diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/.gitkeep b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/.gitkeep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/LICENSE b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/LICENSE
deleted file mode 100644
index 9f3364497ca393704679d92f658382a5a8cb5300..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/LICENSE
+++ /dev/null
@@ -1,21 +0,0 @@
-MIT License
-
-Copyright (c) 2019 MaybeShewill-CV
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README.md b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README.md
deleted file mode 100644
index cb87a5628c1298087861e0b502bca993e83ab553..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README.md
+++ /dev/null
@@ -1,201 +0,0 @@
-- [基本信息](#基本信息.md)
-- [概述](#概述.md)
-- [训练环境准备](#训练环境准备.md)
-- [快速上手](#快速上手.md)
-- [迁移学习指导](#迁移学习指导.md)
-- [高级参考](#高级参考.md)
-## 基本信息
-
-**发布者(Publisher):Huawei**
-
-**应用领域(Application Domain):Instance Segmentation**
-
-**版本(Version):1.1**
-
-**修改时间(Modified) :2021.08.28**
-
-**大小(Size):880KB**
-
-**框架(Framework):TensorFlow 1.15.0**
-
-**模型格式(Model Format):ckpt**
-
-**精度(Precision):Mixed**
-
-**处理器(Processor):昇腾910**
-
-**应用级别(Categories):Official**
-
-**描述(Description):基于TensorFlow框架的场景文本识别深度神经网络**
-
-## 概述
-
-- 该网络模型通过一个CNN网络实现特征提取,然后输入给后端的RNN网络和CTC Loss计算。。
-
-- 参考论文:
-
- https://arxiv.org/abs/1507.05717
-
-- 参考实现:
-
- https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-
-- 适配昇腾 AI 处理器的实现:
-
-
- https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow
-
-
-- 通过Git获取对应commit\_id的代码方法如下:
-
-
- git clone {repository_url} # 克隆仓库的代码
- cd {repository_name} # 切换到模型的代码仓目录
- git checkout {branch} # 切换到对应分支
- git reset --hard {commit_id} # 代码设置到对应的commit_id
- cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换
-
-
-#### 默认配置
-
-- 训练数据集:
- - 训练环节使用synth90k数据集,验证可以基于如下三个数据集执行:IIIT5K, ICDAR2003或者SVT。
-
-- 训练超参
- - momentum=0.95
- - lr=0.08
- - use_nesterov=True
- - warmup_step=8000
-
-#### 支持特性
-
-| 特性列表 | 是否支持 |
-| ---------- | -------- |
-| 分布式训练 | 否 |
-| 混合精度 | 是 |
-| 数据并行 | 是 |
-
-
-#### 混合精度训练
-
- 混合精度训练昇腾910 AI处理器提供自动混合精度功能,可以针对全网中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。
-
-#### 开启混合精度
-
- custom_op.name = "NpuOptimizer"
- custom_op.parameter_map["use_off_line"].b = True
- custom_op.parameter_map["enable_data_pre_proc"].b = True
- custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes('allow_mix_precision')
-
-## 训练环境准备
-
-1. 硬件环境准备请参见各硬件产品文档"[驱动和固件安装升级指南]( https://support.huawei.com/enterprise/zh/category/ai-computing-platform-pid-1557196528909)"。需要在硬件设备上安装与CANN版本配套的固件与驱动。
-2. 宿主机上需要安装Docker并登录[Ascend Hub中心](https://ascendhub.huawei.com/#/detail?name=ascend-tensorflow-arm)获取镜像。
-
- 当前模型支持的镜像列表如[表1](#zh-cn_topic_0000001074498056_table1519011227314)所示。
-
- **表 1** 镜像列表
-
-
-
镜像名称
- |
- 镜像版本
- |
- 配套CANN版本
- |
-
-
-
- |
- 21.0.2
- |
- 5.0.2
- |
-
-
-
-
-
-## 快速上手
-
-#### 数据集准备
-
-- 以synth90k数据集为例:下载synth90k到/data目录,然后解压;
- 在/scripts目录下执行bash prepare_ds.sh。
-
-#### 模型训练
-
-- 单击“立即下载”,并选择合适的下载方式下载源码包。
-
-- 开始训练
-
- 1.启动训练之前,首先要配置程序运行相关环境变量。
-
- 环境变量配置信息参见:
-
- [Ascend 910训练平台环境变量设置](https://gitee.com/ascend/ModelZoo-TensorFlow/wikis/01.%E8%AE%AD%E7%BB%83%E8%84%9A%E6%9C%AC%E8%BF%81%E7%A7%BB%E6%A1%88%E4%BE%8B/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE)
-
- 2.单卡训练.脚本为CRNN_for_TensorFlow/test/train_full_1p.sh
-
- ```
- bash train_full_1p.sh --data_path=xxx
- ```
-
- 3.启动8卡训练 (脚本为CRNN_for_TensorFlow/test/train_full_8p.sh)
-
- ```
- bash train_full_8p.sh --data_path=xxx
- ```
-
-## 迁移学习指导
-
-- 数据集准备。
-
- 1. 获取数据。
- 请参见“快速上手”中的数据集准备。
-
-- 模型训练。
-
- 参考“模型训练”中训练步骤。
-
-- 模型评估。
-
- 参考“模型训练”中验证步骤。
-
-## 高级参考
-
-#### 脚本和示例代码
-
-```
- |-- config
- |-- configs
- |-- rank_table_8p.json
- |-- crnn_model
- |-- data
- |-- data_provider
- |-- local_utils
- |-- scripts
- |-- prepare_ds.sh
- |-- test
- |-- train_full_1p.sh
- |-- train_full_8p.sh
- |-- tools
-```
-
-#### 脚本参数
-
-```
- - momentum=0.95
- - lr=0.08
- - use_nesterov=True
- - warmup_step=8000
-```
-
-#### 训练过程
-
-1. 通过“模型训练”中的训练指令启动单卡训练。
-2. 将训练脚本(train_full_1p.sh)中的data_path设置为训练数据集的路径。具体的流程参见“模型训练”的示例。
-3. 模型存储路径为“${cur_path}/output/$ASCEND_DEVICE_ID”,包括训练的log以及checkpoints文件。
-4. 以单卡训练为例,loss信息在文件${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log中。
-
-####
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README_ORI_2.md b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README_ORI_2.md
deleted file mode 100644
index 91265745a3d691d8bc10920fdf2877e662e7730e..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/README_ORI_2.md
+++ /dev/null
@@ -1,177 +0,0 @@
-# CRNN for Tensorflow
-
-This repository provides a script and recipe to train the CRNN model. The code is based on https://github.com/MaybeShewill-CV/CRNN_Tensorflow,
-modifications are made to run on NPU. Original README file can be found in `README_ORI.md`
-
-## Table Of Contents
-
-* [Model overview](#model-overview)
- * [Model Architecture](#model-architecture)
- * [Default configuration](#default-configuration)
-* [Data augmentation](#data-augmentation)
-* [Setup](#setup)
- * [Requirements](#requirements)
-* [Quick start guide](#quick-start-guide)
-* [Advanced](#advanced)
- * [Command line arguments](#command-line-arguments)
- * [Training process](#training-process)
-* [Performance](#performance)
- * [Results](#results)
- * [Training accuracy results](#training-accuracy-results)
- * [Training performance results](#training-performance-results)
-
-
-
-
-## Model overview
-
-CRNN model from
-`Shibao Guang et al. "An End-to-End Trainable Neural Network for Image-based Sequence
-Recognition and Its Application to Scene Text Recognition". .`
-reference implementation:
-### Model architecture
-
-
-
-### Default configuration
-
-The following sections introduce the default configurations and hyperparameters for CRNN model. We reproduce training setups
-on synth90k datasets, evaluate on three datasets: IIIT5K, ICDAR2003 and SVT. See [Results](#results) for details.
-
-For detailed hpyerparameters, please refer to corresponding scripts under directory `scripts/` and
-#### Optimizer
-
-This model uses Momentum optimizer from Tensorflow with the following hyperparameters:
-
-- Momentum : 0.9
-- LR schedule: cosine_annealing
-- Batch size : 64 * 8
-
-#### Data augmentation
-
-This model uses the following data augmentation:
-
-- For training:
- - Normalize=(value/127.5-1.0)
-- For inference:
- - Normalize=(value/127.5-1.0)
-
-
-
-## Setup
-The following section lists the requirements to start training the CRNN model.
-### Requirements
-
-see `requirements.txt`
-
-## Quick Start Guide
-
-### 1. Clone the respository
-
-```shell
-git clone xxx
-cd ModelZoo_CRNN_TF_HARD/00-access/
-```
-
-### 2. Download and preprocess the dataset
-
-You can use any datasets as you wish. Here, we only synth90k dataset as an example to illustrate the data generation.
-
-1. Download the synth90k, IIIT5K, ICDAR2003 and SVT datasets and put them under `./data`.
-2. go to `/data` directory and unzip the datasets
-3. go to `/scripts` and execute the shell scripts
-
-```
-bash prepare_ds.sh
-```
-After data preparation, the directory of `data/` looks like following structure:
-
-|-- data/
-| |-- char_dict/
-| |-- mnt/
-| |-- images/
-| |-- test/
-| |-- tfrecords/
-
-
-### 3. Train
-
-All the scripts to tick off the training are located under `scripts/`. Make sure that all data are ready before you start training. Training on single NPU or multiple NPU devices are supported. Scripts that contain `1p` indicate single NPU training scripts or configuration. Scripts that contain `8p` indicate training on eight NPU devices.
-
-- For training on single NPU device, execute the shell script `run_1p.sh`, e.g.
- ```
- bash scripts/run_1p.sh
- ```
- By default, the checkpoints and training log are located in `results/1p/0`.
-
-- For training on eight NPU device, execute the shell script `run_8p.sh`, e.g.
- ```
- bash scripts/run_8p.sh
- ```
- By default, the checkpoints and training log are located in `results/8p/`.
-
-
-***Note***: As the time consumption of the training for single NPU is much higher than that of 8 NPUs, it is recommended to train on eight NPUs.
-
-
-### 4. Test
-Three datases are used to evaluate the trained model. To test, just run test script 'scripts/test.sh ${DIR_TO_CHECKPOINTS}' (replace the ${DIR_TO_CHECKPOINTS} with real path to checkpoint file). When finished, test results will be saved as text file under project directory with name `test_result.txt` by default.
- ```
- bash scripts/test.sh ${DIR_TO_CHECKPOINTS}
- ```
-
-
-## Advanced
-### Commmand-line options
-
-
-```
- --root_dir Root directory of the project, default ./
- --dataset_dir path to tfrecords file, default data/
- --weights_path pretrained checkpoint when continuing training, default None
- --momentum momentum factor, default: 0.9
- --num_iters the number of training steps , default 240000
- --lr_sched the lr scheduling policy, default cosine
- --use_nesterov whether to use nesterov in the sgd optimizer, default ,False
- --warmup_step number of warmup step used in lr schedular
-```
-for a complete list of options, please refer to `tools/train_npu.py` and `config/global_config.py`
-
-### Training process
-
-All the results of the training will be stored in the directory `results`.
-Script will store:
- - checkpoints
- - log
-
-## Performance
-
-### Result
-
-Our result were obtained by running the applicable training script. To achieve the same results, follow the steps in the Quick Start Guide.
-
-
-#### Evaluation results
-The accuracy is measured in term of full sequence in a lexicon-free decoding mode
-
-| **training steps**| SVT | ICDAR2003 | IIIT5k |
-| :----------------: | :----------:| :------: |:------: |
-| 8 | 80.8% + | 89.4%+ | 78.2% + |
-
-
-#### Training performance
-
-| **NPUs** | batch size | train performance |
-| :------: | :---------------: |:---------------: |
-| 8 | 64*8 | ~ 168ms/step |
-
-
-
-
-
-
-
-
-
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/__init__.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/__init__.py
deleted file mode 100644
index 4a7849063d6a4cc7fedf339e307a081e451d12bb..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-22 涓嬪崍3:25
-# @Author : Luo Yao
-# @Site : http://github.com/TJCVRS
-# @File : __init__.py.py
-# @IDE: PyCharm Community Edition
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/global_config.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/global_config.py
deleted file mode 100644
index 786d7c5054af3397fe9dcc38c1469d1ad4f6710f..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/global_config.py
+++ /dev/null
@@ -1,134 +0,0 @@
-
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-22 涓嬪崍3:25
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : global_config.py
-# @IDE: PyCharm Community Edition
-"""
-Set some global configuration
-"""
-from easydict import EasyDict as edict
-
-__C = edict()
-# Consumers can get config by: from config import cfg
-
-cfg = __C
-
-__C.ARCH = edict()
-
-# Number of units in each LSTM cell
-__C.ARCH.HIDDEN_UNITS = 256
-# Number of stacked LSTM cells
-__C.ARCH.HIDDEN_LAYERS = 2
-# Sequence length. This has to be the width of the final feature map of the CNN, which is input size width / 4
-# __C.ARCH.SEQ_LENGTH = 70 # cn dataset
-__C.ARCH.SEQ_LENGTH = 25 # synth90k dataset
-__C.ARCH.MAX_LENGTH = 23 # synth90k dataset
-# Width x height into which training / testing images are resized before feeding into the network
-# __C.ARCH.INPUT_SIZE = (280, 32) # cn dataset
-__C.ARCH.INPUT_SIZE = (100, 32) # synth90k dataset
-# Number of channels in images
-__C.ARCH.INPUT_CHANNELS = 3
-# Number character classes
-# __C.ARCH.NUM_CLASSES = 5825 # cn dataset
-__C.ARCH.NUM_CLASSES = 37 # synth90k dataset
-
-
-# modified for NPU estimator
-# Save checkpoint every 1000 steps
-__C.SAVE_CHECKPOINT_STEPS=1000
-# Max Checkpoint files
-__C.MAX_TO_KEEP=5
-#data directory
-__C.LOG_DIR="log"
-#
-__C.LOG_NAME="training_log"
-#
-__C.ITERATIONS_PER_LOOP=100
-
-
-# Train options
-__C.TRAIN = edict()
-
-# Use early stopping?
-__C.TRAIN.EARLY_STOPPING = False
-# Wait at least this many epochs without improvement in the cost function
-__C.TRAIN.PATIENCE_EPOCHS = 6
-# Expect at least this improvement in one epoch in order to reset the early stopping counter
-__C.TRAIN.PATIENCE_DELTA = 1e-3
-
-
-# Set the shadownet training iterations
-# first choice
-__C.TRAIN.EPOCHS = 80010
-
-# Set the display step
-__C.TRAIN.DISPLAY_STEP = 100
-# Set the test display step during training process
-__C.TRAIN.TEST_DISPLAY_STEP = 100
-# Set the momentum parameter of the optimizer
-__C.TRAIN.MOMENTUM = 0.9
-# Set the initial learning rate
-__C.TRAIN.LEARNING_RATE = 0.01
-# Set the GPU resource used during training process
-__C.TRAIN.GPU_MEMORY_FRACTION = 0.9
-# Set the GPU allow growth parameter during tensorflow training process
-__C.TRAIN.TF_ALLOW_GROWTH = True
-# Set the shadownet training batch size
-__C.TRAIN.BATCH_SIZE = 64
-#__C.TRAIN.BATCH_SIZE = 512
-# Set the shadownet validation batch size
-__C.TRAIN.VAL_BATCH_SIZE = 32
-# Set the learning rate decay steps
-__C.TRAIN.LR_DECAY_STEPS = 500000
-# Set the learning rate decay rate
-__C.TRAIN.LR_DECAY_RATE = 0.1
-# Update learning rate in jumps?
-__C.TRAIN.LR_STAIRCASE = True
-# Set multi process nums
-__C.TRAIN.CPU_MULTI_PROCESS_NUMS = 6
-# Set Gpu nums
-__C.TRAIN.GPU_NUM = 2
-# Set moving average decay
-__C.TRAIN.MOVING_AVERAGE_DECAY = 0.9999
-# Set val display step
-__C.TRAIN.VAL_DISPLAY_STEP = 1000
-
-# Test options
-__C.TEST = edict()
-
-# Set the GPU resource used during testing process
-__C.TEST.GPU_MEMORY_FRACTION = 0.6
-# Set the GPU allow growth parameter during tensorflow testing process
-__C.TEST.TF_ALLOW_GROWTH = False
-# Set the test batch size
-__C.TEST.BATCH_SIZE = 32
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/rank_table_8p.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/rank_table_8p.json
deleted file mode 100644
index 1c58ed51393389a96887a1bb2e7fea5890fb6b51..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/config/rank_table_8p.json
+++ /dev/null
@@ -1,15 +0,0 @@
-{
-"server_count":"1",
-"server_list":[{
- "device":[{"device_id":"0","device_ip":"192.168.100.101","rank_id":"0"},
- {"device_id":"1","device_ip":"192.168.101.101","rank_id":"1"},
- {"device_id":"2","device_ip":"192.168.102.101","rank_id":"2"},
- {"device_id":"3","device_ip":"192.168.103.101","rank_id":"3"},
- {"device_id":"4","device_ip":"192.168.100.100","rank_id":"4"},
- {"device_id":"5","device_ip":"192.168.101.100","rank_id":"5"},
- {"device_id":"6","device_ip":"192.168.102.100","rank_id":"6"},
- {"device_id":"7","device_ip":"192.168.103.100","rank_id":"7"}],
- "server_id":"127.0.0.2"}],
-"status":"completed",
-"version":"1.0"
-}
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/configs/rank_table_8p.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/configs/rank_table_8p.json
deleted file mode 100644
index 8c47d503fecc66b65b8dcba04cfeca2cab296678..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/configs/rank_table_8p.json
+++ /dev/null
@@ -1,23 +0,0 @@
-{
-"group_count": "1",
-"group_list": [
-{
- "group_name": "worker",
- "device_count": "8",
- "instance_count": "1",
- "instance_list": [{"devices":
- [{"device_id":"0","device_ip":"192.168.100.101"},
- {"device_id":"1","device_ip":"192.168.101.101"},
- {"device_id":"2","device_ip":"192.168.102.101"},
- {"device_id":"3","device_ip":"192.168.103.101"},
- {"device_id":"4","device_ip":"192.168.100.100"},
- {"device_id":"5","device_ip":"192.168.101.100"},
- {"device_id":"6","device_ip":"192.168.102.100"},
- {"device_id":"7","device_ip":"192.168.103.100"}],
- "pod_name":"npu8p",
- "server_id":"127.0.0.1"}]
-}
-],
-"status": "completed"
-}
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/__init__.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/__init__.py
deleted file mode 100644
index 3067a5b380d8651f895688d482eb98aa3ba29568..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-21 涓嬪崍6:37
-# @Author : Luo Yao
-# @Site : http://github.com/TJCVRS
-# @File : __init__.py.py
-# @IDE: PyCharm Community Edition
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/cnn_basenet.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/cnn_basenet.py
deleted file mode 100644
index 4b46bcdaa126ab46401e1b8170e7d39fe5d6705e..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/cnn_basenet.py
+++ /dev/null
@@ -1,663 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-18 涓嬪崍3:59
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : cnn_basenet.py
-# @IDE: PyCharm Community Edition
-"""
-The base convolution neural networks mainly implement some useful cnn functions
-"""
-import tensorflow as tf
-from tensorflow.python.training import moving_averages
-from tensorflow.contrib.framework import add_model_variable
-import numpy as np
-
-
-class CNNBaseModel(object):
- """
- Base model for other specific cnn ctpn_models
- """
-
- def __init__(self):
- pass
-
- @staticmethod
- def conv2d(inputdata, out_channel, kernel_size, padding='SAME',
- stride=1, w_init=None, b_init=None,
- split=1, use_bias=True, data_format='NHWC', name=None):
- """
- Packing the tensorflow conv2d function.
- :param name: op name
- :param inputdata: A 4D tensorflow tensor which ust have known number of channels, but can have other
- unknown dimensions.
- :param out_channel: number of output channel.
- :param kernel_size: int so only support square kernel convolution
- :param padding: 'VALID' or 'SAME'
- :param stride: int so only support square stride
- :param w_init: initializer for convolution weights
- :param b_init: initializer for bias
- :param split: split channels as used in Alexnet mainly group for GPU memory save.
- :param use_bias: whether to use bias.
- :param data_format: default set to NHWC according tensorflow
- :return: tf.Tensor named ``output``
- """
- with tf.variable_scope(name):
- in_shape = inputdata.get_shape().as_list()
- channel_axis = 3 if data_format == 'NHWC' else 1
- in_channel = in_shape[channel_axis]
-
- assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
- assert in_channel % split == 0
- assert out_channel % split == 0
-
- padding = padding.upper()
-
- if isinstance(kernel_size, list):
- filter_shape = [kernel_size[0], kernel_size[1]] + [in_channel / split, out_channel]
- else:
- filter_shape = [kernel_size, kernel_size] + [in_channel / split, out_channel]
-
- if isinstance(stride, list):
- strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' \
- else [1, 1, stride[0], stride[1]]
- else:
- strides = [1, stride, stride, 1] if data_format == 'NHWC' \
- else [1, 1, stride, stride]
-
- if w_init is None:
- w_init = tf.contrib.layers.variance_scaling_initializer()
- if b_init is None:
- b_init = tf.constant_initializer()
-
- w = tf.get_variable('W', filter_shape, initializer=w_init)
- b = None
-
- if use_bias:
- b = tf.get_variable('b', [out_channel], initializer=b_init)
-
- if split == 1:
- conv = tf.nn.conv2d(inputdata, w, strides, padding, data_format=data_format)
- else:
- inputs = tf.split(inputdata, split, channel_axis)
- kernels = tf.split(w, split, 3)
- outputs = [tf.nn.conv2d(i, k, strides, padding, data_format=data_format)
- for i, k in zip(inputs, kernels)]
- conv = tf.concat(outputs, channel_axis)
-
- ret = tf.identity(tf.nn.bias_add(conv, b, data_format=data_format)
- if use_bias else conv, name=name)
-
- return ret
-
- @staticmethod
- def relu(inputdata, name=None):
- """
-
- :param name:
- :param inputdata:
- :return:
- """
- return tf.nn.relu(features=inputdata, name=name)
-
- @staticmethod
- def sigmoid(inputdata, name=None):
- """
-
- :param name:
- :param inputdata:
- :return:
- """
- return tf.nn.sigmoid(x=inputdata, name=name)
-
- @staticmethod
- def maxpooling(inputdata, kernel_size, stride=None, padding='VALID',
- data_format='NHWC', name=None):
- """
-
- :param name:
- :param inputdata:
- :param kernel_size:
- :param stride:
- :param padding:
- :param data_format:
- :return:
- """
- padding = padding.upper()
-
- if stride is None:
- stride = kernel_size
-
- if isinstance(kernel_size, list):
- kernel = [1, kernel_size[0], kernel_size[1], 1] if data_format == 'NHWC' else \
- [1, 1, kernel_size[0], kernel_size[1]]
- else:
- kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' \
- else [1, 1, kernel_size, kernel_size]
-
- if isinstance(stride, list):
- strides = [1, stride[0], stride[1], 1] if data_format == 'NHWC' \
- else [1, 1, stride[0], stride[1]]
- else:
- strides = [1, stride, stride, 1] if data_format == 'NHWC' \
- else [1, 1, stride, stride]
-
- return tf.nn.max_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
- data_format=data_format, name=name)
-
- @staticmethod
- def avgpooling(inputdata, kernel_size, stride=None, padding='VALID',
- data_format='NHWC', name=None):
- """
-
- :param name:
- :param inputdata:
- :param kernel_size:
- :param stride:
- :param padding:
- :param data_format:
- :return:
- """
- if stride is None:
- stride = kernel_size
-
- kernel = [1, kernel_size, kernel_size, 1] if data_format == 'NHWC' \
- else [1, 1, kernel_size, kernel_size]
-
- strides = [1, stride, stride, 1] if data_format == 'NHWC' else [1, 1, stride, stride]
-
- return tf.nn.avg_pool(value=inputdata, ksize=kernel, strides=strides, padding=padding,
- data_format=data_format, name=name)
-
- @staticmethod
- def globalavgpooling(inputdata, data_format='NHWC', name=None):
- """
-
- :param name:
- :param inputdata:
- :param data_format:
- :return:
- """
- assert inputdata.shape.ndims == 4
- assert data_format in ['NHWC', 'NCHW']
-
- axis = [1, 2] if data_format == 'NHWC' else [2, 3]
-
- return tf.reduce_mean(input_tensor=inputdata, axis=axis, name=name)
-
- @staticmethod
- def layernorm(inputdata, epsilon=1e-5, use_bias=True, use_scale=True,
- data_format='NHWC', name=None):
- """
- :param name:
- :param inputdata:
- :param epsilon: epsilon to avoid divide-by-zero.
- :param use_bias: whether to use the extra affine transformation or not.
- :param use_scale: whether to use the extra affine transformation or not.
- :param data_format:
- :return:
- """
- shape = inputdata.get_shape().as_list()
- ndims = len(shape)
- assert ndims in [2, 4]
-
- mean, var = tf.nn.moments(inputdata, list(range(1, len(shape))), keep_dims=True)
-
- if data_format == 'NCHW':
- channnel = shape[1]
- new_shape = [1, channnel, 1, 1]
- else:
- channnel = shape[-1]
- new_shape = [1, 1, 1, channnel]
- if ndims == 2:
- new_shape = [1, channnel]
-
- if use_bias:
- beta = tf.get_variable('beta', [channnel], initializer=tf.constant_initializer())
- beta = tf.reshape(beta, new_shape)
- else:
- beta = tf.zeros([1] * ndims, name='beta')
- if use_scale:
- gamma = tf.get_variable('gamma', [channnel], initializer=tf.constant_initializer(1.0))
- gamma = tf.reshape(gamma, new_shape)
- else:
- gamma = tf.ones([1] * ndims, name='gamma')
-
- return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
-
- @staticmethod
- def instancenorm(inputdata, epsilon=1e-5, data_format='NHWC', use_affine=True, name=None):
- """
-
- :param name:
- :param inputdata:
- :param epsilon:
- :param data_format:
- :param use_affine:
- :return:
- """
- shape = inputdata.get_shape().as_list()
- if len(shape) != 4:
- raise ValueError("Input data of instancebn layer has to be 4D tensor")
-
- if data_format == 'NHWC':
- axis = [1, 2]
- ch = shape[3]
- new_shape = [1, 1, 1, ch]
- else:
- axis = [2, 3]
- ch = shape[1]
- new_shape = [1, ch, 1, 1]
- if ch is None:
- raise ValueError("Input of instancebn require known channel!")
-
- mean, var = tf.nn.moments(inputdata, axis, keep_dims=True)
-
- if not use_affine:
- return tf.divide(inputdata - mean, tf.sqrt(var + epsilon), name='output')
-
- beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer())
- beta = tf.reshape(beta, new_shape)
- gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0))
- gamma = tf.reshape(gamma, new_shape)
- return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
-
- @staticmethod
- def dropout(inputdata, keep_prob, is_training, name, noise_shape=None):
- """
-
- :param name:
- :param inputdata:
- :param keep_prob:
- :param is_training
- :param noise_shape:
- :return:
- """
-
- return tf.cond(
- pred=is_training,
- true_fn=lambda: tf.nn.dropout(
- inputdata, keep_prob=keep_prob, noise_shape=noise_shape
- ),
- false_fn=lambda: inputdata,
- name=name
- )
-
- @staticmethod
- def fullyconnect(inputdata, out_dim, w_init=None, b_init=None,
- use_bias=True, name=None):
- """
- Fully-Connected layer, takes a N>1D tensor and returns a 2D tensor.
- It is an equivalent of `tf.layers.dense` except for naming conventions.
-
- :param inputdata: a tensor to be flattened except for the first dimension.
- :param out_dim: output dimension
- :param w_init: initializer for w. Defaults to `variance_scaling_initializer`.
- :param b_init: initializer for b. Defaults to zero
- :param use_bias: whether to use bias.
- :param name:
- :return: tf.Tensor: a NC tensor named ``output`` with attribute `variables`.
- """
- shape = inputdata.get_shape().as_list()[1:]
- if None not in shape:
- inputdata = tf.reshape(inputdata, [-1, int(np.prod(shape))])
- else:
- inputdata = tf.reshape(inputdata, tf.stack([tf.shape(inputdata)[0], -1]))
-
- if w_init is None:
- w_init = tf.contrib.layers.variance_scaling_initializer()
- if b_init is None:
- b_init = tf.constant_initializer()
-
- ret = tf.layers.dense(inputs=inputdata, activation=lambda x: tf.identity(x, name='output'),
- use_bias=use_bias, name=name,
- kernel_initializer=w_init,
- bias_initializer=b_init,
- trainable=True, units=out_dim)
- return ret
-
- @staticmethod
- def layerbn(inputdata, is_training, name, momentum=0.999, eps=1e-3):
- """
-
- :param inputdata:
- :param is_training:
- :param name:
- :param momentum:
- :param eps:
- :return:
- """
-
- return tf.layers.batch_normalization(
- inputs=inputdata, training=is_training, name=name, momentum=momentum, epsilon=eps)
-
- @staticmethod
- def layerbn_distributed(list_input, stats_mode, data_format='NHWC',
- float_type=tf.float32, trainable=True,
- use_gamma=True, use_beta=True, bn_epsilon=1e-5,
- bn_ema=0.9, name='BatchNorm'):
- """
- Batch norm for distributed training process
- :param list_input:
- :param stats_mode:
- :param data_format:
- :param float_type:
- :param trainable:
- :param use_gamma:
- :param use_beta:
- :param bn_epsilon:
- :param bn_ema:
- :param name:
- :return:
- """
-
- def _get_bn_variables(_n_out, _use_scale, _use_bias, _trainable, _float_type):
-
- if _use_bias:
- _beta = tf.get_variable('beta', [_n_out],
- initializer=tf.constant_initializer(),
- trainable=_trainable,
- dtype=_float_type)
- else:
- _beta = tf.zeros([_n_out], name='beta')
- if _use_scale:
- _gamma = tf.get_variable('gamma', [_n_out],
- initializer=tf.constant_initializer(1.0),
- trainable=_trainable,
- dtype=_float_type)
- else:
- _gamma = tf.ones([_n_out], name='gamma')
-
- _moving_mean = tf.get_variable('moving_mean', [_n_out],
- initializer=tf.constant_initializer(),
- trainable=False,
- dtype=_float_type)
- _moving_var = tf.get_variable('moving_variance', [_n_out],
- initializer=tf.constant_initializer(1),
- trainable=False,
- dtype=_float_type)
- return _beta, _gamma, _moving_mean, _moving_var
-
- def _update_bn_ema(_xn, _batch_mean, _batch_var, _moving_mean, _moving_var, _decay):
-
- _update_op1 = moving_averages.assign_moving_average(
- _moving_mean, _batch_mean, _decay, zero_debias=False,
- name='mean_ema_op')
- _update_op2 = moving_averages.assign_moving_average(
- _moving_var, _batch_var, _decay, zero_debias=False,
- name='var_ema_op')
- add_model_variable(moving_mean)
- add_model_variable(moving_var)
-
- # seems faster than delayed update, but might behave otherwise in distributed settings.
- with tf.control_dependencies([_update_op1, _update_op2]):
- return tf.identity(xn, name='output')
-
- # ======================== Checking valid values =========================
- if data_format not in ['NHWC', 'NCHW']:
- raise TypeError(
- "Only two data formats are supported at this moment: 'NHWC' or 'NCHW', "
- "%s is an unknown data format." % data_format)
- assert type(list_input) == list
-
- # ======================== Setting default values =========================
- shape = list_input[0].get_shape().as_list()
- assert len(shape) in [2, 4]
- n_out = shape[-1]
- if data_format == 'NCHW':
- n_out = shape[1]
-
- # ======================== Main operations =============================
- means = []
- square_means = []
- for i in range(len(list_input)):
- with tf.device('/gpu:%d' % i):
- batch_mean = tf.reduce_mean(list_input[i], [0, 1, 2])
- batch_square_mean = tf.reduce_mean(tf.square(list_input[i]), [0, 1, 2])
- means.append(batch_mean)
- square_means.append(batch_square_mean)
-
- # if your GPUs have NVLinks and you've install NCCL2, you can change `/cpu:0` to `/gpu:0`
- with tf.device('/cpu:0'):
- shape = tf.shape(list_input[0])
- num = shape[0] * shape[1] * shape[2] * len(list_input)
- mean = tf.reduce_mean(means, axis=0)
- var = tf.reduce_mean(square_means, axis=0) - tf.square(mean)
- var *= tf.cast(num, float_type) / tf.cast(num - 1, float_type) # unbiased variance
-
- list_output = []
- for i in range(len(list_input)):
- with tf.device('/gpu:%d' % i):
- with tf.variable_scope(name, reuse=i > 0):
- beta, gamma, moving_mean, moving_var = _get_bn_variables(
- n_out, use_gamma, use_beta, trainable, float_type)
-
- if 'train' in stats_mode:
- xn = tf.nn.batch_normalization(
- list_input[i], mean, var, beta, gamma, bn_epsilon)
- if tf.get_variable_scope().reuse or 'gather' not in stats_mode:
- list_output.append(xn)
- else:
- # gather stats and it is the main gpu device.
- xn = _update_bn_ema(xn, mean, var, moving_mean, moving_var, bn_ema)
- list_output.append(xn)
- else:
- xn = tf.nn.batch_normalization(
- list_input[i], moving_mean, moving_var, beta, gamma, bn_epsilon)
- list_output.append(xn)
-
- return list_output
-
- @staticmethod
- def layergn(inputdata, name, group_size=32, esp=1e-5):
- """
-
- :param inputdata:
- :param name:
- :param group_size:
- :param esp:
- :return:
- """
- with tf.variable_scope(name):
- inputdata = tf.transpose(inputdata, [0, 3, 1, 2])
- n, c, h, w = inputdata.get_shape().as_list()
- group_size = min(group_size, c)
- inputdata = tf.reshape(inputdata, [-1, group_size, c // group_size, h, w])
- mean, var = tf.nn.moments(inputdata, [2, 3, 4], keep_dims=True)
- inputdata = (inputdata - mean) / tf.sqrt(var + esp)
-
- # 姣忎釜閫氶亾鐨刧amma鍜宐eta
- gamma = tf.Variable(tf.constant(1.0, shape=[c]), dtype=tf.float32, name='gamma')
- beta = tf.Variable(tf.constant(0.0, shape=[c]), dtype=tf.float32, name='beta')
- gamma = tf.reshape(gamma, [1, c, 1, 1])
- beta = tf.reshape(beta, [1, c, 1, 1])
-
- # 鏍规嵁璁烘枃杩涜杞崲 [n, c, h, w, c] 鍒 [n, h, w, c]
- output = tf.reshape(inputdata, [-1, c, h, w])
- output = output * gamma + beta
- output = tf.transpose(output, [0, 2, 3, 1])
-
- return output
-
- @staticmethod
- def squeeze(inputdata, axis=None, name=None):
- """
-
- :param inputdata:
- :param axis:
- :param name:
- :return:
- """
- return tf.squeeze(input=inputdata, axis=axis, name=name)
-
- @staticmethod
- def deconv2d(inputdata, out_channel, kernel_size, padding='SAME',
- stride=1, w_init=None, b_init=None,
- use_bias=True, activation=None, data_format='channels_last',
- trainable=True, name=None):
- """
- Packing the tensorflow conv2d function.
- :param name: op name
- :param inputdata: A 4D tensorflow tensor which ust have known number of channels, but can have other
- unknown dimensions.
- :param out_channel: number of output channel.
- :param kernel_size: int so only support square kernel convolution
- :param padding: 'VALID' or 'SAME'
- :param stride: int so only support square stride
- :param w_init: initializer for convolution weights
- :param b_init: initializer for bias
- :param activation: whether to apply a activation func to deconv result
- :param use_bias: whether to use bias.
- :param data_format: default set to NHWC according tensorflow
- :param trainable:
- :return: tf.Tensor named ``output``
- """
- with tf.variable_scope(name):
- in_shape = inputdata.get_shape().as_list()
- channel_axis = 3 if data_format == 'channels_last' else 1
- in_channel = in_shape[channel_axis]
- assert in_channel is not None, "[Deconv2D] Input cannot have unknown channel!"
-
- padding = padding.upper()
-
- if w_init is None:
- w_init = tf.contrib.layers.variance_scaling_initializer()
- if b_init is None:
- b_init = tf.constant_initializer()
-
- ret = tf.layers.conv2d_transpose(inputs=inputdata, filters=out_channel,
- kernel_size=kernel_size,
- strides=stride, padding=padding,
- data_format=data_format,
- activation=activation, use_bias=use_bias,
- kernel_initializer=w_init,
- bias_initializer=b_init, trainable=trainable,
- name=name)
- return ret
-
- @staticmethod
- def dilation_conv(input_tensor, k_size, out_dims, rate, padding='SAME',
- w_init=None, b_init=None, use_bias=False, name=None):
- """
-
- :param input_tensor:
- :param k_size:
- :param out_dims:
- :param rate:
- :param padding:
- :param w_init:
- :param b_init:
- :param use_bias:
- :param name:
- :return:
- """
- with tf.variable_scope(name):
- in_shape = input_tensor.get_shape().as_list()
- in_channel = in_shape[3]
-
- assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!"
-
- padding = padding.upper()
-
- if isinstance(k_size, list):
- filter_shape = [k_size[0], k_size[1]] + [in_channel, out_dims]
- else:
- filter_shape = [k_size, k_size] + [in_channel, out_dims]
-
- if w_init is None:
- w_init = tf.contrib.layers.variance_scaling_initializer()
- if b_init is None:
- b_init = tf.constant_initializer()
-
- w = tf.get_variable('W', filter_shape, initializer=w_init)
- b = None
-
- if use_bias:
- b = tf.get_variable('b', [out_dims], initializer=b_init)
-
- conv = tf.nn.atrous_conv2d(value=input_tensor, filters=w, rate=rate,
- padding=padding, name='dilation_conv')
-
- if use_bias:
- ret = tf.add(conv, b)
- else:
- ret = conv
-
- return ret
-
- @staticmethod
- def spatial_dropout(input_tensor, keep_prob, is_training, name, seed=1234):
- """
- 绌洪棿dropout瀹炵幇
- :param input_tensor:
- :param keep_prob:
- :param is_training:
- :param name:
- :param seed:
- :return:
- """
-
- def f1():
- input_shape = input_tensor.get_shape().as_list()
- noise_shape = tf.constant(value=[input_shape[0], 1, 1, input_shape[3]])
- return tf.nn.dropout(input_tensor, keep_prob, noise_shape, seed=seed, name="spatial_dropout")
-
- def f2():
- return input_tensor
-
- with tf.variable_scope(name_or_scope=name):
-
- output = tf.cond(is_training, f1, f2)
-
- return output
-
- @staticmethod
- def lrelu(inputdata, name, alpha=0.2):
- """
-
- :param inputdata:
- :param alpha:
- :param name:
- :return:
- """
- with tf.variable_scope(name):
- return tf.nn.relu(inputdata) - alpha * tf.nn.relu(-inputdata)
-
- @staticmethod
- def pad(inputdata, paddings, name):
- """
-
- :param inputdata:
- :param paddings:
- :return:
- """
- with tf.variable_scope(name_or_scope=name):
- return tf.pad(tensor=inputdata, paddings=paddings)
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/crnn_net.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/crnn_net.py
deleted file mode 100644
index 57610d517cbe3298b9cc348da1b6ea7c3777a061..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/crnn_model/crnn_net.py
+++ /dev/null
@@ -1,292 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-21 涓嬪崍6:39
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : crnn_net.py
-# @IDE: PyCharm Community Edition
-"""
-Implement the crnn model mentioned in An End-to-End Trainable Neural Network for Image-based Sequence
-Recognition and Its Application to Scene Text Recognition paper
-"""
-import numpy as np
-import tensorflow as tf
-from tensorflow.contrib import rnn
-
-from crnn_model import cnn_basenet
-from config import global_config
-
-CFG = global_config.cfg
-
-
-class ShadowNet(cnn_basenet.CNNBaseModel):
- """
- Implement the crnn model for squence recognition
- """
- def __init__(self, phase, hidden_nums, layers_nums, num_classes):
- """
-
- :param phase: 'Train' or 'Test'
- :param hidden_nums: Number of hidden units in each LSTM cell (block)
- :param layers_nums: Number of LSTM cells (blocks)
- :param num_classes: Number of classes (different symbols) to detect
- """
- super(ShadowNet, self).__init__()
-
- if phase == 'train':
- self._phase = tf.constant(1, dtype=tf.int8)
- else:
- self._phase = tf.constant(0, dtype=tf.int8)
-
- self._hidden_nums = hidden_nums
- self._layers_nums = layers_nums
- self._num_classes = num_classes
- self._is_training = self._init_phase()
-
- def _init_phase(self):
- """
-
- :return:
- """
- return tf.equal(self._phase, tf.constant(1, dtype=tf.int8))
-
- def _conv_stage(self, inputdata, out_dims, name):
- """ Standard VGG convolutional stage: 2d conv, relu, and maxpool
-
- :param inputdata: 4D tensor batch x width x height x channels
- :param out_dims: number of output channels / filters
- :return: the maxpooled output of the stage
- """
- with tf.variable_scope(name_or_scope=name):
-
- conv = self.conv2d(
- inputdata=inputdata, out_channel=out_dims,
- kernel_size=3, stride=1, use_bias=True, name='conv'
- )
- bn = self.layerbn(
- inputdata=conv, is_training=self._is_training, name='bn'
- )
- relu = self.relu(
- inputdata=bn, name='relu'
- )
- max_pool = self.maxpooling(
- inputdata=relu, kernel_size=2, stride=2, name='max_pool'
- )
- return max_pool
-
- def _feature_sequence_extraction(self, inputdata, name):
- """ Implements section 2.1 of the paper: "Feature Sequence Extraction"
-
- :param inputdata: eg. batch*32*100*3 NHWC format
- :param name:
- :return:
- """
- with tf.variable_scope(name_or_scope=name):
- conv1 = self._conv_stage(
- inputdata=inputdata, out_dims=64, name='conv1'
- )
- conv2 = self._conv_stage(
- inputdata=conv1, out_dims=128, name='conv2'
- )
- conv3 = self.conv2d(
- inputdata=conv2, out_channel=256, kernel_size=3, stride=1, use_bias=False, name='conv3'
- )
- bn3 = self.layerbn(
- inputdata=conv3, is_training=self._is_training, name='bn3'
- )
- relu3 = self.relu(
- inputdata=bn3, name='relu3'
- )
- conv4 = self.conv2d(
- inputdata=relu3, out_channel=256, kernel_size=3, stride=1, use_bias=False, name='conv4'
- )
- bn4 = self.layerbn(
- inputdata=conv4, is_training=self._is_training, name='bn4'
- )
- relu4 = self.relu(
- inputdata=bn4, name='relu4')
- max_pool4 = self.maxpooling(
- inputdata=relu4, kernel_size=[2, 1], stride=[2, 1], padding='VALID', name='max_pool4'
- )
- conv5 = self.conv2d(
- inputdata=max_pool4, out_channel=512, kernel_size=3, stride=1, use_bias=False, name='conv5'
- )
- bn5 = self.layerbn(
- inputdata=conv5, is_training=self._is_training, name='bn5'
- )
- relu5 = self.relu(
- inputdata=bn5, name='bn5'
- )
- conv6 = self.conv2d(
- inputdata=relu5, out_channel=512, kernel_size=3, stride=1, use_bias=False, name='conv6'
- )
- bn6 = self.layerbn(
- inputdata=conv6, is_training=self._is_training, name='bn6'
- )
- relu6 = self.relu(
- inputdata=bn6, name='relu6'
- )
- max_pool6 = self.maxpooling(
- inputdata=relu6, kernel_size=[2, 1], stride=[2, 1], name='max_pool6'
- )
- conv7 = self.conv2d(
- inputdata=max_pool6, out_channel=512, kernel_size=2, stride=[2, 1], use_bias=False, name='conv7'
- )
- bn7 = self.layerbn(
- inputdata=conv7, is_training=self._is_training, name='bn7'
- )
- relu7 = self.relu(
- inputdata=bn7, name='bn7'
- )
-
- return relu7
-
- def _map_to_sequence(self, inputdata, name):
- """ Implements the map to sequence part of the network.
-
- This is used to convert the CNN feature map to the sequence used in the stacked LSTM layers later on.
- Note that this determines the length of the sequences that the LSTM expects
- :param inputdata:
- :param name:
- :return:
- """
- with tf.variable_scope(name_or_scope=name):
-
- shape = inputdata.get_shape().as_list()
- assert shape[1] == 1 # H of the feature map must equal to 1
-
- ret = self.squeeze(inputdata=inputdata, axis=1, name='squeeze')
-
- return ret
-
- def _sequence_label(self, inputdata, name):
- """ Implements the sequence label part of the network
-
- :param inputdata:
- :param name:
- :return:
- """
- with tf.variable_scope(name_or_scope=name):
- # construct stack lstm rcnn layer
- # forward lstm cell
- fw_cell_list = [tf.nn.rnn_cell.LSTMCell(nh, forget_bias=1.0) for
- nh in [self._hidden_nums] * self._layers_nums]
- # Backward direction cells
- bw_cell_list = [tf.nn.rnn_cell.LSTMCell(nh, forget_bias=1.0) for
- nh in [self._hidden_nums] * self._layers_nums]
-
- stack_lstm_layer, _, _ = rnn.stack_bidirectional_dynamic_rnn(
- fw_cell_list, bw_cell_list, inputdata,
- dtype=tf.float32
- )
- stack_lstm_layer = self.dropout(
- inputdata=stack_lstm_layer,
- keep_prob=0.5,
- is_training=self._is_training,
- name='sequence_drop_out'
- )
-
- [batch_s, _, hidden_nums] = inputdata.get_shape().as_list() # [batch, width, 2*n_hidden]
-
- shape = tf.shape(stack_lstm_layer)
- rnn_reshaped = tf.reshape(stack_lstm_layer, [shape[0] * shape[1], shape[2]])
-
- w = tf.get_variable(
- name='w',
- shape=[hidden_nums, self._num_classes],
- initializer=tf.truncated_normal_initializer(stddev=0.2),
- trainable=True
- )
-
- # Doing the affine projection
- logits = tf.matmul(rnn_reshaped, w, name='logits')
-
- logits = tf.reshape(logits, [shape[0], shape[1], self._num_classes], name='logits_reshape')
-
- raw_pred = tf.argmax(tf.nn.softmax(logits), axis=2, name='raw_prediction')
-
- # Swap batch and batch axis
- rnn_out = tf.transpose(logits, [1, 0, 2], name='transpose_time_major') # [width, batch, n_classes]
-
- return rnn_out, raw_pred
-
- def inference(self, inputdata, name, reuse=False):
- """
- Main routine to construct the network
- :param inputdata:
- :param name:
- :param reuse:
- :return:
- """
- with tf.variable_scope(name_or_scope=name, reuse=reuse):
-
- # first apply the cnn feature extraction stage
- cnn_out = self._feature_sequence_extraction(
- inputdata=inputdata, name='feature_extraction_module'
- )
-
- # second apply the map to sequence stage
- sequence = self._map_to_sequence(
- inputdata=cnn_out, name='map_to_sequence_module'
- )
-
- # third apply the sequence label stage
- net_out, raw_pred = self._sequence_label(
- inputdata=sequence, name='sequence_rnn_module'
- )
-
- return net_out
-
- def compute_loss(self, inputdata, labels, labels_length,name, reuse):
- """
-
- :param inputdata:
- :param labels:
- :return:
- """
-
- inference_ret = self.inference(
- inputdata=inputdata, name=name, reuse=reuse
- )
-
-
- loss = tf.reduce_mean(
- tf.nn.ctc_loss_v2(
- labels=labels, logits=inference_ret,
- label_length=labels_length,
- logit_length=CFG.ARCH.SEQ_LENGTH * np.ones(CFG.TRAIN.BATCH_SIZE,dtype=np.int32),
- blank_index=CFG.ARCH.NUM_CLASSES-1
-
- ),
- name='ctc_loss'
- )
-
- return inference_ret, loss
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict.json
deleted file mode 100644
index b41694625bc2c3f03b5a32ba13ecbd2d2aa3a007..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict.json
+++ /dev/null
@@ -1,38 +0,0 @@
-{
- "100_ord": "d",
- "101_ord": "e",
- "102_ord": "f",
- "103_ord": "g",
- "104_ord": "h",
- "105_ord": "i",
- "106_ord": "j",
- "107_ord": "k",
- "108_ord": "l",
- "109_ord": "m",
- "110_ord": "n",
- "111_ord": "o",
- "112_ord": "p",
- "113_ord": "q",
- "114_ord": "r",
- "115_ord": "s",
- "116_ord": "t",
- "117_ord": "u",
- "118_ord": "v",
- "119_ord": "w",
- "120_ord": "x",
- "121_ord": "y",
- "122_ord": "z",
- "48_ord": "0",
- "49_ord": "1",
- "50_ord": "2",
- "51_ord": "3",
- "52_ord": "4",
- "53_ord": "5",
- "54_ord": "6",
- "55_ord": "7",
- "56_ord": "8",
- "57_ord": "9",
- "97_ord": "a",
- "98_ord": "b",
- "99_ord": "c"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_cn.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_cn.json
deleted file mode 100644
index a60a0fcf8f13fb6a3c8268cda1d990384a87e669..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_cn.json
+++ /dev/null
@@ -1,5826 +0,0 @@
-{
- "100_ord": "d",
- "101_ord": "e",
- "102_ord": "f",
- "103_ord": "g",
- "104_ord": "h",
- "1054_ord": "\u041e",
- "1055_ord": "\u041f",
- "1056_ord": "\u0420",
- "105_ord": "i",
- "106_ord": "j",
- "107_ord": "k",
- "108_ord": "l",
- "109_ord": "m",
- "110_ord": "n",
- "111_ord": "o",
- "112_ord": "p",
- "113_ord": "q",
- "114_ord": "r",
- "115_ord": "s",
- "116_ord": "t",
- "117_ord": "u",
- "118_ord": "v",
- "119_ord": "w",
- "120_ord": "x",
- "121_ord": "y",
- "12289_ord": "\u3001",
- "12290_ord": "\u3002",
- "12295_ord": "\u3007",
- "12296_ord": "\u3008",
- "12297_ord": "\u3009",
- "12298_ord": "\u300a",
- "12299_ord": "\u300b",
- "122_ord": "z",
- "12300_ord": "\u300c",
- "12301_ord": "\u300d",
- "12302_ord": "\u300e",
- "12303_ord": "\u300f",
- "12304_ord": "\u3010",
- "12305_ord": "\u3011",
- "12308_ord": "\u3014",
- "12309_ord": "\u3015",
- "12390_ord": "\u3066",
- "12394_ord": "\u306a",
- "123_ord": "{",
- "124_ord": "|",
- "125_ord": "}",
- "126_ord": "~",
- "176_ord": "\u00b0",
- "177_ord": "\u00b1",
- "183_ord": "\u00b7",
- "19968_ord": "\u4e00",
- "19969_ord": "\u4e01",
- "19971_ord": "\u4e03",
- "19975_ord": "\u4e07",
- "19976_ord": "\u4e08",
- "19977_ord": "\u4e09",
- "19978_ord": "\u4e0a",
- "19979_ord": "\u4e0b",
- "19981_ord": "\u4e0d",
- "19982_ord": "\u4e0e",
- "19984_ord": "\u4e10",
- "19985_ord": "\u4e11",
- "19987_ord": "\u4e13",
- "19988_ord": "\u4e14",
- "19989_ord": "\u4e15",
- "19990_ord": "\u4e16",
- "19992_ord": "\u4e18",
- "19993_ord": "\u4e19",
- "19994_ord": "\u4e1a",
- "19995_ord": "\u4e1b",
- "19996_ord": "\u4e1c",
- "19997_ord": "\u4e1d",
- "19998_ord": "\u4e1e",
- "20002_ord": "\u4e22",
- "20004_ord": "\u4e24",
- "20005_ord": "\u4e25",
- "20007_ord": "\u4e27",
- "20010_ord": "\u4e2a",
- "20011_ord": "\u4e2b",
- "20013_ord": "\u4e2d",
- "20016_ord": "\u4e30",
- "20018_ord": "\u4e32",
- "20020_ord": "\u4e34",
- "20024_ord": "\u4e38",
- "20025_ord": "\u4e39",
- "20026_ord": "\u4e3a",
- "20027_ord": "\u4e3b",
- "20029_ord": "\u4e3d",
- "20030_ord": "\u4e3e",
- "20034_ord": "\u4e42",
- "20035_ord": "\u4e43",
- "20037_ord": "\u4e45",
- "20040_ord": "\u4e48",
- "20041_ord": "\u4e49",
- "20043_ord": "\u4e4b",
- "20044_ord": "\u4e4c",
- "20045_ord": "\u4e4d",
- "20046_ord": "\u4e4e",
- "20047_ord": "\u4e4f",
- "20048_ord": "\u4e50",
- "20050_ord": "\u4e52",
- "20051_ord": "\u4e53",
- "20052_ord": "\u4e54",
- "20054_ord": "\u4e56",
- "20056_ord": "\u4e58",
- "20057_ord": "\u4e59",
- "20061_ord": "\u4e5d",
- "20062_ord": "\u4e5e",
- "20063_ord": "\u4e5f",
- "20064_ord": "\u4e60",
- "20065_ord": "\u4e61",
- "20070_ord": "\u4e66",
- "20073_ord": "\u4e69",
- "20080_ord": "\u4e70",
- "20081_ord": "\u4e71",
- "20083_ord": "\u4e73",
- "20094_ord": "\u4e7e",
- "20102_ord": "\u4e86",
- "20104_ord": "\u4e88",
- "20105_ord": "\u4e89",
- "20107_ord": "\u4e8b",
- "20108_ord": "\u4e8c",
- "20110_ord": "\u4e8e",
- "20111_ord": "\u4e8f",
- "20113_ord": "\u4e91",
- "20114_ord": "\u4e92",
- "20115_ord": "\u4e93",
- "20116_ord": "\u4e94",
- "20117_ord": "\u4e95",
- "20120_ord": "\u4e98",
- "20122_ord": "\u4e9a",
- "20123_ord": "\u4e9b",
- "20127_ord": "\u4e9f",
- "20129_ord": "\u4ea1",
- "20130_ord": "\u4ea2",
- "20132_ord": "\u4ea4",
- "20133_ord": "\u4ea5",
- "20134_ord": "\u4ea6",
- "20135_ord": "\u4ea7",
- "20136_ord": "\u4ea8",
- "20137_ord": "\u4ea9",
- "20139_ord": "\u4eab",
- "20140_ord": "\u4eac",
- "20141_ord": "\u4ead",
- "20142_ord": "\u4eae",
- "20146_ord": "\u4eb2",
- "20147_ord": "\u4eb3",
- "20149_ord": "\u4eb5",
- "20150_ord": "\u4eb6",
- "20154_ord": "\u4eba",
- "20159_ord": "\u4ebf",
- "20160_ord": "\u4ec0",
- "20161_ord": "\u4ec1",
- "20163_ord": "\u4ec3",
- "20164_ord": "\u4ec4",
- "20165_ord": "\u4ec5",
- "20166_ord": "\u4ec6",
- "20167_ord": "\u4ec7",
- "20170_ord": "\u4eca",
- "20171_ord": "\u4ecb",
- "20173_ord": "\u4ecd",
- "20174_ord": "\u4ece",
- "20177_ord": "\u4ed1",
- "20179_ord": "\u4ed3",
- "20180_ord": "\u4ed4",
- "20181_ord": "\u4ed5",
- "20182_ord": "\u4ed6",
- "20183_ord": "\u4ed7",
- "20184_ord": "\u4ed8",
- "20185_ord": "\u4ed9",
- "20190_ord": "\u4ede",
- "20193_ord": "\u4ee1",
- "20195_ord": "\u4ee3",
- "20196_ord": "\u4ee4",
- "20197_ord": "\u4ee5",
- "20202_ord": "\u4eea",
- "20203_ord": "\u4eeb",
- "20204_ord": "\u4eec",
- "20208_ord": "\u4ef0",
- "20210_ord": "\u4ef2",
- "20214_ord": "\u4ef6",
- "20215_ord": "\u4ef7",
- "20219_ord": "\u4efb",
- "20221_ord": "\u4efd",
- "20223_ord": "\u4eff",
- "20225_ord": "\u4f01",
- "20233_ord": "\u4f09",
- "20234_ord": "\u4f0a",
- "20237_ord": "\u4f0d",
- "20238_ord": "\u4f0e",
- "20239_ord": "\u4f0f",
- "20240_ord": "\u4f10",
- "20241_ord": "\u4f11",
- "20247_ord": "\u4f17",
- "20248_ord": "\u4f18",
- "20249_ord": "\u4f19",
- "20250_ord": "\u4f1a",
- "20251_ord": "\u4f1b",
- "20254_ord": "\u4f1e",
- "20255_ord": "\u4f1f",
- "20256_ord": "\u4f20",
- "20260_ord": "\u4f24",
- "20262_ord": "\u4f26",
- "20263_ord": "\u4f27",
- "20266_ord": "\u4f2a",
- "20267_ord": "\u4f2b",
- "20271_ord": "\u4f2f",
- "20272_ord": "\u4f30",
- "20276_ord": "\u4f34",
- "20278_ord": "\u4f36",
- "20280_ord": "\u4f38",
- "20282_ord": "\u4f3a",
- "20283_ord": "\u4f3b",
- "20284_ord": "\u4f3c",
- "20285_ord": "\u4f3d",
- "20291_ord": "\u4f43",
- "20294_ord": "\u4f46",
- "20296_ord": "\u4f48",
- "20301_ord": "\u4f4d",
- "20302_ord": "\u4f4e",
- "20303_ord": "\u4f4f",
- "20304_ord": "\u4f50",
- "20305_ord": "\u4f51",
- "20307_ord": "\u4f53",
- "20309_ord": "\u4f55",
- "20311_ord": "\u4f57",
- "20312_ord": "\u4f58",
- "20313_ord": "\u4f59",
- "20314_ord": "\u4f5a",
- "20315_ord": "\u4f5b",
- "20316_ord": "\u4f5c",
- "20317_ord": "\u4f5d",
- "20318_ord": "\u4f5e",
- "20319_ord": "\u4f5f",
- "20320_ord": "\u4f60",
- "20323_ord": "\u4f63",
- "20324_ord": "\u4f64",
- "20329_ord": "\u4f69",
- "20332_ord": "\u4f6c",
- "20335_ord": "\u4f6f",
- "20336_ord": "\u4f70",
- "20339_ord": "\u4f73",
- "20342_ord": "\u4f76",
- "20347_ord": "\u4f7b",
- "20348_ord": "\u4f7c",
- "20351_ord": "\u4f7f",
- "20355_ord": "\u4f83",
- "20356_ord": "\u4f84",
- "20360_ord": "\u4f88",
- "20363_ord": "\u4f8b",
- "20365_ord": "\u4f8d",
- "20367_ord": "\u4f8f",
- "20369_ord": "\u4f91",
- "20372_ord": "\u4f94",
- "20375_ord": "\u4f97",
- "20379_ord": "\u4f9b",
- "20381_ord": "\u4f9d",
- "20384_ord": "\u4fa0",
- "20387_ord": "\u4fa3",
- "20389_ord": "\u4fa5",
- "20390_ord": "\u4fa6",
- "20391_ord": "\u4fa7",
- "20392_ord": "\u4fa8",
- "20393_ord": "\u4fa9",
- "20394_ord": "\u4faa",
- "20396_ord": "\u4fac",
- "20398_ord": "\u4fae",
- "20399_ord": "\u4faf",
- "20405_ord": "\u4fb5",
- "20415_ord": "\u4fbf",
- "20419_ord": "\u4fc3",
- "20420_ord": "\u4fc4",
- "20421_ord": "\u4fc5",
- "20426_ord": "\u4fca",
- "20430_ord": "\u4fce",
- "20431_ord": "\u4fcf",
- "20432_ord": "\u4fd0",
- "20433_ord": "\u4fd1",
- "20439_ord": "\u4fd7",
- "20440_ord": "\u4fd8",
- "20442_ord": "\u4fda",
- "20443_ord": "\u4fdb",
- "20445_ord": "\u4fdd",
- "20446_ord": "\u4fde",
- "20447_ord": "\u4fdf",
- "20449_ord": "\u4fe1",
- "20454_ord": "\u4fe6",
- "20456_ord": "\u4fe8",
- "20457_ord": "\u4fe9",
- "20458_ord": "\u4fea",
- "20461_ord": "\u4fed",
- "20462_ord": "\u4fee",
- "20463_ord": "\u4fef",
- "20465_ord": "\u4ff1",
- "20467_ord": "\u4ff3",
- "20472_ord": "\u4ff8",
- "20474_ord": "\u4ffa",
- "20478_ord": "\u4ffe",
- "20493_ord": "\u500d",
- "20495_ord": "\u500f",
- "20498_ord": "\u5012",
- "20500_ord": "\u5014",
- "20504_ord": "\u5018",
- "20505_ord": "\u5019",
- "20506_ord": "\u501a",
- "20508_ord": "\u501c",
- "20511_ord": "\u501f",
- "20513_ord": "\u5021",
- "20518_ord": "\u5026",
- "20520_ord": "\u5028",
- "20521_ord": "\u5029",
- "20522_ord": "\u502a",
- "20524_ord": "\u502c",
- "20525_ord": "\u502d",
- "20538_ord": "\u503a",
- "20540_ord": "\u503c",
- "20542_ord": "\u503e",
- "20547_ord": "\u5043",
- "20551_ord": "\u5047",
- "20552_ord": "\u5048",
- "20556_ord": "\u504c",
- "20558_ord": "\u504e",
- "20559_ord": "\u504f",
- "20565_ord": "\u5055",
- "20570_ord": "\u505a",
- "20572_ord": "\u505c",
- "20581_ord": "\u5065",
- "20598_ord": "\u5076",
- "20599_ord": "\u5077",
- "20603_ord": "\u507b",
- "20607_ord": "\u507f",
- "20608_ord": "\u5080",
- "20613_ord": "\u5085",
- "20616_ord": "\u5088",
- "20621_ord": "\u508d",
- "20629_ord": "\u5095",
- "20643_ord": "\u50a3",
- "20645_ord": "\u50a5",
- "20648_ord": "\u50a8",
- "20649_ord": "\u50a9",
- "20652_ord": "\u50ac",
- "20658_ord": "\u50b2",
- "20667_ord": "\u50bb",
- "20687_ord": "\u50cf",
- "20694_ord": "\u50d6",
- "20698_ord": "\u50da",
- "20710_ord": "\u50e6",
- "20711_ord": "\u50e7",
- "20717_ord": "\u50ed",
- "20718_ord": "\u50ee",
- "20723_ord": "\u50f3",
- "20725_ord": "\u50f5",
- "20729_ord": "\u50f9",
- "20731_ord": "\u50fb",
- "20742_ord": "\u5106",
- "20743_ord": "\u5107",
- "20747_ord": "\u510b",
- "20754_ord": "\u5112",
- "20769_ord": "\u5121",
- "20799_ord": "\u513f",
- "20800_ord": "\u5140",
- "20801_ord": "\u5141",
- "20803_ord": "\u5143",
- "20804_ord": "\u5144",
- "20805_ord": "\u5145",
- "20806_ord": "\u5146",
- "20808_ord": "\u5148",
- "20809_ord": "\u5149",
- "20811_ord": "\u514b",
- "20813_ord": "\u514d",
- "20817_ord": "\u5151",
- "20818_ord": "\u5152",
- "20820_ord": "\u5154",
- "20821_ord": "\u5155",
- "20822_ord": "\u5156",
- "20826_ord": "\u515a",
- "20828_ord": "\u515c",
- "20834_ord": "\u5162",
- "20837_ord": "\u5165",
- "20840_ord": "\u5168",
- "20843_ord": "\u516b",
- "20844_ord": "\u516c",
- "20845_ord": "\u516d",
- "20846_ord": "\u516e",
- "20848_ord": "\u5170",
- "20849_ord": "\u5171",
- "20851_ord": "\u5173",
- "20852_ord": "\u5174",
- "20853_ord": "\u5175",
- "20854_ord": "\u5176",
- "20855_ord": "\u5177",
- "20856_ord": "\u5178",
- "20857_ord": "\u5179",
- "20859_ord": "\u517b",
- "20860_ord": "\u517c",
- "20861_ord": "\u517d",
- "20864_ord": "\u5180",
- "20865_ord": "\u5181",
- "20869_ord": "\u5185",
- "20872_ord": "\u5188",
- "20873_ord": "\u5189",
- "20876_ord": "\u518c",
- "20877_ord": "\u518d",
- "20879_ord": "\u518f",
- "20881_ord": "\u5191",
- "20882_ord": "\u5192",
- "20885_ord": "\u5195",
- "20887_ord": "\u5197",
- "20889_ord": "\u5199",
- "20891_ord": "\u519b",
- "20892_ord": "\u519c",
- "20896_ord": "\u51a0",
- "20898_ord": "\u51a2",
- "20900_ord": "\u51a4",
- "20901_ord": "\u51a5",
- "20908_ord": "\u51ac",
- "20911_ord": "\u51af",
- "20912_ord": "\u51b0",
- "20914_ord": "\u51b2",
- "20915_ord": "\u51b3",
- "20917_ord": "\u51b5",
- "20918_ord": "\u51b6",
- "20919_ord": "\u51b7",
- "20923_ord": "\u51bb",
- "20925_ord": "\u51bd",
- "20928_ord": "\u51c0",
- "20932_ord": "\u51c4",
- "20934_ord": "\u51c6",
- "20935_ord": "\u51c7",
- "20937_ord": "\u51c9",
- "20939_ord": "\u51cb",
- "20940_ord": "\u51cc",
- "20943_ord": "\u51cf",
- "20945_ord": "\u51d1",
- "20955_ord": "\u51db",
- "20957_ord": "\u51dd",
- "20960_ord": "\u51e0",
- "20961_ord": "\u51e1",
- "20964_ord": "\u51e4",
- "20971_ord": "\u51eb",
- "20973_ord": "\u51ed",
- "20975_ord": "\u51ef",
- "20976_ord": "\u51f0",
- "20979_ord": "\u51f3",
- "20982_ord": "\u51f6",
- "20984_ord": "\u51f8",
- "20985_ord": "\u51f9",
- "20986_ord": "\u51fa",
- "20987_ord": "\u51fb",
- "20989_ord": "\u51fd",
- "20991_ord": "\u51ff",
- "20992_ord": "\u5200",
- "20993_ord": "\u5201",
- "20995_ord": "\u5203",
- "20998_ord": "\u5206",
- "20999_ord": "\u5207",
- "21000_ord": "\u5208",
- "21002_ord": "\u520a",
- "21005_ord": "\u520d",
- "21006_ord": "\u520e",
- "21009_ord": "\u5211",
- "21010_ord": "\u5212",
- "21011_ord": "\u5213",
- "21014_ord": "\u5216",
- "21015_ord": "\u5217",
- "21016_ord": "\u5218",
- "21017_ord": "\u5219",
- "21018_ord": "\u521a",
- "21019_ord": "\u521b",
- "21021_ord": "\u521d",
- "21024_ord": "\u5220",
- "21028_ord": "\u5224",
- "21032_ord": "\u5228",
- "21033_ord": "\u5229",
- "21035_ord": "\u522b",
- "21037_ord": "\u522d",
- "21038_ord": "\u522e",
- "21040_ord": "\u5230",
- "21043_ord": "\u5233",
- "21046_ord": "\u5236",
- "21047_ord": "\u5237",
- "21048_ord": "\u5238",
- "21049_ord": "\u5239",
- "21050_ord": "\u523a",
- "21051_ord": "\u523b",
- "21053_ord": "\u523d",
- "21057_ord": "\u5241",
- "21058_ord": "\u5242",
- "21059_ord": "\u5243",
- "21066_ord": "\u524a",
- "21068_ord": "\u524c",
- "21069_ord": "\u524d",
- "21070_ord": "\u524e",
- "21072_ord": "\u5250",
- "21073_ord": "\u5251",
- "21076_ord": "\u5254",
- "21078_ord": "\u5256",
- "21084_ord": "\u525c",
- "21093_ord": "\u5265",
- "21095_ord": "\u5267",
- "21097_ord": "\u5269",
- "21098_ord": "\u526a",
- "21103_ord": "\u526f",
- "21106_ord": "\u5272",
- "21117_ord": "\u527d",
- "21119_ord": "\u527f",
- "21128_ord": "\u5288",
- "21139_ord": "\u5293",
- "21145_ord": "\u5299",
- "21147_ord": "\u529b",
- "21149_ord": "\u529d",
- "21150_ord": "\u529e",
- "21151_ord": "\u529f",
- "21152_ord": "\u52a0",
- "21153_ord": "\u52a1",
- "21155_ord": "\u52a3",
- "21160_ord": "\u52a8",
- "21161_ord": "\u52a9",
- "21162_ord": "\u52aa",
- "21163_ord": "\u52ab",
- "21164_ord": "\u52ac",
- "21165_ord": "\u52ad",
- "21169_ord": "\u52b1",
- "21170_ord": "\u52b2",
- "21171_ord": "\u52b3",
- "21182_ord": "\u52be",
- "21183_ord": "\u52bf",
- "21187_ord": "\u52c3",
- "21191_ord": "\u52c7",
- "21193_ord": "\u52c9",
- "21195_ord": "\u52cb",
- "21200_ord": "\u52d0",
- "21202_ord": "\u52d2",
- "21206_ord": "\u52d6",
- "21208_ord": "\u52d8",
- "21215_ord": "\u52df",
- "21220_ord": "\u52e4",
- "21242_ord": "\u52fa",
- "21246_ord": "\u52fe",
- "21247_ord": "\u52ff",
- "21248_ord": "\u5300",
- "21253_ord": "\u5305",
- "21254_ord": "\u5306",
- "21256_ord": "\u5308",
- "21261_ord": "\u530d",
- "21263_ord": "\u530f",
- "21264_ord": "\u5310",
- "21269_ord": "\u5315",
- "21270_ord": "\u5316",
- "21271_ord": "\u5317",
- "21273_ord": "\u5319",
- "21277_ord": "\u531d",
- "21280_ord": "\u5320",
- "21281_ord": "\u5321",
- "21283_ord": "\u5323",
- "21290_ord": "\u532a",
- "21294_ord": "\u532e",
- "21299_ord": "\u5333",
- "21305_ord": "\u5339",
- "21306_ord": "\u533a",
- "21307_ord": "\u533b",
- "21310_ord": "\u533e",
- "21311_ord": "\u533f",
- "21313_ord": "\u5341",
- "21315_ord": "\u5343",
- "21317_ord": "\u5345",
- "21319_ord": "\u5347",
- "21320_ord": "\u5348",
- "21321_ord": "\u5349",
- "21322_ord": "\u534a",
- "21326_ord": "\u534e",
- "21327_ord": "\u534f",
- "21329_ord": "\u5351",
- "21330_ord": "\u5352",
- "21331_ord": "\u5353",
- "21333_ord": "\u5355",
- "21334_ord": "\u5356",
- "21335_ord": "\u5357",
- "21338_ord": "\u535a",
- "21340_ord": "\u535c",
- "21342_ord": "\u535e",
- "21344_ord": "\u5360",
- "21345_ord": "\u5361",
- "21346_ord": "\u5362",
- "21348_ord": "\u5364",
- "21350_ord": "\u5366",
- "21351_ord": "\u5367",
- "21355_ord": "\u536b",
- "21356_ord": "\u536c",
- "21358_ord": "\u536e",
- "21359_ord": "\u536f",
- "21360_ord": "\u5370",
- "21361_ord": "\u5371",
- "21363_ord": "\u5373",
- "21364_ord": "\u5374",
- "21365_ord": "\u5375",
- "21367_ord": "\u5377",
- "21368_ord": "\u5378",
- "21370_ord": "\u537a",
- "21375_ord": "\u537f",
- "21378_ord": "\u5382",
- "21380_ord": "\u5384",
- "21381_ord": "\u5385",
- "21382_ord": "\u5386",
- "21385_ord": "\u5389",
- "21387_ord": "\u538b",
- "21388_ord": "\u538c",
- "21389_ord": "\u538d",
- "21397_ord": "\u5395",
- "21400_ord": "\u5398",
- "21402_ord": "\u539a",
- "21405_ord": "\u539d",
- "21407_ord": "\u539f",
- "21410_ord": "\u53a2",
- "21413_ord": "\u53a5",
- "21414_ord": "\u53a6",
- "21416_ord": "\u53a8",
- "21417_ord": "\u53a9",
- "21422_ord": "\u53ae",
- "21435_ord": "\u53bb",
- "21439_ord": "\u53bf",
- "21442_ord": "\u53c2",
- "21448_ord": "\u53c8",
- "21449_ord": "\u53c9",
- "21450_ord": "\u53ca",
- "21451_ord": "\u53cb",
- "21452_ord": "\u53cc",
- "21453_ord": "\u53cd",
- "21457_ord": "\u53d1",
- "21460_ord": "\u53d4",
- "21462_ord": "\u53d6",
- "21463_ord": "\u53d7",
- "21464_ord": "\u53d8",
- "21465_ord": "\u53d9",
- "21467_ord": "\u53db",
- "21471_ord": "\u53df",
- "21472_ord": "\u53e0",
- "21473_ord": "\u53e1",
- "21475_ord": "\u53e3",
- "21476_ord": "\u53e4",
- "21477_ord": "\u53e5",
- "21478_ord": "\u53e6",
- "21480_ord": "\u53e8",
- "21481_ord": "\u53e9",
- "21482_ord": "\u53ea",
- "21483_ord": "\u53eb",
- "21484_ord": "\u53ec",
- "21485_ord": "\u53ed",
- "21486_ord": "\u53ee",
- "21487_ord": "\u53ef",
- "21488_ord": "\u53f0",
- "21489_ord": "\u53f1",
- "21490_ord": "\u53f2",
- "21491_ord": "\u53f3",
- "21493_ord": "\u53f5",
- "21494_ord": "\u53f6",
- "21495_ord": "\u53f7",
- "21496_ord": "\u53f8",
- "21497_ord": "\u53f9",
- "21500_ord": "\u53fc",
- "21501_ord": "\u53fd",
- "21505_ord": "\u5401",
- "21507_ord": "\u5403",
- "21508_ord": "\u5404",
- "21510_ord": "\u5406",
- "21512_ord": "\u5408",
- "21513_ord": "\u5409",
- "21514_ord": "\u540a",
- "21516_ord": "\u540c",
- "21517_ord": "\u540d",
- "21518_ord": "\u540e",
- "21519_ord": "\u540f",
- "21520_ord": "\u5410",
- "21521_ord": "\u5411",
- "21522_ord": "\u5412",
- "21523_ord": "\u5413",
- "21525_ord": "\u5415",
- "21527_ord": "\u5417",
- "21531_ord": "\u541b",
- "21533_ord": "\u541d",
- "21534_ord": "\u541e",
- "21535_ord": "\u541f",
- "21536_ord": "\u5420",
- "21542_ord": "\u5426",
- "21543_ord": "\u5427",
- "21544_ord": "\u5428",
- "21545_ord": "\u5429",
- "21547_ord": "\u542b",
- "21548_ord": "\u542c",
- "21549_ord": "\u542d",
- "21550_ord": "\u542e",
- "21551_ord": "\u542f",
- "21553_ord": "\u5431",
- "21556_ord": "\u5434",
- "21557_ord": "\u5435",
- "21560_ord": "\u5438",
- "21561_ord": "\u5439",
- "21563_ord": "\u543b",
- "21564_ord": "\u543c",
- "21566_ord": "\u543e",
- "21568_ord": "\u5440",
- "21571_ord": "\u5443",
- "21574_ord": "\u5446",
- "21576_ord": "\u5448",
- "21578_ord": "\u544a",
- "21584_ord": "\u5450",
- "21587_ord": "\u5453",
- "21589_ord": "\u5455",
- "21591_ord": "\u5457",
- "21592_ord": "\u5458",
- "21595_ord": "\u545b",
- "21596_ord": "\u545c",
- "215_ord": "\u00d7",
- "21602_ord": "\u5462",
- "21604_ord": "\u5464",
- "21606_ord": "\u5466",
- "21608_ord": "\u5468",
- "21617_ord": "\u5471",
- "21619_ord": "\u5473",
- "21621_ord": "\u5475",
- "21622_ord": "\u5476",
- "21623_ord": "\u5477",
- "21627_ord": "\u547b",
- "21628_ord": "\u547c",
- "21629_ord": "\u547d",
- "21632_ord": "\u5480",
- "21634_ord": "\u5482",
- "21636_ord": "\u5484",
- "21638_ord": "\u5486",
- "21643_ord": "\u548b",
- "21644_ord": "\u548c",
- "21646_ord": "\u548e",
- "21647_ord": "\u548f",
- "21648_ord": "\u5490",
- "21650_ord": "\u5492",
- "21652_ord": "\u5494",
- "21653_ord": "\u5495",
- "21654_ord": "\u5496",
- "21657_ord": "\u5499",
- "21658_ord": "\u549a",
- "21659_ord": "\u549b",
- "21667_ord": "\u54a3",
- "21668_ord": "\u54a4",
- "21670_ord": "\u54a6",
- "21671_ord": "\u54a7",
- "21672_ord": "\u54a8",
- "21674_ord": "\u54aa",
- "21675_ord": "\u54ab",
- "21676_ord": "\u54ac",
- "21679_ord": "\u54af",
- "21681_ord": "\u54b1",
- "21683_ord": "\u54b3",
- "21688_ord": "\u54b8",
- "21691_ord": "\u54bb",
- "21693_ord": "\u54bd",
- "21695_ord": "\u54bf",
- "21696_ord": "\u54c0",
- "21697_ord": "\u54c1",
- "21698_ord": "\u54c2",
- "21700_ord": "\u54c4",
- "21702_ord": "\u54c6",
- "21703_ord": "\u54c7",
- "21704_ord": "\u54c8",
- "21705_ord": "\u54c9",
- "21708_ord": "\u54cc",
- "21709_ord": "\u54cd",
- "21710_ord": "\u54ce",
- "21711_ord": "\u54cf",
- "21713_ord": "\u54d1",
- "21719_ord": "\u54d7",
- "21721_ord": "\u54d9",
- "21725_ord": "\u54dd",
- "21727_ord": "\u54df",
- "21733_ord": "\u54e5",
- "21734_ord": "\u54e6",
- "21735_ord": "\u54e7",
- "21736_ord": "\u54e8",
- "21737_ord": "\u54e9",
- "21738_ord": "\u54ea",
- "21741_ord": "\u54ed",
- "21742_ord": "\u54ee",
- "21746_ord": "\u54f2",
- "21754_ord": "\u54fa",
- "21756_ord": "\u54fc",
- "21757_ord": "\u54fd",
- "21761_ord": "\u5501",
- "21766_ord": "\u5506",
- "21767_ord": "\u5507",
- "21769_ord": "\u5509",
- "21775_ord": "\u550f",
- "21776_ord": "\u5510",
- "21777_ord": "\u5511",
- "21780_ord": "\u5514",
- "21792_ord": "\u5520",
- "21794_ord": "\u5522",
- "21796_ord": "\u5524",
- "21799_ord": "\u5527",
- "21804_ord": "\u552c",
- "21806_ord": "\u552e",
- "21807_ord": "\u552f",
- "21809_ord": "\u5531",
- "21811_ord": "\u5533",
- "21814_ord": "\u5536",
- "21822_ord": "\u553e",
- "21823_ord": "\u553f",
- "21825_ord": "\u5541",
- "21827_ord": "\u5543",
- "21828_ord": "\u5544",
- "21830_ord": "\u5546",
- "21834_ord": "\u554a",
- "21840_ord": "\u5550",
- "21845_ord": "\u5555",
- "21846_ord": "\u5556",
- "21852_ord": "\u555c",
- "21857_ord": "\u5561",
- "21860_ord": "\u5564",
- "21861_ord": "\u5565",
- "21862_ord": "\u5566",
- "21863_ord": "\u5567",
- "21866_ord": "\u556a",
- "21868_ord": "\u556c",
- "21870_ord": "\u556e",
- "21872_ord": "\u5570",
- "21878_ord": "\u5576",
- "21880_ord": "\u5578",
- "21883_ord": "\u557b",
- "21884_ord": "\u557c",
- "21886_ord": "\u557e",
- "21888_ord": "\u5580",
- "21889_ord": "\u5581",
- "21890_ord": "\u5582",
- "21891_ord": "\u5583",
- "21892_ord": "\u5584",
- "21894_ord": "\u5586",
- "21895_ord": "\u5587",
- "21897_ord": "\u5589",
- "21898_ord": "\u558a",
- "21899_ord": "\u558b",
- "21903_ord": "\u558f",
- "21905_ord": "\u5591",
- "21908_ord": "\u5594",
- "21912_ord": "\u5598",
- "21913_ord": "\u5599",
- "21916_ord": "\u559c",
- "21917_ord": "\u559d",
- "21919_ord": "\u559f",
- "21927_ord": "\u55a7",
- "21937_ord": "\u55b1",
- "21939_ord": "\u55b3",
- "21943_ord": "\u55b7",
- "21945_ord": "\u55b9",
- "21947_ord": "\u55bb",
- "21949_ord": "\u55bd",
- "21950_ord": "\u55be",
- "21956_ord": "\u55c4",
- "21957_ord": "\u55c5",
- "21964_ord": "\u55cc",
- "21969_ord": "\u55d1",
- "21970_ord": "\u55d2",
- "21971_ord": "\u55d3",
- "21972_ord": "\u55d4",
- "21974_ord": "\u55d6",
- "21979_ord": "\u55db",
- "21980_ord": "\u55dc",
- "21981_ord": "\u55dd",
- "21983_ord": "\u55df",
- "21985_ord": "\u55e1",
- "21987_ord": "\u55e3",
- "21988_ord": "\u55e4",
- "21989_ord": "\u55e5",
- "21990_ord": "\u55e6",
- "21992_ord": "\u55e8",
- "21994_ord": "\u55ea",
- "21995_ord": "\u55eb",
- "21999_ord": "\u55ef",
- "22002_ord": "\u55f2",
- "22003_ord": "\u55f3",
- "22007_ord": "\u55f7",
- "22013_ord": "\u55fd",
- "22014_ord": "\u55fe",
- "22016_ord": "\u5600",
- "22024_ord": "\u5608",
- "22025_ord": "\u5609",
- "22028_ord": "\u560c",
- "22030_ord": "\u560e",
- "22040_ord": "\u5618",
- "22043_ord": "\u561b",
- "22047_ord": "\u561f",
- "22052_ord": "\u5624",
- "22061_ord": "\u562d",
- "22065_ord": "\u5631",
- "22066_ord": "\u5632",
- "22068_ord": "\u5634",
- "22070_ord": "\u5636",
- "22073_ord": "\u5639",
- "22075_ord": "\u563b",
- "22079_ord": "\u563f",
- "22089_ord": "\u5649",
- "22092_ord": "\u564c",
- "22094_ord": "\u564e",
- "22100_ord": "\u5654",
- "22103_ord": "\u5657",
- "22105_ord": "\u5659",
- "22108_ord": "\u565c",
- "22114_ord": "\u5662",
- "22116_ord": "\u5664",
- "22120_ord": "\u5668",
- "22121_ord": "\u5669",
- "22122_ord": "\u566a",
- "22123_ord": "\u566b",
- "22124_ord": "\u566c",
- "22125_ord": "\u566d",
- "22129_ord": "\u5671",
- "22134_ord": "\u5676",
- "22139_ord": "\u567b",
- "22149_ord": "\u5685",
- "22158_ord": "\u568e",
- "22159_ord": "\u568f",
- "22163_ord": "\u5693",
- "22179_ord": "\u56a3",
- "22188_ord": "\u56ac",
- "22199_ord": "\u56b7",
- "22204_ord": "\u56bc",
- "22218_ord": "\u56ca",
- "22228_ord": "\u56d4",
- "22234_ord": "\u56da",
- "22235_ord": "\u56db",
- "22238_ord": "\u56de",
- "22240_ord": "\u56e0",
- "22242_ord": "\u56e2",
- "22244_ord": "\u56e4",
- "22251_ord": "\u56eb",
- "22253_ord": "\u56ed",
- "22256_ord": "\u56f0",
- "22257_ord": "\u56f1",
- "22260_ord": "\u56f4",
- "22261_ord": "\u56f5",
- "22265_ord": "\u56f9",
- "22266_ord": "\u56fa",
- "22269_ord": "\u56fd",
- "22270_ord": "\u56fe",
- "22271_ord": "\u56ff",
- "22275_ord": "\u5703",
- "22276_ord": "\u5704",
- "22278_ord": "\u5706",
- "22280_ord": "\u5708",
- "22281_ord": "\u5709",
- "22300_ord": "\u571c",
- "22303_ord": "\u571f",
- "22307_ord": "\u5723",
- "22312_ord": "\u5728",
- "22313_ord": "\u5729",
- "22317_ord": "\u572d",
- "22319_ord": "\u572f",
- "22320_ord": "\u5730",
- "22323_ord": "\u5733",
- "22329_ord": "\u5739",
- "22330_ord": "\u573a",
- "22334_ord": "\u573e",
- "22336_ord": "\u5740",
- "22338_ord": "\u5742",
- "22343_ord": "\u5747",
- "22346_ord": "\u574a",
- "22348_ord": "\u574c",
- "22349_ord": "\u574d",
- "22350_ord": "\u574e",
- "22351_ord": "\u574f",
- "22352_ord": "\u5750",
- "22353_ord": "\u5751",
- "22359_ord": "\u5757",
- "22362_ord": "\u575a",
- "22363_ord": "\u575b",
- "22365_ord": "\u575d",
- "22366_ord": "\u575e",
- "22367_ord": "\u575f",
- "22368_ord": "\u5760",
- "22369_ord": "\u5761",
- "22372_ord": "\u5764",
- "22374_ord": "\u5766",
- "22376_ord": "\u5768",
- "22378_ord": "\u576a",
- "22381_ord": "\u576d",
- "22383_ord": "\u576f",
- "22387_ord": "\u5773",
- "22391_ord": "\u5777",
- "22396_ord": "\u577c",
- "22402_ord": "\u5782",
- "22403_ord": "\u5783",
- "22404_ord": "\u5784",
- "22411_ord": "\u578b",
- "22418_ord": "\u5792",
- "22419_ord": "\u5793",
- "22427_ord": "\u579b",
- "22429_ord": "\u579d",
- "22432_ord": "\u57a0",
- "22434_ord": "\u57a2",
- "22435_ord": "\u57a3",
- "22438_ord": "\u57a6",
- "22441_ord": "\u57a9",
- "22443_ord": "\u57ab",
- "22446_ord": "\u57ae",
- "22467_ord": "\u57c3",
- "22475_ord": "\u57cb",
- "22478_ord": "\u57ce",
- "22482_ord": "\u57d2",
- "22484_ord": "\u57d4",
- "22495_ord": "\u57df",
- "22496_ord": "\u57e0",
- "224_ord": "\u00e0",
- "22500_ord": "\u57e4",
- "22521_ord": "\u57f9",
- "22522_ord": "\u57fa",
- "22530_ord": "\u5802",
- "22531_ord": "\u5803",
- "22534_ord": "\u5806",
- "22545_ord": "\u5811",
- "22549_ord": "\u5815",
- "22553_ord": "\u5819",
- "22561_ord": "\u5821",
- "22564_ord": "\u5824",
- "22570_ord": "\u582a",
- "22576_ord": "\u5830",
- "22581_ord": "\u5835",
- "22604_ord": "\u584c",
- "22609_ord": "\u5851",
- "22612_ord": "\u5854",
- "22616_ord": "\u5858",
- "22622_ord": "\u585e",
- "22635_ord": "\u586b",
- "22654_ord": "\u587e",
- "22656_ord": "\u5880",
- "22659_ord": "\u5883",
- "22661_ord": "\u5885",
- "22665_ord": "\u5889",
- "22675_ord": "\u5893",
- "22681_ord": "\u5899",
- "22686_ord": "\u589e",
- "22687_ord": "\u589f",
- "22688_ord": "\u58a0",
- "22696_ord": "\u58a8",
- "22697_ord": "\u58a9",
- "22721_ord": "\u58c1",
- "22725_ord": "\u58c5",
- "22737_ord": "\u58d1",
- "22741_ord": "\u58d5",
- "22756_ord": "\u58e4",
- "22763_ord": "\u58eb",
- "22764_ord": "\u58ec",
- "22766_ord": "\u58ee",
- "22768_ord": "\u58f0",
- "22771_ord": "\u58f3",
- "22774_ord": "\u58f6",
- "22777_ord": "\u58f9",
- "22788_ord": "\u5904",
- "22791_ord": "\u5907",
- "22797_ord": "\u590d",
- "22799_ord": "\u590f",
- "22804_ord": "\u5914",
- "22805_ord": "\u5915",
- "22806_ord": "\u5916",
- "22809_ord": "\u5919",
- "22810_ord": "\u591a",
- "22812_ord": "\u591c",
- "22815_ord": "\u591f",
- "22820_ord": "\u5924",
- "22821_ord": "\u5925",
- "22823_ord": "\u5927",
- "22825_ord": "\u5929",
- "22826_ord": "\u592a",
- "22827_ord": "\u592b",
- "22829_ord": "\u592d",
- "22830_ord": "\u592e",
- "22831_ord": "\u592f",
- "22833_ord": "\u5931",
- "22836_ord": "\u5934",
- "22839_ord": "\u5937",
- "22840_ord": "\u5938",
- "22841_ord": "\u5939",
- "22842_ord": "\u593a",
- "22849_ord": "\u5941",
- "22850_ord": "\u5942",
- "22852_ord": "\u5944",
- "22855_ord": "\u5947",
- "22856_ord": "\u5948",
- "22857_ord": "\u5949",
- "22859_ord": "\u594b",
- "22862_ord": "\u594e",
- "22863_ord": "\u594f",
- "22865_ord": "\u5951",
- "22868_ord": "\u5954",
- "22869_ord": "\u5955",
- "22870_ord": "\u5956",
- "22871_ord": "\u5957",
- "22872_ord": "\u5958",
- "22874_ord": "\u595a",
- "22880_ord": "\u5960",
- "22882_ord": "\u5962",
- "22885_ord": "\u5965",
- "22893_ord": "\u596d",
- "22899_ord": "\u5973",
- "22900_ord": "\u5974",
- "22902_ord": "\u5976",
- "22904_ord": "\u5978",
- "22905_ord": "\u5979",
- "22909_ord": "\u597d",
- "22913_ord": "\u5981",
- "22914_ord": "\u5982",
- "22915_ord": "\u5983",
- "22916_ord": "\u5984",
- "22918_ord": "\u5986",
- "22919_ord": "\u5987",
- "22920_ord": "\u5988",
- "22922_ord": "\u598a",
- "22925_ord": "\u598d",
- "22930_ord": "\u5992",
- "22931_ord": "\u5993",
- "22934_ord": "\u5996",
- "22935_ord": "\u5997",
- "22937_ord": "\u5999",
- "22942_ord": "\u599e",
- "22948_ord": "\u59a4",
- "22949_ord": "\u59a5",
- "22952_ord": "\u59a8",
- "22953_ord": "\u59a9",
- "22954_ord": "\u59aa",
- "22958_ord": "\u59ae",
- "22962_ord": "\u59b2",
- "22963_ord": "\u59b3",
- "22969_ord": "\u59b9",
- "22971_ord": "\u59bb",
- "22974_ord": "\u59be",
- "22977_ord": "\u59c1",
- "22982_ord": "\u59c6",
- "22986_ord": "\u59ca",
- "22987_ord": "\u59cb",
- "22992_ord": "\u59d0",
- "22993_ord": "\u59d1",
- "22994_ord": "\u59d2",
- "22995_ord": "\u59d3",
- "22996_ord": "\u59d4",
- "22999_ord": "\u59d7",
- "23002_ord": "\u59da",
- "23004_ord": "\u59dc",
- "23005_ord": "\u59dd",
- "23011_ord": "\u59e3",
- "23013_ord": "\u59e5",
- "23016_ord": "\u59e8",
- "23020_ord": "\u59ec",
- "23022_ord": "\u59ee",
- "23033_ord": "\u59f9",
- "23035_ord": "\u59fb",
- "23039_ord": "\u59ff",
- "23041_ord": "\u5a01",
- "23043_ord": "\u5a03",
- "23044_ord": "\u5a04",
- "23045_ord": "\u5a05",
- "23046_ord": "\u5a06",
- "23047_ord": "\u5a07",
- "23048_ord": "\u5a08",
- "23049_ord": "\u5a09",
- "23057_ord": "\u5a11",
- "23059_ord": "\u5a13",
- "23064_ord": "\u5a18",
- "23068_ord": "\u5a1c",
- "23071_ord": "\u5a1f",
- "23072_ord": "\u5a20",
- "23073_ord": "\u5a21",
- "23075_ord": "\u5a23",
- "23077_ord": "\u5a25",
- "23081_ord": "\u5a29",
- "23089_ord": "\u5a31",
- "23090_ord": "\u5a32",
- "23092_ord": "\u5a34",
- "23094_ord": "\u5a36",
- "23100_ord": "\u5a3c",
- "23104_ord": "\u5a40",
- "23110_ord": "\u5a46",
- "23113_ord": "\u5a49",
- "23114_ord": "\u5a4a",
- "23125_ord": "\u5a55",
- "23130_ord": "\u5a5a",
- "23138_ord": "\u5a62",
- "23143_ord": "\u5a67",
- "23146_ord": "\u5a6a",
- "23156_ord": "\u5a74",
- "23158_ord": "\u5a76",
- "23159_ord": "\u5a77",
- "23162_ord": "\u5a7a",
- "23167_ord": "\u5a7f",
- "23186_ord": "\u5a92",
- "23194_ord": "\u5a9a",
- "23195_ord": "\u5a9b",
- "23210_ord": "\u5aaa",
- "23218_ord": "\u5ab2",
- "23219_ord": "\u5ab3",
- "23221_ord": "\u5ab5",
- "23224_ord": "\u5ab8",
- "23230_ord": "\u5abe",
- "23233_ord": "\u5ac1",
- "23234_ord": "\u5ac2",
- "23241_ord": "\u5ac9",
- "23244_ord": "\u5acc",
- "23252_ord": "\u5ad4",
- "23254_ord": "\u5ad6",
- "23258_ord": "\u5ada",
- "23260_ord": "\u5adc",
- "23265_ord": "\u5ae1",
- "23267_ord": "\u5ae3",
- "23270_ord": "\u5ae6",
- "23273_ord": "\u5ae9",
- "23274_ord": "\u5aea",
- "23281_ord": "\u5af1",
- "23305_ord": "\u5b09",
- "23318_ord": "\u5b16",
- "23319_ord": "\u5b17",
- "23323_ord": "\u5b1b",
- "23348_ord": "\u5b34",
- "23360_ord": "\u5b40",
- "23376_ord": "\u5b50",
- "23377_ord": "\u5b51",
- "23380_ord": "\u5b54",
- "23381_ord": "\u5b55",
- "23383_ord": "\u5b57",
- "23384_ord": "\u5b58",
- "23385_ord": "\u5b59",
- "23386_ord": "\u5b5a",
- "23387_ord": "\u5b5b",
- "23388_ord": "\u5b5c",
- "23389_ord": "\u5b5d",
- "23391_ord": "\u5b5f",
- "23394_ord": "\u5b62",
- "23395_ord": "\u5b63",
- "23396_ord": "\u5b64",
- "23397_ord": "\u5b65",
- "23398_ord": "\u5b66",
- "233_ord": "\u00e9",
- "23401_ord": "\u5b69",
- "23402_ord": "\u5b6a",
- "23408_ord": "\u5b70",
- "23409_ord": "\u5b71",
- "23411_ord": "\u5b73",
- "23413_ord": "\u5b75",
- "23418_ord": "\u5b7a",
- "23421_ord": "\u5b7d",
- "23425_ord": "\u5b81",
- "23427_ord": "\u5b83",
- "23429_ord": "\u5b85",
- "23431_ord": "\u5b87",
- "23432_ord": "\u5b88",
- "23433_ord": "\u5b89",
- "23435_ord": "\u5b8b",
- "23436_ord": "\u5b8c",
- "23439_ord": "\u5b8f",
- "23443_ord": "\u5b93",
- "23445_ord": "\u5b95",
- "23447_ord": "\u5b97",
- "23448_ord": "\u5b98",
- "23449_ord": "\u5b99",
- "23450_ord": "\u5b9a",
- "23451_ord": "\u5b9b",
- "23452_ord": "\u5b9c",
- "23453_ord": "\u5b9d",
- "23454_ord": "\u5b9e",
- "23456_ord": "\u5ba0",
- "23457_ord": "\u5ba1",
- "23458_ord": "\u5ba2",
- "23459_ord": "\u5ba3",
- "23460_ord": "\u5ba4",
- "23461_ord": "\u5ba5",
- "23462_ord": "\u5ba6",
- "23466_ord": "\u5baa",
- "23467_ord": "\u5bab",
- "23472_ord": "\u5bb0",
- "23475_ord": "\u5bb3",
- "23476_ord": "\u5bb4",
- "23477_ord": "\u5bb5",
- "23478_ord": "\u5bb6",
- "23480_ord": "\u5bb8",
- "23481_ord": "\u5bb9",
- "23485_ord": "\u5bbd",
- "23486_ord": "\u5bbe",
- "23487_ord": "\u5bbf",
- "23490_ord": "\u5bc2",
- "23492_ord": "\u5bc4",
- "23493_ord": "\u5bc5",
- "23494_ord": "\u5bc6",
- "23495_ord": "\u5bc7",
- "23500_ord": "\u5bcc",
- "23504_ord": "\u5bd0",
- "23506_ord": "\u5bd2",
- "23507_ord": "\u5bd3",
- "23510_ord": "\u5bd6",
- "23512_ord": "\u5bd8",
- "23517_ord": "\u5bdd",
- "23518_ord": "\u5bde",
- "23519_ord": "\u5bdf",
- "23521_ord": "\u5be1",
- "23524_ord": "\u5be4",
- "23525_ord": "\u5be5",
- "23528_ord": "\u5be8",
- "23536_ord": "\u5bf0",
- "23544_ord": "\u5bf8",
- "23545_ord": "\u5bf9",
- "23546_ord": "\u5bfa",
- "23547_ord": "\u5bfb",
- "23548_ord": "\u5bfc",
- "23551_ord": "\u5bff",
- "23553_ord": "\u5c01",
- "23556_ord": "\u5c04",
- "23558_ord": "\u5c06",
- "23561_ord": "\u5c09",
- "23562_ord": "\u5c0a",
- "23567_ord": "\u5c0f",
- "23569_ord": "\u5c11",
- "23572_ord": "\u5c14",
- "23574_ord": "\u5c16",
- "23576_ord": "\u5c18",
- "23578_ord": "\u5c1a",
- "23581_ord": "\u5c1d",
- "23588_ord": "\u5c24",
- "23591_ord": "\u5c27",
- "23596_ord": "\u5c2c",
- "23601_ord": "\u5c31",
- "23604_ord": "\u5c34",
- "23608_ord": "\u5c38",
- "23609_ord": "\u5c39",
- "23610_ord": "\u5c3a",
- "23611_ord": "\u5c3b",
- "23612_ord": "\u5c3c",
- "23613_ord": "\u5c3d",
- "23614_ord": "\u5c3e",
- "23615_ord": "\u5c3f",
- "23616_ord": "\u5c40",
- "23617_ord": "\u5c41",
- "23618_ord": "\u5c42",
- "23621_ord": "\u5c45",
- "23624_ord": "\u5c48",
- "23625_ord": "\u5c49",
- "23626_ord": "\u5c4a",
- "23627_ord": "\u5c4b",
- "23630_ord": "\u5c4e",
- "23631_ord": "\u5c4f",
- "23633_ord": "\u5c51",
- "23637_ord": "\u5c55",
- "23646_ord": "\u5c5e",
- "23648_ord": "\u5c60",
- "23649_ord": "\u5c61",
- "23651_ord": "\u5c63",
- "23653_ord": "\u5c65",
- "23654_ord": "\u5c66",
- "23663_ord": "\u5c6f",
- "23665_ord": "\u5c71",
- "23673_ord": "\u5c79",
- "23679_ord": "\u5c7f",
- "23681_ord": "\u5c81",
- "23682_ord": "\u5c82",
- "23692_ord": "\u5c8c",
- "23696_ord": "\u5c90",
- "23697_ord": "\u5c91",
- "23700_ord": "\u5c94",
- "23702_ord": "\u5c96",
- "23703_ord": "\u5c97",
- "23706_ord": "\u5c9a",
- "23707_ord": "\u5c9b",
- "23721_ord": "\u5ca9",
- "23723_ord": "\u5cab",
- "23724_ord": "\u5cac",
- "23725_ord": "\u5cad",
- "23729_ord": "\u5cb1",
- "23731_ord": "\u5cb3",
- "23735_ord": "\u5cb7",
- "23736_ord": "\u5cb8",
- "23743_ord": "\u5cbf",
- "23748_ord": "\u5cc4",
- "23751_ord": "\u5cc7",
- "23755_ord": "\u5ccb",
- "23762_ord": "\u5cd2",
- "23769_ord": "\u5cd9",
- "23777_ord": "\u5ce1",
- "23780_ord": "\u5ce4",
- "23781_ord": "\u5ce5",
- "23782_ord": "\u5ce6",
- "23784_ord": "\u5ce8",
- "23786_ord": "\u5cea",
- "23789_ord": "\u5ced",
- "23792_ord": "\u5cf0",
- "23803_ord": "\u5cfb",
- "23810_ord": "\u5d02",
- "23811_ord": "\u5d03",
- "23814_ord": "\u5d06",
- "23815_ord": "\u5d07",
- "23822_ord": "\u5d0e",
- "23828_ord": "\u5d14",
- "23830_ord": "\u5d16",
- "23834_ord": "\u5d1a",
- "23835_ord": "\u5d1b",
- "23847_ord": "\u5d27",
- "23849_ord": "\u5d29",
- "23853_ord": "\u5d2d",
- "23860_ord": "\u5d34",
- "23883_ord": "\u5d4b",
- "23884_ord": "\u5d4c",
- "23896_ord": "\u5d58",
- "23913_ord": "\u5d69",
- "23916_ord": "\u5d6c",
- "23919_ord": "\u5d6f",
- "23938_ord": "\u5d82",
- "23961_ord": "\u5d99",
- "23991_ord": "\u5db7",
- "24005_ord": "\u5dc5",
- "24009_ord": "\u5dc9",
- "24013_ord": "\u5dcd",
- "24029_ord": "\u5ddd",
- "24030_ord": "\u5dde",
- "24033_ord": "\u5de1",
- "24034_ord": "\u5de2",
- "24037_ord": "\u5de5",
- "24038_ord": "\u5de6",
- "24039_ord": "\u5de7",
- "24040_ord": "\u5de8",
- "24041_ord": "\u5de9",
- "24043_ord": "\u5deb",
- "24046_ord": "\u5dee",
- "24049_ord": "\u5df1",
- "24050_ord": "\u5df2",
- "24051_ord": "\u5df3",
- "24052_ord": "\u5df4",
- "24055_ord": "\u5df7",
- "24061_ord": "\u5dfd",
- "24062_ord": "\u5dfe",
- "24063_ord": "\u5dff",
- "24065_ord": "\u5e01",
- "24066_ord": "\u5e02",
- "24067_ord": "\u5e03",
- "24069_ord": "\u5e05",
- "24070_ord": "\u5e06",
- "24072_ord": "\u5e08",
- "24076_ord": "\u5e0c",
- "24079_ord": "\u5e0f",
- "24080_ord": "\u5e10",
- "24081_ord": "\u5e11",
- "24084_ord": "\u5e14",
- "24085_ord": "\u5e15",
- "24086_ord": "\u5e16",
- "24088_ord": "\u5e18",
- "24090_ord": "\u5e1a",
- "24091_ord": "\u5e1b",
- "24092_ord": "\u5e1c",
- "24093_ord": "\u5e1d",
- "24102_ord": "\u5e26",
- "24103_ord": "\u5e27",
- "24104_ord": "\u5e28",
- "24109_ord": "\u5e2d",
- "24110_ord": "\u5e2e",
- "24119_ord": "\u5e37",
- "24120_ord": "\u5e38",
- "24124_ord": "\u5e3c",
- "24125_ord": "\u5e3d",
- "24130_ord": "\u5e42",
- "24132_ord": "\u5e44",
- "24133_ord": "\u5e45",
- "24140_ord": "\u5e4c",
- "24148_ord": "\u5e54",
- "24149_ord": "\u5e55",
- "24155_ord": "\u5e5b",
- "24158_ord": "\u5e5e",
- "24161_ord": "\u5e61",
- "24162_ord": "\u5e62",
- "24178_ord": "\u5e72",
- "24179_ord": "\u5e73",
- "24180_ord": "\u5e74",
- "24182_ord": "\u5e76",
- "24184_ord": "\u5e78",
- "24186_ord": "\u5e7a",
- "24187_ord": "\u5e7b",
- "24188_ord": "\u5e7c",
- "24189_ord": "\u5e7d",
- "24191_ord": "\u5e7f",
- "24196_ord": "\u5e84",
- "24198_ord": "\u5e86",
- "24199_ord": "\u5e87",
- "24202_ord": "\u5e8a",
- "24207_ord": "\u5e8f",
- "24208_ord": "\u5e90",
- "24209_ord": "\u5e91",
- "24211_ord": "\u5e93",
- "24212_ord": "\u5e94",
- "24213_ord": "\u5e95",
- "24214_ord": "\u5e96",
- "24215_ord": "\u5e97",
- "24217_ord": "\u5e99",
- "24218_ord": "\u5e9a",
- "24220_ord": "\u5e9c",
- "24222_ord": "\u5e9e",
- "24223_ord": "\u5e9f",
- "24224_ord": "\u5ea0",
- "24229_ord": "\u5ea5",
- "24230_ord": "\u5ea6",
- "24231_ord": "\u5ea7",
- "24237_ord": "\u5ead",
- "24245_ord": "\u5eb5",
- "24246_ord": "\u5eb6",
- "24247_ord": "\u5eb7",
- "24248_ord": "\u5eb8",
- "24254_ord": "\u5ebe",
- "24265_ord": "\u5ec9",
- "24266_ord": "\u5eca",
- "24275_ord": "\u5ed3",
- "24278_ord": "\u5ed6",
- "24283_ord": "\u5edb",
- "24296_ord": "\u5ee8",
- "24298_ord": "\u5eea",
- "24310_ord": "\u5ef6",
- "24311_ord": "\u5ef7",
- "24314_ord": "\u5efa",
- "24319_ord": "\u5eff",
- "24320_ord": "\u5f00",
- "24321_ord": "\u5f01",
- "24322_ord": "\u5f02",
- "24323_ord": "\u5f03",
- "24324_ord": "\u5f04",
- "24328_ord": "\u5f08",
- "24330_ord": "\u5f0a",
- "24331_ord": "\u5f0b",
- "24335_ord": "\u5f0f",
- "24337_ord": "\u5f11",
- "24339_ord": "\u5f13",
- "24341_ord": "\u5f15",
- "24343_ord": "\u5f17",
- "24344_ord": "\u5f18",
- "24347_ord": "\u5f1b",
- "24351_ord": "\u5f1f",
- "24352_ord": "\u5f20",
- "24354_ord": "\u5f22",
- "24357_ord": "\u5f25",
- "24358_ord": "\u5f26",
- "24359_ord": "\u5f27",
- "24361_ord": "\u5f29",
- "24365_ord": "\u5f2d",
- "24367_ord": "\u5f2f",
- "24369_ord": "\u5f31",
- "24373_ord": "\u5f35",
- "24377_ord": "\u5f39",
- "24378_ord": "\u5f3a",
- "24380_ord": "\u5f3c",
- "24384_ord": "\u5f40",
- "24394_ord": "\u5f4a",
- "24402_ord": "\u5f52",
- "24403_ord": "\u5f53",
- "24405_ord": "\u5f55",
- "24407_ord": "\u5f57",
- "24408_ord": "\u5f58",
- "24413_ord": "\u5f5d",
- "24418_ord": "\u5f62",
- "24420_ord": "\u5f64",
- "24422_ord": "\u5f66",
- "24425_ord": "\u5f69",
- "24426_ord": "\u5f6a",
- "24428_ord": "\u5f6c",
- "24429_ord": "\u5f6d",
- "24432_ord": "\u5f70",
- "24433_ord": "\u5f71",
- "24439_ord": "\u5f77",
- "24441_ord": "\u5f79",
- "24443_ord": "\u5f7b",
- "24444_ord": "\u5f7c",
- "24448_ord": "\u5f80",
- "24449_ord": "\u5f81",
- "24450_ord": "\u5f82",
- "24452_ord": "\u5f84",
- "24453_ord": "\u5f85",
- "24455_ord": "\u5f87",
- "24456_ord": "\u5f88",
- "24457_ord": "\u5f89",
- "24458_ord": "\u5f8a",
- "24459_ord": "\u5f8b",
- "24460_ord": "\u5f8c",
- "24464_ord": "\u5f90",
- "24466_ord": "\u5f92",
- "24469_ord": "\u5f95",
- "24471_ord": "\u5f97",
- "24472_ord": "\u5f98",
- "24473_ord": "\u5f99",
- "24476_ord": "\u5f9c",
- "24481_ord": "\u5fa1",
- "24488_ord": "\u5fa8",
- "24490_ord": "\u5faa",
- "24493_ord": "\u5fad",
- "24494_ord": "\u5fae",
- "24499_ord": "\u5fb3",
- "24501_ord": "\u5fb5",
- "24503_ord": "\u5fb7",
- "24508_ord": "\u5fbc",
- "24509_ord": "\u5fbd",
- "24515_ord": "\u5fc3",
- "24517_ord": "\u5fc5",
- "24518_ord": "\u5fc6",
- "24524_ord": "\u5fcc",
- "24525_ord": "\u5fcd",
- "24527_ord": "\u5fcf",
- "24528_ord": "\u5fd0",
- "24529_ord": "\u5fd1",
- "24530_ord": "\u5fd2",
- "24534_ord": "\u5fd6",
- "24535_ord": "\u5fd7",
- "24536_ord": "\u5fd8",
- "24537_ord": "\u5fd9",
- "24541_ord": "\u5fdd",
- "24544_ord": "\u5fe0",
- "24545_ord": "\u5fe1",
- "24548_ord": "\u5fe4",
- "24551_ord": "\u5fe7",
- "24554_ord": "\u5fea",
- "24555_ord": "\u5feb",
- "24561_ord": "\u5ff1",
- "24565_ord": "\u5ff5",
- "24571_ord": "\u5ffb",
- "24573_ord": "\u5ffd",
- "24575_ord": "\u5fff",
- "24576_ord": "\u6000",
- "24577_ord": "\u6001",
- "24578_ord": "\u6002",
- "24581_ord": "\u6005",
- "24582_ord": "\u6006",
- "24589_ord": "\u600d",
- "24590_ord": "\u600e",
- "24591_ord": "\u600f",
- "24594_ord": "\u6012",
- "24596_ord": "\u6014",
- "24597_ord": "\u6015",
- "24598_ord": "\u6016",
- "24601_ord": "\u6019",
- "24603_ord": "\u601b",
- "24604_ord": "\u601c",
- "24605_ord": "\u601d",
- "24608_ord": "\u6020",
- "24609_ord": "\u6021",
- "24613_ord": "\u6025",
- "24614_ord": "\u6026",
- "24615_ord": "\u6027",
- "24616_ord": "\u6028",
- "24618_ord": "\u602a",
- "24619_ord": "\u602b",
- "24623_ord": "\u602f",
- "24629_ord": "\u6035",
- "24635_ord": "\u603b",
- "24636_ord": "\u603c",
- "24639_ord": "\u603f",
- "24642_ord": "\u6042",
- "24643_ord": "\u6043",
- "24651_ord": "\u604b",
- "24653_ord": "\u604d",
- "24656_ord": "\u6050",
- "24658_ord": "\u6052",
- "24661_ord": "\u6055",
- "24665_ord": "\u6059",
- "24666_ord": "\u605a",
- "24669_ord": "\u605d",
- "24674_ord": "\u6062",
- "24675_ord": "\u6063",
- "24676_ord": "\u6064",
- "24680_ord": "\u6068",
- "24681_ord": "\u6069",
- "24682_ord": "\u606a",
- "24683_ord": "\u606b",
- "24684_ord": "\u606c",
- "24685_ord": "\u606d",
- "24687_ord": "\u606f",
- "24688_ord": "\u6070",
- "24691_ord": "\u6073",
- "24694_ord": "\u6076",
- "24696_ord": "\u6078",
- "24697_ord": "\u6079",
- "24698_ord": "\u607a",
- "24699_ord": "\u607b",
- "24700_ord": "\u607c",
- "24701_ord": "\u607d",
- "24703_ord": "\u607f",
- "24708_ord": "\u6084",
- "24713_ord": "\u6089",
- "24716_ord": "\u608c",
- "24717_ord": "\u608d",
- "24722_ord": "\u6092",
- "24724_ord": "\u6094",
- "24726_ord": "\u6096",
- "24730_ord": "\u609a",
- "24733_ord": "\u609d",
- "24734_ord": "\u609e",
- "24735_ord": "\u609f",
- "24736_ord": "\u60a0",
- "24739_ord": "\u60a3",
- "24742_ord": "\u60a6",
- "24744_ord": "\u60a8",
- "24747_ord": "\u60ab",
- "24748_ord": "\u60ac",
- "24749_ord": "\u60ad",
- "24751_ord": "\u60af",
- "24754_ord": "\u60b2",
- "24756_ord": "\u60b4",
- "24760_ord": "\u60b8",
- "24763_ord": "\u60bb",
- "24764_ord": "\u60bc",
- "24773_ord": "\u60c5",
- "24774_ord": "\u60c6",
- "24775_ord": "\u60c7",
- "24778_ord": "\u60ca",
- "24779_ord": "\u60cb",
- "24785_ord": "\u60d1",
- "24789_ord": "\u60d5",
- "24792_ord": "\u60d8",
- "24794_ord": "\u60da",
- "24796_ord": "\u60dc",
- "24799_ord": "\u60df",
- "247_ord": "\u00f7",
- "24800_ord": "\u60e0",
- "24806_ord": "\u60e6",
- "24807_ord": "\u60e7",
- "24808_ord": "\u60e8",
- "24809_ord": "\u60e9",
- "24811_ord": "\u60eb",
- "24812_ord": "\u60ec",
- "24813_ord": "\u60ed",
- "24814_ord": "\u60ee",
- "24815_ord": "\u60ef",
- "24816_ord": "\u60f0",
- "24819_ord": "\u60f3",
- "24820_ord": "\u60f4",
- "24822_ord": "\u60f6",
- "24825_ord": "\u60f9",
- "24826_ord": "\u60fa",
- "24832_ord": "\u6100",
- "24833_ord": "\u6101",
- "24838_ord": "\u6106",
- "24840_ord": "\u6108",
- "24841_ord": "\u6109",
- "24845_ord": "\u610d",
- "24846_ord": "\u610e",
- "24847_ord": "\u610f",
- "24853_ord": "\u6115",
- "24858_ord": "\u611a",
- "24859_ord": "\u611b",
- "24863_ord": "\u611f",
- "24864_ord": "\u6120",
- "24867_ord": "\u6123",
- "24868_ord": "\u6124",
- "24870_ord": "\u6126",
- "24871_ord": "\u6127",
- "24875_ord": "\u612b",
- "24876_ord": "\u612c",
- "24895_ord": "\u613f",
- "24904_ord": "\u6148",
- "24908_ord": "\u614c",
- "24910_ord": "\u614e",
- "24913_ord": "\u6151",
- "24917_ord": "\u6155",
- "24921_ord": "\u6159",
- "24930_ord": "\u6162",
- "24935_ord": "\u6167",
- "24936_ord": "\u6168",
- "24944_ord": "\u6170",
- "24949_ord": "\u6175",
- "24951_ord": "\u6177",
- "24971_ord": "\u618b",
- "24974_ord": "\u618e",
- "24980_ord": "\u6194",
- "24999_ord": "\u61a7",
- "25000_ord": "\u61a8",
- "25001_ord": "\u61a9",
- "25004_ord": "\u61ac",
- "25022_ord": "\u61be",
- "25026_ord": "\u61c2",
- "25032_ord": "\u61c8",
- "25034_ord": "\u61ca",
- "25035_ord": "\u61cb",
- "25041_ord": "\u61d1",
- "25042_ord": "\u61d2",
- "25052_ord": "\u61dc",
- "25062_ord": "\u61e6",
- "25077_ord": "\u61f5",
- "25087_ord": "\u61ff",
- "25094_ord": "\u6206",
- "25096_ord": "\u6208",
- "25098_ord": "\u620a",
- "25100_ord": "\u620c",
- "25101_ord": "\u620d",
- "25102_ord": "\u620e",
- "25103_ord": "\u620f",
- "25104_ord": "\u6210",
- "25105_ord": "\u6211",
- "25106_ord": "\u6212",
- "25109_ord": "\u6215",
- "25110_ord": "\u6216",
- "25111_ord": "\u6217",
- "25112_ord": "\u6218",
- "25114_ord": "\u621a",
- "25115_ord": "\u621b",
- "25119_ord": "\u621f",
- "25122_ord": "\u6222",
- "25130_ord": "\u622a",
- "25134_ord": "\u622e",
- "25139_ord": "\u6233",
- "25140_ord": "\u6234",
- "25143_ord": "\u6237",
- "25150_ord": "\u623e",
- "25151_ord": "\u623f",
- "25152_ord": "\u6240",
- "25153_ord": "\u6241",
- "25155_ord": "\u6243",
- "25159_ord": "\u6247",
- "25160_ord": "\u6248",
- "25161_ord": "\u6249",
- "25163_ord": "\u624b",
- "25164_ord": "\u624c",
- "25165_ord": "\u624d",
- "25166_ord": "\u624e",
- "25169_ord": "\u6251",
- "25170_ord": "\u6252",
- "25171_ord": "\u6253",
- "25172_ord": "\u6254",
- "25176_ord": "\u6258",
- "25179_ord": "\u625b",
- "25182_ord": "\u625e",
- "25186_ord": "\u6262",
- "25187_ord": "\u6263",
- "25191_ord": "\u6267",
- "25193_ord": "\u6269",
- "25194_ord": "\u626a",
- "25195_ord": "\u626b",
- "25196_ord": "\u626c",
- "25197_ord": "\u626d",
- "25198_ord": "\u626e",
- "25199_ord": "\u626f",
- "25200_ord": "\u6270",
- "25203_ord": "\u6273",
- "25206_ord": "\u6276",
- "25209_ord": "\u6279",
- "25212_ord": "\u627c",
- "25214_ord": "\u627e",
- "25215_ord": "\u627f",
- "25216_ord": "\u6280",
- "25220_ord": "\u6284",
- "25225_ord": "\u6289",
- "25226_ord": "\u628a",
- "25233_ord": "\u6291",
- "25234_ord": "\u6292",
- "25235_ord": "\u6293",
- "25237_ord": "\u6295",
- "25238_ord": "\u6296",
- "25239_ord": "\u6297",
- "25240_ord": "\u6298",
- "25242_ord": "\u629a",
- "25243_ord": "\u629b",
- "25247_ord": "\u629f",
- "25248_ord": "\u62a0",
- "25249_ord": "\u62a1",
- "25250_ord": "\u62a2",
- "25252_ord": "\u62a4",
- "25253_ord": "\u62a5",
- "25256_ord": "\u62a8",
- "25259_ord": "\u62ab",
- "25260_ord": "\u62ac",
- "25265_ord": "\u62b1",
- "25269_ord": "\u62b5",
- "25273_ord": "\u62b9",
- "25276_ord": "\u62bc",
- "25277_ord": "\u62bd",
- "25279_ord": "\u62bf",
- "25282_ord": "\u62c2",
- "25284_ord": "\u62c4",
- "25285_ord": "\u62c5",
- "25286_ord": "\u62c6",
- "25287_ord": "\u62c7",
- "25288_ord": "\u62c8",
- "25289_ord": "\u62c9",
- "25290_ord": "\u62ca",
- "25292_ord": "\u62cc",
- "25293_ord": "\u62cd",
- "25294_ord": "\u62ce",
- "25296_ord": "\u62d0",
- "25298_ord": "\u62d2",
- "25299_ord": "\u62d3",
- "252_ord": "\u00fc",
- "25300_ord": "\u62d4",
- "25302_ord": "\u62d6",
- "25303_ord": "\u62d7",
- "25304_ord": "\u62d8",
- "25305_ord": "\u62d9",
- "25306_ord": "\u62da",
- "25307_ord": "\u62db",
- "25308_ord": "\u62dc",
- "25311_ord": "\u62df",
- "25314_ord": "\u62e2",
- "25315_ord": "\u62e3",
- "25317_ord": "\u62e5",
- "25318_ord": "\u62e6",
- "25319_ord": "\u62e7",
- "25320_ord": "\u62e8",
- "25321_ord": "\u62e9",
- "25324_ord": "\u62ec",
- "25325_ord": "\u62ed",
- "25326_ord": "\u62ee",
- "25327_ord": "\u62ef",
- "25329_ord": "\u62f1",
- "25331_ord": "\u62f3",
- "25332_ord": "\u62f4",
- "25335_ord": "\u62f7",
- "25340_ord": "\u62fc",
- "25341_ord": "\u62fd",
- "25342_ord": "\u62fe",
- "25343_ord": "\u62ff",
- "25345_ord": "\u6301",
- "25346_ord": "\u6302",
- "25351_ord": "\u6307",
- "25352_ord": "\u6308",
- "25353_ord": "\u6309",
- "25358_ord": "\u630e",
- "25361_ord": "\u6311",
- "25366_ord": "\u6316",
- "25370_ord": "\u631a",
- "25371_ord": "\u631b",
- "25373_ord": "\u631d",
- "25374_ord": "\u631e",
- "25375_ord": "\u631f",
- "25376_ord": "\u6320",
- "25377_ord": "\u6321",
- "25379_ord": "\u6323",
- "25380_ord": "\u6324",
- "25381_ord": "\u6325",
- "25384_ord": "\u6328",
- "25386_ord": "\u632a",
- "25387_ord": "\u632b",
- "25391_ord": "\u632f",
- "25401_ord": "\u6339",
- "25402_ord": "\u633a",
- "25405_ord": "\u633d",
- "25410_ord": "\u6342",
- "25413_ord": "\u6345",
- "25414_ord": "\u6346",
- "25417_ord": "\u6349",
- "25419_ord": "\u634b",
- "25421_ord": "\u634d",
- "25422_ord": "\u634e",
- "25423_ord": "\u634f",
- "25424_ord": "\u6350",
- "25429_ord": "\u6355",
- "25438_ord": "\u635e",
- "25439_ord": "\u635f",
- "25441_ord": "\u6361",
- "25442_ord": "\u6362",
- "25443_ord": "\u6363",
- "25447_ord": "\u6367",
- "25453_ord": "\u636d",
- "25454_ord": "\u636e",
- "25457_ord": "\u6371",
- "25462_ord": "\u6376",
- "25463_ord": "\u6377",
- "25466_ord": "\u637a",
- "25467_ord": "\u637b",
- "25469_ord": "\u637d",
- "25472_ord": "\u6380",
- "25474_ord": "\u6382",
- "25479_ord": "\u6387",
- "25480_ord": "\u6388",
- "25481_ord": "\u6389",
- "25484_ord": "\u638c",
- "25487_ord": "\u638f",
- "25488_ord": "\u6390",
- "25490_ord": "\u6392",
- "25494_ord": "\u6396",
- "25496_ord": "\u6398",
- "25504_ord": "\u63a0",
- "25506_ord": "\u63a2",
- "25507_ord": "\u63a3",
- "25509_ord": "\u63a5",
- "25511_ord": "\u63a7",
- "25512_ord": "\u63a8",
- "25513_ord": "\u63a9",
- "25514_ord": "\u63aa",
- "25516_ord": "\u63ac",
- "25520_ord": "\u63b0",
- "25523_ord": "\u63b3",
- "25527_ord": "\u63b7",
- "25530_ord": "\u63ba",
- "25532_ord": "\u63bc",
- "25534_ord": "\u63be",
- "25540_ord": "\u63c4",
- "25542_ord": "\u63c6",
- "25545_ord": "\u63c9",
- "25549_ord": "\u63cd",
- "25551_ord": "\u63cf",
- "25552_ord": "\u63d0",
- "25554_ord": "\u63d2",
- "25558_ord": "\u63d6",
- "25564_ord": "\u63dc",
- "25569_ord": "\u63e1",
- "25571_ord": "\u63e3",
- "25577_ord": "\u63e9",
- "25578_ord": "\u63ea",
- "25581_ord": "\u63ed",
- "25588_ord": "\u63f4",
- "25590_ord": "\u63f6",
- "25597_ord": "\u63fd",
- "25600_ord": "\u6400",
- "25601_ord": "\u6401",
- "25602_ord": "\u6402",
- "25605_ord": "\u6405",
- "25615_ord": "\u640f",
- "25616_ord": "\u6410",
- "25618_ord": "\u6412",
- "25619_ord": "\u6413",
- "25620_ord": "\u6414",
- "25628_ord": "\u641c",
- "25630_ord": "\u641e",
- "25632_ord": "\u6420",
- "25634_ord": "\u6422",
- "25642_ord": "\u642a",
- "25644_ord": "\u642c",
- "25645_ord": "\u642d",
- "25652_ord": "\u6434",
- "25658_ord": "\u643a",
- "25661_ord": "\u643d",
- "25665_ord": "\u6441",
- "25668_ord": "\u6444",
- "25670_ord": "\u6446",
- "25671_ord": "\u6447",
- "25672_ord": "\u6448",
- "25674_ord": "\u644a",
- "25682_ord": "\u6452",
- "25684_ord": "\u6454",
- "25688_ord": "\u6458",
- "25694_ord": "\u645e",
- "25703_ord": "\u6467",
- "25705_ord": "\u6469",
- "25720_ord": "\u6478",
- "25721_ord": "\u6479",
- "25730_ord": "\u6482",
- "25735_ord": "\u6487",
- "25745_ord": "\u6491",
- "25746_ord": "\u6492",
- "25749_ord": "\u6495",
- "25757_ord": "\u649d",
- "25758_ord": "\u649e",
- "25764_ord": "\u64a4",
- "25769_ord": "\u64a9",
- "25772_ord": "\u64ac",
- "25773_ord": "\u64ad",
- "25774_ord": "\u64ae",
- "25776_ord": "\u64b0",
- "25781_ord": "\u64b5",
- "25783_ord": "\u64b7",
- "25786_ord": "\u64ba",
- "25788_ord": "\u64bc",
- "25794_ord": "\u64c2",
- "25797_ord": "\u64c5",
- "25805_ord": "\u64cd",
- "25806_ord": "\u64ce",
- "25810_ord": "\u64d2",
- "25816_ord": "\u64d8",
- "25822_ord": "\u64de",
- "25826_ord": "\u64e2",
- "25830_ord": "\u64e6",
- "25856_ord": "\u6500",
- "25874_ord": "\u6512",
- "25880_ord": "\u6518",
- "25893_ord": "\u6525",
- "25899_ord": "\u652b",
- "25903_ord": "\u652f",
- "25910_ord": "\u6536",
- "25912_ord": "\u6538",
- "25913_ord": "\u6539",
- "25915_ord": "\u653b",
- "25918_ord": "\u653e",
- "25919_ord": "\u653f",
- "25925_ord": "\u6545",
- "25928_ord": "\u6548",
- "25932_ord": "\u654c",
- "25935_ord": "\u654f",
- "25937_ord": "\u6551",
- "25941_ord": "\u6555",
- "25942_ord": "\u6556",
- "25945_ord": "\u6559",
- "25947_ord": "\u655b",
- "25949_ord": "\u655d",
- "25950_ord": "\u655e",
- "25954_ord": "\u6562",
- "25955_ord": "\u6563",
- "25958_ord": "\u6566",
- "25964_ord": "\u656c",
- "25968_ord": "\u6570",
- "25970_ord": "\u6572",
- "25972_ord": "\u6574",
- "25975_ord": "\u6577",
- "25991_ord": "\u6587",
- "25995_ord": "\u658b",
- "25996_ord": "\u658c",
- "26000_ord": "\u6590",
- "26001_ord": "\u6591",
- "26003_ord": "\u6593",
- "26007_ord": "\u6597",
- "26009_ord": "\u6599",
- "26011_ord": "\u659b",
- "26012_ord": "\u659c",
- "26015_ord": "\u659f",
- "26017_ord": "\u65a1",
- "26020_ord": "\u65a4",
- "26021_ord": "\u65a5",
- "26023_ord": "\u65a7",
- "26025_ord": "\u65a9",
- "26027_ord": "\u65ab",
- "26029_ord": "\u65ad",
- "26031_ord": "\u65af",
- "26032_ord": "\u65b0",
- "26034_ord": "\u65b2",
- "26041_ord": "\u65b9",
- "26044_ord": "\u65bc",
- "26045_ord": "\u65bd",
- "26049_ord": "\u65c1",
- "26051_ord": "\u65c3",
- "26052_ord": "\u65c4",
- "26053_ord": "\u65c5",
- "26059_ord": "\u65cb",
- "26060_ord": "\u65cc",
- "26062_ord": "\u65ce",
- "26063_ord": "\u65cf",
- "26066_ord": "\u65d2",
- "26070_ord": "\u65d6",
- "26071_ord": "\u65d7",
- "26080_ord": "\u65e0",
- "26082_ord": "\u65e2",
- "26085_ord": "\u65e5",
- "26086_ord": "\u65e6",
- "26087_ord": "\u65e7",
- "26088_ord": "\u65e8",
- "26089_ord": "\u65e9",
- "26092_ord": "\u65ec",
- "26093_ord": "\u65ed",
- "26097_ord": "\u65f1",
- "26102_ord": "\u65f6",
- "26103_ord": "\u65f7",
- "26106_ord": "\u65fa",
- "26107_ord": "\u65fb",
- "26112_ord": "\u6600",
- "26114_ord": "\u6602",
- "26115_ord": "\u6603",
- "26118_ord": "\u6606",
- "26119_ord": "\u6607",
- "26122_ord": "\u660a",
- "26124_ord": "\u660c",
- "26126_ord": "\u660e",
- "26127_ord": "\u660f",
- "26131_ord": "\u6613",
- "26132_ord": "\u6614",
- "26133_ord": "\u6615",
- "26137_ord": "\u6619",
- "26143_ord": "\u661f",
- "26144_ord": "\u6620",
- "26149_ord": "\u6625",
- "26151_ord": "\u6627",
- "26152_ord": "\u6628",
- "26157_ord": "\u662d",
- "26159_ord": "\u662f",
- "26161_ord": "\u6631",
- "26164_ord": "\u6634",
- "26165_ord": "\u6635",
- "26172_ord": "\u663c",
- "26174_ord": "\u663e",
- "26177_ord": "\u6641",
- "26179_ord": "\u6643",
- "26187_ord": "\u664b",
- "26188_ord": "\u664c",
- "26191_ord": "\u664f",
- "26194_ord": "\u6652",
- "26195_ord": "\u6653",
- "26196_ord": "\u6654",
- "26197_ord": "\u6655",
- "26198_ord": "\u6656",
- "26199_ord": "\u6657",
- "26202_ord": "\u665a",
- "26206_ord": "\u665e",
- "26207_ord": "\u665f",
- "26209_ord": "\u6661",
- "26212_ord": "\u6664",
- "26214_ord": "\u6666",
- "26216_ord": "\u6668",
- "26222_ord": "\u666e",
- "26223_ord": "\u666f",
- "26224_ord": "\u6670",
- "26228_ord": "\u6674",
- "26230_ord": "\u6676",
- "26234_ord": "\u667a",
- "26238_ord": "\u667e",
- "26242_ord": "\u6682",
- "26244_ord": "\u6684",
- "26247_ord": "\u6687",
- "26257_ord": "\u6691",
- "26262_ord": "\u6696",
- "26263_ord": "\u6697",
- "26279_ord": "\u66a7",
- "26280_ord": "\u66a8",
- "26286_ord": "\u66ae",
- "26290_ord": "\u66b2",
- "26292_ord": "\u66b4",
- "26297_ord": "\u66b9",
- "26302_ord": "\u66be",
- "26329_ord": "\u66d9",
- "26331_ord": "\u66db",
- "26332_ord": "\u66dc",
- "26333_ord": "\u66dd",
- "26342_ord": "\u66e6",
- "26345_ord": "\u66e9",
- "26352_ord": "\u66f0",
- "26354_ord": "\u66f2",
- "26355_ord": "\u66f3",
- "26356_ord": "\u66f4",
- "26359_ord": "\u66f7",
- "26360_ord": "\u66f8",
- "26361_ord": "\u66f9",
- "26364_ord": "\u66fc",
- "26366_ord": "\u66fe",
- "26367_ord": "\u66ff",
- "26368_ord": "\u6700",
- "26376_ord": "\u6708",
- "26377_ord": "\u6709",
- "26379_ord": "\u670b",
- "26381_ord": "\u670d",
- "26384_ord": "\u6710",
- "26388_ord": "\u6714",
- "26389_ord": "\u6715",
- "26391_ord": "\u6717",
- "26395_ord": "\u671b",
- "26397_ord": "\u671d",
- "26399_ord": "\u671f",
- "26406_ord": "\u6726",
- "26408_ord": "\u6728",
- "26410_ord": "\u672a",
- "26411_ord": "\u672b",
- "26412_ord": "\u672c",
- "26413_ord": "\u672d",
- "26415_ord": "\u672f",
- "26417_ord": "\u6731",
- "26420_ord": "\u6734",
- "26421_ord": "\u6735",
- "26426_ord": "\u673a",
- "26429_ord": "\u673d",
- "26432_ord": "\u6740",
- "26434_ord": "\u6742",
- "26435_ord": "\u6743",
- "26438_ord": "\u6746",
- "26441_ord": "\u6749",
- "26444_ord": "\u674c",
- "26446_ord": "\u674e",
- "26447_ord": "\u674f",
- "26448_ord": "\u6750",
- "26449_ord": "\u6751",
- "26451_ord": "\u6753",
- "26454_ord": "\u6756",
- "26460_ord": "\u675c",
- "26462_ord": "\u675e",
- "26463_ord": "\u675f",
- "26464_ord": "\u6760",
- "26465_ord": "\u6761",
- "26469_ord": "\u6765",
- "26472_ord": "\u6768",
- "26474_ord": "\u676a",
- "26477_ord": "\u676d",
- "26479_ord": "\u676f",
- "26480_ord": "\u6770",
- "26482_ord": "\u6772",
- "26483_ord": "\u6773",
- "26485_ord": "\u6775",
- "26487_ord": "\u6777",
- "26494_ord": "\u677e",
- "26495_ord": "\u677f",
- "26497_ord": "\u6781",
- "26500_ord": "\u6784",
- "26503_ord": "\u6787",
- "26505_ord": "\u6789",
- "26507_ord": "\u678b",
- "26512_ord": "\u6790",
- "26517_ord": "\u6795",
- "26519_ord": "\u6797",
- "26522_ord": "\u679a",
- "26524_ord": "\u679c",
- "26525_ord": "\u679d",
- "26526_ord": "\u679e",
- "26530_ord": "\u67a2",
- "26531_ord": "\u67a3",
- "26533_ord": "\u67a5",
- "26538_ord": "\u67aa",
- "26539_ord": "\u67ab",
- "26541_ord": "\u67ad",
- "26543_ord": "\u67af",
- "26544_ord": "\u67b0",
- "26547_ord": "\u67b3",
- "26549_ord": "\u67b5",
- "26550_ord": "\u67b6",
- "26551_ord": "\u67b7",
- "26552_ord": "\u67b8",
- "26564_ord": "\u67c4",
- "26568_ord": "\u67c8",
- "26575_ord": "\u67cf",
- "26576_ord": "\u67d0",
- "26577_ord": "\u67d1",
- "26579_ord": "\u67d3",
- "26580_ord": "\u67d4",
- "26584_ord": "\u67d8",
- "26586_ord": "\u67da",
- "26588_ord": "\u67dc",
- "26590_ord": "\u67de",
- "26592_ord": "\u67e0",
- "26594_ord": "\u67e2",
- "26597_ord": "\u67e5",
- "26601_ord": "\u67e9",
- "26604_ord": "\u67ec",
- "26607_ord": "\u67ef",
- "26608_ord": "\u67f0",
- "26609_ord": "\u67f1",
- "26611_ord": "\u67f3",
- "26612_ord": "\u67f4",
- "26623_ord": "\u67ff",
- "26624_ord": "\u6800",
- "26629_ord": "\u6805",
- "26631_ord": "\u6807",
- "26632_ord": "\u6808",
- "26633_ord": "\u6809",
- "26635_ord": "\u680b",
- "26638_ord": "\u680e",
- "26639_ord": "\u680f",
- "26641_ord": "\u6811",
- "26643_ord": "\u6813",
- "26646_ord": "\u6816",
- "26647_ord": "\u6817",
- "26657_ord": "\u6821",
- "26665_ord": "\u6829",
- "26666_ord": "\u682a",
- "26679_ord": "\u6837",
- "26680_ord": "\u6838",
- "26681_ord": "\u6839",
- "26684_ord": "\u683c",
- "26685_ord": "\u683d",
- "26686_ord": "\u683e",
- "26688_ord": "\u6840",
- "26690_ord": "\u6842",
- "26691_ord": "\u6843",
- "26693_ord": "\u6845",
- "26694_ord": "\u6846",
- "26696_ord": "\u6848",
- "26700_ord": "\u684c",
- "26702_ord": "\u684e",
- "26704_ord": "\u6850",
- "26705_ord": "\u6851",
- "26707_ord": "\u6853",
- "26708_ord": "\u6854",
- "26720_ord": "\u6860",
- "26721_ord": "\u6861",
- "26722_ord": "\u6862",
- "26723_ord": "\u6863",
- "26725_ord": "\u6865",
- "26726_ord": "\u6866",
- "26727_ord": "\u6867",
- "26728_ord": "\u6868",
- "26729_ord": "\u6869",
- "26742_ord": "\u6876",
- "26753_ord": "\u6881",
- "26755_ord": "\u6883",
- "26757_ord": "\u6885",
- "26758_ord": "\u6886",
- "26767_ord": "\u688f",
- "26771_ord": "\u6893",
- "26775_ord": "\u6897",
- "26786_ord": "\u68a2",
- "26790_ord": "\u68a6",
- "26791_ord": "\u68a7",
- "26792_ord": "\u68a8",
- "26797_ord": "\u68ad",
- "26799_ord": "\u68af",
- "26800_ord": "\u68b0",
- "26803_ord": "\u68b3",
- "26805_ord": "\u68b5",
- "26816_ord": "\u68c0",
- "26818_ord": "\u68c2",
- "26825_ord": "\u68c9",
- "26827_ord": "\u68cb",
- "26829_ord": "\u68cd",
- "26834_ord": "\u68d2",
- "26835_ord": "\u68d3",
- "26837_ord": "\u68d5",
- "26840_ord": "\u68d8",
- "26842_ord": "\u68da",
- "26848_ord": "\u68e0",
- "26851_ord": "\u68e3",
- "26862_ord": "\u68ee",
- "26864_ord": "\u68f0",
- "26865_ord": "\u68f1",
- "26869_ord": "\u68f5",
- "26873_ord": "\u68f9",
- "26874_ord": "\u68fa",
- "26880_ord": "\u6900",
- "26881_ord": "\u6901",
- "26885_ord": "\u6905",
- "26893_ord": "\u690d",
- "26894_ord": "\u690e",
- "26896_ord": "\u6910",
- "26898_ord": "\u6912",
- "26911_ord": "\u691f",
- "26925_ord": "\u692d",
- "26928_ord": "\u6930",
- "26937_ord": "\u6939",
- "26941_ord": "\u693d",
- "26943_ord": "\u693f",
- "26946_ord": "\u6942",
- "26964_ord": "\u6954",
- "26967_ord": "\u6957",
- "26970_ord": "\u695a",
- "26974_ord": "\u695e",
- "26976_ord": "\u6960",
- "26979_ord": "\u6963",
- "26987_ord": "\u696b",
- "26990_ord": "\u696e",
- "26999_ord": "\u6977",
- "27000_ord": "\u6978",
- "27001_ord": "\u6979",
- "27004_ord": "\u697c",
- "27010_ord": "\u6982",
- "27012_ord": "\u6984",
- "27014_ord": "\u6986",
- "27015_ord": "\u6987",
- "27016_ord": "\u6988",
- "27028_ord": "\u6994",
- "27029_ord": "\u6995",
- "27035_ord": "\u699b",
- "27036_ord": "\u699c",
- "27047_ord": "\u69a7",
- "27048_ord": "\u69a8",
- "27051_ord": "\u69ab",
- "27053_ord": "\u69ad",
- "27057_ord": "\u69b1",
- "27060_ord": "\u69b4",
- "27063_ord": "\u69b7",
- "27067_ord": "\u69bb",
- "27068_ord": "\u69bc",
- "27073_ord": "\u69c1",
- "27075_ord": "\u69c3",
- "27082_ord": "\u69ca",
- "27084_ord": "\u69cc",
- "27088_ord": "\u69d0",
- "27099_ord": "\u69db",
- "27103_ord": "\u69df",
- "27133_ord": "\u69fd",
- "27135_ord": "\u69ff",
- "27146_ord": "\u6a0a",
- "27159_ord": "\u6a17",
- "27167_ord": "\u6a1f",
- "27169_ord": "\u6a21",
- "27178_ord": "\u6a2a",
- "27183_ord": "\u6a2f",
- "27185_ord": "\u6a31",
- "27189_ord": "\u6a35",
- "27197_ord": "\u6a3d",
- "27198_ord": "\u6a3e",
- "27204_ord": "\u6a44",
- "27207_ord": "\u6a47",
- "27216_ord": "\u6a50",
- "27224_ord": "\u6a58",
- "27225_ord": "\u6a59",
- "27233_ord": "\u6a61",
- "27249_ord": "\u6a71",
- "27257_ord": "\u6a79",
- "27264_ord": "\u6a80",
- "27268_ord": "\u6a84",
- "27280_ord": "\u6a90",
- "27296_ord": "\u6aa0",
- "27308_ord": "\u6aac",
- "27424_ord": "\u6b20",
- "27425_ord": "\u6b21",
- "27426_ord": "\u6b22",
- "27427_ord": "\u6b23",
- "27428_ord": "\u6b24",
- "27431_ord": "\u6b27",
- "27442_ord": "\u6b32",
- "27447_ord": "\u6b37",
- "27450_ord": "\u6b3a",
- "27451_ord": "\u6b3b",
- "27454_ord": "\u6b3e",
- "27462_ord": "\u6b46",
- "27463_ord": "\u6b47",
- "27465_ord": "\u6b49",
- "27468_ord": "\u6b4c",
- "27476_ord": "\u6b54",
- "27480_ord": "\u6b58",
- "27481_ord": "\u6b59",
- "27490_ord": "\u6b62",
- "27491_ord": "\u6b63",
- "27492_ord": "\u6b64",
- "27493_ord": "\u6b65",
- "27494_ord": "\u6b66",
- "27495_ord": "\u6b67",
- "27498_ord": "\u6b6a",
- "27513_ord": "\u6b79",
- "27515_ord": "\u6b7b",
- "27516_ord": "\u6b7c",
- "27521_ord": "\u6b81",
- "27522_ord": "\u6b82",
- "27523_ord": "\u6b83",
- "27524_ord": "\u6b84",
- "27526_ord": "\u6b86",
- "27527_ord": "\u6b87",
- "27529_ord": "\u6b89",
- "27530_ord": "\u6b8a",
- "27531_ord": "\u6b8b",
- "27538_ord": "\u6b92",
- "27539_ord": "\u6b93",
- "27542_ord": "\u6b96",
- "27546_ord": "\u6b9a",
- "27547_ord": "\u6b9b",
- "27553_ord": "\u6ba1",
- "27562_ord": "\u6baa",
- "27572_ord": "\u6bb4",
- "27573_ord": "\u6bb5",
- "27575_ord": "\u6bb7",
- "27581_ord": "\u6bbd",
- "27583_ord": "\u6bbf",
- "27585_ord": "\u6bc1",
- "27586_ord": "\u6bc2",
- "27589_ord": "\u6bc5",
- "27595_ord": "\u6bcb",
- "27597_ord": "\u6bcd",
- "27599_ord": "\u6bcf",
- "27602_ord": "\u6bd2",
- "27603_ord": "\u6bd3",
- "27604_ord": "\u6bd4",
- "27605_ord": "\u6bd5",
- "27607_ord": "\u6bd7",
- "27609_ord": "\u6bd9",
- "27611_ord": "\u6bdb",
- "27617_ord": "\u6be1",
- "27627_ord": "\u6beb",
- "27631_ord": "\u6bef",
- "27653_ord": "\u6c05",
- "27654_ord": "\u6c06",
- "27655_ord": "\u6c07",
- "27663_ord": "\u6c0f",
- "27664_ord": "\u6c10",
- "27665_ord": "\u6c11",
- "27667_ord": "\u6c13",
- "27668_ord": "\u6c14",
- "27670_ord": "\u6c16",
- "27675_ord": "\u6c1b",
- "27679_ord": "\u6c1f",
- "27681_ord": "\u6c21",
- "27682_ord": "\u6c22",
- "27684_ord": "\u6c24",
- "27686_ord": "\u6c26",
- "27687_ord": "\u6c27",
- "27688_ord": "\u6c28",
- "27689_ord": "\u6c29",
- "27694_ord": "\u6c2e",
- "27695_ord": "\u6c2f",
- "27696_ord": "\u6c30",
- "27698_ord": "\u6c32",
- "27700_ord": "\u6c34",
- "27704_ord": "\u6c38",
- "27712_ord": "\u6c40",
- "27713_ord": "\u6c41",
- "27714_ord": "\u6c42",
- "27719_ord": "\u6c47",
- "27721_ord": "\u6c49",
- "27728_ord": "\u6c50",
- "27733_ord": "\u6c55",
- "27735_ord": "\u6c57",
- "27739_ord": "\u6c5b",
- "27740_ord": "\u6c5c",
- "27741_ord": "\u6c5d",
- "27742_ord": "\u6c5e",
- "27743_ord": "\u6c5f",
- "27744_ord": "\u6c60",
- "27745_ord": "\u6c61",
- "27748_ord": "\u6c64",
- "27752_ord": "\u6c68",
- "27753_ord": "\u6c69",
- "27754_ord": "\u6c6a",
- "27757_ord": "\u6c6d",
- "27760_ord": "\u6c70",
- "27762_ord": "\u6c72",
- "27764_ord": "\u6c74",
- "27766_ord": "\u6c76",
- "27769_ord": "\u6c79",
- "27773_ord": "\u6c7d",
- "27774_ord": "\u6c7e",
- "27777_ord": "\u6c81",
- "27778_ord": "\u6c82",
- "27779_ord": "\u6c83",
- "27781_ord": "\u6c85",
- "27784_ord": "\u6c88",
- "27785_ord": "\u6c89",
- "27788_ord": "\u6c8c",
- "27792_ord": "\u6c90",
- "27795_ord": "\u6c93",
- "27796_ord": "\u6c94",
- "27801_ord": "\u6c99",
- "27803_ord": "\u6c9b",
- "27807_ord": "\u6c9f",
- "27809_ord": "\u6ca1",
- "27811_ord": "\u6ca3",
- "27813_ord": "\u6ca5",
- "27814_ord": "\u6ca6",
- "27815_ord": "\u6ca7",
- "27818_ord": "\u6caa",
- "27819_ord": "\u6cab",
- "27820_ord": "\u6cac",
- "27822_ord": "\u6cae",
- "27825_ord": "\u6cb1",
- "27827_ord": "\u6cb3",
- "27832_ord": "\u6cb8",
- "27833_ord": "\u6cb9",
- "27835_ord": "\u6cbb",
- "27836_ord": "\u6cbc",
- "27837_ord": "\u6cbd",
- "27838_ord": "\u6cbe",
- "27839_ord": "\u6cbf",
- "27844_ord": "\u6cc4",
- "27845_ord": "\u6cc5",
- "27849_ord": "\u6cc9",
- "27850_ord": "\u6cca",
- "27852_ord": "\u6ccc",
- "27859_ord": "\u6cd3",
- "27861_ord": "\u6cd5",
- "27863_ord": "\u6cd7",
- "27867_ord": "\u6cdb",
- "27870_ord": "\u6cde",
- "27872_ord": "\u6ce0",
- "27873_ord": "\u6ce1",
- "27874_ord": "\u6ce2",
- "27875_ord": "\u6ce3",
- "27877_ord": "\u6ce5",
- "27880_ord": "\u6ce8",
- "27882_ord": "\u6cea",
- "27883_ord": "\u6ceb",
- "27886_ord": "\u6cee",
- "27887_ord": "\u6cef",
- "27888_ord": "\u6cf0",
- "27889_ord": "\u6cf1",
- "27891_ord": "\u6cf3",
- "27893_ord": "\u6cf5",
- "27895_ord": "\u6cf7",
- "27896_ord": "\u6cf8",
- "27899_ord": "\u6cfb",
- "27900_ord": "\u6cfc",
- "27901_ord": "\u6cfd",
- "27902_ord": "\u6cfe",
- "27905_ord": "\u6d01",
- "27915_ord": "\u6d0b",
- "27922_ord": "\u6d12",
- "27927_ord": "\u6d17",
- "27929_ord": "\u6d19",
- "27931_ord": "\u6d1b",
- "27934_ord": "\u6d1e",
- "27935_ord": "\u6d1f",
- "27941_ord": "\u6d25",
- "27946_ord": "\u6d2a",
- "27950_ord": "\u6d2e",
- "27953_ord": "\u6d31",
- "27954_ord": "\u6d32",
- "27961_ord": "\u6d39",
- "27963_ord": "\u6d3b",
- "27964_ord": "\u6d3c",
- "27965_ord": "\u6d3d",
- "27966_ord": "\u6d3e",
- "27969_ord": "\u6d41",
- "27971_ord": "\u6d43",
- "27973_ord": "\u6d45",
- "27974_ord": "\u6d46",
- "27975_ord": "\u6d47",
- "27978_ord": "\u6d4a",
- "27979_ord": "\u6d4b",
- "27981_ord": "\u6d4d",
- "27982_ord": "\u6d4e",
- "27983_ord": "\u6d4f",
- "27984_ord": "\u6d50",
- "27985_ord": "\u6d51",
- "27986_ord": "\u6d52",
- "27987_ord": "\u6d53",
- "27988_ord": "\u6d54",
- "27993_ord": "\u6d59",
- "27994_ord": "\u6d5a",
- "27996_ord": "\u6d5c",
- "27998_ord": "\u6d5e",
- "28003_ord": "\u6d63",
- "28006_ord": "\u6d66",
- "28009_ord": "\u6d69",
- "28010_ord": "\u6d6a",
- "28014_ord": "\u6d6e",
- "28020_ord": "\u6d74",
- "28023_ord": "\u6d77",
- "28024_ord": "\u6d78",
- "28028_ord": "\u6d7c",
- "28034_ord": "\u6d82",
- "28037_ord": "\u6d85",
- "28040_ord": "\u6d88",
- "28041_ord": "\u6d89",
- "28044_ord": "\u6d8c",
- "28046_ord": "\u6d8e",
- "28051_ord": "\u6d93",
- "28052_ord": "\u6d94",
- "28053_ord": "\u6d95",
- "28059_ord": "\u6d9b",
- "28061_ord": "\u6d9d",
- "28063_ord": "\u6d9f",
- "28065_ord": "\u6da1",
- "28067_ord": "\u6da3",
- "28068_ord": "\u6da4",
- "28070_ord": "\u6da6",
- "28071_ord": "\u6da7",
- "28072_ord": "\u6da8",
- "28073_ord": "\u6da9",
- "28074_ord": "\u6daa",
- "28078_ord": "\u6dae",
- "28079_ord": "\u6daf",
- "28082_ord": "\u6db2",
- "28085_ord": "\u6db5",
- "28088_ord": "\u6db8",
- "28095_ord": "\u6dbf",
- "28096_ord": "\u6dc0",
- "28100_ord": "\u6dc4",
- "28101_ord": "\u6dc5",
- "28102_ord": "\u6dc6",
- "28103_ord": "\u6dc7",
- "28107_ord": "\u6dcb",
- "28108_ord": "\u6dcc",
- "28113_ord": "\u6dd1",
- "28118_ord": "\u6dd6",
- "28120_ord": "\u6dd8",
- "28121_ord": "\u6dd9",
- "28126_ord": "\u6dde",
- "28129_ord": "\u6de1",
- "28132_ord": "\u6de4",
- "28139_ord": "\u6deb",
- "28140_ord": "\u6dec",
- "28142_ord": "\u6dee",
- "28145_ord": "\u6df1",
- "28147_ord": "\u6df3",
- "28151_ord": "\u6df7",
- "28153_ord": "\u6df9",
- "28155_ord": "\u6dfb",
- "28156_ord": "\u6dfc",
- "28165_ord": "\u6e05",
- "28170_ord": "\u6e0a",
- "28173_ord": "\u6e0d",
- "28174_ord": "\u6e0e",
- "28176_ord": "\u6e10",
- "28177_ord": "\u6e11",
- "28180_ord": "\u6e14",
- "28182_ord": "\u6e16",
- "28183_ord": "\u6e17",
- "28186_ord": "\u6e1a",
- "28189_ord": "\u6e1d",
- "28192_ord": "\u6e20",
- "28193_ord": "\u6e21",
- "28195_ord": "\u6e23",
- "28196_ord": "\u6e24",
- "28197_ord": "\u6e25",
- "28201_ord": "\u6e29",
- "28205_ord": "\u6e2d",
- "28207_ord": "\u6e2f",
- "28210_ord": "\u6e32",
- "28212_ord": "\u6e34",
- "28216_ord": "\u6e38",
- "28218_ord": "\u6e3a",
- "28227_ord": "\u6e43",
- "28228_ord": "\u6e44",
- "28237_ord": "\u6e4d",
- "28238_ord": "\u6e4e",
- "28246_ord": "\u6e56",
- "28248_ord": "\u6e58",
- "28251_ord": "\u6e5b",
- "28255_ord": "\u6e5f",
- "28267_ord": "\u6e6b",
- "28270_ord": "\u6e6e",
- "28286_ord": "\u6e7e",
- "28287_ord": "\u6e7f",
- "28291_ord": "\u6e83",
- "28293_ord": "\u6e85",
- "28297_ord": "\u6e89",
- "28301_ord": "\u6e8d",
- "28304_ord": "\u6e90",
- "28316_ord": "\u6e9c",
- "28319_ord": "\u6e9f",
- "28322_ord": "\u6ea2",
- "28325_ord": "\u6ea5",
- "28327_ord": "\u6ea7",
- "28330_ord": "\u6eaa",
- "28335_ord": "\u6eaf",
- "28338_ord": "\u6eb2",
- "28340_ord": "\u6eb4",
- "28342_ord": "\u6eb6",
- "28343_ord": "\u6eb7",
- "28346_ord": "\u6eba",
- "28353_ord": "\u6ec1",
- "28354_ord": "\u6ec2",
- "28359_ord": "\u6ec7",
- "28360_ord": "\u6ec8",
- "28363_ord": "\u6ecb",
- "28369_ord": "\u6ed1",
- "28371_ord": "\u6ed3",
- "28372_ord": "\u6ed4",
- "28373_ord": "\u6ed5",
- "28378_ord": "\u6eda",
- "28382_ord": "\u6ede",
- "28385_ord": "\u6ee1",
- "28388_ord": "\u6ee4",
- "28389_ord": "\u6ee5",
- "28390_ord": "\u6ee6",
- "28392_ord": "\u6ee8",
- "28393_ord": "\u6ee9",
- "28404_ord": "\u6ef4",
- "28418_ord": "\u6f02",
- "28422_ord": "\u6f06",
- "28425_ord": "\u6f09",
- "28431_ord": "\u6f0f",
- "28435_ord": "\u6f13",
- "28436_ord": "\u6f14",
- "28437_ord": "\u6f15",
- "28448_ord": "\u6f20",
- "28457_ord": "\u6f29",
- "28458_ord": "\u6f2a",
- "28459_ord": "\u6f2b",
- "28463_ord": "\u6f2f",
- "28465_ord": "\u6f31",
- "28467_ord": "\u6f33",
- "28478_ord": "\u6f3e",
- "28487_ord": "\u6f47",
- "28493_ord": "\u6f4d",
- "28504_ord": "\u6f58",
- "28508_ord": "\u6f5c",
- "28510_ord": "\u6f5e",
- "28514_ord": "\u6f62",
- "28518_ord": "\u6f66",
- "28525_ord": "\u6f6d",
- "28526_ord": "\u6f6e",
- "28532_ord": "\u6f74",
- "28536_ord": "\u6f78",
- "28538_ord": "\u6f7a",
- "28540_ord": "\u6f7c",
- "28548_ord": "\u6f84",
- "28552_ord": "\u6f88",
- "28557_ord": "\u6f8d",
- "28558_ord": "\u6f8e",
- "28572_ord": "\u6f9c",
- "28577_ord": "\u6fa1",
- "28583_ord": "\u6fa7",
- "28595_ord": "\u6fb3",
- "28601_ord": "\u6fb9",
- "28608_ord": "\u6fc0",
- "28610_ord": "\u6fc2",
- "28625_ord": "\u6fd1",
- "28626_ord": "\u6fd2",
- "28638_ord": "\u6fde",
- "28640_ord": "\u6fe0",
- "28641_ord": "\u6fe1",
- "28654_ord": "\u6fee",
- "28655_ord": "\u6fef",
- "28689_ord": "\u7011",
- "28698_ord": "\u701a",
- "28699_ord": "\u701b",
- "28729_ord": "\u7039",
- "28748_ord": "\u704c",
- "28766_ord": "\u705e",
- "28779_ord": "\u706b",
- "28781_ord": "\u706d",
- "28783_ord": "\u706f",
- "28784_ord": "\u7070",
- "28789_ord": "\u7075",
- "28790_ord": "\u7076",
- "28792_ord": "\u7078",
- "28796_ord": "\u707c",
- "28798_ord": "\u707e",
- "28799_ord": "\u707f",
- "28800_ord": "\u7080",
- "28809_ord": "\u7089",
- "28810_ord": "\u708a",
- "28814_ord": "\u708e",
- "28818_ord": "\u7092",
- "28820_ord": "\u7094",
- "28821_ord": "\u7095",
- "28822_ord": "\u7096",
- "28825_ord": "\u7099",
- "28828_ord": "\u709c",
- "28831_ord": "\u709f",
- "28843_ord": "\u70ab",
- "28844_ord": "\u70ac",
- "28845_ord": "\u70ad",
- "28846_ord": "\u70ae",
- "28847_ord": "\u70af",
- "28851_ord": "\u70b3",
- "28855_ord": "\u70b7",
- "28856_ord": "\u70b8",
- "28857_ord": "\u70b9",
- "28860_ord": "\u70bc",
- "28861_ord": "\u70bd",
- "28865_ord": "\u70c1",
- "28866_ord": "\u70c2",
- "28872_ord": "\u70c8",
- "28888_ord": "\u70d8",
- "28889_ord": "\u70d9",
- "28891_ord": "\u70db",
- "28892_ord": "\u70dc",
- "28893_ord": "\u70dd",
- "28895_ord": "\u70df",
- "28900_ord": "\u70e4",
- "28902_ord": "\u70e6",
- "28903_ord": "\u70e7",
- "28904_ord": "\u70e8",
- "28905_ord": "\u70e9",
- "28907_ord": "\u70eb",
- "28908_ord": "\u70ec",
- "28909_ord": "\u70ed",
- "28911_ord": "\u70ef",
- "28919_ord": "\u70f7",
- "28921_ord": "\u70f9",
- "28925_ord": "\u70fd",
- "28937_ord": "\u7109",
- "28938_ord": "\u710a",
- "28949_ord": "\u7115",
- "28950_ord": "\u7116",
- "28952_ord": "\u7118",
- "28953_ord": "\u7119",
- "28954_ord": "\u711a",
- "28956_ord": "\u711c",
- "28966_ord": "\u7126",
- "28975_ord": "\u712f",
- "28976_ord": "\u7130",
- "28977_ord": "\u7131",
- "28982_ord": "\u7136",
- "28997_ord": "\u7145",
- "29002_ord": "\u714a",
- "29004_ord": "\u714c",
- "29006_ord": "\u714e",
- "29020_ord": "\u715c",
- "29022_ord": "\u715e",
- "29028_ord": "\u7164",
- "29030_ord": "\u7166",
- "29031_ord": "\u7167",
- "29032_ord": "\u7168",
- "29038_ord": "\u716e",
- "29042_ord": "\u7172",
- "29053_ord": "\u717d",
- "29060_ord": "\u7184",
- "29066_ord": "\u718a",
- "29071_ord": "\u718f",
- "29076_ord": "\u7194",
- "29081_ord": "\u7199",
- "29087_ord": "\u719f",
- "29088_ord": "\u71a0",
- "29096_ord": "\u71a8",
- "29100_ord": "\u71ac",
- "29113_ord": "\u71b9",
- "29123_ord": "\u71c3",
- "29134_ord": "\u71ce",
- "29140_ord": "\u71d4",
- "29141_ord": "\u71d5",
- "29152_ord": "\u71e0",
- "29157_ord": "\u71e5",
- "29159_ord": "\u71e7",
- "29166_ord": "\u71ee",
- "29177_ord": "\u71f9",
- "29190_ord": "\u7206",
- "29191_ord": "\u7207",
- "29224_ord": "\u7228",
- "29226_ord": "\u722a",
- "29228_ord": "\u722c",
- "29232_ord": "\u7230",
- "29233_ord": "\u7231",
- "29234_ord": "\u7232",
- "29237_ord": "\u7235",
- "29238_ord": "\u7236",
- "29239_ord": "\u7237",
- "29240_ord": "\u7238",
- "29241_ord": "\u7239",
- "29243_ord": "\u723b",
- "29245_ord": "\u723d",
- "29255_ord": "\u7247",
- "29256_ord": "\u7248",
- "29260_ord": "\u724c",
- "29261_ord": "\u724d",
- "29266_ord": "\u7252",
- "29270_ord": "\u7256",
- "29273_ord": "\u7259",
- "29275_ord": "\u725b",
- "29277_ord": "\u725d",
- "29279_ord": "\u725f",
- "29281_ord": "\u7261",
- "29282_ord": "\u7262",
- "29286_ord": "\u7266",
- "29287_ord": "\u7267",
- "29289_ord": "\u7269",
- "29295_ord": "\u726f",
- "29298_ord": "\u7272",
- "29301_ord": "\u7275",
- "29305_ord": "\u7279",
- "29306_ord": "\u727a",
- "29312_ord": "\u7280",
- "29313_ord": "\u7281",
- "29322_ord": "\u728a",
- "29325_ord": "\u728d",
- "29330_ord": "\u7292",
- "29356_ord": "\u72ac",
- "29359_ord": "\u72af",
- "29364_ord": "\u72b4",
- "29366_ord": "\u72b6",
- "29367_ord": "\u72b7",
- "29369_ord": "\u72b9",
- "29377_ord": "\u72c1",
- "29378_ord": "\u72c2",
- "29379_ord": "\u72c3",
- "29380_ord": "\u72c4",
- "29384_ord": "\u72c8",
- "29390_ord": "\u72ce",
- "29392_ord": "\u72d0",
- "29394_ord": "\u72d2",
- "29399_ord": "\u72d7",
- "29401_ord": "\u72d9",
- "29405_ord": "\u72dd",
- "29406_ord": "\u72de",
- "29408_ord": "\u72e0",
- "29409_ord": "\u72e1",
- "29417_ord": "\u72e9",
- "29420_ord": "\u72ec",
- "29421_ord": "\u72ed",
- "29422_ord": "\u72ee",
- "29424_ord": "\u72f0",
- "29425_ord": "\u72f1",
- "29426_ord": "\u72f2",
- "29432_ord": "\u72f8",
- "29435_ord": "\u72fb",
- "29436_ord": "\u72fc",
- "29443_ord": "\u7303",
- "29450_ord": "\u730a",
- "29454_ord": "\u730e",
- "29461_ord": "\u7315",
- "29462_ord": "\u7316",
- "29463_ord": "\u7317",
- "29467_ord": "\u731b",
- "29468_ord": "\u731c",
- "29469_ord": "\u731d",
- "29474_ord": "\u7322",
- "29477_ord": "\u7325",
- "29481_ord": "\u7329",
- "29482_ord": "\u732a",
- "29483_ord": "\u732b",
- "29484_ord": "\u732c",
- "29486_ord": "\u732e",
- "29489_ord": "\u7331",
- "29492_ord": "\u7334",
- "29495_ord": "\u7337",
- "29502_ord": "\u733e",
- "29503_ord": "\u733f",
- "29520_ord": "\u7350",
- "29527_ord": "\u7357",
- "29536_ord": "\u7360",
- "29548_ord": "\u736c",
- "29549_ord": "\u736d",
- "29566_ord": "\u737e",
- "29572_ord": "\u7384",
- "29575_ord": "\u7387",
- "29577_ord": "\u7389",
- "29579_ord": "\u738b",
- "29585_ord": "\u7391",
- "29589_ord": "\u7395",
- "29595_ord": "\u739b",
- "29606_ord": "\u73a6",
- "29609_ord": "\u73a9",
- "29611_ord": "\u73ab",
- "29614_ord": "\u73ae",
- "29615_ord": "\u73af",
- "29616_ord": "\u73b0",
- "29618_ord": "\u73b2",
- "29619_ord": "\u73b3",
- "29623_ord": "\u73b7",
- "29626_ord": "\u73ba",
- "29627_ord": "\u73bb",
- "29632_ord": "\u73c0",
- "29634_ord": "\u73c2",
- "29637_ord": "\u73c5",
- "29640_ord": "\u73c8",
- "29642_ord": "\u73ca",
- "29645_ord": "\u73cd",
- "29647_ord": "\u73cf",
- "29648_ord": "\u73d0",
- "29649_ord": "\u73d1",
- "29662_ord": "\u73de",
- "29664_ord": "\u73e0",
- "29669_ord": "\u73e5",
- "29673_ord": "\u73e9",
- "29674_ord": "\u73ea",
- "29677_ord": "\u73ed",
- "29678_ord": "\u73ee",
- "29680_ord": "\u73f0",
- "29699_ord": "\u7403",
- "29701_ord": "\u7405",
- "29702_ord": "\u7406",
- "29705_ord": "\u7409",
- "29711_ord": "\u740f",
- "29712_ord": "\u7410",
- "29718_ord": "\u7416",
- "29723_ord": "\u741b",
- "29730_ord": "\u7422",
- "29733_ord": "\u7425",
- "29734_ord": "\u7426",
- "29736_ord": "\u7428",
- "29738_ord": "\u742a",
- "29742_ord": "\u742e",
- "29744_ord": "\u7430",
- "29747_ord": "\u7433",
- "29748_ord": "\u7434",
- "29749_ord": "\u7435",
- "29750_ord": "\u7436",
- "29756_ord": "\u743c",
- "29761_ord": "\u7441",
- "29781_ord": "\u7455",
- "29785_ord": "\u7459",
- "29786_ord": "\u745a",
- "29787_ord": "\u745b",
- "29788_ord": "\u745c",
- "29790_ord": "\u745e",
- "29791_ord": "\u745f",
- "29808_ord": "\u7470",
- "29814_ord": "\u7476",
- "29822_ord": "\u747e",
- "29824_ord": "\u7480",
- "29827_ord": "\u7483",
- "29830_ord": "\u7486",
- "29831_ord": "\u7487",
- "29835_ord": "\u748b",
- "29840_ord": "\u7490",
- "29852_ord": "\u749c",
- "29854_ord": "\u749e",
- "29855_ord": "\u749f",
- "29863_ord": "\u74a7",
- "29864_ord": "\u74a8",
- "29906_ord": "\u74d2",
- "29916_ord": "\u74dc",
- "29920_ord": "\u74e0",
- "29922_ord": "\u74e2",
- "29923_ord": "\u74e3",
- "29926_ord": "\u74e6",
- "29934_ord": "\u74ee",
- "29935_ord": "\u74ef",
- "29940_ord": "\u74f4",
- "29942_ord": "\u74f6",
- "29943_ord": "\u74f7",
- "29947_ord": "\u74fb",
- "29956_ord": "\u7504",
- "29969_ord": "\u7511",
- "29976_ord": "\u7518",
- "29977_ord": "\u7519",
- "29978_ord": "\u751a",
- "29980_ord": "\u751c",
- "29983_ord": "\u751f",
- "29987_ord": "\u7523",
- "29989_ord": "\u7525",
- "29992_ord": "\u7528",
- "29993_ord": "\u7529",
- "29995_ord": "\u752b",
- "29996_ord": "\u752c",
- "29997_ord": "\u752d",
- "30000_ord": "\u7530",
- "30001_ord": "\u7531",
- "30002_ord": "\u7532",
- "30003_ord": "\u7533",
- "30005_ord": "\u7535",
- "30007_ord": "\u7537",
- "30008_ord": "\u7538",
- "30010_ord": "\u753a",
- "30011_ord": "\u753b",
- "30014_ord": "\u753e",
- "30016_ord": "\u7540",
- "30021_ord": "\u7545",
- "30028_ord": "\u754c",
- "30030_ord": "\u754e",
- "30031_ord": "\u754f",
- "30033_ord": "\u7551",
- "30036_ord": "\u7554",
- "30041_ord": "\u7559",
- "30044_ord": "\u755c",
- "30053_ord": "\u7565",
- "30054_ord": "\u7566",
- "30058_ord": "\u756a",
- "30066_ord": "\u7572",
- "30068_ord": "\u7574",
- "30072_ord": "\u7578",
- "30079_ord": "\u757f",
- "30083_ord": "\u7583",
- "30086_ord": "\u7586",
- "30091_ord": "\u758b",
- "30095_ord": "\u758f",
- "30097_ord": "\u7591",
- "30103_ord": "\u7597",
- "30105_ord": "\u7599",
- "30106_ord": "\u759a",
- "30109_ord": "\u759d",
- "30111_ord": "\u759f",
- "30113_ord": "\u75a1",
- "30115_ord": "\u75a3",
- "30116_ord": "\u75a4",
- "30117_ord": "\u75a5",
- "30123_ord": "\u75ab",
- "30126_ord": "\u75ae",
- "30127_ord": "\u75af",
- "30129_ord": "\u75b1",
- "30130_ord": "\u75b2",
- "30132_ord": "\u75b4",
- "30133_ord": "\u75b5",
- "30136_ord": "\u75b8",
- "30137_ord": "\u75b9",
- "30140_ord": "\u75bc",
- "30141_ord": "\u75bd",
- "30142_ord": "\u75be",
- "30146_ord": "\u75c2",
- "30149_ord": "\u75c5",
- "30151_ord": "\u75c7",
- "30152_ord": "\u75c8",
- "30153_ord": "\u75c9",
- "30154_ord": "\u75ca",
- "30157_ord": "\u75cd",
- "30162_ord": "\u75d2",
- "30164_ord": "\u75d4",
- "30165_ord": "\u75d5",
- "30168_ord": "\u75d8",
- "30171_ord": "\u75db",
- "30174_ord": "\u75de",
- "30178_ord": "\u75e2",
- "30179_ord": "\u75e3",
- "30180_ord": "\u75e4",
- "30183_ord": "\u75e7",
- "30186_ord": "\u75ea",
- "30187_ord": "\u75eb",
- "30192_ord": "\u75f0",
- "30196_ord": "\u75f4",
- "30201_ord": "\u75f9",
- "30204_ord": "\u75fc",
- "30207_ord": "\u75ff",
- "30208_ord": "\u7600",
- "30209_ord": "\u7601",
- "30224_ord": "\u7610",
- "30231_ord": "\u7617",
- "30232_ord": "\u7618",
- "30233_ord": "\u7619",
- "30239_ord": "\u761f",
- "30240_ord": "\u7620",
- "30242_ord": "\u7622",
- "30244_ord": "\u7624",
- "30245_ord": "\u7625",
- "30246_ord": "\u7626",
- "30249_ord": "\u7629",
- "30250_ord": "\u762a",
- "30251_ord": "\u762b",
- "30259_ord": "\u7633",
- "30260_ord": "\u7634",
- "30261_ord": "\u7635",
- "30264_ord": "\u7638",
- "30270_ord": "\u763e",
- "30272_ord": "\u7640",
- "30284_ord": "\u764c",
- "30292_ord": "\u7654",
- "30294_ord": "\u7656",
- "30300_ord": "\u765c",
- "30302_ord": "\u765e",
- "30307_ord": "\u7663",
- "30315_ord": "\u766b",
- "30328_ord": "\u7678",
- "30331_ord": "\u767b",
- "30333_ord": "\u767d",
- "30334_ord": "\u767e",
- "30337_ord": "\u7681",
- "30338_ord": "\u7682",
- "30340_ord": "\u7684",
- "30342_ord": "\u7686",
- "30343_ord": "\u7687",
- "30344_ord": "\u7688",
- "30347_ord": "\u768b",
- "30350_ord": "\u768e",
- "30353_ord": "\u7691",
- "30355_ord": "\u7693",
- "30358_ord": "\u7696",
- "30361_ord": "\u7699",
- "30372_ord": "\u76a4",
- "30382_ord": "\u76ae",
- "30385_ord": "\u76b1",
- "30388_ord": "\u76b4",
- "30399_ord": "\u76bf",
- "30402_ord": "\u76c2",
- "30405_ord": "\u76c5",
- "30406_ord": "\u76c6",
- "30408_ord": "\u76c8",
- "30410_ord": "\u76ca",
- "30413_ord": "\u76cd",
- "30414_ord": "\u76ce",
- "30415_ord": "\u76cf",
- "30416_ord": "\u76d0",
- "30417_ord": "\u76d1",
- "30418_ord": "\u76d2",
- "30420_ord": "\u76d4",
- "30422_ord": "\u76d6",
- "30423_ord": "\u76d7",
- "30424_ord": "\u76d8",
- "30427_ord": "\u76db",
- "30431_ord": "\u76df",
- "30437_ord": "\u76e5",
- "30446_ord": "\u76ee",
- "30447_ord": "\u76ef",
- "30449_ord": "\u76f1",
- "30450_ord": "\u76f2",
- "30452_ord": "\u76f4",
- "30456_ord": "\u76f8",
- "30457_ord": "\u76f9",
- "30460_ord": "\u76fc",
- "30462_ord": "\u76fe",
- "30465_ord": "\u7701",
- "30471_ord": "\u7707",
- "30472_ord": "\u7708",
- "30473_ord": "\u7709",
- "30475_ord": "\u770b",
- "30489_ord": "\u7719",
- "30491_ord": "\u771b",
- "30495_ord": "\u771f",
- "30496_ord": "\u7720",
- "30498_ord": "\u7722",
- "30502_ord": "\u7726",
- "30504_ord": "\u7728",
- "30505_ord": "\u7729",
- "30511_ord": "\u772f",
- "30518_ord": "\u7736",
- "30519_ord": "\u7737",
- "30520_ord": "\u7738",
- "30522_ord": "\u773a",
- "30524_ord": "\u773c",
- "30528_ord": "\u7740",
- "30529_ord": "\u7741",
- "30535_ord": "\u7747",
- "30544_ord": "\u7750",
- "30545_ord": "\u7751",
- "30546_ord": "\u7752",
- "30554_ord": "\u775a",
- "30555_ord": "\u775b",
- "30561_ord": "\u7761",
- "30562_ord": "\u7762",
- "30563_ord": "\u7763",
- "30566_ord": "\u7766",
- "30568_ord": "\u7768",
- "30570_ord": "\u776a",
- "30571_ord": "\u776b",
- "30572_ord": "\u776c",
- "30585_ord": "\u7779",
- "30589_ord": "\u777d",
- "30590_ord": "\u777e",
- "30591_ord": "\u777f",
- "30592_ord": "\u7780",
- "30596_ord": "\u7784",
- "30597_ord": "\u7785",
- "30603_ord": "\u778b",
- "30604_ord": "\u778c",
- "30606_ord": "\u778e",
- "30609_ord": "\u7791",
- "30610_ord": "\u7792",
- "30623_ord": "\u779f",
- "30624_ord": "\u77a0",
- "30629_ord": "\u77a5",
- "30631_ord": "\u77a7",
- "30633_ord": "\u77a9",
- "30634_ord": "\u77aa",
- "30636_ord": "\u77ac",
- "30637_ord": "\u77ad",
- "30640_ord": "\u77b0",
- "30643_ord": "\u77b3",
- "30651_ord": "\u77bb",
- "30653_ord": "\u77bd",
- "30654_ord": "\u77be",
- "30655_ord": "\u77bf",
- "30679_ord": "\u77d7",
- "30683_ord": "\u77db",
- "30684_ord": "\u77dc",
- "30690_ord": "\u77e2",
- "30691_ord": "\u77e3",
- "30693_ord": "\u77e5",
- "30697_ord": "\u77e9",
- "30699_ord": "\u77eb",
- "30701_ord": "\u77ed",
- "30702_ord": "\u77ee",
- "30707_ord": "\u77f3",
- "30710_ord": "\u77f6",
- "30717_ord": "\u77fd",
- "30718_ord": "\u77fe",
- "30719_ord": "\u77ff",
- "30720_ord": "\u7800",
- "30721_ord": "\u7801",
- "30722_ord": "\u7802",
- "30732_ord": "\u780c",
- "30733_ord": "\u780d",
- "30738_ord": "\u7812",
- "30740_ord": "\u7814",
- "30742_ord": "\u7816",
- "30746_ord": "\u781a",
- "30749_ord": "\u781d",
- "30755_ord": "\u7823",
- "30757_ord": "\u7825",
- "30759_ord": "\u7827",
- "30765_ord": "\u782d",
- "30768_ord": "\u7830",
- "30772_ord": "\u7834",
- "30775_ord": "\u7837",
- "30776_ord": "\u7838",
- "30778_ord": "\u783a",
- "30782_ord": "\u783e",
- "30784_ord": "\u7840",
- "30789_ord": "\u7845",
- "30802_ord": "\u7852",
- "30805_ord": "\u7855",
- "30813_ord": "\u785d",
- "30827_ord": "\u786b",
- "30828_ord": "\u786c",
- "30830_ord": "\u786e",
- "30844_ord": "\u787c",
- "30849_ord": "\u7881",
- "30857_ord": "\u7889",
- "30860_ord": "\u788c",
- "30861_ord": "\u788d",
- "30862_ord": "\u788e",
- "30865_ord": "\u7891",
- "30867_ord": "\u7893",
- "30871_ord": "\u7897",
- "30872_ord": "\u7898",
- "30875_ord": "\u789b",
- "30879_ord": "\u789f",
- "30883_ord": "\u78a3",
- "30887_ord": "\u78a7",
- "30896_ord": "\u78b0",
- "30897_ord": "\u78b1",
- "30899_ord": "\u78b3",
- "30900_ord": "\u78b4",
- "30910_ord": "\u78be",
- "30913_ord": "\u78c1",
- "30917_ord": "\u78c5",
- "30922_ord": "\u78ca",
- "30923_ord": "\u78cb",
- "30928_ord": "\u78d0",
- "30932_ord": "\u78d4",
- "30933_ord": "\u78d5",
- "30939_ord": "\u78db",
- "30952_ord": "\u78e8",
- "30956_ord": "\u78ec",
- "30967_ord": "\u78f7",
- "30970_ord": "\u78fa",
- "30977_ord": "\u7901",
- "31028_ord": "\u7934",
- "31034_ord": "\u793a",
- "31035_ord": "\u793b",
- "31036_ord": "\u793c",
- "31038_ord": "\u793e",
- "31040_ord": "\u7940",
- "31041_ord": "\u7941",
- "31047_ord": "\u7947",
- "31048_ord": "\u7948",
- "31049_ord": "\u7949",
- "31054_ord": "\u794e",
- "31056_ord": "\u7950",
- "31059_ord": "\u7953",
- "31062_ord": "\u7956",
- "31063_ord": "\u7957",
- "31066_ord": "\u795a",
- "31067_ord": "\u795b",
- "31068_ord": "\u795c",
- "31069_ord": "\u795d",
- "31070_ord": "\u795e",
- "31071_ord": "\u795f",
- "31072_ord": "\u7960",
- "31077_ord": "\u7965",
- "31079_ord": "\u7967",
- "31080_ord": "\u7968",
- "31085_ord": "\u796d",
- "31087_ord": "\u796f",
- "31095_ord": "\u7977",
- "31096_ord": "\u7978",
- "31098_ord": "\u797a",
- "31104_ord": "\u7980",
- "31105_ord": "\u7981",
- "31108_ord": "\u7984",
- "31109_ord": "\u7985",
- "31119_ord": "\u798f",
- "31143_ord": "\u79a7",
- "31155_ord": "\u79b3",
- "31161_ord": "\u79b9",
- "31162_ord": "\u79ba",
- "31163_ord": "\u79bb",
- "31165_ord": "\u79bd",
- "31166_ord": "\u79be",
- "31168_ord": "\u79c0",
- "31169_ord": "\u79c1",
- "31171_ord": "\u79c3",
- "31177_ord": "\u79c9",
- "31179_ord": "\u79cb",
- "31181_ord": "\u79cd",
- "31183_ord": "\u79cf",
- "31185_ord": "\u79d1",
- "31186_ord": "\u79d2",
- "31192_ord": "\u79d8",
- "31199_ord": "\u79df",
- "31204_ord": "\u79e4",
- "31206_ord": "\u79e6",
- "31207_ord": "\u79e7",
- "31209_ord": "\u79e9",
- "31215_ord": "\u79ef",
- "31216_ord": "\u79f0",
- "31224_ord": "\u79f8",
- "31227_ord": "\u79fb",
- "31229_ord": "\u79fd",
- "31232_ord": "\u7a00",
- "31243_ord": "\u7a0b",
- "31245_ord": "\u7a0d",
- "31246_ord": "\u7a0e",
- "31252_ord": "\u7a14",
- "31255_ord": "\u7a17",
- "31258_ord": "\u7a1a",
- "31262_ord": "\u7a1e",
- "31264_ord": "\u7a20",
- "31267_ord": "\u7a23",
- "31283_ord": "\u7a33",
- "31287_ord": "\u7a37",
- "31291_ord": "\u7a3b",
- "31292_ord": "\u7a3c",
- "31293_ord": "\u7a3d",
- "31295_ord": "\u7a3f",
- "31302_ord": "\u7a46",
- "31313_ord": "\u7a51",
- "31319_ord": "\u7a57",
- "31344_ord": "\u7a70",
- "31348_ord": "\u7a74",
- "31350_ord": "\u7a76",
- "31351_ord": "\u7a77",
- "31353_ord": "\u7a79",
- "31354_ord": "\u7a7a",
- "31359_ord": "\u7a7f",
- "31361_ord": "\u7a81",
- "31363_ord": "\u7a83",
- "31364_ord": "\u7a84",
- "31368_ord": "\u7a88",
- "31373_ord": "\u7a8d",
- "31377_ord": "\u7a91",
- "31378_ord": "\u7a92",
- "31381_ord": "\u7a95",
- "31382_ord": "\u7a96",
- "31383_ord": "\u7a97",
- "31384_ord": "\u7a98",
- "31388_ord": "\u7a9c",
- "31389_ord": "\u7a9d",
- "31391_ord": "\u7a9f",
- "31392_ord": "\u7aa0",
- "31395_ord": "\u7aa3",
- "31397_ord": "\u7aa5",
- "31398_ord": "\u7aa6",
- "31404_ord": "\u7aac",
- "31405_ord": "\u7aad",
- "31423_ord": "\u7abf",
- "31435_ord": "\u7acb",
- "31446_ord": "\u7ad6",
- "31449_ord": "\u7ad9",
- "31454_ord": "\u7ade",
- "31455_ord": "\u7adf",
- "31456_ord": "\u7ae0",
- "31459_ord": "\u7ae3",
- "31461_ord": "\u7ae5",
- "31469_ord": "\u7aed",
- "31471_ord": "\u7aef",
- "31481_ord": "\u7af9",
- "31482_ord": "\u7afa",
- "31485_ord": "\u7afd",
- "31487_ord": "\u7aff",
- "31491_ord": "\u7b03",
- "31492_ord": "\u7b04",
- "31494_ord": "\u7b06",
- "31496_ord": "\u7b08",
- "31499_ord": "\u7b0b",
- "31505_ord": "\u7b11",
- "31508_ord": "\u7b14",
- "31513_ord": "\u7b19",
- "31515_ord": "\u7b1b",
- "31518_ord": "\u7b1e",
- "31520_ord": "\u7b20",
- "31524_ord": "\u7b24",
- "31525_ord": "\u7b25",
- "31526_ord": "\u7b26",
- "31528_ord": "\u7b28",
- "31531_ord": "\u7b2b",
- "31532_ord": "\u7b2c",
- "31546_ord": "\u7b3a",
- "31548_ord": "\u7b3c",
- "31561_ord": "\u7b49",
- "31563_ord": "\u7b4b",
- "31567_ord": "\u7b4f",
- "31568_ord": "\u7b50",
- "31569_ord": "\u7b51",
- "31570_ord": "\u7b52",
- "31572_ord": "\u7b54",
- "31574_ord": "\u7b56",
- "31579_ord": "\u7b5b",
- "31581_ord": "\u7b5d",
- "31584_ord": "\u7b60",
- "31598_ord": "\u7b6e",
- "31601_ord": "\u7b71",
- "31605_ord": "\u7b75",
- "31607_ord": "\u7b77",
- "31609_ord": "\u7b79",
- "31614_ord": "\u7b7e",
- "31616_ord": "\u7b80",
- "31629_ord": "\u7b8d",
- "31636_ord": "\u7b94",
- "31637_ord": "\u7b95",
- "31639_ord": "\u7b97",
- "31649_ord": "\u7ba1",
- "31654_ord": "\u7ba6",
- "31655_ord": "\u7ba7",
- "31657_ord": "\u7ba9",
- "31659_ord": "\u7bab",
- "31661_ord": "\u7bad",
- "31665_ord": "\u7bb1",
- "31668_ord": "\u7bb4",
- "31672_ord": "\u7bb8",
- "31681_ord": "\u7bc1",
- "31686_ord": "\u7bc6",
- "31687_ord": "\u7bc7",
- "31697_ord": "\u7bd1",
- "31699_ord": "\u7bd3",
- "31705_ord": "\u7bd9",
- "31709_ord": "\u7bdd",
- "31713_ord": "\u7be1",
- "31726_ord": "\u7bee",
- "31729_ord": "\u7bf1",
- "31735_ord": "\u7bf7",
- "31742_ord": "\u7bfe",
- "31751_ord": "\u7c07",
- "31755_ord": "\u7c0b",
- "31756_ord": "\u7c0c",
- "31759_ord": "\u7c0f",
- "31783_ord": "\u7c27",
- "31786_ord": "\u7c2a",
- "31800_ord": "\u7c38",
- "31807_ord": "\u7c3f",
- "31809_ord": "\u7c41",
- "31821_ord": "\u7c4d",
- "31859_ord": "\u7c73",
- "31867_ord": "\u7c7b",
- "31869_ord": "\u7c7d",
- "31881_ord": "\u7c89",
- "31889_ord": "\u7c91",
- "31890_ord": "\u7c92",
- "31893_ord": "\u7c95",
- "31895_ord": "\u7c97",
- "31896_ord": "\u7c98",
- "31900_ord": "\u7c9c",
- "31901_ord": "\u7c9d",
- "31903_ord": "\u7c9f",
- "31908_ord": "\u7ca4",
- "31909_ord": "\u7ca5",
- "31914_ord": "\u7caa",
- "31918_ord": "\u7cae",
- "31921_ord": "\u7cb1",
- "31922_ord": "\u7cb2",
- "31923_ord": "\u7cb3",
- "31929_ord": "\u7cb9",
- "31932_ord": "\u7cbc",
- "31933_ord": "\u7cbd",
- "31934_ord": "\u7cbe",
- "31937_ord": "\u7cc1",
- "31941_ord": "\u7cc5",
- "31946_ord": "\u7cca",
- "31948_ord": "\u7ccc",
- "31949_ord": "\u7ccd",
- "31957_ord": "\u7cd5",
- "31958_ord": "\u7cd6",
- "31959_ord": "\u7cd7",
- "31961_ord": "\u7cd9",
- "31964_ord": "\u7cdc",
- "31967_ord": "\u7cdf",
- "31968_ord": "\u7ce0",
- "31983_ord": "\u7cef",
- "31995_ord": "\u7cfb",
- "32010_ord": "\u7d0a",
- "32032_ord": "\u7d20",
- "32034_ord": "\u7d22",
- "32039_ord": "\u7d27",
- "32043_ord": "\u7d2b",
- "32044_ord": "\u7d2c",
- "32047_ord": "\u7d2f",
- "32092_ord": "\u7d5c",
- "32110_ord": "\u7d6e",
- "32119_ord": "\u7d77",
- "32166_ord": "\u7da6",
- "32288_ord": "\u7e20",
- "32290_ord": "\u7e22",
- "32303_ord": "\u7e2f",
- "32315_ord": "\u7e3b",
- "32321_ord": "\u7e41",
- "32327_ord": "\u7e47",
- "32386_ord": "\u7e82",
- "32404_ord": "\u7e94",
- "32416_ord": "\u7ea0",
- "32417_ord": "\u7ea1",
- "32418_ord": "\u7ea2",
- "32419_ord": "\u7ea3",
- "32420_ord": "\u7ea4",
- "32421_ord": "\u7ea5",
- "32422_ord": "\u7ea6",
- "32423_ord": "\u7ea7",
- "32424_ord": "\u7ea8",
- "32426_ord": "\u7eaa",
- "32427_ord": "\u7eab",
- "32428_ord": "\u7eac",
- "32429_ord": "\u7ead",
- "32430_ord": "\u7eae",
- "32431_ord": "\u7eaf",
- "32432_ord": "\u7eb0",
- "32433_ord": "\u7eb1",
- "32434_ord": "\u7eb2",
- "32435_ord": "\u7eb3",
- "32437_ord": "\u7eb5",
- "32438_ord": "\u7eb6",
- "32439_ord": "\u7eb7",
- "32440_ord": "\u7eb8",
- "32441_ord": "\u7eb9",
- "32442_ord": "\u7eba",
- "32443_ord": "\u7ebb",
- "32445_ord": "\u7ebd",
- "32446_ord": "\u7ebe",
- "32447_ord": "\u7ebf",
- "32448_ord": "\u7ec0",
- "32449_ord": "\u7ec1",
- "32451_ord": "\u7ec3",
- "32452_ord": "\u7ec4",
- "32453_ord": "\u7ec5",
- "32454_ord": "\u7ec6",
- "32455_ord": "\u7ec7",
- "32456_ord": "\u7ec8",
- "32458_ord": "\u7eca",
- "32460_ord": "\u7ecc",
- "32461_ord": "\u7ecd",
- "32462_ord": "\u7ece",
- "32463_ord": "\u7ecf",
- "32464_ord": "\u7ed0",
- "32465_ord": "\u7ed1",
- "32466_ord": "\u7ed2",
- "32467_ord": "\u7ed3",
- "32468_ord": "\u7ed4",
- "32469_ord": "\u7ed5",
- "32470_ord": "\u7ed6",
- "32472_ord": "\u7ed8",
- "32473_ord": "\u7ed9",
- "32474_ord": "\u7eda",
- "32475_ord": "\u7edb",
- "32476_ord": "\u7edc",
- "32477_ord": "\u7edd",
- "32478_ord": "\u7ede",
- "32479_ord": "\u7edf",
- "32480_ord": "\u7ee0",
- "32481_ord": "\u7ee1",
- "32482_ord": "\u7ee2",
- "32483_ord": "\u7ee3",
- "32485_ord": "\u7ee5",
- "32486_ord": "\u7ee6",
- "32487_ord": "\u7ee7",
- "32488_ord": "\u7ee8",
- "32489_ord": "\u7ee9",
- "32490_ord": "\u7eea",
- "32491_ord": "\u7eeb",
- "32493_ord": "\u7eed",
- "32494_ord": "\u7eee",
- "32495_ord": "\u7eef",
- "32496_ord": "\u7ef0",
- "32499_ord": "\u7ef3",
- "32500_ord": "\u7ef4",
- "32501_ord": "\u7ef5",
- "32502_ord": "\u7ef6",
- "32503_ord": "\u7ef7",
- "32504_ord": "\u7ef8",
- "32506_ord": "\u7efa",
- "32507_ord": "\u7efb",
- "32508_ord": "\u7efc",
- "32509_ord": "\u7efd",
- "32510_ord": "\u7efe",
- "32511_ord": "\u7eff",
- "32512_ord": "\u7f00",
- "32513_ord": "\u7f01",
- "32516_ord": "\u7f04",
- "32517_ord": "\u7f05",
- "32518_ord": "\u7f06",
- "32519_ord": "\u7f07",
- "32520_ord": "\u7f08",
- "32521_ord": "\u7f09",
- "32526_ord": "\u7f0e",
- "32530_ord": "\u7f12",
- "32531_ord": "\u7f13",
- "32532_ord": "\u7f14",
- "32533_ord": "\u7f15",
- "32534_ord": "\u7f16",
- "32535_ord": "\u7f17",
- "32536_ord": "\u7f18",
- "32537_ord": "\u7f19",
- "32538_ord": "\u7f1a",
- "32540_ord": "\u7f1c",
- "32541_ord": "\u7f1d",
- "32542_ord": "\u7f1e",
- "32543_ord": "\u7f1f",
- "32544_ord": "\u7f20",
- "32546_ord": "\u7f22",
- "32548_ord": "\u7f24",
- "32549_ord": "\u7f25",
- "32551_ord": "\u7f27",
- "32552_ord": "\u7f28",
- "32553_ord": "\u7f29",
- "32554_ord": "\u7f2a",
- "32557_ord": "\u7f2d",
- "32558_ord": "\u7f2e",
- "32559_ord": "\u7f2f",
- "32560_ord": "\u7f30",
- "32561_ord": "\u7f31",
- "32563_ord": "\u7f33",
- "32564_ord": "\u7f34",
- "32565_ord": "\u7f35",
- "32566_ord": "\u7f36",
- "32568_ord": "\u7f38",
- "32570_ord": "\u7f3a",
- "32578_ord": "\u7f42",
- "32580_ord": "\u7f44",
- "32581_ord": "\u7f45",
- "32592_ord": "\u7f50",
- "32593_ord": "\u7f51",
- "32596_ord": "\u7f54",
- "32597_ord": "\u7f55",
- "32599_ord": "\u7f57",
- "32600_ord": "\u7f58",
- "32602_ord": "\u7f5a",
- "32609_ord": "\u7f61",
- "32610_ord": "\u7f62",
- "32613_ord": "\u7f65",
- "32617_ord": "\u7f69",
- "32618_ord": "\u7f6a",
- "32622_ord": "\u7f6e",
- "32626_ord": "\u7f72",
- "32628_ord": "\u7f74",
- "32633_ord": "\u7f79",
- "32641_ord": "\u7f81",
- "32650_ord": "\u7f8a",
- "32652_ord": "\u7f8c",
- "32654_ord": "\u7f8e",
- "32657_ord": "\u7f91",
- "32660_ord": "\u7f94",
- "32662_ord": "\u7f96",
- "32666_ord": "\u7f9a",
- "32670_ord": "\u7f9e",
- "32671_ord": "\u7f9f",
- "32673_ord": "\u7fa1",
- "32676_ord": "\u7fa4",
- "32687_ord": "\u7faf",
- "32690_ord": "\u7fb2",
- "32696_ord": "\u7fb8",
- "32697_ord": "\u7fb9",
- "32701_ord": "\u7fbd",
- "32703_ord": "\u7fbf",
- "32705_ord": "\u7fc1",
- "32709_ord": "\u7fc5",
- "32714_ord": "\u7fca",
- "32716_ord": "\u7fcc",
- "32718_ord": "\u7fce",
- "32724_ord": "\u7fd4",
- "32725_ord": "\u7fd5",
- "32728_ord": "\u7fd8",
- "32735_ord": "\u7fdf",
- "32736_ord": "\u7fe0",
- "32737_ord": "\u7fe1",
- "32742_ord": "\u7fe6",
- "32745_ord": "\u7fe9",
- "32750_ord": "\u7fee",
- "32752_ord": "\u7ff0",
- "32753_ord": "\u7ff1",
- "32755_ord": "\u7ff3",
- "32763_ord": "\u7ffb",
- "32764_ord": "\u7ffc",
- "32768_ord": "\u8000",
- "32769_ord": "\u8001",
- "32771_ord": "\u8003",
- "32772_ord": "\u8004",
- "32773_ord": "\u8005",
- "32774_ord": "\u8006",
- "32779_ord": "\u800b",
- "32780_ord": "\u800c",
- "32781_ord": "\u800d",
- "32782_ord": "\u800e",
- "32784_ord": "\u8010",
- "32789_ord": "\u8015",
- "32791_ord": "\u8017",
- "32792_ord": "\u8018",
- "32793_ord": "\u8019",
- "32796_ord": "\u801c",
- "32806_ord": "\u8026",
- "32808_ord": "\u8028",
- "32819_ord": "\u8033",
- "32822_ord": "\u8036",
- "32824_ord": "\u8038",
- "32827_ord": "\u803b",
- "32829_ord": "\u803d",
- "32831_ord": "\u803f",
- "32834_ord": "\u8042",
- "32838_ord": "\u8046",
- "32842_ord": "\u804a",
- "32843_ord": "\u804b",
- "32844_ord": "\u804c",
- "32850_ord": "\u8052",
- "32852_ord": "\u8054",
- "32856_ord": "\u8058",
- "32858_ord": "\u805a",
- "32873_ord": "\u8069",
- "32874_ord": "\u806a",
- "32899_ord": "\u8083",
- "32900_ord": "\u8084",
- "32902_ord": "\u8086",
- "32903_ord": "\u8087",
- "32905_ord": "\u8089",
- "32907_ord": "\u808b",
- "32908_ord": "\u808c",
- "32915_ord": "\u8093",
- "32918_ord": "\u8096",
- "32920_ord": "\u8098",
- "32922_ord": "\u809a",
- "32923_ord": "\u809b",
- "32925_ord": "\u809d",
- "32928_ord": "\u80a0",
- "32929_ord": "\u80a1",
- "32930_ord": "\u80a2",
- "32932_ord": "\u80a4",
- "32933_ord": "\u80a5",
- "32937_ord": "\u80a9",
- "32938_ord": "\u80aa",
- "32942_ord": "\u80ae",
- "32943_ord": "\u80af",
- "32945_ord": "\u80b1",
- "32946_ord": "\u80b2",
- "32948_ord": "\u80b4",
- "32954_ord": "\u80ba",
- "32957_ord": "\u80bd",
- "32958_ord": "\u80be",
- "32959_ord": "\u80bf",
- "32960_ord": "\u80c0",
- "32961_ord": "\u80c1",
- "32963_ord": "\u80c3",
- "32964_ord": "\u80c4",
- "32966_ord": "\u80c6",
- "32972_ord": "\u80cc",
- "32974_ord": "\u80ce",
- "32982_ord": "\u80d6",
- "32986_ord": "\u80da",
- "32988_ord": "\u80dc",
- "32989_ord": "\u80dd",
- "32990_ord": "\u80de",
- "32993_ord": "\u80e1",
- "32996_ord": "\u80e4",
- "32997_ord": "\u80e5",
- "32999_ord": "\u80e7",
- "33002_ord": "\u80ea",
- "33003_ord": "\u80eb",
- "33005_ord": "\u80ed",
- "33007_ord": "\u80ef",
- "33008_ord": "\u80f0",
- "33009_ord": "\u80f1",
- "33011_ord": "\u80f3",
- "33014_ord": "\u80f6",
- "33016_ord": "\u80f8",
- "33018_ord": "\u80fa",
- "33021_ord": "\u80fd",
- "33022_ord": "\u80fe",
- "33025_ord": "\u8101",
- "33026_ord": "\u8102",
- "33030_ord": "\u8106",
- "33033_ord": "\u8109",
- "33034_ord": "\u810a",
- "33037_ord": "\u810d",
- "33039_ord": "\u810f",
- "33040_ord": "\u8110",
- "33041_ord": "\u8111",
- "33043_ord": "\u8113",
- "33044_ord": "\u8114",
- "33046_ord": "\u8116",
- "33050_ord": "\u811a",
- "33071_ord": "\u812f",
- "33073_ord": "\u8131",
- "33074_ord": "\u8132",
- "33080_ord": "\u8138",
- "33086_ord": "\u813e",
- "33094_ord": "\u8146",
- "33096_ord": "\u8148",
- "33097_ord": "\u8149",
- "33098_ord": "\u814a",
- "33099_ord": "\u814b",
- "33100_ord": "\u814c",
- "33104_ord": "\u8150",
- "33105_ord": "\u8151",
- "33107_ord": "\u8153",
- "33108_ord": "\u8154",
- "33109_ord": "\u8155",
- "33125_ord": "\u8165",
- "33129_ord": "\u8169",
- "33133_ord": "\u816d",
- "33134_ord": "\u816e",
- "33136_ord": "\u8170",
- "33137_ord": "\u8171",
- "33140_ord": "\u8174",
- "33145_ord": "\u8179",
- "33146_ord": "\u817a",
- "33147_ord": "\u817b",
- "33148_ord": "\u817c",
- "33150_ord": "\u817e",
- "33151_ord": "\u817f",
- "33152_ord": "\u8180",
- "33160_ord": "\u8188",
- "33162_ord": "\u818a",
- "33167_ord": "\u818f",
- "33169_ord": "\u8191",
- "33176_ord": "\u8198",
- "33179_ord": "\u819b",
- "33180_ord": "\u819c",
- "33181_ord": "\u819d",
- "33190_ord": "\u81a6",
- "33192_ord": "\u81a8",
- "33203_ord": "\u81b3",
- "33210_ord": "\u81ba",
- "33211_ord": "\u81bb",
- "33216_ord": "\u81c0",
- "33218_ord": "\u81c2",
- "33219_ord": "\u81c3",
- "33222_ord": "\u81c6",
- "33226_ord": "\u81ca",
- "33243_ord": "\u81db",
- "33251_ord": "\u81e3",
- "33255_ord": "\u81e7",
- "33258_ord": "\u81ea",
- "33260_ord": "\u81ec",
- "33261_ord": "\u81ed",
- "33267_ord": "\u81f3",
- "33268_ord": "\u81f4",
- "33275_ord": "\u81fb",
- "33276_ord": "\u81fc",
- "33278_ord": "\u81fe",
- "33280_ord": "\u8200",
- "33281_ord": "\u8201",
- "33282_ord": "\u8202",
- "33284_ord": "\u8204",
- "33285_ord": "\u8205",
- "33286_ord": "\u8206",
- "33292_ord": "\u820c",
- "33293_ord": "\u820d",
- "33296_ord": "\u8210",
- "33298_ord": "\u8212",
- "33300_ord": "\u8214",
- "33307_ord": "\u821b",
- "33308_ord": "\u821c",
- "33310_ord": "\u821e",
- "33311_ord": "\u821f",
- "33313_ord": "\u8221",
- "33322_ord": "\u822a",
- "33323_ord": "\u822b",
- "33324_ord": "\u822c",
- "33328_ord": "\u8230",
- "33329_ord": "\u8231",
- "33333_ord": "\u8235",
- "33334_ord": "\u8236",
- "33335_ord": "\u8237",
- "33337_ord": "\u8239",
- "33351_ord": "\u8247",
- "33368_ord": "\u8258",
- "33390_ord": "\u826e",
- "33391_ord": "\u826f",
- "33392_ord": "\u8270",
- "33394_ord": "\u8272",
- "33395_ord": "\u8273",
- "33402_ord": "\u827a",
- "33406_ord": "\u827e",
- "33410_ord": "\u8282",
- "33416_ord": "\u8288",
- "33419_ord": "\u828b",
- "33421_ord": "\u828d",
- "33422_ord": "\u828e",
- "33426_ord": "\u8292",
- "33432_ord": "\u8298",
- "33433_ord": "\u8299",
- "33436_ord": "\u829c",
- "33437_ord": "\u829d",
- "33441_ord": "\u82a1",
- "33445_ord": "\u82a5",
- "33446_ord": "\u82a6",
- "33450_ord": "\u82aa",
- "33451_ord": "\u82ab",
- "33452_ord": "\u82ac",
- "33453_ord": "\u82ad",
- "33454_ord": "\u82ae",
- "33455_ord": "\u82af",
- "33457_ord": "\u82b1",
- "33459_ord": "\u82b3",
- "33463_ord": "\u82b7",
- "33464_ord": "\u82b8",
- "33465_ord": "\u82b9",
- "33469_ord": "\u82bd",
- "33476_ord": "\u82c4",
- "33479_ord": "\u82c7",
- "33483_ord": "\u82cb",
- "33484_ord": "\u82cc",
- "33485_ord": "\u82cd",
- "33486_ord": "\u82ce",
- "33487_ord": "\u82cf",
- "33489_ord": "\u82d1",
- "33490_ord": "\u82d2",
- "33491_ord": "\u82d3",
- "33492_ord": "\u82d4",
- "33493_ord": "\u82d5",
- "33495_ord": "\u82d7",
- "33499_ord": "\u82db",
- "33502_ord": "\u82de",
- "33503_ord": "\u82df",
- "33505_ord": "\u82e1",
- "33507_ord": "\u82e3",
- "33509_ord": "\u82e5",
- "33510_ord": "\u82e6",
- "33515_ord": "\u82eb",
- "33519_ord": "\u82ef",
- "33521_ord": "\u82f1",
- "33524_ord": "\u82f4",
- "33527_ord": "\u82f7",
- "33529_ord": "\u82f9",
- "33531_ord": "\u82fb",
- "33536_ord": "\u8300",
- "33537_ord": "\u8301",
- "33538_ord": "\u8302",
- "33539_ord": "\u8303",
- "33540_ord": "\u8304",
- "33541_ord": "\u8305",
- "33542_ord": "\u8306",
- "33545_ord": "\u8309",
- "33550_ord": "\u830e",
- "33551_ord": "\u830f",
- "33556_ord": "\u8314",
- "33557_ord": "\u8315",
- "33559_ord": "\u8317",
- "33564_ord": "\u831c",
- "33575_ord": "\u8327",
- "33576_ord": "\u8328",
- "33579_ord": "\u832b",
- "33580_ord": "\u832c",
- "33581_ord": "\u832d",
- "33583_ord": "\u832f",
- "33585_ord": "\u8331",
- "33588_ord": "\u8334",
- "33589_ord": "\u8335",
- "33590_ord": "\u8336",
- "33592_ord": "\u8338",
- "33593_ord": "\u8339",
- "33600_ord": "\u8340",
- "33603_ord": "\u8343",
- "33606_ord": "\u8346",
- "33609_ord": "\u8349",
- "33615_ord": "\u834f",
- "33616_ord": "\u8350",
- "33618_ord": "\u8352",
- "33620_ord": "\u8354",
- "33626_ord": "\u835a",
- "33628_ord": "\u835c",
- "33630_ord": "\u835e",
- "33631_ord": "\u835f",
- "33632_ord": "\u8360",
- "33633_ord": "\u8361",
- "33635_ord": "\u8363",
- "33636_ord": "\u8364",
- "33637_ord": "\u8365",
- "33638_ord": "\u8366",
- "33639_ord": "\u8367",
- "33642_ord": "\u836a",
- "33643_ord": "\u836b",
- "33647_ord": "\u836f",
- "33655_ord": "\u8377",
- "33659_ord": "\u837b",
- "33660_ord": "\u837c",
- "33669_ord": "\u8385",
- "33670_ord": "\u8386",
- "33673_ord": "\u8389",
- "33678_ord": "\u838e",
- "33682_ord": "\u8392",
- "33683_ord": "\u8393",
- "33688_ord": "\u8398",
- "33692_ord": "\u839c",
- "33694_ord": "\u839e",
- "33696_ord": "\u83a0",
- "33704_ord": "\u83a8",
- "33705_ord": "\u83a9",
- "33707_ord": "\u83ab",
- "33713_ord": "\u83b1",
- "33714_ord": "\u83b2",
- "33716_ord": "\u83b4",
- "33719_ord": "\u83b7",
- "33721_ord": "\u83b9",
- "33722_ord": "\u83ba",
- "33725_ord": "\u83bd",
- "33729_ord": "\u83c1",
- "33733_ord": "\u83c5",
- "33735_ord": "\u83c7",
- "33738_ord": "\u83ca",
- "33740_ord": "\u83cc",
- "33743_ord": "\u83cf",
- "33745_ord": "\u83d1",
- "33756_ord": "\u83dc",
- "33759_ord": "\u83df",
- "33760_ord": "\u83e0",
- "33761_ord": "\u83e1",
- "33769_ord": "\u83e9",
- "33777_ord": "\u83f1",
- "33778_ord": "\u83f2",
- "33789_ord": "\u83fd",
- "33795_ord": "\u8403",
- "33796_ord": "\u8404",
- "33804_ord": "\u840c",
- "33805_ord": "\u840d",
- "33806_ord": "\u840e",
- "33821_ord": "\u841d",
- "33828_ord": "\u8424",
- "33829_ord": "\u8425",
- "33830_ord": "\u8426",
- "33831_ord": "\u8427",
- "33832_ord": "\u8428",
- "33848_ord": "\u8438",
- "33853_ord": "\u843d",
- "33862_ord": "\u8446",
- "33879_ord": "\u8457",
- "33883_ord": "\u845b",
- "33889_ord": "\u8461",
- "33891_ord": "\u8463",
- "33897_ord": "\u8469",
- "33899_ord": "\u846b",
- "33900_ord": "\u846c",
- "33901_ord": "\u846d",
- "33905_ord": "\u8471",
- "33907_ord": "\u8473",
- "33909_ord": "\u8475",
- "33914_ord": "\u847a",
- "33922_ord": "\u8482",
- "33931_ord": "\u848b",
- "33943_ord": "\u8497",
- "33945_ord": "\u8499",
- "33948_ord": "\u849c",
- "33967_ord": "\u84af",
- "33970_ord": "\u84b2",
- "33976_ord": "\u84b8",
- "33978_ord": "\u84ba",
- "33981_ord": "\u84bd",
- "33983_ord": "\u84bf",
- "33988_ord": "\u84c4",
- "33993_ord": "\u84c9",
- "33997_ord": "\u84cd",
- "33_ord": "!",
- "34000_ord": "\u84d0",
- "34003_ord": "\u84d3",
- "34006_ord": "\u84d6",
- "34013_ord": "\u84dd",
- "34015_ord": "\u84df",
- "34022_ord": "\u84e6",
- "34028_ord": "\u84ec",
- "34044_ord": "\u84fc",
- "34065_ord": "\u8511",
- "34067_ord": "\u8513",
- "34071_ord": "\u8517",
- "34074_ord": "\u851a",
- "34081_ord": "\u8521",
- "34091_ord": "\u852b",
- "34092_ord": "\u852c",
- "34103_ord": "\u8537",
- "34106_ord": "\u853a",
- "34108_ord": "\u853c",
- "34109_ord": "\u853d",
- "34115_ord": "\u8543",
- "34121_ord": "\u8549",
- "34122_ord": "\u854a",
- "34137_ord": "\u8559",
- "34148_ord": "\u8564",
- "34152_ord": "\u8568",
- "34162_ord": "\u8572",
- "34164_ord": "\u8574",
- "34174_ord": "\u857e",
- "34180_ord": "\u8584",
- "34183_ord": "\u8587",
- "34191_ord": "\u858f",
- "34203_ord": "\u859b",
- "34204_ord": "\u859c",
- "34212_ord": "\u85a4",
- "34216_ord": "\u85a8",
- "34218_ord": "\u85aa",
- "34222_ord": "\u85ae",
- "34223_ord": "\u85af",
- "34224_ord": "\u85b0",
- "34241_ord": "\u85c1",
- "34249_ord": "\u85c9",
- "34255_ord": "\u85cf",
- "34256_ord": "\u85d0",
- "34259_ord": "\u85d3",
- "34261_ord": "\u85d5",
- "34268_ord": "\u85dc",
- "34276_ord": "\u85e4",
- "34281_ord": "\u85e9",
- "34299_ord": "\u85fb",
- "34303_ord": "\u85ff",
- "34321_ord": "\u8611",
- "34360_ord": "\u8638",
- "34382_ord": "\u864e",
- "34383_ord": "\u864f",
- "34384_ord": "\u8650",
- "34385_ord": "\u8651",
- "34388_ord": "\u8654",
- "34394_ord": "\u865a",
- "34398_ord": "\u865e",
- "34402_ord": "\u8662",
- "34411_ord": "\u866b",
- "34412_ord": "\u866c",
- "34414_ord": "\u866e",
- "34417_ord": "\u8671",
- "34425_ord": "\u8679",
- "34426_ord": "\u867a",
- "34429_ord": "\u867d",
- "34430_ord": "\u867e",
- "34432_ord": "\u8680",
- "34433_ord": "\u8681",
- "34434_ord": "\u8682",
- "34442_ord": "\u868a",
- "34444_ord": "\u868c",
- "34451_ord": "\u8693",
- "34453_ord": "\u8695",
- "34461_ord": "\u869d",
- "34465_ord": "\u86a1",
- "34467_ord": "\u86a3",
- "34468_ord": "\u86a4",
- "34473_ord": "\u86a9",
- "34479_ord": "\u86af",
- "34480_ord": "\u86b0",
- "34496_ord": "\u86c0",
- "34502_ord": "\u86c6",
- "34503_ord": "\u86c7",
- "34506_ord": "\u86ca",
- "34507_ord": "\u86cb",
- "34510_ord": "\u86ce",
- "34512_ord": "\u86d0",
- "34516_ord": "\u86d4",
- "34521_ord": "\u86d9",
- "34523_ord": "\u86db",
- "34527_ord": "\u86df",
- "34532_ord": "\u86e4",
- "34537_ord": "\u86e9",
- "34541_ord": "\u86ed",
- "34542_ord": "\u86ee",
- "34544_ord": "\u86f0",
- "34546_ord": "\u86f2",
- "34553_ord": "\u86f9",
- "34558_ord": "\u86fe",
- "34560_ord": "\u8700",
- "34562_ord": "\u8702",
- "34563_ord": "\u8703",
- "34567_ord": "\u8707",
- "34568_ord": "\u8708",
- "34573_ord": "\u870d",
- "34578_ord": "\u8712",
- "34579_ord": "\u8713",
- "34581_ord": "\u8715",
- "34583_ord": "\u8717",
- "34584_ord": "\u8718",
- "34586_ord": "\u871a",
- "34588_ord": "\u871c",
- "34593_ord": "\u8721",
- "34597_ord": "\u8725",
- "34612_ord": "\u8734",
- "34615_ord": "\u8737",
- "34619_ord": "\u873b",
- "34623_ord": "\u873f",
- "34631_ord": "\u8747",
- "34633_ord": "\u8749",
- "34638_ord": "\u874e",
- "34647_ord": "\u8757",
- "34649_ord": "\u8759",
- "34656_ord": "\u8760",
- "34670_ord": "\u876e",
- "34676_ord": "\u8774",
- "34678_ord": "\u8776",
- "34684_ord": "\u877c",
- "34690_ord": "\u8782",
- "34691_ord": "\u8783",
- "34701_ord": "\u878d",
- "34728_ord": "\u87a8",
- "34731_ord": "\u87ab",
- "34733_ord": "\u87ad",
- "34739_ord": "\u87b3",
- "34746_ord": "\u87ba",
- "34758_ord": "\u87c6",
- "34763_ord": "\u87cb",
- "34770_ord": "\u87d2",
- "34784_ord": "\u87e0",
- "34797_ord": "\u87ed",
- "34809_ord": "\u87f9",
- "34814_ord": "\u87fe",
- "34837_ord": "\u8815",
- "34849_ord": "\u8821",
- "34850_ord": "\u8822",
- "34873_ord": "\u8839",
- "34880_ord": "\u8840",
- "34885_ord": "\u8845",
- "34892_ord": "\u884c",
- "34893_ord": "\u884d",
- "34900_ord": "\u8854",
- "34903_ord": "\u8857",
- "34905_ord": "\u8859",
- "34913_ord": "\u8861",
- "34914_ord": "\u8862",
- "34915_ord": "\u8863",
- "34917_ord": "\u8865",
- "34920_ord": "\u8868",
- "34921_ord": "\u8869",
- "34923_ord": "\u886b",
- "34924_ord": "\u886c",
- "34926_ord": "\u886e",
- "34928_ord": "\u8870",
- "34930_ord": "\u8872",
- "34935_ord": "\u8877",
- "34941_ord": "\u887d",
- "34942_ord": "\u887e",
- "34943_ord": "\u887f",
- "34945_ord": "\u8881",
- "34946_ord": "\u8882",
- "34948_ord": "\u8884",
- "34949_ord": "\u8885",
- "34952_ord": "\u8888",
- "34955_ord": "\u888b",
- "34957_ord": "\u888d",
- "34962_ord": "\u8892",
- "34966_ord": "\u8896",
- "34972_ord": "\u889c",
- "34980_ord": "\u88a4",
- "34987_ord": "\u88ab",
- "34989_ord": "\u88ad",
- "34993_ord": "\u88b1",
- "34996_ord": "\u88b4",
- "34_ord": "\"",
- "35008_ord": "\u88c0",
- "35009_ord": "\u88c1",
- "35010_ord": "\u88c2",
- "35013_ord": "\u88c5",
- "35014_ord": "\u88c6",
- "35028_ord": "\u88d4",
- "35029_ord": "\u88d5",
- "35032_ord": "\u88d8",
- "35033_ord": "\u88d9",
- "35039_ord": "\u88df",
- "35044_ord": "\u88e4",
- "35048_ord": "\u88e8",
- "35056_ord": "\u88f0",
- "35057_ord": "\u88f1",
- "35059_ord": "\u88f3",
- "35060_ord": "\u88f4",
- "35064_ord": "\u88f8",
- "35065_ord": "\u88f9",
- "35070_ord": "\u88fe",
- "35074_ord": "\u8902",
- "35082_ord": "\u890a",
- "35088_ord": "\u8910",
- "35090_ord": "\u8912",
- "35091_ord": "\u8913",
- "35098_ord": "\u891a",
- "35099_ord": "\u891b",
- "35109_ord": "\u8925",
- "35114_ord": "\u892a",
- "35115_ord": "\u892b",
- "35124_ord": "\u8934",
- "35126_ord": "\u8936",
- "35137_ord": "\u8941",
- "35140_ord": "\u8944",
- "35142_ord": "\u8946",
- "35167_ord": "\u895f",
- "35174_ord": "\u8966",
- "35199_ord": "\u897f",
- "35201_ord": "\u8981",
- "35203_ord": "\u8983",
- "35206_ord": "\u8986",
- "35265_ord": "\u89c1",
- "35266_ord": "\u89c2",
- "35268_ord": "\u89c4",
- "35269_ord": "\u89c5",
- "35270_ord": "\u89c6",
- "35271_ord": "\u89c7",
- "35272_ord": "\u89c8",
- "35273_ord": "\u89c9",
- "35274_ord": "\u89ca",
- "35276_ord": "\u89cc",
- "35278_ord": "\u89ce",
- "35280_ord": "\u89d0",
- "35281_ord": "\u89d1",
- "35282_ord": "\u89d2",
- "35286_ord": "\u89d6",
- "35290_ord": "\u89da",
- "35292_ord": "\u89dc",
- "35294_ord": "\u89de",
- "35299_ord": "\u89e3",
- "35301_ord": "\u89e5",
- "35302_ord": "\u89e6",
- "35315_ord": "\u89f3",
- "35328_ord": "\u8a00",
- "35335_ord": "\u8a07",
- "35390_ord": "\u8a3e",
- "35400_ord": "\u8a48",
- "35449_ord": "\u8a79",
- "35465_ord": "\u8a89",
- "35475_ord": "\u8a93",
- "35686_ord": "\u8b66",
- "35692_ord": "\u8b6c",
- "35737_ord": "\u8b99",
- "35745_ord": "\u8ba1",
- "35746_ord": "\u8ba2",
- "35747_ord": "\u8ba3",
- "35748_ord": "\u8ba4",
- "35749_ord": "\u8ba5",
- "35750_ord": "\u8ba6",
- "35751_ord": "\u8ba7",
- "35752_ord": "\u8ba8",
- "35753_ord": "\u8ba9",
- "35754_ord": "\u8baa",
- "35755_ord": "\u8bab",
- "35757_ord": "\u8bad",
- "35758_ord": "\u8bae",
- "35759_ord": "\u8baf",
- "35760_ord": "\u8bb0",
- "35762_ord": "\u8bb2",
- "35763_ord": "\u8bb3",
- "35764_ord": "\u8bb4",
- "35765_ord": "\u8bb5",
- "35766_ord": "\u8bb6",
- "35767_ord": "\u8bb7",
- "35768_ord": "\u8bb8",
- "35769_ord": "\u8bb9",
- "35770_ord": "\u8bba",
- "35772_ord": "\u8bbc",
- "35773_ord": "\u8bbd",
- "35774_ord": "\u8bbe",
- "35775_ord": "\u8bbf",
- "35776_ord": "\u8bc0",
- "35777_ord": "\u8bc1",
- "35778_ord": "\u8bc2",
- "35779_ord": "\u8bc3",
- "35780_ord": "\u8bc4",
- "35781_ord": "\u8bc5",
- "35782_ord": "\u8bc6",
- "35784_ord": "\u8bc8",
- "35785_ord": "\u8bc9",
- "35786_ord": "\u8bca",
- "35787_ord": "\u8bcb",
- "35789_ord": "\u8bcd",
- "35790_ord": "\u8bce",
- "35791_ord": "\u8bcf",
- "35793_ord": "\u8bd1",
- "35794_ord": "\u8bd2",
- "35797_ord": "\u8bd5",
- "35799_ord": "\u8bd7",
- "35800_ord": "\u8bd8",
- "35801_ord": "\u8bd9",
- "35802_ord": "\u8bda",
- "35803_ord": "\u8bdb",
- "35805_ord": "\u8bdd",
- "35806_ord": "\u8bde",
- "35807_ord": "\u8bdf",
- "35808_ord": "\u8be0",
- "35809_ord": "\u8be1",
- "35810_ord": "\u8be2",
- "35811_ord": "\u8be3",
- "35812_ord": "\u8be4",
- "35813_ord": "\u8be5",
- "35814_ord": "\u8be6",
- "35815_ord": "\u8be7",
- "35816_ord": "\u8be8",
- "35817_ord": "\u8be9",
- "35819_ord": "\u8beb",
- "35820_ord": "\u8bec",
- "35821_ord": "\u8bed",
- "35822_ord": "\u8bee",
- "35823_ord": "\u8bef",
- "35824_ord": "\u8bf0",
- "35825_ord": "\u8bf1",
- "35826_ord": "\u8bf2",
- "35827_ord": "\u8bf3",
- "35828_ord": "\u8bf4",
- "35829_ord": "\u8bf5",
- "35831_ord": "\u8bf7",
- "35832_ord": "\u8bf8",
- "35834_ord": "\u8bfa",
- "35835_ord": "\u8bfb",
- "35837_ord": "\u8bfd",
- "35838_ord": "\u8bfe",
- "35839_ord": "\u8bff",
- "35840_ord": "\u8c00",
- "35841_ord": "\u8c01",
- "35843_ord": "\u8c03",
- "35844_ord": "\u8c04",
- "35845_ord": "\u8c05",
- "35846_ord": "\u8c06",
- "35847_ord": "\u8c07",
- "35848_ord": "\u8c08",
- "35850_ord": "\u8c0a",
- "35851_ord": "\u8c0b",
- "35853_ord": "\u8c0d",
- "35854_ord": "\u8c0e",
- "35855_ord": "\u8c0f",
- "35856_ord": "\u8c10",
- "35857_ord": "\u8c11",
- "35858_ord": "\u8c12",
- "35859_ord": "\u8c13",
- "35861_ord": "\u8c15",
- "35863_ord": "\u8c17",
- "35865_ord": "\u8c19",
- "35866_ord": "\u8c1a",
- "35867_ord": "\u8c1b",
- "35868_ord": "\u8c1c",
- "35871_ord": "\u8c1f",
- "35874_ord": "\u8c22",
- "35875_ord": "\u8c23",
- "35876_ord": "\u8c24",
- "35877_ord": "\u8c25",
- "35878_ord": "\u8c26",
- "35879_ord": "\u8c27",
- "35880_ord": "\u8c28",
- "35881_ord": "\u8c29",
- "35882_ord": "\u8c2a",
- "35884_ord": "\u8c2c",
- "35885_ord": "\u8c2d",
- "35886_ord": "\u8c2e",
- "35887_ord": "\u8c2f",
- "35889_ord": "\u8c31",
- "35890_ord": "\u8c32",
- "35891_ord": "\u8c33",
- "35892_ord": "\u8c34",
- "35894_ord": "\u8c36",
- "35895_ord": "\u8c37",
- "35905_ord": "\u8c41",
- "35910_ord": "\u8c46",
- "35913_ord": "\u8c49",
- "35916_ord": "\u8c4c",
- "35925_ord": "\u8c55",
- "35930_ord": "\u8c5a",
- "35937_ord": "\u8c61",
- "35938_ord": "\u8c62",
- "35944_ord": "\u8c68",
- "35946_ord": "\u8c6a",
- "35947_ord": "\u8c6b",
- "35949_ord": "\u8c6d",
- "35955_ord": "\u8c73",
- "35960_ord": "\u8c78",
- "35961_ord": "\u8c79",
- "35962_ord": "\u8c7a",
- "35970_ord": "\u8c82",
- "35977_ord": "\u8c89",
- "35980_ord": "\u8c8c",
- "35988_ord": "\u8c94",
- "35_ord": "#",
- "36103_ord": "\u8d07",
- "36125_ord": "\u8d1d",
- "36126_ord": "\u8d1e",
- "36127_ord": "\u8d1f",
- "36129_ord": "\u8d21",
- "36130_ord": "\u8d22",
- "36131_ord": "\u8d23",
- "36132_ord": "\u8d24",
- "36133_ord": "\u8d25",
- "36134_ord": "\u8d26",
- "36135_ord": "\u8d27",
- "36136_ord": "\u8d28",
- "36137_ord": "\u8d29",
- "36138_ord": "\u8d2a",
- "36139_ord": "\u8d2b",
- "36140_ord": "\u8d2c",
- "36141_ord": "\u8d2d",
- "36142_ord": "\u8d2e",
- "36143_ord": "\u8d2f",
- "36144_ord": "\u8d30",
- "36145_ord": "\u8d31",
- "36146_ord": "\u8d32",
- "36147_ord": "\u8d33",
- "36148_ord": "\u8d34",
- "36149_ord": "\u8d35",
- "36151_ord": "\u8d37",
- "36152_ord": "\u8d38",
- "36153_ord": "\u8d39",
- "36154_ord": "\u8d3a",
- "36155_ord": "\u8d3b",
- "36156_ord": "\u8d3c",
- "36157_ord": "\u8d3d",
- "36158_ord": "\u8d3e",
- "36159_ord": "\u8d3f",
- "36160_ord": "\u8d40",
- "36161_ord": "\u8d41",
- "36162_ord": "\u8d42",
- "36163_ord": "\u8d43",
- "36164_ord": "\u8d44",
- "36165_ord": "\u8d45",
- "36167_ord": "\u8d47",
- "36168_ord": "\u8d48",
- "36169_ord": "\u8d49",
- "36170_ord": "\u8d4a",
- "36171_ord": "\u8d4b",
- "36172_ord": "\u8d4c",
- "36173_ord": "\u8d4d",
- "36174_ord": "\u8d4e",
- "36175_ord": "\u8d4f",
- "36176_ord": "\u8d50",
- "36180_ord": "\u8d54",
- "36182_ord": "\u8d56",
- "36184_ord": "\u8d58",
- "36186_ord": "\u8d5a",
- "36187_ord": "\u8d5b",
- "36188_ord": "\u8d5c",
- "36189_ord": "\u8d5d",
- "36190_ord": "\u8d5e",
- "36191_ord": "\u8d5f",
- "36192_ord": "\u8d60",
- "36193_ord": "\u8d61",
- "36194_ord": "\u8d62",
- "36195_ord": "\u8d63",
- "36196_ord": "\u8d64",
- "36198_ord": "\u8d66",
- "36199_ord": "\u8d67",
- "36202_ord": "\u8d6a",
- "36203_ord": "\u8d6b",
- "36205_ord": "\u8d6d",
- "36208_ord": "\u8d70",
- "36211_ord": "\u8d73",
- "36212_ord": "\u8d74",
- "36213_ord": "\u8d75",
- "36214_ord": "\u8d76",
- "36215_ord": "\u8d77",
- "36225_ord": "\u8d81",
- "36228_ord": "\u8d84",
- "36229_ord": "\u8d85",
- "36234_ord": "\u8d8a",
- "36235_ord": "\u8d8b",
- "36255_ord": "\u8d9f",
- "36259_ord": "\u8da3",
- "36273_ord": "\u8db1",
- "36275_ord": "\u8db3",
- "36276_ord": "\u8db4",
- "36277_ord": "\u8db5",
- "36280_ord": "\u8db8",
- "36281_ord": "\u8db9",
- "36282_ord": "\u8dba",
- "36286_ord": "\u8dbe",
- "36290_ord": "\u8dc2",
- "36291_ord": "\u8dc3",
- "36292_ord": "\u8dc4",
- "36294_ord": "\u8dc6",
- "36299_ord": "\u8dcb",
- "36300_ord": "\u8dcc",
- "36305_ord": "\u8dd1",
- "36310_ord": "\u8dd6",
- "36314_ord": "\u8dda",
- "36315_ord": "\u8ddb",
- "36317_ord": "\u8ddd",
- "36319_ord": "\u8ddf",
- "36323_ord": "\u8de3",
- "36324_ord": "\u8de4",
- "36328_ord": "\u8de8",
- "36330_ord": "\u8dea",
- "36332_ord": "\u8dec",
- "36335_ord": "\u8def",
- "36339_ord": "\u8df3",
- "36341_ord": "\u8df5",
- "36343_ord": "\u8df7",
- "36344_ord": "\u8df8",
- "36345_ord": "\u8df9",
- "36346_ord": "\u8dfa",
- "36347_ord": "\u8dfb",
- "36349_ord": "\u8dfd",
- "36361_ord": "\u8e09",
- "36362_ord": "\u8e0a",
- "36364_ord": "\u8e0c",
- "36367_ord": "\u8e0f",
- "36372_ord": "\u8e14",
- "36381_ord": "\u8e1d",
- "36382_ord": "\u8e1e",
- "36383_ord": "\u8e1f",
- "36386_ord": "\u8e22",
- "36387_ord": "\u8e23",
- "36391_ord": "\u8e27",
- "36393_ord": "\u8e29",
- "36394_ord": "\u8e2a",
- "36399_ord": "\u8e2f",
- "36400_ord": "\u8e30",
- "36401_ord": "\u8e31",
- "36405_ord": "\u8e35",
- "36409_ord": "\u8e39",
- "36413_ord": "\u8e3d",
- "36416_ord": "\u8e40",
- "36418_ord": "\u8e42",
- "36420_ord": "\u8e44",
- "36423_ord": "\u8e47",
- "36424_ord": "\u8e48",
- "36425_ord": "\u8e49",
- "36426_ord": "\u8e4a",
- "36427_ord": "\u8e4b",
- "36433_ord": "\u8e51",
- "36434_ord": "\u8e52",
- "36441_ord": "\u8e59",
- "36454_ord": "\u8e66",
- "36457_ord": "\u8e69",
- "36460_ord": "\u8e6c",
- "36461_ord": "\u8e6d",
- "36464_ord": "\u8e70",
- "36466_ord": "\u8e72",
- "36468_ord": "\u8e74",
- "36470_ord": "\u8e76",
- "36475_ord": "\u8e7b",
- "36479_ord": "\u8e7f",
- "36481_ord": "\u8e81",
- "36485_ord": "\u8e85",
- "36487_ord": "\u8e87",
- "36495_ord": "\u8e8f",
- "36510_ord": "\u8e9e",
- "36523_ord": "\u8eab",
- "36524_ord": "\u8eac",
- "36527_ord": "\u8eaf",
- "36530_ord": "\u8eb2",
- "36538_ord": "\u8eba",
- "36710_ord": "\u8f66",
- "36711_ord": "\u8f67",
- "36712_ord": "\u8f68",
- "36713_ord": "\u8f69",
- "36715_ord": "\u8f6b",
- "36716_ord": "\u8f6c",
- "36718_ord": "\u8f6e",
- "36719_ord": "\u8f6f",
- "36720_ord": "\u8f70",
- "36722_ord": "\u8f72",
- "36724_ord": "\u8f74",
- "36725_ord": "\u8f75",
- "36726_ord": "\u8f76",
- "36728_ord": "\u8f78",
- "36730_ord": "\u8f7a",
- "36731_ord": "\u8f7b",
- "36732_ord": "\u8f7c",
- "36733_ord": "\u8f7d",
- "36735_ord": "\u8f7f",
- "36739_ord": "\u8f83",
- "36740_ord": "\u8f84",
- "36741_ord": "\u8f85",
- "36742_ord": "\u8f86",
- "36743_ord": "\u8f87",
- "36744_ord": "\u8f88",
- "36745_ord": "\u8f89",
- "36749_ord": "\u8f8d",
- "36750_ord": "\u8f8e",
- "36752_ord": "\u8f90",
- "36753_ord": "\u8f91",
- "36755_ord": "\u8f93",
- "36756_ord": "\u8f94",
- "36757_ord": "\u8f95",
- "36758_ord": "\u8f96",
- "36759_ord": "\u8f97",
- "36760_ord": "\u8f98",
- "36761_ord": "\u8f99",
- "36763_ord": "\u8f9b",
- "36764_ord": "\u8f9c",
- "36766_ord": "\u8f9e",
- "36767_ord": "\u8f9f",
- "36771_ord": "\u8fa3",
- "36776_ord": "\u8fa8",
- "36777_ord": "\u8fa9",
- "36779_ord": "\u8fab",
- "36784_ord": "\u8fb0",
- "36785_ord": "\u8fb1",
- "36793_ord": "\u8fb9",
- "36797_ord": "\u8fbd",
- "36798_ord": "\u8fbe",
- "36801_ord": "\u8fc1",
- "36802_ord": "\u8fc2",
- "36804_ord": "\u8fc4",
- "36805_ord": "\u8fc5",
- "36807_ord": "\u8fc7",
- "36808_ord": "\u8fc8",
- "36814_ord": "\u8fce",
- "36816_ord": "\u8fd0",
- "36817_ord": "\u8fd1",
- "36819_ord": "\u8fd3",
- "36820_ord": "\u8fd4",
- "36821_ord": "\u8fd5",
- "36824_ord": "\u8fd8",
- "36825_ord": "\u8fd9",
- "36827_ord": "\u8fdb",
- "36828_ord": "\u8fdc",
- "36829_ord": "\u8fdd",
- "36830_ord": "\u8fde",
- "36831_ord": "\u8fdf",
- "36834_ord": "\u8fe2",
- "36836_ord": "\u8fe4",
- "36837_ord": "\u8fe5",
- "36838_ord": "\u8fe6",
- "36840_ord": "\u8fe8",
- "36841_ord": "\u8fe9",
- "36842_ord": "\u8fea",
- "36843_ord": "\u8feb",
- "36845_ord": "\u8fed",
- "36848_ord": "\u8ff0",
- "36855_ord": "\u8ff7",
- "36856_ord": "\u8ff8",
- "36857_ord": "\u8ff9",
- "36861_ord": "\u8ffd",
- "36864_ord": "\u9000",
- "36865_ord": "\u9001",
- "36866_ord": "\u9002",
- "36867_ord": "\u9003",
- "36869_ord": "\u9005",
- "36870_ord": "\u9006",
- "36873_ord": "\u9009",
- "36874_ord": "\u900a",
- "36875_ord": "\u900b",
- "36877_ord": "\u900d",
- "36879_ord": "\u900f",
- "36880_ord": "\u9010",
- "36881_ord": "\u9011",
- "36882_ord": "\u9012",
- "36884_ord": "\u9014",
- "36886_ord": "\u9016",
- "36887_ord": "\u9017",
- "36890_ord": "\u901a",
- "36891_ord": "\u901b",
- "36893_ord": "\u901d",
- "36894_ord": "\u901e",
- "36895_ord": "\u901f",
- "36896_ord": "\u9020",
- "36897_ord": "\u9021",
- "36898_ord": "\u9022",
- "36902_ord": "\u9026",
- "36910_ord": "\u902e",
- "36917_ord": "\u9035",
- "36918_ord": "\u9036",
- "36920_ord": "\u9038",
- "36923_ord": "\u903b",
- "36924_ord": "\u903c",
- "36926_ord": "\u903e",
- "36929_ord": "\u9041",
- "36930_ord": "\u9042",
- "36935_ord": "\u9047",
- "36941_ord": "\u904d",
- "36943_ord": "\u904f",
- "36944_ord": "\u9050",
- "36945_ord": "\u9051",
- "36946_ord": "\u9052",
- "36947_ord": "\u9053",
- "36951_ord": "\u9057",
- "36952_ord": "\u9058",
- "36955_ord": "\u905b",
- "36962_ord": "\u9062",
- "36963_ord": "\u9063",
- "36965_ord": "\u9065",
- "36968_ord": "\u9068",
- "36971_ord": "\u906b",
- "36973_ord": "\u906d",
- "36974_ord": "\u906e",
- "36980_ord": "\u9074",
- "36981_ord": "\u9075",
- "36982_ord": "\u9076",
- "36985_ord": "\u9079",
- "36989_ord": "\u907d",
- "36991_ord": "\u907f",
- "36992_ord": "\u9080",
- "36994_ord": "\u9082",
- "36995_ord": "\u9083",
- "36_ord": "$",
- "37000_ord": "\u9088",
- "37003_ord": "\u908b",
- "37009_ord": "\u9091",
- "37011_ord": "\u9093",
- "37013_ord": "\u9095",
- "37019_ord": "\u909b",
- "37024_ord": "\u90a0",
- "37026_ord": "\u90a2",
- "37027_ord": "\u90a3",
- "37030_ord": "\u90a6",
- "37034_ord": "\u90aa",
- "37036_ord": "\u90ac",
- "37038_ord": "\u90ae",
- "37039_ord": "\u90af",
- "37040_ord": "\u90b0",
- "37041_ord": "\u90b1",
- "37043_ord": "\u90b3",
- "37044_ord": "\u90b4",
- "37045_ord": "\u90b5",
- "37048_ord": "\u90b8",
- "37049_ord": "\u90b9",
- "37050_ord": "\u90ba",
- "37051_ord": "\u90bb",
- "37057_ord": "\u90c1",
- "37060_ord": "\u90c4",
- "37061_ord": "\u90c5",
- "37066_ord": "\u90ca",
- "37070_ord": "\u90ce",
- "37073_ord": "\u90d1",
- "37075_ord": "\u90d3",
- "37084_ord": "\u90dc",
- "37085_ord": "\u90dd",
- "37089_ord": "\u90e1",
- "37090_ord": "\u90e2",
- "37094_ord": "\u90e6",
- "37095_ord": "\u90e7",
- "37096_ord": "\u90e8",
- "37098_ord": "\u90ea",
- "37099_ord": "\u90eb",
- "37101_ord": "\u90ed",
- "37103_ord": "\u90ef",
- "37108_ord": "\u90f4",
- "37112_ord": "\u90f8",
- "37117_ord": "\u90fd",
- "37118_ord": "\u90fe",
- "37119_ord": "\u90ff",
- "37122_ord": "\u9102",
- "37124_ord": "\u9104",
- "37145_ord": "\u9119",
- "37148_ord": "\u911c",
- "37152_ord": "\u9120",
- "37154_ord": "\u9122",
- "37155_ord": "\u9123",
- "37169_ord": "\u9131",
- "37190_ord": "\u9146",
- "37193_ord": "\u9149",
- "37194_ord": "\u914a",
- "37195_ord": "\u914b",
- "37196_ord": "\u914c",
- "37197_ord": "\u914d",
- "37198_ord": "\u914e",
- "37202_ord": "\u9152",
- "37207_ord": "\u9157",
- "37210_ord": "\u915a",
- "37213_ord": "\u915d",
- "37214_ord": "\u915e",
- "37217_ord": "\u9161",
- "37218_ord": "\u9162",
- "37219_ord": "\u9163",
- "37220_ord": "\u9164",
- "37221_ord": "\u9165",
- "37225_ord": "\u9169",
- "37226_ord": "\u916a",
- "37228_ord": "\u916c",
- "37230_ord": "\u916e",
- "37231_ord": "\u916f",
- "37232_ord": "\u9170",
- "37233_ord": "\u9171",
- "37237_ord": "\u9175",
- "37238_ord": "\u9176",
- "37239_ord": "\u9177",
- "37240_ord": "\u9178",
- "37241_ord": "\u9179",
- "37247_ord": "\u917f",
- "37255_ord": "\u9187",
- "37257_ord": "\u9189",
- "37259_ord": "\u918b",
- "37261_ord": "\u918d",
- "37266_ord": "\u9192",
- "37274_ord": "\u919a",
- "37275_ord": "\u919b",
- "37290_ord": "\u91aa",
- "37294_ord": "\u91ae",
- "37300_ord": "\u91b4",
- "37301_ord": "\u91b5",
- "37306_ord": "\u91ba",
- "37314_ord": "\u91c2",
- "37319_ord": "\u91c7",
- "37321_ord": "\u91c9",
- "37322_ord": "\u91ca",
- "37324_ord": "\u91cc",
- "37325_ord": "\u91cd",
- "37326_ord": "\u91ce",
- "37327_ord": "\u91cf",
- "37328_ord": "\u91d0",
- "37329_ord": "\u91d1",
- "37340_ord": "\u91dc",
- "37383_ord": "\u9207",
- "37492_ord": "\u9274",
- "37550_ord": "\u92ae",
- "37846_ord": "\u93d6",
- "37912_ord": "\u9418",
- "37977_ord": "\u9459",
- "37995_ord": "\u946b",
- "37_ord": "%",
- "38024_ord": "\u9488",
- "38025_ord": "\u9489",
- "38026_ord": "\u948a",
- "38030_ord": "\u948e",
- "38031_ord": "\u948f",
- "38034_ord": "\u9492",
- "38035_ord": "\u9493",
- "38039_ord": "\u9497",
- "38041_ord": "\u9499",
- "38042_ord": "\u949a",
- "38043_ord": "\u949b",
- "38044_ord": "\u949c",
- "38045_ord": "\u949d",
- "38046_ord": "\u949e",
- "38047_ord": "\u949f",
- "38048_ord": "\u94a0",
- "38049_ord": "\u94a1",
- "38050_ord": "\u94a2",
- "38052_ord": "\u94a4",
- "38053_ord": "\u94a5",
- "38054_ord": "\u94a6",
- "38055_ord": "\u94a7",
- "38056_ord": "\u94a8",
- "38057_ord": "\u94a9",
- "38062_ord": "\u94ae",
- "38063_ord": "\u94af",
- "38064_ord": "\u94b0",
- "38065_ord": "\u94b1",
- "38066_ord": "\u94b2",
- "38067_ord": "\u94b3",
- "38068_ord": "\u94b4",
- "38069_ord": "\u94b5",
- "38073_ord": "\u94b9",
- "38074_ord": "\u94ba",
- "38075_ord": "\u94bb",
- "38076_ord": "\u94bc",
- "38078_ord": "\u94be",
- "38079_ord": "\u94bf",
- "38080_ord": "\u94c0",
- "38081_ord": "\u94c1",
- "38082_ord": "\u94c2",
- "38083_ord": "\u94c3",
- "38084_ord": "\u94c4",
- "38085_ord": "\u94c5",
- "38086_ord": "\u94c6",
- "38089_ord": "\u94c9",
- "38094_ord": "\u94ce",
- "38096_ord": "\u94d0",
- "38105_ord": "\u94d9",
- "38107_ord": "\u94db",
- "38108_ord": "\u94dc",
- "38109_ord": "\u94dd",
- "38112_ord": "\u94e0",
- "38114_ord": "\u94e2",
- "38115_ord": "\u94e3",
- "38116_ord": "\u94e4",
- "38120_ord": "\u94e8",
- "38121_ord": "\u94e9",
- "38124_ord": "\u94ec",
- "38125_ord": "\u94ed",
- "38126_ord": "\u94ee",
- "38130_ord": "\u94f2",
- "38131_ord": "\u94f3",
- "38133_ord": "\u94f5",
- "38134_ord": "\u94f6",
- "38136_ord": "\u94f8",
- "38138_ord": "\u94fa",
- "38142_ord": "\u94fe",
- "38143_ord": "\u94ff",
- "38144_ord": "\u9500",
- "38145_ord": "\u9501",
- "38146_ord": "\u9502",
- "38148_ord": "\u9504",
- "38149_ord": "\u9505",
- "38152_ord": "\u9508",
- "38153_ord": "\u9509",
- "38155_ord": "\u950b",
- "38156_ord": "\u950c",
- "38159_ord": "\u950f",
- "38160_ord": "\u9510",
- "38161_ord": "\u9511",
- "38167_ord": "\u9517",
- "38169_ord": "\u9519",
- "38170_ord": "\u951a",
- "38177_ord": "\u9521",
- "38178_ord": "\u9522",
- "38179_ord": "\u9523",
- "38180_ord": "\u9524",
- "38181_ord": "\u9525",
- "38182_ord": "\u9526",
- "38189_ord": "\u952d",
- "38190_ord": "\u952e",
- "38191_ord": "\u952f",
- "38192_ord": "\u9530",
- "38193_ord": "\u9531",
- "38194_ord": "\u9532",
- "38197_ord": "\u9535",
- "38199_ord": "\u9537",
- "38201_ord": "\u9539",
- "38202_ord": "\u953a",
- "38203_ord": "\u953b",
- "38205_ord": "\u953d",
- "38206_ord": "\u953e",
- "38208_ord": "\u9540",
- "38209_ord": "\u9541",
- "38210_ord": "\u9542",
- "38215_ord": "\u9547",
- "38217_ord": "\u9549",
- "38218_ord": "\u954a",
- "38220_ord": "\u954c",
- "38221_ord": "\u954d",
- "38224_ord": "\u9550",
- "38225_ord": "\u9551",
- "38226_ord": "\u9552",
- "38229_ord": "\u9555",
- "38230_ord": "\u9556",
- "38235_ord": "\u955b",
- "38236_ord": "\u955c",
- "38237_ord": "\u955d",
- "38238_ord": "\u955e",
- "38243_ord": "\u9563",
- "38250_ord": "\u956a",
- "38252_ord": "\u956c",
- "38253_ord": "\u956d",
- "38255_ord": "\u956f",
- "38256_ord": "\u9570",
- "38259_ord": "\u9573",
- "38261_ord": "\u9575",
- "38262_ord": "\u9576",
- "38271_ord": "\u957f",
- "38283_ord": "\u958b",
- "38291_ord": "\u9593",
- "38343_ord": "\u95c7",
- "38367_ord": "\u95df",
- "38376_ord": "\u95e8",
- "38378_ord": "\u95ea",
- "38379_ord": "\u95eb",
- "38381_ord": "\u95ed",
- "38382_ord": "\u95ee",
- "38383_ord": "\u95ef",
- "38384_ord": "\u95f0",
- "38385_ord": "\u95f1",
- "38386_ord": "\u95f2",
- "38387_ord": "\u95f3",
- "38388_ord": "\u95f4",
- "38389_ord": "\u95f5",
- "38391_ord": "\u95f7",
- "38392_ord": "\u95f8",
- "38393_ord": "\u95f9",
- "38394_ord": "\u95fa",
- "38395_ord": "\u95fb",
- "38396_ord": "\u95fc",
- "38397_ord": "\u95fd",
- "38398_ord": "\u95fe",
- "38400_ord": "\u9600",
- "38401_ord": "\u9601",
- "38402_ord": "\u9602",
- "38403_ord": "\u9603",
- "38405_ord": "\u9605",
- "38406_ord": "\u9606",
- "38408_ord": "\u9608",
- "38409_ord": "\u9609",
- "38410_ord": "\u960a",
- "38413_ord": "\u960d",
- "38414_ord": "\u960e",
- "38415_ord": "\u960f",
- "38416_ord": "\u9610",
- "38417_ord": "\u9611",
- "38420_ord": "\u9614",
- "38421_ord": "\u9615",
- "38422_ord": "\u9616",
- "38423_ord": "\u9617",
- "38425_ord": "\u9619",
- "38426_ord": "\u961a",
- "38428_ord": "\u961c",
- "38431_ord": "\u961f",
- "38433_ord": "\u9621",
- "38442_ord": "\u962a",
- "38446_ord": "\u962e",
- "38449_ord": "\u9631",
- "38450_ord": "\u9632",
- "38451_ord": "\u9633",
- "38452_ord": "\u9634",
- "38453_ord": "\u9635",
- "38454_ord": "\u9636",
- "38459_ord": "\u963b",
- "38463_ord": "\u963f",
- "38464_ord": "\u9640",
- "38466_ord": "\u9642",
- "38468_ord": "\u9644",
- "38469_ord": "\u9645",
- "38470_ord": "\u9646",
- "38471_ord": "\u9647",
- "38472_ord": "\u9648",
- "38475_ord": "\u964b",
- "38476_ord": "\u964c",
- "38477_ord": "\u964d",
- "38480_ord": "\u9650",
- "38485_ord": "\u9655",
- "38491_ord": "\u965b",
- "38495_ord": "\u965f",
- "38497_ord": "\u9661",
- "38498_ord": "\u9662",
- "38500_ord": "\u9664",
- "38504_ord": "\u9668",
- "38505_ord": "\u9669",
- "38506_ord": "\u966a",
- "38508_ord": "\u966c",
- "38514_ord": "\u9672",
- "38517_ord": "\u9675",
- "38518_ord": "\u9676",
- "38519_ord": "\u9677",
- "38533_ord": "\u9685",
- "38534_ord": "\u9686",
- "38539_ord": "\u968b",
- "38541_ord": "\u968d",
- "38543_ord": "\u968f",
- "38544_ord": "\u9690",
- "38548_ord": "\u9694",
- "38551_ord": "\u9697",
- "38552_ord": "\u9698",
- "38553_ord": "\u9699",
- "38556_ord": "\u969c",
- "38567_ord": "\u96a7",
- "38579_ord": "\u96b3",
- "38582_ord": "\u96b6",
- "38588_ord": "\u96bc",
- "38589_ord": "\u96bd",
- "38590_ord": "\u96be",
- "38592_ord": "\u96c0",
- "38593_ord": "\u96c1",
- "38596_ord": "\u96c4",
- "38597_ord": "\u96c5",
- "38598_ord": "\u96c6",
- "38599_ord": "\u96c7",
- "38601_ord": "\u96c9",
- "38604_ord": "\u96cc",
- "38605_ord": "\u96cd",
- "38606_ord": "\u96ce",
- "38607_ord": "\u96cf",
- "38610_ord": "\u96d2",
- "38613_ord": "\u96d5",
- "38632_ord": "\u96e8",
- "38634_ord": "\u96ea",
- "38639_ord": "\u96ef",
- "38643_ord": "\u96f3",
- "38646_ord": "\u96f6",
- "38647_ord": "\u96f7",
- "38649_ord": "\u96f9",
- "38654_ord": "\u96fe",
- "38656_ord": "\u9700",
- "38657_ord": "\u9701",
- "38660_ord": "\u9704",
- "38662_ord": "\u9706",
- "38663_ord": "\u9707",
- "38665_ord": "\u9709",
- "38669_ord": "\u970d",
- "38670_ord": "\u970e",
- "38675_ord": "\u9713",
- "38678_ord": "\u9716",
- "38684_ord": "\u971c",
- "38686_ord": "\u971e",
- "38691_ord": "\u9723",
- "38701_ord": "\u972d",
- "38706_ord": "\u9732",
- "38712_ord": "\u9738",
- "38713_ord": "\u9739",
- "38718_ord": "\u973e",
- "38738_ord": "\u9752",
- "38739_ord": "\u9753",
- "38742_ord": "\u9756",
- "38745_ord": "\u9759",
- "38747_ord": "\u975b",
- "38750_ord": "\u975e",
- "38752_ord": "\u9760",
- "38753_ord": "\u9761",
- "38754_ord": "\u9762",
- "38757_ord": "\u9765",
- "38761_ord": "\u9769",
- "38771_ord": "\u9773",
- "38772_ord": "\u9774",
- "38774_ord": "\u9776",
- "38789_ord": "\u9785",
- "38795_ord": "\u978b",
- "38797_ord": "\u978d",
- "38801_ord": "\u9791",
- "38808_ord": "\u9798",
- "38810_ord": "\u979a",
- "38816_ord": "\u97a0",
- "38819_ord": "\u97a3",
- "38827_ord": "\u97ab",
- "38829_ord": "\u97ad",
- "38830_ord": "\u97ae",
- "38850_ord": "\u97c2",
- "38886_ord": "\u97e6",
- "38887_ord": "\u97e7",
- "38889_ord": "\u97e9",
- "38890_ord": "\u97ea",
- "38892_ord": "\u97ec",
- "38893_ord": "\u97ed",
- "38899_ord": "\u97f3",
- "38901_ord": "\u97f5",
- "38902_ord": "\u97f6",
- "38955_ord": "\u982b",
- "38994_ord": "\u9852",
- "38_ord": "&",
- "39029_ord": "\u9875",
- "39030_ord": "\u9876",
- "39031_ord": "\u9877",
- "39033_ord": "\u9879",
- "39034_ord": "\u987a",
- "39035_ord": "\u987b",
- "39036_ord": "\u987c",
- "39037_ord": "\u987d",
- "39038_ord": "\u987e",
- "39039_ord": "\u987f",
- "39040_ord": "\u9880",
- "39041_ord": "\u9881",
- "39042_ord": "\u9882",
- "39044_ord": "\u9884",
- "39045_ord": "\u9885",
- "39046_ord": "\u9886",
- "39047_ord": "\u9887",
- "39048_ord": "\u9888",
- "39049_ord": "\u9889",
- "39050_ord": "\u988a",
- "39052_ord": "\u988c",
- "39053_ord": "\u988d",
- "39056_ord": "\u9890",
- "39057_ord": "\u9891",
- "39059_ord": "\u9893",
- "39060_ord": "\u9894",
- "39062_ord": "\u9896",
- "39063_ord": "\u9897",
- "39064_ord": "\u9898",
- "39066_ord": "\u989a",
- "39067_ord": "\u989b",
- "39068_ord": "\u989c",
- "39069_ord": "\u989d",
- "39072_ord": "\u98a0",
- "39073_ord": "\u98a1",
- "39076_ord": "\u98a4",
- "39078_ord": "\u98a6",
- "39079_ord": "\u98a7",
- "39118_ord": "\u98ce",
- "39122_ord": "\u98d2",
- "39123_ord": "\u98d3",
- "39125_ord": "\u98d5",
- "39128_ord": "\u98d8",
- "39129_ord": "\u98d9",
- "39130_ord": "\u98da",
- "39134_ord": "\u98de",
- "39135_ord": "\u98df",
- "39143_ord": "\u98e7",
- "39144_ord": "\u98e8",
- "39181_ord": "\u990d",
- "39184_ord": "\u9910",
- "39214_ord": "\u992e",
- "39253_ord": "\u9955",
- "39269_ord": "\u9965",
- "39270_ord": "\u9966",
- "39274_ord": "\u996a",
- "39276_ord": "\u996c",
- "39277_ord": "\u996d",
- "39278_ord": "\u996e",
- "39279_ord": "\u996f",
- "39280_ord": "\u9970",
- "39281_ord": "\u9971",
- "39282_ord": "\u9972",
- "39284_ord": "\u9974",
- "39285_ord": "\u9975",
- "39286_ord": "\u9976",
- "39287_ord": "\u9977",
- "39290_ord": "\u997a",
- "39292_ord": "\u997c",
- "39293_ord": "\u997d",
- "39295_ord": "\u997f",
- "39296_ord": "\u9980",
- "39297_ord": "\u9981",
- "39301_ord": "\u9985",
- "39302_ord": "\u9986",
- "39304_ord": "\u9988",
- "39307_ord": "\u998b",
- "39309_ord": "\u998d",
- "39310_ord": "\u998e",
- "39311_ord": "\u998f",
- "39312_ord": "\u9990",
- "39314_ord": "\u9992",
- "39315_ord": "\u9993",
- "39316_ord": "\u9994",
- "39317_ord": "\u9995",
- "39318_ord": "\u9996",
- "39321_ord": "\u9999",
- "39333_ord": "\u99a5",
- "39336_ord": "\u99a8",
- "39529_ord": "\u9a69",
- "39532_ord": "\u9a6c",
- "39533_ord": "\u9a6d",
- "39534_ord": "\u9a6e",
- "39535_ord": "\u9a6f",
- "39536_ord": "\u9a70",
- "39537_ord": "\u9a71",
- "39539_ord": "\u9a73",
- "39540_ord": "\u9a74",
- "39542_ord": "\u9a76",
- "39543_ord": "\u9a77",
- "39544_ord": "\u9a78",
- "39545_ord": "\u9a79",
- "39546_ord": "\u9a7a",
- "39547_ord": "\u9a7b",
- "39548_ord": "\u9a7c",
- "39549_ord": "\u9a7d",
- "39550_ord": "\u9a7e",
- "39551_ord": "\u9a7f",
- "39552_ord": "\u9a80",
- "39553_ord": "\u9a81",
- "39554_ord": "\u9a82",
- "39556_ord": "\u9a84",
- "39557_ord": "\u9a85",
- "39558_ord": "\u9a86",
- "39559_ord": "\u9a87",
- "39560_ord": "\u9a88",
- "39562_ord": "\u9a8a",
- "39563_ord": "\u9a8b",
- "39564_ord": "\u9a8c",
- "39567_ord": "\u9a8f",
- "39568_ord": "\u9a90",
- "39569_ord": "\u9a91",
- "39574_ord": "\u9a96",
- "39575_ord": "\u9a97",
- "39576_ord": "\u9a98",
- "39578_ord": "\u9a9a",
- "39579_ord": "\u9a9b",
- "39580_ord": "\u9a9c",
- "39582_ord": "\u9a9e",
- "39584_ord": "\u9aa0",
- "39585_ord": "\u9aa1",
- "39588_ord": "\u9aa4",
- "39589_ord": "\u9aa5",
- "39591_ord": "\u9aa7",
- "39592_ord": "\u9aa8",
- "39600_ord": "\u9ab0",
- "39606_ord": "\u9ab6",
- "39607_ord": "\u9ab7",
- "39608_ord": "\u9ab8",
- "39612_ord": "\u9abc",
- "39616_ord": "\u9ac0",
- "39619_ord": "\u9ac3",
- "39621_ord": "\u9ac5",
- "39627_ord": "\u9acb",
- "39633_ord": "\u9ad1",
- "39635_ord": "\u9ad3",
- "39640_ord": "\u9ad8",
- "39649_ord": "\u9ae1",
- "39654_ord": "\u9ae6",
- "39659_ord": "\u9aeb",
- "39661_ord": "\u9aed",
- "39663_ord": "\u9aef",
- "39675_ord": "\u9afb",
- "39683_ord": "\u9b03",
- "39699_ord": "\u9b13",
- "39711_ord": "\u9b1f",
- "39715_ord": "\u9b23",
- "39730_ord": "\u9b32",
- "39739_ord": "\u9b3b",
- "39740_ord": "\u9b3c",
- "39745_ord": "\u9b41",
- "39746_ord": "\u9b42",
- "39748_ord": "\u9b44",
- "39749_ord": "\u9b45",
- "39751_ord": "\u9b47",
- "39753_ord": "\u9b49",
- "39757_ord": "\u9b4d",
- "39759_ord": "\u9b4f",
- "39761_ord": "\u9b51",
- "39764_ord": "\u9b54",
- "39_ord": "'",
- "40060_ord": "\u9c7c",
- "40063_ord": "\u9c7f",
- "40065_ord": "\u9c81",
- "40071_ord": "\u9c87",
- "40075_ord": "\u9c8b",
- "40077_ord": "\u9c8d",
- "40080_ord": "\u9c90",
- "40081_ord": "\u9c91",
- "40084_ord": "\u9c94",
- "40091_ord": "\u9c9b",
- "40092_ord": "\u9c9c",
- "40096_ord": "\u9ca0",
- "40100_ord": "\u9ca4",
- "40103_ord": "\u9ca7",
- "40104_ord": "\u9ca8",
- "40112_ord": "\u9cb0",
- "40114_ord": "\u9cb2",
- "40120_ord": "\u9cb8",
- "40131_ord": "\u9cc3",
- "40132_ord": "\u9cc4",
- "40140_ord": "\u9ccc",
- "40141_ord": "\u9ccd",
- "40143_ord": "\u9ccf",
- "40150_ord": "\u9cd6",
- "40156_ord": "\u9cdc",
- "40157_ord": "\u9cdd",
- "40158_ord": "\u9cde",
- "40479_ord": "\u9e1f",
- "40480_ord": "\u9e20",
- "40481_ord": "\u9e21",
- "40482_ord": "\u9e22",
- "40483_ord": "\u9e23",
- "40485_ord": "\u9e25",
- "40486_ord": "\u9e26",
- "40488_ord": "\u9e28",
- "40489_ord": "\u9e29",
- "40492_ord": "\u9e2c",
- "40493_ord": "\u9e2d",
- "40494_ord": "\u9e2e",
- "40495_ord": "\u9e2f",
- "40497_ord": "\u9e31",
- "40499_ord": "\u9e33",
- "40501_ord": "\u9e35",
- "40503_ord": "\u9e37",
- "40509_ord": "\u9e3d",
- "40510_ord": "\u9e3e",
- "40511_ord": "\u9e3f",
- "40514_ord": "\u9e42",
- "40515_ord": "\u9e43",
- "40516_ord": "\u9e44",
- "40517_ord": "\u9e45",
- "40518_ord": "\u9e46",
- "40521_ord": "\u9e49",
- "40522_ord": "\u9e4a",
- "40527_ord": "\u9e4f",
- "40529_ord": "\u9e51",
- "40535_ord": "\u9e57",
- "40536_ord": "\u9e58",
- "40538_ord": "\u9e5a",
- "40540_ord": "\u9e5c",
- "40542_ord": "\u9e5e",
- "40547_ord": "\u9e63",
- "40548_ord": "\u9e64",
- "40550_ord": "\u9e66",
- "40555_ord": "\u9e6b",
- "40557_ord": "\u9e6d",
- "40560_ord": "\u9e70",
- "40563_ord": "\u9e73",
- "40575_ord": "\u9e7f",
- "40578_ord": "\u9e82",
- "40587_ord": "\u9e8b",
- "40594_ord": "\u9e92",
- "40595_ord": "\u9e93",
- "40605_ord": "\u9e9d",
- "40607_ord": "\u9e9f",
- "40614_ord": "\u9ea6",
- "40635_ord": "\u9ebb",
- "40637_ord": "\u9ebd",
- "40638_ord": "\u9ebe",
- "40644_ord": "\u9ec4",
- "40653_ord": "\u9ecd",
- "40654_ord": "\u9ece",
- "40655_ord": "\u9ecf",
- "40657_ord": "\u9ed1",
- "40660_ord": "\u9ed4",
- "40664_ord": "\u9ed8",
- "40667_ord": "\u9edb",
- "40668_ord": "\u9edc",
- "40669_ord": "\u9edd",
- "40671_ord": "\u9edf",
- "40672_ord": "\u9ee0",
- "40687_ord": "\u9eef",
- "40702_ord": "\u9efe",
- "40715_ord": "\u9f0b",
- "40717_ord": "\u9f0d",
- "40718_ord": "\u9f0e",
- "40723_ord": "\u9f13",
- "40736_ord": "\u9f20",
- "40763_ord": "\u9f3b",
- "40766_ord": "\u9f3e",
- "40784_ord": "\u9f50",
- "40831_ord": "\u9f7f",
- "40833_ord": "\u9f81",
- "40836_ord": "\u9f84",
- "40840_ord": "\u9f88",
- "40842_ord": "\u9f8a",
- "40843_ord": "\u9f8b",
- "40844_ord": "\u9f8c",
- "40847_ord": "\u9f8f",
- "40857_ord": "\u9f99",
- "40858_ord": "\u9f9a",
- "40859_ord": "\u9f9b",
- "40863_ord": "\u9f9f",
- "40_ord": "(",
- "41_ord": ")",
- "42_ord": "*",
- "43_ord": "+",
- "44_ord": ",",
- "45_ord": "-",
- "46_ord": ".",
- "47_ord": "/",
- "48_ord": "0",
- "49_ord": "1",
- "50_ord": "2",
- "51_ord": "3",
- "52_ord": "4",
- "53_ord": "5",
- "54_ord": "6",
- "55_ord": "7",
- "56_ord": "8",
- "57_ord": "9",
- "58_ord": ":",
- "59_ord": ";",
- "60_ord": "<",
- "61_ord": "=",
- "62_ord": ">",
- "63_ord": "?",
- "64_ord": "@",
- "65072_ord": "\ufe30",
- "65104_ord": "\ufe50",
- "65105_ord": "\ufe51",
- "65106_ord": "\ufe52",
- "65108_ord": "\ufe54",
- "65110_ord": "\ufe56",
- "65288_ord": "\uff08",
- "65289_ord": "\uff09",
- "65291_ord": "\uff0b",
- "65292_ord": "\uff0c",
- "65294_ord": "\uff0e",
- "65374_ord": "\uff5e",
- "65509_ord": "\uffe5",
- "65_ord": "A",
- "66_ord": "B",
- "67_ord": "C",
- "68_ord": "D",
- "69_ord": "E",
- "70_ord": "F",
- "71_ord": "G",
- "72_ord": "H",
- "73_ord": "I",
- "74_ord": "J",
- "75_ord": "K",
- "76_ord": "L",
- "77_ord": "M",
- "78_ord": "N",
- "79_ord": "O",
- "80_ord": "P",
- "81_ord": "Q",
- "8211_ord": "\u2013",
- "8212_ord": "\u2014",
- "8213_ord": "\u2015",
- "8216_ord": "\u2018",
- "8217_ord": "\u2019",
- "8220_ord": "\u201c",
- "8221_ord": "\u201d",
- "8230_ord": "\u2026",
- "8240_ord": "\u2030",
- "8242_ord": "\u2032",
- "8251_ord": "\u203b",
- "82_ord": "R",
- "83_ord": "S",
- "8451_ord": "\u2103",
- "84_ord": "T",
- "8544_ord": "\u2160",
- "8545_ord": "\u2161",
- "8546_ord": "\u2162",
- "8547_ord": "\u2163",
- "8594_ord": "\u2192",
- "8595_ord": "\u2193",
- "85_ord": "U",
- "86_ord": "V",
- "8712_ord": "\u2208",
- "8730_ord": "\u221a",
- "8745_ord": "\u2229",
- "8757_ord": "\u2235",
- "8758_ord": "\u2236",
- "87_ord": "W",
- "8800_ord": "\u2260",
- "8804_ord": "\u2264",
- "8805_ord": "\u2265",
- "88_ord": "X",
- "89_ord": "Y",
- "90_ord": "Z",
- "91_ord": "[",
- "92_ord": "\\",
- "9312_ord": "\u2460",
- "9313_ord": "\u2461",
- "9314_ord": "\u2462",
- "9315_ord": "\u2463",
- "9316_ord": "\u2464",
- "9317_ord": "\u2465",
- "9318_ord": "\u2466",
- "9319_ord": "\u2467",
- "9320_ord": "\u2468",
- "9321_ord": "\u2469",
- "9332_ord": "\u2474",
- "9333_ord": "\u2475",
- "9334_ord": "\u2476",
- "9342_ord": "\u247e",
- "9343_ord": "\u247f",
- "9344_ord": "\u2480",
- "9346_ord": "\u2482",
- "9347_ord": "\u2483",
- "9348_ord": "\u2484",
- "9349_ord": "\u2485",
- "9350_ord": "\u2486",
- "9352_ord": "\u2488",
- "9353_ord": "\u2489",
- "9354_ord": "\u248a",
- "93_ord": "]",
- "945_ord": "\u03b1",
- "946_ord": "\u03b2",
- "9472_ord": "\u2500",
- "9473_ord": "\u2501",
- "9474_ord": "\u2502",
- "9484_ord": "\u250c",
- "9488_ord": "\u2510",
- "94_ord": "^",
- "9585_ord": "\u2571",
- "95_ord": "_",
- "9632_ord": "\u25a0",
- "9633_ord": "\u25a1",
- "9650_ord": "\u25b2",
- "9651_ord": "\u25b3",
- "9670_ord": "\u25c6",
- "9671_ord": "\u25c7",
- "9675_ord": "\u25cb",
- "9678_ord": "\u25ce",
- "9679_ord": "\u25cf",
- "96_ord": "`",
- "9733_ord": "\u2605",
- "9734_ord": "\u2606",
- "97_ord": "a",
- "98_ord": "b",
- "99_ord": "c"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_en.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_en.json
deleted file mode 100644
index b41694625bc2c3f03b5a32ba13ecbd2d2aa3a007..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/char_dict_en.json
+++ /dev/null
@@ -1,38 +0,0 @@
-{
- "100_ord": "d",
- "101_ord": "e",
- "102_ord": "f",
- "103_ord": "g",
- "104_ord": "h",
- "105_ord": "i",
- "106_ord": "j",
- "107_ord": "k",
- "108_ord": "l",
- "109_ord": "m",
- "110_ord": "n",
- "111_ord": "o",
- "112_ord": "p",
- "113_ord": "q",
- "114_ord": "r",
- "115_ord": "s",
- "116_ord": "t",
- "117_ord": "u",
- "118_ord": "v",
- "119_ord": "w",
- "120_ord": "x",
- "121_ord": "y",
- "122_ord": "z",
- "48_ord": "0",
- "49_ord": "1",
- "50_ord": "2",
- "51_ord": "3",
- "52_ord": "4",
- "53_ord": "5",
- "54_ord": "6",
- "55_ord": "7",
- "56_ord": "8",
- "57_ord": "9",
- "97_ord": "a",
- "98_ord": "b",
- "99_ord": "c"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map.json
deleted file mode 100644
index b0f7c4a6f35d294ae21cda9dd9ef27e8938db9d3..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map.json
+++ /dev/null
@@ -1,74 +0,0 @@
-{
- "0_index": "122",
- "100_ord": "19",
- "101_ord": "26",
- "102_ord": "14",
- "103_ord": "1",
- "104_ord": "34",
- "105_ord": "5",
- "106_ord": "32",
- "107_ord": "6",
- "108_ord": "23",
- "109_ord": "29",
- "10_index": "116",
- "110_ord": "30",
- "111_ord": "35",
- "112_ord": "11",
- "113_ord": "12",
- "114_ord": "15",
- "115_ord": "33",
- "116_ord": "10",
- "117_ord": "3",
- "118_ord": "8",
- "119_ord": "4",
- "11_index": "112",
- "120_ord": "27",
- "121_ord": "28",
- "122_ord": "0",
- "12_index": "113",
- "13_index": "55",
- "14_index": "102",
- "15_index": "114",
- "16_index": "53",
- "17_index": "54",
- "18_index": "52",
- "19_index": "100",
- "1_index": "103",
- "20_index": "50",
- "21_index": "51",
- "22_index": "49",
- "23_index": "108",
- "24_index": "48",
- "25_index": "98",
- "26_index": "101",
- "27_index": "120",
- "28_index": "121",
- "29_index": "109",
- "2_index": "57",
- "30_index": "110",
- "31_index": "56",
- "32_index": "106",
- "33_index": "115",
- "34_index": "104",
- "35_index": "111",
- "3_index": "117",
- "48_ord": "24",
- "49_ord": "22",
- "4_index": "119",
- "50_ord": "20",
- "51_ord": "21",
- "52_ord": "18",
- "53_ord": "16",
- "54_ord": "17",
- "55_ord": "13",
- "56_ord": "31",
- "57_ord": "2",
- "5_index": "105",
- "6_index": "107",
- "7_index": "97",
- "8_index": "118",
- "97_ord": "7",
- "98_ord": "25",
- "99_ord": "9",
- "9_index": "99"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_cn.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_cn.json
deleted file mode 100644
index c3874cc953dcf8357270ddcc194760ea36dbc162..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_cn.json
+++ /dev/null
@@ -1,11650 +0,0 @@
-{
- "0_index": "22366",
- "1000_index": "26290",
- "1001_index": "33457",
- "1002_index": "20495",
- "1003_index": "25098",
- "1004_index": "37230",
- "1005_index": "37194",
- "1006_index": "34809",
- "1007_index": "24009",
- "1008_index": "35894",
- "1009_index": "27602",
- "100_index": "38384",
- "100_ord": "3084",
- "1010_index": "24196",
- "1011_index": "91",
- "1012_index": "26049",
- "1013_index": "29742",
- "1014_index": "36929",
- "1015_index": "26681",
- "1016_index": "30939",
- "1017_index": "21708",
- "1018_index": "37266",
- "1019_index": "35137",
- "101_index": "30572",
- "101_ord": "2642",
- "1020_index": "22139",
- "1021_index": "39045",
- "1022_index": "21106",
- "1023_index": "8220",
- "1024_index": "21381",
- "1025_index": "31657",
- "1026_index": "29649",
- "1027_index": "25439",
- "1028_index": "30142",
- "1029_index": "34000",
- "102_index": "25324",
- "102_ord": "4098",
- "1030_index": "33391",
- "1031_index": "35268",
- "1032_index": "25260",
- "1033_index": "21994",
- "1034_index": "38504",
- "1035_index": "31079",
- "1036_index": "31364",
- "1037_index": "24443",
- "1038_index": "32435",
- "1039_index": "27573",
- "103_index": "12300",
- "103_ord": "4065",
- "1040_index": "35891",
- "1041_index": "35751",
- "1042_index": "20925",
- "1043_index": "38514",
- "1044_index": "29831",
- "1045_index": "36426",
- "1046_index": "215",
- "1047_index": "25140",
- "1048_index": "28246",
- "1049_index": "25781",
- "104_index": "21550",
- "104_ord": "2633",
- "1050_index": "39040",
- "1051_index": "36730",
- "1052_index": "25874",
- "1053_index": "36828",
- "1054_index": "32479",
- "1054_ord": "2636",
- "1055_index": "26355",
- "1055_ord": "2491",
- "1056_index": "39282",
- "1056_ord": "1970",
- "1057_index": "34148",
- "1058_index": "32451",
- "1059_index": "28508",
- "105_index": "27617",
- "105_ord": "3386",
- "1060_index": "33889",
- "1061_index": "26865",
- "1062_index": "27012",
- "1063_index": "26279",
- "1064_index": "35797",
- "1065_index": "32500",
- "1066_index": "39333",
- "1067_index": "27982",
- "1068_index": "26694",
- "1069_index": "26234",
- "106_index": "26242",
- "106_ord": "3426",
- "1070_index": "38686",
- "1071_index": "23391",
- "1072_index": "23614",
- "1073_index": "27015",
- "1074_index": "30875",
- "1075_index": "31579",
- "1076_index": "25101",
- "1077_index": "32482",
- "1078_index": "33576",
- "1079_index": "23043",
- "107_index": "36753",
- "107_ord": "5798",
- "1080_index": "25903",
- "1081_index": "21002",
- "1082_index": "20524",
- "1083_index": "32427",
- "1084_index": "21171",
- "1085_index": "33192",
- "1086_index": "27719",
- "1087_index": "38598",
- "1088_index": "27498",
- "1089_index": "32470",
- "108_index": "26426",
- "108_ord": "5105",
- "1090_index": "33632",
- "1091_index": "28518",
- "1092_index": "31964",
- "1093_index": "27757",
- "1094_index": "26474",
- "1095_index": "33564",
- "1096_index": "25830",
- "1097_index": "20443",
- "1098_index": "30561",
- "1099_index": "33313",
- "109_index": "25022",
- "109_ord": "515",
- "10_index": "28385",
- "1100_index": "33670",
- "1101_index": "35115",
- "1102_index": "39739",
- "1103_index": "20250",
- "1104_index": "28425",
- "1105_index": "27996",
- "1106_index": "60",
- "1107_index": "26411",
- "1108_index": "27084",
- "1109_index": "22123",
- "110_index": "36148",
- "110_ord": "5649",
- "1110_index": "35886",
- "1111_index": "32990",
- "1112_index": "27684",
- "1113_index": "24541",
- "1114_index": "26137",
- "1115_index": "30113",
- "1116_index": "25954",
- "1117_index": "29579",
- "1118_index": "36341",
- "1119_index": "35823",
- "111_index": "26126",
- "111_ord": "1736",
- "1120_index": "23596",
- "1121_index": "20711",
- "1122_index": "32449",
- "1123_index": "25672",
- "1124_index": "23517",
- "1125_index": "36798",
- "1126_index": "27607",
- "1127_index": "35282",
- "1128_index": "29980",
- "1129_index": "36487",
- "112_index": "27838",
- "112_ord": "3265",
- "1130_index": "34619",
- "1131_index": "36855",
- "1132_index": "21471",
- "1133_index": "20889",
- "1134_index": "29100",
- "1135_index": "33704",
- "1136_index": "30244",
- "1137_index": "28641",
- "1138_index": "39559",
- "1139_index": "30068",
- "113_index": "37202",
- "113_ord": "1179",
- "1140_index": "23125",
- "1141_index": "31161",
- "1142_index": "30589",
- "1143_index": "38403",
- "1144_index": "25684",
- "1145_index": "28893",
- "1146_index": "26023",
- "1147_index": "24687",
- "1148_index": "23663",
- "1149_index": "21564",
- "114_index": "85",
- "114_ord": "2748",
- "1150_index": "27585",
- "1151_index": "31756",
- "1152_index": "33181",
- "1153_index": "32480",
- "1154_index": "43",
- "1155_index": "29943",
- "1156_index": "38238",
- "1157_index": "61",
- "1158_index": "35278",
- "1159_index": "31171",
- "115_index": "26941",
- "115_ord": "234",
- "1160_index": "33073",
- "1161_index": "24488",
- "1162_index": "28572",
- "1163_index": "21464",
- "1164_index": "36470",
- "1165_index": "39184",
- "1166_index": "39315",
- "1167_index": "28831",
- "1168_index": "39540",
- "1169_index": "24214",
- "116_index": "28059",
- "116_ord": "2540",
- "1170_index": "26925",
- "1171_index": "28851",
- "1172_index": "34299",
- "1173_index": "39134",
- "1174_index": "27048",
- "1175_index": "23706",
- "1176_index": "31361",
- "1177_index": "58",
- "1178_index": "26647",
- "1179_index": "113",
- "117_index": "27986",
- "117_ord": "5634",
- "1180_index": "26360",
- "1181_index": "27183",
- "1182_index": "30633",
- "1183_index": "23646",
- "1184_index": "25970",
- "1185_index": "33669",
- "1186_index": "32433",
- "1187_index": "38236",
- "1188_index": "32779",
- "1189_index": "21711",
- "118_index": "29240",
- "118_ord": "4901",
- "1190_index": "35032",
- "1191_index": "36989",
- "1192_index": "40594",
- "1193_index": "40141",
- "1194_index": "37027",
- "1195_index": "21981",
- "1196_index": "32652",
- "1197_index": "28072",
- "1198_index": "30697",
- "1199_index": "23004",
- "119_index": "26946",
- "119_ord": "4430",
- "11_index": "30471",
- "1200_index": "38701",
- "1201_index": "29486",
- "1202_index": "26115",
- "1203_index": "33828",
- "1204_index": "24275",
- "1205_index": "32831",
- "1206_index": "26837",
- "1207_index": "39548",
- "1208_index": "30933",
- "1209_index": "38613",
- "120_index": "23919",
- "120_ord": "175",
- "1210_index": "20849",
- "1211_index": "29637",
- "1212_index": "38477",
- "1213_index": "25527",
- "1214_index": "23394",
- "1215_index": "22418",
- "1216_index": "32290",
- "1217_index": "36319",
- "1218_index": "28892",
- "1219_index": "37241",
- "121_index": "20923",
- "121_ord": "622",
- "1220_index": "33745",
- "1221_index": "51",
- "1222_index": "28061",
- "1223_index": "26214",
- "1224_index": "33722",
- "1225_index": "38209",
- "1226_index": "36894",
- "1227_index": "25234",
- "12289_ord": "3480",
- "1228_index": "24573",
- "12290_ord": "2402",
- "12295_ord": "5707",
- "12296_ord": "3559",
- "12297_ord": "132",
- "12298_ord": "1499",
- "12299_ord": "3600",
- "1229_index": "8216",
- "122_index": "25720",
- "122_ord": "1904",
- "12300_ord": "103",
- "12301_ord": "3130",
- "12302_ord": "5713",
- "12303_ord": "919",
- "12304_ord": "3098",
- "12305_ord": "3907",
- "12308_ord": "827",
- "12309_ord": "1993",
- "1230_index": "27465",
- "1231_index": "31206",
- "1232_index": "21119",
- "1233_index": "35930",
- "1234_index": "25253",
- "1235_index": "23495",
- "1236_index": "36884",
- "1237_index": "26020",
- "1238_index": "65105",
- "12390_ord": "2274",
- "12394_ord": "2987",
- "1239_index": "24819",
- "123_index": "26494",
- "123_ord": "2049",
- "1240_index": "29273",
- "1241_index": "38044",
- "1242_index": "23386",
- "1243_index": "33519",
- "1244_index": "36891",
- "1245_index": "8211",
- "1246_index": "34223",
- "1247_index": "25285",
- "1248_index": "33039",
- "1249_index": "40156",
- "124_index": "24676",
- "124_ord": "5559",
- "1250_index": "33280",
- "1251_index": "38827",
- "1252_index": "26979",
- "1253_index": "32493",
- "1254_index": "20521",
- "1255_index": "26429",
- "1256_index": "28478",
- "1257_index": "36874",
- "1258_index": "20312",
- "1259_index": "25361",
- "125_index": "22372",
- "125_ord": "5029",
- "1260_index": "21736",
- "1261_index": "39277",
- "1262_index": "31449",
- "1263_index": "25581",
- "1264_index": "37041",
- "1265_index": "22475",
- "1266_index": "8221",
- "1267_index": "24191",
- "1268_index": "24596",
- "1269_index": "29228",
- "126_index": "20873",
- "126_ord": "1402",
- "1270_index": "25534",
- "1271_index": "26552",
- "1272_index": "38030",
- "1273_index": "20163",
- "1274_index": "24785",
- "1275_index": "33421",
- "1276_index": "23849",
- "1277_index": "26657",
- "1278_index": "32511",
- "1279_index": "34945",
- "127_index": "30333",
- "1280_index": "30546",
- "1281_index": "35937",
- "1282_index": "24561",
- "1283_index": "30460",
- "1284_index": "23274",
- "1285_index": "29669",
- "1286_index": "26990",
- "1287_index": "31245",
- "1288_index": "30749",
- "1289_index": "38208",
- "128_index": "36305",
- "1290_index": "27742",
- "1291_index": "32873",
- "1292_index": "23384",
- "1293_index": "20247",
- "1294_index": "20025",
- "1295_index": "94",
- "1296_index": "28107",
- "1297_index": "32443",
- "1298_index": "35856",
- "1299_index": "38107",
- "129_index": "35692",
- "12_index": "34584",
- "1300_index": "24935",
- "1301_index": "38082",
- "1302_index": "21320",
- "1303_index": "32602",
- "1304_index": "36405",
- "1305_index": "28796",
- "1306_index": "29190",
- "1307_index": "20195",
- "1308_index": "20915",
- "1309_index": "31108",
- "130_index": "30768",
- "1310_index": "28338",
- "1311_index": "27882",
- "1312_index": "34731",
- "1313_index": "35335",
- "1314_index": "24639",
- "1315_index": "23510",
- "1316_index": "33255",
- "1317_index": "35124",
- "1318_index": "27036",
- "1319_index": "37550",
- "131_index": "38472",
- "1320_index": "31491",
- "1321_index": "23156",
- "1322_index": "24319",
- "1323_index": "32119",
- "1324_index": "32705",
- "1325_index": "31946",
- "1326_index": "31881",
- "1327_index": "38069",
- "1328_index": "20307",
- "1329_index": "21574",
- "132_index": "12297",
- "1330_index": "25171",
- "1331_index": "25290",
- "1332_index": "20065",
- "1333_index": "37045",
- "1334_index": "28180",
- "1335_index": "38423",
- "1336_index": "39038",
- "1337_index": "25513",
- "1338_index": "27974",
- "1339_index": "38252",
- "133_index": "28655",
- "1340_index": "36743",
- "1341_index": "21548",
- "1342_index": "31252",
- "1343_index": "20002",
- "1344_index": "28828",
- "1345_index": "31505",
- "1346_index": "30544",
- "1347_index": "29462",
- "1348_index": "31526",
- "1349_index": "26097",
- "134_index": "21734",
- "1350_index": "65108",
- "1351_index": "30654",
- "1352_index": "23413",
- "1353_index": "28120",
- "1354_index": "22025",
- "1355_index": "24971",
- "1356_index": "35784",
- "1357_index": "39050",
- "1358_index": "35271",
- "1359_index": "30294",
- "135_index": "21584",
- "1360_index": "24067",
- "1361_index": "29401",
- "1362_index": "26465",
- "1363_index": "24904",
- "1364_index": "24699",
- "1365_index": "23472",
- "1366_index": "24341",
- "1367_index": "21878",
- "1368_index": "33606",
- "1369_index": "27773",
- "136_index": "22362",
- "1370_index": "23519",
- "1371_index": "40075",
- "1372_index": "30418",
- "1373_index": "32535",
- "1374_index": "23609",
- "1375_index": "28024",
- "1376_index": "32043",
- "1377_index": "24643",
- "1378_index": "30563",
- "1379_index": "22100",
- "137_index": "28465",
- "1380_index": "21494",
- "1381_index": "29275",
- "1382_index": "21355",
- "1383_index": "21271",
- "1384_index": "30465",
- "1385_index": "20645",
- "1386_index": "25925",
- "1387_index": "21069",
- "1388_index": "28557",
- "1389_index": "21139",
- "138_index": "26911",
- "1390_index": "30759",
- "1391_index": "24674",
- "1392_index": "36819",
- "1393_index": "22276",
- "1394_index": "21472",
- "1395_index": "35821",
- "1396_index": "21270",
- "1397_index": "20134",
- "1398_index": "20115",
- "1399_index": "27743",
- "139_index": "33901",
- "13_index": "32662",
- "1400_index": "30732",
- "1401_index": "39046",
- "1402_index": "126",
- "1403_index": "27264",
- "1404_index": "33643",
- "1405_index": "39534",
- "1406_index": "29611",
- "1407_index": "25279",
- "1408_index": "29313",
- "1409_index": "40493",
- "140_index": "30251",
- "1410_index": "32518",
- "1411_index": "23528",
- "1412_index": "31967",
- "1413_index": "35060",
- "1414_index": "25259",
- "1415_index": "30610",
- "1416_index": "23860",
- "1417_index": "24614",
- "1418_index": "21947",
- "1419_index": "40114",
- "141_index": "28023",
- "1420_index": "21501",
- "1421_index": "26199",
- "1422_index": "31605",
- "1423_index": "23398",
- "1424_index": "35749",
- "1425_index": "32503",
- "1426_index": "35827",
- "1427_index": "27521",
- "1428_index": "23485",
- "1429_index": "26604",
- "142_index": "26684",
- "1430_index": "20276",
- "1431_index": "35812",
- "1432_index": "24034",
- "1433_index": "29791",
- "1434_index": "35029",
- "1435_index": "24457",
- "1436_index": "31636",
- "1437_index": "32781",
- "1438_index": "27985",
- "1439_index": "23077",
- "143_index": "21281",
- "1440_index": "30249",
- "1441_index": "32421",
- "1442_index": "29734",
- "1443_index": "33426",
- "1444_index": "22882",
- "1445_index": "23789",
- "1446_index": "21989",
- "1447_index": "29788",
- "1448_index": "31166",
- "1449_index": "24716",
- "144_index": "26728",
- "1450_index": "25111",
- "1451_index": "38656",
- "1452_index": "25618",
- "1453_index": "25139",
- "1454_index": "38224",
- "1455_index": "37218",
- "1456_index": "38035",
- "1457_index": "27067",
- "1458_index": "22885",
- "1459_index": "25549",
- "145_index": "38582",
- "1460_index": "25373",
- "1461_index": "22369",
- "1462_index": "22188",
- "1463_index": "24808",
- "1464_index": "22482",
- "1465_index": "28860",
- "1466_index": "20506",
- "1467_index": "20856",
- "1468_index": "31481",
- "1469_index": "26092",
- "146_index": "29864",
- "1470_index": "27604",
- "1471_index": "35808",
- "1472_index": "36841",
- "1473_index": "39584",
- "1474_index": "26885",
- "1475_index": "27694",
- "1476_index": "33593",
- "1477_index": "31659",
- "1478_index": "35828",
- "1479_index": "28810",
- "147_index": "23194",
- "1480_index": "23743",
- "1481_index": "33162",
- "1482_index": "29282",
- "1483_index": "27224",
- "1484_index": "21536",
- "1485_index": "39649",
- "1486_index": "26507",
- "1487_index": "21485",
- "1488_index": "20912",
- "1489_index": "26579",
- "148_index": "30707",
- "1490_index": "36162",
- "1491_index": "28610",
- "1492_index": "21340",
- "1493_index": "32937",
- "1494_index": "36468",
- "1495_index": "36425",
- "1496_index": "21496",
- "1497_index": "31080",
- "1498_index": "32303",
- "1499_index": "12298",
- "149_index": "35848",
- "14_index": "21638",
- "1500_index": "36143",
- "1501_index": "24335",
- "1502_index": "33476",
- "1503_index": "27611",
- "1504_index": "33243",
- "1505_index": "37009",
- "1506_index": "27779",
- "1507_index": "9316",
- "1508_index": "38401",
- "1509_index": "22900",
- "150_index": "35879",
- "1510_index": "33307",
- "1511_index": "32989",
- "1512_index": "20456",
- "1513_index": "36188",
- "1514_index": "21407",
- "1515_index": "29096",
- "1516_index": "21679",
- "1517_index": "25487",
- "1518_index": "24298",
- "1519_index": "36817",
- "151_index": "25161",
- "1520_index": "36275",
- "1521_index": "36712",
- "1522_index": "22336",
- "1523_index": "34955",
- "1524_index": "31035",
- "1525_index": "20110",
- "1526_index": "27197",
- "1527_index": "35791",
- "1528_index": "21834",
- "1529_index": "21449",
- "152_index": "26195",
- "1530_index": "32475",
- "1531_index": "24565",
- "1532_index": "33829",
- "1533_index": "25346",
- "1534_index": "30496",
- "1535_index": "38771",
- "1536_index": "34013",
- "1537_index": "39606",
- "1538_index": "40587",
- "1539_index": "28096",
- "153_index": "22721",
- "1540_index": "36346",
- "1541_index": "37061",
- "1542_index": "29042",
- "1543_index": "39757",
- "1544_index": "35826",
- "1545_index": "39078",
- "1546_index": "28068",
- "1547_index": "20392",
- "1548_index": "39073",
- "1549_index": "28902",
- "154_index": "22052",
- "1550_index": "32526",
- "1551_index": "21049",
- "1552_index": "31735",
- "1553_index": "30245",
- "1554_index": "35857",
- "1555_index": "36947",
- "1556_index": "24046",
- "1557_index": "40859",
- "1558_index": "37090",
- "1559_index": "21273",
- "155_index": "29744",
- "1560_index": "26059",
- "1561_index": "36323",
- "1562_index": "28286",
- "1563_index": "30520",
- "1564_index": "22531",
- "1565_index": "24222",
- "1566_index": "36137",
- "1567_index": "25619",
- "1568_index": "33678",
- "1569_index": "27814",
- "156_index": "22916",
- "1570_index": "28078",
- "1571_index": "31742",
- "1572_index": "25620",
- "1573_index": "25552",
- "1574_index": "24217",
- "1575_index": "36381",
- "1576_index": "21980",
- "1577_index": "31957",
- "1578_index": "38156",
- "1579_index": "24747",
- "157_index": "24775",
- "1580_index": "21014",
- "1581_index": "26174",
- "1582_index": "30437",
- "1583_index": "9484",
- "1584_index": "25052",
- "1585_index": "36156",
- "1586_index": "26197",
- "1587_index": "20140",
- "1588_index": "36140",
- "1589_index": "35770",
- "158_index": "33733",
- "1590_index": "21727",
- "1591_index": "28046",
- "1592_index": "31598",
- "1593_index": "36151",
- "1594_index": "29852",
- "1595_index": "38064",
- "1596_index": "28183",
- "1597_index": "21697",
- "1598_index": "29618",
- "1599_index": "37261",
- "159_index": "29483",
- "15_index": "9348",
- "1600_index": "31435",
- "1601_index": "38065",
- "1602_index": "30233",
- "1603_index": "23601",
- "1604_index": "26547",
- "1605_index": "27515",
- "1606_index": "34728",
- "1607_index": "28626",
- "1608_index": "25194",
- "1609_index": "38025",
- "160_index": "24084",
- "1610_index": "40488",
- "1611_index": "33008",
- "1612_index": "97",
- "1613_index": "32540",
- "1614_index": "21675",
- "1615_index": "25106",
- "1616_index": "28458",
- "1617_index": "21400",
- "1618_index": "38180",
- "1619_index": "9344",
- "161_index": "28139",
- "1620_index": "26066",
- "1621_index": "34261",
- "1622_index": "9314",
- "1623_index": "21520",
- "1624_index": "30427",
- "1625_index": "33100",
- "1626_index": "21658",
- "1627_index": "29575",
- "1628_index": "31786",
- "1629_index": "34597",
- "162_index": "32423",
- "1630_index": "32437",
- "1631_index": "25453",
- "1632_index": "30475",
- "1633_index": "32092",
- "1634_index": "36299",
- "1635_index": "20208",
- "1636_index": "23039",
- "1637_index": "26512",
- "1638_index": "23615",
- "1639_index": "35807",
- "163_index": "22047",
- "1640_index": "25602",
- "1641_index": "21937",
- "1642_index": "30079",
- "1643_index": "82",
- "1644_index": "21163",
- "1645_index": "27004",
- "1646_index": "39607",
- "1647_index": "21525",
- "1648_index": "32718",
- "1649_index": "23389",
- "164_index": "34733",
- "1650_index": "30956",
- "1651_index": "27185",
- "1652_index": "28378",
- "1653_index": "30344",
- "1654_index": "34081",
- "1655_index": "35465",
- "1656_index": "30164",
- "1657_index": "21969",
- "1658_index": "22500",
- "1659_index": "21725",
- "165_index": "32446",
- "1660_index": "31609",
- "1661_index": "25104",
- "1662_index": "20806",
- "1663_index": "20852",
- "1664_index": "36779",
- "1665_index": "28082",
- "1666_index": "30342",
- "1667_index": "23847",
- "1668_index": "24456",
- "1669_index": "33509",
- "166_index": "21535",
- "1670_index": "21019",
- "1671_index": "38057",
- "1672_index": "35910",
- "1673_index": "35290",
- "1674_index": "21359",
- "1675_index": "27654",
- "1676_index": "24518",
- "1677_index": "22163",
- "1678_index": "23991",
- "1679_index": "9679",
- "167_index": "28330",
- "1680_index": "25474",
- "1681_index": "38497",
- "1682_index": "34903",
- "1683_index": "21899",
- "1684_index": "40516",
- "1685_index": "28003",
- "1686_index": "31119",
- "1687_index": "21870",
- "1688_index": "21591",
- "1689_index": "27687",
- "168_index": "23436",
- "1690_index": "31661",
- "1691_index": "24858",
- "1692_index": "39135",
- "1693_index": "24133",
- "1694_index": "25242",
- "1695_index": "21182",
- "1696_index": "23461",
- "1697_index": "38506",
- "1698_index": "32957",
- "1699_index": "34467",
- "169_index": "20136",
- "16_index": "28325",
- "1700_index": "27463",
- "1701_index": "75",
- "1702_index": "36830",
- "1703_index": "27476",
- "1704_index": "26202",
- "1705_index": "33322",
- "1706_index": "39558",
- "1707_index": "40535",
- "1708_index": "20723",
- "1709_index": "21370",
- "170_index": "20278",
- "1710_index": "31041",
- "1711_index": "35794",
- "1712_index": "24061",
- "1713_index": "40653",
- "1714_index": "71",
- "1715_index": "9488",
- "1716_index": "37846",
- "1717_index": "29461",
- "1718_index": "21654",
- "1719_index": "23162",
- "171_index": "27766",
- "1720_index": "22313",
- "1721_index": "33796",
- "1722_index": "31568",
- "1723_index": "32472",
- "1724_index": "32473",
- "1725_index": "38500",
- "1726_index": "30417",
- "1727_index": "38385",
- "1728_index": "32453",
- "1729_index": "38026",
- "172_index": "31524",
- "1730_index": "38229",
- "1731_index": "38042",
- "1732_index": "36879",
- "1733_index": "40671",
- "1734_index": "23610",
- "1735_index": "38056",
- "1736_index": "111",
- "1737_index": "32858",
- "1738_index": "28925",
- "1739_index": "22788",
- "173_index": "36343",
- "1740_index": "29113",
- "1741_index": "33493",
- "1742_index": "24708",
- "1743_index": "28895",
- "1744_index": "9315",
- "1745_index": "36718",
- "1746_index": "24635",
- "1747_index": "40517",
- "1748_index": "36399",
- "1749_index": "39545",
- "174_index": "36145",
- "1750_index": "39301",
- "1751_index": "22815",
- "1752_index": "27872",
- "1753_index": "36744",
- "1754_index": "32565",
- "1755_index": "36920",
- "1756_index": "33285",
- "1757_index": "31896",
- "1758_index": "33557",
- "1759_index": "35764",
- "175_index": "120",
- "1760_index": "25658",
- "1761_index": "26460",
- "1762_index": "36918",
- "1763_index": "33433",
- "1764_index": "24544",
- "1765_index": "20379",
- "1766_index": "20062",
- "1767_index": "32044",
- "1768_index": "28028",
- "1769_index": "24748",
- "176_index": "22092",
- "176_ord": "3582",
- "1770_index": "23233",
- "1771_index": "36189",
- "1772_index": "22686",
- "1773_index": "38259",
- "1774_index": "24230",
- "1775_index": "31909",
- "1776_index": "29527",
- "1777_index": "26524",
- "1778_index": "30292",
- "1779_index": "34987",
- "177_index": "31783",
- "177_ord": "971",
- "1780_index": "38126",
- "1781_index": "33368",
- "1782_index": "20179",
- "1783_index": "31368",
- "1784_index": "37290",
- "1785_index": "32490",
- "1786_index": "35039",
- "1787_index": "36259",
- "1788_index": "32581",
- "1789_index": "39567",
- "178_index": "25215",
- "1790_index": "27922",
- "1791_index": "24328",
- "1792_index": "20223",
- "1793_index": "34758",
- "1794_index": "33688",
- "1795_index": "30416",
- "1796_index": "32946",
- "1797_index": "25315",
- "1798_index": "8217",
- "1799_index": "25509",
- "179_index": "33848",
- "17_index": "63",
- "1800_index": "20164",
- "1801_index": "40668",
- "1802_index": "22836",
- "1803_index": "33694",
- "1804_index": "25578",
- "1805_index": "23725",
- "1806_index": "36831",
- "1807_index": "25507",
- "1808_index": "20911",
- "1809_index": "33540",
- "180_index": "26172",
- "1810_index": "20658",
- "1811_index": "40485",
- "1812_index": "33268",
- "1813_index": "32690",
- "1814_index": "21542",
- "1815_index": "35270",
- "1816_index": "23883",
- "1817_index": "28101",
- "1818_index": "23456",
- "1819_index": "28218",
- "181_index": "24815",
- "1820_index": "39580",
- "1821_index": "33492",
- "1822_index": "28255",
- "1823_index": "37275",
- "1824_index": "33180",
- "1825_index": "23273",
- "1826_index": "21606",
- "1827_index": "21895",
- "1828_index": "26359",
- "1829_index": "28147",
- "182_index": "34473",
- "1830_index": "23445",
- "1831_index": "20102",
- "1832_index": "31229",
- "1833_index": "34512",
- "1834_index": "30452",
- "1835_index": "33967",
- "1836_index": "23507",
- "1837_index": "37232",
- "1838_index": "33682",
- "1839_index": "25289",
- "183_index": "31048",
- "183_ord": "5564",
- "1840_index": "38893",
- "1841_index": "39079",
- "1842_index": "25153",
- "1843_index": "40563",
- "1844_index": "34926",
- "1845_index": "32422",
- "1846_index": "24601",
- "1847_index": "20879",
- "1848_index": "33445",
- "1849_index": "28065",
- "184_index": "21700",
- "1850_index": "22346",
- "1851_index": "20500",
- "1852_index": "31867",
- "1853_index": "36409",
- "1854_index": "23561",
- "1855_index": "38220",
- "1856_index": "36752",
- "1857_index": "23521",
- "1858_index": "26415",
- "1859_index": "24527",
- "185_index": "22134",
- "1860_index": "40071",
- "1861_index": "20648",
- "1862_index": "20130",
- "1863_index": "21000",
- "1864_index": "25514",
- "1865_index": "32533",
- "1866_index": "26417",
- "1867_index": "32495",
- "1868_index": "39711",
- "1869_index": "26187",
- "186_index": "21473",
- "1870_index": "30450",
- "1871_index": "29260",
- "1872_index": "31668",
- "1873_index": "28237",
- "1874_index": "27778",
- "1875_index": "34949",
- "1876_index": "9632",
- "1877_index": "28155",
- "1878_index": "31901",
- "1879_index": "35013",
- "187_index": "24551",
- "1880_index": "38657",
- "1881_index": "26332",
- "1882_index": "36310",
- "1883_index": "33795",
- "1884_index": "20430",
- "1885_index": "23443",
- "1886_index": "36719",
- "1887_index": "20215",
- "1888_index": "30932",
- "1889_index": "29645",
- "188_index": "25942",
- "1890_index": "40635",
- "1891_index": "30054",
- "1892_index": "25758",
- "1893_index": "25282",
- "1894_index": "30592",
- "1895_index": "20465",
- "1896_index": "21490",
- "1897_index": "22952",
- "1898_index": "20398",
- "1899_index": "32580",
- "189_index": "31713",
- "18_index": "35776",
- "1900_index": "21410",
- "1901_index": "26444",
- "1902_index": "26679",
- "1903_index": "33891",
- "1904_index": "122",
- "1905_index": "20667",
- "1906_index": "25370",
- "1907_index": "36367",
- "1908_index": "23792",
- "1909_index": "36756",
- "190_index": "26463",
- "1910_index": "24212",
- "1911_index": "27053",
- "1912_index": "33459",
- "1913_index": "33821",
- "1914_index": "28322",
- "1915_index": "38774",
- "1916_index": "21452",
- "1917_index": "26149",
- "1918_index": "37326",
- "1919_index": "33016",
- "191_index": "33862",
- "1920_index": "38795",
- "1921_index": "21846",
- "1922_index": "26549",
- "1923_index": "32483",
- "1924_index": "27000",
- "1925_index": "22829",
- "1926_index": "28319",
- "1927_index": "27442",
- "1928_index": "22281",
- "1929_index": "20572",
- "192_index": "24779",
- "1930_index": "39543",
- "1931_index": "28640",
- "1932_index": "34108",
- "1933_index": "38902",
- "1934_index": "25307",
- "1935_index": "22804",
- "1936_index": "32850",
- "1937_index": "22251",
- "1938_index": "33539",
- "1939_index": "21688",
- "193_index": "21999",
- "1940_index": "40687",
- "1941_index": "36838",
- "1942_index": "20335",
- "1943_index": "35203",
- "1944_index": "20210",
- "1945_index": "32745",
- "1946_index": "28532",
- "1947_index": "21735",
- "1948_index": "21402",
- "1949_index": "39302",
- "194_index": "25457",
- "1950_index": "33603",
- "1951_index": "21676",
- "1952_index": "38210",
- "1953_index": "31072",
- "1954_index": "25494",
- "1955_index": "34623",
- "1956_index": "20234",
- "1957_index": "27818",
- "1958_index": "30270",
- "1959_index": "35765",
- "195_index": "24093",
- "1960_index": "32933",
- "1961_index": "33050",
- "1962_index": "31186",
- "1963_index": "28293",
- "1964_index": "21672",
- "1965_index": "40607",
- "1966_index": "23318",
- "1967_index": "26228",
- "1968_index": "20872",
- "1969_index": "30900",
- "196_index": "21646",
- "1970_index": "1056",
- "1971_index": "30091",
- "1972_index": "36793",
- "1973_index": "24517",
- "1974_index": "25375",
- "1975_index": "28388",
- "1976_index": "25151",
- "1977_index": "21342",
- "1978_index": "29712",
- "1979_index": "28919",
- "197_index": "20004",
- "1980_index": "29520",
- "1981_index": "33276",
- "1982_index": "40077",
- "1983_index": "30307",
- "1984_index": "32546",
- "1985_index": "24209",
- "1986_index": "25668",
- "1987_index": "24323",
- "1988_index": "24367",
- "1989_index": "22269",
- "198_index": "26894",
- "1990_index": "28132",
- "1991_index": "38491",
- "1992_index": "36152",
- "1993_index": "12309",
- "1994_index": "20294",
- "1995_index": "20914",
- "19968_ord": "2551",
- "19969_ord": "4304",
- "1996_index": "23679",
- "19971_ord": "4281",
- "19975_ord": "4695",
- "19976_ord": "269",
- "19977_ord": "3604",
- "19978_ord": "3848",
- "19979_ord": "4300",
- "1997_index": "19998",
- "19981_ord": "684",
- "19982_ord": "3301",
- "19984_ord": "371",
- "19985_ord": "2139",
- "19987_ord": "93",
- "19988_ord": "2032",
- "19989_ord": "3711",
- "1998_index": "32961",
- "19990_ord": "5775",
- "19992_ord": "3864",
- "19993_ord": "2077",
- "19994_ord": "3010",
- "19995_ord": "4513",
- "19996_ord": "540",
- "19997_ord": "3970",
- "19998_ord": "1997",
- "1999_index": "27905",
- "199_index": "28467",
- "19_index": "36955",
- "1_index": "21351",
- "20002_ord": "1343",
- "20004_ord": "197",
- "20005_ord": "4916",
- "20007_ord": "487",
- "2000_index": "38508",
- "20010_ord": "3846",
- "20011_ord": "5097",
- "20013_ord": "4267",
- "20016_ord": "959",
- "20018_ord": "2765",
- "2001_index": "30923",
- "20020_ord": "2741",
- "20024_ord": "4384",
- "20025_ord": "1294",
- "20026_ord": "2074",
- "20027_ord": "783",
- "20029_ord": "2260",
- "2002_index": "33575",
- "20030_ord": "5563",
- "20034_ord": "2779",
- "20035_ord": "894",
- "20037_ord": "2331",
- "2003_index": "30424",
- "20040_ord": "4280",
- "20041_ord": "3596",
- "20043_ord": "4639",
- "20044_ord": "5249",
- "20045_ord": "2289",
- "20046_ord": "435",
- "20047_ord": "4025",
- "20048_ord": "4898",
- "2004_index": "20939",
- "20050_ord": "3356",
- "20051_ord": "3335",
- "20052_ord": "276",
- "20054_ord": "968",
- "20056_ord": "4648",
- "20057_ord": "2195",
- "2005_index": "29394",
- "20061_ord": "436",
- "20062_ord": "1766",
- "20063_ord": "2273",
- "20064_ord": "4372",
- "20065_ord": "1332",
- "2006_index": "30683",
- "20070_ord": "3320",
- "20073_ord": "2604",
- "2007_index": "24231",
- "20080_ord": "4590",
- "20081_ord": "3095",
- "20083_ord": "2902",
- "2008_index": "22319",
- "20094_ord": "3821",
- "2009_index": "36710",
- "200_index": "35846",
- "20102_ord": "1831",
- "20104_ord": "3082",
- "20105_ord": "3944",
- "20107_ord": "2416",
- "20108_ord": "4413",
- "2010_index": "36401",
- "20110_ord": "1525",
- "20111_ord": "2106",
- "20113_ord": "5423",
- "20114_ord": "3047",
- "20115_ord": "1398",
- "20116_ord": "3080",
- "20117_ord": "264",
- "2011_index": "20256",
- "20120_ord": "2319",
- "20122_ord": "2465",
- "20123_ord": "2782",
- "20127_ord": "3106",
- "20129_ord": "2372",
- "2012_index": "36229",
- "20130_ord": "1862",
- "20132_ord": "5554",
- "20133_ord": "2721",
- "20134_ord": "1397",
- "20135_ord": "978",
- "20136_ord": "169",
- "20137_ord": "4589",
- "20139_ord": "2544",
- "2013_index": "33988",
- "20140_ord": "1587",
- "20141_ord": "2774",
- "20142_ord": "552",
- "20146_ord": "2639",
- "20147_ord": "583",
- "20149_ord": "2431",
- "2014_index": "25247",
- "20150_ord": "3348",
- "20154_ord": "4270",
- "20159_ord": "647",
- "2015_index": "29226",
- "20160_ord": "5526",
- "20161_ord": "2453",
- "20163_ord": "1273",
- "20164_ord": "1800",
- "20165_ord": "4629",
- "20166_ord": "5583",
- "20167_ord": "4754",
- "2016_index": "28044",
- "20170_ord": "395",
- "20171_ord": "4198",
- "20173_ord": "4664",
- "20174_ord": "311",
- "20177_ord": "657",
- "20179_ord": "1782",
- "2017_index": "36766",
- "20180_ord": "3776",
- "20181_ord": "2645",
- "20182_ord": "526",
- "20183_ord": "2034",
- "20184_ord": "4226",
- "20185_ord": "5261",
- "2018_index": "22982",
- "20190_ord": "3960",
- "20193_ord": "2027",
- "20195_ord": "1307",
- "20196_ord": "4051",
- "20197_ord": "4888",
- "2019_index": "20202",
- "201_index": "21153",
- "20202_ord": "2019",
- "20203_ord": "2050",
- "20204_ord": "5733",
- "20208_ord": "1635",
- "2020_index": "37301",
- "20210_ord": "1944",
- "20214_ord": "4186",
- "20215_ord": "1887",
- "20219_ord": "2366",
- "2021_index": "29408",
- "20221_ord": "922",
- "20223_ord": "1792",
- "20225_ord": "543",
- "2022_index": "33133",
- "20233_ord": "4562",
- "20234_ord": "1956",
- "20237_ord": "5763",
- "20238_ord": "2751",
- "20239_ord": "3465",
- "2023_index": "29484",
- "20240_ord": "5472",
- "20241_ord": "785",
- "20247_ord": "1293",
- "20248_ord": "3377",
- "20249_ord": "5573",
- "2024_index": "27178",
- "20250_ord": "1103",
- "20251_ord": "5549",
- "20254_ord": "4278",
- "20255_ord": "2769",
- "20256_ord": "2011",
- "2025_index": "24069",
- "20260_ord": "42",
- "20262_ord": "4464",
- "20263_ord": "3867",
- "20266_ord": "3778",
- "20267_ord": "8",
- "2026_index": "36481",
- "20271_ord": "211",
- "20272_ord": "5023",
- "20276_ord": "1430",
- "20278_ord": "170",
- "2027_index": "20193",
- "20280_ord": "5741",
- "20282_ord": "4431",
- "20283_ord": "4421",
- "20284_ord": "501",
- "20285_ord": "3014",
- "2028_index": "22061",
- "20291_ord": "4427",
- "20294_ord": "1994",
- "20296_ord": "258",
- "2029_index": "24361",
- "202_index": "22974",
- "20301_ord": "331",
- "20302_ord": "5365",
- "20303_ord": "2302",
- "20304_ord": "744",
- "20305_ord": "3290",
- "20307_ord": "1328",
- "20309_ord": "2380",
- "2030_index": "29634",
- "20311_ord": "2826",
- "20312_ord": "1258",
- "20313_ord": "3427",
- "20314_ord": "2532",
- "20315_ord": "3965",
- "20316_ord": "3063",
- "20317_ord": "3110",
- "20318_ord": "721",
- "20319_ord": "5771",
- "2031_index": "22365",
- "20320_ord": "2185",
- "20323_ord": "878",
- "20324_ord": "2040",
- "20329_ord": "2835",
- "2032_index": "19988",
- "20332_ord": "2483",
- "20335_ord": "1942",
- "20336_ord": "5402",
- "20339_ord": "4620",
- "2033_index": "24799",
- "20342_ord": "5799",
- "20347_ord": "831",
- "20348_ord": "2926",
- "2034_index": "20183",
- "20351_ord": "4779",
- "20355_ord": "3416",
- "20356_ord": "4995",
- "2035_index": "27832",
- "20360_ord": "2180",
- "20363_ord": "5342",
- "20365_ord": "702",
- "20367_ord": "4194",
- "20369_ord": "4623",
- "2036_index": "31036",
- "20372_ord": "4882",
- "20375_ord": "5545",
- "20379_ord": "1765",
- "2037_index": "35174",
- "20381_ord": "3100",
- "20384_ord": "97",
- "20387_ord": "5174",
- "20389_ord": "2309",
- "2038_index": "38994",
- "20390_ord": "4285",
- "20391_ord": "2501",
- "20392_ord": "1547",
- "20393_ord": "312",
- "20394_ord": "4124",
- "20396_ord": "5447",
- "20398_ord": "1898",
- "20399_ord": "824",
- "2039_index": "24930",
- "203_index": "22218",
- "20405_ord": "4374",
- "2040_index": "20324",
- "20415_ord": "5348",
- "20419_ord": "5780",
- "2041_index": "32610",
- "20420_ord": "3496",
- "20421_ord": "4680",
- "20426_ord": "4697",
- "2042_index": "28783",
- "20430_ord": "1884",
- "20431_ord": "2144",
- "20432_ord": "4922",
- "20433_ord": "809",
- "20439_ord": "5343",
- "2043_index": "21095",
- "20440_ord": "3807",
- "20442_ord": "4402",
- "20443_ord": "1097",
- "20445_ord": "4558",
- "20446_ord": "4556",
- "20447_ord": "4758",
- "20449_ord": "3154",
- "2044_index": "33905",
- "20454_ord": "580",
- "20456_ord": "1512",
- "20457_ord": "2793",
- "20458_ord": "5245",
- "2045_index": "22821",
- "20461_ord": "356",
- "20462_ord": "3074",
- "20463_ord": "4067",
- "20465_ord": "1895",
- "20467_ord": "2301",
- "2046_index": "21527",
- "20472_ord": "299",
- "20474_ord": "5590",
- "20478_ord": "3309",
- "2047_index": "30154",
- "2048_index": "36171",
- "20493_ord": "484",
- "20495_ord": "1002",
- "20498_ord": "3685",
- "2049_index": "123",
- "204_index": "33620",
- "20500_ord": "1851",
- "20504_ord": "3922",
- "20505_ord": "236",
- "20506_ord": "1466",
- "20508_ord": "318",
- "2050_index": "20203",
- "20511_ord": "5619",
- "20513_ord": "3339",
- "20518_ord": "3202",
- "2051_index": "28145",
- "20520_ord": "4583",
- "20521_ord": "1254",
- "20522_ord": "790",
- "20524_ord": "1082",
- "20525_ord": "5078",
- "2052_index": "36",
- "20538_ord": "3647",
- "2053_index": "23064",
- "20540_ord": "2792",
- "20542_ord": "3030",
- "20547_ord": "561",
- "2054_index": "22158",
- "20551_ord": "3189",
- "20552_ord": "4179",
- "20556_ord": "3291",
- "20558_ord": "4817",
- "20559_ord": "5191",
- "2055_index": "28625",
- "20565_ord": "4092",
- "2056_index": "26575",
- "20570_ord": "4134",
- "20572_ord": "1929",
- "2057_index": "31528",
- "20581_ord": "4968",
- "2058_index": "29463",
- "20598_ord": "5399",
- "20599_ord": "776",
- "2059_index": "35865",
- "205_index": "26928",
- "20603_ord": "2507",
- "20607_ord": "2738",
- "20608_ord": "249",
- "2060_index": "29417",
- "20613_ord": "210",
- "20616_ord": "872",
- "2061_index": "26085",
- "20621_ord": "4348",
- "20629_ord": "274",
- "2062_index": "34479",
- "2063_index": "36126",
- "20643_ord": "773",
- "20645_ord": "1385",
- "20648_ord": "1861",
- "20649_ord": "3550",
- "2064_index": "23492",
- "20652_ord": "2804",
- "20658_ord": "1810",
- "2065_index": "25273",
- "20667_ord": "1905",
- "2066_index": "36834",
- "2067_index": "24859",
- "20687_ord": "3828",
- "2068_index": "35781",
- "20694_ord": "3854",
- "20698_ord": "3659",
- "2069_index": "27010",
- "206_index": "35960",
- "2070_index": "40548",
- "20710_ord": "5325",
- "20711_ord": "1121",
- "20717_ord": "2236",
- "20718_ord": "4675",
- "2071_index": "31581",
- "20723_ord": "1708",
- "20725_ord": "5345",
- "20729_ord": "5328",
- "2072_index": "28014",
- "20731_ord": "630",
- "2073_index": "31699",
- "20742_ord": "2942",
- "20743_ord": "3067",
- "20747_ord": "3253",
- "2074_index": "20026",
- "20754_ord": "3299",
- "2075_index": "29674",
- "20769_ord": "3211",
- "2076_index": "39280",
- "2077_index": "19993",
- "2078_index": "24618",
- "20799_ord": "7",
- "2079_index": "24736",
- "207_index": "30343",
- "20800_ord": "5440",
- "20801_ord": "4860",
- "20803_ord": "2674",
- "20804_ord": "21",
- "20805_ord": "2798",
- "20806_ord": "1662",
- "20808_ord": "3453",
- "20809_ord": "3341",
- "2080_index": "30765",
- "20811_ord": "2719",
- "20813_ord": "2499",
- "20817_ord": "5228",
- "20818_ord": "4923",
- "2081_index": "26412",
- "20820_ord": "3124",
- "20821_ord": "2140",
- "20822_ord": "2295",
- "20826_ord": "3381",
- "20828_ord": "326",
- "2082_index": "24359",
- "20834_ord": "2333",
- "20837_ord": "2803",
- "2083_index": "23536",
- "20840_ord": "98",
- "20843_ord": "2152",
- "20844_ord": "2281",
- "20845_ord": "5369",
- "20846_ord": "4149",
- "20848_ord": "5223",
- "20849_ord": "1210",
- "2084_index": "31224",
- "20851_ord": "3391",
- "20852_ord": "1663",
- "20853_ord": "589",
- "20854_ord": "5285",
- "20855_ord": "3504",
- "20856_ord": "1467",
- "20857_ord": "976",
- "20859_ord": "3822",
- "2085_index": "33729",
- "20860_ord": "4227",
- "20861_ord": "765",
- "20864_ord": "4100",
- "20865_ord": "4669",
- "20869_ord": "4218",
- "2086_index": "21622",
- "20872_ord": "1968",
- "20873_ord": "126",
- "20876_ord": "5562",
- "20877_ord": "3040",
- "20879_ord": "1847",
- "2087_index": "31584",
- "20881_ord": "604",
- "20882_ord": "3077",
- "20885_ord": "4551",
- "20887_ord": "5336",
- "20889_ord": "1133",
- "2088_index": "26408",
- "20891_ord": "2391",
- "20892_ord": "4992",
- "20896_ord": "749",
- "20898_ord": "3542",
- "2089_index": "26469",
- "208_index": "38605",
- "20900_ord": "720",
- "20901_ord": "4255",
- "20908_ord": "2266",
- "2090_index": "34259",
- "20911_ord": "1808",
- "20912_ord": "1488",
- "20914_ord": "1995",
- "20915_ord": "1308",
- "20917_ord": "463",
- "20918_ord": "2310",
- "20919_ord": "3048",
- "2091_index": "32769",
- "20923_ord": "121",
- "20925_ord": "1042",
- "20928_ord": "881",
- "2092_index": "36294",
- "20932_ord": "5429",
- "20934_ord": "2430",
- "20935_ord": "3081",
- "20937_ord": "2882",
- "20939_ord": "2004",
- "2093_index": "21644",
- "20940_ord": "2407",
- "20943_ord": "2442",
- "20945_ord": "3977",
- "2094_index": "40486",
- "20955_ord": "654",
- "20957_ord": "2497",
- "2095_index": "36416",
- "20960_ord": "5262",
- "20961_ord": "4782",
- "20964_ord": "2914",
- "2096_index": "79",
- "20971_ord": "3060",
- "20973_ord": "5712",
- "20975_ord": "507",
- "20976_ord": "710",
- "20979_ord": "2925",
- "2097_index": "21704",
- "20982_ord": "3777",
- "20984_ord": "848",
- "20985_ord": "3982",
- "20986_ord": "5362",
- "20987_ord": "739",
- "20989_ord": "2749",
- "2098_index": "40063",
- "20991_ord": "926",
- "20992_ord": "2387",
- "20993_ord": "4056",
- "20995_ord": "5616",
- "20998_ord": "5095",
- "20999_ord": "2796",
- "2099_index": "26157",
- "209_index": "24476",
- "20_index": "21103",
- "21000_ord": "1863",
- "21002_ord": "1081",
- "21005_ord": "5727",
- "21006_ord": "469",
- "21009_ord": "3089",
- "2100_index": "23884",
- "21010_ord": "319",
- "21011_ord": "2725",
- "21014_ord": "1580",
- "21015_ord": "2227",
- "21016_ord": "4189",
- "21017_ord": "457",
- "21018_ord": "4999",
- "21019_ord": "1670",
- "2101_index": "21364",
- "21021_ord": "2524",
- "21024_ord": "5178",
- "21028_ord": "2740",
- "2102_index": "27880",
- "21032_ord": "4650",
- "21033_ord": "2232",
- "21035_ord": "3198",
- "21037_ord": "2305",
- "21038_ord": "653",
- "2103_index": "30208",
- "21040_ord": "2870",
- "21043_ord": "4378",
- "21046_ord": "3991",
- "21047_ord": "4812",
- "21048_ord": "2455",
- "21049_ord": "1551",
- "2104_index": "38388",
- "21050_ord": "3686",
- "21051_ord": "547",
- "21053_ord": "3449",
- "21057_ord": "2985",
- "21058_ord": "674",
- "21059_ord": "5040",
- "2105_index": "30871",
- "21066_ord": "769",
- "21068_ord": "4595",
- "21069_ord": "1387",
- "2106_index": "20111",
- "21070_ord": "216",
- "21072_ord": "2714",
- "21073_ord": "2659",
- "21076_ord": "3075",
- "21078_ord": "4192",
- "2107_index": "29450",
- "21084_ord": "553",
- "2108_index": "24455",
- "21093_ord": "2885",
- "21095_ord": "2043",
- "21097_ord": "4217",
- "21098_ord": "4257",
- "2109_index": "22043",
- "210_index": "20613",
- "21103_ord": "20",
- "21106_ord": "1022",
- "2110_index": "32974",
- "21117_ord": "4749",
- "21119_ord": "1232",
- "2111_index": "30385",
- "21128_ord": "4913",
- "2112_index": "33631",
- "21139_ord": "1389",
- "2113_index": "38410",
- "21145_ord": "4573",
- "21147_ord": "868",
- "21149_ord": "2396",
- "2114_index": "40494",
- "21150_ord": "850",
- "21151_ord": "3605",
- "21152_ord": "4199",
- "21153_ord": "201",
- "21155_ord": "2365",
- "2115_index": "26479",
- "21160_ord": "2158",
- "21161_ord": "4141",
- "21162_ord": "2883",
- "21163_ord": "1644",
- "21164_ord": "5617",
- "21165_ord": "4481",
- "21169_ord": "4609",
- "2116_index": "88",
- "21170_ord": "5311",
- "21171_ord": "1084",
- "2117_index": "32502",
- "21182_ord": "1695",
- "21183_ord": "308",
- "21187_ord": "447",
- "2118_index": "40131",
- "21191_ord": "3165",
- "21193_ord": "756",
- "21195_ord": "79",
- "2119_index": "24864",
- "211_index": "20271",
- "21200_ord": "5272",
- "21202_ord": "3696",
- "21206_ord": "2781",
- "21208_ord": "4044",
- "2120_index": "33107",
- "21215_ord": "5012",
- "2121_index": "29627",
- "21220_ord": "4202",
- "2122_index": "33830",
- "2123_index": "50",
- "21242_ord": "901",
- "21246_ord": "4994",
- "21247_ord": "2564",
- "21248_ord": "5731",
- "2124_index": "37213",
- "21253_ord": "884",
- "21254_ord": "5123",
- "21256_ord": "95",
- "2125_index": "33805",
- "21261_ord": "4900",
- "21263_ord": "5708",
- "21264_ord": "3235",
- "21269_ord": "4467",
- "2126_index": "24422",
- "21270_ord": "1396",
- "21271_ord": "1383",
- "21273_ord": "1559",
- "21277_ord": "4651",
- "2127_index": "38052",
- "21280_ord": "2939",
- "21281_ord": "143",
- "21283_ord": "4053",
- "2128_index": "36728",
- "21290_ord": "5349",
- "21294_ord": "2569",
- "21299_ord": "5682",
- "2129_index": "36290",
- "212_index": "28009",
- "21305_ord": "2970",
- "21306_ord": "4442",
- "21307_ord": "2150",
- "2130_index": "9313",
- "21310_ord": "5566",
- "21311_ord": "4925",
- "21313_ord": "4484",
- "21315_ord": "295",
- "21317_ord": "5130",
- "21319_ord": "2218",
- "2131_index": "29330",
- "21320_ord": "1302",
- "21321_ord": "3273",
- "21322_ord": "712",
- "21326_ord": "2508",
- "21327_ord": "4407",
- "21329_ord": "876",
- "2132_index": "25094",
- "21330_ord": "531",
- "21331_ord": "679",
- "21333_ord": "4795",
- "21334_ord": "4516",
- "21335_ord": "3992",
- "21338_ord": "2757",
- "2133_index": "28538",
- "21340_ord": "1492",
- "21342_ord": "1977",
- "21344_ord": "3226",
- "21345_ord": "585",
- "21346_ord": "665",
- "21348_ord": "4789",
- "2134_index": "26399",
- "21350_ord": "3414",
- "21351_ord": "1",
- "21355_ord": "1382",
- "21356_ord": "2850",
- "21358_ord": "605",
- "21359_ord": "1674",
- "2135_index": "39544",
- "21360_ord": "3188",
- "21361_ord": "5294",
- "21363_ord": "2856",
- "21364_ord": "2101",
- "21365_ord": "4290",
- "21367_ord": "5150",
- "21368_ord": "316",
- "2136_index": "47",
- "21370_ord": "1709",
- "21375_ord": "5358",
- "21378_ord": "4546",
- "2137_index": "36158",
- "21380_ord": "3242",
- "21381_ord": "1024",
- "21382_ord": "4363",
- "21385_ord": "3237",
- "21387_ord": "377",
- "21388_ord": "5176",
- "21389_ord": "2500",
- "2138_index": "30899",
- "21397_ord": "245",
- "2139_index": "19985",
- "213_index": "29053",
- "21400_ord": "1617",
- "21402_ord": "1948",
- "21405_ord": "4570",
- "21407_ord": "1514",
- "2140_index": "20821",
- "21410_ord": "1900",
- "21413_ord": "626",
- "21414_ord": "5196",
- "21416_ord": "222",
- "21417_ord": "4772",
- "2141_index": "33536",
- "21422_ord": "4350",
- "2142_index": "32438",
- "21435_ord": "738",
- "21439_ord": "3186",
- "2143_index": "38713",
- "21442_ord": "637",
- "21448_ord": "5578",
- "21449_ord": "1529",
- "2144_index": "20431",
- "21450_ord": "5155",
- "21451_ord": "5390",
- "21452_ord": "1916",
- "21453_ord": "5696",
- "21457_ord": "2477",
- "2145_index": "35266",
- "21460_ord": "4635",
- "21462_ord": "2964",
- "21463_ord": "584",
- "21464_ord": "1163",
- "21465_ord": "2857",
- "21467_ord": "379",
- "2146_index": "25134",
- "21471_ord": "1132",
- "21472_ord": "1394",
- "21473_ord": "186",
- "21475_ord": "3476",
- "21476_ord": "2890",
- "21477_ord": "405",
- "21478_ord": "4979",
- "2147_index": "27754",
- "21480_ord": "2492",
- "21481_ord": "2649",
- "21482_ord": "446",
- "21483_ord": "4064",
- "21484_ord": "4298",
- "21485_ord": "1487",
- "21486_ord": "4138",
- "21487_ord": "3191",
- "21488_ord": "5605",
- "21489_ord": "4524",
- "2148_index": "36836",
- "21490_ord": "1896",
- "21491_ord": "3989",
- "21493_ord": "5070",
- "21494_ord": "1380",
- "21495_ord": "3740",
- "21496_ord": "1496",
- "21497_ord": "5338",
- "2149_index": "21531",
- "214_index": "21987",
- "21500_ord": "3413",
- "21501_ord": "1420",
- "21505_ord": "3710",
- "21507_ord": "5076",
- "21508_ord": "514",
- "2150_index": "21307",
- "21510_ord": "5326",
- "21512_ord": "3343",
- "21513_ord": "3531",
- "21514_ord": "4416",
- "21516_ord": "3434",
- "21517_ord": "5697",
- "21518_ord": "5618",
- "21519_ord": "2163",
- "2151_index": "26011",
- "21520_ord": "1623",
- "21521_ord": "4448",
- "21522_ord": "4578",
- "21523_ord": "5384",
- "21525_ord": "1647",
- "21527_ord": "2046",
- "2152_index": "20843",
- "21531_ord": "2149",
- "21533_ord": "3487",
- "21534_ord": "2155",
- "21535_ord": "166",
- "21536_ord": "1484",
- "2153_index": "22809",
- "21542_ord": "1814",
- "21543_ord": "5532",
- "21544_ord": "5464",
- "21545_ord": "3737",
- "21547_ord": "3332",
- "21548_ord": "1341",
- "21549_ord": "4190",
- "2154_index": "36945",
- "21550_ord": "104",
- "21551_ord": "851",
- "21553_ord": "554",
- "21556_ord": "4693",
- "21557_ord": "2316",
- "2155_index": "21534",
- "21560_ord": "2348",
- "21561_ord": "807",
- "21563_ord": "4563",
- "21564_ord": "1149",
- "21566_ord": "5230",
- "21568_ord": "3417",
- "2156_index": "40479",
- "21571_ord": "253",
- "21574_ord": "1329",
- "21576_ord": "4036",
- "21578_ord": "869",
- "2157_index": "26209",
- "21584_ord": "135",
- "21587_ord": "2513",
- "21589_ord": "2541",
- "2158_index": "21160",
- "21591_ord": "1688",
- "21592_ord": "3096",
- "21595_ord": "5212",
- "21596_ord": "4977",
- "2159_index": "31654",
- "215_index": "31264",
- "215_ord": "1046",
- "21602_ord": "2908",
- "21604_ord": "4208",
- "21606_ord": "1826",
- "21608_ord": "3967",
- "2160_index": "36524",
- "21617_ord": "4973",
- "21619_ord": "590",
- "2161_index": "39062",
- "21621_ord": "3204",
- "21622_ord": "2086",
- "21623_ord": "4710",
- "21627_ord": "468",
- "21628_ord": "5112",
- "21629_ord": "4780",
- "2162_index": "24503",
- "21632_ord": "4910",
- "21634_ord": "3406",
- "21636_ord": "5374",
- "21638_ord": "14",
- "2163_index": "21519",
- "21643_ord": "5276",
- "21644_ord": "2093",
- "21646_ord": "196",
- "21647_ord": "795",
- "21648_ord": "746",
- "2164_index": "21862",
- "21650_ord": "4269",
- "21652_ord": "5059",
- "21653_ord": "5730",
- "21654_ord": "1718",
- "21657_ord": "4489",
- "21658_ord": "1626",
- "21659_ord": "2909",
- "2165_index": "25441",
- "21667_ord": "5269",
- "21668_ord": "224",
- "2166_index": "25769",
- "21670_ord": "2181",
- "21671_ord": "4479",
- "21672_ord": "1964",
- "21674_ord": "402",
- "21675_ord": "1614",
- "21676_ord": "1951",
- "21679_ord": "1516",
- "2167_index": "24213",
- "21681_ord": "467",
- "21683_ord": "475",
- "21688_ord": "1939",
- "2168_index": "25377",
- "21691_ord": "4463",
- "21693_ord": "4117",
- "21695_ord": "314",
- "21696_ord": "5547",
- "21697_ord": "1597",
- "21698_ord": "4473",
- "2169_index": "25516",
- "216_index": "21070",
- "21700_ord": "184",
- "21702_ord": "220",
- "21703_ord": "5665",
- "21704_ord": "2097",
- "21705_ord": "2700",
- "21708_ord": "1017",
- "21709_ord": "5089",
- "2170_index": "32481",
- "21710_ord": "2614",
- "21711_ord": "1189",
- "21713_ord": "4256",
- "21719_ord": "4929",
- "2171_index": "31169",
- "21721_ord": "3463",
- "21725_ord": "1659",
- "21727_ord": "1590",
- "2172_index": "36804",
- "21733_ord": "3554",
- "21734_ord": "134",
- "21735_ord": "1947",
- "21736_ord": "1260",
- "21737_ord": "325",
- "21738_ord": "4530",
- "2173_index": "27547",
- "21741_ord": "2648",
- "21742_ord": "2271",
- "21746_ord": "5503",
- "2174_index": "39035",
- "21754_ord": "4469",
- "21756_ord": "349",
- "21757_ord": "5088",
- "2175_index": "37233",
- "21761_ord": "2650",
- "21766_ord": "5495",
- "21767_ord": "4113",
- "21769_ord": "5600",
- "2176_index": "30030",
- "21775_ord": "5459",
- "21776_ord": "3909",
- "21777_ord": "3722",
- "2177_index": "26970",
- "21780_ord": "5236",
- "2178_index": "32742",
- "21792_ord": "834",
- "21794_ord": "5497",
- "21796_ord": "3612",
- "21799_ord": "3088",
- "2179_index": "38067",
- "217_index": "28176",
- "21804_ord": "5743",
- "21806_ord": "3459",
- "21807_ord": "4437",
- "21809_ord": "5705",
- "2180_index": "20360",
- "21811_ord": "3350",
- "21814_ord": "3551",
- "2181_index": "21670",
- "21822_ord": "3555",
- "21823_ord": "4007",
- "21825_ord": "3280",
- "21827_ord": "4935",
- "21828_ord": "5635",
- "2182_index": "40644",
- "21830_ord": "3533",
- "21834_ord": "1528",
- "2183_index": "29495",
- "21840_ord": "2314",
- "21845_ord": "5213",
- "21846_ord": "1921",
- "2184_index": "31168",
- "21852_ord": "4963",
- "21857_ord": "3529",
- "2185_index": "20320",
- "21860_ord": "4093",
- "21861_ord": "2940",
- "21862_ord": "2164",
- "21863_ord": "4258",
- "21866_ord": "4902",
- "21868_ord": "5008",
- "2186_index": "26088",
- "21870_ord": "1687",
- "21872_ord": "5011",
- "21878_ord": "1367",
- "2187_index": "22913",
- "21880_ord": "5419",
- "21883_ord": "903",
- "21884_ord": "2873",
- "21886_ord": "2326",
- "21888_ord": "3950",
- "21889_ord": "3588",
- "2188_index": "22553",
- "21890_ord": "3263",
- "21891_ord": "4723",
- "21892_ord": "2707",
- "21894_ord": "4411",
- "21895_ord": "1827",
- "21897_ord": "2622",
- "21898_ord": "486",
- "21899_ord": "1683",
- "2189_index": "34923",
- "218_index": "22343",
- "21903_ord": "3509",
- "21905_ord": "4167",
- "21908_ord": "4325",
- "2190_index": "31363",
- "21912_ord": "3103",
- "21913_ord": "3326",
- "21916_ord": "2858",
- "21917_ord": "4366",
- "21919_ord": "5193",
- "2191_index": "31165",
- "21927_ord": "5208",
- "2192_index": "30187",
- "21937_ord": "1641",
- "21939_ord": "2210",
- "2193_index": "32455",
- "21943_ord": "376",
- "21945_ord": "278",
- "21947_ord": "1418",
- "21949_ord": "3196",
- "2194_index": "36771",
- "21950_ord": "970",
- "21956_ord": "3749",
- "21957_ord": "2357",
- "2195_index": "20057",
- "21964_ord": "2247",
- "21969_ord": "1657",
- "2196_index": "27965",
- "21970_ord": "352",
- "21971_ord": "2897",
- "21972_ord": "5291",
- "21974_ord": "4847",
- "21979_ord": "3132",
- "2197_index": "30240",
- "21980_ord": "1576",
- "21981_ord": "1195",
- "21983_ord": "2594",
- "21985_ord": "474",
- "21987_ord": "214",
- "21988_ord": "25",
- "21989_ord": "1446",
- "2198_index": "34678",
- "21990_ord": "396",
- "21992_ord": "5738",
- "21994_ord": "1033",
- "21995_ord": "766",
- "21999_ord": "193",
- "2199_index": "24091",
- "219_index": "31070",
- "21_index": "20804",
- "22002_ord": "4806",
- "22003_ord": "576",
- "22007_ord": "64",
- "2200_index": "27700",
- "22013_ord": "939",
- "22014_ord": "4204",
- "22016_ord": "5087",
- "2201_index": "23057",
- "22024_ord": "4727",
- "22025_ord": "1354",
- "22028_ord": "5483",
- "2202_index": "27655",
- "22030_ord": "3494",
- "2203_index": "37098",
- "22040_ord": "2958",
- "22043_ord": "2109",
- "22047_ord": "163",
- "2204_index": "32532",
- "22052_ord": "154",
- "2205_index": "36935",
- "22061_ord": "2028",
- "22065_ord": "762",
- "22066_ord": "4453",
- "22068_ord": "4341",
- "2206_index": "26771",
- "22070_ord": "259",
- "22073_ord": "3870",
- "22075_ord": "3579",
- "22079_ord": "5226",
- "2207_index": "38389",
- "22089_ord": "2822",
- "2208_index": "26161",
- "22092_ord": "176",
- "22094_ord": "3057",
- "2209_index": "23072",
- "220_index": "21702",
- "22100_ord": "1379",
- "22103_ord": "864",
- "22105_ord": "3625",
- "22108_ord": "3610",
- "2210_index": "21939",
- "22114_ord": "676",
- "22116_ord": "5714",
- "2211_index": "30001",
- "22120_ord": "2530",
- "22121_ord": "541",
- "22122_ord": "2267",
- "22123_ord": "1109",
- "22124_ord": "640",
- "22125_ord": "4750",
- "22129_ord": "892",
- "2212_index": "34417",
- "22134_ord": "185",
- "22139_ord": "1020",
- "2213_index": "26127",
- "22149_ord": "4822",
- "2214_index": "33003",
- "22158_ord": "2054",
- "22159_ord": "833",
- "2215_index": "35274",
- "22163_ord": "1677",
- "2216_index": "30171",
- "22179_ord": "5314",
- "2217_index": "30382",
- "22188_ord": "1462",
- "2218_index": "21319",
- "22199_ord": "3102",
- "2219_index": "26448",
- "221_index": "24847",
- "22204_ord": "55",
- "2220_index": "22857",
- "22218_ord": "203",
- "2221_index": "24722",
- "22228_ord": "2376",
- "2222_index": "33169",
- "22234_ord": "431",
- "22235_ord": "964",
- "22238_ord": "3021",
- "2223_index": "34465",
- "22240_ord": "5171",
- "22242_ord": "4607",
- "22244_ord": "4123",
- "2224_index": "31267",
- "22251_ord": "1937",
- "22253_ord": "2495",
- "22256_ord": "4485",
- "22257_ord": "4389",
- "2225_index": "34398",
- "22260_ord": "924",
- "22261_ord": "2831",
- "22265_ord": "3540",
- "22266_ord": "5571",
- "22269_ord": "1989",
- "2226_index": "26874",
- "22270_ord": "47",
- "22271_ord": "3557",
- "22275_ord": "4631",
- "22276_ord": "1393",
- "22278_ord": "228",
- "2227_index": "21015",
- "22280_ord": "5278",
- "22281_ord": "1928",
- "2228_index": "32548",
- "2229_index": "38170",
- "222_index": "21416",
- "22300_ord": "3197",
- "22303_ord": "4926",
- "22307_ord": "3283",
- "2230_index": "33125",
- "22312_ord": "5073",
- "22313_ord": "1720",
- "22317_ord": "393",
- "22319_ord": "2008",
- "2231_index": "24681",
- "22320_ord": "5382",
- "22323_ord": "5329",
- "22329_ord": "757",
- "2232_index": "21033",
- "22330_ord": "4315",
- "22334_ord": "4666",
- "22336_ord": "1522",
- "22338_ord": "2685",
- "2233_index": "22849",
- "22343_ord": "218",
- "22346_ord": "1850",
- "22348_ord": "5300",
- "22349_ord": "3553",
- "2234_index": "31561",
- "22350_ord": "4920",
- "22351_ord": "4287",
- "22352_ord": "263",
- "22353_ord": "449",
- "22359_ord": "2776",
- "2235_index": "26118",
- "22362_ord": "136",
- "22363_ord": "5517",
- "22365_ord": "2031",
- "22366_ord": "0",
- "22367_ord": "3119",
- "22368_ord": "498",
- "22369_ord": "1461",
- "2236_index": "20717",
- "22372_ord": "125",
- "22374_ord": "3358",
- "22376_ord": "330",
- "22378_ord": "2944",
- "2237_index": "29993",
- "22381_ord": "2716",
- "22383_ord": "3028",
- "22387_ord": "4767",
- "2238_index": "29157",
- "22391_ord": "4176",
- "22396_ord": "3385",
- "2239_index": "37038",
- "223_index": "36103",
- "22402_ord": "5104",
- "22403_ord": "5264",
- "22404_ord": "2861",
- "2240_index": "36344",
- "22411_ord": "3904",
- "22418_ord": "1215",
- "22419_ord": "460",
- "2241_index": "26586",
- "22427_ord": "5718",
- "22429_ord": "4420",
- "2242_index": "39554",
- "22432_ord": "4076",
- "22434_ord": "2439",
- "22435_ord": "401",
- "22438_ord": "688",
- "2243_index": "35835",
- "22441_ord": "4893",
- "22443_ord": "4553",
- "22446_ord": "5721",
- "2244_index": "24408",
- "2245_index": "25193",
- "22467_ord": "4937",
- "2246_index": "25764",
- "22475_ord": "1265",
- "22478_ord": "2948",
- "2247_index": "21964",
- "22482_ord": "1464",
- "22484_ord": "2789",
- "2248_index": "23383",
- "22495_ord": "2868",
- "22496_ord": "4577",
- "2249_index": "24806",
- "224_index": "21668",
- "224_ord": "4032",
- "22500_ord": "1658",
- "2250_index": "36280",
- "2251_index": "32321",
- "22521_ord": "551",
- "22522_ord": "5623",
- "2252_index": "31614",
- "22530_ord": "3772",
- "22531_ord": "1564",
- "22534_ord": "4739",
- "2253_index": "22825",
- "22545_ord": "423",
- "22549_ord": "927",
- "2254_index": "24820",
- "22553_ord": "2188",
- "2255_index": "24365",
- "22561_ord": "4644",
- "22564_ord": "3160",
- "2256_index": "31532",
- "22570_ord": "5093",
- "22576_ord": "737",
- "2257_index": "25506",
- "22581_ord": "3968",
- "2258_index": "35782",
- "2259_index": "29589",
- "225_index": "30259",
- "22604_ord": "4954",
- "22609_ord": "577",
- "2260_index": "20029",
- "22612_ord": "4058",
- "22616_ord": "5486",
- "2261_index": "35831",
- "22622_ord": "5480",
- "2262_index": "24125",
- "22635_ord": "5659",
- "2263_index": "30738",
- "2264_index": "33009",
- "22654_ord": "425",
- "22656_ord": "829",
- "22659_ord": "3573",
- "2265_index": "23186",
- "22661_ord": "823",
- "22665_ord": "3908",
- "2266_index": "20908",
- "22675_ord": "2317",
- "2267_index": "22122",
- "22681_ord": "5534",
- "22686_ord": "1772",
- "22687_ord": "378",
- "22688_ord": "3015",
- "2268_index": "39034",
- "22696_ord": "3668",
- "22697_ord": "4063",
- "2269_index": "35790",
- "226_index": "32948",
- "2270_index": "38237",
- "2271_index": "21742",
- "22721_ord": "153",
- "22725_ord": "3227",
- "2272_index": "38047",
- "22737_ord": "2434",
- "2273_index": "20063",
- "22741_ord": "304",
- "2274_index": "12390",
- "22756_ord": "2993",
- "2275_index": "37003",
- "22763_ord": "5366",
- "22764_ord": "4733",
- "22766_ord": "5412",
- "22768_ord": "3902",
- "2276_index": "24448",
- "22771_ord": "3109",
- "22774_ord": "4097",
- "22777_ord": "3929",
- "2277_index": "32499",
- "22788_ord": "1739",
- "2278_index": "23348",
- "22791_ord": "706",
- "22797_ord": "4291",
- "22799_ord": "916",
- "2279_index": "40833",
- "227_index": "33485",
- "22804_ord": "1935",
- "22805_ord": "2339",
- "22806_ord": "2946",
- "22809_ord": "2153",
- "2280_index": "33080",
- "22810_ord": "3208",
- "22812_ord": "5670",
- "22815_ord": "1751",
- "2281_index": "20844",
- "22820_ord": "673",
- "22821_ord": "2045",
- "22823_ord": "3639",
- "22825_ord": "2253",
- "22826_ord": "3296",
- "22827_ord": "4140",
- "22829_ord": "1925",
- "2282_index": "25077",
- "22830_ord": "3506",
- "22831_ord": "5500",
- "22833_ord": "2406",
- "22836_ord": "1802",
- "22839_ord": "2810",
- "2283_index": "29261",
- "22840_ord": "2487",
- "22841_ord": "5303",
- "22842_ord": "3041",
- "22849_ord": "2233",
- "2284_index": "32430",
- "22850_ord": "5638",
- "22852_ord": "5268",
- "22855_ord": "3851",
- "22856_ord": "5173",
- "22857_ord": "2220",
- "22859_ord": "4863",
- "2285_index": "31373",
- "22862_ord": "4231",
- "22863_ord": "2943",
- "22865_ord": "4626",
- "22868_ord": "5428",
- "22869_ord": "5407",
- "2286_index": "32419",
- "22870_ord": "718",
- "22871_ord": "992",
- "22872_ord": "2932",
- "22874_ord": "740",
- "2287_index": "28291",
- "22880_ord": "3225",
- "22882_ord": "1444",
- "22885_ord": "1458",
- "2288_index": "24426",
- "22893_ord": "5764",
- "22899_ord": "369",
- "2289_index": "20045",
- "228_index": "22278",
- "22900_ord": "1509",
- "22902_ord": "2311",
- "22904_ord": "3713",
- "22905_ord": "608",
- "22909_ord": "5007",
- "2290_index": "33616",
- "22913_ord": "2187",
- "22914_ord": "950",
- "22915_ord": "4945",
- "22916_ord": "156",
- "22918_ord": "2853",
- "22919_ord": "2582",
- "2291_index": "29983",
- "22920_ord": "5597",
- "22922_ord": "3298",
- "22925_ord": "4154",
- "2292_index": "35775",
- "22930_ord": "5565",
- "22931_ord": "4191",
- "22934_ord": "5672",
- "22935_ord": "571",
- "22937_ord": "5064",
- "2293_index": "34174",
- "22942_ord": "99",
- "22948_ord": "3091",
- "22949_ord": "282",
- "2294_index": "33945",
- "22952_ord": "1897",
- "22953_ord": "66",
- "22954_ord": "504",
- "22958_ord": "3788",
- "2295_index": "20822",
- "22962_ord": "4111",
- "22963_ord": "3390",
- "22969_ord": "3648",
- "2296_index": "26377",
- "22971_ord": "4302",
- "22974_ord": "202",
- "22977_ord": "342",
- "2297_index": "26898",
- "22982_ord": "2018",
- "22986_ord": "723",
- "22987_ord": "4980",
- "2298_index": "26462",
- "22992_ord": "4130",
- "22993_ord": "2572",
- "22994_ord": "3490",
- "22995_ord": "3556",
- "22996_ord": "373",
- "22999_ord": "2754",
- "2299_index": "24619",
- "229_index": "38739",
- "22_index": "33589",
- "23002_ord": "4993",
- "23004_ord": "1199",
- "23005_ord": "2451",
- "2300_index": "28766",
- "23011_ord": "4765",
- "23013_ord": "4894",
- "23016_ord": "3650",
- "2301_index": "20467",
- "23020_ord": "4867",
- "23022_ord": "5758",
- "2302_index": "20303",
- "23033_ord": "3399",
- "23035_ord": "4011",
- "23039_ord": "1636",
- "2303_index": "39591",
- "23041_ord": "2729",
- "23043_ord": "1079",
- "23044_ord": "4606",
- "23045_ord": "4120",
- "23046_ord": "3286",
- "23047_ord": "3524",
- "23048_ord": "5246",
- "23049_ord": "2901",
- "2304_index": "38250",
- "23057_ord": "2201",
- "23059_ord": "3306",
- "2305_index": "21037",
- "23064_ord": "2053",
- "23068_ord": "272",
- "2306_index": "32703",
- "23071_ord": "5197",
- "23072_ord": "2209",
- "23073_ord": "5049",
- "23075_ord": "856",
- "23077_ord": "1439",
- "2307_index": "25757",
- "23081_ord": "5242",
- "23089_ord": "4685",
- "2308_index": "32780",
- "23090_ord": "4731",
- "23092_ord": "5786",
- "23094_ord": "4108",
- "2309_index": "20389",
- "230_index": "31681",
- "23100_ord": "3212",
- "23104_ord": "4429",
- "2310_index": "20918",
- "23110_ord": "2743",
- "23113_ord": "4237",
- "23114_ord": "3329",
- "2311_index": "22902",
- "23125_ord": "1140",
- "2312_index": "40509",
- "23130_ord": "4346",
- "23138_ord": "667",
- "2313_index": "30132",
- "23143_ord": "2617",
- "23146_ord": "252",
- "2314_index": "21840",
- "23156_ord": "1321",
- "23158_ord": "5717",
- "23159_ord": "5405",
- "2315_index": "30260",
- "23162_ord": "1719",
- "23167_ord": "952",
- "2316_index": "21557",
- "2317_index": "22675",
- "23186_ord": "2265",
- "2318_index": "38167",
- "23194_ord": "147",
- "23195_ord": "3278",
- "2319_index": "20120",
- "231_index": "38199",
- "2320_index": "31313",
- "23210_ord": "4089",
- "23218_ord": "5801",
- "23219_ord": "5107",
- "2321_index": "30117",
- "23221_ord": "2982",
- "23224_ord": "5793",
- "2322_index": "39059",
- "23230_ord": "4699",
- "23233_ord": "1770",
- "23234_ord": "290",
- "2323_index": "25001",
- "23241_ord": "3675",
- "23244_ord": "4112",
- "2324_index": "37119",
- "23252_ord": "548",
- "23254_ord": "4309",
- "23258_ord": "619",
- "2325_index": "37051",
- "23260_ord": "5020",
- "23265_ord": "4839",
- "23267_ord": "2837",
- "2326_index": "21886",
- "23270_ord": "5484",
- "23273_ord": "1825",
- "23274_ord": "1284",
- "2327_index": "26112",
- "23281_ord": "781",
- "2328_index": "38607",
- "2329_index": "27431",
- "232_index": "24867",
- "23305_ord": "3264",
- "2330_index": "66",
- "23318_ord": "1966",
- "23319_ord": "3879",
- "2331_index": "20037",
- "23323_ord": "5280",
- "2332_index": "34382",
- "2333_index": "20834",
- "23348_ord": "2278",
- "2334_index": "35850",
- "2335_index": "33136",
- "23360_ord": "3066",
- "2336_index": "33137",
- "23376_ord": "3689",
- "23377_ord": "2596",
- "2337_index": "9343",
- "23380_ord": "567",
- "23381_ord": "3034",
- "23383_ord": "2248",
- "23384_ord": "1292",
- "23385_ord": "661",
- "23386_ord": "1242",
- "23387_ord": "3619",
- "23388_ord": "4611",
- "23389_ord": "1649",
- "2338_index": "27480",
- "23391_ord": "1071",
- "23394_ord": "1214",
- "23395_ord": "4941",
- "23396_ord": "354",
- "23397_ord": "3820",
- "23398_ord": "1423",
- "2339_index": "22805",
- "233_index": "23748",
- "233_ord": "3012",
- "23401_ord": "2409",
- "23402_ord": "931",
- "23408_ord": "4587",
- "23409_ord": "3170",
- "2340_index": "36740",
- "23411_ord": "5370",
- "23413_ord": "1352",
- "23418_ord": "4310",
- "2341_index": "36215",
- "23421_ord": "5667",
- "23425_ord": "2375",
- "23427_ord": "2590",
- "23429_ord": "5360",
- "2342_index": "23624",
- "23431_ord": "420",
- "23432_ord": "4574",
- "23433_ord": "909",
- "23435_ord": "4933",
- "23436_ord": "168",
- "23439_ord": "2855",
- "2343_index": "30072",
- "23443_ord": "1885",
- "23445_ord": "1830",
- "23447_ord": "2504",
- "23448_ord": "315",
- "23449_ord": "4347",
- "2344_index": "25955",
- "23450_ord": "5209",
- "23451_ord": "2937",
- "23452_ord": "5505",
- "23453_ord": "94",
- "23454_ord": "838",
- "23456_ord": "1818",
- "23457_ord": "5426",
- "23458_ord": "382",
- "23459_ord": "2595",
- "2345_index": "30535",
- "23460_ord": "5760",
- "23461_ord": "1696",
- "23462_ord": "4370",
- "23466_ord": "5051",
- "23467_ord": "2618",
- "2346_index": "33618",
- "23472_ord": "1365",
- "23475_ord": "841",
- "23476_ord": "2440",
- "23477_ord": "5015",
- "23478_ord": "256",
- "2347_index": "28921",
- "23480_ord": "4169",
- "23481_ord": "3176",
- "23485_ord": "1428",
- "23486_ord": "5404",
- "23487_ord": "628",
- "2348_index": "21560",
- "23490_ord": "3680",
- "23492_ord": "2064",
- "23493_ord": "5797",
- "23494_ord": "4755",
- "23495_ord": "1235",
- "2349_index": "30596",
- "234_index": "115",
- "23500_ord": "2739",
- "23504_ord": "5158",
- "23506_ord": "4027",
- "23507_ord": "1836",
- "2350_index": "33714",
- "23510_ord": "1315",
- "23512_ord": "461",
- "23517_ord": "1124",
- "23518_ord": "3275",
- "23519_ord": "1370",
- "2351_index": "36349",
- "23521_ord": "1857",
- "23524_ord": "616",
- "23525_ord": "511",
- "23528_ord": "1411",
- "2352_index": "35059",
- "23536_ord": "2083",
- "2353_index": "28638",
- "23544_ord": "5523",
- "23545_ord": "3858",
- "23546_ord": "3528",
- "23547_ord": "2363",
- "23548_ord": "3736",
- "2354_index": "32489",
- "23551_ord": "2355",
- "23553_ord": "4539",
- "23556_ord": "5403",
- "23558_ord": "4872",
- "2355_index": "23551",
- "23561_ord": "1854",
- "23562_ord": "4568",
- "23567_ord": "267",
- "23569_ord": "899",
- "2356_index": "27819",
- "23572_ord": "4042",
- "23574_ord": "2494",
- "23576_ord": "337",
- "23578_ord": "3307",
- "2357_index": "21957",
- "23581_ord": "4791",
- "23588_ord": "4070",
- "2358_index": "38606",
- "23591_ord": "3436",
- "23596_ord": "1120",
- "2359_index": "30423",
- "235_index": "34746",
- "23601_ord": "1603",
- "23604_ord": "4884",
- "23608_ord": "4286",
- "23609_ord": "1374",
- "2360_index": "30457",
- "23610_ord": "1734",
- "23611_ord": "5383",
- "23612_ord": "3971",
- "23613_ord": "3491",
- "23614_ord": "1072",
- "23615_ord": "1638",
- "23616_ord": "825",
- "23617_ord": "3690",
- "23618_ord": "2574",
- "2361_index": "29595",
- "23621_ord": "271",
- "23624_ord": "2342",
- "23625_ord": "5588",
- "23626_ord": "4841",
- "23627_ord": "5135",
- "2362_index": "29191",
- "23630_ord": "4560",
- "23631_ord": "4101",
- "23633_ord": "3521",
- "23637_ord": "2805",
- "2363_index": "23547",
- "23646_ord": "1183",
- "23648_ord": "5153",
- "23649_ord": "3304",
- "2364_index": "38202",
- "23651_ord": "4216",
- "23653_ord": "4931",
- "23654_ord": "499",
- "2365_index": "21155",
- "23663_ord": "1148",
- "23665_ord": "2790",
- "2366_index": "20219",
- "23673_ord": "5098",
- "23679_ord": "1996",
- "2367_index": "29123",
- "23681_ord": "5813",
- "23682_ord": "3322",
- "2368_index": "29405",
- "23692_ord": "3630",
- "23696_ord": "477",
- "23697_ord": "497",
- "2369_index": "38712",
- "236_index": "20505",
- "23700_ord": "4805",
- "23702_ord": "758",
- "23703_ord": "3883",
- "23706_ord": "1175",
- "23707_ord": "4550",
- "2370_index": "30174",
- "2371_index": "26216",
- "23721_ord": "4468",
- "23723_ord": "5782",
- "23724_ord": "320",
- "23725_ord": "1805",
- "23729_ord": "4153",
- "2372_index": "20129",
- "23731_ord": "5456",
- "23735_ord": "5025",
- "23736_ord": "3314",
- "2373_index": "32506",
- "23743_ord": "1480",
- "23748_ord": "233",
- "2374_index": "38255",
- "23751_ord": "4866",
- "23755_ord": "4373",
- "2375_index": "23425",
- "23762_ord": "2966",
- "23769_ord": "713",
- "2376_index": "22228",
- "23777_ord": "4825",
- "2377_index": "25303",
- "23780_ord": "243",
- "23781_ord": "5239",
- "23782_ord": "2383",
- "23784_ord": "5313",
- "23786_ord": "709",
- "23789_ord": "1445",
- "2378_index": "24162",
- "23792_ord": "1908",
- "2379_index": "35890",
- "237_index": "33300",
- "23803_ord": "714",
- "2380_index": "20309",
- "23810_ord": "2755",
- "23811_ord": "3998",
- "23814_ord": "3171",
- "23815_ord": "2994",
- "2381_index": "32537",
- "23822_ord": "882",
- "23828_ord": "61",
- "2382_index": "26487",
- "23830_ord": "2886",
- "23834_ord": "5735",
- "23835_ord": "3932",
- "2383_index": "23782",
- "23847_ord": "1667",
- "23849_ord": "1276",
- "2384_index": "38810",
- "23853_ord": "3543",
- "2385_index": "27198",
- "23860_ord": "1416",
- "2386_index": "24812",
- "2387_index": "20992",
- "23883_ord": "1816",
- "23884_ord": "2100",
- "2388_index": "29432",
- "23896_ord": "41",
- "2389_index": "25166",
- "238_index": "36962",
- "2390_index": "36154",
- "23913_ord": "5818",
- "23916_ord": "929",
- "23919_ord": "120",
- "2391_index": "20891",
- "2392_index": "30209",
- "23938_ord": "4649",
- "2393_index": "26526",
- "2394_index": "34183",
- "2395_index": "33716",
- "23961_ord": "473",
- "2396_index": "21149",
- "2397_index": "28977",
- "2398_index": "28976",
- "23991_ord": "1678",
- "2399_index": "31034",
- "239_index": "30010",
- "23_index": "24449",
- "24005_ord": "5243",
- "24009_ord": "1007",
- "2400_index": "29406",
- "24013_ord": "3893",
- "2401_index": "32764",
- "24029_ord": "2562",
- "2402_index": "12290",
- "24030_ord": "701",
- "24033_ord": "4410",
- "24034_ord": "1432",
- "24037_ord": "3655",
- "24038_ord": "3662",
- "24039_ord": "3708",
- "2403_index": "26003",
- "24040_ord": "2598",
- "24041_ord": "5610",
- "24043_ord": "3158",
- "24046_ord": "1556",
- "24049_ord": "5227",
- "2404_index": "27774",
- "24050_ord": "4252",
- "24051_ord": "3873",
- "24052_ord": "4632",
- "24055_ord": "4115",
- "2405_index": "31548",
- "24061_ord": "1712",
- "24062_ord": "306",
- "24063_ord": "4851",
- "24065_ord": "80",
- "24066_ord": "4314",
- "24067_ord": "1360",
- "24069_ord": "2025",
- "2406_index": "22833",
- "24070_ord": "4301",
- "24072_ord": "3037",
- "24076_ord": "5297",
- "24079_ord": "5422",
- "2407_index": "20940",
- "24080_ord": "3440",
- "24081_ord": "3987",
- "24084_ord": "160",
- "24085_ord": "5806",
- "24086_ord": "287",
- "24088_ord": "36",
- "2408_index": "31755",
- "24090_ord": "380",
- "24091_ord": "2199",
- "24092_ord": "3268",
- "24093_ord": "195",
- "2409_index": "23401",
- "240_index": "36725",
- "24102_ord": "2515",
- "24103_ord": "428",
- "24104_ord": "2709",
- "24109_ord": "4554",
- "2410_index": "25374",
- "24110_ord": "3477",
- "24119_ord": "429",
- "2411_index": "30334",
- "24120_ord": "5479",
- "24124_ord": "4016",
- "24125_ord": "2262",
- "2412_index": "25523",
- "24130_ord": "5662",
- "24132_ord": "5652",
- "24133_ord": "1693",
- "2413_index": "38592",
- "24140_ord": "3200",
- "24148_ord": "840",
- "24149_ord": "995",
- "2414_index": "34022",
- "24155_ord": "4502",
- "24158_ord": "4998",
- "2415_index": "31800",
- "24161_ord": "988",
- "24162_ord": "2378",
- "2416_index": "20107",
- "24178_ord": "5457",
- "24179_ord": "3602",
- "2417_index": "31890",
- "24180_ord": "3973",
- "24182_ord": "4802",
- "24184_ord": "3520",
- "24186_ord": "3461",
- "24187_ord": "3653",
- "24188_ord": "5397",
- "24189_ord": "2658",
- "2418_index": "33527",
- "24191_ord": "1267",
- "24196_ord": "1010",
- "24198_ord": "2514",
- "24199_ord": "2678",
- "2419_index": "31809",
- "241_index": "30896",
- "24202_ord": "3272",
- "24207_ord": "2847",
- "24208_ord": "4082",
- "24209_ord": "1985",
- "2420_index": "40614",
- "24211_ord": "2656",
- "24212_ord": "1910",
- "24213_ord": "2167",
- "24214_ord": "1169",
- "24215_ord": "3221",
- "24217_ord": "1574",
- "24218_ord": "5579",
- "2421_index": "8545",
- "24220_ord": "493",
- "24222_ord": "1565",
- "24223_ord": "5315",
- "24224_ord": "3475",
- "24229_ord": "2978",
- "2422_index": "38752",
- "24230_ord": "1774",
- "24231_ord": "2007",
- "24237_ord": "90",
- "2423_index": "26472",
- "24245_ord": "3131",
- "24246_ord": "5470",
- "24247_ord": "5237",
- "24248_ord": "5723",
- "2424_index": "37117",
- "24254_ord": "3628",
- "2425_index": "40654",
- "24265_ord": "3024",
- "24266_ord": "3827",
- "2426_index": "27795",
- "24275_ord": "1204",
- "24278_ord": "5306",
- "2427_index": "35970",
- "24283_ord": "3577",
- "2428_index": "26177",
- "24296_ord": "853",
- "24298_ord": "1518",
- "2429_index": "35843",
- "242_index": "28814",
- "2430_index": "20934",
- "24310_ord": "4887",
- "24311_ord": "328",
- "24314_ord": "288",
- "24319_ord": "1322",
- "2431_index": "20149",
- "24320_ord": "2839",
- "24321_ord": "3295",
- "24322_ord": "339",
- "24323_ord": "1987",
- "24324_ord": "2808",
- "24328_ord": "1791",
- "2432_index": "32445",
- "24330_ord": "5175",
- "24331_ord": "2702",
- "24335_ord": "1501",
- "24337_ord": "4803",
- "24339_ord": "2692",
- "2433_index": "9319",
- "24341_ord": "1366",
- "24343_ord": "5720",
- "24344_ord": "5772",
- "24347_ord": "2923",
- "2434_index": "22737",
- "24351_ord": "3995",
- "24352_ord": "4247",
- "24354_ord": "5490",
- "24357_ord": "648",
- "24358_ord": "623",
- "24359_ord": "2082",
- "2435_index": "33041",
- "24361_ord": "2029",
- "24365_ord": "2255",
- "24367_ord": "1988",
- "24369_ord": "4687",
- "2436_index": "34633",
- "24373_ord": "4813",
- "24377_ord": "4380",
- "24378_ord": "2976",
- "2437_index": "26666",
- "24380_ord": "3193",
- "24384_ord": "5187",
- "2438_index": "26082",
- "24394_ord": "5810",
- "2439_index": "22434",
- "243_index": "23780",
- "24402_ord": "335",
- "24403_ord": "4041",
- "24405_ord": "753",
- "24407_ord": "4072",
- "24408_ord": "2244",
- "2440_index": "23476",
- "24413_ord": "2568",
- "24418_ord": "2834",
- "2441_index": "39067",
- "24420_ord": "341",
- "24422_ord": "2126",
- "24425_ord": "659",
- "24426_ord": "2288",
- "24428_ord": "2511",
- "24429_ord": "4858",
- "2442_index": "20943",
- "24432_ord": "4725",
- "24433_ord": "5796",
- "24439_ord": "4798",
- "2443_index": "39033",
- "24441_ord": "4807",
- "24443_ord": "1037",
- "24444_ord": "5110",
- "24448_ord": "2276",
- "24449_ord": "23",
- "2444_index": "36797",
- "24450_ord": "699",
- "24452_ord": "332",
- "24453_ord": "4319",
- "24455_ord": "2108",
- "24456_ord": "1668",
- "24457_ord": "1435",
- "24458_ord": "4275",
- "24459_ord": "2784",
- "2445_index": "27063",
- "24460_ord": "495",
- "24464_ord": "5202",
- "24466_ord": "4038",
- "24469_ord": "4039",
- "2446_index": "26007",
- "24471_ord": "5400",
- "24472_ord": "3087",
- "24473_ord": "4002",
- "24476_ord": "209",
- "2447_index": "38643",
- "24481_ord": "3097",
- "24488_ord": "1161",
- "2448_index": "25115",
- "24490_ord": "3592",
- "24493_ord": "3150",
- "24494_ord": "5463",
- "24499_ord": "4145",
- "2449_index": "26629",
- "244_index": "30528",
- "24501_ord": "555",
- "24503_ord": "2162",
- "24508_ord": "5529",
- "24509_ord": "5655",
- "2450_index": "30165",
- "24515_ord": "5136",
- "24517_ord": "1973",
- "24518_ord": "1676",
- "2451_index": "23005",
- "24524_ord": "2829",
- "24525_ord": "752",
- "24527_ord": "1859",
- "24528_ord": "4043",
- "24529_ord": "3997",
- "2452_index": "36434",
- "24530_ord": "5644",
- "24534_ord": "4745",
- "24535_ord": "3714",
- "24536_ord": "817",
- "24537_ord": "6",
- "2453_index": "20161",
- "24541_ord": "1113",
- "24544_ord": "1764",
- "24545_ord": "3239",
- "24548_ord": "669",
- "2454_index": "26483",
- "24551_ord": "187",
- "24554_ord": "3411",
- "24555_ord": "3342",
- "2455_index": "21048",
- "24561_ord": "1282",
- "24565_ord": "1531",
- "2456_index": "32650",
- "24571_ord": "5511",
- "24573_ord": "1228",
- "24575_ord": "4080",
- "24576_ord": "4060",
- "24577_ord": "4405",
- "24578_ord": "2838",
- "2457_index": "30103",
- "24581_ord": "5041",
- "24582_ord": "3972",
- "24589_ord": "3814",
- "2458_index": "34480",
- "24590_ord": "4159",
- "24591_ord": "3603",
- "24594_ord": "3454",
- "24596_ord": "1268",
- "24597_ord": "2679",
- "24598_ord": "3959",
- "2459_index": "35855",
- "245_index": "21397",
- "24601_ord": "1846",
- "24603_ord": "5582",
- "24604_ord": "4714",
- "24605_ord": "4537",
- "24608_ord": "3166",
- "24609_ord": "3517",
- "2460_index": "24751",
- "24613_ord": "3875",
- "24614_ord": "1417",
- "24615_ord": "3569",
- "24616_ord": "3442",
- "24618_ord": "2078",
- "24619_ord": "2299",
- "2461_index": "33145",
- "24623_ord": "4096",
- "24629_ord": "5381",
- "2462_index": "24845",
- "24635_ord": "1746",
- "24636_ord": "3599",
- "24639_ord": "1314",
- "2463_index": "33537",
- "24642_ord": "3819",
- "24643_ord": "1377",
- "2464_index": "30844",
- "24651_ord": "5194",
- "24653_ord": "4729",
- "24656_ord": "5022",
- "24658_ord": "5709",
- "2465_index": "20122",
- "24661_ord": "2469",
- "24665_ord": "3052",
- "24666_ord": "464",
- "24669_ord": "4991",
- "2466_index": "34966",
- "24674_ord": "1391",
- "24675_ord": "612",
- "24676_ord": "124",
- "2467_index": "32724",
- "24680_ord": "4454",
- "24681_ord": "2231",
- "24682_ord": "2575",
- "24683_ord": "3934",
- "24684_ord": "3313",
- "24685_ord": "4735",
- "24687_ord": "1147",
- "24688_ord": "4436",
- "2468_index": "37048",
- "24691_ord": "5133",
- "24694_ord": "4744",
- "24696_ord": "82",
- "24697_ord": "5424",
- "24698_ord": "3251",
- "24699_ord": "1364",
- "2469_index": "24661",
- "246_index": "24811",
- "24700_ord": "2630",
- "24701_ord": "3126",
- "24703_ord": "5271",
- "24708_ord": "1742",
- "2470_index": "29616",
- "24713_ord": "2503",
- "24716_ord": "1449",
- "24717_ord": "4074",
- "2471_index": "36180",
- "24722_ord": "2221",
- "24724_ord": "3317",
- "24726_ord": "885",
- "2472_index": "26001",
- "24730_ord": "366",
- "24733_ord": "662",
- "24734_ord": "5611",
- "24735_ord": "2851",
- "24736_ord": "2079",
- "24739_ord": "4360",
- "2473_index": "30152",
- "24742_ord": "2563",
- "24744_ord": "3079",
- "24747_ord": "1579",
- "24748_ord": "1769",
- "24749_ord": "2519",
- "2474_index": "33970",
- "24751_ord": "2460",
- "24754_ord": "871",
- "24756_ord": "5275",
- "2475_index": "30690",
- "24760_ord": "4239",
- "24763_ord": "4455",
- "24764_ord": "5519",
- "2476_index": "73",
- "24773_ord": "3856",
- "24774_ord": "73",
- "24775_ord": "157",
- "24778_ord": "3877",
- "24779_ord": "192",
- "2477_index": "21457",
- "24785_ord": "1274",
- "24789_ord": "5021",
- "2478_index": "25479",
- "24792_ord": "4939",
- "24794_ord": "4245",
- "24796_ord": "3223",
- "24799_ord": "2033",
- "2479_index": "36992",
- "247_index": "28799",
- "247_ord": "4748",
- "24800_ord": "374",
- "24806_ord": "2249",
- "24807_ord": "4826",
- "24808_ord": "1463",
- "24809_ord": "3652",
- "2480_index": "32915",
- "24811_ord": "246",
- "24812_ord": "2386",
- "24813_ord": "591",
- "24814_ord": "2747",
- "24815_ord": "181",
- "24816_ord": "668",
- "24819_ord": "1239",
- "2481_index": "36394",
- "24820_ord": "2254",
- "24822_ord": "5641",
- "24825_ord": "32",
- "24826_ord": "5701",
- "2482_index": "25705",
- "24832_ord": "4232",
- "24833_ord": "5113",
- "24838_ord": "820",
- "2483_index": "20332",
- "24840_ord": "4018",
- "24841_ord": "4878",
- "24845_ord": "2462",
- "24846_ord": "2561",
- "24847_ord": "221",
- "2484_index": "29996",
- "24853_ord": "2489",
- "24858_ord": "1691",
- "24859_ord": "2067",
- "2485_index": "36196",
- "24863_ord": "5124",
- "24864_ord": "2119",
- "24867_ord": "232",
- "24868_ord": "5552",
- "2486_index": "32676",
- "24870_ord": "3805",
- "24871_ord": "3981",
- "24875_ord": "5633",
- "24876_ord": "4652",
- "2487_index": "22840",
- "2488_index": "28070",
- "24895_ord": "3511",
- "2489_index": "24853",
- "248_index": "38152",
- "24904_ord": "1363",
- "24908_ord": "2865",
- "2490_index": "28392",
- "24910_ord": "5750",
- "24913_ord": "3801",
- "24917_ord": "4234",
- "2491_index": "1055",
- "24921_ord": "5071",
- "2492_index": "21480",
- "24930_ord": "2039",
- "24935_ord": "1300",
- "24936_ord": "2525",
- "2493_index": "40480",
- "24944_ord": "5149",
- "24949_ord": "2821",
- "2494_index": "23574",
- "24951_ord": "3813",
- "2495_index": "22253",
- "2496_index": "35955",
- "24971_ord": "1355",
- "24974_ord": "3201",
- "2497_index": "20957",
- "24980_ord": "5240",
- "2498_index": "27495",
- "24999_ord": "280",
- "2499_index": "20813",
- "249_index": "20608",
- "24_index": "27529",
- "25000_ord": "2651",
- "25001_ord": "2323",
- "25004_ord": "593",
- "2500_index": "21389",
- "2501_index": "20391",
- "25022_ord": "109",
- "25026_ord": "3999",
- "2502_index": "33416",
- "25032_ord": "3112",
- "25034_ord": "4048",
- "25035_ord": "4668",
- "2503_index": "24713",
- "25041_ord": "5263",
- "25042_ord": "348",
- "2504_index": "23447",
- "25052_ord": "1584",
- "2505_index": "39295",
- "25062_ord": "2526",
- "2506_index": "38551",
- "25077_ord": "2282",
- "2507_index": "20603",
- "25087_ord": "4494",
- "2508_index": "21326",
- "25094_ord": "2132",
- "25096_ord": "3609",
- "25098_ord": "1003",
- "2509_index": "36842",
- "250_index": "25496",
- "25100_ord": "4638",
- "25101_ord": "1076",
- "25102_ord": "4122",
- "25103_ord": "5509",
- "25104_ord": "1661",
- "25105_ord": "2628",
- "25106_ord": "1615",
- "25109_ord": "5036",
- "2510_index": "25249",
- "25110_ord": "5079",
- "25111_ord": "1450",
- "25112_ord": "3402",
- "25114_ord": "3179",
- "25115_ord": "2448",
- "25119_ord": "4511",
- "2511_index": "24428",
- "25122_ord": "4353",
- "2512_index": "25645",
- "25130_ord": "353",
- "25134_ord": "2146",
- "25139_ord": "1453",
- "2513_index": "21587",
- "25140_ord": "1047",
- "25143_ord": "4377",
- "2514_index": "24198",
- "25150_ord": "5506",
- "25151_ord": "1976",
- "25152_ord": "4801",
- "25153_ord": "1842",
- "25155_ord": "4211",
- "25159_ord": "3432",
- "2515_index": "24102",
- "25160_ord": "3958",
- "25161_ord": "151",
- "25163_ord": "711",
- "25164_ord": "3219",
- "25165_ord": "573",
- "25166_ord": "2389",
- "25169_ord": "3679",
- "2516_index": "36168",
- "25170_ord": "494",
- "25171_ord": "1330",
- "25172_ord": "4897",
- "25176_ord": "5080",
- "25179_ord": "4213",
- "2517_index": "36314",
- "25182_ord": "3443",
- "25186_ord": "686",
- "25187_ord": "5820",
- "2518_index": "34579",
- "25191_ord": "4881",
- "25193_ord": "2245",
- "25194_ord": "1608",
- "25195_ord": "5715",
- "25196_ord": "4591",
- "25197_ord": "4776",
- "25198_ord": "3937",
- "25199_ord": "3800",
- "2519_index": "24749",
- "251_index": "36845",
- "25200_ord": "4398",
- "25203_ord": "2717",
- "25206_ord": "2963",
- "25209_ord": "3214",
- "2520_index": "28316",
- "25212_ord": "4810",
- "25214_ord": "3930",
- "25215_ord": "178",
- "25216_ord": "2997",
- "2521_index": "27609",
- "25220_ord": "2697",
- "25225_ord": "485",
- "25226_ord": "3816",
- "2522_index": "27825",
- "25233_ord": "2537",
- "25234_ord": "1227",
- "25235_ord": "4622",
- "25237_ord": "5577",
- "25238_ord": "2996",
- "25239_ord": "4185",
- "2523_index": "36523",
- "25240_ord": "5127",
- "25242_ord": "1694",
- "25243_ord": "2916",
- "25247_ord": "2014",
- "25248_ord": "3613",
- "25249_ord": "2510",
- "2524_index": "21021",
- "25250_ord": "4268",
- "25252_ord": "5501",
- "25253_ord": "1234",
- "25256_ord": "3546",
- "25259_ord": "1414",
- "2525_index": "24936",
- "25260_ord": "1032",
- "25265_ord": "3955",
- "25269_ord": "5494",
- "2526_index": "25062",
- "25273_ord": "2065",
- "25276_ord": "388",
- "25277_ord": "4506",
- "25279_ord": "1407",
- "2527_index": "32424",
- "25282_ord": "1893",
- "25284_ord": "3361",
- "25285_ord": "1247",
- "25286_ord": "5732",
- "25287_ord": "907",
- "25288_ord": "5256",
- "25289_ord": "1839",
- "2528_index": "27953",
- "25290_ord": "1331",
- "25292_ord": "5606",
- "25293_ord": "947",
- "25294_ord": "3240",
- "25296_ord": "3515",
- "25298_ord": "839",
- "25299_ord": "3611",
- "2529_index": "27792",
- "252_index": "23146",
- "252_ord": "4228",
- "25300_ord": "4545",
- "25302_ord": "4282",
- "25303_ord": "2377",
- "25304_ord": "2558",
- "25305_ord": "5779",
- "25306_ord": "3069",
- "25307_ord": "1934",
- "25308_ord": "3325",
- "2530_index": "22120",
- "25311_ord": "956",
- "25314_ord": "3952",
- "25315_ord": "1797",
- "25317_ord": "4156",
- "25318_ord": "2786",
- "25319_ord": "693",
- "2531_index": "26144",
- "25320_ord": "2724",
- "25321_ord": "3312",
- "25324_ord": "102",
- "25325_ord": "3797",
- "25326_ord": "2814",
- "25327_ord": "3502",
- "25329_ord": "5072",
- "2532_index": "20314",
- "25331_ord": "2726",
- "25332_ord": "4158",
- "25335_ord": "4818",
- "2533_index": "31485",
- "25340_ord": "46",
- "25341_ord": "27",
- "25342_ord": "4718",
- "25343_ord": "4045",
- "25345_ord": "3880",
- "25346_ord": "1533",
- "2534_index": "27516",
- "25351_ord": "3866",
- "25352_ord": "5680",
- "25353_ord": "4543",
- "25358_ord": "2859",
- "2535_index": "38517",
- "25361_ord": "1259",
- "25366_ord": "5756",
- "2536_index": "37084",
- "25370_ord": "1906",
- "25371_ord": "3759",
- "25373_ord": "1460",
- "25374_ord": "2410",
- "25375_ord": "1974",
- "25376_ord": "789",
- "25377_ord": "2168",
- "25379_ord": "3182",
- "2537_index": "25233",
- "25380_ord": "3244",
- "25381_ord": "4761",
- "25384_ord": "3271",
- "25386_ord": "4132",
- "25387_ord": "3222",
- "2538_index": "38108",
- "25391_ord": "3174",
- "2539_index": "30328",
- "253_index": "21571",
- "25401_ord": "836",
- "25402_ord": "4024",
- "25405_ord": "594",
- "2540_index": "116",
- "25410_ord": "5427",
- "25413_ord": "5654",
- "25414_ord": "4381",
- "25417_ord": "3018",
- "25419_ord": "5650",
- "2541_index": "21589",
- "25421_ord": "3863",
- "25422_ord": "3252",
- "25423_ord": "3720",
- "25424_ord": "866",
- "25429_ord": "3623",
- "2542_index": "32553",
- "25438_ord": "4195",
- "25439_ord": "1027",
- "2543_index": "9650",
- "25441_ord": "2165",
- "25442_ord": "2665",
- "25443_ord": "632",
- "25447_ord": "84",
- "2544_index": "20139",
- "25453_ord": "1631",
- "25454_ord": "4367",
- "25457_ord": "194",
- "2545_index": "36968",
- "25462_ord": "4997",
- "25463_ord": "4031",
- "25466_ord": "3032",
- "25467_ord": "4210",
- "25469_ord": "660",
- "2546_index": "38556",
- "25472_ord": "3467",
- "25474_ord": "1680",
- "25479_ord": "2478",
- "2547_index": "28608",
- "25480_ord": "4517",
- "25481_ord": "3946",
- "25484_ord": "71",
- "25487_ord": "1517",
- "25488_ord": "4763",
- "2548_index": "31546",
- "25490_ord": "4327",
- "25494_ord": "1954",
- "25496_ord": "250",
- "2549_index": "25880",
- "254_index": "65072",
- "25504_ord": "5625",
- "25506_ord": "2257",
- "25507_ord": "1807",
- "25509_ord": "1799",
- "2550_index": "36169",
- "25511_ord": "4476",
- "25512_ord": "5681",
- "25513_ord": "1337",
- "25514_ord": "1864",
- "25516_ord": "2169",
- "2551_index": "19968",
- "25520_ord": "3433",
- "25523_ord": "2412",
- "25527_ord": "1213",
- "2552_index": "38579",
- "25530_ord": "4434",
- "25532_ord": "4694",
- "25534_ord": "1270",
- "2553_index": "27712",
- "25540_ord": "2662",
- "25542_ord": "4052",
- "25545_ord": "5115",
- "25549_ord": "1459",
- "2554_index": "26551",
- "25551_ord": "2723",
- "25552_ord": "1573",
- "25554_ord": "3920",
- "25558_ord": "4435",
- "2555_index": "31183",
- "25564_ord": "5726",
- "25569_ord": "4555",
- "2556_index": "37329",
- "25571_ord": "4466",
- "25577_ord": "5531",
- "25578_ord": "1804",
- "2557_index": "26577",
- "25581_ord": "1263",
- "25588_ord": "2866",
- "2558_index": "25304",
- "25590_ord": "5356",
- "25597_ord": "3614",
- "2559_index": "40092",
- "255_index": "38801",
- "25600_ord": "3315",
- "25601_ord": "5057",
- "25602_ord": "1640",
- "25605_ord": "5128",
- "2560_index": "26384",
- "25615_ord": "4842",
- "25616_ord": "5192",
- "25618_ord": "1452",
- "25619_ord": "1567",
- "2561_index": "24846",
- "25620_ord": "1572",
- "25628_ord": "3281",
- "2562_index": "24029",
- "25630_ord": "3804",
- "25632_ord": "5118",
- "25634_ord": "4487",
- "2563_index": "24742",
- "25642_ord": "5453",
- "25644_ord": "4678",
- "25645_ord": "2512",
- "2564_index": "21247",
- "25652_ord": "72",
- "25658_ord": "1760",
- "2565_index": "38291",
- "25661_ord": "3379",
- "25665_ord": "3990",
- "25668_ord": "1986",
- "2566_index": "29380",
- "25670_ord": "5108",
- "25671_ord": "4273",
- "25672_ord": "1123",
- "25674_ord": "2745",
- "2567_index": "26009",
- "25682_ord": "3698",
- "25684_ord": "1144",
- "25688_ord": "4559",
- "2568_index": "24413",
- "25694_ord": "3043",
- "2569_index": "21294",
- "256_index": "23478",
- "25703_ord": "4321",
- "25705_ord": "2482",
- "2570_index": "32465",
- "2571_index": "35286",
- "25720_ord": "122",
- "25721_ord": "880",
- "2572_index": "22993",
- "25730_ord": "3232",
- "25735_ord": "3796",
- "2573_index": "31705",
- "25745_ord": "5739",
- "25746_ord": "813",
- "25749_ord": "4095",
- "2574_index": "23618",
- "25757_ord": "2307",
- "25758_ord": "1892",
- "2575_index": "24682",
- "25764_ord": "2246",
- "25769_ord": "2166",
- "2576_index": "30097",
- "25772_ord": "502",
- "25773_ord": "2758",
- "25774_ord": "996",
- "25776_ord": "3702",
- "2577_index": "28857",
- "25781_ord": "1049",
- "25783_ord": "5322",
- "25786_ord": "3793",
- "25788_ord": "4536",
- "2578_index": "33176",
- "25794_ord": "3632",
- "25797_ord": "4788",
- "2579_index": "31047",
- "257_index": "26263",
- "25805_ord": "5700",
- "25806_ord": "3178",
- "2580_index": "36944",
- "25810_ord": "4397",
- "25816_ord": "368",
- "2581_index": "31637",
- "25822_ord": "5520",
- "25826_ord": "291",
- "2582_index": "22919",
- "25830_ord": "1096",
- "2583_index": "34957",
- "2584_index": "32993",
- "25856_ord": "5513",
- "2585_index": "31508",
- "2586_index": "38145",
- "25874_ord": "1052",
- "2587_index": "30350",
- "25880_ord": "2549",
- "2588_index": "37319",
- "25893_ord": "5152",
- "25899_ord": "4271",
- "2589_index": "39715",
- "258_index": "20296",
- "25903_ord": "1080",
- "2590_index": "23427",
- "25910_ord": "4188",
- "25912_ord": "2607",
- "25913_ord": "4504",
- "25915_ord": "4451",
- "25918_ord": "4547",
- "25919_ord": "2652",
- "2591_index": "26106",
- "25925_ord": "1386",
- "25928_ord": "5014",
- "2592_index": "39551",
- "25932_ord": "307",
- "25935_ord": "3370",
- "25937_ord": "5770",
- "2593_index": "31918",
- "25941_ord": "3756",
- "25942_ord": "188",
- "25945_ord": "3471",
- "25947_ord": "3430",
- "25949_ord": "563",
- "2594_index": "21983",
- "25950_ord": "3233",
- "25954_ord": "1116",
- "25955_ord": "2344",
- "25958_ord": "3530",
- "2595_index": "23459",
- "25964_ord": "5823",
- "25968_ord": "4483",
- "2596_index": "23377",
- "25970_ord": "1184",
- "25972_ord": "370",
- "25975_ord": "873",
- "2597_index": "35748",
- "2598_index": "24040",
- "25991_ord": "2734",
- "25995_ord": "5691",
- "25996_ord": "28",
- "2599_index": "32701",
- "259_index": "22070",
- "25_index": "21988",
- "26000_ord": "3294",
- "26001_ord": "2472",
- "26003_ord": "2403",
- "26007_ord": "2446",
- "26009_ord": "2567",
- "2600_index": "30562",
- "26011_ord": "2151",
- "26012_ord": "3857",
- "26015_ord": "4168",
- "26017_ord": "60",
- "2601_index": "38115",
- "26020_ord": "1237",
- "26021_ord": "3260",
- "26023_ord": "1146",
- "26025_ord": "407",
- "26027_ord": "3412",
- "26029_ord": "596",
- "2602_index": "36873",
- "26031_ord": "4139",
- "26032_ord": "5493",
- "26034_ord": "5396",
- "2603_index": "26848",
- "26041_ord": "2929",
- "26044_ord": "707",
- "26045_ord": "321",
- "26049_ord": "1012",
- "2604_index": "20073",
- "26051_ord": "4419",
- "26052_ord": "5317",
- "26053_ord": "3792",
- "26059_ord": "1560",
- "2605_index": "32972",
- "26060_ord": "313",
- "26062_ord": "690",
- "26063_ord": "3794",
- "26066_ord": "1620",
- "2606_index": "38386",
- "26070_ord": "691",
- "26071_ord": "4447",
- "2607_index": "25912",
- "26080_ord": "5537",
- "26082_ord": "2438",
- "26085_ord": "2061",
- "26086_ord": "5259",
- "26087_ord": "3025",
- "26088_ord": "2186",
- "26089_ord": "4396",
- "2608_index": "37024",
- "26092_ord": "1469",
- "26093_ord": "2632",
- "26097_ord": "1349",
- "2609_index": "33637",
- "260_index": "67",
- "26102_ord": "51",
- "26103_ord": "3834",
- "26106_ord": "2591",
- "26107_ord": "3514",
- "2610_index": "9670",
- "26112_ord": "2327",
- "26114_ord": "4289",
- "26115_ord": "1202",
- "26118_ord": "2235",
- "26119_ord": "3993",
- "2611_index": "40842",
- "26122_ord": "3168",
- "26124_ord": "4233",
- "26126_ord": "111",
- "26127_ord": "2213",
- "2612_index": "28095",
- "26131_ord": "5084",
- "26132_ord": "5302",
- "26133_ord": "350",
- "26137_ord": "1114",
- "2613_index": "34044",
- "26143_ord": "451",
- "26144_ord": "2531",
- "26149_ord": "1917",
- "2614_index": "21710",
- "26151_ord": "3364",
- "26152_ord": "675",
- "26157_ord": "2099",
- "26159_ord": "3889",
- "2615_index": "26623",
- "26161_ord": "2208",
- "26164_ord": "5327",
- "26165_ord": "3519",
- "2616_index": "29827",
- "26172_ord": "180",
- "26174_ord": "1581",
- "26177_ord": "2428",
- "26179_ord": "704",
- "2617_index": "23143",
- "26187_ord": "1869",
- "26188_ord": "3004",
- "2618_index": "23467",
- "26191_ord": "4970",
- "26194_ord": "5596",
- "26195_ord": "152",
- "26196_ord": "2777",
- "26197_ord": "1586",
- "26198_ord": "4875",
- "26199_ord": "1421",
- "2619_index": "33278",
- "261_index": "35861",
- "26202_ord": "1704",
- "26206_ord": "4840",
- "26207_ord": "3250",
- "26209_ord": "2157",
- "2620_index": "39181",
- "26212_ord": "3429",
- "26214_ord": "1223",
- "26216_ord": "2371",
- "2621_index": "65289",
- "26222_ord": "4752",
- "26223_ord": "3560",
- "26224_ord": "3472",
- "26228_ord": "1967",
- "2622_index": "21897",
- "26230_ord": "5789",
- "26234_ord": "1069",
- "26238_ord": "403",
- "2623_index": "31423",
- "26242_ord": "106",
- "26244_ord": "2845",
- "26247_ord": "4361",
- "2624_index": "31177",
- "26257_ord": "3568",
- "2625_index": "30224",
- "26262_ord": "4646",
- "26263_ord": "257",
- "2626_index": "30491",
- "26279_ord": "1063",
- "2627_index": "34137",
- "26280_ord": "3023",
- "26286_ord": "5656",
- "2628_index": "25105",
- "26290_ord": "1000",
- "26292_ord": "535",
- "26297_ord": "3418",
- "2629_index": "30315",
- "262_index": "33094",
- "26302_ord": "4633",
- "2630_index": "24700",
- "2631_index": "34553",
- "26329_ord": "478",
- "2632_index": "26093",
- "26331_ord": "4792",
- "26332_ord": "1881",
- "26333_ord": "3917",
- "2633_index": "104",
- "26342_ord": "770",
- "26345_ord": "3282",
- "2634_index": "28904",
- "26352_ord": "3731",
- "26354_ord": "5499",
- "26355_ord": "1055",
- "26356_ord": "4861",
- "26359_ord": "1828",
- "2635_index": "32824",
- "26360_ord": "1180",
- "26361_ord": "5258",
- "26364_ord": "801",
- "26366_ord": "5137",
- "26367_ord": "4066",
- "26368_ord": "4330",
- "2636_index": "1054",
- "26376_ord": "3448",
- "26377_ord": "2296",
- "26379_ord": "2863",
- "2637_index": "33463",
- "26381_ord": "40",
- "26384_ord": "2560",
- "26388_ord": "5406",
- "26389_ord": "3148",
- "2638_index": "30623",
- "26391_ord": "2688",
- "26395_ord": "4182",
- "26397_ord": "601",
- "26399_ord": "2134",
- "2639_index": "20146",
- "263_index": "22352",
- "26406_ord": "677",
- "26408_ord": "2088",
- "2640_index": "29409",
- "26410_ord": "4928",
- "26411_ord": "1107",
- "26412_ord": "2081",
- "26413_ord": "2846",
- "26415_ord": "1858",
- "26417_ord": "1866",
- "2641_index": "31077",
- "26420_ord": "4073",
- "26421_ord": "3143",
- "26426_ord": "108",
- "26429_ord": "1255",
- "2642_index": "101",
- "26432_ord": "3183",
- "26434_ord": "529",
- "26435_ord": "4686",
- "26438_ord": "5746",
- "2643_index": "32597",
- "26441_ord": "5170",
- "26444_ord": "1901",
- "26446_ord": "3516",
- "26447_ord": "5530",
- "26448_ord": "2219",
- "26449_ord": "78",
- "2644_index": "33296",
- "26451_ord": "5528",
- "26454_ord": "4728",
- "2645_index": "20181",
- "26460_ord": "1761",
- "26462_ord": "2298",
- "26463_ord": "190",
- "26464_ord": "2854",
- "26465_ord": "1362",
- "26469_ord": "2089",
- "2646_index": "29239",
- "26472_ord": "2423",
- "26474_ord": "1094",
- "26477_ord": "3947",
- "26479_ord": "2115",
- "2647_index": "27929",
- "26480_ord": "4222",
- "26482_ord": "3729",
- "26483_ord": "2454",
- "26485_ord": "2720",
- "26487_ord": "2382",
- "2648_index": "21741",
- "26494_ord": "123",
- "26495_ord": "3481",
- "26497_ord": "3360",
- "2649_index": "21481",
- "264_index": "20117",
- "26500_ord": "772",
- "26503_ord": "4596",
- "26505_ord": "3700",
- "26507_ord": "1486",
- "2650_index": "21761",
- "26512_ord": "1637",
- "26517_ord": "3495",
- "26519_ord": "4671",
- "2651_index": "25000",
- "26522_ord": "5679",
- "26524_ord": "1777",
- "26525_ord": "4580",
- "26526_ord": "2393",
- "2652_index": "25919",
- "26530_ord": "4249",
- "26531_ord": "3388",
- "26533_ord": "3665",
- "26538_ord": "3984",
- "26539_ord": "5491",
- "2653_index": "40100",
- "26541_ord": "5488",
- "26543_ord": "863",
- "26544_ord": "4830",
- "26547_ord": "1604",
- "26549_ord": "1922",
- "2654_index": "36742",
- "26550_ord": "3184",
- "26551_ord": "2554",
- "26552_ord": "1271",
- "2655_index": "65",
- "26564_ord": "974",
- "26568_ord": "3107",
- "2656_index": "24211",
- "26575_ord": "2056",
- "26576_ord": "49",
- "26577_ord": "2557",
- "26579_ord": "1489",
- "2657_index": "32507",
- "26580_ord": "5273",
- "26584_ord": "4069",
- "26586_ord": "2241",
- "26588_ord": "3552",
- "2658_index": "24189",
- "26590_ord": "4879",
- "26592_ord": "75",
- "26594_ord": "4681",
- "26597_ord": "3101",
- "2659_index": "21073",
- "265_index": "40605",
- "26601_ord": "5188",
- "26604_ord": "1429",
- "26607_ord": "5629",
- "26608_ord": "5350",
- "26609_ord": "52",
- "2660_index": "36364",
- "26611_ord": "488",
- "26612_ord": "4061",
- "2661_index": "38081",
- "26623_ord": "2615",
- "26624_ord": "5335",
- "26629_ord": "2449",
- "2662_index": "25540",
- "26631_ord": "539",
- "26632_ord": "29",
- "26633_ord": "3367",
- "26635_ord": "5376",
- "26638_ord": "5607",
- "26639_ord": "5250",
- "2663_index": "30655",
- "26641_ord": "4475",
- "26643_ord": "386",
- "26646_ord": "900",
- "26647_ord": "1178",
- "2664_index": "30044",
- "26657_ord": "1277",
- "2665_index": "25442",
- "26665_ord": "346",
- "26666_ord": "2437",
- "2666_index": "36757",
- "26679_ord": "1902",
- "2667_index": "29738",
- "26680_ord": "5471",
- "26681_ord": "1015",
- "26684_ord": "142",
- "26685_ord": "5026",
- "26686_ord": "634",
- "26688_ord": "5719",
- "2668_index": "37075",
- "26690_ord": "3155",
- "26691_ord": "362",
- "26693_ord": "4259",
- "26694_ord": "1068",
- "26696_ord": "3046",
- "2669_index": "9585",
- "266_index": "36464",
- "26700_ord": "5624",
- "26702_ord": "751",
- "26704_ord": "4984",
- "26705_ord": "4244",
- "26707_ord": "2922",
- "26708_ord": "496",
- "2670_index": "35851",
- "2671_index": "30168",
- "26720_ord": "3408",
- "26721_ord": "525",
- "26722_ord": "977",
- "26723_ord": "2971",
- "26725_ord": "4985",
- "26726_ord": "2712",
- "26727_ord": "3078",
- "26728_ord": "144",
- "26729_ord": "3565",
- "2672_index": "36840",
- "2673_index": "33696",
- "26742_ord": "5698",
- "2674_index": "20803",
- "26753_ord": "2836",
- "26755_ord": "4203",
- "26757_ord": "3330",
- "26758_ord": "763",
- "2675_index": "40843",
- "26767_ord": "5120",
- "2676_index": "33310",
- "26771_ord": "2206",
- "26775_ord": "5354",
- "2677_index": "37306",
- "26786_ord": "458",
- "2678_index": "24199",
- "26790_ord": "3523",
- "26791_ord": "4674",
- "26792_ord": "3033",
- "26797_ord": "4452",
- "26799_ord": "4173",
- "2679_index": "24597",
- "267_index": "23567",
- "26800_ord": "5527",
- "26803_ord": "4726",
- "26805_ord": "381",
- "2680_index": "32510",
- "26816_ord": "972",
- "26818_ord": "3779",
- "2681_index": "30702",
- "26825_ord": "546",
- "26827_ord": "3616",
- "26829_ord": "3319",
- "2682_index": "36897",
- "26834_ord": "4871",
- "26835_ord": "5085",
- "26837_ord": "1206",
- "2683_index": "27539",
- "26840_ord": "3484",
- "26842_ord": "4477",
- "26848_ord": "2603",
- "2684_index": "31921",
- "26851_ord": "3558",
- "2685_index": "22338",
- "26862_ord": "455",
- "26864_ord": "4760",
- "26865_ord": "1061",
- "26869_ord": "5347",
- "2686_index": "31496",
- "26873_ord": "844",
- "26874_ord": "2226",
- "2687_index": "30140",
- "26880_ord": "963",
- "26881_ord": "2961",
- "26885_ord": "1474",
- "2688_index": "26391",
- "26893_ord": "5462",
- "26894_ord": "198",
- "26896_ord": "4087",
- "26898_ord": "2297",
- "2689_index": "34527",
- "268_index": "30388",
- "2690_index": "38155",
- "26911_ord": "138",
- "2691_index": "33018",
- "26925_ord": "1170",
- "26928_ord": "205",
- "2692_index": "24339",
- "26937_ord": "5809",
- "2693_index": "39535",
- "26941_ord": "115",
- "26943_ord": "2921",
- "26946_ord": "119",
- "2694_index": "27891",
- "2695_index": "33002",
- "26964_ord": "5121",
- "26967_ord": "819",
- "2696_index": "36291",
- "26970_ord": "2177",
- "26974_ord": "5570",
- "26976_ord": "3279",
- "26979_ord": "1252",
- "2697_index": "25220",
- "26987_ord": "960",
- "2698_index": "39316",
- "26990_ord": "1286",
- "26999_ord": "898",
- "2699_index": "35838",
- "269_index": "19976",
- "26_index": "33419",
- "27000_ord": "1924",
- "27001_ord": "3316",
- "27004_ord": "1645",
- "2700_index": "21705",
- "27010_ord": "2069",
- "27012_ord": "1062",
- "27014_ord": "784",
- "27015_ord": "1073",
- "27016_ord": "3288",
- "2701_index": "27696",
- "27028_ord": "726",
- "27029_ord": "3741",
- "2702_index": "24331",
- "27035_ord": "562",
- "27036_ord": "1318",
- "2703_index": "31243",
- "27047_ord": "4001",
- "27048_ord": "1174",
- "2704_index": "28193",
- "27051_ord": "3362",
- "27053_ord": "1911",
- "27057_ord": "4600",
- "2705_index": "29312",
- "27060_ord": "4944",
- "27063_ord": "2445",
- "27067_ord": "1457",
- "27068_ord": "4439",
- "2706_index": "31377",
- "27073_ord": "2934",
- "27075_ord": "4608",
- "2707_index": "21892",
- "27082_ord": "5455",
- "27084_ord": "1108",
- "27088_ord": "4586",
- "2708_index": "89",
- "27099_ord": "4355",
- "2709_index": "24104",
- "270_index": "34191",
- "27103_ord": "4371",
- "2710_index": "29609",
- "2711_index": "33705",
- "2712_index": "26726",
- "27133_ord": "5451",
- "27135_ord": "3173",
- "2713_index": "32485",
- "27146_ord": "5116",
- "2714_index": "21072",
- "27159_ord": "4444",
- "2715_index": "35805",
- "27167_ord": "5593",
- "27169_ord": "4636",
- "2716_index": "22381",
- "27178_ord": "2024",
- "2717_index": "25203",
- "27183_ord": "1181",
- "27185_ord": "1651",
- "27189_ord": "3365",
- "2718_index": "29989",
- "27197_ord": "1526",
- "27198_ord": "2385",
- "2719_index": "20811",
- "271_index": "23621",
- "27204_ord": "456",
- "27207_ord": "5043",
- "2720_index": "26485",
- "27216_ord": "5752",
- "2721_index": "20133",
- "27224_ord": "1483",
- "27225_ord": "3957",
- "2722_index": "55",
- "27233_ord": "4720",
- "2723_index": "25551",
- "27249_ord": "4598",
- "2724_index": "25320",
- "27257_ord": "5482",
- "2725_index": "21011",
- "27264_ord": "1403",
- "27268_ord": "3703",
- "2726_index": "25331",
- "2727_index": "28353",
- "27280_ord": "5062",
- "2728_index": "32592",
- "27296_ord": "4896",
- "2729_index": "23041",
- "272_index": "23068",
- "27308_ord": "5556",
- "2730_index": "27748",
- "2731_index": "29934",
- "2732_index": "29699",
- "2733_index": "27946",
- "2734_index": "25991",
- "2735_index": "38039",
- "2736_index": "31049",
- "2737_index": "30272",
- "2738_index": "20607",
- "2739_index": "23500",
- "273_index": "35881",
- "2740_index": "21028",
- "2741_index": "20020",
- "27424_ord": "5266",
- "27425_ord": "3167",
- "27426_ord": "3538",
- "27427_ord": "3409",
- "27428_ord": "3915",
- "2742_index": "30967",
- "27431_ord": "2329",
- "2743_index": "23110",
- "27442_ord": "1927",
- "27447_ord": "2969",
- "2744_index": "32531",
- "27450_ord": "3598",
- "27451_ord": "4688",
- "27454_ord": "4889",
- "2745_index": "25674",
- "27462_ord": "4369",
- "27463_ord": "1700",
- "27465_ord": "1230",
- "27468_ord": "4212",
- "2746_index": "32928",
- "27476_ord": "1703",
- "2747_index": "24814",
- "27480_ord": "2338",
- "27481_ord": "2924",
- "2748_index": "114",
- "27490_ord": "2830",
- "27491_ord": "5584",
- "27492_ord": "4509",
- "27493_ord": "5478",
- "27494_ord": "4614",
- "27495_ord": "2498",
- "27498_ord": "1088",
- "2749_index": "20989",
- "274_index": "20629",
- "2750_index": "35866",
- "27513_ord": "5734",
- "27515_ord": "1605",
- "27516_ord": "2534",
- "2751_index": "20238",
- "27521_ord": "1427",
- "27522_ord": "34",
- "27523_ord": "3949",
- "27524_ord": "5232",
- "27526_ord": "728",
- "27527_ord": "5257",
- "27529_ord": "24",
- "2752_index": "29325",
- "27530_ord": "3637",
- "27531_ord": "595",
- "27538_ord": "444",
- "27539_ord": "2683",
- "2753_index": "33487",
- "27542_ord": "4832",
- "27546_ord": "3570",
- "27547_ord": "2173",
- "2754_index": "22999",
- "27553_ord": "3499",
- "2755_index": "23810",
- "27562_ord": "5653",
- "2756_index": "36144",
- "27572_ord": "3782",
- "27573_ord": "1039",
- "27575_ord": "5711",
- "2757_index": "21338",
- "27581_ord": "2910",
- "27583_ord": "5615",
- "27585_ord": "1150",
- "27586_ord": "4425",
- "27589_ord": "298",
- "2758_index": "25773",
- "27595_ord": "5481",
- "27597_ord": "3691",
- "27599_ord": "3935",
- "2759_index": "36857",
- "275_index": "34980",
- "27602_ord": "1009",
- "27603_ord": "3688",
- "27604_ord": "1470",
- "27605_ord": "4339",
- "27607_ord": "1126",
- "27609_ord": "2521",
- "2760_index": "38235",
- "27611_ord": "1503",
- "27617_ord": "105",
- "2761_index": "37225",
- "27627_ord": "411",
- "2762_index": "34411",
- "27631_ord": "2906",
- "2763_index": "27850",
- "2764_index": "31395",
- "27653_ord": "2905",
- "27654_ord": "1675",
- "27655_ord": "2202",
- "2765_index": "20018",
- "27663_ord": "4850",
- "27664_ord": "5669",
- "27665_ord": "5435",
- "27667_ord": "3672",
- "27668_ord": "4857",
- "2766_index": "38109",
- "27670_ord": "5106",
- "27675_ord": "4254",
- "27679_ord": "4165",
- "2767_index": "9671",
- "27681_ord": "3646",
- "27682_ord": "33",
- "27684_ord": "1112",
- "27686_ord": "4566",
- "27687_ord": "1689",
- "27688_ord": "3657",
- "27689_ord": "5460",
- "2768_index": "29736",
- "27694_ord": "1475",
- "27695_ord": "4235",
- "27696_ord": "2701",
- "27698_ord": "5229",
- "2769_index": "20255",
- "276_index": "20052",
- "27700_ord": "2200",
- "27704_ord": "2783",
- "2770_index": "35757",
- "27712_ord": "2553",
- "27713_ord": "3503",
- "27714_ord": "5452",
- "27719_ord": "1086",
- "2771_index": "28142",
- "27721_ord": "4643",
- "27728_ord": "4126",
- "2772_index": "28847",
- "27733_ord": "3853",
- "27735_ord": "347",
- "27739_ord": "5214",
- "2773_index": "39311",
- "27740_ord": "3138",
- "27741_ord": "3270",
- "27742_ord": "1290",
- "27743_ord": "1399",
- "27744_ord": "415",
- "27745_ord": "5762",
- "27748_ord": "2730",
- "2774_index": "20141",
- "27752_ord": "2927",
- "27753_ord": "3500",
- "27754_ord": "2147",
- "27757_ord": "1093",
- "2775_index": "30066",
- "27760_ord": "5378",
- "27762_ord": "4028",
- "27764_ord": "3717",
- "27766_ord": "171",
- "27769_ord": "5371",
- "2776_index": "22359",
- "27773_ord": "1369",
- "27774_ord": "2404",
- "27777_ord": "694",
- "27778_ord": "1874",
- "27779_ord": "1506",
- "2777_index": "26196",
- "27781_ord": "3541",
- "27784_ord": "3911",
- "27785_ord": "62",
- "27788_ord": "4205",
- "2778_index": "40669",
- "27792_ord": "2529",
- "27795_ord": "2426",
- "27796_ord": "3765",
- "2779_index": "20034",
- "277_index": "28382",
- "27801_ord": "4474",
- "27803_ord": "778",
- "27807_ord": "581",
- "27809_ord": "3483",
- "2780_index": "40672",
- "27811_ord": "3351",
- "27813_ord": "4345",
- "27814_ord": "1569",
- "27815_ord": "566",
- "27818_ord": "1957",
- "27819_ord": "2356",
- "2781_index": "21206",
- "27820_ord": "5689",
- "27822_ord": "3761",
- "27825_ord": "2522",
- "27827_ord": "5622",
- "2782_index": "20123",
- "27832_ord": "2035",
- "27833_ord": "941",
- "27835_ord": "3953",
- "27836_ord": "4505",
- "27837_ord": "3663",
- "27838_ord": "112",
- "27839_ord": "3393",
- "2783_index": "27704",
- "27844_ord": "3277",
- "27845_ord": "4047",
- "27849_ord": "5201",
- "2784_index": "24459",
- "27850_ord": "2763",
- "27852_ord": "5631",
- "27859_ord": "3651",
- "2785_index": "37294",
- "27861_ord": "413",
- "27863_ord": "3860",
- "27867_ord": "799",
- "2786_index": "25318",
- "27870_ord": "5766",
- "27872_ord": "1752",
- "27873_ord": "3323",
- "27874_ord": "658",
- "27875_ord": "5143",
- "27877_ord": "973",
- "2787_index": "28888",
- "27880_ord": "2102",
- "27882_ord": "1311",
- "27883_ord": "811",
- "27886_ord": "860",
- "27887_ord": "4737",
- "27888_ord": "4775",
- "27889_ord": "542",
- "2788_index": "30597",
- "27891_ord": "2694",
- "27893_ord": "4020",
- "27895_ord": "2842",
- "27896_ord": "3964",
- "27899_ord": "5006",
- "2789_index": "22484",
- "278_index": "21945",
- "27900_ord": "4209",
- "27901_ord": "5224",
- "27902_ord": "3425",
- "27905_ord": "1999",
- "2790_index": "23665",
- "27915_ord": "2867",
- "2791_index": "36807",
- "27922_ord": "1790",
- "27927_ord": "4940",
- "27929_ord": "2647",
- "2792_index": "20540",
- "27931_ord": "4647",
- "27934_ord": "5109",
- "27935_ord": "680",
- "2793_index": "20457",
- "27941_ord": "731",
- "27946_ord": "2733",
- "2794_index": "28074",
- "27950_ord": "4521",
- "27953_ord": "2528",
- "27954_ord": "5627",
- "2795_index": "28729",
- "27961_ord": "3395",
- "27963_ord": "4654",
- "27964_ord": "3146",
- "27965_ord": "2196",
- "27966_ord": "3948",
- "27969_ord": "76",
- "2796_index": "20999",
- "27971_ord": "2911",
- "27973_ord": "798",
- "27974_ord": "1338",
- "27975_ord": "4637",
- "27978_ord": "857",
- "27979_ord": "4415",
- "2797_index": "33152",
- "27981_ord": "5612",
- "27982_ord": "1067",
- "27983_ord": "4114",
- "27984_ord": "517",
- "27985_ord": "1438",
- "27986_ord": "117",
- "27987_ord": "4588",
- "27988_ord": "3116",
- "2798_index": "20805",
- "27993_ord": "5557",
- "27994_ord": "2812",
- "27996_ord": "1105",
- "27998_ord": "5683",
- "2799_index": "30640",
- "279_index": "29426",
- "27_index": "25341",
- "28003_ord": "1685",
- "28006_ord": "5747",
- "28009_ord": "212",
- "2800_index": "34952",
- "28010_ord": "81",
- "28014_ord": "2072",
- "2801_index": "39546",
- "28020_ord": "5539",
- "28023_ord": "141",
- "28024_ord": "1375",
- "28028_ord": "1768",
- "2802_index": "29814",
- "28034_ord": "5341",
- "28037_ord": "5749",
- "2803_index": "20837",
- "28040_ord": "2876",
- "28041_ord": "3162",
- "28044_ord": "2016",
- "28046_ord": "1591",
- "2804_index": "20652",
- "28051_ord": "5439",
- "28052_ord": "5538",
- "28053_ord": "5320",
- "28059_ord": "116",
- "2805_index": "23637",
- "28061_ord": "1222",
- "28063_ord": "5776",
- "28065_ord": "1849",
- "28067_ord": "3262",
- "28068_ord": "1546",
- "2806_index": "36195",
- "28070_ord": "2488",
- "28071_ord": "883",
- "28072_ord": "1197",
- "28073_ord": "4957",
- "28074_ord": "2794",
- "28078_ord": "1570",
- "28079_ord": "4604",
- "2807_index": "32517",
- "28082_ord": "1665",
- "28085_ord": "2920",
- "28088_ord": "780",
- "2808_index": "24324",
- "28095_ord": "2612",
- "28096_ord": "1539",
- "2809_index": "30231",
- "280_index": "24999",
- "28100_ord": "666",
- "28101_ord": "1817",
- "28102_ord": "4716",
- "28103_ord": "3678",
- "28107_ord": "1296",
- "28108_ord": "4147",
- "2810_index": "22839",
- "28113_ord": "3336",
- "28118_ord": "3152",
- "2811_index": "37321",
- "28120_ord": "1353",
- "28121_ord": "5330",
- "28126_ord": "5189",
- "28129_ord": "3886",
- "2812_index": "27994",
- "28132_ord": "1990",
- "28139_ord": "161",
- "2813_index": "31933",
- "28140_ord": "938",
- "28142_ord": "2771",
- "28145_ord": "2051",
- "28147_ord": "1829",
- "2814_index": "25326",
- "28151_ord": "5061",
- "28153_ord": "3789",
- "28155_ord": "1877",
- "28156_ord": "510",
- "2815_index": "32834",
- "28165_ord": "5430",
- "2816_index": "32166",
- "28170_ord": "5822",
- "28173_ord": "4844",
- "28174_ord": "5254",
- "28176_ord": "217",
- "28177_ord": "5438",
- "2817_index": "28975",
- "28180_ord": "1334",
- "28182_ord": "4356",
- "28183_ord": "1596",
- "28186_ord": "4338",
- "28189_ord": "5522",
- "2818_index": "29923",
- "28192_ord": "5436",
- "28193_ord": "2704",
- "28195_ord": "3009",
- "28196_ord": "459",
- "28197_ord": "4303",
- "2819_index": "32508",
- "281_index": "33581",
- "28201_ord": "5437",
- "28205_ord": "5282",
- "28207_ord": "3085",
- "2820_index": "35817",
- "28210_ord": "3247",
- "28212_ord": "3701",
- "28216_ord": "3862",
- "28218_ord": "1819",
- "2821_index": "24949",
- "28227_ord": "4333",
- "28228_ord": "523",
- "2822_index": "22089",
- "28237_ord": "1873",
- "28238_ord": "4272",
- "2823_index": "30036",
- "28246_ord": "1048",
- "28248_ord": "4943",
- "2824_index": "32959",
- "28251_ord": "3545",
- "28255_ord": "1822",
- "2825_index": "33108",
- "28267_ord": "92",
- "2826_index": "20311",
- "28270_ord": "3347",
- "2827_index": "37190",
- "28286_ord": "1562",
- "28287_ord": "3785",
- "2828_index": "35778",
- "28291_ord": "2287",
- "28293_ord": "1963",
- "28297_ord": "4441",
- "2829_index": "24524",
- "282_index": "22949",
- "28301_ord": "5238",
- "28304_ord": "365",
- "2830_index": "27490",
- "28316_ord": "2520",
- "28319_ord": "1926",
- "2831_index": "22261",
- "28322_ord": "1914",
- "28325_ord": "16",
- "28327_ord": "997",
- "2832_index": "38094",
- "28330_ord": "167",
- "28335_ord": "3608",
- "28338_ord": "1310",
- "2833_index": "39031",
- "28340_ord": "3583",
- "28342_ord": "3836",
- "28343_ord": "4157",
- "28346_ord": "4934",
- "2834_index": "24418",
- "28353_ord": "2727",
- "28354_ord": "3359",
- "28359_ord": "3575",
- "2835_index": "20329",
- "28360_ord": "4982",
- "28363_ord": "670",
- "28369_ord": "4967",
- "2836_index": "26753",
- "28371_ord": "2915",
- "28372_ord": "5069",
- "28373_ord": "879",
- "28378_ord": "1652",
- "2837_index": "23267",
- "28382_ord": "277",
- "28385_ord": "10",
- "28388_ord": "1975",
- "28389_ord": "4535",
- "2838_index": "24578",
- "28390_ord": "3885",
- "28392_ord": "2490",
- "28393_ord": "741",
- "2839_index": "24320",
- "283_index": "36317",
- "28404_ord": "301",
- "2840_index": "39549",
- "28418_ord": "937",
- "2841_index": "32428",
- "28422_ord": "5331",
- "28425_ord": "1104",
- "2842_index": "27895",
- "28431_ord": "3113",
- "28435_ord": "2879",
- "28436_ord": "5251",
- "28437_ord": "4184",
- "2843_index": "35065",
- "28448_ord": "5199",
- "2844_index": "35779",
- "28457_ord": "5639",
- "28458_ord": "1616",
- "28459_ord": "4854",
- "2845_index": "26244",
- "28463_ord": "3673",
- "28465_ord": "137",
- "28467_ord": "199",
- "2846_index": "26413",
- "28478_ord": "1256",
- "2847_index": "24207",
- "28487_ord": "4423",
- "2848_index": "28909",
- "28493_ord": "696",
- "2849_index": "39285",
- "284_index": "40557",
- "28504_ord": "5580",
- "28508_ord": "1059",
- "2850_index": "21356",
- "28510_ord": "3762",
- "28514_ord": "5024",
- "28518_ord": "1091",
- "2851_index": "24735",
- "28525_ord": "4091",
- "28526_ord": "344",
- "2852_index": "29730",
- "28532_ord": "1946",
- "28536_ord": "918",
- "28538_ord": "2133",
- "2853_index": "22918",
- "28540_ord": "4525",
- "28548_ord": "3799",
- "2854_index": "26464",
- "28552_ord": "649",
- "28557_ord": "1388",
- "28558_ord": "3241",
- "2855_index": "23439",
- "2856_index": "21363",
- "28572_ord": "1162",
- "28577_ord": "3373",
- "2857_index": "21465",
- "28583_ord": "3446",
- "2858_index": "21916",
- "28595_ord": "5346",
- "2859_index": "25358",
- "285_index": "32796",
- "28601_ord": "5305",
- "28608_ord": "2547",
- "2860_index": "33507",
- "28610_ord": "1491",
- "2861_index": "22404",
- "28625_ord": "2055",
- "28626_ord": "1607",
- "2862_index": "31520",
- "28638_ord": "2353",
- "2863_index": "26379",
- "28640_ord": "1931",
- "28641_ord": "1137",
- "2864_index": "30782",
- "28654_ord": "4261",
- "28655_ord": "133",
- "2865_index": "24908",
- "2866_index": "25588",
- "2867_index": "27915",
- "28689_ord": "3122",
- "2868_index": "22495",
- "28698_ord": "945",
- "28699_ord": "2938",
- "2869_index": "36732",
- "286_index": "30361",
- "2870_index": "21040",
- "2871_index": "62",
- "28729_ord": "2795",
- "2872_index": "36784",
- "2873_index": "21884",
- "28748_ord": "3732",
- "2874_index": "34578",
- "2875_index": "37207",
- "28766_ord": "2300",
- "2876_index": "28040",
- "28779_ord": "3724",
- "2877_index": "35292",
- "28781_ord": "5576",
- "28783_ord": "2042",
- "28784_ord": "5783",
- "28789_ord": "921",
- "2878_index": "33495",
- "28790_ord": "5753",
- "28792_ord": "4336",
- "28796_ord": "1305",
- "28798_ord": "512",
- "28799_ord": "247",
- "2879_index": "28435",
- "287_index": "24086",
- "28800_ord": "681",
- "28809_ord": "5567",
- "2880_index": "33203",
- "28810_ord": "1479",
- "28814_ord": "242",
- "28818_ord": "4152",
- "2881_index": "30472",
- "28820_ord": "3039",
- "28821_ord": "3293",
- "28822_ord": "4329",
- "28825_ord": "611",
- "28828_ord": "1344",
- "2882_index": "20937",
- "28831_ord": "1167",
- "2883_index": "21162",
- "28843_ord": "5790",
- "28844_ord": "3694",
- "28845_ord": "4702",
- "28846_ord": "3706",
- "28847_ord": "2772",
- "2884_index": "29787",
- "28851_ord": "1171",
- "28855_ord": "3094",
- "28856_ord": "5551",
- "28857_ord": "2577",
- "2885_index": "21093",
- "28860_ord": "1465",
- "28861_ord": "4641",
- "28865_ord": "3966",
- "28866_ord": "3215",
- "2886_index": "23830",
- "28872_ord": "4395",
- "2887_index": "39663",
- "28888_ord": "2787",
- "28889_ord": "4512",
- "2888_index": "38408",
- "28891_ord": "4181",
- "28892_ord": "1218",
- "28893_ord": "1145",
- "28895_ord": "1743",
- "2889_index": "29606",
- "288_index": "24314",
- "28900_ord": "3744",
- "28902_ord": "1549",
- "28903_ord": "4891",
- "28904_ord": "2634",
- "28905_ord": "3462",
- "28907_ord": "5675",
- "28908_ord": "5642",
- "28909_ord": "2848",
- "2890_index": "21476",
- "28911_ord": "3139",
- "28919_ord": "1979",
- "2891_index": "37043",
- "28921_ord": "2347",
- "28925_ord": "1738",
- "2892_index": "32736",
- "28937_ord": "4962",
- "28938_ord": "5792",
- "2893_index": "33450",
- "28949_ord": "4698",
- "2894_index": "37214",
- "28950_ord": "534",
- "28952_ord": "946",
- "28953_ord": "3790",
- "28954_ord": "4392",
- "28956_ord": "5100",
- "2895_index": "36192",
- "28966_ord": "3287",
- "2896_index": "38452",
- "28975_ord": "2817",
- "28976_ord": "2398",
- "28977_ord": "2397",
- "2897_index": "21971",
- "28982_ord": "5231",
- "2898_index": "34573",
- "28997_ord": "445",
- "2899_index": "29467",
- "289_index": "34676",
- "28_index": "25996",
- "29002_ord": "5142",
- "29004_ord": "3458",
- "29006_ord": "4667",
- "2900_index": "31665",
- "2901_index": "23049",
- "29020_ord": "58",
- "29022_ord": "4274",
- "29028_ord": "3976",
- "2902_index": "20083",
- "29030_ord": "3337",
- "29031_ord": "5",
- "29032_ord": "5446",
- "29038_ord": "5630",
- "2903_index": "33760",
- "29042_ord": "1542",
- "2904_index": "38553",
- "29053_ord": "213",
- "2905_index": "27653",
- "29060_ord": "3209",
- "29066_ord": "3205",
- "2906_index": "27631",
- "29071_ord": "5676",
- "29076_ord": "962",
- "2907_index": "9349",
- "29081_ord": "3656",
- "29087_ord": "5787",
- "29088_ord": "4143",
- "2908_index": "21602",
- "29096_ord": "1515",
- "2909_index": "21659",
- "290_index": "23234",
- "29100_ord": "1134",
- "2910_index": "27581",
- "29113_ord": "1740",
- "2911_index": "27971",
- "29123_ord": "2367",
- "2912_index": "33484",
- "29134_ord": "806",
- "2913_index": "33422",
- "29140_ord": "955",
- "29141_ord": "928",
- "2914_index": "20964",
- "29152_ord": "5082",
- "29157_ord": "2238",
- "29159_ord": "3842",
- "2915_index": "28371",
- "29166_ord": "4046",
- "2916_index": "25243",
- "29177_ord": "3415",
- "2917_index": "39764",
- "2918_index": "30740",
- "29190_ord": "1306",
- "29191_ord": "2362",
- "2919_index": "36896",
- "291_index": "25826",
- "2920_index": "28085",
- "2921_index": "26943",
- "29224_ord": "870",
- "29226_ord": "2015",
- "29228_ord": "1269",
- "2922_index": "26707",
- "29232_ord": "4446",
- "29233_ord": "4770",
- "29234_ord": "826",
- "29237_ord": "3901",
- "29238_ord": "5352",
- "29239_ord": "2646",
- "2923_index": "24347",
- "29240_ord": "118",
- "29241_ord": "57",
- "29243_ord": "5094",
- "29245_ord": "3945",
- "2924_index": "27481",
- "29255_ord": "3366",
- "29256_ord": "5122",
- "2925_index": "20979",
- "29260_ord": "1871",
- "29261_ord": "2283",
- "29266_ord": "4617",
- "2926_index": "20348",
- "29270_ord": "4099",
- "29273_ord": "1240",
- "29275_ord": "1381",
- "29277_ord": "4515",
- "29279_ord": "437",
- "2927_index": "27752",
- "29281_ord": "4656",
- "29282_ord": "1482",
- "29286_ord": "476",
- "29287_ord": "837",
- "29289_ord": "4542",
- "2928_index": "36203",
- "29295_ord": "5339",
- "29298_ord": "655",
- "2929_index": "26041",
- "292_index": "35056",
- "29301_ord": "3407",
- "29305_ord": "847",
- "29306_ord": "4630",
- "2930_index": "40555",
- "29312_ord": "2705",
- "29313_ord": "1408",
- "2931_index": "36182",
- "29322_ord": "3468",
- "29325_ord": "2752",
- "2932_index": "22872",
- "29330_ord": "2131",
- "2933_index": "38738",
- "2934_index": "27073",
- "29356_ord": "4081",
- "29359_ord": "3340",
- "2935_index": "36292",
- "29364_ord": "4734",
- "29366_ord": "2973",
- "29367_ord": "4292",
- "29369_ord": "294",
- "2936_index": "38772",
- "29377_ord": "861",
- "29378_ord": "3742",
- "29379_ord": "4501",
- "2937_index": "23451",
- "29380_ord": "2566",
- "29384_ord": "3763",
- "2938_index": "28699",
- "29390_ord": "4659",
- "29392_ord": "5157",
- "29394_ord": "2005",
- "29399_ord": "3844",
- "2939_index": "21280",
- "293_index": "31098",
- "29401_ord": "1361",
- "29405_ord": "2368",
- "29406_ord": "2400",
- "29408_ord": "2021",
- "29409_ord": "2640",
- "2940_index": "21861",
- "29417_ord": "2060",
- "2941_index": "32735",
- "29420_ord": "4823",
- "29421_ord": "363",
- "29422_ord": "4492",
- "29424_ord": "329",
- "29425_ord": "3042",
- "29426_ord": "279",
- "2942_index": "20742",
- "29432_ord": "2388",
- "29435_ord": "4206",
- "29436_ord": "4424",
- "2943_index": "22863",
- "29443_ord": "808",
- "2944_index": "22378",
- "29450_ord": "2107",
- "29454_ord": "398",
- "2945_index": "34684",
- "29461_ord": "1717",
- "29462_ord": "1347",
- "29463_ord": "2058",
- "29467_ord": "2899",
- "29468_ord": "4986",
- "29469_ord": "5046",
- "2946_index": "22806",
- "29474_ord": "3518",
- "29477_ord": "3768",
- "2947_index": "30772",
- "29481_ord": "3125",
- "29482_ord": "439",
- "29483_ord": "159",
- "29484_ord": "2023",
- "29486_ord": "1201",
- "29489_ord": "4736",
- "2948_index": "22478",
- "29492_ord": "5601",
- "29495_ord": "2183",
- "2949_index": "31295",
- "294_index": "29369",
- "29502_ord": "65",
- "29503_ord": "5401",
- "2950_index": "38850",
- "2951_index": "30137",
- "29520_ord": "1980",
- "29527_ord": "1776",
- "2952_index": "38718",
- "29536_ord": "3218",
- "2953_index": "36837",
- "29548_ord": "796",
- "29549_ord": "4534",
- "2954_index": "30862",
- "2955_index": "30519",
- "29566_ord": "944",
- "2956_index": "36881",
- "29572_ord": "564",
- "29575_ord": "1627",
- "29577_ord": "5461",
- "29579_ord": "1117",
- "2957_index": "34506",
- "29585_ord": "389",
- "29589_ord": "2259",
- "2958_index": "22040",
- "29595_ord": "2361",
- "2959_index": "30718",
- "295_index": "21315",
- "29606_ord": "2889",
- "29609_ord": "2710",
- "2960_index": "9347",
- "29611_ord": "1406",
- "29614_ord": "4250",
- "29615_ord": "3044",
- "29616_ord": "2470",
- "29618_ord": "1598",
- "29619_ord": "663",
- "2961_index": "26881",
- "29623_ord": "767",
- "29626_ord": "985",
- "29627_ord": "2121",
- "2962_index": "40667",
- "29632_ord": "598",
- "29634_ord": "2030",
- "29637_ord": "1211",
- "2963_index": "25206",
- "29640_ord": "3383",
- "29642_ord": "5441",
- "29645_ord": "1889",
- "29647_ord": "3644",
- "29648_ord": "4354",
- "29649_ord": "1026",
- "2964_index": "21462",
- "2965_index": "9633",
- "29662_ord": "3229",
- "29664_ord": "5602",
- "29669_ord": "1285",
- "2966_index": "23762",
- "29673_ord": "3666",
- "29674_ord": "2075",
- "29677_ord": "4135",
- "29678_ord": "5586",
- "2967_index": "30691",
- "29680_ord": "453",
- "2968_index": "32564",
- "29699_ord": "2732",
- "2969_index": "27447",
- "296_index": "35014",
- "29701_ord": "545",
- "29702_ord": "3083",
- "29705_ord": "3693",
- "2970_index": "21305",
- "29711_ord": "3988",
- "29712_ord": "1978",
- "29718_ord": "5003",
- "2971_index": "26723",
- "29723_ord": "5031",
- "2972_index": "9334",
- "29730_ord": "2852",
- "29733_ord": "599",
- "29734_ord": "1442",
- "29736_ord": "2768",
- "29738_ord": "2667",
- "2973_index": "29366",
- "29742_ord": "1013",
- "29744_ord": "155",
- "29747_ord": "2991",
- "29748_ord": "5413",
- "29749_ord": "3899",
- "2974_index": "32519",
- "29750_ord": "3712",
- "29756_ord": "5160",
- "2975_index": "33211",
- "29761_ord": "4387",
- "2976_index": "24378",
- "2977_index": "40844",
- "29781_ord": "4359",
- "29785_ord": "4323",
- "29786_ord": "3896",
- "29787_ord": "2884",
- "29788_ord": "1447",
- "2978_index": "24229",
- "29790_ord": "4831",
- "29791_ord": "1433",
- "2979_index": "35853",
- "297_index": "37013",
- "29808_ord": "3704",
- "2980_index": "32753",
- "29814_ord": "2802",
- "2981_index": "33683",
- "29822_ord": "4472",
- "29824_ord": "5524",
- "29827_ord": "2616",
- "2982_index": "23221",
- "29830_ord": "4880",
- "29831_ord": "1044",
- "29835_ord": "70",
- "2983_index": "38079",
- "29840_ord": "4105",
- "2984_index": "32874",
- "29852_ord": "1594",
- "29854_ord": "3117",
- "29855_ord": "689",
- "2985_index": "21057",
- "29863_ord": "948",
- "29864_ord": "146",
- "2986_index": "35814",
- "2987_index": "12394",
- "2988_index": "35759",
- "2989_index": "40104",
- "298_index": "27589",
- "29906_ord": "4240",
- "2990_index": "32552",
- "29916_ord": "343",
- "2991_index": "29747",
- "29920_ord": "375",
- "29922_ord": "579",
- "29923_ord": "2818",
- "29926_ord": "5595",
- "2992_index": "34784",
- "29934_ord": "2731",
- "29935_ord": "4833",
- "2993_index": "22756",
- "29940_ord": "3105",
- "29942_ord": "3760",
- "29943_ord": "1155",
- "29947_ord": "600",
- "2994_index": "23815",
- "29956_ord": "5550",
- "2995_index": "30805",
- "29969_ord": "4493",
- "2996_index": "25238",
- "29976_ord": "4815",
- "29977_ord": "3394",
- "29978_ord": "3983",
- "2997_index": "25216",
- "29980_ord": "1128",
- "29983_ord": "2291",
- "29987_ord": "5476",
- "29989_ord": "2718",
- "2998_index": "32755",
- "29992_ord": "4783",
- "29993_ord": "2237",
- "29995_ord": "5485",
- "29996_ord": "2484",
- "29997_ord": "5420",
- "2999_index": "37228",
- "299_index": "20472",
- "29_index": "26632",
- "2_index": "34414",
- "30000_ord": "4352",
- "30001_ord": "2211",
- "30002_ord": "4207",
- "30003_ord": "3199",
- "30005_ord": "5560",
- "30007_ord": "4921",
- "30008_ord": "5548",
- "3000_index": "40736",
- "30010_ord": "239",
- "30011_ord": "3757",
- "30014_ord": "4426",
- "30016_ord": "4845",
- "3001_index": "32697",
- "30021_ord": "3692",
- "30028_ord": "417",
- "3002_index": "40112",
- "30030_ord": "2176",
- "30031_ord": "3526",
- "30033_ord": "3228",
- "30036_ord": "2823",
- "3003_index": "30109",
- "30041_ord": "3368",
- "30044_ord": "2664",
- "3004_index": "26188",
- "30053_ord": "338",
- "30054_ord": "1891",
- "30058_ord": "961",
- "3005_index": "40560",
- "30066_ord": "2775",
- "30068_ord": "1139",
- "3006_index": "36131",
- "30072_ord": "2343",
- "30079_ord": "1642",
- "3007_index": "33046",
- "30083_ord": "4827",
- "30086_ord": "4136",
- "3008_index": "33491",
- "30091_ord": "1971",
- "30095_ord": "357",
- "30097_ord": "2576",
- "3009_index": "28195",
- "300_index": "39063",
- "30103_ord": "2457",
- "30105_ord": "4283",
- "30106_ord": "621",
- "30109_ord": "3003",
- "3010_index": "19994",
- "30111_ord": "4178",
- "30113_ord": "1115",
- "30115_ord": "981",
- "30116_ord": "4125",
- "30117_ord": "2321",
- "3011_index": "35199",
- "30123_ord": "3405",
- "30126_ord": "902",
- "30127_ord": "4540",
- "30129_ord": "3818",
- "3012_index": "233",
- "30130_ord": "5359",
- "30132_ord": "2313",
- "30133_ord": "4174",
- "30136_ord": "893",
- "30137_ord": "2951",
- "3013_index": "8800",
- "30140_ord": "2687",
- "30141_ord": "4313",
- "30142_ord": "1028",
- "30146_ord": "506",
- "30149_ord": "3292",
- "3014_index": "20285",
- "30151_ord": "3151",
- "30152_ord": "2473",
- "30153_ord": "4458",
- "30154_ord": "2047",
- "30157_ord": "508",
- "3015_index": "22688",
- "30162_ord": "3401",
- "30164_ord": "1656",
- "30165_ord": "2450",
- "30168_ord": "2671",
- "3016_index": "37095",
- "30171_ord": "2216",
- "30174_ord": "2370",
- "30178_ord": "4794",
- "30179_ord": "3375",
- "3017_index": "38243",
- "30180_ord": "719",
- "30183_ord": "4696",
- "30186_ord": "597",
- "30187_ord": "2192",
- "3018_index": "25417",
- "30192_ord": "4856",
- "30196_ord": "949",
- "3019_index": "39608",
- "301_index": "28404",
- "30201_ord": "5450",
- "30204_ord": "385",
- "30207_ord": "5092",
- "30208_ord": "2103",
- "30209_ord": "2392",
- "3020_index": "34281",
- "3021_index": "22238",
- "30224_ord": "2625",
- "3022_index": "38544",
- "30231_ord": "2809",
- "30232_ord": "603",
- "30233_ord": "1602",
- "30239_ord": "3451",
- "3023_index": "26280",
- "30240_ord": "2197",
- "30242_ord": "912",
- "30244_ord": "1136",
- "30245_ord": "1553",
- "30246_ord": "4118",
- "30249_ord": "1440",
- "3024_index": "24265",
- "30250_ord": "4989",
- "30251_ord": "140",
- "30259_ord": "225",
- "3025_index": "26087",
- "30260_ord": "2315",
- "30261_ord": "5454",
- "30264_ord": "705",
- "3026_index": "30784",
- "30270_ord": "1958",
- "30272_ord": "2737",
- "3027_index": "31293",
- "30284_ord": "3750",
- "3028_index": "22383",
- "30292_ord": "1778",
- "30294_ord": "1359",
- "3029_index": "30337",
- "302_index": "38197",
- "30300_ord": "5233",
- "30302_ord": "5225",
- "30307_ord": "1983",
- "3030_index": "20542",
- "30315_ord": "2629",
- "3031_index": "32918",
- "30328_ord": "2539",
- "3032_index": "25466",
- "30331_ord": "69",
- "30333_ord": "127",
- "30334_ord": "2411",
- "30337_ord": "3029",
- "30338_ord": "39",
- "3033_index": "26792",
- "30340_ord": "443",
- "30342_ord": "1666",
- "30343_ord": "207",
- "30344_ord": "1653",
- "30347_ord": "5321",
- "3034_index": "23381",
- "30350_ord": "2587",
- "30353_ord": "932",
- "30355_ord": "5211",
- "30358_ord": "5319",
- "3035_index": "32903",
- "30361_ord": "286",
- "3036_index": "32494",
- "30372_ord": "4414",
- "3037_index": "24072",
- "30382_ord": "2217",
- "30385_ord": "2111",
- "30388_ord": "268",
- "3038_index": "35786",
- "30399_ord": "527",
- "3039_index": "28820",
- "303_index": "31378",
- "30402_ord": "804",
- "30405_ord": "700",
- "30406_ord": "787",
- "30408_ord": "692",
- "3040_index": "20877",
- "30410_ord": "4379",
- "30413_ord": "3941",
- "30414_ord": "5693",
- "30415_ord": "4724",
- "30416_ord": "1795",
- "30417_ord": "1726",
- "30418_ord": "1372",
- "3041_index": "22842",
- "30420_ord": "3327",
- "30422_ord": "874",
- "30423_ord": "2359",
- "30424_ord": "2003",
- "30427_ord": "1624",
- "3042_index": "29425",
- "30431_ord": "3865",
- "30437_ord": "1582",
- "3043_index": "25694",
- "30446_ord": "805",
- "30447_ord": "3951",
- "30449_ord": "5361",
- "3044_index": "29615",
- "30450_ord": "1870",
- "30452_ord": "1834",
- "30456_ord": "3636",
- "30457_ord": "2360",
- "3045_index": "38498",
- "30460_ord": "1283",
- "30462_ord": "4276",
- "30465_ord": "1384",
- "3046_index": "26696",
- "30471_ord": "11",
- "30472_ord": "2881",
- "30473_ord": "441",
- "30475_ord": "1632",
- "3047_index": "20114",
- "30489_ord": "5784",
- "3048_index": "20919",
- "30491_ord": "2626",
- "30495_ord": "782",
- "30496_ord": "1534",
- "30498_ord": "4571",
- "3049_index": "32559",
- "304_index": "22741",
- "30502_ord": "4103",
- "30504_ord": "3217",
- "30505_ord": "4778",
- "3050_index": "30917",
- "30511_ord": "4021",
- "30518_ord": "5761",
- "30519_ord": "2955",
- "3051_index": "31941",
- "30520_ord": "1563",
- "30522_ord": "5695",
- "30524_ord": "3136",
- "30528_ord": "244",
- "30529_ord": "3812",
- "3052_index": "24665",
- "30535_ord": "2345",
- "3053_index": "35803",
- "30544_ord": "1346",
- "30545_ord": "4404",
- "30546_ord": "1280",
- "3054_index": "34612",
- "30554_ord": "3455",
- "30555_ord": "3687",
- "3055_index": "38169",
- "30561_ord": "1098",
- "30562_ord": "2600",
- "30563_ord": "1378",
- "30566_ord": "4343",
- "30568_ord": "764",
- "3056_index": "31459",
- "30570_ord": "3058",
- "30571_ord": "3926",
- "30572_ord": "101",
- "3057_index": "22094",
- "30585_ord": "4670",
- "30589_ord": "1142",
- "3058_index": "30570",
- "30590_ord": "4987",
- "30591_ord": "4634",
- "30592_ord": "1894",
- "30596_ord": "2349",
- "30597_ord": "2788",
- "3059_index": "32954",
- "305_index": "9346",
- "30603_ord": "4721",
- "30604_ord": "5581",
- "30606_ord": "3305",
- "30609_ord": "750",
- "3060_index": "20971",
- "30610_ord": "1415",
- "3061_index": "34701",
- "30623_ord": "2638",
- "30624_ord": "5661",
- "30629_ord": "4010",
- "3062_index": "32782",
- "30631_ord": "50",
- "30633_ord": "1182",
- "30634_ord": "5409",
- "30636_ord": "5166",
- "30637_ord": "5803",
- "3063_index": "20316",
- "30640_ord": "2799",
- "30643_ord": "4658",
- "3064_index": "38632",
- "30651_ord": "5368",
- "30653_ord": "5198",
- "30654_ord": "1351",
- "30655_ord": "2663",
- "3065_index": "42",
- "3066_index": "23360",
- "30679_ord": "3258",
- "3067_index": "20743",
- "30683_ord": "2006",
- "30684_ord": "5811",
- "3068_index": "37148",
- "30690_ord": "2475",
- "30691_ord": "2967",
- "30693_ord": "4544",
- "30697_ord": "1198",
- "30699_ord": "980",
- "3069_index": "25306",
- "306_index": "24062",
- "30701_ord": "31",
- "30702_ord": "2681",
- "30707_ord": "148",
- "3070_index": "31455",
- "30710_ord": "5013",
- "30717_ord": "3224",
- "30718_ord": "2959",
- "30719_ord": "4150",
- "3071_index": "36755",
- "30720_ord": "5086",
- "30721_ord": "4959",
- "30722_ord": "4317",
- "3072_index": "35737",
- "30732_ord": "1400",
- "30733_ord": "74",
- "30738_ord": "2263",
- "3073_index": "32578",
- "30740_ord": "2918",
- "30742_ord": "5009",
- "30746_ord": "3441",
- "30749_ord": "1288",
- "3074_index": "20462",
- "30755_ord": "5492",
- "30757_ord": "5666",
- "30759_ord": "1390",
- "3075_index": "21076",
- "30765_ord": "2080",
- "30768_ord": "130",
- "3076_index": "31531",
- "30772_ord": "2947",
- "30775_ord": "989",
- "30776_ord": "4223",
- "30778_ord": "748",
- "3077_index": "20882",
- "30782_ord": "2864",
- "30784_ord": "3026",
- "30789_ord": "3894",
- "3078_index": "26727",
- "3079_index": "24744",
- "307_index": "25932",
- "30802_ord": "4457",
- "30805_ord": "2995",
- "3080_index": "20116",
- "30813_ord": "5512",
- "3081_index": "20935",
- "30827_ord": "4490",
- "30828_ord": "990",
- "3082_index": "20104",
- "30830_ord": "4253",
- "3083_index": "29702",
- "30844_ord": "2464",
- "30849_ord": "3400",
- "3084_index": "100",
- "30857_ord": "4964",
- "3085_index": "28207",
- "30860_ord": "3435",
- "30861_ord": "5807",
- "30862_ord": "2954",
- "30865_ord": "4488",
- "30867_ord": "5808",
- "3086_index": "35887",
- "30871_ord": "2105",
- "30872_ord": "3308",
- "30875_ord": "1074",
- "30879_ord": "532",
- "3087_index": "24472",
- "30883_ord": "4619",
- "30887_ord": "3810",
- "3088_index": "21799",
- "30896_ord": "241",
- "30897_ord": "5686",
- "30899_ord": "2138",
- "3089_index": "21009",
- "308_index": "21183",
- "30900_ord": "1969",
- "3090_index": "32633",
- "30910_ord": "4642",
- "30913_ord": "3787",
- "30917_ord": "3050",
- "3091_index": "22948",
- "30922_ord": "3748",
- "30923_ord": "2001",
- "30928_ord": "4033",
- "3092_index": "31937",
- "30932_ord": "1888",
- "30933_ord": "1208",
- "30939_ord": "1016",
- "3093_index": "31085",
- "3094_index": "28855",
- "30952_ord": "5147",
- "30956_ord": "1650",
- "3095_index": "20081",
- "30967_ord": "2742",
- "3096_index": "21592",
- "30970_ord": "4616",
- "30977_ord": "4983",
- "3097_index": "24481",
- "3098_index": "12304",
- "3099_index": "32670",
- "309_index": "38142",
- "30_index": "33446",
- "3100_index": "20381",
- "3101_index": "26597",
- "31028_ord": "4564",
- "3102_index": "22199",
- "31034_ord": "2399",
- "31035_ord": "1524",
- "31036_ord": "2036",
- "31038_ord": "4180",
- "3103_index": "21912",
- "31040_ord": "4873",
- "31041_ord": "1710",
- "31047_ord": "2579",
- "31048_ord": "183",
- "31049_ord": "2736",
- "3104_index": "38543",
- "31054_ord": "4030",
- "31056_ord": "5433",
- "31059_ord": "4035",
- "3105_index": "29940",
- "31062_ord": "3255",
- "31063_ord": "3547",
- "31066_ord": "4460",
- "31067_ord": "3537",
- "31068_ord": "5416",
- "31069_ord": "4835",
- "3106_index": "20127",
- "31070_ord": "219",
- "31071_ord": "4008",
- "31072_ord": "1953",
- "31077_ord": "2641",
- "31079_ord": "1035",
- "3107_index": "26568",
- "31080_ord": "1497",
- "31085_ord": "3093",
- "31087_ord": "3195",
- "3108_index": "36943",
- "31095_ord": "3397",
- "31096_ord": "3492",
- "31098_ord": "293",
- "3109_index": "22771",
- "310_index": "40483",
- "31104_ord": "890",
- "31105_ord": "4862",
- "31108_ord": "1309",
- "31109_ord": "984",
- "3110_index": "20317",
- "31119_ord": "1686",
- "3111_index": "35806",
- "3112_index": "25032",
- "3113_index": "28431",
- "31143_ord": "5716",
- "3114_index": "32792",
- "31155_ord": "5309",
- "3115_index": "36335",
- "31161_ord": "1141",
- "31162_ord": "4324",
- "31163_ord": "5312",
- "31165_ord": "2191",
- "31166_ord": "1448",
- "31168_ord": "2184",
- "31169_ord": "2171",
- "3116_index": "27988",
- "31171_ord": "1159",
- "31177_ord": "2624",
- "31179_ord": "760",
- "3117_index": "29854",
- "31181_ord": "4912",
- "31183_ord": "2555",
- "31185_ord": "645",
- "31186_ord": "1962",
- "3118_index": "34962",
- "31192_ord": "4057",
- "31199_ord": "432",
- "3119_index": "22367",
- "311_index": "20174",
- "31204_ord": "3297",
- "31206_ord": "1231",
- "31207_ord": "4083",
- "31209_ord": "5648",
- "3120_index": "38414",
- "31215_ord": "37",
- "31216_ord": "606",
- "3121_index": "35824",
- "31224_ord": "2084",
- "31227_ord": "5703",
- "31229_ord": "1832",
- "3122_index": "28689",
- "31232_ord": "5053",
- "3123_index": "32468",
- "31243_ord": "2703",
- "31245_ord": "1287",
- "31246_ord": "4121",
- "3124_index": "20820",
- "31252_ord": "1342",
- "31255_ord": "3134",
- "31258_ord": "3721",
- "3125_index": "29481",
- "31262_ord": "4820",
- "31264_ord": "215",
- "31267_ord": "2224",
- "3126_index": "24701",
- "3127_index": "37057",
- "31283_ord": "3328",
- "31287_ord": "4201",
- "3128_index": "38654",
- "31291_ord": "5507",
- "31292_ord": "3371",
- "31293_ord": "3027",
- "31295_ord": "2949",
- "3129_index": "33218",
- "312_index": "20393",
- "31302_ord": "3369",
- "3130_index": "12301",
- "31313_ord": "2320",
- "31319_ord": "4084",
- "3131_index": "24245",
- "3132_index": "21979",
- "3133_index": "32923",
- "31344_ord": "3633",
- "31348_ord": "5609",
- "3134_index": "31255",
- "31350_ord": "745",
- "31351_ord": "568",
- "31353_ord": "3300",
- "31354_ord": "4899",
- "31359_ord": "4605",
- "3135_index": "32458",
- "31361_ord": "1176",
- "31363_ord": "2190",
- "31364_ord": "1036",
- "31368_ord": "1783",
- "3136_index": "30524",
- "31373_ord": "2285",
- "31377_ord": "2706",
- "31378_ord": "303",
- "3137_index": "34388",
- "31381_ord": "793",
- "31382_ord": "5585",
- "31383_ord": "4163",
- "31384_ord": "5553",
- "31388_ord": "3627",
- "31389_ord": "3578",
- "3138_index": "27740",
- "31391_ord": "4740",
- "31392_ord": "491",
- "31395_ord": "2764",
- "31397_ord": "5498",
- "31398_ord": "5467",
- "3139_index": "28911",
- "313_index": "26060",
- "31404_ord": "5203",
- "31405_ord": "4689",
- "3140_index": "32570",
- "3141_index": "36985",
- "31423_ord": "2623",
- "3142_index": "32541",
- "31435_ord": "1600",
- "3143_index": "26421",
- "31446_ord": "4849",
- "31449_ord": "1262",
- "3144_index": "33323",
- "31454_ord": "761",
- "31455_ord": "3070",
- "31456_ord": "3156",
- "31459_ord": "3056",
- "3145_index": "38684",
- "31461_ord": "3980",
- "31469_ord": "4853",
- "3146_index": "27964",
- "31471_ord": "59",
- "3147_index": "36965",
- "31481_ord": "1468",
- "31482_ord": "574",
- "31485_ord": "2533",
- "31487_ord": "5055",
- "3148_index": "26389",
- "31491_ord": "1320",
- "31492_ord": "4533",
- "31494_ord": "4116",
- "31496_ord": "2686",
- "31499_ord": "360",
- "3149_index": "39542",
- "314_index": "21695",
- "31505_ord": "1345",
- "31508_ord": "2585",
- "3150_index": "24493",
- "31513_ord": "733",
- "31515_ord": "3994",
- "31518_ord": "481",
- "3151_index": "30151",
- "31520_ord": "2862",
- "31524_ord": "172",
- "31525_ord": "3831",
- "31526_ord": "1348",
- "31528_ord": "2057",
- "3152_index": "28118",
- "31531_ord": "3076",
- "31532_ord": "2256",
- "3153_index": "33324",
- "31546_ord": "2548",
- "31548_ord": "2405",
- "3154_index": "20449",
- "3155_index": "26690",
- "31561_ord": "2234",
- "31563_ord": "5380",
- "31567_ord": "906",
- "31568_ord": "1722",
- "31569_ord": "4955",
- "3156_index": "31456",
- "31570_ord": "3985",
- "31572_ord": "3548",
- "31574_ord": "4449",
- "31579_ord": "1075",
- "3157_index": "39296",
- "31581_ord": "2071",
- "31584_ord": "2087",
- "3158_index": "24043",
- "31598_ord": "1592",
- "3159_index": "36413",
- "315_index": "23448",
- "31601_ord": "5002",
- "31605_ord": "1422",
- "31607_ord": "558",
- "31609_ord": "1660",
- "3160_index": "22564",
- "31614_ord": "2252",
- "31616_ord": "4528",
- "3161_index": "32789",
- "31629_ord": "4886",
- "3162_index": "28041",
- "31636_ord": "1436",
- "31637_ord": "2581",
- "31639_ord": "3544",
- "3163_index": "34162",
- "31649_ord": "5048",
- "3164_index": "38797",
- "31654_ord": "2159",
- "31655_ord": "5056",
- "31657_ord": "1025",
- "31659_ord": "1477",
- "3165_index": "21191",
- "31661_ord": "1690",
- "31665_ord": "2900",
- "31668_ord": "1872",
- "3166_index": "24608",
- "31672_ord": "3940",
- "3167_index": "27425",
- "31681_ord": "230",
- "31686_ord": "913",
- "31687_ord": "3428",
- "3168_index": "26122",
- "31697_ord": "983",
- "31699_ord": "2073",
- "3169_index": "39569",
- "316_index": "21368",
- "31705_ord": "2573",
- "31709_ord": "3829",
- "3170_index": "23409",
- "31713_ord": "189",
- "3171_index": "23814",
- "31726_ord": "734",
- "31729_ord": "4672",
- "3172_index": "33503",
- "31735_ord": "1552",
- "3173_index": "27135",
- "31742_ord": "1571",
- "3174_index": "25391",
- "31751_ord": "5414",
- "31755_ord": "2408",
- "31756_ord": "1151",
- "31759_ord": "4924",
- "3175_index": "33260",
- "3176_index": "23481",
- "3177_index": "34256",
- "31783_ord": "177",
- "31786_ord": "1628",
- "3178_index": "25806",
- "3179_index": "25114",
- "317_index": "34928",
- "31800_ord": "2415",
- "31807_ord": "5200",
- "31809_ord": "2419",
- "3180_index": "35746",
- "3181_index": "33040",
- "31821_ord": "5373",
- "3182_index": "25379",
- "3183_index": "26432",
- "3184_index": "26550",
- "31859_ord": "3928",
- "3185_index": "35819",
- "31867_ord": "1852",
- "31869_ord": "4110",
- "3186_index": "21439",
- "3187_index": "35882",
- "31881_ord": "1326",
- "31889_ord": "5038",
- "3188_index": "21360",
- "31890_ord": "2417",
- "31893_ord": "3493",
- "31895_ord": "3586",
- "31896_ord": "1757",
- "3189_index": "20551",
- "318_index": "20508",
- "31900_ord": "3861",
- "31901_ord": "1878",
- "31903_ord": "5337",
- "31908_ord": "986",
- "31909_ord": "1775",
- "3190_index": "39064",
- "31914_ord": "4904",
- "31918_ord": "2593",
- "3191_index": "21487",
- "31921_ord": "2684",
- "31922_ord": "812",
- "31923_ord": "4242",
- "31929_ord": "627",
- "3192_index": "37050",
- "31932_ord": "4133",
- "31933_ord": "2813",
- "31934_ord": "5144",
- "31937_ord": "3092",
- "3193_index": "24380",
- "31941_ord": "3051",
- "31946_ord": "1325",
- "31948_ord": "5099",
- "31949_ord": "821",
- "3194_index": "37196",
- "31957_ord": "1577",
- "31958_ord": "4665",
- "31959_ord": "4412",
- "3195_index": "31087",
- "31961_ord": "3643",
- "31964_ord": "1092",
- "31967_ord": "1412",
- "31968_ord": "334",
- "3196_index": "21949",
- "3197_index": "22300",
- "31983_ord": "3424",
- "3198_index": "21035",
- "31995_ord": "3791",
- "3199_index": "30003",
- "319_index": "21010",
- "31_index": "30701",
- "3200_index": "24140",
- "32010_ord": "5620",
- "3201_index": "24974",
- "3202_index": "20518",
- "32032_ord": "934",
- "32034_ord": "3962",
- "32039_ord": "3261",
- "3203_index": "36460",
- "32043_ord": "1376",
- "32044_ord": "1767",
- "32047_ord": "4917",
- "3204_index": "21621",
- "3205_index": "29066",
- "3206_index": "33030",
- "3207_index": "35273",
- "3208_index": "22810",
- "32092_ord": "1633",
- "3209_index": "29060",
- "320_index": "23724",
- "3210_index": "34523",
- "32110_ord": "5028",
- "32119_ord": "1323",
- "3211_index": "20769",
- "3212_index": "23100",
- "3213_index": "33099",
- "3214_index": "25209",
- "3215_index": "28866",
- "32166_ord": "2816",
- "3216_index": "38068",
- "3217_index": "30504",
- "3218_index": "29536",
- "3219_index": "25164",
- "321_index": "26045",
- "3220_index": "8251",
- "3221_index": "24215",
- "3222_index": "25387",
- "3223_index": "24796",
- "3224_index": "30717",
- "3225_index": "22880",
- "3226_index": "21344",
- "3227_index": "22725",
- "32288_ord": "4885",
- "3228_index": "30033",
- "32290_ord": "1216",
- "3229_index": "29662",
- "322_index": "32687",
- "32303_ord": "1498",
- "3230_index": "32463",
- "32315_ord": "5063",
- "3231_index": "37",
- "32321_ord": "2251",
- "32327_ord": "3338",
- "3232_index": "25730",
- "3233_index": "25950",
- "3234_index": "36865",
- "3235_index": "21264",
- "3236_index": "33275",
- "3237_index": "21385",
- "32386_ord": "652",
- "3238_index": "38398",
- "3239_index": "24545",
- "323_index": "32771",
- "32404_ord": "5542",
- "3240_index": "25294",
- "32416_ord": "3660",
- "32417_ord": "4079",
- "32418_ord": "5737",
- "32419_ord": "2286",
- "3241_index": "28558",
- "32420_ord": "4708",
- "32421_ord": "1441",
- "32422_ord": "1845",
- "32423_ord": "162",
- "32424_ord": "2527",
- "32426_ord": "516",
- "32427_ord": "1083",
- "32428_ord": "2841",
- "32429_ord": "625",
- "3242_index": "21380",
- "32430_ord": "2284",
- "32431_ord": "3536",
- "32432_ord": "4480",
- "32433_ord": "1186",
- "32434_ord": "858",
- "32435_ord": "1038",
- "32437_ord": "1630",
- "32438_ord": "2142",
- "32439_ord": "358",
- "3243_index": "32561",
- "32440_ord": "3979",
- "32441_ord": "5039",
- "32442_ord": "3466",
- "32443_ord": "1297",
- "32445_ord": "2432",
- "32446_ord": "165",
- "32447_ord": "715",
- "32448_ord": "635",
- "32449_ord": "1122",
- "3244_index": "25380",
- "32451_ord": "1058",
- "32452_ord": "642",
- "32453_ord": "1728",
- "32454_ord": "414",
- "32455_ord": "2193",
- "32456_ord": "4529",
- "32458_ord": "3135",
- "3245_index": "35272",
- "32460_ord": "5355",
- "32461_ord": "5710",
- "32462_ord": "5316",
- "32463_ord": "3230",
- "32464_ord": "5129",
- "32465_ord": "2570",
- "32466_ord": "4144",
- "32467_ord": "3303",
- "32468_ord": "3123",
- "32469_ord": "910",
- "3246_index": "40150",
- "32470_ord": "1089",
- "32472_ord": "1723",
- "32473_ord": "1724",
- "32474_ord": "4015",
- "32475_ord": "1530",
- "32476_ord": "4478",
- "32477_ord": "5657",
- "32478_ord": "4090",
- "32479_ord": "1054",
- "3247_index": "28210",
- "32480_ord": "1153",
- "32481_ord": "2170",
- "32482_ord": "1077",
- "32483_ord": "1923",
- "32485_ord": "2713",
- "32486_ord": "754",
- "32487_ord": "427",
- "32488_ord": "4078",
- "32489_ord": "2354",
- "3248_index": "33146",
- "32490_ord": "1785",
- "32491_ord": "982",
- "32493_ord": "1253",
- "32494_ord": "3036",
- "32495_ord": "1867",
- "32496_ord": "361",
- "32499_ord": "2277",
- "3249_index": "36764",
- "324_index": "35752",
- "32500_ord": "1065",
- "32501_ord": "4613",
- "32502_ord": "2117",
- "32503_ord": "1425",
- "32504_ord": "5058",
- "32506_ord": "2373",
- "32507_ord": "2657",
- "32508_ord": "2819",
- "32509_ord": "450",
- "3250_index": "26207",
- "32510_ord": "2680",
- "32511_ord": "1278",
- "32512_ord": "3474",
- "32513_ord": "3396",
- "32516_ord": "3352",
- "32517_ord": "2807",
- "32518_ord": "1410",
- "32519_ord": "2974",
- "3251_index": "24698",
- "32520_ord": "3349",
- "32521_ord": "966",
- "32526_ord": "1550",
- "3252_index": "25422",
- "32530_ord": "5388",
- "32531_ord": "2744",
- "32532_ord": "2204",
- "32533_ord": "1865",
- "32534_ord": "775",
- "32535_ord": "1373",
- "32536_ord": "5307",
- "32537_ord": "2381",
- "32538_ord": "5221",
- "3253_index": "20747",
- "32540_ord": "1613",
- "32541_ord": "3142",
- "32542_ord": "643",
- "32543_ord": "4445",
- "32544_ord": "351",
- "32546_ord": "1984",
- "32548_ord": "2228",
- "32549_ord": "4351",
- "3254_index": "81",
- "32551_ord": "4151",
- "32552_ord": "2990",
- "32553_ord": "2542",
- "32554_ord": "3918",
- "32557_ord": "4050",
- "32558_ord": "4277",
- "32559_ord": "3049",
- "3255_index": "31062",
- "32560_ord": "4722",
- "32561_ord": "3243",
- "32563_ord": "3419",
- "32564_ord": "2968",
- "32565_ord": "1754",
- "32566_ord": "5090",
- "32568_ord": "5344",
- "3256_index": "36160",
- "32570_ord": "3140",
- "32578_ord": "3073",
- "3257_index": "35280",
- "32580_ord": "1899",
- "32581_ord": "1788",
- "3258_index": "30679",
- "32592_ord": "2728",
- "32593_ord": "3631",
- "32596_ord": "4200",
- "32597_ord": "2643",
- "32599_ord": "4335",
- "3259_index": "36527",
- "325_index": "21737",
- "32600_ord": "4471",
- "32602_ord": "1303",
- "32609_ord": "954",
- "3260_index": "26021",
- "32610_ord": "2041",
- "32613_ord": "3764",
- "32617_ord": "842",
- "32618_ord": "5054",
- "3261_index": "32039",
- "32622_ord": "5535",
- "32626_ord": "3445",
- "32628_ord": "5060",
- "3262_index": "28067",
- "32633_ord": "3090",
- "3263_index": "21890",
- "32641_ord": "727",
- "3264_index": "23305",
- "32650_ord": "2456",
- "32652_ord": "1196",
- "32654_ord": "4781",
- "32657_ord": "3845",
- "3265_index": "112",
- "32660_ord": "3888",
- "32662_ord": "13",
- "32666_ord": "3274",
- "3266_index": "38256",
- "32670_ord": "3099",
- "32671_ord": "5298",
- "32673_ord": "4004",
- "32676_ord": "2486",
- "3267_index": "37124",
- "32687_ord": "322",
- "3268_index": "24092",
- "32690_ord": "1813",
- "32696_ord": "4952",
- "32697_ord": "3001",
- "3269_index": "37152",
- "326_index": "20828",
- "32701_ord": "2599",
- "32703_ord": "2306",
- "32705_ord": "1324",
- "32709_ord": "5768",
- "3270_index": "27741",
- "32714_ord": "3363",
- "32716_ord": "891",
- "32718_ord": "1648",
- "3271_index": "25384",
- "32724_ord": "2467",
- "32725_ord": "3676",
- "32728_ord": "4961",
- "3272_index": "24202",
- "32735_ord": "2941",
- "32736_ord": "2892",
- "32737_ord": "4843",
- "3273_index": "21321",
- "32742_ord": "2178",
- "32745_ord": "1945",
- "3274_index": "32666",
- "32750_ord": "4243",
- "32752_ord": "400",
- "32753_ord": "2980",
- "32755_ord": "2998",
- "3275_index": "23518",
- "32763_ord": "586",
- "32764_ord": "2401",
- "32768_ord": "5219",
- "32769_ord": "2091",
- "3276_index": "38662",
- "32771_ord": "323",
- "32772_ord": "4868",
- "32773_ord": "5284",
- "32774_ord": "697",
- "32779_ord": "1188",
- "3277_index": "27844",
- "32780_ord": "2308",
- "32781_ord": "1437",
- "32782_ord": "3062",
- "32784_ord": "615",
- "32789_ord": "3161",
- "3278_index": "23195",
- "32791_ord": "830",
- "32792_ord": "3114",
- "32793_ord": "391",
- "32796_ord": "285",
- "3279_index": "26976",
- "327_index": "36802",
- "32806_ord": "5162",
- "32808_ord": "44",
- "3280_index": "21825",
- "32819_ord": "3510",
- "3281_index": "25628",
- "32822_ord": "4657",
- "32824_ord": "2635",
- "32827_ord": "3859",
- "32829_ord": "3705",
- "3282_index": "26345",
- "32831_ord": "1205",
- "32834_ord": "2815",
- "32838_ord": "5677",
- "3283_index": "22307",
- "32842_ord": "4349",
- "32843_ord": "4811",
- "32844_ord": "5754",
- "3284_index": "39751",
- "32850_ord": "1936",
- "32852_ord": "633",
- "32856_ord": "614",
- "32858_ord": "1737",
- "3285_index": "33655",
- "3286_index": "23046",
- "32873_ord": "1291",
- "32874_ord": "2984",
- "3287_index": "28966",
- "3288_index": "27016",
- "32899_ord": "4006",
- "3289_index": "36282",
- "328_index": "24311",
- "32900_ord": "5769",
- "32902_ord": "3773",
- "32903_ord": "3035",
- "32905_ord": "639",
- "32907_ord": "3876",
- "32908_ord": "4828",
- "3290_index": "20305",
- "32915_ord": "2480",
- "32918_ord": "3031",
- "3291_index": "20556",
- "32920_ord": "5279",
- "32922_ord": "4730",
- "32923_ord": "3133",
- "32925_ord": "5385",
- "32928_ord": "2746",
- "32929_ord": "575",
- "3292_index": "30149",
- "32930_ord": "5151",
- "32932_ord": "3617",
- "32933_ord": "1960",
- "32937_ord": "1493",
- "32938_ord": "774",
- "3293_index": "28821",
- "32942_ord": "3837",
- "32943_ord": "472",
- "32945_ord": "3488",
- "32946_ord": "1796",
- "32948_ord": "226",
- "3294_index": "26000",
- "32954_ord": "3059",
- "32957_ord": "1698",
- "32958_ord": "698",
- "32959_ord": "2824",
- "3295_index": "24321",
- "32960_ord": "5599",
- "32961_ord": "1998",
- "32963_ord": "3622",
- "32964_ord": "4440",
- "32966_ord": "4947",
- "3296_index": "22826",
- "32972_ord": "2605",
- "32974_ord": "2110",
- "3297_index": "31204",
- "32982_ord": "3638",
- "32986_ord": "3450",
- "32988_ord": "4692",
- "32989_ord": "1511",
- "3298_index": "22922",
- "32990_ord": "1111",
- "32993_ord": "2584",
- "32996_ord": "4500",
- "32997_ord": "5287",
- "32999_ord": "5621",
- "3299_index": "20754",
- "329_index": "29424",
- "32_index": "24825",
- "33002_ord": "2695",
- "33003_ord": "2214",
- "33005_ord": "5296",
- "33007_ord": "3593",
- "33008_ord": "1611",
- "33009_ord": "2264",
- "3300_index": "31353",
- "33011_ord": "4953",
- "33014_ord": "5131",
- "33016_ord": "1919",
- "33018_ord": "2691",
- "3301_index": "19982",
- "33021_ord": "4552",
- "33022_ord": "3895",
- "33025_ord": "4814",
- "33026_ord": "5035",
- "3302_index": "65374",
- "33030_ord": "3206",
- "33033_ord": "3974",
- "33034_ord": "3534",
- "33037_ord": "4852",
- "33039_ord": "1248",
- "3303_index": "32467",
- "33040_ord": "3181",
- "33041_ord": "2435",
- "33043_ord": "3438",
- "33044_ord": "4518",
- "33046_ord": "3007",
- "3304_index": "23649",
- "33050_ord": "1961",
- "3305_index": "30606",
- "3306_index": "23059",
- "33071_ord": "5210",
- "33073_ord": "1160",
- "33074_ord": "5267",
- "3307_index": "23578",
- "33080_ord": "2280",
- "33086_ord": "5767",
- "3308_index": "30872",
- "33094_ord": "262",
- "33096_ord": "815",
- "33097_ord": "5037",
- "33098_ord": "5065",
- "33099_ord": "3213",
- "3309_index": "20478",
- "330_index": "22376",
- "33100_ord": "1625",
- "33104_ord": "5096",
- "33105_ord": "3838",
- "33107_ord": "2120",
- "33108_ord": "2825",
- "33109_ord": "4417",
- "3310_index": "40638",
- "3311_index": "39284",
- "33125_ord": "2230",
- "33129_ord": "4155",
- "3312_index": "25321",
- "33133_ord": "2022",
- "33134_ord": "755",
- "33136_ord": "2335",
- "33137_ord": "2336",
- "3313_index": "24684",
- "33140_ord": "4951",
- "33145_ord": "2461",
- "33146_ord": "3248",
- "33147_ord": "5432",
- "33148_ord": "816",
- "3314_index": "23736",
- "33150_ord": "4741",
- "33151_ord": "3766",
- "33152_ord": "2797",
- "3315_index": "25600",
- "33160_ord": "3382",
- "33162_ord": "1481",
- "33167_ord": "340",
- "33169_ord": "2222",
- "3316_index": "27001",
- "33176_ord": "2578",
- "33179_ord": "5410",
- "3317_index": "24724",
- "33180_ord": "1824",
- "33181_ord": "1152",
- "3318_index": "38144",
- "33190_ord": "5643",
- "33192_ord": "1085",
- "3319_index": "26829",
- "331_index": "20301",
- "33203_ord": "2880",
- "3320_index": "20070",
- "33210_ord": "4593",
- "33211_ord": "2975",
- "33216_ord": "4579",
- "33218_ord": "3129",
- "33219_ord": "620",
- "3321_index": "36198",
- "33222_ord": "505",
- "33226_ord": "5165",
- "3322_index": "23682",
- "3323_index": "27873",
- "33243_ord": "1504",
- "3324_index": "33328",
- "33251_ord": "4162",
- "33255_ord": "1316",
- "33258_ord": "3745",
- "3325_index": "25308",
- "33260_ord": "3175",
- "33261_ord": "4883",
- "33267_ord": "5217",
- "33268_ord": "1812",
- "3326_index": "21913",
- "33275_ord": "3236",
- "33276_ord": "1981",
- "33278_ord": "2619",
- "3327_index": "30420",
- "33280_ord": "1250",
- "33281_ord": "5364",
- "33282_ord": "5795",
- "33284_ord": "5253",
- "33285_ord": "1756",
- "33286_ord": "3479",
- "3328_index": "31283",
- "33292_ord": "5555",
- "33293_ord": "4376",
- "33296_ord": "2644",
- "33298_ord": "835",
- "3329_index": "23114",
- "332_index": "24452",
- "33300_ord": "237",
- "33307_ord": "1510",
- "33308_ord": "5561",
- "3330_index": "26757",
- "33310_ord": "2676",
- "33311_ord": "4503",
- "33313_ord": "1099",
- "3331_index": "33609",
- "33322_ord": "1705",
- "33323_ord": "3144",
- "33324_ord": "3153",
- "33328_ord": "3324",
- "33329_ord": "4874",
- "3332_index": "21547",
- "33333_ord": "3718",
- "33334_ord": "818",
- "33335_ord": "345",
- "33337_ord": "4567",
- "3333_index": "38046",
- "3334_index": "35839",
- "33351_ord": "3423",
- "3335_index": "20051",
- "33368_ord": "1781",
- "3336_index": "28113",
- "3337_index": "29030",
- "3338_index": "32327",
- "33390_ord": "979",
- "33391_ord": "1030",
- "33392_ord": "4514",
- "33394_ord": "4456",
- "33395_ord": "569",
- "3339_index": "20513",
- "333_index": "36175",
- "33402_ord": "452",
- "33406_ord": "5323",
- "3340_index": "29359",
- "33410_ord": "4519",
- "33416_ord": "2502",
- "33419_ord": "26",
- "3341_index": "20809",
- "33421_ord": "1275",
- "33422_ord": "2913",
- "33426_ord": "1443",
- "3342_index": "24555",
- "33432_ord": "48",
- "33433_ord": "1763",
- "33436_ord": "408",
- "33437_ord": "4819",
- "3343_index": "21512",
- "33441_ord": "5688",
- "33445_ord": "1848",
- "33446_ord": "30",
- "3344_index": "54",
- "33450_ord": "2893",
- "33451_ord": "470",
- "33452_ord": "636",
- "33453_ord": "896",
- "33454_ord": "5159",
- "33455_ord": "4161",
- "33457_ord": "1001",
- "33459_ord": "1912",
- "3345_index": "8213",
- "33463_ord": "2637",
- "33464_ord": "5742",
- "33465_ord": "4569",
- "33469_ord": "4915",
- "3346_index": "38181",
- "33476_ord": "1502",
- "33479_ord": "5288",
- "3347_index": "28270",
- "33483_ord": "5235",
- "33484_ord": "2912",
- "33485_ord": "227",
- "33486_ord": "5658",
- "33487_ord": "2753",
- "33489_ord": "5745",
- "3348_index": "20150",
- "33490_ord": "4262",
- "33491_ord": "3008",
- "33492_ord": "1821",
- "33493_ord": "1741",
- "33495_ord": "2878",
- "33499_ord": "5304",
- "3349_index": "32520",
- "334_index": "31968",
- "33502_ord": "5389",
- "33503_ord": "3172",
- "33505_ord": "3597",
- "33507_ord": "2860",
- "33509_ord": "1669",
- "3350_index": "21811",
- "33510_ord": "520",
- "33515_ord": "5736",
- "33519_ord": "1243",
- "3351_index": "27811",
- "33521_ord": "3716",
- "33524_ord": "4148",
- "33527_ord": "2418",
- "33529_ord": "975",
- "3352_index": "32516",
- "33531_ord": "3839",
- "33536_ord": "2141",
- "33537_ord": "2463",
- "33538_ord": "5172",
- "33539_ord": "1938",
- "3353_index": "39076",
- "33540_ord": "1809",
- "33541_ord": "791",
- "33542_ord": "644",
- "33545_ord": "5030",
- "3354_index": "34770",
- "33550_ord": "4709",
- "33551_ord": "5687",
- "33556_ord": "3910",
- "33557_ord": "1758",
- "33559_ord": "4462",
- "3355_index": "35787",
- "33564_ord": "1095",
- "3356_index": "20050",
- "33575_ord": "2002",
- "33576_ord": "1078",
- "33579_ord": "5785",
- "3357_index": "35772",
- "33580_ord": "5636",
- "33581_ord": "281",
- "33583_ord": "5290",
- "33585_ord": "5019",
- "33588_ord": "3473",
- "33589_ord": "22",
- "3358_index": "22374",
- "33590_ord": "5146",
- "33592_ord": "4171",
- "33593_ord": "1476",
- "3359_index": "28354",
- "335_index": "24402",
- "33600_ord": "5206",
- "33603_ord": "1950",
- "33606_ord": "1368",
- "33609_ord": "3331",
- "3360_index": "26497",
- "33615_ord": "4661",
- "33616_ord": "2290",
- "33618_ord": "2346",
- "3361_index": "25284",
- "33620_ord": "204",
- "33626_ord": "5047",
- "33628_ord": "4572",
- "3362_index": "27051",
- "33630_ord": "4482",
- "33631_ord": "2112",
- "33632_ord": "1090",
- "33633_ord": "421",
- "33635_ord": "4848",
- "33636_ord": "5591",
- "33637_ord": "2609",
- "33638_ord": "4538",
- "33639_ord": "5740",
- "3363_index": "32714",
- "33642_ord": "5114",
- "33643_ord": "1404",
- "33647_ord": "3916",
- "3364_index": "26151",
- "33655_ord": "3285",
- "33659_ord": "86",
- "3365_index": "27189",
- "33660_ord": "3658",
- "33669_ord": "1185",
- "3366_index": "29255",
- "33670_ord": "1100",
- "33673_ord": "3783",
- "33678_ord": "1568",
- "3367_index": "26633",
- "33682_ord": "1838",
- "33683_ord": "2981",
- "33688_ord": "1794",
- "3368_index": "30041",
- "33692_ord": "5018",
- "33694_ord": "1803",
- "33696_ord": "2673",
- "3369_index": "31302",
- "336_index": "38518",
- "33704_ord": "1135",
- "33705_ord": "2711",
- "33707_ord": "4824",
- "3370_index": "25935",
- "33713_ord": "5372",
- "33714_ord": "2350",
- "33716_ord": "2395",
- "33719_ord": "4927",
- "3371_index": "31292",
- "33721_ord": "5729",
- "33722_ord": "1224",
- "33725_ord": "4548",
- "33729_ord": "2085",
- "3372_index": "39122",
- "33733_ord": "158",
- "33735_ord": "4219",
- "33738_ord": "538",
- "3373_index": "28577",
- "33740_ord": "4757",
- "33743_ord": "5292",
- "33745_ord": "1220",
- "3374_index": "34546",
- "33756_ord": "3439",
- "33759_ord": "397",
- "3375_index": "30179",
- "33760_ord": "2903",
- "33761_ord": "5308",
- "33769_ord": "4107",
- "3376_index": "36136",
- "33777_ord": "5379",
- "33778_ord": "4978",
- "3377_index": "20248",
- "33789_ord": "3726",
- "3378_index": "38221",
- "33795_ord": "1883",
- "33796_ord": "1721",
- "3379_index": "25661",
- "337_index": "23576",
- "33804_ord": "4719",
- "33805_ord": "2125",
- "33806_ord": "4022",
- "3380_index": "39336",
- "3381_index": "20826",
- "33821_ord": "1913",
- "33828_ord": "1203",
- "33829_ord": "1532",
- "3382_index": "33160",
- "33830_ord": "2122",
- "33831_ord": "5387",
- "33832_ord": "4645",
- "3383_index": "29640",
- "33848_ord": "179",
- "3384_index": "36461",
- "33853_ord": "5812",
- "3385_index": "22396",
- "33862_ord": "191",
- "3386_index": "105",
- "33879_ord": "3878",
- "3387_index": "39278",
- "33883_ord": "3615",
- "33889_ord": "1060",
- "3388_index": "26531",
- "33891_ord": "1903",
- "33897_ord": "4747",
- "33899_ord": "3738",
- "3389_index": "35766",
- "338_index": "30053",
- "33900_ord": "4279",
- "33901_ord": "139",
- "33905_ord": "2044",
- "33907_ord": "794",
- "33909_ord": "771",
- "3390_index": "22963",
- "33914_ord": "5351",
- "3391_index": "20851",
- "33922_ord": "951",
- "3392_index": "35845",
- "33931_ord": "4264",
- "3393_index": "27839",
- "33943_ord": "513",
- "33945_ord": "2294",
- "33948_ord": "602",
- "3394_index": "29977",
- "3395_index": "27961",
- "33967_ord": "1835",
- "3396_index": "32513",
- "33970_ord": "2474",
- "33976_ord": "4769",
- "33978_ord": "4746",
- "3397_index": "31095",
- "33981_ord": "5081",
- "33983_ord": "759",
- "33988_ord": "2013",
- "3398_index": "39279",
- "33993_ord": "3699",
- "33997_ord": "4855",
- "3399_index": "23033",
- "339_index": "24322",
- "33_index": "27682",
- "33_ord": "4383",
- "34000_ord": "1029",
- "34003_ord": "3709",
- "34006_ord": "503",
- "3400_index": "30849",
- "34013_ord": "1536",
- "34015_ord": "3591",
- "3401_index": "30162",
- "34022_ord": "2414",
- "34028_ord": "4183",
- "3402_index": "25112",
- "3403_index": "35265",
- "34044_ord": "2613",
- "3404_index": "34905",
- "3405_index": "30123",
- "34065_ord": "4676",
- "34067_ord": "889",
- "3406_index": "21634",
- "34071_ord": "3891",
- "34074_ord": "88",
- "3407_index": "29301",
- "34081_ord": "1654",
- "3408_index": "26720",
- "34091_ord": "5702",
- "34092_ord": "480",
- "3409_index": "27427",
- "340_index": "33167",
- "34103_ord": "533",
- "34106_ord": "5568",
- "34108_ord": "1932",
- "34109_ord": "4829",
- "3410_index": "40836",
- "34115_ord": "77",
- "3411_index": "24554",
- "34121_ord": "3753",
- "34122_ord": "3618",
- "3412_index": "26027",
- "34137_ord": "2627",
- "3413_index": "21500",
- "34148_ord": "1057",
- "3414_index": "21350",
- "34152_ord": "5469",
- "3415_index": "29177",
- "34162_ord": "3163",
- "34164_ord": "4625",
- "3416_index": "20355",
- "34174_ord": "2293",
- "3417_index": "21568",
- "34180_ord": "3437",
- "34183_ord": "2394",
- "3418_index": "26297",
- "34191_ord": "270",
- "3419_index": "32563",
- "341_index": "24420",
- "34203_ord": "3567",
- "34204_ord": "3563",
- "3420_index": "34224",
- "34212_ord": "572",
- "34216_ord": "610",
- "34218_ord": "4296",
- "3421_index": "39640",
- "34222_ord": "4762",
- "34223_ord": "1246",
- "34224_ord": "3420",
- "3422_index": "46",
- "3423_index": "33351",
- "34241_ord": "392",
- "34249_ord": "3626",
- "3424_index": "31983",
- "34255_ord": "5301",
- "34256_ord": "3177",
- "34259_ord": "2090",
- "3425_index": "27902",
- "34261_ord": "1621",
- "34268_ord": "5487",
- "3426_index": "106",
- "34276_ord": "4510",
- "3427_index": "20313",
- "34281_ord": "3020",
- "3428_index": "31687",
- "34299_ord": "1172",
- "3429_index": "26212",
- "342_index": "22977",
- "34303_ord": "4229",
- "3430_index": "25947",
- "3431_index": "35780",
- "34321_ord": "3869",
- "3432_index": "25159",
- "3433_index": "25520",
- "3434_index": "21516",
- "3435_index": "30860",
- "34360_ord": "556",
- "3436_index": "23591",
- "3437_index": "34180",
- "34382_ord": "2332",
- "34383_ord": "4299",
- "34384_ord": "5646",
- "34385_ord": "3580",
- "34388_ord": "3137",
- "3438_index": "33043",
- "34394_ord": "914",
- "34398_ord": "2225",
- "3439_index": "33756",
- "343_index": "29916",
- "34402_ord": "4834",
- "3440_index": "24080",
- "34411_ord": "2762",
- "34412_ord": "735",
- "34414_ord": "2",
- "34417_ord": "2212",
- "3441_index": "30746",
- "34425_ord": "4713",
- "34426_ord": "5295",
- "34429_ord": "5001",
- "3442_index": "24616",
- "34430_ord": "3482",
- "34432_ord": "4919",
- "34433_ord": "4712",
- "34434_ord": "920",
- "3443_index": "25182",
- "34442_ord": "3464",
- "34444_ord": "5044",
- "3444_index": "39030",
- "34451_ord": "849",
- "34453_ord": "609",
- "3445_index": "32626",
- "34461_ord": "3978",
- "34465_ord": "2223",
- "34467_ord": "1699",
- "34468_ord": "4703",
- "3446_index": "28583",
- "34473_ord": "182",
- "34479_ord": "2062",
- "3447_index": "38665",
- "34480_ord": "2458",
- "3448_index": "26376",
- "34496_ord": "4470",
- "3449_index": "21053",
- "344_index": "28526",
- "34502_ord": "537",
- "34503_ord": "3906",
- "34506_ord": "2957",
- "34507_ord": "4086",
- "3450_index": "32986",
- "34510_ord": "4576",
- "34512_ord": "1833",
- "34516_ord": "390",
- "3451_index": "30239",
- "34521_ord": "5391",
- "34523_ord": "3210",
- "34527_ord": "2689",
- "3452_index": "39550",
- "34532_ord": "5277",
- "34537_ord": "5592",
- "3453_index": "20808",
- "34541_ord": "3942",
- "34542_ord": "5218",
- "34544_ord": "4771",
- "34546_ord": "3374",
- "3454_index": "24594",
- "34553_ord": "2631",
- "34558_ord": "4382",
- "3455_index": "30554",
- "34560_ord": "4753",
- "34562_ord": "560",
- "34563_ord": "3669",
- "34567_ord": "471",
- "34568_ord": "4717",
- "3456_index": "44",
- "34573_ord": "2898",
- "34578_ord": "2874",
- "34579_ord": "2518",
- "3457_index": "36173",
- "34581_ord": "664",
- "34583_ord": "777",
- "34584_ord": "12",
- "34586_ord": "426",
- "34588_ord": "4260",
- "3458_index": "29004",
- "34593_ord": "4804",
- "34597_ord": "1629",
- "3459_index": "21806",
- "345_index": "33335",
- "3460_index": "39759",
- "34612_ord": "3054",
- "34615_ord": "867",
- "34619_ord": "1130",
- "3461_index": "24186",
- "34623_ord": "1955",
- "3462_index": "28905",
- "34631_ord": "4907",
- "34633_ord": "2436",
- "34638_ord": "492",
- "3463_index": "21721",
- "34647_ord": "3771",
- "34649_ord": "671",
- "3464_index": "34442",
- "34656_ord": "5045",
- "3465_index": "20239",
- "3466_index": "32442",
- "34670_ord": "4294",
- "34676_ord": "289",
- "34678_ord": "2198",
- "3467_index": "25472",
- "34684_ord": "2945",
- "3468_index": "29322",
- "34690_ord": "5663",
- "34691_ord": "3817",
- "3469_index": "37259",
- "346_index": "26665",
- "34701_ord": "3061",
- "3470_index": "34989",
- "3471_index": "25945",
- "34728_ord": "1606",
- "3472_index": "26224",
- "34731_ord": "1312",
- "34733_ord": "164",
- "34739_ord": "4715",
- "3473_index": "33588",
- "34746_ord": "235",
- "3474_index": "32512",
- "34758_ord": "1793",
- "3475_index": "24224",
- "34763_ord": "5398",
- "3476_index": "21475",
- "34770_ord": "3354",
- "3477_index": "24110",
- "34784_ord": "2992",
- "3478_index": "39529",
- "34797_ord": "5444",
- "3479_index": "33286",
- "347_index": "27735",
- "34809_ord": "1006",
- "3480_index": "12289",
- "34814_ord": "4085",
- "3481_index": "26495",
- "3482_index": "34430",
- "34837_ord": "4238",
- "3483_index": "27809",
- "34849_ord": "4768",
- "3484_index": "26840",
- "34850_ord": "940",
- "3485_index": "38395",
- "3486_index": "38451",
- "34873_ord": "3683",
- "3487_index": "21533",
- "34880_ord": "4306",
- "34885_ord": "359",
- "3488_index": "32945",
- "34892_ord": "641",
- "34893_ord": "5603",
- "3489_index": "38596",
- "348_index": "25042",
- "34900_ord": "4326",
- "34903_ord": "1682",
- "34905_ord": "3404",
- "3490_index": "22994",
- "34913_ord": "4034",
- "34914_ord": "3581",
- "34915_ord": "4903",
- "34917_ord": "440",
- "3491_index": "23613",
- "34920_ord": "4662",
- "34921_ord": "4527",
- "34923_ord": "2189",
- "34924_ord": "5774",
- "34926_ord": "1844",
- "34928_ord": "317",
- "3492_index": "31096",
- "34930_ord": "5748",
- "34935_ord": "4131",
- "3493_index": "31893",
- "34941_ord": "438",
- "34942_ord": "3527",
- "34943_ord": "4241",
- "34945_ord": "1279",
- "34946_ord": "4288",
- "34948_ord": "588",
- "34949_ord": "1875",
- "3494_index": "22030",
- "34952_ord": "2800",
- "34955_ord": "1523",
- "34957_ord": "2583",
- "3495_index": "26517",
- "34962_ord": "3118",
- "34966_ord": "2466",
- "3496_index": "20420",
- "34972_ord": "442",
- "3497_index": "36866",
- "34980_ord": "275",
- "34987_ord": "1779",
- "34989_ord": "3470",
- "3498_index": "39281",
- "34993_ord": "4892",
- "34996_ord": "4340",
- "3499_index": "27553",
- "349_index": "21756",
- "34_index": "27522",
- "34_ord": "5408",
- "35008_ord": "4756",
- "35009_ord": "875",
- "3500_index": "27753",
- "35010_ord": "5684",
- "35013_ord": "1879",
- "35014_ord": "296",
- "3501_index": "8240",
- "35028_ord": "4948",
- "35029_ord": "1434",
- "3502_index": "25327",
- "35032_ord": "1190",
- "35033_ord": "4890",
- "35039_ord": "1786",
- "3503_index": "27713",
- "35044_ord": "5516",
- "35048_ord": "4193",
- "3504_index": "20855",
- "35056_ord": "292",
- "35057_ord": "433",
- "35059_ord": "2352",
- "3505_index": "38063",
- "35060_ord": "1413",
- "35064_ord": "779",
- "35065_ord": "2843",
- "3506_index": "22830",
- "35070_ord": "4077",
- "35074_ord": "3913",
- "3507_index": "8805",
- "35082_ord": "522",
- "35088_ord": "5660",
- "3508_index": "38476",
- "35090_ord": "814",
- "35091_ord": "3562",
- "35098_ord": "3900",
- "35099_ord": "5190",
- "3509_index": "21903",
- "350_index": "26133",
- "35109_ord": "4005",
- "3510_index": "32819",
- "35114_ord": "5186",
- "35115_ord": "1101",
- "3511_index": "24895",
- "35124_ord": "1317",
- "35126_ord": "5558",
- "3512_index": "87",
- "35137_ord": "1019",
- "3513_index": "35815",
- "35140_ord": "3840",
- "35142_ord": "4971",
- "3514_index": "26107",
- "3515_index": "25296",
- "35167_ord": "3758",
- "3516_index": "26446",
- "35174_ord": "2037",
- "3517_index": "24609",
- "3518_index": "29474",
- "35199_ord": "3011",
- "3519_index": "26165",
- "351_index": "32544",
- "35201_ord": "4388",
- "35203_ord": "1943",
- "35206_ord": "4663",
- "3520_index": "24184",
- "3521_index": "23633",
- "3522_index": "38054",
- "3523_index": "26790",
- "3524_index": "23047",
- "3525_index": "38367",
- "35265_ord": "3403",
- "35266_ord": "2145",
- "35268_ord": "1031",
- "35269_ord": "434",
- "3526_index": "30031",
- "35270_ord": "1815",
- "35271_ord": "1358",
- "35272_ord": "3245",
- "35273_ord": "3207",
- "35274_ord": "2215",
- "35276_ord": "4612",
- "35278_ord": "1158",
- "3527_index": "34942",
- "35280_ord": "3257",
- "35281_ord": "587",
- "35282_ord": "1127",
- "35286_ord": "2571",
- "3528_index": "23546",
- "35290_ord": "1673",
- "35292_ord": "2877",
- "35294_ord": "4808",
- "35299_ord": "4017",
- "3529_index": "21857",
- "352_index": "21970",
- "35301_ord": "4660",
- "35302_ord": "5274",
- "3530_index": "25958",
- "35315_ord": "5265",
- "3531_index": "21513",
- "35328_ord": "3824",
- "3532_index": "39659",
- "35335_ord": "1313",
- "3533_index": "21830",
- "3534_index": "33034",
- "3535_index": "36886",
- "3536_index": "32431",
- "3537_index": "31067",
- "3538_index": "27426",
- "35390_ord": "4003",
- "3539_index": "38816",
- "353_index": "25130",
- "35400_ord": "5541",
- "3540_index": "22265",
- "3541_index": "27781",
- "3542_index": "20898",
- "3543_index": "23853",
- "35449_ord": "5392",
- "3544_index": "31639",
- "3545_index": "28251",
- "35465_ord": "1655",
- "3546_index": "25256",
- "35475_ord": "5066",
- "3547_index": "31063",
- "3548_index": "31572",
- "3549_index": "37255",
- "354_index": "23396",
- "3550_index": "20649",
- "3551_index": "21814",
- "3552_index": "26588",
- "3553_index": "22349",
- "3554_index": "21733",
- "3555_index": "21822",
- "3556_index": "22995",
- "3557_index": "22271",
- "3558_index": "26851",
- "3559_index": "12296",
- "355_index": "39037",
- "3560_index": "26223",
- "3561_index": "37011",
- "3562_index": "35091",
- "3563_index": "34204",
- "3564_index": "37257",
- "3565_index": "26729",
- "3566_index": "40550",
- "3567_index": "34203",
- "35686_ord": "4318",
- "3568_index": "26257",
- "35692_ord": "129",
- "3569_index": "24615",
- "356_index": "20461",
- "3570_index": "27546",
- "3571_index": "36973",
- "3572_index": "36457",
- "35737_ord": "3072",
- "3573_index": "22659",
- "35745_ord": "5145",
- "35746_ord": "3180",
- "35747_ord": "5363",
- "35748_ord": "2597",
- "35749_ord": "1424",
- "3574_index": "37073",
- "35750_ord": "559",
- "35751_ord": "1041",
- "35752_ord": "324",
- "35753_ord": "4284",
- "35754_ord": "4438",
- "35755_ord": "822",
- "35757_ord": "2770",
- "35758_ord": "5587",
- "35759_ord": "2988",
- "3575_index": "28359",
- "35760_ord": "5788",
- "35762_ord": "695",
- "35763_ord": "3882",
- "35764_ord": "1759",
- "35765_ord": "1959",
- "35766_ord": "3389",
- "35767_ord": "991",
- "35768_ord": "624",
- "35769_ord": "4177",
- "3576_index": "39274",
- "35770_ord": "1589",
- "35772_ord": "3357",
- "35773_ord": "4909",
- "35774_ord": "3823",
- "35775_ord": "2292",
- "35776_ord": "18",
- "35777_ord": "5067",
- "35778_ord": "2828",
- "35779_ord": "2844",
- "3577_index": "24283",
- "35780_ord": "3431",
- "35781_ord": "2068",
- "35782_ord": "2258",
- "35784_ord": "1356",
- "35785_ord": "5589",
- "35786_ord": "3038",
- "35787_ord": "3355",
- "35789_ord": "4938",
- "3578_index": "31389",
- "35790_ord": "2269",
- "35791_ord": "1527",
- "35793_ord": "4486",
- "35794_ord": "1711",
- "35797_ord": "1064",
- "35799_ord": "994",
- "3579_index": "22075",
- "357_index": "30095",
- "35800_ord": "4386",
- "35801_ord": "887",
- "35802_ord": "3943",
- "35803_ord": "3053",
- "35805_ord": "2715",
- "35806_ord": "3111",
- "35807_ord": "1639",
- "35808_ord": "1471",
- "35809_ord": "422",
- "3580_index": "34385",
- "35810_ord": "3755",
- "35811_ord": "911",
- "35812_ord": "1431",
- "35813_ord": "3890",
- "35814_ord": "2986",
- "35815_ord": "3513",
- "35816_ord": "4312",
- "35817_ord": "2820",
- "35819_ord": "3185",
- "3581_index": "34914",
- "35820_ord": "5293",
- "35821_ord": "1395",
- "35822_ord": "367",
- "35823_ord": "1119",
- "35824_ord": "3121",
- "35825_ord": "5148",
- "35826_ord": "1544",
- "35827_ord": "1426",
- "35828_ord": "1478",
- "35829_ord": "4865",
- "3582_index": "176",
- "35831_ord": "2261",
- "35832_ord": "4499",
- "35834_ord": "4230",
- "35835_ord": "2243",
- "35837_ord": "394",
- "35838_ord": "2699",
- "35839_ord": "3334",
- "3583_index": "28340",
- "35840_ord": "5473",
- "35841_ord": "4602",
- "35843_ord": "2429",
- "35844_ord": "4561",
- "35845_ord": "3392",
- "35846_ord": "200",
- "35847_ord": "3921",
- "35848_ord": "149",
- "3584_index": "36441",
- "35850_ord": "2334",
- "35851_ord": "2670",
- "35853_ord": "2979",
- "35854_ord": "3903",
- "35855_ord": "2459",
- "35856_ord": "1298",
- "35857_ord": "1554",
- "35858_ord": "4418",
- "35859_ord": "4653",
- "3585_index": "36125",
- "35861_ord": "261",
- "35863_ord": "4375",
- "35865_ord": "2059",
- "35866_ord": "2750",
- "35867_ord": "4877",
- "35868_ord": "424",
- "3586_index": "31895",
- "35871_ord": "4706",
- "35874_ord": "4624",
- "35875_ord": "4532",
- "35876_ord": "4691",
- "35877_ord": "3843",
- "35878_ord": "490",
- "35879_ord": "150",
- "3587_index": "38076",
- "35880_ord": "4428",
- "35881_ord": "273",
- "35882_ord": "3187",
- "35884_ord": "4679",
- "35885_ord": "5817",
- "35886_ord": "1110",
- "35887_ord": "3086",
- "35889_ord": "5286",
- "3588_index": "21889",
- "35890_ord": "2379",
- "35891_ord": "1040",
- "35892_ord": "5244",
- "35894_ord": "1008",
- "35895_ord": "4707",
- "3589_index": "38742",
- "358_index": "32439",
- "35905_ord": "3784",
- "3590_index": "38215",
- "35910_ord": "1672",
- "35913_ord": "5161",
- "35916_ord": "5525",
- "3591_index": "34015",
- "35925_ord": "3645",
- "3592_index": "24490",
- "35930_ord": "1233",
- "35937_ord": "1281",
- "35938_ord": "5699",
- "3593_index": "33007",
- "35944_ord": "383",
- "35946_ord": "862",
- "35947_ord": "5540",
- "35949_ord": "3806",
- "3594_index": "70",
- "35955_ord": "2496",
- "3595_index": "72",
- "35960_ord": "206",
- "35961_ord": "5465",
- "35962_ord": "509",
- "3596_index": "20041",
- "35970_ord": "2427",
- "35977_ord": "4764",
- "3597_index": "33505",
- "35980_ord": "3607",
- "35988_ord": "4331",
- "3598_index": "27450",
- "3599_index": "24636",
- "359_index": "34885",
- "35_index": "39683",
- "35_ord": "4013",
- "3600_index": "12299",
- "3601_index": "38053",
- "3602_index": "24179",
- "3603_index": "24591",
- "3604_index": "19977",
- "3605_index": "21151",
- "3606_index": "36741",
- "3607_index": "35980",
- "3608_index": "28335",
- "3609_index": "25096",
- "360_index": "31499",
- "36103_ord": "223",
- "3610_index": "22108",
- "3611_index": "25299",
- "36125_ord": "3585",
- "36126_ord": "2063",
- "36127_ord": "4976",
- "36129_ord": "3621",
- "3612_index": "21796",
- "36130_ord": "5546",
- "36131_ord": "3006",
- "36132_ord": "3923",
- "36133_ord": "5755",
- "36134_ord": "4549",
- "36135_ord": "63",
- "36136_ord": "3376",
- "36137_ord": "1566",
- "36138_ord": "4364",
- "36139_ord": "4109",
- "3613_index": "25248",
- "36140_ord": "1588",
- "36141_ord": "3802",
- "36142_ord": "5508",
- "36143_ord": "1500",
- "36144_ord": "2756",
- "36145_ord": "174",
- "36146_ord": "4774",
- "36147_ord": "3697",
- "36148_ord": "110",
- "36149_ord": "3642",
- "3614_index": "25597",
- "36151_ord": "1593",
- "36152_ord": "1992",
- "36153_ord": "3674",
- "36154_ord": "2390",
- "36155_ord": "5489",
- "36156_ord": "1585",
- "36157_ord": "5594",
- "36158_ord": "2137",
- "36159_ord": "4809",
- "3615_index": "33883",
- "36160_ord": "3256",
- "36161_ord": "4187",
- "36162_ord": "1490",
- "36163_ord": "703",
- "36164_ord": "3931",
- "36165_ord": "3681",
- "36167_ord": "3723",
- "36168_ord": "2516",
- "36169_ord": "2550",
- "3616_index": "26827",
- "36170_ord": "4422",
- "36171_ord": "2048",
- "36172_ord": "5543",
- "36173_ord": "3457",
- "36174_ord": "4368",
- "36175_ord": "333",
- "36176_ord": "5252",
- "3617_index": "32932",
- "36180_ord": "2471",
- "36182_ord": "2931",
- "36184_ord": "4390",
- "36186_ord": "4615",
- "36187_ord": "3786",
- "36188_ord": "1513",
- "36189_ord": "1771",
- "3618_index": "34122",
- "36190_ord": "4942",
- "36191_ord": "3852",
- "36192_ord": "2895",
- "36193_ord": "5678",
- "36194_ord": "3752",
- "36195_ord": "2806",
- "36196_ord": "2485",
- "36198_ord": "3321",
- "36199_ord": "3798",
- "3619_index": "23387",
- "361_index": "32496",
- "36202_ord": "3898",
- "36203_ord": "2928",
- "36205_ord": "4531",
- "36208_ord": "3892",
- "3620_index": "38422",
- "36211_ord": "3830",
- "36212_ord": "4522",
- "36213_ord": "3671",
- "36214_ord": "4432",
- "36215_ord": "2341",
- "3621_index": "36129",
- "36225_ord": "4164",
- "36228_ord": "4088",
- "36229_ord": "2012",
- "3622_index": "32963",
- "36234_ord": "5575",
- "36235_ord": "4328",
- "3623_index": "25429",
- "3624_index": "38116",
- "36255_ord": "5180",
- "36259_ord": "1787",
- "3625_index": "22105",
- "3626_index": "34249",
- "36273_ord": "4012",
- "36275_ord": "1520",
- "36276_ord": "4106",
- "36277_ord": "800",
- "3627_index": "31388",
- "36280_ord": "2250",
- "36281_ord": "530",
- "36282_ord": "3289",
- "36286_ord": "845",
- "3628_index": "24254",
- "36290_ord": "2129",
- "36291_ord": "2696",
- "36292_ord": "2935",
- "36294_ord": "2092",
- "36299_ord": "1634",
- "3629_index": "9352",
- "362_index": "26691",
- "36300_ord": "466",
- "36305_ord": "128",
- "3630_index": "23692",
- "36310_ord": "1882",
- "36314_ord": "2517",
- "36315_ord": "83",
- "36317_ord": "283",
- "36319_ord": "1217",
- "3631_index": "32593",
- "36323_ord": "1561",
- "36324_ord": "5375",
- "36328_ord": "4075",
- "3632_index": "25794",
- "36330_ord": "897",
- "36332_ord": "5647",
- "36335_ord": "3115",
- "36339_ord": "4266",
- "3633_index": "31344",
- "36341_ord": "1118",
- "36343_ord": "173",
- "36344_ord": "2240",
- "36345_ord": "5216",
- "36346_ord": "1540",
- "36347_ord": "4895",
- "36349_ord": "2351",
- "3634_index": "40784",
- "3635_index": "37036",
- "36361_ord": "5685",
- "36362_ord": "4068",
- "36364_ord": "2660",
- "36367_ord": "1907",
- "3636_index": "30456",
- "36372_ord": "5613",
- "3637_index": "27530",
- "36381_ord": "1575",
- "36382_ord": "5706",
- "36383_ord": "3",
- "36386_ord": "5773",
- "36387_ord": "4394",
- "3638_index": "32982",
- "36391_ord": "5340",
- "36393_ord": "650",
- "36394_ord": "2481",
- "36399_ord": "1748",
- "3639_index": "22823",
- "363_index": "29421",
- "36400_ord": "5604",
- "36401_ord": "2010",
- "36405_ord": "1304",
- "36409_ord": "1853",
- "3640_index": "38131",
- "36413_ord": "3159",
- "36416_ord": "2095",
- "36418_ord": "678",
- "3641_index": "946",
- "36420_ord": "3695",
- "36423_ord": "4704",
- "36424_ord": "5016",
- "36425_ord": "1495",
- "36426_ord": "1045",
- "36427_ord": "4960",
- "3642_index": "36149",
- "36433_ord": "3815",
- "36434_ord": "2452",
- "3643_index": "31961",
- "36441_ord": "3584",
- "3644_index": "29647",
- "36454_ord": "4700",
- "36457_ord": "3572",
- "3645_index": "35925",
- "36460_ord": "3203",
- "36461_ord": "3384",
- "36464_ord": "266",
- "36466_ord": "708",
- "36468_ord": "1494",
- "3646_index": "27681",
- "36470_ord": "1164",
- "36475_ord": "419",
- "36479_ord": "5204",
- "3647_index": "20538",
- "36481_ord": "2026",
- "36485_ord": "4399",
- "36487_ord": "1129",
- "3648_index": "22969",
- "36495_ord": "5299",
- "3649_index": "40081",
- "364_index": "39053",
- "3650_index": "23016",
- "36510_ord": "4293",
- "3651_index": "27859",
- "36523_ord": "2523",
- "36524_ord": "2160",
- "36527_ord": "3259",
- "3652_index": "24809",
- "36530_ord": "3719",
- "36538_ord": "3667",
- "3653_index": "24187",
- "3654_index": "8212",
- "3655_index": "24037",
- "3656_index": "29081",
- "3657_index": "27688",
- "3658_index": "33660",
- "3659_index": "20698",
- "365_index": "28304",
- "3660_index": "32416",
- "3661_index": "39699",
- "3662_index": "24038",
- "3663_index": "27837",
- "3664_index": "38464",
- "3665_index": "26533",
- "3666_index": "29673",
- "3667_index": "36538",
- "3668_index": "22696",
- "3669_index": "34563",
- "366_index": "24730",
- "3670_index": "84",
- "36710_ord": "2009",
- "36711_ord": "4701",
- "36712_ord": "1521",
- "36713_ord": "5443",
- "36715_ord": "768",
- "36716_ord": "483",
- "36718_ord": "1745",
- "36719_ord": "1886",
- "3671_index": "36213",
- "36720_ord": "5777",
- "36722_ord": "3747",
- "36724_ord": "4581",
- "36725_ord": "240",
- "36726_ord": "4655",
- "36728_ord": "2128",
- "3672_index": "27667",
- "36730_ord": "1051",
- "36731_ord": "5215",
- "36732_ord": "2869",
- "36733_ord": "4906",
- "36735_ord": "521",
- "36739_ord": "4787",
- "3673_index": "28463",
- "36740_ord": "2340",
- "36741_ord": "3606",
- "36742_ord": "2654",
- "36743_ord": "1340",
- "36744_ord": "1753",
- "36745_ord": "802",
- "36749_ord": "3969",
- "3674_index": "36153",
- "36750_ord": "4905",
- "36752_ord": "1856",
- "36753_ord": "107",
- "36755_ord": "3071",
- "36756_ord": "1909",
- "36757_ord": "2666",
- "36758_ord": "45",
- "36759_ord": "89",
- "3675_index": "23241",
- "36760_ord": "5032",
- "36761_ord": "5247",
- "36763_ord": "5075",
- "36764_ord": "3249",
- "36766_ord": "2017",
- "36767_ord": "646",
- "3676_index": "32725",
- "36771_ord": "2194",
- "36776_ord": "5367",
- "36777_ord": "786",
- "36779_ord": "1664",
- "3677_index": "39270",
- "36784_ord": "2872",
- "36785_ord": "5220",
- "3678_index": "28103",
- "36793_ord": "1972",
- "36797_ord": "2444",
- "36798_ord": "1125",
- "3679_index": "25169",
- "367_index": "35822",
- "36801_ord": "5394",
- "36802_ord": "327",
- "36804_ord": "2172",
- "36805_ord": "4316",
- "36807_ord": "2791",
- "36808_ord": "810",
- "3680_index": "23490",
- "36814_ord": "4594",
- "36816_ord": "4496",
- "36817_ord": "1519",
- "36819_ord": "1392",
- "3681_index": "36165",
- "36820_ord": "5377",
- "36821_ord": "5241",
- "36824_ord": "3912",
- "36825_ord": "943",
- "36827_ord": "4838",
- "36828_ord": "1053",
- "36829_ord": "5765",
- "3682_index": "40664",
- "36830_ord": "1702",
- "36831_ord": "1806",
- "36834_ord": "2066",
- "36836_ord": "2148",
- "36837_ord": "2953",
- "36838_ord": "1941",
- "3683_index": "34873",
- "36840_ord": "2672",
- "36841_ord": "1472",
- "36842_ord": "2509",
- "36843_ord": "3746",
- "36845_ord": "251",
- "36848_ord": "832",
- "3684_index": "38901",
- "36855_ord": "1131",
- "36856_ord": "565",
- "36857_ord": "2759",
- "3685_index": "20498",
- "36861_ord": "4526",
- "36864_ord": "4640",
- "36865_ord": "3234",
- "36866_ord": "3497",
- "36867_ord": "3730",
- "36869_ord": "3780",
- "3686_index": "21050",
- "36870_ord": "685",
- "36873_ord": "2602",
- "36874_ord": "1257",
- "36875_ord": "4365",
- "36877_ord": "4972",
- "36879_ord": "1732",
- "3687_index": "30555",
- "36880_ord": "3961",
- "36881_ord": "2956",
- "36882_ord": "4019",
- "36884_ord": "1236",
- "36886_ord": "3535",
- "36887_ord": "3986",
- "3688_index": "27603",
- "36890_ord": "5017",
- "36891_ord": "1244",
- "36893_ord": "4023",
- "36894_ord": "1226",
- "36895_ord": "5744",
- "36896_ord": "2919",
- "36897_ord": "2682",
- "36898_ord": "4800",
- "3689_index": "23376",
- "368_index": "25816",
- "36902_ord": "4344",
- "3690_index": "23617",
- "36910_ord": "725",
- "36917_ord": "5694",
- "36918_ord": "1762",
- "3691_index": "27597",
- "36920_ord": "1755",
- "36923_ord": "5425",
- "36924_ord": "3715",
- "36926_ord": "384",
- "36929_ord": "1014",
- "3692_index": "30021",
- "36930_ord": "4393",
- "36935_ord": "2205",
- "3693_index": "29705",
- "36941_ord": "4950",
- "36943_ord": "3108",
- "36944_ord": "2580",
- "36945_ord": "2154",
- "36946_ord": "5757",
- "36947_ord": "1555",
- "3694_index": "28844",
- "36951_ord": "4071",
- "36952_ord": "4102",
- "36955_ord": "19",
- "3695_index": "36420",
- "36962_ord": "238",
- "36963_ord": "4816",
- "36965_ord": "3147",
- "36968_ord": "2545",
- "3696_index": "21202",
- "36971_ord": "5468",
- "36973_ord": "3571",
- "36974_ord": "3936",
- "3697_index": "36147",
- "36980_ord": "5794",
- "36981_ord": "4297",
- "36982_ord": "4585",
- "36985_ord": "3141",
- "36989_ord": "1191",
- "3698_index": "25682",
- "36991_ord": "5759",
- "36992_ord": "2479",
- "36994_ord": "4599",
- "36995_ord": "4172",
- "3699_index": "33993",
- "369_index": "22899",
- "36_index": "24088",
- "36_ord": "2052",
- "37000_ord": "607",
- "37003_ord": "2275",
- "37009_ord": "1505",
- "3700_index": "26505",
- "37011_ord": "3561",
- "37013_ord": "297",
- "37019_ord": "3914",
- "3701_index": "28212",
- "37024_ord": "2608",
- "37026_ord": "3925",
- "37027_ord": "1194",
- "3702_index": "25776",
- "37030_ord": "3919",
- "37034_ord": "5572",
- "37036_ord": "3635",
- "37038_ord": "2239",
- "37039_ord": "958",
- "3703_index": "27268",
- "37040_ord": "5651",
- "37041_ord": "1264",
- "37043_ord": "2891",
- "37044_ord": "3924",
- "37045_ord": "1333",
- "37048_ord": "2468",
- "37049_ord": "5167",
- "3704_index": "29808",
- "37050_ord": "3192",
- "37051_ord": "2325",
- "37057_ord": "3127",
- "3705_index": "32829",
- "37060_ord": "4628",
- "37061_ord": "1541",
- "37066_ord": "5514",
- "3706_index": "28846",
- "37070_ord": "4946",
- "37073_ord": "3574",
- "37075_ord": "2668",
- "3707_index": "38049",
- "37084_ord": "2536",
- "37085_ord": "5034",
- "37089_ord": "4673",
- "3708_index": "24039",
- "37090_ord": "1558",
- "37094_ord": "797",
- "37095_ord": "3016",
- "37096_ord": "803",
- "37098_ord": "2203",
- "37099_ord": "549",
- "3709_index": "34003",
- "370_index": "25972",
- "37101_ord": "3809",
- "37103_ord": "747",
- "37108_ord": "846",
- "3710_index": "21505",
- "37112_ord": "416",
- "37117_ord": "2424",
- "37118_ord": "3850",
- "37119_ord": "2324",
- "3711_index": "19989",
- "37122_ord": "500",
- "37124_ord": "3267",
- "3712_index": "29750",
- "3713_index": "22904",
- "37145_ord": "5357",
- "37148_ord": "3068",
- "3714_index": "24535",
- "37152_ord": "3269",
- "37154_ord": "724",
- "37155_ord": "4966",
- "3715_index": "36924",
- "37169_ord": "925",
- "3716_index": "33521",
- "3717_index": "27764",
- "3718_index": "33333",
- "37190_ord": "2827",
- "37193_ord": "5690",
- "37194_ord": "1005",
- "37195_ord": "4142",
- "37196_ord": "3194",
- "37197_ord": "4322",
- "37198_ord": "4127",
- "3719_index": "36530",
- "371_index": "19984",
- "37202_ord": "113",
- "37207_ord": "2875",
- "3720_index": "25423",
- "37210_ord": "4508",
- "37213_ord": "2124",
- "37214_ord": "2894",
- "37217_ord": "942",
- "37218_ord": "1455",
- "37219_ord": "3770",
- "3721_index": "31258",
- "37220_ord": "418",
- "37221_ord": "4408",
- "37225_ord": "2761",
- "37226_ord": "4465",
- "37228_ord": "2999",
- "3722_index": "21777",
- "37230_ord": "1004",
- "37231_ord": "4459",
- "37232_ord": "1837",
- "37233_ord": "2175",
- "37237_ord": "9",
- "37238_ord": "5283",
- "37239_ord": "5637",
- "3723_index": "36167",
- "37240_ord": "5673",
- "37241_ord": "1219",
- "37247_ord": "629",
- "3724_index": "28779",
- "37255_ord": "3549",
- "37257_ord": "3564",
- "37259_ord": "3469",
- "3725_index": "92",
- "37261_ord": "1599",
- "37266_ord": "1018",
- "3726_index": "33789",
- "37274_ord": "5119",
- "37275_ord": "1823",
- "3727_index": "38218",
- "3728_index": "38753",
- "37290_ord": "1784",
- "37294_ord": "2785",
- "3729_index": "26482",
- "372_index": "38125",
- "37300_ord": "930",
- "37301_ord": "2020",
- "37306_ord": "2677",
- "3730_index": "36867",
- "37314_ord": "4401",
- "37319_ord": "2588",
- "3731_index": "26352",
- "37321_ord": "2811",
- "37322_ord": "5126",
- "37324_ord": "4320",
- "37325_ord": "4742",
- "37326_ord": "1918",
- "37327_ord": "4965",
- "37328_ord": "5324",
- "37329_ord": "2556",
- "3732_index": "28748",
- "3733_index": "39",
- "37340_ord": "3832",
- "3734_index": "38378",
- "3735_index": "38747",
- "3736_index": "23548",
- "3737_index": "21545",
- "37383_ord": "4870",
- "3738_index": "33899",
- "3739_index": "38148",
- "373_index": "22996",
- "3740_index": "21495",
- "3741_index": "27029",
- "3742_index": "29378",
- "3743_index": "38468",
- "3744_index": "28900",
- "3745_index": "33258",
- "3746_index": "36843",
- "3747_index": "36722",
- "3748_index": "30922",
- "37492_ord": "3996",
- "3749_index": "21956",
- "374_index": "24800",
- "3750_index": "30284",
- "3751_index": "38096",
- "3752_index": "36194",
- "3753_index": "34121",
- "3754_index": "65104",
- "37550_ord": "1319",
- "3755_index": "35810",
- "3756_index": "25941",
- "3757_index": "30011",
- "3758_index": "35167",
- "3759_index": "25371",
- "375_index": "29920",
- "3760_index": "29942",
- "3761_index": "27822",
- "3762_index": "28510",
- "3763_index": "29384",
- "3764_index": "32613",
- "3765_index": "27796",
- "3766_index": "33151",
- "3767_index": "38120",
- "3768_index": "29477",
- "3769_index": "39560",
- "376_index": "21943",
- "3770_index": "37219",
- "3771_index": "34647",
- "3772_index": "22530",
- "3773_index": "32902",
- "3774_index": "37912",
- "3775_index": "38899",
- "3776_index": "20180",
- "3777_index": "20982",
- "3778_index": "20266",
- "3779_index": "26818",
- "377_index": "21387",
- "3780_index": "36869",
- "3781_index": "39143",
- "3782_index": "27572",
- "3783_index": "33673",
- "37846_ord": "1716",
- "3784_index": "35905",
- "3785_index": "28287",
- "3786_index": "36187",
- "3787_index": "30913",
- "3788_index": "22958",
- "3789_index": "28153",
- "378_index": "22687",
- "3790_index": "28953",
- "37912_ord": "3774",
- "3791_index": "31995",
- "3792_index": "26053",
- "3793_index": "25786",
- "3794_index": "26063",
- "3795_index": "9342",
- "3796_index": "25735",
- "37977_ord": "5139",
- "3797_index": "25325",
- "3798_index": "36199",
- "37995_ord": "5248",
- "3799_index": "28548",
- "379_index": "21467",
- "37_index": "31215",
- "37_ord": "3231",
- "3800_index": "25199",
- "3801_index": "24913",
- "38024_ord": "5725",
- "38025_ord": "1609",
- "38026_ord": "1729",
- "3802_index": "36141",
- "38030_ord": "1272",
- "38031_ord": "4918",
- "38034_ord": "4248",
- "38035_ord": "1456",
- "38039_ord": "2735",
- "3803_index": "40132",
- "38041_ord": "5664",
- "38042_ord": "1731",
- "38043_ord": "4040",
- "38044_ord": "1241",
- "38045_ord": "3825",
- "38046_ord": "3333",
- "38047_ord": "2272",
- "38048_ord": "489",
- "38049_ord": "3707",
- "3804_index": "25630",
- "38050_ord": "5132",
- "38052_ord": "2127",
- "38053_ord": "3601",
- "38054_ord": "3522",
- "38055_ord": "5164",
- "38056_ord": "1735",
- "38057_ord": "1671",
- "3805_index": "24870",
- "38062_ord": "3826",
- "38063_ord": "3505",
- "38064_ord": "1595",
- "38065_ord": "1601",
- "38066_ord": "4565",
- "38067_ord": "2179",
- "38068_ord": "3216",
- "38069_ord": "1327",
- "3806_index": "35949",
- "38073_ord": "5475",
- "38074_ord": "5289",
- "38075_ord": "3939",
- "38076_ord": "3587",
- "38078_ord": "5536",
- "38079_ord": "2983",
- "3807_index": "20440",
- "38080_ord": "5569",
- "38081_ord": "2661",
- "38082_ord": "1301",
- "38083_ord": "5125",
- "38084_ord": "5791",
- "38085_ord": "4876",
- "38086_ord": "3954",
- "38089_ord": "482",
- "3808_index": "9734",
- "38094_ord": "2832",
- "38096_ord": "3751",
- "3809_index": "37101",
- "380_index": "24090",
- "38105_ord": "5474",
- "38107_ord": "1299",
- "38108_ord": "2538",
- "38109_ord": "2766",
- "3810_index": "30887",
- "38112_ord": "617",
- "38114_ord": "4014",
- "38115_ord": "2601",
- "38116_ord": "3624",
- "3811_index": "38829",
- "38120_ord": "3767",
- "38121_ord": "5168",
- "38124_ord": "4037",
- "38125_ord": "372",
- "38126_ord": "1780",
- "3812_index": "30529",
- "38130_ord": "5751",
- "38131_ord": "3640",
- "38133_ord": "886",
- "38134_ord": "5185",
- "38136_ord": "578",
- "38138_ord": "5117",
- "3813_index": "24951",
- "38142_ord": "309",
- "38143_ord": "5510",
- "38144_ord": "3318",
- "38145_ord": "2586",
- "38146_ord": "5386",
- "38148_ord": "3739",
- "38149_ord": "5077",
- "3814_index": "24589",
- "38152_ord": "248",
- "38153_ord": "4029",
- "38155_ord": "2690",
- "38156_ord": "1578",
- "38159_ord": "5448",
- "3815_index": "36433",
- "38160_ord": "3927",
- "38161_ord": "68",
- "38167_ord": "2318",
- "38169_ord": "3055",
- "3816_index": "25226",
- "38170_ord": "2229",
- "38177_ord": "4908",
- "38178_ord": "4821",
- "38179_ord": "3905",
- "3817_index": "34691",
- "38180_ord": "1618",
- "38181_ord": "3346",
- "38182_ord": "4690",
- "38189_ord": "4461",
- "3818_index": "30129",
- "38190_ord": "5458",
- "38191_ord": "5179",
- "38192_ord": "5154",
- "38193_ord": "730",
- "38194_ord": "387",
- "38197_ord": "302",
- "38199_ord": "231",
- "3819_index": "24642",
- "381_index": "26805",
- "38201_ord": "4956",
- "38202_ord": "2364",
- "38203_ord": "4520",
- "38205_ord": "5074",
- "38206_ord": "3975",
- "38208_ord": "1289",
- "38209_ord": "1225",
- "3820_index": "23397",
- "38210_ord": "1952",
- "38215_ord": "3590",
- "38217_ord": "618",
- "38218_ord": "3727",
- "3821_index": "20094",
- "38220_ord": "1855",
- "38221_ord": "3378",
- "38224_ord": "1454",
- "38225_ord": "936",
- "38226_ord": "5091",
- "38229_ord": "1730",
- "3822_index": "20859",
- "38230_ord": "5778",
- "38235_ord": "2760",
- "38236_ord": "1187",
- "38237_ord": "2270",
- "38238_ord": "1156",
- "3823_index": "35774",
- "38243_ord": "3017",
- "3824_index": "35328",
- "38250_ord": "2304",
- "38252_ord": "1339",
- "38253_ord": "895",
- "38255_ord": "2374",
- "38256_ord": "3266",
- "38259_ord": "1773",
- "3825_index": "38045",
- "38261_ord": "544",
- "38262_ord": "518",
- "3826_index": "38062",
- "38271_ord": "4054",
- "3827_index": "24266",
- "38283_ord": "5184",
- "3828_index": "20687",
- "38291_ord": "2565",
- "3829_index": "31709",
- "382_index": "23458",
- "3830_index": "36211",
- "3831_index": "31525",
- "3832_index": "37340",
- "3833_index": "38670",
- "38343_ord": "399",
- "3834_index": "26103",
- "3835_index": "39575",
- "38367_ord": "3525",
- "3836_index": "28342",
- "38376_ord": "4786",
- "38378_ord": "3734",
- "38379_ord": "5821",
- "3837_index": "32942",
- "38381_ord": "904",
- "38382_ord": "5704",
- "38383_ord": "56",
- "38384_ord": "100",
- "38385_ord": "1727",
- "38386_ord": "2606",
- "38387_ord": "4869",
- "38388_ord": "2104",
- "38389_ord": "2207",
- "3838_index": "33105",
- "38391_ord": "908",
- "38392_ord": "4621",
- "38393_ord": "854",
- "38394_ord": "5052",
- "38395_ord": "3485",
- "38396_ord": "935",
- "38397_ord": "5504",
- "38398_ord": "3238",
- "3839_index": "33531",
- "383_index": "35944",
- "38400_ord": "4305",
- "38401_ord": "1508",
- "38402_ord": "462",
- "38403_ord": "1143",
- "38405_ord": "38",
- "38406_ord": "5496",
- "38408_ord": "2888",
- "38409_ord": "5260",
- "3840_index": "35140",
- "38410_ord": "2113",
- "38413_ord": "4251",
- "38414_ord": "3120",
- "38415_ord": "5134",
- "38416_ord": "4214",
- "38417_ord": "5614",
- "3841_index": "39321",
- "38420_ord": "5671",
- "38421_ord": "5182",
- "38422_ord": "3620",
- "38423_ord": "1335",
- "38425_ord": "5010",
- "38426_ord": "5310",
- "38428_ord": "4784",
- "3842_index": "29159",
- "38431_ord": "4263",
- "38433_ord": "5449",
- "3843_index": "35877",
- "38442_ord": "3887",
- "38446_ord": "4358",
- "38449_ord": "5421",
- "3844_index": "29399",
- "38450_ord": "4385",
- "38451_ord": "3486",
- "38452_ord": "2896",
- "38453_ord": "4391",
- "38454_ord": "4236",
- "38459_ord": "4911",
- "3845_index": "32657",
- "38463_ord": "3855",
- "38464_ord": "3664",
- "38466_ord": "5103",
- "38468_ord": "3743",
- "38469_ord": "67",
- "3846_index": "20010",
- "38470_ord": "5101",
- "38471_ord": "865",
- "38472_ord": "131",
- "38475_ord": "4790",
- "38476_ord": "3508",
- "38477_ord": "1212",
- "3847_index": "39740",
- "38480_ord": "5442",
- "38485_ord": "4799",
- "3848_index": "19978",
- "38491_ord": "1991",
- "38495_ord": "4406",
- "38497_ord": "1681",
- "38498_ord": "3045",
- "3849_index": "38663",
- "384_index": "36926",
- "38500_ord": "1725",
- "38504_ord": "1034",
- "38505_ord": "4357",
- "38506_ord": "1697",
- "38508_ord": "2000",
- "3850_index": "37118",
- "38514_ord": "1043",
- "38517_ord": "2535",
- "38518_ord": "336",
- "38519_ord": "4265",
- "3851_index": "22855",
- "3852_index": "36191",
- "38533_ord": "4166",
- "38534_ord": "4197",
- "38539_ord": "5050",
- "3853_index": "27733",
- "38541_ord": "993",
- "38543_ord": "3104",
- "38544_ord": "3022",
- "38548_ord": "4220",
- "3854_index": "20694",
- "38551_ord": "2506",
- "38552_ord": "4759",
- "38553_ord": "2904",
- "38556_ord": "2546",
- "3855_index": "38463",
- "38567_ord": "5111",
- "3856_index": "24773",
- "38579_ord": "2552",
- "3857_index": "26012",
- "38582_ord": "145",
- "38588_ord": "5332",
- "38589_ord": "5417",
- "3858_index": "23545",
- "38590_ord": "4996",
- "38592_ord": "2413",
- "38593_ord": "5281",
- "38596_ord": "3489",
- "38597_ord": "536",
- "38598_ord": "1087",
- "38599_ord": "4859",
- "3859_index": "32827",
- "385_index": "30204",
- "38601_ord": "953",
- "38604_ord": "4450",
- "38605_ord": "208",
- "38606_ord": "2358",
- "38607_ord": "2328",
- "3860_index": "27863",
- "38610_ord": "4221",
- "38613_ord": "1209",
- "3861_index": "31900",
- "3862_index": "28216",
- "38632_ord": "3064",
- "38634_ord": "3897",
- "38639_ord": "969",
- "3863_index": "25421",
- "38643_ord": "2447",
- "38646_ord": "4541",
- "38647_ord": "4785",
- "38649_ord": "3933",
- "3864_index": "19992",
- "38654_ord": "3128",
- "38656_ord": "1451",
- "38657_ord": "1880",
- "3865_index": "30431",
- "38660_ord": "4930",
- "38662_ord": "3276",
- "38663_ord": "3849",
- "38665_ord": "3447",
- "38669_ord": "5033",
- "3866_index": "25351",
- "38670_ord": "3833",
- "38675_ord": "4307",
- "38678_ord": "4129",
- "3867_index": "20263",
- "38684_ord": "3145",
- "38686_ord": "1070",
- "3868_index": "39292",
- "38691_ord": "5270",
- "3869_index": "34321",
- "386_index": "26643",
- "38701_ord": "1200",
- "38706_ord": "613",
- "3870_index": "22073",
- "38712_ord": "2369",
- "38713_ord": "2143",
- "38718_ord": "2952",
- "3871_index": "40857",
- "3872_index": "39579",
- "38738_ord": "2933",
- "38739_ord": "229",
- "3873_index": "24051",
- "38742_ord": "3589",
- "38745_ord": "5195",
- "38747_ord": "3735",
- "3874_index": "77",
- "38750_ord": "5724",
- "38752_ord": "2422",
- "38753_ord": "3728",
- "38754_ord": "5628",
- "38757_ord": "5183",
- "3875_index": "24613",
- "38761_ord": "465",
- "3876_index": "32907",
- "38771_ord": "1535",
- "38772_ord": "2936",
- "38774_ord": "1915",
- "3877_index": "24778",
- "38789_ord": "4362",
- "3878_index": "33879",
- "38795_ord": "1920",
- "38797_ord": "3164",
- "3879_index": "23319",
- "387_index": "38194",
- "38801_ord": "255",
- "38808_ord": "4160",
- "3880_index": "25345",
- "38810_ord": "2384",
- "38816_ord": "3539",
- "38819_ord": "5819",
- "3881_index": "65110",
- "38827_ord": "1251",
- "38829_ord": "3811",
- "3882_index": "35763",
- "38830_ord": "454",
- "3883_index": "23703",
- "3884_index": "76",
- "38850_ord": "2950",
- "3885_index": "28390",
- "3886_index": "28129",
- "3887_index": "38442",
- "38886_ord": "656",
- "38887_ord": "5574",
- "38889_ord": "4864",
- "3888_index": "32660",
- "38890_ord": "5800",
- "38892_ord": "5814",
- "38893_ord": "1840",
- "38899_ord": "3775",
- "3889_index": "26159",
- "388_index": "25276",
- "38901_ord": "3684",
- "38902_ord": "1933",
- "3890_index": "35813",
- "3891_index": "34071",
- "3892_index": "36208",
- "3893_index": "24013",
- "3894_index": "30789",
- "38955_ord": "4059",
- "3895_index": "33022",
- "3896_index": "29786",
- "3897_index": "38634",
- "3898_index": "36202",
- "38994_ord": "2038",
- "3899_index": "29749",
- "389_index": "29585",
- "38_index": "38405",
- "38_ord": "4766",
- "3900_index": "35098",
- "3901_index": "29237",
- "39029_ord": "54",
- "3902_index": "22768",
- "39030_ord": "3444",
- "39031_ord": "2833",
- "39033_ord": "2443",
- "39034_ord": "2268",
- "39035_ord": "2174",
- "39036_ord": "5645",
- "39037_ord": "355",
- "39038_ord": "1336",
- "39039_ord": "651",
- "3903_index": "35854",
- "39040_ord": "1050",
- "39041_ord": "5502",
- "39042_ord": "4308",
- "39044_ord": "87",
- "39045_ord": "1021",
- "39046_ord": "1401",
- "39047_ord": "406",
- "39048_ord": "5533",
- "39049_ord": "410",
- "3904_index": "22411",
- "39050_ord": "1357",
- "39052_ord": "5207",
- "39053_ord": "364",
- "39056_ord": "4988",
- "39057_ord": "5518",
- "39059_ord": "2322",
- "3905_index": "38179",
- "39060_ord": "888",
- "39062_ord": "2161",
- "39063_ord": "300",
- "39064_ord": "3190",
- "39066_ord": "4196",
- "39067_ord": "2441",
- "39068_ord": "855",
- "39069_ord": "4837",
- "3906_index": "34503",
- "39072_ord": "788",
- "39073_ord": "1548",
- "39076_ord": "3353",
- "39078_ord": "1545",
- "39079_ord": "1841",
- "3907_index": "12305",
- "3908_index": "22665",
- "3909_index": "21776",
- "390_index": "34516",
- "3910_index": "33556",
- "39118_ord": "828",
- "3911_index": "27784",
- "39122_ord": "3372",
- "39123_ord": "923",
- "39125_ord": "3938",
- "39128_ord": "4497",
- "39129_ord": "43",
- "3912_index": "36824",
- "39130_ord": "5004",
- "39134_ord": "1173",
- "39135_ord": "1692",
- "3913_index": "35074",
- "39143_ord": "3781",
- "39144_ord": "5027",
- "3914_index": "37019",
- "3915_index": "27428",
- "3916_index": "33647",
- "3917_index": "26333",
- "39181_ord": "2620",
- "39184_ord": "1165",
- "3918_index": "32554",
- "3919_index": "37030",
- "391_index": "32793",
- "3920_index": "25554",
- "39214_ord": "5804",
- "3921_index": "35847",
- "3922_index": "20504",
- "3923_index": "36132",
- "3924_index": "37044",
- "39253_ord": "4682",
- "3925_index": "37026",
- "39269_ord": "683",
- "3926_index": "30571",
- "39270_ord": "3677",
- "39274_ord": "3576",
- "39276_ord": "792",
- "39277_ord": "1261",
- "39278_ord": "3387",
- "39279_ord": "3398",
- "3927_index": "38160",
- "39280_ord": "2076",
- "39281_ord": "3498",
- "39282_ord": "1056",
- "39284_ord": "3311",
- "39285_ord": "2849",
- "39286_ord": "736",
- "39287_ord": "4773",
- "3928_index": "31859",
- "39290_ord": "479",
- "39292_ord": "3868",
- "39293_ord": "859",
- "39295_ord": "2505",
- "39296_ord": "3157",
- "39297_ord": "687",
- "3929_index": "22777",
- "392_index": "34241",
- "39301_ord": "1750",
- "39302_ord": "1949",
- "39304_ord": "4026",
- "39307_ord": "4711",
- "39309_ord": "582",
- "3930_index": "25214",
- "39310_ord": "4495",
- "39311_ord": "2773",
- "39312_ord": "4603",
- "39314_ord": "5140",
- "39315_ord": "1166",
- "39316_ord": "2698",
- "39317_ord": "987",
- "39318_ord": "4334",
- "3931_index": "36164",
- "39321_ord": "3841",
- "3932_index": "23835",
- "39333_ord": "1066",
- "39336_ord": "3380",
- "3933_index": "38649",
- "3934_index": "24683",
- "3935_index": "27599",
- "3936_index": "36974",
- "3937_index": "25198",
- "3938_index": "39125",
- "3939_index": "38075",
- "393_index": "22317",
- "3940_index": "31672",
- "3941_index": "30413",
- "3942_index": "34541",
- "3943_index": "35802",
- "3944_index": "20105",
- "3945_index": "29245",
- "3946_index": "25481",
- "3947_index": "26477",
- "3948_index": "27966",
- "3949_index": "27523",
- "394_index": "35837",
- "3950_index": "21888",
- "3951_index": "30447",
- "39529_ord": "3478",
- "3952_index": "25314",
- "39532_ord": "4104",
- "39533_ord": "4592",
- "39534_ord": "1405",
- "39535_ord": "2693",
- "39536_ord": "717",
- "39537_ord": "550",
- "39539_ord": "4311",
- "3953_index": "27835",
- "39540_ord": "1168",
- "39542_ord": "3149",
- "39543_ord": "1930",
- "39544_ord": "2135",
- "39545_ord": "1749",
- "39546_ord": "2801",
- "39547_ord": "5445",
- "39548_ord": "1207",
- "39549_ord": "2840",
- "3954_index": "38086",
- "39550_ord": "3452",
- "39551_ord": "2592",
- "39552_ord": "5431",
- "39553_ord": "5608",
- "39554_ord": "2242",
- "39556_ord": "5674",
- "39557_ord": "5102",
- "39558_ord": "1706",
- "39559_ord": "1138",
- "3955_index": "25265",
- "39560_ord": "3769",
- "39562_ord": "4403",
- "39563_ord": "4170",
- "39564_ord": "716",
- "39567_ord": "1789",
- "39568_ord": "4062",
- "39569_ord": "3169",
- "3956_index": "40763",
- "39574_ord": "5042",
- "39575_ord": "3835",
- "39576_ord": "4627",
- "39578_ord": "4684",
- "39579_ord": "3872",
- "3957_index": "27225",
- "39580_ord": "1820",
- "39582_ord": "4557",
- "39584_ord": "1473",
- "39585_ord": "4175",
- "39588_ord": "85",
- "39589_ord": "4523",
- "3958_index": "25160",
- "39591_ord": "2303",
- "39592_ord": "4409",
- "3959_index": "24598",
- "395_index": "20170",
- "39600_ord": "4224",
- "39606_ord": "1537",
- "39607_ord": "1646",
- "39608_ord": "3019",
- "3960_index": "20190",
- "39612_ord": "96",
- "39616_ord": "5333",
- "39619_ord": "5521",
- "3961_index": "36880",
- "39621_ord": "4295",
- "39627_ord": "5466",
- "3962_index": "32034",
- "39633_ord": "4094",
- "39635_ord": "5334",
- "3963_index": "39746",
- "39640_ord": "3421",
- "39649_ord": "1485",
- "3964_index": "27896",
- "39654_ord": "4683",
- "39659_ord": "3532",
- "3965_index": "20315",
- "39661_ord": "5000",
- "39663_ord": "2887",
- "3966_index": "28865",
- "39675_ord": "4751",
- "3967_index": "21608",
- "39683_ord": "35",
- "3968_index": "22581",
- "39699_ord": "3661",
- "3969_index": "36749",
- "396_index": "21990",
- "3970_index": "19997",
- "39711_ord": "1868",
- "39715_ord": "2589",
- "3971_index": "23612",
- "3972_index": "24582",
- "39730_ord": "4743",
- "39739_ord": "1102",
- "3973_index": "24180",
- "39740_ord": "3847",
- "39745_ord": "631",
- "39746_ord": "3963",
- "39748_ord": "729",
- "39749_ord": "5415",
- "3974_index": "33033",
- "39751_ord": "3284",
- "39753_ord": "4797",
- "39757_ord": "1543",
- "39759_ord": "3460",
- "3975_index": "38206",
- "39761_ord": "5781",
- "39764_ord": "2917",
- "3976_index": "29028",
- "3977_index": "20945",
- "3978_index": "34461",
- "3979_index": "32440",
- "397_index": "33759",
- "3980_index": "31461",
- "3981_index": "24871",
- "3982_index": "20985",
- "3983_index": "29978",
- "3984_index": "26538",
- "3985_index": "31570",
- "3986_index": "36887",
- "3987_index": "24081",
- "3988_index": "29711",
- "3989_index": "21491",
- "398_index": "29454",
- "3990_index": "25665",
- "3991_index": "21046",
- "3992_index": "21335",
- "3993_index": "26119",
- "3994_index": "31515",
- "3995_index": "24351",
- "3996_index": "37492",
- "3997_index": "24529",
- "3998_index": "23811",
- "3999_index": "25026",
- "399_index": "38343",
- "39_index": "30338",
- "39_ord": "3733",
- "3_index": "36383",
- "4000_index": "9317",
- "4001_index": "27047",
- "4002_index": "24473",
- "4003_index": "35390",
- "4004_index": "32673",
- "4005_index": "35109",
- "40060_ord": "5815",
- "40063_ord": "2098",
- "40065_ord": "743",
- "4006_index": "32899",
- "40071_ord": "1860",
- "40075_ord": "1371",
- "40077_ord": "1982",
- "4007_index": "21823",
- "40080_ord": "448",
- "40081_ord": "3649",
- "40084_ord": "5668",
- "4008_index": "31071",
- "40091_ord": "4705",
- "40092_ord": "2559",
- "40096_ord": "4610",
- "4009_index": "40518",
- "400_index": "32752",
- "40100_ord": "2653",
- "40103_ord": "4793",
- "40104_ord": "2989",
- "4010_index": "30629",
- "40112_ord": "3002",
- "40114_ord": "1419",
- "4011_index": "23035",
- "40120_ord": "852",
- "4012_index": "36273",
- "40131_ord": "2118",
- "40132_ord": "3803",
- "4013_index": "35",
- "40140_ord": "404",
- "40141_ord": "1193",
- "40143_ord": "4836",
- "4014_index": "38114",
- "40150_ord": "3246",
- "40156_ord": "1249",
- "40157_ord": "5722",
- "40158_ord": "4055",
- "4015_index": "32474",
- "4016_index": "24124",
- "4017_index": "35299",
- "4018_index": "24840",
- "4019_index": "36882",
- "401_index": "22435",
- "4020_index": "27893",
- "4021_index": "30511",
- "4022_index": "33806",
- "4023_index": "36893",
- "4024_index": "25402",
- "4025_index": "20047",
- "4026_index": "39304",
- "4027_index": "23506",
- "4028_index": "27762",
- "4029_index": "38153",
- "402_index": "21674",
- "4030_index": "31054",
- "4031_index": "25463",
- "4032_index": "224",
- "4033_index": "30928",
- "4034_index": "34913",
- "4035_index": "31059",
- "4036_index": "21576",
- "4037_index": "38124",
- "4038_index": "24466",
- "4039_index": "24469",
- "403_index": "26238",
- "4040_index": "38043",
- "4041_index": "24403",
- "4042_index": "23572",
- "4043_index": "24528",
- "4044_index": "21208",
- "4045_index": "25343",
- "4046_index": "29166",
- "40479_ord": "2156",
- "4047_index": "27845",
- "40480_ord": "2493",
- "40481_ord": "5163",
- "40482_ord": "915",
- "40483_ord": "310",
- "40485_ord": "1811",
- "40486_ord": "2094",
- "40488_ord": "1610",
- "40489_ord": "412",
- "4048_index": "25034",
- "40492_ord": "4974",
- "40493_ord": "1409",
- "40494_ord": "2114",
- "40495_ord": "4846",
- "40497_ord": "5068",
- "40499_ord": "4137",
- "4049_index": "45",
- "404_index": "40140",
- "40501_ord": "4225",
- "40503_ord": "4949",
- "40509_ord": "2312",
- "4050_index": "32557",
- "40510_ord": "4914",
- "40511_ord": "5318",
- "40514_ord": "5477",
- "40515_ord": "5353",
- "40516_ord": "1684",
- "40517_ord": "1747",
- "40518_ord": "4009",
- "4051_index": "20196",
- "40521_ord": "682",
- "40522_ord": "4597",
- "40527_ord": "999",
- "40529_ord": "965",
- "4052_index": "25542",
- "40535_ord": "1707",
- "40536_ord": "5083",
- "40538_ord": "5395",
- "4053_index": "21283",
- "40540_ord": "5632",
- "40542_ord": "5255",
- "40547_ord": "843",
- "40548_ord": "2070",
- "4054_index": "38271",
- "40550_ord": "3566",
- "40555_ord": "2930",
- "40557_ord": "284",
- "4055_index": "40158",
- "40560_ord": "3005",
- "40563_ord": "1843",
- "4056_index": "20993",
- "40575_ord": "5544",
- "40578_ord": "4796",
- "4057_index": "31192",
- "40587_ord": "1538",
- "4058_index": "22612",
- "40594_ord": "1192",
- "40595_ord": "4582",
- "4059_index": "38955",
- "405_index": "21477",
- "40605_ord": "265",
- "40607_ord": "1965",
- "4060_index": "24576",
- "40614_ord": "2420",
- "4061_index": "26612",
- "4062_index": "39568",
- "40635_ord": "1890",
- "40637_ord": "4601",
- "40638_ord": "3310",
- "4063_index": "22697",
- "40644_ord": "2182",
- "4064_index": "21483",
- "40653_ord": "1713",
- "40654_ord": "2425",
- "40655_ord": "5181",
- "40657_ord": "4575",
- "4065_index": "103",
- "40660_ord": "4342",
- "40664_ord": "3682",
- "40667_ord": "2962",
- "40668_ord": "1801",
- "40669_ord": "2778",
- "4066_index": "26367",
- "40671_ord": "1733",
- "40672_ord": "2780",
- "4067_index": "20463",
- "40687_ord": "1940",
- "4068_index": "36362",
- "4069_index": "26584",
- "406_index": "39047",
- "40702_ord": "672",
- "4070_index": "23588",
- "40715_ord": "5205",
- "40717_ord": "5598",
- "40718_ord": "4738",
- "4071_index": "36951",
- "40723_ord": "5434",
- "4072_index": "24407",
- "40736_ord": "3000",
- "4073_index": "26420",
- "4074_index": "24717",
- "4075_index": "36328",
- "40763_ord": "3956",
- "40766_ord": "528",
- "4076_index": "22432",
- "4077_index": "35070",
- "40784_ord": "3634",
- "4078_index": "32488",
- "4079_index": "32417",
- "407_index": "26025",
- "4080_index": "24575",
- "4081_index": "29356",
- "4082_index": "24208",
- "40831_ord": "967",
- "40833_ord": "2279",
- "40836_ord": "3410",
- "4083_index": "31207",
- "40840_ord": "5141",
- "40842_ord": "2611",
- "40843_ord": "2675",
- "40844_ord": "2977",
- "40847_ord": "524",
- "4084_index": "31319",
- "40857_ord": "3871",
- "40858_ord": "430",
- "40859_ord": "1557",
- "4085_index": "34814",
- "40863_ord": "4128",
- "4086_index": "34507",
- "4087_index": "26896",
- "4088_index": "36228",
- "4089_index": "23210",
- "408_index": "33436",
- "4090_index": "32478",
- "4091_index": "28525",
- "4092_index": "20565",
- "4093_index": "21860",
- "4094_index": "39633",
- "4095_index": "25749",
- "4096_index": "24623",
- "4097_index": "22774",
- "4098_index": "102",
- "4099_index": "29270",
- "409_index": "64",
- "40_index": "26381",
- "40_ord": "722",
- "4100_index": "20864",
- "4101_index": "23631",
- "4102_index": "36952",
- "4103_index": "30502",
- "4104_index": "39532",
- "4105_index": "29840",
- "4106_index": "36276",
- "4107_index": "33769",
- "4108_index": "23094",
- "4109_index": "36139",
- "410_index": "39049",
- "4110_index": "31869",
- "4111_index": "22962",
- "4112_index": "23244",
- "4113_index": "21767",
- "4114_index": "27983",
- "4115_index": "24055",
- "4116_index": "31494",
- "4117_index": "21693",
- "4118_index": "30246",
- "4119_index": "945",
- "411_index": "27627",
- "4120_index": "23045",
- "4121_index": "31246",
- "4122_index": "25102",
- "4123_index": "22244",
- "4124_index": "20394",
- "4125_index": "30116",
- "4126_index": "27728",
- "4127_index": "37198",
- "4128_index": "40863",
- "4129_index": "38678",
- "412_index": "40489",
- "4130_index": "22992",
- "4131_index": "34935",
- "4132_index": "25386",
- "4133_index": "31932",
- "4134_index": "20570",
- "4135_index": "29677",
- "4136_index": "30086",
- "4137_index": "40499",
- "4138_index": "21486",
- "4139_index": "26031",
- "413_index": "27861",
- "4140_index": "22827",
- "4141_index": "21161",
- "4142_index": "37195",
- "4143_index": "29088",
- "4144_index": "32466",
- "4145_index": "24499",
- "4146_index": "8242",
- "4147_index": "28108",
- "4148_index": "33524",
- "4149_index": "20846",
- "414_index": "32454",
- "4150_index": "30719",
- "4151_index": "32551",
- "4152_index": "28818",
- "4153_index": "23729",
- "4154_index": "22925",
- "4155_index": "33129",
- "4156_index": "25317",
- "4157_index": "28343",
- "4158_index": "25332",
- "4159_index": "24590",
- "415_index": "27744",
- "4160_index": "38808",
- "4161_index": "33455",
- "4162_index": "33251",
- "4163_index": "31383",
- "4164_index": "36225",
- "4165_index": "27679",
- "4166_index": "38533",
- "4167_index": "21905",
- "4168_index": "26015",
- "4169_index": "23480",
- "416_index": "37112",
- "4170_index": "39563",
- "4171_index": "33592",
- "4172_index": "36995",
- "4173_index": "26799",
- "4174_index": "30133",
- "4175_index": "39585",
- "4176_index": "22391",
- "4177_index": "35769",
- "4178_index": "30111",
- "4179_index": "20552",
- "417_index": "30028",
- "4180_index": "31038",
- "4181_index": "28891",
- "4182_index": "26395",
- "4183_index": "34028",
- "4184_index": "28437",
- "4185_index": "25239",
- "4186_index": "20214",
- "4187_index": "36161",
- "4188_index": "25910",
- "4189_index": "21016",
- "418_index": "37220",
- "4190_index": "21549",
- "4191_index": "22931",
- "4192_index": "21078",
- "4193_index": "35048",
- "4194_index": "20367",
- "4195_index": "25438",
- "4196_index": "39066",
- "4197_index": "38534",
- "4198_index": "20171",
- "4199_index": "21152",
- "419_index": "36475",
- "41_index": "23896",
- "41_ord": "4215",
- "4200_index": "32596",
- "4201_index": "31287",
- "4202_index": "21220",
- "4203_index": "26755",
- "4204_index": "22014",
- "4205_index": "27788",
- "4206_index": "29435",
- "4207_index": "30002",
- "4208_index": "21604",
- "4209_index": "27900",
- "420_index": "23431",
- "4210_index": "25467",
- "4211_index": "25155",
- "4212_index": "27468",
- "4213_index": "25179",
- "4214_index": "38416",
- "4215_index": "41",
- "4216_index": "23651",
- "4217_index": "21097",
- "4218_index": "20869",
- "4219_index": "33735",
- "421_index": "33633",
- "4220_index": "38548",
- "4221_index": "38610",
- "4222_index": "26480",
- "4223_index": "30776",
- "4224_index": "39600",
- "4225_index": "40501",
- "4226_index": "20184",
- "4227_index": "20860",
- "4228_index": "252",
- "4229_index": "34303",
- "422_index": "35809",
- "4230_index": "35834",
- "4231_index": "22862",
- "4232_index": "24832",
- "4233_index": "26124",
- "4234_index": "24917",
- "4235_index": "27695",
- "4236_index": "38454",
- "4237_index": "23113",
- "4238_index": "34837",
- "4239_index": "24760",
- "423_index": "22545",
- "4240_index": "29906",
- "4241_index": "34943",
- "4242_index": "31923",
- "4243_index": "32750",
- "4244_index": "26705",
- "4245_index": "24794",
- "4246_index": "8546",
- "4247_index": "24352",
- "4248_index": "38034",
- "4249_index": "26530",
- "424_index": "35868",
- "4250_index": "29614",
- "4251_index": "38413",
- "4252_index": "24050",
- "4253_index": "30830",
- "4254_index": "27675",
- "4255_index": "20901",
- "4256_index": "21713",
- "4257_index": "21098",
- "4258_index": "21863",
- "4259_index": "26693",
- "425_index": "22654",
- "4260_index": "34588",
- "4261_index": "28654",
- "4262_index": "33490",
- "4263_index": "38431",
- "4264_index": "33931",
- "4265_index": "38519",
- "4266_index": "36339",
- "4267_index": "20013",
- "4268_index": "25250",
- "4269_index": "21650",
- "426_index": "34586",
- "4270_index": "20154",
- "4271_index": "25899",
- "4272_index": "28238",
- "4273_index": "25671",
- "4274_index": "29022",
- "4275_index": "24458",
- "4276_index": "30462",
- "4277_index": "32558",
- "4278_index": "20254",
- "4279_index": "33900",
- "427_index": "32487",
- "4280_index": "20040",
- "4281_index": "19971",
- "4282_index": "25302",
- "4283_index": "30105",
- "4284_index": "35753",
- "4285_index": "20390",
- "4286_index": "23608",
- "4287_index": "22351",
- "4288_index": "34946",
- "4289_index": "26114",
- "428_index": "24103",
- "4290_index": "21365",
- "4291_index": "22797",
- "4292_index": "29367",
- "4293_index": "36510",
- "4294_index": "34670",
- "4295_index": "39621",
- "4296_index": "34218",
- "4297_index": "36981",
- "4298_index": "21484",
- "4299_index": "34383",
- "429_index": "24119",
- "42_index": "20260",
- "42_ord": "3065",
- "4300_index": "19979",
- "4301_index": "24070",
- "4302_index": "22971",
- "4303_index": "28197",
- "4304_index": "19969",
- "4305_index": "38400",
- "4306_index": "34880",
- "4307_index": "38675",
- "4308_index": "39042",
- "4309_index": "23254",
- "430_index": "40858",
- "4310_index": "23418",
- "4311_index": "39539",
- "4312_index": "35816",
- "4313_index": "30141",
- "4314_index": "24066",
- "4315_index": "22330",
- "4316_index": "36805",
- "4317_index": "30722",
- "4318_index": "35686",
- "4319_index": "24453",
- "431_index": "22234",
- "4320_index": "37324",
- "4321_index": "25703",
- "4322_index": "37197",
- "4323_index": "29785",
- "4324_index": "31162",
- "4325_index": "21908",
- "4326_index": "34900",
- "4327_index": "25490",
- "4328_index": "36235",
- "4329_index": "28822",
- "432_index": "31199",
- "4330_index": "26368",
- "4331_index": "35988",
- "4332_index": "56",
- "4333_index": "28227",
- "4334_index": "39318",
- "4335_index": "32599",
- "4336_index": "28792",
- "4337_index": "8594",
- "4338_index": "28186",
- "4339_index": "27605",
- "433_index": "35057",
- "4340_index": "34996",
- "4341_index": "22068",
- "4342_index": "40660",
- "4343_index": "30566",
- "4344_index": "36902",
- "4345_index": "27813",
- "4346_index": "23130",
- "4347_index": "23449",
- "4348_index": "20621",
- "4349_index": "32842",
- "434_index": "35269",
- "4350_index": "21422",
- "4351_index": "32549",
- "4352_index": "30000",
- "4353_index": "25122",
- "4354_index": "29648",
- "4355_index": "27099",
- "4356_index": "28182",
- "4357_index": "38505",
- "4358_index": "38446",
- "4359_index": "29781",
- "435_index": "20046",
- "4360_index": "24739",
- "4361_index": "26247",
- "4362_index": "38789",
- "4363_index": "21382",
- "4364_index": "36138",
- "4365_index": "36875",
- "4366_index": "21917",
- "4367_index": "25454",
- "4368_index": "36174",
- "4369_index": "27462",
- "436_index": "20061",
- "4370_index": "23462",
- "4371_index": "27103",
- "4372_index": "20064",
- "4373_index": "23755",
- "4374_index": "20405",
- "4375_index": "35863",
- "4376_index": "33293",
- "4377_index": "25143",
- "4378_index": "21043",
- "4379_index": "30410",
- "437_index": "29279",
- "4380_index": "24377",
- "4381_index": "25414",
- "4382_index": "34558",
- "4383_index": "33",
- "4384_index": "20024",
- "4385_index": "38450",
- "4386_index": "35800",
- "4387_index": "29761",
- "4388_index": "35201",
- "4389_index": "22257",
- "438_index": "34941",
- "4390_index": "36184",
- "4391_index": "38453",
- "4392_index": "28954",
- "4393_index": "36930",
- "4394_index": "36387",
- "4395_index": "28872",
- "4396_index": "26089",
- "4397_index": "25810",
- "4398_index": "25200",
- "4399_index": "36485",
- "439_index": "29482",
- "43_index": "39129",
- "43_ord": "1154",
- "4400_index": "8547",
- "4401_index": "37314",
- "4402_index": "20442",
- "4403_index": "39562",
- "4404_index": "30545",
- "4405_index": "24577",
- "4406_index": "38495",
- "4407_index": "21327",
- "4408_index": "37221",
- "4409_index": "39592",
- "440_index": "34917",
- "4410_index": "24033",
- "4411_index": "21894",
- "4412_index": "31959",
- "4413_index": "20108",
- "4414_index": "30372",
- "4415_index": "27979",
- "4416_index": "21514",
- "4417_index": "33109",
- "4418_index": "35858",
- "4419_index": "26051",
- "441_index": "30473",
- "4420_index": "22429",
- "4421_index": "20283",
- "4422_index": "36170",
- "4423_index": "28487",
- "4424_index": "29436",
- "4425_index": "27586",
- "4426_index": "30014",
- "4427_index": "20291",
- "4428_index": "35880",
- "4429_index": "23104",
- "442_index": "34972",
- "4430_index": "119",
- "4431_index": "20282",
- "4432_index": "36214",
- "4433_index": "99",
- "4434_index": "25530",
- "4435_index": "25558",
- "4436_index": "24688",
- "4437_index": "21807",
- "4438_index": "35754",
- "4439_index": "27068",
- "443_index": "30340",
- "4440_index": "32964",
- "4441_index": "28297",
- "4442_index": "21306",
- "4443_index": "65106",
- "4444_index": "27159",
- "4445_index": "32543",
- "4446_index": "29232",
- "4447_index": "26071",
- "4448_index": "21521",
- "4449_index": "31574",
- "444_index": "27538",
- "4450_index": "38604",
- "4451_index": "25915",
- "4452_index": "26797",
- "4453_index": "22066",
- "4454_index": "24680",
- "4455_index": "24763",
- "4456_index": "33394",
- "4457_index": "30802",
- "4458_index": "30153",
- "4459_index": "37231",
- "445_index": "28997",
- "4460_index": "31066",
- "4461_index": "38189",
- "4462_index": "33559",
- "4463_index": "21691",
- "4464_index": "20262",
- "4465_index": "37226",
- "4466_index": "25571",
- "4467_index": "21269",
- "4468_index": "23721",
- "4469_index": "21754",
- "446_index": "21482",
- "4470_index": "34496",
- "4471_index": "32600",
- "4472_index": "29822",
- "4473_index": "21698",
- "4474_index": "27801",
- "4475_index": "26641",
- "4476_index": "25511",
- "4477_index": "26842",
- "4478_index": "32476",
- "4479_index": "21671",
- "447_index": "21187",
- "4480_index": "32432",
- "4481_index": "21165",
- "4482_index": "33630",
- "4483_index": "25968",
- "4484_index": "21313",
- "4485_index": "22256",
- "4486_index": "35793",
- "4487_index": "25634",
- "4488_index": "30865",
- "4489_index": "21657",
- "448_index": "40080",
- "4490_index": "30827",
- "4491_index": "8712",
- "4492_index": "29422",
- "4493_index": "29969",
- "4494_index": "25087",
- "4495_index": "39310",
- "4496_index": "36816",
- "4497_index": "39128",
- "4498_index": "78",
- "4499_index": "35832",
- "449_index": "22353",
- "44_index": "32808",
- "44_ord": "3456",
- "4500_index": "32996",
- "4501_index": "29379",
- "4502_index": "24155",
- "4503_index": "33311",
- "4504_index": "25913",
- "4505_index": "27836",
- "4506_index": "25277",
- "4507_index": "53",
- "4508_index": "37210",
- "4509_index": "27492",
- "450_index": "32509",
- "4510_index": "34276",
- "4511_index": "25119",
- "4512_index": "28889",
- "4513_index": "19995",
- "4514_index": "33392",
- "4515_index": "29277",
- "4516_index": "21334",
- "4517_index": "25480",
- "4518_index": "33044",
- "4519_index": "33410",
- "451_index": "26143",
- "4520_index": "38203",
- "4521_index": "27950",
- "4522_index": "36212",
- "4523_index": "39589",
- "4524_index": "21489",
- "4525_index": "28540",
- "4526_index": "36861",
- "4527_index": "34921",
- "4528_index": "31616",
- "4529_index": "32456",
- "452_index": "33402",
- "4530_index": "21738",
- "4531_index": "36205",
- "4532_index": "35875",
- "4533_index": "31492",
- "4534_index": "29549",
- "4535_index": "28389",
- "4536_index": "25788",
- "4537_index": "24605",
- "4538_index": "33638",
- "4539_index": "23553",
- "453_index": "29680",
- "4540_index": "30127",
- "4541_index": "38646",
- "4542_index": "29289",
- "4543_index": "25353",
- "4544_index": "30693",
- "4545_index": "25300",
- "4546_index": "21378",
- "4547_index": "25918",
- "4548_index": "33725",
- "4549_index": "36134",
- "454_index": "38830",
- "4550_index": "23707",
- "4551_index": "20885",
- "4552_index": "33021",
- "4553_index": "22443",
- "4554_index": "24109",
- "4555_index": "25569",
- "4556_index": "20446",
- "4557_index": "39582",
- "4558_index": "20445",
- "4559_index": "25688",
- "455_index": "26862",
- "4560_index": "23630",
- "4561_index": "35844",
- "4562_index": "20233",
- "4563_index": "21563",
- "4564_index": "31028",
- "4565_index": "38066",
- "4566_index": "27686",
- "4567_index": "33337",
- "4568_index": "23562",
- "4569_index": "33465",
- "456_index": "27204",
- "4570_index": "21405",
- "4571_index": "30498",
- "4572_index": "33628",
- "4573_index": "21145",
- "4574_index": "23432",
- "4575_index": "40657",
- "4576_index": "34510",
- "4577_index": "22496",
- "4578_index": "21522",
- "4579_index": "33216",
- "457_index": "21017",
- "4580_index": "26525",
- "4581_index": "36724",
- "4582_index": "40595",
- "4583_index": "20520",
- "4584_index": "9651",
- "4585_index": "36982",
- "4586_index": "27088",
- "4587_index": "23408",
- "4588_index": "27987",
- "4589_index": "20137",
- "458_index": "26786",
- "4590_index": "20080",
- "4591_index": "25196",
- "4592_index": "39533",
- "4593_index": "33210",
- "4594_index": "36814",
- "4595_index": "21068",
- "4596_index": "26503",
- "4597_index": "40522",
- "4598_index": "27249",
- "4599_index": "36994",
- "459_index": "28196",
- "45_index": "36758",
- "45_ord": "4049",
- "4600_index": "27057",
- "4601_index": "40637",
- "4602_index": "35841",
- "4603_index": "39312",
- "4604_index": "28079",
- "4605_index": "31359",
- "4606_index": "23044",
- "4607_index": "22242",
- "4608_index": "27075",
- "4609_index": "21169",
- "460_index": "22419",
- "4610_index": "40096",
- "4611_index": "23388",
- "4612_index": "35276",
- "4613_index": "32501",
- "4614_index": "27494",
- "4615_index": "36186",
- "4616_index": "30970",
- "4617_index": "29266",
- "4618_index": "57",
- "4619_index": "30883",
- "461_index": "23512",
- "4620_index": "20339",
- "4621_index": "38392",
- "4622_index": "25235",
- "4623_index": "20369",
- "4624_index": "35874",
- "4625_index": "34164",
- "4626_index": "22865",
- "4627_index": "39576",
- "4628_index": "37060",
- "4629_index": "20165",
- "462_index": "38402",
- "4630_index": "29306",
- "4631_index": "22275",
- "4632_index": "24052",
- "4633_index": "26302",
- "4634_index": "30591",
- "4635_index": "21460",
- "4636_index": "27169",
- "4637_index": "27975",
- "4638_index": "25100",
- "4639_index": "20043",
- "463_index": "20917",
- "4640_index": "36864",
- "4641_index": "28861",
- "4642_index": "30910",
- "4643_index": "27721",
- "4644_index": "22561",
- "4645_index": "33832",
- "4646_index": "26262",
- "4647_index": "27931",
- "4648_index": "20056",
- "4649_index": "23938",
- "464_index": "24666",
- "4650_index": "21032",
- "4651_index": "21277",
- "4652_index": "24876",
- "4653_index": "35859",
- "4654_index": "27963",
- "4655_index": "36726",
- "4656_index": "29281",
- "4657_index": "32822",
- "4658_index": "30643",
- "4659_index": "29390",
- "465_index": "38761",
- "4660_index": "35301",
- "4661_index": "33615",
- "4662_index": "34920",
- "4663_index": "35206",
- "4664_index": "20173",
- "4665_index": "31958",
- "4666_index": "22334",
- "4667_index": "29006",
- "4668_index": "25035",
- "4669_index": "20865",
- "466_index": "36300",
- "4670_index": "30585",
- "4671_index": "26519",
- "4672_index": "31729",
- "4673_index": "37089",
- "4674_index": "26791",
- "4675_index": "20718",
- "4676_index": "34065",
- "4677_index": "9312",
- "4678_index": "25644",
- "4679_index": "35884",
- "467_index": "21681",
- "4680_index": "20421",
- "4681_index": "26594",
- "4682_index": "39253",
- "4683_index": "39654",
- "4684_index": "39578",
- "4685_index": "23089",
- "4686_index": "26435",
- "4687_index": "24369",
- "4688_index": "27451",
- "4689_index": "31405",
- "468_index": "21627",
- "4690_index": "38182",
- "4691_index": "35876",
- "4692_index": "32988",
- "4693_index": "21556",
- "4694_index": "25532",
- "4695_index": "19975",
- "4696_index": "30183",
- "4697_index": "20426",
- "4698_index": "28949",
- "4699_index": "23230",
- "469_index": "21006",
- "46_index": "25340",
- "46_ord": "3422",
- "4700_index": "36454",
- "4701_index": "36711",
- "4702_index": "28845",
- "4703_index": "34468",
- "4704_index": "36423",
- "4705_index": "40091",
- "4706_index": "35871",
- "4707_index": "35895",
- "4708_index": "32420",
- "4709_index": "33550",
- "470_index": "33451",
- "4710_index": "21623",
- "4711_index": "39307",
- "4712_index": "34433",
- "4713_index": "34425",
- "4714_index": "24604",
- "4715_index": "34739",
- "4716_index": "28102",
- "4717_index": "34568",
- "4718_index": "25342",
- "4719_index": "33804",
- "471_index": "34567",
- "4720_index": "27233",
- "4721_index": "30603",
- "4722_index": "32560",
- "4723_index": "21891",
- "4724_index": "30415",
- "4725_index": "24432",
- "4726_index": "26803",
- "4727_index": "22024",
- "4728_index": "26454",
- "4729_index": "24653",
- "472_index": "32943",
- "4730_index": "32922",
- "4731_index": "23090",
- "4732_index": "8544",
- "4733_index": "22764",
- "4734_index": "29364",
- "4735_index": "24685",
- "4736_index": "29489",
- "4737_index": "27887",
- "4738_index": "40718",
- "4739_index": "22534",
- "473_index": "23961",
- "4740_index": "31391",
- "4741_index": "33150",
- "4742_index": "37325",
- "4743_index": "39730",
- "4744_index": "24694",
- "4745_index": "24534",
- "4746_index": "33978",
- "4747_index": "33897",
- "4748_index": "247",
- "4749_index": "21117",
- "474_index": "21985",
- "4750_index": "22125",
- "4751_index": "39675",
- "4752_index": "26222",
- "4753_index": "34560",
- "4754_index": "20167",
- "4755_index": "23494",
- "4756_index": "35008",
- "4757_index": "33740",
- "4758_index": "20447",
- "4759_index": "38552",
- "475_index": "21683",
- "4760_index": "26864",
- "4761_index": "25381",
- "4762_index": "34222",
- "4763_index": "25488",
- "4764_index": "35977",
- "4765_index": "23011",
- "4766_index": "38",
- "4767_index": "22387",
- "4768_index": "34849",
- "4769_index": "33976",
- "476_index": "29286",
- "4770_index": "29233",
- "4771_index": "34544",
- "4772_index": "21417",
- "4773_index": "39287",
- "4774_index": "36146",
- "4775_index": "27888",
- "4776_index": "25197",
- "4777_index": "9332",
- "4778_index": "30505",
- "4779_index": "20351",
- "477_index": "23696",
- "4780_index": "21629",
- "4781_index": "32654",
- "4782_index": "20961",
- "4783_index": "29992",
- "4784_index": "38428",
- "4785_index": "38647",
- "4786_index": "38376",
- "4787_index": "36739",
- "4788_index": "25797",
- "4789_index": "21348",
- "478_index": "26329",
- "4790_index": "38475",
- "4791_index": "23581",
- "4792_index": "26331",
- "4793_index": "40103",
- "4794_index": "30178",
- "4795_index": "21333",
- "4796_index": "40578",
- "4797_index": "39753",
- "4798_index": "24439",
- "4799_index": "38485",
- "479_index": "39290",
- "47_index": "22270",
- "47_ord": "2136",
- "4800_index": "36898",
- "4801_index": "25152",
- "4802_index": "24182",
- "4803_index": "24337",
- "4804_index": "34593",
- "4805_index": "23700",
- "4806_index": "22002",
- "4807_index": "24441",
- "4808_index": "35294",
- "4809_index": "36159",
- "480_index": "34092",
- "4810_index": "25212",
- "4811_index": "32843",
- "4812_index": "21047",
- "4813_index": "24373",
- "4814_index": "33025",
- "4815_index": "29976",
- "4816_index": "36963",
- "4817_index": "20558",
- "4818_index": "25335",
- "4819_index": "33437",
- "481_index": "31518",
- "4820_index": "31262",
- "4821_index": "38178",
- "4822_index": "22149",
- "4823_index": "29420",
- "4824_index": "33707",
- "4825_index": "23777",
- "4826_index": "24807",
- "4827_index": "30083",
- "4828_index": "32908",
- "4829_index": "34109",
- "482_index": "38089",
- "4830_index": "26544",
- "4831_index": "29790",
- "4832_index": "27542",
- "4833_index": "29935",
- "4834_index": "34402",
- "4835_index": "31069",
- "4836_index": "40143",
- "4837_index": "39069",
- "4838_index": "36827",
- "4839_index": "23265",
- "483_index": "36716",
- "4840_index": "26206",
- "4841_index": "23626",
- "4842_index": "25615",
- "4843_index": "32737",
- "4844_index": "28173",
- "4845_index": "30016",
- "4846_index": "40495",
- "4847_index": "21974",
- "4848_index": "33635",
- "4849_index": "31446",
- "484_index": "20493",
- "4850_index": "27663",
- "4851_index": "24063",
- "4852_index": "33037",
- "4853_index": "31469",
- "4854_index": "28459",
- "4855_index": "33997",
- "4856_index": "30192",
- "4857_index": "27668",
- "4858_index": "24429",
- "4859_index": "38599",
- "485_index": "25225",
- "4860_index": "20801",
- "4861_index": "26356",
- "4862_index": "31105",
- "4863_index": "22859",
- "4864_index": "38889",
- "4865_index": "35829",
- "4866_index": "23751",
- "4867_index": "23020",
- "4868_index": "32772",
- "4869_index": "38387",
- "486_index": "21898",
- "4870_index": "37383",
- "4871_index": "26834",
- "4872_index": "23558",
- "4873_index": "31040",
- "4874_index": "33329",
- "4875_index": "26198",
- "4876_index": "38085",
- "4877_index": "35867",
- "4878_index": "24841",
- "4879_index": "26590",
- "487_index": "20007",
- "4880_index": "29830",
- "4881_index": "25191",
- "4882_index": "20372",
- "4883_index": "33261",
- "4884_index": "23604",
- "4885_index": "32288",
- "4886_index": "31629",
- "4887_index": "24310",
- "4888_index": "20197",
- "4889_index": "27454",
- "488_index": "26611",
- "4890_index": "35033",
- "4891_index": "28903",
- "4892_index": "34993",
- "4893_index": "22441",
- "4894_index": "23013",
- "4895_index": "36347",
- "4896_index": "27296",
- "4897_index": "25172",
- "4898_index": "20048",
- "4899_index": "31354",
- "489_index": "38048",
- "48_index": "33432",
- "48_ord": "5515",
- "4900_index": "21261",
- "4901_index": "118",
- "4902_index": "21866",
- "4903_index": "34915",
- "4904_index": "31914",
- "4905_index": "36750",
- "4906_index": "36733",
- "4907_index": "34631",
- "4908_index": "38177",
- "4909_index": "35773",
- "490_index": "35878",
- "4910_index": "21632",
- "4911_index": "38459",
- "4912_index": "31181",
- "4913_index": "21128",
- "4914_index": "40510",
- "4915_index": "33469",
- "4916_index": "20005",
- "4917_index": "32047",
- "4918_index": "38031",
- "4919_index": "34432",
- "491_index": "31392",
- "4920_index": "22350",
- "4921_index": "30007",
- "4922_index": "20432",
- "4923_index": "20818",
- "4924_index": "31759",
- "4925_index": "21311",
- "4926_index": "22303",
- "4927_index": "33719",
- "4928_index": "26410",
- "4929_index": "21719",
- "492_index": "34638",
- "4930_index": "38660",
- "4931_index": "23653",
- "4932_index": "86",
- "4933_index": "23435",
- "4934_index": "28346",
- "4935_index": "21827",
- "4936_index": "68",
- "4937_index": "22467",
- "4938_index": "35789",
- "4939_index": "24792",
- "493_index": "24220",
- "4940_index": "27927",
- "4941_index": "23395",
- "4942_index": "36190",
- "4943_index": "28248",
- "4944_index": "27060",
- "4945_index": "22915",
- "4946_index": "37070",
- "4947_index": "32966",
- "4948_index": "35028",
- "4949_index": "40503",
- "494_index": "25170",
- "4950_index": "36941",
- "4951_index": "33140",
- "4952_index": "32696",
- "4953_index": "33011",
- "4954_index": "22604",
- "4955_index": "31569",
- "4956_index": "38201",
- "4957_index": "28073",
- "4958_index": "83",
- "4959_index": "30721",
- "495_index": "24460",
- "4960_index": "36427",
- "4961_index": "32728",
- "4962_index": "28937",
- "4963_index": "21852",
- "4964_index": "30857",
- "4965_index": "37327",
- "4966_index": "37155",
- "4967_index": "28369",
- "4968_index": "20581",
- "4969_index": "96",
- "496_index": "26708",
- "4970_index": "26191",
- "4971_index": "35142",
- "4972_index": "36877",
- "4973_index": "21617",
- "4974_index": "40492",
- "4975_index": "52",
- "4976_index": "36127",
- "4977_index": "21596",
- "4978_index": "33778",
- "4979_index": "21478",
- "497_index": "23697",
- "4980_index": "22987",
- "4981_index": "65291",
- "4982_index": "28360",
- "4983_index": "30977",
- "4984_index": "26704",
- "4985_index": "26725",
- "4986_index": "29468",
- "4987_index": "30590",
- "4988_index": "39056",
- "4989_index": "30250",
- "498_index": "22368",
- "4990_index": "9354",
- "4991_index": "24669",
- "4992_index": "20892",
- "4993_index": "23002",
- "4994_index": "21246",
- "4995_index": "20356",
- "4996_index": "38590",
- "4997_index": "25462",
- "4998_index": "24158",
- "4999_index": "21018",
- "499_index": "23654",
- "49_index": "26576",
- "49_ord": "4",
- "4_index": "49",
- "5000_index": "39661",
- "5001_index": "34429",
- "5002_index": "31601",
- "5003_index": "29718",
- "5004_index": "39130",
- "5005_index": "65292",
- "5006_index": "27899",
- "5007_index": "22909",
- "5008_index": "21868",
- "5009_index": "30742",
- "500_index": "37122",
- "5010_index": "38425",
- "5011_index": "21872",
- "5012_index": "21215",
- "5013_index": "30710",
- "5014_index": "25928",
- "5015_index": "23477",
- "5016_index": "36424",
- "5017_index": "36890",
- "5018_index": "33692",
- "5019_index": "33585",
- "501_index": "20284",
- "5020_index": "23260",
- "5021_index": "24789",
- "5022_index": "24656",
- "5023_index": "20272",
- "5024_index": "28514",
- "5025_index": "23735",
- "5026_index": "26685",
- "5027_index": "39144",
- "5028_index": "32110",
- "5029_index": "125",
- "502_index": "25772",
- "5030_index": "33545",
- "5031_index": "29723",
- "5032_index": "36760",
- "5033_index": "38669",
- "5034_index": "37085",
- "5035_index": "33026",
- "5036_index": "25109",
- "5037_index": "33097",
- "5038_index": "31889",
- "5039_index": "32441",
- "503_index": "34006",
- "5040_index": "21059",
- "5041_index": "24581",
- "5042_index": "39574",
- "5043_index": "27207",
- "5044_index": "34444",
- "5045_index": "34656",
- "5046_index": "29469",
- "5047_index": "33626",
- "5048_index": "31649",
- "5049_index": "23073",
- "504_index": "22954",
- "5050_index": "38539",
- "5051_index": "23466",
- "5052_index": "38394",
- "5053_index": "31232",
- "5054_index": "32618",
- "5055_index": "31487",
- "5056_index": "31655",
- "5057_index": "25601",
- "5058_index": "32504",
- "5059_index": "21652",
- "505_index": "33222",
- "5060_index": "32628",
- "5061_index": "28151",
- "5062_index": "27280",
- "5063_index": "32315",
- "5064_index": "22937",
- "5065_index": "33098",
- "5066_index": "35475",
- "5067_index": "35777",
- "5068_index": "40497",
- "5069_index": "28372",
- "506_index": "30146",
- "5070_index": "21493",
- "5071_index": "24921",
- "5072_index": "25329",
- "5073_index": "22312",
- "5074_index": "38205",
- "5075_index": "36763",
- "5076_index": "21507",
- "5077_index": "38149",
- "5078_index": "20525",
- "5079_index": "25110",
- "507_index": "20975",
- "5080_index": "25176",
- "5081_index": "33981",
- "5082_index": "29152",
- "5083_index": "40536",
- "5084_index": "26131",
- "5085_index": "26835",
- "5086_index": "30720",
- "5087_index": "22016",
- "5088_index": "21757",
- "5089_index": "21709",
- "508_index": "30157",
- "5090_index": "32566",
- "5091_index": "38226",
- "5092_index": "30207",
- "5093_index": "22570",
- "5094_index": "29243",
- "5095_index": "20998",
- "5096_index": "33104",
- "5097_index": "20011",
- "5098_index": "23673",
- "5099_index": "31948",
- "509_index": "35962",
- "50_index": "30631",
- "50_ord": "2123",
- "5100_index": "28956",
- "5101_index": "38470",
- "5102_index": "39557",
- "5103_index": "38466",
- "5104_index": "22402",
- "5105_index": "108",
- "5106_index": "27670",
- "5107_index": "23219",
- "5108_index": "25670",
- "5109_index": "27934",
- "510_index": "28156",
- "5110_index": "24444",
- "5111_index": "38567",
- "5112_index": "21628",
- "5113_index": "24833",
- "5114_index": "33642",
- "5115_index": "25545",
- "5116_index": "27146",
- "5117_index": "38138",
- "5118_index": "25632",
- "5119_index": "37274",
- "511_index": "23525",
- "5120_index": "26767",
- "5121_index": "26964",
- "5122_index": "29256",
- "5123_index": "21254",
- "5124_index": "24863",
- "5125_index": "38083",
- "5126_index": "37322",
- "5127_index": "25240",
- "5128_index": "25605",
- "5129_index": "32464",
- "512_index": "28798",
- "5130_index": "21317",
- "5131_index": "33014",
- "5132_index": "38050",
- "5133_index": "24691",
- "5134_index": "38415",
- "5135_index": "23627",
- "5136_index": "24515",
- "5137_index": "26366",
- "5138_index": "9675",
- "5139_index": "37977",
- "513_index": "33943",
- "5140_index": "39314",
- "5141_index": "40840",
- "5142_index": "29002",
- "5143_index": "27875",
- "5144_index": "31934",
- "5145_index": "35745",
- "5146_index": "33590",
- "5147_index": "30952",
- "5148_index": "35825",
- "5149_index": "24944",
- "514_index": "21508",
- "5150_index": "21367",
- "5151_index": "32930",
- "5152_index": "25893",
- "5153_index": "23648",
- "5154_index": "38192",
- "5155_index": "21450",
- "5156_index": "95",
- "5157_index": "29392",
- "5158_index": "23504",
- "5159_index": "33454",
- "515_index": "109",
- "5160_index": "29756",
- "5161_index": "35913",
- "5162_index": "32806",
- "5163_index": "40481",
- "5164_index": "38055",
- "5165_index": "33226",
- "5166_index": "30636",
- "5167_index": "37049",
- "5168_index": "38121",
- "5169_index": "98",
- "516_index": "32426",
- "5170_index": "26441",
- "5171_index": "22240",
- "5172_index": "33538",
- "5173_index": "22856",
- "5174_index": "20387",
- "5175_index": "24330",
- "5176_index": "21388",
- "5177_index": "8595",
- "5178_index": "21024",
- "5179_index": "38191",
- "517_index": "27984",
- "5180_index": "36255",
- "5181_index": "40655",
- "5182_index": "38421",
- "5183_index": "38757",
- "5184_index": "38283",
- "5185_index": "38134",
- "5186_index": "35114",
- "5187_index": "24384",
- "5188_index": "26601",
- "5189_index": "28126",
- "518_index": "38262",
- "5190_index": "35099",
- "5191_index": "20559",
- "5192_index": "25616",
- "5193_index": "21919",
- "5194_index": "24651",
- "5195_index": "38745",
- "5196_index": "21414",
- "5197_index": "23071",
- "5198_index": "30653",
- "5199_index": "28448",
- "519_index": "65294",
- "51_index": "26102",
- "51_ord": "1221",
- "5200_index": "31807",
- "5201_index": "27849",
- "5202_index": "24464",
- "5203_index": "31404",
- "5204_index": "36479",
- "5205_index": "40715",
- "5206_index": "33600",
- "5207_index": "39052",
- "5208_index": "21927",
- "5209_index": "23450",
- "520_index": "33510",
- "5210_index": "33071",
- "5211_index": "30355",
- "5212_index": "21595",
- "5213_index": "21845",
- "5214_index": "27739",
- "5215_index": "36731",
- "5216_index": "36345",
- "5217_index": "33267",
- "5218_index": "34542",
- "5219_index": "32768",
- "521_index": "36735",
- "5220_index": "36785",
- "5221_index": "32538",
- "5222_index": "8230",
- "5223_index": "20848",
- "5224_index": "27901",
- "5225_index": "30302",
- "5226_index": "22079",
- "5227_index": "24049",
- "5228_index": "20817",
- "5229_index": "27698",
- "522_index": "35082",
- "5230_index": "21566",
- "5231_index": "28982",
- "5232_index": "27524",
- "5233_index": "30300",
- "5234_index": "9320",
- "5235_index": "33483",
- "5236_index": "21780",
- "5237_index": "24247",
- "5238_index": "28301",
- "5239_index": "23781",
- "523_index": "28228",
- "5240_index": "24980",
- "5241_index": "36821",
- "5242_index": "23081",
- "5243_index": "24005",
- "5244_index": "35892",
- "5245_index": "20458",
- "5246_index": "23048",
- "5247_index": "36761",
- "5248_index": "37995",
- "5249_index": "20044",
- "524_index": "40847",
- "5250_index": "26639",
- "5251_index": "28436",
- "5252_index": "36176",
- "5253_index": "33284",
- "5254_index": "28174",
- "5255_index": "40542",
- "5256_index": "25288",
- "5257_index": "27527",
- "5258_index": "26361",
- "5259_index": "26086",
- "525_index": "26721",
- "5260_index": "38409",
- "5261_index": "20185",
- "5262_index": "20960",
- "5263_index": "25041",
- "5264_index": "22403",
- "5265_index": "35315",
- "5266_index": "27424",
- "5267_index": "33074",
- "5268_index": "22852",
- "5269_index": "21667",
- "526_index": "20182",
- "5270_index": "38691",
- "5271_index": "24703",
- "5272_index": "21200",
- "5273_index": "26580",
- "5274_index": "35302",
- "5275_index": "24756",
- "5276_index": "21643",
- "5277_index": "34532",
- "5278_index": "22280",
- "5279_index": "32920",
- "527_index": "30399",
- "5280_index": "23323",
- "5281_index": "38593",
- "5282_index": "28205",
- "5283_index": "37238",
- "5284_index": "32773",
- "5285_index": "20854",
- "5286_index": "35889",
- "5287_index": "32997",
- "5288_index": "33479",
- "5289_index": "38074",
- "528_index": "40766",
- "5290_index": "33583",
- "5291_index": "21972",
- "5292_index": "33743",
- "5293_index": "35820",
- "5294_index": "21361",
- "5295_index": "34426",
- "5296_index": "33005",
- "5297_index": "24076",
- "5298_index": "32671",
- "5299_index": "36495",
- "529_index": "26434",
- "52_index": "26609",
- "52_ord": "4975",
- "5300_index": "22348",
- "5301_index": "34255",
- "5302_index": "26132",
- "5303_index": "22841",
- "5304_index": "33499",
- "5305_index": "28601",
- "5306_index": "24278",
- "5307_index": "32536",
- "5308_index": "33761",
- "5309_index": "31155",
- "530_index": "36281",
- "5310_index": "38426",
- "5311_index": "21170",
- "5312_index": "31163",
- "5313_index": "23784",
- "5314_index": "22179",
- "5315_index": "24223",
- "5316_index": "32462",
- "5317_index": "26052",
- "5318_index": "40511",
- "5319_index": "30358",
- "531_index": "21330",
- "5320_index": "28053",
- "5321_index": "30347",
- "5322_index": "25783",
- "5323_index": "33406",
- "5324_index": "37328",
- "5325_index": "20710",
- "5326_index": "21510",
- "5327_index": "26164",
- "5328_index": "20729",
- "5329_index": "22323",
- "532_index": "30879",
- "5330_index": "28121",
- "5331_index": "28422",
- "5332_index": "38588",
- "5333_index": "39616",
- "5334_index": "39635",
- "5335_index": "26624",
- "5336_index": "20887",
- "5337_index": "31903",
- "5338_index": "21497",
- "5339_index": "29295",
- "533_index": "34103",
- "5340_index": "36391",
- "5341_index": "28034",
- "5342_index": "20363",
- "5343_index": "20439",
- "5344_index": "32568",
- "5345_index": "20725",
- "5346_index": "28595",
- "5347_index": "26869",
- "5348_index": "20415",
- "5349_index": "21290",
- "534_index": "28950",
- "5350_index": "26608",
- "5351_index": "33914",
- "5352_index": "29238",
- "5353_index": "40515",
- "5354_index": "26775",
- "5355_index": "32460",
- "5356_index": "25590",
- "5357_index": "37145",
- "5358_index": "21375",
- "5359_index": "30130",
- "535_index": "26292",
- "5360_index": "23429",
- "5361_index": "30449",
- "5362_index": "20986",
- "5363_index": "35747",
- "5364_index": "33281",
- "5365_index": "20302",
- "5366_index": "22763",
- "5367_index": "36776",
- "5368_index": "30651",
- "5369_index": "20845",
- "536_index": "38597",
- "5370_index": "23411",
- "5371_index": "27769",
- "5372_index": "33713",
- "5373_index": "31821",
- "5374_index": "21636",
- "5375_index": "36324",
- "5376_index": "26635",
- "5377_index": "36820",
- "5378_index": "27760",
- "5379_index": "33777",
- "537_index": "34502",
- "5380_index": "31563",
- "5381_index": "24629",
- "5382_index": "22320",
- "5383_index": "23611",
- "5384_index": "21523",
- "5385_index": "32925",
- "5386_index": "38146",
- "5387_index": "33831",
- "5388_index": "32530",
- "5389_index": "33502",
- "538_index": "33738",
- "5390_index": "21451",
- "5391_index": "34521",
- "5392_index": "35449",
- "5393_index": "9353",
- "5394_index": "36801",
- "5395_index": "40538",
- "5396_index": "26034",
- "5397_index": "24188",
- "5398_index": "34763",
- "5399_index": "20598",
- "539_index": "26631",
- "53_index": "8745",
- "53_ord": "4507",
- "5400_index": "24471",
- "5401_index": "29503",
- "5402_index": "20336",
- "5403_index": "23556",
- "5404_index": "23486",
- "5405_index": "23159",
- "5406_index": "26388",
- "5407_index": "22869",
- "5408_index": "34",
- "5409_index": "30634",
- "540_index": "19996",
- "5410_index": "33179",
- "5411_index": "90",
- "5412_index": "22766",
- "5413_index": "29748",
- "5414_index": "31751",
- "5415_index": "39749",
- "5416_index": "31068",
- "5417_index": "38589",
- "5418_index": "9472",
- "5419_index": "21880",
- "541_index": "22121",
- "5420_index": "29997",
- "5421_index": "38449",
- "5422_index": "24079",
- "5423_index": "20113",
- "5424_index": "24697",
- "5425_index": "36923",
- "5426_index": "23457",
- "5427_index": "25410",
- "5428_index": "22868",
- "5429_index": "20932",
- "542_index": "27889",
- "5430_index": "28165",
- "5431_index": "39552",
- "5432_index": "33147",
- "5433_index": "31056",
- "5434_index": "40723",
- "5435_index": "27665",
- "5436_index": "28192",
- "5437_index": "28201",
- "5438_index": "28177",
- "5439_index": "28051",
- "543_index": "20225",
- "5440_index": "20800",
- "5441_index": "29642",
- "5442_index": "38480",
- "5443_index": "36713",
- "5444_index": "34797",
- "5445_index": "39547",
- "5446_index": "29032",
- "5447_index": "20396",
- "5448_index": "38159",
- "5449_index": "38433",
- "544_index": "38261",
- "5450_index": "30201",
- "5451_index": "27133",
- "5452_index": "27714",
- "5453_index": "25642",
- "5454_index": "30261",
- "5455_index": "27082",
- "5456_index": "23731",
- "5457_index": "24178",
- "5458_index": "38190",
- "5459_index": "21775",
- "545_index": "29701",
- "5460_index": "27689",
- "5461_index": "29577",
- "5462_index": "26893",
- "5463_index": "24494",
- "5464_index": "21544",
- "5465_index": "35961",
- "5466_index": "39627",
- "5467_index": "31398",
- "5468_index": "36971",
- "5469_index": "34152",
- "546_index": "26825",
- "5470_index": "24246",
- "5471_index": "26680",
- "5472_index": "20240",
- "5473_index": "35840",
- "5474_index": "38105",
- "5475_index": "38073",
- "5476_index": "29987",
- "5477_index": "40514",
- "5478_index": "27493",
- "5479_index": "24120",
- "547_index": "21051",
- "5480_index": "22622",
- "5481_index": "27595",
- "5482_index": "27257",
- "5483_index": "22028",
- "5484_index": "23270",
- "5485_index": "29995",
- "5486_index": "22616",
- "5487_index": "34268",
- "5488_index": "26541",
- "5489_index": "36155",
- "548_index": "23252",
- "5490_index": "24354",
- "5491_index": "26539",
- "5492_index": "30755",
- "5493_index": "26032",
- "5494_index": "25269",
- "5495_index": "21766",
- "5496_index": "38406",
- "5497_index": "21794",
- "5498_index": "31397",
- "5499_index": "26354",
- "549_index": "37099",
- "54_index": "39029",
- "54_ord": "3344",
- "5500_index": "22831",
- "5501_index": "25252",
- "5502_index": "39041",
- "5503_index": "21746",
- "5504_index": "38397",
- "5505_index": "23452",
- "5506_index": "25150",
- "5507_index": "31291",
- "5508_index": "36142",
- "5509_index": "25103",
- "550_index": "39537",
- "5510_index": "38143",
- "5511_index": "24571",
- "5512_index": "30813",
- "5513_index": "25856",
- "5514_index": "37066",
- "5515_index": "48",
- "5516_index": "35044",
- "5517_index": "22363",
- "5518_index": "39057",
- "5519_index": "24764",
- "551_index": "22521",
- "5520_index": "25822",
- "5521_index": "39619",
- "5522_index": "28189",
- "5523_index": "23544",
- "5524_index": "29824",
- "5525_index": "35916",
- "5526_index": "20160",
- "5527_index": "26800",
- "5528_index": "26451",
- "5529_index": "24508",
- "552_index": "20142",
- "5530_index": "26447",
- "5531_index": "25577",
- "5532_index": "21543",
- "5533_index": "39048",
- "5534_index": "22681",
- "5535_index": "32622",
- "5536_index": "38078",
- "5537_index": "26080",
- "5538_index": "28052",
- "5539_index": "28020",
- "553_index": "21084",
- "5540_index": "35947",
- "5541_index": "35400",
- "5542_index": "32404",
- "5543_index": "36172",
- "5544_index": "40575",
- "5545_index": "20375",
- "5546_index": "36130",
- "5547_index": "21696",
- "5548_index": "30008",
- "5549_index": "20251",
- "554_index": "21553",
- "5550_index": "29956",
- "5551_index": "28856",
- "5552_index": "24868",
- "5553_index": "31384",
- "5554_index": "20132",
- "5555_index": "33292",
- "5556_index": "27308",
- "5557_index": "27993",
- "5558_index": "35126",
- "5559_index": "124",
- "555_index": "24501",
- "5560_index": "30005",
- "5561_index": "33308",
- "5562_index": "20876",
- "5563_index": "20030",
- "5564_index": "183",
- "5565_index": "22930",
- "5566_index": "21310",
- "5567_index": "28809",
- "5568_index": "34106",
- "5569_index": "38080",
- "556_index": "34360",
- "5570_index": "26974",
- "5571_index": "22266",
- "5572_index": "37034",
- "5573_index": "20249",
- "5574_index": "38887",
- "5575_index": "36234",
- "5576_index": "28781",
- "5577_index": "25237",
- "5578_index": "21448",
- "5579_index": "24218",
- "557_index": "9678",
- "5580_index": "28504",
- "5581_index": "30604",
- "5582_index": "24603",
- "5583_index": "20166",
- "5584_index": "27491",
- "5585_index": "31382",
- "5586_index": "29678",
- "5587_index": "35758",
- "5588_index": "23625",
- "5589_index": "35785",
- "558_index": "31607",
- "5590_index": "20474",
- "5591_index": "33636",
- "5592_index": "34537",
- "5593_index": "27167",
- "5594_index": "36157",
- "5595_index": "29926",
- "5596_index": "26194",
- "5597_index": "22920",
- "5598_index": "40717",
- "5599_index": "32960",
- "559_index": "35750",
- "55_index": "22204",
- "55_ord": "2722",
- "5600_index": "21769",
- "5601_index": "29492",
- "5602_index": "29664",
- "5603_index": "34893",
- "5604_index": "36400",
- "5605_index": "21488",
- "5606_index": "25292",
- "5607_index": "26638",
- "5608_index": "39553",
- "5609_index": "31348",
- "560_index": "34562",
- "5610_index": "24041",
- "5611_index": "24734",
- "5612_index": "27981",
- "5613_index": "36372",
- "5614_index": "38417",
- "5615_index": "27583",
- "5616_index": "20995",
- "5617_index": "21164",
- "5618_index": "21518",
- "5619_index": "20511",
- "561_index": "20547",
- "5620_index": "32010",
- "5621_index": "32999",
- "5622_index": "27827",
- "5623_index": "22522",
- "5624_index": "26700",
- "5625_index": "25504",
- "5626_index": "80",
- "5627_index": "27954",
- "5628_index": "38754",
- "5629_index": "26607",
- "562_index": "27035",
- "5630_index": "29038",
- "5631_index": "27852",
- "5632_index": "40540",
- "5633_index": "24875",
- "5634_index": "117",
- "5635_index": "21828",
- "5636_index": "33580",
- "5637_index": "37239",
- "5638_index": "22850",
- "5639_index": "28457",
- "563_index": "25949",
- "5640_index": "74",
- "5641_index": "24822",
- "5642_index": "28908",
- "5643_index": "33190",
- "5644_index": "24530",
- "5645_index": "39036",
- "5646_index": "34384",
- "5647_index": "36332",
- "5648_index": "31209",
- "5649_index": "110",
- "564_index": "29572",
- "5650_index": "25419",
- "5651_index": "37040",
- "5652_index": "24132",
- "5653_index": "27562",
- "5654_index": "25413",
- "5655_index": "24509",
- "5656_index": "26286",
- "5657_index": "32477",
- "5658_index": "33486",
- "5659_index": "22635",
- "565_index": "36856",
- "5660_index": "35088",
- "5661_index": "30624",
- "5662_index": "24130",
- "5663_index": "34690",
- "5664_index": "38041",
- "5665_index": "21703",
- "5666_index": "30757",
- "5667_index": "23421",
- "5668_index": "40084",
- "5669_index": "27664",
- "566_index": "27815",
- "5670_index": "22812",
- "5671_index": "38420",
- "5672_index": "22934",
- "5673_index": "37240",
- "5674_index": "39556",
- "5675_index": "28907",
- "5676_index": "29071",
- "5677_index": "32838",
- "5678_index": "36193",
- "5679_index": "26522",
- "567_index": "23380",
- "5680_index": "25352",
- "5681_index": "25512",
- "5682_index": "21299",
- "5683_index": "27998",
- "5684_index": "35010",
- "5685_index": "36361",
- "5686_index": "30897",
- "5687_index": "33551",
- "5688_index": "33441",
- "5689_index": "27820",
- "568_index": "31351",
- "5690_index": "37193",
- "5691_index": "25995",
- "5692_index": "8758",
- "5693_index": "30414",
- "5694_index": "36917",
- "5695_index": "30522",
- "5696_index": "21453",
- "5697_index": "21517",
- "5698_index": "26742",
- "5699_index": "35938",
- "569_index": "33395",
- "56_index": "38383",
- "56_ord": "4332",
- "5700_index": "25805",
- "5701_index": "24826",
- "5702_index": "34091",
- "5703_index": "31227",
- "5704_index": "38382",
- "5705_index": "21809",
- "5706_index": "36382",
- "5707_index": "12295",
- "5708_index": "21263",
- "5709_index": "24658",
- "570_index": "8757",
- "5710_index": "32461",
- "5711_index": "27575",
- "5712_index": "20973",
- "5713_index": "12302",
- "5714_index": "22116",
- "5715_index": "25195",
- "5716_index": "31143",
- "5717_index": "23158",
- "5718_index": "22427",
- "5719_index": "26688",
- "571_index": "22935",
- "5720_index": "24343",
- "5721_index": "22446",
- "5722_index": "40157",
- "5723_index": "24248",
- "5724_index": "38750",
- "5725_index": "38024",
- "5726_index": "25564",
- "5727_index": "21005",
- "5728_index": "9333",
- "5729_index": "33721",
- "572_index": "34212",
- "5730_index": "21653",
- "5731_index": "21248",
- "5732_index": "25286",
- "5733_index": "20204",
- "5734_index": "27513",
- "5735_index": "23834",
- "5736_index": "33515",
- "5737_index": "32418",
- "5738_index": "21992",
- "5739_index": "25745",
- "573_index": "25165",
- "5740_index": "33639",
- "5741_index": "20280",
- "5742_index": "33464",
- "5743_index": "21804",
- "5744_index": "36895",
- "5745_index": "33489",
- "5746_index": "26438",
- "5747_index": "28006",
- "5748_index": "34930",
- "5749_index": "28037",
- "574_index": "31482",
- "5750_index": "24910",
- "5751_index": "38130",
- "5752_index": "27216",
- "5753_index": "28790",
- "5754_index": "32844",
- "5755_index": "36133",
- "5756_index": "25366",
- "5757_index": "36946",
- "5758_index": "23022",
- "5759_index": "36991",
- "575_index": "32929",
- "5760_index": "23460",
- "5761_index": "30518",
- "5762_index": "27745",
- "5763_index": "20237",
- "5764_index": "22893",
- "5765_index": "36829",
- "5766_index": "27870",
- "5767_index": "33086",
- "5768_index": "32709",
- "5769_index": "32900",
- "576_index": "22003",
- "5770_index": "25937",
- "5771_index": "20319",
- "5772_index": "24344",
- "5773_index": "36386",
- "5774_index": "34924",
- "5775_index": "19990",
- "5776_index": "28063",
- "5777_index": "36720",
- "5778_index": "38230",
- "5779_index": "25305",
- "577_index": "22609",
- "5780_index": "20419",
- "5781_index": "39761",
- "5782_index": "23723",
- "5783_index": "28784",
- "5784_index": "30489",
- "5785_index": "33579",
- "5786_index": "23092",
- "5787_index": "29087",
- "5788_index": "35760",
- "5789_index": "26230",
- "578_index": "38136",
- "5790_index": "28843",
- "5791_index": "38084",
- "5792_index": "28938",
- "5793_index": "23224",
- "5794_index": "36980",
- "5795_index": "33282",
- "5796_index": "24433",
- "5797_index": "23493",
- "5798_index": "107",
- "5799_index": "20342",
- "579_index": "29922",
- "57_index": "29241",
- "57_ord": "4618",
- "5800_index": "38890",
- "5801_index": "23218",
- "5802_index": "9350",
- "5803_index": "30637",
- "5804_index": "39214",
- "5805_index": "65288",
- "5806_index": "24085",
- "5807_index": "30861",
- "5808_index": "30867",
- "5809_index": "26937",
- "580_index": "20454",
- "5810_index": "24394",
- "5811_index": "30684",
- "5812_index": "33853",
- "5813_index": "23681",
- "5814_index": "38892",
- "5815_index": "40060",
- "5816_index": "9733",
- "5817_index": "35885",
- "5818_index": "23913",
- "5819_index": "38819",
- "581_index": "27807",
- "5820_index": "25187",
- "5821_index": "38379",
- "5822_index": "28170",
- "5823_index": "25964",
- "582_index": "39309",
- "583_index": "20147",
- "584_index": "21463",
- "585_index": "21345",
- "586_index": "32763",
- "587_index": "35281",
- "588_index": "34948",
- "589_index": "20853",
- "58_index": "29020",
- "58_ord": "1177",
- "590_index": "21619",
- "591_index": "24813",
- "592_index": "9474",
- "593_index": "25004",
- "594_index": "25405",
- "595_index": "27531",
- "596_index": "26029",
- "597_index": "30186",
- "598_index": "29632",
- "599_index": "29733",
- "59_index": "31471",
- "59_ord": "638",
- "5_index": "29031",
- "600_index": "29947",
- "601_index": "26397",
- "602_index": "33948",
- "603_index": "30232",
- "604_index": "20881",
- "605_index": "21358",
- "606_index": "31216",
- "607_index": "37000",
- "608_index": "22905",
- "609_index": "34453",
- "60_index": "26017",
- "60_ord": "1106",
- "610_index": "34216",
- "611_index": "28825",
- "612_index": "24675",
- "613_index": "38706",
- "614_index": "32856",
- "615_index": "32784",
- "616_index": "23524",
- "617_index": "38112",
- "618_index": "38217",
- "619_index": "23258",
- "61_index": "23828",
- "61_ord": "1157",
- "620_index": "33219",
- "621_index": "30106",
- "622_index": "121",
- "623_index": "24358",
- "624_index": "35768",
- "625_index": "32429",
- "626_index": "21413",
- "627_index": "31929",
- "628_index": "23487",
- "629_index": "37247",
- "62_index": "27785",
- "62_ord": "2871",
- "630_index": "20731",
- "631_index": "39745",
- "632_index": "25443",
- "633_index": "32852",
- "634_index": "26686",
- "635_index": "32448",
- "636_index": "33452",
- "637_index": "21442",
- "638_index": "59",
- "639_index": "32905",
- "63_index": "36135",
- "63_ord": "17",
- "640_index": "22124",
- "641_index": "34892",
- "642_index": "32452",
- "643_index": "32542",
- "644_index": "33542",
- "645_index": "31185",
- "646_index": "36767",
- "647_index": "20159",
- "648_index": "24357",
- "649_index": "28552",
- "64_index": "22007",
- "64_ord": "409",
- "65072_ord": "254",
- "650_index": "36393",
- "65104_ord": "3754",
- "65105_ord": "1238",
- "65106_ord": "4443",
- "65108_ord": "1350",
- "65110_ord": "3881",
- "651_index": "39039",
- "65288_ord": "5805",
- "65289_ord": "2621",
- "65291_ord": "4981",
- "65292_ord": "5005",
- "65294_ord": "519",
- "652_index": "32386",
- "65374_ord": "3302",
- "653_index": "21038",
- "654_index": "20955",
- "65509_ord": "957",
- "655_index": "29298",
- "656_index": "38886",
- "657_index": "20177",
- "658_index": "27874",
- "659_index": "24425",
- "65_index": "29502",
- "65_ord": "2655",
- "660_index": "25469",
- "661_index": "23385",
- "662_index": "24733",
- "663_index": "29619",
- "664_index": "34581",
- "665_index": "21346",
- "666_index": "28100",
- "667_index": "23138",
- "668_index": "24816",
- "669_index": "24548",
- "66_index": "22953",
- "66_ord": "2330",
- "670_index": "28363",
- "671_index": "34649",
- "672_index": "40702",
- "673_index": "22820",
- "674_index": "21058",
- "675_index": "26152",
- "676_index": "22114",
- "677_index": "26406",
- "678_index": "36418",
- "679_index": "21331",
- "67_index": "38469",
- "67_ord": "260",
- "680_index": "27935",
- "681_index": "28800",
- "682_index": "40521",
- "683_index": "39269",
- "684_index": "19981",
- "685_index": "36870",
- "686_index": "25186",
- "687_index": "39297",
- "688_index": "22438",
- "689_index": "29855",
- "68_index": "38161",
- "68_ord": "4936",
- "690_index": "26062",
- "691_index": "26070",
- "692_index": "30408",
- "693_index": "25319",
- "694_index": "27777",
- "695_index": "35762",
- "696_index": "28493",
- "697_index": "32774",
- "698_index": "32958",
- "699_index": "24450",
- "69_index": "30331",
- "69_ord": "998",
- "6_index": "24537",
- "700_index": "30405",
- "701_index": "24030",
- "702_index": "20365",
- "703_index": "36163",
- "704_index": "26179",
- "705_index": "30264",
- "706_index": "22791",
- "707_index": "26044",
- "708_index": "36466",
- "709_index": "23786",
- "70_index": "29835",
- "70_ord": "3594",
- "710_index": "20976",
- "711_index": "25163",
- "712_index": "21322",
- "713_index": "23769",
- "714_index": "23803",
- "715_index": "32447",
- "716_index": "39564",
- "717_index": "39536",
- "718_index": "22870",
- "719_index": "30180",
- "71_index": "25484",
- "71_ord": "1714",
- "720_index": "20900",
- "721_index": "20318",
- "722_index": "40",
- "723_index": "22986",
- "724_index": "37154",
- "725_index": "36910",
- "726_index": "27028",
- "727_index": "32641",
- "728_index": "27526",
- "729_index": "39748",
- "72_index": "25652",
- "72_ord": "3595",
- "730_index": "38193",
- "731_index": "27941",
- "732_index": "93",
- "733_index": "31513",
- "734_index": "31726",
- "735_index": "34412",
- "736_index": "39286",
- "737_index": "22576",
- "738_index": "21435",
- "739_index": "20987",
- "73_index": "24774",
- "73_ord": "2476",
- "740_index": "22874",
- "741_index": "28393",
- "742_index": "8730",
- "743_index": "40065",
- "744_index": "20304",
- "745_index": "31350",
- "746_index": "21648",
- "747_index": "37103",
- "748_index": "30778",
- "749_index": "20896",
- "74_index": "30733",
- "74_ord": "5640",
- "750_index": "30609",
- "751_index": "26702",
- "752_index": "24525",
- "753_index": "24405",
- "754_index": "32486",
- "755_index": "33134",
- "756_index": "21193",
- "757_index": "22329",
- "758_index": "23702",
- "759_index": "33983",
- "75_index": "26592",
- "75_ord": "1701",
- "760_index": "31179",
- "761_index": "31454",
- "762_index": "22065",
- "763_index": "26758",
- "764_index": "30568",
- "765_index": "20861",
- "766_index": "21995",
- "767_index": "29623",
- "768_index": "36715",
- "769_index": "21066",
- "76_index": "27969",
- "76_ord": "3884",
- "770_index": "26342",
- "771_index": "33909",
- "772_index": "26500",
- "773_index": "20643",
- "774_index": "32938",
- "775_index": "32534",
- "776_index": "20599",
- "777_index": "34583",
- "778_index": "27803",
- "779_index": "35064",
- "77_index": "34115",
- "77_ord": "3874",
- "780_index": "28088",
- "781_index": "23281",
- "782_index": "30495",
- "783_index": "20027",
- "784_index": "27014",
- "785_index": "20241",
- "786_index": "36777",
- "787_index": "30406",
- "788_index": "39072",
- "789_index": "25376",
- "78_index": "26449",
- "78_ord": "4498",
- "790_index": "20522",
- "791_index": "33541",
- "792_index": "39276",
- "793_index": "31381",
- "794_index": "33907",
- "795_index": "21647",
- "796_index": "29548",
- "797_index": "37094",
- "798_index": "27973",
- "799_index": "27867",
- "79_index": "21195",
- "79_ord": "2096",
- "7_index": "20799",
- "800_index": "36277",
- "801_index": "26364",
- "802_index": "36745",
- "803_index": "37096",
- "804_index": "30402",
- "805_index": "30446",
- "806_index": "29134",
- "807_index": "21561",
- "808_index": "29443",
- "809_index": "20433",
- "80_index": "24065",
- "80_ord": "5626",
- "810_index": "36808",
- "811_index": "27883",
- "812_index": "31922",
- "813_index": "25746",
- "814_index": "35090",
- "815_index": "33096",
- "816_index": "33148",
- "817_index": "24536",
- "818_index": "33334",
- "819_index": "26967",
- "81_index": "28010",
- "81_ord": "3254",
- "820_index": "24838",
- "8211_ord": "1245",
- "8212_ord": "3654",
- "8213_ord": "3345",
- "8216_ord": "1229",
- "8217_ord": "1798",
- "821_index": "31949",
- "8220_ord": "1023",
- "8221_ord": "1266",
- "822_index": "35755",
- "8230_ord": "5222",
- "823_index": "22661",
- "8240_ord": "3501",
- "8242_ord": "4146",
- "824_index": "20399",
- "8251_ord": "3220",
- "825_index": "23616",
- "826_index": "29234",
- "827_index": "12308",
- "828_index": "39118",
- "829_index": "22656",
- "82_index": "24696",
- "82_ord": "1643",
- "830_index": "32791",
- "831_index": "20347",
- "832_index": "36848",
- "833_index": "22159",
- "834_index": "21792",
- "835_index": "33298",
- "836_index": "25401",
- "837_index": "29287",
- "838_index": "23454",
- "839_index": "25298",
- "83_index": "36315",
- "83_ord": "4958",
- "840_index": "24148",
- "841_index": "23475",
- "842_index": "32617",
- "843_index": "40547",
- "844_index": "26873",
- "8451_ord": "877",
- "845_index": "36286",
- "846_index": "37108",
- "847_index": "29305",
- "848_index": "20984",
- "849_index": "34451",
- "84_index": "25447",
- "84_ord": "3670",
- "850_index": "21150",
- "851_index": "21551",
- "852_index": "40120",
- "853_index": "24296",
- "8544_ord": "4732",
- "8545_ord": "2421",
- "8546_ord": "4246",
- "8547_ord": "4400",
- "854_index": "38393",
- "855_index": "39068",
- "856_index": "23075",
- "857_index": "27978",
- "858_index": "32434",
- "8594_ord": "4337",
- "8595_ord": "5177",
- "859_index": "39293",
- "85_index": "39588",
- "85_ord": "114",
- "860_index": "27886",
- "861_index": "29377",
- "862_index": "35946",
- "863_index": "26543",
- "864_index": "22103",
- "865_index": "38471",
- "866_index": "25424",
- "867_index": "34615",
- "868_index": "21147",
- "869_index": "21578",
- "86_index": "33659",
- "86_ord": "4932",
- "870_index": "29224",
- "8712_ord": "4491",
- "871_index": "24754",
- "872_index": "20616",
- "8730_ord": "742",
- "873_index": "25975",
- "8745_ord": "53",
- "874_index": "30422",
- "8757_ord": "570",
- "8758_ord": "5692",
- "875_index": "35009",
- "876_index": "21329",
- "877_index": "8451",
- "878_index": "20323",
- "879_index": "28373",
- "87_index": "39044",
- "87_ord": "3512",
- "8800_ord": "3013",
- "8804_ord": "917",
- "8805_ord": "3507",
- "880_index": "25721",
- "881_index": "20928",
- "882_index": "23822",
- "883_index": "28071",
- "884_index": "21253",
- "885_index": "24726",
- "886_index": "38133",
- "887_index": "35801",
- "888_index": "39060",
- "889_index": "34067",
- "88_index": "34074",
- "88_ord": "2116",
- "890_index": "31104",
- "891_index": "32716",
- "892_index": "22129",
- "893_index": "30136",
- "894_index": "20035",
- "895_index": "38253",
- "896_index": "33453",
- "897_index": "36330",
- "898_index": "26999",
- "899_index": "23569",
- "89_index": "36759",
- "89_ord": "2708",
- "8_index": "20267",
- "900_index": "26646",
- "901_index": "21242",
- "902_index": "30126",
- "903_index": "21883",
- "904_index": "38381",
- "905_index": "9318",
- "906_index": "31567",
- "907_index": "25287",
- "908_index": "38391",
- "909_index": "23433",
- "90_index": "24237",
- "90_ord": "5411",
- "910_index": "32469",
- "911_index": "35811",
- "912_index": "30242",
- "913_index": "31686",
- "914_index": "34394",
- "915_index": "40482",
- "916_index": "22799",
- "917_index": "8804",
- "918_index": "28536",
- "919_index": "12303",
- "91_index": "9473",
- "91_ord": "1011",
- "920_index": "34434",
- "921_index": "28789",
- "922_index": "20221",
- "923_index": "39123",
- "924_index": "22260",
- "925_index": "37169",
- "926_index": "20991",
- "927_index": "22549",
- "928_index": "29141",
- "929_index": "23916",
- "92_index": "28267",
- "92_ord": "3725",
- "930_index": "37300",
- "9312_ord": "4677",
- "9313_ord": "2130",
- "9314_ord": "1622",
- "9315_ord": "1744",
- "9316_ord": "1507",
- "9317_ord": "4000",
- "9318_ord": "905",
- "9319_ord": "2433",
- "931_index": "23402",
- "9320_ord": "5234",
- "9321_ord": "933",
- "932_index": "30353",
- "9332_ord": "4777",
- "9333_ord": "5728",
- "9334_ord": "2972",
- "933_index": "9321",
- "9342_ord": "3795",
- "9343_ord": "2337",
- "9344_ord": "1619",
- "9346_ord": "305",
- "9347_ord": "2960",
- "9348_ord": "15",
- "9349_ord": "2907",
- "934_index": "32032",
- "9350_ord": "5802",
- "9352_ord": "3629",
- "9353_ord": "5393",
- "9354_ord": "4990",
- "935_index": "38396",
- "936_index": "38225",
- "937_index": "28418",
- "938_index": "28140",
- "939_index": "22013",
- "93_index": "19987",
- "93_ord": "732",
- "940_index": "34850",
- "941_index": "27833",
- "942_index": "37217",
- "943_index": "36825",
- "944_index": "29566",
- "945_index": "28698",
- "945_ord": "4119",
- "946_index": "28952",
- "946_ord": "3641",
- "9472_ord": "5418",
- "9473_ord": "91",
- "9474_ord": "592",
- "947_index": "25293",
- "9484_ord": "1583",
- "9488_ord": "1715",
- "948_index": "29863",
- "949_index": "30196",
- "94_index": "23453",
- "94_ord": "1295",
- "950_index": "22914",
- "951_index": "33922",
- "952_index": "23167",
- "953_index": "38601",
- "954_index": "32609",
- "955_index": "29140",
- "956_index": "25311",
- "957_index": "65509",
- "9585_ord": "2669",
- "958_index": "37039",
- "959_index": "20016",
- "95_index": "21256",
- "95_ord": "5156",
- "960_index": "26987",
- "961_index": "30058",
- "962_index": "29076",
- "9632_ord": "1876",
- "9633_ord": "2965",
- "963_index": "26880",
- "964_index": "22235",
- "9650_ord": "2543",
- "9651_ord": "4584",
- "965_index": "40529",
- "966_index": "32521",
- "9670_ord": "2610",
- "9671_ord": "2767",
- "9675_ord": "5138",
- "9678_ord": "557",
- "9679_ord": "1679",
- "967_index": "40831",
- "968_index": "20054",
- "969_index": "38639",
- "96_index": "39612",
- "96_ord": "4969",
- "970_index": "21950",
- "971_index": "177",
- "972_index": "26816",
- "9733_ord": "5816",
- "9734_ord": "3808",
- "973_index": "27877",
- "974_index": "26564",
- "975_index": "33529",
- "976_index": "20857",
- "977_index": "26722",
- "978_index": "20135",
- "979_index": "33390",
- "97_index": "20384",
- "97_ord": "1612",
- "980_index": "30699",
- "981_index": "30115",
- "982_index": "32491",
- "983_index": "31697",
- "984_index": "31109",
- "985_index": "29626",
- "986_index": "31908",
- "987_index": "39317",
- "988_index": "24161",
- "989_index": "30775",
- "98_index": "20840",
- "98_ord": "5169",
- "990_index": "30828",
- "991_index": "35767",
- "992_index": "22871",
- "993_index": "38541",
- "994_index": "35799",
- "995_index": "24149",
- "996_index": "25774",
- "997_index": "28327",
- "998_index": "69",
- "999_index": "40527",
- "99_index": "22942",
- "99_ord": "4433",
- "9_index": "37237"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_en.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_en.json
deleted file mode 100644
index 2e081c29b136c2ac9f62c8dc56ac2b23c68fcfb2..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/char_dict/ord_map_en.json
+++ /dev/null
@@ -1,74 +0,0 @@
-{
- "0_index": "54",
- "100_ord": "8",
- "101_ord": "20",
- "102_ord": "28",
- "103_ord": "14",
- "104_ord": "19",
- "105_ord": "26",
- "106_ord": "6",
- "107_ord": "17",
- "108_ord": "10",
- "109_ord": "12",
- "10_index": "108",
- "110_ord": "29",
- "111_ord": "34",
- "112_ord": "15",
- "113_ord": "5",
- "114_ord": "33",
- "115_ord": "23",
- "116_ord": "31",
- "117_ord": "21",
- "118_ord": "2",
- "119_ord": "4",
- "11_index": "56",
- "120_ord": "1",
- "121_ord": "16",
- "122_ord": "3",
- "12_index": "109",
- "13_index": "53",
- "14_index": "103",
- "15_index": "112",
- "16_index": "121",
- "17_index": "107",
- "18_index": "97",
- "19_index": "104",
- "1_index": "120",
- "20_index": "101",
- "21_index": "117",
- "22_index": "51",
- "23_index": "115",
- "24_index": "50",
- "25_index": "99",
- "26_index": "105",
- "27_index": "48",
- "28_index": "102",
- "29_index": "110",
- "2_index": "118",
- "30_index": "98",
- "31_index": "116",
- "32_index": "57",
- "33_index": "114",
- "34_index": "111",
- "35_index": "49",
- "3_index": "122",
- "48_ord": "27",
- "49_ord": "35",
- "4_index": "119",
- "50_ord": "24",
- "51_ord": "22",
- "52_ord": "7",
- "53_ord": "13",
- "54_ord": "0",
- "55_ord": "9",
- "56_ord": "11",
- "57_ord": "32",
- "5_index": "113",
- "6_index": "106",
- "7_index": "52",
- "8_index": "100",
- "97_ord": "18",
- "98_ord": "30",
- "99_ord": "25",
- "9_index": "55"
-}
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/images/.keep b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data/images/.keep
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/__init__.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/__init__.py
deleted file mode 100644
index 5ca4bc62fe7436d80152ae2eac1d7bbc4da501fd..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-22 涓嬪崍1:39
-# @Author : Luo Yao
-# @Site : http://github.com/TJCVRS
-# @File : __init__.py.py
-# @IDE: PyCharm Community Edition
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_ic03.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_ic03.py
deleted file mode 100644
index ba4cea2c7af5419b29994df3c296bb0bfc463ea5..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_ic03.py
+++ /dev/null
@@ -1,174 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-##########################################
-# convert xml-style of annotations
-# to (image_name, label) pairs in a
-# text file
-##########################################
-
-
-
-
-
-from PIL import Image
-import numpy as np
-from xml.etree import ElementTree as ET
-import argparse
-import os
-
-
-def init_args():
- parser = argparse.ArgumentParser('')
- parser.add_argument('-d', '--dataset_dir', type=str, default='./',
- help='path to original images')
- parser.add_argument('-x', '--xml_file', type=str, default='test.xml',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--output_dir', type=str, default='./processed',
- help='Directory where ord map dictionaries for the dataset were stored')
-
- parser.add_argument('-a', '--output_annotation', type=str, default='./annotation.txt',
- help='Directory where ord map dictionaries for the dataset were stored')
-
- return parser.parse_args()
-
-
-def xml_to_dict(xml_file, save_file=False):
- tree = ET.parse(xml_file)
- root = tree.getroot()
-
- children = root.getchildren()
- imgs_labels = []
-
- for ch in children:
- im_label = {}
-
- for ch01 in ch.getchildren():
- if ch01.tag in 'taggedRectangles':
- # multiple children
- rect_list = []
- # rect = {}
- for ch02 in ch01.getchildren():
- rect = {}
- rect['location'] = ch02.attrib
- rect['label'] = ch02.getchildren()[0].text
- # print(rect['label'])
- rect_list.append(rect)
- # print("number of rect : ", len(rect_list))
- im_label['rect'] = rect_list
- else:
- im_label[ch01.tag] = ch01.text
- imgs_labels.append(im_label)
-
- if save_file:
- np.save("annotation_train.npy", imgs_labels)
-
- return imgs_labels
-
-
-def image_crop_save(image, location, output_dir):
- '''crop image with location (h,w,x,y)
- save cropped image to output directory
-
- '''
- # avoid negative value of coordinates in annotation
- start_x = np.maximum(location[2],0)
- end_x = start_x + location[1]
- start_y = np.maximum(location[3],0)
- end_y = start_y + location[0]
- print("image array shape :{}".format(image.shape))
- print("crop region ", start_x, end_x, start_y, end_y)
- if len(image.shape) == 3:
- cropped = image[start_y:end_y, start_x:end_x, :]
- else:
- cropped = image[start_y:end_y, start_x:end_x]
- im = Image.fromarray(np.uint8(cropped))
- im.save(output_dir)
-
-
-def convert():
- args = init_args()
- if not os.path.exists(args.dataset_dir):
- raise ValueError("dataset_dir :{ } does not exist".format(args.dataset_dir))
-
- if not os.path.exists(args.xml_file):
- raise ValueError("xml_file :{ } does not exist".format(args.xml_file))
-
- if not os.path.exists(args.output_dir):
- os.makedirs(args.output_dir)
-
- ims_labels_dict = xml_to_dict(args.xml_file, True)
- num_images = len(ims_labels_dict)
- annotation_list = []
- print("Converting annotation, {} images in total ".format(num_images))
- for i in range(num_images):
- img_label = ims_labels_dict[i]
- image_name = img_label['imageName']
- rects = img_label['rect']
- ext = image_name.split('.')[-1]
- name = image_name[:-(len(ext)+1)]
-
- fullpath = os.path.join(args.dataset_dir, image_name)
- im_array = np.asarray(Image.open(fullpath))
- print("processing image: {}".format(image_name))
- for j in range(len(rects)):
- rect = rects[j]
- location = rect['location']
- h = int(float(location['height']))
- w = int(float(location['width']))
- x = int(float(location['x']))
- y = int(float(location['y']))
- label = rect['label']
- loc = [h, w, x, y]
- output_name = name.replace("/","_") + "_" + str(j) + "_" + label + '.' + ext
- output_name = output_name.replace(",","")
- output_file = os.path.join(args.output_dir, output_name)
-
- image_crop_save(im_array, loc, output_file)
- ann = output_name + "," + label + ','
- annotation_list.append(ann)
-
- ann_file = args.output_annotation
-
- with open(ann_file, 'w') as f:
- for line in annotation_list:
- txt = line + '\n'
- f.write(txt)
-
-
-if __name__ == "__main__":
- convert()
-
-
-
-
-
-
-
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_iiit5k.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_iiit5k.py
deleted file mode 100644
index 0d4197aaae8ea91faa64c7b812392e9ee4e8c3fc..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_iiit5k.py
+++ /dev/null
@@ -1,97 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-###############################################
-# convert annotation ofg test data to a text
-# file
-#
-# load testdata
-# testdata.mat structure
-# test[:][0] : image name
-# test[:][1] : label
-# test[:][2] : 50 lexicon
-# test[:][3] : 1000 lexicon
-##############################################
-
-
-from scipy import io
-import numpy as np
-import argparse
-
-
-def init_args():
- parser = argparse.ArgumentParser('')
- parser.add_argument('-m', '--mat_file', type=str, default='testdata.mat',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--output_dir', type=str, default='./processed',
- help='Directory where ord map dictionaries for the dataset were stored')
-
- parser.add_argument('-a', '--output_annotation', type=str, default='./annotation.txt',
- help='Directory where ord map dictionaries for the dataset were stored')
-
- return parser.parse_args()
-
-
-
-
-def mat_to_list(mat_file):
- ann_ori = io.loadmat(mat_file)
- testdata = ann_ori['testdata'][0]
-
- ann_output = []
- for elem in testdata:
- img_name = elem[0][0]
- label = elem[1][0]
- print('image name ', img_name, 'label: ', label)
- ann = img_name+',' + label
- ann_output.append(ann)
- return ann_output
-
-def convert():
-
-
- args = init_args()
-
- ann_list = mat_to_list(args.mat_file)
-
- print("output ann : ",args.output_annotation)
- ann_file = args.output_annotation
- with open(ann_file, 'w') as f:
- for line in ann_list:
- txt = line + '\n'
- f.write(txt)
-
-
-
-if __name__ == "__main__":
- convert()
-
-
-
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_svt.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_svt.py
deleted file mode 100644
index 18dbcce5138643d2aa112e031723e0f20537c7fb..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/convert_svt.py
+++ /dev/null
@@ -1,194 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-##########################################
-# convert xml-style of annotations
-# to (image_name, label) pairs in a
-# text file
-##########################################
-
-
-
-from PIL import Image
-import numpy as np
-from xml.etree import ElementTree as ET
-import argparse
-import os
-
-
-def init_args():
- parser = argparse.ArgumentParser('')
- parser.add_argument('-d', '--dataset_dir', type=str,default='./',
- help='Directory containing test_features.tfrecords')
- parser.add_argument('-x', '--xml_file', type=str,default='test.xml',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--output_dir', type=str,default='./processed',
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-a', '--output_annotation', type=str,default='./annotation.txt',
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-l', '--output_lexicon', type=str,default='./lexicon.txt',
- help='Directory where ord map dictionaries for the dataset were stored')
- return parser.parse_args()
-
-
-
-def xml_to_dict(xml_file, save_file=False):
-
- tree = ET.parse(xml_file)
- root = tree.getroot()
-
- children = root.getchildren()
- imgs_labels = []
-
- for ch in children:
- im_label = {}
-
- for ch01 in ch.getchildren():
- if ch01.tag in "address":
- continue
- elif ch01.tag in 'taggedRectangles':
- # multiple children
- rect_list = []
- #rect = {}
- for ch02 in ch01.getchildren():
- rect = {}
- rect['location'] = ch02.attrib
- rect['label'] = ch02.getchildren()[0].text
- #print(rect['label'])
- rect_list.append(rect)
- #print("number of rect : ", len(rect_list))
- im_label['rect'] = rect_list
- else:
- im_label[ch01.tag] = ch01.text
- imgs_labels.append(im_label)
-
- if save_file:
- np.save("annotation_train.npy",imgs_labels)
-
- return imgs_labels
-
-
-def image_crop_save(image,location, output_dir):
- '''crop image with location (h,w,x,y)
- save cropped image to output directory
-
- '''
- start_x = location[2]
- end_x = start_x + location[1]
- start_y = location[3]
- if start_y<0:
- start_y=0
- end_y = start_y + location[0]
- #print("image array shape :{}".format(image.shape))
- #print("crop region ", start_x, end_x,start_y,end_y)
- if len(image.shape)==3:
- cropped = image[start_y:end_y,start_x:end_x,:]
- else:
- cropped = image[start_y:end_y,start_x:end_x]
- im = Image.fromarray(np.uint8(cropped))
- im.save(output_dir)
-
-
-def convert():
- args = init_args()
- if not os.path.exists(args.dataset_dir):
- raise ValueError("dataset_dir :{ } does not exist".format(args.dataset_dir))
-
- if not os.path.exists(args.xml_file):
- raise ValueError("xml_file :{ } does not exist".format(args.xml_file))
-
- if not os.path.exists(args.output_dir):
- os.makedirs(args.output_dir)
-
- ims_labels_dict = xml_to_dict(args.xml_file,True)
- num_images = len(ims_labels_dict)
- lexicon_list = []
- annotation_list = []
- print("Converting annotation, {} images in total ".format(num_images))
- for i in range(num_images):
- img_label = ims_labels_dict[i]
- image_name = img_label['imageName']
- lex = img_label['lex']
- rects = img_label['rect']
- name, ext = image_name.split('.')
- name = name.replace('/','_')
- fullpath = os.path.join(args.dataset_dir,image_name)
- im_array = np.asarray(Image.open(fullpath))
- lexicon_list.append(lex)
- print("processing image: {}".format(image_name))
- for j in range(len(rects)):
- rect = rects[j]
- location = rect['location']
- h = int(location['height'])
- w = int(location['width'])
- x = int(location['x'])
- y = int(location['y'])
- label = rect['label']
- loc = [h,w,x,y]
- output_name = name+"_"+str(j)+"_"+label+'.'+ext
- output_file = os.path.join(args.output_dir,output_name)
-
- image_crop_save(im_array,loc,output_file)
- ann = output_name+","+label+','+str(i)
- print(ann)
- annotation_list.append(ann)
-
- ann_file = args.output_annotation
-
- with open(ann_file,'w') as f:
- for line in annotation_list:
- txt = line+'\n'
- f.write(txt)
-
-
-
-if __name__=="__main__":
-
- convert()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-#xml_to_dict('test.xml')
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic03.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic03.py
deleted file mode 100644
index 9eef1f4c622777c8bc989d4523ac3d6c1bdc9f91..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic03.py
+++ /dev/null
@@ -1,101 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import argparse
-
-
-
-def init_args():
- parser = argparse.ArgumentParser('')
- parser.add_argument('-s', '--src_ann', type=str, default='annotation.txt',
- help='path to original annotation ')
- parser.add_argument('-o', '--dst_ann', type=str, default='processed_annotation.txt',
- help='path to filtered annotation')
-
-
- return parser.parse_args()
-
-
-
-def is_valid_char(ch):
- ch_ord = ord(ch)
-
- ord_0 = ord('0')
- ord_9 = ord('9')
- ord_a = ord('a')
- ord_z = ord('z')
-
- if (ch_ord>=ord_0 and ch_ord<=ord_9) or (ch_ord>=ord_a and ch_ord<=ord_z):
- return True
- else:
- return False
-
-def get_abnormal_list(ann_list):
- abn_list = []
- for ann in ann_list:
- label = ann.split(',')[1]
- label = label.strip().lower()
-
- if len(label)<3:
- abn_list.append(ann)
- continue
-
- for l in label:
- flag = is_valid_char(l)
- if not flag:
- abn_list.append(ann)
- #print(ann)
- break
- print("number of abnormal annotation :", len(abn_list))
- return abn_list
-
-
-
-def filter():
-
- args = init_args()
-
- ann_file = open(args.src_ann,'r')
- annotation_list = [line.strip("\n") for line in ann_file.readlines()]
- ann_file.close()
-
- abn_list = get_abnormal_list(annotation_list)
- clean_list = [line for line in annotation_list if line not in abn_list]
- print("number of annotation after filtering :{}".format(len(clean_list)))
-
- output = args.dst_ann
- with open(output,'w') as f:
- for line in clean_list:
- line = line +'\n'
- f.write(line)
-
-
-
-
-if __name__=="__main__":
- filter()
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic13.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic13.py
deleted file mode 100644
index a484773b85c1242d2b211913c1a0b6fd0c7a3b1b..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/preprocess_ic13.py
+++ /dev/null
@@ -1,82 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import argparse
-
-
-path="./datasets/2013/Challenge2_Test_Task3_GT.txt"
-ann_file = open(path,'r')
-
-annotation_list = [line.strip("\n") for line in ann_file.readlines()]
-
-
-def is_valid_char(ch):
- ch_ord = ord(ch)
-
- ord_0 = ord('0')
- ord_9 = ord('9')
- ord_a = ord('a')
- ord_z = ord('z')
-
- if (ch_ord>=ord_0 and ch_ord<=ord_9) or (ch_ord>=ord_a and ch_ord<=ord_z):
- return True
- else:
- return False
-
-def get_abnormal_list(ann_list):
- abn_list = []
- for ann in ann_list:
- label = ann.split(',')[1]
- label = label.strip().lower()
- for l in label:
- flag = is_valid_char(l)
- if not flag:
- abn_list.append(ann)
- print(ann)
- break
- print("number of abnormal annotation :", len(abn_list))
- return abn_list
-
-
-
-path="./datasets/2013/Challenge2_Test_Task3_GT.txt"
-ann_file = open(path,'r')
-
-annotation_list = [line.strip("\n") for line in ann_file.readlines()]
-ann_file.close()
-
-abn_list = get_abnormal_list(annotation_list)
-
-path="./datasets/2013/processed_annotation.txt"
-
-clean_list = [line for line in annotation_list if line not in abn_list]
-
-with open(path,'w') as f:
- for line in clean_list:
- line = line +'\n'
- f.write(line)
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/shadownet_data_feed_pipline.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/shadownet_data_feed_pipline.py
deleted file mode 100644
index 84792350dc7898fb0101c3b725aa9004e4ec72c7..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/shadownet_data_feed_pipline.py
+++ /dev/null
@@ -1,318 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 19-2-26 涓嬪崍9:03
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : shadownet_data_feed_pipline.py
-# @IDE: PyCharm
-"""
-Synth90k dataset feed pipline
-"""
-import os
-import os.path as ops
-import random
-import time
-
-import glob
-import glog as log
-import tqdm
-import tensorflow as tf
-
-from config import global_config
-from local_utils import establish_char_dict
-from data_provider import tf_io_pipline_fast_tools
-
-CFG = global_config.cfg
-
-
-class CrnnDataProducer(object):
- """
- Convert raw image file into tfrecords
- """
- def __init__(self, dataset_dir, char_dict_path=None, ord_map_dict_path=None,
- writer_process_nums=4):
- """
- init crnn data producer
- :param dataset_dir: image dataset root dir
- :param char_dict_path: char dict path
- :param ord_map_dict_path: ord map dict path
- :param writer_process_nums: the number of writer process
- """
- if not ops.exists(dataset_dir):
- raise ValueError('Dataset dir {:s} not exist'.format(dataset_dir))
-
- # Check image source data
- self._dataset_dir = dataset_dir
- self._train_annotation_file_path = ops.join(dataset_dir, 'annotation_train.txt')
- self._test_annotation_file_path = ops.join(dataset_dir, 'annotation_test.txt')
- self._val_annotation_file_path = ops.join(dataset_dir, 'annotation_val.txt')
- self._lexicon_file_path = ops.join(dataset_dir, 'lexicon.txt')
- self._char_dict_path = char_dict_path
- self._ord_map_dict_path = ord_map_dict_path
- self._writer_process_nums = writer_process_nums
-
- if not self._is_source_data_complete():
- raise ValueError('Source image data is not complete, '
- 'please check if one of the image folder '
- 'or index file is not exist')
-
- # Init training example information
- self._lexicon_list = []
- self._train_sample_infos = []
- self._test_sample_infos = []
- self._val_sample_infos = []
- self._init_dataset_sample_info()
-
- # Check if need generate char dict map
- if char_dict_path is None or ord_map_dict_path is None:
- os.makedirs('./data/char_dict', exist_ok=True)
- self._char_dict_path = ops.join('./data/char_dict', 'char_dict.json')
- self._ord_map_dict_path = ops.join('./data/char_dict', 'ord_map.json')
- self._generate_char_dict()
-
- def generate_tfrecords(self, save_dir):
- """
- Generate tensorflow records file
- :param save_dir: tensorflow records save dir
- :return:
- """
- # make save dirs
- os.makedirs(save_dir, exist_ok=True)
-
- # generate training example tfrecords
- log.info('Generating training sample tfrecords...')
- t_start = time.time()
-
- tfrecords_writer = tf_io_pipline_fast_tools.CrnnFeatureWriter(
- annotation_infos=self._train_sample_infos,
- lexicon_infos=self._lexicon_list,
- char_dict_path=self._char_dict_path,
- ord_map_dict_path=self._ord_map_dict_path,
- tfrecords_save_dir=save_dir,
- writer_process_nums=self._writer_process_nums,
- dataset_flag='train'
- )
- tfrecords_writer.run()
-
- log.info('Generate training sample tfrecords complete, cost time: {:.5f}'.format(time.time() - t_start))
-
- # generate val example tfrecords
- log.info('Generating validation sample tfrecords...')
- t_start = time.time()
-
- tfrecords_writer = tf_io_pipline_fast_tools.CrnnFeatureWriter(
- annotation_infos=self._val_sample_infos,
- lexicon_infos=self._lexicon_list,
- char_dict_path=self._char_dict_path,
- ord_map_dict_path=self._ord_map_dict_path,
- tfrecords_save_dir=save_dir,
- writer_process_nums=self._writer_process_nums,
- dataset_flag='val'
- )
- tfrecords_writer.run()
-
- log.info('Generate validation sample tfrecords complete, cost time: {:.5f}'.format(time.time() - t_start))
-
- # generate test example tfrecords
- log.info('Generating testing sample tfrecords....')
- t_start = time.time()
-
- tfrecords_writer = tf_io_pipline_fast_tools.CrnnFeatureWriter(
- annotation_infos=self._test_sample_infos,
- lexicon_infos=self._lexicon_list,
- char_dict_path=self._char_dict_path,
- ord_map_dict_path=self._ord_map_dict_path,
- tfrecords_save_dir=save_dir,
- writer_process_nums=self._writer_process_nums,
- dataset_flag='test'
- )
- tfrecords_writer.run()
-
- log.info('Generate testing sample tfrecords complete, cost time: {:.5f}'.format(time.time() - t_start))
-
- return
-
- def _is_source_data_complete(self):
- """
- Check if source data complete
- :return:
- """
- return \
- ops.exists(self._train_annotation_file_path) and ops.exists(self._val_annotation_file_path) \
- and ops.exists(self._test_annotation_file_path) and ops.exists(self._lexicon_file_path)
-
- def _init_dataset_sample_info(self):
- """
- organize dataset sample information, read all the lexicon information in lexicon list.
- Train, test, val sample information are lists like
- [(image_absolute_path_1, image_lexicon_index_1), (image_absolute_path_2, image_lexicon_index_2), ...]
- :return:
- """
- # establish lexicon list
- log.info('Start initialize lexicon information list...')
- num_lines = sum(1 for _ in open(self._lexicon_file_path, 'r'))
- with open(self._lexicon_file_path, 'r', encoding='utf-8') as file:
- for line in tqdm.tqdm(file, total=num_lines):
- self._lexicon_list.append(line.rstrip('\r').rstrip('\n'))
-
- # establish train example info
- log.info('Start initialize train sample information list...')
- num_lines = sum(1 for _ in open(self._train_annotation_file_path, 'r'))
- with open(self._train_annotation_file_path, 'r', encoding='utf-8') as file:
- for line in tqdm.tqdm(file, total=num_lines):
-
- image_name, label_index = line.rstrip('\r').rstrip('\n').split(' ')
- image_path = ops.join(self._dataset_dir, image_name)
- label_index = int(label_index)
-
- if not ops.exists(image_path):
- raise ValueError('Example image {:s} not exist'.format(image_path))
-
- self._train_sample_infos.append((image_path, label_index))
-
- # establish val example info
- log.info('Start initialize validation sample information list...')
- num_lines = sum(1 for _ in open(self._val_annotation_file_path, 'r'))
- with open(self._val_annotation_file_path, 'r', encoding='utf-8') as file:
- for line in tqdm.tqdm(file, total=num_lines):
- image_name, label_index = line.rstrip('\r').rstrip('\n').split(' ')
- image_path = ops.join(self._dataset_dir, image_name)
- label_index = int(label_index)
-
- if not ops.exists(image_path):
- raise ValueError('Example image {:s} not exist'.format(image_path))
-
- self._val_sample_infos.append((image_path, label_index))
-
- # establish test example info
- log.info('Start initialize testing sample information list...')
- num_lines = sum(1 for _ in open(self._test_annotation_file_path, 'r'))
- with open(self._test_annotation_file_path, 'r', encoding='utf-8') as file:
- for line in tqdm.tqdm(file, total=num_lines):
- image_name, label_index = line.rstrip('\r').rstrip('\n').split(' ')
- image_path = ops.join(self._dataset_dir, image_name)
- label_index = int(label_index)
-
- if not ops.exists(image_path):
- raise ValueError('Example image {:s} not exist'.format(image_path))
-
- self._test_sample_infos.append((image_path, label_index))
-
- def _generate_char_dict(self):
- """
- generate the char dict and ord map dict json file according to the lexicon list.
- gather all the single characters used in lexicon list.
- :return:
- """
- char_lexicon_set = set()
- for lexcion in self._lexicon_list:
- for s in lexcion:
- char_lexicon_set.add(s)
-
- log.info('Char set length: {:d}'.format(len(char_lexicon_set)))
-
- char_lexicon_list = list(char_lexicon_set)
- char_dict_builder = establish_char_dict.CharDictBuilder()
- char_dict_builder.write_char_dict(char_lexicon_list, save_path=self._char_dict_path)
- char_dict_builder.map_ord_to_index(char_lexicon_list, save_path=self._ord_map_dict_path)
-
- log.info('Write char dict map complete')
-
-
-class CrnnDataFeeder(object):
- """
- Read training examples from tfrecords for crnn model
- """
- def __init__(self, dataset_dir, char_dict_path, ord_map_dict_path, flags='train'):
- """
- crnn net dataset io pip line
- :param dataset_dir: the root dir of crnn dataset
- :param char_dict_path: json file path which contains the map relation
- between ord value and single character
- :param ord_map_dict_path: json file path which contains the map relation
- between int index value and char ord value
- :param flags: flag to determinate for whom the data feeder was used
- """
- self._dataset_dir = dataset_dir
-
- self._tfrecords_dir = ops.join(dataset_dir, 'tfrecords')
- if not ops.exists(self._tfrecords_dir):
- raise ValueError('{:s} not exist, please check again'.format(self._tfrecords_dir))
-
- self._dataset_flags = flags.lower()
- if self._dataset_flags not in ['train', 'test', 'val']:
- raise ValueError('flags of the data feeder should be \'train\', \'test\', \'val\'')
-
- self._char_dict_path = char_dict_path
- self._ord_map_dict_path = ord_map_dict_path
- self._tfrecords_io_reader = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=self._char_dict_path, ord_map_dict_path=self._ord_map_dict_path)
- self._tfrecords_io_reader.dataset_flags = self._dataset_flags
-
- def sample_counts(self):
- """
- use tf records iter to count the total sample counts of all tfrecords file
- :return: int: sample nums
- """
- tfrecords_file_paths = glob.glob('{:s}/{:s}*.tfrecords'.format(self._tfrecords_dir, self._dataset_flags))
- counts = 0
-
- for record in tfrecords_file_paths:
- counts += sum(1 for _ in tf.python_io.tf_record_iterator(record))
-
- return counts
-
- def inputs(self, batch_size):
- """
- Supply the batched data for training, testing and validation. For training and validation
- this function will run in a infinite loop until user end it outside of the function.
- For testing this function will raise an tf.errors.OutOfRangeError when reach the end of
- the dataset. User may catch this exception to terminate a loop.
- :param batch_size:
- :return: A tuple (images, labels, image_paths), where:
- * images is a float tensor with shape [batch_size, H, W, C]
- in the range [-1.0, 1.0].
- * labels is an sparse tensor with shape [batch_size, None] with the true label
- * image_paths is an tensor with shape [batch_size] with the image's absolute file path
- """
-
- tfrecords_file_paths = glob.glob('{:s}/{:s}*.tfrecords'.format(self._tfrecords_dir, self._dataset_flags))
-
- if not tfrecords_file_paths:
- raise ValueError('Dataset does not contain any tfrecords for {:s}'.format(self._dataset_flags))
-
- random.shuffle(tfrecords_file_paths)
-
- return self._tfrecords_io_reader.inputs(
- tfrecords_path=tfrecords_file_paths,
- batch_size=batch_size,
- num_threads=CFG.TRAIN.CPU_MULTI_PROCESS_NUMS
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/tf_io_pipline_fast_tools.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/tf_io_pipline_fast_tools.py
deleted file mode 100644
index 372434a80270a6f82d59990dd48464db68eac285..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/data_provider/tf_io_pipline_fast_tools.py
+++ /dev/null
@@ -1,592 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 19-3-21 涓嬪崍3:03
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : tf_io_pipline_fast_tools.py
-# @IDE: PyCharm
-"""
-Efficient tfrecords writer interface
-"""
-import os
-import os.path as ops
-from multiprocessing import Manager
-from multiprocessing import Process
-import time
-
-#import cv2
-import glog as log
-import numpy as np
-import tensorflow as tf
-import tqdm
-
-from PIL import Image
-
-
-from config import global_config
-from local_utils import establish_char_dict
-
-CFG = global_config.cfg
-
-_SAMPLE_INFO_QUEUE = Manager().Queue()
-_SENTINEL = ("", [])
-
-
-def _int64_feature(value):
- """
- Wrapper for inserting int64 features into Example proto.
- :param value:
- :return:
- """
- if not isinstance(value, list):
- value = [value]
- value_tmp = []
- is_int = True
- for val in value:
- if not isinstance(val, int):
- is_int = False
- value_tmp.append(int(float(val)))
- if not is_int:
- value = value_tmp
- return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
-
-
-def _float_feature(value):
- """
- Wrapper for inserting float features into Example proto.
- :param value:
- :return:
- """
- if not isinstance(value, list):
- value = [value]
- value_tmp = []
- is_float = True
- for val in value:
- if not isinstance(val, int):
- is_float = False
- value_tmp.append(float(val))
- if is_float is False:
- value = value_tmp
- return tf.train.Feature(float_list=tf.train.FloatList(value=value))
-
-
-def _bytes_feature(value):
- """
- Wrapper for inserting bytes features into Example proto.
- :param value:
- :return:
- """
- if not isinstance(value, bytes):
- if not isinstance(value, list):
- value = value.encode('utf-8')
- else:
- value = [val.encode('utf-8') for val in value]
- if not isinstance(value, list):
- value = [value]
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
-
-
-def _is_valid_jpg_file(image_path):
- """
-
- :param image_path:
- :return:
- """
-
- if not ops.exists(image_path):
- return False
-
- file = open(image_path, 'rb')
- data = file.read(11)
- if data[:4] != '\xff\xd8\xff\xe0' and data[:4] != '\xff\xd8\xff\xe1':
- file.close()
- return False
- if data[6:] != 'JFIF\0' and data[6:] != 'Exif\0':
- file.close()
- return False
- file.close()
-
- file = open(image_path, 'rb')
- file.seek(-2, 2)
- if file.read() != '\xff\xd9':
- file.close()
- return False
-
- file.close()
-
- return True
-
-
-
-def _write_tfrecords(tfrecords_writer):
- """
-
- :param tfrecords_writer:
- :return:
- """
- sess = tf.Session()
-
- while True:
- sample_info = _SAMPLE_INFO_QUEUE.get()
-
- if sample_info == _SENTINEL:
- log.info('Process {:d} finished writing work'.format(os.getpid()))
- tfrecords_writer.close()
- break
-
- sample_path = sample_info[0]
- sample_label = sample_info[1]
- label_length=len(sample_label)
- if _is_valid_jpg_file(sample_path):
- log.error('Image file: {:d} is not a valid jpg file'.format(sample_path))
- continue
-
- try:
-
- # try to use PIL
- image = Image.open(sample_path)
- if image is None:
- continue
- image = image.resize(tuple(CFG.ARCH.INPUT_SIZE),Image.BILINEAR)
- image_np = np.array(image).astype(np.uint8)
- image = image_np.tostring()
-
- except IOError as err:
- log.error(err)
- continue
-
- features = tf.train.Features(feature={
- 'labels': _int64_feature(sample_label),
- 'images': _bytes_feature(image),
- 'imagepaths': _bytes_feature(sample_path),
- 'labels_length':_int64_feature(label_length)
-
- })
-
-
-
- tf_example = tf.train.Example(features=features)
- tfrecords_writer.write(tf_example.SerializeToString())
- log.debug('Process: {:d} get sample from sample_info_queue[current_size={:d}], '
- 'and write it to local file at time: {}'.format(
- os.getpid(), _SAMPLE_INFO_QUEUE.qsize(), time.strftime('%H:%M:%S')))
-
-
-class _FeatureIO(object):
- """
- Feature IO Base Class
- """
- def __init__(self, char_dict_path, ord_map_dict_path):
- """
-
- :param char_dict_path:
- :param ord_map_dict_path:
- """
- self._char_dict = establish_char_dict.CharDictBuilder.read_char_dict(char_dict_path)
- self._ord_map = establish_char_dict.CharDictBuilder.read_ord_map_dict(ord_map_dict_path)
- return
-
- def char_to_int(self, char):
- """
- convert char into int index, first convert the char into it's ord
- number and the convert the ord number into int index which is stored
- in ord_map_dict.json file
- :param char: single character
- :return: the int index of the character
- """
- str_key = str(ord(char)) + '_ord'
- try:
- result = int(self._ord_map[str_key])
- return result
- except KeyError:
- raise KeyError("Character {} missing in ord_map.json".format(char))
-
- def int_to_char(self, number):
- """
- convert the int index into char
- :param number: Can be passed as string representing the integer value to look up.
- :return: Character corresponding to 'number' in the char_dict
- """
- # 1 is the default value in sparse_tensor_to_str() This will be skipped when building the resulting strings
- if number == 1 or number == '1':
- return '\x00'
- else:
- return self._char_dict[str(number) + '_ord']
-
- def encode_labels(self, labels):
- """
- Convert a batch of text labels into int index labels
- :param labels: List of text labels such as ['hello world', 'fuck world', ...]
- :return: Two list. One is a list of int index labels another is
- a list of label length
- """
- encoded_labels = []
- lengths = []
- for label in labels:
- encode_label = [self.char_to_int(char) for char in label]
- encoded_labels.append(encode_label)
- lengths.append(len(label))
- return encoded_labels, lengths
-
- # originala version
- #def sparse_tensor_to_str(self, sparse_tensor):
- # """
- # :param sparse_tensor: prediction or ground truth label
- # :return: String value of the sparse tensor
- # """
- # indices = sparse_tensor.indices
- # values = sparse_tensor.values
- # # Translate from consecutive numbering into ord() values
- # values = np.array([self._ord_map[str(tmp) + '_index'] for tmp in values ])
- #
- # dense_shape = sparse_tensor.dense_shape
-
- # number_lists = np.ones(dense_shape, dtype=values.dtype)
- # str_lists = []
- # res = []
- # for i, index in enumerate(indices):
- # number_lists[index[0], index[1]] = values[i]
- # for number_list in number_lists:
- # # Translate from ord() values into characters
- # str_lists.append([self.int_to_char(val) for val in number_list])
- # for str_list in str_lists:
- # # int_to_char() returns '\x00' for an input == 1, which is the default
- # # value in number_lists, so we skip it when building the result
- # res.append(''.join(c for c in str_list if c != '\x00'))
- # return res
-
-
- # modification are made to accommodate the changes in the labels of tfrecords
- def sparse_tensor_to_str(self, sparse_tensor):
- """
-
- :param sparse_tensor: prediction or ground truth label
- :return: String value of the sparse tensor
- """
- indices = sparse_tensor.indices
- values = sparse_tensor.values
- # Translate from consecutive numbering into ord() values
- values_list = []
- for tmp in values:
- if tmp==36:
- values_list.append('1')
- else:
- values_list.append(self._ord_map[str(tmp) + '_index'])
- values = np.array(values_list)
-
- dense_shape = sparse_tensor.dense_shape
-
- number_lists = np.ones(dense_shape, dtype=values.dtype)
- str_lists = []
- res = []
- for i, index in enumerate(indices):
- number_lists[index[0],index[1]] = values[i]
- for number_list in number_lists:
- # Translate from ord() values into characters
- str_lists.append([self.int_to_char(val) for val in number_list])
- for str_list in str_lists:
- # value in number_lists, so we skip it when building the result
- res.append(''.join(c for c in str_list if c != '\x00'))
- return res
-
- def sparse_tensor_to_str_for_tf_serving(self, decode_indices, decode_values, decode_dense_shape):
- """
-
- :param decode_indices:
- :param decode_values:
- :param decode_dense_shape:
- :return:
- """
- indices = decode_indices
- values = decode_values
- # Translate from consecutive numbering into ord() values
- values = np.array([self._ord_map[str(tmp) + '_index'] for tmp in values])
- dense_shape = decode_dense_shape
-
- number_lists = np.ones(dense_shape, dtype=values.dtype)
- str_lists = []
- res = []
- for i, index in enumerate(indices):
- number_lists[index[0], index[1]] = values[i]
- for number_list in number_lists:
- # Translate from ord() values into characters
- str_lists.append([self.int_to_char(val) for val in number_list])
- for str_list in str_lists:
- # int_to_char() returns '\x00' for an input == 1, which is the default
- # value in number_lists, so we skip it when building the result
- res.append(''.join(c for c in str_list if c != '\x00'))
- return res
-
-
-class CrnnFeatureReader(_FeatureIO):
- """
- Implement the crnn feature reader
- """
-
- def __init__(self, char_dict_path, ord_map_dict_path, flags='train'):
- """
-
- :param char_dict_path:
- :param ord_map_dict_path:
- :param flags:
- """
- super(CrnnFeatureReader, self).__init__(char_dict_path, ord_map_dict_path)
- self._dataset_flag = flags.lower()
- return
-
- @property
- def dataset_flags(self):
- """
-
- :return:
- """
- return self._dataset_flag
-
- @dataset_flags.setter
- def dataset_flags(self, value):
- """
-
- :value:
- :return:
- """
- if not isinstance(value, str):
- raise ValueError('Dataset flags shoule be str')
-
- if value.lower() not in ['train', 'val', 'test']:
- raise ValueError('Dataset flags shoule be within \'train\', \'val\', \'test\'')
-
- self._dataset_flag = value
-
- @staticmethod
- def _augment_for_train(input_images, input_labels, input_image_paths,labels_length):
- """
-
- :param input_images:
- :param input_labels:
- :param input_image_paths:
- :return:
- """
- return input_images, input_labels, input_image_paths,labels_length
-
- @staticmethod
- def _augment_for_validation(input_images, input_labels, input_image_paths,labels_length):
- """
-
- :param input_images:
- :param input_labels:
- :param input_image_paths:
- :return:
- """
- return input_images, input_labels, input_image_paths,labels_length
-
- @staticmethod
- def _normalize(input_images, input_labels, input_image_paths,labels_length):
- """
-
- :param input_images:
- :param input_labels:
- :param input_image_paths:
- :return:
- """
- input_images = tf.subtract(tf.divide(input_images, 127.5), 1.0)
- return input_images, input_labels, input_image_paths,labels_length
-
- @staticmethod
- def _extract_features_batch(serialized_batch):
- """
-
- :param serialized_batch:
- :return:
- """
- features = tf.parse_example(
- serialized_batch,
- features={'images': tf.FixedLenFeature([], tf.string),
- 'imagepaths': tf.FixedLenFeature([], tf.string),
- 'labels': tf.VarLenFeature(tf.int64),
- 'labels_length': tf.FixedLenFeature([], tf.int64),
- }
- )
-
- # original version
- # features = tf.parse_example(
- # serialized_batch,
- # features={'images': tf.FixedLenFeature([], tf.string),
- # 'imagepaths': tf.FixedLenFeature([], tf.string),
- # 'labels': tf.FixedLenFeature([],tf.string),
- # }
- # )
-
- bs = features['images'].shape[0]
- images = tf.decode_raw(features['images'], tf.uint8)
- w, h = tuple(CFG.ARCH.INPUT_SIZE)
- images = tf.cast(x=images, dtype=tf.float32)
- images = tf.reshape(images, [bs, h, w, CFG.ARCH.INPUT_CHANNELS])
-
-
- labels = features['labels']
- labels = tf.cast(labels, tf.int32)
- label_fixed_shape = np.array([bs, CFG.ARCH.MAX_LENGTH], dtype=np.int32)
- labels = tf.SparseTensor(labels.indices, labels.values, label_fixed_shape)
- labels = tf.sparse_tensor_to_dense(labels, default_value=CFG.ARCH.NUM_CLASSES-1)
- labels_length = features['labels_length']
- imagepaths = features['imagepaths']
-
- return images, labels, imagepaths,labels_length
-
- def inputs(self, tfrecords_path, batch_size, num_threads):
- """
-
- :param tfrecords_path:
- :param batch_size:
- :param num_threads:
- :return: input_images, input_labels, input_image_names
- """
- dataset = tf.data.TFRecordDataset(tfrecords_path)
-
- dataset = dataset.batch(batch_size, drop_remainder=True)
-
- # The map transformation takes a function and applies it to every element
- # of the dataset.
- dataset = dataset.map(map_func=self._extract_features_batch,
- num_parallel_calls=num_threads)
- if self._dataset_flag == 'train':
- dataset = dataset.map(map_func=self._augment_for_train,
- num_parallel_calls=num_threads)
- else:
- dataset = dataset.map(map_func=self._augment_for_validation,
- num_parallel_calls=num_threads)
- dataset = dataset.map(map_func=self._normalize,
- num_parallel_calls=num_threads)
-
- # The shuffle transformation uses a finite-sized buffer to shuffle elements
- # in memory. The parameter is the number of elements in the buffer. For
- # completely uniform shuffling, set the parameter to be the same as the
- # number of elements in the dataset.
- if self._dataset_flag != 'test':
- dataset = dataset.shuffle(buffer_size=128)
- # repeat num epochs
- dataset = dataset.repeat()
- dataset = dataset.prefetch(2)
-
-
- iterator = dataset.make_one_shot_iterator()
- return iterator.get_next(name='{:s}_IteratorGetNext'.format(self._dataset_flag))
-
-
-class CrnnFeatureWriter(_FeatureIO):
- """
- crnn tensorflow tfrecords writer
- """
-
- def __init__(self, annotation_infos, lexicon_infos,
- char_dict_path, ord_map_dict_path,
- tfrecords_save_dir, writer_process_nums, dataset_flag):
- """
- Every file path should be checked outside of the class, make sure the file path is valid when you
- call the class. Make sure the info list is not empty when you call the class. I will put all the
- sample information into a queue which may cost lots of memory if you've got really large dataset
- :param annotation_infos: example info list [(image_absolute_path, lexicon_index), ...]
- :param lexicon_infos: lexicon info list [lexicon1, lexicon2, ...]
- :param char_dict_path: char dict file path
- :param ord_map_dict_path: ord map dict file path
- :param tfrecords_save_dir: tfrecords save dir
- :param writer_process_nums: the process nums of which will write the tensorflow examples
- into local tensorflow records file. Each thread will write down examples into its own
- local tensorflow records file
- :param dataset_flag: dataset flag which will be the tfrecords file's prefix name
- """
- super(CrnnFeatureWriter, self).__init__(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- # init sample info queue
- self._dataset_flag = dataset_flag
- self._annotation_infos = annotation_infos
- self._lexicon_infos = lexicon_infos
- self._writer_process_nums = writer_process_nums
- self._init_example_info_queue()
- self._tfrecords_save_dir = tfrecords_save_dir
-
- def _init_example_info_queue(self):
- """
- Read index file and put example info into SAMPLE_INFO_QUEUE
- :return:
- """
- log.info('Start filling {:s} dataset sample information queue...'.format(self._dataset_flag))
-
- t_start = time.time()
- for annotation_info in tqdm.tqdm(self._annotation_infos):
- image_path = annotation_info[0]
- lexicon_index = annotation_info[1]
-
- try:
- lexicon_label = [self._lexicon_infos[lexicon_index]]
- encoded_label, _ = self.encode_labels(lexicon_label)
-
- _SAMPLE_INFO_QUEUE.put((image_path, encoded_label[0]))
- except IndexError:
- log.error('Lexicon doesn\'t contain lexicon index {:d}'.format(lexicon_index))
- continue
- for i in range(self._writer_process_nums):
- _SAMPLE_INFO_QUEUE.put(_SENTINEL)
- log.debug('Complete filling dataset sample information queue[current size: {:d}], cost time: {:.5f}s'.format(
- _SAMPLE_INFO_QUEUE.qsize(),
- time.time() - t_start
- ))
-
- def run(self):
- """
-
- :return:
- """
- log.info('Start write tensorflow records for {:s}...'.format(self._dataset_flag))
-
- process_pool = []
- tfwriters = []
- for i in range(self._writer_process_nums):
- tfrecords_save_name = '{:s}_{:d}.tfrecords'.format(self._dataset_flag, i + 1)
- tfrecords_save_path = ops.join(self._tfrecords_save_dir, tfrecords_save_name)
-
- tfrecords_io_writer = tf.python_io.TFRecordWriter(path=tfrecords_save_path)
- process = Process(
- target=_write_tfrecords,
- name='Subprocess_{:d}'.format(i + 1),
- args=(tfrecords_io_writer,)
- )
- process_pool.append(process)
- tfwriters.append(tfrecords_io_writer)
- process.start()
-
- for process in process_pool:
- process.join()
-
- log.info('Finished writing down the tensorflow records file')
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/__init__.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/__init__.py
deleted file mode 100644
index 144b412729ed29689c9e527e99668bf6ed1f53ed..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-22 涓嬪崍6:45
-# @Author : Luo Yao
-# @Site : http://github.com/TJCVRS
-# @File : __init__.py.py
-# @IDE: PyCharm Community Edition
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/establish_char_dict.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/establish_char_dict.py
deleted file mode 100644
index 3d4202fe5dea8b721c6a7d294b05816b1877109a..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/establish_char_dict.py
+++ /dev/null
@@ -1,133 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-30 涓嬪崍4:01
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : establish_char_dict.py
-# @IDE: PyCharm Community Edition
-"""
-Establish the char dictionary in order to contain chinese character
-"""
-import json
-import os
-import os.path as ops
-from typing import Iterable
-
-
-class CharDictBuilder(object):
- """
- Build and read char dict
- """
- def __init__(self):
- pass
-
- @staticmethod
- def _read_chars(origin_char_list):
- """
- Read a list of chars or a file containing it.
- :param origin_char_list:
- :return:
- """
- if isinstance(origin_char_list, str):
- assert ops.exists(origin_char_list), \
- "Character list %s is not a file or could not be found" % origin_char_list
- with open(origin_char_list, 'r', encoding='utf-8') as origin_f:
- chars = (l[0] for l in origin_f.readlines())
- elif isinstance(origin_char_list, Iterable):
- ok = all(map(lambda s: isinstance(s, str) and len(s) == 1, origin_char_list))
- assert ok, "Character list is not an Iterable of strings of length 1"
- chars = origin_char_list
- else:
- raise TypeError("Character list needs to be a file or a list of strings")
- return chars
-
- @staticmethod
- def _write_json(save_path, data):
- """
-
- :param save_path:
- :param data:
- :return:
- """
- if not save_path.endswith('.json'):
- raise ValueError('save path {:s} should be a json file'.format(save_path))
- os.makedirs(ops.dirname(save_path), exist_ok=True)
- with open(save_path, 'w', encoding='utf-8') as json_f:
- json.dump(data, json_f, sort_keys=True, indent=4)
-
- @staticmethod
- def write_char_dict(origin_char_list, save_path):
- """
- Writes the ordinal to char map used in int_to_char to decode predictions and labels.
- The file is read with CharDictBuilder.read_char_dict()
- :param origin_char_list: Either a path to file with character list, one a character per line, or a list or set
- of characters
- :param save_path: Destination file, full path.
- """
- char_dict = {str(ord(c)) + '_ord': c for c in CharDictBuilder._read_chars(origin_char_list)}
- CharDictBuilder._write_json(save_path, char_dict)
-
- @staticmethod
- def read_char_dict(dict_path):
- """
-
- :param dict_path:
- :return: a dict with ord(char) as key and char as value
- """
- with open(dict_path, 'r', encoding='utf-8') as json_f:
- res = json.load(json_f)
- return res
-
- @staticmethod
- def map_ord_to_index(origin_char_list, save_path):
- """
- Map ord of character in origin char list into index start from 0 in order to meet the output of the DNN
- :param origin_char_list:
- :param save_path:
- """
- ord_2_index_dict = {str(i) + '_index': str(ord(c)) for i, c in
- enumerate(CharDictBuilder._read_chars(origin_char_list))}
- index_2_ord_dict = {str(ord(c)) + '_ord': str(i) for i, c in
- enumerate(CharDictBuilder._read_chars(origin_char_list))}
- total_ord_map_index_dict = dict(ord_2_index_dict)
- total_ord_map_index_dict.update(index_2_ord_dict)
- CharDictBuilder._write_json(save_path, total_ord_map_index_dict)
-
- @staticmethod
- def read_ord_map_dict(ord_map_dict_path):
- """
-
- :param ord_map_dict_path:
- :return:
- """
- with open(ord_map_dict_path, 'r', encoding='utf-8') as json_f:
- res = json.load(json_f)
- return res
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/evaluation_tools.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/evaluation_tools.py
deleted file mode 100644
index 798a79f7d73a0c508db6e6de7869d8f92d6e4052..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/evaluation_tools.py
+++ /dev/null
@@ -1,184 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 19-3-12 涓嬪崍9:03
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : evaluation_tools.py
-# @IDE: PyCharm
-"""
-Some evaluation tools
-"""
-import itertools
-
-import numpy as np
-import glog as log
-#import matplotlib.pyplot as plt
-
-
-SYNTH90K_CLASS_NAMES = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',
- 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
- 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', ' ']
-
-
-def compute_accuracy(ground_truth, predictions, display=False, mode='per_char'):
- """
- Computes accuracy
- :param ground_truth:
- :param predictions:
- :param display: Whether to print values to stdout
- :param mode: if 'per_char' is selected then
- single_label_accuracy = correct_predicted_char_nums_of_single_sample / single_label_char_nums
- avg_label_accuracy = sum(single_label_accuracy) / label_nums
- if 'full_sequence' is selected then
- single_label_accuracy = 1 if the prediction result is exactly the same as label else 0
- avg_label_accuracy = sum(single_label_accuracy) / label_nums
- :return: avg_label_accuracy
- """
- if mode == 'per_char':
-
- accuracy = []
-
- for index, label in enumerate(ground_truth):
- prediction = predictions[index]
- total_count = len(label)
- correct_count = 0
- try:
- for i, tmp in enumerate(label):
- if tmp == prediction[i]:
- correct_count += 1
- except IndexError:
- continue
- finally:
- try:
- accuracy.append(correct_count / total_count)
- except ZeroDivisionError:
- if len(prediction) == 0:
- accuracy.append(1)
- else:
- accuracy.append(0)
- avg_accuracy = np.mean(np.array(accuracy).astype(np.float32), axis=0)
- elif mode == 'full_sequence':
- try:
- correct_count = 0
- for index, label in enumerate(ground_truth):
- prediction = predictions[index]
- if prediction == label:
- correct_count += 1
- avg_accuracy = correct_count / len(ground_truth)
- except ZeroDivisionError:
- if not predictions:
- avg_accuracy = 1
- else:
- avg_accuracy = 0
- else:
- raise NotImplementedError('Other accuracy compute mode has not been implemented')
-
- if display:
- print('Mean accuracy is {:5f}'.format(avg_accuracy))
-
- return avg_accuracy
-
-
-#def plot_confusion_matrix(cm, classes=SYNTH90K_CLASS_NAMES,
-# normalize=False,
-# title='Confusion matrix',
-# cmap=plt.cm.Blues):
-# """
-# This function prints and plots the confusion matrix.
-# Normalization can be applied by setting `normalize=True`.
-# """
-# if normalize:
-# cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
-# log.info("Normalized confusion matrix")
-# else:
-# log.info('Confusion matrix, without normalization')
-#
-# print(cm)
-#
-# plt.imshow(cm, interpolation='nearest', cmap=cmap)
-# plt.title(title)
-# plt.colorbar()
-# tick_marks = np.arange(len(classes))
-# plt.xticks(tick_marks, classes, rotation=45)
-# plt.yticks(tick_marks, classes)
-#
-# fmt = '.2f' if normalize else 'd'
-# thresh = cm.max() / 2.
-# for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
-# plt.text(j, i, format(cm[i, j], fmt),
-# horizontalalignment="center",
-# color="white" if cm[i, j] > thresh else "black")
-#
-# plt.ylabel('True label')
-# plt.xlabel('Predicted label')
-# plt.tight_layout()
-
-
-def print_cm(cm, labels=SYNTH90K_CLASS_NAMES, hide_zeroes=False,
- hide_diagonal=False, hide_threshold=None):
- """
- pretty print for confusion matrixes
- :param cm:
- :param labels:
- :param hide_zeroes:
- :param hide_diagonal:
- :param hide_threshold:
- :return:
- """
- columnwidth = max([len(x) for x in labels] + [5]) # 5 is value length
- empty_cell = " " * columnwidth
-
- # Begin CHANGES
- fst_empty_cell = (columnwidth - 3) // 2 * " " + "t/p" + (columnwidth - 3) // 2 * " "
-
- if len(fst_empty_cell) < len(empty_cell):
- fst_empty_cell = " " * (len(empty_cell) - len(fst_empty_cell)) + fst_empty_cell
- # Print header
- print(" " + fst_empty_cell, end=" ")
- # End CHANGES
-
- for label in labels:
- print("%{0}s".format(columnwidth) % label, end=" ")
-
- print()
- # Print rows
- for i, label1 in enumerate(labels):
- print(" %{0}s".format(columnwidth) % label1, end=" ")
- for j in range(len(labels)):
- cell = "%{0}.1f".format(columnwidth) % cm[i, j]
- if hide_zeroes:
- cell = cell if float(cm[i, j]) != 0 else empty_cell
- if hide_diagonal:
- cell = cell if i != j else empty_cell
- if hide_threshold:
- cell = cell if cm[i, j] > hide_threshold else empty_cell
- print(cell, end=" ")
- print()
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/log_utils.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/log_utils.py
deleted file mode 100644
index f5871a702c2b9c56a7cddd6b77d9a42cc51b56b9..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/local_utils/log_utils.py
+++ /dev/null
@@ -1,89 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-18 涓嬪崍4:11
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : log_utils.py
-# @IDE: PyCharm Community Edition
-"""
-Set the log config
-"""
-import logging
-from logging import handlers
-import os
-import os.path as ops
-
-
-def init_logger(level=logging.DEBUG, when="D", backup=7,
- _format="%(levelname)s: %(asctime)s: %(filename)s:%(lineno)d * %(thread)d %(message)s",
- datefmt="%m-%d %H:%M:%S"):
- """
- init_log - initialize log module
- :param level: msg above the level will be displayed DEBUG < INFO < WARNING < ERROR < CRITICAL
- the default value is logging.INFO
- :param when: how to split the log file by time interval
- 'S' : Seconds
- 'M' : Minutes
- 'H' : Hours
- 'D' : Days
- 'W' : Week day
- default value: 'D'
- :param backup: how many backup file to keep default value: 7
- :param _format: format of the log default format:
- %(levelname)s: %(asctime)s: %(filename)s:%(lineno)d * %(thread)d %(message)s
- INFO: 12-09 18:02:42: log.py:40 * 139814749787872 HELLO WORLD
- :param datefmt:
- :return:
- """
- formatter = logging.Formatter(_format, datefmt)
- logger = logging.getLogger()
- logger.setLevel(level)
-
- log_path = ops.join(os.getcwd(), 'logs/shadownet.log')
- _dir = os.path.dirname(log_path)
- if not os.path.isdir(_dir):
- os.makedirs(_dir)
-
- handler = handlers.TimedRotatingFileHandler(log_path, when=when, backupCount=backup)
- handler.setLevel(level)
- handler.setFormatter(formatter)
- logger.addHandler(handler)
-
- handler = handlers.TimedRotatingFileHandler(log_path + ".log.wf", when=when, backupCount=backup)
- handler.setLevel(logging.WARNING)
- handler.setFormatter(formatter)
- logger.addHandler(handler)
-
- handler = logging.StreamHandler()
- handler.setLevel(level)
- handler.setFormatter(formatter)
- logger.addHandler(handler)
- return logger
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/modelzoo_level.txt b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/modelzoo_level.txt
deleted file mode 100644
index 31529da2e68f25b61e2a3e698a07537281443c03..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/modelzoo_level.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-FuncStatus:OK
-PerfStatus:OK
-PrecisionStatus:OK
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/requirements.txt b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/requirements.txt
deleted file mode 100644
index fa9599a7b5518f543607440a0935ec91e337b7de..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/requirements.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-glog==0.3.1
-easydict==1.9
-numpy==1.15.1
-tensorflow_gpu==1.15.2
-tqdm==4.28.1
-matplotlib==3.0.2
-typing==3.6.6
-wordninja==0.1.5
-opencv_contrib_python==3.4.1.15
-pdf2image==1.5.1
-scikit_learn==0.21.2
-Pillow==8.0.0
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/8p.json b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/8p.json
deleted file mode 100644
index 8c47d503fecc66b65b8dcba04cfeca2cab296678..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/8p.json
+++ /dev/null
@@ -1,23 +0,0 @@
-{
-"group_count": "1",
-"group_list": [
-{
- "group_name": "worker",
- "device_count": "8",
- "instance_count": "1",
- "instance_list": [{"devices":
- [{"device_id":"0","device_ip":"192.168.100.101"},
- {"device_id":"1","device_ip":"192.168.101.101"},
- {"device_id":"2","device_ip":"192.168.102.101"},
- {"device_id":"3","device_ip":"192.168.103.101"},
- {"device_id":"4","device_ip":"192.168.100.100"},
- {"device_id":"5","device_ip":"192.168.101.100"},
- {"device_id":"6","device_ip":"192.168.102.100"},
- {"device_id":"7","device_ip":"192.168.103.100"}],
- "pod_name":"npu8p",
- "server_id":"127.0.0.1"}]
-}
-],
-"status": "completed"
-}
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/env.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/env.sh
deleted file mode 100644
index 2fdccc2f1e0890ac91cc3439f3c70d165502d21e..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/env.sh
+++ /dev/null
@@ -1,15 +0,0 @@
-#!/bin/bash
-
-#rm -rf /var/log/npu/slog/host-0/*
-
-export LD_LIBRARY_PATH=/usr/local/lib/:/usr/lib/:/usr/local/Ascend/fwkacllib/lib64/:/usr/local/Ascend/driver/lib64/common/:/usr/local/Ascend/driver/lib64/driver/:/usr/local/Ascend/add-ons/
-export PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/opp/op_impl/built-in/ai_core/tbe
-export PATH=$PATH:/usr/local/Ascend/fwkacllib/ccec_compiler/bin
-export ASCEND_OPP_PATH=/usr/local/Ascend/opp
-export DDK_VERSION_FLAG=1.60.T17.B830
-export HCCL_CONNECT_TIMEOUT=600
-export JOB_ID=9999111706
-
-export SLOG_PRINT_TO_STDOUT=0
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/prepare_ds.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/prepare_ds.sh
deleted file mode 100644
index 696f381255c52a7d67ac6e2577b622878f3e3455..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/prepare_ds.sh
+++ /dev/null
@@ -1,59 +0,0 @@
-
-
-
-
-CWD=$(cd "$(dirname "$0")"; pwd)
-echo ${CWD}
-cd ${CWD}
-cd ..
-CWD=$(pwd)
-
-
-
-
-
-echo ${CWD}
-mkdir -p ${CWD}/data/test
-mkdir -p ${CWD}/data/tfrecords
-
-# generate tfrecords
-
-python3 ${CWD}/tools/write_tfrecords.py --dataset_dir=${CWD}/data/mnt/ramdisk/max/90kDICT32px/ \
- --save_dir=${CWD}/data/tfrecords \
- --char_dict_path=${CWD}/data/char_dict/char_dict.json \
- --ord_map_dict_path=${CWD}/data/char_dict/ord_map.json
-
-
-#tar -xvf ${CWD}/data/*IC*.tar* -C ${CWD}/data/test
-#tar -xvf ${CWD}/data/*III*.tar* -C ${CWD}/data/test
-#unzip ${CWD}/data/*.zip -d ${CWD}/data/test
-#
-#rm -rf ${CWD}/data/test/__*
-#
-#
-#
-#ROOT_DIR=${CWD}/data/test
-#DATASET=svt1
-#
-#python3 ${CWD}/data_provider/convert_svt.py --dataset_dir=${ROOT_DIR}/${DATASET}/ \
-# --xml_file=${ROOT_DIR}/${DATASET}/test.xml \
-# --output_dir=${ROOT_DIR}/${DATASET}/processed \
-# --output_annotation=${ROOT_DIR}/${DATASET}/annotation.txt \
-# --output_lexicon=lexicon.txt
-#
-#DATASET=IIIT5K
-#
-#python3 ${CWD}/data_provider/convert_iiit5k.py --mat_file=${ROOT_DIR}/${DATASET}/testdata.mat \
-# --output_annotation=${ROOT_DIR}/${DATASET}/annotation.txt
-#
-#
-#
-#DATASET=2003/SceneTrialTest
-#
-#python3 ${CWD}/data_provider/convert_ic03.py --dataset_dir=${ROOT_DIR}/${DATASET}/ \
-# --xml_file=${ROOT_DIR}/${DATASET}/words.xml \
-# --output_dir=${ROOT_DIR}/${DATASET}/processed \
-# --output_annotation=${ROOT_DIR}/${DATASET}/annotation.txt
-#
-#python3 ${CWD}/data_provider/preprocess_ic03.py --src_ann=${ROOT_DIR}/${DATASET}/annotation.txt \
-# --dst_ann=${ROOT_DIR}/${DATASET}/processed_annotation.txt
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_1p.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_1p.sh
deleted file mode 100644
index f3ffcb56ca7503f5d58216c91b85ea245929c470..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_1p.sh
+++ /dev/null
@@ -1,25 +0,0 @@
-EXEC_DIR=$(cd "$(dirname "$0")"; pwd)
-cd ${EXEC_DIR}
-cd ..
-EXEC_DIR=$(pwd)
-echo ${EXEC_DIR}
-
-source ${EXEC_DIR}/scripts/env.sh
-
-
-DATA_DIR='data/'
-SAVE_DIR='results/1p'
-export RANK_SIZE=1
-export DEVICE_ID=0
-mkdir -p ${SAVE_DIR}/${DEVICE_ID}
-
-python3 ${EXEC_DIR}/tools/train_npu.py --dataset_dir=${EXEC_DIR}/${DATA_DIR} \
- --char_dict_path=${EXEC_DIR}/data/char_dict/char_dict.json \
- --ord_map_dict_path=${EXEC_DIR}/data/char_dict/ord_map.json \
- --save_dir=${SAVE_DIR}/${DEVICE_ID} \
- --momentum=0.95 \
- --lr=0.02 \
- --use_nesterov=True \
- --num_iters=600000 >${SAVE_DIR}/training.log 2>&1 &
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_8p.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_8p.sh
deleted file mode 100644
index 1513b3ead74eb5ea418f26b5d734301c088d0c0c..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/run_8p.sh
+++ /dev/null
@@ -1,26 +0,0 @@
-
-
-currentDir=$(cd "$(dirname "$0")"; pwd)
-echo ${currentDir}
-source ${currentDir}/env.sh
-# user env
-export JOB_ID=9999001
-export RANK_TABLE_FILE=${currentDir}/8p.json
-export RANK_SIZE=8
-export RANK_ID=npu8p
-export SLOG_PRINT_TO_STDOUT=0
-export HCCL_CONNECT_TIMEOUT=600
-
-device_group="0 1 2 3 4 5 6 7"
-
-for device_phy_id in ${device_group}
-do
- echo "[`date +%Y%m%d-%H:%M:%S`] [INFO] start: train.sh ${device_phy_id} & " >> main.log
- ${currentDir}/train_8p.sh ${device_phy_id} &
-done
-
-wait
-
-echo "[`date +%Y%m%d-%H:%M:%S`] [INFO] all train.sh exit " >> main.log
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/test.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/test.sh
deleted file mode 100644
index dadce50ee3d082dc43884a0122cde7ae5196cd19..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/test.sh
+++ /dev/null
@@ -1,101 +0,0 @@
-
-
-LOG_NAME=$2
-CKPT_DIR=$1
-DEVICE_ID=$3
-
-CURRENT_DIR=$(cd "$(dirname "$0")"; pwd)
-cd ${CURRENT_DIR}
-cd ..
-CWD=$(pwd)
-
-# checkpoint path valid
-if [ x"${CKPT_DIR}}" = x ] ;
-then
- echo "No directory provided , exiting "
- exit
-else
- echo "CHECKPOINT DIRECTORY: ${CKPT_DIR}"
-fi
-
-
-# save result to log file
-if [ x"${LOG_NAME}" = x ] ;
-then
- LOG_FILE="test_result.txt"
-else
- LOG_FILE=${LOG_NAME}
-fi
-
-echo "LOGS ARE EXPORTED TO FILE: ${LOG_FILE}"
-
-
-if [ x"${DEVICE_ID}" = x ] ;
-then
- DEVICE_ID="test_result.txt"
-else
- DEVICE_ID=${DEVICE_ID}
-fi
-
-
-echo "=================================" >>${LOG_FILE}
-echo "Test SVT datatset " >> ${LOG_FILE}
-echo "=================================" >>${LOG_FILE}
-
-DATASET_ROOT=${CWD}/data/test
-
-DATASET_DIR="${DATASET_ROOT}/svt1/processed/"
-ANNOTATION="${DATASET_ROOT}/svt1/annotation.txt"
-echo "dataset: ${DATASET_DIR}" >> ${LOG_FILE}
-echo " anntation: ${ANNOTATION}" >>${LOG_FILE}
-
-
-python3 ${CWD}/tools/eval_ckpt.py --weights_path=${CKPT_DIR} \
- --device_id=${DEVICE_ID} \
- --scripts=${CWD}/tools/other_dataset_evaluate_shadownet.py \
- --dataset_dir=${DATASET_DIR} \
- --root_dir=${CWD} \
- --annotation_file=${ANNOTATION} >> ${LOG_FILE}
-
-
-
-
-echo "=================================" >>${LOG_FILE}
-echo "Test IIIT5K datatset " >> ${LOG_FILE}
-echo "=================================" >>${LOG_FILE}
-
-DATASET_DIR="${DATASET_ROOT}/IIIT5K/"
-ANNOTATION="${DATASET_ROOT}/IIIT5K/annotation.txt"
-echo "dataset: ${DATASET_DIR}" >> ${LOG_FILE}
-echo " anntation: ${ANNOTATION}" >>${LOG_FILE}
-
-
-python3 ${CWD}/tools/eval_ckpt.py --weights_path=${CKPT_DIR} \
- --device_id=${DEVICE_ID} \
- --scripts=${CWD}/tools/other_dataset_evaluate_shadownet.py \
- --dataset_dir=${DATASET_DIR} \
- --root_dir=${CWD} \
- --annotation_file=${ANNOTATION} >> ${LOG_FILE}
-
-
-
-
-echo "=================================" >>${LOG_FILE}
-echo "Test IC03 datatset " >> ${LOG_FILE}
-echo "=================================" >>${LOG_FILE}
-
-DATASET_DIR="${DATASET_ROOT}/2003/SceneTrialTest/processed"
-ANNOTATION="${DATASET_ROOT}/2003/SceneTrialTest/processed_annotation.txt"
-echo "dataset: ${DATASET_DIR}" >> ${LOG_FILE}
-echo " anntation: ${ANNOTATION}" >>${LOG_FILE}
-
-
-python3 ${CWD}/tools/eval_ckpt.py --weights_path=${CKPT_DIR} \
- --device_id=${DEVICE_ID} \
- --scripts=${CWD}/tools/other_dataset_evaluate_shadownet.py \
- --dataset_dir=${DATASET_DIR} \
- --root_dir=${CWD} \
- --annotation_file=${ANNOTATION} >> ${LOG_FILE}
-
-
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/train_8p.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/train_8p.sh
deleted file mode 100644
index 6c04d964dafc01f045d52dc9851d9a2c135677d1..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/scripts/train_8p.sh
+++ /dev/null
@@ -1,57 +0,0 @@
-EXEC_DIR=$(cd "$(dirname "$0")"; pwd)
-cd ${EXEC_DIR}
-
-
-cd ..
-EXEC_DIR=$(pwd)
-echo ${EXEC_DIR}
-RESULTS=results/8p
-
-DEVICE_ID=$1
-if [ x"${DEVICE_ID}" = x ] ;
-then
- echo "turing train fail" >> ${EXEC_DIR}/results/train_${DEVICE_ID}.log
- exit
-else
- export DEVICE_ID=${DEVICE_ID}
-fi
-
-DEVICE_INDEX=$(( DEVICE_ID + RANK_INDEX * 8 ))
-export DEVICE_INDEX=${DEVICE_INDEX}
-
-echo $DEVICE_INDEX
-echo $RANK_ID
-echo $DEVICE_ID
-
-#mkdir exec path
-mkdir -p ${EXEC_DIR}/${RESULTS}/${DEVICE_ID}
-cd ${EXEC_DIR}/${RESULTS}/${DEVICE_ID}
-
-env > ${EXEC_DIR}/results/env_${DEVICE_ID}.log
-
-
-DATA_DIR='data/'
-SAVE_DIR='./'
-
-ITERATIONS=240000
-LOG_FILE=training.log
-
-python3 ${EXEC_DIR}/tools/train_npu.py --dataset_dir=${EXEC_DIR}/${DATA_DIR} \
- --char_dict_path=${EXEC_DIR}/data/char_dict/char_dict.json \
- --ord_map_dict_path=${EXEC_DIR}/data/char_dict/ord_map.json \
- --save_dir=${SAVE_DIR}/ \
- --momentum=0.95 \
- --lr=0.08 \
- --use_nesterov=True \
- --warmup_step=8000 \
- --num_iters=${ITERATIONS} >> ${LOG_FILE} 2>&1
-
-
-
-if [ $? -eq 0 ] ;
-then
- echo "turing train success" >> ${EXEC_DIR}/${RESULTS}/train_${DEVICE_ID}.log
-else
- echo "turing train fail" >> ${EXEC_DIR}/${RESULTS}/train_${DEVICE_ID}.log
-fi
-
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_1p.sh
deleted file mode 100644
index 8ecd60a9887921f4a6b62d4e962cc1f3b51f18a6..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_1p.sh
+++ /dev/null
@@ -1,195 +0,0 @@
-#!/bin/bash
-
-#当前路径,不需要修改
-cur_path=`pwd`
-
-#集合通信参数,不需要修改
-#保证rank table file 文件rank_table_8p.json存放在和test同级的configs目录下
-export JOB_ID=9999001
-export RANK_SIZE=1
-export RANK_ID=npu8p
-export SLOG_PRINT_TO_STDOUT=0
-export HCCL_CONNECT_TIMEOUT=600
-export RANK_TABLE_FILE=${cur_path}/../configs/rank_table_8p.json
-RANK_ID_START=0
-
-# 数据集路径,保持为空,不需要修改
-data_path=""
-
-#设置默认日志级别,不需要修改
-export ASCEND_GLOBAL_LOG_LEVEL=3
-
-#基础参数 需要模型审视修改
-#网络名称,同目录名称
-Network="InceptionV4_for_TensorFlow"
-#迭代
-ITERATIONS=240000
-
-#TF2.X独有,不需要修改
-#export NPU_LOOP_SIZE=${train_steps}
-
-#维测参数,precision_mode需要模型审视修改
-precision_mode="allow_mix_precision"
-#维持参数,以下不需要修改
-over_dump=False
-data_dump_flag=False
-data_dump_step="10"
-profiling=False
-autotune=False
-
-# 帮助信息,不需要修改
-if [[ $1 == --help || $1 == -h ]];then
- echo"usage:./train_full_8p.sh "
- echo " "
- echo "parameter explain:
- --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision)
- --over_dump if or not over detection, default is False
- --data_dump_flag data dump flag, default is 0
- --data_dump_step data dump step, default is 10
- --profiling if or not profiling for performance debug, default is False
- --autotune whether to enable autotune, default is False
- --data_path source data of training
- -h/--help show help message
- "
- exit 1
-fi
-
-#参数校验,不需要修改
-for para in $*
-do
- if [[ $para == --precision_mode* ]];then
- precision_mode=`echo ${para#*=}`
- elif [[ $para == --over_dump* ]];then
- over_dump=`echo ${para#*=}`
- over_dump_path=${cur_path}/output/overflow_dump
- mkdir -p ${over_dump_path}
- elif [[ $para == --data_dump_flag* ]];then
- data_dump_flag=`echo ${para#*=}`
- data_dump_path=${cur_path}/output/data_dump
- mkdir -p ${data_dump_path}
- elif [[ $para == --data_dump_step* ]];then
- data_dump_step=`echo ${para#*=}`
- elif [[ $para == --profiling* ]];then
- profiling=`echo ${para#*=}`
- profiling_dump_path=${cur_path}/output/profiling
- mkdir -p ${profiling_dump_path}
- elif [[ $para == --autotune* ]];then
- autotune=`echo ${para#*=}`
- export autotune=$autotune
- mv $install_path/fwkacllib/data/rl/Ascend910/custom $install_path/fwkacllib/data/rl/Ascend910/custom_bak
- mv $install_path/fwkacllib/data/tiling/Ascend910/custom $install_path/fwkacllib/data/tiling/Ascend910/custom_bak
- autotune_dump_path=${cur_path}/output/autotune_dump
- mkdir -p ${autotune_dump_path}/GA
- mkdir -p ${autotune_dump_path}/rl
- cp -rf $install_path/fwkacllib/data/tiling/Ascend910/custom ${autotune_dump_path}/GA/
- cp -rf $install_path/fwkacllib/data/rl/Ascend910/custom ${autotune_dump_path}/RL/
- elif [[ $para == --data_path* ]];then
- data_path=`echo ${para#*=}`
- fi
-done
-
-#校验是否传入data_path,不需要修改
-if [[ $data_path == "" ]];then
- echo "[Error] para \"data_path\" must be confing"
- exit 1
-fi
-
-
-#训练开始时间,不需要修改
-start_time=$(date +%s)
-
-#进入训练脚本目录,需要模型审视修改
-cd $cur_path/../
-for((RANK_ID_n=$RANK_ID_START;RANK_ID_n<$((RANK_SIZE+RANK_ID_START));RANK_ID_n++));
-do
- #设置环境变量,不需要修改
- echo "Device ID: $RANK_ID_n"
- #export RANK_ID_n=$RANK_ID
- export ASCEND_DEVICE_ID=$RANK_ID_n
- ASCEND_DEVICE_ID=$RANK_ID_n
-
- # 自行添加环境变量
-
- export DEVICE_ID=$RANK_ID_n
- DEVICE_INDEX=$DEVICE_ID
- export DEVICE_INDEX=${DEVICE_INDEX}
-
- #创建DeviceID输出目录,不需要修改
- if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then
- rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID}
- mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt
- else
- mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt
- fi
-
-
-
- #执行训练脚本,以下传参不需要修改,其他需要模型审视修改
- #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path
- python3 tools/train_npu.py --dataset_dir=$data_path \
- --char_dict_path=$data_path/char_dict/char_dict.json \
- --ord_map_dict_path=$data_path/char_dict/ord_map.json \
- --save_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt/ \
- --momentum=0.95 \
- --lr=0.08 \
- --use_nesterov=True \
- --warmup_step=8000 \
- --num_iters=${ITERATIONS} \
- --over_dump=${over_dump} \
- --over_dump_path=${over_dump_path} \
- > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 &
- #--data_dump_flag=${data_dump_flag} \
- #--data_dump_step=${data_dump_step} \
- #--data_dump_path=${data_dump_path} \
- #--profiling=${profiling} \
- #--profiling_dump_path=${profiling_dump_path} \
- #--autotune=${autotune} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 &
-done
-wait
-
-#训练结束时间,不需要修改
-end_time=$(date +%s)
-e2e_time=$(( $end_time - $start_time ))
-
-#结果打印,不需要修改
-echo "------------------ Final result ------------------"
-#输出性能FPS,需要模型审视修改
-FPS=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $6}'`
-#打印,不需要修改
-echo "Final Performance images/sec : $FPS"
-
-#输出训练精度,需要模型审视修改
-train_accuracy=`grep train_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'|cut -c 1-5`
-#打印,不需要修改
-echo "Final Train Accuracy : ${train_accuracy}"
-echo "E2E Training Duration sec : $e2e_time"
-
-#稳定性精度看护结果汇总
-#训练用例信息,不需要修改
-BatchSize=${batch_size}
-DeviceType=`uname -m`
-CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc'
-
-##获取性能数据
-#吞吐量,不需要修改
-ActualFPS=${FPS}
-#单迭代训练时长,不需要修改
-TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'`
-
-#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视
-grep train_loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|grep -v BatchTimestamp|awk '{print $10}'|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt
-
-#最后一个迭代loss值,不需要修改
-ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`
-
-#关键信息打印到${CaseName}.log中,不需要修改
-echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_8p.sh b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_8p.sh
deleted file mode 100644
index 3ad21ab2379783ca5c52322d1ee0f5a518091359..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/test/train_full_8p.sh
+++ /dev/null
@@ -1,205 +0,0 @@
-#!/bin/bash
-
-#当前路径,不需要修改
-cur_path=`pwd`
-
-#集合通信参数,不需要修改
-export RANK_SIZE=8
-export JOB_ID=99990001
-export RANK_ID=8p
-export RANK_TABLE_FILE=${cur_path}/../config/rank_table_8p.json
-export HCCL_CONNECT_TIMEOUT=600
-RANK_ID_START=0
-
-# 数据集路径,保持为空,不需要修改
-data_path=""
-
-#基础参数,需要模型审视修改
-#网络名称,同目录名称
-Network="CRNN_for_TensorFlow"
-
-#训练batch_size
-batch_size=64
-
-
-#维测参数,precision_mode需要模型审视修改
-#precision_mode="allow_mix_precision"
-#维持参数,以下不需要修改
-over_dump=False
-data_dump_flag=False
-data_dump_step="10"
-profiling=False
-autotune=False
-
-# 帮助信息,不需要修改
-if [[ $1 == --help || $1 == -h ]];then
- echo"usage:./train_full_1p.sh "
- echo " "
- echo "parameter explain:
- --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision)
- --over_dump if or not over detection, default is False
- --data_dump_flag data dump flag, default is False
- --data_dump_step data dump step, default is 10
- --profiling if or not profiling for performance debug, default is False
- --autotune whether to enable autotune, default is False
- --data_path source data of training
- -h/--help show help message
- "
- exit 1
-fi
-
-#参数校验,不需要修改
-for para in $*
-do
- if [[ $para == --precision_mode* ]];then
- precision_mode=`echo ${para#*=}`
- elif [[ $para == --over_dump* ]];then
- over_dump=`echo ${para#*=}`
- over_dump_path=${cur_path}/output/overflow_dump
- mkdir -p ${over_dump_path}
- elif [[ $para == --data_dump_flag* ]];then
- data_dump_flag=`echo ${para#*=}`
- data_dump_path=${cur_path}/output/data_dump
- mkdir -p ${data_dump_path}
- elif [[ $para == --data_dump_step* ]];then
- data_dump_step=`echo ${para#*=}`
- elif [[ $para == --profiling* ]];then
- profiling=`echo ${para#*=}`
- profiling_dump_path=${cur_path}/output/profiling
- mkdir -p ${profiling_dump_path}
- elif [[ $para == --autotune* ]];then
- autotune=`echo ${para#*=}`
- mv $install_path/fwkacllib/data/rl/Ascend910/custom $install_path/fwkacllib/data/rl/Ascend910/custom_bak
- mv $install_path/fwkacllib/data/tiling/Ascend910/custom $install_path/fwkacllib/data/tiling/Ascend910/custom_bak
- autotune_dump_path=${cur_path}/output/autotune_dump
- mkdir -p ${autotune_dump_path}/GA
- mkdir -p ${autotune_dump_path}/rl
- cp -rf $install_path/fwkacllib/data/tiling/Ascend910/custom ${autotune_dump_path}/GA/
- cp -rf $install_path/fwkacllib/data/rl/Ascend910/custom ${autotune_dump_path}/RL/
- elif [[ $para == --data_path* ]];then
- data_path=`echo ${para#*=}`
- elif [[ $para == --bind_core* ]]; then
- bind_core=`echo ${para#*=}`
- name_bind="_bindcore"
- fi
-done
-
-#校验是否传入data_path,不需要修改
-if [[ $data_path == "" ]];then
- echo "[Error] para \"data_path\" must be confing"
- exit 1
-fi
-
-#autotune时,先开启autotune执行单P训练,不需要修改
-if [[ $autotune == True ]]; then
- train_full_1p.sh --autotune=$autotune --data_path=$data_path
- wait
- autotune=False
-fi
-
-#训练开始时间,不需要修改
-start_time=$(date +%s)
-
-#进入训练脚本目录,需要模型审视修改
-cd $cur_path/../
-for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++));
-do
- #设置环境变量,不需要修改
- echo "Device ID: $RANK_ID"
- export RANK_ID=$RANK_ID
- export DEVICE_INDEX=$RANK_ID
- export ASCEND_DEVICE_ID=$RANK_ID
- ASCEND_DEVICE_ID=$RANK_ID
-
- #创建DeviceID输出目录,不需要修改
- if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then
- rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID}
- mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt
- else
- mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt
- fi
-
- # 绑核,不需要的绑核的模型删除,需要模型审视修改
- #corenum=`cat /proc/cpuinfo |grep "processor"|wc -l`
- #let a=RANK_ID*${corenum}/${RANK_SIZE}
- #let b=RANK_ID+1
- #let c=b*${corenum}/${RANK_SIZE}-1
-
- #执行训练脚本,以下传参不需要修改,其他需要模型审视修改
- #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path
- #if [ "x${bind_core}" != x ];then
- # bind_core="taskset -c $a-$c"
- #fi
- python3.7 ${cur_path}/../tools/train_npu.py \
- --dataset_dir=${data_path} \
- --char_dict_path=${data_path}/char_dict/char_dict.json \
- --ord_map_dict_path=${data_path}/char_dict/ord_map.json \
- --save_dir=./ \
- --momentum=0.95 \
- --lr=0.08 \
- --use_nesterov=True \
- --warmup_step=8000 \
- --num_iters=240000 > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 &
-done
-wait
-
-unset RANK_TABLE_FILE
-python3 ${cur_path}/../tools/eval_ckpt.py --weights_path=${cur_path}/../ \
- --device_id=0 \
- --scripts=${cur_path}/../tools/other_dataset_evaluate_shadownet.py \
- --dataset_dir=${data_path}/test/svt1/processed/ \
- --root_dir=${cur_path}/../ \
- --char_dict_path=${data_path}/char_dict/char_dict.json \
- --ord_map_dict_path=${data_path}/char_dict/ord_map.json \
- --annotation_file=${data_path}/test/svt1/annotation.txt >> ${cur_path}/output/0/train_0.log 2>&1 &
-wait
-
-
-
-#训练结束时间,不需要修改
-end_time=$(date +%s)
-e2e_time=$(( $end_time - $start_time ))
-
-#结果打印,不需要修改
-echo "------------------ Final result ------------------"
-#输出性能FPS,需要模型审视修改
-ASCEND_DEVICE_ID=0
-FPS=`cat ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | grep "Epoch_Train:" | grep -v "train_npu.py" | awk -F "FPS: " '{print $2}' | awk -F "," '{print $1}' | tail -n +2 | awk '{sum+=$1} END {print sum/NR}'`
-#打印,不需要修改
-echo "Final Performance images/sec : $FPS"
-
-#输出训练精度,需要模型审视修改
-train_accuracy=`grep "accuracy" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v "other_dataset_evaluate_shadownet.py"|grep -v "full"|awk 'END {print $7}'`
-#打印,不需要修改
-echo "Final Train Accuracy : ${train_accuracy}"
-echo "E2E Training Duration sec : $e2e_time"
-
-#稳定性精度看护结果汇总
-#训练用例信息,不需要修改
-BatchSize=${batch_size}
-DeviceType=`uname -m`
-CaseName=${Network}${name_bind}_bs${BatchSize}_${RANK_SIZE}'p'_'acc'
-
-##获取性能数据
-#吞吐量,不需要修改
-ActualFPS=${FPS}
-#单迭代训练时长,不需要修改
-TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'*'${RANK_SIZE}'*1000/'${FPS}'}'`
-
-#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视
-grep "Epoch_Train:" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | grep -v "train_npu.py" | awk -F "cost= " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt
-
-#最后一个迭代loss值,不需要修改
-ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`
-
-#关键信息打印到${CaseName}.log中,不需要修改
-echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
-echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/__init__.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/__init__.py
deleted file mode 100644
index 3067a5b380d8651f895688d482eb98aa3ba29568..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/__init__.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 17-9-21 涓嬪崍6:37
-# @Author : Luo Yao
-# @Site : http://github.com/TJCVRS
-# @File : __init__.py.py
-# @IDE: PyCharm Community Edition
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/apply_ocr_pdf.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/apply_ocr_pdf.py
deleted file mode 100644
index 09c59b7d6651e7e7f5981d9b74e9288ff62d2180..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/apply_ocr_pdf.py
+++ /dev/null
@@ -1,35 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-## @Time : 19-4-10 涓嬪崍5:31
-# @Author : LuoYao
-# @Site : ICode
-# @File : apply_ocr_pdf.py
-# @IDE: PyCharm
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/eval_ckpt.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/eval_ckpt.py
deleted file mode 100644
index d895881d5b0786bdf2f6e5c95d858c6a408a6167..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/eval_ckpt.py
+++ /dev/null
@@ -1,84 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-import os
-import argparse
-
-
-def init_args():
- """
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-d', '--dataset_dir', type=str,default='data/',
- help='Directory containing test_features.tfrecords')
- parser.add_argument('-a', '--annotation_file', type=str,default='data/',
- help='Directory containing test_features.tfrecords')
- parser.add_argument('-c', '--char_dict_path', type=str,default='data/char_dict/char_dict.json',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,default='data/char_dict/ord_map.json',
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-w', '--weights_path', type=str, required=True,
- help='Path to pre-trained weights')
- parser.add_argument('-i', '--device_id', type=str, default='0',
- help='which npu device to use')
- parser.add_argument('-s', '--scripts', type=str, default='tools/evaluate_shadownet.py',
- help='which script to run')
- parser.add_argument('-p', '--process_all', type=int, default=0,
- help='Whether to process all test dataset')
- parser.add_argument('-r', '--root_dir', type=str,default='./',
- help='root directory of the project')
-
- return parser.parse_args()
-
-
-
-def main():
- args = init_args()
- ckpt_names = [ f for f in os.listdir(args.weights_path) if '.meta' in f ]
- ckpt_files = [ os.path.join(args.weights_path, ckpt.strip(".meta")) for ckpt in ckpt_names]
-
- device_id = 'DEVICE_ID=' + str(args.device_id)
- scripts = ' python3 '+ os.path.join(args.root_dir,args.scripts)
- data_dir = ' --dataset_dir='+ os.path.join(args.root_dir,args.dataset_dir)
- annotation_file = ' --annotation_file=' +args.annotation_file
- char_dict = ' --char_dict_path='+os.path.join(args.root_dir,args.char_dict_path)
- ord_map = ' --ord_map_dict_path='+os.path.join(args.root_dir,args.ord_map_dict_path)
- cmd_base = device_id + scripts + \
- annotation_file + \
- data_dir + char_dict + \
- ord_map + ' -p 1'
-
- for ckpt in ckpt_files:
- weight_path = ' --weights_path='+ckpt
- cmd = cmd_base + weight_path
- os.system(cmd)
-
-
-if __name__=='__main__':
- main()
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/evaluate_shadownet.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/evaluate_shadownet.py
deleted file mode 100644
index cedd0132416c0c5f0cf2f1658d52a4a7cfcb20ba..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/evaluate_shadownet.py
+++ /dev/null
@@ -1,296 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-25 涓嬪崍3:56
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : evaluate_shadownet.py
-# @IDE: PyCharm Community Edition
-"""
-Evaluate the crnn model on the synth90k test dataset
-"""
-import argparse
-import os.path as ops
-import os
-import math
-import time
-import sys
-import tensorflow as tf
-#import matplotlib.pyplot as plt
-import numpy as np
-import glog as log
-import tqdm
-from sklearn.metrics import confusion_matrix
-from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
-
-cur_path = os.path.abspath(os.path.dirname(__file__))
-working_dir = os.path.join(cur_path, '../')
-sys.path.append(working_dir)
-
-
-from crnn_model import crnn_net
-from config import global_config
-from data_provider import shadownet_data_feed_pipline
-from data_provider import tf_io_pipline_fast_tools
-from local_utils import evaluation_tools
-
-
-CFG = global_config.cfg
-
-
-def init_args():
- """
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-d', '--dataset_dir', type=str,default='data/',
- help='Directory containing test_features.tfrecords')
- parser.add_argument('-c', '--char_dict_path', type=str,default='data/char_dict_bak/char_dict_en.json',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,default='data/char_dict_bak/ord_map_en.json',
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-w', '--weights_path', type=str, required=True,
- help='Path to pre-trained weights')
- parser.add_argument('-v', '--visualize', type=args_str2bool, nargs='?', const=False,
- help='Whether to display images')
- parser.add_argument('-p', '--process_all', type=args_str2bool, nargs='?', const=False,
- help='Whether to process all test dataset')
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-
-
-
-def evaluate_shadownet(dataset_dir, weights_path, char_dict_path,
- ord_map_dict_path, is_visualize=False,
- is_process_all_data=False):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param is_visualize:
- :param is_process_all_data:
- :return:
- """
- # prepare dataset
- test_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='test'
- )
- test_images, test_labels, test_images_paths,test_label_length = test_dataset.inputs(
- batch_size=128
- )
- x, y = np.meshgrid(np.arange(CFG.ARCH.MAX_LENGTH), np.arange(128))
- indexes = np.concatenate([y.flatten()[:, None], x.flatten()[:, None]], axis=1)
- indexes = tf.constant(indexes, dtype=tf.int64)
- test_labels = tf.SparseTensor(indexes, tf.reshape(test_labels, [-1]), np.array([128, CFG.ARCH.MAX_LENGTH], dtype=np.int64))
-
- # set up test sample count
- if is_process_all_data:
- log.info('Start computing test dataset sample counts')
- t_start = time.time()
- test_sample_count = test_dataset.sample_counts()
- log.info('Test dataset sample counts: {:d}'.format(test_sample_count))
- log.info('Computing test dataset sample counts finished, cost time: {:.5f}'.format(time.time() - t_start))
- num_iterations = int(math.ceil(test_sample_count / 128))
- else:
- num_iterations = 1
-
- # declare crnn net
- shadownet = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
- # set up decoder
- decoder = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- # compute inference result
- test_inference_ret = shadownet.inference(
- inputdata=test_images,
- name='shadow_net',
- reuse=False
- )
- test_decoded, test_log_prob = tf.nn.ctc_greedy_decoder(
- test_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(128),
- merge_repeated=True
- )
-
- # recover image from [-1.0, 1.0] ---> [0.0, 255.0]
- test_images = tf.multiply(tf.add(test_images, 1.0), 127.5, name='recoverd_test_images')
-
- # Set saver configuration
- saver = tf.train.Saver()
-
- # NPU CONFIG
- config = tf.ConfigProto()
- custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
- custom_op.name = "NpuOptimizer"
- custom_op.parameter_map["use_off_line"].b = True
- custom_op.parameter_map["enable_data_pre_proc"].b = True
- custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes('allow_mix_precision')
- custom_op.parameter_map["mix_compile_mode"].b = False # 娣峰悎璁$畻
- config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
-
- # Set sess configuration
- #sess_config = tf.ConfigProto(allow_soft_placement=True)
- #sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
- #sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
-
- #sess = tf.Session(config=sess_config)
- sess = tf.Session(config=config)
-
- with sess.as_default():
- saver.restore(sess=sess, save_path=weights_path)
-
- log.info('Start predicting...')
-
- per_char_accuracy = 0.0
- full_sequence_accuracy = 0.0
-
- total_labels_char_list = []
- total_predictions_char_list = []
- epoch_tqdm = tqdm.tqdm(range(num_iterations))
-
- while True:
- try:
- for epoch in epoch_tqdm:
- t_start = time.time()
- test_predictions_value, test_images_value, test_labels_value, test_images_paths_value = sess.run(
- [test_decoded, test_images, test_labels, test_images_paths])
- test_images_paths_value = np.reshape(
- test_images_paths_value,
- newshape=test_images_paths_value.shape[0]
- )
- test_images_paths_value = [tmp.decode('utf-8') for tmp in test_images_paths_value]
- test_images_names_value = [ops.split(tmp)[1] for tmp in test_images_paths_value]
- test_labels_value = decoder.sparse_tensor_to_str(test_labels_value)
- test_predictions_value = decoder.sparse_tensor_to_str(test_predictions_value[0])
-
- per_char_accuracy += evaluation_tools.compute_accuracy(
- test_labels_value, test_predictions_value, display=False, mode='per_char'
- )
- full_sequence_accuracy += evaluation_tools.compute_accuracy(
- test_labels_value, test_predictions_value, display=False, mode='full_sequence'
- )
-
- for index, test_image in enumerate(test_images_value):
- log.info('Predict {:s} image with gt label: {:s} **** predicted label: {:s}'.format(
- test_images_names_value[index],
- test_labels_value[index],
- test_predictions_value[index]))
-
- if is_visualize:
- plt.imshow(np.array(test_image, np.uint8)[:, :, (2, 1, 0)])
- plt.show()
-
- test_labels_char_list_value = [s for s in test_labels_value[index]]
- test_predictions_char_list_value = [s for s in test_predictions_value[index]]
-
- if not test_labels_char_list_value or not test_predictions_char_list_value:
- continue
-
- if len(test_labels_char_list_value) != len(test_predictions_char_list_value):
- min_length = min(len(test_labels_char_list_value),
- len(test_predictions_char_list_value))
- test_labels_char_list_value = test_labels_char_list_value[:min_length - 1]
- test_predictions_char_list_value = test_predictions_char_list_value[:min_length - 1]
-
- assert len(test_labels_char_list_value) == len(test_predictions_char_list_value), \
- log.error('{}, {}'.format(test_labels_char_list_value, test_predictions_char_list_value))
-
- total_labels_char_list.extend(test_labels_char_list_value)
- total_predictions_char_list.extend(test_predictions_char_list_value)
- if is_visualize:
- plt.imshow(np.array(test_image, np.uint8)[:, :, (2, 1, 0)])
- epoch_tqdm.set_description('Epoch {:d} cost time: {:.5f}s'.format(epoch, time.time() - t_start))
- if num_iterations == 1:
- raise tf.errors.OutOfRangeError
- except tf.errors.OutOfRangeError:
- log.error('End of tfrecords sequence')
- break
- except Exception as err:
- log.error(err)
- break
-
- epoch_tqdm.close()
- avg_per_char_accuracy = per_char_accuracy / num_iterations
- avg_full_sequence_accuracy = full_sequence_accuracy / num_iterations
- log.info('Mean test per char accuracy is {:5f}'.format(avg_per_char_accuracy))
- log.info('Mean test full sequence accuracy is {:5f}'.format(avg_full_sequence_accuracy))
- print('Mean test per char accuracy is {:5f}'.format(avg_per_char_accuracy))
- print('Mean test full sequence accuracy is {:5f}'.format(avg_full_sequence_accuracy))
- # compute confusion matrix
- cnf_matrix = confusion_matrix(total_labels_char_list, total_predictions_char_list)
- np.set_printoptions(precision=2)
- #evaluation_tools.plot_confusion_matrix(cm=cnf_matrix, normalize=True)
-
- #plt.show()
-
-
-if __name__ == '__main__':
- """
- test code
- """
- args = init_args()
-
- print('weight path :{}'.format(args.weights_path))
- evaluate_shadownet(
- dataset_dir=args.dataset_dir,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- is_visualize=args.visualize,
- is_process_all_data=args.process_all
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/frozen_graph.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/frozen_graph.py
deleted file mode 100644
index dec4bc73ac287aa92e72cbdc99d2ffdaec57641f..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/frozen_graph.py
+++ /dev/null
@@ -1,80 +0,0 @@
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# =============================================================================
-import tensorflow as tf
-from tensorflow.python.tools import freeze_graph
-from crnn_model import crnn_net
-import argparse
-from config import global_config
-from data_provider import tf_io_pipline_fast_tools
-import numpy as np
-
-CFG = global_config.cfg
-
-#set checkpoint path
-def parse_args():
- parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--ckpt_path',default="./model/shadownet.ckpt-60000",help="set checkpoint file path")
- args,unknown_args = parser.parse_known_args()
- if len(unknown_args) > 0:
- for bad_arg in unknown_args:
- print("ERROR: Unknown command line arg: %s" % bad_arg)
- raise ValueError("Invalid command line arg(s)")
- return args
-
-def main():
- args = parse_args()
- tf.reset_default_graph()
- # modify input node
- batchsize = 64
- test_images = tf.placeholder(tf.float32, shape=[batchsize, 32, 100, 3],name="test_images")
- #build inference graph
- shadownet = crnn_net.ShadowNet(
- phase = 'test',
- hidden_nums = CFG.ARCH.HIDDEN_UNITS,
- layers_nums = CFG.ARCH.HIDDEN_LAYERS,
- num_classes = CFG.ARCH.NUM_CLASSES
- )
- #compute inference result
- test_inference_ret = shadownet.inference(
- inputdata = test_images,
- name = 'shadow_net',
- reuse = False
- )
- test_decoded, test_log_prob = tf.nn.ctc_greedy_decoder(
- test_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(batchsize),
- merge_repeated = True
- )
-
- with tf.Session() as sess:
- #save unfrozen graph
- tf.train.write_graph(sess.graph_def, './', 'model.pb')
- #start to froze graph
- freeze_graph.freeze_graph(
- input_graph = './model.pb',
- input_saver = '',
- input_binary = False,
- input_checkpoint = args.ckpt_path,
- output_node_names = 'shadow_net/Cast',
- restore_op_name = 'save/restore_all',
- filename_tensor_name = 'save/Const:0',
- output_graph = 'shadownet_tf_%dbatch.pb'%batchsize,
- clear_devices = False,
- initializer_nodes = ''
- )
- print("Done!")
-
-if __name__ == '__main__':
- main()
\ No newline at end of file
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/other_dataset_evaluate_shadownet.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/other_dataset_evaluate_shadownet.py
deleted file mode 100644
index 888abdfc9e36accf8dd5b31b1bee4f4fb014ebf8..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/other_dataset_evaluate_shadownet.py
+++ /dev/null
@@ -1,263 +0,0 @@
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-"""
-Evaluate the crnn model on the test dataset
-- IIIT5K
-- ICDAR03
-- SVT
-"""
-import argparse
-import os.path as ops
-import os
-import math
-import time
-import sys
-import tensorflow as tf
-import numpy as np
-import glog as log
-import tqdm
-from sklearn.metrics import confusion_matrix
-from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
-from PIL import Image
-
-cur_path = os.path.abspath(os.path.dirname(__file__))
-working_dir = os.path.join(cur_path, '../')
-sys.path.append(working_dir)
-
-
-from crnn_model import crnn_net
-from config import global_config
-from data_provider import shadownet_data_feed_pipline
-from data_provider import tf_io_pipline_fast_tools
-from local_utils import evaluation_tools
-
-
-CFG = global_config.cfg
-
-
-def init_args():
- """
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-d', '--dataset_dir', type=str,default='data/',
- help='Directory containing test_features.tfrecords')
- parser.add_argument('-c', '--char_dict_path', type=str,default='data/char_dict/char_dict.json',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,default='data/char_dict/ord_map.json',
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-w', '--weights_path', type=str, required=True,
- help='Path to pre-trained weights')
- parser.add_argument('-a', '--annotation_file', type=str, required=True,
- help='Path to annotation file')
- parser.add_argument('-v', '--visualize', type=args_str2bool, nargs='?', const=False,
- help='Whether to display images')
- parser.add_argument('-p', '--process_all', type=args_str2bool, nargs='?', const=False,
- help='Whether to process all test dataset')
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-def get_batch_data(data_dir,annotation):
- '''
- :params data_dir: directory of images
- :params annotation: a list of pairs (image_name, labels)
-
- :return imgs: resized image data, shape:(batchsize, 32, 100, 3)
- :return labels: labels for each images
- '''
-
- imgs = []
- labels = []
-
- for index, ann in enumerate(annotation):
- img_name,label = ann.split(",")[0],ann.split(",")[1]
- label = label.strip()
- labels.append(label.lower())
- img_path = os.path.join(data_dir, img_name)
- img = Image.open(img_path)
- if ".png" in img_name:
- img = img.convert('RGB')
-
- img = img.resize((100,32),Image.BILINEAR)
- img = np.array(img).astype(np.float32)
- img = (img-127.5)/255
- #img = (img/127.5)-1.0
- img_shape = img.shape
-
-
- if len(img_shape)==2:
- img = img.reshape([32,100,1])
- img = np.concatenate([img,img,img],axis=2)
-
- imgs.append(img)
- return imgs, labels
-
-
-def get_annotation(annotation_file):
- ann_file = open(annotation_file,'r')
- annotation_list = [line.strip("\n") for line in ann_file.readlines()]
- ann_file.close()
- return annotation_list
-
-
-def evaluate_shadownet(dataset_dir, weights_path, char_dict_path,
- ord_map_dict_path,annotation_file,
- is_visualize=False,
- is_process_all_data=False):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param is_visualize:
- :param is_process_all_data:
- :return:
- """
-
- batchsize = 16
- test_images = tf.placeholder(tf.float32, shape=[batchsize, 32, 100, 3],name="test_images")
-
- # declare crnn net
- shadownet = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
- # set up decoder
- decoder = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- # compute inference result
- test_inference_ret = shadownet.inference(
- inputdata=test_images,
- name='shadow_net',
- reuse=False
- )
- test_decoded, test_log_prob = tf.nn.ctc_greedy_decoder(
- test_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(batchsize),
- merge_repeated=True
- )
-
- # Set saver configuration
- saver = tf.train.Saver()
-
- # NPU CONFIG
- config = tf.ConfigProto()
- custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
- custom_op.name = "NpuOptimizer"
- custom_op.parameter_map["use_off_line"].b = True
- custom_op.parameter_map["enable_data_pre_proc"].b = True
- custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes('allow_mix_precision')
- custom_op.parameter_map["mix_compile_mode"].b = False # 娣峰悎璁$畻
- config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
-
- sess = tf.Session(config=config)
-
- with sess.as_default():
- saver.restore(sess=sess, save_path=weights_path)
-
- log.info('Start predicting...')
-
- per_char_accuracy = 0
- full_sequence_accuracy = 0.0
-
- total_labels_char_list = []
- total_predictions_char_list = []
-
-
- annotation_list = get_annotation(annotation_file)
- num_iterations = len(annotation_list)//batchsize
- epoch_tqdm = tqdm.tqdm(range(num_iterations))
- for i in epoch_tqdm:
- #for i in range(num_iterations):
- anns = annotation_list[i*batchsize:(i+1)*batchsize]
- batch_data, batch_label = get_batch_data(dataset_dir, anns)
- test_predictions_value = sess.run(test_decoded,feed_dict={test_images: batch_data})
- test_predictions_value = decoder.sparse_tensor_to_str(test_predictions_value[0])
-
-
- per_char_accuracy += evaluation_tools.compute_accuracy(
- batch_label, test_predictions_value, display=False, mode='per_char'
- )
-
- full_sequence_accuracy += evaluation_tools.compute_accuracy(
- batch_label, test_predictions_value, display=False, mode='full_sequence'
- )
- for index, ann in enumerate(anns):
- log.info(ann)
- log.info("predicted values :{}".format(test_predictions_value[index]))
-
-
-
- epoch_tqdm.close()
- avg_per_char_accuracy = per_char_accuracy / num_iterations
- avg_full_sequence_accuracy = full_sequence_accuracy / num_iterations
- log.info('Mean test per char accuracy is {:5f}'.format(avg_per_char_accuracy))
- log.info('Mean test full sequence accuracy is {:5f}'.format(avg_full_sequence_accuracy))
- print('Mean test per char accuracy is {:5f}'.format(avg_per_char_accuracy))
- print('Mean test full sequence accuracy is {:5f}'.format(avg_full_sequence_accuracy))
-
-
-
-if __name__ == '__main__':
- """
- test code
- """
- args = init_args()
-
- print('checkpoint {}'.format(args.weights_path))
- evaluate_shadownet(
- dataset_dir=args.dataset_dir,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- annotation_file=args.annotation_file,
- is_visualize=args.visualize,
- is_process_all_data=args.process_all
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/recongnize_chinese_pdf.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/recongnize_chinese_pdf.py
deleted file mode 100644
index a337bc82416ed762a25c4b2d599a5c8807751b36..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/recongnize_chinese_pdf.py
+++ /dev/null
@@ -1,295 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 19-4-8 涓嬪崍10:24
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : recongnize_chinese_pdf.py
-# @IDE: PyCharm
-"""
-test the model to recognize the chinese pdf file
-"""
-import argparse
-
-import cv2
-import numpy as np
-import tensorflow as tf
-
-from config import global_config
-from crnn_model import crnn_net
-from data_provider import tf_io_pipline_fast_tools
-
-CFG = global_config.cfg
-
-
-def init_args():
- """
-
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('--image_path', type=str,
- help='Path to the image to be tested',
- default='data/test_images/test_01.jpg')
- parser.add_argument('--weights_path', type=str,
- help='Path to the pre-trained weights to use')
- parser.add_argument('-c', '--char_dict_path', type=str,
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('--save_path', type=str,
- help='The output path of recognition result')
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-
-def split_pdf_image_into_row_image_block(pdf_image):
- """
- split the whole pdf image into row image block
- :param pdf_image: the whole color pdf image
- :return:
- """
- gray_image = cv2.cvtColor(pdf_image, cv2.COLOR_BGR2GRAY)
- binarized_image = cv2.adaptiveThreshold(
- src=gray_image,
- maxValue=255,
- adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
- thresholdType=cv2.THRESH_BINARY,
- blockSize=11,
- C=2
- )
-
- # sum along the row axis
- row_sum = np.sum(binarized_image, axis=1)
- idx_row_sum = np.argwhere(row_sum < row_sum.max())[:, 0]
-
- split_idx = []
-
- start_idx = idx_row_sum[0]
- for index, idx in enumerate(idx_row_sum[:-1]):
- if idx_row_sum[index + 1] - idx > 5:
- end_idx = idx
- split_idx.append((start_idx, end_idx))
- start_idx = idx_row_sum[index + 1]
- split_idx.append((start_idx, idx_row_sum[-1]))
-
- pdf_image_splits = []
- for index in range(len(split_idx)):
- idx = split_idx[index]
- pdf_image_split = pdf_image[idx[0]:idx[1], :, :]
- pdf_image_splits.append(pdf_image_split)
-
- return pdf_image_splits
-
-
-def locate_text_area(pdf_image_row_block):
- """
- locate the text area of the image row block
- :param pdf_image_row_block: color pdf image block
- :return:
- """
- gray_image = cv2.cvtColor(pdf_image_row_block, cv2.COLOR_BGR2GRAY)
- binarized_image = cv2.adaptiveThreshold(
- src=gray_image,
- maxValue=255,
- adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
- thresholdType=cv2.THRESH_BINARY,
- blockSize=11,
- C=2
- )
-
- # sum along the col axis
- col_sum = np.sum(binarized_image, axis=0)
- idx_col_sum = np.argwhere(col_sum < col_sum.max())[:, 0]
-
- start_col = idx_col_sum[0] if idx_col_sum[0] > 0 else 0
- end_col = idx_col_sum[-1]
- end_col = end_col if end_col < pdf_image_row_block.shape[1] else pdf_image_row_block.shape[1] - 1
-
- return pdf_image_row_block[:, start_col:end_col, :]
-
-
-def recognize(image_path, weights_path, char_dict_path, ord_map_dict_path, output_path):
- """
-
- :param image_path:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param output_path:
- :return:
- """
- # read pdf image
- image = cv2.imread(image_path, cv2.IMREAD_COLOR)
-
- # split pdf image into row block
- pdf_image_row_blocks = split_pdf_image_into_row_image_block(image)
-
- # locate the text area in each row block
- pdf_image_text_areas = []
- new_heigth = 32
- max_text_area_length = -1
- for index, row_block in enumerate(pdf_image_row_blocks):
- text_area = locate_text_area(row_block)
- text_area_height = text_area.shape[0]
- scale = new_heigth / text_area_height
- max_text_area_length = max(max_text_area_length, int(scale * text_area.shape[1]))
- pdf_image_text_areas.append(text_area)
- new_width = max_text_area_length
- new_width = new_width if new_width > CFG.ARCH.INPUT_SIZE[0] else CFG.ARCH.INPUT_SIZE[0]
-
- # definite the compute graph
- inputdata = tf.placeholder(
- dtype=tf.float32,
- shape=[1, new_heigth, new_width, CFG.ARCH.INPUT_CHANNELS],
- name='input'
- )
-
- codec = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- net = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- inference_ret = net.inference(
- inputdata=inputdata,
- name='shadow_net',
- reuse=False
- )
-
- decodes, _ = tf.nn.ctc_beam_search_decoder(
- inputs=inference_ret,
- sequence_length=int(new_width / 4) * np.ones(1),
- merge_repeated=False,
- beam_width=1
- )
-
- # config tf saver
- saver = tf.train.Saver()
-
- # config tf session
- sess_config = tf.ConfigProto(allow_soft_placement=True)
- sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
- sess_config.gpu_options.allow_growth = CFG.TEST.TF_ALLOW_GROWTH
-
- sess = tf.Session(config=sess_config)
-
- with sess.as_default():
- saver.restore(sess=sess, save_path=weights_path)
-
- pdf_recognize_results = []
-
- for index, pdf_image_text_area in enumerate(pdf_image_text_areas):
- # resize text area into size (None, new_height)
- pdf_image_text_area_height = pdf_image_text_area.shape[0]
- scale = new_heigth / pdf_image_text_area_height
- new_width_tmp = int(scale * pdf_image_text_area.shape[1])
- pdf_image_text_area = cv2.resize(
- pdf_image_text_area, (new_width_tmp, new_heigth),
- interpolation=cv2.INTER_LINEAR)
- # pad text area into size (new_width, new_height) if new_width_tmp < new_width
- if new_width_tmp < new_width:
- pad_area_width = new_width - new_width_tmp
- pad_area = np.zeros(shape=[new_heigth, pad_area_width, 3], dtype=np.uint8) + 255
- pdf_image_text_area = np.concatenate((pdf_image_text_area, pad_area), axis=1)
-
- pdf_image_text_area = np.array(pdf_image_text_area, np.float32) / 127.5 - 1.0
-
- preds = sess.run(decodes, feed_dict={inputdata: [pdf_image_text_area]})
-
- preds = codec.sparse_tensor_to_str(preds[0])
-
- pdf_recognize_results.append(preds[0])
-
- output_text = []
-
- need_tab = True
- for index, pdf_text in enumerate(pdf_recognize_results):
- if need_tab:
- text_console_str = '---- {:s}'.format(pdf_text)
- text_file_str = ' {:s}'.format(pdf_text)
- print(text_console_str)
- output_text.append(text_file_str)
- need_tab = \
- index < (len(pdf_recognize_results) - 1) and \
- len(pdf_recognize_results[index + 1]) - len(pdf_text) > 10
- else:
- text_console_str = '---- {:s}'.format(pdf_text)
- text_file_str = ' {:s}'.format(pdf_text)
- print(text_console_str)
- output_text.append(text_file_str)
- need_tab = \
- index < (len(pdf_recognize_results) - 1) and \
- len(pdf_recognize_results[index + 1]) - len(pdf_text) > 10
-
- res = '\n'.join(output_text)
-
- with open(output_path, 'w') as file:
- file.writelines(res)
-
- return
-
-
-if __name__ == '__main__':
- """
-
- """
- # init images
- args = init_args()
-
- # detect images
- recognize(
- image_path=args.image_path,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- output_path=args.save_path
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/test_shadownet.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/test_shadownet.py
deleted file mode 100644
index b0879ba57d485e808edf4d7f5e0fb38dc562d52f..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/test_shadownet.py
+++ /dev/null
@@ -1,191 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-29 涓嬪崍3:56
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : test_shadownet.py
-# @IDE: PyCharm Community Edition
-"""
-Use shadow net to recognize the scene text of a single image
-"""
-import argparse
-import os.path as ops
-import os
-
-cur_path = os.path.abspath(os.path.dirname(__file__))
-working_dir = os.path.join(cur_path, '../')
-sys.path.append(working_dir)
-
-import cv2
-import numpy as np
-import tensorflow as tf
-import matplotlib.pyplot as plt
-import glog as logger
-import wordninja
-
-from config import global_config
-from crnn_model import crnn_net
-from data_provider import tf_io_pipline_fast_tools
-
-CFG = global_config.cfg
-
-
-def init_args():
- """
-
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('--image_path', type=str,default='data/',
- help='Path to the image to be tested',
- default='data/test_images/test_01.jpg')
- parser.add_argument('--weights_path', type=str,
- help='Path to the pre-trained weights to use')
- parser.add_argument('-c', '--char_dict_path', type=str,
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-v', '--visualize', type=args_str2bool, nargs='?', const=True,
- help='Whether to display images')
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-
-def recognize(image_path, weights_path, char_dict_path, ord_map_dict_path, is_vis, is_english=False):
- """
-
- :param image_path:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param is_vis:
- :param is_english:
- :return:
- """
- image = cv2.imread(image_path, cv2.IMREAD_COLOR)
- image = cv2.resize(image, dsize=tuple(CFG.ARCH.INPUT_SIZE), interpolation=cv2.INTER_LINEAR)
- image_vis = image
- image = np.array(image, np.float32) / 127.5 - 1.0
-
- inputdata = tf.placeholder(
- dtype=tf.float32,
- shape=[1, CFG.ARCH.INPUT_SIZE[1], CFG.ARCH.INPUT_SIZE[0], CFG.ARCH.INPUT_CHANNELS],
- name='input'
- )
-
- codec = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- net = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- inference_ret = net.inference(
- inputdata=inputdata,
- name='shadow_net',
- reuse=False
- )
-
- decodes, _ = tf.nn.ctc_greedy_decoder(
- inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(1),
- merge_repeated=True
- )
-
- # config tf saver
- saver = tf.train.Saver()
-
- # config tf session
- sess_config = tf.ConfigProto(allow_soft_placement=True)
- sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TEST.GPU_MEMORY_FRACTION
- sess_config.gpu_options.allow_growth = CFG.TEST.TF_ALLOW_GROWTH
-
- sess = tf.Session(config=sess_config)
-
- with sess.as_default():
-
- saver.restore(sess=sess, save_path=weights_path)
-
- preds = sess.run(decodes, feed_dict={inputdata: [image]})
-
- preds = codec.sparse_tensor_to_str(preds[0])[0]
- if is_english:
- preds = ' '.join(wordninja.split(preds))
-
- logger.info('Predict image {:s} result: {:s}'.format(
- ops.split(image_path)[1], preds)
- )
-
- if is_vis:
- plt.figure('CRNN Model Demo')
- plt.imshow(image_vis[:, :, (2, 1, 0)])
- plt.show()
-
- sess.close()
-
- return
-
-
-if __name__ == '__main__':
- """
-
- """
- # init images
- args = init_args()
-
- # detect images
- recognize(
- image_path=args.image_path,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- is_vis=args.visualize
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_npu.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_npu.py
deleted file mode 100644
index ba868a03c1b9ec093af444afbd82532e027738e6..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_npu.py
+++ /dev/null
@@ -1,743 +0,0 @@
-
-
-
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-22 涓嬪崍1:39
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : train_shadownet.py
-# @IDE: PyCharm Community Edition
-"""
-Train shadow net script
-"""
-import sys
-import os
-import os.path as ops
-import time
-import math
-import argparse
-
-import tensorflow as tf
-import glog as logger
-import numpy as np
-from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
-
-cur_path = os.path.abspath(os.path.dirname(__file__))
-working_dir = os.path.join(cur_path, '../')
-sys.path.append(working_dir)
-
-from crnn_model import crnn_net
-from local_utils import evaluation_tools
-from config import global_config
-from data_provider import shadownet_data_feed_pipline
-from data_provider import tf_io_pipline_fast_tools
-
-# NPU CONFIGS
-from npu_bridge.estimator import npu_ops
-from npu_bridge.estimator.npu.npu_config import NPURunConfig
-from npu_bridge.estimator.npu.npu_estimator import NPUEstimator
-from npu_bridge.estimator.npu.npu_optimizer import allreduce
-from npu_bridge.estimator.npu.npu_optimizer import NPUDistributedOptimizer
-from npu_bridge.hccl import hccl_ops
-tf.enable_control_flow_v2()
-tf.enable_resource_variables()
-
-
-CFG = global_config.cfg
-
-
-def init_args():
- """
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
-
-
- parser.add_argument('-r', '--root_dir', type=str,default="./",
- help='Root directory of the project')
- parser.add_argument('-d', '--dataset_dir', type=str,default="data/",
- help='Directory containing train_features.tfrecords')
- parser.add_argument('-w', '--weights_path', type=str,default=None,
- help='Path to pre-trained weights to continue training')
- parser.add_argument('-c', '--char_dict_path', type=str,default="data/char_dict/char_dict.json",
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,default="data/char_dic/ord_map.json",
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-s', '--save_dir', type=str,default="./model",
- help='Directory where checkpoint files will be saved ')
- parser.add_argument('-i', '--num_iters', type=int,default=240000,
- help='number of training iterations')
- parser.add_argument( '--lr', type=float,default=0.01,
- help='learning rate per NPU device')
- parser.add_argument('-p', '--lr_sched', type=str,default="cos",
- help='Directory where checkpoint files will be saved ')
-
- parser.add_argument( '--momentum', type=float,default=0.9,
- help='Momentum for sgd optimizer ')
- parser.add_argument('-e', '--decode_outputs', type=args_str2bool, default=False,
- help='Activate decoding of predictions during training (slow!)')
- parser.add_argument( '--use_nesterov', type=args_str2bool, default=False,
- help='whether to use nesterov in the sgd optimizer')
- parser.add_argument('-m', '--multi_gpus', type=args_str2bool, default=False,
- nargs='?', const=True, help='Use multi gpus to train')
- parser.add_argument( '--warmup_step', type=int,default=10,
- help='number of warmup step used in lr scheduler ')
-
- # modify for npu overflow start
- # enable overflow
- parser.add_argument("--over_dump", type=str, default="False",
- help="whether to enable overflow")
- parser.add_argument("--over_dump_path", type=str, default="./",
- help="path to save overflow dump files")
- # modify for npu overflow end
-
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-
-def average_gradients(tower_grads):
- """Calculate the average gradient for each shared variable across all towers.
- Note that this function provides a synchronization point across all towers.
- Args:
- tower_grads: List of lists of (gradient, variable) tuples. The outer list
- is over individual gradients. The inner list is over the gradient
- calculation for each tower.
- Returns:
- List of pairs of (gradient, variable) where the gradient has been averaged
- across all towers.
- """
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
-
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
-
- # Average over the 'tower' dimension.
- grad = tf.concat(grads, 0)
- grad = tf.reduce_mean(grad, 0)
-
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
-
- return average_grads
-
-
-def compute_net_gradients(images, labels, net, optimizer=None, is_net_first_initialized=False):
- """
- Calculate gradients for single GPU
- :param images: images for training
- :param labels: labels corresponding to images
- :param net: classification model
- :param optimizer: network optimizer
- :param is_net_first_initialized: if the network is initialized
- :return:
- """
- _, net_loss = net.compute_loss(
- inputdata=images,
- labels=labels,
- name='shadow_net',
- reuse=is_net_first_initialized
- )
-
- if optimizer is not None:
- grads = optimizer.compute_gradients(net_loss)
- else:
- grads = None
-
- return net_loss, grads
-
-
-def train_shadownet(dataset_dir, weights_path, char_dict_path, ord_map_dict_path,save_dir,args, need_decode=False):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param need_decode:
- :return:
- """
- # prepare dataset
- train_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='train'
- )
- val_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='val'
- )
-
- train_images, train_labels, train_images_paths, train_labels_length = train_dataset.inputs(
- batch_size=CFG.TRAIN.BATCH_SIZE
- )
-
- x, y = np.meshgrid(np.arange(CFG.ARCH.MAX_LENGTH),
- np.arange(CFG.TRAIN.BATCH_SIZE))
- indexes = np.concatenate([y.flatten()[:, None], x.flatten()[:, None]], axis=1)
- indexes = tf.constant(indexes, dtype=tf.int64)
- train_labels = tf.SparseTensor(indexes,
- tf.reshape(train_labels, [-1]),
- np.array([CFG.TRAIN.BATCH_SIZE, CFG.ARCH.MAX_LENGTH], dtype=np.int64))
-
- val_images, val_labels, val_images_paths,val_labels_length = val_dataset.inputs(
- batch_size=CFG.TRAIN.BATCH_SIZE
- )
- val_labels = tf.SparseTensor(indexes,
- tf.reshape(val_labels, [-1]),
- np.array([CFG.TRAIN.BATCH_SIZE, CFG.ARCH.MAX_LENGTH], dtype=np.int64))
-
- # declare crnn net
- shadownet = crnn_net.ShadowNet(
- phase='train',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- shadownet_val = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- # set up decoder
- decoder = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- # compute loss and seq distance
- train_inference_ret, train_ctc_loss = shadownet.compute_loss(
- inputdata=train_images,
- labels=train_labels,
- labels_length=train_labels_length,
- name='shadow_net',
- reuse=False
- )
-
- val_inference_ret, val_ctc_loss = shadownet_val.compute_loss(
- inputdata=val_images,
- labels=val_labels,
- name='shadow_net',
- labels_length=val_labels_length,
- reuse=True
- )
-
- train_decoded, train_log_prob = tf.nn.ctc_greedy_decoder(
- train_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(CFG.TRAIN.BATCH_SIZE),
- merge_repeated=False
- )
- val_decoded, val_log_prob = tf.nn.ctc_greedy_decoder(
- val_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(CFG.TRAIN.BATCH_SIZE),
- merge_repeated=False
- )
-
- global_step = tf.train.get_or_create_global_step()
- rank_size = int(os.getenv('RANK_SIZE'))
- #print("rank size :", rank_size)
-
-
- warmup_steps = args.warmup_step
- warmup_lr = tf.range(0,args.lr, args.lr/warmup_steps)
- warmup_steps = tf.cast(warmup_steps, tf.int64)
- wp_lr = tf.gather(warmup_lr, tf.minimum(warmup_steps,global_step))
-
- if args.lr_sched=='cos':
-
- decayed_lr = tf.train.cosine_decay(
- learning_rate=args.lr,
- global_step=global_step,
- decay_steps=args.num_iters
- )
- else:
- decayed_lr = tf.train.polynomial_decay(
- learning_rate=args.lr,
- global_step=global_step,
- decay_steps=args.num_iters,
- end_learning_rate=0.000001,
- power=CFG.TRAIN.LR_DECAY_RATE
- )
-
- learning_rate = tf.cond(
- tf.less(global_step, warmup_steps),
- lambda:wp_lr,
- lambda: decayed_lr)
-
-
- optimizer = tf.train.MomentumOptimizer(
- learning_rate=learning_rate,
- momentum=args.momentum,
- use_nesterov=args.use_nesterov)
-
-
-
- optimizer = NPUDistributedOptimizer(optimizer)
-
- update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
- with tf.control_dependencies(update_ops):
-
- opt = optimizer
- gate_gradients = tf.train.Optimizer.GATE_NONE
- grads_and_vars = opt.compute_gradients(train_ctc_loss, gate_gradients=gate_gradients)
- train_op = opt.apply_gradients(grads_and_vars, global_step=global_step)
-
-
- optimizer = tf.group(train_op)
-
-
- # Set tf summary
- tboard_save_dir = save_dir+'/summary'
- os.makedirs(tboard_save_dir, exist_ok=True)
- tf.summary.scalar(name='train_ctc_loss', tensor=train_ctc_loss)
- tf.summary.scalar(name='learning_rate', tensor=learning_rate)
-
- if need_decode:
- train_sequence_dist = tf.reduce_mean(
- tf.edit_distance(tf.cast(train_decoded[0], tf.int32), train_labels),
- name='train_edit_distance'
- )
- val_sequence_dist = tf.reduce_mean(
- tf.edit_distance(tf.cast(val_decoded[0], tf.int32), val_labels),
- name='val_edit_distance'
- )
- tf.summary.scalar(name='train_seq_distance', tensor=train_sequence_dist)
- tf.summary.scalar(name='val_seq_distance', tensor=val_sequence_dist)
-
- merge_summary_op = tf.summary.merge_all()
-
- # Set saver configuration
- saver = tf.train.Saver()
- model_save_dir = save_dir
- os.makedirs(model_save_dir, exist_ok=True)
- train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
- model_name = 'shadownet_{:s}.ckpt'.format(str(train_start_time))
- model_save_path = ops.join(model_save_dir, model_name)
-
- # NPU CONFIG
- config = tf.ConfigProto()
- custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
- custom_op.name = "NpuOptimizer"
- custom_op.parameter_map["use_off_line"].b = True
- custom_op.parameter_map["enable_data_pre_proc"].b = True
- custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes('allow_mix_precision')
- custom_op.parameter_map["mix_compile_mode"].b = False # 娣峰悎璁$畻
-
- # init autotune module start
- autotune = False
- autotune = os.environ.get('autotune')
- if autotune:
- autotune = autotune.lower()
- if autotune == 'true':
- print("Autotune module is :" + autotune)
- print("Autotune module has been initiated!")
- custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA")
- else:
- print("Autotune module is :" + autotune)
- print("Autotune module is enabled or with error setting.")
- else:
- print("Autotune module de_initiate!Pass")
- # init autotune module end
-
- if args.over_dump == "True":
- print("NPU overflow dump is enabled")
- custom_op.parameter_map["dump_path"].s = tf.compat.as_bytes(args.over_dump_path)
- custom_op.parameter_map["enable_dump_debug"].b = True
- custom_op.parameter_map["dump_debug_mode"].s = tf.compat.as_bytes("all")
- else:
- print("NPU overflow dump is disabled")
-
- config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
-
- sess = tf.Session(config=config)
-
- summary_writer = tf.summary.FileWriter(tboard_save_dir)
- summary_writer.add_graph(sess.graph)
-
- # Set the training parameters
- train_epochs = args.num_iters
- #train_epochs = 2000
-
- with sess.as_default():
- epoch = 0
- if weights_path is None:
- logger.info('Training from scratch')
- init = tf.global_variables_initializer()
- sess.run(init)
- else:
- logger.info('Restore model from {:s}'.format(weights_path))
- saver.restore(sess=sess, save_path=weights_path)
- epoch = sess.run(tf.train.get_global_step())
- ts_prev = time.time()
- patience_counter = 1
- cost_history = [np.inf]
- while epoch < train_epochs:
- epoch += 1
- if epoch > 1 and CFG.TRAIN.EARLY_STOPPING:
- # We always compare to the first point where cost didn't improve
- if cost_history[-1 - patience_counter] - cost_history[-1] > CFG.TRAIN.PATIENCE_DELTA:
- patience_counter = 1
- else:
- patience_counter += 1
- if patience_counter > CFG.TRAIN.PATIENCE_EPOCHS:
- logger.info("Cost didn't improve beyond {:f} for {:d} epochs, stopping early.".
- format(CFG.TRAIN.PATIENCE_DELTA, patience_counter))
- break
-
- if need_decode and epoch % 500 == 0:
- # train part
- _, train_ctc_loss_value, train_seq_dist_value, \
- train_predictions, train_labels_sparse, merge_summary_value = sess.run(
- [optimizer, train_ctc_loss, train_sequence_dist,
- train_decoded, train_labels, merge_summary_op])
-
- train_labels_str = decoder.sparse_tensor_to_str(train_labels_sparse)
- train_predictions = decoder.sparse_tensor_to_str(train_predictions[0])
- avg_train_accuracy = evaluation_tools.compute_accuracy(train_labels_str, train_predictions)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Train: {:d} cost= {:9f} seq distance= {:9f} train accuracy= {:9f}'.format(
- epoch + 1, train_ctc_loss_value, train_seq_dist_value, avg_train_accuracy))
-
- # validation part
- val_ctc_loss_value, val_seq_dist_value, \
- val_predictions, val_labels_sparse = sess.run(
- [val_ctc_loss, val_sequence_dist, val_decoded, val_labels])
-
- val_labels_str = decoder.sparse_tensor_to_str(val_labels_sparse)
- val_predictions = decoder.sparse_tensor_to_str(val_predictions[0])
- avg_val_accuracy = evaluation_tools.compute_accuracy(val_labels_str, val_predictions)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- print('Epoch_Val: {:d} cost= {:9f} seq distance= {:9f} train accuracy= {:9f}, time= {}'.format(
- epoch + 1, val_ctc_loss_value, val_seq_dist_value, avg_val_accuracy, time.time()))
- else:
- _, train_ctc_loss_value, merge_summary_value,lr_value = sess.run(
- [optimizer, train_ctc_loss, merge_summary_op,learning_rate])
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- ts_now = time.time()
- duration = ts_now - ts_prev
- step_per_sec = duration / CFG.TRAIN.DISPLAY_STEP
- fps = (CFG.TRAIN.DISPLAY_STEP * 1.0 / duration ) * CFG.TRAIN.BATCH_SIZE * rank_size
- ts_prev = ts_now
- #logger.info('Epoch_Train: {:d} cost= {:9f}'.format(epoch , train_ctc_loss_value))
- logger.info('Epoch_Train: {:d} cost= {:9f}, lr= {:9f}, FPS: {:4f}, step_per_sec: {:6f}'.format(epoch , train_ctc_loss_value, lr_value, fps,step_per_sec))
-
- # record history train ctc loss
- cost_history.append(train_ctc_loss_value)
- # add training sumary
- summary_writer.add_summary(summary=merge_summary_value, global_step=epoch)
-
- if epoch % 5000 == 0:
- saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
-
- saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
- return np.array(cost_history[1:]) # Don't return the first np.inf
-
-
-def train_shadownet_multi_gpu(dataset_dir, weights_path, char_dict_path, ord_map_dict_path):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :return:
- """
- # prepare dataset information
- train_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='train'
- )
- val_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='val'
- )
-
- train_samples = []
- val_samples = []
- for i in range(CFG.TRAIN.GPU_NUM):
- train_samples.append(train_dataset.inputs(batch_size=CFG.TRAIN.BATCH_SIZE))
- val_samples.append(val_dataset.inputs(batch_size=CFG.TRAIN.BATCH_SIZE))
-
- # set crnn net
- shadownet = crnn_net.ShadowNet(
- phase='train',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
- shadownet_val = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- # set average container
- tower_grads = []
- train_tower_loss = []
- val_tower_loss = []
- batchnorm_updates = None
- train_summary_op_updates = None
-
- # set lr
- global_step = tf.Variable(0, name='global_step', trainable=False)
- learning_rate = tf.train.polynomial_decay(
- learning_rate=CFG.TRAIN.LEARNING_RATE,
- global_step=global_step,
- decay_steps=CFG.TRAIN.EPOCHS,
- end_learning_rate=0.000001,
- power=CFG.TRAIN.LR_DECAY_RATE
- )
-
- # set up optimizer
- optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
-
- # set distributed train op
- with tf.variable_scope(tf.get_variable_scope()):
- is_network_initialized = False
- for i in range(CFG.TRAIN.GPU_NUM):
- with tf.device('/gpu:{:d}'.format(i)):
- with tf.name_scope('tower_{:d}'.format(i)) as _:
- train_images = train_samples[i][0]
- train_labels = train_samples[i][1]
- train_loss, grads = compute_net_gradients(
- train_images, train_labels, shadownet, optimizer,
- is_net_first_initialized=is_network_initialized)
-
- is_network_initialized = True
-
- # Only use the mean and var in the first gpu tower to update the parameter
- if i == 0:
- batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
- train_summary_op_updates = tf.get_collection(tf.GraphKeys.SUMMARIES)
-
- tower_grads.append(grads)
- train_tower_loss.append(train_loss)
- with tf.name_scope('validation_{:d}'.format(i)) as _:
- val_images = val_samples[i][0]
- val_labels = val_samples[i][1]
- val_loss, _ = compute_net_gradients(
- val_images, val_labels, shadownet_val, optimizer,
- is_net_first_initialized=is_network_initialized)
- val_tower_loss.append(val_loss)
-
- grads = average_gradients(tower_grads)
- avg_train_loss = tf.reduce_mean(train_tower_loss)
- avg_val_loss = tf.reduce_mean(val_tower_loss)
-
- # Track the moving averages of all trainable variables
- variable_averages = tf.train.ExponentialMovingAverage(
- CFG.TRAIN.MOVING_AVERAGE_DECAY, num_updates=global_step)
- variables_to_average = tf.trainable_variables() + tf.moving_average_variables()
- variables_averages_op = variable_averages.apply(variables_to_average)
-
- # Group all the op needed for training
- batchnorm_updates_op = tf.group(*batchnorm_updates)
- apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step)
- train_op = tf.group(apply_gradient_op, variables_averages_op,
- batchnorm_updates_op)
-
- # set tensorflow summary
- tboard_save_path = 'tboard/crnn_syn90k_multi_gpu'
- os.makedirs(tboard_save_path, exist_ok=True)
-
- summary_writer = tf.summary.FileWriter(tboard_save_path)
-
- avg_train_loss_scalar = tf.summary.scalar(name='average_train_loss',
- tensor=avg_train_loss)
- avg_val_loss_scalar = tf.summary.scalar(name='average_val_loss',
- tensor=avg_val_loss)
- learning_rate_scalar = tf.summary.scalar(name='learning_rate_scalar',
- tensor=learning_rate)
- train_merge_summary_op = tf.summary.merge(
- [avg_train_loss_scalar, learning_rate_scalar] + train_summary_op_updates
- )
- val_merge_summary_op = tf.summary.merge([avg_val_loss_scalar])
-
- # set tensorflow saver
- saver = tf.train.Saver()
- model_save_dir = 'model/crnn_syn90k_multi_gpu'
- os.makedirs(model_save_dir, exist_ok=True)
- train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
- model_name = 'shadownet_{:s}.ckpt'.format(str(train_start_time))
- model_save_path = ops.join(model_save_dir, model_name)
-
- # set sess config
- sess_config = tf.ConfigProto(device_count={'GPU': CFG.TRAIN.GPU_NUM}, allow_soft_placement=True)
- sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
- sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
- sess_config.gpu_options.allocator_type = 'BFC'
-
- # Set the training parameters
- train_epochs = CFG.TRAIN.EPOCHS
-
- logger.info('Global configuration is as follows:')
- logger.info(CFG)
-
- sess = tf.Session(config=sess_config)
-
- summary_writer.add_graph(sess.graph)
-
- with sess.as_default():
- epoch = 0
- if weights_path is None:
- logger.info('Training from scratch')
- init = tf.global_variables_initializer()
- sess.run(init)
- else:
- logger.info('Restore model from last model checkpoint {:s}'.format(weights_path))
- saver.restore(sess=sess, save_path=weights_path)
- epoch = sess.run(tf.train.get_global_step())
-
- train_cost_time_mean = []
- val_cost_time_mean = []
-
- while epoch < train_epochs:
- epoch += 1
- # training part
- t_start = time.time()
-
- _, train_loss_value, train_summary, lr = \
- sess.run(fetches=[train_op,
- avg_train_loss,
- train_merge_summary_op,
- learning_rate])
-
- if math.isnan(train_loss_value):
- raise ValueError('Train loss is nan')
-
- cost_time = time.time() - t_start
- train_cost_time_mean.append(cost_time)
-
- summary_writer.add_summary(summary=train_summary,
- global_step=epoch)
-
- # validation part
- t_start_val = time.time()
-
- val_loss_value, val_summary = \
- sess.run(fetches=[avg_val_loss,
- val_merge_summary_op])
-
- summary_writer.add_summary(val_summary, global_step=epoch)
-
- cost_time_val = time.time() - t_start_val
- val_cost_time_mean.append(cost_time_val)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Train: {:d} total_loss= {:6f} '
- 'lr= {:6f} mean_cost_time= {:5f}s '.
- format(epoch + 1,
- train_loss_value,
- lr,
- np.mean(train_cost_time_mean)
- ))
- train_cost_time_mean.clear()
-
- if epoch % CFG.TRAIN.VAL_DISPLAY_STEP == 0:
- logger.info('Epoch_Val: {:d} total_loss= {:6f} '
- ' mean_cost_time= {:5f}s '.
- format(epoch + 1,
- val_loss_value,
- np.mean(val_cost_time_mean)))
- val_cost_time_mean.clear()
-
- if epoch % 5000 == 0:
- saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
- sess.close()
-
- return
-
-
-if __name__ == '__main__':
-
- # init args
- args = init_args()
-
- if args.multi_gpus:
- logger.info('Use multi gpus to train the model')
- train_shadownet_multi_gpu(
- dataset_dir=args.dataset_dir,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path
- )
- else:
- logger.info('Use single gpu to train the model')
- root_dir = args.root_dir
- train_shadownet(
- dataset_dir=os.path.join(root_dir,args.dataset_dir),
- weights_path=args.weights_path,
- char_dict_path=os.path.join(root_dir,args.char_dict_path),
- ord_map_dict_path=os.path.join(root_dir,args.ord_map_dict_path),
- save_dir = args.save_dir,
- args=args,
- need_decode=args.decode_outputs
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_shadownet.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_shadownet.py
deleted file mode 100644
index 5838399e97156e5807a281b4973e9a248d037042..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/train_shadownet.py
+++ /dev/null
@@ -1,631 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 17-9-22 涓嬪崍1:39
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : train_shadownet.py
-# @IDE: PyCharm Community Edition
-"""
-Train shadow net script
-"""
-import os
-import os.path as ops
-import time
-import math
-import argparse
-
-import tensorflow as tf
-import glog as logger
-import numpy as np
-#from .. import _init_paths
-import sys
-
-sys.path.append("./CRNN/CRNN_NPU")
-
-from crnn_model import crnn_net
-from local_utils import evaluation_tools
-from config import global_config
-from data_provider import shadownet_data_feed_pipline
-from data_provider import tf_io_pipline_fast_tools
-
-CFG = global_config.cfg
-from npu_bridge.estimator import npu_ops
-from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig
-
-
-
-
-def init_args():
- """
- :return: parsed arguments and (updated) config.cfg object
- """
- parser = argparse.ArgumentParser()
-
- parser.add_argument('-d', '--dataset_dir', type=str,default='data/',
- help='Directory containing train_features.tfrecords')
- parser.add_argument('-w', '--weights_path', type=str,default=None,
- help='Path to pre-trained weights to continue training')
- parser.add_argument('-c', '--char_dict_path', type=str,default='data/char_dict/char_dict_en.json',
- help='Directory where character dictionaries for the dataset were stored')
- parser.add_argument('-o', '--ord_map_dict_path', type=str,default="data/char_dict/ord_map_en.json",
- help='Directory where ord map dictionaries for the dataset were stored')
- parser.add_argument('-e', '--decode_outputs', type=args_str2bool, default=False,
- help='Activate decoding of predictions during training (slow!)')
- parser.add_argument('-m', '--multi_gpus', type=args_str2bool, default=False,
- nargs='?', const=True, help='Use multi gpus to train')
-
- return parser.parse_args()
-
-
-def args_str2bool(arg_value):
- """
-
- :param arg_value:
- :return:
- """
- if arg_value.lower() in ('yes', 'true', 't', 'y', '1'):
- return True
-
- elif arg_value.lower() in ('no', 'false', 'f', 'n', '0'):
- return False
- else:
- raise argparse.ArgumentTypeError('Unsupported value encountered.')
-
-
-def average_gradients(tower_grads):
- """Calculate the average gradient for each shared variable across all towers.
- Note that this function provides a synchronization point across all towers.
- Args:
- tower_grads: List of lists of (gradient, variable) tuples. The outer list
- is over individual gradients. The inner list is over the gradient
- calculation for each tower.
- Returns:
- List of pairs of (gradient, variable) where the gradient has been averaged
- across all towers.
- """
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
-
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
-
- # Average over the 'tower' dimension.
- grad = tf.concat(grads, 0)
- grad = tf.reduce_mean(grad, 0)
-
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
-
- return average_grads
-
-
-def compute_net_gradients(images, labels, net, optimizer=None, is_net_first_initialized=False):
- """
- Calculate gradients for single GPU
- :param images: images for training
- :param labels: labels corresponding to images
- :param net: classification model
- :param optimizer: network optimizer
- :param is_net_first_initialized: if the network is initialized
- :return:
- """
- _, net_loss = net.compute_loss(
- inputdata=images,
- labels=labels,
- name='shadow_net',
- reuse=is_net_first_initialized
- )
-
- if optimizer is not None:
- grads = optimizer.compute_gradients(net_loss)
- else:
- grads = None
-
- return net_loss, grads
-
-
-def train_shadownet(dataset_dir, weights_path, char_dict_path, ord_map_dict_path, need_decode=False):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :param need_decode:
- :return:
- """
- # prepare dataset
- train_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='train'
- )
- val_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='val'
- )
- train_images, train_labels, train_images_paths = train_dataset.inputs(
- batch_size=CFG.TRAIN.BATCH_SIZE
- )
- val_images, val_labels, val_images_paths = val_dataset.inputs(
- batch_size=CFG.TRAIN.BATCH_SIZE
- )
- # current framework does not support quint8
- # cast into float32
- train_images =tf.cast(train_images,tf.float32)
- train_labels =tf.cast(train_labels,tf.int32)
- val_images =tf.cast(val_images,tf.float32)
- val_labels =tf.cast(val_labels,tf.int32)
- # declare crnn net
- shadownet = crnn_net.ShadowNet(
- phase='train',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
- shadownet_val = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- # set up decoder
- decoder = tf_io_pipline_fast_tools.CrnnFeatureReader(
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path
- )
-
- # compute loss and seq distance
- train_inference_ret, train_ctc_loss = shadownet.compute_loss(
- inputdata=train_images,
- labels=train_labels,
- name='shadow_net',
- reuse=False
- )
- val_inference_ret, val_ctc_loss = shadownet_val.compute_loss(
- inputdata=val_images,
- labels=val_labels,
- name='shadow_net',
- reuse=True
- )
-
- train_decoded, train_log_prob = tf.nn.ctc_greedy_decoder(
- train_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(CFG.TRAIN.BATCH_SIZE),
- merge_repeated=False
- )
- val_decoded, val_log_prob = tf.nn.ctc_greedy_decoder(
- val_inference_ret,
- CFG.ARCH.SEQ_LENGTH * np.ones(CFG.TRAIN.BATCH_SIZE),
- merge_repeated=False
- )
-
- train_sequence_dist = tf.reduce_mean(
- tf.edit_distance(tf.cast(train_decoded[0], tf.int32), train_labels),
- name='train_edit_distance'
- )
- val_sequence_dist = tf.reduce_mean(
- tf.edit_distance(tf.cast(val_decoded[0], tf.int32), val_labels),
- name='val_edit_distance'
- )
-
- # set learning rate
- global_step = tf.Variable(0, name='global_step', trainable=False)
- learning_rate = tf.train.polynomial_decay(
- learning_rate=CFG.TRAIN.LEARNING_RATE,
- global_step=global_step,
- decay_steps=CFG.TRAIN.EPOCHS,
- end_learning_rate=0.000001,
- power=CFG.TRAIN.LR_DECAY_RATE
- )
-
- update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
- with tf.control_dependencies(update_ops):
- optimizer = tf.train.MomentumOptimizer(
- learning_rate=learning_rate, momentum=0.9).minimize(
- loss=train_ctc_loss, global_step=global_step)
-
- # Set tf summary
- tboard_save_dir = 'tboard/crnn_syn90k'
- os.makedirs(tboard_save_dir, exist_ok=True)
- tf.summary.scalar(name='train_ctc_loss', tensor=train_ctc_loss)
- tf.summary.scalar(name='val_ctc_loss', tensor=val_ctc_loss)
- tf.summary.scalar(name='learning_rate', tensor=learning_rate)
-
- if need_decode:
- tf.summary.scalar(name='train_seq_distance', tensor=train_sequence_dist)
- tf.summary.scalar(name='val_seq_distance', tensor=val_sequence_dist)
-
- merge_summary_op = tf.summary.merge_all()
-
- # Set saver configuration
- saver = tf.train.Saver()
- model_save_dir = 'model/crnn_syn90k'
- os.makedirs(model_save_dir, exist_ok=True)
- train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
- model_name = 'shadownet_{:s}.ckpt'.format(str(train_start_time))
- model_save_path = ops.join(model_save_dir, model_name)
-
- # Set sess configuration
- #sess_config = tf.ConfigProto(allow_soft_placement=True)
- #sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
- #sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
-
- #sess = tf.Session(config=sess_config)
-
- # added for NPU
- config = tf.ConfigProto()
- custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
- custom_op.name = "NpuOptimizer"
- custom_op.parameter_map["use_off_line"].b = True #鍦ㄦ槆鑵続I澶勭悊鍣ㄦ墽琛岃缁
- custom_op.parameter_map["allow_mix_compile"].b = True #鍦ㄦ槆鑵続I澶勭悊鍣ㄦ墽琛岃缁
- config.graph_options.rewrite_options.remapping = RewriterConfig.OFF #鍏抽棴remap寮鍏
- #config.iterations_per_loop = 100
-
- sess = tf.Session(config=config)
- #sess.run(init)
-
-
- summary_writer = tf.summary.FileWriter(tboard_save_dir)
- summary_writer.add_graph(sess.graph)
-
- # Set the training parameters
- train_epochs = CFG.TRAIN.EPOCHS
-
- with sess.as_default():
- epoch = 0
- if weights_path is None:
- logger.info('Training from scratch')
- init = tf.global_variables_initializer()
- sess.run(init)
- else:
- logger.info('Restore model from {:s}'.format(weights_path))
- saver.restore(sess=sess, save_path=weights_path)
- epoch = sess.run(tf.train.get_global_step())
-
- patience_counter = 1
- cost_history = [np.inf]
- while epoch < train_epochs:
- epoch += 1
- # setup early stopping
- if epoch > 1 and CFG.TRAIN.EARLY_STOPPING:
- # We always compare to the first point where cost didn't improve
- if cost_history[-1 - patience_counter] - cost_history[-1] > CFG.TRAIN.PATIENCE_DELTA:
- patience_counter = 1
- else:
- patience_counter += 1
- if patience_counter > CFG.TRAIN.PATIENCE_EPOCHS:
- logger.info("Cost didn't improve beyond {:f} for {:d} epochs, stopping early.".
- format(CFG.TRAIN.PATIENCE_DELTA, patience_counter))
- break
-
- if need_decode and epoch % 500 == 0:
- # train part
- _, train_ctc_loss_value, train_seq_dist_value, \
- train_predictions, train_labels_sparse, merge_summary_value = sess.run(
- [optimizer, train_ctc_loss, train_sequence_dist,
- train_decoded, train_labels, merge_summary_op])
-
- train_labels_str = decoder.sparse_tensor_to_str(train_labels_sparse)
- train_predictions = decoder.sparse_tensor_to_str(train_predictions[0])
- avg_train_accuracy = evaluation_tools.compute_accuracy(train_labels_str, train_predictions)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Train: {:d} cost= {:9f} seq distance= {:9f} train accuracy= {:9f}'.format(
- epoch + 1, train_ctc_loss_value, train_seq_dist_value, avg_train_accuracy))
-
- # validation part
- val_ctc_loss_value, val_seq_dist_value, \
- val_predictions, val_labels_sparse = sess.run(
- [val_ctc_loss, val_sequence_dist, val_decoded, val_labels])
-
- val_labels_str = decoder.sparse_tensor_to_str(val_labels_sparse)
- val_predictions = decoder.sparse_tensor_to_str(val_predictions[0])
- avg_val_accuracy = evaluation_tools.compute_accuracy(val_labels_str, val_predictions)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Val: {:d} cost= {:9f} seq distance= {:9f} train accuracy= {:9f}'.format(
- epoch + 1, val_ctc_loss_value, val_seq_dist_value, avg_val_accuracy))
- else:
- _, train_ctc_loss_value, merge_summary_value = sess.run(
- [optimizer, train_ctc_loss, merge_summary_op])
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Train: {:d} cost= {:9f}'.format(epoch + 1, train_ctc_loss_value))
-
- # record history train ctc loss
- cost_history.append(train_ctc_loss_value)
- # add training sumary
- summary_writer.add_summary(summary=merge_summary_value, global_step=epoch)
-
- if epoch % 2000 == 0:
- saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
-
- return np.array(cost_history[1:]) # Don't return the first np.inf
-
-
-def train_shadownet_multi_gpu(dataset_dir, weights_path, char_dict_path, ord_map_dict_path):
- """
-
- :param dataset_dir:
- :param weights_path:
- :param char_dict_path:
- :param ord_map_dict_path:
- :return:
- """
- # prepare dataset information
- train_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='train'
- )
- val_dataset = shadownet_data_feed_pipline.CrnnDataFeeder(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- flags='val'
- )
-
- train_samples = []
- val_samples = []
- for i in range(CFG.TRAIN.GPU_NUM):
- train_samples.append(train_dataset.inputs(batch_size=CFG.TRAIN.BATCH_SIZE))
- val_samples.append(val_dataset.inputs(batch_size=CFG.TRAIN.BATCH_SIZE))
-
- # set crnn net
- shadownet = crnn_net.ShadowNet(
- phase='train',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
- shadownet_val = crnn_net.ShadowNet(
- phase='test',
- hidden_nums=CFG.ARCH.HIDDEN_UNITS,
- layers_nums=CFG.ARCH.HIDDEN_LAYERS,
- num_classes=CFG.ARCH.NUM_CLASSES
- )
-
- # set average container
- tower_grads = []
- train_tower_loss = []
- val_tower_loss = []
- batchnorm_updates = None
- train_summary_op_updates = None
-
- # set lr
- global_step = tf.Variable(0, name='global_step', trainable=False)
- learning_rate = tf.train.polynomial_decay(
- learning_rate=CFG.TRAIN.LEARNING_RATE,
- global_step=global_step,
- decay_steps=CFG.TRAIN.EPOCHS,
- end_learning_rate=0.000001,
- power=CFG.TRAIN.LR_DECAY_RATE
- )
-
- # set up optimizer
- optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9)
-
- # set distributed train op
- with tf.variable_scope(tf.get_variable_scope()):
- is_network_initialized = False
- for i in range(CFG.TRAIN.GPU_NUM):
- with tf.device('/gpu:{:d}'.format(i)):
- with tf.name_scope('tower_{:d}'.format(i)) as _:
- train_images = train_samples[i][0]
- train_labels = train_samples[i][1]
- train_loss, grads = compute_net_gradients(
- train_images, train_labels, shadownet, optimizer,
- is_net_first_initialized=is_network_initialized)
-
- is_network_initialized = True
-
- # Only use the mean and var in the first gpu tower to update the parameter
- if i == 0:
- batchnorm_updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
- train_summary_op_updates = tf.get_collection(tf.GraphKeys.SUMMARIES)
-
- tower_grads.append(grads)
- train_tower_loss.append(train_loss)
- with tf.name_scope('validation_{:d}'.format(i)) as _:
- val_images = val_samples[i][0]
- val_labels = val_samples[i][1]
- val_loss, _ = compute_net_gradients(
- val_images, val_labels, shadownet_val, optimizer,
- is_net_first_initialized=is_network_initialized)
- val_tower_loss.append(val_loss)
-
- grads = average_gradients(tower_grads)
- avg_train_loss = tf.reduce_mean(train_tower_loss)
- avg_val_loss = tf.reduce_mean(val_tower_loss)
-
- # Track the moving averages of all trainable variables
- variable_averages = tf.train.ExponentialMovingAverage(
- CFG.TRAIN.MOVING_AVERAGE_DECAY, num_updates=global_step)
- variables_to_average = tf.trainable_variables() + tf.moving_average_variables()
- variables_averages_op = variable_averages.apply(variables_to_average)
-
- # Group all the op needed for training
- batchnorm_updates_op = tf.group(*batchnorm_updates)
- apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step)
- train_op = tf.group(apply_gradient_op, variables_averages_op,
- batchnorm_updates_op)
-
- # set tensorflow summary
- tboard_save_path = 'tboard/crnn_syn90k_multi_gpu'
- os.makedirs(tboard_save_path, exist_ok=True)
-
- summary_writer = tf.summary.FileWriter(tboard_save_path)
-
- avg_train_loss_scalar = tf.summary.scalar(name='average_train_loss',
- tensor=avg_train_loss)
- avg_val_loss_scalar = tf.summary.scalar(name='average_val_loss',
- tensor=avg_val_loss)
- learning_rate_scalar = tf.summary.scalar(name='learning_rate_scalar',
- tensor=learning_rate)
- train_merge_summary_op = tf.summary.merge(
- [avg_train_loss_scalar, learning_rate_scalar] + train_summary_op_updates
- )
- val_merge_summary_op = tf.summary.merge([avg_val_loss_scalar])
-
- # set tensorflow saver
- saver = tf.train.Saver()
- model_save_dir = 'model/crnn_syn90k_multi_gpu'
- os.makedirs(model_save_dir, exist_ok=True)
- train_start_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
- model_name = 'shadownet_{:s}.ckpt'.format(str(train_start_time))
- model_save_path = ops.join(model_save_dir, model_name)
-
- # set sess config
- sess_config = tf.ConfigProto(device_count={'GPU': CFG.TRAIN.GPU_NUM}, allow_soft_placement=True)
- sess_config.gpu_options.per_process_gpu_memory_fraction = CFG.TRAIN.GPU_MEMORY_FRACTION
- sess_config.gpu_options.allow_growth = CFG.TRAIN.TF_ALLOW_GROWTH
- sess_config.gpu_options.allocator_type = 'BFC'
-
- # Set the training parameters
- train_epochs = CFG.TRAIN.EPOCHS
-
- logger.info('Global configuration is as follows:')
- logger.info(CFG)
-
- sess = tf.Session(config=sess_config)
-
- summary_writer.add_graph(sess.graph)
-
- with sess.as_default():
- epoch = 0
- if weights_path is None:
- logger.info('Training from scratch')
- init = tf.global_variables_initializer()
- sess.run(init)
- else:
- logger.info('Restore model from last model checkpoint {:s}'.format(weights_path))
- saver.restore(sess=sess, save_path=weights_path)
- epoch = sess.run(tf.train.get_global_step())
-
- train_cost_time_mean = []
- val_cost_time_mean = []
-
- while epoch < train_epochs:
- epoch += 1
- # training part
- t_start = time.time()
-
- _, train_loss_value, train_summary, lr = \
- sess.run(fetches=[train_op,
- avg_train_loss,
- train_merge_summary_op,
- learning_rate])
-
- if math.isnan(train_loss_value):
- raise ValueError('Train loss is nan')
-
- cost_time = time.time() - t_start
- train_cost_time_mean.append(cost_time)
-
- summary_writer.add_summary(summary=train_summary,
- global_step=epoch)
-
- # validation part
- t_start_val = time.time()
-
- val_loss_value, val_summary = \
- sess.run(fetches=[avg_val_loss,
- val_merge_summary_op])
-
- summary_writer.add_summary(val_summary, global_step=epoch)
-
- cost_time_val = time.time() - t_start_val
- val_cost_time_mean.append(cost_time_val)
-
- if epoch % CFG.TRAIN.DISPLAY_STEP == 0:
- logger.info('Epoch_Train: {:d} total_loss= {:6f} '
- 'lr= {:6f} mean_cost_time= {:5f}s '.
- format(epoch + 1,
- train_loss_value,
- lr,
- np.mean(train_cost_time_mean)
- ))
- train_cost_time_mean.clear()
-
- if epoch % CFG.TRAIN.VAL_DISPLAY_STEP == 0:
- logger.info('Epoch_Val: {:d} total_loss= {:6f} '
- ' mean_cost_time= {:5f}s '.
- format(epoch + 1,
- val_loss_value,
- np.mean(val_cost_time_mean)))
- val_cost_time_mean.clear()
-
- if epoch % 5000 == 0:
- saver.save(sess=sess, save_path=model_save_path, global_step=epoch)
- sess.close()
-
- return
-
-
-if __name__ == '__main__':
-
- # init args
- args = init_args()
-
- if args.multi_gpus:
- logger.info('Use multi gpus to train the model')
- train_shadownet_multi_gpu(
- dataset_dir=args.dataset_dir,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path
- )
- else:
- print("decode outputs:{}".format(args.decode_outputs))
- logger.info('Use single gpu to train the model')
- train_shadownet(
- dataset_dir=args.dataset_dir,
- weights_path=args.weights_path,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- need_decode=args.decode_outputs
- )
diff --git a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/write_tfrecords.py b/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/write_tfrecords.py
deleted file mode 100644
index 033b21b4277b6d9a139a19ede0ab469a30572827..0000000000000000000000000000000000000000
--- a/TensorFlow/built-in/cv/detection/CRNN_for_TensorFlow/tools/write_tfrecords.py
+++ /dev/null
@@ -1,109 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# ============================================================================
-# Copyright 2021 Huawei Technologies Co., Ltd
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-# @Time : 19-3-13 涓嬪崍1:31
-# @Author : MaybeShewill-CV
-# @Site : https://github.com/MaybeShewill-CV/CRNN_Tensorflow
-# @File : write_tfrecords.py
-# @IDE: PyCharm
-"""
-Write tfrecords tools
-"""
-import argparse
-import os
-import os.path as ops
-import sys
-
-cur_path = os.path.abspath(os.path.dirname(__file__))
-working_dir = os.path.join(cur_path, '../')
-sys.path.append(working_dir)
-
-from data_provider import shadownet_data_feed_pipline
-#import shadownet_data_feed_pipline
-
-
-def init_args():
- """
-
- :return:
- """
- parser = argparse.ArgumentParser()
- parser.add_argument('-d', '--dataset_dir', type=str, help='The origin synth90k dataset_dir')
- parser.add_argument('-s', '--save_dir', type=str, help='The generated tfrecords save dir')
- parser.add_argument('-c', '--char_dict_path', type=str, default=None,
- help='The char dict file path. If it is None the char dict will be'
- 'generated automatically in folder data/char_dict')
- parser.add_argument('-o', '--ord_map_dict_path', type=str, default=None,
- help='The ord map dict file path. If it is None the ord map dict will be'
- 'generated automatically in folder data/char_dict')
-
- return parser.parse_args()
-
-
-def write_tfrecords(dataset_dir, char_dict_path, ord_map_dict_path, save_dir):
- """
- Write tensorflow records for training , testing and validation
- :param dataset_dir: the root dir of crnn dataset
- :param char_dict_path: json file path which contains the map relation
- between ord value and single character
- :param ord_map_dict_path: json file path which contains the map relation
- between int index value and char ord value
- :param save_dir: the root dir of tensorflow records to write into
- :return:
- """
- assert ops.exists(dataset_dir), '{:s} not exist'.format(dataset_dir)
-
- os.makedirs(save_dir, exist_ok=True)
-
- # test crnn data producer
- producer = shadownet_data_feed_pipline.CrnnDataProducer(
- dataset_dir=dataset_dir,
- char_dict_path=char_dict_path,
- ord_map_dict_path=ord_map_dict_path,
- writer_process_nums=8
- )
-
- producer.generate_tfrecords(
- save_dir=save_dir
- )
-
-
-if __name__ == '__main__':
- """
- generate tfrecords
- """
- args = init_args()
-
- write_tfrecords(
- dataset_dir=args.dataset_dir,
- char_dict_path=args.char_dict_path,
- ord_map_dict_path=args.ord_map_dict_path,
- save_dir=args.save_dir
- )