diff --git a/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md b/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md index 6e649015414102d7be46aeeab3fce18f30c1e9dd..68fe5bf67f8a420073c3c4dbe452ae22e3de29cf 100644 --- a/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md +++ b/TensorFlow/built-in/cv/image_segmentation/ShapeNet_ID1138_for_TensorFlow/README.md @@ -119,20 +119,18 @@ pip3 install requirements.txt - 获取数据集后,进行数据预处理,并将预处理后的数据放入模型目录下,在训练脚本中指定数据集路径,可正常使用。数据预处理和最终数据集文件结构示例如下: -``` -数据预处理,详见: -./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_combination.py -./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_preparation.py - -最终数据集文件结构示例: -├── ShapeNet_dataset -│   ├── ShapeNet_prepro.hdf5 -│   ├── ShapeNet_training.hdf5 -则 data_path=./ShapeNet_dataset 即可 -``` - - + ``` + 数据预处理,详见: + ./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_combination.py + ./ShapeNet_ID1138_for_TensorFlow/S1_network_dataset_preparation.py + + 最终数据集文件结构示例: + ├── ShapeNet_dataset + │ ├── ShapeNet_prepro.hdf5 + │ ├── ShapeNet_training.hdf5 + 则 data_path=./ShapeNet_dataset 即可 + ``` #### 模型训练 - 单击“立即下载”,并选择合适的下载方式下载源码包。