 最大池化和 3D 上卷积层。此外,我们避免网络架构中的瓶颈并使用批量归一化从而达到更快的收敛。
--
Gitee
From 36cc6790cdce4bc83c617f958b23700e2fc235c6 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 09:56:44 +0800
Subject: [PATCH 02/10] add readme
---
.../built-in/nlp/Textcnn_ID0123_For_Tensorflow/README.md | 3 +--
1 file changed, 1 insertion(+), 2 deletions(-)
diff --git a/TensorFlow/built-in/nlp/Textcnn_ID0123_For_Tensorflow/README.md b/TensorFlow/built-in/nlp/Textcnn_ID0123_For_Tensorflow/README.md
index 952728c18..8fa9b596d 100644
--- a/TensorFlow/built-in/nlp/Textcnn_ID0123_For_Tensorflow/README.md
+++ b/TensorFlow/built-in/nlp/Textcnn_ID0123_For_Tensorflow/README.md
@@ -36,9 +36,8 @@
- 适配昇腾 AI 处理器的实现:
+ https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/built-in/nlp/Textcnn_ID0123_For_Tensorflow
- https://gitee.com/ji-hongmei/modelzoo/tree/master/built-in/TensorFlow/Official/nlp/Textcnn_ID0123_For_Tensorflow
-
- 通过Git获取对应commit\_id的代码方法如下:
```
--
Gitee
From 70172a561af71a5bc58f2eccf54bec9ae5e55bab Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:05:10 +0800
Subject: [PATCH 03/10] add readme
---
.../Pix2Pix_ID0359_for_TensorFlow/README.md | 12 ++++++++++++
1 file changed, 12 insertions(+)
diff --git a/TensorFlow/built-in/cv/Image_translation/Pix2Pix_ID0359_for_TensorFlow/README.md b/TensorFlow/built-in/cv/Image_translation/Pix2Pix_ID0359_for_TensorFlow/README.md
index 6e82b4c52..4aac45e43 100644
--- a/TensorFlow/built-in/cv/Image_translation/Pix2Pix_ID0359_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/Image_translation/Pix2Pix_ID0359_for_TensorFlow/README.md
@@ -10,17 +10,29 @@
## 基本信息
**发布者(Publisher):Huawei**
+
**应用领域(Application Domain): Machine Translation**
+
**版本(Version):1.1**
+
**修改时间(Modified) :2021.7.19**
+
**大小(Size):736K**
+
**框架(Framework):TensorFlow 1.15.0**
+
**模型格式(Model Format):ckpt**
+
**精度(Precision):Mixed**
+
**处理器(Processor):昇腾910**
+
**应用级别(Categories):Official**
+
**描述(Description):利用pix2pix2进行图像翻译训练代码**
+
+
## 概述
pix2pix是将GAN应用于有监督的图像到图像翻译的经典论文,有监督表示训练数据是成对的。图像到图像翻译(image-to-image translation)是GAN很重要的一个应用方向,什么叫图像到图像翻译呢?其实就是基于一张输入图像得到想要的输出图像的过程,可以看做是图像和图像之间的一种映射(mapping),我们常见的图像修复、超分辨率其实都是图像到图像翻译的例子。
--
Gitee
From 9177d7a52c53ce460bf9968caecb5d5c42edc824 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:12:43 +0800
Subject: [PATCH 04/10] add readme
---
.../README.md | 32 ++++++++++++-------
1 file changed, 21 insertions(+), 11 deletions(-)
diff --git a/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/README.md
index 070c64a41..d943ddc60 100644
--- a/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/README.md
@@ -9,17 +9,27 @@
## 基本信息
-**发布者(Publisher):Huawei
-**应用领域(Application Domain): Image Classification
-**版本(Version):1.1
-**修改时间(Modified) :2021.7.21
-**大小(Size):112K
-**框架(Framework):TensorFlow 1.15.0
-**模型格式(Model Format):ckpt
-**精度(Precision):Mixed
-**处理器(Processor):昇腾910
-**应用级别(Categories):Research
-**描述(Description):使用八倍卷积降低卷积神经网络的空间冗余
+**发布者(Publisher):Huawei**
+
+**应用领域(Application Domain): Image Classification**
+
+**版本(Version):1.1**
+
+**修改时间(Modified) :2021.7.21**
+
+**大小(Size):112K**
+
+**框架(Framework):TensorFlow 1.15.0**
+
+**模型格式(Model Format):ckpt**
+
+**精度(Precision):Mixed**
+
+**处理器(Processor):昇腾910**
+
+**应用级别(Categories):Research**
+
+**描述(Description):使用八倍卷积降低卷积神经网络的空间冗余**
## 概述
--
Gitee
From 6775961dd85882ca46b2db91e5101d8144648c37 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:20:06 +0800
Subject: [PATCH 05/10] add readme
---
.../OSMN_ID1103_for_TensorFlow/README.md | 21 +++++++++++--------
1 file changed, 12 insertions(+), 9 deletions(-)
diff --git a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md
index 82281578a..ec8045522 100644
--- a/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow/README.md
@@ -43,11 +43,16 @@
https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/built-in/cv/image_segmentation/OSMN_ID1103_for_TensorFlow
- 通过Git获取对应commit\_id的代码方法如下:
- git clone {repository_url} # 克隆仓库的代码
- cd {repository_name} # 切换到模型的代码仓目录
- git checkout {branch} # 切换到对应分支
- git reset --hard {commit_id} # 代码设置到对应的commit_id
- cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
+
+ ```
+ git clone {repository_url} # 克隆仓库的代码
+ cd {repository_name} # 切换到模型的代码仓目录
+ git checkout {branch} # 切换到对应分支
+ git reset --hard {commit_id} # 代码设置到对应的commit_id
+ cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
+ ```
+
+
#### 默认配置
@@ -94,13 +99,13 @@ pip3 install requirements.txt
- 单击“立即下载”,并选择合适的下载方式下载源码包。
- 开始训练
+
+ 以数据目录为./data、预训练模型目录为 ./models为例:
```
- 以数据目录为./data、预训练模型目录为 ./models为例:
cd test
source ./env.sh
bash train_full_1p.sh --data_path=../data(全量)
bash train_performance_1p.sh --data_path=../data(功能、性能测试)
-
```
## 高级参考
@@ -108,7 +113,6 @@ pip3 install requirements.txt
#### 脚本和示例代码
```
-.
├── models
├── preprocessing
│ ├── preprocess_davis.py
@@ -140,7 +144,6 @@ pip3 install requirements.txt
├── util.py
├── youtube_eval.py
└── ytvos_merge_result.py
-
```
#### 脚本参数
--
Gitee
From 21c6e1fb3194a8f0817ac92344e98e3525eb40b6 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:23:50 +0800
Subject: [PATCH 06/10] add readme
---
.../ShapeNet_ID1138_for_TensorFlow/README.md | 38 ++++++++++++-------
1 file changed, 24 insertions(+), 14 deletions(-)
diff --git a/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md
index fa313e50c..4b39b6d39 100644
--- a/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md
@@ -110,21 +110,31 @@ pip3 install requirements.txt
#### 数据集准备
-- 模型使用 shapenet_part_seg_hdf5_data 数据集,请用户自行下载,具体获取方法参见 ./ShapeNet_ID1138_for_TensorFlow/S0_download_data.sh。
+- 模型使用 shapenet_part_seg_hdf5_data 数据集,请用户自行下载,具体获取方法参见
+
+ ```
+ ./ShapeNet_ID1138_for_TensorFlow/S0_download_data.sh
+ ```
+
+
+
- 获取数据集后,进行数据预处理,并将预处理后的数据放入模型目录下,在训练脚本中指定数据集路径,可正常使用。数据预处理和最终数据集文件结构示例如下:
```
- # 数据预处理,详见:
- ./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_combination.py
- ./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_preparation.py
-
- # 最终数据集文件结构示例:
- ├── ShapeNet_dataset
- │ ├── ShapeNet_prepro.hdf5
- │ ├── ShapeNet_training.hdf5
- 则 data_path=./ShapeNet_dataset 即可
+数据预处理,详见:
+./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_combination.py
+./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_preparation.py
+
+最终数据集文件结构示例:
+├── ShapeNet_dataset
+│ ├── ShapeNet_prepro.hdf5
+│ ├── ShapeNet_training.hdf5
+则 data_path=./ShapeNet_dataset 即可
```
-#### 模型训练
+
+
+#### 模型训练
+
- 单击“立即下载”,并选择合适的下载方式下载源码包。
- 开始训练。
@@ -175,7 +185,7 @@ pip3 install requirements.txt
## 高级参考
-#### 脚本和示例代码
+#### 脚本和示例代码
├── README.md //说明文档
├── requirements.txt //依赖
@@ -185,7 +195,7 @@ pip3 install requirements.txt
├── S2_network_training.py // 训练入口脚本
-#### 脚本参数
+#### 脚本参数
```
batch_size 训练batch_size
@@ -194,7 +204,7 @@ train_epochs 总训练epoch数
train_steps 总训练steps数
```
-#### 训练过程
+#### 训练过程
通过“模型训练”中的训练指令启动单卡训练。
将训练脚本(train_full_1p.sh)中的data_path设置为训练数据集的路径。具体的流程参见“模型训练”的示例。
\ No newline at end of file
--
Gitee
From b65f92f2c62c82a14a0a0ce69d23a770b3133466 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:35:02 +0800
Subject: [PATCH 07/10] add readme
---
.../Roberta_ID2366_for_TensorFlow/README.md | 18 ++++++++++++------
1 file changed, 12 insertions(+), 6 deletions(-)
diff --git a/TensorFlow/built-in/nlp/Roberta_ID2366_for_TensorFlow/README.md b/TensorFlow/built-in/nlp/Roberta_ID2366_for_TensorFlow/README.md
index 3b3e5b9a1..b62c06887 100644
--- a/TensorFlow/built-in/nlp/Roberta_ID2366_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/nlp/Roberta_ID2366_for_TensorFlow/README.md
@@ -143,7 +143,7 @@ pip3 install requirements.txt
```
--do_eval=true
-```
+ ```
## 迁移学习指导
@@ -160,12 +160,13 @@ pip3 install requirements.txt
参考“模型训练”中验证步骤。
+
+
## 高级参考
#### 脚本和示例代码
```
-.
Roberta_ID2366_for_TensorFlow/
├── CONTRIBUTING.md
├── create_pretraining_data.py
@@ -191,19 +192,24 @@ Roberta_ID2366_for_TensorFlow/
│ └── train_performance_1p.sh
├── tokenization.py
└── tokenization_test.py
-
```
-#### 脚本参数
+
+
+
+#### 脚本参数
```
--data_path 训练数据集路径
---ckpt_path 预训练模型路径
+--ckpt_path 预训练模型路径
```
-#### 训练过程
+
+
+#### 训练过程
1. 通过“模型训练”中的训练指令启动单卡训练。
2. 将训练脚本(train_full_1p.sh)中的data_path、ckpt_path设置为训练数据集和预训练模的路径。具体的流程参见“模型训练”的示例。
3. 模型存储路径为“curpath/output/ASCEND_DEVICE_ID”,包括训练的log文件。
4. 以单卡训练为例,loss信息在文件curpath/output/{ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
+
--
Gitee
From 32f0e6bd1f602bb0c3084ea50fb15118f20e1219 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:38:34 +0800
Subject: [PATCH 08/10] add readme
---
.../nlp/LeNet_ID0127_for_TensorFlow/README.md | 41 ++++++++-----------
1 file changed, 17 insertions(+), 24 deletions(-)
diff --git a/TensorFlow/built-in/nlp/LeNet_ID0127_for_TensorFlow/README.md b/TensorFlow/built-in/nlp/LeNet_ID0127_for_TensorFlow/README.md
index 73f4f2de2..dc3d752a1 100644
--- a/TensorFlow/built-in/nlp/LeNet_ID0127_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/nlp/LeNet_ID0127_for_TensorFlow/README.md
@@ -140,38 +140,31 @@ LeNet是由2019年图灵奖获得者Yann LeCun、Yoshua Bengio于1998年提出(G
- 单击“立即下载”,并选择合适的下载方式下载源码包。
- 开始训练。
- 1. 启动训练之前,首先要配置程序运行相关环境变量。
-
- 环境变量配置信息参见:
+ 1. 启动训练之前,首先要配置程序运行相关环境变量;环境变量配置信息参见:
[Ascend 910训练平台环境变量设置](https://gitee.com/ascend/ModelZoo-TensorFlow/wikis/01.%E8%AE%AD%E7%BB%83%E8%84%9A%E6%9C%AC%E8%BF%81%E7%A7%BB%E6%A1%88%E4%BE%8B/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE)
单卡训练需要配置指定运行的卡的环境变量:
-
+
```
- export ASCEND_DEVICE_ID=X
- 其中:X=0~7
+ export ASCEND_DEVICE_ID=X
+ 其中:X=0~7
```
-
+
2. 单卡训练
-
- ```
- bash train_full_1p.sh --data_path=../MNIST
- ```
- ```
- 其中:xxx是数据集的路径,例如, 数据集下载、解压后的路径为"/home/data",目录结构如下:
- |--data
- | |--MINIST
- | |--t10k-images-idx3-ubyte
- | |--t10k-labels-idx1-ubyte
- | |--train-images-idx3-ubyte
- | |--train-labels-idx1-ubyte
-
- 此时,xxx=/home/data/MNIST
- ```
-
-
+ ```
+ bash train_full_1p.sh --data_path=../MNIST
+ 其中:xxx是数据集的路径,例如, 数据集下载、解压后的路径为"/home/data",目录结构如下:
+ |--data
+ | |--MINIST
+ | |--t10k-images-idx3-ubyte
+ | |--t10k-labels-idx1-ubyte
+ | |--train-images-idx3-ubyte
+ | |--train-labels-idx1-ubyte
+
+ 此时,xxx=/home/data/MNIST
+ ```
## 迁移学习指导
--
Gitee
From fbf9ab9e92d9134ae3e31d6b0479658ff9b21a27 Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:44:29 +0800
Subject: [PATCH 09/10] add readme
---
.../Face-ResNet50_ID1372_for_TensorFlow/README.md | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md
index 643b1c113..7b4abbe07 100644
--- a/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md
@@ -150,9 +150,10 @@ pip3 install requirements.txt
2.2 单卡训练指令(脚本位于./Face-ResNet50_ID1372_for_TensorFlow/test/train_full_1p.sh)
- ```
于终端中运行export ASCEND_DEVICE_ID=0 (0~7)以指定单卡训练时使用的卡
-bash train_full_1p.sh --data_path=xx
+
+```
+ bash train_full_1p.sh --data_path=xx
数据集应有如下结构(数据切分可能不同),配置data_path时需指定为data这一层,例:--data_path=/home/ResNet50_dataset
├── ResNet50_dataset
│ ├── label // label文件夹
--
Gitee
From 161b534b24fefb9c0fe6746d75fcdee7ebb575dc Mon Sep 17 00:00:00 2001
From: jelly_111 <244800829@qq.com>
Date: Mon, 5 Dec 2022 10:46:27 +0800
Subject: [PATCH 10/10] add readme
---
.../albert_xlarge_zh_ID2348_for_TensorFlow/README.md | 10 +++++++---
1 file changed, 7 insertions(+), 3 deletions(-)
diff --git a/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/README.md b/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/README.md
index 74c334646..5814e900d 100644
--- a/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/README.md
+++ b/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/README.md
@@ -151,7 +151,7 @@ pip3 install requirements.txt
```
--do_eval=true
-```
+ ```
## 迁移学习指导
@@ -226,16 +226,20 @@ albert_xlarge_zh_ID2348_for_TensorFlow/
├── test_changes.py
├── tokenization_google.py
└── tokenization.py
-
```
+
+
+
#### 脚本参数
```
--data_path 训练数据集路径
---ckpt_path 预训练模型路径
+--ckpt_path 预训练模型路径
```
+
+
#### 训练过程
1. 通过“模型训练”中的训练指令启动单卡训练。
--
Gitee