diff --git a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/README.md b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/README.md
index 0603392e57756570da27a8ff476e610cc8b88b66..6524016533d4e4d28a87aededdfb0b9a3da91d80 100644
--- a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/README.md
+++ b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/README.md
@@ -1,6 +1,183 @@
-# GANs_Tensorflow_V2
- GANs with tensorflow2.1, Using Customization Models
- Giving samples to show the template for GANs‘ codes when use Tensorflow2.0, Customization Models, Python. Most on MNIST.
+- [基本信息](#基本信息.md)
+- [概述](#概述.md)
+- [训练环境准备](#训练环境准备.md)
+- [快速上手](#快速上手.md)
+- [迁移学习指导](#迁移学习指导.md)
+- [高级参考](#高级参考.md)
- 给出了在TensorFlow2.0下,自定义模型搭建GAN’s的例子,展示了一般的TensorFlow2.0 复现GAN‘s的模式。参考了谷歌官方的代码。
+
基本信息
+**发布者(Publisher):Huawei**
+
+**应用领域(Application Domain): Image Synthesis**
+
+**版本(Version):1.1**
+
+**修改时间(Modified) :2022.04.11**
+
+**大小(Size):6.9M**
+
+**框架(Framework):TensorFlow_2.4.1**
+
+**模型格式(Model Format):ckpt**
+
+**精度(Precision):Mixed**
+
+**处理器(Processor):昇腾910**
+
+**应用级别(Categories):Research**
+
+**描述(Description):基于wasserstein loss的生成对抗网络**
+
+概述
+
+ 传统GAN网络理论上来说,如果两个分布不相交,则JS散度将不再是连续的,因此将不可微,从而导致梯度为0。WGAN通过使用wasserstein loss解决了这个问题,使得loss函数在任何地方都连续且可微。
+
+- 参考论文:
+
+ [https://arxiv.org/abs/1701.07875](https://arxiv.org/abs/1701.07875)
+
+- 参考实现:
+
+ [https://github.com/Zhaopudark/GANs_TensorflowV2](https://github.com/Zhaopudark/GANs_TensorflowV2)
+
+- 适配昇腾 AI 处理器的实现:
+
+ [https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X](https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X)
+
+- 通过Git获取对应commit\_id的代码方法如下:
+ ```
+ git clone {repository_url} # 克隆仓库的代码
+ cd {repository_name} # 切换到模型的代码仓目录
+ git checkout {branch} # 切换到对应分支
+ git reset --hard {commit_id} # 代码设置到对应的commit_id
+ cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
+ ```
+
+## 默认配置
+
+- 主要训练超参(单卡):
+ - batch_size: 128
+ - epochs: 400
+ - lr: 0.001
+
+## 支持特性
+
+| 特性列表 | 是否支持 |
+| ---------- | -------- |
+| 分布式训练 | 否 |
+| 混合精度 | 是 |
+| 数据并行 | 否 |
+
+## 混合精度训练
+
+昇腾910 AI处理器提供自动混合精度功能,可以针对全网中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
+
+## 开启混合精度
+
+
+```
+ npu_device.global_options().precision_mode='allow_mix_precision'
+ npu_device.open().as_default()
+```
+
+
+训练环境准备
+
+- 硬件环境和运行环境准备请参见《[CANN软件安装指南](https://support.huawei.com/enterprise/zh/ascend-computing/cann-pid-251168373?category=installation-update)》
+- 运行以下命令安装依赖。
+```
+pip3 install requirements.txt
+```
+说明:依赖配置文件requirements.txt文件位于模型的根目录
+
+快速上手
+
+## 数据集准备
+
+1. 用户需自行下载MNIST训练数据集,应有如下结构
+ ```
+ cifar10/
+ ├── mnist.npz
+ ├── t10k-images.idx3-ubyte
+ ├── t10k-labels.idx3-ubyte
+ ├── train-images.idx3-ubyte
+ ├── train-labels.idx3-ubyte
+ └── ...
+ ```
+
+## 模型训练
+
+- 单击“立即下载”,并选择合适的下载方式下载源码包。
+- 开始训练
+
+ 1. 启动训练之前,首先要配置程序运行相关环境变量。
+
+ 环境变量配置信息参见:
+
+ [Ascend 910训练平台环境变量设置](https://gitee.com/ascend/modelzoo/wikis/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE?sort_id=3148819)
+
+ 2. 单卡训练
+
+ 2.1 配置train_full_1p.sh脚本中`data_path`(脚本路径GAN_ID2351_for_TensorFlow2.X/test/train_full_1p.sh),请用户根据实际路径配置,数据集参数如下所示:
+
+ --data_path=/home/MNIST
+
+ 2.2 1p指令如下:
+
+ bash train_full_1p.sh --data_path=/home/MNIST
+
+迁移学习指导
+
+- 数据集准备。
+
+ 1. 获取数据。
+ 请参见“快速上手”中的数据集准备。
+
+- 模型训练。
+
+ 参考“模型训练”中训练步骤。
+
+- 模型评估。
+
+ 参考“模型训练”中验证步骤。
+
+高级参考
+
+## 脚本和示例代码
+
+```
+convmixer_ID2501_for_TensorFlow2.X/
+├── LICENSE
+├── modelzoo_level.txt
+├── README.md
+├── requirements.txt
+├── tf_v2_03_WGAN.py
+├── test
+│ ├── train_full_1p.sh
+│ ├── train_performance_1p_static_eval.sh
+│ ├── train_performance_1p_dynamic_eval.sh
+
+```
+
+## 脚本参数
+
+```
+--data_path 训练数据集路径
+--train_epochs 训练epoch设置
+--batch_size 训练bs设置
+```
+
+## 训练过程
+
+1. 通过“模型训练”中的训练指令启动单卡训练。
+2. 将训练脚本(train_full_1p.sh)中的data_path设置为训练数据集的路径。具体的流程参见“模型训练”的示例。
+3. 模型存储路径为“curpath/output/ASCEND_DEVICE_ID”,包括训练的log文件。
+4. 以多卡训练为例,loss信息在文件curpath/output/{ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
+
+## 推理/验证过程
+
+```
+ NA
+
+```
diff --git a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/configs/ops_info.json b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/configs/ops_info.json
new file mode 100644
index 0000000000000000000000000000000000000000..d0ed0b5c214d886e3e7b4d2823b5f1cc38e9f0eb
--- /dev/null
+++ b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/configs/ops_info.json
@@ -0,0 +1,21 @@
+{
+ "black-list":{
+ "to-add":[
+ "SquaredDifference",
+ "AddN",
+ "Add",
+ "Relu",
+ "Sigmoid",
+ "Assign",
+ "Minimum",
+ "Square",
+ "Sub",
+ "Mul",
+ "RealDiv",
+ "ConfusionSoftmaxGrad",
+ "ReduceSumD",
+ "SoftmaxCrossEntropyWithLogits",
+ "StridedSliceD"
+ ]
+ }
+}
\ No newline at end of file
diff --git a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_full_1p.sh b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_full_1p.sh
index cc587acec8d29a73367fa02bea32aa8530b1c80f..b309bfe1639355b508f84590a9f1ba9398153a98 100644
--- a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_full_1p.sh
+++ b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_full_1p.sh
@@ -34,7 +34,7 @@ fi
data_dump_flag=False
data_dump_step="10"
profiling=False
-use_mixlist=False
+use_mixlist=True
mixlist_file="./configs/ops_info.json"
fusion_off_flag=False
fusion_off_file="./configs/fusion_switch.cfg"
@@ -153,7 +153,7 @@ CaseName=${Network}_bs${batch_size}_${RankSize}'p'_'acc'
TrainingTime=`grep "Time" $cur_path/test/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log |awk 'END{print $6}'`
wait
ActualFPS=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'/'${TrainingTime}'}'`
-train_accuracy="None"
+train_accuracy=`grep -a 'd_loss:' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log | awk 'END{print $2}'`
##获取性能数据,不需要修改
#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视
diff --git a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_performance_1p.sh b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_performance_1p.sh
index 1dc2fa1b1e9c21a8c7fb836de163810920ef53d0..1f809a00304e0cf637ea5da4f6d722d6d646b08b 100644
--- a/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_performance_1p.sh
+++ b/TensorFlow2/built-in/GAN_ID2351_for_TensorFlow2.X/test/train_performance_1p.sh
@@ -34,7 +34,7 @@ fi
data_dump_flag=False
data_dump_step="10"
profiling=False
-use_mixlist=False
+use_mixlist=True
mixlist_file="./configs/ops_info.json"
fusion_off_flag=False
fusion_off_file="./configs/fusion_switch.cfg"
@@ -153,7 +153,7 @@ CaseName=${Network}_bs${batch_size}_${RankSize}'p'_'perf'
TrainingTime=`grep "Time" $cur_path/test/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log |awk 'END{print $6}'`
wait
ActualFPS=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'/'${TrainingTime}'}'`
-train_accuracy="None"
+train_accuracy=`grep -a 'd_loss:' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log | awk 'END{print $2}'`
##获取性能数据,不需要修改
#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视
diff --git a/TensorFlow2/built-in/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/README.md b/TensorFlow2/built-in/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/README.md
index 20ec3f19cbc6e1e1f6f3e8150f1b10208b84f2c1..f1d3bf7ab1a2ad7254b53d403878d039a4e57f16 100644
--- a/TensorFlow2/built-in/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/README.md
+++ b/TensorFlow2/built-in/cv/image_classification/ResNet50_ID0360_for_TensorFlow2.X/README.md
@@ -240,7 +240,7 @@ npu_device.global_options().precision_mode=FLAGS.precision_mode
3.1 8卡训练指令(脚本位于ResNet50_ID0360_for_TensorFlow2.X/test/train_full_8p_256bs_SGD.sh),请确保下面例子中的“--data_path”修改为用户的ImageNet的路径。
- bash test/train_full_8p_128bs.sh --data_path=/home/ImageNet
+ bash test/train_full_8p_256bs_SGD.sh --data_path=/home/ImageNet