diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_mtl.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_mtl.py index e20b223631fb32a06bb583c614854a13325b687d..e2ee2d098dacf28255cc5ba999daeebb38534e61 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_mtl.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_mtl.py @@ -61,16 +61,16 @@ def main(): custom_op.name = "NpuOptimizer" custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) - if args.profiling: - custom_op.parameter_map["profiling_mode"].b = True - custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( - '{"output":"' + args.profiling_dump_path + '", \ - "training_trace":"on", \ - "task_trace":"on", \ - "aicpu":"on", \ - "aic_metrics":"PipeUtilization",\ - "fp_point":"concatenate_1/concat", \ - "bp_point":"training/Adam/gradients/gradients/AddN_38"}') + #if args.profiling: + # custom_op.parameter_map["profiling_mode"].b = True + # custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + # '{"output":"' + args.profiling_dump_path + '", \ + # "training_trace":"on", \ + # "task_trace":"on", \ + # "aicpu":"on", \ + # "aic_metrics":"PipeUtilization",\ + # "fp_point":"concatenate_1/concat", \ + # "bp_point":"training/Adam/gradients/gradients/AddN_38"}') npu_keras_sess = set_keras_session_npu_config(config=sess_config) column_names = ['age', 'class_worker', 'det_ind_code', 'det_occ_code', 'education', 'wage_per_hour', 'hs_college',