diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_fwfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_fwfm.py index fb36440348c5e76572eb4ddd02993b9abcc36da5..f97c37546b780d650120483ff27cf5317e8d6378 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_fwfm.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_fwfm.py @@ -61,16 +61,16 @@ def main(): custom_op.name = "NpuOptimizer" custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) - if args.profiling: - custom_op.parameter_map["profiling_mode"].b = True - custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( - '{"output":"' + args.profiling_dump_path + '", \ - "training_trace":"on", \ - "task_trace":"on", \ - "aicpu":"on", \ - "aic_metrics":"PipeUtilization",\ - "fp_point":"concatenate_1/concat", \ - "bp_point":"training/Adam/gradients/gradients/AddN_83"}') + #if args.profiling: + # custom_op.parameter_map["profiling_mode"].b = True + # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + # '{"output":"' + args.profiling_dump_path + '", \ + # "training_trace":"on", \ + # "task_trace":"on", \ + # "aicpu":"on", \ + # "aic_metrics":"PipeUtilization",\ + # "fp_point":"concatenate_1/concat", \ + # "bp_point":"training/Adam/gradients/gradients/AddN_83"}') npu_keras_sess = set_keras_session_npu_config(config=sess_config) data = pd.read_csv(os.path.join(args.data_dir, 'criteo_sample.txt'))