diff --git a/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md index 7b4abbe07ed180e08e2e189a27a43a46502757b9..825dffd7bf0c2c6d09c5039e71e7bd8be25987be 100644 --- a/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md +++ b/TensorFlow/built-in/cv/image_classification/Face-ResNet50_ID1372_for_TensorFlow/README.md @@ -152,17 +152,21 @@ pip3 install requirements.txt 于终端中运行export ASCEND_DEVICE_ID=0 (0~7)以指定单卡训练时使用的卡 -``` + ``` bash train_full_1p.sh --data_path=xx - 数据集应有如下结构(数据切分可能不同),配置data_path时需指定为data这一层,例:--data_path=/home/ResNet50_dataset - ├── ResNet50_dataset - │   ├── label // label文件夹 - │   │   ├── label_1200.npy - │   │   ├── name_1200.npy - │   ├── train_data // train_data文件夹 - │   │   ├── 1200_data.npy - │   ├── CACD2000_Crop // CACD文件夹 + 数据集应有如下结构(数据切分可能不同),配置data_path时需指定为data这一层,例:--data_path=/home/ResNet50_dataset + ├── ResNet50_dataset + │ ├── label // label文件夹 + │ │ ├── label_1200.npy + │ │ ├── name_1200.npy + │ ├── train_data // train_data文件夹 + │ │ ├── 1200_data.npy + │ ├── CACD2000_Crop // CACD文件夹 ``` + + + +​ ## 迁移学习指导