diff --git a/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/parse_results.py b/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/parse_results.py index 34ec762f4c03737240caf9830ce1ef23000ca8c6..a027d5caa5e634db2ae41cfee9fd9e2b00b718d2 100644 --- a/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/parse_results.py +++ b/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/parse_results.py @@ -22,7 +22,7 @@ def process_performance_stats(timestamps, batch_size): latency_ms = timestamps_ms.mean() std = timestamps_ms.std() n = np.sqrt(len(timestamps_ms)) - throughput_imgps = (1000.0 * batch_size / timestamps_ms).mean() + throughput_imgps = (10 * 1000.0 * batch_size / timestamps_ms).mean() stats = [("Throughput Avg", str(throughput_imgps)), ('Latency Avg:', str(latency_ms))] diff --git a/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/setup.py b/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/setup.py index 753d05c606dc78eb7709d6d6678957ad6d45e290..8292db7d50f0360cf6817cd01c6698ebdcfffc12 100644 --- a/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/setup.py +++ b/TensorFlow/built-in/cv/image_segmentation/UNet2D_ID0008_for_TensorFlow/utils/setup.py @@ -87,7 +87,7 @@ def build_estimator(params, model_dir): #save_checkpoints_steps=(params.max_steps // hvd.size()) if hvd.rank() == 0 else None, save_checkpoints_steps=params.max_steps, precision_mode='allow_fp32_to_fp16', - iterations_per_loop=1, + iterations_per_loop=10, hcom_parallel=True, keep_checkpoint_max=1) # for npu