diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/CMakeLists.txt b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..17dc38b8a933d0b8fd84e5579426f7933ca45c99 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/CMakeLists.txt @@ -0,0 +1,41 @@ +# Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved. +# CMake lowest version requirement +cmake_minimum_required(VERSION 3.5.1) +# project information +project(ascendcl) +# Compile options +add_compile_options(-std=c++11) +# Specify target generation path +set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "../outputs") +set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "../outputs") +set(CMAKE_INSTALL_PREFIX "../../../") +set(CMAKE_OUTPUT_DIR "out") +set(CMAKE_CXX_FLAGS_RELEASE "-fPIC -O2 -g -Wall") + +ADD_DEFINITIONS("-DENABLE_DVPP_INTERFACE -D_GLIBCXX_USE_CXX11_ABI=0") + +# Header path +include_directories( +inc +#/usr/include/gflags +$ENV{install_path}/acllib/include +$ENV{install_path}/driver/kernel/libc_sec/include +/usr/include +) + +# add host lib path +link_directories($ENV{install_path}/acllib/lib64/stub) +#link_directories(/usr/local/Ascend/driver/lib64) +#link_directories(/usr/local/Ascend/atc/lib64) +#link_directories(/usr/local/lib) +link_directories(../thirdpart_lib) + +# 设置需要编译的源文件 +add_executable(benchmark main.cpp util.cpp post_process.cpp infer_engine.cpp) + +# 设置共享库 RC为待扩展的offline模型 +#target_link_libraries(benchmark acl_dvpp ascendcl pthread protobuf cryptopp) +target_link_libraries(benchmark acl_dvpp ascendcl pthread) + +install(TARGETS benchmark DESTINATION ${CMAKE_OUTPUT_DIR}) + diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/defines.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/defines.h new file mode 100644 index 0000000000000000000000000000000000000000..f0be3dcb485269718125445537ce3616c3078d34 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/defines.h @@ -0,0 +1,48 @@ +/* Generated from defines.h.in during build configuration using CMake. */ + +// Note: This header file is only used internally. It is not part of public interface! +// Any cmakedefine is defined using the -D flag instead when Bazel is used. +// For Bazel, this file is thus not used to avoid a private file in $(GENDIR). + +#ifndef GFLAGS_DEFINES_H_ +#define GFLAGS_DEFINES_H_ + + +// Define if you build this library for a MS Windows OS. +/* #undef OS_WINDOWS */ + +// Define if you have the header file. +#define HAVE_STDINT_H + +// Define if you have the header file. +#define HAVE_SYS_TYPES_H + +// Define if you have the header file. +#define HAVE_INTTYPES_H + +// Define if you have the header file. +#define HAVE_SYS_STAT_H + +// Define if you have the header file. +#define HAVE_UNISTD_H + +// Define if you have the header file. +#define HAVE_FNMATCH_H + +// Define if you have the header file (Windows 2000/XP). +/* #undef HAVE_SHLWAPI_H */ + +// Define if you have the strtoll function. +#define HAVE_STRTOLL + +// Define if you have the strtoq function. +/* #undef HAVE_STRTOQ */ + +// Define if you have the header file. +#define HAVE_PTHREAD + +// Define if your pthread library defines the type pthread_rwlock_t +#define HAVE_RWLOCK + + +#endif // GFLAGS_DEFINES_H_ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags.h new file mode 100644 index 0000000000000000000000000000000000000000..4f3168a03d878a16ac0e05d1d240396b9d422c63 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags.h @@ -0,0 +1,624 @@ +// Copyright (c) 2006, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// --- +// Revamped and reorganized by Craig Silverstein +// +// This is the file that should be included by any file which declares +// or defines a command line flag or wants to parse command line flags +// or print a program usage message (which will include information about +// flags). Executive summary, in the form of an example foo.cc file: +// +// #include "foo.h" // foo.h has a line "DECLARE_int32(start);" +// #include "validators.h" // hypothetical file defining ValidateIsFile() +// +// DEFINE_int32(end, 1000, "The last record to read"); +// +// DEFINE_string(filename, "my_file.txt", "The file to read"); +// // Crash if the specified file does not exist. +// static bool dummy = RegisterFlagValidator(&FLAGS_filename, +// &ValidateIsFile); +// +// DECLARE_bool(verbose); // some other file has a DEFINE_bool(verbose, ...) +// +// void MyFunc() { +// if (FLAGS_verbose) printf("Records %d-%d\n", FLAGS_start, FLAGS_end); +// } +// +// Then, at the command-line: +// ./foo --noverbose --start=5 --end=100 +// +// For more details, see +// doc/gflags.html +// +// --- A note about thread-safety: +// +// We describe many functions in this routine as being thread-hostile, +// thread-compatible, or thread-safe. Here are the meanings we use: +// +// thread-safe: it is safe for multiple threads to call this routine +// (or, when referring to a class, methods of this class) +// concurrently. +// thread-hostile: it is not safe for multiple threads to call this +// routine (or methods of this class) concurrently. In gflags, +// most thread-hostile routines are intended to be called early in, +// or even before, main() -- that is, before threads are spawned. +// thread-compatible: it is safe for multiple threads to read from +// this variable (when applied to variables), or to call const +// methods of this class (when applied to classes), as long as no +// other thread is writing to the variable or calling non-const +// methods of this class. + +#ifndef GFLAGS_GFLAGS_H_ +#define GFLAGS_GFLAGS_H_ + +#include +#include + +#include "gflags/gflags_declare.h" // IWYU pragma: export + + +// We always want to export variables defined in user code +#ifndef GFLAGS_DLL_DEFINE_FLAG +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DEFINE_FLAG __declspec(dllexport) +# else +# define GFLAGS_DLL_DEFINE_FLAG +# endif +#endif + + +namespace GFLAGS_NAMESPACE { + + +// -------------------------------------------------------------------- +// To actually define a flag in a file, use DEFINE_bool, +// DEFINE_string, etc. at the bottom of this file. You may also find +// it useful to register a validator with the flag. This ensures that +// when the flag is parsed from the commandline, or is later set via +// SetCommandLineOption, we call the validation function. It is _not_ +// called when you assign the value to the flag directly using the = operator. +// +// The validation function should return true if the flag value is valid, and +// false otherwise. If the function returns false for the new setting of the +// flag, the flag will retain its current value. If it returns false for the +// default value, ParseCommandLineFlags() will die. +// +// This function is safe to call at global construct time (as in the +// example below). +// +// Example use: +// static bool ValidatePort(const char* flagname, int32 value) { +// if (value > 0 && value < 32768) // value is ok +// return true; +// printf("Invalid value for --%s: %d\n", flagname, (int)value); +// return false; +// } +// DEFINE_int32(port, 0, "What port to listen on"); +// static bool dummy = RegisterFlagValidator(&FLAGS_port, &ValidatePort); + +// Returns true if successfully registered, false if not (because the +// first argument doesn't point to a command-line flag, or because a +// validator is already registered for this flag). +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const bool* flag, bool (*validate_fn)(const char*, bool)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const int32* flag, bool (*validate_fn)(const char*, int32)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const uint32* flag, bool (*validate_fn)(const char*, uint32)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const int64* flag, bool (*validate_fn)(const char*, int64)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const uint64* flag, bool (*validate_fn)(const char*, uint64)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const double* flag, bool (*validate_fn)(const char*, double)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const std::string* flag, bool (*validate_fn)(const char*, const std::string&)); + +// Convenience macro for the registration of a flag validator +#define DEFINE_validator(name, validator) \ + static const bool name##_validator_registered = \ + GFLAGS_NAMESPACE::RegisterFlagValidator(&FLAGS_##name, validator) + + +// -------------------------------------------------------------------- +// These methods are the best way to get access to info about the +// list of commandline flags. Note that these routines are pretty slow. +// GetAllFlags: mostly-complete info about the list, sorted by file. +// ShowUsageWithFlags: pretty-prints the list to stdout (what --help does) +// ShowUsageWithFlagsRestrict: limit to filenames with restrict as a substr +// +// In addition to accessing flags, you can also access argv[0] (the program +// name) and argv (the entire commandline), which we sock away a copy of. +// These variables are static, so you should only set them once. +// +// No need to export this data only structure from DLL, avoiding VS warning 4251. +struct CommandLineFlagInfo { + std::string name; // the name of the flag + std::string type; // the type of the flag: int32, etc + std::string description; // the "help text" associated with the flag + std::string current_value; // the current value, as a string + std::string default_value; // the default value, as a string + std::string filename; // 'cleaned' version of filename holding the flag + bool has_validator_fn; // true if RegisterFlagValidator called on this flag + bool is_default; // true if the flag has the default value and + // has not been set explicitly from the cmdline + // or via SetCommandLineOption + const void* flag_ptr; // pointer to the flag's current value (i.e. FLAGS_foo) +}; + +// Using this inside of a validator is a recipe for a deadlock. +// TODO(user) Fix locking when validators are running, to make it safe to +// call validators during ParseAllFlags. +// Also make sure then to uncomment the corresponding unit test in +// gflags_unittest.sh +extern GFLAGS_DLL_DECL void GetAllFlags(std::vector* OUTPUT); +// These two are actually defined in gflags_reporting.cc. +extern GFLAGS_DLL_DECL void ShowUsageWithFlags(const char *argv0); // what --help does +extern GFLAGS_DLL_DECL void ShowUsageWithFlagsRestrict(const char *argv0, const char *restrict); + +// Create a descriptive string for a flag. +// Goes to some trouble to make pretty line breaks. +extern GFLAGS_DLL_DECL std::string DescribeOneFlag(const CommandLineFlagInfo& flag); + +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetArgv(int argc, const char** argv); + +// The following functions are thread-safe as long as SetArgv() is +// only called before any threads start. +extern GFLAGS_DLL_DECL const std::vector& GetArgvs(); +extern GFLAGS_DLL_DECL const char* GetArgv(); // all of argv as a string +extern GFLAGS_DLL_DECL const char* GetArgv0(); // only argv0 +extern GFLAGS_DLL_DECL uint32 GetArgvSum(); // simple checksum of argv +extern GFLAGS_DLL_DECL const char* ProgramInvocationName(); // argv0, or "UNKNOWN" if not set +extern GFLAGS_DLL_DECL const char* ProgramInvocationShortName(); // basename(argv0) + +// ProgramUsage() is thread-safe as long as SetUsageMessage() is only +// called before any threads start. +extern GFLAGS_DLL_DECL const char* ProgramUsage(); // string set by SetUsageMessage() + +// VersionString() is thread-safe as long as SetVersionString() is only +// called before any threads start. +extern GFLAGS_DLL_DECL const char* VersionString(); // string set by SetVersionString() + + + +// -------------------------------------------------------------------- +// Normally you access commandline flags by just saying "if (FLAGS_foo)" +// or whatever, and set them by calling "FLAGS_foo = bar" (or, more +// commonly, via the DEFINE_foo macro). But if you need a bit more +// control, we have programmatic ways to get/set the flags as well. +// These programmatic ways to access flags are thread-safe, but direct +// access is only thread-compatible. + +// Return true iff the flagname was found. +// OUTPUT is set to the flag's value, or unchanged if we return false. +extern GFLAGS_DLL_DECL bool GetCommandLineOption(const char* name, std::string* OUTPUT); + +// Return true iff the flagname was found. OUTPUT is set to the flag's +// CommandLineFlagInfo or unchanged if we return false. +extern GFLAGS_DLL_DECL bool GetCommandLineFlagInfo(const char* name, CommandLineFlagInfo* OUTPUT); + +// Return the CommandLineFlagInfo of the flagname. exit() if name not found. +// Example usage, to check if a flag's value is currently the default value: +// if (GetCommandLineFlagInfoOrDie("foo").is_default) ... +extern GFLAGS_DLL_DECL CommandLineFlagInfo GetCommandLineFlagInfoOrDie(const char* name); + +enum GFLAGS_DLL_DECL FlagSettingMode { + // update the flag's value (can call this multiple times). + SET_FLAGS_VALUE, + // update the flag's value, but *only if* it has not yet been updated + // with SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef". + SET_FLAG_IF_DEFAULT, + // set the flag's default value to this. If the flag has not yet updated + // yet (via SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef") + // change the flag's current value to the new default value as well. + SET_FLAGS_DEFAULT +}; + +// Set a particular flag ("command line option"). Returns a string +// describing the new value that the option has been set to. The +// return value API is not well-specified, so basically just depend on +// it to be empty if the setting failed for some reason -- the name is +// not a valid flag name, or the value is not a valid value -- and +// non-empty else. + +// SetCommandLineOption uses set_mode == SET_FLAGS_VALUE (the common case) +extern GFLAGS_DLL_DECL std::string SetCommandLineOption (const char* name, const char* value); +extern GFLAGS_DLL_DECL std::string SetCommandLineOptionWithMode(const char* name, const char* value, FlagSettingMode set_mode); + + +// -------------------------------------------------------------------- +// Saves the states (value, default value, whether the user has set +// the flag, registered validators, etc) of all flags, and restores +// them when the FlagSaver is destroyed. This is very useful in +// tests, say, when you want to let your tests change the flags, but +// make sure that they get reverted to the original states when your +// test is complete. +// +// Example usage: +// void TestFoo() { +// FlagSaver s1; +// FLAG_foo = false; +// FLAG_bar = "some value"; +// +// // test happens here. You can return at any time +// // without worrying about restoring the FLAG values. +// } +// +// Note: This class is marked with GFLAGS_ATTRIBUTE_UNUSED because all +// the work is done in the constructor and destructor, so in the standard +// usage example above, the compiler would complain that it's an +// unused variable. +// +// This class is thread-safe. However, its destructor writes to +// exactly the set of flags that have changed value during its +// lifetime, so concurrent _direct_ access to those flags +// (i.e. FLAGS_foo instead of {Get,Set}CommandLineOption()) is unsafe. + +class GFLAGS_DLL_DECL FlagSaver { + public: + FlagSaver(); + ~FlagSaver(); + + private: + class FlagSaverImpl* impl_; // we use pimpl here to keep API steady + + FlagSaver(const FlagSaver&); // no copying! + void operator=(const FlagSaver&); +}__attribute((unused)); + +// -------------------------------------------------------------------- +// Some deprecated or hopefully-soon-to-be-deprecated functions. + +// This is often used for logging. TODO(csilvers): figure out a better way +extern GFLAGS_DLL_DECL std::string CommandlineFlagsIntoString(); +// Usually where this is used, a FlagSaver should be used instead. +extern GFLAGS_DLL_DECL +bool ReadFlagsFromString(const std::string& flagfilecontents, + const char* prog_name, + bool errors_are_fatal); // uses SET_FLAGS_VALUE + +// These let you manually implement --flagfile functionality. +// DEPRECATED. +extern GFLAGS_DLL_DECL bool AppendFlagsIntoFile(const std::string& filename, const char* prog_name); +extern GFLAGS_DLL_DECL bool ReadFromFlagsFile(const std::string& filename, const char* prog_name, bool errors_are_fatal); // uses SET_FLAGS_VALUE + + +// -------------------------------------------------------------------- +// Useful routines for initializing flags from the environment. +// In each case, if 'varname' does not exist in the environment +// return defval. If 'varname' does exist but is not valid +// (e.g., not a number for an int32 flag), abort with an error. +// Otherwise, return the value. NOTE: for booleans, for true use +// 't' or 'T' or 'true' or '1', for false 'f' or 'F' or 'false' or '0'. + +extern GFLAGS_DLL_DECL bool BoolFromEnv(const char *varname, bool defval); +extern GFLAGS_DLL_DECL int32 Int32FromEnv(const char *varname, int32 defval); +extern GFLAGS_DLL_DECL uint32 Uint32FromEnv(const char *varname, uint32 defval); +extern GFLAGS_DLL_DECL int64 Int64FromEnv(const char *varname, int64 defval); +extern GFLAGS_DLL_DECL uint64 Uint64FromEnv(const char *varname, uint64 defval); +extern GFLAGS_DLL_DECL double DoubleFromEnv(const char *varname, double defval); +extern GFLAGS_DLL_DECL const char *StringFromEnv(const char *varname, const char *defval); + + +// -------------------------------------------------------------------- +// The next two functions parse gflags from main(): + +// Set the "usage" message for this program. For example: +// string usage("This program does nothing. Sample usage:\n"); +// usage += argv[0] + " "; +// SetUsageMessage(usage); +// Do not include commandline flags in the usage: we do that for you! +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetUsageMessage(const std::string& usage); + +// Sets the version string, which is emitted with --version. +// For instance: SetVersionString("1.3"); +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetVersionString(const std::string& version); + + +// Looks for flags in argv and parses them. Rearranges argv to put +// flags first, or removes them entirely if remove_flags is true. +// If a flag is defined more than once in the command line or flag +// file, the last definition is used. Returns the index (into argv) +// of the first non-flag argument. +// See top-of-file for more details on this function. +#ifndef SWIG // In swig, use ParseCommandLineFlagsScript() instead. +extern GFLAGS_DLL_DECL uint32 ParseCommandLineFlags(int *argc, char*** argv, bool remove_flags); +#endif + + +// Calls to ParseCommandLineNonHelpFlags and then to +// HandleCommandLineHelpFlags can be used instead of a call to +// ParseCommandLineFlags during initialization, in order to allow for +// changing default values for some FLAGS (via +// e.g. SetCommandLineOptionWithMode calls) between the time of +// command line parsing and the time of dumping help information for +// the flags as a result of command line parsing. If a flag is +// defined more than once in the command line or flag file, the last +// definition is used. Returns the index (into argv) of the first +// non-flag argument. (If remove_flags is true, will always return 1.) +extern GFLAGS_DLL_DECL uint32 ParseCommandLineNonHelpFlags(int *argc, char*** argv, bool remove_flags); + +// This is actually defined in gflags_reporting.cc. +// This function is misnamed (it also handles --version, etc.), but +// it's too late to change that now. :-( +extern GFLAGS_DLL_DECL void HandleCommandLineHelpFlags(); // in gflags_reporting.cc + +// Allow command line reparsing. Disables the error normally +// generated when an unknown flag is found, since it may be found in a +// later parse. Thread-hostile; meant to be called before any threads +// are spawned. +extern GFLAGS_DLL_DECL void AllowCommandLineReparsing(); + +// Reparse the flags that have not yet been recognized. Only flags +// registered since the last parse will be recognized. Any flag value +// must be provided as part of the argument using "=", not as a +// separate command line argument that follows the flag argument. +// Intended for handling flags from dynamically loaded libraries, +// since their flags are not registered until they are loaded. +extern GFLAGS_DLL_DECL void ReparseCommandLineNonHelpFlags(); + +// Clean up memory allocated by flags. This is only needed to reduce +// the quantity of "potentially leaked" reports emitted by memory +// debugging tools such as valgrind. It is not required for normal +// operation, or for the google perftools heap-checker. It must only +// be called when the process is about to exit, and all threads that +// might access flags are quiescent. Referencing flags after this is +// called will have unexpected consequences. This is not safe to run +// when multiple threads might be running: the function is +// thread-hostile. +extern GFLAGS_DLL_DECL void ShutDownCommandLineFlags(); + + +// -------------------------------------------------------------------- +// Now come the command line flag declaration/definition macros that +// will actually be used. They're kind of hairy. A major reason +// for this is initialization: we want people to be able to access +// variables in global constructors and have that not crash, even if +// their global constructor runs before the global constructor here. +// (Obviously, we can't guarantee the flags will have the correct +// default value in that case, but at least accessing them is safe.) +// The only way to do that is have flags point to a static buffer. +// So we make one, using a union to ensure proper alignment, and +// then use placement-new to actually set up the flag with the +// correct default value. In the same vein, we have to worry about +// flag access in global destructors, so FlagRegisterer has to be +// careful never to destroy the flag-values it constructs. +// +// Note that when we define a flag variable FLAGS_, we also +// preemptively define a junk variable, FLAGS_no. This is to +// cause a link-time error if someone tries to define 2 flags with +// names like "logging" and "nologging". We do this because a bool +// flag FLAG can be set from the command line to true with a "-FLAG" +// argument, and to false with a "-noFLAG" argument, and so this can +// potentially avert confusion. +// +// We also put flags into their own namespace. It is purposefully +// named in an opaque way that people should have trouble typing +// directly. The idea is that DEFINE puts the flag in the weird +// namespace, and DECLARE imports the flag from there into the current +// namespace. The net result is to force people to use DECLARE to get +// access to a flag, rather than saying "extern GFLAGS_DLL_DECL bool FLAGS_whatever;" +// or some such instead. We want this so we can put extra +// functionality (like sanity-checking) in DECLARE if we want, and +// make sure it is picked up everywhere. +// +// We also put the type of the variable in the namespace, so that +// people can't DECLARE_int32 something that they DEFINE_bool'd +// elsewhere. + +class GFLAGS_DLL_DECL FlagRegisterer { + public: + // We instantiate this template ctor for all supported types, + // so it is possible to place implementation of the FlagRegisterer ctor in + // .cc file. + // Calling this constructor with unsupported type will produce linker error. + template + FlagRegisterer(const char* name, + const char* help, const char* filename, + FlagType* current_storage, FlagType* defvalue_storage); +}; + +// Force compiler to not generate code for the given template specialization. +#if defined(_MSC_VER) && _MSC_VER < 1800 // Visual Studio 2013 version 12.0 + #define GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(type) +#else + #define GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(type) \ + extern template GFLAGS_DLL_DECL FlagRegisterer::FlagRegisterer( \ + const char* name, const char* help, const char* filename, \ + type* current_storage, type* defvalue_storage) +#endif + +// Do this for all supported flag types. +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(bool); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(int32); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(uint32); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(int64); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(uint64); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(double); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(std::string); + +#undef GFLAGS_DECLARE_FLAG_REGISTERER_CTOR + +// If your application #defines STRIP_FLAG_HELP to a non-zero value +// before #including this file, we remove the help message from the +// binary file. This can reduce the size of the resulting binary +// somewhat, and may also be useful for security reasons. + +extern GFLAGS_DLL_DECL const char kStrippedFlagHelp[]; + + +} // namespace GFLAGS_NAMESPACE + + +#ifndef SWIG // In swig, ignore the main flag declarations + +#if defined(STRIP_FLAG_HELP) && STRIP_FLAG_HELP > 0 +// Need this construct to avoid the 'defined but not used' warning. +#define MAYBE_STRIPPED_HELP(txt) \ + (false ? (txt) : GFLAGS_NAMESPACE::kStrippedFlagHelp) +#else +#define MAYBE_STRIPPED_HELP(txt) txt +#endif + +// Each command-line flag has two variables associated with it: one +// with the current value, and one with the default value. However, +// we have a third variable, which is where value is assigned; it's a +// constant. This guarantees that FLAG_##value is initialized at +// static initialization time (e.g. before program-start) rather than +// than global construction time (which is after program-start but +// before main), at least when 'value' is a compile-time constant. We +// use a small trick for the "default value" variable, and call it +// FLAGS_no. This serves the second purpose of assuring a +// compile error if someone tries to define a flag named no +// which is illegal (--foo and --nofoo both affect the "foo" flag). +#define DEFINE_VARIABLE(type, shorttype, name, value, help) \ + namespace fL##shorttype { \ + static const type FLAGS_nono##name = value; \ + /* We always want to export defined variables, dll or no */ \ + GFLAGS_DLL_DEFINE_FLAG type FLAGS_##name = FLAGS_nono##name; \ + static type FLAGS_no##name = FLAGS_nono##name; \ + static GFLAGS_NAMESPACE::FlagRegisterer o_##name( \ + #name, MAYBE_STRIPPED_HELP(help), __FILE__, \ + &FLAGS_##name, &FLAGS_no##name); \ + } \ + using fL##shorttype::FLAGS_##name + +// For DEFINE_bool, we want to do the extra check that the passed-in +// value is actually a bool, and not a string or something that can be +// coerced to a bool. These declarations (no definition needed!) will +// help us do that, and never evaluate From, which is important. +// We'll use 'sizeof(IsBool(val))' to distinguish. This code requires +// that the compiler have different sizes for bool & double. Since +// this is not guaranteed by the standard, we check it with a +// COMPILE_ASSERT. +namespace fLB { +struct CompileAssert {}; +typedef CompileAssert expected_sizeof_double_neq_sizeof_bool[ + (sizeof(double) != sizeof(bool)) ? 1 : -1]; +template double GFLAGS_DLL_DECL IsBoolFlag(const From& from); +GFLAGS_DLL_DECL bool IsBoolFlag(bool from); +} // namespace fLB + +// Here are the actual DEFINE_*-macros. The respective DECLARE_*-macros +// are in a separate include, gflags_declare.h, for reducing +// the physical transitive size for DECLARE use. +#define DEFINE_bool(name, val, txt) \ + namespace fLB { \ + typedef ::fLB::CompileAssert FLAG_##name##_value_is_not_a_bool[ \ + (sizeof(::fLB::IsBoolFlag(val)) != sizeof(double))? 1: -1]; \ + } \ + DEFINE_VARIABLE(bool, B, name, val, txt) + +#define DEFINE_int32(name, val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::int32, I, \ + name, val, txt) + +#define DEFINE_uint32(name,val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::uint32, U, \ + name, val, txt) + +#define DEFINE_int64(name, val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::int64, I64, \ + name, val, txt) + +#define DEFINE_uint64(name,val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::uint64, U64, \ + name, val, txt) + +#define DEFINE_double(name, val, txt) \ + DEFINE_VARIABLE(double, D, name, val, txt) + +// Strings are trickier, because they're not a POD, so we can't +// construct them at static-initialization time (instead they get +// constructed at global-constructor time, which is much later). To +// try to avoid crashes in that case, we use a char buffer to store +// the string, which we can static-initialize, and then placement-new +// into it later. It's not perfect, but the best we can do. + +namespace fLS { + +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + const char *value) { + return new(stringspot) clstring(value); +} +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + const clstring &value) { + return new(stringspot) clstring(value); +} +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + int value); + +// Auxiliary class used to explicitly call destructor of string objects +// allocated using placement new during static program deinitialization. +// The destructor MUST be an inline function such that the explicit +// destruction occurs in the same compilation unit as the placement new. +class StringFlagDestructor { + void *current_storage_; + void *defvalue_storage_; + +public: + + StringFlagDestructor(void *current, void *defvalue) + : current_storage_(current), defvalue_storage_(defvalue) {} + + ~StringFlagDestructor() { + reinterpret_cast(current_storage_ )->~clstring(); + reinterpret_cast(defvalue_storage_)->~clstring(); + } +}; + +} // namespace fLS + +// We need to define a var named FLAGS_no##name so people don't define +// --string and --nostring. And we need a temporary place to put val +// so we don't have to evaluate it twice. Two great needs that go +// great together! +// The weird 'using' + 'extern' inside the fLS namespace is to work around +// an unknown compiler bug/issue with the gcc 4.2.1 on SUSE 10. See +// http://code.google.com/p/google-gflags/issues/detail?id=20 +#define DEFINE_string(name, val, txt) \ + namespace fLS { \ + using ::fLS::clstring; \ + using ::fLS::StringFlagDestructor; \ + static union { void* align; char s[sizeof(clstring)]; } s_##name[2]; \ + clstring* const FLAGS_no##name = ::fLS:: \ + dont_pass0toDEFINE_string(s_##name[0].s, \ + val); \ + static GFLAGS_NAMESPACE::FlagRegisterer o_##name( \ + #name, MAYBE_STRIPPED_HELP(txt), __FILE__, \ + FLAGS_no##name, new (s_##name[1].s) clstring(*FLAGS_no##name)); \ + static StringFlagDestructor d_##name(s_##name[0].s, s_##name[1].s); \ + extern GFLAGS_DLL_DEFINE_FLAG clstring& FLAGS_##name; \ + using fLS::FLAGS_##name; \ + clstring& FLAGS_##name = *FLAGS_no##name; \ + } \ + using fLS::FLAGS_##name + +#endif // SWIG + +// Import gflags library symbols into alternative/deprecated namespace(s) +#include "gflags_gflags.h" +#endif // GFLAGS_GFLAGS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_completions.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_completions.h new file mode 100644 index 0000000000000000000000000000000000000000..15637eb3de853a79eccb9e7ba71771c607767a2e --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_completions.h @@ -0,0 +1,119 @@ +// Copyright (c) 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// --- + +// +// Implement helpful bash-style command line flag completions +// +// ** Functional API: +// HandleCommandLineCompletions() should be called early during +// program startup, but after command line flag code has been +// initialized, such as the beginning of HandleCommandLineHelpFlags(). +// It checks the value of the flag --tab_completion_word. If this +// flag is empty, nothing happens here. If it contains a string, +// however, then HandleCommandLineCompletions() will hijack the +// process, attempting to identify the intention behind this +// completion. Regardless of the outcome of this deduction, the +// process will be terminated, similar to --helpshort flag +// handling. +// +// ** Overview of Bash completions: +// Bash can be told to programatically determine completions for the +// current 'cursor word'. It does this by (in this case) invoking a +// command with some additional arguments identifying the command +// being executed, the word being completed, and the previous word +// (if any). Bash then expects a sequence of output lines to be +// printed to stdout. If these lines all contain a common prefix +// longer than the cursor word, bash will replace the cursor word +// with that common prefix, and display nothing. If there isn't such +// a common prefix, bash will display the lines in pages using 'more'. +// +// ** Strategy taken for command line completions: +// If we can deduce either the exact flag intended, or a common flag +// prefix, we'll output exactly that. Otherwise, if information +// must be displayed to the user, we'll take the opportunity to add +// some helpful information beyond just the flag name (specifically, +// we'll include the default flag value and as much of the flag's +// description as can fit on a single terminal line width, as specified +// by the flag --tab_completion_columns). Furthermore, we'll try to +// make bash order the output such that the most useful or relevent +// flags are the most likely to be shown at the top. +// +// ** Additional features: +// To assist in finding that one really useful flag, substring matching +// was implemented. Before pressing a to get completion for the +// current word, you can append one or more '?' to the flag to do +// substring matching. Here's the semantics: +// --foo Show me all flags with names prefixed by 'foo' +// --foo? Show me all flags with 'foo' somewhere in the name +// --foo?? Same as prior case, but also search in module +// definition path for 'foo' +// --foo??? Same as prior case, but also search in flag +// descriptions for 'foo' +// Finally, we'll trim the output to a relatively small number of +// flags to keep bash quiet about the verbosity of output. If one +// really wanted to see all possible matches, appending a '+' to the +// search word will force the exhaustive list of matches to be printed. +// +// ** How to have bash accept completions from a binary: +// Bash requires that it be informed about each command that programmatic +// completion should be enabled for. Example addition to a .bashrc +// file would be (your path to gflags_completions.sh file may differ): + +/* +$ complete -o bashdefault -o default -o nospace -C \ + '/home/build/eng/bash/bash_completions.sh --tab_completion_columns $COLUMNS' \ + time env binary_name another_binary [...] +*/ + +// This would allow the following to work: +// $ /path/to/binary_name --vmodule +// Or: +// $ ./bin/path/another_binary --gfs_u +// (etc) +// +// Sadly, it appears that bash gives no easy way to force this behavior for +// all commands. That's where the "time" in the above example comes in. +// If you haven't specifically added a command to the list of completion +// supported commands, you can still get completions by prefixing the +// entire command with "env". +// $ env /some/brand/new/binary --vmod +// Assuming that "binary" is a newly compiled binary, this should still +// produce the expected completion output. + + +#ifndef GFLAGS_COMPLETIONS_H_ +#define GFLAGS_COMPLETIONS_H_ + +namespace google { +extern void HandleCommandLineCompletions(void); +} + +#endif // GFLAGS_COMPLETIONS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_declare.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_declare.h new file mode 100644 index 0000000000000000000000000000000000000000..a9c6759707846f63ab97a66c13cb446975364448 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_declare.h @@ -0,0 +1,155 @@ +// Copyright (c) 1999, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// --- +// +// Revamped and reorganized by Craig Silverstein +// +// This is the file that should be included by any file which declares +// command line flag. + +#ifndef GFLAGS_DECLARE_H_ +#define GFLAGS_DECLARE_H_ + + +// --------------------------------------------------------------------------- +// Namespace of gflags library symbols. +#define GFLAGS_NAMESPACE google + +// --------------------------------------------------------------------------- +// Windows DLL import/export. + +// Whether gflags library is a DLL. +// +// Set to 1 by default when the shared gflags library was built on Windows. +// Must be overwritten when this header file is used with the optionally also +// built static library instead; set by CMake's INTERFACE_COMPILE_DEFINITIONS. +#ifndef GFLAGS_IS_A_DLL +# define GFLAGS_IS_A_DLL 1 +#endif + +// We always want to import the symbols of the gflags library. +#ifndef GFLAGS_DLL_DECL +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DECL __declspec(dllimport) +# elif defined(__GNUC__) && __GNUC__ >= 4 +# define GFLAGS_DLL_DECL __attribute__((visibility("default"))) +# else +# define GFLAGS_DLL_DECL +# endif +#endif + +// We always want to import variables declared in user code. +#ifndef GFLAGS_DLL_DECLARE_FLAG +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DECLARE_FLAG __declspec(dllimport) +# elif defined(__GNUC__) && __GNUC__ >= 4 +# define GFLAGS_DLL_DECLARE_FLAG __attribute__((visibility("default"))) +# else +# define GFLAGS_DLL_DECLARE_FLAG +# endif +#endif + +// --------------------------------------------------------------------------- +// Flag types +#include +#if 1 +# include // the normal place uint32_t is defined +#elif 1 +# include // the normal place u_int32_t is defined +#elif 1 +# include // a third place for uint32_t or u_int32_t +#endif + +namespace GFLAGS_NAMESPACE { + +#if 1 // C99 +typedef int32_t int32; +typedef uint32_t uint32; +typedef int64_t int64; +typedef uint64_t uint64; +#elif 0 // BSD +typedef int32_t int32; +typedef u_int32_t uint32; +typedef int64_t int64; +typedef u_int64_t uint64; +#elif 0 // Windows +typedef __int32 int32; +typedef unsigned __int32 uint32; +typedef __int64 int64; +typedef unsigned __int64 uint64; +#else +# error Do not know how to define a 32-bit integer quantity on your system +#endif + +} // namespace GFLAGS_NAMESPACE + + +namespace fLS { + +// The meaning of "string" might be different between now and when the +// macros below get invoked (e.g., if someone is experimenting with +// other string implementations that get defined after this file is +// included). Save the current meaning now and use it in the macros. +typedef std::string clstring; + +} // namespace fLS + + +#define DECLARE_VARIABLE(type, shorttype, name) \ + /* We always want to import declared variables, dll or no */ \ + namespace fL##shorttype { extern GFLAGS_DLL_DECLARE_FLAG type FLAGS_##name; } \ + using fL##shorttype::FLAGS_##name + +#define DECLARE_bool(name) \ + DECLARE_VARIABLE(bool, B, name) + +#define DECLARE_int32(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::int32, I, name) + +#define DECLARE_uint32(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::uint32, U, name) + +#define DECLARE_int64(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::int64, I64, name) + +#define DECLARE_uint64(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::uint64, U64, name) + +#define DECLARE_double(name) \ + DECLARE_VARIABLE(double, D, name) + +#define DECLARE_string(name) \ + /* We always want to import declared variables, dll or no */ \ + namespace fLS { \ + extern GFLAGS_DLL_DECLARE_FLAG ::fLS::clstring& FLAGS_##name; \ + } \ + using fLS::FLAGS_##name + +#endif // GFLAGS_DECLARE_H_ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_gflags.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_gflags.h new file mode 100644 index 0000000000000000000000000000000000000000..3780704e1caa005e3102c189291b73a1972fa080 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/gflags/gflags_gflags.h @@ -0,0 +1,99 @@ +// Copyright (c) 2014, Andreas Schuh +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// ----------------------------------------------------------------------------- +// Imports the gflags library symbols into an alternative/deprecated namespace. + +#ifndef GFLAGS_GFLAGS_H_ +# error The internal header gflags_gflags.h may only be included by gflags.h +#endif + +#ifndef GFLAGS_NS_GFLAGS_H_ +#define GFLAGS_NS_GFLAGS_H_ + + +namespace gflags { + + +using GFLAGS_NAMESPACE::int32; +using GFLAGS_NAMESPACE::uint32; +using GFLAGS_NAMESPACE::int64; +using GFLAGS_NAMESPACE::uint64; + +using GFLAGS_NAMESPACE::RegisterFlagValidator; +using GFLAGS_NAMESPACE::CommandLineFlagInfo; +using GFLAGS_NAMESPACE::GetAllFlags; +using GFLAGS_NAMESPACE::ShowUsageWithFlags; +using GFLAGS_NAMESPACE::ShowUsageWithFlagsRestrict; +using GFLAGS_NAMESPACE::DescribeOneFlag; +using GFLAGS_NAMESPACE::SetArgv; +using GFLAGS_NAMESPACE::GetArgvs; +using GFLAGS_NAMESPACE::GetArgv; +using GFLAGS_NAMESPACE::GetArgv0; +using GFLAGS_NAMESPACE::GetArgvSum; +using GFLAGS_NAMESPACE::ProgramInvocationName; +using GFLAGS_NAMESPACE::ProgramInvocationShortName; +using GFLAGS_NAMESPACE::ProgramUsage; +using GFLAGS_NAMESPACE::VersionString; +using GFLAGS_NAMESPACE::GetCommandLineOption; +using GFLAGS_NAMESPACE::GetCommandLineFlagInfo; +using GFLAGS_NAMESPACE::GetCommandLineFlagInfoOrDie; +using GFLAGS_NAMESPACE::FlagSettingMode; +using GFLAGS_NAMESPACE::SET_FLAGS_VALUE; +using GFLAGS_NAMESPACE::SET_FLAG_IF_DEFAULT; +using GFLAGS_NAMESPACE::SET_FLAGS_DEFAULT; +using GFLAGS_NAMESPACE::SetCommandLineOption; +using GFLAGS_NAMESPACE::SetCommandLineOptionWithMode; +using GFLAGS_NAMESPACE::FlagSaver; +using GFLAGS_NAMESPACE::CommandlineFlagsIntoString; +using GFLAGS_NAMESPACE::ReadFlagsFromString; +using GFLAGS_NAMESPACE::AppendFlagsIntoFile; +using GFLAGS_NAMESPACE::ReadFromFlagsFile; +using GFLAGS_NAMESPACE::BoolFromEnv; +using GFLAGS_NAMESPACE::Int32FromEnv; +using GFLAGS_NAMESPACE::Uint32FromEnv; +using GFLAGS_NAMESPACE::Int64FromEnv; +using GFLAGS_NAMESPACE::Uint64FromEnv; +using GFLAGS_NAMESPACE::DoubleFromEnv; +using GFLAGS_NAMESPACE::StringFromEnv; +using GFLAGS_NAMESPACE::SetUsageMessage; +using GFLAGS_NAMESPACE::SetVersionString; +using GFLAGS_NAMESPACE::ParseCommandLineNonHelpFlags; +using GFLAGS_NAMESPACE::HandleCommandLineHelpFlags; +using GFLAGS_NAMESPACE::AllowCommandLineReparsing; +using GFLAGS_NAMESPACE::ReparseCommandLineNonHelpFlags; +using GFLAGS_NAMESPACE::ShutDownCommandLineFlags; +using GFLAGS_NAMESPACE::FlagRegisterer; + +#ifndef SWIG +using GFLAGS_NAMESPACE::ParseCommandLineFlags; +#endif + +} // namespace gflags +#endif // GFLAGS_NS_GFLAGS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/infer_engine.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/infer_engine.h new file mode 100644 index 0000000000000000000000000000000000000000..cc7c5e0aa74b720099c01808be36fd4586ceec12 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/infer_engine.h @@ -0,0 +1,45 @@ +#ifndef BENCHMARK_INFER_ENGINE_H +#define BENCHMARK_INFER_ENGINE_H +#include "util.h" +#include "acl/acl_base.h" +#include "post_process.h" +#include +#include +#include +#include +#include +#include "acl/acl_mdl.h" +#include +#include + +aclError InitContext(const char* configPath = ""); +aclError UnInitContext(); +aclError LoadModel(); +aclError InitInput(std::vector files); +aclError Inference(); +aclError PostProcess(); +aclError DvppSetup(); +aclError DvppInitInput(std::vector files); +aclError UnloadModel(); +void getImgResizeShape(); +acldvppRoiConfig* InitCropRoiConfig(uint32_t width, uint32_t height); + +/* + * @brief : 初始化中心抠图配置信息。 + * @param [in] uint32_t newInputWidth : 输入图像的宽(等比例缩放后的宽度) + * @param [in] uint32_t newInputHeight : 输入图像的高(等比例缩放后的高) + * @param [in] uint32_t modelInputWidth : 中心抠图后输入给模型的宽 + * @param [in] uint32_t modelInputHeight : 中心抠图后输入给模型的高 + * @return : acldvppRoiConfig:中心抠图配置信息 + */ +acldvppRoiConfig* InitCropCenterRoiConfig(uint32_t newInputWidth, uint32_t newInputHeight,uint32_t modelInputWidth, uint32_t modelInputHeight); + +/* + * @brief : 宽高较短的边缩放至RESIZE_MIN(256),较长的边做等比例缩放。 + * @param [in] uint32_t width : 输入图片宽 + * @param [in] uint32_t height : 输入图片高 + * @param [in] uint32_t &newInputWidth : 等比例缩放后的宽 + * @param [in] uint32_t &newInputHeight : 等比例缩放后的高 + */ +void SmallSizeAtLeast(uint32_t width, uint32_t height, uint32_t& newInputWidth, uint32_t& newInputHeigh); +#endif diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/post_process.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/post_process.h new file mode 100644 index 0000000000000000000000000000000000000000..d413c66567109cb8647cf7b385ad66478f217af8 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/post_process.h @@ -0,0 +1,5 @@ +#ifndef BENCHMARK_POST_PROCESS_H +#define BENCHMARK_POST_PROCESS_H +#include "util.h" +aclError SaveBinPostprocess(); +#endif diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/util.h b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/util.h new file mode 100644 index 0000000000000000000000000000000000000000..734db74083d316e3c6fdc52c3f5caf0548789684 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/inc/util.h @@ -0,0 +1,157 @@ +#ifndef BENCHMARK_UTIL_H +#define BENCHMARK_UTIL_H +#include +#include +#include +#include "acl/acl_base.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include "acl/acl_rt.h" +#include "acl/ops/acl_dvpp.h" +#include +#include +#include +#include +#include +#include + +// self defined problem code. +const int ACL_ERROR_PATH_INVALID = 101; +const int ACL_ERROR_CREATE_DATASET_FAILED = 102; +const int ACL_ERROR_PARSE_PARAM_FAILED = 103; +const int ACL_ERROR_DVPP_ERROR = 104; +const int ACL_ERROR_OTHERS = 255; +#define MODEL_INPUT_NUM_MAX (4) +#define MODEL_INPUT_OUTPUT_NUM_MAX (16) + +#define LOG(fmt, args...) \ + do { \ + printf(fmt, ##args); \ + } while(0) + + +#define START_PROC \ + struct timeval start, end; \ + long long time_use; \ + do { \ + gettimeofday(&start, NULL); \ + } while (0); + + +#define END_PROC \ + do { \ + gettimeofday(&end, NULL); \ + time_use = (end.tv_sec-start.tv_sec)*1000000+(end.tv_usec-start.tv_usec); \ + LOG("time use: %lld us\n", time_use); \ + } while (0); + + +#define CHECK_ACL_RET(msg, ret) \ + if (ret != ACL_ERROR_NONE) { \ + std::cout << msg << ", ret "<< ret << std::endl; \ + return ret; \ + } + + +#define CHECK_WITH_RET(condition, ret, msg) \ + if(!(condition)) { \ + std::cout << msg << ", ret "<< ret << std::endl; \ + return ret; \ + } + + +#define CHECK_RET(ret) \ + if(ret != ACL_ERROR_NONE) { \ + return ret; \ + } + +bool FolderExists(std::string foldname); + +bool FileExists(std::string filename); + +char* ReadBinFile(std::string fileName, uint32_t& fileSize); + +aclError GetFiles(std::string path, std::vector& files); + +aclError FreeDevMemory(aclmdlDataset* dataset); + +aclError DestroyDatasetResurce(aclmdlDataset* dataset, uint32_t flag); + +void* ReadFile(std::string fileLocation, uint64_t &fileSize); + +struct DvppConfig { + uint32_t resizedWidth; + uint32_t resizedHeight; + std::unordered_map> imgSizes; +}; + +struct ModelInfo +{ + aclFormat Format; + const char* Name; + size_t size; + size_t dimCount; + int64_t dims[ACL_MAX_DIM_CNT]; + aclDataType Type; +}; + +struct Config { + std::string om; + std::string dataDir; + std::string outDir; + DvppConfig dvppConfig; + bool useDvpp; + size_t batchSize; + ModelInfo inputInfo[MODEL_INPUT_OUTPUT_NUM_MAX]; + ModelInfo outputInfo[MODEL_INPUT_OUTPUT_NUM_MAX]; + size_t inputNum; + size_t outputNum; + aclmdlDesc* modelDesc; + uint32_t modelId; + aclrtContext context; + char* modelData_ptr; + void* devMem_ptr; + void* weightMem_ptr; + std::string imgType; + std::string modelType; + uint32_t deviceId; + uint32_t loopNum; + std::string framework; + int64_t curOutputSize[MODEL_INPUT_OUTPUT_NUM_MAX]; + Config() + { + om = ""; + dataDir = ""; + batchSize = 0; + useDvpp = 0; + inputNum = 0; + outputNum = 0; + modelDesc = nullptr; + modelId = 0; + context = nullptr; + imgType = ""; + modelType = ""; + deviceId = 0; + loopNum = 1; + framework = "caffe"; + outDir = "../../results"; + modelData_ptr = nullptr; + devMem_ptr = nullptr; + weightMem_ptr = nullptr; + } +}; + +struct Resnet50Result { + int top1; + int top5; + int total; + std::unordered_map cmp; + Resnet50Result(): top1(0), top5(0), total(0) {}; +}; + +struct DataFrame { + std::vector fileNames; + aclmdlDataset* dataset; +}; + +#endif diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/infer_engine.cpp b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/infer_engine.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7f2b8507a510844689239d71443d8b4b4480be3d --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/infer_engine.cpp @@ -0,0 +1,728 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "acl/acl.h" +#include "infer_engine.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include "acl/ops/acl_dvpp.h" +#include +#include +using namespace std; + +std::unordered_map dvppTime; +extern Resnet50Result resnet50Res; +extern Config cfg; +extern aclError ret; +extern int processedCnt; +extern long long inferTime; +aclrtContext context; +uint32_t modelId; +aclmdlDesc *modelDesc; +std::vector files; +DataFrame inputDataframe; +DataFrame outputDataframe; +aclDataBuffer *yoloImgInfo; +aclrtStream stream = nullptr; +acldvppChannelDesc *dvpp_channel_desc = nullptr; +std::unordered_map> imgSizes; + +#define RESIZE_MIN 256 +#define NUM_2 2 +#define NUM_3 3 +#define NUM_16 16 +#define NUM_128 128 + +uint32_t resizedWidth; +uint32_t resizedHeight; +uint32_t resizedWidthAligned; +uint32_t resizedHeightAligned; +uint32_t resizedOutputBufferSize; + +void getImgResizeShape() +{ + if (ACL_FORMAT_NCHW == cfg.inputInfo[0].Format) { + resizedHeight = cfg.inputInfo[0].dims[NUM_2]; + resizedWidth = cfg.inputInfo[0].dims[NUM_3]; + } else if (ACL_FORMAT_NHWC == cfg.inputInfo[0].Format) { + resizedHeight = cfg.inputInfo[0].dims[1]; + resizedWidth = cfg.inputInfo[0].dims[NUM_2]; + } + return; +} + +aclError InitContext(const char *configPath) +{ + LOG("context init start\n"); + ret = aclInit(configPath); + CHECK_ACL_RET("acl init failed", ret); + + ret = aclrtSetDevice(cfg.deviceId); + CHECK_ACL_RET("open device failed ret", ret); + + ret = aclrtCreateContext(&context, cfg.deviceId); + CHECK_ACL_RET("create context failed", ret); + + cfg.context = context; + LOG("context init done\n"); + return ACL_ERROR_NONE; +} + +aclError UnInitContext() +{ + ret = aclrtDestroyContext(context); + CHECK_ACL_RET("destory context failed", ret); + LOG("destory context done\n"); + + ret = aclrtResetDevice(cfg.deviceId); + CHECK_ACL_RET("reset device failed", ret); + + ret = aclFinalize(); + CHECK_ACL_RET("finalize failed", ret); + LOG("reset device done\n"); + + return ACL_ERROR_NONE; +} + +aclError LoadModel() +{ + LOG("load model start\n"); + size_t memSize; + size_t weightsize; + uint32_t modelSize = 0; + std::string modelPath = cfg.om; + + cfg.modelData_ptr = ReadBinFile(modelPath, modelSize); + CHECK_WITH_RET(cfg.modelData_ptr != nullptr, ACL_ERROR_READ_MODEL_FAILURE, "can't read model"); + + aclError ret = aclmdlQuerySizeFromMem(cfg.modelData_ptr, modelSize, &memSize, &weightsize); + CHECK_ACL_RET("query memory size failed", ret); + + ret = aclrtMalloc(&(cfg.devMem_ptr), memSize, ACL_MEM_MALLOC_HUGE_ONLY); + CHECK_ACL_RET("alloc dev_ptr failed", ret); + ret = aclrtMalloc(&(cfg.weightMem_ptr), weightsize, ACL_MEM_MALLOC_HUGE_ONLY); + CHECK_ACL_RET("alloc weight_ptr failed", ret); + + ret = aclmdlLoadFromMemWithMem(cfg.modelData_ptr, modelSize, &modelId, cfg.devMem_ptr, memSize, cfg.weightMem_ptr, + weightsize); + CHECK_ACL_RET("load model from memory failed", ret); + LOG("Load model success. memSize: %lu, weightSize: %lu.\n", memSize, weightsize); + + modelDesc = aclmdlCreateDesc(); + CHECK_WITH_RET(modelDesc != nullptr, ACL_ERROR_READ_MODEL_FAILURE, "create model desc failed"); + ret = aclmdlGetDesc(modelDesc, modelId); + CHECK_ACL_RET("get model desc failed", ret); + + cfg.modelDesc = modelDesc; + cfg.modelId = modelId; + + LOG("load model done\n"); + return ACL_ERROR_NONE; +} + +aclError DvppSetup() +{ + ret = aclrtSetCurrentContext(context); + if (ret != ACL_ERROR_NONE) { + LOG("Set context failed\n"); + return ret; + } + + ret = aclrtCreateStream(&stream); + if (ret != ACL_ERROR_NONE) { + LOG("create dvpp stream failed\n"); + return ret; + } + + dvpp_channel_desc = acldvppCreateChannelDesc(); + if (dvpp_channel_desc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create dvpp channel desc failed\n"); + return ret; + } + + ret = acldvppCreateChannel(dvpp_channel_desc); + if (ret != ACL_ERROR_NONE) { + LOG("create dvpp channel failed\n"); + return ret; + } + + imgSizes = cfg.dvppConfig.imgSizes; + + resizedWidthAligned = (resizedWidth + 15) / NUM_16 * NUM_16; + resizedHeightAligned = (resizedHeight + 1) / NUM_2 * NUM_2; + + resizedOutputBufferSize = resizedWidthAligned * resizedHeightAligned * NUM_3 / NUM_2; + LOG("resizedWidth %d resizedHeight %d resizedWidthAligned %d resizedHeightAligned %d resizedOutputBufferSize %d\n", + resizedWidth, resizedHeight, resizedWidthAligned, resizedHeightAligned, resizedOutputBufferSize); + + return ACL_ERROR_NONE; +} + +/* + * @brief : 生成dvpp图像描述信息 + * @param [in] void *dataDev : 码流buffer信息. + * @param [in] acldvppPixelFormat format: 图像格式 + * @param [in] uint32_t width : 宽度 + * @param [in] uint32_t height: 高度 + * @param [in] uint32_t widthStride : 宽度对齐. + * @param [in] uint32_t heightStride: 高度对齐. + * @param [in] uint32_t size: 码流大小. + * @return : acldvppPicDesc:图像描述信息 + */ +acldvppPicDesc *createDvppPicDesc(void *dataDev, acldvppPixelFormat format, uint32_t width, uint32_t height, + uint32_t widthStride, uint32_t heightStride, uint32_t size) +{ + acldvppPicDesc *picDesc = acldvppCreatePicDesc(); + if (picDesc == nullptr) { + LOG("failed to create pic desc\n"); + return nullptr; + } + + ret = acldvppSetPicDescData(picDesc, dataDev); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc data\n"); + return nullptr; + } + ret = acldvppSetPicDescSize(picDesc, size); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc size\n"); + return nullptr; + } + + ret = acldvppSetPicDescFormat(picDesc, format); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc format\n"); + return nullptr; + } + + ret = acldvppSetPicDescWidth(picDesc, width); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc width\n"); + return nullptr; + } + + ret = acldvppSetPicDescHeight(picDesc, height); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc height\n"); + return nullptr; + } + + ret = acldvppSetPicDescWidthStride(picDesc, widthStride); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc widthStride\n"); + return nullptr; + } + + ret = acldvppSetPicDescHeightStride(picDesc, heightStride); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc heightStride\n"); + return nullptr; + } + return picDesc; +} + +aclError InitInput(std::vector files) +{ + LOG("init input batch %d start\n", processedCnt); + ret = aclrtSetCurrentContext(context); + if (ret != ACL_ERROR_NONE) { + LOG("Set context failed, ret[%d]\n", ret); + return ret; + } + + size_t modelInputSize = cfg.inputInfo[0].size; + size_t imgSize = modelInputSize / cfg.batchSize; + + void *dst; + ret = aclrtMalloc(&dst, modelInputSize, ACL_MEM_MALLOC_NORMAL_ONLY); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc device failed, ret[%d]\n", ret); + return ret; + } + LOG("dst = %p, size = %ld\n", dst, modelInputSize); + + char *ptr = (char *)dst; + inputDataframe.fileNames.clear(); + for (int i = 0; i < files.size(); i++) { + + std::string fileLocation = cfg.dataDir + "/" + files[i]; + FILE *pFile = fopen(fileLocation.c_str(), "r"); + + if (pFile == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("open file %s failed\n", fileLocation.c_str()); + return ret; + } + + fseek(pFile, 0, SEEK_END); + size_t fileSize = ftell(pFile); + + if (fileSize > imgSize) { + ret = ACL_ERROR_OTHERS; + LOG("%s fileSize %lu * batch %lu don't match with model inputSize %lu\n", fileLocation.c_str(), + fileSize, cfg.batchSize, modelInputSize); + return ret; + } + + void *buff = nullptr; + ret = aclrtMallocHost(&buff, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host buff failed[%d]\n", ret); + return ret; + } + + rewind(pFile); + fread(buff, sizeof(char), fileSize, pFile); + fclose(pFile); + + void *dstTmp = (void *)ptr; + ret = aclrtMemcpy(dstTmp, fileSize, buff, fileSize, ACL_MEMCPY_HOST_TO_DEVICE); + ptr += fileSize; + LOG("input file: %s, memory addr: %p, file size: %ld\n",files[i].c_str(), dstTmp, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("init input %d, Copy host to device failed, ret[%d]\n", i, ret); + LOG("input addr %p, len %ld\n", dstTmp, fileSize); + aclrtFreeHost(buff); + return ret; + } + + aclrtFreeHost(buff); + inputDataframe.fileNames.push_back(files[i]); + } + + aclDataBuffer *inputData = aclCreateDataBuffer((void *)dst, modelInputSize); + if (inputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("aclCreateDataBuffer failed\n"); + return ret; + } + + aclmdlDataset *input = aclmdlCreateDataset(); + ret = aclmdlAddDatasetBuffer(input, inputData); + if (ret != ACL_ERROR_NONE) { + LOG("ACL_ModelInputDataAdd failed, ret[%d]\n", ret); + aclmdlDestroyDataset(input); + return ret; + } + + inputDataframe.dataset = input; + LOG("init input batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} + +/* + * @brief : 获取图像宽高 + * @param [in] void* buff : 输入码流地址. + * @param [in] uint32_t fileSize : 输入码流长度 + * @param [in] std::string fileLocation : 输入文件路径. + * @param [in] uint32_t &W : 输入码流宽度. + * @param [in] uint32_t &H : 输入码流高度. + */ +void GetImageHW(void* buff, uint32_t fileSize, std::string fileLocation, uint32_t &W, uint32_t &H) +{ + int32_t components = 0; + ret = acldvppJpegGetImageInfo((void *)buff, fileSize, &W, &H, &components); + if (ret != ACL_ERROR_NONE) { + cout << "acldvppJpegGetImageInfo failed, ret " << ret << "filename: " << fileLocation.c_str() << endl; + } +} + +/* + * @brief : dvpp在推理中的预处理流程 + * @param [in] string fileLocation : 输入文件路径. + * @param [in] char *&ptr : 输出buffer指针. + * @return : ACL_ERROR_NONE:预处理成功, 其他:预处理失败 + */ +aclError DVPP_Resnet50(std::string fileLocation, char *&ptr) +{ + // 1 获取输入码流 + uint32_t W, H, W_Aligned, H_Aligned, outputBuffSize; + void *decodeInput = nullptr; + void *decodeOutput = nullptr; + acldvppPicDesc *decodeOutputDesc = nullptr; + uint64_t fileSize; + void *buff = ReadFile(fileLocation, fileSize); + if( buff == nullptr) { + LOG("read pic failed\n"); + return 1; + } + + ret = acldvppMalloc(&decodeInput, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc dvpp in buff failed[%d]\n", ret); + return ret; + } + ret = aclrtMemcpy(decodeInput, fileSize, buff, fileSize, ACL_MEMCPY_HOST_TO_DEVICE); + if (ret != ACL_ERROR_NONE) { + LOG("copy host to device failed[%d]\n", ret); + return ret; + } + + // 2 获取解码输出描述信息 + GetImageHW(buff, fileSize, fileLocation, W, H); + W_Aligned = (W + 127) / NUM_128 * NUM_128; + H_Aligned = (H + 15) / NUM_16 * NUM_16; + outputBuffSize = W_Aligned * H_Aligned * NUM_3 / NUM_2; + ret = acldvppMalloc(&decodeOutput, outputBuffSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc decodeOutput buff failed[%d]\n", ret); + return ret; + } + decodeOutputDesc = createDvppPicDesc(decodeOutput, PIXEL_FORMAT_YUV_SEMIPLANAR_420, W, H, W_Aligned, H_Aligned, + outputBuffSize); + if (decodeOutputDesc == nullptr) { + LOG("create jpeg_output_desc failed\n"); + return 1; + } + LOG("file[%s] jpeg picDesc info: W=%d, H=%d, W_Aligned=%d, H_Aligned=%d, outBufSize=%d, format=%d\n", \ + fileLocation.c_str(),W, H, W_Aligned, H_Aligned, outputBuffSize, PIXEL_FORMAT_YUV_SEMIPLANAR_420); + + // 3 使用jpegd图像解码 + ret = acldvppJpegDecodeAsync(dvpp_channel_desc, decodeInput, fileSize, decodeOutputDesc, stream); + if (ret != ACL_ERROR_NONE) { + LOG(" dvppJpegDecodeAsync failed\n"); + return ret; + } + aclrtFreeHost(buff); + aclrtSynchronizeStream(stream); + + // 4 对jpegd解码的图片进行原分辨率抠图及短边256等比例缩放 + acldvppRoiConfig *cropConfig = nullptr; + acldvppPicDesc *cropOutputDesc = nullptr; + // 设置对解码后的图片进行原图裁剪,目的是为了减少因jpegd解码后对齐的无效数据对图像精度的影响 + cropConfig = InitCropRoiConfig(W, H); + + uint32_t newInputWidth = 0; + uint32_t newInputHeight = 0; + void *cropOutBufferDev = nullptr; + // 宽和高较短的一条边缩放至256,较长边做等比例缩放。对齐至256目的是为了给224x224中心抠图做准备,短边256对齐,获得对齐后的宽高 + SmallSizeAtLeast(W, H, newInputWidth, newInputHeight); + uint32_t cropOutputWidthStride = (newInputWidth + (NUM_16 - 1)) / NUM_16 * NUM_16; + uint32_t cropOutputHeightStride = (newInputHeight + (NUM_2 - 1)) / NUM_2 * NUM_2; + uint32_t cropOutBufferSize = cropOutputWidthStride * cropOutputHeightStride * NUM_3 / NUM_2; + ret = acldvppMalloc(&cropOutBufferDev, cropOutBufferSize); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] AcldvppMalloc cropOutBufferDev_ failed, ret = " << ret << " cropOutBufferSize_ = " + << cropOutBufferSize << endl; + return ret; + } + cropOutputDesc = createDvppPicDesc(cropOutBufferDev, PIXEL_FORMAT_YUV_SEMIPLANAR_420, newInputWidth, newInputHeight, + cropOutputWidthStride, cropOutputHeightStride, cropOutBufferSize); + if (cropOutputDesc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create cropOutputDesc failed\n"); + return ret; + } + + ret = acldvppVpcCropAsync(dvpp_channel_desc, decodeOutputDesc, cropOutputDesc, cropConfig, stream); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] acldvppVpcCropAsync failed, ret = " << ret << std::endl; + return ret; + } + aclrtSynchronizeStream(stream); + + // 5 对等比例缩放后的图片做224x224中心抠图,中心抠图后的数据会发送给aipp进行YUV转RGB格式转换。需要注意:中心抠图后的输出格式和aipp + // 的输入格式需要保持一致。 + acldvppRoiConfig *centerCropConfig = nullptr; + acldvppPicDesc *centerCropOutputDesc = nullptr; // resize output desc + centerCropConfig = InitCropCenterRoiConfig(newInputWidth, newInputHeight, resizedWidth, resizedHeight); + void *vpcOutBufferDev = nullptr; + uint32_t vpcOutBufferSize = resizedWidthAligned * resizedHeightAligned * NUM_3 / NUM_2; + + vpcOutBufferDev = (void *)ptr; + centerCropOutputDesc = createDvppPicDesc(vpcOutBufferDev, PIXEL_FORMAT_YUV_SEMIPLANAR_420, resizedWidth, + resizedHeight, resizedWidthAligned, resizedHeightAligned, + vpcOutBufferSize); + if (centerCropOutputDesc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create centerCropOutputDesc failed\n"); + return ret; + } + + ret = acldvppVpcCropAsync(dvpp_channel_desc, cropOutputDesc, centerCropOutputDesc, centerCropConfig, stream); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] acldvppVpcCropAsync failed, ret = " << ret << "fileName: " << fileLocation.c_str() << std::endl; + return ret; + } + + ptr += vpcOutBufferSize; + aclrtSynchronizeStream(stream); + + // 6 释放资源 + acldvppFree(decodeInput); + acldvppFree(decodeOutput); + acldvppFree(cropOutBufferDev); + acldvppDestroyPicDesc(decodeOutputDesc); + acldvppDestroyPicDesc(cropOutputDesc); + acldvppDestroyPicDesc(centerCropOutputDesc); + acldvppDestroyRoiConfig(cropConfig); + acldvppDestroyRoiConfig(centerCropConfig); + return ret; +} + +aclError DvppInitInput(std::vector files) +{ + struct timeval process_start; + struct timeval process_end; + std::string funcName; + long long costTime; + funcName = "DvppTotalProcess"; + gettimeofday(&process_start, NULL); + + void *dst; + ret = acldvppMalloc(&dst, cfg.inputInfo[0].size); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc device failed, ret[%d]\n", ret); + return ret; + } + + char *ptr = (char *)dst; + inputDataframe.fileNames.clear(); + + for (int i = 0; i < files.size(); i++) { + std::string fileLocation = cfg.dataDir + "/" + files[i]; + ret = DVPP_Resnet50(fileLocation, ptr); + if(ret != ACL_ERROR_NONE) { + LOG("dvpp config failed"); + return ret; + } + inputDataframe.fileNames.push_back(files[i]); + } + + funcName = "DvppTotalProcess"; + gettimeofday(&process_end, NULL); + costTime = (process_end.tv_sec - process_start.tv_sec) * 1000000 + (process_end.tv_usec - process_start.tv_usec); + dvppTime[funcName] += costTime; + + aclmdlDataset *input = aclmdlCreateDataset(); + aclDataBuffer *inputData = aclCreateDataBuffer((void *)dst, cfg.inputInfo[0].size); + + if (inputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("aclCreateDataBuffer failed\n"); + return ret; + } + + ret = aclmdlAddDatasetBuffer(input, inputData); + + if (ret != ACL_ERROR_NONE) { + LOG("ACL_ModelInputDataAdd failed, ret[%d]\n", ret); + aclmdlDestroyDataset(input); + return ret; + } + + inputDataframe.dataset = input; + return ACL_ERROR_NONE; +} + +acldvppRoiConfig *InitCropRoiConfig(uint32_t width, uint32_t height) +{ + uint32_t right = 0; + uint32_t bottom = 0; + acldvppRoiConfig *cropConfig; + + if (width % NUM_2 == 0) { + right = width - 1; + } else { + right = width; + } + + if (height % NUM_2 == 0) { + bottom = height - 1; + } else { + bottom = height; + } + + cropConfig = acldvppCreateRoiConfig(0, right, 0, bottom); + if (cropConfig == nullptr) { + std::cout << "[ERROR][Vision] acldvppCreateRoiConfig failed " << std::endl; + return nullptr; + } + + return cropConfig; +} + +acldvppRoiConfig *InitCropCenterRoiConfig(uint32_t newInputWidth, uint32_t newInputHeight, uint32_t modelInputWidth, + uint32_t modelInputHeight) +{ + uint32_t left = 0; + uint32_t right = 0; + uint32_t top = 0; + uint32_t bottom = 0; + uint32_t amount_to_be_cropped_w = 0; + uint32_t amount_to_be_cropped_h = 0; + uint32_t left_half = 0; + uint32_t top_half = 0; + acldvppRoiConfig *centerCropConfig = nullptr; + + // 计算中心抠图起始点的坐标距离码流左边界和上边界的距离 + amount_to_be_cropped_w = newInputWidth - modelInputWidth; + left_half = amount_to_be_cropped_w / NUM_2; + amount_to_be_cropped_h = newInputHeight - modelInputHeight; + top_half = amount_to_be_cropped_h / NUM_2; + + // 保证起始点坐标为偶数 + left = (left_half % NUM_2 == 0) ? (amount_to_be_cropped_w / NUM_2) : (amount_to_be_cropped_w / NUM_2 + 1); + top = (top_half % NUM_2 == 0) ? (amount_to_be_cropped_h / NUM_2) : (amount_to_be_cropped_h / NUM_2 + 1); + + // 结束点为奇数 + right = left + modelInputWidth - 1; + bottom = top + modelInputHeight - 1; + + centerCropConfig = acldvppCreateRoiConfig(left, right, top, bottom); + if (centerCropConfig == nullptr) { + std::cout << "[ERROR][Vision] acldvppCreateRoiConfig failed " << std::endl; + return nullptr; + } + return centerCropConfig; +} + +void SmallSizeAtLeast(uint32_t width, uint32_t height, uint32_t &newInputWidth, uint32_t &newInputHeight) +{ + float scaleRatio = 0.0; + float inputWidth = 0.0; + float inputHeight = 0.0; + float resizeMin = 0.0; + bool minWidthFlag = false; + + inputWidth = (float)width; + inputHeight = (float)height; + resizeMin = (float)(RESIZE_MIN); + minWidthFlag = (width <= height) ? true : false; + + // 短边缩放为256,长边等比例缩放 + if (minWidthFlag == true) { + newInputWidth = resizeMin; + newInputHeight = (resizeMin / width) * inputHeight; + std::cout << "[INFO]scaleRatio: " << resizeMin / width << " inputWidth_: " << width << " newInputWidth: " << + newInputWidth << " inputHeight_: " << inputHeight << " newInputHeight_:" << newInputHeight << std::endl; + } else { + newInputWidth = (resizeMin / height) * width; + newInputHeight = resizeMin; + std::cout << "[INFO]scaleRatio: " << resizeMin / height << " width: " << width << " newInputWidth: " << + newInputWidth << " height: " << height << " newInputHeight:" << newInputHeight << std::endl; + } +} + +aclError Inference() +{ + LOG("inference batch %d start\n", processedCnt); + ret = aclrtSetCurrentContext(context); + + if (ret != ACL_ERROR_NONE) { + LOG("Set infer context failed\n"); + return ret; + } + + struct timeval startTmp, endTmp; + long long timeUse; + + if (inputDataframe.fileNames.size() == 0) { + ret = ACL_ERROR_OTHERS; + LOG("No file found\n"); + return ret; + } + + aclmdlDataset *output = aclmdlCreateDataset(); + if (output == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("Create Output Dataset failed\n"); + return ret; + } + + std::vector outputDevPtrs; + + for (size_t i = 0; i < cfg.outputNum; ++i) { + size_t buffer_size = cfg.outputInfo[i].size; + void *outputBuffer = nullptr; + ret = aclrtMalloc(&outputBuffer, (size_t)buffer_size, ACL_MEM_MALLOC_NORMAL_ONLY); + + if (ret != ACL_ERROR_NONE) { + LOG("Malloc output host failed, ret[%d]\n", ret); + return ret; + } + + outputDevPtrs.push_back(outputBuffer); + aclDataBuffer *outputData = aclCreateDataBuffer(outputBuffer, buffer_size); + + if (outputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("Create output data buffer failed\n"); + return ret; + } + + ret = aclmdlAddDatasetBuffer(output, outputData); + + if (ret != ACL_ERROR_NONE) { + LOG("Add output model dataset failed, ret[%d]\n", ret); + return ret; + } + } + + gettimeofday(&startTmp, NULL); + ret = aclmdlExecute(modelId, inputDataframe.dataset, output); + gettimeofday(&endTmp, NULL); + timeUse = (endTmp.tv_sec - startTmp.tv_sec) * 1000000 + (endTmp.tv_usec - startTmp.tv_usec); + LOG("inference time cost: %lld us\n", timeUse); + inferTime += timeUse; + + if (ret != ACL_ERROR_NONE) { + LOG("%s inference failed.\n", inputDataframe.fileNames[0].c_str()); + FreeDevMemory(inputDataframe.dataset); + aclmdlDestroyDataset(inputDataframe.dataset); + return ret; + } + + outputDataframe.fileNames = inputDataframe.fileNames; + outputDataframe.dataset = output; + + uint32_t dvppFlag = (cfg.useDvpp) ? 1 : 0; + ret = DestroyDatasetResurce(inputDataframe.dataset, dvppFlag); + if (ret != ACL_ERROR_NONE) { + LOG("DestroyDatasetResurce failed\n"); + return ret; + } + + LOG("inference batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} + +aclError UnloadModel() +{ + LOG("unload model start\n"); + ret = aclmdlUnload(modelId); + CHECK_ACL_RET("unload model failed", ret); + LOG("unload model done\n"); + + aclmdlDestroyDesc(cfg.modelDesc); + + if (cfg.devMem_ptr != nullptr) { + aclrtFree(cfg.devMem_ptr); + cfg.devMem_ptr = nullptr; + } + + if (cfg.weightMem_ptr != nullptr) { + aclrtFree(cfg.weightMem_ptr); + cfg.weightMem_ptr = nullptr; + } + + if (cfg.modelData_ptr != nullptr) { + delete[] cfg.modelData_ptr; + cfg.modelData_ptr = nullptr; + } + return ACL_ERROR_NONE; +} diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/main.cpp b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..99a8d46ab89f9c616048a09f0f995e68502c4330 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/main.cpp @@ -0,0 +1,493 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "util.h" +#include "infer_engine.h" +#include "acl/acl_base.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include "acl/acl.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using std::cout; +using std::endl; +Resnet50Result resnet50Res; +Config cfg; +aclError ret; +int processedCnt; +long long dataProcTime = 0; +long long inferTime = 0; +float avgTime = 0; +float avgPreTime = 0; + +extern std::unordered_map dvppTime; +extern DataFrame outputDataframe; + +void getCommandLineParam(int argc, char** argv, Config& config) +{ + while (1) { + int option_index = 0; + struct option long_options[] = + { + {"om", 1, 0, 'a'}, + {"dataDir", 1, 0, 'b'}, + {"outDir", 1, 0, 'c'}, + {"batchSize", 1, 0, 'd'}, + {"deviceId", 1, 0, 'e'}, + {"loopNum", 1, 0, 'f'}, + {"modelType", 1, 0, 'g'}, + {"imgType", 1, 0, 'h'}, + {"framework", 1, 0, 'i'}, + {"useDvpp", 1 , 0 , 'j'}, + {0, 0, 0, 0} + }; + + int c; + c = getopt_long(argc, argv, "a:b:c:e:f:j:k:l:m:n:u:t:", long_options, &option_index); + if (c == -1) { + break; + } + + switch (c) { + case 'a': + config.om = std::string(optarg); + printf("[INFO]om = %s\n", config.om.c_str()); + break; + case 'b': + config.dataDir = std::string(optarg); + printf("[INFO]dataDir = %s\n", config.dataDir.c_str()); + break; + case 'c': + config.outDir = std::string(optarg); + printf("[INFO]outDir = %s\n", config.outDir.c_str()); + break; + case 'd': + config.batchSize = atoi(optarg); + printf("[INFO]batchSize = %d\n", config.batchSize); + break; + case 'e': + config.deviceId = atoi(optarg); + printf("[INFO]deviceId = %d\n", config.deviceId); + break; + case 'f': + config.loopNum = atoi(optarg); + printf("[INFO]loopNum = %d\n", config.loopNum); + break; + case 'g': + config.modelType = std::string(optarg); + printf("[INFO]modelType = %s\n", config.modelType.c_str()); + break; + case 'h': + config.imgType = std::string(optarg); + printf("[INFO]imgType = %s\n", config.imgType.c_str()); + break; + case 'i': + config.framework = std::string(optarg); + printf("[INFO]framework = %s\n", config.framework.c_str()); + break; + case 'j': + config.useDvpp = atoi(optarg); + printf("[INFO]useDvpp = %d\n", config.useDvpp); + break; + default: + break; + } + } +} + +// 只校验必须的参数 +aclError ParseParams(int argc, char** argv, Config& config, std::string& errorMsg) +{ + getCommandLineParam(argc, argv, config); + + LOG("parase params start\n"); + + if (config.om.empty() || !FileExists(config.om)) { + LOG("om is empty\n"); + errorMsg = "om path is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + + if (config.dataDir.empty() || !FolderExists(config.dataDir)) { + errorMsg = "data Dir is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("dataDir %s \n", config.dataDir.c_str()); + + if (!config.outDir.empty() && !FolderExists(config.outDir)) { + LOG("output dir %s not exists, try to make dir.\n", config.outDir.c_str()); + mkdir(config.outDir.c_str(), 0755); + LOG("outDir %s \n", config.outDir.c_str()); + } + + if(config.batchSize <= 0){ + errorMsg = "batch Size should be > 0"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("batchSize %zd \n", config.batchSize); + + if (config.modelType.empty()) + { + LOG("FLAGS_modelType is empty\n"); + errorMsg = "modelType is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("modelType %s \n", config.modelType.c_str()); + + if (config.imgType.empty()) + { + LOG("imgType is empty\n"); + errorMsg = "imgType is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("imgType %s \n", config.imgType.c_str()); + LOG("useDvpp is %d \n", config.useDvpp); + LOG("parase params done\n"); + return ACL_ERROR_NONE; +} + +aclError Process() +{ + std::vector fileNames; + ret = GetFiles(cfg.dataDir, fileNames); + CHECK_RET(ret); + size_t fileNum = fileNames.size(); + LOG("fileNum:%zd\n",fileNames.size()); + struct timeval startTmp, endTmp; + + // 获取模型输入所需要的宽高 + getImgResizeShape(); + + if(cfg.useDvpp) { + ret = DvppSetup(); + CHECK_RET(ret); + } + + size_t inferCnt = 0; + size_t loopCnt = 0; + while(loopCnt < cfg.loopNum) { + LOG("loopCnt %d, loopNum %d\n", loopCnt, cfg.loopNum); + for(size_t i = 0; i < fileNum / cfg.batchSize; i++) { + gettimeofday(&startTmp, NULL); + std::vector batchFileNames; + for (int j = 0; j < cfg.batchSize; j++) { + batchFileNames.push_back(fileNames[i*cfg.batchSize+j]); + } + processedCnt++; + + if(cfg.useDvpp) { + ret = DvppInitInput(batchFileNames); + } else { + ret = InitInput(batchFileNames); + } + gettimeofday(&endTmp, NULL); + dataProcTime += (endTmp.tv_sec-startTmp.tv_sec)*1000000+(endTmp.tv_usec-startTmp.tv_usec); + CHECK_RET(ret); + + ret = Inference(); + CHECK_RET(ret); + + ret = SaveBinPostprocess(); + CHECK_RET(ret); + } + + if (fileNum % cfg.batchSize != 0) { + std::vector batchFileNames; + for(size_t i = (fileNum - fileNum % cfg.batchSize); i < fileNum; i++) { + batchFileNames.push_back(fileNames[i]); + } + + gettimeofday(&startTmp, NULL); + processedCnt++; + + if(cfg.useDvpp) { + ret = DvppInitInput(batchFileNames); + } else { + ret = InitInput(batchFileNames); + } + gettimeofday(&endTmp, NULL); + dataProcTime += (endTmp.tv_sec-startTmp.tv_sec) * 1000000 + (endTmp.tv_usec - startTmp.tv_usec); + CHECK_RET(ret); + + ret = Inference(); + CHECK_RET(ret); + + ret = SaveBinPostprocess(); + CHECK_RET(ret); + } + loopCnt++; + } + return ACL_ERROR_NONE; +} + +void SaveResult() +{ + ofstream outfile("test_perform_static.txt"); +#if 0 + std::string model_name; + int dex = (cfg.om).find_last_of("/"); + model_name = cfg.om.substr(dex+1); + + std:: string title = "model_name total batch top1 top5 pre_avg/ms pre_imgs/s infer_avg/ms infer_imgs/s mAP"; + outfile << title << endl; + + outfile << model_name << " "; + outfile << processedCnt*cfg.batchSize << " "; + outfile << cfg.batchSize << " "; + if (cfg.postprocessType == "resnet") { + outfile << 1.0*resnet50Res.top1/resnet50Res.total << " " << 1.0*resnet50Res.top5/resnet50Res.total << " "; + } else { + outfile << "NA" << " " << "NA" << " "; + } + + outfile << avgPreTime << " " << 1.0*1000/avgPreTime << " "; + outfile << avgTime << " " << 1.0*1000/avgTime << " "; + outfile << endl; +#endif + char tmpCh[256]; + memset(tmpCh, 0, sizeof(tmpCh)); + snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms %4.3f fps/s\n", + avgTime, (1.0 * 1000 / avgTime)); + outfile << tmpCh; + outfile.close(); +} + +aclError GetModelInputOutputInfo(Config& cfg) +{ + aclError ret; + std::ofstream outFile("modelInputOutputInfo", std::ios::trunc); + char tmpChr[256] = {0}; + + // 获取模型输入信息 + size_t inputNum = aclmdlGetNumInputs(cfg.modelDesc); + LOG("model input num %zd\n", inputNum); + snprintf(tmpChr, sizeof(tmpChr), "model input num %zd\n", inputNum); + outFile << tmpChr; + + cfg.inputNum = inputNum; + for (size_t i = 0; i < inputNum && i < MODEL_INPUT_OUTPUT_NUM_MAX; i++) { + size_t size = aclmdlGetInputSizeByIndex(cfg.modelDesc, i); + cfg.inputInfo[i].size = size; + LOG("model input[%zd] size %zd\n", i, cfg.inputInfo[i].size); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] size %zd\n", i, cfg.inputInfo[i].size); + outFile << tmpChr; + + aclmdlIODims dims; + ret = aclmdlGetInputDims(cfg.modelDesc, i, &dims); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetInputDims fail ret %d\n", ret); + return 1; + } + + cfg.inputInfo[i].dimCount = dims.dimCount; + ret = aclrtMemcpy(cfg.inputInfo[i].dims , cfg.inputInfo[i].dimCount * sizeof(int64_t), dims.dims, + cfg.inputInfo[i].dimCount * sizeof(int64_t), ACL_MEMCPY_HOST_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtMemcpy fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + LOG("model input[%zd] dimCount %zd\n", i, cfg.inputInfo[i].dimCount); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] dimCount %zd\n", i, cfg.inputInfo[i].dimCount); + outFile << tmpChr; + for (size_t dimIdx = 0; dimIdx < cfg.inputInfo[i].dimCount; dimIdx++) { + LOG("model input[%zd] dim[%zd] info %ld\n", i, dimIdx, cfg.inputInfo[i].dims[dimIdx]); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] dim[%zd] info %ld\n", + i, dimIdx, cfg.inputInfo[i].dims[dimIdx]); + outFile << tmpChr; + } + + cfg.inputInfo[i].Format = aclmdlGetInputFormat(cfg.modelDesc, i); + cfg.inputInfo[i].Type = aclmdlGetInputDataType(cfg.modelDesc, i); + + LOG("model input[%zd] format %d inputType %d\n", i, cfg.inputInfo[i].Format, cfg.inputInfo[i].Type); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] format %d inputType %d\n", i, cfg.inputInfo[i].Format, + cfg.inputInfo[i].Type); + outFile << tmpChr; + + cfg.inputInfo[i].Name = aclmdlGetInputNameByIndex(cfg.modelDesc, i); + LOG("model input[%zd] name %s\n", i, cfg.inputInfo[i].Name); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] name %s\n", i, cfg.inputInfo[i].Name); + outFile << tmpChr; + + size_t index; + ret = aclmdlGetInputIndexByName(cfg.modelDesc, cfg.inputInfo[i].Name, &index); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetInputIndexByName fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + if (i != index) { + LOG("aclmdlGetInputNameByIndex not equal aclmdlGetInputIndexByName\n"); + return 1; + } else { + LOG("model input name %s is belone to input %zd\n", cfg.inputInfo[i].Name, index); + } + } + + // 获取模型输出信息 + size_t outputNum = aclmdlGetNumOutputs(cfg.modelDesc); + LOG("model output num %zd\n", outputNum); + snprintf(tmpChr, sizeof(tmpChr), "model output num %zd\n", outputNum); + outFile << tmpChr; + + cfg.outputNum = outputNum; + for (size_t i = 0; i < outputNum && i < MODEL_INPUT_OUTPUT_NUM_MAX; i++) { + size_t size = aclmdlGetOutputSizeByIndex(cfg.modelDesc, i); + cfg.outputInfo[i].size = size; + LOG("model output[%zd] size %zd\n", i, cfg.outputInfo[i].size); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] size %zd\n", i, cfg.outputInfo[i].size); + outFile << tmpChr; + + aclmdlIODims dims; + ret = aclmdlGetOutputDims(cfg.modelDesc, i, &dims); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetOutputDims fail ret %d\n", ret); + return 1; + } + + cfg.outputInfo[i].dimCount = dims.dimCount; + ret = aclrtMemcpy(cfg.outputInfo[i].dims, cfg.outputInfo[i].dimCount * sizeof(int64_t), dims.dims, + cfg.outputInfo[i].dimCount * sizeof(int64_t), ACL_MEMCPY_HOST_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtMemcpy fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + LOG("model output[%zd] dimCount %zd\n", i, cfg.outputInfo[i].dimCount); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] dimCount %zd\n", i, cfg.outputInfo[i].dimCount); + outFile << tmpChr; + + for (size_t dimIdx = 0; dimIdx < cfg.outputInfo[i].dimCount; dimIdx++) { + LOG("model output[%zd] dim[%zd] info %ld\n", i, dimIdx, cfg.outputInfo[i].dims[dimIdx]); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] dim[%zd] info %ld\n", + i, dimIdx, cfg.outputInfo[i].dims[dimIdx]); + outFile << tmpChr; + } + + cfg.outputInfo[i].Format = aclmdlGetOutputFormat(cfg.modelDesc, i); + cfg.outputInfo[i].Type = aclmdlGetOutputDataType(cfg.modelDesc, i); + LOG("model output[%zd] format %d outputType %d\n", i, cfg.outputInfo[i].Format, cfg.outputInfo[i].Type); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] format %d outputType %d\n", i, cfg.outputInfo[i].Format, + cfg.outputInfo[i].Type); + outFile << tmpChr; + + cfg.outputInfo[i].Name = aclmdlGetOutputNameByIndex(cfg.modelDesc, i); + LOG("model output[%zd] name %s\n", i, cfg.outputInfo[i].Name); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] name %s\n", i, cfg.outputInfo[i].Name); + outFile << tmpChr; + + size_t index; + ret = aclmdlGetOutputIndexByName(cfg.modelDesc, cfg.outputInfo[i].Name, &index); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetOutputIndexByName fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + if (i != index) { + LOG("aclmdlGetOutputNameByIndex not equal aclmdlGetOutputIndexByName\n"); + return 1; + } else { + LOG("model output name %s is belone to output %d\n", cfg.outputInfo[i].Name, index); + } + } + + outFile.close(); + return ACL_ERROR_NONE; +} + +int main(int argc, char** argv) +{ + processedCnt = 0; + inferTime = 0; + + std::string errorMsg; + ret = ParseParams(argc, argv, cfg, errorMsg); + CHECK_ACL_RET(errorMsg, ret); + + ret = InitContext(); + CHECK_RET(ret); + + ret = LoadModel(); + CHECK_RET(ret); + + ret = GetModelInputOutputInfo(cfg); + CHECK_RET(ret); + + ret = Process(); + CHECK_RET(ret); + + ret = UnloadModel(); + CHECK_RET(ret); + + ret = UnInitContext(); + CHECK_RET(ret); + LOG("\n"); + + avgTime = 1.0 * inferTime / processedCnt /cfg.batchSize / 1000; + avgPreTime = 1.0 * dataProcTime / processedCnt / cfg.batchSize / 1000; + + if (cfg.useDvpp) { + LOG("\n"); + LOG("DVPP performance details:\n"); + LOG("#############################################\n"); + std::unordered_map::iterator iter; + for (iter = dvppTime.begin(); iter != dvppTime.end(); iter++) { + LOG("%s using avg time %0.2f ms\n",iter->first.c_str(),1.0*iter->second/processedCnt/cfg.batchSize/1000); + } + LOG("\n"); + } + + LOG("performance summary:\n"); + LOG("#############################################\n"); + LOG("total %ld imgs processed and batch size %ld\n", processedCnt*cfg.batchSize, cfg.batchSize); +#if 0 + if(cfg.postprocessType == "resnet") { + LOG("top1 ratio %0.3f top5 ratio %0.3f\n", + 1.0*resnet50Res.top1/resnet50Res.total, 1.0*resnet50Res.top5/resnet50Res.total); + } +#endif + + LOG("avg preprocess time %0.2f ms, %0.2f imgs/s\n", avgPreTime, 1.0 * 1000 / avgPreTime); + LOG("avg inference time %0.2f ms, %0.2f imgs/s\n", avgTime, 1.0 * 1000 / avgTime); + + SaveResult(); +} diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/post_process.cpp b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/post_process.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c66491757b8bb1388a8ac9210619b55b5a2dcb9e --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/post_process.cpp @@ -0,0 +1,127 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "post_process.h" +#include "util.h" +#include +#include +#include +#include +#include "stdio.h" +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +extern int processedCnt; + +extern Config cfg; +extern DataFrame outputDataframe; +extern aclError ret; +int topNum = 5; + +extern int processedCnt; + +aclError SaveBinPostprocess() +{ + aclError retVal; + + LOG("save batch %d start\n", processedCnt); + DataFrame dataframe = outputDataframe; + std::vector& inferFile_vec = outputDataframe.fileNames; + aclmdlDataset* output = dataframe.dataset; + + std::string resultFolder = cfg.outDir + "/" + cfg.modelType; + DIR* op = opendir(resultFolder.c_str()); + if (NULL == op) { + mkdir(resultFolder.c_str(), 00775); + } else { + closedir(op); + } + + for (size_t i = 0; i < cfg.outputNum; ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(output, i); + void* data = aclGetDataBufferAddr(dataBuffer); + uint32_t len; + len = cfg.outputInfo[i].size; + + void* outHostData = NULL; + ret = aclrtMallocHost(&outHostData, len); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host failed.\n"); + return 1; + } + + ret = aclrtMemcpy(outHostData, len, data, len, ACL_MEMCPY_DEVICE_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("Copy device to host failed.\n"); + aclrtFreeHost(outHostData); + return 1; + } + + uint32_t eachSize = len / cfg.batchSize; + for (size_t j = 0; j < inferFile_vec.size(); j++) { + FILE* outputFile; + std::string framename = inferFile_vec[j]; + std::size_t dex = (framename).find_first_of("."); + std::string inputFileName = (framename).erase(dex); + + if (cfg.modelType.compare(0, 6, "resnet") == 0) { + outputFile = fopen((resultFolder + "/" + "davinci_" + inputFileName + "_" + "output" + ".bin").c_str(), "wb"); + } else { + outputFile = fopen((resultFolder + "/" + "davinci_" + inputFileName + "_" + "output" + std::to_string(i) + ".bin").c_str(), "wb"); + } + + if (outputFile == nullptr) { + aclrtFreeHost(outHostData); + return 1; + } + + fwrite((uint8_t *)outHostData + (j * eachSize), eachSize, sizeof(char), outputFile); + fclose(outputFile); + } + + ret = aclrtFreeHost(outHostData); + if (ret != ACL_ERROR_NONE) { + LOG("Free output host failed.\n"); + } + } + + (void)DestroyDatasetResurce(outputDataframe.dataset, 0); + + LOG("save batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/util.cpp b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/util.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ec437321c75c4c883ca35d56a0c5ab218f16efa7 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/Benchmark/util.cpp @@ -0,0 +1,230 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "util.h" +#include +#include +#include +#if 0 +static std::unordered_map errorMap = { + {ACL_ERROR_NONE, "success"}, + {ACL_ERROR_INVALID_PARAM, "params may not valid"}, + {ACL_ERROR_BAD_ALLOC, "alloc memory failed"}, + {ACL_ERROR_RT_FAILURE, "runtime failure"}, + {ACL_ERROR_GE_FAILURE, "GE failure"}, + {ACL_ERROR_OP_NOT_FOUND, "OP not find"}, + {ACL_ERROR_OP_LOAD_FAILED, "OP loads failed"}, + {ACL_ERROR_READ_MODEL_FAILURE, "load model failed"}, + {ACL_ERROR_PARSE_MODEL, "parse model failed"}, + {ACL_ERROR_MODEL_MISSING_ATTR, "model misssing attr"}, + {ACL_ERROR_DESERIALIZE_MODEL, "deserilize model failed"}, + // {ACL_ERROR_MULTIPLE_MODEL_MATCHED, "multiple model matched"}, + //{ACL_ERROR_EVENT_NOT_READY, "event not ready"}, + //{ACL_ERROR_EVENT_COMPLETE, "event not complete"}, + {ACL_ERROR_UNSUPPORTED_DATA_TYPE, "unsupport datatype"}, + {ACL_ERROR_REPEAT_INITIALIZE, "initial repeated"}, + //{ACL_ERROR_COMPILER_NOT_REGISTERED, "compilter not registered"}, + {ACL_ERROR_PATH_INVALID, "path invalid"}, + {ACL_ERROR_PARSE_PARAM_FAILED, "parse params failed"}, + {ACL_ERROR_DVPP_ERROR, "dvpp errors"} +}; + + +std::string CausedBy(aclError error) +{ + return errorMap[error]; +} +#endif + +bool FolderExists(std::string foldname) +{ + DIR* dir; + if ((dir = opendir(foldname.c_str())) == NULL) { + return false; + } + closedir(dir); + return true; +} + +void* ReadFile(std::string fileLocation, uint64_t &fileSize) +{ + aclError ret; + FILE *pFile = fopen(fileLocation.c_str(), "r"); + if (pFile == nullptr) { + LOG("open file %s failed\n", fileLocation.c_str()); + return nullptr; + } + + fseek(pFile, 0, SEEK_END); + fileSize = ftell(pFile); + + void *buff = nullptr; + ret = aclrtMallocHost(&buff, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host buff failed[%d]\n", ret); + return nullptr; + } + + rewind(pFile); + fread(buff, sizeof(char), fileSize, pFile); + fclose(pFile); + return buff; +} + +bool FileExists(std::string filename) +{ + std::fstream file; + file.open(filename, std::ios::in); + if (!file) { + return false; + } + + file.close(); + return true; +} + +char* ReadBinFile(std::string fileName, uint32_t& fileSize) +{ + std::ifstream binFile(fileName, std::ifstream::binary); + + if (binFile.is_open() == false) { + LOG("open file[%s] failed\n", fileName.c_str()); + return nullptr; + } + + binFile.seekg(0, binFile.end); + uint32_t binFileBufferLen = binFile.tellg(); + + if (binFileBufferLen == 0) { + LOG("binfile is empty, filename: %s", fileName.c_str()); + binFile.close(); + return nullptr; + } + + binFile.seekg(0, binFile.beg); + char* binFileBufferData = new(std::nothrow) char[binFileBufferLen]; + LOG("binFileBufferData:%p\n", binFileBufferData); + + if (binFileBufferData == nullptr) { + LOG("malloc binFileBufferData failed\n"); + binFile.close(); + return nullptr; + } + + binFile.read(binFileBufferData, binFileBufferLen); + binFile.close(); + fileSize = binFileBufferLen; + return binFileBufferData; +} + +aclError GetFiles(std::string path, std::vector& files) +{ + DIR* dir; + struct dirent* ptr; + char base[1000]; + + if ((dir = opendir(path.c_str())) == NULL) { + LOG("Open dir %s error.\n", path.c_str()); + return ACL_ERROR_PATH_INVALID; + } + + while ((ptr = readdir(dir)) != NULL) { + if (strcmp(ptr->d_name, ".") == 0 || strcmp(ptr->d_name, "..") == 0) { + //current dir OR parrent dir + continue; + } else if (ptr->d_type == 8) { + //file + files.push_back(ptr->d_name); + } else if (ptr->d_type == 10) { + //link file + continue; + } else if (ptr->d_type == 4) { + //dir + continue; + } + } + + closedir(dir); + std::sort(files.begin(), files.end()); + return ACL_ERROR_NONE; +} + +aclError FreeDevMemory(aclmdlDataset* dataset) +{ + aclError ret; + for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); + void* data = aclGetDataBufferAddr(dataBuffer); + aclrtFree(data); + aclDestroyDataBuffer(dataBuffer); + } + + return ACL_ERROR_NONE; +} + +aclError DestroyDatasetResurce(aclmdlDataset* dataset, uint32_t flag) +{ + aclError ret = ACL_ERROR_NONE; + + if (nullptr == dataset) { + LOG("dataset == null\n"); + return 1; + } + + for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); + if (nullptr == dataBuffer) { + LOG("dataBuffer == null\n"); + continue; + } + + void* data = aclGetDataBufferAddr(dataBuffer); + if (nullptr != data) { + if (1 == flag) { + if (i > 0) { + ret = aclrtFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree data failed, ret %d\n", ret); + } + } else { + ret = acldvppFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("acldvppFree data failed, ret %d\n", ret); + } + } + } else { + ret = aclrtFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree data failed, ret %d\n", ret); + } + } + } + + ret = aclDestroyDataBuffer(dataBuffer); + if (ret != ACL_ERROR_NONE) { + LOG("Destroy dataBuffer failed, ret %d\n", ret); + } + } + + ret = aclmdlDestroyDataset(dataset); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree dataset failed, ret %d\n", ret); + } + + return ret; +} + + diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/LICENSE b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..57bc88a15a0ee8266c259b2667e64608d3f7e292 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/LICENSE @@ -0,0 +1,202 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/README.md b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..27979521a469f5308d4510a76ccb517ae6aabe3f --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/README.md @@ -0,0 +1,86 @@ + + +# InceptionV2 Inference for Tensorflow + +This repository provides a script and recipe to Inference of the InceptionV2 model. + +## Notice +**This sample only provides reference for you to learn the Ascend software stack and is not for commercial purposes.** + +Before starting, please pay attention to the following adaptation conditions. If they do not match, may leading in failure. + +| Conditions | Need | +| --- | --- | +| CANN Version | >=5.0.3 | +| Chip Platform| Ascend310/Ascend710 | +| 3rd Party Requirements| Please follow the 'requirements.txt' | + +## Quick Start Guide + +### 1. Clone the respository + +```shell +git clone https://gitee.com/ascend/ModelZoo-TensorFlow.git +cd Modelzoo-TensorFlow/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL +``` + +### 2. Download and preprocess the dataset + +1. Download the ImageNet2012 Validation dataset by yourself. You can get the validation pictures(50000 JPEGS and a ILSVRC2012val-label-index.txt) + +2. Put JPEGS to **'scripts/ILSVRC2012val'** and label text to **'scripts/'** + +3. Images Preprocess: +``` +cd scripts +mkdir input_bins +python3 inception_preprocessing.py ./ILSVRC2012val/ ./input_bins/ +``` +The jpegs pictures will be preprocessed to bin fils. + +### 3. Offline Inference + +**Convert pb to om.** + +- configure the env + + ``` + export install_path=/usr/local/Ascend + export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH + export PYTHONPATH=${install_path}/atc/python/site-packages:${install_path}/atc/python/site-packages/auto_tune.egg/auto_tune:${install_path}/atc/python/site-packages/schedule_search.egg:$PYTHONPATH + export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH + export ASCEND_OPP_PATH=${install_path}/opp + ``` + +- convert pb to om + + [pb download link](https://modelzoo-train-atc.obs.cn-north-4.myhuaweicloud.com/003_Atc_Models/modelzoo/Official/cv/Inceptionv2_for_ACL/inceptionv2_tf.pb) + + ``` + atc --model=inceptionv2_tf.pb --framework=3 --output=inceptionv3_tf_1batch --output_type=FP32 --soc_version=Ascend310 --input_shape="input:1,224,224,3" --insert_op_conf=inceptionv2_aipp.cfg --enable_small_channel=1 --log=info + ``` + +- Build the program + + ``` + bash build.sh + ``` + +- Run the program: + + ``` + cd scripts + bash benchmark_tf.sh + ``` + +## Performance + +### Result + +Our result was obtained by running the applicable inference script. To achieve the same results, follow the steps in the Quick Start Guide. + +#### Inference accuracy results + +| model | **data** | Top1/Top5 | +| :---------------: | :-------: | :-------------: | +| offline Inference | 50000 images | 74.0 %/ 91.8% | diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/build.sh b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..dae86211d2691b82ecfd8c2637d1276092e476ed --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/build.sh @@ -0,0 +1,9 @@ +rm -rf ./Benchmark/build + +mkdir -p Benchmark/build/intermediates/host +cd Benchmark/build/intermediates/host +cmake ../../../../Benchmark/ -DCAMKE_CXX_COMPILER=g++ +make clean +make install +cd - +cd Benchmark/out/ diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/inceptionv2_aipp.cfg b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/inceptionv2_aipp.cfg new file mode 100644 index 0000000000000000000000000000000000000000..484f80d3d1da6bc802e3f0aced5f914fd53b6e25 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/inceptionv2_aipp.cfg @@ -0,0 +1,13 @@ +aipp_op { + aipp_mode: static + input_format : RGB888_U8 + src_image_size_w : 224 + src_image_size_h : 224 + mean_chn_0 : 128 + mean_chn_1 : 128 + mean_chn_2 : 128 + var_reci_chn_0 : 0.00781 + var_reci_chn_1 : 0.00781 + var_reci_chn_2 : 0.00781 +} + diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/modelzoo_level.txt b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..0934af7691acabd7981d82342b3a2310fe606d3d --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/modelzoo_level.txt @@ -0,0 +1,6 @@ +ModelCovert:OK +QuantStatus:OK +FuncStatus:OK +PrecisionStatus:OK +AutoTune:OK +PerfStatus:OK diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/requirements.txt b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..6f66bb9f75c74849c47871a646493af6c2eb83d3 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/requirements.txt @@ -0,0 +1,3 @@ +tensorflow==1.15 +numpy==1.16 +Pillow==7.1.2 diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/benchmark_tf.sh b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/benchmark_tf.sh new file mode 100644 index 0000000000000000000000000000000000000000..e269edf1c0a43a2d1bef3a9495aa66a3c04f8eeb --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/benchmark_tf.sh @@ -0,0 +1,15 @@ +#!/bin/bash +#set -x +cur_dir=`pwd` +benchmark_dir=$cur_dir/../Benchmark/out +om_name=$cur_dir/../inceptionv2_tf_1batch.om +batchsize=1 +model_name=inceptionv2 +output_dir='results' +rm -rf $cur_dir/$output_dir/* + +#start offline inference +$benchmark_dir/benchmark --om $om_name --dataDir $cur_dir/input_bins/ --modelType $model_name --outDir $cur_dir/$output_dir --batchSize $batchsize --imgType bin --useDvpp 0 + +#post process +python3 $cur_dir/imagenet_accuarcy_cal.py --infer_result $cur_dir/$output_dir/$model_name --label $cur_dir/ILSVRC2012val-label-index.txt --offset 1 diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/imagenet_accuarcy_cal.py b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/imagenet_accuarcy_cal.py new file mode 100644 index 0000000000000000000000000000000000000000..38f0d91170e48644f8bafffa9e0a098881c52b48 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/imagenet_accuarcy_cal.py @@ -0,0 +1,75 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import os +import time +import argparse + +if __name__=='__main__': + parser = argparse.ArgumentParser() + parser.add_argument("--infer_result", type=str, default="../../result_Files") + parser.add_argument("--label", type=str, default="../data/input_50000.csv") + parser.add_argument("--output_index", type=int, default=0) + parser.add_argument("--offset", type=int, default=0) + parser.add_argument("--dtype", type=str, default='float32') #datatype of bin files + args = parser.parse_args() + + image_cnt = 0 + top1_cnt = 0 + top5_cnt = 0 + ground_truth={} + if args.label.endswith(".csv"): + with open(args.label, 'r') as cs: + rs_list = cs.readlines() + for line in rs_list: + image_name = line.split(',')[0].split('.JPEG')[0] + label = int(line.split(',')[1]) + label += args.offset + ground_truth[image_name]=label + elif args.label.endswith(".txt"): + with open(args.label, 'r') as cs: + rs_list = cs.readlines() + for line in rs_list: + image_name = line.split(' ')[0].split('.JPEG')[0] + label = int(line.split(' ')[1].replace("\n","")) + label += args.offset + ground_truth[image_name]=label + + for i in sorted(ground_truth): + try: + image_name = i + label = ground_truth[i] + #查看输出的文件 + if os.path.exists(os.path.join(args.infer_result,'davinci_{}_output{}.bin'.format(image_name,args.output_index))): + bin_path = os.path.join(args.infer_result,'davinci_{}_output{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + elif os.path.exists(os.path.join(args.infer_result,'davinci_{}.JPEG_output{}.bin'.format(image_name, args.output_index))): + bin_path = os.path.join(args.infer_result,'davinci_{}.JPEG_output{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + elif os.path.exists(os.path.join(args.infer_result,'{}_output_{}.bin'.format(image_name,args.output_index))): + bin_path = os.path.join(args.infer_result,'{}_output_{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + else: + continue + top1=np.argmax(pred) + if label == top1: + top1_cnt += 1 + if label in np.argsort(-pred)[0:5]: + top5_cnt += 1 + image_cnt+=1 + print("{}, gt label:{: >4}, predict results:{}".format(image_name,label,str(np.argsort(-pred)[0:5]))) + except Exception as e: + print("Can't find " + bin_path) + print('imag_count %d, top1_accuracy %.3f top5_accuracy %.3f'%(image_cnt,top1_cnt/image_cnt,top5_cnt/image_cnt)) \ No newline at end of file diff --git a/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/inception_preprocessing.py b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/inception_preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..0a2b3d578a4f401a4b5ebdd222cb2488d2ae3c66 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Inceptionv2_for_ACL/scripts/inception_preprocessing.py @@ -0,0 +1,405 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Provides utilities to preprocess images for the Inception networks.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import tensorflow.compat.v1 as tf +import os +import sys +import shutil +import numpy as np +from PIL import Image +from tensorflow.python.ops import control_flow_ops + + +def apply_with_random_selector(x, func, num_cases): + """Computes func(x, sel), with sel sampled from [0...num_cases-1]. + + Args: + x: input Tensor. + func: Python function to apply. + num_cases: Python int32, number of cases to sample sel from. + + Returns: + The result of func(x, sel), where func receives the value of the + selector as a python integer, but sel is sampled dynamically. + """ + sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) + # Pass the real x only to one of the func calls. + return control_flow_ops.merge([ + func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) + for case in range(num_cases)])[0] + + +def distort_color(image, color_ordering=0, fast_mode=True, scope=None): + """Distort the color of a Tensor image. + + Each color distortion is non-commutative and thus ordering of the color ops + matters. Ideally we would randomly permute the ordering of the color ops. + Rather then adding that level of complication, we select a distinct ordering + of color ops for each preprocessing thread. + + Args: + image: 3-D Tensor containing single image in [0, 1]. + color_ordering: Python int, a type of distortion (valid values: 0-3). + fast_mode: Avoids slower ops (random_hue and random_contrast) + scope: Optional scope for name_scope. + Returns: + 3-D Tensor color-distorted image on range [0, 1] + Raises: + ValueError: if color_ordering not in [0, 3] + """ + with tf.name_scope(scope, 'distort_color', [image]): + if fast_mode: + if color_ordering == 0: + image = tf.image.random_brightness(image, max_delta=32. / 255.) + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + else: + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + image = tf.image.random_brightness(image, max_delta=32. / 255.) + else: + if color_ordering == 0: + image = tf.image.random_brightness(image, max_delta=32. / 255.) + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + image = tf.image.random_hue(image, max_delta=0.2) + image = tf.image.random_contrast(image, lower=0.5, upper=1.5) + elif color_ordering == 1: + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + image = tf.image.random_brightness(image, max_delta=32. / 255.) + image = tf.image.random_contrast(image, lower=0.5, upper=1.5) + image = tf.image.random_hue(image, max_delta=0.2) + elif color_ordering == 2: + image = tf.image.random_contrast(image, lower=0.5, upper=1.5) + image = tf.image.random_hue(image, max_delta=0.2) + image = tf.image.random_brightness(image, max_delta=32. / 255.) + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + elif color_ordering == 3: + image = tf.image.random_hue(image, max_delta=0.2) + image = tf.image.random_saturation(image, lower=0.5, upper=1.5) + image = tf.image.random_contrast(image, lower=0.5, upper=1.5) + image = tf.image.random_brightness(image, max_delta=32. / 255.) + else: + raise ValueError('color_ordering must be in [0, 3]') + + # The random_* ops do not necessarily clamp. + return tf.clip_by_value(image, 0.0, 1.0) + + +def distorted_bounding_box_crop(image, + bbox, + min_object_covered=0.1, + aspect_ratio_range=(0.75, 1.33), + area_range=(0.05, 1.0), + max_attempts=100, + scope=None): + """Generates cropped_image using a one of the bboxes randomly distorted. + + See `tf.image.sample_distorted_bounding_box` for more documentation. + + Args: + image: 3-D Tensor of image (it will be converted to floats in [0, 1]). + bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] + where each coordinate is [0, 1) and the coordinates are arranged + as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole + image. + min_object_covered: An optional `float`. Defaults to `0.1`. The cropped + area of the image must contain at least this fraction of any bounding box + supplied. + aspect_ratio_range: An optional list of `floats`. The cropped area of the + image must have an aspect ratio = width / height within this range. + area_range: An optional list of `floats`. The cropped area of the image + must contain a fraction of the supplied image within in this range. + max_attempts: An optional `int`. Number of attempts at generating a cropped + region of the image of the specified constraints. After `max_attempts` + failures, return the entire image. + scope: Optional scope for name_scope. + Returns: + A tuple, a 3-D Tensor cropped_image and the distorted bbox + """ + with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): + # Each bounding box has shape [1, num_boxes, box coords] and + # the coordinates are ordered [ymin, xmin, ymax, xmax]. + + # A large fraction of image datasets contain a human-annotated bounding + # box delineating the region of the image containing the object of interest. + # We choose to create a new bounding box for the object which is a randomly + # distorted version of the human-annotated bounding box that obeys an + # allowed range of aspect ratios, sizes and overlap with the human-annotated + # bounding box. If no box is supplied, then we assume the bounding box is + # the entire image. + sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( + tf.shape(image), + bounding_boxes=bbox, + min_object_covered=min_object_covered, + aspect_ratio_range=aspect_ratio_range, + area_range=area_range, + max_attempts=max_attempts, + use_image_if_no_bounding_boxes=True) + bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box + + # Crop the image to the specified bounding box. + cropped_image = tf.slice(image, bbox_begin, bbox_size) + return cropped_image, distort_bbox + + +def preprocess_for_train(image, + height, + width, + bbox, + fast_mode=True, + scope=None, + add_image_summaries=True, + random_crop=True, + use_grayscale=False): + """Distort one image for training a network. + + Distorting images provides a useful technique for augmenting the data + set during training in order to make the network invariant to aspects + of the image that do not effect the label. + + Additionally it would create image_summaries to display the different + transformations applied to the image. + + Args: + image: 3-D Tensor of image. If dtype is tf.float32 then the range should be + [0, 1], otherwise it would converted to tf.float32 assuming that the range + is [0, MAX], where MAX is largest positive representable number for + int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). + height: integer + width: integer + bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] + where each coordinate is [0, 1) and the coordinates are arranged + as [ymin, xmin, ymax, xmax]. + fast_mode: Optional boolean, if True avoids slower transformations (i.e. + bi-cubic resizing, random_hue or random_contrast). + scope: Optional scope for name_scope. + add_image_summaries: Enable image summaries. + random_crop: Enable random cropping of images during preprocessing for + training. + use_grayscale: Whether to convert the image from RGB to grayscale. + Returns: + 3-D float Tensor of distorted image used for training with range [-1, 1]. + """ + with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): + if bbox is None: + bbox = tf.constant([0.0, 0.0, 1.0, 1.0], + dtype=tf.float32, + shape=[1, 1, 4]) + if image.dtype != tf.float32: + image = tf.image.convert_image_dtype(image, dtype=tf.float32) + # Each bounding box has shape [1, num_boxes, box coords] and + # the coordinates are ordered [ymin, xmin, ymax, xmax]. + image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), + bbox) + if add_image_summaries: + tf.summary.image('image_with_bounding_boxes', image_with_box) + + if not random_crop: + distorted_image = image + else: + distorted_image, distorted_bbox = distorted_bounding_box_crop(image, bbox) + # Restore the shape since the dynamic slice based upon the bbox_size loses + # the third dimension. + distorted_image.set_shape([None, None, 3]) + image_with_distorted_box = tf.image.draw_bounding_boxes( + tf.expand_dims(image, 0), distorted_bbox) + if add_image_summaries: + tf.summary.image('images_with_distorted_bounding_box', + image_with_distorted_box) + + # This resizing operation may distort the images because the aspect + # ratio is not respected. We select a resize method in a round robin + # fashion based on the thread number. + # Note that ResizeMethod contains 4 enumerated resizing methods. + + # We select only 1 case for fast_mode bilinear. + num_resize_cases = 1 if fast_mode else 4 + distorted_image = apply_with_random_selector( + distorted_image, + lambda x, method: tf.image.resize_images(x, [height, width], method), + num_cases=num_resize_cases) + + if add_image_summaries: + tf.summary.image(('cropped_' if random_crop else '') + 'resized_image', + tf.expand_dims(distorted_image, 0)) + + # Randomly flip the image horizontally. + distorted_image = tf.image.random_flip_left_right(distorted_image) + + # Randomly distort the colors. There are 1 or 4 ways to do it. + num_distort_cases = 1 if fast_mode else 4 + distorted_image = apply_with_random_selector( + distorted_image, + lambda x, ordering: distort_color(x, ordering, fast_mode), + num_cases=num_distort_cases) + + if use_grayscale: + distorted_image = tf.image.rgb_to_grayscale(distorted_image) + + if add_image_summaries: + tf.summary.image('final_distorted_image', + tf.expand_dims(distorted_image, 0)) + distorted_image = tf.subtract(distorted_image, 0.5) + distorted_image = tf.multiply(distorted_image, 2.0) + return distorted_image + + +def preprocess_for_eval(image, + height, + width, + central_fraction=0.875, + scope=None, + central_crop=True, + use_grayscale=False): + """Prepare one image for evaluation. + + If height and width are specified it would output an image with that size by + applying resize_bilinear. + + If central_fraction is specified it would crop the central fraction of the + input image. + + Args: + image: 3-D Tensor of image. If dtype is tf.float32 then the range should be + [0, 1], otherwise it would converted to tf.float32 assuming that the range + is [0, MAX], where MAX is largest positive representable number for + int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). + height: integer + width: integer + central_fraction: Optional Float, fraction of the image to crop. + scope: Optional scope for name_scope. + central_crop: Enable central cropping of images during preprocessing for + evaluation. + use_grayscale: Whether to convert the image from RGB to grayscale. + Returns: + 3-D float Tensor of prepared image. + """ + with tf.name_scope(scope, 'eval_image', [image, height, width]): + if image.dtype != tf.float32: + image = tf.image.convert_image_dtype(image, dtype=tf.float32) + if use_grayscale: + image = tf.image.rgb_to_grayscale(image) + # Crop the central region of the image with an area containing 87.5% of + # the original image. + if central_crop and central_fraction: + image = tf.image.central_crop(image, central_fraction=central_fraction) + + if height and width: + # Resize the image to the specified height and width. + image = tf.expand_dims(image, 0) + image = tf.image.resize_bilinear(image, [height, width], + align_corners=False) + image = tf.squeeze(image, [0]) + image = tf.subtract(image, 0.5) + image = tf.multiply(image, 2.0) + return image + + +def preprocess_image(image, + height, + width, + is_training=False, + bbox=None, + fast_mode=True, + add_image_summaries=True, + crop_image=True, + use_grayscale=False): + """Pre-process one image for training or evaluation. + + Args: + image: 3-D Tensor [height, width, channels] with the image. If dtype is + tf.float32 then the range should be [0, 1], otherwise it would converted + to tf.float32 assuming that the range is [0, MAX], where MAX is largest + positive representable number for int(8/16/32) data type (see + `tf.image.convert_image_dtype` for details). + height: integer, image expected height. + width: integer, image expected width. + is_training: Boolean. If true it would transform an image for train, + otherwise it would transform it for evaluation. + bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] + where each coordinate is [0, 1) and the coordinates are arranged as + [ymin, xmin, ymax, xmax]. + fast_mode: Optional boolean, if True avoids slower transformations. + add_image_summaries: Enable image summaries. + crop_image: Whether to enable cropping of images during preprocessing for + both training and evaluation. + use_grayscale: Whether to convert the image from RGB to grayscale. + + Returns: + 3-D float Tensor containing an appropriately scaled image + + Raises: + ValueError: if user does not provide bounding box + """ + if is_training: + return preprocess_for_train( + image, + height, + width, + bbox, + fast_mode, + add_image_summaries=add_image_summaries, + random_crop=crop_image, + use_grayscale=use_grayscale) + else: + return preprocess_for_eval( + image, + height, + width, + central_crop=crop_image, + use_grayscale=use_grayscale) + +def convert_RGB(img_name): + image = Image.open(img_name).convert('RGB') + return image + +def preprocess(src_path, save_path): + in_files = os.listdir(src_path) + in_files.sort() + resize_shape = [224, 224, 3] + sqz_mean = np.array([127.5, 127.5, 127.5], np.float32) + img_std = np.array([[0.5*255, 0.5*255, 0.5*255]], np.float32) + if os.path.isdir(save_path): + shutil.rmtree(save_path) + os.makedirs(save_path) + for file in in_files: + with tf.Session().as_default(): + if not os.path.isdir(file): + print(file) + img = convert_RGB(os.path.join(src_path, file)) + img = np.array(img) + img = tf.convert_to_tensor(img) + img = preprocess_image(img, + 224, + 224, + is_training=False, + use_grayscale=False) + img = img.eval() + img = img * img_std + img = img + sqz_mean + img = img.astype(np.uint8, copy=False) + img.tofile(os.path.join(save_path, file.split('.')[0]+".bin")) + tf.reset_default_graph() + +if __name__ == "__main__": + if len(sys.argv) < 3: + raise Exception("usage: python3 xxx.py [src_path] [save_path]") + + src_path = sys.argv[1] + save_path = sys.argv[2] + preprocess(src_path, save_path) diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/CMakeLists.txt b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..17dc38b8a933d0b8fd84e5579426f7933ca45c99 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/CMakeLists.txt @@ -0,0 +1,41 @@ +# Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved. +# CMake lowest version requirement +cmake_minimum_required(VERSION 3.5.1) +# project information +project(ascendcl) +# Compile options +add_compile_options(-std=c++11) +# Specify target generation path +set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "../outputs") +set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "../outputs") +set(CMAKE_INSTALL_PREFIX "../../../") +set(CMAKE_OUTPUT_DIR "out") +set(CMAKE_CXX_FLAGS_RELEASE "-fPIC -O2 -g -Wall") + +ADD_DEFINITIONS("-DENABLE_DVPP_INTERFACE -D_GLIBCXX_USE_CXX11_ABI=0") + +# Header path +include_directories( +inc +#/usr/include/gflags +$ENV{install_path}/acllib/include +$ENV{install_path}/driver/kernel/libc_sec/include +/usr/include +) + +# add host lib path +link_directories($ENV{install_path}/acllib/lib64/stub) +#link_directories(/usr/local/Ascend/driver/lib64) +#link_directories(/usr/local/Ascend/atc/lib64) +#link_directories(/usr/local/lib) +link_directories(../thirdpart_lib) + +# 设置需要编译的源文件 +add_executable(benchmark main.cpp util.cpp post_process.cpp infer_engine.cpp) + +# 设置共享库 RC为待扩展的offline模型 +#target_link_libraries(benchmark acl_dvpp ascendcl pthread protobuf cryptopp) +target_link_libraries(benchmark acl_dvpp ascendcl pthread) + +install(TARGETS benchmark DESTINATION ${CMAKE_OUTPUT_DIR}) + diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/defines.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/defines.h new file mode 100644 index 0000000000000000000000000000000000000000..f0be3dcb485269718125445537ce3616c3078d34 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/defines.h @@ -0,0 +1,48 @@ +/* Generated from defines.h.in during build configuration using CMake. */ + +// Note: This header file is only used internally. It is not part of public interface! +// Any cmakedefine is defined using the -D flag instead when Bazel is used. +// For Bazel, this file is thus not used to avoid a private file in $(GENDIR). + +#ifndef GFLAGS_DEFINES_H_ +#define GFLAGS_DEFINES_H_ + + +// Define if you build this library for a MS Windows OS. +/* #undef OS_WINDOWS */ + +// Define if you have the header file. +#define HAVE_STDINT_H + +// Define if you have the header file. +#define HAVE_SYS_TYPES_H + +// Define if you have the header file. +#define HAVE_INTTYPES_H + +// Define if you have the header file. +#define HAVE_SYS_STAT_H + +// Define if you have the header file. +#define HAVE_UNISTD_H + +// Define if you have the header file. +#define HAVE_FNMATCH_H + +// Define if you have the header file (Windows 2000/XP). +/* #undef HAVE_SHLWAPI_H */ + +// Define if you have the strtoll function. +#define HAVE_STRTOLL + +// Define if you have the strtoq function. +/* #undef HAVE_STRTOQ */ + +// Define if you have the header file. +#define HAVE_PTHREAD + +// Define if your pthread library defines the type pthread_rwlock_t +#define HAVE_RWLOCK + + +#endif // GFLAGS_DEFINES_H_ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags.h new file mode 100644 index 0000000000000000000000000000000000000000..4f3168a03d878a16ac0e05d1d240396b9d422c63 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags.h @@ -0,0 +1,624 @@ +// Copyright (c) 2006, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// --- +// Revamped and reorganized by Craig Silverstein +// +// This is the file that should be included by any file which declares +// or defines a command line flag or wants to parse command line flags +// or print a program usage message (which will include information about +// flags). Executive summary, in the form of an example foo.cc file: +// +// #include "foo.h" // foo.h has a line "DECLARE_int32(start);" +// #include "validators.h" // hypothetical file defining ValidateIsFile() +// +// DEFINE_int32(end, 1000, "The last record to read"); +// +// DEFINE_string(filename, "my_file.txt", "The file to read"); +// // Crash if the specified file does not exist. +// static bool dummy = RegisterFlagValidator(&FLAGS_filename, +// &ValidateIsFile); +// +// DECLARE_bool(verbose); // some other file has a DEFINE_bool(verbose, ...) +// +// void MyFunc() { +// if (FLAGS_verbose) printf("Records %d-%d\n", FLAGS_start, FLAGS_end); +// } +// +// Then, at the command-line: +// ./foo --noverbose --start=5 --end=100 +// +// For more details, see +// doc/gflags.html +// +// --- A note about thread-safety: +// +// We describe many functions in this routine as being thread-hostile, +// thread-compatible, or thread-safe. Here are the meanings we use: +// +// thread-safe: it is safe for multiple threads to call this routine +// (or, when referring to a class, methods of this class) +// concurrently. +// thread-hostile: it is not safe for multiple threads to call this +// routine (or methods of this class) concurrently. In gflags, +// most thread-hostile routines are intended to be called early in, +// or even before, main() -- that is, before threads are spawned. +// thread-compatible: it is safe for multiple threads to read from +// this variable (when applied to variables), or to call const +// methods of this class (when applied to classes), as long as no +// other thread is writing to the variable or calling non-const +// methods of this class. + +#ifndef GFLAGS_GFLAGS_H_ +#define GFLAGS_GFLAGS_H_ + +#include +#include + +#include "gflags/gflags_declare.h" // IWYU pragma: export + + +// We always want to export variables defined in user code +#ifndef GFLAGS_DLL_DEFINE_FLAG +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DEFINE_FLAG __declspec(dllexport) +# else +# define GFLAGS_DLL_DEFINE_FLAG +# endif +#endif + + +namespace GFLAGS_NAMESPACE { + + +// -------------------------------------------------------------------- +// To actually define a flag in a file, use DEFINE_bool, +// DEFINE_string, etc. at the bottom of this file. You may also find +// it useful to register a validator with the flag. This ensures that +// when the flag is parsed from the commandline, or is later set via +// SetCommandLineOption, we call the validation function. It is _not_ +// called when you assign the value to the flag directly using the = operator. +// +// The validation function should return true if the flag value is valid, and +// false otherwise. If the function returns false for the new setting of the +// flag, the flag will retain its current value. If it returns false for the +// default value, ParseCommandLineFlags() will die. +// +// This function is safe to call at global construct time (as in the +// example below). +// +// Example use: +// static bool ValidatePort(const char* flagname, int32 value) { +// if (value > 0 && value < 32768) // value is ok +// return true; +// printf("Invalid value for --%s: %d\n", flagname, (int)value); +// return false; +// } +// DEFINE_int32(port, 0, "What port to listen on"); +// static bool dummy = RegisterFlagValidator(&FLAGS_port, &ValidatePort); + +// Returns true if successfully registered, false if not (because the +// first argument doesn't point to a command-line flag, or because a +// validator is already registered for this flag). +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const bool* flag, bool (*validate_fn)(const char*, bool)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const int32* flag, bool (*validate_fn)(const char*, int32)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const uint32* flag, bool (*validate_fn)(const char*, uint32)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const int64* flag, bool (*validate_fn)(const char*, int64)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const uint64* flag, bool (*validate_fn)(const char*, uint64)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const double* flag, bool (*validate_fn)(const char*, double)); +extern GFLAGS_DLL_DECL bool RegisterFlagValidator(const std::string* flag, bool (*validate_fn)(const char*, const std::string&)); + +// Convenience macro for the registration of a flag validator +#define DEFINE_validator(name, validator) \ + static const bool name##_validator_registered = \ + GFLAGS_NAMESPACE::RegisterFlagValidator(&FLAGS_##name, validator) + + +// -------------------------------------------------------------------- +// These methods are the best way to get access to info about the +// list of commandline flags. Note that these routines are pretty slow. +// GetAllFlags: mostly-complete info about the list, sorted by file. +// ShowUsageWithFlags: pretty-prints the list to stdout (what --help does) +// ShowUsageWithFlagsRestrict: limit to filenames with restrict as a substr +// +// In addition to accessing flags, you can also access argv[0] (the program +// name) and argv (the entire commandline), which we sock away a copy of. +// These variables are static, so you should only set them once. +// +// No need to export this data only structure from DLL, avoiding VS warning 4251. +struct CommandLineFlagInfo { + std::string name; // the name of the flag + std::string type; // the type of the flag: int32, etc + std::string description; // the "help text" associated with the flag + std::string current_value; // the current value, as a string + std::string default_value; // the default value, as a string + std::string filename; // 'cleaned' version of filename holding the flag + bool has_validator_fn; // true if RegisterFlagValidator called on this flag + bool is_default; // true if the flag has the default value and + // has not been set explicitly from the cmdline + // or via SetCommandLineOption + const void* flag_ptr; // pointer to the flag's current value (i.e. FLAGS_foo) +}; + +// Using this inside of a validator is a recipe for a deadlock. +// TODO(user) Fix locking when validators are running, to make it safe to +// call validators during ParseAllFlags. +// Also make sure then to uncomment the corresponding unit test in +// gflags_unittest.sh +extern GFLAGS_DLL_DECL void GetAllFlags(std::vector* OUTPUT); +// These two are actually defined in gflags_reporting.cc. +extern GFLAGS_DLL_DECL void ShowUsageWithFlags(const char *argv0); // what --help does +extern GFLAGS_DLL_DECL void ShowUsageWithFlagsRestrict(const char *argv0, const char *restrict); + +// Create a descriptive string for a flag. +// Goes to some trouble to make pretty line breaks. +extern GFLAGS_DLL_DECL std::string DescribeOneFlag(const CommandLineFlagInfo& flag); + +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetArgv(int argc, const char** argv); + +// The following functions are thread-safe as long as SetArgv() is +// only called before any threads start. +extern GFLAGS_DLL_DECL const std::vector& GetArgvs(); +extern GFLAGS_DLL_DECL const char* GetArgv(); // all of argv as a string +extern GFLAGS_DLL_DECL const char* GetArgv0(); // only argv0 +extern GFLAGS_DLL_DECL uint32 GetArgvSum(); // simple checksum of argv +extern GFLAGS_DLL_DECL const char* ProgramInvocationName(); // argv0, or "UNKNOWN" if not set +extern GFLAGS_DLL_DECL const char* ProgramInvocationShortName(); // basename(argv0) + +// ProgramUsage() is thread-safe as long as SetUsageMessage() is only +// called before any threads start. +extern GFLAGS_DLL_DECL const char* ProgramUsage(); // string set by SetUsageMessage() + +// VersionString() is thread-safe as long as SetVersionString() is only +// called before any threads start. +extern GFLAGS_DLL_DECL const char* VersionString(); // string set by SetVersionString() + + + +// -------------------------------------------------------------------- +// Normally you access commandline flags by just saying "if (FLAGS_foo)" +// or whatever, and set them by calling "FLAGS_foo = bar" (or, more +// commonly, via the DEFINE_foo macro). But if you need a bit more +// control, we have programmatic ways to get/set the flags as well. +// These programmatic ways to access flags are thread-safe, but direct +// access is only thread-compatible. + +// Return true iff the flagname was found. +// OUTPUT is set to the flag's value, or unchanged if we return false. +extern GFLAGS_DLL_DECL bool GetCommandLineOption(const char* name, std::string* OUTPUT); + +// Return true iff the flagname was found. OUTPUT is set to the flag's +// CommandLineFlagInfo or unchanged if we return false. +extern GFLAGS_DLL_DECL bool GetCommandLineFlagInfo(const char* name, CommandLineFlagInfo* OUTPUT); + +// Return the CommandLineFlagInfo of the flagname. exit() if name not found. +// Example usage, to check if a flag's value is currently the default value: +// if (GetCommandLineFlagInfoOrDie("foo").is_default) ... +extern GFLAGS_DLL_DECL CommandLineFlagInfo GetCommandLineFlagInfoOrDie(const char* name); + +enum GFLAGS_DLL_DECL FlagSettingMode { + // update the flag's value (can call this multiple times). + SET_FLAGS_VALUE, + // update the flag's value, but *only if* it has not yet been updated + // with SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef". + SET_FLAG_IF_DEFAULT, + // set the flag's default value to this. If the flag has not yet updated + // yet (via SET_FLAGS_VALUE, SET_FLAG_IF_DEFAULT, or "FLAGS_xxx = nondef") + // change the flag's current value to the new default value as well. + SET_FLAGS_DEFAULT +}; + +// Set a particular flag ("command line option"). Returns a string +// describing the new value that the option has been set to. The +// return value API is not well-specified, so basically just depend on +// it to be empty if the setting failed for some reason -- the name is +// not a valid flag name, or the value is not a valid value -- and +// non-empty else. + +// SetCommandLineOption uses set_mode == SET_FLAGS_VALUE (the common case) +extern GFLAGS_DLL_DECL std::string SetCommandLineOption (const char* name, const char* value); +extern GFLAGS_DLL_DECL std::string SetCommandLineOptionWithMode(const char* name, const char* value, FlagSettingMode set_mode); + + +// -------------------------------------------------------------------- +// Saves the states (value, default value, whether the user has set +// the flag, registered validators, etc) of all flags, and restores +// them when the FlagSaver is destroyed. This is very useful in +// tests, say, when you want to let your tests change the flags, but +// make sure that they get reverted to the original states when your +// test is complete. +// +// Example usage: +// void TestFoo() { +// FlagSaver s1; +// FLAG_foo = false; +// FLAG_bar = "some value"; +// +// // test happens here. You can return at any time +// // without worrying about restoring the FLAG values. +// } +// +// Note: This class is marked with GFLAGS_ATTRIBUTE_UNUSED because all +// the work is done in the constructor and destructor, so in the standard +// usage example above, the compiler would complain that it's an +// unused variable. +// +// This class is thread-safe. However, its destructor writes to +// exactly the set of flags that have changed value during its +// lifetime, so concurrent _direct_ access to those flags +// (i.e. FLAGS_foo instead of {Get,Set}CommandLineOption()) is unsafe. + +class GFLAGS_DLL_DECL FlagSaver { + public: + FlagSaver(); + ~FlagSaver(); + + private: + class FlagSaverImpl* impl_; // we use pimpl here to keep API steady + + FlagSaver(const FlagSaver&); // no copying! + void operator=(const FlagSaver&); +}__attribute((unused)); + +// -------------------------------------------------------------------- +// Some deprecated or hopefully-soon-to-be-deprecated functions. + +// This is often used for logging. TODO(csilvers): figure out a better way +extern GFLAGS_DLL_DECL std::string CommandlineFlagsIntoString(); +// Usually where this is used, a FlagSaver should be used instead. +extern GFLAGS_DLL_DECL +bool ReadFlagsFromString(const std::string& flagfilecontents, + const char* prog_name, + bool errors_are_fatal); // uses SET_FLAGS_VALUE + +// These let you manually implement --flagfile functionality. +// DEPRECATED. +extern GFLAGS_DLL_DECL bool AppendFlagsIntoFile(const std::string& filename, const char* prog_name); +extern GFLAGS_DLL_DECL bool ReadFromFlagsFile(const std::string& filename, const char* prog_name, bool errors_are_fatal); // uses SET_FLAGS_VALUE + + +// -------------------------------------------------------------------- +// Useful routines for initializing flags from the environment. +// In each case, if 'varname' does not exist in the environment +// return defval. If 'varname' does exist but is not valid +// (e.g., not a number for an int32 flag), abort with an error. +// Otherwise, return the value. NOTE: for booleans, for true use +// 't' or 'T' or 'true' or '1', for false 'f' or 'F' or 'false' or '0'. + +extern GFLAGS_DLL_DECL bool BoolFromEnv(const char *varname, bool defval); +extern GFLAGS_DLL_DECL int32 Int32FromEnv(const char *varname, int32 defval); +extern GFLAGS_DLL_DECL uint32 Uint32FromEnv(const char *varname, uint32 defval); +extern GFLAGS_DLL_DECL int64 Int64FromEnv(const char *varname, int64 defval); +extern GFLAGS_DLL_DECL uint64 Uint64FromEnv(const char *varname, uint64 defval); +extern GFLAGS_DLL_DECL double DoubleFromEnv(const char *varname, double defval); +extern GFLAGS_DLL_DECL const char *StringFromEnv(const char *varname, const char *defval); + + +// -------------------------------------------------------------------- +// The next two functions parse gflags from main(): + +// Set the "usage" message for this program. For example: +// string usage("This program does nothing. Sample usage:\n"); +// usage += argv[0] + " "; +// SetUsageMessage(usage); +// Do not include commandline flags in the usage: we do that for you! +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetUsageMessage(const std::string& usage); + +// Sets the version string, which is emitted with --version. +// For instance: SetVersionString("1.3"); +// Thread-hostile; meant to be called before any threads are spawned. +extern GFLAGS_DLL_DECL void SetVersionString(const std::string& version); + + +// Looks for flags in argv and parses them. Rearranges argv to put +// flags first, or removes them entirely if remove_flags is true. +// If a flag is defined more than once in the command line or flag +// file, the last definition is used. Returns the index (into argv) +// of the first non-flag argument. +// See top-of-file for more details on this function. +#ifndef SWIG // In swig, use ParseCommandLineFlagsScript() instead. +extern GFLAGS_DLL_DECL uint32 ParseCommandLineFlags(int *argc, char*** argv, bool remove_flags); +#endif + + +// Calls to ParseCommandLineNonHelpFlags and then to +// HandleCommandLineHelpFlags can be used instead of a call to +// ParseCommandLineFlags during initialization, in order to allow for +// changing default values for some FLAGS (via +// e.g. SetCommandLineOptionWithMode calls) between the time of +// command line parsing and the time of dumping help information for +// the flags as a result of command line parsing. If a flag is +// defined more than once in the command line or flag file, the last +// definition is used. Returns the index (into argv) of the first +// non-flag argument. (If remove_flags is true, will always return 1.) +extern GFLAGS_DLL_DECL uint32 ParseCommandLineNonHelpFlags(int *argc, char*** argv, bool remove_flags); + +// This is actually defined in gflags_reporting.cc. +// This function is misnamed (it also handles --version, etc.), but +// it's too late to change that now. :-( +extern GFLAGS_DLL_DECL void HandleCommandLineHelpFlags(); // in gflags_reporting.cc + +// Allow command line reparsing. Disables the error normally +// generated when an unknown flag is found, since it may be found in a +// later parse. Thread-hostile; meant to be called before any threads +// are spawned. +extern GFLAGS_DLL_DECL void AllowCommandLineReparsing(); + +// Reparse the flags that have not yet been recognized. Only flags +// registered since the last parse will be recognized. Any flag value +// must be provided as part of the argument using "=", not as a +// separate command line argument that follows the flag argument. +// Intended for handling flags from dynamically loaded libraries, +// since their flags are not registered until they are loaded. +extern GFLAGS_DLL_DECL void ReparseCommandLineNonHelpFlags(); + +// Clean up memory allocated by flags. This is only needed to reduce +// the quantity of "potentially leaked" reports emitted by memory +// debugging tools such as valgrind. It is not required for normal +// operation, or for the google perftools heap-checker. It must only +// be called when the process is about to exit, and all threads that +// might access flags are quiescent. Referencing flags after this is +// called will have unexpected consequences. This is not safe to run +// when multiple threads might be running: the function is +// thread-hostile. +extern GFLAGS_DLL_DECL void ShutDownCommandLineFlags(); + + +// -------------------------------------------------------------------- +// Now come the command line flag declaration/definition macros that +// will actually be used. They're kind of hairy. A major reason +// for this is initialization: we want people to be able to access +// variables in global constructors and have that not crash, even if +// their global constructor runs before the global constructor here. +// (Obviously, we can't guarantee the flags will have the correct +// default value in that case, but at least accessing them is safe.) +// The only way to do that is have flags point to a static buffer. +// So we make one, using a union to ensure proper alignment, and +// then use placement-new to actually set up the flag with the +// correct default value. In the same vein, we have to worry about +// flag access in global destructors, so FlagRegisterer has to be +// careful never to destroy the flag-values it constructs. +// +// Note that when we define a flag variable FLAGS_, we also +// preemptively define a junk variable, FLAGS_no. This is to +// cause a link-time error if someone tries to define 2 flags with +// names like "logging" and "nologging". We do this because a bool +// flag FLAG can be set from the command line to true with a "-FLAG" +// argument, and to false with a "-noFLAG" argument, and so this can +// potentially avert confusion. +// +// We also put flags into their own namespace. It is purposefully +// named in an opaque way that people should have trouble typing +// directly. The idea is that DEFINE puts the flag in the weird +// namespace, and DECLARE imports the flag from there into the current +// namespace. The net result is to force people to use DECLARE to get +// access to a flag, rather than saying "extern GFLAGS_DLL_DECL bool FLAGS_whatever;" +// or some such instead. We want this so we can put extra +// functionality (like sanity-checking) in DECLARE if we want, and +// make sure it is picked up everywhere. +// +// We also put the type of the variable in the namespace, so that +// people can't DECLARE_int32 something that they DEFINE_bool'd +// elsewhere. + +class GFLAGS_DLL_DECL FlagRegisterer { + public: + // We instantiate this template ctor for all supported types, + // so it is possible to place implementation of the FlagRegisterer ctor in + // .cc file. + // Calling this constructor with unsupported type will produce linker error. + template + FlagRegisterer(const char* name, + const char* help, const char* filename, + FlagType* current_storage, FlagType* defvalue_storage); +}; + +// Force compiler to not generate code for the given template specialization. +#if defined(_MSC_VER) && _MSC_VER < 1800 // Visual Studio 2013 version 12.0 + #define GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(type) +#else + #define GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(type) \ + extern template GFLAGS_DLL_DECL FlagRegisterer::FlagRegisterer( \ + const char* name, const char* help, const char* filename, \ + type* current_storage, type* defvalue_storage) +#endif + +// Do this for all supported flag types. +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(bool); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(int32); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(uint32); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(int64); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(uint64); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(double); +GFLAGS_DECLARE_FLAG_REGISTERER_CTOR(std::string); + +#undef GFLAGS_DECLARE_FLAG_REGISTERER_CTOR + +// If your application #defines STRIP_FLAG_HELP to a non-zero value +// before #including this file, we remove the help message from the +// binary file. This can reduce the size of the resulting binary +// somewhat, and may also be useful for security reasons. + +extern GFLAGS_DLL_DECL const char kStrippedFlagHelp[]; + + +} // namespace GFLAGS_NAMESPACE + + +#ifndef SWIG // In swig, ignore the main flag declarations + +#if defined(STRIP_FLAG_HELP) && STRIP_FLAG_HELP > 0 +// Need this construct to avoid the 'defined but not used' warning. +#define MAYBE_STRIPPED_HELP(txt) \ + (false ? (txt) : GFLAGS_NAMESPACE::kStrippedFlagHelp) +#else +#define MAYBE_STRIPPED_HELP(txt) txt +#endif + +// Each command-line flag has two variables associated with it: one +// with the current value, and one with the default value. However, +// we have a third variable, which is where value is assigned; it's a +// constant. This guarantees that FLAG_##value is initialized at +// static initialization time (e.g. before program-start) rather than +// than global construction time (which is after program-start but +// before main), at least when 'value' is a compile-time constant. We +// use a small trick for the "default value" variable, and call it +// FLAGS_no. This serves the second purpose of assuring a +// compile error if someone tries to define a flag named no +// which is illegal (--foo and --nofoo both affect the "foo" flag). +#define DEFINE_VARIABLE(type, shorttype, name, value, help) \ + namespace fL##shorttype { \ + static const type FLAGS_nono##name = value; \ + /* We always want to export defined variables, dll or no */ \ + GFLAGS_DLL_DEFINE_FLAG type FLAGS_##name = FLAGS_nono##name; \ + static type FLAGS_no##name = FLAGS_nono##name; \ + static GFLAGS_NAMESPACE::FlagRegisterer o_##name( \ + #name, MAYBE_STRIPPED_HELP(help), __FILE__, \ + &FLAGS_##name, &FLAGS_no##name); \ + } \ + using fL##shorttype::FLAGS_##name + +// For DEFINE_bool, we want to do the extra check that the passed-in +// value is actually a bool, and not a string or something that can be +// coerced to a bool. These declarations (no definition needed!) will +// help us do that, and never evaluate From, which is important. +// We'll use 'sizeof(IsBool(val))' to distinguish. This code requires +// that the compiler have different sizes for bool & double. Since +// this is not guaranteed by the standard, we check it with a +// COMPILE_ASSERT. +namespace fLB { +struct CompileAssert {}; +typedef CompileAssert expected_sizeof_double_neq_sizeof_bool[ + (sizeof(double) != sizeof(bool)) ? 1 : -1]; +template double GFLAGS_DLL_DECL IsBoolFlag(const From& from); +GFLAGS_DLL_DECL bool IsBoolFlag(bool from); +} // namespace fLB + +// Here are the actual DEFINE_*-macros. The respective DECLARE_*-macros +// are in a separate include, gflags_declare.h, for reducing +// the physical transitive size for DECLARE use. +#define DEFINE_bool(name, val, txt) \ + namespace fLB { \ + typedef ::fLB::CompileAssert FLAG_##name##_value_is_not_a_bool[ \ + (sizeof(::fLB::IsBoolFlag(val)) != sizeof(double))? 1: -1]; \ + } \ + DEFINE_VARIABLE(bool, B, name, val, txt) + +#define DEFINE_int32(name, val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::int32, I, \ + name, val, txt) + +#define DEFINE_uint32(name,val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::uint32, U, \ + name, val, txt) + +#define DEFINE_int64(name, val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::int64, I64, \ + name, val, txt) + +#define DEFINE_uint64(name,val, txt) \ + DEFINE_VARIABLE(GFLAGS_NAMESPACE::uint64, U64, \ + name, val, txt) + +#define DEFINE_double(name, val, txt) \ + DEFINE_VARIABLE(double, D, name, val, txt) + +// Strings are trickier, because they're not a POD, so we can't +// construct them at static-initialization time (instead they get +// constructed at global-constructor time, which is much later). To +// try to avoid crashes in that case, we use a char buffer to store +// the string, which we can static-initialize, and then placement-new +// into it later. It's not perfect, but the best we can do. + +namespace fLS { + +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + const char *value) { + return new(stringspot) clstring(value); +} +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + const clstring &value) { + return new(stringspot) clstring(value); +} +inline clstring* dont_pass0toDEFINE_string(char *stringspot, + int value); + +// Auxiliary class used to explicitly call destructor of string objects +// allocated using placement new during static program deinitialization. +// The destructor MUST be an inline function such that the explicit +// destruction occurs in the same compilation unit as the placement new. +class StringFlagDestructor { + void *current_storage_; + void *defvalue_storage_; + +public: + + StringFlagDestructor(void *current, void *defvalue) + : current_storage_(current), defvalue_storage_(defvalue) {} + + ~StringFlagDestructor() { + reinterpret_cast(current_storage_ )->~clstring(); + reinterpret_cast(defvalue_storage_)->~clstring(); + } +}; + +} // namespace fLS + +// We need to define a var named FLAGS_no##name so people don't define +// --string and --nostring. And we need a temporary place to put val +// so we don't have to evaluate it twice. Two great needs that go +// great together! +// The weird 'using' + 'extern' inside the fLS namespace is to work around +// an unknown compiler bug/issue with the gcc 4.2.1 on SUSE 10. See +// http://code.google.com/p/google-gflags/issues/detail?id=20 +#define DEFINE_string(name, val, txt) \ + namespace fLS { \ + using ::fLS::clstring; \ + using ::fLS::StringFlagDestructor; \ + static union { void* align; char s[sizeof(clstring)]; } s_##name[2]; \ + clstring* const FLAGS_no##name = ::fLS:: \ + dont_pass0toDEFINE_string(s_##name[0].s, \ + val); \ + static GFLAGS_NAMESPACE::FlagRegisterer o_##name( \ + #name, MAYBE_STRIPPED_HELP(txt), __FILE__, \ + FLAGS_no##name, new (s_##name[1].s) clstring(*FLAGS_no##name)); \ + static StringFlagDestructor d_##name(s_##name[0].s, s_##name[1].s); \ + extern GFLAGS_DLL_DEFINE_FLAG clstring& FLAGS_##name; \ + using fLS::FLAGS_##name; \ + clstring& FLAGS_##name = *FLAGS_no##name; \ + } \ + using fLS::FLAGS_##name + +#endif // SWIG + +// Import gflags library symbols into alternative/deprecated namespace(s) +#include "gflags_gflags.h" +#endif // GFLAGS_GFLAGS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_completions.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_completions.h new file mode 100644 index 0000000000000000000000000000000000000000..15637eb3de853a79eccb9e7ba71771c607767a2e --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_completions.h @@ -0,0 +1,119 @@ +// Copyright (c) 2008, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +// +// --- + +// +// Implement helpful bash-style command line flag completions +// +// ** Functional API: +// HandleCommandLineCompletions() should be called early during +// program startup, but after command line flag code has been +// initialized, such as the beginning of HandleCommandLineHelpFlags(). +// It checks the value of the flag --tab_completion_word. If this +// flag is empty, nothing happens here. If it contains a string, +// however, then HandleCommandLineCompletions() will hijack the +// process, attempting to identify the intention behind this +// completion. Regardless of the outcome of this deduction, the +// process will be terminated, similar to --helpshort flag +// handling. +// +// ** Overview of Bash completions: +// Bash can be told to programatically determine completions for the +// current 'cursor word'. It does this by (in this case) invoking a +// command with some additional arguments identifying the command +// being executed, the word being completed, and the previous word +// (if any). Bash then expects a sequence of output lines to be +// printed to stdout. If these lines all contain a common prefix +// longer than the cursor word, bash will replace the cursor word +// with that common prefix, and display nothing. If there isn't such +// a common prefix, bash will display the lines in pages using 'more'. +// +// ** Strategy taken for command line completions: +// If we can deduce either the exact flag intended, or a common flag +// prefix, we'll output exactly that. Otherwise, if information +// must be displayed to the user, we'll take the opportunity to add +// some helpful information beyond just the flag name (specifically, +// we'll include the default flag value and as much of the flag's +// description as can fit on a single terminal line width, as specified +// by the flag --tab_completion_columns). Furthermore, we'll try to +// make bash order the output such that the most useful or relevent +// flags are the most likely to be shown at the top. +// +// ** Additional features: +// To assist in finding that one really useful flag, substring matching +// was implemented. Before pressing a to get completion for the +// current word, you can append one or more '?' to the flag to do +// substring matching. Here's the semantics: +// --foo Show me all flags with names prefixed by 'foo' +// --foo? Show me all flags with 'foo' somewhere in the name +// --foo?? Same as prior case, but also search in module +// definition path for 'foo' +// --foo??? Same as prior case, but also search in flag +// descriptions for 'foo' +// Finally, we'll trim the output to a relatively small number of +// flags to keep bash quiet about the verbosity of output. If one +// really wanted to see all possible matches, appending a '+' to the +// search word will force the exhaustive list of matches to be printed. +// +// ** How to have bash accept completions from a binary: +// Bash requires that it be informed about each command that programmatic +// completion should be enabled for. Example addition to a .bashrc +// file would be (your path to gflags_completions.sh file may differ): + +/* +$ complete -o bashdefault -o default -o nospace -C \ + '/home/build/eng/bash/bash_completions.sh --tab_completion_columns $COLUMNS' \ + time env binary_name another_binary [...] +*/ + +// This would allow the following to work: +// $ /path/to/binary_name --vmodule +// Or: +// $ ./bin/path/another_binary --gfs_u +// (etc) +// +// Sadly, it appears that bash gives no easy way to force this behavior for +// all commands. That's where the "time" in the above example comes in. +// If you haven't specifically added a command to the list of completion +// supported commands, you can still get completions by prefixing the +// entire command with "env". +// $ env /some/brand/new/binary --vmod +// Assuming that "binary" is a newly compiled binary, this should still +// produce the expected completion output. + + +#ifndef GFLAGS_COMPLETIONS_H_ +#define GFLAGS_COMPLETIONS_H_ + +namespace google { +extern void HandleCommandLineCompletions(void); +} + +#endif // GFLAGS_COMPLETIONS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_declare.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_declare.h new file mode 100644 index 0000000000000000000000000000000000000000..a9c6759707846f63ab97a66c13cb446975364448 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_declare.h @@ -0,0 +1,155 @@ +// Copyright (c) 1999, Google Inc. +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// --- +// +// Revamped and reorganized by Craig Silverstein +// +// This is the file that should be included by any file which declares +// command line flag. + +#ifndef GFLAGS_DECLARE_H_ +#define GFLAGS_DECLARE_H_ + + +// --------------------------------------------------------------------------- +// Namespace of gflags library symbols. +#define GFLAGS_NAMESPACE google + +// --------------------------------------------------------------------------- +// Windows DLL import/export. + +// Whether gflags library is a DLL. +// +// Set to 1 by default when the shared gflags library was built on Windows. +// Must be overwritten when this header file is used with the optionally also +// built static library instead; set by CMake's INTERFACE_COMPILE_DEFINITIONS. +#ifndef GFLAGS_IS_A_DLL +# define GFLAGS_IS_A_DLL 1 +#endif + +// We always want to import the symbols of the gflags library. +#ifndef GFLAGS_DLL_DECL +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DECL __declspec(dllimport) +# elif defined(__GNUC__) && __GNUC__ >= 4 +# define GFLAGS_DLL_DECL __attribute__((visibility("default"))) +# else +# define GFLAGS_DLL_DECL +# endif +#endif + +// We always want to import variables declared in user code. +#ifndef GFLAGS_DLL_DECLARE_FLAG +# if GFLAGS_IS_A_DLL && defined(_MSC_VER) +# define GFLAGS_DLL_DECLARE_FLAG __declspec(dllimport) +# elif defined(__GNUC__) && __GNUC__ >= 4 +# define GFLAGS_DLL_DECLARE_FLAG __attribute__((visibility("default"))) +# else +# define GFLAGS_DLL_DECLARE_FLAG +# endif +#endif + +// --------------------------------------------------------------------------- +// Flag types +#include +#if 1 +# include // the normal place uint32_t is defined +#elif 1 +# include // the normal place u_int32_t is defined +#elif 1 +# include // a third place for uint32_t or u_int32_t +#endif + +namespace GFLAGS_NAMESPACE { + +#if 1 // C99 +typedef int32_t int32; +typedef uint32_t uint32; +typedef int64_t int64; +typedef uint64_t uint64; +#elif 0 // BSD +typedef int32_t int32; +typedef u_int32_t uint32; +typedef int64_t int64; +typedef u_int64_t uint64; +#elif 0 // Windows +typedef __int32 int32; +typedef unsigned __int32 uint32; +typedef __int64 int64; +typedef unsigned __int64 uint64; +#else +# error Do not know how to define a 32-bit integer quantity on your system +#endif + +} // namespace GFLAGS_NAMESPACE + + +namespace fLS { + +// The meaning of "string" might be different between now and when the +// macros below get invoked (e.g., if someone is experimenting with +// other string implementations that get defined after this file is +// included). Save the current meaning now and use it in the macros. +typedef std::string clstring; + +} // namespace fLS + + +#define DECLARE_VARIABLE(type, shorttype, name) \ + /* We always want to import declared variables, dll or no */ \ + namespace fL##shorttype { extern GFLAGS_DLL_DECLARE_FLAG type FLAGS_##name; } \ + using fL##shorttype::FLAGS_##name + +#define DECLARE_bool(name) \ + DECLARE_VARIABLE(bool, B, name) + +#define DECLARE_int32(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::int32, I, name) + +#define DECLARE_uint32(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::uint32, U, name) + +#define DECLARE_int64(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::int64, I64, name) + +#define DECLARE_uint64(name) \ + DECLARE_VARIABLE(::GFLAGS_NAMESPACE::uint64, U64, name) + +#define DECLARE_double(name) \ + DECLARE_VARIABLE(double, D, name) + +#define DECLARE_string(name) \ + /* We always want to import declared variables, dll or no */ \ + namespace fLS { \ + extern GFLAGS_DLL_DECLARE_FLAG ::fLS::clstring& FLAGS_##name; \ + } \ + using fLS::FLAGS_##name + +#endif // GFLAGS_DECLARE_H_ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_gflags.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_gflags.h new file mode 100644 index 0000000000000000000000000000000000000000..3780704e1caa005e3102c189291b73a1972fa080 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/gflags/gflags_gflags.h @@ -0,0 +1,99 @@ +// Copyright (c) 2014, Andreas Schuh +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following disclaimer +// in the documentation and/or other materials provided with the +// distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// ----------------------------------------------------------------------------- +// Imports the gflags library symbols into an alternative/deprecated namespace. + +#ifndef GFLAGS_GFLAGS_H_ +# error The internal header gflags_gflags.h may only be included by gflags.h +#endif + +#ifndef GFLAGS_NS_GFLAGS_H_ +#define GFLAGS_NS_GFLAGS_H_ + + +namespace gflags { + + +using GFLAGS_NAMESPACE::int32; +using GFLAGS_NAMESPACE::uint32; +using GFLAGS_NAMESPACE::int64; +using GFLAGS_NAMESPACE::uint64; + +using GFLAGS_NAMESPACE::RegisterFlagValidator; +using GFLAGS_NAMESPACE::CommandLineFlagInfo; +using GFLAGS_NAMESPACE::GetAllFlags; +using GFLAGS_NAMESPACE::ShowUsageWithFlags; +using GFLAGS_NAMESPACE::ShowUsageWithFlagsRestrict; +using GFLAGS_NAMESPACE::DescribeOneFlag; +using GFLAGS_NAMESPACE::SetArgv; +using GFLAGS_NAMESPACE::GetArgvs; +using GFLAGS_NAMESPACE::GetArgv; +using GFLAGS_NAMESPACE::GetArgv0; +using GFLAGS_NAMESPACE::GetArgvSum; +using GFLAGS_NAMESPACE::ProgramInvocationName; +using GFLAGS_NAMESPACE::ProgramInvocationShortName; +using GFLAGS_NAMESPACE::ProgramUsage; +using GFLAGS_NAMESPACE::VersionString; +using GFLAGS_NAMESPACE::GetCommandLineOption; +using GFLAGS_NAMESPACE::GetCommandLineFlagInfo; +using GFLAGS_NAMESPACE::GetCommandLineFlagInfoOrDie; +using GFLAGS_NAMESPACE::FlagSettingMode; +using GFLAGS_NAMESPACE::SET_FLAGS_VALUE; +using GFLAGS_NAMESPACE::SET_FLAG_IF_DEFAULT; +using GFLAGS_NAMESPACE::SET_FLAGS_DEFAULT; +using GFLAGS_NAMESPACE::SetCommandLineOption; +using GFLAGS_NAMESPACE::SetCommandLineOptionWithMode; +using GFLAGS_NAMESPACE::FlagSaver; +using GFLAGS_NAMESPACE::CommandlineFlagsIntoString; +using GFLAGS_NAMESPACE::ReadFlagsFromString; +using GFLAGS_NAMESPACE::AppendFlagsIntoFile; +using GFLAGS_NAMESPACE::ReadFromFlagsFile; +using GFLAGS_NAMESPACE::BoolFromEnv; +using GFLAGS_NAMESPACE::Int32FromEnv; +using GFLAGS_NAMESPACE::Uint32FromEnv; +using GFLAGS_NAMESPACE::Int64FromEnv; +using GFLAGS_NAMESPACE::Uint64FromEnv; +using GFLAGS_NAMESPACE::DoubleFromEnv; +using GFLAGS_NAMESPACE::StringFromEnv; +using GFLAGS_NAMESPACE::SetUsageMessage; +using GFLAGS_NAMESPACE::SetVersionString; +using GFLAGS_NAMESPACE::ParseCommandLineNonHelpFlags; +using GFLAGS_NAMESPACE::HandleCommandLineHelpFlags; +using GFLAGS_NAMESPACE::AllowCommandLineReparsing; +using GFLAGS_NAMESPACE::ReparseCommandLineNonHelpFlags; +using GFLAGS_NAMESPACE::ShutDownCommandLineFlags; +using GFLAGS_NAMESPACE::FlagRegisterer; + +#ifndef SWIG +using GFLAGS_NAMESPACE::ParseCommandLineFlags; +#endif + +} // namespace gflags +#endif // GFLAGS_NS_GFLAGS_H_ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/infer_engine.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/infer_engine.h new file mode 100644 index 0000000000000000000000000000000000000000..cc7c5e0aa74b720099c01808be36fd4586ceec12 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/infer_engine.h @@ -0,0 +1,45 @@ +#ifndef BENCHMARK_INFER_ENGINE_H +#define BENCHMARK_INFER_ENGINE_H +#include "util.h" +#include "acl/acl_base.h" +#include "post_process.h" +#include +#include +#include +#include +#include +#include "acl/acl_mdl.h" +#include +#include + +aclError InitContext(const char* configPath = ""); +aclError UnInitContext(); +aclError LoadModel(); +aclError InitInput(std::vector files); +aclError Inference(); +aclError PostProcess(); +aclError DvppSetup(); +aclError DvppInitInput(std::vector files); +aclError UnloadModel(); +void getImgResizeShape(); +acldvppRoiConfig* InitCropRoiConfig(uint32_t width, uint32_t height); + +/* + * @brief : 初始化中心抠图配置信息。 + * @param [in] uint32_t newInputWidth : 输入图像的宽(等比例缩放后的宽度) + * @param [in] uint32_t newInputHeight : 输入图像的高(等比例缩放后的高) + * @param [in] uint32_t modelInputWidth : 中心抠图后输入给模型的宽 + * @param [in] uint32_t modelInputHeight : 中心抠图后输入给模型的高 + * @return : acldvppRoiConfig:中心抠图配置信息 + */ +acldvppRoiConfig* InitCropCenterRoiConfig(uint32_t newInputWidth, uint32_t newInputHeight,uint32_t modelInputWidth, uint32_t modelInputHeight); + +/* + * @brief : 宽高较短的边缩放至RESIZE_MIN(256),较长的边做等比例缩放。 + * @param [in] uint32_t width : 输入图片宽 + * @param [in] uint32_t height : 输入图片高 + * @param [in] uint32_t &newInputWidth : 等比例缩放后的宽 + * @param [in] uint32_t &newInputHeight : 等比例缩放后的高 + */ +void SmallSizeAtLeast(uint32_t width, uint32_t height, uint32_t& newInputWidth, uint32_t& newInputHeigh); +#endif diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/post_process.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/post_process.h new file mode 100644 index 0000000000000000000000000000000000000000..d413c66567109cb8647cf7b385ad66478f217af8 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/post_process.h @@ -0,0 +1,5 @@ +#ifndef BENCHMARK_POST_PROCESS_H +#define BENCHMARK_POST_PROCESS_H +#include "util.h" +aclError SaveBinPostprocess(); +#endif diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/util.h b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/util.h new file mode 100644 index 0000000000000000000000000000000000000000..734db74083d316e3c6fdc52c3f5caf0548789684 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/inc/util.h @@ -0,0 +1,157 @@ +#ifndef BENCHMARK_UTIL_H +#define BENCHMARK_UTIL_H +#include +#include +#include +#include "acl/acl_base.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include "acl/acl_rt.h" +#include "acl/ops/acl_dvpp.h" +#include +#include +#include +#include +#include +#include + +// self defined problem code. +const int ACL_ERROR_PATH_INVALID = 101; +const int ACL_ERROR_CREATE_DATASET_FAILED = 102; +const int ACL_ERROR_PARSE_PARAM_FAILED = 103; +const int ACL_ERROR_DVPP_ERROR = 104; +const int ACL_ERROR_OTHERS = 255; +#define MODEL_INPUT_NUM_MAX (4) +#define MODEL_INPUT_OUTPUT_NUM_MAX (16) + +#define LOG(fmt, args...) \ + do { \ + printf(fmt, ##args); \ + } while(0) + + +#define START_PROC \ + struct timeval start, end; \ + long long time_use; \ + do { \ + gettimeofday(&start, NULL); \ + } while (0); + + +#define END_PROC \ + do { \ + gettimeofday(&end, NULL); \ + time_use = (end.tv_sec-start.tv_sec)*1000000+(end.tv_usec-start.tv_usec); \ + LOG("time use: %lld us\n", time_use); \ + } while (0); + + +#define CHECK_ACL_RET(msg, ret) \ + if (ret != ACL_ERROR_NONE) { \ + std::cout << msg << ", ret "<< ret << std::endl; \ + return ret; \ + } + + +#define CHECK_WITH_RET(condition, ret, msg) \ + if(!(condition)) { \ + std::cout << msg << ", ret "<< ret << std::endl; \ + return ret; \ + } + + +#define CHECK_RET(ret) \ + if(ret != ACL_ERROR_NONE) { \ + return ret; \ + } + +bool FolderExists(std::string foldname); + +bool FileExists(std::string filename); + +char* ReadBinFile(std::string fileName, uint32_t& fileSize); + +aclError GetFiles(std::string path, std::vector& files); + +aclError FreeDevMemory(aclmdlDataset* dataset); + +aclError DestroyDatasetResurce(aclmdlDataset* dataset, uint32_t flag); + +void* ReadFile(std::string fileLocation, uint64_t &fileSize); + +struct DvppConfig { + uint32_t resizedWidth; + uint32_t resizedHeight; + std::unordered_map> imgSizes; +}; + +struct ModelInfo +{ + aclFormat Format; + const char* Name; + size_t size; + size_t dimCount; + int64_t dims[ACL_MAX_DIM_CNT]; + aclDataType Type; +}; + +struct Config { + std::string om; + std::string dataDir; + std::string outDir; + DvppConfig dvppConfig; + bool useDvpp; + size_t batchSize; + ModelInfo inputInfo[MODEL_INPUT_OUTPUT_NUM_MAX]; + ModelInfo outputInfo[MODEL_INPUT_OUTPUT_NUM_MAX]; + size_t inputNum; + size_t outputNum; + aclmdlDesc* modelDesc; + uint32_t modelId; + aclrtContext context; + char* modelData_ptr; + void* devMem_ptr; + void* weightMem_ptr; + std::string imgType; + std::string modelType; + uint32_t deviceId; + uint32_t loopNum; + std::string framework; + int64_t curOutputSize[MODEL_INPUT_OUTPUT_NUM_MAX]; + Config() + { + om = ""; + dataDir = ""; + batchSize = 0; + useDvpp = 0; + inputNum = 0; + outputNum = 0; + modelDesc = nullptr; + modelId = 0; + context = nullptr; + imgType = ""; + modelType = ""; + deviceId = 0; + loopNum = 1; + framework = "caffe"; + outDir = "../../results"; + modelData_ptr = nullptr; + devMem_ptr = nullptr; + weightMem_ptr = nullptr; + } +}; + +struct Resnet50Result { + int top1; + int top5; + int total; + std::unordered_map cmp; + Resnet50Result(): top1(0), top5(0), total(0) {}; +}; + +struct DataFrame { + std::vector fileNames; + aclmdlDataset* dataset; +}; + +#endif diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/infer_engine.cpp b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/infer_engine.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7f2b8507a510844689239d71443d8b4b4480be3d --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/infer_engine.cpp @@ -0,0 +1,728 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "acl/acl.h" +#include "infer_engine.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include "acl/ops/acl_dvpp.h" +#include +#include +using namespace std; + +std::unordered_map dvppTime; +extern Resnet50Result resnet50Res; +extern Config cfg; +extern aclError ret; +extern int processedCnt; +extern long long inferTime; +aclrtContext context; +uint32_t modelId; +aclmdlDesc *modelDesc; +std::vector files; +DataFrame inputDataframe; +DataFrame outputDataframe; +aclDataBuffer *yoloImgInfo; +aclrtStream stream = nullptr; +acldvppChannelDesc *dvpp_channel_desc = nullptr; +std::unordered_map> imgSizes; + +#define RESIZE_MIN 256 +#define NUM_2 2 +#define NUM_3 3 +#define NUM_16 16 +#define NUM_128 128 + +uint32_t resizedWidth; +uint32_t resizedHeight; +uint32_t resizedWidthAligned; +uint32_t resizedHeightAligned; +uint32_t resizedOutputBufferSize; + +void getImgResizeShape() +{ + if (ACL_FORMAT_NCHW == cfg.inputInfo[0].Format) { + resizedHeight = cfg.inputInfo[0].dims[NUM_2]; + resizedWidth = cfg.inputInfo[0].dims[NUM_3]; + } else if (ACL_FORMAT_NHWC == cfg.inputInfo[0].Format) { + resizedHeight = cfg.inputInfo[0].dims[1]; + resizedWidth = cfg.inputInfo[0].dims[NUM_2]; + } + return; +} + +aclError InitContext(const char *configPath) +{ + LOG("context init start\n"); + ret = aclInit(configPath); + CHECK_ACL_RET("acl init failed", ret); + + ret = aclrtSetDevice(cfg.deviceId); + CHECK_ACL_RET("open device failed ret", ret); + + ret = aclrtCreateContext(&context, cfg.deviceId); + CHECK_ACL_RET("create context failed", ret); + + cfg.context = context; + LOG("context init done\n"); + return ACL_ERROR_NONE; +} + +aclError UnInitContext() +{ + ret = aclrtDestroyContext(context); + CHECK_ACL_RET("destory context failed", ret); + LOG("destory context done\n"); + + ret = aclrtResetDevice(cfg.deviceId); + CHECK_ACL_RET("reset device failed", ret); + + ret = aclFinalize(); + CHECK_ACL_RET("finalize failed", ret); + LOG("reset device done\n"); + + return ACL_ERROR_NONE; +} + +aclError LoadModel() +{ + LOG("load model start\n"); + size_t memSize; + size_t weightsize; + uint32_t modelSize = 0; + std::string modelPath = cfg.om; + + cfg.modelData_ptr = ReadBinFile(modelPath, modelSize); + CHECK_WITH_RET(cfg.modelData_ptr != nullptr, ACL_ERROR_READ_MODEL_FAILURE, "can't read model"); + + aclError ret = aclmdlQuerySizeFromMem(cfg.modelData_ptr, modelSize, &memSize, &weightsize); + CHECK_ACL_RET("query memory size failed", ret); + + ret = aclrtMalloc(&(cfg.devMem_ptr), memSize, ACL_MEM_MALLOC_HUGE_ONLY); + CHECK_ACL_RET("alloc dev_ptr failed", ret); + ret = aclrtMalloc(&(cfg.weightMem_ptr), weightsize, ACL_MEM_MALLOC_HUGE_ONLY); + CHECK_ACL_RET("alloc weight_ptr failed", ret); + + ret = aclmdlLoadFromMemWithMem(cfg.modelData_ptr, modelSize, &modelId, cfg.devMem_ptr, memSize, cfg.weightMem_ptr, + weightsize); + CHECK_ACL_RET("load model from memory failed", ret); + LOG("Load model success. memSize: %lu, weightSize: %lu.\n", memSize, weightsize); + + modelDesc = aclmdlCreateDesc(); + CHECK_WITH_RET(modelDesc != nullptr, ACL_ERROR_READ_MODEL_FAILURE, "create model desc failed"); + ret = aclmdlGetDesc(modelDesc, modelId); + CHECK_ACL_RET("get model desc failed", ret); + + cfg.modelDesc = modelDesc; + cfg.modelId = modelId; + + LOG("load model done\n"); + return ACL_ERROR_NONE; +} + +aclError DvppSetup() +{ + ret = aclrtSetCurrentContext(context); + if (ret != ACL_ERROR_NONE) { + LOG("Set context failed\n"); + return ret; + } + + ret = aclrtCreateStream(&stream); + if (ret != ACL_ERROR_NONE) { + LOG("create dvpp stream failed\n"); + return ret; + } + + dvpp_channel_desc = acldvppCreateChannelDesc(); + if (dvpp_channel_desc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create dvpp channel desc failed\n"); + return ret; + } + + ret = acldvppCreateChannel(dvpp_channel_desc); + if (ret != ACL_ERROR_NONE) { + LOG("create dvpp channel failed\n"); + return ret; + } + + imgSizes = cfg.dvppConfig.imgSizes; + + resizedWidthAligned = (resizedWidth + 15) / NUM_16 * NUM_16; + resizedHeightAligned = (resizedHeight + 1) / NUM_2 * NUM_2; + + resizedOutputBufferSize = resizedWidthAligned * resizedHeightAligned * NUM_3 / NUM_2; + LOG("resizedWidth %d resizedHeight %d resizedWidthAligned %d resizedHeightAligned %d resizedOutputBufferSize %d\n", + resizedWidth, resizedHeight, resizedWidthAligned, resizedHeightAligned, resizedOutputBufferSize); + + return ACL_ERROR_NONE; +} + +/* + * @brief : 生成dvpp图像描述信息 + * @param [in] void *dataDev : 码流buffer信息. + * @param [in] acldvppPixelFormat format: 图像格式 + * @param [in] uint32_t width : 宽度 + * @param [in] uint32_t height: 高度 + * @param [in] uint32_t widthStride : 宽度对齐. + * @param [in] uint32_t heightStride: 高度对齐. + * @param [in] uint32_t size: 码流大小. + * @return : acldvppPicDesc:图像描述信息 + */ +acldvppPicDesc *createDvppPicDesc(void *dataDev, acldvppPixelFormat format, uint32_t width, uint32_t height, + uint32_t widthStride, uint32_t heightStride, uint32_t size) +{ + acldvppPicDesc *picDesc = acldvppCreatePicDesc(); + if (picDesc == nullptr) { + LOG("failed to create pic desc\n"); + return nullptr; + } + + ret = acldvppSetPicDescData(picDesc, dataDev); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc data\n"); + return nullptr; + } + ret = acldvppSetPicDescSize(picDesc, size); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc size\n"); + return nullptr; + } + + ret = acldvppSetPicDescFormat(picDesc, format); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc format\n"); + return nullptr; + } + + ret = acldvppSetPicDescWidth(picDesc, width); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc width\n"); + return nullptr; + } + + ret = acldvppSetPicDescHeight(picDesc, height); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc height\n"); + return nullptr; + } + + ret = acldvppSetPicDescWidthStride(picDesc, widthStride); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc widthStride\n"); + return nullptr; + } + + ret = acldvppSetPicDescHeightStride(picDesc, heightStride); + if (ret != ACL_ERROR_NONE) { + LOG("failed to set desc heightStride\n"); + return nullptr; + } + return picDesc; +} + +aclError InitInput(std::vector files) +{ + LOG("init input batch %d start\n", processedCnt); + ret = aclrtSetCurrentContext(context); + if (ret != ACL_ERROR_NONE) { + LOG("Set context failed, ret[%d]\n", ret); + return ret; + } + + size_t modelInputSize = cfg.inputInfo[0].size; + size_t imgSize = modelInputSize / cfg.batchSize; + + void *dst; + ret = aclrtMalloc(&dst, modelInputSize, ACL_MEM_MALLOC_NORMAL_ONLY); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc device failed, ret[%d]\n", ret); + return ret; + } + LOG("dst = %p, size = %ld\n", dst, modelInputSize); + + char *ptr = (char *)dst; + inputDataframe.fileNames.clear(); + for (int i = 0; i < files.size(); i++) { + + std::string fileLocation = cfg.dataDir + "/" + files[i]; + FILE *pFile = fopen(fileLocation.c_str(), "r"); + + if (pFile == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("open file %s failed\n", fileLocation.c_str()); + return ret; + } + + fseek(pFile, 0, SEEK_END); + size_t fileSize = ftell(pFile); + + if (fileSize > imgSize) { + ret = ACL_ERROR_OTHERS; + LOG("%s fileSize %lu * batch %lu don't match with model inputSize %lu\n", fileLocation.c_str(), + fileSize, cfg.batchSize, modelInputSize); + return ret; + } + + void *buff = nullptr; + ret = aclrtMallocHost(&buff, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host buff failed[%d]\n", ret); + return ret; + } + + rewind(pFile); + fread(buff, sizeof(char), fileSize, pFile); + fclose(pFile); + + void *dstTmp = (void *)ptr; + ret = aclrtMemcpy(dstTmp, fileSize, buff, fileSize, ACL_MEMCPY_HOST_TO_DEVICE); + ptr += fileSize; + LOG("input file: %s, memory addr: %p, file size: %ld\n",files[i].c_str(), dstTmp, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("init input %d, Copy host to device failed, ret[%d]\n", i, ret); + LOG("input addr %p, len %ld\n", dstTmp, fileSize); + aclrtFreeHost(buff); + return ret; + } + + aclrtFreeHost(buff); + inputDataframe.fileNames.push_back(files[i]); + } + + aclDataBuffer *inputData = aclCreateDataBuffer((void *)dst, modelInputSize); + if (inputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("aclCreateDataBuffer failed\n"); + return ret; + } + + aclmdlDataset *input = aclmdlCreateDataset(); + ret = aclmdlAddDatasetBuffer(input, inputData); + if (ret != ACL_ERROR_NONE) { + LOG("ACL_ModelInputDataAdd failed, ret[%d]\n", ret); + aclmdlDestroyDataset(input); + return ret; + } + + inputDataframe.dataset = input; + LOG("init input batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} + +/* + * @brief : 获取图像宽高 + * @param [in] void* buff : 输入码流地址. + * @param [in] uint32_t fileSize : 输入码流长度 + * @param [in] std::string fileLocation : 输入文件路径. + * @param [in] uint32_t &W : 输入码流宽度. + * @param [in] uint32_t &H : 输入码流高度. + */ +void GetImageHW(void* buff, uint32_t fileSize, std::string fileLocation, uint32_t &W, uint32_t &H) +{ + int32_t components = 0; + ret = acldvppJpegGetImageInfo((void *)buff, fileSize, &W, &H, &components); + if (ret != ACL_ERROR_NONE) { + cout << "acldvppJpegGetImageInfo failed, ret " << ret << "filename: " << fileLocation.c_str() << endl; + } +} + +/* + * @brief : dvpp在推理中的预处理流程 + * @param [in] string fileLocation : 输入文件路径. + * @param [in] char *&ptr : 输出buffer指针. + * @return : ACL_ERROR_NONE:预处理成功, 其他:预处理失败 + */ +aclError DVPP_Resnet50(std::string fileLocation, char *&ptr) +{ + // 1 获取输入码流 + uint32_t W, H, W_Aligned, H_Aligned, outputBuffSize; + void *decodeInput = nullptr; + void *decodeOutput = nullptr; + acldvppPicDesc *decodeOutputDesc = nullptr; + uint64_t fileSize; + void *buff = ReadFile(fileLocation, fileSize); + if( buff == nullptr) { + LOG("read pic failed\n"); + return 1; + } + + ret = acldvppMalloc(&decodeInput, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc dvpp in buff failed[%d]\n", ret); + return ret; + } + ret = aclrtMemcpy(decodeInput, fileSize, buff, fileSize, ACL_MEMCPY_HOST_TO_DEVICE); + if (ret != ACL_ERROR_NONE) { + LOG("copy host to device failed[%d]\n", ret); + return ret; + } + + // 2 获取解码输出描述信息 + GetImageHW(buff, fileSize, fileLocation, W, H); + W_Aligned = (W + 127) / NUM_128 * NUM_128; + H_Aligned = (H + 15) / NUM_16 * NUM_16; + outputBuffSize = W_Aligned * H_Aligned * NUM_3 / NUM_2; + ret = acldvppMalloc(&decodeOutput, outputBuffSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc decodeOutput buff failed[%d]\n", ret); + return ret; + } + decodeOutputDesc = createDvppPicDesc(decodeOutput, PIXEL_FORMAT_YUV_SEMIPLANAR_420, W, H, W_Aligned, H_Aligned, + outputBuffSize); + if (decodeOutputDesc == nullptr) { + LOG("create jpeg_output_desc failed\n"); + return 1; + } + LOG("file[%s] jpeg picDesc info: W=%d, H=%d, W_Aligned=%d, H_Aligned=%d, outBufSize=%d, format=%d\n", \ + fileLocation.c_str(),W, H, W_Aligned, H_Aligned, outputBuffSize, PIXEL_FORMAT_YUV_SEMIPLANAR_420); + + // 3 使用jpegd图像解码 + ret = acldvppJpegDecodeAsync(dvpp_channel_desc, decodeInput, fileSize, decodeOutputDesc, stream); + if (ret != ACL_ERROR_NONE) { + LOG(" dvppJpegDecodeAsync failed\n"); + return ret; + } + aclrtFreeHost(buff); + aclrtSynchronizeStream(stream); + + // 4 对jpegd解码的图片进行原分辨率抠图及短边256等比例缩放 + acldvppRoiConfig *cropConfig = nullptr; + acldvppPicDesc *cropOutputDesc = nullptr; + // 设置对解码后的图片进行原图裁剪,目的是为了减少因jpegd解码后对齐的无效数据对图像精度的影响 + cropConfig = InitCropRoiConfig(W, H); + + uint32_t newInputWidth = 0; + uint32_t newInputHeight = 0; + void *cropOutBufferDev = nullptr; + // 宽和高较短的一条边缩放至256,较长边做等比例缩放。对齐至256目的是为了给224x224中心抠图做准备,短边256对齐,获得对齐后的宽高 + SmallSizeAtLeast(W, H, newInputWidth, newInputHeight); + uint32_t cropOutputWidthStride = (newInputWidth + (NUM_16 - 1)) / NUM_16 * NUM_16; + uint32_t cropOutputHeightStride = (newInputHeight + (NUM_2 - 1)) / NUM_2 * NUM_2; + uint32_t cropOutBufferSize = cropOutputWidthStride * cropOutputHeightStride * NUM_3 / NUM_2; + ret = acldvppMalloc(&cropOutBufferDev, cropOutBufferSize); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] AcldvppMalloc cropOutBufferDev_ failed, ret = " << ret << " cropOutBufferSize_ = " + << cropOutBufferSize << endl; + return ret; + } + cropOutputDesc = createDvppPicDesc(cropOutBufferDev, PIXEL_FORMAT_YUV_SEMIPLANAR_420, newInputWidth, newInputHeight, + cropOutputWidthStride, cropOutputHeightStride, cropOutBufferSize); + if (cropOutputDesc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create cropOutputDesc failed\n"); + return ret; + } + + ret = acldvppVpcCropAsync(dvpp_channel_desc, decodeOutputDesc, cropOutputDesc, cropConfig, stream); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] acldvppVpcCropAsync failed, ret = " << ret << std::endl; + return ret; + } + aclrtSynchronizeStream(stream); + + // 5 对等比例缩放后的图片做224x224中心抠图,中心抠图后的数据会发送给aipp进行YUV转RGB格式转换。需要注意:中心抠图后的输出格式和aipp + // 的输入格式需要保持一致。 + acldvppRoiConfig *centerCropConfig = nullptr; + acldvppPicDesc *centerCropOutputDesc = nullptr; // resize output desc + centerCropConfig = InitCropCenterRoiConfig(newInputWidth, newInputHeight, resizedWidth, resizedHeight); + void *vpcOutBufferDev = nullptr; + uint32_t vpcOutBufferSize = resizedWidthAligned * resizedHeightAligned * NUM_3 / NUM_2; + + vpcOutBufferDev = (void *)ptr; + centerCropOutputDesc = createDvppPicDesc(vpcOutBufferDev, PIXEL_FORMAT_YUV_SEMIPLANAR_420, resizedWidth, + resizedHeight, resizedWidthAligned, resizedHeightAligned, + vpcOutBufferSize); + if (centerCropOutputDesc == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("create centerCropOutputDesc failed\n"); + return ret; + } + + ret = acldvppVpcCropAsync(dvpp_channel_desc, cropOutputDesc, centerCropOutputDesc, centerCropConfig, stream); + if (ret != ACL_ERROR_NONE) { + std::cout << "[ERROR][Vision] acldvppVpcCropAsync failed, ret = " << ret << "fileName: " << fileLocation.c_str() << std::endl; + return ret; + } + + ptr += vpcOutBufferSize; + aclrtSynchronizeStream(stream); + + // 6 释放资源 + acldvppFree(decodeInput); + acldvppFree(decodeOutput); + acldvppFree(cropOutBufferDev); + acldvppDestroyPicDesc(decodeOutputDesc); + acldvppDestroyPicDesc(cropOutputDesc); + acldvppDestroyPicDesc(centerCropOutputDesc); + acldvppDestroyRoiConfig(cropConfig); + acldvppDestroyRoiConfig(centerCropConfig); + return ret; +} + +aclError DvppInitInput(std::vector files) +{ + struct timeval process_start; + struct timeval process_end; + std::string funcName; + long long costTime; + funcName = "DvppTotalProcess"; + gettimeofday(&process_start, NULL); + + void *dst; + ret = acldvppMalloc(&dst, cfg.inputInfo[0].size); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc device failed, ret[%d]\n", ret); + return ret; + } + + char *ptr = (char *)dst; + inputDataframe.fileNames.clear(); + + for (int i = 0; i < files.size(); i++) { + std::string fileLocation = cfg.dataDir + "/" + files[i]; + ret = DVPP_Resnet50(fileLocation, ptr); + if(ret != ACL_ERROR_NONE) { + LOG("dvpp config failed"); + return ret; + } + inputDataframe.fileNames.push_back(files[i]); + } + + funcName = "DvppTotalProcess"; + gettimeofday(&process_end, NULL); + costTime = (process_end.tv_sec - process_start.tv_sec) * 1000000 + (process_end.tv_usec - process_start.tv_usec); + dvppTime[funcName] += costTime; + + aclmdlDataset *input = aclmdlCreateDataset(); + aclDataBuffer *inputData = aclCreateDataBuffer((void *)dst, cfg.inputInfo[0].size); + + if (inputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("aclCreateDataBuffer failed\n"); + return ret; + } + + ret = aclmdlAddDatasetBuffer(input, inputData); + + if (ret != ACL_ERROR_NONE) { + LOG("ACL_ModelInputDataAdd failed, ret[%d]\n", ret); + aclmdlDestroyDataset(input); + return ret; + } + + inputDataframe.dataset = input; + return ACL_ERROR_NONE; +} + +acldvppRoiConfig *InitCropRoiConfig(uint32_t width, uint32_t height) +{ + uint32_t right = 0; + uint32_t bottom = 0; + acldvppRoiConfig *cropConfig; + + if (width % NUM_2 == 0) { + right = width - 1; + } else { + right = width; + } + + if (height % NUM_2 == 0) { + bottom = height - 1; + } else { + bottom = height; + } + + cropConfig = acldvppCreateRoiConfig(0, right, 0, bottom); + if (cropConfig == nullptr) { + std::cout << "[ERROR][Vision] acldvppCreateRoiConfig failed " << std::endl; + return nullptr; + } + + return cropConfig; +} + +acldvppRoiConfig *InitCropCenterRoiConfig(uint32_t newInputWidth, uint32_t newInputHeight, uint32_t modelInputWidth, + uint32_t modelInputHeight) +{ + uint32_t left = 0; + uint32_t right = 0; + uint32_t top = 0; + uint32_t bottom = 0; + uint32_t amount_to_be_cropped_w = 0; + uint32_t amount_to_be_cropped_h = 0; + uint32_t left_half = 0; + uint32_t top_half = 0; + acldvppRoiConfig *centerCropConfig = nullptr; + + // 计算中心抠图起始点的坐标距离码流左边界和上边界的距离 + amount_to_be_cropped_w = newInputWidth - modelInputWidth; + left_half = amount_to_be_cropped_w / NUM_2; + amount_to_be_cropped_h = newInputHeight - modelInputHeight; + top_half = amount_to_be_cropped_h / NUM_2; + + // 保证起始点坐标为偶数 + left = (left_half % NUM_2 == 0) ? (amount_to_be_cropped_w / NUM_2) : (amount_to_be_cropped_w / NUM_2 + 1); + top = (top_half % NUM_2 == 0) ? (amount_to_be_cropped_h / NUM_2) : (amount_to_be_cropped_h / NUM_2 + 1); + + // 结束点为奇数 + right = left + modelInputWidth - 1; + bottom = top + modelInputHeight - 1; + + centerCropConfig = acldvppCreateRoiConfig(left, right, top, bottom); + if (centerCropConfig == nullptr) { + std::cout << "[ERROR][Vision] acldvppCreateRoiConfig failed " << std::endl; + return nullptr; + } + return centerCropConfig; +} + +void SmallSizeAtLeast(uint32_t width, uint32_t height, uint32_t &newInputWidth, uint32_t &newInputHeight) +{ + float scaleRatio = 0.0; + float inputWidth = 0.0; + float inputHeight = 0.0; + float resizeMin = 0.0; + bool minWidthFlag = false; + + inputWidth = (float)width; + inputHeight = (float)height; + resizeMin = (float)(RESIZE_MIN); + minWidthFlag = (width <= height) ? true : false; + + // 短边缩放为256,长边等比例缩放 + if (minWidthFlag == true) { + newInputWidth = resizeMin; + newInputHeight = (resizeMin / width) * inputHeight; + std::cout << "[INFO]scaleRatio: " << resizeMin / width << " inputWidth_: " << width << " newInputWidth: " << + newInputWidth << " inputHeight_: " << inputHeight << " newInputHeight_:" << newInputHeight << std::endl; + } else { + newInputWidth = (resizeMin / height) * width; + newInputHeight = resizeMin; + std::cout << "[INFO]scaleRatio: " << resizeMin / height << " width: " << width << " newInputWidth: " << + newInputWidth << " height: " << height << " newInputHeight:" << newInputHeight << std::endl; + } +} + +aclError Inference() +{ + LOG("inference batch %d start\n", processedCnt); + ret = aclrtSetCurrentContext(context); + + if (ret != ACL_ERROR_NONE) { + LOG("Set infer context failed\n"); + return ret; + } + + struct timeval startTmp, endTmp; + long long timeUse; + + if (inputDataframe.fileNames.size() == 0) { + ret = ACL_ERROR_OTHERS; + LOG("No file found\n"); + return ret; + } + + aclmdlDataset *output = aclmdlCreateDataset(); + if (output == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("Create Output Dataset failed\n"); + return ret; + } + + std::vector outputDevPtrs; + + for (size_t i = 0; i < cfg.outputNum; ++i) { + size_t buffer_size = cfg.outputInfo[i].size; + void *outputBuffer = nullptr; + ret = aclrtMalloc(&outputBuffer, (size_t)buffer_size, ACL_MEM_MALLOC_NORMAL_ONLY); + + if (ret != ACL_ERROR_NONE) { + LOG("Malloc output host failed, ret[%d]\n", ret); + return ret; + } + + outputDevPtrs.push_back(outputBuffer); + aclDataBuffer *outputData = aclCreateDataBuffer(outputBuffer, buffer_size); + + if (outputData == nullptr) { + ret = ACL_ERROR_OTHERS; + LOG("Create output data buffer failed\n"); + return ret; + } + + ret = aclmdlAddDatasetBuffer(output, outputData); + + if (ret != ACL_ERROR_NONE) { + LOG("Add output model dataset failed, ret[%d]\n", ret); + return ret; + } + } + + gettimeofday(&startTmp, NULL); + ret = aclmdlExecute(modelId, inputDataframe.dataset, output); + gettimeofday(&endTmp, NULL); + timeUse = (endTmp.tv_sec - startTmp.tv_sec) * 1000000 + (endTmp.tv_usec - startTmp.tv_usec); + LOG("inference time cost: %lld us\n", timeUse); + inferTime += timeUse; + + if (ret != ACL_ERROR_NONE) { + LOG("%s inference failed.\n", inputDataframe.fileNames[0].c_str()); + FreeDevMemory(inputDataframe.dataset); + aclmdlDestroyDataset(inputDataframe.dataset); + return ret; + } + + outputDataframe.fileNames = inputDataframe.fileNames; + outputDataframe.dataset = output; + + uint32_t dvppFlag = (cfg.useDvpp) ? 1 : 0; + ret = DestroyDatasetResurce(inputDataframe.dataset, dvppFlag); + if (ret != ACL_ERROR_NONE) { + LOG("DestroyDatasetResurce failed\n"); + return ret; + } + + LOG("inference batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} + +aclError UnloadModel() +{ + LOG("unload model start\n"); + ret = aclmdlUnload(modelId); + CHECK_ACL_RET("unload model failed", ret); + LOG("unload model done\n"); + + aclmdlDestroyDesc(cfg.modelDesc); + + if (cfg.devMem_ptr != nullptr) { + aclrtFree(cfg.devMem_ptr); + cfg.devMem_ptr = nullptr; + } + + if (cfg.weightMem_ptr != nullptr) { + aclrtFree(cfg.weightMem_ptr); + cfg.weightMem_ptr = nullptr; + } + + if (cfg.modelData_ptr != nullptr) { + delete[] cfg.modelData_ptr; + cfg.modelData_ptr = nullptr; + } + return ACL_ERROR_NONE; +} diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/main.cpp b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..99a8d46ab89f9c616048a09f0f995e68502c4330 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/main.cpp @@ -0,0 +1,493 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "util.h" +#include "infer_engine.h" +#include "acl/acl_base.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include "acl/acl.h" +#include "acl/acl_mdl.h" +#include "acl/acl_rt.h" +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using std::cout; +using std::endl; +Resnet50Result resnet50Res; +Config cfg; +aclError ret; +int processedCnt; +long long dataProcTime = 0; +long long inferTime = 0; +float avgTime = 0; +float avgPreTime = 0; + +extern std::unordered_map dvppTime; +extern DataFrame outputDataframe; + +void getCommandLineParam(int argc, char** argv, Config& config) +{ + while (1) { + int option_index = 0; + struct option long_options[] = + { + {"om", 1, 0, 'a'}, + {"dataDir", 1, 0, 'b'}, + {"outDir", 1, 0, 'c'}, + {"batchSize", 1, 0, 'd'}, + {"deviceId", 1, 0, 'e'}, + {"loopNum", 1, 0, 'f'}, + {"modelType", 1, 0, 'g'}, + {"imgType", 1, 0, 'h'}, + {"framework", 1, 0, 'i'}, + {"useDvpp", 1 , 0 , 'j'}, + {0, 0, 0, 0} + }; + + int c; + c = getopt_long(argc, argv, "a:b:c:e:f:j:k:l:m:n:u:t:", long_options, &option_index); + if (c == -1) { + break; + } + + switch (c) { + case 'a': + config.om = std::string(optarg); + printf("[INFO]om = %s\n", config.om.c_str()); + break; + case 'b': + config.dataDir = std::string(optarg); + printf("[INFO]dataDir = %s\n", config.dataDir.c_str()); + break; + case 'c': + config.outDir = std::string(optarg); + printf("[INFO]outDir = %s\n", config.outDir.c_str()); + break; + case 'd': + config.batchSize = atoi(optarg); + printf("[INFO]batchSize = %d\n", config.batchSize); + break; + case 'e': + config.deviceId = atoi(optarg); + printf("[INFO]deviceId = %d\n", config.deviceId); + break; + case 'f': + config.loopNum = atoi(optarg); + printf("[INFO]loopNum = %d\n", config.loopNum); + break; + case 'g': + config.modelType = std::string(optarg); + printf("[INFO]modelType = %s\n", config.modelType.c_str()); + break; + case 'h': + config.imgType = std::string(optarg); + printf("[INFO]imgType = %s\n", config.imgType.c_str()); + break; + case 'i': + config.framework = std::string(optarg); + printf("[INFO]framework = %s\n", config.framework.c_str()); + break; + case 'j': + config.useDvpp = atoi(optarg); + printf("[INFO]useDvpp = %d\n", config.useDvpp); + break; + default: + break; + } + } +} + +// 只校验必须的参数 +aclError ParseParams(int argc, char** argv, Config& config, std::string& errorMsg) +{ + getCommandLineParam(argc, argv, config); + + LOG("parase params start\n"); + + if (config.om.empty() || !FileExists(config.om)) { + LOG("om is empty\n"); + errorMsg = "om path is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + + if (config.dataDir.empty() || !FolderExists(config.dataDir)) { + errorMsg = "data Dir is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("dataDir %s \n", config.dataDir.c_str()); + + if (!config.outDir.empty() && !FolderExists(config.outDir)) { + LOG("output dir %s not exists, try to make dir.\n", config.outDir.c_str()); + mkdir(config.outDir.c_str(), 0755); + LOG("outDir %s \n", config.outDir.c_str()); + } + + if(config.batchSize <= 0){ + errorMsg = "batch Size should be > 0"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("batchSize %zd \n", config.batchSize); + + if (config.modelType.empty()) + { + LOG("FLAGS_modelType is empty\n"); + errorMsg = "modelType is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("modelType %s \n", config.modelType.c_str()); + + if (config.imgType.empty()) + { + LOG("imgType is empty\n"); + errorMsg = "imgType is invalid"; + return ACL_ERROR_PARSE_PARAM_FAILED; + } + LOG("imgType %s \n", config.imgType.c_str()); + LOG("useDvpp is %d \n", config.useDvpp); + LOG("parase params done\n"); + return ACL_ERROR_NONE; +} + +aclError Process() +{ + std::vector fileNames; + ret = GetFiles(cfg.dataDir, fileNames); + CHECK_RET(ret); + size_t fileNum = fileNames.size(); + LOG("fileNum:%zd\n",fileNames.size()); + struct timeval startTmp, endTmp; + + // 获取模型输入所需要的宽高 + getImgResizeShape(); + + if(cfg.useDvpp) { + ret = DvppSetup(); + CHECK_RET(ret); + } + + size_t inferCnt = 0; + size_t loopCnt = 0; + while(loopCnt < cfg.loopNum) { + LOG("loopCnt %d, loopNum %d\n", loopCnt, cfg.loopNum); + for(size_t i = 0; i < fileNum / cfg.batchSize; i++) { + gettimeofday(&startTmp, NULL); + std::vector batchFileNames; + for (int j = 0; j < cfg.batchSize; j++) { + batchFileNames.push_back(fileNames[i*cfg.batchSize+j]); + } + processedCnt++; + + if(cfg.useDvpp) { + ret = DvppInitInput(batchFileNames); + } else { + ret = InitInput(batchFileNames); + } + gettimeofday(&endTmp, NULL); + dataProcTime += (endTmp.tv_sec-startTmp.tv_sec)*1000000+(endTmp.tv_usec-startTmp.tv_usec); + CHECK_RET(ret); + + ret = Inference(); + CHECK_RET(ret); + + ret = SaveBinPostprocess(); + CHECK_RET(ret); + } + + if (fileNum % cfg.batchSize != 0) { + std::vector batchFileNames; + for(size_t i = (fileNum - fileNum % cfg.batchSize); i < fileNum; i++) { + batchFileNames.push_back(fileNames[i]); + } + + gettimeofday(&startTmp, NULL); + processedCnt++; + + if(cfg.useDvpp) { + ret = DvppInitInput(batchFileNames); + } else { + ret = InitInput(batchFileNames); + } + gettimeofday(&endTmp, NULL); + dataProcTime += (endTmp.tv_sec-startTmp.tv_sec) * 1000000 + (endTmp.tv_usec - startTmp.tv_usec); + CHECK_RET(ret); + + ret = Inference(); + CHECK_RET(ret); + + ret = SaveBinPostprocess(); + CHECK_RET(ret); + } + loopCnt++; + } + return ACL_ERROR_NONE; +} + +void SaveResult() +{ + ofstream outfile("test_perform_static.txt"); +#if 0 + std::string model_name; + int dex = (cfg.om).find_last_of("/"); + model_name = cfg.om.substr(dex+1); + + std:: string title = "model_name total batch top1 top5 pre_avg/ms pre_imgs/s infer_avg/ms infer_imgs/s mAP"; + outfile << title << endl; + + outfile << model_name << " "; + outfile << processedCnt*cfg.batchSize << " "; + outfile << cfg.batchSize << " "; + if (cfg.postprocessType == "resnet") { + outfile << 1.0*resnet50Res.top1/resnet50Res.total << " " << 1.0*resnet50Res.top5/resnet50Res.total << " "; + } else { + outfile << "NA" << " " << "NA" << " "; + } + + outfile << avgPreTime << " " << 1.0*1000/avgPreTime << " "; + outfile << avgTime << " " << 1.0*1000/avgTime << " "; + outfile << endl; +#endif + char tmpCh[256]; + memset(tmpCh, 0, sizeof(tmpCh)); + snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms %4.3f fps/s\n", + avgTime, (1.0 * 1000 / avgTime)); + outfile << tmpCh; + outfile.close(); +} + +aclError GetModelInputOutputInfo(Config& cfg) +{ + aclError ret; + std::ofstream outFile("modelInputOutputInfo", std::ios::trunc); + char tmpChr[256] = {0}; + + // 获取模型输入信息 + size_t inputNum = aclmdlGetNumInputs(cfg.modelDesc); + LOG("model input num %zd\n", inputNum); + snprintf(tmpChr, sizeof(tmpChr), "model input num %zd\n", inputNum); + outFile << tmpChr; + + cfg.inputNum = inputNum; + for (size_t i = 0; i < inputNum && i < MODEL_INPUT_OUTPUT_NUM_MAX; i++) { + size_t size = aclmdlGetInputSizeByIndex(cfg.modelDesc, i); + cfg.inputInfo[i].size = size; + LOG("model input[%zd] size %zd\n", i, cfg.inputInfo[i].size); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] size %zd\n", i, cfg.inputInfo[i].size); + outFile << tmpChr; + + aclmdlIODims dims; + ret = aclmdlGetInputDims(cfg.modelDesc, i, &dims); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetInputDims fail ret %d\n", ret); + return 1; + } + + cfg.inputInfo[i].dimCount = dims.dimCount; + ret = aclrtMemcpy(cfg.inputInfo[i].dims , cfg.inputInfo[i].dimCount * sizeof(int64_t), dims.dims, + cfg.inputInfo[i].dimCount * sizeof(int64_t), ACL_MEMCPY_HOST_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtMemcpy fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + LOG("model input[%zd] dimCount %zd\n", i, cfg.inputInfo[i].dimCount); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] dimCount %zd\n", i, cfg.inputInfo[i].dimCount); + outFile << tmpChr; + for (size_t dimIdx = 0; dimIdx < cfg.inputInfo[i].dimCount; dimIdx++) { + LOG("model input[%zd] dim[%zd] info %ld\n", i, dimIdx, cfg.inputInfo[i].dims[dimIdx]); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] dim[%zd] info %ld\n", + i, dimIdx, cfg.inputInfo[i].dims[dimIdx]); + outFile << tmpChr; + } + + cfg.inputInfo[i].Format = aclmdlGetInputFormat(cfg.modelDesc, i); + cfg.inputInfo[i].Type = aclmdlGetInputDataType(cfg.modelDesc, i); + + LOG("model input[%zd] format %d inputType %d\n", i, cfg.inputInfo[i].Format, cfg.inputInfo[i].Type); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] format %d inputType %d\n", i, cfg.inputInfo[i].Format, + cfg.inputInfo[i].Type); + outFile << tmpChr; + + cfg.inputInfo[i].Name = aclmdlGetInputNameByIndex(cfg.modelDesc, i); + LOG("model input[%zd] name %s\n", i, cfg.inputInfo[i].Name); + snprintf(tmpChr, sizeof(tmpChr), "model input[%zd] name %s\n", i, cfg.inputInfo[i].Name); + outFile << tmpChr; + + size_t index; + ret = aclmdlGetInputIndexByName(cfg.modelDesc, cfg.inputInfo[i].Name, &index); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetInputIndexByName fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + if (i != index) { + LOG("aclmdlGetInputNameByIndex not equal aclmdlGetInputIndexByName\n"); + return 1; + } else { + LOG("model input name %s is belone to input %zd\n", cfg.inputInfo[i].Name, index); + } + } + + // 获取模型输出信息 + size_t outputNum = aclmdlGetNumOutputs(cfg.modelDesc); + LOG("model output num %zd\n", outputNum); + snprintf(tmpChr, sizeof(tmpChr), "model output num %zd\n", outputNum); + outFile << tmpChr; + + cfg.outputNum = outputNum; + for (size_t i = 0; i < outputNum && i < MODEL_INPUT_OUTPUT_NUM_MAX; i++) { + size_t size = aclmdlGetOutputSizeByIndex(cfg.modelDesc, i); + cfg.outputInfo[i].size = size; + LOG("model output[%zd] size %zd\n", i, cfg.outputInfo[i].size); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] size %zd\n", i, cfg.outputInfo[i].size); + outFile << tmpChr; + + aclmdlIODims dims; + ret = aclmdlGetOutputDims(cfg.modelDesc, i, &dims); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetOutputDims fail ret %d\n", ret); + return 1; + } + + cfg.outputInfo[i].dimCount = dims.dimCount; + ret = aclrtMemcpy(cfg.outputInfo[i].dims, cfg.outputInfo[i].dimCount * sizeof(int64_t), dims.dims, + cfg.outputInfo[i].dimCount * sizeof(int64_t), ACL_MEMCPY_HOST_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtMemcpy fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + LOG("model output[%zd] dimCount %zd\n", i, cfg.outputInfo[i].dimCount); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] dimCount %zd\n", i, cfg.outputInfo[i].dimCount); + outFile << tmpChr; + + for (size_t dimIdx = 0; dimIdx < cfg.outputInfo[i].dimCount; dimIdx++) { + LOG("model output[%zd] dim[%zd] info %ld\n", i, dimIdx, cfg.outputInfo[i].dims[dimIdx]); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] dim[%zd] info %ld\n", + i, dimIdx, cfg.outputInfo[i].dims[dimIdx]); + outFile << tmpChr; + } + + cfg.outputInfo[i].Format = aclmdlGetOutputFormat(cfg.modelDesc, i); + cfg.outputInfo[i].Type = aclmdlGetOutputDataType(cfg.modelDesc, i); + LOG("model output[%zd] format %d outputType %d\n", i, cfg.outputInfo[i].Format, cfg.outputInfo[i].Type); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] format %d outputType %d\n", i, cfg.outputInfo[i].Format, + cfg.outputInfo[i].Type); + outFile << tmpChr; + + cfg.outputInfo[i].Name = aclmdlGetOutputNameByIndex(cfg.modelDesc, i); + LOG("model output[%zd] name %s\n", i, cfg.outputInfo[i].Name); + snprintf(tmpChr, sizeof(tmpChr), "model output[%zd] name %s\n", i, cfg.outputInfo[i].Name); + outFile << tmpChr; + + size_t index; + ret = aclmdlGetOutputIndexByName(cfg.modelDesc, cfg.outputInfo[i].Name, &index); + if (ret != ACL_ERROR_NONE) { + LOG("aclmdlGetOutputIndexByName fail ret %d line %d\n", ret, __LINE__); + return 1; + } + + if (i != index) { + LOG("aclmdlGetOutputNameByIndex not equal aclmdlGetOutputIndexByName\n"); + return 1; + } else { + LOG("model output name %s is belone to output %d\n", cfg.outputInfo[i].Name, index); + } + } + + outFile.close(); + return ACL_ERROR_NONE; +} + +int main(int argc, char** argv) +{ + processedCnt = 0; + inferTime = 0; + + std::string errorMsg; + ret = ParseParams(argc, argv, cfg, errorMsg); + CHECK_ACL_RET(errorMsg, ret); + + ret = InitContext(); + CHECK_RET(ret); + + ret = LoadModel(); + CHECK_RET(ret); + + ret = GetModelInputOutputInfo(cfg); + CHECK_RET(ret); + + ret = Process(); + CHECK_RET(ret); + + ret = UnloadModel(); + CHECK_RET(ret); + + ret = UnInitContext(); + CHECK_RET(ret); + LOG("\n"); + + avgTime = 1.0 * inferTime / processedCnt /cfg.batchSize / 1000; + avgPreTime = 1.0 * dataProcTime / processedCnt / cfg.batchSize / 1000; + + if (cfg.useDvpp) { + LOG("\n"); + LOG("DVPP performance details:\n"); + LOG("#############################################\n"); + std::unordered_map::iterator iter; + for (iter = dvppTime.begin(); iter != dvppTime.end(); iter++) { + LOG("%s using avg time %0.2f ms\n",iter->first.c_str(),1.0*iter->second/processedCnt/cfg.batchSize/1000); + } + LOG("\n"); + } + + LOG("performance summary:\n"); + LOG("#############################################\n"); + LOG("total %ld imgs processed and batch size %ld\n", processedCnt*cfg.batchSize, cfg.batchSize); +#if 0 + if(cfg.postprocessType == "resnet") { + LOG("top1 ratio %0.3f top5 ratio %0.3f\n", + 1.0*resnet50Res.top1/resnet50Res.total, 1.0*resnet50Res.top5/resnet50Res.total); + } +#endif + + LOG("avg preprocess time %0.2f ms, %0.2f imgs/s\n", avgPreTime, 1.0 * 1000 / avgPreTime); + LOG("avg inference time %0.2f ms, %0.2f imgs/s\n", avgTime, 1.0 * 1000 / avgTime); + + SaveResult(); +} diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/post_process.cpp b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/post_process.cpp new file mode 100644 index 0000000000000000000000000000000000000000..f2dc4997af21b868ac1944276fe98354e76c93f4 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/post_process.cpp @@ -0,0 +1,123 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "post_process.h" +#include "util.h" +#include +#include +#include +#include +#include "stdio.h" +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +extern int processedCnt; + +extern Config cfg; +extern DataFrame outputDataframe; +extern aclError ret; +int topNum = 5; + +extern int processedCnt; + +aclError SaveBinPostprocess() +{ + aclError retVal; + + LOG("save batch %d start\n", processedCnt); + DataFrame dataframe = outputDataframe; + std::vector& inferFile_vec = outputDataframe.fileNames; + aclmdlDataset* output = dataframe.dataset; + + std::string resultFolder = cfg.outDir + "/" + cfg.modelType; + DIR* op = opendir(resultFolder.c_str()); + if (NULL == op) { + mkdir(resultFolder.c_str(), 00775); + } else { + closedir(op); + } + + for (size_t i = 0; i < cfg.outputNum; ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(output, i); + void* data = aclGetDataBufferAddr(dataBuffer); + uint32_t len; + len = cfg.outputInfo[i].size; + + void* outHostData = NULL; + ret = aclrtMallocHost(&outHostData, len); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host failed.\n"); + return 1; + } + + ret = aclrtMemcpy(outHostData, len, data, len, ACL_MEMCPY_DEVICE_TO_HOST); + if (ret != ACL_ERROR_NONE) { + LOG("Copy device to host failed.\n"); + aclrtFreeHost(outHostData); + return 1; + } + + uint32_t eachSize = len / cfg.batchSize; + for (size_t j = 0; j < inferFile_vec.size(); j++) { + FILE* outputFile; + std::string framename = inferFile_vec[j]; + std::size_t dex = (framename).find_first_of("."); + std::string inputFileName = (framename).erase(dex); + + outputFile = fopen((resultFolder + "/" + "davinci_" + inputFileName + "_" + "output" + std::to_string(i) + ".bin").c_str(), "wb"); + + if (outputFile == nullptr) { + aclrtFreeHost(outHostData); + return 1; + } + + fwrite((uint8_t *)outHostData + (j * eachSize), eachSize, sizeof(char), outputFile); + fclose(outputFile); + } + + ret = aclrtFreeHost(outHostData); + if (ret != ACL_ERROR_NONE) { + LOG("Free output host failed.\n"); + } + } + + (void)DestroyDatasetResurce(outputDataframe.dataset, 0); + + LOG("save batch %d done\n", processedCnt); + return ACL_ERROR_NONE; +} diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/util.cpp b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/util.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ec437321c75c4c883ca35d56a0c5ab218f16efa7 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/Benchmark/util.cpp @@ -0,0 +1,230 @@ +/* * +* Copyright 2020 Huawei Technologies Co., Ltd +* +* Licensed under the Apache License, Version 2.0 (the "License"); +* you may not use this file except in compliance with the License. +* You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +* */ + +#include "util.h" +#include +#include +#include +#if 0 +static std::unordered_map errorMap = { + {ACL_ERROR_NONE, "success"}, + {ACL_ERROR_INVALID_PARAM, "params may not valid"}, + {ACL_ERROR_BAD_ALLOC, "alloc memory failed"}, + {ACL_ERROR_RT_FAILURE, "runtime failure"}, + {ACL_ERROR_GE_FAILURE, "GE failure"}, + {ACL_ERROR_OP_NOT_FOUND, "OP not find"}, + {ACL_ERROR_OP_LOAD_FAILED, "OP loads failed"}, + {ACL_ERROR_READ_MODEL_FAILURE, "load model failed"}, + {ACL_ERROR_PARSE_MODEL, "parse model failed"}, + {ACL_ERROR_MODEL_MISSING_ATTR, "model misssing attr"}, + {ACL_ERROR_DESERIALIZE_MODEL, "deserilize model failed"}, + // {ACL_ERROR_MULTIPLE_MODEL_MATCHED, "multiple model matched"}, + //{ACL_ERROR_EVENT_NOT_READY, "event not ready"}, + //{ACL_ERROR_EVENT_COMPLETE, "event not complete"}, + {ACL_ERROR_UNSUPPORTED_DATA_TYPE, "unsupport datatype"}, + {ACL_ERROR_REPEAT_INITIALIZE, "initial repeated"}, + //{ACL_ERROR_COMPILER_NOT_REGISTERED, "compilter not registered"}, + {ACL_ERROR_PATH_INVALID, "path invalid"}, + {ACL_ERROR_PARSE_PARAM_FAILED, "parse params failed"}, + {ACL_ERROR_DVPP_ERROR, "dvpp errors"} +}; + + +std::string CausedBy(aclError error) +{ + return errorMap[error]; +} +#endif + +bool FolderExists(std::string foldname) +{ + DIR* dir; + if ((dir = opendir(foldname.c_str())) == NULL) { + return false; + } + closedir(dir); + return true; +} + +void* ReadFile(std::string fileLocation, uint64_t &fileSize) +{ + aclError ret; + FILE *pFile = fopen(fileLocation.c_str(), "r"); + if (pFile == nullptr) { + LOG("open file %s failed\n", fileLocation.c_str()); + return nullptr; + } + + fseek(pFile, 0, SEEK_END); + fileSize = ftell(pFile); + + void *buff = nullptr; + ret = aclrtMallocHost(&buff, fileSize); + if (ret != ACL_ERROR_NONE) { + LOG("Malloc host buff failed[%d]\n", ret); + return nullptr; + } + + rewind(pFile); + fread(buff, sizeof(char), fileSize, pFile); + fclose(pFile); + return buff; +} + +bool FileExists(std::string filename) +{ + std::fstream file; + file.open(filename, std::ios::in); + if (!file) { + return false; + } + + file.close(); + return true; +} + +char* ReadBinFile(std::string fileName, uint32_t& fileSize) +{ + std::ifstream binFile(fileName, std::ifstream::binary); + + if (binFile.is_open() == false) { + LOG("open file[%s] failed\n", fileName.c_str()); + return nullptr; + } + + binFile.seekg(0, binFile.end); + uint32_t binFileBufferLen = binFile.tellg(); + + if (binFileBufferLen == 0) { + LOG("binfile is empty, filename: %s", fileName.c_str()); + binFile.close(); + return nullptr; + } + + binFile.seekg(0, binFile.beg); + char* binFileBufferData = new(std::nothrow) char[binFileBufferLen]; + LOG("binFileBufferData:%p\n", binFileBufferData); + + if (binFileBufferData == nullptr) { + LOG("malloc binFileBufferData failed\n"); + binFile.close(); + return nullptr; + } + + binFile.read(binFileBufferData, binFileBufferLen); + binFile.close(); + fileSize = binFileBufferLen; + return binFileBufferData; +} + +aclError GetFiles(std::string path, std::vector& files) +{ + DIR* dir; + struct dirent* ptr; + char base[1000]; + + if ((dir = opendir(path.c_str())) == NULL) { + LOG("Open dir %s error.\n", path.c_str()); + return ACL_ERROR_PATH_INVALID; + } + + while ((ptr = readdir(dir)) != NULL) { + if (strcmp(ptr->d_name, ".") == 0 || strcmp(ptr->d_name, "..") == 0) { + //current dir OR parrent dir + continue; + } else if (ptr->d_type == 8) { + //file + files.push_back(ptr->d_name); + } else if (ptr->d_type == 10) { + //link file + continue; + } else if (ptr->d_type == 4) { + //dir + continue; + } + } + + closedir(dir); + std::sort(files.begin(), files.end()); + return ACL_ERROR_NONE; +} + +aclError FreeDevMemory(aclmdlDataset* dataset) +{ + aclError ret; + for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); + void* data = aclGetDataBufferAddr(dataBuffer); + aclrtFree(data); + aclDestroyDataBuffer(dataBuffer); + } + + return ACL_ERROR_NONE; +} + +aclError DestroyDatasetResurce(aclmdlDataset* dataset, uint32_t flag) +{ + aclError ret = ACL_ERROR_NONE; + + if (nullptr == dataset) { + LOG("dataset == null\n"); + return 1; + } + + for (size_t i = 0; i < aclmdlGetDatasetNumBuffers(dataset); ++i) { + aclDataBuffer* dataBuffer = aclmdlGetDatasetBuffer(dataset, i); + if (nullptr == dataBuffer) { + LOG("dataBuffer == null\n"); + continue; + } + + void* data = aclGetDataBufferAddr(dataBuffer); + if (nullptr != data) { + if (1 == flag) { + if (i > 0) { + ret = aclrtFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree data failed, ret %d\n", ret); + } + } else { + ret = acldvppFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("acldvppFree data failed, ret %d\n", ret); + } + } + } else { + ret = aclrtFree(data); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree data failed, ret %d\n", ret); + } + } + } + + ret = aclDestroyDataBuffer(dataBuffer); + if (ret != ACL_ERROR_NONE) { + LOG("Destroy dataBuffer failed, ret %d\n", ret); + } + } + + ret = aclmdlDestroyDataset(dataset); + if (ret != ACL_ERROR_NONE) { + LOG("aclrtFree dataset failed, ret %d\n", ret); + } + + return ret; +} + + diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/LICENSE b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..57bc88a15a0ee8266c259b2667e64608d3f7e292 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/LICENSE @@ -0,0 +1,202 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/README.md b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..82ee516308152708dfc6c793a2fea1723cdab8d9 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/README.md @@ -0,0 +1,90 @@ + + +# Resnet50v1.5 Inference for Tensorflow + +This repository provides a script and recipe to Inference of the Resnet50v1.5 model. + +## Notice +**This sample only provides reference for you to learn the Ascend software stack and is not for commercial purposes.** + +Before starting, please pay attention to the following adaptation conditions. If they do not match, may leading in failure. + +| Conditions | Need | +| --- | --- | +| CANN Version | >=5.0.3 | +| Chip Platform| Ascend310/Ascend710 | +| 3rd Party Requirements| Please follow the 'requirements.txt' | + +## Quick Start Guide + +### 1. Clone the respository + +```shell +git clone https://gitee.com/ascend/ModelZoo-TensorFlow.git +cd Modelzoo-TensorFlow/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL +``` + +### 2. Download and preprocess the dataset + +1. Download the ImageNet2012 Validation dataset by yourself. You can get the validation pictures(50000 JPEGS and a ILSVRC2012val-label-index.txt) + +2. Put JPEGS to **'scripts/ILSVRC2012val'** and label text to **'scripts/'** + +3. Images Preprocess: +``` +cd scripts +mkdir input_bins +python3 resnet50v15_preprocessing.py ./ILSVRC2012val/ ./input_bins/ +``` +The jpegs pictures will be preprocessed to bin fils. + +### 3. Offline Inference + +**Convert pb to om.** + +- configure the env + + ``` + export install_path=/usr/local/Ascend + export PATH=/usr/local/python3.7.5/bin:${install_path}/atc/ccec_compiler/bin:${install_path}/atc/bin:$PATH + export PYTHONPATH=${install_path}/atc/python/site-packages:${install_path}/atc/python/site-packages/auto_tune.egg/auto_tune:${install_path}/atc/python/site-packages/schedule_search.egg:$PYTHONPATH + export LD_LIBRARY_PATH=${install_path}/atc/lib64:${install_path}/acllib/lib64:$LD_LIBRARY_PATH + export ASCEND_OPP_PATH=${install_path}/opp + ``` + +- convert pb to om + + [pb download link](https://modelzoo-train-atc.obs.cn-north-4.myhuaweicloud.com/003_Atc_Models/modelzoo/Official/cv/Resnet50v1.5_for_ACL/resnet50v15_tf.pb) + + ``` + atc --model=resnet50v15_tf.pb --framework=3 --output=resnet50v15_tf_1batch --output_type=FP32 --soc_version=Ascend310 --input_shape="input_tensor:1,224,224,3" --insert_op_conf=resnet50v15_aipp.cfg --enable_small_channel=1 --log=info + ``` + +- Build the program + + ``` + bash build.sh + ``` + +- Run the program: + + ``` + cd scripts + bash benchmark_tf.sh + ``` + +## Performance + +### Result + +Our result was obtained by running the applicable inference script. To achieve the same results, follow the steps in the Quick Start Guide. + +#### Inference accuracy results + +| model | **data** | Top1/Top5 | +| :---------------: | :-------: | :-------------: | +| offline Inference | 50000 images | 76.5 %/ 93.1% | + +## Reference + +[1] https://github.com/IntelAI/models diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/build.sh b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..dae86211d2691b82ecfd8c2637d1276092e476ed --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/build.sh @@ -0,0 +1,9 @@ +rm -rf ./Benchmark/build + +mkdir -p Benchmark/build/intermediates/host +cd Benchmark/build/intermediates/host +cmake ../../../../Benchmark/ -DCAMKE_CXX_COMPILER=g++ +make clean +make install +cd - +cd Benchmark/out/ diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/modelzoo_level.txt b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..0934af7691acabd7981d82342b3a2310fe606d3d --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/modelzoo_level.txt @@ -0,0 +1,6 @@ +ModelCovert:OK +QuantStatus:OK +FuncStatus:OK +PrecisionStatus:OK +AutoTune:OK +PerfStatus:OK diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/requirements.txt b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..6f66bb9f75c74849c47871a646493af6c2eb83d3 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/requirements.txt @@ -0,0 +1,3 @@ +tensorflow==1.15 +numpy==1.16 +Pillow==7.1.2 diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/resnet50v15_aipp.cfg b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/resnet50v15_aipp.cfg new file mode 100644 index 0000000000000000000000000000000000000000..ee696ee994f923f97017fa1aadba1318a37e6c30 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/resnet50v15_aipp.cfg @@ -0,0 +1,13 @@ +aipp_op { + aipp_mode: static + input_format : RGB888_U8 + src_image_size_w : 224 + src_image_size_h : 224 + mean_chn_0 : 124 + mean_chn_1 : 117 + mean_chn_2 : 104 + var_reci_chn_0 : 1 + var_reci_chn_1 : 1 + var_reci_chn_2 : 1 +} + diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/benchmark_tf.sh b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/benchmark_tf.sh new file mode 100644 index 0000000000000000000000000000000000000000..4d8ffccae6d4f1d1ae0e25a8951d21f0380f9c7d --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/benchmark_tf.sh @@ -0,0 +1,15 @@ +#!/bin/bash +#set -x +cur_dir=`pwd` +benchmark_dir=$cur_dir/../Benchmark/out +om_name=$cur_dir/../resnet50v15_tf_1batch.om +batchsize=1 +model_name=resnet50v15 +output_dir='results' +rm -rf $cur_dir/$output_dir/* + +#start offline inference +$benchmark_dir/benchmark --om $om_name --dataDir $cur_dir/input_bins/ --modelType $model_name --outDir $cur_dir/$output_dir --batchSize $batchsize --imgType bin --useDvpp 0 + +#post process +python3 $cur_dir/imagenet_accuarcy_cal.py --infer_result $cur_dir/$output_dir/$model_name --label $cur_dir/ILSVRC2012val-label-index.txt --offset 1 diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/imagenet_accuarcy_cal.py b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/imagenet_accuarcy_cal.py new file mode 100644 index 0000000000000000000000000000000000000000..38f0d91170e48644f8bafffa9e0a098881c52b48 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/imagenet_accuarcy_cal.py @@ -0,0 +1,75 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import os +import time +import argparse + +if __name__=='__main__': + parser = argparse.ArgumentParser() + parser.add_argument("--infer_result", type=str, default="../../result_Files") + parser.add_argument("--label", type=str, default="../data/input_50000.csv") + parser.add_argument("--output_index", type=int, default=0) + parser.add_argument("--offset", type=int, default=0) + parser.add_argument("--dtype", type=str, default='float32') #datatype of bin files + args = parser.parse_args() + + image_cnt = 0 + top1_cnt = 0 + top5_cnt = 0 + ground_truth={} + if args.label.endswith(".csv"): + with open(args.label, 'r') as cs: + rs_list = cs.readlines() + for line in rs_list: + image_name = line.split(',')[0].split('.JPEG')[0] + label = int(line.split(',')[1]) + label += args.offset + ground_truth[image_name]=label + elif args.label.endswith(".txt"): + with open(args.label, 'r') as cs: + rs_list = cs.readlines() + for line in rs_list: + image_name = line.split(' ')[0].split('.JPEG')[0] + label = int(line.split(' ')[1].replace("\n","")) + label += args.offset + ground_truth[image_name]=label + + for i in sorted(ground_truth): + try: + image_name = i + label = ground_truth[i] + #查看输出的文件 + if os.path.exists(os.path.join(args.infer_result,'davinci_{}_output{}.bin'.format(image_name,args.output_index))): + bin_path = os.path.join(args.infer_result,'davinci_{}_output{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + elif os.path.exists(os.path.join(args.infer_result,'davinci_{}.JPEG_output{}.bin'.format(image_name, args.output_index))): + bin_path = os.path.join(args.infer_result,'davinci_{}.JPEG_output{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + elif os.path.exists(os.path.join(args.infer_result,'{}_output_{}.bin'.format(image_name,args.output_index))): + bin_path = os.path.join(args.infer_result,'{}_output_{}.bin'.format(image_name, args.output_index)) + pred = np.fromfile(bin_path, dtype=args.dtype) + else: + continue + top1=np.argmax(pred) + if label == top1: + top1_cnt += 1 + if label in np.argsort(-pred)[0:5]: + top5_cnt += 1 + image_cnt+=1 + print("{}, gt label:{: >4}, predict results:{}".format(image_name,label,str(np.argsort(-pred)[0:5]))) + except Exception as e: + print("Can't find " + bin_path) + print('imag_count %d, top1_accuracy %.3f top5_accuracy %.3f'%(image_cnt,top1_cnt/image_cnt,top5_cnt/image_cnt)) \ No newline at end of file diff --git a/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/resnet50v15_preprocessing.py b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/resnet50v15_preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..44d63f9676ee2bdc2c206ee6e932d38ddd163ec7 --- /dev/null +++ b/ACL_TensorFlow/built-in/cv/Resnet50v1.5_for_ACL/scripts/resnet50v15_preprocessing.py @@ -0,0 +1,100 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""Provides utilities to preprocess images for the Inception networks.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import tensorflow.compat.v1 as tf +import os +import sys +import shutil +import numpy as np +from PIL import Image +from tensorflow.python.ops import control_flow_ops + +def eval_image(image, height, width, resize_method, + central_fraction=0.875, scope=None): + + with tf.name_scope('eval_image'): + if resize_method == 'crop': + shape = tf.shape(input=image) + image = tf.cond(pred=tf.less(shape[0], shape[1]), + true_fn=lambda: tf.image.resize(image, + tf.convert_to_tensor(value=[256, 256 * shape[1] / shape[0]], + dtype=tf.int32)), + false_fn=lambda: tf.image.resize(image, + tf.convert_to_tensor(value=[256 * shape[0] / shape[1], 256], + dtype=tf.int32))) + + shape = tf.shape(input=image) + y0 = (shape[0] - height) // 2 + x0 = (shape[1] - width) // 2 + distorted_image = tf.image.crop_to_bounding_box(image, y0, x0, height, width) + distorted_image.set_shape([height, width, 3]) + means = tf.broadcast_to([123.68, 116.78, 103.94], tf.shape(input=distorted_image)) + return distorted_image - means + else: # bilinear + if image.dtype != tf.float32: + image = tf.image.convert_image_dtype(image, dtype=tf.float32) + # Crop the central region of the image with an area containing 87.5% of + # the original image. + if central_fraction: + image = tf.image.central_crop(image, central_fraction=central_fraction) + + if height and width: + # Resize the image to the specified height and width. + image = tf.expand_dims(image, 0) + image = tf.image.resize(image, [height, width], + method=tf.image.ResizeMethod.BILINEAR) + image = tf.squeeze(image, [0]) + image = tf.subtract(image, 0.5) + image = tf.multiply(image, 2.0) + return image + +def preprocess(src_path, save_path): + in_files = os.listdir(src_path) + in_files.sort() + resize_shape = [224, 224, 3] + sqz_mean = np.array([123.68, 116.78, 103.94], np.float32) + img_std = np.array([[0.5*255, 0.5*255, 0.5*255]], np.float32) + if os.path.isdir(save_path): + shutil.rmtree(save_path) + os.makedirs(save_path) + for file in in_files: + with tf.Session().as_default(): + if not os.path.isdir(file): + print(file) + img_buffer = tf.io.gfile.GFile(os.path.join(src_path, file), 'rb').read() + img = tf.image.decode_jpeg(img_buffer,channels=3,fancy_upscaling=False,dct_method='INTEGER_FAST') + img = eval_image( img, + 224, + 224, + 'crop') + img = img.eval() + #img = img * img_std + img = img + sqz_mean + img = img.astype(np.uint8, copy=False) + img.tofile(os.path.join(save_path, file.split('.')[0]+".bin")) + tf.reset_default_graph() + +if __name__ == "__main__": + if len(sys.argv) < 3: + raise Exception("usage: python3 xxx.py [src_path] [save_path]") + + src_path = sys.argv[1] + save_path = sys.argv[2] + preprocess(src_path, save_path) diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/LICENSE b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..8389e23f5575d034f02543f0b7613cff48ae7bbc --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/LICENSE @@ -0,0 +1,284 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +------------------ +Files: third_party/compute_library/... + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +------------------ +Files: ACKNOWLEDGEMENTS +LICENSE + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +------------------ +Files: third_party/hexagon + +Copyright (c) 2016-2019, The Linux Foundation. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted (subject to the limitations in the +disclaimer below) provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + + * Neither the name of The Linux Foundation nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE +GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT +HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED +WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER +IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN +IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/README.md b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..c07aedecfdf53cb439f04796e4a0b2ce1a501c34 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/README.md @@ -0,0 +1,70 @@ + +## 推理过程 +环境 +- Tensorflow 1.15 +- python 3.7 + +1. ckpt文件 + +- ckpt文件下载地址: + + https://sharegua.obs.cn-north-4.myhuaweicloud.com:443/checkpoint65.zip?AccessKeyId=UC40X3U4Z2RUPSTV8ADH&Expires=1667698491&Signature=Ltfv5%2B5VbaFSklW3pI6W6oTh73A%3D + + 通过freeze_graph.py转换成pb文件bliznet_tf_310.pb + +- pb文件下载地址: + + https://sharegua.obs.myhuaweicloud.com:443/bliznet_tf_310.pb?AccessKeyId=UC40X3U4Z2RUPSTV8ADH&Expires=1667656586&Signature=JhBRfk5dpeDFE%2BPy1jQg6Q4mvHY%3D + +2. om模型 + +- om模型下载地址: + + https://sharegua.obs.myhuaweicloud.com:443/bliznet_tf_310.om?AccessKeyId=UC40X3U4Z2RUPSTV8ADH&Expires=1667656644&Signature=Z7DyzKRGPd27pYipfD2Ke/KSGAo%3D + + 使用ATC模型转换工具进行模型转换时可以参考如下指令: + +``` +atc --model=/home/HwHiAiUser/atc/bliznet_tf_310.pb --framework=3 --output=/home/HwHiAiUser/atc/bliznet_tf_310 --soc_version=Ascend310 \ + --input_shape="input:1,300,300,3" \ + --log=info \ + --out_nodes="concat_1:0;concat_2:0;ssd_2/Conv_7/BiasAdd:0" +``` + +3. 使用msame工具推理 + + 参考 https://gitee.com/ascend/tools/tree/master/msame, 获取msame推理工具及使用方法。 + + 获取到msame可执行文件之后,将待检测om文件放在model文件夹,然后进行性能测试。 + + msame推理可以参考如下指令: +``` +./msame --model "/home/HwHiAiUser/msame/bliznet_tf_310.om" --input "/home/HwHiAiUser/msame/data" --output "/home/HwHiAiUser/msame/out/" --outfmt TXT +``` +- 将测试集数据转为bin文件: +``` + imageToBin.py +``` + +- 测试数据bin文件下载地址: + + https://sharegua.obs.cn-north-4.myhuaweicloud.com:443/img.zip?AccessKeyId=UC40X3U4Z2RUPSTV8ADH&Expires=1667698452&Signature=f3aLaUdPnodF8PKtCaI5Ox4wb6c%3D + + +4. 性能测试 + + 使用testBliznetPb_OM_Data.py对推理完成后获得的txt文件进行测试 + +

精度测试

+ +训练集:VOC12 train-seg-aug + +测试集:VOC12 val + +| | mIoU | mAP | +| ---------- | -------- | -------- | +| 论文精度 | 72.8 | 80.0 | +| GPU精度32 | 72.8 | 80.0 | +| GPU精度16 | 72.0 | 78.3 | +| NPU精度 | 70.1 | 77.6 | +| 推理精度 | 70.1 | 77.6 | \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/freeze_graph.py b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/freeze_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..775d0e09f523b9fd28f7e965d696ff8d98d6fc62 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/freeze_graph.py @@ -0,0 +1,90 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from npu_bridge.npu_init import * +import tensorflow as tf +from tensorflow.python.tools import freeze_graph +import os +from Train.config import args +from help_modelarts import modelarts_result2obs + +from Train.resnet import ResNet +from Train.config import config as net_config + +INIT_CKPT_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'checkpoint65') +ckpt_path = os.path.join(INIT_CKPT_DIR, 'model.ckpt-65000') + +def main(): + print("start ckpt To pb") + print("ckpt_path") + tf.reset_default_graph() + img_ph = tf.placeholder(tf.float32, shape=[1, 300, 300, 3], name="input") + dataset_num_classes = 21 + + net = ResNet + depth = 50 + net = net(config=net_config, depth=depth, training=False) + + net.create_trunk(img_ph) + + if args.detect: + net.create_multibox_head(dataset_num_classes) + confidence = net.outputs['confidence'] + location = net.outputs['location'] + else: + location, confidence = None, None + + if args.segment: + net.create_segmentation_head(dataset_num_classes) + seg_logits = net.outputs['segmentation'] + else: + seg_logits = None + + print("confidence = ", confidence) + print("location = ", location) + print("seg_logits = ", seg_logits) + + with tf.Session() as sess: + tf.train.write_graph(sess.graph_def, args.result_dir, 'model.pb') + modelarts_result2obs(args) + freeze_graph.freeze_graph( + input_graph=os.path.join(args.result_dir, 'model.pb'), + input_saver='', + input_binary=False, + input_checkpoint=ckpt_path, + output_node_names="concat_1, concat_2, ssd_2/Conv_7/BiasAdd", # graph outputs node + restore_op_name='save/restore_all', + filename_tensor_name='save/Const:0', + output_graph=os.path.join(args.result_dir, 'bliznet_tf_310.pb'), # graph outputs name + clear_devices=False, + initializer_nodes="") + print("done") + + modelarts_result2obs(args) + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/imageToBin.py b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/imageToBin.py new file mode 100644 index 0000000000000000000000000000000000000000..23635dd95f92c9a96ee56505a4f017200762d98c --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/imageToBin.py @@ -0,0 +1,70 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from config import args +from getData.voc_loader import VOCLoader + +import progressbar +import logging +log = logging.getLogger() +import numpy as np + +def main(argv=None): + if args.dataset == 'voc07' or args.dataset == 'voc07+12': + loader = VOCLoader('07', 'test') + if args.dataset == 'voc12-val': + loader = VOCLoader('12', 'val', segmentation=args.segment) + + filenames = loader.get_filenames() + image_list = [] + + inputs = tf.placeholder(tf.float32, shape=[None, None, 3], name="input") + img_ph = tf.image.resize_bilinear(tf.expand_dims(inputs, 0), (300, 300))# 增加一维,并reshape + + with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess0: + bar = progressbar.ProgressBar()# 显示进度条 + for i in bar(range(len(filenames))): + name = filenames[i] + img = loader.load_image(name) # 获取图片 + image = sess0.run(img_ph, feed_dict={inputs: img}) + + image_list.append(image) + gt_bboxes, seg_gt, gt_cats, w, h, difficulty = loader.read_annotations(name) # 获取图片信息 + image.tofile("./binFile/img/{0:05d}.bin".format(i)) + # im = np.fromfile("./binFile/img/{0:05d}.bin".format(i), dtype=np.float32) + # print(im) + gt_bboxes.tofile("./binFile/gt_bboxes/{0:05d}.bin".format(i)) + seg_gt.tofile("./binFile/seg_gt/{0:05d}.bin".format(i)) + gt_cats.tofile("./binFile/gt_cats/{0:05d}.bin".format(i)) + # w.tofile("./binFile/w/{0:05d}.bin".format(i)) + # h.tofile("./binFile/h/{0:05d}.bin".format(i)) + difficulty.tofile("./binFile/difficulty/{0:05d}.bin".format(i)) + + +if __name__ == '__main__': + tf.app.run() \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/modelzoo_level.txt b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..1badb843c0738a566804f03237972aee0ba2299e --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/modelzoo_level.txt @@ -0,0 +1,6 @@ +FuncStatus:OK +PrecisionStatus:POK +AutoTune:POK +PerfStatus:POK +ModelConvert:OK +QuantStatus:OK \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/maps/.keep b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/requirements.txt similarity index 100% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/maps/.keep rename to ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/requirements.txt diff --git a/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/testBliznetPb_OM_Data.py b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/testBliznetPb_OM_Data.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9564af69a2a3d5cb8a83dc74fe53a79d99a885 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/BlitzNet_ID0948_for_ACL/testBliznetPb_OM_Data.py @@ -0,0 +1,233 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from config import args +from getData.voc_loader import VOCLoader + +from tensorflow.python.ops.metrics_impl import mean_iou as streaming_mean_iou +from utils import decode_bboxes +from getData.boxer import PriorBoxGrid +from config import config as net_config +from detector import Detector +from tabulate import tabulate +import progressbar +import numpy as np +import logging +log = logging.getLogger() + +def eval_category(gt, dets, cid): + """Computes average precision for one category""" + cgt = gt[cid] + cdets = np.array(dets[cid]) + if (cdets.shape == (0, )): + return None, None + scores = cdets[:, 1] + sorted_inds = np.argsort(-scores) + image_ids = cdets[sorted_inds, 0].astype(int) + BB = cdets[sorted_inds] + + npos = 0 + for img_gt in cgt.values(): + img_gt['ignored'] = np.array(img_gt['difficult']) + img_gt['det'] = np.zeros(len(img_gt['difficult']), dtype=np.bool) + npos += np.sum(~img_gt['ignored']) + + nd = len(image_ids) + tp = np.zeros(nd) + fp = np.zeros(nd) + for d in range(nd): + ovmax = -np.inf + if image_ids[d] in cgt: + R = cgt[image_ids[d]] + bb = BB[d, 2:].astype(float) + + BBGT = R['bbox'].astype(float) + + # compute overlaps + # intersection + ixmin = np.maximum(BBGT[:, 0], bb[0]) + iymin = np.maximum(BBGT[:, 1], bb[1]) + ixmax = np.minimum(BBGT[:, 0] + BBGT[:, 2], bb[0] + bb[2]) + iymax = np.minimum(BBGT[:, 1] + BBGT[:, 3], bb[1] + bb[3]) + iw = np.maximum(ixmax - ixmin, 0.) + ih = np.maximum(iymax - iymin, 0.) + inters = iw * ih + + # union + uni = (bb[2] * bb[3] + BBGT[:, 2] * BBGT[:, 3] - inters) + + overlaps = inters / uni + ovmax = np.max(overlaps) + jmax = np.argmax(overlaps) + + if ovmax > args.voc_iou_thresh: + if not R['ignored'][jmax]: + if not R['det'][jmax]: + tp[d] = 1. + R['det'][jmax] = True + else: + fp[d] = 1. + else: + fp[d] = 1. + + # compute precision recall + fp = np.cumsum(fp) + tp = np.cumsum(tp) + rec = tp / float(npos) + N = float(npos) + # avoid divide by zero in case the first detection matches a difficult + # ground truth + prec = rec * N / np.maximum(rec * N + fp, np.finfo(np.float32).eps) + return rec, prec + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + p = 0 if np.sum(rec >= t) == 0 else np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap + +def compute_ap(gt, dets, loader): + """computes average precision for all categories""" + aps = {} + for cid in range(1, loader.num_classes): + cat_name = loader.ids_to_cats[cid] + rec, prec = eval_category(gt, dets, cid) + ap = voc_ap(rec, prec, loader.year == '07') + aps[loader.ids_to_cats[cid]] = ap + return aps + +def make_detection_table(gt, dets, loader): + """creates a table with AP per category and mean AP""" + aps = compute_ap(gt, dets, loader) + print("ap = ", aps) + eval_cache = [aps] + + table = [] + for cid in range(1, loader.num_classes): + cat_name = loader.ids_to_cats[cid] + table.append((cat_name, ) + tuple(aps.get(cat_name, 'N/A') for aps in eval_cache)) + mean_ap = np.mean([a for a in list(aps.values()) if a >= 0]) + table.append(("AVERAGE", ) + tuple(np.mean(list(aps.values())) for aps in eval_cache)) + x = tabulate(table, headers=(["Category", "mAP (all)"]), + tablefmt='orgtbl', floatfmt=".3f") + log.info("Eval results:\n%s", x) + return table + +def compute_mean_iou(detector): + iou = detector.get_mean_iou() + print(iou) + log.info("\n Mean IoU is %f", iou) + return iou + +def main(argv=None): + if args.dataset == 'voc07' or args.dataset == 'voc07+12': + loader = VOCLoader('07', 'test') + if args.dataset == 'voc12-val': + loader = VOCLoader('12', 'val', segmentation=args.segment) + + with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, + log_device_placement=False)) as sess: + detector = Detector(sess, loader, net_config, no_gt=args.no_seg_gt) + + filenames = loader.get_filenames() + gt = {cid: {} for cid in range(1, loader.num_classes)} + dets = {cid: [] for cid in range(1, loader.num_classes)} + + bar = progressbar.ProgressBar()# 显示进度条 + # print("filenames = ", filenames) + + init_op = tf.group(tf.local_variables_initializer(), tf.global_variables_initializer()) + sess.run(init_op) + for i in bar(range(len(filenames))): + name = filenames[i] + # print("name = ", name) + img_id = i + img = loader.load_image(name) # 获取图片 + # img = np.fromfile("./binFile/img/{0:05d}.bin".format(i), dtype=np.float32) + # img.shape = 1, 300, 300, 3 + gt_bboxes, seg_gt, gt_cats, w, h, difficulty = loader.read_annotations(name) # 获取图片信息 + + confidence = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_0.txt".format(i)) + location = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_1.txt".format(i)) + seg_logits = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_2.txt".format(i)) + confidence.shape = 1, 45390, 21 + location.shape = 1, 45390, 4 + seg_logits.shape = 1, 75, 75, 21 + + for cid in np.unique(gt_cats): + mask = (gt_cats == cid) + bbox = gt_bboxes[mask] + diff = difficulty[mask] + det = np.zeros(len(diff), dtype=np.bool) + gt[cid][img_id] = {'bbox': bbox, 'difficult': diff, 'det': det} + + confidence1 = confidence + location1 = location + seg_logits1 = seg_logits + output = detector.feed_forward(img, seg_gt, confidence1, location1, seg_logits1, + w, h, name, gt_bboxes, gt_cats) # result + + if args.detect: + det_bboxes, det_probs, det_cats = output[:3] + for i in range(len(det_cats)): + dets[det_cats[i]].append((img_id, det_probs[i]) + tuple(det_bboxes[i])) + + # print("gt = ", gt) + # print("dets = ", dets) + print("table result:") + table = make_detection_table(gt, dets, loader) if args.detect else None + print("iou result:") + iou = compute_mean_iou(detector) if args.segment else None + + +if __name__ == '__main__': + tf.app.run() \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/.keep b/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/.keep similarity index 100% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/.keep rename to ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/.keep diff --git a/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/README.md b/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..50b9a505a73ef6a3bc6fd09d5ad20950b2afa52c --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/README.md @@ -0,0 +1,96 @@ +## 模型功能 + +目标跟踪 + +## 原始模型 + +参考: + + +原实现模型: + +https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/DeepSort_ID0505_for_TensorFlow + +pb文件下载地址 : + +链接:https://pan.baidu.com/s/1v7Fe_YYT-hZUGCf2u7TI5g +提取码:v41g + +## om模型 + +pb模型转om模型参考freeze_pb.py + + +om模型下载地址: + +链接:https://pan.baidu.com/s/1GCuGdEUiniYZlTdFn2sknw +提取码:keil + +使用ATC模型转换工具进行模型转换时可以参考如下指令: + +``` +atc --model=/root/deepsort/deep_sort.pb --framework=3 --output=/root/deepsort/deep_sort --soc_version=Ascend310 --input_shape="input:1,128,64,3" +``` + +## 数据集准备 + +market1501测试集中的图像数据转换为bin数据集 地址: + + +链接:https://pan.baidu.com/s/1h9bWDVEW7-voFHFi7TaTuw 提取码:nwyj + + +## 使用msame工具推理 + + +参考 https://gitee.com/ascend/tools/tree/master/msame, 获取msame推理工具及使用方法。 + + +获取到msame可执行文件之后,进行性能测试。 + +./msame --model "/root/deepsort/deep_sort.om" --input "/root/osnet/query" --output "/root/deepsort/out/" --outfmt TXT + + +## 性能测试 + +使用msame推理工具,参考如下命令,发起推理性能测试: + +``` + +``` + +``` +... +Inference average time : 10.66 ms +Inference average time without first time: 10.66 ms +[INFO] unload model success, model Id is 1 +[INFO] Execute sample success +[INFO] end to destroy stream +[INFO] end to destroy context +[INFO] end to reset device is 0 +[INFO] end to finalize acl + +... +``` + +平均推理性能为 10.66ms + +## 精度测试 + + +``` + +``` + +最终精度:(暂无) + +``` +Ascend310推理结果: + gpu结果: + npu结果: +``` + + + + + diff --git a/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/freeze_pb.py b/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/freeze_pb.py new file mode 100644 index 0000000000000000000000000000000000000000..a8f8cc678115f9fba953826715467bd34d9ad6d6 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/DeepSort_ID0505_for_ACL/freeze_pb.py @@ -0,0 +1,66 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +import tensorflow as tf +from tensorflow.python.tools import freeze_graph +from tensorflow.python.framework import graph_util +import os, sys +import argparse + +base_path=os.path.split(os.path.realpath(__file__))[0] +sys.path.append(base_path + "/../") + +from nets.deep_sort.network_definition import create_network + + +def main(): + + tf.reset_default_graph() + + # set inputs node + inputs = tf.placeholder(tf.float32, shape=[1, 128, 64, 3], name="input") + + features, logits = create_network(inputs, \ + num_classes=1502, \ + add_logits=True, \ + reuse=None, \ + create_summaries=False, \ + weight_decay=1e-8) + + prediction = tf.argmax(input=logits, axis=-1, output_type=tf.dtypes.int32, name="output") + + graph = tf.get_default_graph() + input_graph_def = graph.as_graph_def() + + output_graph="deep_sort.pb" + + with tf.Session() as sess: + sess.run(tf.global_variables_initializer()) + + saver = tf.train.Saver() + saver.restore(sess, "/home/HwHiAiUser/deep/lognckpt_bak/KOOKKJ/model.ckpt-98077") + + output_graph_def = graph_util.convert_variables_to_constants( + sess=sess, + input_graph_def=input_graph_def, + output_node_names=["output"]) + + with tf.gfile.GFile(output_graph, "wb") as f: + f.write(output_graph_def.SerializeToString()) + + print("done") + +if __name__ == '__main__': + main() + diff --git a/ACL_TensorFlow/contrib/cv/MT-NET_ID1283_for_ACL/.keep b/ACL_TensorFlow/contrib/cv/MT-NET_ID1283_for_ACL/.keep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/LICENSE b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/README.md b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a38b01aa6c616ac68211060b794f91d71b088881 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/README.md @@ -0,0 +1,109 @@ +## Pix2pose_ID1164_for_TensorFlow_ACL + +### 基本信息 + +**应用领域(Application Domain):**6D Posture Estimation + +**修改时间(Modified) :2022.4.17** + +**描述(Description):基于TensorFlow框架的Pix2pose的6D姿态估计网络离线推理代码** + +### 概述 + +Pix2Pose是一种经典的6D姿势估计方法。该模型可以在没有纹理的3D模型的情况下预测每个目标像素的三维坐标,解决了遮挡、对称和无纹理等问题,仅使用RGB图像来估计物体的6D姿势,并且能够构建具有精确纹理的三维模型。Pix2Pose设计了一个自动编码器结构来估计三维坐标和每个像素的预期误差,然后在多个阶段使用这些像素的预测来形成二维到三维的对应关系,用RANSAC迭代的PnP算法直接计算姿态,并利用生成式对抗训练来精确地覆盖被遮挡的部分,对遮挡的情况具有鲁棒性,Pix2Pose还提出了一个新的损失函数,即变换器损失函数,用于将预测的姿态引导到最近的对称姿态来处理对称目标。 + +- 参考论文: + + [Park K , Patten T et al. "Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation." *2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020.] +(https://arxiv.org/pdf/1908.07433.pdf) + +- 参考实现: + + [Pix2Pose](https://github.com/kirumang/Pix2Pose) + + + +### hdf5转pb + +本模型基于keras框架实现,训练模型时以HDF5格式保存模型训练的权重,使用hdf52pb.py将模型和权重转化为pb,我们提供转换好的[hdf5模型文件](obs://pix2pose/tless_inference/pix2pose_weights/)。 + +hdf52pb.py主要代码如下: +``` +def h5_to_pb(h5_weight_path, output_dir, out_prefix="output_", log_tensorboard=True): + if not os.path.exists(output_dir): + os.mkdir(output_dir) + + h5_model = build_model() + h5_model.load_weights(h5_weight_path) + + out_nodes = [] + for i in range(len(h5_model.outputs)): + out_nodes.append(out_prefix + str(i + 1)) + tf.identity(h5_model.output[i], out_prefix + str(i + 1)) + + model_name = os.path.splitext(os.path.split(h5_weight_path)[-1])[0] + index + '.pb' + + sess = K.get_session() + init_graph = sess.graph.as_graph_def() + main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) + graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) + if log_tensorboard: + from tensorflow.python.tools import import_pb_to_tensorboard + import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) + +def build_model(): + h5_model = load_model(inference_model_hdf5) + return h5_model + +if __name__ == '__main__': + output_dir = os.path.join(output_path) + h5_weight_path=os.path.join(inference_weight_hdf5) + h5_to_pb(h5_weight_path, output_dir) + print('finished') +``` +我们提供转换好的[pb模型文件](obs://pix2pose/tless_inference/pb/)。 + +### pb转om +使用ATC模型转换工具进行模型转换时可以参考如下指令: +``` +atc --model=/home/HwHiAiUser/AscendProjects/path_to_file/file.pb --framework=3 --output=/home/HwHiAiUser/AscendProjects/path_to_file/filename_OM --soc_version=Ascend310 --input_shape="input_1:1,128,128,3" --log=info --out_nodes="output_1:0;output_2:0" +``` + +我们提供转换好的[om模型文件](obs://pix2pose/tless_inference/OM/)。 + +![输出结果](picture/pb2om.png) + +### msame工具 +我们采用msame工具进行离线推理,参考[msame简介](https://gitee.com/ascend/tools/tree/master/msame), 获取msame推理工具及使用方法。 + +获取到msame可执行文件之后,进行推理测试。 + +### 数据集转bin +该过程原训练代码3_train_pix2pose.py中generator_train.predict()函数后加入以下代码,直接获取预处理好的图片,并以bin格式存储: +``` + if not (os.path.exists(weight_dir + "/pb_input/")): + os.makedirs(weight_dir + "/pb_input/") + + for i in range(n): + img_org = X_src[i] + inference = weight_dir + "/pb_input/" + str(i) + ".bin" + img_org.tofile(inference) +``` + +为了测试,我们提供了测试数据集,这是我们转换好的[bin文件](obs://pix2pose/tless_inference/bin_input/)。 + +### 推理测试 +使用msame推理工具,参考如下命令,发起推理测试: +``` +./msame --model "/home/HwHiAiUser/AscendProjects/path_to_file/filename_OM.om" --input "/home/HwHiAiUser/AscendProjects/path_to_file/bin_name.bin" --output "/home/HwHiAiUser/AscendProjects/Pix2pose/out " --outfmt TXT --loop 1 +``` +![输出结果](picture/om_output.png) + + + +最后,可视化后可以得到类似如下结果: +![可视化结果](picture/output_viz.png) + + + + diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/hdf52pb.py b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/hdf52pb.py new file mode 100644 index 0000000000000000000000000000000000000000..f8ed2e0d55625fe1d70b7e99a2f44cc10ac215e2 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/hdf52pb.py @@ -0,0 +1,75 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# =========================== +# Author : Ma Shiyuan +# Time : 2022/4 +# Language : Python +# =========================== +import os,sys +os.system("pip install keras==2.2.4") +print("-----------------------------------------") + +from keras.models import load_model +import tensorflow as tf +from keras import backend as K +from tensorflow.python.framework import graph_util, graph_io + +def h5_to_pb(h5_weight_path, output_dir, out_prefix="output_", log_tensorboard=True): + if not os.path.exists(output_dir): + os.mkdir(output_dir) + + h5_model = build_model() + h5_model.load_weights(h5_weight_path) + + out_nodes = [] + for i in range(len(h5_model.outputs)): + out_nodes.append(out_prefix + str(i + 1)) + tf.identity(h5_model.output[i], out_prefix + str(i + 1)) + + model_name = os.path.splitext(os.path.split(h5_weight_path)[-1])[0] + '.pb' + + sess = K.get_session() + init_graph = sess.graph.as_graph_def() + main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) + graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) + if log_tensorboard: + from tensorflow.python.tools import import_pb_to_tensorboard + import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir) + + +def build_model(): + inference_model_hdf5='' + h5_model = load_model(inference_model_hdf5) + return h5_model + + +if __name__ == '__main__': + output_dir = '' + h5_weight_path='' + h5_to_pb(h5_weight_path, output_dir) + print('finished') \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/modelzoo_level.txt b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..4f4eeb699cb9bfd53ef6361efe5807c90ff799c8 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/modelzoo_level.txt @@ -0,0 +1,6 @@ +ModelConvert:OK +QuantStatus:NOK +FuncStatus:OK +PrecisionStatus:OK +AutoTune:NOK +PerfStatus:NOK diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/om_output.png b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/om_output.png new file mode 100644 index 0000000000000000000000000000000000000000..a9f9785d98b344ed545d6990d02c44c41423cf75 Binary files /dev/null and b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/om_output.png differ diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/output_viz.png b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/output_viz.png new file mode 100644 index 0000000000000000000000000000000000000000..0e7cf5acc5cf0e2b49d3490ffd11153f79baaa48 Binary files /dev/null and b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/output_viz.png differ diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/pb2om.png b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/pb2om.png new file mode 100644 index 0000000000000000000000000000000000000000..dafc79aa354030f56c78496a9a53a87b7c04970e Binary files /dev/null and b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/picture/pb2om.png differ diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/requirements.txt b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ad87d4400008c9821a834ea4b30b0683c0f253ab --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/requirements.txt @@ -0,0 +1,6 @@ +python==3.7.5 +numpy==1.16.4 +tensorflow-gpu==1.15 +tensorboard==1.14.0 +matplotlib==2.2.3 +keras==2.2.4 diff --git a/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/txt2png.py b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/txt2png.py new file mode 100644 index 0000000000000000000000000000000000000000..79303da2505336f0ed87407e84cd3e57cc812158 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/Pix2pose_ID1164_for_TensorFlow_ACL/txt2png.py @@ -0,0 +1,61 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +from PIL import Image +import argparse +import os +from glob import glob +import matplotlib.pyplot as plt + + +def main(): + parser = argparse.ArgumentParser(description='') + parser.add_argument('--atc_dir', dest='atc_dir', default='', help='directory for atc result') + parser.add_argument('--width', dest='width', type=int, default=128) + parser.add_argument('--height', dest='height', type=int, default=128) + + args = parser.parse_args() + + result = np.loadtxt(args.atc_dir, dtype=np.float) + print(result.shape) + result_1 = result.reshape(args.width, args.height, 3) + print(result_1) + # import pdb + # pdb.set_trace() + # im = Image.fromarray(np.clip(result_1 * 255.0, , 255.0).astype('uint8')) + # im = Image.fromarray(np.uint8((result_1+1)/2 *255)) + # image=np.uint8((result_1 + 1) / 2 * 255) + image = result_1 + plt.figure() + plt.imshow(image) + plt.show() + + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/LICENSE b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/README.md b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..8fa513bf5ffc81ab7fd82922a19231a62ccfbd13 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/README.md @@ -0,0 +1,63 @@ +# SYNET +## 1.模型概述 +Symnet结合属性-对象转换的对称性原理和群论公理,由耦合网络和解耦网络两个模块组成,提出了基于Relative Moving Distance(RMD)的识别方法,利用属性的变化而非属性本身去分类属性。在Attribute-Object Composition零样本学习任务上取得了重大改进。 + +- 参考论文: + + [Li, Yong-Lu, et al. "Symmetry and group in attribute-object compositions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.](https://arxiv.org/abs/2004.00587) + +- 官方实现: + + [SymNet](https://github.com/DirtyHarryLYL/SymNet) +## 2.环境 +基于昇腾310推理Ai1S环境,参考[快速创建离线推理Ai1S环境](https://gitee.com/ascend/modelzoo/wikis/%E7%A6%BB%E7%BA%BF%E6%8E%A8%E7%90%86%E6%A1%88%E4%BE%8B/%E5%BF%AB%E9%80%9F%E5%88%9B%E5%BB%BA%E7%A6%BB%E7%BA%BF%E6%8E%A8%E7%90%86Ai1S%E7%8E%AF%E5%A2%83) +配置环境。 +## 3.数据准备 +用户可运行download_data.sh下载数据集并进行预处理。预处理后的数据集已上传至obs中,包括原始数据,ckpt,pb,om,bin文件。 +obs路径:obs://cann-id1292-symnet/data/data.tar.gz。可以下载解压到项目根目录(SYMNET_ID1292_for_ACL),目录结构: +``` +SYMNET_ID1292_for_ACL +├── data # 数据集 +├── data_bin.py # 制作bin文件 +├── evaluate_acc.py # 精度评估 +├── freeze_graph.py # ckpt转pb +├── inference.sh # msame推理 +├── modelarts_entry.py # modelarts训练拉起 +├── train_full_1p.sh # 执行freeze_graph.py +├── LICENSE +├── modelzoo_level.txt +├── pb_om.sh # pb转om +├── README.md +├── requirement.txt # 环境依赖 +└── utils +``` +## 4.CKPT转PB +在ModelArts平台,通过`modelarts_entry.py`拉起训练,执行`train_full_1p.sh`,运行`freeze_graph.py`将ckpt转pb。 +pb模型已上传至obs,路径 obs://cann-id1292-symnet/data/pb/ +## 5.PB转OM +执行`pb_om.sh`,使用atc转换pb模型为om模型,atc模型转换参考[ATC模型转换](https://support.huaweicloud.com/atctool-cann51RC1alpha2/atlasatc_16_0005.html) +om模型已上传obs,路径 obs://cann-id1292-symnet/data/om/ +``` +atc --model=./data/pb/symnet_new.pb --framework=3 --output=./data/om/symnet --soc_version=Ascend310 --input_shape="Placeholder_2:1,512;test_attr_id:116;test_obj_id:116;Placeholder_6:1,12" --out_nodes="Mul_18:0;Softmax_3:0;Placeholder_6:0" +``` +## 6.bin文件制作 +运行`data_bin.py`,将测试集数据制作为bin文件。 +bin文件已上传至obs,路径 obs://cann-id1292-symnet/data/bin_file/ +``` +python3 data_bin.py --data_url=./data --obj_pred=UT_obj_lr1e-3_test_ep260.pkl --bin_file=./data/bin_file/ +``` +## 7.msame离线推理 +参考 [msame](https://gitee.com/ascend/tools/tree/master/msame) 配置msame工具。 +可将msame生成工具(tools/msame/out下)复制至本项目文件夹下,或修改`inference.sh`中msame路径为工具路径。 +自定义bin文件输入路径,推理结果输出路径,执行`inference.sh`,进行推理。 +## 8.精度计算 +执行`evaluate_acc.py`,评估推理结果精度。 +``` +python3 evaluate_acc.py --input=/path/to/msame/output/ --data_url=./data --obj_pred=UT_obj_lr1e-3_test_ep260.pkl +``` +| | 数据集 | EPOCH| 精度 | +|-------|------|------|------| +| 原文 | UT | <700 | T1:52.1   T2:67.8   T3:76.0 | +| GPU | UT | 574 | T1:0.5116   T2:0.6719   T3:0.7616 | +| NPU | UT | 636 | T1:0.5007   T2:0.6684   T3:0.7571 | +| NPU离线推理 | UT | 636 | T1:0.4991   T2:0.6696   T3:0.7561| diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/data_bin.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/data_bin.py new file mode 100644 index 0000000000000000000000000000000000000000..fbb4b533eeeb42bd1d95a6e57f76880da4e17471 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/data_bin.py @@ -0,0 +1,76 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +from utils import dataset +import argparse, os + + +def make_parser(): + parser = argparse.ArgumentParser() + + parser.add_argument("--data_url", type=str, default="./data", help="Path to dataset") + parser.add_argument("--data", type=str, default='UT',choices=['MIT', 'UT', 'MITg', 'UTg'],help="Dataset name") + parser.add_argument("--test_bz", type=int, default=1024, help="Test batch size") + parser.add_argument("--obj_pred", type=str, default=None, help="Object prediction from pretrained model") + parser.add_argument("--bin_path", type=str, default='./data/bin_file/') + return parser + + +def main(): + parser = make_parser() + args = parser.parse_args() + + test_dataloader = dataset.get_dataloader(args.data_url, args.data, 'test', batchsize=args.test_bz, + obj_pred=args.obj_pred) + input_node = ["Placeholder_2", "test_att_id", "test_obj_id", "Placeholder_6"] + if not os.path.exists(args.bin_path): + os.mkdir(args.bin_path) + + for node in input_node: + if not os.path.exists(args.bin_path + node): + os.mkdir(args.bin_path + node + "/") + + dset = test_dataloader.dataset + test_att_id = np.array([dset.attr2idx[attr] for attr, _ in dset.pairs], dtype=np.int32) + test_obj_id = np.array([dset.obj2idx[obj] for _, obj in dset.pairs], dtype=np.int32) + + count = 0 + for image_ind, batch in enumerate(test_dataloader): + placeholder_2 = np.array(batch[4]) + placeholder_6 = np.array(batch[-1]) + + for i in range(0, len(placeholder_2)): + placeholder_2[i, :].tofile(args.bin_path + input_node[0] + "/{0:05d}.bin".format(count)) + test_att_id.tofile(args.bin_path + input_node[1] + "/{0:05d}.bin".format(count)) + test_obj_id.tofile(args.bin_path + input_node[2] + "/{0:05d}.bin".format(count)) + placeholder_6[i, :].tofile(args.bin_path + input_node[3] + "/{0:05d}.bin".format(count)) + count += 1 + + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/download_data.sh b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/download_data.sh new file mode 100644 index 0000000000000000000000000000000000000000..57bc362acd52039bd3ac34567b68f58b3c4433fd --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/download_data.sh @@ -0,0 +1,73 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +mkdir tmp + +# Download everything +mwget --show-progress -O tmp/attr-ops-data.tar.gz https://www.cs.utexas.edu/~tushar/attribute-ops/attr-ops-data.tar.gz +mwget --show-progress -O tmp/mitstates.zip http://wednesday.csail.mit.edu/joseph_result/state_and_transformation/release_dataset.zip +mwget --show-progress -O tmp/utzap.zip http://vision.cs.utexas.edu/projects/finegrained/utzap50k/ut-zap50k-images.zip +mwget --show-progress -O tmp/natural.tar.gz http://www.cs.cmu.edu/~spurushw/publication/compositional/compositional_split_natural.tar.gz +echo "Data downloaded. Extracting files..." + + +# Dataset metadata and features +tar -zxvf tmp/attr-ops-data.tar.gz --strip 1 +mv data/mit-states mit-states-original +mv data/ut-zap50k ut-zap50k-original +rm -r cv tensor-completion data + + + +# MIT-States +unzip tmp/mitstates.zip 'release_dataset/images/*' -d mit-states-original/ +mv mit-states-original/release_dataset/images mit-states-original/images/ +rm -r mit-states-original/release_dataset +rename "s/ /_/g" mit-states-original/images/* + +# UT-Zappos50k +unzip tmp/utzap.zip -d ut-zap50k-original/ +mv ut-zap50k-original/ut-zap50k-images ut-zap50k-original/_images/ +python reorganize_utzap.py +rm -r ut-zap50k-original/_images + + +# Natural split +tar -zxvf tmp/natural.tar.gz +mv mit-states/metadata_compositional-split-natural.t7 mit-states/metadata.t7 +mv ut-zap50k/metadata_compositional-split-natural.t7 ut-zap50k/metadata.t7 +mv mit-states/compositional-split-natural mit-states/compositional-split +mv ut-zap50k/compositional-split-natural ut-zap50k/compositional-split +mv mit-states mit-states-natural +mv ut-zap50k ut-zap50k-natural +ln -s ../mit-states-original/images mit-states-natural/images +ln -s ../ut-zap50k-original/images ut-zap50k-natural/images + + +# remove all zip files and temporary files +rm -r tmp diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/evaluate_acc.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/evaluate_acc.py new file mode 100644 index 0000000000000000000000000000000000000000..03c354e64228064eaca05e27bd2a0ce895eed592 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/evaluate_acc.py @@ -0,0 +1,129 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +import os, argparse +import torch +from utils import dataset +from collections import defaultdict +from utils.evaluator import CZSL_Evaluator + + +def make_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--input", type=str, required=True, help="Path to msame inference result") + parser.add_argument("--data_url", type=str, default="./data", help="Path to dataset") + parser.add_argument("--data", type=str, default='UT', choices=['MIT', 'UT', 'MITg', 'UTg'], help="Dataset name") + parser.add_argument("--test_bz", type=int, default=1, help="Test batch size") + parser.add_argument("--obj_pred", type=str, default=None, help="Object prediction from pretrained model") + return parser + + +def load_txt(path, type): + with open(path, 'r')as f: + line = f.readline().strip().split(" ") + + predict = np.asarray(line, dtype=type).reshape(1, -1) + return predict + + +def formated_czsl_result(report): + fstr = 'rA:{real_attr_acc:.4f}|rO:{real_obj_acc:.4f}|Cl/T1:{top1_acc:.4f}|T2:{top2_acc:.4f}|T3:{top3_acc:.4f}' + return fstr.format(**report) + + +def main(): + parser = make_parser() + args = parser.parse_args() + test_dataloader = dataset.get_dataloader(args.data_url, args.data, 'test', batchsize=args.test_bz, + obj_pred=args.obj_pred) + dset = test_dataloader.dataset + test_att_id = np.array([dset.attr2idx[attr] for attr, _ in dset.pairs]) + test_obj_id = np.array([dset.obj2idx[obj] for _, obj in dset.pairs]) + + evaluator = CZSL_Evaluator(test_dataloader.dataset, None) + + accuracies_pair = defaultdict(list) + accuracies_attr = defaultdict(list) + accuracies_obj = defaultdict(list) + + for idx, batch in enumerate(test_dataloader): + id = "{0:05d}_output_".format(idx) + prob_P_rmd = load_txt(os.path.join(args.input, id + "0.txt")) + prob_A_attr = load_txt(os.path.join(args.input, id + "1.txt")) + prob_O = load_txt(os.path.join(args.input, id + "2.txt")) + score = dict([ + ("score_rmd", [prob_P_rmd, prob_A_attr, prob_O]), # Mul_18, Softmax_3, Placeholder_6 + ]) + + for key in score.keys(): + score[key][0] = { + (a, o): torch.from_numpy(score[key][0][:, j]) + for j, (a, o) in enumerate(zip(test_att_id, test_obj_id)) + } + + prediction = score + attr_truth, obj_truth = batch[1], batch[2] + attr_truth, obj_truth = torch.from_numpy(attr_truth), torch.from_numpy(obj_truth) + + for key in prediction.keys(): + p_pair, p_a, p_o = prediction[key] + pair_results = evaluator.score_model(p_pair, obj_truth) + match_stats = evaluator.evaluate_predictions(pair_results, attr_truth, obj_truth) + accuracies_pair[key].append(match_stats) # 0/1 sequence of t/f + + a_match, o_match = evaluator.evaluate_only_attr_obj(p_a, attr_truth, p_o, obj_truth) + + accuracies_attr[key].append(a_match) + accuracies_obj[key].append(o_match) + + for name in accuracies_pair.keys(): + accuracies = accuracies_pair[name] + accuracies = zip(*accuracies) + accuracies = map(torch.mean, map(torch.cat, accuracies)) + attr_acc, obj_acc, closed_1_acc, closed_2_acc, closed_3_acc, _, objoracle_acc = map(lambda x: x.item(), + accuracies) + + real_attr_acc = torch.mean(torch.cat(accuracies_attr[name])).item() + real_obj_acc = torch.mean(torch.cat(accuracies_obj[name])).item() + + report_dict = { + 'real_attr_acc': real_attr_acc, + 'real_obj_acc': real_obj_acc, + 'top1_acc': closed_1_acc, + 'top2_acc': closed_2_acc, + 'top3_acc': closed_3_acc, + } + + print(name + ": " + formated_czsl_result(report_dict)) + + pass + + +if __name__ == '__main__': + main() + diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/freeze_graph.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/freeze_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..a6a231df1787241a89678b82bc25f8a443dbf91a --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/freeze_graph.py @@ -0,0 +1,193 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from tensorflow.python.framework import graph_util +from utils import dataset, utils +import argparse +import os, tqdm +import numpy as np +import torch +from utils.evaluator import CZSL_Evaluator +from collections import defaultdict +from npu_bridge.npu_init import * + + +def make_parser(): + parser = argparse.ArgumentParser() + parser.add_argument("--train_url", type=str, default="./output", required=True, + help="output path") + parser.add_argument("--data_url", type=str, default="./data", required=True, + help="input path") + parser.add_argument("--ckpt", type=str, required=True) + parser.add_argument("--data", type=str, default='UT', choices=['MIT', 'UT', 'MITg', 'UTg'], help="Dataset name") + parser.add_argument("--test_bz", type=int, default=1024, help="Test batch size") + parser.add_argument("--obj_pred", type=str, default=None, help="Object prediction from pretrained model") + return parser + + +def freeze_graph(input_checkpoint, output_graph): + """ + ckpt转pb + """ + # 输出节点 + output_node_names = "Mul_18,Softmax_3,Placeholder_6" + saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) + graph = tf.get_default_graph() + input_graph_def = graph.as_graph_def() + + with utils.create_session() as sess: + saver.restore(sess, input_checkpoint) + output_graph_def = graph_util.convert_variables_to_constants( + sess=sess, + input_graph_def=input_graph_def, + output_node_names=output_node_names.split(",")) # 多个输出节点,以逗号隔开 + + with tf.gfile.GFile(output_graph, "wb") as f: # 保存模型 + f.write(output_graph_def.SerializeToString()) # 序列化输出 + print("%d ops in the final graph." % len(output_graph_def.node)) + + +def test_pb(args, pb_path): + """ + 在线推理,测试pb模型 + """ + print("Loading test dataset") + test_dataloader = dataset.get_dataloader(args.data_url, args.data, 'test', batchsize=args.test_bz, + obj_pred=args.obj_pred) + + network = 1 + evaluator = CZSL_Evaluator(test_dataloader.dataset, network) + with tf.Graph().as_default(): + output_graph_def = tf.GraphDef() + with open(pb_path, "rb") as f: + output_graph_def.ParseFromString(f.read()) + tf.import_graph_def(output_graph_def, name="") + + with utils.create_session() as sess: + sess.run(tf.global_variables_initializer()) + + print("get input tensor") + # 输入张量 + pos_image_feat = sess.graph.get_tensor_by_name("Placeholder_2:0") + test_attr_id = sess.graph.get_tensor_by_name("test_attr_id:0") + test_obj_id = sess.graph.get_tensor_by_name("test_obj_id:0") + pos_obj_prediction = sess.graph.get_tensor_by_name("Placeholder_6:0") + + print("get output tensor") + # 输出张量 + prob_P_rmd = sess.graph.get_tensor_by_name("Mul_18:0") + prob_A_attr = sess.graph.get_tensor_by_name("Softmax_3:0") + prob_O = sess.graph.get_tensor_by_name("Placeholder_6:0") + score_op = dict([ + ("score_rmd", [prob_P_rmd, prob_A_attr, prob_O]), # Mul_18, Softmax_3, Placeholder_6 + ]) + + accuracies_pair = defaultdict(list) + accuracies_attr = defaultdict(list) + accuracies_obj = defaultdict(list) + + for image_ind, batch in tqdm.tqdm(enumerate(test_dataloader), total=len(test_dataloader), postfix='test'): + dset = test_dataloader.dataset + test_att = np.array([dset.attr2idx[attr] for attr, _ in dset.pairs]) + test_obj = np.array([dset.obj2idx[obj] for _, obj in dset.pairs]) + + feed_dict = { + pos_image_feat: batch[4], # Placeholder_2 + test_attr_id: test_att, # test_attr_id + test_obj_id: test_obj, # test_obj_id + pos_obj_prediction: batch[-1], # Placeholder_6 + } + score = sess.run(score_op, feed_dict=feed_dict) + for key in score_op.keys(): + score[key][0] = { + (a, o): torch.from_numpy(score[key][0][:, i]) + for i, (a, o) in enumerate(zip(test_att, test_obj)) + } + + attr_truth, obj_truth = batch[1], batch[2] + attr_truth, obj_truth = torch.from_numpy(attr_truth), torch.from_numpy(obj_truth) + + match_stats = [] + for key in score_op.keys(): + p_pair, p_a, p_o = score[key] + pair_results = evaluator.score_model(p_pair, obj_truth) + match_stats = evaluator.evaluate_predictions(pair_results, attr_truth, obj_truth) + accuracies_pair[key].append(match_stats) # 0/1 sequence of t/f + + a_match, o_match = evaluator.evaluate_only_attr_obj(p_a, attr_truth, p_o, obj_truth) + + accuracies_attr[key].append(a_match) + accuracies_obj[key].append(o_match) + + for name in accuracies_pair.keys(): + accuracies = accuracies_pair[name] + accuracies = zip(*accuracies) + accuracies = map(torch.mean, map(torch.cat, accuracies)) + attr_acc, obj_acc, closed_1_acc, closed_2_acc, closed_3_acc, _, objoracle_acc = map(lambda x: x.item(), + accuracies) + + real_attr_acc = torch.mean(torch.cat(accuracies_attr[name])).item() + real_obj_acc = torch.mean(torch.cat(accuracies_obj[name])).item() + + report_dict = { + 'real_attr_acc': real_attr_acc, + 'real_obj_acc': real_obj_acc, + 'top1_acc': closed_1_acc, + 'top2_acc': closed_2_acc, + 'top3_acc': closed_3_acc, + 'name': "symnet", + 'epoch': 636, + } + + print(name + ": " + utils.formated_czsl_result(report_dict)) + + pass + + +def main(): + parser = make_parser() + args = parser.parse_args() + + weight_dir = os.path.join(args.data_url, './weights') + ckpt_path = os.path.join(weight_dir, args.ckpt) + print("ckpt path => ", ckpt_path) + + pb_path = os.path.join(args.train_url, './pb/') + print("pb path => ", pb_path) + if not os.path.exists(pb_path): + os.mkdir(pb_path) + + saved_pb_path = os.path.join(args.data_url, './pb/symnet.pb') + print("saved pb path => ", saved_pb_path) + + freeze_graph(ckpt_path, pb_path + "symnet.pb") + # test_pb(args, pb_path=pb_path+"symnet.pb") + + +if __name__ == '__main__': + main() diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/inference.sh b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/inference.sh new file mode 100644 index 0000000000000000000000000000000000000000..24ee9a5aaff4bb7f7168fc11ea6d76a97a4d7758 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/inference.sh @@ -0,0 +1,11 @@ +#!/bin/bash + +Placeholder_2=./data/bin_file/Placeholder_2 +test_att_id=./data/bin_file/test_att_id +test_obj_id=./data/bin_file/test_obj_id +Placeholder_6=./data/bin_file/Placeholder_6 + +om_path="/home/HwHiAiUser/AscendProjects/SYMNET_ID1292_for_ACL/data/om/symnet.om" +output_path=./data/output +ulimit -c 0 +./msame --model ${om_path} --input ${Placeholder_2},${test_att_id},${test_obj_id},${Placeholder_6} --output ${output_path} --outfmt TXT diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelarts_entry.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelarts_entry.py new file mode 100644 index 0000000000000000000000000000000000000000..28515c5d102a251ac55d7d9a0c0bd2d1512e4906 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelarts_entry.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import sys + +# 解析输入参数data_url +parser = argparse.ArgumentParser() +parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") +parser.add_argument("--train_url", type=str, default="/home/ma-user/modelarts/outputs/train_url_0/") +config = parser.parse_args() + +print("[CANN-Modelzoo] code_dir path is [%s]" % (sys.path[0])) +code_dir = sys.path[0] +os.chdir(code_dir) +print("[CANN-Modelzoo] work_dir path is [%s]" % (os.getcwd())) + +print("[CANN-Modelzoo] before train - list my run files:") +os.system("ls -al /usr/local/Ascend/ascend-toolkit/") + +print("[CANN-Modelzoo] before train - list my dataset files:") +os.system("ls -al %s" % config.data_url) + +print("[CANN-Modelzoo] start run train shell") +# 设置sh文件格式为linux可执行 +os.system("dos2unix ./test/*") + +# 执行train_full_1p.sh或者train_performance_1p.sh,需要用户自己指定 +# full和performance的差异,performance只需要执行很少的step,控制在15分钟以内,主要关注性能FPS +os.system("bash ./train_full_1p.sh --data_path=%s --output_path=%s " % (config.data_url, config.train_url)) + +print("[CANN-Modelzoo] finish run train shell") + +# 将当前执行目录所有文件拷贝到obs的output进行备份 +print("[CANN-Modelzoo] after train - list my output files:") +os.system("cp -r %s %s " % (code_dir, config.train_url)) +os.system("ls -al %s" % config.train_url) \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelzoo_level.txt b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a39f2221b8103c0ae90337cb4b6bd67c69f2d11 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/modelzoo_level.txt @@ -0,0 +1,2 @@ +FuncStatus:OK +PrecisionStatus:OK \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/pb_om.sh b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/pb_om.sh new file mode 100644 index 0000000000000000000000000000000000000000..8540599f94fcea2381368f9df6ec526a8364cad9 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/pb_om.sh @@ -0,0 +1,3 @@ +#!/bin/bash +atc --model=./data/pb/symnet_new.pb --framework=3 --output=./data/om/symnet --soc_version=Ascend310 --input_shape="Placeholder_2:1,512;test_attr_id:116;test_obj_id:116;Placeholder_6:1,12" --out_nodes="Mul_18:0;Softmax_3:0;Placeholder_6:0" + diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/requirement.txt b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/requirement.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a7a6d70cba558a4ae408f9f1a5180a12e275ddd --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/requirement.txt @@ -0,0 +1,4 @@ +tensorflow==1.15.0 +torch==1.10.0 +torchvision +numpy==1.21.2 \ No newline at end of file diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train_full_1p.sh b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/train_full_1p.sh similarity index 88% rename from TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train_full_1p.sh rename to ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/train_full_1p.sh index 27cfdbd7a5c7316e9f82ea6d5e88abf661858bbb..d712ad6ee86d9cab42bb8b4ac25e2f4cc41155bd 100644 --- a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train_full_1p.sh +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/train_full_1p.sh @@ -1,187 +1,185 @@ -#!/bin/bash - -########################################################## -#########第3行 至 100行,请一定不要、不要、不要修改########## -#########第3行 至 100行,请一定不要、不要、不要修改########## -#########第3行 至 100行,请一定不要、不要、不要修改########## -########################################################## -# shell脚本所在路径 -cur_path=`echo $(cd $(dirname $0);pwd)` - -# 判断当前shell是否是performance -perf_flag=`echo $0 | grep performance | wc -l` - -# 当前执行网络的名称 -Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` - -export RANK_SIZE=1 -export RANK_ID=0 -export JOB_ID=10087 - -# 路径参数初始化 -data_path='' -output_path='' - -# 帮助信息,不需要修改 -if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_performance_1P.sh " - echo " " - echo "parameter explain: - --data_path # dataset of training - --output_path # output of training - --train_steps # max_step for training - --train_epochs # max_epoch for training - --batch_size # batch size - -h/--help show help message - " - exit 1 -fi - -# 参数校验,不需要修改 -for para in $* -do - if [[ $para == --data_path* ]];then - data_path=`echo ${para#*=}` - elif [[ $para == --output_path* ]];then - output_path=`echo ${para#*=}` - elif [[ $para == --train_steps* ]];then - train_steps=`echo ${para#*=}` - elif [[ $para == --train_epochs* ]];then - train_epochs=`echo ${para#*=}` - elif [[ $para == --batch_size* ]];then - batch_size=`echo ${para#*=}` - fi -done - -# 校验是否传入data_path,不需要修改 -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path\" must be config" - exit 1 -fi - -# 校验是否传入output_path,不需要修改 -if [[ $output_path == "" ]];then - output_path="./test/output/${ASCEND_DEVICE_ID}" -fi - -# 设置打屏日志文件名,请保留,文件名为${print_log} -print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" -modelarts_flag=${MODELARTS_MODEL_PATH} -if [ x"${modelarts_flag}" != x ]; -then - echo "running without etp..." - print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` - print_log="/home/ma-user/modelarts/log/${print_log_name}" -fi -echo "### get your log here : ${print_log}" - -CaseName="" -function get_casename() -{ - if [ x"${perf_flag}" = x1 ]; - then - CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' - else - CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' - fi -} - -# 跳转到code目录 -cd ${cur_path}/../ -rm -rf ./test/output/${ASCEND_DEVICE_ID} -mkdir -p ./test/output/${ASCEND_DEVICE_ID} - -# 训练开始时间记录,不需要修改 -start_time=$(date +%s) -########################################################## -#########第3行 至 100行,请一定不要、不要、不要修改########## -#########第3行 至 100行,请一定不要、不要、不要修改########## -#########第3行 至 100行,请一定不要、不要、不要修改########## -########################################################## - -#========================================================= -#========================================================= -#========训练执行命令,需要根据您的网络进行修改============== -#========================================================= -#========================================================= -# 基础参数,需要模型审视修改 -# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 -# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 -# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 -batch_size=128 - - -if [ x"${modelarts_flag}" != x ]; -then - python3.7 ./train.py - python3.7 ./get_map.py -else - python3.7 ./train.py 1>>${print_log} 2>&1 - python3.7 ./get_map.py 1>>${print_log} 2>&1 -fi - -# 性能相关数据计算 -StepTime=`grep "ms/step :" ${print_log} | tail -n 10 | awk '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}*1000'}'` - -# 精度相关数据计算 -train_accuracy=`grep "Final Accuracy accuracy" ${print_log} | awk '{print $NF}'` -# 提取所有loss打印信息 -grep "loss :" ${print_log} | awk -F ":" '{print $4}' | awk -F "-" '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt - - -########################################################### -#########后面的所有内容请不要修改########################### -#########后面的所有内容请不要修改########################### -#########后面的所有内容请不要修改########################### -########################################################### - -# 判断本次执行是否正确使用Ascend NPU -use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` -if [ x"${use_npu_flag}" == x0 ]; -then - echo "------------------ ERROR NOTICE START ------------------" - echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." - echo "------------------ ERROR NOTICE END------------------" -else - echo "------------------ INFO NOTICE START------------------" - echo "INFO, your task have used Ascend NPU, please check your result." - echo "------------------ INFO NOTICE END------------------" -fi - -# 获取最终的casename,请保留,case文件名为${CaseName} -get_casename - -# 重命名loss文件 -if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; -then - mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt -fi - -# 训练端到端耗时 -end_time=$(date +%s) -e2e_time=$(( $end_time - $start_time )) - -echo "------------------ Final result ------------------" -# 输出性能FPS/单step耗时/端到端耗时 -echo "Final Performance images/sec : $FPS" -echo "Final Performance ms/step : $StepTime" -echo "E2E Training Duration sec : $e2e_time" - -# 输出训练精度 -echo "Final Train Accuracy : ${train_accuracy}" - -# 最后一个迭代loss值,不需要修改 -ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) - -#关键信息打印到${CaseName}.log中,不需要修改 -echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +modelarts_flag=${MODELARTS_MODEL_PATH} +if [ x"${modelarts_flag}" != x ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo "### get your log here : ${print_log}" + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 基础参数,需要模型审视修改 +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=256 +epochs=636 + +if [ x"${modelarts_flag}" != x ]; +then + python3.7 ./freeze_graph.py --data_url=${data_path} --train_url=${output_path} --ckpt snapshot_epoch_636.ckpt --data UT --obj_pred UT_obj_lr1e-3_test_ep260.pkl +else + python3.7 ./freeze_graph.py --data_url=${data_path} --train_url=${output_path} --ckpt snapshot_epoch_636.ckpt --data UT --obj_pred UT_obj_lr1e-3_test_ep260.pkl +fi + +# 性能相关数据计算 +StepTime=`grep "sec/step :" ${print_log} | tail -n 20 | awk -F ':' '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 精度相关数据计算 +train_accuracy=`grep "Best score_rmd" ${print_log} | tail -n 1 | awk -F / '{print $NF}'` +# 提取所有loss打印信息 +grep "Current score_rmd" ${print_log} | awk -F "/" '{print NF}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +echo "Final Performance images/sec : $FPS" +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/__init__.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_attrs.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_attrs.json new file mode 100644 index 0000000000000000000000000000000000000000..8b45cb23eb771598ffe18a75268dec69026450d4 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_attrs.json @@ -0,0 +1 @@ +{"crumpled": "crumpled", "upright": "upright", "bright": "bright", "rough": "rough", "shattered": "shattered", "cut": "cut", "torn": "torn", "folded": "folded", "young": "young", "wet": "wet", "cluttered": "cluttered", "verdant": "verdant", "sunny": "sunny", "runny": "runny", "thawed": "thawed", "dark": "dark", "windblown": "windblown", "burnt": "burnt", "molten": "molten", "eroded": "eroded", "frayed": "frayed", "blunt": "blunt", "cloudy": "cloudy", "large": "large", "whipped": "whipped", "small": "small", "engraved": "engraved", "heavy": "heavy", "old": "old", "thin": "thin", "diced": "diced", "rusty": "rusty", "inflated": "inflated", "ruffled": "ruffled", "steaming": "steaming", "unpainted": "unpainted", "moldy": "moldy", "closed": "closed", "new": "new", "filled": "filled", "dirty": "dirty", "ripped": "ripped", "full": "full", "squished": "squished", "peeled": "peeled", "broken": "broken", "mashed": "mashed", "pureed": "pureed", "dry": "dry", "chipped": "chipped", "spilled": "spilled", "coiled": "coiled", "wrinkled": "wrinkled", "narrow": "narrow", "fallen": "fallen", "muddy": "muddy", "sliced": "sliced", "sharp": "sharp", "unripe": "unripe", "thick": "thick", "open": "open", "standing": "standing", "ancient": "ancient", "toppled": "toppled", "weathered": "weathered", "murky": "murky", "damp": "damp", "tiny": "tiny", "grimy": "grimy", "viscous": "viscous", "empty": "empty", "scratched": "scratched", "painted": "painted", "pierced": "pierced", "draped": "draped", "loose": "loose", "browned": "browned", "foggy": "foggy", "brushed": "brushed", "dull": "dull", "wide": "wide", "winding": "winding", "frozen": "frozen", "straight": "straight", "smooth": "smooth", "worn": "worn", "melted": "melted", "pressed": "pressed", "cracked": "cracked", "bent": "bent", "ripe": "ripe", "mossy": "mossy", "modern": "modern", "raw": "raw", "lightweight": "lightweight", "creased": "creased", "curved": "curved", "huge": "huge", "tight": "tight", "crinkled": "crinkled", "wilted": "wilted", "dented": "dented", "crushed": "crushed", "tall": "tall", "short": "short", "shiny": "shiny", "clear": "clear", "splintered": "splintered", "cored": "cored", "cooked": "cooked", "clean": "clean", "deflated": "deflated", "barren": "barren", "fresh": "fresh", "caramelized": "caramelized"} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_gamma.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_gamma.json new file mode 100644 index 0000000000000000000000000000000000000000..2801ae1e2654ea04e35420ab3e2248e978e44a13 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_gamma.json @@ -0,0 +1 @@ +{"attr_b": [0.8, 0.8, 0.8, 1.0, 1.2, 1.0, 1.0, 1.0, 1.0, 1.2, 0.8, 1.2, 0.8, 0.8, 1.0, 1.2, 1.0, 1.2, 0.8, 1.0, 0.8, 1.0, 0.8, 1.0, 1.2, 0.8, 0.8, 1.0, 0.8, 1.0, 1.0, 0.8, 1.0, 0.8, 1.0, 0.8, 1.2, 1.2, 1.0, 1.0, 1.2, 0.8, 0.8, 1.2, 0.8, 0.8, 0.8, 0.8, 1.2, 1.2, 0.8, 1.2, 0.8, 1.0, 0.8, 1.2, 1.2, 1.0, 0.8, 1.0, 1.2, 0.8, 1.0, 1.2, 0.8, 0.8, 1.2, 0.8, 0.8, 0.8, 1.2, 1.0, 0.8, 0.8, 1.2, 0.8, 1.0, 0.8, 0.8, 1.0, 1.0, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.8, 1.2, 0.8, 1.2, 0.8, 0.8, 1.0, 0.8, 1.0, 0.8, 0.8, 1.0, 1.2, 0.8, 1.0, 0.8, 0.8, 1.2, 1.2, 0.8, 0.8, 0.8], "attr_a": [0.8, 0.6000000000000001, 0.6000000000000001, 1.0, 1.2, 1.0, 1.0, 1.0, 1.0, 1.2, 0.6000000000000001, 1.2, 0.6000000000000001, 0.6000000000000001, 1.0, 1.2, 1.0, 1.2, 0.6000000000000001, 1.0, 0.6000000000000001, 1.0, 0.8, 1.0, 1.2, 0.6000000000000001, 0.6000000000000001, 1.0, 0.8, 1.0, 1.0, 0.8, 1.0, 0.6000000000000001, 1.0, 0.8, 1.2, 1.2, 1.0, 1.0, 1.2, 0.8, 0.6000000000000001, 1.2, 0.8, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.2, 1.2, 0.6000000000000001, 1.2, 0.6000000000000001, 1.0, 0.8, 1.0, 1.2, 1.0, 0.8, 1.0, 1.2, 0.6000000000000001, 1.0, 1.0, 0.6000000000000001, 0.8, 1.2, 0.8, 0.6000000000000001, 0.6000000000000001, 1.0, 1.0, 0.6000000000000001, 0.6000000000000001, 1.2, 0.6000000000000001, 1.0, 0.8, 0.6000000000000001, 1.0, 1.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6000000000000001, 0.8, 1.2, 0.8, 1.2, 0.6000000000000001, 0.6000000000000001, 1.0, 0.6000000000000001, 1.0, 0.6000000000000001, 0.6000000000000001, 1.0, 1.2, 0.6000000000000001, 1.0, 0.6000000000000001, 0.8, 1.2, 1.2, 0.6000000000000001, 0.8, 0.6000000000000001], "comp_b": [0.74, 0.14, 0.54, 1, 0.78, 0.84, 0.8, 1.06, 1.18, 1.28, 0.02, 0.02, 1.0, 0.0, 1.0, 1.62, 1.0, 0.58, 0.08, 1, 1.0, 1.26, 1.02, 1, 1.1400000000000001, 1, 0.0, 0.72, 0.74, 0.66, 1.04, 0.56, 0.56, 0.64, 1.34, 1.04, 1.08, 0.84, 1.0, 0.78, 1.0, 0.66, 0.02, 0.54, 0.7000000000000001, 0.56, 1, 0.6, 0.66, 0.9, 0.84, 1.82, 0.9400000000000001, 1.46, 0.46, 0.62, 1.1, 1.7, 0.64, 0.6, 0.52, 0.38, 0.76, 1.0, 1.0, 0.64, 0.72, 0.28, 0.28, 0.48, 0.46, 0.52, 1.0, 1.0, 1.0, 1.0, 0.68, 1.18, 1.0, 0.52, 0.12, 1.0, 1.0, 0.84, 1.0, 0.0, 0.34, 0.08, 1.0, 1.06, 0.46, 1.36, 1.0, 1.1400000000000001, 1.0, 0.56, 0.88, 1.0, 1.0, 1.06, 0.04, 0.78, 1.0, 1.02, 0.0, 1.0, 0.08, 0.56, 0.56, 0.36, 0.24, 0.32, 0.06, 1.02, 0.14], "comp_a": [0.7800000000000002, 0.22, 0.6200000000000003, 1, 0.8800000000000003, 0.8600000000000001, 0.7800000000000002, 1.0600000000000003, 1.1400000000000001, 1.1600000000000001, 0.02, 0.06, 1.0, 0.12, 1.0, 1.4600000000000002, 0.9400000000000002, 0.6800000000000002, 0.08, 1, 1.0, 1.1600000000000001, 1.0000000000000002, 1, 1.1200000000000003, 1, 0.0, 0.8200000000000003, 0.7800000000000002, 0.7000000000000002, 1.0400000000000003, 0.6400000000000003, 0.7200000000000004, 0.7200000000000002, 1.4800000000000004, 1.0600000000000003, 1.0200000000000002, 0.8800000000000001, 1.0, 0.8200000000000003, 1.0, 0.5800000000000001, 0.0, 0.6200000000000003, 0.7600000000000002, 0.7400000000000004, 1, 0.7200000000000002, 0.7000000000000002, 0.9200000000000002, 0.8400000000000001, 1.6400000000000001, 0.8400000000000001, 1.3800000000000001, 0.5000000000000002, 0.7000000000000002, 1.1000000000000003, 1.6, 0.6400000000000001, 0.6800000000000002, 0.6000000000000003, 0.49999999999999983, 0.7800000000000002, 1.0, 1.0, 0.6200000000000001, 0.8400000000000003, 0.32000000000000006, 0.32000000000000006, 0.5200000000000002, 0.6200000000000003, 0.6400000000000003, 1.0, 1.0, 1.0, 1.0, 0.7799999999999995, 1.12, 1.0, 0.5800000000000003, 0.18, 1.0, 1.0, 0.8800000000000001, 1.0, 0.0, 0.2799999999999999, 0.08, 1.0, 1.0600000000000003, 0.5600000000000003, 1.2200000000000002, 1.0, 1.1200000000000003, 1.0, 0.6200000000000003, 0.9800000000000002, 1.0, 1.0, 1.0600000000000003, 0.0, 0.8400000000000003, 1.0, 0.9400000000000002, 0.1, 1.0, 0.16, 0.6400000000000003, 0.6200000000000003, 0.4799999999999998, 0.30000000000000004, 0.4199999999999998, 0.22, 1.0200000000000002, 0.2]} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_objs.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_objs.json new file mode 100644 index 0000000000000000000000000000000000000000..c25a453353dec1fd265e136ebd46adcf259716e6 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_objs.json @@ -0,0 +1 @@ +{"lightbulb": "lightbulb", "shoes": "shoes", "deck": "deck", "laptop": "laptop", "ceramic": "ceramic", "paper": "paper", "vacuum": "vacuum", "keyboard": "keyboard", "chair": "chair", "milk": "milk", "roots": "roots", "carpet": "carpet", "sauce": "sauce", "tire": "tire", "mud": "mud", "sky": "sky", "lake": "lake", "sugar": "sugar", "bush": "bush", "bike": "bike", "fig": "fig", "garage": "garage", "orange": "orange", "furniture": "furniture", "hat": "hat", "persimmon": "persimmon", "boulder": "boulder", "plate": "plate", "coffee": "coffee", "handle": "handle", "branch": "branch", "wire": "wire", "bear": "bear", "coast": "coast", "vegetable": "vegetable", "bean": "bean", "tulip": "tulip", "fan": "fan", "snake": "snake", "desk": "desk", "silk": "silk", "bread": "bread", "aluminum": "aluminum", "cable": "cable", "gemstone": "gemstone", "bracelet": "bracelet", "candy": "candy", "bay": "bay", "bag": "bag", "sand": "sand", "steps": "steps", "knife": "knife", "clay": "clay", "iguana": "iguana", "tower": "tower", "river": "river", "garden": "garden", "clothes": "clothes", "copper": "copper", "creek": "creek", "fence": "fence", "house": "house", "fish": "fish", "library": "library", "chocolate": "chocolate", "computer": "computer", "palm": "palm", "roof": "roof", "sea": "sea", "mirror": "mirror", "candle": "candle", "lightning": "lightning", "chicken": "chicken", "ribbon": "ribbon", "redwood": "redwood", "shower": "shower", "flower": "flower", "leaf": "leaf", "jewelry": "jewelry", "lead": "lead", "clock": "clock", "armor": "armor", "tube": "tube", "ice": "ice", "granite": "granite", "sword": "sword", "cloud": "cloud", "ground": "ground", "chains": "chains", "nest": "nest", "highway": "highway", "pants": "pants", "cord": "cord", "hose": "hose", "dirt": "dirt", "salmon": "salmon", "rock": "rock", "horse": "horse", "water": "water", "newspaper": "newspaper", "cookie": "cookie", "key": "key", "pasta": "pasta", "paste": "paste", "trail": "trail", "card": "card", "kitchen": "kitchen", "box": "box", "stone": "stone", "drum": "drum", "thread": "thread", "column": "column", "island": "island", "tie": "tie", "berry": "berry", "smoke": "smoke", "castle": "castle", "glasses": "glasses", "road": "road", "cheese": "cheese", "apple": "apple", "wall": "wall", "pot": "pot", "canyon": "canyon", "tomato": "tomato", "frame": "frame", "church": "church", "table": "table", "ring": "ring", "brass": "brass", "boat": "boat", "belt": "belt", "city": "city", "bathroom": "bathroom", "toy": "toy", "fabric": "fabric", "beef": "beef", "window": "window", "tree": "tree", "plastic": "plastic", "paint": "paint", "camera": "camera", "bronze": "bronze", "tea": "tea", "valley": "valley", "bubble": "bubble", "banana": "banana", "building": "building", "ceiling": "ceiling", "diamond": "diamond", "door": "door", "gear": "gear", "shorts": "shorts", "fire": "fire", "bus": "bus", "wax": "wax", "envelope": "envelope", "oil": "oil", "cabinet": "cabinet", "tiger": "tiger", "glass": "glass", "nut": "nut", "potato": "potato", "steel": "steel", "wood": "wood", "wool": "wool", "room": "room", "salad": "salad", "car": "car", "blade": "blade", "bucket": "bucket", "bed": "bed", "cat": "cat", "rope": "rope", "soup": "soup", "street": "street", "flame": "flame", "cake": "cake", "bridge": "bridge", "stream": "stream", "well": "well", "penny": "penny", "pie": "pie", "shell": "shell", "pond": "pond", "ocean": "ocean", "dress": "dress", "cotton": "cotton", "mountain": "mountain", "sandwich": "sandwich", "lemon": "lemon", "shirt": "shirt", "concrete": "concrete", "town": "town", "balloon": "balloon", "cave": "cave", "bowl": "bowl", "snow": "snow", "rubber": "rubber", "field": "field", "book": "book", "forest": "forest", "animal": "animal", "elephant": "elephant", "tile": "tile", "gate": "gate", "beach": "beach", "pizza": "pizza", "wheel": "wheel", "wave": "wave", "plant": "plant", "ball": "ball", "mat": "mat", "screw": "screw", "farm": "farm", "eggs": "eggs", "foam": "foam", "pear": "pear", "necklace": "necklace", "fruit": "fruit", "garlic": "garlic", "log": "log", "moss": "moss", "dust": "dust", "velvet": "velvet", "basement": "basement", "coin": "coin", "desert": "desert", "pool": "pool", "cliff": "cliff", "butter": "butter", "phone": "phone", "coat": "coat", "seafood": "seafood", "floor": "floor", "metal": "metal", "dog": "dog", "meat": "meat", "jacket": "jacket", "coal": "coal", "shore": "shore", "truck": "truck", "jungle": "jungle", "bottle": "bottle", "basket": "basket"} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_weight.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_weight.py new file mode 100644 index 0000000000000000000000000000000000000000..dfa77c11445fbbc99fd3bbedc43d90221fc8d06e --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/MIT_weight.py @@ -0,0 +1,30 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +attr_weight = [4.561632133281056, 4.325826700719732, 5.5088676690046325, 7.118305581438733, 4.974046539682426, 3.6046302163498876, 4.8447080253179395, 4.474159182316003, 3.8754342510143167, 4.419824831352674, 4.471624326712815, 5.098651958137871, 4.88216558785284, 6.260855349587511, 7.192413553592455, 5.638325736241519, 3.8465662670134644, 5.560160963392184, 5.537855205877885, 4.041981300554439, 5.137304112572149, 4.417423869815136, 4.382084503369827, 4.048592894886752, 4.794518280794085, 4.454058002994916, 5.4070849746946905, 5.487665461354029, 5.606323005155346, 5.070612738073478, 4.474159182316003, 4.937081345448955, 4.85952311110308, 4.129741797363355, 7.231634266745736, 4.266361200676454, 3.769655412823722, 4.542427153445006, 7.192413553592455, 5.796549741456413, 5.187819902709052, 4.085759334762026, 4.8086030206758235, 4.094402430918046, 4.62156447400373, 6.761630637500001, 6.019693292770623, 5.362913756381553, 4.350191139593873, 5.274360359040108, 3.4760311805888917, 5.516036158483245, 5.768378864489717, 5.590697687252265, 4.520920948224043, 4.819298309792571, 5.098651958137871, 4.469095880359457, 3.81325206032948, 4.7043069010737835, 6.339636227440626, 5.070612738073478, 4.3592002095362385, 3.674003099241754, 5.8966332000133965, 4.053580436397791, 4.937081345448955, 5.108175839649126, 4.471624326712815, 4.235901993191745, 4.510338838893506, 4.53161623734079, 5.575312768412785, 6.081062239146916, 4.526254294199405, 6.146444998409767, 4.386724882926329, 4.94112175498596, 5.9072153093439335, 5.224763417900736, 6.6893099759203745, 6.323375706568846, 4.2319099719222075, 3.3806359631553646, 5.996162795360429, 4.909246546455511, 5.777681257152031, 6.173843972597882, 7.315015875684788, 4.4640580863295, 4.974046539682426, 5.157205266889445, 5.996162795360429, 4.784083403501505, 4.028887823807419, 4.089207614040942, 5.996162795360429, 4.4222315713832385, 6.786948445484291, 5.13239009776972, 4.537007085975667, 4.982449950478806, 6.119776751327606, 4.630427161261576, 6.443176906381466, 3.9890419152602195, 4.885989684291244, 5.308846535111277, 4.87456098846762, 5.4070849746946905, 5.208763076554295, 5.7870709975018695, 5.759162209384793, 4.6790689684839215, 5.137304112572149] +obj_weight = [5.246503404537141, 6.216403587016678, 5.381605889393706, 6.98477418881421, 4.855798712012098, 6.579309080706047, 5.291454792399408, 5.750029725821521, 5.835389574772678, 6.133021978077626, 4.72366234402674, 6.133021978077626, 5.759162209384793, 5.750029725821521, 6.173843972597882, 6.202014849564578, 4.94925188106921, 5.297218497116158, 5.835389574772678, 5.638325736241519, 5.257553240723727, 5.654719546017196, 5.777681257152031, 4.92904917375169, 6.043790844349684, 5.369105726629474, 5.606323005155346, 4.88216558785284, 5.886161900146101, 4.8086030206758235, 4.852088132615562, 5.494683034012676, 5.103402560896468, 5.996162795360429, 6.579309080706047, 4.7737562893456555, 5.061438361797436, 5.917910598460681, 5.865542612943365, 4.9615723654572506, 5.996162795360429, 6.081062239146916, 5.3265461122106785, 5.530529165785812, 6.007858835123621, 5.530529165785812, 5.089217925904512, 5.473776349193362, 5.108175839649126, 4.999471638048236, 5.97317327713573, 5.4070849746946905, 6.173843972597882, 5.420072170221501, 5.8453399056258455, 5.246503404537141, 4.909246546455511, 5.003772719947627, 5.545235313175508, 5.381605889393706, 5.494683034012676, 5.122633922824356, 5.796549741456413, 5.297218497116158, 5.122633922824356, 5.38791505858697, 6.339636227440626, 5.654719546017196, 5.187819902709052, 5.3506436637897385, 5.344564617713356, 6.499266373032509, 5.750029725821521, 5.320611376690864, 5.112972011912619, 5.466903469905601, 6.425158400878788, 4.7771868244424445, 5.6302285260089, 6.518684458889611, 5.480696792037937, 5.38791505858697, 6.1600506504655455, 5.203486019453451, 5.2194014747593505, 6.031669483817339, 5.38791505858697, 8.504599942558624, 6.666320457695676, 4.957448648273388, 5.369105726629474, 5.6302285260089, 5.029975092341651, 5.501750201235769, 5.103402560896468, 5.688336156816181, 5.381605889393706, 5.6630183488318915, 6.425158400878788, 4.826492585426599, 9.064215730494046, 5.984601972959354, 5.865542612943365, 5.241023938772516, 5.025560074132534, 5.426629570767661, 4.905332647134375, 5.545235313175508, 5.6302285260089, 6.093801264924346, 5.996162795360429, 5.433230254799013, 6.407458823779387, 5.825537278329666, 5.235574334004951, 7.405987653890514, 5.224763417900736, 5.203486019453451, 5.523256406456732, 6.8669911531578265, 5.198236663567307, 5.917910598460681, 5.865542612943365, 5.021164462659496, 5.13239009776972, 5.487665461354029, 5.614228184662459, 5.381605889393706, 5.582975641158354, 5.815781103384301, 7.359467638255621, 6.323375706568846, 5.5088676690046325, 4.720410308640362, 4.92904917375169, 5.950700421283672, 6.291627008254265, 5.8966332000133965, 5.344564617713356, 5.567708169027566, 5.098651958137871, 7.454777818059946, 5.575312768412785, 5.996162795360429, 4.889828460598409, 5.241023938772516, 5.886161900146101, 5.638325736241519, 5.8757991131105545, 5.886161900146101, 4.905332647134375, 5.075231683929772, 6.6893099759203745, 6.499266373032509, 6.068483456940055, 5.622196354311636, 6.6893099759203745, 5.453297817849822, 5.552670291663025, 6.538487086185791, 5.0660150288248476, 5.241023938772516, 5.516036158483245, 5.038864039758897, 5.2194014747593505, 6.736938024909629, 6.291627008254265, 5.530529165785812, 5.4006540843644, 5.079872063486274, 5.089217925904512, 5.413557489200308, 6.372972647708218, 5.193014719586156, 5.008092381092143, 5.7870709975018695, 5.1521927250659, 5.606323005155346, 5.056882545261575, 5.263124285773182, 5.732011220318842, 5.208763076554295, 5.413557489200308, 5.9072153093439335, 4.986678286588327, 6.323375706568846, 5.560160963392184, 5.545235313175508, 5.835389574772678, 5.5984798276943195, 5.4600775048352, 6.339636227440626, 6.106704669760253, 5.928721514564897, 6.621868695124842, 5.394264286265629, 6.202014849564578, 4.9615723654572506, 6.307375365222405, 5.714311643219442, 5.235574334004951, 5.961873721881797, 4.901434006718717, 4.937081345448955, 7.617296747557721, 5.886161900146101, 5.815781103384301, 4.990924577469778, 5.314711654563675, 5.606323005155346, 5.344564617713356, 5.433230254799013, 4.889828460598409, 5.466903469905601, 5.9072153093439335, 6.643847601843618, 6.307375365222405, 5.9072153093439335, 7.315015875684788, 5.996162795360429, 5.193014719586156, 5.679825467148272, 4.863261433213688, 5.338522303257394, 5.622196354311636, 5.075231683929772, 6.187830214572622, 4.965713158123282, 5.117791298348568, 5.439874797517681, 6.425158400878788, 7.9656034418259365, 5.098651958137871, 5.285724117690423, 5.252013060348111, 5.362913756381553, 5.654719546017196, 6.119776751327606, 5.5984798276943195, 6.1600506504655455, 6.007858835123621, 5.582975641158354, 6.146444998409767, 5.070612738073478, 4.833738993947366] +pair_weight = [6.643847601843618, 6.812923931887551, 6.666320457695676, 6.8669911531578265, -0.0, -0.0, 6.666320457695676, 6.8669911531578265, 8.253285514277717, -0.0, -0.0, 7.049312709951781, 7.8855607341524, 7.359467638255621, 6.666320457695676, -0.0, 7.272456261265991, 7.811452761998678, -0.0, 8.841072179179836, 7.405987653890514, 7.454777818059946, -0.0, 6.8669911531578265, 7.016522887128791, 6.6893099759203745, 6.8395921789697125, 7.454777818059946, 6.8669911531578265, -0.0, 6.736938024909629, 7.811452761998678, -0.0, -0.0, 6.954002530147457, -0.0, 6.6893099759203745, 6.786948445484291, -0.0, -0.0, 6.761630637500001, 6.8395921789697125, 7.506071112447496, 6.666320457695676, 7.118305581438733, -0.0, -0.0, 6.8395921789697125, -0.0, 9.351897802945828, 7.315015875684788, -0.0, 7.454777818059946, -0.0, -0.0, 7.154673225609608, -0.0, -0.0, 7.405987653890514, -0.0, 7.049312709951781, 7.742459890511727, 6.761630637500001, 7.315015875684788, 7.742459890511727, -0.0, 6.895162030124523, 6.924149566997776, 7.049312709951781, 7.617296747557721, -0.0, 6.643847601843618, 8.14792499861989, 6.761630637500001, 9.351897802945828, 7.154673225609608, 7.8855607341524, 7.8855607341524, 7.617296747557721, 7.811452761998678, -0.0, -0.0, 7.049312709951781, -0.0, -0.0, 7.192413553592455, 7.083214261627463, 7.272456261265991, 7.049312709951781, -0.0, -0.0, -0.0, -0.0, 6.643847601843618, 7.811452761998678, 7.083214261627463, 6.954002530147457, 6.761630637500001, 7.192413553592455, -0.0, 6.786948445484291, -0.0, 7.9656034418259365, -0.0, -0.0, 7.016522887128791, 7.560138333717772, 7.742459890511727, -0.0, 9.757362911053992, 6.643847601843618, 7.8855607341524, 7.016522887128791, 9.064215730494046, 8.052614818815567, 9.064215730494046, 7.272456261265991, 6.98477418881421, 7.454777818059946, -0.0, 6.712840473330568, 7.272456261265991, 6.924149566997776, -0.0, 6.812923931887551, 7.742459890511727, -0.0, 6.8669911531578265, -0.0, 6.643847601843618, 8.658750622385883, 7.016522887128791, 10.450510091613937, -0.0, -0.0, -0.0, 6.6893099759203745, 6.761630637500001, -0.0, -0.0, -0.0, 8.841072179179836, -0.0, 6.6893099759203745, -0.0, -0.0, 10.450510091613937, 6.6893099759203745, 8.504599942558624, 6.761630637500001, 8.841072179179836, 6.666320457695676, 6.786948445484291, 6.6893099759203745, 6.736938024909629, 7.231634266745736, 8.14792499861989, 6.786948445484291, -0.0, 6.6893099759203745, 6.812923931887551, 6.736938024909629, 7.742459890511727, 7.677921369374156, -0.0, 7.506071112447496, 7.405987653890514, 7.231634266745736, 7.083214261627463, -0.0, -0.0, 7.677921369374156, -0.0, -0.0, 6.6893099759203745, 6.895162030124523, 7.8855607341524, -0.0, -0.0, 9.064215730494046, 7.016522887128791, -0.0, 9.757362911053992, 7.506071112447496, 7.016522887128791, 6.736938024909629, 6.924149566997776, -0.0, -0.0, -0.0, 8.14792499861989, -0.0, 9.351897802945828, 8.371068549934101, 6.812923931887551, 6.761630637500001, 7.118305581438733, -0.0, -0.0, 7.8855607341524, -0.0, 6.8395921789697125, -0.0, 6.812923931887551, 6.666320457695676, -0.0, 8.658750622385883, 6.895162030124523, -0.0, 6.6893099759203745, 6.712840473330568, 8.371068549934101, 6.954002530147457, -0.0, 6.761630637500001, -0.0, 7.049312709951781, 9.064215730494046, -0.0, -0.0, -0.0, -0.0, 6.6893099759203745, -0.0, 6.643847601843618, 9.757362911053992, 8.052614818815567, -0.0, 7.454777818059946, -0.0, 6.812923931887551, -0.0, -0.0, 7.359467638255621, 7.359467638255621, 7.617296747557721, 6.98477418881421, 8.504599942558624, -0.0, -0.0, 6.666320457695676, 7.8855607341524, 6.786948445484291, 6.786948445484291, 6.666320457695676, 6.98477418881421, -0.0, 6.8669911531578265, 7.272456261265991, -0.0, -0.0, 8.658750622385883, 7.016522887128791, -0.0, 7.9656034418259365, 8.841072179179836, 6.954002530147457, -0.0, -0.0, 7.560138333717772, 7.811452761998678, 6.736938024909629, 6.643847601843618, 6.786948445484291, 6.786948445484291, 6.55868979350331, 7.192413553592455, 7.315015875684788, 7.049312709951781, 6.8669911531578265, -0.0, 7.192413553592455, -0.0, -0.0, -0.0, -0.0, 7.118305581438733, -0.0, -0.0, 6.6893099759203745, -0.0, 9.351897802945828, 6.954002530147457, -0.0, 7.677921369374156, -0.0, 6.666320457695676, 6.55868979350331, 6.786948445484291, 6.924149566997776, 7.506071112447496, -0.0, 6.761630637500001, -0.0, -0.0, 6.579309080706047, -0.0, 7.272456261265991, -0.0, 9.064215730494046, 6.538487086185791, 6.643847601843618, -0.0, 8.841072179179836, -0.0, 7.811452761998678, 6.6893099759203745, 7.272456261265991, 6.600362489903878, -0.0, 6.600362489903878, -0.0, 7.118305581438733, 6.643847601843618, 7.359467638255621, -0.0, 6.895162030124523, 6.98477418881421, 6.666320457695676, -0.0, 6.666320457695676, 6.643847601843618, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 7.049312709951781, 6.8669911531578265, 8.253285514277717, -0.0, 8.841072179179836, -0.0, -0.0, 10.450510091613937, -0.0, 10.450510091613937, -0.0, 7.083214261627463, -0.0, 9.351897802945828, 7.359467638255621, 7.192413553592455, -0.0, -0.0, -0.0, 6.579309080706047, 6.600362489903878, 7.742459890511727, -0.0, -0.0, 6.666320457695676, 8.052614818815567, 6.8395921789697125, 7.272456261265991, 6.666320457695676, 6.98477418881421, 7.118305581438733, 6.98477418881421, 6.712840473330568, -0.0, -0.0, 7.016522887128791, 7.315015875684788, 7.192413553592455, 7.359467638255621, 7.560138333717772, -0.0, -0.0, 7.049312709951781, 7.154673225609608, 7.016522887128791, 7.742459890511727, 6.8395921789697125, -0.0, 9.351897802945828, 8.052614818815567, 6.8669911531578265, 7.359467638255621, 6.579309080706047, 7.016522887128791, -0.0, 6.643847601843618, 6.712840473330568, -0.0, 6.761630637500001, -0.0, 8.841072179179836, 6.761630637500001, 6.786948445484291, 8.658750622385883, 9.064215730494046, 9.757362911053992, -0.0, -0.0, 6.600362489903878, 7.560138333717772, 6.600362489903878, -0.0, -0.0, -0.0, 7.083214261627463, 7.359467638255621, -0.0, 6.895162030124523, -0.0, 7.742459890511727, 9.351897802945828, -0.0, 8.253285514277717, -0.0, -0.0, -0.0, 8.504599942558624, 6.761630637500001, 7.231634266745736, 7.016522887128791, 6.8395921789697125, 8.658750622385883, 7.8855607341524, 7.677921369374156, -0.0, -0.0, 7.617296747557721, -0.0, 6.8669911531578265, 7.315015875684788, 6.786948445484291, 9.064215730494046, 6.895162030124523, 9.064215730494046, 8.658750622385883, -0.0, 7.016522887128791, 9.757362911053992, 10.450510091613937, -0.0, -0.0, 7.231634266745736, 6.736938024909629, -0.0, -0.0, 6.736938024909629, 6.712840473330568, 6.643847601843618, 7.677921369374156, 8.371068549934101, 6.8669911531578265, -0.0, 6.786948445484291, 6.98477418881421, -0.0, 8.841072179179836, 7.016522887128791, 6.712840473330568, -0.0, 7.083214261627463, -0.0, 6.736938024909629, 6.761630637500001, 6.761630637500001, -0.0, 9.351897802945828, 6.666320457695676, 6.812923931887551, 6.643847601843618, -0.0, 7.272456261265991, 7.083214261627463, -0.0, 6.954002530147457, -0.0, 7.405987653890514, 7.677921369374156, -0.0, 6.954002530147457, 6.643847601843618, -0.0, 9.757362911053992, -0.0, -0.0, 6.643847601843618, 7.742459890511727, 7.049312709951781, 6.761630637500001, 6.621868695124842, -0.0, -0.0, 7.454777818059946, 6.712840473330568, -0.0, -0.0, 6.666320457695676, 6.736938024909629, 6.8395921789697125, 6.712840473330568, -0.0, -0.0, 8.658750622385883, 7.454777818059946, 7.454777818059946, 7.560138333717772, -0.0, 9.064215730494046, 6.895162030124523, 7.083214261627463, 7.315015875684788, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 6.98477418881421, -0.0, -0.0, -0.0, -0.0, 7.677921369374156, -0.0, 6.8669911531578265, -0.0, 7.359467638255621, -0.0, 6.8395921789697125, 7.405987653890514, -0.0, 6.8395921789697125, 8.371068549934101, 7.742459890511727, 8.052614818815567, -0.0, -0.0, 7.083214261627463, 8.658750622385883, -0.0, 9.351897802945828, 10.450510091613937, 9.064215730494046, 7.8855607341524, 6.895162030124523, -0.0, 8.658750622385883, -0.0, 8.841072179179836, 8.658750622385883, 10.450510091613937, 9.757362911053992, -0.0, -0.0, 7.359467638255621, 6.579309080706047, -0.0, 8.253285514277717, 6.924149566997776, 7.118305581438733, -0.0, 9.757362911053992, 7.118305581438733, 6.98477418881421, -0.0, -0.0, 6.8395921789697125, 6.666320457695676, 6.712840473330568, 7.405987653890514, -0.0, 7.154673225609608, 6.761630637500001, -0.0, 6.761630637500001, 8.504599942558624, -0.0, 6.812923931887551, -0.0, 6.8669911531578265, 7.315015875684788, 7.016522887128791, -0.0, 7.231634266745736, 6.8669911531578265, 7.405987653890514, -0.0, 8.504599942558624, 6.8395921789697125, 6.924149566997776, -0.0, -0.0, 6.924149566997776, -0.0, 9.757362911053992, -0.0, 8.14792499861989, -0.0, 6.600362489903878, 8.841072179179836, -0.0, -0.0, 6.621868695124842, -0.0, 6.579309080706047, 7.742459890511727, 10.450510091613937, 6.666320457695676, 6.538487086185791, -0.0, 7.315015875684788, 7.231634266745736, 6.895162030124523, -0.0, -0.0, 7.154673225609608, 7.154673225609608, -0.0, 6.6893099759203745, 6.895162030124523, -0.0, 8.504599942558624, -0.0, -0.0, 6.621868695124842, 6.600362489903878, -0.0, 6.666320457695676, 6.736938024909629, 6.621868695124842, 7.118305581438733, -0.0, -0.0, 6.712840473330568, -0.0, 6.761630637500001, -0.0, 7.231634266745736, -0.0, -0.0, 7.154673225609608, 7.231634266745736, 6.8395921789697125, 6.812923931887551, -0.0, 7.083214261627463, 7.231634266745736, 7.083214261627463, 6.761630637500001, -0.0, 6.600362489903878, 7.315015875684788, 6.8669911531578265, 6.895162030124523, 7.454777818059946, 6.666320457695676, 8.052614818815567, 7.506071112447496, 6.8669911531578265, -0.0, 7.742459890511727, 6.8669911531578265, 7.231634266745736, 6.98477418881421, 6.924149566997776, 6.600362489903878, 6.712840473330568, -0.0, -0.0, 7.506071112447496, 7.016522887128791, 7.272456261265991, -0.0, -0.0, -0.0, -0.0, 6.8669911531578265, -0.0, -0.0, 7.454777818059946, 7.016522887128791, 6.98477418881421, -0.0, 10.450510091613937, 6.8395921789697125, 6.761630637500001, -0.0, 6.924149566997776, 9.757362911053992, -0.0, 7.506071112447496, 6.579309080706047, 7.811452761998678, -0.0, 8.658750622385883, 6.8669911531578265, 6.600362489903878, 8.841072179179836, 8.841072179179836, -0.0, -0.0, -0.0, -0.0, 6.6893099759203745, 10.450510091613937, -0.0, 6.761630637500001, 10.450510091613937, -0.0, -0.0, -0.0, 6.666320457695676, 6.8395921789697125, -0.0, -0.0, 6.924149566997776, 10.450510091613937, -0.0, -0.0, 6.895162030124523, 6.954002530147457, 6.600362489903878, -0.0, -0.0, 7.118305581438733, 7.811452761998678, 7.359467638255621, -0.0, 7.016522887128791, 7.192413553592455, 6.736938024909629, 7.192413553592455, -0.0, -0.0, 6.812923931887551, -0.0, 6.736938024909629, -0.0, 6.812923931887551, 6.812923931887551, -0.0, -0.0, 6.954002530147457, 6.6893099759203745, -0.0, -0.0, -0.0, -0.0, 6.895162030124523, -0.0, 7.049312709951781, -0.0, 6.895162030124523, -0.0, 6.600362489903878, 9.757362911053992, 6.579309080706047, 6.761630637500001, 9.351897802945828, 6.761630637500001, 6.579309080706047, 7.192413553592455, 6.786948445484291, 7.359467638255621, 8.253285514277717, -0.0, 6.895162030124523, 6.600362489903878, -0.0, -0.0, 6.666320457695676, 7.016522887128791, 9.757362911053992, 7.811452761998678, 7.231634266745736, -0.0, 6.812923931887551, 8.253285514277717, -0.0, 6.643847601843618, 8.841072179179836, 10.450510091613937, -0.0, -0.0, 6.8395921789697125, 8.841072179179836, 7.9656034418259365, -0.0, -0.0, 6.895162030124523, 6.621868695124842, -0.0, 9.064215730494046, 9.064215730494046, -0.0, 6.621868695124842, 8.371068549934101, 6.55868979350331, -0.0, 6.643847601843618, 6.786948445484291, 6.8669911531578265, 6.666320457695676, 6.786948445484291, 6.736938024909629, -0.0, 7.272456261265991, 7.016522887128791, -0.0, -0.0, 7.359467638255621, -0.0, 6.712840473330568, 6.8669911531578265, -0.0, 7.016522887128791, 6.6893099759203745, -0.0, 7.118305581438733, 6.666320457695676, 7.083214261627463, -0.0, -0.0, -0.0, -0.0, 6.8669911531578265, 6.895162030124523, 6.895162030124523, 8.253285514277717, -0.0, 6.98477418881421, 7.049312709951781, 6.8395921789697125, -0.0, 7.231634266745736, -0.0, 6.761630637500001, -0.0, -0.0, 9.757362911053992, 8.052614818815567, 10.450510091613937, 8.253285514277717, 8.658750622385883, -0.0, 7.454777818059946, 7.560138333717772, 7.742459890511727, 10.450510091613937, -0.0, 10.450510091613937, -0.0, -0.0, 8.14792499861989, -0.0, -0.0, -0.0, 8.658750622385883, 7.506071112447496, 6.761630637500001, 6.924149566997776, -0.0, 8.658750622385883, 8.841072179179836, -0.0, 6.712840473330568, 6.98477418881421, -0.0, 6.621868695124842, 7.359467638255621, 7.083214261627463, 7.016522887128791, -0.0, 6.98477418881421, 6.666320457695676, 6.761630637500001, 6.6893099759203745, -0.0, -0.0, -0.0, 7.118305581438733, -0.0, 6.6893099759203745, -0.0, -0.0, 6.98477418881421, -0.0, 7.272456261265991, -0.0, 8.052614818815567, 7.192413553592455, 6.812923931887551, -0.0, 7.560138333717772, 7.231634266745736, -0.0, 6.924149566997776, 7.231634266745736, -0.0, -0.0, 6.812923931887551, 6.6893099759203745, -0.0, -0.0, -0.0, 6.8395921789697125, 7.811452761998678, 7.677921369374156, 6.666320457695676, 7.016522887128791, -0.0, -0.0, 8.052614818815567, 7.454777818059946, -0.0, 6.895162030124523, -0.0, -0.0, 7.154673225609608, 6.736938024909629, 7.118305581438733, 6.6893099759203745, 6.924149566997776, -0.0, -0.0, 6.761630637500001, 7.154673225609608, 6.761630637500001, 7.811452761998678, 6.954002530147457, 6.924149566997776, 6.812923931887551, -0.0, 7.9656034418259365, 6.8669911531578265, 6.6893099759203745, 7.016522887128791, 9.064215730494046, 7.742459890511727, 6.954002530147457, 6.8395921789697125, 6.666320457695676, 6.8669911531578265, 8.658750622385883, 6.954002530147457, -0.0, -0.0, -0.0, 8.841072179179836, 6.6893099759203745, -0.0, 9.351897802945828, 7.677921369374156, 6.8395921789697125, -0.0, 7.811452761998678, 7.617296747557721, -0.0, -0.0, -0.0, 8.371068549934101, -0.0, -0.0, 10.450510091613937, 6.621868695124842, 6.6893099759203745, -0.0, 7.359467638255621, 8.841072179179836, 6.812923931887551, -0.0, 6.924149566997776, 6.812923931887551, 8.14792499861989, -0.0, 6.600362489903878, 6.643847601843618, 7.192413553592455, 6.895162030124523, 7.083214261627463, -0.0, 6.895162030124523, 7.9656034418259365, 7.231634266745736, 6.8669911531578265, 7.9656034418259365, -0.0, -0.0, 7.016522887128791, 6.8395921789697125, 8.253285514277717, 10.450510091613937, 6.6893099759203745, 6.666320457695676, 6.6893099759203745, 6.736938024909629, -0.0, -0.0, 6.666320457695676, 7.315015875684788, 7.272456261265991, 6.579309080706047, -0.0, -0.0, -0.0, -0.0, 7.9656034418259365, -0.0, 8.841072179179836, -0.0, 6.6893099759203745, -0.0, -0.0, 7.8855607341524, -0.0, 6.786948445484291, -0.0, -0.0, 7.272456261265991, 7.192413553592455, 7.811452761998678, -0.0, 8.841072179179836, 7.9656034418259365, 7.231634266745736, 8.841072179179836, 7.016522887128791, 9.757362911053992, 10.450510091613937, 7.118305581438733, 6.895162030124523, -0.0, -0.0, -0.0, 6.6893099759203745, 6.786948445484291, 7.677921369374156, 9.064215730494046, 9.351897802945828, 8.052614818815567, 6.954002530147457, 7.118305581438733, -0.0, -0.0, -0.0, 6.895162030124523, 8.371068549934101, 6.736938024909629, -0.0, -0.0, -0.0, 6.812923931887551, -0.0, -0.0, 7.9656034418259365, -0.0, -0.0, 7.231634266745736, 9.351897802945828, 6.8669911531578265, 7.083214261627463, 6.786948445484291, -0.0, 7.405987653890514, 10.450510091613937, 6.600362489903878, 8.253285514277717, 6.786948445484291, -0.0, 7.016522887128791, 6.666320457695676, -0.0, 6.8395921789697125, -0.0, -0.0, 6.924149566997776, 6.895162030124523, 6.895162030124523, 6.712840473330568, 6.666320457695676, -0.0, 6.736938024909629, 6.643847601843618, 6.761630637500001, 7.016522887128791, 6.6893099759203745, -0.0, 7.506071112447496, -0.0, 8.504599942558624, 7.506071112447496, 6.954002530147457, 7.016522887128791, 7.016522887128791, -0.0, -0.0, 9.351897802945828, 7.677921369374156, 6.98477418881421, 7.016522887128791, -0.0, 6.736938024909629, -0.0, 7.405987653890514, 7.083214261627463, -0.0, 7.315015875684788, -0.0, -0.0, 10.450510091613937, 7.506071112447496, 7.560138333717772, -0.0, -0.0, -0.0, -0.0, -0.0, 6.712840473330568, -0.0, 7.617296747557721, -0.0, 6.8669911531578265, -0.0, 7.049312709951781, -0.0, 7.506071112447496, 6.8669911531578265, 6.8395921789697125, 6.643847601843618, 7.083214261627463, -0.0, -0.0, -0.0, -0.0, 6.643847601843618, 6.600362489903878, 7.359467638255621, 7.405987653890514, -0.0, -0.0, 6.924149566997776, -0.0, 9.351897802945828, 6.8395921789697125, -0.0, 7.231634266745736, 7.359467638255621, 7.272456261265991, 8.14792499861989, 6.812923931887551, -0.0, 8.14792499861989, -0.0, 7.049312709951781, -0.0, -0.0, 8.504599942558624, -0.0, 6.6893099759203745, 6.8669911531578265, 6.786948445484291, 6.621868695124842, 6.666320457695676, 6.666320457695676, -0.0, 6.712840473330568, 6.643847601843618, -0.0, 6.786948445484291, -0.0, 6.812923931887551, 6.6893099759203745, 6.736938024909629, 7.405987653890514, -0.0, 6.786948445484291, -0.0, 7.154673225609608, 6.736938024909629, 7.359467638255621, 6.761630637500001, -0.0, 7.231634266745736, -0.0, 6.761630637500001, 6.666320457695676, 6.643847601843618, 7.192413553592455, 7.049312709951781, 7.154673225609608, 6.812923931887551, 7.506071112447496, -0.0, 6.579309080706047, 7.560138333717772, 6.666320457695676, 6.6893099759203745, 6.6893099759203745, 7.315015875684788, 6.895162030124523, 6.812923931887551, 6.666320457695676, 6.666320457695676, 7.016522887128791, -0.0, -0.0, -0.0, 6.8395921789697125, -0.0, -0.0, 7.9656034418259365, 6.666320457695676, -0.0, 6.736938024909629, 6.8669911531578265, -0.0, -0.0, -0.0, -0.0, -0.0, 6.666320457695676, -0.0, 7.016522887128791, 7.083214261627463, 6.8395921789697125, 7.118305581438733, -0.0, 7.405987653890514, 6.761630637500001, 7.560138333717772, -0.0, -0.0, 6.812923931887551, 10.450510091613937, 6.761630637500001, 7.083214261627463, 6.600362489903878, 8.052614818815567, -0.0, -0.0, 6.6893099759203745, -0.0, -0.0, 6.579309080706047, 7.016522887128791, 7.506071112447496, 6.736938024909629, -0.0, 6.98477418881421, 6.712840473330568, -0.0, -0.0, 6.600362489903878, 7.154673225609608, 7.742459890511727, -0.0, -0.0, 6.643847601843618, 6.579309080706047, 7.118305581438733, 7.8855607341524, -0.0, 7.315015875684788, 7.742459890511727, 7.617296747557721, 6.895162030124523, 6.924149566997776, 6.643847601843618, 8.504599942558624, 7.049312709951781, 8.504599942558624, 6.55868979350331, 7.192413553592455, 8.841072179179836, 9.351897802945828, -0.0, 6.954002530147457, 7.9656034418259365, 8.052614818815567, 7.154673225609608, 8.658750622385883, 6.895162030124523, 7.231634266745736, 7.811452761998678, 6.666320457695676, 6.666320457695676, 6.895162030124523, 6.643847601843618, 6.8669911531578265, 6.666320457695676, -0.0, 6.736938024909629, 6.643847601843618, 6.621868695124842, 6.761630637500001, -0.0, 6.98477418881421, 6.8669911531578265, 6.712840473330568, 6.786948445484291, -0.0, 6.8395921789697125, -0.0, 6.98477418881421, -0.0, 6.736938024909629, 6.924149566997776, 6.786948445484291, 7.454777818059946, 8.658750622385883, 7.192413553592455, 6.812923931887551, 6.736938024909629, 6.666320457695676, 6.895162030124523, -0.0, 6.600362489903878, 9.064215730494046, 9.757362911053992, -0.0, 7.192413553592455, 6.8669911531578265, -0.0, -0.0, -0.0, -0.0, 7.049312709951781, -0.0, 9.064215730494046, 6.712840473330568, -0.0, -0.0, 9.064215730494046, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 6.643847601843618, -0.0, -0.0, 6.643847601843618, 10.450510091613937, -0.0, 8.052614818815567, 6.600362489903878, 8.371068549934101, 7.359467638255621, -0.0, 7.049312709951781, 6.736938024909629, 9.351897802945828, -0.0, -0.0, 6.812923931887551, 8.14792499861989, 6.666320457695676, -0.0, -0.0, -0.0, -0.0, 6.666320457695676, -0.0, -0.0, 7.9656034418259365, 6.8669911531578265, 6.621868695124842, 6.924149566997776, -0.0, -0.0, -0.0, 6.8669911531578265, 6.579309080706047, 7.617296747557721, 9.351897802945828, 10.450510091613937, -0.0, -0.0, 6.621868695124842, -0.0, -0.0, 7.9656034418259365, 9.351897802945828, -0.0, 9.064215730494046, 7.359467638255621, 7.192413553592455, 6.761630637500001, 7.272456261265991, 7.315015875684788, 7.811452761998678, 9.757362911053992, -0.0, 7.049312709951781, -0.0, 6.712840473330568, 9.064215730494046, -0.0, 7.677921369374156, 6.8669911531578265, 6.8395921789697125, 7.405987653890514, 9.757362911053992, -0.0, 8.841072179179836, 7.677921369374156, -0.0, 7.506071112447496, -0.0, -0.0, 8.504599942558624, 9.351897802945828, 10.450510091613937, -0.0, 7.154673225609608, 9.351897802945828, 7.016522887128791, 7.118305581438733, 7.016522887128791, 7.8855607341524, -0.0, -0.0, -0.0, -0.0, -0.0, 6.98477418881421, 8.052614818815567, -0.0, 6.8395921789697125, 7.231634266745736, 6.812923931887551, 6.812923931887551, -0.0, -0.0, 6.643847601843618, 6.6893099759203745, 6.712840473330568, 6.8395921789697125, 6.98477418881421, -0.0, -0.0, 8.658750622385883, 6.579309080706047, 6.924149566997776, -0.0, 6.98477418881421, 6.736938024909629, -0.0, 8.841072179179836, 7.231634266745736, -0.0, 6.8669911531578265, 6.8395921789697125, 6.666320457695676, 6.712840473330568, -0.0, -0.0, 6.666320457695676, -0.0, -0.0, 8.504599942558624, -0.0, 6.8395921789697125, 6.954002530147457, 6.621868695124842, 7.315015875684788, 7.118305581438733, 7.049312709951781, 6.666320457695676, -0.0, 6.8395921789697125, 7.231634266745736, 6.761630637500001, 6.895162030124523, 6.736938024909629, -0.0, -0.0, -0.0, -0.0, 7.231634266745736, 6.812923931887551, 7.8855607341524, -0.0, 6.666320457695676, 6.55868979350331, 6.736938024909629, -0.0, 6.621868695124842, 6.812923931887551, 6.712840473330568, -0.0, 7.405987653890514, -0.0, -0.0, 6.8395921789697125, 6.666320457695676, -0.0, 8.14792499861989, -0.0, 9.351897802945828, 6.8669911531578265, -0.0, 6.895162030124523, 6.643847601843618, 7.677921369374156, 6.579309080706047, 6.812923931887551, 6.8669911531578265, 7.506071112447496, -0.0, -0.0, 6.8669911531578265, 7.315015875684788, 7.231634266745736, -0.0, 6.98477418881421, -0.0, 7.315015875684788, 7.454777818059946, 8.253285514277717, 6.98477418881421, -0.0, 10.450510091613937, -0.0, 10.450510091613937, 9.757362911053992, 9.351897802945828, 9.351897802945828, -0.0, 7.742459890511727, -0.0, -0.0, -0.0, 9.757362911053992, 6.895162030124523, 6.643847601843618, 7.9656034418259365, 9.757362911053992, 8.371068549934101, -0.0, -0.0, -0.0, -0.0, -0.0, -0.0, 7.154673225609608, 7.315015875684788, 7.315015875684788, 7.617296747557721, -0.0, 6.954002530147457, -0.0, 6.736938024909629, -0.0, 7.506071112447496, 6.643847601843618, 6.895162030124523, -0.0, 6.8669911531578265, 7.617296747557721, 7.154673225609608, 6.98477418881421, 6.712840473330568, -0.0, 7.016522887128791, 9.064215730494046, -0.0, -0.0, -0.0, 7.506071112447496, -0.0, -0.0, 8.371068549934101, 6.8395921789697125, -0.0, 8.052614818815567, 9.064215730494046, 6.954002530147457, -0.0, 6.736938024909629, 7.9656034418259365, -0.0, 8.371068549934101, 6.812923931887551, 6.812923931887551, -0.0, -0.0, 8.504599942558624, 9.757362911053992, 7.049312709951781, -0.0, 7.016522887128791, 7.359467638255621, -0.0, 7.742459890511727, 7.192413553592455, 6.6893099759203745, 6.98477418881421, -0.0, -0.0, 7.8855607341524, 6.8395921789697125, 6.8669911531578265, 6.954002530147457, 6.712840473330568, -0.0, 8.052614818815567, -0.0, -0.0, 7.742459890511727, 7.617296747557721, -0.0, -0.0, -0.0, 6.786948445484291, 6.98477418881421, 6.736938024909629, -0.0, 7.154673225609608, -0.0, 6.98477418881421, 7.016522887128791, 7.231634266745736, 6.761630637500001, -0.0, 6.621868695124842, 7.192413553592455, -0.0, -0.0, 7.359467638255621, 6.786948445484291, 6.812923931887551, 6.621868695124842, -0.0, 6.643847601843618, 7.083214261627463, -0.0, 6.6893099759203745, -0.0, -0.0, -0.0, 6.736938024909629, 9.351897802945828, -0.0, -0.0, 6.712840473330568, -0.0, -0.0, 8.253285514277717, -0.0, 8.14792499861989, 6.6893099759203745, 7.560138333717772, 8.14792499861989, 8.253285514277717, -0.0, -0.0, 8.504599942558624, 7.617296747557721, 8.052614818815567, 6.666320457695676, -0.0, 8.14792499861989, -0.0, 8.504599942558624, 7.083214261627463, -0.0, 6.643847601843618, 7.231634266745736, 6.6893099759203745, -0.0, 6.8669911531578265, -0.0, -0.0, 6.579309080706047, -0.0, -0.0, -0.0, -0.0, 6.954002530147457, 6.712840473330568, -0.0, 7.454777818059946, 9.064215730494046, -0.0, 7.617296747557721, 6.736938024909629, 7.742459890511727, 7.118305581438733, 8.253285514277717, 6.579309080706047, -0.0, 7.315015875684788, 7.016522887128791, -0.0, -0.0, 6.98477418881421, -0.0, 7.118305581438733, 6.666320457695676, 9.351897802945828, 6.600362489903878, 8.658750622385883, -0.0, -0.0, 6.895162030124523, -0.0, 7.454777818059946, 6.8395921789697125, 6.812923931887551, 8.052614818815567, -0.0, 6.6893099759203745, -0.0, 6.761630637500001, 9.351897802945828, 7.560138333717772, -0.0, 7.742459890511727, 7.154673225609608, 8.052614818815567, -0.0, 7.118305581438733, -0.0, 7.083214261627463, 7.9656034418259365, -0.0, 7.154673225609608, 8.658750622385883, 8.841072179179836, -0.0, -0.0, 7.272456261265991, 6.786948445484291, 6.954002530147457, -0.0, -0.0, -0.0, 9.757362911053992, 7.154673225609608, -0.0, 7.506071112447496, 7.617296747557721, 7.560138333717772, 6.666320457695676, -0.0, 9.757362911053992, 7.083214261627463, 7.677921369374156, 6.712840473330568, 7.049312709951781, -0.0, 8.371068549934101, 10.450510091613937, 7.8855607341524, -0.0, 6.712840473330568, 7.506071112447496, -0.0, 7.049312709951781, -0.0, 6.761630637500001, 7.617296747557721, -0.0, 6.8669911531578265, 8.504599942558624, -0.0, 6.736938024909629, 6.666320457695676, -0.0, 8.841072179179836, 7.506071112447496, 8.371068549934101, 7.154673225609608, -0.0, 6.954002530147457, 6.8669911531578265, -0.0, 8.841072179179836, 6.895162030124523, 7.454777818059946, 9.757362911053992, 7.405987653890514, 8.052614818815567, -0.0, 7.049312709951781, -0.0, 7.118305581438733, 7.049312709951781, 6.924149566997776, 8.052614818815567, 7.315015875684788, 7.560138333717772, 7.8855607341524, 7.405987653890514, -0.0, 7.811452761998678, 8.841072179179836, 9.351897802945828, 8.052614818815567, 6.712840473330568, -0.0, 7.118305581438733, -0.0, 7.154673225609608, -0.0, -0.0, -0.0, 6.643847601843618, 6.954002530147457, 6.8669911531578265, 7.454777818059946, 7.617296747557721, 6.600362489903878, 7.154673225609608, 7.083214261627463, 7.083214261627463, 8.658750622385883, 7.454777818059946, -0.0, 6.786948445484291, 6.8669911531578265, 6.8669911531578265, -0.0, -0.0, -0.0, -0.0, -0.0, 7.454777818059946, 6.643847601843618, -0.0, -0.0, -0.0, -0.0, 7.272456261265991, -0.0, 6.666320457695676, -0.0, -0.0, 7.9656034418259365, 8.052614818815567, 8.658750622385883, -0.0, 7.677921369374156, -0.0, 6.712840473330568, -0.0, 6.8395921789697125, -0.0, -0.0, -0.0, -0.0, -0.0, 6.666320457695676, -0.0, 6.895162030124523, -0.0, 7.049312709951781, -0.0, 6.643847601843618, -0.0, 6.812923931887551, 6.98477418881421, -0.0, 6.736938024909629, 6.954002530147457, 7.118305581438733, 10.450510091613937, -0.0, 6.924149566997776, -0.0, 6.924149566997776, -0.0, -0.0, -0.0, 6.8669911531578265, 7.049312709951781, 6.600362489903878, -0.0, 7.8855607341524, 7.049312709951781, 7.083214261627463, -0.0, 6.736938024909629, -0.0, 6.812923931887551, -0.0, -0.0, -0.0, 7.315015875684788, 6.6893099759203745, 6.736938024909629, 6.579309080706047, -0.0, 7.272456261265991, -0.0, 7.811452761998678, 9.351897802945828, -0.0, 8.14792499861989, 7.154673225609608, 7.8855607341524, -0.0, 9.351897802945828, 7.677921369374156, -0.0, -0.0, -0.0, 9.757362911053992, -0.0, 7.405987653890514, -0.0, -0.0, -0.0, -0.0, -0.0, 6.643847601843618, 9.757362911053992, -0.0, 8.371068549934101, 10.450510091613937, -0.0, 8.371068549934101, -0.0, 7.560138333717772, 6.8395921789697125, -0.0, 6.6893099759203745, -0.0, 7.016522887128791, -0.0, 6.954002530147457, 6.643847601843618, 7.8855607341524, -0.0, -0.0, -0.0, 7.016522887128791, 6.6893099759203745, -0.0, 7.560138333717772, 7.506071112447496, 6.643847601843618, -0.0, 8.253285514277717, -0.0, 6.55868979350331, 6.736938024909629, 8.253285514277717, -0.0, 6.666320457695676, -0.0, -0.0, 6.786948445484291, 6.6893099759203745, 6.712840473330568, 6.621868695124842, -0.0, 6.954002530147457] diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_attrs.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_attrs.json new file mode 100644 index 0000000000000000000000000000000000000000..6ad23d6ba6b5e8e14abe2d04c150b20ecbe95c10 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_attrs.json @@ -0,0 +1 @@ +{"Synthetic": "synthetic", "Canvas": "canvas", "Sheepskin": "sheepskin", "Patent.Leather": "leather", "Wool": "wool", "Leather": "leather", "Satin": "satin", "Hair.Calf": "hair", "Full.grain.leather": "leather", "Rubber": "rubber", "Faux.Leather": "leather", "Suede": "suede", "Nylon": "nylon", "Nubuck": "leather", "Faux.Fur": "fur", "Cotton": "cotton"} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_gamma.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_gamma.json new file mode 100644 index 0000000000000000000000000000000000000000..e7630ac336f349ede2925aeb3a7dd4fd772c661b --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_gamma.json @@ -0,0 +1 @@ +{"attr_b": [1.0, 1.0, 0.8, 1.0, 1.2, 1.0, 1.0, 1.0, 1.2, 0.8, 1.0, 0.8, 1.2, 1.0, 0.8, 1.0], "attr_a": [1.0, 1.0, 0.8, 0.8, 1.2, 1.0, 0.8, 1.0, 1.0, 0.8, 0.8, 0.8, 1.2, 1.0, 0.8, 0.8], "comp_b": [0.84, 0.1, 1.0, 0.46, 0.5, 0.74, 0.62, 2.3000000000000003, 0.55, 0.56, 0.36, 0.6000000000000001, 0.68, 0.78, 0.54, 0.5], "comp_a": [0.8400000000000001, 0.0, 1.0, 0.44000000000000017, 0.48000000000000015, 0.7800000000000002, 0.6000000000000001, 2.3000000000000003, 0.45, 0.5600000000000003, 0.3199999999999999, 0.6000000000000001, 0.6599999999999997, 0.7800000000000002, 0.5400000000000003, 0.48000000000000015]} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_objs.json b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_objs.json new file mode 100644 index 0000000000000000000000000000000000000000..13ff1ede97754a862c1a95e629bca8386ba08e1a --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_objs.json @@ -0,0 +1 @@ +{"Shoes.Clogs.and.Mules": "clogs", "Shoes.Heels": "heels", "Boots.Mid-Calf": "midcalf", "Shoes.Flats": "flats", "Boots.Knee.High": "knee-high", "Shoes.Sneakers.and.Athletic.Shoes": "sneakers", "Shoes.Boat.Shoes": "shoes", "Shoes.Oxfords": "oxfords", "Boots.Ankle": "boots", "Sandals": "sandals", "Slippers": "slippers", "Shoes.Loafers": "loafers"} \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_weight.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_weight.py new file mode 100644 index 0000000000000000000000000000000000000000..d3315e704f21f9af935dc4cf260fb388db34902a --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/UT_weight.py @@ -0,0 +1,30 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +attr_weight = [3.3346977756321516, 6.045005314036012, 6.315880268171411, 4.128581330635162, 3.4429435720973482, 5.932888015915306, 0.5385720013774027, 4.785004678240413, 4.751904729814068, 3.435434150075217, 3.7892631298020407, 4.174507768761085, 5.468582407784208, 2.0151239462217565, 2.3481072476387737, 5.180900335332427] +obj_weight = [2.0469601212700113, 2.7404183922042185, 2.442367117505141, 2.230464336693612, 5.948155488046094, 3.5078171577379704, 2.256203834895188, 1.7291003739616688, 2.5755686404252045, 2.947818448105355, 1.840059754211169, 4.629481314601183] +pair_weight = [6.190717125217406, 7.637636108153731, 6.7903382477665275, -0.0, 7.078020320218308, -0.0, -0.0, 7.483485428326473, 3.4879094000800452, 7.414492556839521, -0.0, -0.0, 6.9444889275937856, 7.819957664947686, 7.819957664947686, 7.557593400480195, -0.0, 6.656806855142005, 6.01166889376842, -0.0, -0.0, 5.29422902063943, 6.539023819485621, 5.468582407784208, 7.232171000045566, 6.097191067206582, -0.0, 5.765833931252139, 4.8861007951117825, 5.449713923479825, 7.557593400480195, -0.0, 5.859862880900415, 6.152250844389609, -0.0, 5.173782867563563, 5.145809015521157, 7.289329413885515, 7.637636108153731, 7.078020320218308, -0.0, 7.34995403570195, 2.445142327426924, 3.2258484263190192, 2.9401906460564686, 2.412785893487567, -0.0, 3.8254334380077957, 2.78041102735701, 2.6231194673495026, 2.928105906841397, 3.1359762985353044, 2.7908277882152652, -0.0, 6.230722459831105, 7.724647485143361, -0.0, -0.0, 7.557593400480195, 6.864446219920249, 6.721345376279576, 7.232171000045566, -0.0, 6.01166889376842, -0.0, 7.232171000045566, 5.111907463845475, 6.987048542012581, 6.9444889275937856, -0.0, 7.178103778775291, 7.178103778775291, -0.0, 6.33835312402347, -0.0, 3.678411501241291, 6.045005314036012, 6.656806855142005, -0.0, 5.679891501451415, 4.16411806491195, -0.0, 7.34995403570195, 5.805054644405421, -0.0, 7.414492556839521, 4.2144598197728005, -0.0, 5.917850138550765, 6.484956598215345, 3.382023398335508, 4.5695831730201135, -0.0, 5.105262921126807, 6.171299039360304, -0.0, 4.258911582343634, 3.4181284029776244, 4.270340278167257, -0.0, 3.915966831216804, -0.0, -0.0, 4.935156952100976, -0.0, -0.0, 5.404043886646637, 3.855342209400369, 3.7492229683647187, 5.579247975671727, 6.511624845297507, 3.440434160491922, 6.293901361452637, 7.557593400480195, -0.0, 5.27835567148314] diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/__init__.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dc82d5136ef0402074d79102c4ee033e0e2a7b09 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/__init__.py @@ -0,0 +1,58 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import importlib + +def load_loss_weight(dataset_name): + """Loss weight to balance the categories + weight = -log(frequency)""" + + if dataset_name[-1]=='g': + dataset_name = dataset_name[:-1] + + try: + Weight = importlib.import_module('utils.aux_data.%s_weight'%dataset_name) + + if 'pair_weight' in Weight.__dict__: + return Weight.attr_weight, Weight.obj_weight, Weight.pair_weight + else: + return Weight.attr_weight, Weight.obj_weight, None + + except ImportError: + raise NotImplementedError("Loss weight for %s is not implemented yet"%dataset_name) + + +def load_wordvec_dict(dataset_name, vec_type): + if dataset_name[-1]=='g': + dataset_name = dataset_name[:-1] + + try: + Wordvec = importlib.import_module('utils.aux_data.%s_%s'%(vec_type, dataset_name)) + return Wordvec.attrs_dict, Wordvec.objs_dict + + except ImportError: + raise NotImplementedError("%s vector for %s is not ready yet"%(vec_type, dataset_name)) diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_MIT.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_MIT.py new file mode 100644 index 0000000000000000000000000000000000000000..b7835eb22f93959f8ac23611745032e9f38b26e6 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_MIT.py @@ -0,0 +1,29 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +attrs_dict = {u'crumpled': [-0.34428998827934265, -0.041088998317718506, -0.2932800054550171, -0.4592599868774414, 0.11011999845504761, -0.04722899943590164, -0.19939999282360077, -0.6640099883079529, -0.5397099852561951, 0.3364099860191345, -0.33511999249458313, 0.2157599925994873, -0.007037200033664703, -0.18472999334335327, -0.07743799686431885, 0.45440998673439026, -0.1596899926662445, 0.13877999782562256, 0.07464399933815002, -0.42572999000549316, 0.5098099708557129, 0.1652500033378601, 0.19673000276088715, -0.053564999252557755, -0.6513400077819824, -0.5163699984550476, -0.027967000380158424, 0.33294999599456787, 0.39096999168395996, -0.5551900267601013, -0.3602299988269806, -0.08196599781513214, 0.24785000085830688, 0.0569549985229969, -0.275160014629364, 0.15851999819278717, -0.266400009393692, 0.2996000051498413, 0.22662000358104706, 0.6411899924278259, -0.12699000537395477, -0.04391000047326088, 0.20701000094413757, 0.10897000133991241, 0.7827600240707397, 0.09943299740552902, 0.6978899836540222, -0.17302000522613525, -0.4871099889278412, -0.16333000361919403, 0.32010000944137573, -0.24769000709056854, 0.3541199862957001, -0.49483001232147217, -0.006093599833548069, -0.11180000007152557, -0.030539000406861305, -0.3184199929237366, -0.33945998549461365, -0.07872900366783142, 0.24357999861240387, 0.2035900056362152, -0.3389100134372711, 0.23613999783992767, 0.05988499894738197, -0.06609100103378296, -0.02644599974155426, -0.03605800122022629, 0.06889799982309341, 0.2436700016260147, 0.16088999807834625, 0.1939300000667572, -0.4092499911785126, 0.15916000306606293, 0.9880099892616272, -0.04250999912619591, -0.36667001247406006, -0.4129599928855896, 0.03487100079655647, 0.3122299909591675, 0.3718099892139435, -0.6010400056838989, -0.29017001390457153, 0.03912999853491783, -0.594980001449585, -0.04801800101995468, -0.436489999294281, 0.13519999384880066, -0.27917999029159546, 0.6059499979019165, 0.8172399997711182, -0.11087000370025635, 0.5447499752044678, -0.39754000306129456, 0.05583000183105469, -0.1837799996137619, -0.32293999195098877, -0.09995999932289124, 0.009872100315988064, 0.21085000038146973, 0.05595400184392929, 0.14565999805927277, -0.13141000270843506, 0.4396800100803375, 0.14381000399589539, 0.2757200002670288, 0.41249001026153564, 0.2784000039100647, -0.02839300036430359, -0.5855100154876709, -0.5911200046539307, 0.43588998913764954, -0.11588999629020691, -0.27608999609947205, 0.03706200048327446, 0.5907300114631653, 0.03346800059080124, 0.475629985332489, -0.020478999242186546, -0.1550000011920929, 0.536109983921051, -1.205199956893921, 0.15033000707626343, 0.8438699841499329, -0.18791000545024872, -0.2899099886417389, -0.5521399974822998, -0.689329981803894, 0.06684300303459167, 0.21823999285697937, 0.006013500038534403, 0.5989599823951721, 0.29304999113082886, -0.06502699851989746, 0.08840800076723099, 0.3768700063228607, -0.46700000762939453, 0.04524900019168854, 0.448309987783432, -0.3065800070762634, 0.4081999957561493, 0.04364300146698952, -0.28336000442504883, 0.3684700131416321, -0.07883399724960327, -0.17778000235557556, 0.015665000304579735, 0.7240200042724609, -0.19422000646591187, -1.0414999723434448, -0.1702200025320053, 0.05504300072789192, -0.2831900119781494, -0.7008699774742126, -0.09893699735403061, -0.07893099635839462, 0.5222799777984619, -0.4513300061225891, 0.1266700029373169, 0.11151000112295151, 0.03763600066304207, -0.41819000244140625, -0.29497000575065613, 0.028251999989151955, 0.019744999706745148, -0.41113999485969543, -0.40887001156806946, 0.34825000166893005, 0.14228999614715576, -0.4296799898147583, -0.04471400007605553, -0.23906999826431274, 0.43237000703811646, -0.38782998919487, -0.12258999794721603, -0.3259899914264679, -0.06383299827575684, 0.2501299977302551, 0.10746999830007553, -1.233199954032898, 0.5087299942970276, -0.24829000234603882, 0.07919900119304657, -0.09284300357103348, 0.4571099877357483, -0.5929700136184692, 0.5177800059318542, 0.04627000167965889, 0.12443000078201294, 0.09904699772596359, 0.6386600136756897, -0.019416000694036484, 0.19471000134944916, 0.0838719978928566, -0.23116999864578247, 0.6228399872779846, -0.2694000005722046, 0.6305000185966492, -0.3929300010204315, 0.08373899757862091, -0.5704100131988525, -0.44053998589515686, 0.08286800235509872, -0.031539998948574066, -0.3713099956512451, -0.5761299729347229, 0.44119998812675476, -0.2601200044155121, -0.24048000574111938, -0.2669999897480011, -0.286980003118515, 0.19423000514507294, -0.3826900124549866, 0.030036000534892082, 0.5541599988937378, -0.11800999939441681, 0.05010500177741051, -0.7599999904632568, -0.23916999995708466, 0.4950000047683716, 0.11365000158548355, 0.20733000338077545, 0.0677570030093193, -0.36781999468803406, -0.19498999416828156, 0.38350000977516174, 0.019169000908732414, -0.17447000741958618, -0.21585999429225922, -0.11618000268936157, 0.1256999969482422, 0.13425999879837036, -0.7028800249099731, 0.5762799978256226, 0.12586000561714172, -0.12690000236034393, 0.4994199872016907, 0.34033000469207764, -0.5914599895477295, -0.4601399898529053, 0.18571999669075012, -0.33281001448631287, -0.31843000650405884, -0.20848000049591064, -0.5156400203704834, -0.09362000226974487, 0.3923400044441223, -0.3147999942302704, 0.12838999927043915, 0.6325399875640869, -0.1286199986934662, -0.20558999478816986, 0.6330999732017517, -1.0046000480651855, 0.6714699864387512, 0.060159001499414444, 0.2485000044107437, -0.02113799937069416, -0.2927500009536743, 0.0758339986205101, 0.2010899931192398, 0.17090000212192535, 0.028831999748945236, 0.26809000968933105, 0.8689000010490417, -0.4667699933052063, -0.10978999733924866, -0.19144000113010406, -0.46369001269340515, -0.09587299823760986, -0.375789999961853, -0.5230299830436707, 0.3259899914264679, 0.24085000157356262, -0.4560000002384186, -0.12951000034809113, 0.11146999895572662, -0.3040199875831604, -0.39621999859809875, 0.09526299685239792, 0.33945998549461365, -0.458050012588501, 0.18772999942302704, -0.7493000030517578, -0.2089100033044815, -0.03570299968123436, 0.10760000348091125, 0.0726109966635704, 0.14020000398159027, -0.20095999538898468, -0.029551999643445015, 0.731410026550293, -0.055135998874902725, 0.3801800012588501, 0.0646049976348877, -0.43393000960350037, 0.7250300049781799, 0.37494999170303345, 0.13006000220775604, 0.1651799976825714], u'upright': [-0.5957900285720825, 0.019175000488758087, -0.46136999130249023, -0.6815199851989746, -0.0498029999434948, -0.5041599869728088, 0.28248998522758484, 0.1809999942779541, 0.03614100068807602, -0.32572999596595764, -0.20324000716209412, 0.7910199761390686, -0.20457999408245087, -0.12008000165224075, -0.2233400046825409, 0.4557799994945526, 0.0034503000788390636, 0.11242999881505966, 0.25567999482154846, -0.17445999383926392, 0.11350999772548676, 0.3127000033855438, 0.1889999955892563, 0.34898000955581665, 0.47308000922203064, 0.2701900005340576, 0.2910900115966797, -0.14007000625133514, -0.2381500005722046, 0.7228699922561646, -0.31672999262809753, 0.6037300229072571, 0.3355799913406372, -0.4567300081253052, -0.21532000601291656, -0.05112899839878082, 0.809689998626709, -0.2983799874782562, -0.1879899948835373, 0.7912999987602234, 0.012590000405907631, 0.883400022983551, -0.11970999836921692, -0.3178899884223938, -0.17935000360012054, 0.16313999891281128, 1.038699984550476, -0.1629199981689453, 0.03324199840426445, 0.6893100142478943, -0.18007999658584595, -0.06562300026416779, 0.12466999888420105, -0.09863600134849548, -0.16638000309467316, -0.0067460001446306705, 0.577430009841919, 0.0704680010676384, -0.555679976940155, 0.7520400285720825, 0.31380999088287354, 0.05780100077390671, -0.19885000586509705, 0.3447999954223633, -0.6484699845314026, -0.32565999031066895, -0.20730000734329224, 0.48475000262260437, 0.006269299890846014, 0.09177099913358688, -0.19418999552726746, 0.5964000225067139, -0.1569100022315979, 0.08733999729156494, 0.19715000689029694, -0.023096999153494835, -0.032152000814676285, 0.5869699716567993, 0.4654200077056885, -0.16738000512123108, -0.6344799995422363, 0.43963998556137085, -0.43985000252723694, 0.2752699851989746, 0.32833999395370483, -0.17430000007152557, 0.41244998574256897, 0.6257299780845642, -0.4902699887752533, 0.3331100046634674, 1.401900053024292, 0.12342999875545502, 0.2446800023317337, 0.22960999608039856, 0.040727000683546066, -0.46292999386787415, 0.016090000048279762, -0.07835999876260757, 0.22327999770641327, 0.014204000122845173, -0.054464999586343765, 0.10524000227451324, 0.017705999314785004, -0.45350998640060425, -0.27562999725341797, 0.4726499915122986, 0.25900998711586, -0.5215799808502197, 0.06327900290489197, -0.4700799882411957, 0.23444999754428864, 0.7276700139045715, 0.4650000035762787, 0.016183000057935715, -0.40272998809814453, -0.001344699994660914, -0.13718000054359436, -0.3431299924850464, 0.12616999447345734, 0.07495500147342682, -0.9484000205993652, -0.3942500054836273, 0.7754799723625183, -0.39010998606681824, -0.4437600076198578, 0.3612000048160553, -0.48875001072883606, -0.18271000683307648, 0.03357899934053421, -0.3285999894142151, 0.11517000198364258, 0.3929699957370758, 0.1528400033712387, 0.4145500063896179, 0.0043704998679459095, 0.2974500060081482, 0.2367600053548813, -0.055309001356363297, 0.2550700008869171, 0.16780999302864075, 0.314300000667572, -0.03175299987196922, -0.21904000639915466, 0.017125999554991722, -0.34784001111984253, -0.15669000148773193, -0.31808000802993774, -0.503000020980835, -0.2831000089645386, 0.18693000078201294, -0.4714199900627136, -0.05297999829053879, 0.19471000134944916, -0.3226900100708008, -0.06025300174951553, 0.4862399995326996, 0.3199799954891205, -0.5942000150680542, 0.7472400069236755, 0.885200023651123, -0.10279999673366547, -0.19228999316692352, -0.294730007648468, 0.1357100009918213, -0.14381000399589539, 0.15031999349594116, -0.19708000123500824, 0.3357299864292145, 0.15855999290943146, -0.6714900135993958, 0.23125000298023224, 0.19543999433517456, 0.33932000398635864, -0.2425999939441681, 0.5366799831390381, -0.4459800124168396, 0.38203001022338867, 0.7479100227355957, -0.15850000083446503, -0.8431500196456909, 0.3577899932861328, -0.23125000298023224, 0.7521899938583374, 0.21629999577999115, 0.2036599963903427, -0.44468000531196594, 0.5249599814414978, 0.3437199890613556, 0.2199700027704239, 0.0038525001145899296, -0.1534699946641922, 0.29416000843048096, 0.9099500179290771, 0.39225998520851135, 0.4933300018310547, -0.05889099836349487, -0.7750999927520752, -0.4431000053882599, -0.8883399963378906, 0.14026999473571777, 0.979960024356842, 0.6456000208854675, 0.14117999374866486, 0.17719000577926636, 0.32780998945236206, 0.3128400146961212, 0.3891099989414215, -0.6410300135612488, -0.037592001259326935, -0.18941999971866608, 0.5467699766159058, 0.038235001266002655, -0.03853899985551834, 0.23940999805927277, 0.21825000643730164, 0.06871499866247177, -0.026706000789999962, -0.1224299967288971, -0.21615999937057495, -0.01954299956560135, -0.5525100231170654, -0.052903998643159866, -0.5299000144004822, 0.23331999778747559, -0.49919000267982483, 0.42767998576164246, -0.26809000968933105, -0.04951599985361099, 0.0187389999628067, 0.2946699857711792, 0.012039000168442726, -0.0897120013833046, 0.29269999265670776, -0.5196099877357483, -0.4896700084209442, 0.03976399824023247, -1.1705000400543213, 0.13149000704288483, -0.29745998978614807, -0.04895099997520447, 0.179639995098114, -0.5142099857330322, 0.08651699870824814, 0.5452200174331665, -0.5137500166893005, -0.4144600033760071, 0.3215000033378601, 0.49307000637054443, -0.35082998871803284, 0.4210300147533417, 0.41576001048088074, -0.3450399935245514, 0.3889099955558777, -0.4281100034713745, 0.5829200148582458, 0.3765200078487396, -0.39956000447273254, -0.10429000109434128, 0.12804000079631805, -0.2037699967622757, 0.17821000516414642, -0.2788200080394745, 0.33719998598098755, -0.046202998608350754, -0.2492000013589859, -0.6338499784469604, 0.37762001156806946, 0.009081199765205383, 0.2292100042104721, 0.31589001417160034, -0.48385998606681824, 0.06653200089931488, -0.5473799705505371, -0.044234998524188995, -0.023473000153899193, -0.5034700036048889, -0.34376001358032227, -0.0369580015540123, -0.40369999408721924, -0.5415400266647339, 0.22100000083446503, -0.27553001046180725, -0.4309700131416321, -0.320250004529953, 0.11348000168800354, 0.5608400106430054, 0.12849999964237213, 0.8705599904060364, 0.3400599956512451, -0.2324499934911728, 0.5834299921989441, 0.32510998845100403, -0.21527999639511108, -0.417959988117218, 0.4119099974632263, 0.006088799796998501, -0.09378699958324432, 0.0845550000667572, 0.427700012922287, -0.009439700283110142], u'bright': [-0.07795599848031998, -0.40202000737190247, 0.049734000116586685, -0.6969299912452698, -0.21193000674247742, -0.05250399932265282, -0.0836310014128685, 0.09935200214385986, 0.05850199982523918, -1.0078999996185303, 0.3141300082206726, 0.034324001520872116, -0.17890000343322754, 0.39395999908447266, 0.15018999576568604, 0.09302199631929398, -0.4922800064086914, -0.21785999834537506, -0.038520000874996185, -0.14399999380111694, -0.1648699939250946, 0.6391800045967102, 0.13535000383853912, 0.25870001316070557, 0.2820799946784973, -0.38319000601768494, 0.38982999324798584, -0.3435699939727783, -0.06914100050926208, 0.13343000411987305, 0.12657999992370605, 0.07868599891662598, -0.7499799728393555, 0.33063000440597534, -1.0298999547958374, 0.9204099774360657, -0.0027687998954206705, -0.5104600191116333, 0.24556000530719757, 0.2842400074005127, 0.7098199725151062, 0.08877900242805481, -0.00964799989014864, 0.3682299852371216, -0.32962000370025635, -0.22378000617027283, -0.03271700069308281, 0.0355600006878376, -0.258899986743927, -0.9045699834823608, -0.22891999781131744, 0.014535999856889248, 0.7959200143814087, -0.5244899988174438, -0.24379999935626984, 0.048374999314546585, -0.227400004863739, -0.339819997549057, 0.5101500153541565, -0.16808000206947327, 0.02370000071823597, -0.4198099970817566, 0.33204999566078186, 0.004925900138914585, 0.33215001225471497, -0.10098999738693237, 0.07976900041103363, -0.2898600101470947, -0.1688999980688095, -0.09980300068855286, -0.315530002117157, -0.13955999910831451, -0.008422800339758396, 0.2161100059747696, -0.0014239000156521797, -0.30386999249458313, -0.2929399907588959, 0.07836999744176865, 0.3224799931049347, -0.2189899981021881, 0.030533000826835632, 0.11401999741792679, -0.21359999477863312, -0.011180000379681587, 0.19193999469280243, 0.15113000571727753, 0.046799998730421066, 0.01307000033557415, 0.1354600042104721, 0.265390008687973, 0.33449000120162964, -0.020399000495672226, -0.554669976234436, 0.11248999834060669, -0.16856999695301056, 0.6713500022888184, 0.19491000473499298, -0.22946999967098236, 0.35830000042915344, -0.4237399995326996, 0.06273499876260757, -0.15261000394821167, -0.24156999588012695, 0.43546000123023987, -0.3053399920463562, 0.2527199983596802, 0.25336000323295593, 0.20513999462127686, -0.41569000482559204, -0.3744499981403351, -0.10626000165939331, -0.06250499933958054, 0.8102200031280518, 0.2106499969959259, 0.3438200056552887, -0.0935019999742508, -0.11286000162363052, 0.5442399978637695, 0.5676800012588501, -0.20263999700546265, -0.246069997549057, -0.43476998805999756, 0.255840003490448, 0.6044099926948547, -0.04026800021529198, -0.08831500262022018, 0.044530998915433884, 0.8038100004196167, -0.008058600127696991, 0.05978899821639061, -0.028300000354647636, -0.05963899940252304, -0.05723800137639046, 0.12727999687194824, -0.29774999618530273, 0.06047099828720093, -0.07694000005722046, 0.24003000557422638, 0.12861000001430511, -0.17678000032901764, 0.2097100019454956, 0.44655001163482666, 0.3075000047683716, -0.7183700203895569, 0.1953900009393692, 0.04029899835586548, -0.24833999574184418, 0.08654200285673141, -0.013275999575853348, -0.06019200012087822, 0.052469998598098755, -0.30663999915122986, 0.21905000507831573, 0.04218300059437752, 0.7319999933242798, -0.5209599733352661, -0.1867399960756302, -0.35040000081062317, -0.3255000114440918, 0.1949000060558319, -0.04548799991607666, -0.6750800013542175, 0.38190001249313354, 0.05581099912524223, 0.2359900027513504, -0.2021699994802475, -0.36381998658180237, 0.542140007019043, 0.12394999712705612, 0.17961999773979187, 0.18002000451087952, -0.22538000345230103, -0.45831000804901123, 0.08744099736213684, 0.19509999454021454, -0.641290009021759, 0.24647000432014465, -0.019910000264644623, -0.01783600077033043, -0.10593999922275543, -0.17753000557422638, -0.2467000037431717, 0.24849000573158264, -0.11236999928951263, 0.3831700086593628, -0.24936999380588531, 0.7868800163269043, -0.22643999755382538, -0.2959800064563751, -0.3893299996852875, 0.20157000422477722, 0.017100999131798744, -0.13773000240325928, 0.13770000636577606, 0.030445000156760216, 0.05753999948501587, -0.3585500121116638, -0.3718099892139435, -0.3615100085735321, 0.15986000001430511, 0.9166899919509888, -0.1159299984574318, 0.13685999810695648, 0.05743199959397316, 0.13451999425888062, -0.3613399863243103, 0.4568600058555603, 0.7163199782371521, -0.16453999280929565, -0.07962699979543686, 0.46632999181747437, -0.49873000383377075, -0.2813499867916107, -0.44538000226020813, 0.529009997844696, -0.032705001533031464, 0.8951699733734131, -0.3186900019645691, 0.22353999316692352, -0.45045000314712524, 1.1282000541687012, -0.008663900196552277, -0.20364999771118164, 0.019512999802827835, -0.27094000577926636, -0.08269699662923813, -0.1618800014257431, -0.244609996676445, -0.1641799956560135, 0.07797200232744217, -0.1949699968099594, 0.24018000066280365, 0.18876999616622925, -0.38842999935150146, -0.6278200149536133, 0.20792999863624573, -0.4930799901485443, -0.24544000625610352, -0.8529199957847595, -0.32532998919487, 0.3540300130844116, 0.00441339984536171, -0.6633800268173218, 0.6234899759292603, -0.34509000182151794, 0.09598399698734283, 0.32912999391555786, -0.4106599986553192, -0.09391500055789948, -0.055018000304698944, -0.10162000358104706, -0.21678000688552856, -0.04464000090956688, -0.052202001214027405, 0.4005900025367737, 0.022206999361515045, -0.06558399647474289, -0.028074000030755997, -0.18779000639915466, 0.48993000388145447, 0.16467000544071198, -0.02718699909746647, 0.5270000100135803, 0.012558000162243843, -0.32853999733924866, -0.3606700003147125, -0.029726000502705574, 0.05677499994635582, 0.2051600068807602, 0.42065000534057617, 0.1106100007891655, -0.18725000321865082, -0.07474599778652191, -0.2121800035238266, -0.14428000152111053, 0.2617200016975403, -0.8544099926948547, -0.032517001032829285, -0.636650025844574, 0.09309300035238266, -0.012581000104546547, 0.2512199878692627, -0.03308200091123581, 0.04187000170350075, 0.3051399886608124, 0.1972299963235855, -0.05215200036764145, 0.3797900080680847, -0.2685000002384186, -0.3354800045490265, 0.3811799883842468, 0.46529000997543335, -0.27177000045776367, 0.261819988489151, -0.08762600272893906, 0.0703200027346611, 0.2617399990558624, -0.05974699929356575, 0.3023099899291992, 0.20986999571323395], u'dirty': [0.491239994764328, 0.1550700068473816, -0.29315999150276184, -0.7560200095176697, -0.49230000376701355, 0.3270699977874756, -0.6664000153541565, 0.8999999761581421, 0.3460800051689148, -0.8286600112915039, 0.13178999722003937, -0.2205200046300888, -0.12266000360250473, 0.5310800075531006, -0.1007699966430664, -0.585860013961792, -0.07777699828147888, 0.09018100053071976, 0.49309998750686646, 0.6993700265884399, 0.14610999822616577, 0.21209000051021576, 0.01319700013846159, 0.1428699940443039, 0.0016740000573918223, -0.4127799868583679, 0.27017998695373535, 0.0677890032529831, 0.3657299876213074, 0.07251899689435959, -0.760699987411499, 0.180649995803833, -0.37011000514030457, -0.1670600026845932, -0.1969500035047531, 0.6393799781799316, -0.3925899863243103, -0.3215999901294708, -0.25088998675346375, 0.09215699881315231, -0.0495930016040802, -0.3668400049209595, -0.18190999329090118, 0.030378999188542366, 0.34549999237060547, -0.002455000067129731, 0.3919000029563904, -0.43261998891830444, 0.5713599920272827, -0.2767699956893921, 0.14508000016212463, 0.10131999850273132, 0.267659991979599, -0.11015000194311142, 0.19776999950408936, -0.4381999969482422, -0.2508400082588196, 0.055073000490665436, -0.08339300006628036, -0.3778499960899353, -0.28387001156806946, -0.8384100198745728, -0.4945400059223175, 0.35717999935150146, -0.36917999386787415, -0.49529001116752625, 1.0425000190734863, -0.23948000371456146, -0.19885000586509705, -0.029580000787973404, 0.7105200290679932, 0.5424100160598755, -0.017186999320983887, 0.21038000285625458, -0.24192999303340912, -0.2715800106525421, 0.04489700123667717, 0.6245399713516235, 0.4103100001811981, -0.07989499717950821, -0.26590999960899353, -0.9563500285148621, 0.33858001232147217, 0.02098800055682659, 0.28505998849868774, -0.15960000455379486, 0.4337199926376343, 0.35523998737335205, -0.18629999458789825, 0.02542399987578392, 0.06889999657869339, 0.420989990234375, 0.49154001474380493, -0.3038100004196167, -0.06919199973344803, 0.22407999634742737, 0.29526999592781067, -0.27250000834465027, 0.5104399919509888, -0.3440299928188324, 0.15029999613761902, -0.45993998646736145, -0.6527100205421448, 0.5405099987983704, -0.5706599950790405, -0.6244300007820129, -0.4615499973297119, -0.06697099655866623, 0.3186500072479248, 0.1839500069618225, -0.09557799994945526, -0.09914600104093552, -0.5046300292015076, -0.2608200013637543, -0.13666999340057373, 0.2939800024032593, 0.5105500221252441, 0.08120100200176239, -0.43213000893592834, -0.7499300241470337, -0.19506999850273132, -0.14320999383926392, -0.1137000024318695, 0.2755599915981293, -0.04776100069284439, 0.40411999821662903, -0.07381899654865265, 0.33908000588417053, -0.17048999667167664, -0.1628199964761734, -0.08128099888563156, -0.3669799864292145, 0.27213001251220703, 0.12038999795913696, 0.003793099895119667, -0.3140000104904175, 0.06695099920034409, 0.3286899924278259, -0.0016725000459700823, -0.10558000206947327, 0.13676999509334564, 0.06634700298309326, 0.5230100154876709, -0.1334500014781952, -0.709879994392395, 0.45392000675201416, 0.18185000121593475, 0.5353599786758423, 0.41909000277519226, 0.2726599872112274, -0.3740200102329254, 0.5234599709510803, -0.676609992980957, 0.1476999968290329, 0.10769999772310257, -0.12541000545024872, -0.11586999893188477, 0.15373000502586365, 0.7021499872207642, 0.542110025882721, 0.18313999474048615, -0.16776999831199646, 0.4253700077533722, 0.6070200204849243, -0.055004000663757324, 0.1514499932527542, -0.21059000492095947, 0.25286999344825745, 0.0778999999165535, -0.30555999279022217, 0.08235900104045868, 0.7662400007247925, -0.7020800113677979, -0.4492799937725067, -0.6382399797439575, -0.2935200035572052, -0.5737599730491638, 0.10102999955415726, -0.18689000606536865, -0.4374699890613556, 0.22766999900341034, -0.21529999375343323, 0.4205299913883209, 0.6896700263023376, -0.14990000426769257, -0.02565000019967556, 1.2589999437332153, -0.22702999413013458, 1.0041999816894531, -0.3066500127315521, 0.5153200030326843, 0.0017353999428451061, 0.3595699965953827, -0.10371000319719315, -0.37088000774383545, -0.025102000683546066, -0.5411800146102905, -0.2576499879360199, -0.5083000063896179, 0.10892999917268753, 0.4665699899196625, 0.6877700090408325, 0.7408400177955627, -0.05626000091433525, -0.007438899949193001, -0.6105499863624573, 0.22040000557899475, 0.29416999220848083, 0.06212000176310539, -0.1340699940919876, -0.7829700112342834, 0.06991899758577347, -0.08291900157928467, 0.6532800197601318, 0.5722600221633911, 0.2191700041294098, 0.4782100021839142, -0.22885000705718994, -0.4601399898529053, -0.08395999670028687, -0.05138000100851059, 0.68190997838974, 0.32291001081466675, 0.04006199911236763, 0.04046100005507469, -0.24372999370098114, -0.08984100073575974, -0.6130899786949158, 0.036713000386953354, 0.43369001150131226, 0.9476199746131897, -0.6317999958992004, -0.36827000975608826, -0.18513000011444092, 0.035433001816272736, -0.3397899866104126, 0.10831999778747559, -0.05808499827980995, -0.15775999426841736, -0.15115000307559967, -0.12734000384807587, 0.07551799714565277, 0.11181999742984772, -0.3213300108909607, 0.14577999711036682, -0.37825000286102295, -0.3306399881839752, 0.020614000037312508, -0.04667799919843674, 0.007018299773335457, 0.13882000744342804, -0.8087400197982788, -0.4811899960041046, -0.19665999710559845, 0.8922200202941895, -0.10577999800443649, 0.243709996342659, 0.23713000118732452, 0.09298200160264969, 0.0003149700060021132, -0.2730500102043152, 0.19710999727249146, -0.46456998586654663, 0.4003700017929077, 0.6423900127410889, 0.3477500081062317, 0.005798900034278631, 0.008074600249528885, -0.3931199908256531, 0.2653700113296509, 0.02178099937736988, -0.05681400001049042, -0.3615899980068207, 0.05755100026726723, -0.10706999897956848, 0.2552799880504608, -1.457900047302246, -0.4234899878501892, 0.21251000463962555, -0.1624699980020523, 0.0511230006814003, 0.42972999811172485, 0.022703999653458595, 0.1415800005197525, 0.21455000340938568, 0.4878099858760834, -0.09922300279140472, 0.5395200252532959, -0.15108999609947205, -0.3381099998950958, -0.3319000005722046, 0.23813000321388245, -0.405460000038147, 0.8844500184059143, -0.01396500039845705, -0.2716499865055084, 0.29653000831604004, 0.009897899813950062, -0.2991800010204315, 0.3576500117778778], u'rough': [-0.07220099866390228, -0.49511000514030457, -0.436379998922348, 0.25450998544692993, -0.8852900266647339, 0.2739199995994568, 0.22349999845027924, 0.9330400228500366, 0.13910000026226044, -0.8909000158309937, -0.3865000009536743, 0.193340003490448, -0.11958999931812286, 0.44176000356674194, -0.5069199800491333, 0.11428000032901764, -0.08141399919986725, 0.34577998518943787, 0.28286999464035034, 0.34922999143600464, -0.34942999482154846, 0.2757999897003174, -0.05626500025391579, 0.21447999775409698, -0.4430199861526489, -0.09469199925661087, 0.3838900029659271, 0.0849120020866394, -0.029178999364376068, 0.7554100155830383, 0.052792999893426895, 0.45824000239372253, -0.4332999885082245, -0.030918000265955925, -0.6415500044822693, 0.4712100028991699, -0.16850000619888306, -0.2741200029850006, -0.3123700022697449, -0.37011998891830444, -0.13176000118255615, 0.12460999935865402, 0.6731699705123901, -0.4597499966621399, 0.24769000709056854, 0.2659299969673157, -0.03799799829721451, -0.2542800009250641, -0.6279100179672241, -0.12161999940872192, -0.18735000491142273, 0.04961099848151207, 0.10942000150680542, 0.13549000024795532, -0.027141999453306198, -0.08231200277805328, -0.6539099812507629, -0.2535400092601776, -0.08764699846506119, 0.22672000527381897, -0.10299000144004822, 0.11740999668836594, 0.05702099949121475, -0.3600600063800812, -0.17967000603675842, -0.5179100036621094, 0.3410399854183197, -0.12027999758720398, 0.3275499939918518, -0.2779900133609772, 0.22057999670505524, 0.34672999382019043, -0.7438799738883972, -0.12661999464035034, -0.13822999596595764, 0.07326900213956833, 0.15228000283241272, 0.10876999795436859, 0.004908700007945299, -0.3104200065135956, -0.1615000069141388, 0.009182900190353394, 0.8577899932861328, 0.09676399827003479, -0.2820099890232086, -0.024507999420166016, 0.4775699973106384, -0.2531200051307678, -0.07075399905443192, 0.2547700107097626, -0.14538000524044037, 0.5277500152587891, -0.4906400144100189, -0.4999600052833557, 0.08769799768924713, -0.024660000577569008, 0.08274099975824356, 0.025049999356269836, -0.05482200160622597, -0.516539990901947, -0.2761799991130829, 0.2426699995994568, -0.3521200120449066, 0.32440999150276184, -0.6080999970436096, 0.5074399709701538, -0.008625499904155731, -0.17961999773979187, -0.0014032999752089381, -0.402209997177124, 0.10867000371217728, -0.5043500065803528, 0.15666000545024872, -0.25613999366760254, -0.2212499976158142, 0.20534999668598175, 0.32510998845100403, 0.027002999559044838, 0.020005999132990837, 0.2810800075531006, -0.16554999351501465, -0.5295799970626831, -0.14474999904632568, 0.4246399998664856, -0.026038000360131264, 0.514270007610321, 0.48337000608444214, 0.048413001000881195, 0.13624000549316406, -0.4858500063419342, 0.0796779990196228, 0.7534400224685669, -0.019519999623298645, -0.08512700349092484, -0.09806200116872787, 0.11428999900817871, 0.0777989998459816, -0.18921999633312225, -0.22155000269412994, 0.0590520016849041, 0.4205000102519989, 0.7917299866676331, -0.5321000218391418, 0.10752999782562256, -0.14427000284194946, -0.2290399968624115, 0.17010000348091125, -0.21039000153541565, 0.2599799931049347, -0.004911100026220083, -0.19557000696659088, 0.021007999777793884, -0.38982999324798584, -0.12916000187397003, -0.10743000358343124, -0.02523599937558174, -0.1508300006389618, 0.16448000073432922, 0.6268699765205383, 0.5965099930763245, -0.3218800127506256, -0.43641000986099243, -0.36629998683929443, -0.2766999900341034, 0.3172999918460846, -0.34463998675346375, 0.3029800057411194, 0.11236000061035156, -0.35455000400543213, 0.08671800047159195, -0.39188000559806824, -0.11868000030517578, -0.63919997215271, 0.10886000096797943, -0.42186999320983887, -0.03378999978303909, 0.16123999655246735, 0.28022998571395874, -0.5638099908828735, -0.5723199844360352, -0.10745000094175339, 0.23056000471115112, 0.12120000272989273, 0.052368998527526855, -0.09832599759101868, -0.35293999314308167, 0.35374999046325684, -0.006082199979573488, -0.10213000327348709, 0.46588000655174255, -0.277209997177124, 0.5555199980735779, 0.795740008354187, -0.30900999903678894, 0.48030999302864075, -0.14480000734329224, -0.5375900268554688, -0.01498899981379509, -0.07423300296068192, -0.19304999709129333, 1.2360999584197998, 0.37116000056266785, 0.5682799816131592, 0.3441599905490875, 0.4907500147819519, 0.24695000052452087, -0.11845000088214874, 0.6376399993896484, -0.3024100065231323, 0.03719199821352959, -0.0032822999637573957, 0.23323999345302582, 0.11045999825000763, -0.3766799867153168, -0.6336699724197388, 0.17116999626159668, 0.6190099716186523, -0.2664499878883362, -0.31964001059532166, -0.24291999638080597, 0.8689299821853638, 0.06709299981594086, 0.015596999786794186, -0.14383000135421753, -0.024682000279426575, 0.1500999927520752, 0.4387800097465515, -0.867900013923645, -0.498199999332428, -0.3465699851512909, 0.27612999081611633, -0.2709900140762329, -0.5902900099754333, -0.27035000920295715, 0.1141899973154068, -0.15578000247478485, -0.34553998708724976, -0.1535000056028366, 0.21918000280857086, 0.11657000333070755, 0.02558100037276745, 0.04441500082612038, 0.027217000722885132, -0.18242999911308289, -0.4607599973678589, -0.1878499984741211, -0.17427000403404236, 0.37448999285697937, -0.020061999559402466, 0.2535400092601776, -0.24879999458789825, -0.33208999037742615, -0.14640000462532043, -0.8128100037574768, 0.3378799855709076, 0.30733999609947205, 0.22370000183582306, -0.020760999992489815, -0.238429993391037, 0.5919899940490723, -0.3355900049209595, 0.6298800110816956, -0.7644199728965759, -0.014632999897003174, 0.19912999868392944, 0.5520700216293335, 0.0033340000081807375, -0.39928001165390015, -0.3178899884223938, -0.08227399736642838, -0.3000899851322174, -0.35359999537467957, 0.04824899882078171, -0.2908099889755249, 0.11654999852180481, 0.2739099860191345, -0.7526599764823914, 0.06514500081539154, -0.08003599941730499, -0.03184700012207031, -0.15929999947547913, 0.09413599967956543, 0.07973100244998932, 0.42201998829841614, 0.1933099925518036, -0.43887999653816223, 0.26155999302864075, -0.07491999864578247, 0.21716000139713287, -0.20789000391960144, -0.1825300008058548, 0.5726000070571899, -0.20047999918460846, 0.4526900053024292, 0.4182699918746948, 0.6612600088119507, -0.10284999758005142, 0.23703999817371368, 0.3469099998474121, 0.11949999630451202], u'shattered': [0.322380006313324, -0.10763999819755554, -0.5844100117683411, -0.4415299892425537, 0.015542999841272831, 0.6671599745750427, -0.06814099848270416, 0.0968329980969429, 0.2168699949979782, -0.779990017414093, 0.1797800064086914, 0.44859999418258667, 0.024855000898241997, -0.20404000580310822, -0.683459997177124, 0.02345000021159649, 0.35420000553131104, 0.7093499898910522, -0.4564799964427948, 0.12105000019073486, 0.421640008687973, 0.7002099752426147, 0.1945199966430664, -0.058733001351356506, 0.12559999525547028, 0.23107999563217163, -0.459089994430542, -0.15680000185966492, -0.048395998775959015, -0.1666399985551834, 0.1579499989748001, 0.27511999011039734, 0.39280998706817627, 0.4058699905872345, -0.15246999263763428, 0.07254599779844284, -0.5319600105285645, 0.325980007648468, 0.37338998913764954, 0.5582600235939026, 0.3675299882888794, -0.18477000296115875, -0.09326999634504318, -0.5964400172233582, 0.32082998752593994, 0.03945999965071678, -0.1471399962902069, -0.06319499760866165, -0.37828999757766724, -0.06201700121164322, 0.7383300065994263, 0.02317800000309944, 0.4692800045013428, -0.09206700325012207, 0.47648000717163086, 0.16773000359535217, -0.3434399962425232, 0.1558700054883957, -0.7423999905586243, 0.08296799659729004, -0.20454999804496765, 0.05422800034284592, -0.16176000237464905, -0.018079999834299088, 0.22943000495433807, 0.5309100151062012, -0.10527999699115753, -0.008000300265848637, 0.6288300156593323, 0.061866000294685364, -0.05529399961233139, -0.4422000050544739, -0.06656099855899811, 0.3120400011539459, 0.6144999861717224, 0.060520999133586884, 0.19735999405384064, -0.9752399921417236, -0.03617100045084953, 0.5102699995040894, -0.20104999840259552, 0.1366499960422516, 0.025219999253749847, 0.5158399939537048, -0.23722000420093536, 0.05658499896526337, -0.0713609978556633, -0.30908000469207764, 0.12276999652385712, 0.42917001247406006, 0.5993499755859375, 0.09573200345039368, 0.2027300000190735, -0.1690399944782257, 0.7557700276374817, 0.12838000059127808, 0.40356001257896423, -0.14700999855995178, 0.5969899892807007, 0.4309000074863434, 0.03244699910283089, 0.3570300042629242, 0.2465600073337555, -0.3366599977016449, 0.4939799904823303, 0.08346600085496902, 0.5945600271224976, -0.36893001198768616, 0.22192999720573425, -0.09071999788284302, -0.2519899904727936, -0.12732000648975372, -0.08625499904155731, -0.6005499958992004, 0.28317999839782715, -0.25146999955177307, -0.02635899931192398, -0.19789999723434448, 0.14119000732898712, -0.27351999282836914, 0.43011999130249023, -0.3515399992465973, -0.1863899976015091, 0.8660100102424622, -0.005323499906808138, -0.2866100072860718, -0.43105998635292053, 0.10050000250339508, -0.3301999866962433, 0.31470999121665955, 0.011156000196933746, 1.0192999839782715, 0.3782399892807007, 0.24337999522686005, 0.18322999775409698, -0.16487999260425568, -0.10040999948978424, 0.11386000365018845, 0.21560999751091003, -0.6088799834251404, -0.5408499836921692, 0.18199999630451202, -0.17994999885559082, 0.9988300204277039, 0.0011690000537782907, -0.1243399977684021, 0.499889999628067, 0.4156300127506256, -0.09386199712753296, -0.20430000126361847, 0.15710000693798065, -0.9297699928283691, -0.41808998584747314, 0.14316999912261963, 0.14790000021457672, 0.03441900014877319, 0.20197999477386475, -0.18474000692367554, 0.1475600004196167, 0.5198000073432922, 0.4876300096511841, -0.4037500023841858, -0.05717499926686287, -0.14270000159740448, 0.3369799852371216, 0.11262000352144241, 0.08641199767589569, -0.40713000297546387, 0.060139000415802, -0.4655900001525879, -0.03685599938035011, 0.10636000335216522, 0.4300000071525574, -0.36041998863220215, 0.32738998532295227, 0.3503499925136566, 0.10478000342845917, 0.3423500061035156, -0.06235799938440323, -0.670710027217865, -0.17712000012397766, -0.1657399982213974, 0.1443299949169159, -0.4395500123500824, 0.40165001153945923, 0.1311500072479248, 0.3242399990558624, 0.2045000046491623, -0.31700000166893005, 0.35767000913619995, 0.41119998693466187, -0.7827799916267395, -0.45879998803138733, -0.32771000266075134, 0.19657999277114868, 0.49171000719070435, 0.023761000484228134, 0.45386001467704773, -0.5016499757766724, 0.18765999376773834, 0.9460999965667725, 0.20654000341892242, 0.2591699957847595, -0.10389000177383423, -0.7124199867248535, -0.6222500205039978, 0.2386299967765808, -0.6756799817085266, -0.2846600115299225, 0.6724900007247925, -0.09260600060224533, 0.3569999933242798, -0.19404999911785126, -0.06498400121927261, 0.3737199902534485, 0.11401999741792679, 0.566100001335144, -0.3589000105857849, 0.23093000054359436, 0.6329699754714966, 0.8190299868583679, -0.2904900014400482, 0.2448199987411499, -0.40838998556137085, 0.01461500022560358, -0.18110999464988708, 0.1126599982380867, -0.28088998794555664, -0.1468600034713745, -0.15666000545024872, 0.11389999836683273, -0.408050000667572, 0.06686999648809433, -0.04992299899458885, -0.4356899857521057, 0.22203999757766724, 0.3134300112724304, 0.03311700001358986, -0.3827199935913086, -0.725350022315979, -0.011253999546170235, -0.5424299836158752, -0.0965069979429245, 0.07197000086307526, -0.1826999932527542, -0.48100998997688293, -0.18577000498771667, -0.26927998661994934, -0.1609800010919571, 0.12370000034570694, 0.5859000086784363, 0.07289300113916397, 0.4909699857234955, -1.0161000490188599, 0.5109300017356873, 0.060589998960494995, -0.061420001089572906, 0.06597500294446945, 0.3634200096130371, 0.37751999497413635, 0.5676599740982056, 0.12482000142335892, -0.12477999925613403, 0.2956799864768982, 0.32249000668525696, 0.07056199759244919, -0.05985400080680847, -0.418040007352829, -0.1618500053882599, -0.026542000472545624, -1.0521999597549438, -0.1659500002861023, 0.01641399972140789, -0.08956900238990784, -0.34174999594688416, -0.018959999084472656, -1.145799994468689, 0.22731000185012817, 0.3801499903202057, -0.5310699939727783, 0.027202999219298363, 0.033677998930215836, -0.016352999955415726, -0.370059996843338, 0.16348999738693237, 0.10730999708175659, -0.5678499937057495, 0.26620998978614807, 0.6021100282669067, -0.1970299929380417, -0.08739999681711197, -0.07274399697780609, -0.14951999485492706, 0.0649150013923645, -0.0003724000125657767, 0.6193199753761292, 0.2203100025653839, -0.1386300027370453, -0.4230799973011017, 0.7224400043487549], u'cut': [-0.1674399971961975, -0.09372600167989731, -0.45100998878479004, 0.29945001006126404, 0.16243000328540802, -0.19600999355316162, 0.11411000043153763, 0.28547999262809753, -0.3203499913215637, -1.4743000268936157, -0.02266000024974346, 0.2602199912071228, 0.16425000131130219, 0.19208000600337982, -0.2711699903011322, -0.040036000311374664, -0.1768600046634674, 0.15896999835968018, -0.4630599915981293, -0.11960999667644501, -0.11396999657154083, -0.07577099651098251, 0.3098999857902527, 0.2663300037384033, 0.0802989974617958, -0.22561000287532806, -0.07385300099849701, -0.39642998576164246, -0.20171000063419342, 0.04819599911570549, 0.15977999567985535, 0.4412600100040436, 0.33566999435424805, 0.09805899858474731, -1.0916999578475952, -0.22296999394893646, 0.24151000380516052, 0.06777799874544144, 0.25303998589515686, 0.06132800132036209, -0.10939999669790268, -0.3406499922275543, -0.17735999822616577, -0.1951799988746643, -0.3396100103855133, 0.17541000247001648, -0.5018399953842163, -0.0160910002887249, -0.20768000185489655, -0.24131999909877777, 0.24773000180721283, -0.199070006608963, 0.21897000074386597, 0.1510400027036667, -0.34213998913764954, -0.46939000487327576, -0.3745500147342682, 0.549589991569519, 0.2859100103378296, 0.15533000230789185, -0.06116899847984314, 0.18939000368118286, -0.08706899732351303, 0.0654510036110878, 0.05297200009226799, -0.4345499873161316, -0.03922500088810921, 0.1445399969816208, 0.37665998935699463, 0.21778999269008636, 0.00810300000011921, 0.13756999373435974, 0.44624000787734985, 0.30452999472618103, 0.56072998046875, -0.008391800336539745, -0.15334999561309814, 0.1323699951171875, -0.4644100069999695, -0.25540998578071594, -0.2481600046157837, -0.19866999983787537, 0.6934000253677368, -0.10040999948978424, 0.19207000732421875, 0.06898900121450424, -0.6866899728775024, -0.05697999894618988, 0.03820699825882912, 0.04428499937057495, 0.40713000297546387, 0.5056899785995483, -0.34376001358032227, -0.37582001090049744, -0.04600600153207779, -0.550570011138916, -0.017775999382138252, 0.4309200048446655, 0.0500589981675148, -0.3980199992656708, -0.37977999448776245, 0.020468000322580338, -0.1694200038909912, -0.33601999282836914, -0.23732000589370728, 0.11355999857187271, -0.06915400177240372, -0.15400999784469604, -0.44093000888824463, 0.31536999344825745, -0.49507999420166016, -0.341729998588562, 0.11400999873876572, -0.37654000520706177, -0.2664400041103363, 0.4484899938106537, 0.3067399859428406, 0.24097999930381775, 0.31205999851226807, -0.4014799892902374, -0.0008763400255702436, -0.2966099977493286, -0.035521000623703, -0.010517000220716, -0.22982999682426453, 0.2771899998188019, -0.19277000427246094, -0.30397000908851624, -0.27810999751091003, 0.40307000279426575, -0.013762000016868114, 0.966920018196106, -0.22968000173568726, 0.2506900131702423, -0.2824699878692627, 0.034077998250722885, -0.07675299793481827, -0.13169999420642853, 0.17402000725269318, -0.05027500167489052, 0.03932199999690056, 0.1014999970793724, -0.09806700050830841, -0.4777199923992157, -0.8188999891281128, 0.3343699872493744, 0.2601200044155121, -0.13104000687599182, 0.46404001116752625, -0.42508000135421753, 0.2470400035381317, 0.017823999747633934, 0.18252000212669373, -0.2381799966096878, 0.17199000716209412, 0.3307400047779083, -0.019989000633358955, -0.09316200017929077, -0.36309000849723816, 0.05935399979352951, 0.007421399932354689, 0.37369000911712646, -0.048186998814344406, 0.16614000499248505, 0.24318000674247742, -0.123089998960495, 0.09098000079393387, 0.3418099880218506, -0.019423000514507294, 0.009162000380456448, -0.48021000623703003, 0.055073998868465424, -0.332040011882782, 0.3115899860858917, -0.23848000168800354, 0.20453999936580658, 0.07610700279474258, 0.013075999915599823, 0.09994400292634964, 0.5071600079536438, 0.11181999742984772, -0.11405999958515167, 0.39886999130249023, -0.4319300055503845, 0.08651400357484818, -0.6089699864387512, -0.0886560007929802, 0.284060001373291, 0.1359499990940094, 0.3706600069999695, -0.19797000288963318, 0.971809983253479, -0.04516100138425827, -0.02710999920964241, 0.4940199851989746, -0.17880000174045563, -0.426690012216568, -0.2635500133037567, 0.3248099982738495, 0.21829000115394592, 1.0378999710083008, 0.12511999905109406, 0.39958998560905457, 0.5772899985313416, -0.4162600040435791, 0.22371000051498413, -0.13871000707149506, 0.09162899851799011, -0.30212000012397766, -0.6184899806976318, 0.15142999589443207, -0.538569986820221, 0.027428999543190002, 0.537880003452301, 0.03285299986600876, 0.3424600064754486, 0.6227399706840515, -0.2759299874305725, 0.32245999574661255, -0.264710009098053, 0.8680199980735779, 0.10339999943971634, -0.03181200101971626, -0.06070699915289879, 0.07971599698066711, -0.1499900072813034, -0.10407000035047531, -0.22766999900341034, -0.21772000193595886, -0.8778600096702576, 0.16532999277114868, 0.0328500010073185, 0.13902999460697174, -0.21186000108718872, 0.3383699953556061, -0.4593699872493744, 0.38578999042510986, -0.15916000306606293, -0.14240999519824982, -0.241239994764328, 0.20340999960899353, -0.4979400038719177, 0.3978799879550934, -0.00348620000295341, -1.2330000400543213, 0.10260000079870224, 0.6318899989128113, -0.012419000267982483, 0.1282999962568283, -0.6381099820137024, 0.16845999658107758, 0.006752400193363428, 0.1317099928855896, -0.38284000754356384, 0.5693299770355225, -0.11105000227689743, -0.26809000968933105, 0.5602399706840515, -0.028232000768184662, 0.28196001052856445, 0.7386299967765808, 0.07426100224256516, -0.39076998829841614, 0.1507200002670288, -0.0801210030913353, -0.011862000450491905, 0.11449000239372253, 0.3964200019836426, -0.6675300002098083, -0.46560999751091003, 0.29589998722076416, 0.24898000061511993, -0.3952299952507019, 0.25391000509262085, -0.33379998803138733, -0.08060400187969208, -1.7418999671936035, -0.33880001306533813, 0.0019456000300124288, -0.8597400188446045, -0.21459999680519104, 0.1222900003194809, 0.006058000028133392, -0.12353000044822693, 0.04002299904823303, 0.161080002784729, 0.5894100069999695, -0.2991600036621094, -0.3092699944972992, 0.10499999672174454, 0.17217999696731567, -0.2057799994945526, 0.1204800009727478, 0.23882000148296356, -0.004466299898922443, 0.1082800030708313, -0.20923000574111938, -0.18838000297546387, 0.03578399866819382, -0.20397000014781952], u'torn': [0.4594799876213074, -0.6202999949455261, -0.28161999583244324, -0.40900999307632446, -0.13346999883651733, 0.27487000823020935, -0.3173699975013733, 0.22597000002861023, 0.4314900040626526, -1.0307999849319458, 0.030991999432444572, 0.14485999941825867, 0.5734599828720093, -0.08209999650716782, -0.6362199783325195, 0.26649001240730286, 0.01551199983805418, 0.5190399885177612, -0.3642500042915344, -0.25450000166893005, -0.21913999319076538, 0.1547500044107437, 0.18456999957561493, -0.058671001344919205, -0.5779200196266174, 0.18126000463962555, -0.4904400110244751, -0.1633400022983551, 0.19894999265670776, 0.05911700055003166, 0.1831900030374527, 0.4133799970149994, -0.34995999932289124, 0.06464199721813202, -0.16161000728607178, 0.05244600027799606, -0.2802099883556366, 0.05499500036239624, -0.20503999292850494, 0.3686999976634979, -0.045430999249219894, -1.2073999643325806, -0.23136000335216522, -0.7743099927902222, 0.5135999917984009, -0.36643001437187195, 0.3421100080013275, 0.3667899966239929, -0.3802100121974945, -0.1151600033044815, 0.7340700030326843, 0.10221999883651733, 0.13147999346256256, -0.24280999600887299, -0.05630600079894066, -0.4773600101470947, 0.31512999534606934, -0.005673899780958891, -0.5225099921226501, -0.044874001294374466, -0.5193099975585938, -0.14585000276565552, -0.4703800082206726, -0.450190007686615, 0.1334100067615509, -0.41060999035835266, 0.1814900040626526, -0.28060001134872437, 0.6761000156402588, -0.1868000030517578, 0.33667001128196716, -0.5277199745178223, -0.15094000101089478, 0.4008199870586395, 0.6217600107192993, -0.09785299748182297, 0.2620899975299835, -0.2778500020503998, -0.013496000319719315, 0.0866909995675087, 0.2709299921989441, -0.31209999322891235, -0.40310999751091003, 0.05666099861264229, -0.20669999718666077, 0.25630998611450195, -0.4128899872303009, -0.24628999829292297, -0.21331000328063965, 0.2703799903392792, 0.061030998826026917, 0.12602999806404114, -0.2640500068664551, -0.40856999158859253, -0.38697001338005066, 0.05015699937939644, 0.5655699968338013, -0.18355000019073486, 0.13266000151634216, 0.061847999691963196, 0.3600800037384033, 0.16575999557971954, 0.16064999997615814, -0.017772000283002853, -0.15466000139713287, 0.8462799787521362, 0.3206700086593628, 0.30017998814582825, 0.2297399938106537, 0.09190300107002258, -0.16152000427246094, 0.15522000193595886, -0.3244200050830841, -0.48524999618530273, 0.20521999895572662, 0.1523600071668625, 0.364329993724823, 0.034182000905275345, 0.6773599982261658, -0.5869899988174438, 0.2595899999141693, -0.5529299974441528, 0.16261999309062958, 0.4270400106906891, 0.381740003824234, 0.2386299967765808, -0.5203199982643127, -0.4724999964237213, -0.2745699882507324, 0.17095999419689178, -0.08297599852085114, 0.3723199963569641, 0.008467099629342556, 0.2305999994277954, 0.042660001665353775, -0.12916000187397003, -0.3324500024318695, 0.15042999386787415, 0.09995999932289124, -0.7338500022888184, -0.1811400055885315, 0.4151099920272827, -0.031943999230861664, 0.4011499881744385, -0.6692900061607361, 0.3712100088596344, 0.29006001353263855, 0.6008399724960327, -0.39629000425338745, -0.09952700138092041, -0.2304600030183792, -0.18125000596046448, -0.15835000574588776, -0.5619000196456909, 0.6011599898338318, -0.20082999765872955, -0.07590600103139877, 0.4386099874973297, 0.32951998710632324, 1.1134999990463257, 0.704990029335022, -0.6057299971580505, -0.11482000350952148, -0.042778998613357544, 0.11554999649524689, 0.4980500042438507, 0.5485799908638, -0.055668000131845474, 0.26607000827789307, -0.5976099967956543, 0.17976999282836914, -0.03026299923658371, -0.28633999824523926, -0.33305999636650085, 0.03858700022101402, 0.21664999425411224, 0.09772200137376785, 0.21991999447345734, -0.17685000598430634, -0.21874000132083893, -0.1998099982738495, 0.08154100179672241, -0.1710599958896637, -0.40773001313209534, 0.04262999817728996, -0.01411799993366003, -0.46713998913764954, 0.333189994096756, -0.0256740003824234, -0.15378999710083008, 0.004650699906051159, -0.06262999773025513, 0.18025000393390656, 0.5261200070381165, -0.010338000021874905, 0.8422200083732605, 0.0400100015103817, -0.025539999827742577, 0.2647700011730194, 0.35864999890327454, 0.6363700032234192, 0.1545799970626831, 0.3072499930858612, 0.031908001750707626, 0.0006860200082883239, -0.5697500109672546, 0.688289999961853, -0.05693700164556503, 0.4314199984073639, 0.47286999225616455, 0.5683599710464478, -0.08743999898433685, -0.0019039999460801482, 0.31863999366760254, 0.5030999779701233, 0.46862998604774475, 0.37397000193595886, -0.6550400257110596, 0.26116999983787537, 0.7105399966239929, 0.46349000930786133, -0.4525600075721741, 0.17459000647068024, 0.061702001839876175, 0.14735999703407288, -0.22949999570846558, -0.03838000074028969, -0.4293600022792816, -0.5771499872207642, -0.12306000292301178, 0.5946000218391418, -0.4262099862098694, -0.33816999197006226, -0.06852100044488907, 0.06214899942278862, -0.030944999307394028, 0.3347499966621399, -0.06634200364351273, -0.38763999938964844, -0.9047600030899048, 0.37915998697280884, -0.23297999799251556, 0.1793300062417984, 0.3062799870967865, -0.19177000224590302, -0.5767300128936768, 0.0766960009932518, 0.3529999852180481, 0.18331000208854675, 0.13007000088691711, 0.3068599998950958, 0.7234500050544739, 0.012911999598145485, -0.7783899903297424, 0.3767400085926056, 0.2906799912452698, 0.05908399820327759, -0.15929999947547913, 0.4805000126361847, 0.47086000442504883, 0.12173999845981598, 0.1337299942970276, -0.5810400247573853, 0.24817000329494476, 0.20915000140666962, -0.5921099781990051, -0.34797999262809753, 0.3480899930000305, -0.0917230024933815, -0.30072999000549316, -0.41179001331329346, -0.32433998584747314, -0.2757599949836731, -0.3154299855232239, -0.6119800209999084, 0.08621499687433243, -1.1128000020980835, 0.265859991312027, 0.5189999938011169, 0.0706389993429184, 0.7869399785995483, 0.1633799970149994, -0.10955999791622162, 0.0014321999624371529, -0.3479999899864197, 0.2421800047159195, 0.1109900027513504, 0.42559999227523804, 0.23443999886512756, -0.8103700280189514, -0.18283000588417053, -0.6046599745750427, 0.22851000726222992, 0.1614300012588501, -0.24366000294685364, 0.5438399910926819, 0.5247200131416321, -0.2699599862098694, 0.41356000304222107, 0.16763000190258026], u'folded': [-0.13099999725818634, 0.14896999299526215, 0.11311999708414078, -0.525629997253418, -0.14258000254631042, -0.18708999454975128, -0.21306000649929047, 0.12444999814033508, 4.958800127496943e-05, 0.04123799875378609, -0.3128199875354767, 0.3082999885082245, 0.07235600054264069, -0.2758600115776062, 0.30619001388549805, 0.6070399880409241, 0.43296000361442566, 0.0364530012011528, 0.35526999831199646, -0.7217299938201904, -0.14715999364852905, -0.21856999397277832, -0.057794999331235886, 0.19754000008106232, 0.06663999706506729, 0.21918000280857086, -0.23393000662326813, 0.22228999435901642, -0.2046400010585785, -0.15011000633239746, -0.0628879964351654, -0.3081299960613251, -0.016269000247120857, 0.1604599952697754, -0.5430600047111511, 0.3382500112056732, -0.24300000071525574, 0.05458100140094757, 0.058132000267505646, 0.7239800095558167, -0.26023000478744507, -0.42636001110076904, -0.09493199735879898, 0.273470014333725, 0.46581000089645386, 0.20920999348163605, 0.17020000517368317, -0.050999999046325684, -0.08111900091171265, 0.2746399939060211, 0.25033000111579895, 0.015212000347673893, -0.34841999411582947, -0.6481800079345703, -0.17970000207424164, -0.30643999576568604, 0.16256999969482422, 0.2535099983215332, 0.1571899950504303, -0.2368600070476532, 0.5603700280189514, 0.12391000241041183, -0.2353300005197525, -0.27546000480651855, 0.18585999310016632, -0.4596399962902069, 0.13402999937534332, 0.20956000685691833, 0.08400599658489227, -0.10840000212192535, 0.43667998909950256, -0.20377999544143677, -0.44670000672340393, 0.6783300042152405, 0.01511599961668253, -0.15503999590873718, -0.17961999773979187, -0.31935998797416687, -0.429610013961792, 0.0263420008122921, -0.565280020236969, 0.3576500117778778, -0.3010900020599365, -0.037085000425577164, -0.06199900060892105, -0.06241700053215027, -0.15343999862670898, 0.3444100022315979, -0.44032999873161316, 0.6621599793434143, 0.21796000003814697, 0.2694000005722046, 0.03718600049614906, 0.7318400144577026, -0.3646300137042999, 0.12820999324321747, -0.5426200032234192, 0.4167799949645996, 0.5356199741363525, -0.4976100027561188, 0.8288900256156921, -0.003001099918037653, 0.2603999972343445, -0.17735999822616577, 0.20069999992847443, -0.17340999841690063, -0.17741000652313232, 0.5751500129699707, 0.2921600043773651, 0.17876000702381134, -0.3689500093460083, 0.23199999332427979, -0.3021300137042999, -0.05649999901652336, -0.6890400052070618, 0.020507000386714935, -0.15865999460220337, 0.02528499998152256, 0.24355000257492065, -0.5221400260925293, -0.09783200174570084, -0.36768999695777893, 0.8543699979782104, 0.7183399796485901, -0.3751699924468994, 0.21860000491142273, -0.4314500093460083, -0.3264000117778778, -0.402319997549057, 0.04835499823093414, -0.08814699947834015, -0.06445199996232986, 0.4713500142097473, -0.050652001053094864, -0.012392999604344368, 0.3057500123977661, 0.3412100076675415, -0.2566699981689453, -0.3529700040817261, -0.149509996175766, -0.008430800400674343, 0.28793999552726746, -0.47102999687194824, 0.07611899822950363, 0.008674699813127518, 0.19945000112056732, 0.45566999912261963, -0.2046400010585785, 0.11841999739408493, -0.20100000500679016, -0.15922999382019043, 0.2794699966907501, -0.41110000014305115, -0.965499997138977, 0.2871899902820587, -0.38978999853134155, 0.02505899965763092, -0.4983200132846832, 0.028766000643372536, 0.25773999094963074, -0.5250899791717529, -0.4213399887084961, -0.9829699993133545, 0.7716299891471863, 0.4999000132083893, -0.020116999745368958, 0.04442699998617172, 0.2965799868106842, 0.08924899995326996, 0.25067999958992004, 0.09436900168657303, 0.1519400030374527, -0.03903700038790703, 0.00014131999341771007, -0.23444999754428864, -0.16904999315738678, 0.03240299969911575, 0.661050021648407, 0.27761000394821167, -0.48642000555992126, 0.6888200044631958, -0.4144900143146515, 0.1961199939250946, 0.2125999927520752, 0.44093000888824463, -0.5778599977493286, -0.0035218000411987305, 0.32923999428749084, 0.4308600127696991, -0.13627000153064728, 0.5598800182342529, 0.49268001317977905, 0.3433600068092346, 0.01865299977362156, 0.05028799921274185, 0.5322700142860413, -0.0923440009355545, 0.3022800087928772, 0.10970000177621841, 0.35578998923301697, 0.3752000033855438, -0.3140699863433838, 0.348690003156662, 0.02839300036430359, 0.20983000099658966, -0.5128800272941589, 0.39215999841690063, -0.29148000478744507, 0.05256300047039986, -0.34564998745918274, 0.017076000571250916, -0.1938599944114685, -0.06751000136137009, 0.5412600040435791, 0.45781999826431274, 0.5163900256156921, -0.16859999299049377, -0.675599992275238, 0.06327199935913086, 0.366890013217926, 0.41413000226020813, 0.0669260025024414, -0.3481000065803528, -0.22806000709533691, -0.12151999771595001, 0.031129999086260796, 0.20810000598430634, 0.16037000715732574, -0.5747100114822388, -0.5752300024032593, 0.88264000415802, -0.2814500033855438, -0.50968998670578, -0.48930999636650085, -0.16934999823570251, -0.5184599757194519, -0.1899300068616867, -0.32739999890327454, -0.5709999799728394, 0.1168999969959259, 0.536620020866394, -0.29490000009536743, -0.11670999974012375, -0.17302000522613525, -0.7509700059890747, 0.054214999079704285, 0.40369999408721924, 0.24630999565124512, -0.0967399999499321, 0.2007399946451187, 0.13796000182628632, 0.35405999422073364, -0.14302000403404236, -0.0034827999770641327, 0.5196099877357483, 0.2473600059747696, -0.12013000249862671, 0.07197500020265579, -0.2487799972295761, 0.29197999835014343, -0.3989599943161011, -0.6078600287437439, 0.24866999685764313, 0.2531900107860565, 0.0805480033159256, -0.42965999245643616, 0.005924399942159653, 0.14770999550819397, -0.19085000455379486, 0.031516000628471375, -0.24442000687122345, -0.012033999897539616, 0.2356099933385849, 0.1288899928331375, 0.28979000449180603, -0.3569500148296356, 0.03982900083065033, 0.017865000292658806, -0.13752000033855438, 0.39809998869895935, -0.23152999579906464, -0.23075999319553375, -0.04576199874281883, -0.1872899979352951, -0.17820000648498535, 0.09809400141239166, 0.5331000089645386, 0.33851000666618347, 0.3631399869918823, -0.6861699819564819, 0.6793599724769592, 0.6738799810409546, -0.37132999300956726, 0.29552000761032104, 0.27320000529289246, 0.7602400183677673, 0.29229000210762024, -0.3835799992084503, 0.4560900032520294, -1.0357999801635742], u'young': [-0.10346999764442444, 0.15125000476837158, 0.3628599941730499, -0.07876899838447571, 0.061333999037742615, 0.7150400280952454, -0.21296000480651855, 0.09468699991703033, -0.1782499998807907, -0.5221800208091736, 0.366349995136261, -0.0822329968214035, -0.30270999670028687, -0.0224629994481802, 0.08294399827718735, -0.3481900095939636, -0.3567500114440918, -0.3803600072860718, 0.07141599804162979, 0.2188899964094162, -0.46327999234199524, 0.7729399800300598, -0.08674000203609467, 0.12031999975442886, -0.14861999452114105, -0.12302999943494797, 0.4139699935913086, 0.27307000756263733, 0.1206900030374527, 0.014872999861836433, 0.2129800021648407, 0.4818800091743469, -0.20970000326633453, 0.020670000463724136, -0.9873999953269958, 0.11334999650716782, 0.21931999921798706, 0.3991599977016449, 0.5742200016975403, -0.16896000504493713, 0.8514900207519531, -0.5122600197792053, 0.1762000024318695, -0.10507000237703323, -0.5416200160980225, 0.10057999938726425, 0.1953199952840805, -0.2589400112628937, -0.16646000742912292, -0.2777999937534332, 0.023074999451637268, -0.5684000253677368, -0.5163999795913696, 0.0925619974732399, -0.0734419971704483, 0.17202000319957733, 0.0527070015668869, -0.02759299986064434, 0.04603800177574158, -0.05415400117635727, 0.13508999347686768, -0.12745000422000885, 0.8583999872207642, 0.2642799913883209, -0.2906700074672699, -0.11874999850988388, -0.1473200023174286, -0.26429998874664307, -0.4637399911880493, -0.18985000252723694, -0.14621999859809875, -0.4004499912261963, -0.2630999982357025, 0.4293400049209595, -0.1447400003671646, 0.030395999550819397, 0.04092700034379959, -0.07465499639511108, 0.14514000713825226, -0.05471799895167351, -0.2780599892139435, 0.057780999690294266, -0.023887999355793, 0.12500999867916107, -0.2775999903678894, 0.3645099997520447, -0.22421999275684357, -0.12915000319480896, 0.11796999722719193, 0.32311001420021057, -0.3028700053691864, 0.1735599935054779, -0.5307499766349792, 0.21154999732971191, 0.17208999395370483, -0.055635999888181686, 0.32969000935554504, -0.5051599740982056, 0.08725599944591522, -0.20813000202178955, -0.010332000441849232, -0.5076000094413757, 0.011429999954998493, -0.4427799880504608, -0.16701999306678772, 0.18174999952316284, -0.1806900054216385, 0.012769999913871288, -0.12381000071763992, -0.2205200046300888, 0.11221999675035477, 0.27851998805999756, 0.2795099914073944, -0.35725998878479004, 0.436599999666214, 0.2310599982738495, -0.22939999401569366, 0.3800399899482727, -0.0024804999120533466, -0.30316999554634094, -0.13237999379634857, 0.15538999438285828, 0.05514499917626381, 0.1860000044107437, 0.14485999941825867, -0.12298999726772308, -0.24548999965190887, -0.2390899956226349, 0.25637000799179077, -0.6273800134658813, -0.16651000082492828, -0.487529993057251, -0.2456900030374527, 0.2957800030708313, -0.001756099984049797, -0.09458799660205841, 0.2385600060224533, -0.3400999903678894, -0.02669999934732914, -0.039416998624801636, 0.18704000115394592, -0.17125000059604645, -0.009911499917507172, -0.1572200059890747, -0.19707000255584717, 0.08980699628591537, 0.019578000530600548, -0.051867999136447906, -0.049685001373291016, 0.06448300182819366, 0.18413999676704407, -0.013340000063180923, 0.3128499984741211, 0.6309199929237366, 0.8030300140380859, -0.18400999903678894, -0.23712000250816345, -0.10219000279903412, 0.050085000693798065, -0.48127999901771545, -0.18928000330924988, -0.300790011882782, 0.27974000573158264, -0.18479999899864197, -0.6347100138664246, -0.4170700013637543, -0.445499986410141, 0.3018699884414673, 0.5267300009727478, -0.35065001249313354, 0.42921000719070435, -0.0336420014500618, -1.2036999464035034, -0.015456000342965126, -0.13801999390125275, -0.2782500088214874, -0.059484999626874924, -0.35512998700141907, -0.6750800013542175, 0.9410499930381775, 0.15884999930858612, -0.3062399923801422, -0.10507000237703323, -0.05900000035762787, 0.054489001631736755, 0.01915300078690052, -0.5270100235939026, -0.3187899887561798, 0.3041599988937378, 0.14190000295639038, -0.3701300024986267, -0.1237500011920929, 0.07761699706315994, 0.24235999584197998, 0.2632000148296356, 0.29490000009536743, 0.024783000349998474, -0.817550003528595, 0.21859000623226166, -0.15455999970436096, 1.618299961090088, 0.22078999876976013, 0.20993000268936157, 0.18424999713897705, -0.12387000024318695, -0.011060000397264957, 0.19191999733448029, 0.280460000038147, -0.10180000215768814, -0.22216999530792236, 0.5059400200843811, 0.0021271000150591135, 0.06912799924612045, 0.22995999455451965, 0.2884100079536438, -0.12937000393867493, 0.6126999855041504, 0.11350999772548676, -0.5397599935531616, -0.48906999826431274, 0.03928700089454651, 0.34419000148773193, -0.3364500105381012, -0.12284000217914581, -0.16779999434947968, 0.3531399965286255, 0.03347000107169151, -0.3515099883079529, -0.14880000054836273, 0.2552900016307831, -0.004479499999433756, 0.06952700018882751, -0.17329999804496765, 0.12184999883174896, -0.15520000457763672, 0.46950000524520874, -0.24842000007629395, 0.37457001209259033, -0.815500020980835, -0.006209199782460928, 0.37310001254081726, 0.11681000143289566, 0.056582000106573105, 0.2814899981021881, -0.4022600054740906, 0.13244999945163727, 0.42629000544548035, -0.09926100075244904, -0.19839000701904297, 0.10419999808073044, 0.3471499979496002, -0.12464000284671783, -0.014241999946534634, 0.028324000537395477, 1.3488999605178833, -0.15509000420570374, 0.23869000375270844, -0.06548699736595154, 0.32534000277519226, 0.04323799908161163, 0.13989000022411346, -0.523580014705658, -0.020932000130414963, 0.0846560001373291, -0.14484000205993652, -0.123259998857975, -0.26927000284194946, 0.050572000443935394, -0.19449999928474426, 0.6731799840927124, -0.2536500096321106, -0.3290799856185913, 0.3184100091457367, -0.22335000336170197, -0.2350199967622757, 0.11892999708652496, -1.7337000370025635, 0.11917000263929367, -0.03079099953174591, 0.07321599870920181, -0.25637999176979065, -0.2331400066614151, 0.2947100102901459, 0.04641899839043617, -0.3562000095844269, 0.5387899875640869, -0.029354000464081764, 0.9644700288772583, -0.19753000140190125, 0.027674999088048935, -0.04143499955534935, -0.5133100152015686, -0.1465200036764145, -0.0015521999448537827, 0.21836000680923462, 0.006457599811255932, -0.05621400102972984, 0.31696000695228577, -0.4614900052547455, -0.19091999530792236], u'wet': [0.23939000070095062, -0.2445400059223175, -0.37863001227378845, -0.5201200246810913, -0.46035000681877136, -0.38978999853134155, 0.4628300070762634, 0.9740200042724609, 0.6156299710273743, -0.7426199913024902, 0.20374999940395355, -0.5897499918937683, -0.2673099935054779, -0.18386000394821167, -0.38398000597953796, -0.6860299706459045, -0.26023000478744507, 0.40720999240875244, 0.5007100105285645, 0.19383999705314636, 0.0045647998340427876, -0.013048999942839146, 0.11925999820232391, -0.017253000289201736, -0.6349800229072571, -0.08685000240802765, 0.5889700055122375, 0.04456999897956848, 0.006480799987912178, -0.19845999777317047, 0.29907000064849854, -0.010317999869585037, -0.20217999815940857, -0.09749100357294083, -0.8714200258255005, 0.5038999915122986, 0.010254999622702599, 0.09984000027179718, -0.4957599937915802, 0.1974399983882904, -0.6422299742698669, 0.2528800070285797, -0.23673999309539795, -0.5044699907302856, 0.7107200026512146, -0.04077000170946121, 0.5026599764823914, 0.538349986076355, 0.03607799857854843, -0.3255000114440918, -0.01293100044131279, -0.13016000390052795, 0.053036000579595566, -0.17601999640464783, 0.07075800001621246, 0.6923199892044067, 0.010745000094175339, -0.6970900297164917, 0.5599799752235413, 0.18883000314235687, 0.28224000334739685, -0.3099600076675415, -0.03979000076651573, 0.3801400065422058, -0.4419499933719635, -0.3812200129032135, 0.11417999863624573, -0.2974100112915039, -0.40751001238822937, -0.2933099865913391, 0.21660999953746796, 0.3585500121116638, -0.46105000376701355, 0.33103999495506287, -0.9910299777984619, -0.1949699968099594, 0.54899001121521, 0.28213000297546387, -0.20250999927520752, -0.3028999865055084, 0.22415000200271606, -0.0731310024857521, -0.27333998680114746, -0.04068100079894066, -0.33998000621795654, 0.39379000663757324, -0.08015300333499908, -0.19631999731063843, -0.22499999403953552, 0.31154999136924744, 0.11636999994516373, -0.47244998812675476, 0.24448999762535095, -0.038086000829935074, -0.38582998514175415, 0.29190000891685486, 0.3709399998188019, -0.20297999680042267, 0.4067400097846985, -0.15639999508857727, -0.022545000538229942, -0.0451430007815361, -0.5865899920463562, 0.29423001408576965, -0.6603699922561646, -0.22926999628543854, -0.09878599643707275, 0.6946300268173218, -0.3681600093841553, 0.4262300133705139, -0.3774699866771698, -0.48462000489234924, -0.4819900095462799, 0.061581000685691833, -0.2381799966096878, -0.5326399803161621, 0.12352000176906586, 0.8786799907684326, -0.054575998336076736, -0.015359999611973763, -0.2836199998855591, -0.24393999576568604, 0.35089001059532166, 0.4287300109863281, -0.03770099952816963, 0.30305999517440796, 0.3093000054359436, 0.03335700184106827, 0.7907999753952026, -0.4271799921989441, 0.32269999384880066, 0.7974799871444702, 0.17813999950885773, 0.7945899963378906, -0.13895000517368317, 0.0364839993417263, -0.07079499959945679, 0.3677400052547455, 0.1637199968099594, 0.08514600247144699, 0.15937000513076782, -0.21782000362873077, -0.0545479990541935, -0.7537199854850769, -0.48131000995635986, 0.1084199994802475, -0.47687000036239624, 0.30546998977661133, 0.3068099915981293, -0.3055399954319, -0.5313000082969666, -0.30588001012802124, -0.781470000743866, -0.07694999873638153, 0.2916400134563446, 0.08303199708461761, -0.28780999779701233, 0.018962999805808067, 0.5477399826049805, 0.644760012626648, 0.3707199990749359, -1.248900055885315, -0.2631799876689911, 0.14696000516414642, 0.3360700011253357, 0.33111000061035156, 0.7504799962043762, 0.42712000012397766, 0.06814199686050415, -0.26554998755455017, 0.735759973526001, 0.7684100270271301, 0.1762399971485138, 0.5415199995040894, 0.2696000039577484, 0.18592999875545502, 0.3031100034713745, 0.291020005941391, -0.00012981999316252768, -0.4145300090312958, 0.5019800066947937, 0.16654999554157257, 0.22113999724388123, 0.06658799946308136, -0.1319199949502945, 0.009346099570393562, 1.132599949836731, -0.3469800055027008, 0.13765999674797058, -0.19580000638961792, 0.4399000108242035, 0.2906399965286255, -0.12132000178098679, -0.06902799755334854, -0.1810699999332428, -0.07815899699926376, -0.40672001242637634, -0.17053000628948212, -0.4207899868488312, -0.2069700062274933, 0.24377000331878662, -0.37926000356674194, 0.020501000806689262, 0.11050999909639359, 0.3032799959182739, 0.06928200274705887, -0.38741999864578247, 0.2741599977016449, -0.3772999942302704, -0.6495800018310547, -0.6189600229263306, -0.19453999400138855, 0.41905999183654785, -0.592519998550415, 0.26440998911857605, -0.013127000071108341, -0.07482600212097168, -0.9078599810600281, 0.5949100255966187, -0.5232399702072144, 0.8249800205230713, 0.3709700107574463, 0.1733199954032898, 0.20694999396800995, 0.22220000624656677, 0.26116999983787537, 0.06686200201511383, -0.7315099835395813, -0.06021900102496147, 0.27524998784065247, 1.2740000486373901, -0.4643799960613251, -0.1411599963903427, -0.2955099940299988, 0.08326199650764465, 0.14076000452041626, -0.9567899703979492, -0.17931999266147614, -0.09784000366926193, -0.29061999917030334, -0.7825300097465515, 0.27261000871658325, -0.21344999969005585, -0.04709300026297569, -1.1916999816894531, -0.26440000534057617, 0.16850000619888306, -0.03269900009036064, 0.04965699836611748, -0.16854000091552734, -0.06859199702739716, -0.2778699994087219, 0.018022999167442322, -0.6065000295639038, 0.42340999841690063, 0.5661200284957886, 0.13130000233650208, 0.15063999593257904, 0.19855999946594238, 0.263729989528656, -0.13840000331401825, -0.7542799711227417, -0.42120999097824097, 0.5979400277137756, -0.23181000351905823, 0.5377500057220459, -0.894760012626648, -0.004934399854391813, 0.36656999588012695, -0.4554400146007538, 0.1722099930047989, 0.3562000095844269, -0.5304200053215027, -0.25764000415802, 0.15206000208854675, -0.21876999735832214, -0.16229000687599182, -0.22968000173568726, -0.597100019454956, 0.19888000190258026, -0.6552500128746033, -0.10708999633789062, 0.292930006980896, 0.3352600038051605, -0.6578999757766724, 0.39087000489234924, 0.31703999638557434, -0.09390799701213837, -0.2832300066947937, -0.04404199868440628, -0.18466000258922577, 0.17767000198364258, -0.45162999629974365, -0.005859099794179201, 0.2715199887752533, 0.3685300052165985, 0.3334600031375885, 0.05107000097632408, 0.019415000453591347, 0.3728100061416626], u'cluttered': [-0.37613001465797424, 0.23823000490665436, -0.4577299952507019, -0.12342000007629395, -0.006164600141346455, 0.25088998675346375, -0.5598800182342529, -0.09535899758338928, 0.4787600040435791, 0.01838099956512451, -0.2511099874973297, 0.1290699988603592, -0.020346999168395996, 0.02335200086236, -0.013172999955713749, -0.17233000695705414, -0.4346500039100647, -0.0874980017542839, 0.19306999444961548, 0.09262800216674805, 0.42928001284599304, 0.6132199764251709, -0.048193998634815216, 0.08515699952840805, -0.6695200204849243, -0.21407000720500946, 0.3733200132846832, 0.060474999248981476, 0.3037300109863281, 0.04060199856758118, 0.09565799683332443, -0.16203999519348145, -0.01220100000500679, 0.332069993019104, 0.012357999570667744, 0.6569100022315979, -0.3117699921131134, -0.7069600224494934, -0.43974998593330383, -0.30564001202583313, -0.4731000065803528, 0.2528800070285797, -0.24437999725341797, -0.0941689983010292, 0.2882699966430664, 0.22105999290943146, 0.06002400070428848, -0.17130999267101288, -0.014533000066876411, -0.4579299986362457, 0.04478999972343445, -0.3705900013446808, 0.31762999296188354, -0.423880010843277, 0.5377200245857239, -0.029895000159740448, -0.1740799993276596, -0.487280011177063, -0.08324400335550308, 0.17523999512195587, 0.29780998826026917, -0.6826800107955933, 0.25075000524520874, 0.18681000173091888, 0.14316000044345856, 0.35795000195503235, 0.223690003156662, 0.30340999364852905, 0.5202500224113464, -0.5344399809837341, -0.40522998571395874, -0.1687999963760376, -0.3052099943161011, 0.5344700217247009, -0.0703750029206276, 0.14854000508785248, -0.08500000089406967, 0.25450000166893005, 0.14646999537944794, 0.21597999334335327, -0.01624700054526329, 0.2604700028896332, -0.0034205999691039324, 0.025909999385476112, -0.07752499729394913, -0.15352000296115875, 0.23810000717639923, 0.05637900158762932, -0.0036897999234497547, 0.606249988079071, 0.2702699899673462, -0.34512001276016235, 0.20458999276161194, -0.03899800032377243, -0.2829599976539612, 0.08067700266838074, 0.06584999710321426, -0.284280002117157, 0.22894999384880066, -0.48058998584747314, 0.3405199944972992, -0.12495999783277512, -0.05933599919080734, -0.1985200047492981, -0.8998399972915649, -0.191880002617836, 0.43821001052856445, -0.09264600276947021, 0.3682500123977661, -0.1252100020647049, -0.9800199866294861, 0.30052998661994934, -0.5392199754714966, 0.13138000667095184, -0.17076000571250916, -0.4192500114440918, 0.1259399950504303, -0.10717999935150146, -0.01702200062572956, 0.22606000304222107, 0.1915999948978424, -0.09616900235414505, 0.3325499892234802, 0.3880299925804138, 0.011284999549388885, 0.2626599967479706, -0.1354299932718277, -0.7135499715805054, -0.0410429984331131, 0.26440000534057617, 0.41993001103401184, -0.17437000572681427, 0.25220000743865967, -0.23241999745368958, 0.42875999212265015, -0.035773999989032745, 0.7317299842834473, -0.002030499977990985, -0.10181999951601028, -0.11406999826431274, -0.07410100102424622, 0.043108999729156494, 0.2596000134944916, 0.34935998916625977, 0.006744599901139736, -0.029374999925494194, 0.5127099752426147, 0.6934599876403809, 0.1385599970817566, -0.5212799906730652, -0.3851499855518341, -0.2217700034379959, 0.003395400010049343, -0.38120999932289124, -0.34797000885009766, 0.23829999566078186, -0.08955299854278564, 0.5340099930763245, 0.49599000811576843, 0.25360000133514404, -0.5006099939346313, 0.26078999042510986, 0.47328001260757446, 0.05288900062441826, 1.0285999774932861, -0.22098000347614288, -0.08538299798965454, -0.21518999338150024, 0.11014000326395035, -0.07539299875497818, -0.15443000197410583, 0.26903000473976135, -0.4549799859523773, -0.41769999265670776, -0.1917400062084198, -0.1775200068950653, -0.300680011510849, 0.02608799934387207, -0.24074000120162964, -0.8882499933242798, -0.08710599690675735, -0.26010000705718994, 0.23966999351978302, 0.21703000366687775, 0.5148599743843079, -0.03700200095772743, 1.4723999500274658, -0.06194400042295456, -0.024441000074148178, 0.0974230021238327, 0.1387999951839447, -0.7309799790382385, -0.3814300000667572, 0.03442100062966347, 0.28898999094963074, -0.09316399693489075, -0.8580099940299988, 0.5907300114631653, -0.7824100255966187, 0.35587000846862793, -0.25619998574256897, -0.2683199942111969, -0.09141000360250473, -0.055973999202251434, 0.6608999967575073, -0.44602999091148376, -0.16680000722408295, -0.43737998604774475, -0.0872659981250763, -0.15724000334739685, -0.5545200109481812, 0.2581000030040741, -0.05632400140166283, -0.15067000687122345, -0.011517999693751335, 0.1760299950838089, -0.09856700152158737, -0.39699000120162964, 0.3817499876022339, 0.32447001338005066, 0.22529999911785126, -0.02369000017642975, -0.7131800055503845, 0.27542001008987427, -0.09773500263690948, -0.07466799765825272, -0.07621700316667557, 0.03339400142431259, -0.23330000042915344, -0.4074999988079071, 0.2594299912452698, 0.2651500105857849, -0.21971000730991364, -0.2047400027513504, 0.033640000969171524, 0.06822700053453445, -0.025880999863147736, 0.39607998728752136, -0.35374000668525696, -0.2101999968290329, 0.4850800037384033, -0.08920600265264511, 0.0012620999477803707, 0.654449999332428, -0.18538999557495117, -0.21963000297546387, -0.047974999994039536, 0.23534999787807465, -0.23541000485420227, 0.6129500269889832, 0.43887999653816223, -0.18967999517917633, 0.023475000634789467, -0.5706200003623962, -0.03948099911212921, 0.5087900161743164, -0.16708000004291534, -0.27821001410484314, 0.40022000670433044, 0.4612799882888794, -0.10926999896764755, -0.33368998765945435, -0.2263599932193756, -0.5127099752426147, 0.7842400074005127, 0.31411001086235046, 0.4251199960708618, -0.12794999778270721, 0.5465800166130066, 0.08838000148534775, -0.40448999404907227, 0.5743799805641174, -0.25753000378608704, 0.0978970006108284, -0.33351001143455505, 0.39563998579978943, 0.10261999815702438, 0.6149299740791321, -0.27952998876571655, -0.43939998745918274, -0.16234000027179718, 0.07012300193309784, 0.010768000036478043, -0.3777799904346466, 0.15902000665664673, -0.009314400143921375, -0.08868499845266342, 0.6187700033187866, -0.47415998578071594, -0.5267099738121033, -0.09687300026416779, 0.04100999981164932, -0.1901800036430359, 0.0905120000243187, -0.06616900116205215, -0.1669600009918213, 0.45205000042915344, -0.03736000135540962, -0.33375000953674316, 0.3743000030517578], u'verdant': [-0.1484300047159195, -0.6607000231742859, -0.07585100084543228, 0.12115000188350677, -0.13059000670909882, 0.042688999325037, 0.30910998582839966, -0.4681200087070465, 0.31742000579833984, 0.3814699947834015, -0.30856001377105713, -0.34297001361846924, -0.08717799931764603, -0.5014899969100952, -0.5234400033950806, 0.42462000250816345, -0.4544300138950348, -0.09350699931383133, 0.24979999661445618, 0.9678999781608582, -0.1774500012397766, 0.7865899801254272, -0.6778799891471863, 0.0821240022778511, -0.10493999719619751, -0.4767700135707855, -0.24732999503612518, 0.10236000269651413, -0.21145999431610107, -0.0677499994635582, 0.5391700267791748, 0.12773999571800232, -0.41363000869750977, -0.021750999614596367, 0.7596700191497803, 0.40459999442100525, -0.019627999514341354, -0.3104400038719177, -0.3350200057029724, -0.5218200087547302, 0.27441999316215515, 0.00617779977619648, -0.1961199939250946, 0.13383999466896057, 0.719760000705719, 0.04468800127506256, 0.23135000467300415, 0.08243799954652786, 0.4172399938106537, -0.259880006313324, -0.12278000265359879, -0.12345000356435776, 0.5941900014877319, -0.4664599895477295, 0.33292001485824585, -0.3092299997806549, -0.007532400079071522, -0.5742200016975403, 0.21629999577999115, -0.013233000412583351, -0.2602800130844116, -0.13874000310897827, 0.14337000250816345, 0.38019999861717224, -0.10106000304222107, 0.47350001335144043, -0.0482649989426136, 0.2919299900531769, -0.1787099987268448, -0.1949000060558319, -0.27167999744415283, 0.35585999488830566, 0.2446800023317337, -0.4544700086116791, -0.02232700027525425, -0.09015800058841705, 0.12330000102519989, -0.22101999819278717, -0.5283399820327759, 0.039080001413822174, -0.23003000020980835, 0.20274999737739563, -0.35679998993873596, 0.3797599971294403, 0.47457000613212585, 0.5516899824142456, 0.15724000334739685, 0.07527200132608414, 0.22023999691009521, -0.008149500004947186, 0.15591999888420105, -0.33924001455307007, 0.7068899869918823, -0.03195200115442276, -0.39581000804901123, 0.13753999769687653, 0.7874000072479248, -0.03695699945092201, 0.03227800130844116, 0.3934299945831299, -0.38982000946998596, 0.6100900173187256, -0.4811500012874603, 0.6994100213050842, -0.9678000211715698, -0.1694200038909912, 0.17141999304294586, 0.009327700361609459, -0.27066999673843384, -0.42831000685691833, -0.36956000328063965, -0.4256899952888489, 0.4421199858188629, 0.3635700047016144, 0.1968899965286255, 0.13235999643802643, 0.40536001324653625, 0.4324199855327606, 0.14789000153541565, 0.47890999913215637, 0.12131000310182571, -0.3239699900150299, 0.060844000428915024, 0.38839998841285706, 0.11467999964952469, 0.3631899952888489, 0.33504000306129456, 0.37040001153945923, -0.6846200227737427, 0.02991200052201748, -0.0756009966135025, 0.2837899923324585, 0.07376699894666672, 0.16880999505519867, -0.3533399999141693, 0.2668899893760681, 0.5630699992179871, 0.24210000038146973, -0.08348400145769119, -0.41648000478744507, 0.3791700005531311, 0.24270999431610107, -0.2888700067996979, 0.1967799961566925, -0.46472999453544617, 0.2340800017118454, -0.14969000220298767, -0.3352999985218048, -0.24724000692367554, -0.27564001083374023, -0.5918099880218506, -0.2834399938583374, -0.05276300013065338, 0.1659500002861023, 0.5831900238990784, -0.2994999885559082, 0.029364999383687973, -0.07384999841451645, 0.6073399782180786, 0.42423999309539795, -0.37213000655174255, -0.19783000648021698, 0.44238999485969543, -0.059436000883579254, -0.08069299906492233, -0.6226599812507629, 0.07239899784326553, 0.009177600033581257, -0.19288000464439392, -0.5412300229072571, -0.0382860004901886, -0.11356999725103378, -0.20206999778747559, -0.18785999715328217, 0.033789001405239105, -0.060228001326322556, -0.14726999402046204, 0.24196000397205353, -0.2064799964427948, -0.3976399898529053, -0.17827999591827393, 0.06513199955224991, 0.24628999829292297, -0.10626000165939331, 0.1989700049161911, -0.11565999686717987, 0.589900016784668, -0.08389899879693985, -0.16238999366760254, 0.17122000455856323, -0.5625699758529663, 0.19268999993801117, -0.027279000729322433, -0.11112000048160553, 0.03374499827623367, 0.328110009431839, -0.29140999913215637, 0.37999001145362854, 0.0674550011754036, 0.6451600193977356, 0.00037394999526441097, -0.42719000577926636, -0.36750999093055725, 0.11597000062465668, 0.036010999232530594, -0.6380699872970581, -0.048996999859809875, 0.6000000238418579, -0.17270000278949738, -0.2521600127220154, 0.12323000282049179, 0.42173999547958374, -0.1987999975681305, -0.5236300230026245, -0.21689000725746155, 0.1096699982881546, 0.014840000309050083, -0.36948999762535095, 0.4021500051021576, -0.07045900076627731, 0.4792400002479553, -0.07331500202417374, 0.016308000311255455, -0.22462999820709229, -0.02455900050699711, -0.14699000120162964, 0.28828001022338867, 0.3961600065231323, -0.10846000164747238, -0.4557799994945526, 0.1287900060415268, 0.3331100046634674, -0.1031000018119812, 0.010707000270485878, 0.3847300112247467, -0.015961000695824623, 0.2366199940443039, -0.06552399694919586, 0.0838719978928566, -0.39621999859809875, 0.16875000298023224, -0.21126000583171844, -0.11728999763727188, 0.5414900183677673, -0.4396899938583374, -0.11939000338315964, 0.0006959399906918406, 0.4718700051307678, -0.16635000705718994, -0.41714000701904297, 0.11358000338077545, -0.09012100100517273, 0.4361400008201599, -0.9448800086975098, 0.1291400045156479, 0.41187000274658203, -0.27742999792099, 0.23027999699115753, -0.02449600026011467, -0.23184999823570251, 0.5824099779129028, -0.3014200031757355, 0.6185799837112427, -0.5864999890327454, 0.009240900166332722, -0.12280000001192093, -0.028813999146223068, 0.046654000878334045, 0.43470999598503113, -0.2847200036048889, -0.13930000364780426, -0.34163999557495117, -0.27884000539779663, -0.060256000608205795, 0.05956299975514412, 0.39886999130249023, 0.6798499822616577, 0.43786999583244324, -0.02412099950015545, -0.3464699983596802, -0.24964000284671783, -0.2975899875164032, -0.5866299867630005, -0.057266999036073685, -0.5755800008773804, -0.4249599874019623, 0.4103499948978424, -0.420879989862442, -0.10756000131368637, -0.07586699724197388, 0.262580007314682, 0.005894400179386139, 0.22390000522136688, 0.23061999678611755, -0.23684999346733093, 0.2526000142097473, 0.10013999789953232, 0.3832400143146515, 0.05721699818968773, -0.2399500012397766], u'sunny': [-0.07985000312328339, -0.4540500044822693, -0.4672499895095825, -0.18623000383377075, -0.6703400015830994, 0.20603999495506287, 0.28352001309394836, 0.47516998648643494, -0.11905000358819962, -0.4271399974822998, -0.23156000673770905, -0.19162000715732574, -0.10362999886274338, 0.23902000486850739, -0.44064998626708984, -0.3084999918937683, -0.33112001419067383, 0.182219997048378, 0.8637700080871582, 0.5752699971199036, 0.23055000603199005, 0.617139995098114, -0.14891000092029572, -0.3364099860191345, -0.020705999806523323, -0.3158999979496002, 0.1842299997806549, 0.1510699987411499, -0.09587699919939041, -0.48012998700141907, -0.030199000611901283, 0.16132000088691711, -0.24142999947071075, 0.02457300014793873, -0.3714900016784668, 0.2071399986743927, -0.5512999892234802, -0.057652998715639114, -0.7958999872207642, 0.14500999450683594, 0.6101199984550476, 0.10333999991416931, -0.014344999566674232, 0.026505999267101288, 0.3043299913406372, -0.3277300000190735, 0.7206599712371826, 0.3342199921607971, 0.007557900156825781, -0.8323500156402588, -0.4812699854373932, -0.5757099986076355, 0.9949700236320496, -0.42719000577926636, -0.2901099920272827, 0.25694000720977783, 0.3416000008583069, -0.10209000110626221, 0.7502300143241882, 0.12399999797344208, -0.02952600084245205, -0.12689000368118286, 0.4516400098800659, 0.11428000032901764, 0.1747100055217743, -0.23120999336242676, 0.06782899796962738, 0.4153900146484375, -0.40318000316619873, -0.5218200087547302, -0.5089499950408936, 0.02805599942803383, -0.1589599996805191, -0.008019600063562393, -0.6049299836158752, -0.27667000889778137, -0.41694000363349915, 0.2836900055408478, 0.17023999989032745, -0.3884199857711792, 0.06420399993658066, 0.6759399771690369, -0.45489999651908875, 0.6772500276565552, -0.2714900076389313, 0.5424200296401978, -0.13465000689029694, 0.14600999653339386, 0.37551000714302063, -0.05480099841952324, 0.0280930008739233, -0.3259499967098236, -0.09517399966716766, -0.21348999440670013, -0.4140099883079529, 0.4882499873638153, 0.7436800003051758, -0.058802999556064606, -0.22026999294757843, 0.04800700023770332, 0.30906999111175537, -0.6294500231742859, 0.028991999104619026, 0.4622200131416321, -0.12032999843358994, 0.5208799839019775, -0.17878000438213348, 0.19526000320911407, -0.32267001271247864, -0.2707900106906891, -0.037689000368118286, -0.5828499794006348, 0.5147799849510193, 0.5480700135231018, 0.16428999602794647, -0.30757999420166016, -0.3153800070285797, -0.1949699968099594, 0.31279999017715454, 0.1782200038433075, -0.19068999588489532, 0.013206000439822674, -0.27998000383377075, 0.5352500081062317, -0.23232999444007874, 0.5413500070571899, 0.28909000754356384, 0.05388500168919563, 0.17625999450683594, 0.041508998721838, -0.2603299915790558, 0.8352900147438049, 0.15178999304771423, 0.008725499734282494, -0.08731000125408173, -0.31036999821662903, 0.11530999839305878, -0.14507000148296356, 0.15775999426841736, -0.47551000118255615, -0.09700600057840347, -0.10592000186443329, -0.37130001187324524, -0.4058699905872345, -0.8073499798774719, -0.04373899847269058, -0.1876399964094162, -0.031466998159885406, 0.21727000176906586, 0.16877000033855438, -0.40035000443458557, -0.4037899971008301, 0.4867500066757202, 0.13449999690055847, 0.5153800249099731, -0.05136699974536896, -0.43004998564720154, 0.42715001106262207, 0.15737999975681305, 0.5176399946212769, -0.08111699670553207, -1.0056999921798706, 0.034756001085042953, 0.22604000568389893, 0.3571699857711792, -0.19559000432491302, 0.2821199893951416, -0.08815199881792068, 0.19964000582695007, 0.1694200038909912, 0.0005959700210951269, 0.11840999871492386, -0.711080014705658, 0.12781000137329102, 0.07689099758863449, -0.07357300072908401, 0.15786999464035034, -0.6451900005340576, -0.1377899944782257, -0.3645800054073334, -0.19328999519348145, 0.27366000413894653, 0.22247999906539917, 0.22662000358104706, -0.15535999834537506, 0.22362999618053436, 0.656719982624054, -0.5686299800872803, -0.5442799925804138, 0.09300100058317184, -0.21719999611377716, 0.09474100172519684, 0.057388000190258026, -0.2985199987888336, -0.45228999853134155, -0.4242900013923645, -0.3035599887371063, -0.21050000190734863, -0.560230016708374, 0.016826000064611435, 0.5808500051498413, -0.6389399766921997, -0.2666400074958801, 0.4475499987602234, 0.42384999990463257, -0.45094001293182373, -0.06963499635457993, 0.19949999451637268, 0.06331100314855576, -0.30636000633239746, 0.07595399767160416, -0.24518999457359314, -0.27741000056266785, -0.7692000269889832, 0.2858099937438965, -0.03677000105381012, 0.2200700044631958, -0.6452000141143799, 0.5365700125694275, -0.6712599992752075, 1.2226999998092651, 0.17027999460697174, -0.38016000390052795, 0.3890100121498108, -0.8207100033760071, 0.2682499885559082, 0.6042400002479553, -0.047940999269485474, -0.005558399949222803, 0.27452999353408813, 0.49421000480651855, -0.21174000203609467, 0.39208000898361206, -0.6478899717330933, -0.11922000348567963, 0.04735200107097626, -0.9651399850845337, 0.051566001027822495, -0.750029981136322, -0.2515699863433838, -0.051479000598192215, 0.029405999928712845, -0.838699996471405, 0.47060999274253845, 0.14805999398231506, -0.3137199878692627, 0.14031000435352325, -0.22137999534606934, -0.4631099998950958, -0.10593000054359436, 0.24924999475479126, -0.08078499883413315, 0.39706000685691833, 0.3729400038719177, -0.2102999985218048, -0.16540999710559845, 0.12432000041007996, 0.015189999714493752, -0.17723000049591064, 0.39381998777389526, 0.2529999911785126, -0.14550000429153442, 0.0737529993057251, 0.04734700173139572, -0.606660008430481, -0.26357001066207886, 0.12417999655008316, -0.0927169993519783, 0.8065699934959412, -0.27978000044822693, 0.4281899929046631, -0.6720200181007385, -0.23895999789237976, -0.3457599878311157, 0.6086599826812744, -0.18799999356269836, -0.29082998633384705, 0.4127599895000458, -0.2875100076198578, 0.4300200045108795, -0.4789600074291229, -0.07858599722385406, -0.5447099804878235, 0.47936999797821045, -0.11354000121355057, -0.054627999663352966, 0.1561799943447113, -0.034981001168489456, -0.44843998551368713, -0.038593001663684845, 0.24792000651359558, 0.29576998949050903, -0.18182000517845154, 0.5377799868583679, -0.1981399953365326, 0.06227000057697296, 0.17016999423503876, 0.24352000653743744, -0.16453999280929565, 0.36581000685691833], u'thawed': [0.06126299872994423, -0.011748000048100948, 0.4429500102996826, 0.39504000544548035, 0.6784200072288513, -0.10870999842882156, -0.2806299924850464, -0.21965999901294708, -0.2296999990940094, -0.0551070012152195, 0.34391000866889954, -0.3979400098323822, 0.6545500159263611, -0.6696400046348572, -0.960889995098114, 0.5885199904441833, -0.3952600061893463, -0.23934000730514526, -0.4893200099468231, 0.4077399969100952, -0.298799991607666, -0.15623000264167786, 0.5298900008201599, -0.045396000146865845, -0.7493199706077576, 0.04407599940896034, -0.712689995765686, -0.10293000191450119, 0.12817999720573425, -0.6225299835205078, -0.12430000305175781, -0.38593998551368713, 0.2912200093269348, -0.13192999362945557, 0.7986599802970886, 0.47277000546455383, -0.4107399880886078, 0.5659800171852112, -0.44734999537467957, 0.8152599930763245, 0.09382499754428864, -0.02154799923300743, -0.17419999837875366, 0.5715600252151489, 0.0627020001411438, -0.2948800027370453, -0.05150900036096573, 0.5944700241088867, -0.2536099851131439, 0.3602699935436249, -0.34226998686790466, -0.4041000008583069, 0.21116000413894653, -0.4153600037097931, -0.16750000417232513, 0.08199799805879593, 1.2906999588012695, -0.4569700062274933, 0.37494000792503357, 0.27658000588417053, 0.08483599871397018, 0.6088200211524963, -0.17377999424934387, -0.042114999145269394, -0.06853300333023071, -0.18734000623226166, -0.26175999641418457, 0.3568600118160248, 0.050078000873327255, 0.076044000685215, 0.2714900076389313, 0.8108900189399719, -0.30230000615119934, 0.43241000175476074, 0.17635999619960785, -0.08236400038003922, -0.2837600111961365, -0.5864499807357788, -0.5845699906349182, -0.029402999207377434, -0.01707400009036064, 0.08756999671459198, 0.21859000623226166, 0.17264999449253082, 0.4571000039577484, -0.4195599853992462, -0.5734000205993652, -0.1377899944782257, -0.8117899894714355, -0.3451099991798401, -0.44929999113082886, 0.23038999736309052, -0.013631000183522701, 0.3404799997806549, -0.4534499943256378, 0.2967599928379059, 0.2918199896812439, 0.5026900172233582, 0.20512999594211578, 0.4671800136566162, -0.05373299866914749, -0.6695600152015686, -0.33125001192092896, -0.14701999723911285, -0.3821699917316437, 0.0506180003285408, 0.26162999868392944, 0.9065399765968323, -0.2989499866962433, 0.2831900119781494, -0.04067699983716011, 0.04639099910855293, 0.2996000051498413, -0.036382000893354416, -0.42120999097824097, -0.3342199921607971, -0.4315899908542633, -0.19166000187397003, 0.35819000005722046, 0.12570999562740326, 0.09322399646043777, -0.610069990158081, -0.20257000625133514, 0.07930099964141846, -0.0629739984869957, 1.1385999917984009, -0.3531300127506256, -0.08111400157213211, -0.042075999081134796, 0.3891899883747101, -0.5778800249099731, 0.5332000255584717, 0.3835200071334839, 0.155799999833107, -0.690750002861023, -0.5354999899864197, 0.2188899964094162, -0.43518999218940735, -0.5935400128364563, -0.1248600035905838, 0.21028000116348267, -0.19634999334812164, -0.9474200010299683, -0.3085800111293793, -0.22822000086307526, 0.013906000182032585, 0.07495799660682678, 0.07846300303936005, 0.26524001359939575, -0.37024998664855957, -1.082200050354004, 0.1648000031709671, -0.14827999472618103, 0.21615999937057495, -0.2597000002861023, 0.2031400054693222, 0.1577800065279007, -0.07475200295448303, 0.02699200063943863, 0.3718299865722656, -0.3589099943637848, 0.22062000632286072, -0.33574000000953674, 0.012817000038921833, 1.13919997215271, -0.12134999781847, 0.22231000661849976, -0.7783499956130981, -0.0843140035867691, -0.2193399965763092, 1.0877000093460083, 0.5031599998474121, -0.420960009098053, -0.42056000232696533, 0.6133000254631042, 0.055897001177072525, 0.40821000933647156, 0.09335900098085403, 0.21362000703811646, -0.3487899899482727, -0.4027999937534332, 0.0734580010175705, -0.14673000574111938, -0.29572999477386475, -0.23311999440193176, -0.15094000101089478, 0.878030002117157, -0.30024001002311707, 0.36414000391960144, -0.9360899925231934, 0.2928900122642517, 0.3462199866771698, 0.5331699848175049, -0.4244900047779083, -0.751579999923706, 0.01915000006556511, -0.20452000200748444, 0.7105600237846375, 0.7986099720001221, -0.11322999745607376, -0.06553199887275696, -0.4372299909591675, 0.32811999320983887, 1.103700041770935, 0.03348499909043312, -0.7878900170326233, 0.8014100193977356, 0.4656200110912323, 0.03552199900150299, 0.334199994802475, -0.015731999650597572, -0.04682699963450432, -0.3390499949455261, 0.04741600155830383, 0.525879979133606, -0.4471000134944916, 0.565060019493103, -0.9081400036811829, -0.16804000735282898, 0.43452998995780945, 0.7182499766349792, 0.30581000447273254, -0.32714998722076416, -0.2846899926662445, 0.21472999453544617, -0.6889100074768066, 0.15657000243663788, 0.011517999693751335, -0.5997099876403809, 0.16086000204086304, 0.42142999172210693, -0.13937999308109283, 0.34904998540878296, -0.4698599874973297, -0.12415999919176102, -0.025543000549077988, 0.3982999920845032, 0.3043400049209595, -0.5443000197410583, -0.7260299921035767, -0.24660000205039978, -0.49761998653411865, 0.2847200036048889, -0.02589399926364422, -0.6961299777030945, -0.24341000616550446, 0.3602299988269806, 1.1054999828338623, -0.15158000588417053, -0.6172199845314026, 0.3536800146102905, 0.3177500069141388, 0.17940999567508698, -0.14560000598430634, -0.6632099747657776, -0.40904998779296875, 0.5918800234794617, 0.047207001596689224, 0.21595999598503113, 0.7156299948692322, -0.20282000303268433, 0.7051500082015991, -0.4293600022792816, 0.276309996843338, 0.11821000277996063, -0.35210999846458435, -0.18955999612808228, 0.17149999737739563, -0.14056000113487244, -0.4678399860858917, -0.2698099911212921, 0.9532600045204163, 0.029262999072670937, 0.1981000006198883, -0.14413000643253326, 0.40779998898506165, 0.8464000225067139, -0.31112998723983765, -0.5078099966049194, -0.6825900077819824, -0.19351999461650848, -0.1036899983882904, 0.28685998916625977, -0.46088001132011414, -0.2814599871635437, 0.039701998233795166, 0.3003099858760834, 0.5512300133705139, 0.031244000419974327, -0.03127000108361244, -0.29061999917030334, -0.579069972038269, 0.9102799892425537, 0.2815000116825104, -0.5371000170707703, -0.2607400119304657, 0.30379000306129456, 0.07056999951601028, 0.1452600061893463, -0.18443000316619873], u'dark': [-0.006430199835449457, -0.29673999547958374, 0.3598099946975708, -0.5496199727058411, -0.4007999897003174, 0.010707000270485878, -0.18258999288082123, 0.4269300103187561, 0.4428499937057495, -1.095900058746338, 0.3893499970436096, -0.3082900047302246, -0.32218998670578003, 0.34735000133514404, -0.5285199880599976, -0.09883999824523926, -0.12482000142335892, -0.16506999731063843, -0.06494300067424774, 0.10733000189065933, 0.14128999412059784, 0.40821999311447144, 0.20243999361991882, 0.5134999752044678, -0.3450999855995178, -0.4000299870967865, 0.8286499977111816, -0.3483099937438965, -0.6065700054168701, 0.3969399929046631, -0.12150000035762787, 0.3126699924468994, -0.5051299929618835, -0.3500399887561798, -0.535860002040863, 0.7549399733543396, -0.0267730001360178, 0.03564799949526787, -0.2649799883365631, 0.1722400039434433, 0.2371399998664856, 0.09150400012731552, -0.09216000139713287, -0.00785870011895895, 0.35822999477386475, -0.04517799988389015, 0.05061100050806999, -0.34292998909950256, -0.5474100112915039, -0.7231400012969971, -0.2214300036430359, 0.15084999799728394, 0.45552998781204224, -0.25635001063346863, 0.18937000632286072, -0.007638799957931042, -0.03780699893832207, 0.004981399979442358, 0.6360700130462646, -0.3111000061035156, -0.4945400059223175, -0.07575800269842148, 0.2338400036096573, 0.1350499987602234, -0.28856000304222107, -0.6375700235366821, 0.04558299854397774, 0.05769500136375427, 0.4739699959754944, -0.2768999934196472, 0.41771000623703003, 0.23792000114917755, 0.021637000143527985, -0.24488000571727753, -0.08017300069332123, 0.015521000139415264, -0.3360700011253357, -0.20192000269889832, 0.4482499957084656, -0.7434499859809875, 0.41345998644828796, 0.22506999969482422, -0.020225999876856804, 0.017268000170588493, 0.14169999957084656, 0.22055000066757202, 0.527649998664856, 0.40904000401496887, -0.012775000184774399, 0.4841800034046173, -0.16042999923229218, -0.10324999690055847, 0.14361999928951263, 0.5545099973678589, -0.576259970664978, 0.6269000172615051, 0.2115900069475174, 0.22982999682426453, 0.9096400141716003, -0.539680004119873, 0.5268300175666809, -0.3124299943447113, -0.364080011844635, 0.42524001002311707, -0.37981998920440674, -0.10621999949216843, 0.2933399975299835, 0.20077000558376312, -0.293720006942749, 0.16130000352859497, -0.032311998307704926, 0.11737000197172165, 0.4671500027179718, -0.12086000293493271, 0.04326999932527542, 0.16584999859333038, -0.058782998472452164, 0.09797800332307816, -0.32227998971939087, -0.7821000218391418, -0.36032000184059143, -0.5391899943351746, -0.17318999767303467, 0.4862000048160553, -0.1389700025320053, 0.20761999487876892, 0.1500999927520752, 0.3674899935722351, -0.04250599816441536, 0.008264199830591679, 0.06353399902582169, 0.1667100042104721, -0.20479999482631683, 0.44850999116897583, -0.07944600284099579, -0.07085099816322327, -0.7239099740982056, 0.45840001106262207, -0.3834399878978729, -0.14330999553203583, 0.4941900074481964, 0.08485600352287292, -0.42160001397132874, 0.21926000714302063, 0.012505999766290188, -0.3238300085067749, -0.20159000158309937, -0.08535200357437134, 0.024484999477863312, -0.1646600067615509, -0.058455001562833786, 0.14899000525474548, -0.4424099922180176, -0.3652400076389313, 0.9471399784088135, -0.718970000743866, 0.27421998977661133, -0.27476999163627625, 0.26440998911857605, -0.053881000727415085, 0.0670820027589798, -0.5259799957275391, 0.4631099998950958, 0.006645900197327137, 0.028147999197244644, 0.19916999340057373, -0.6197800040245056, 0.700439989566803, -0.3044799864292145, -0.3634899854660034, 0.291269987821579, 0.19367000460624695, -0.047150999307632446, 0.13784000277519226, 0.03568900004029274, -0.23523999750614166, -0.10503000020980835, 0.11027999967336655, -0.16072000563144684, -0.7577999830245972, -0.20803000032901764, 0.15349000692367554, 0.05365300178527832, 0.04460600018501282, 0.12321999669075012, -0.3265799880027771, 0.9423800110816956, -0.16637000441551208, -0.1262899935245514, 0.008988600224256516, -0.24307000637054443, 0.07134299725294113, 0.08668699860572815, 0.15062999725341797, -0.030774999409914017, -0.2918800115585327, -0.8799999952316284, 0.016450999304652214, -0.6094599962234497, 0.3098599910736084, 1.5628000497817993, 0.03918800130486488, 0.02782200090587139, -0.1364700049161911, 0.18960000574588776, -0.4333699941635132, 0.038026001304388046, 0.24018999934196472, -0.4195399880409241, -0.41613999009132385, 0.4534200131893158, -0.1728699952363968, 0.10474999994039536, 0.005872400011867285, 0.08661700040102005, 0.02467699907720089, 1.284999966621399, -0.2966899871826172, 0.5256900191307068, 0.05790000036358833, 0.655239999294281, -0.3423599898815155, -0.11743000149726868, -0.16651000082492828, -0.3552300035953522, -0.21196000277996063, -0.049963999539613724, -0.5621399879455566, -0.47407999634742737, -0.3561899960041046, 0.023097999393939972, -0.455049991607666, -0.2339800000190735, -0.1474599987268448, -0.14464999735355377, 0.04354599863290787, -0.26003000140190125, 0.05458600074052811, -0.8063700199127197, -0.09642300009727478, 0.2941800057888031, -0.03574899956583977, -0.31022998690605164, 0.12393999844789505, -0.8318799734115601, -0.12234000116586685, 0.1498199999332428, -0.154339998960495, -0.09662900120019913, -0.16492000222206116, -0.2287600040435791, 0.23580999672412872, 0.12870000302791595, 0.21390999853610992, 0.3068400025367737, 0.08326999843120575, 0.2797200083732605, -0.25481998920440674, 0.01381400041282177, 0.48532000184059143, 0.5906199812889099, -0.2919999957084656, 0.7098100185394287, -0.43400999903678894, -0.46057000756263733, 0.08205600082874298, -0.2147900015115738, -0.3624800145626068, -0.30656999349594116, 0.40101000666618347, -0.229980006814003, 0.1792300045490265, 0.15717999637126923, -0.018278000876307487, -0.44036999344825745, 0.6362199783325195, -1.118399977684021, 0.13393999636173248, 0.011378999799489975, -0.3214299976825714, -0.293969988822937, 0.524649977684021, -0.3015500009059906, -0.16975000500679016, 0.09484200179576874, 0.5492900013923645, -0.6743599772453308, 0.3968200087547302, 0.16322000324726105, 0.06306800246238708, 0.20015999674797058, 0.6160600185394287, -0.8649899959564209, 0.8141400218009949, -0.044645000249147415, 0.17699000239372253, -0.13683000206947327, 0.5848600268363953, -0.19110000133514404, 0.6656299829483032], u'windblown': [-0.6784999966621399, -0.3687799870967865, -0.3886300027370453, -0.1886100023984909, 0.31325000524520874, -0.3014400005340576, -0.01627199910581112, 0.11138000339269638, 0.3584499955177307, 0.5352200269699097, -0.3655399978160858, 0.06343799829483032, -0.2858699858188629, -0.09372399747371674, -0.04106200113892555, 0.16877000033855438, -0.275409996509552, -0.06213099882006645, -0.03151499852538109, 0.5873100161552429, 0.11240000277757645, -0.24210000038146973, -0.029247000813484192, 0.17059999704360962, -0.04437699913978577, -0.17715999484062195, 0.0205329991877079, 0.2286600023508072, -0.07412000000476837, 0.37345001101493835, 0.027111999690532684, -0.5355100035667419, -0.30970001220703125, -0.26440998911857605, 0.5263100266456604, -0.34220999479293823, -0.20844000577926636, 0.29761001467704773, 0.3133299946784973, 0.4542199969291687, -0.008870299905538559, 0.6283900141716003, 0.48949000239372253, -0.3910999894142151, 0.4995799958705902, -0.040401000529527664, -0.023831000551581383, 0.2080100029706955, -0.017865000292658806, -0.12067999690771103, 0.04219900071620941, -0.31352999806404114, -0.4211600124835968, 0.0006808500038459897, 0.3129499852657318, 0.42563000321388245, -0.40724000334739685, -0.3278700113296509, 0.7215099930763245, -0.04631299898028374, 0.22046999633312225, 0.07418099790811539, 0.28940001130104065, -0.22413000464439392, 0.09747499972581863, 0.17946000397205353, -0.2773599922657013, 0.22335000336170197, -0.07601100206375122, -0.013505999930202961, -0.16687999665737152, 0.010324000380933285, -0.11711999773979187, -0.11832000315189362, -0.46595001220703125, 0.09247700124979019, -0.23441000282764435, -0.6036099791526794, 0.5839599967002869, 0.2207999974489212, -0.18708999454975128, 0.4230499863624573, 0.1329900026321411, -0.06918500363826752, -0.5412999987602234, 0.07583600282669067, 0.23765000700950623, 0.17005999386310577, 0.826200008392334, 0.03844200074672699, -0.24708999693393707, -0.18231000006198883, 0.43928998708724976, 0.05671299993991852, -0.44367000460624695, 0.04360499978065491, -0.2540000081062317, 0.11545000225305557, -0.3042300045490265, 0.5459200143814087, 0.845229983329773, 0.294730007648468, 0.11715000122785568, 0.07785800099372864, -0.29019999504089355, 0.3910500109195709, 0.4100300073623657, -0.0023125000298023224, -0.4160799980163574, -0.5337799787521362, -0.002855099970474839, 0.04778600111603737, 0.05695800110697746, 0.03414199873805046, 0.1595900058746338, 0.5709800124168396, 0.8215600252151489, 0.4165799915790558, 0.043542999774217606, 0.3159399926662445, 0.3393099904060364, -0.009845900349318981, -0.40911000967025757, -0.19482000172138214, 0.3368600010871887, -0.038509998470544815, -0.28512999415397644, 0.08299099653959274, 0.2028599977493286, -0.001419799984432757, 0.05783500149846077, 0.6405900120735168, 0.07801800221204758, -0.11212000250816345, 0.12319999933242798, -0.5915600061416626, -0.3061800003051758, 0.35499000549316406, -0.05049800127744675, 0.15233999490737915, 0.14510999619960785, -0.2956799864768982, -0.15676000714302063, -0.10290999710559845, 0.15183000266551971, 0.2580699920654297, 0.2801699936389923, 0.4586600065231323, 0.0034497000742703676, -0.030744999647140503, -0.6129000186920166, -0.30177000164985657, -0.43108001351356506, -0.14788000285625458, -0.560230016708374, -0.11191999912261963, 0.24323000013828278, -0.6041399836540222, 0.4078800082206726, 0.8511800169944763, -0.12392999976873398, 0.027375999838113785, -0.10691999644041061, 0.4600900113582611, 0.6944500207901001, -0.3745400011539459, 0.19208000600337982, 0.07076899707317352, -0.3119100034236908, -0.33070001006126404, -0.24094000458717346, 0.28446000814437866, 0.35690999031066895, -0.4506700038909912, 0.1177000030875206, -0.5991500020027161, 0.05105200037360191, 0.24925999343395233, -0.36107000708580017, -0.4078100025653839, -0.15640999376773834, -0.5233100056648254, 0.12138999998569489, 0.2537499964237213, -0.36375999450683594, 0.592490017414093, 1.0322999954223633, -0.29976001381874084, -0.30886998772621155, 0.30952998995780945, -0.18414999544620514, -0.0817520022392273, -0.22359000146389008, -0.18623000383377075, 0.480430006980896, -0.20512999594211578, 0.13790999352931976, 0.009283799678087234, 0.16624000668525696, 0.461870014667511, -0.627560019493103, -0.3022499978542328, 0.5735899806022644, -0.4293600022792816, -0.06224599853157997, 0.08723899722099304, 0.014762000180780888, -0.23531000316143036, 0.2903999984264374, -0.03256800025701523, -0.21642999351024628, 0.04872399941086769, -0.06904400140047073, -0.03678100183606148, -0.6039100289344788, -0.16360999643802643, 0.4083999991416931, -0.3201900124549866, -0.2187100052833557, -0.12178999930620193, 0.21966999769210815, 0.18030999600887299, 0.22776000201702118, -0.019209999591112137, -0.4510200023651123, -0.2682900130748749, 0.46672001481056213, 0.31624001264572144, 0.2392600029706955, -0.00499190017580986, 0.44769999384880066, 0.4035399854183197, -0.1694899946451187, -0.1192300021648407, 0.26684001088142395, -0.15098999440670013, -0.2128400057554245, -0.07685399800539017, 0.020764000713825226, -0.5519199967384338, 0.3690600097179413, -0.13176999986171722, -0.36059001088142395, 0.01704300008714199, -0.3759799897670746, 0.44179001450538635, -0.8906499743461609, 0.12707999348640442, 0.00015298000653274357, 0.00513519998639822, 0.26104000210762024, -0.1388300061225891, 0.2740800082683563, -0.5644999742507935, 0.31648001074790955, -0.0005644600023515522, -0.09897000342607498, 0.24995000660419464, -0.536549985408783, -0.11090999841690063, 0.27156999707221985, 0.03518399968743324, 0.010222000069916248, -0.20814000070095062, 0.1486700028181076, -0.3245599865913391, 0.2594600021839142, -0.09662599861621857, -0.10091999918222427, -0.2995299994945526, -0.11449000239372253, 0.12338999658823013, -0.4600299894809723, 0.5540400147438049, -0.2528499960899353, -0.2887899875640869, 0.33934998512268066, -0.260699987411499, -0.5256999731063843, -0.19620999693870544, -0.27605998516082764, 0.32260000705718994, -0.5428799986839294, -0.0930740013718605, 0.08913899958133698, -0.1263599991798401, 0.282260000705719, -0.29980000853538513, -0.5741099715232849, -0.22639000415802002, -0.0745059996843338, 0.03063499927520752, -0.12138999998569489, 0.8322499990463257, -0.033038001507520676, -0.75941002368927, 0.553600013256073, 0.15445999801158905, 0.3863300085067749, -0.4774799942970276], u'burnt': [-0.1395999938249588, -0.3779500126838684, 0.03679399937391281, 0.20857000350952148, 0.05316000059247017, -0.4946799874305725, 0.4911800026893616, 0.40151000022888184, -0.034272000193595886, -0.38618001341819763, -0.30779001116752625, -0.121629998087883, -0.16349999606609344, 0.03835200145840645, -0.47088000178337097, 0.3637700080871582, -0.07590500265359879, 0.16746999323368073, -0.4123699963092804, -0.25240999460220337, -0.21472999453544617, 0.08051300048828125, 0.4305799901485443, -0.26118001341819763, -0.2652699947357178, -0.40740999579429626, -0.594290018081665, -0.2709699869155884, 0.03906499966979027, 0.8243799805641174, 0.2565000057220459, 0.10339000076055527, -0.7672600150108337, -0.025746000930666924, 0.30406999588012695, 0.4176599979400635, -0.31226998567581177, 0.13138000667095184, 0.26069000363349915, 0.08445700258016586, 0.23441000282764435, -0.5785800218582153, -0.1934799998998642, -0.3078100085258484, 0.4964199960231781, 0.32907000184059143, -0.10959000140428543, 0.02608500048518181, -0.016846999526023865, -0.6817799806594849, -0.05265500023961067, -0.10468000173568726, 0.30994999408721924, -0.29159998893737793, -0.031075000762939453, 0.17351000010967255, -0.2651199996471405, -0.12292999774217606, 0.44905999302864075, -0.22964000701904297, -0.4843299984931946, 0.00692680012434721, -0.3287400007247925, 0.06081400066614151, -0.014119000174105167, -0.7185699939727783, -0.13541999459266663, -0.32315999269485474, -0.3553699851036072, 0.1496099978685379, -0.14587999880313873, -0.09387200325727463, -0.2618100047111511, 0.5242400169372559, -0.05548899993300438, -0.15248000621795654, 0.2123900055885315, -0.4629000127315521, -0.05418600142002106, 0.6131700277328491, 0.005441099870949984, -0.08571100234985352, 0.03816799819469452, 0.33351999521255493, -0.29534000158309937, -0.12974999845027924, -0.23266999423503876, 0.1666399985551834, 0.38095998764038086, 0.4537299871444702, 0.3929100036621094, -0.6458699703216553, 0.522409975528717, 0.4556800127029419, 0.325300008058548, 0.26513001322746277, 0.12949000298976898, 0.05751100182533264, -0.26396000385284424, 0.020468000322580338, -0.1397700011730194, -0.3006500005722046, -0.012822000309824944, 0.21536000072956085, 0.20347000658512115, 0.0908450037240982, 0.592199981212616, 0.06492099910974503, -0.632830023765564, -0.4172399938106537, -0.39250001311302185, -0.270220011472702, 0.11138000339269638, -0.5389999747276306, 0.07124099880456924, -0.3933599889278412, -0.6268500089645386, 0.24897000193595886, 0.3274399936199188, -0.49184998869895935, -0.03206399828195572, -0.9390100240707397, -0.37692001461982727, 0.7202500104904175, -0.36548998951911926, -0.242249995470047, -0.4085099995136261, -0.13179999589920044, -0.29896000027656555, 0.127360001206398, -0.08800999820232391, 0.9495599865913391, 0.31926000118255615, 0.1873999983072281, 0.15139000117778778, 0.25516998767852783, 0.21699999272823334, -0.03201499953866005, 0.4637799859046936, -0.05855200067162514, 0.38008999824523926, -0.2506600022315979, -0.45462000370025635, -0.15384000539779663, -0.24086999893188477, -0.07436800003051758, -0.014328000135719776, 0.7954800128936768, -0.27215999364852905, -0.43698999285697937, 0.44453001022338867, 0.49167001247406006, -0.002839999971911311, -0.4894300103187561, 0.08776000142097473, 0.07592500001192093, 0.6431000232696533, -0.02678300067782402, 0.19637000560760498, -0.3343200087547302, 0.1793700009584427, -0.35051000118255615, -0.3857100009918213, 0.05332399904727936, -0.2798199951648712, 0.2988300025463104, 0.15220999717712402, 0.04979899898171425, -0.127360001206398, -0.3549500107765198, -0.09826800227165222, 0.2406100034713745, 0.697700023651123, -0.1064700037240982, 0.28540000319480896, 0.25012001395225525, -0.16482000052928925, -0.08762100338935852, 0.6693099737167358, -0.7938899993896484, -0.6200199723243713, 0.06082899868488312, 0.011049999855458736, -0.4408400058746338, 0.6004700064659119, -0.486050009727478, 0.3049600124359131, -0.07232800126075745, 0.39399999380111694, 0.02215299941599369, 0.26309001445770264, -0.45636001229286194, 0.02410000003874302, -0.1339000016450882, 0.3269599974155426, -0.25911998748779297, -0.19785000383853912, -0.0858670026063919, -0.12522999942302704, 0.3022800087928772, -0.15112000703811646, -0.3653700053691864, -0.21557000279426575, 0.10475999861955643, 0.05642300099134445, -0.6570900082588196, 0.8362399935722351, 0.01380200032144785, -0.4388299882411957, -0.5738700032234192, -0.1440100073814392, 0.24431000649929047, -0.7420099973678589, -0.21671999990940094, 0.022734999656677246, 0.2606300115585327, 0.7060700058937073, 0.09282500296831131, 0.24018000066280365, 0.22745999693870544, 0.10931999981403351, -0.16662000119686127, -0.24648000299930573, -0.16058999300003052, -0.226610004901886, 0.08174099773168564, -0.3810099959373474, -0.16755999624729156, -0.6086599826812744, 0.06028600037097931, -0.005377199966460466, -0.27713000774383545, -0.6463900208473206, 0.22337999939918518, 0.2520900070667267, 0.2741999924182892, 0.4067699909210205, 0.25102001428604126, -1.1470999717712402, -0.4344399869441986, 0.11489000171422958, 0.09658099710941315, -0.035326000303030014, -0.3669799864292145, -0.33500999212265015, 0.43288999795913696, 0.5572999715805054, 0.6024199724197388, 0.21943999826908112, -0.012165999971330166, 0.2773999869823456, -0.46439000964164734, -0.05963199958205223, -0.7529399991035461, 0.8259099721908569, 0.03774699941277504, -0.37422001361846924, 0.4659000039100647, 0.23315000534057617, -0.47822999954223633, 0.16674000024795532, -0.027256999164819717, -0.6762700080871582, 0.427480012178421, 0.2614699900150299, -0.6475899815559387, -0.32265999913215637, -0.24184000492095947, -0.05501699820160866, 0.2652699947357178, -0.34259000420570374, -0.44512999057769775, 0.22660000622272491, 0.2090200036764145, -0.3491300046443939, -0.12812000513076782, -1.1017999649047852, -0.5867199897766113, -0.5342400074005127, 0.3982999920845032, -0.25995999574661255, -0.2944599986076355, -0.21163000166416168, -0.7803000211715698, 0.017774999141693115, 0.9007200002670288, 0.04037899896502495, -0.6590700149536133, 0.5148900151252747, 0.343860000371933, -0.17776000499725342, -0.5007500052452087, 0.0728909969329834, 0.10145000368356705, -0.40865999460220337, -0.20137999951839447, 0.23899999260902405, 0.1556600034236908, -0.14322000741958618, 0.1488099992275238], u'molten': [0.26743999123573303, -0.05078599974513054, -0.01626800000667572, -0.33090999722480774, -0.19086000323295593, -0.438510000705719, 0.6675199866294861, -0.5804799795150757, 0.534280002117157, -0.4566600024700165, -0.18286000192165375, -0.4072900116443634, -0.5690699815750122, -0.4372200071811676, -0.03214399889111519, -0.03664499893784523, -0.7534400224685669, 0.6807600259780884, 0.42357000708580017, 0.37452998757362366, 0.134210005402565, 0.1582300066947937, -0.41324999928474426, 0.5585100054740906, 0.19399000704288483, -0.6327400207519531, 0.08180099725723267, 0.6266000270843506, -0.11209999769926071, -0.4770900011062622, -0.14162999391555786, 0.06255599856376648, -0.42155998945236206, 0.03899100050330162, 0.5457299947738647, 0.01333799958229065, -0.42605000734329224, 0.2916499972343445, 0.7349200248718262, 0.7406700253486633, -0.32732999324798584, -0.018915999680757523, 0.1348399966955185, 0.05515199899673462, -0.19288000464439392, -0.061482999473810196, -0.1386999934911728, -0.032106999307870865, 0.15553000569343567, -0.41150999069213867, -0.21484999358654022, 0.39473000168800354, -0.32927000522613525, 0.3423900008201599, 0.2733199894428253, 0.057992998510599136, 0.035962000489234924, -0.02037299983203411, 0.5286399722099304, 0.32969000935554504, -0.1469999998807907, 0.4778999984264374, 0.6177800297737122, 0.24221999943256378, 0.6678699851036072, 0.3757700026035309, -0.006961499806493521, 0.31367000937461853, -0.49869999289512634, 0.7005699872970581, 0.31103000044822693, -0.13636000454425812, 0.3759100139141083, 0.4645499885082245, 0.00397690013051033, 0.12370000034570694, -0.018062999472022057, -0.3503200113773346, -0.09459500014781952, -0.5162799954414368, 0.13199999928474426, -0.24573999643325806, -0.6318399906158447, 0.3234100043773651, 0.3676300048828125, 0.1866600066423416, 0.019884999841451645, -0.12319999933242798, -0.15286000072956085, 0.03585200011730194, -0.1716800034046173, 0.4508099853992462, 0.5517799854278564, -0.4361799955368042, -0.628250002861023, -0.15894000232219696, -0.24706000089645386, 0.23089000582695007, 0.2337000072002411, 0.5327399969100952, -0.2677600085735321, 0.05579699948430061, 0.16791999340057373, -0.2053000032901764, 0.5417799949645996, 0.16954000294208527, -0.048319000750780106, 0.4490399956703186, -0.3912599980831146, -0.028063999488949776, 0.3186500072479248, 0.5245299935340881, -0.29377999901771545, -0.5509300231933594, -0.18982000648975372, 0.17125999927520752, -0.4790099859237671, -0.3449999988079071, 0.18901999294757843, 0.26728999614715576, 0.054648999124765396, -0.37487998604774475, -0.47505998611450195, 0.48853999376296997, -0.0302520003169775, -0.3919599950313568, 0.14316000044345856, 0.08356700092554092, -0.47846001386642456, -0.5074499845504761, 0.11992999911308289, 1.000599980354309, 0.4051100015640259, 0.40516000986099243, 0.3942300081253052, 0.30601999163627625, -0.9158700108528137, 0.3053300082683563, 0.17872999608516693, 0.4162899851799011, 0.154229998588562, -0.6669300198554993, -0.4237399995326996, -0.5478000044822693, 0.21055999398231506, -0.18192000687122345, -0.019710000604391098, 0.03861600160598755, 0.29284998774528503, -1.0276999473571777, 0.4342600107192993, 0.04353199899196625, -0.37894999980926514, 0.09578700363636017, 0.7729200124740601, 0.28349998593330383, 0.3503499925136566, -0.4422999918460846, 0.11913999915122986, -0.3984600007534027, -0.3614400029182434, -0.7771199941635132, -0.14053000509738922, 0.055038001388311386, 0.11003000289201736, -0.5993899703025818, 0.4090299904346466, 0.00959280040115118, 0.021455999463796616, -0.5854300260543823, 0.27140000462532043, 0.7704300284385681, 0.4434100091457367, -0.5170300006866455, 0.1493300050497055, -0.6405500173568726, -0.3364199995994568, 0.13902999460697174, 0.5655500292778015, -0.45166000723838806, 0.44179001450538635, -0.021035000681877136, -6.371999916154891e-05, -0.1615999937057495, -0.18333999812602997, -0.3912299871444702, 0.487309992313385, 0.3737100064754486, -0.10721000283956528, -0.9548699855804443, 0.51214998960495, 0.4669100046157837, -0.14293000102043152, 0.13323000073432922, 0.48319000005722046, -0.01711600087583065, 0.07153599709272385, 0.25859999656677246, -0.03148699924349785, 0.12672999501228333, 0.1788100004196167, -0.7044699788093567, 0.1522199958562851, 0.14419999718666077, -0.4091300070285797, -0.04758499935269356, 0.6173499822616577, -0.27430999279022217, -0.39250001311302185, 0.16308000683784485, 0.08530700206756592, 0.6019300222396851, 0.05649999901652336, -0.7346900105476379, -0.31036001443862915, 1.0703999996185303, 0.2526400089263916, -0.32245001196861267, 0.24417999386787415, 0.22304999828338623, -0.507610023021698, 0.5091500282287598, 0.5766100287437439, -0.42660000920295715, -0.26693999767303467, -0.017798999324440956, -0.47220999002456665, -0.11085999757051468, -0.07701200246810913, 0.18238000571727753, 0.011464999988675117, -0.6971099972724915, 0.8195800185203552, -0.4632200002670288, 0.015571000054478645, -0.2634100019931793, 0.3297699987888336, -0.2592099905014038, -0.10824000090360641, -0.18448999524116516, -0.3093299865722656, -0.05279500037431717, -0.6347000002861023, -0.3909600079059601, -0.26982998847961426, -0.3218500018119812, 0.1950100064277649, -0.387719988822937, -0.20833000540733337, 0.09083399921655655, -0.3693099915981293, -0.5053099989891052, -0.11911000311374664, -0.42590999603271484, -0.23038999736309052, -0.11371999979019165, 0.05080199986696243, -0.5235000252723694, -0.409960001707077, 0.03801700100302696, 0.12080000340938568, -0.1473899930715561, 0.08738499879837036, -0.16107000410556793, 0.25633999705314636, 0.4212999939918518, -0.34773001074790955, 0.3668299913406372, -0.0107829999178648, -0.13484999537467957, -0.573140025138855, -0.12902000546455383, 0.4590499997138977, 0.8452100157737732, -0.35499998927116394, 0.4875899851322174, -0.008892600424587727, -0.3656199872493744, -1.30840003490448, -0.26719000935554504, -0.27268001437187195, 0.10892999917268753, -0.3842400014400482, 0.25450000166893005, 0.21317000687122345, 0.22848999500274658, -0.7333400249481201, 0.10931000113487244, 0.41389000415802, 0.31452998518943787, -0.6898999810218811, 0.21085000038146973, 0.6349200010299683, 1.261299967765808, 0.9689000248908997, -0.44773000478744507, 0.0034485000651329756, -0.1763100028038025, -0.5613499879837036, -0.12978999316692352], u'eroded': [-0.33803999423980713, -0.1598999947309494, -0.5300300121307373, 0.22853000462055206, 0.21710999310016632, 0.06877899914979935, -0.05456399917602539, 0.3486500084400177, 0.44416001439094543, -1.4106999635696411, -0.2730199992656708, -0.4899500012397766, 0.149399995803833, -0.03136099874973297, -0.8201000094413757, -0.6386600136756897, 0.28784000873565674, 0.35638999938964844, 0.5166800022125244, -0.01256600022315979, -0.15264999866485596, 0.06807799637317657, 0.07994099706411362, -0.5750100016593933, 0.03626900166273117, -0.17527000606060028, 0.1578799933195114, 0.07037000358104706, -0.26291000843048096, 0.7231299877166748, 0.4566799998283386, 0.2886199951171875, -0.3711400032043457, -0.18904000520706177, 0.04527600109577179, -0.13966000080108643, -0.2968299984931946, -0.10995999723672867, 0.949999988079071, 0.3154500126838684, 0.3929100036621094, 0.2783600091934204, 0.12737999856472015, -0.10781999677419662, -0.15815000236034393, 0.3454500138759613, 0.08948499709367752, 0.26249998807907104, 0.12700000405311584, 0.06904300302267075, -0.02190300077199936, -0.4632500112056732, -0.21570999920368195, 0.2579199969768524, 0.6104599833488464, -0.290010005235672, 0.0728989988565445, -0.17464999854564667, -0.008019199594855309, 0.6942200064659119, 0.7107999920845032, 0.3650299906730652, 0.24192999303340912, 0.1755100041627884, -0.15068000555038452, 0.17980000376701355, -0.07671400159597397, 0.10774999856948853, -0.031824998557567596, 0.4555000066757202, -0.42636001110076904, 0.32986000180244446, 0.1316699981689453, 0.3041599988937378, 0.6256399750709534, -0.17205999791622162, 0.09900599718093872, -0.9710900187492371, -0.30737999081611633, -0.06361400336027145, -0.532289981842041, 0.14240999519824982, 0.0839489996433258, 0.40692999958992004, 0.2558799982070923, -0.054625000804662704, 0.04394499957561493, -0.25238001346588135, 0.2053699940443039, 0.4258500039577484, -0.007067500147968531, 0.4360699951648712, 0.4234299957752228, 0.5370299816131592, -0.5007500052452087, -0.17767000198364258, 0.4005799889564514, 0.08672100305557251, 0.11649999767541885, 0.8787999749183655, -0.07628799974918365, 0.16582000255584717, -0.477620005607605, -0.3772999942302704, 0.05459799990057945, 0.12110999971628189, -0.13294999301433563, 0.22870999574661255, 0.4131700098514557, -0.758620023727417, -0.028085999190807343, -0.6138100028038025, 0.11477000266313553, -0.7695599794387817, -0.1324400007724762, 0.292059987783432, 0.42640000581741333, -0.10526999831199646, -0.6017500162124634, -0.6510599851608276, 0.42322999238967896, -0.3693299889564514, -0.3371700048446655, 0.2910900115966797, 0.1129399985074997, 0.2966200113296509, -0.4468500018119812, 0.17493000626564026, -0.1616699993610382, -0.0335719995200634, -0.7759900093078613, 0.620140016078949, 0.43125998973846436, 0.04742300137877464, -0.011471999809145927, -0.17307999730110168, 0.2851499915122986, 0.19343000650405884, 0.5342900156974792, 0.2708500027656555, 0.06671199947595596, -0.13736000657081604, 0.15240000188350677, 0.21458999812602997, -0.054315000772476196, -0.22899000346660614, -0.1024399995803833, 0.3128899931907654, 0.2744799852371216, -0.5304200053215027, 0.3950600028038025, -0.164900004863739, -0.30807000398635864, 0.250110000371933, -0.11178000271320343, 0.6104300022125244, 0.3297500014305115, 0.04471899941563606, 0.21852000057697296, 0.45298999547958374, -0.6917300224304199, -0.55663001537323, -0.13947999477386475, 0.8727800250053406, 0.919160008430481, -0.6633599996566772, -0.1927500069141388, -0.4451499879360199, -0.1324000060558319, 0.010848999954760075, -0.23557999730110168, 0.6976799964904785, 0.14975999295711517, -0.02438800036907196, -0.06309100240468979, 0.02449999935925007, 0.3568899929523468, 0.6155400276184082, 0.5848199725151062, 0.263590008020401, -0.16473999619483948, 0.09889499843120575, -0.13628000020980835, -0.2745000123977661, -0.039381999522447586, -0.06242400035262108, 0.39546999335289, 0.09786300361156464, -0.297789990901947, 0.2507700026035309, 0.27932000160217285, 0.1910099983215332, 0.10180000215768814, -0.8105199933052063, 0.3867500126361847, 0.23002000153064728, -0.009579000063240528, -0.5138700008392334, 0.6064599752426147, 0.05558900162577629, 0.3738499879837036, 0.035346999764442444, -0.3410399854183197, 0.14765000343322754, -0.2021300047636032, -0.4277600049972534, 0.15469999611377716, -0.7129200100898743, -0.6703500151634216, 0.737779974937439, 0.07442200183868408, 0.2961899936199188, 0.18289999663829803, -0.20559999346733093, 0.3344700038433075, 0.17316000163555145, 0.4097900092601776, -0.0611019991338253, 0.2814599871635437, 0.11838000267744064, 0.2921200096607208, 0.02401600033044815, -0.038743000477552414, -0.3286600112915039, 0.20960000157356262, 0.18544000387191772, 0.0015338000375777483, 0.2503199875354767, 0.15931999683380127, 0.03529300168156624, 0.44727998971939087, -0.1653899997472763, -0.16401000320911407, 0.09826499968767166, -0.5358700156211853, -0.3684000074863434, 0.35089999437332153, -0.5936300158500671, -0.2723200023174286, -0.1544100046157837, -0.06629099696874619, 0.32436999678611755, 0.6347299814224243, -0.5773199796676636, -1.7172000408172607, -0.2309200018644333, -0.1432799994945526, -0.3713200092315674, 0.11671999841928482, 0.41558998823165894, 0.006935399957001209, -0.4165700078010559, 0.31672000885009766, -0.6593300104141235, -0.4464400112628937, -0.16656999289989471, 0.11445999890565872, 0.41280001401901245, -0.28060001134872437, 0.03773000091314316, -0.4430699944496155, 0.3576599955558777, -0.4757100045681, 0.41012999415397644, 0.37040001153945923, -0.2504099905490875, 0.4719800055027008, -0.18429000675678253, -0.01970200054347515, -0.35589998960494995, -0.13479000329971313, 0.07513400167226791, -0.2583500146865845, -0.20747999846935272, 0.185139998793602, 0.21254999935626984, 0.0046732001937925816, -0.33305999636650085, 0.20666000247001648, -0.07492999732494354, -0.02427699975669384, 0.2690500020980835, -0.2593599855899811, -0.5348700284957886, -0.03410699963569641, -0.5046399831771851, 0.0415319986641407, 0.3480899930000305, 0.8214200139045715, -0.18751999735832214, 0.24758000671863556, 0.02740499936044216, 0.045292001217603683, 0.18400000035762787, -0.23693999648094177, 0.0800660029053688, -0.1890999972820282, -0.38335999846458435, -0.315420001745224, -1.2335000038146973], u'frayed': [0.4985699951648712, -0.35982000827789307, 0.09905900061130524, -0.13928000628948212, -0.2373500019311905, -0.0006950899842195213, -0.6273599863052368, -0.3200699985027313, 0.8954799771308899, -0.610450029373169, -0.15892000496387482, 0.6428700089454651, 0.3364599943161011, -0.3522700071334839, -0.6756299734115601, 0.21060000360012054, -0.21449999511241913, 0.13184000551700592, -0.6423799991607666, 0.3670800030231476, 0.020860999822616577, -0.3649100065231323, 0.11204999685287476, -0.47258999943733215, -0.21476000547409058, -0.02854900062084198, -0.017318999394774437, -0.27504000067710876, 0.08056499809026718, 0.8513000011444092, 0.11287999898195267, -0.10153999924659729, -0.35054999589920044, 0.3841800093650818, -0.06317099928855896, 0.24679000675678253, -0.23829999566078186, -0.3149699866771698, -0.04298299923539162, 0.5946400165557861, 0.1189500018954277, -0.3170900046825409, -0.3908500075340271, -0.649869978427887, -0.0394739992916584, 0.2861199975013733, 0.042413998395204544, -0.20330999791622162, -1.1389000415802002, -0.10163000226020813, 0.23624999821186066, -0.5673999786376953, 0.2611300051212311, -0.2934899926185608, 0.3621799945831299, -0.1324000060558319, -0.21417999267578125, -0.17181000113487244, -0.5316299796104431, 0.4218299984931946, 1.0823999643325806, -0.13042999804019928, 0.18294000625610352, -0.3547399938106537, 0.2354699969291687, 0.16272999346256256, 0.34637001156806946, 0.8140199780464172, 0.8550300002098083, 0.023905999958515167, 0.12467999756336212, -0.15078000724315643, -0.027132000774145126, 0.32196998596191406, 0.45493000745773315, -0.002639699960127473, -0.6144800186157227, -0.15723000466823578, -0.632420003414154, -0.32468000054359436, 0.158160001039505, -0.3479900062084198, 0.04448999837040901, -0.08991800248622894, 0.06283500045537949, 0.0665619969367981, -0.0892229974269867, -0.4848400056362152, -0.5110899806022644, 0.3342199921607971, -0.043209999799728394, 1.105299949645996, 0.4360100030899048, 0.03560600057244301, -0.1575700044631958, 0.2241699993610382, 0.6815699934959412, 0.7527899742126465, -0.4514800012111664, 0.3717299997806549, 0.07246600091457367, -0.4369699954986572, -0.4151900112628937, 0.44023001194000244, 0.09925100207328796, -0.12081000208854675, 0.11412999778985977, 0.3607099950313568, 0.10723999887704849, -0.2626599967479706, -0.21059000492095947, 0.23994000256061554, -0.4844900071620941, -0.6505299806594849, -0.15137000381946564, -0.1316400021314621, 0.1564600020647049, 0.4738300144672394, 0.16107000410556793, -0.29253000020980835, 0.345660001039505, -0.5664399862289429, 0.29006001353263855, 0.43147000670433044, 0.08076799660921097, 0.5707899928092957, -0.7696999907493591, -0.30048999190330505, 0.2880299985408783, 0.0721379965543747, -0.10016000270843506, 0.013388000428676605, 0.45596998929977417, 0.4965499937534332, -0.3016600012779236, -0.4675000011920929, -0.16157999634742737, -0.1678600013256073, 0.5194799900054932, -0.6395900249481201, -0.4484800100326538, 0.296970009803772, 0.1783200055360794, 0.28014999628067017, 0.45875999331474304, 0.4641999900341034, 0.09476400166749954, 0.14962999522686005, 0.47683998942375183, -0.3094399869441986, -0.3597100079059601, -0.11022000014781952, -0.3031800091266632, -0.04691300168633461, -0.26337000727653503, -0.4421199858188629, 0.19720999896526337, -0.18267999589443207, 0.0851299986243248, 0.8127300143241882, -0.07259199768304825, -0.30601000785827637, -0.09435100108385086, -0.05930100008845329, 0.49083998799324036, -0.05185500159859657, -0.5850800275802612, -0.8229299783706665, 0.04835300147533417, 0.08084599673748016, -0.11485999822616577, 0.2565299868583679, -0.5560600161552429, 0.196260005235672, -0.044491998851299286, 0.43911001086235046, -0.005695300176739693, 0.5255299806594849, 0.015527999959886074, -0.2753300070762634, 0.28154999017715454, 0.1482899934053421, -0.6342999935150146, -0.11812999844551086, 0.1641400009393692, 0.426939994096756, 0.1800599992275238, 0.02164500020444393, -0.4811500012874603, 0.09712100028991699, -0.11676999926567078, -0.4687100052833557, -0.3425599932670593, -0.14601999521255493, -0.33757999539375305, 0.04629499837756157, -0.06964100152254105, 0.04483100026845932, -0.03829900175333023, -0.02113400027155876, 0.06526199728250504, 0.6550300121307373, 1.236299991607666, 0.020493000745773315, 0.12519000470638275, -0.21811999380588531, 0.48690998554229736, 0.04274599999189377, -0.46592000126838684, 0.7511399984359741, 0.41637998819351196, 0.8958799839019775, 0.5332900285720825, 0.04934199899435043, 0.36980998516082764, 0.046810001134872437, 1.0951999425888062, -0.4476799964904785, -0.4582599997520447, 0.7959499955177307, 1.054900050163269, 0.06120000034570694, 0.08864299952983856, 0.12020000070333481, 0.4909000098705292, -0.4501799941062927, -0.5147500038146973, -0.5174700021743774, -0.5940200090408325, -0.09696099907159805, 0.6264700293540955, 0.05069899931550026, 0.24413999915122986, 0.018556000664830208, -0.075033999979496, -0.07788799703121185, 0.5841900110244751, 0.1487099975347519, -0.19461999833583832, -0.3712800145149231, 0.2448199987411499, -0.1808599978685379, -0.11736000329256058, 0.45781999826431274, -0.5297499895095825, -0.18875999748706818, -0.16338999569416046, -0.03341900184750557, 0.9585199952125549, -0.43494999408721924, 0.278219997882843, -0.3487499952316284, 0.7790700197219849, -0.4315800070762634, 0.12961000204086304, 0.39125001430511475, 0.05401400104165077, 0.7677199840545654, 0.9515500068664551, 0.13721999526023865, 0.24654999375343323, 0.1629599928855896, -0.4429300129413605, 0.4758000075817108, 0.09785500168800354, 0.624779999256134, -0.09265299886465073, -0.1905599981546402, -0.2671799957752228, 0.04347199946641922, -0.12801000475883484, 0.18365000188350677, 0.046921998262405396, -0.5202000141143799, -0.7932900190353394, 0.055438000708818436, 0.3329299986362457, 0.09441500157117844, 0.42504000663757324, 0.35558000206947327, 0.8998600244522095, 0.0332150012254715, -0.007680600043386221, -0.2853899896144867, -0.24544000625610352, -0.5501199960708618, 0.20913000404834747, 0.8054199814796448, -0.03393099829554558, -0.21084000170230865, 0.0975790023803711, -0.31419000029563904, -0.19551999866962433, 0.18595999479293823, -0.1964299976825714, -0.3499799966812134, 0.23183000087738037, -0.10822000354528427, -0.09093700349330902, -0.3429499864578247], u'blunt': [-0.3631100058555603, -0.02821500040590763, -0.05297200009226799, -0.30504998564720154, -0.19704000651836395, -0.12636999785900116, -0.40564000606536865, 0.029764000326395035, -0.03670400008559227, -0.6859800219535828, 0.1026500016450882, 0.2584500014781952, -0.04288199916481972, 0.21788999438285828, 0.02609499916434288, 0.5343700051307678, -0.028496000915765762, 0.4661099910736084, -0.02459299936890602, -0.1261499971151352, 0.5105800032615662, 0.14636999368667603, 0.023440999910235405, 0.30351999402046204, -0.5225899815559387, 0.03655799850821495, 0.14312000572681427, -0.3660700023174286, -0.015185000374913216, 0.13687999546527863, -0.7750300168991089, 0.1893800050020218, -0.7414299845695496, -0.19657999277114868, -0.3639799952507019, 0.3185099959373474, -0.05232999846339226, -0.3081899881362915, -0.008024699985980988, -0.746399998664856, 0.09208100289106369, 0.33755001425743103, 0.6531500220298767, 0.026196999475359917, -0.2524600028991699, 0.35833999514579773, -0.6065700054168701, -0.48017001152038574, -0.18690000474452972, 0.1856199949979782, 0.10518000274896622, 0.13107000291347504, 0.21789999306201935, -0.0588579997420311, -0.034846000373363495, -0.5738999843597412, -1.0343999862670898, 0.12255000323057175, 0.2968200147151947, 0.22743000090122223, 0.47777000069618225, -0.3382500112056732, 0.2839899957180023, -0.17072999477386475, 0.10040999948978424, -0.863099992275238, 0.31147000193595886, -0.15625, 0.3400900065898895, -0.2464500069618225, -0.42434000968933105, -0.27011001110076904, 0.36858001351356506, 0.025784000754356384, 0.7416499853134155, -0.42737001180648804, -0.2524600028991699, 0.26855000853538513, -0.06645199656486511, -0.05211399868130684, -0.1820400059223175, 0.38016998767852783, 0.41471999883651733, -0.3730199933052063, -0.5072699785232544, 0.05014999955892563, -0.05375400185585022, 0.5562999844551086, 0.08755200356245041, 0.47044000029563904, 0.11518999934196472, 0.5519700050354004, -0.21765999495983124, -0.2810499966144562, 0.5241600275039673, -0.28902000188827515, -0.18362000584602356, -0.12325000017881393, 0.3071500062942505, 0.04806400090456009, -0.12279000133275986, -0.3120799958705902, -0.07315900176763535, 0.4140999913215637, 0.3135499954223633, 0.17139999568462372, -0.40821000933647156, -0.4743199944496155, 0.36254000663757324, -0.23210999369621277, 0.1666399985551834, 0.45302000641822815, 0.42129001021385193, 0.27522000670433044, 0.24770000576972961, 0.19160999357700348, -0.2878299951553345, -0.012233000248670578, 0.40257999300956726, -0.6891400218009949, -0.1177700012922287, -0.361160010099411, -0.7470399737358093, -0.2471799999475479, -0.5379999876022339, 0.16047999262809753, -0.24987000226974487, -0.2553099989891052, 0.09522099792957306, -0.3463500142097473, 0.09686499834060669, 0.31949999928474426, -0.3543899953365326, -0.3488500118255615, -0.19569000601768494, 0.29517999291419983, -0.13912999629974365, 0.11986000090837479, 0.6121799945831299, 0.09409599751234055, 0.1229500025510788, 0.325980007648468, 0.07930400222539902, -0.022960999980568886, -0.2468000054359436, 0.19825999438762665, 0.3978999853134155, -0.3825100064277649, 0.11778999865055084, -0.15715999901294708, 0.156810000538826, -0.24788999557495117, 0.019481999799609184, 0.32495999336242676, 0.08510900288820267, 0.1289999932050705, 0.23473000526428223, -0.2313700020313263, 0.18366000056266785, 0.16269999742507935, 0.0021114000119268894, 0.2302599996328354, 0.3736799955368042, 0.08977100253105164, 0.2789900004863739, 0.36757001280784607, -0.25982001423835754, -0.17725999653339386, 0.07383900135755539, -0.4758000075817108, -0.01107800006866455, 0.1014299988746643, -0.4998199939727783, -0.3458699882030487, -0.1385599970817566, -0.2471199929714203, -0.2599399983882904, -0.21389999985694885, 0.6347100138664246, 0.11202999949455261, -0.32389000058174133, -0.8816999793052673, -0.0798799991607666, 0.2558099925518036, -0.2759599983692169, -0.3861500024795532, -0.30226999521255493, 0.31332001090049744, -0.478769987821579, -0.052073001861572266, -0.17986999452114105, -0.20730000734329224, 0.1569100022315979, 0.6302300095558167, 0.03109700046479702, 0.5756199955940247, 0.0867139995098114, -0.08522500097751617, 0.12101999670267105, -0.2575100064277649, -0.018647000193595886, -0.050606999546289444, 0.011490000411868095, 0.053939998149871826, -0.6297799944877625, 0.46358001232147217, -0.05389099940657616, 0.5002800226211548, -0.11364000290632248, 0.4948500096797943, 0.11918999999761581, 0.007191100157797337, 0.35503000020980835, 0.1739400029182434, 0.06898800283670425, -0.39996999502182007, 0.17273999750614166, -0.365229994058609, -0.7182999849319458, -0.24556000530719757, -0.06999599933624268, 0.49289000034332275, 0.2780599892139435, 0.26715001463890076, -0.47624000906944275, 0.49873998761177063, -0.2928900122642517, -0.3445099890232086, -0.03110400028526783, -0.5046399831771851, 0.13553999364376068, -0.28497999906539917, 0.1424199938774109, -0.7255600094795227, -1.0995999574661255, -0.0968720018863678, 0.0020365999080240726, 0.039987001568078995, -0.4248200058937073, 0.29256001114845276, -0.1780800074338913, -0.08570399880409241, 0.012474999763071537, -0.06874900311231613, 0.11331000179052353, -0.02471099980175495, 0.22759999334812164, -0.3424000144004822, -0.3718400001525879, 0.5058199763298035, 0.2569800019264221, -0.22262999415397644, 0.03892600163817406, -0.43946999311447144, -0.29111000895500183, 0.05522200092673302, -0.017023999243974686, -0.048666998744010925, -0.5784800052642822, -0.12547999620437622, -0.3429499864578247, 0.08221899718046188, -0.9366599917411804, 0.6605700254440308, -0.41005000472068787, -0.07128199934959412, 0.16095000505447388, 0.16674000024795532, 0.10976000130176544, 0.6096000075340271, 0.15943999588489532, -0.1779100000858307, -0.1994200050830841, -0.1576700061559677, -0.2379699945449829, -0.11969999969005585, -0.5587800145149231, 0.49243998527526855, 0.18008999526500702, -0.4685699939727783, -0.048813000321388245, -0.35433998703956604, 0.0777370035648346, 0.1422400027513504, 0.4539099931716919, 0.010018999688327312, -0.17361000180244446, 0.19140000641345978, 0.20127999782562256, 0.036122001707553864, -0.13387000560760498, 0.1448799967765808, 0.6239299774169922, -0.027622999623417854, 0.0808510035276413, 0.2796899974346161, -0.7466300129890442, -0.2907699942588806, -0.0654980018734932, 0.3637099862098694], u'cloudy': [-0.5051400065422058, -0.7132999897003174, -0.007846799679100513, -0.9271799921989441, -0.21979999542236328, 0.3350600004196167, -0.3073199987411499, 0.6055799722671509, 0.16144999861717224, -0.08180399984121323, -0.2521800100803375, -0.5891799926757812, -0.3332599997520447, 0.0030928999185562134, 0.2367900013923645, -0.31411999464035034, -0.3246000111103058, -0.030642999336123466, 0.7773900032043457, 0.21362000703811646, -0.1827400028705597, 0.22931000590324402, -0.62677001953125, -0.2818099856376648, -0.7423200011253357, 0.16088999807834625, 0.43634000420570374, -0.11479000002145767, -0.032829999923706055, -1.3479000329971313, 0.3359000086784363, -0.13423000276088715, 0.016638999804854393, 0.2334900051355362, -0.20406000316143036, -0.21774999797344208, -0.4657900035381317, -0.18070000410079956, -0.08147100359201431, 0.3554700016975403, 0.28650999069213867, 0.49948999285697937, -0.22412000596523285, 0.2451000064611435, 0.5842599868774414, -0.10758999735116959, 0.07711700350046158, 0.7046800255775452, -0.6637799739837646, -0.767769992351532, -0.26333001255989075, -0.37797001004219055, 0.1057099997997284, -0.7177199721336365, -0.004503299947828054, 0.10204999893903732, 0.620389997959137, 0.25867000222206116, 0.9668300151824951, -0.21115000545978546, -0.3789600133895874, 0.012740000151097775, 0.16763000190258026, 0.0507889986038208, -0.27803000807762146, 0.02098800055682659, 0.27480998635292053, 0.13659000396728516, 0.21889999508857727, -0.3239400088787079, -0.0648839995265007, 0.4137899875640869, -0.02807299979031086, -0.07103200256824493, -0.27406999468803406, -0.3140200078487396, -0.1327899992465973, 0.9929599761962891, 0.20760999619960785, -0.28878000378608704, -0.29201000928878784, 0.5583800077438354, -0.03836299851536751, 0.5488399863243103, -0.24775999784469604, 0.08409400284290314, 0.5448600053787231, 0.12744000554084778, 0.42610999941825867, 0.726360023021698, 0.27145999670028687, -0.37477999925613403, 0.15803000330924988, 0.452890008687973, 0.05379499867558479, 1.3037999868392944, 0.5077999830245972, 0.1159299984574318, -0.5348100066184998, 0.2135699987411499, 0.8478900194168091, -0.28126999735832214, -0.2024800032377243, 0.6475800275802612, -0.4086199998855591, 0.6212300062179565, 0.5103999972343445, 0.6629999876022339, -0.48107001185417175, -0.11417999863624573, 0.3276199996471405, -1.1574000120162964, 0.3513199985027313, -0.10999000072479248, 0.31306999921798706, -0.26982998847961426, -0.09286700189113617, 0.2175299972295761, 0.7671800255775452, 0.34696999192237854, 0.5736899971961975, -0.046661000698804855, 0.1779399961233139, 0.2767300009727478, 0.1039699986577034, 0.07771600037813187, 0.0966849997639656, 0.03402300179004669, 0.1561499983072281, -0.34119999408721924, -0.3861500024795532, 0.45326000452041626, 0.0418579988181591, -0.35117998719215393, 0.2117300033569336, -0.06009799987077713, -0.5942000150680542, -0.3081499934196472, 0.6151999831199646, -0.32398998737335205, 0.16735999286174774, 0.38078999519348145, -0.7584699988365173, -0.23425999283790588, -0.7246099710464478, -0.3150700032711029, 0.0741180032491684, 0.2738899886608124, 0.18793000280857086, -0.2869099974632263, -0.029423000290989876, -0.7100300192832947, 0.16006000339984894, -0.27772000432014465, 0.24230000376701355, 0.914929986000061, 0.4084799885749817, 0.20258000493049622, 0.2696399986743927, 0.3887999951839447, -0.6249399781227112, -1.1723999977111816, -0.40303000807762146, 0.12374000251293182, 1.0216000080108643, -0.48017001152038574, 0.7680400013923645, 0.3343000113964081, -0.45552000403404236, 0.4564700126647949, 0.7117199897766113, 0.4616200029850006, -0.239889994263649, 0.1280599981546402, 0.060495998710393906, -0.583620011806488, -0.22871999442577362, -0.8119000196456909, 0.2533299922943115, -0.0970430001616478, 0.39157000184059143, 0.5493699908256531, 0.4285700023174286, -0.42346999049186707, 0.3256799876689911, 0.10751999914646149, 1.1719000339508057, -0.590499997138977, -0.9236699938774109, -0.5093700289726257, -0.16641999781131744, 0.45438000559806824, 0.4468100070953369, -0.286080002784729, -0.512499988079071, -0.6605100035667419, -0.3288399875164032, -0.3292100131511688, -0.9460700154304504, -0.3502199947834015, 0.4146000146865845, 0.24146999418735504, -0.5110099911689758, 0.028867000713944435, 0.032471999526023865, -0.6339300274848938, -0.2551099956035614, -0.07669100165367126, -0.12842999398708344, -0.025766000151634216, 0.2747099995613098, 0.19912000000476837, -0.18020999431610107, -0.5967299938201904, -0.2435699999332428, -0.144119992852211, 0.17486999928951263, -0.6938300132751465, 0.7330399751663208, -0.2791000008583069, 0.731719970703125, -0.3755899965763092, -0.18637999892234802, 0.33496999740600586, -1.1031999588012695, 0.04246100038290024, 0.08974500000476837, 0.14470000565052032, 0.3666999936103821, -0.046514999121427536, 0.6287000179290771, 0.14160999655723572, 0.7504000067710876, -0.6621299982070923, -0.3820599913597107, -0.4033600091934204, -0.8000400066375732, -0.31453999876976013, -0.8746899962425232, -0.018435999751091003, -0.5090299844741821, -0.391620010137558, -0.9152100086212158, 0.05601000040769577, -0.5405799746513367, -0.8260200023651123, 0.41332000494003296, -0.00027210000553168356, 0.03518899902701378, -0.31953999400138855, -0.19128000736236572, 0.1469700038433075, 0.37380000948905945, 0.2712799906730652, -0.7502700090408325, -0.27750998735427856, -0.2735399901866913, -0.41262999176979065, -0.020315999165177345, 0.6748499870300293, 0.4775499999523163, 0.03858400136232376, -0.45357000827789307, 0.35471001267433167, -0.34707000851631165, -0.05271900072693825, -0.1430799961090088, -0.2980400025844574, 0.391539990901947, -0.4658699929714203, 0.362060010433197, 0.449180006980896, 0.08985800296068192, 0.1332699954509735, -0.08867699652910233, 0.12266000360250473, 0.5597400069236755, 0.4265199899673462, -0.18216000497341156, -0.4485200047492981, -0.18745000660419464, 0.4262999892234802, 0.384909987449646, 0.4808399975299835, -0.02599399909377098, -0.2817800045013428, -0.3237999975681305, 0.15498000383377075, 0.31560999155044556, 0.10797999799251556, 0.19731999933719635, -0.22182999551296234, 0.3946099877357483, 0.6682599782943726, -0.24595999717712402, -0.48767998814582825, -0.6734899878501892, 0.027719000354409218, -0.5047900080680847, 0.5594599843025208], u'large': [-0.3354499936103821, 0.31369999051094055, 0.17218999564647675, -1.0163999795913696, 0.2104800045490265, 0.37970998883247375, 0.3134300112724304, 0.3216699957847595, -0.2718999981880188, -1.596500039100647, -0.0906749963760376, 0.26172998547554016, -0.0764399990439415, 0.4013200104236603, 0.11462999880313873, -0.2283100038766861, -0.1679600030183792, 0.07009799778461456, 0.03576299920678139, -0.2727600038051605, -0.28007999062538147, -0.057548001408576965, 0.8543400168418884, 0.23177999258041382, -0.22157999873161316, -0.028082000091671944, 0.12416999787092209, 0.11826000362634659, -0.3654800057411194, 0.16930000483989716, -0.4131999909877777, 0.5769299864768982, -0.3578000068664551, 0.38054001331329346, -0.1337299942970276, 0.18108999729156494, -0.298550009727478, -0.0600770004093647, -0.316210001707077, 0.38920000195503235, -0.19528000056743622, -0.2639999985694885, 0.210099995136261, 0.3412899971008301, -0.13321000337600708, 0.19637000560760498, 0.4867100119590759, 0.0310210008174181, 0.16383999586105347, 0.4781999886035919, 0.22347000241279602, 0.49035999178886414, -0.21076999604701996, 7.907200051704422e-05, 0.05955300107598305, -0.13333000242710114, -0.5420399904251099, 0.19064000248908997, 0.6082299947738647, 0.16332000494003296, -0.08065400272607803, -0.07430200278759003, 0.27386000752449036, 0.12526999413967133, 0.18464000523090363, -0.19767999649047852, -0.18821999430656433, 0.28797999024391174, -0.06002900004386902, 0.17023999989032745, 0.07460899651050568, 0.0121069997549057, 0.2229200005531311, 0.12529000639915466, -0.2881599962711334, 0.16009999811649323, -0.11729999631643295, -0.147039994597435, 0.21774999797344208, -0.5111700296401978, -0.29388999938964844, 0.03880000114440918, -0.4671100080013275, -0.3907400071620941, 0.5015400052070618, 0.19830000400543213, 0.10030999779701233, 0.006348900031298399, -0.24199999868869781, -0.09516099840402603, 0.2967100143432617, 0.07931800186634064, -0.2599000036716461, 0.17824000120162964, -0.19280000030994415, -0.18851999938488007, 0.12161000072956085, 0.011095999740064144, 0.007953399792313576, 0.04118900001049042, -0.0677890032529831, -0.015043999999761581, -0.19151000678539276, -0.5125700235366821, -0.7231799960136414, 0.44099000096321106, 0.054329998791217804, -0.17396999895572662, -0.1030300036072731, 0.05852000042796135, -0.3573800027370453, 0.005084000062197447, -0.18761000037193298, 0.1762399971485138, 0.08197099715471268, 0.11020000278949738, -0.2963699996471405, 0.33880001306533813, 0.21302999556064606, -0.4030199944972992, 0.004871100187301636, 0.015099000185728073, 0.36487001180648804, 0.33994999527931213, 0.38582998514175415, 0.22253000736236572, -0.07423800230026245, 0.2778800129890442, -0.368010014295578, -0.1642799973487854, 0.18379999697208405, 0.5461300015449524, -0.5778499841690063, 0.21526999771595, 0.3560900092124939, -0.012222000397741795, 0.00556579977273941, -0.34073999524116516, -0.11836999654769897, 0.07437299937009811, -0.18201999366283417, 0.09683900326490402, -0.009803400374948978, 0.08143600076436996, 0.08536999672651291, -0.18006999790668488, 0.30880001187324524, 0.06261599808931351, 0.2156900018453598, 0.08591300249099731, 0.13107000291347504, -0.057982999831438065, -0.1473899930715561, -0.11215999722480774, 0.3528999984264374, 0.14313000440597534, 0.10474000126123428, 0.012651000171899796, -0.2393600046634674, -0.3586899936199188, -0.08259300142526627, 0.43108001351356506, 0.5063300132751465, 0.21295000612735748, -0.033980000764131546, -0.42640000581741333, 0.1652899980545044, 0.028068000450730324, -0.017595000565052032, 0.16347000002861023, 0.28439998626708984, -0.33122000098228455, -0.16864000260829926, -0.2055100053548813, 0.12639999389648438, -0.11597000062465668, -0.10947000235319138, 0.15487000346183777, 0.7886899709701538, -0.07400199770927429, 0.09002000093460083, -0.0773169994354248, 0.37400001287460327, -0.1519400030374527, 0.19290000200271606, -0.5910300016403198, 0.23107999563217163, 0.44982001185417175, -0.02456199936568737, 0.08783800154924393, 0.36239999532699585, 0.5302199721336365, -0.11896000057458878, -0.0898440033197403, 0.49004000425338745, 0.2843700051307678, 0.2739900052547455, 0.019137000665068626, 0.18252000212669373, 0.06122199818491936, 0.2813200056552887, -0.16288000345230103, -0.48848000168800354, -0.18709999322891235, 0.07410900294780731, -0.05684899911284447, -0.3676599860191345, 0.0744670033454895, 0.1638599932193756, -0.45208999514579773, 0.3921000063419342, 0.08988499641418457, 0.0184480007737875, -0.39921998977661133, 0.06124500185251236, 0.14168000221252441, 0.22084000706672668, 0.060989998281002045, 0.16202999651432037, 0.1409599930047989, 0.7020900249481201, -0.018200000748038292, -0.06311400234699249, -0.47745001316070557, -0.16478000581264496, -0.11089999973773956, -0.18271000683307648, -0.00755950016900897, -0.0478769987821579, -0.3230299949645996, 0.01747100055217743, -0.04852199926972389, -0.3873400092124939, 0.32965999841690063, 0.15681999921798706, 0.3614700138568878, -0.06984899938106537, 0.0010224999859929085, -0.5912299752235413, -0.09666900336742401, 0.2779799997806549, 0.5063899755477905, 0.3530699908733368, 0.028706999495625496, -1.4104000329971313, -0.5185700058937073, 0.3076300024986267, -0.03328799828886986, 0.013209999538958073, -0.10531999915838242, 0.10451000183820724, -0.06313099712133408, -0.08995100110769272, -0.2804499864578247, 0.6590999960899353, 0.28766000270843506, -0.44802001118659973, -0.14264999330043793, -0.30983999371528625, 0.28279998898506165, 0.06024400144815445, 0.036518000066280365, 0.5230399966239929, 0.46608999371528625, 0.11379999667406082, -0.4076400101184845, -0.16152000427246094, 0.09628800302743912, 0.0914440006017685, 0.3811199963092804, -0.023088999092578888, 0.2688399851322174, -0.14504000544548035, 0.2624399960041046, 0.021259000524878502, 0.11726000159978867, -2.444000005722046, 0.2872599959373474, -0.24993999302387238, 0.30717000365257263, -0.4747200012207031, 0.3080199956893921, 0.09074900299310684, 0.06132400035858154, -0.2737799882888794, 0.4584699869155884, -0.36368000507354736, 0.44321000576019287, 0.3377799987792969, 0.17048999667167664, 0.005373199936002493, -0.2406499981880188, -0.13912999629974365, 0.06557200103998184, 0.1339700073003769, 0.5724200010299683, 0.09540300071239471, -0.4032000005245209, -0.130280002951622, -0.25446000695228577], u'whipped': [-0.19803999364376068, -0.046519000083208084, -0.4799500107765198, 0.25944000482559204, -0.11670000106096268, -0.3501499891281128, -0.15233999490737915, 0.2624500095844269, 0.05723600089550018, 0.05478399991989136, 0.7074199914932251, -0.17459000647068024, 0.3703500032424927, -0.3605799973011017, -0.4543299973011017, 0.7481399774551392, 0.10266000032424927, -0.016301000490784645, -0.3229599893093109, 0.47328999638557434, 0.0077137998305261135, 0.10824000090360641, -0.1745299994945526, -0.14823000133037567, -0.33632001280784607, 0.2522999942302704, 0.2926500141620636, 0.35464000701904297, -0.486380010843277, -0.450439989566803, -0.5647799968719482, -0.19651000201702118, -0.2559800148010254, -0.30691999197006226, -0.5091800093650818, 0.28325000405311584, -0.6862800121307373, 0.3483400046825409, 0.04800200089812279, 0.25453999638557434, 0.12682999670505524, -0.31551000475883484, -0.021283000707626343, -0.144119992852211, 0.5990800261497498, 0.058212000876665115, -0.08476799726486206, 0.03763899952173233, 0.38648998737335205, 0.5813000202178955, -0.44093000888824463, 0.32078999280929565, 0.45357999205589294, -0.2616400122642517, -0.7612800002098083, 0.0691479966044426, -0.023067999631166458, -0.3500699996948242, -0.014740999788045883, 0.3793100118637085, 0.4530099928379059, 0.47071999311447144, -0.02275400049984455, -0.3089599907398224, -0.5877799987792969, -0.326229989528656, -0.003756199963390827, 0.1987600028514862, -0.3795900046825409, -0.13790999352931976, -0.18378999829292297, 0.10961999744176865, -0.5398499965667725, -0.006271599791944027, -0.22756999731063843, -0.1337900012731552, 0.12594999372959137, -0.4614799916744232, -0.14371000230312347, 0.25029000639915466, 0.4762499928474426, 0.20535999536514282, -0.3305000066757202, -0.3024600148200989, -0.20892000198364258, -0.4989300072193146, -0.5039899945259094, -0.08348800241947174, 0.11176999658346176, -0.34784001111984253, -0.18422000110149384, -0.2992199957370758, -0.03125099837779999, -0.149509996175766, -0.76528000831604, 0.01169500034302473, 0.350739985704422, 0.5748400092124939, -0.08636300265789032, 0.4241200089454651, 0.28137001395225525, 0.05795599892735481, -0.34415000677108765, -0.26815998554229736, 0.35242998600006104, 0.24699999392032623, 0.11320000141859055, 0.657039999961853, -0.8557199835777283, 0.3794400095939636, 0.13440999388694763, 0.07790599763393402, 0.405129998922348, -0.2842000126838684, -0.04220400005578995, 0.464029997587204, -0.7547799944877625, 0.48170000314712524, 0.001879999996162951, -0.1301400065422058, 0.1677599996328354, -0.5873399972915649, -0.26499998569488525, 0.1114099994301796, 0.00452810013666749, -0.20309999585151672, -0.19453999400138855, 0.07884500175714493, -0.45497000217437744, 0.4345099925994873, -5.599300129688345e-05, 0.9194200038909912, -0.39282000064849854, 0.7893000245094299, -0.3416900038719177, -0.298009991645813, 0.42497000098228455, 0.045743998140096664, 0.06090199947357178, 0.21074999868869781, -0.10068000108003616, 0.0891290009021759, -0.8722699880599976, 0.8843899965286255, -0.34393998980522156, 0.4914799928665161, 0.1360500007867813, -0.5173100233078003, 0.41703999042510986, -0.6712599992752075, 0.057342998683452606, 0.3072099983692169, 0.5205199718475342, 0.44749000668525696, -0.3895699977874756, 0.030899999663233757, 0.008545800112187862, -0.25551000237464905, 0.519760012626648, 0.4249800145626068, 0.02782200090587139, -0.08651100099086761, -0.23156000673770905, -0.08920200169086456, 0.2059600055217743, -0.45879998803138733, 0.2870199978351593, 0.26311999559402466, -0.3107199966907501, -0.5928900241851807, 0.4398899972438812, 0.20723000168800354, -0.6362900137901306, -0.5894700288772583, 0.31233999133110046, -0.22910000383853912, -0.5700799822807312, 0.37130001187324524, 0.3190700113773346, -0.27246999740600586, -0.0413069985806942, -0.2785300016403198, 0.4515399932861328, -0.08447600156068802, -0.18606999516487122, -0.6740400195121765, 0.3840000033378601, -0.2709699869155884, -0.41266000270843506, -0.08203999698162079, 0.10606999695301056, 0.1826000064611435, -0.23607000708580017, -0.20664000511169434, 0.31095999479293823, -0.5365999937057495, -0.37713998556137085, 0.16824999451637268, 0.4641599953174591, 0.2254599928855896, 0.41909998655319214, -0.05129300057888031, 0.46757999062538147, 0.13181999325752258, -0.2673799991607666, -0.15081000328063965, 0.42618998885154724, 0.35047000646591187, 0.18749000132083893, 0.23013000190258026, -0.08240900188684464, 0.0401419997215271, -0.16148999333381653, -0.1781100034713745, -0.15505999326705933, 0.07610099762678146, 0.2639800012111664, -0.6748899817466736, 0.12408000230789185, 0.08327099680900574, 0.924560010433197, 0.7080100178718567, -0.06171000003814697, -0.559939980506897, -0.6568899750709534, 0.17940999567508698, 0.4675700068473816, -0.19979000091552734, 0.07945699989795685, -0.4676400125026703, 0.46244001388549805, -0.18371999263763428, -0.26743000745773315, -0.1506199985742569, 0.4193899929523468, -0.03315100073814392, -0.4353500008583069, 0.12239000201225281, -0.47933998703956604, 0.13413000106811523, -0.23760999739170074, 0.055093999952077866, -0.9546200037002563, -0.33083000779151917, -0.1689399927854538, 0.1405400037765503, 0.6995800137519836, 1.1500999927520752, -0.0950469970703125, -0.4610700011253357, -0.09536000341176987, -0.3613699972629547, 0.3438799977302551, -0.5472599864006042, 0.226500004529953, -0.46759000420570374, 0.009162399917840958, -0.29916998744010925, -0.03813000023365021, 0.030175000429153442, -0.20658999681472778, -0.1167600005865097, -0.037262000143527985, 0.08881299942731857, -0.32986998558044434, -0.7580900192260742, -0.37959998846054077, -0.292059987783432, -0.20670999586582184, -0.14018000662326813, -0.3433000147342682, -0.35763999819755554, 0.09616100043058395, 0.5788800120353699, -0.0883219987154007, 0.5335800051689148, -0.14528000354766846, -0.1276099979877472, -1.0224000215530396, -0.4331600069999695, 0.11043000221252441, 0.3984900116920471, -0.2540000081062317, -0.01120499987155199, 0.18727000057697296, 0.8396099805831909, 0.39342001080513, -0.0004248199984431267, 0.19292999804019928, 0.10632999986410141, 0.02346700057387352, -0.3551200032234192, 0.20048999786376953, 0.24661999940872192, 0.47268998622894287, -0.2913999855518341, 0.48427000641822815, 0.24005000293254852, 0.18055999279022217, -0.42239001393318176], u'small': [-0.43299001455307007, 0.32829999923706055, -0.09427499771118164, -0.7457699775695801, 0.09729400277137756, 0.3034299910068512, 0.24456000328063965, 0.23423999547958374, 0.11643999814987183, -1.3854000568389893, -0.20632000267505646, 0.33972999453544617, -0.053957000374794006, 0.31498000025749207, 0.11494000256061554, 0.2925100028514862, -0.26183998584747314, -0.031321000307798386, 0.05107299983501434, -0.3513599932193756, -0.06878799945116043, 0.27994999289512634, 0.6613399982452393, 0.4903799891471863, -0.4678100049495697, -0.09004499763250351, -0.2037699967622757, -0.03209200128912926, -0.280129998922348, 0.344870001077652, -0.15876999497413635, 0.46024999022483826, -0.3542099893093109, 0.4900999963283539, -0.3040800094604492, 0.4970000088214874, -0.09775999933481216, 0.18095999956130981, -0.07873500138521194, 0.04361899942159653, -0.03572700172662735, -0.0554720014333725, 0.5286499857902527, 0.3684700131416321, 0.05800199881196022, -0.03285299986600876, 0.4468100070953369, 0.1057099997997284, 0.23000000417232513, 0.5418400168418884, 0.40108999609947205, 0.2713199853897095, 0.260670006275177, 0.1648399978876114, -0.1965000033378601, -0.06748200207948685, -0.6909199953079224, 0.052956998348236084, 0.710070013999939, 0.013009999878704548, 0.3177900016307831, -0.35350000858306885, 0.47409000992774963, 0.060419999063014984, 0.2960900068283081, -0.08097100257873535, -0.04022299870848656, 0.3108600080013275, -0.05904800072312355, 0.08952700346708298, -0.023670999333262444, -0.0031117000617086887, 0.48291999101638794, 0.25220999121665955, -0.4905500113964081, 0.015608999878168106, -0.21219000220298767, -0.2625400125980377, 0.10605999827384949, -0.5484899878501892, -0.07945399731397629, 0.38383999466896057, -0.13756999373435974, 0.22811999917030334, 0.49772998690605164, 0.24302999675273895, 0.25780001282691956, -0.10300999879837036, -0.4755899906158447, -0.12228000164031982, 0.5821599960327148, 0.28679001331329346, -0.24309000372886658, -0.04845599830150604, 0.28119999170303345, -0.23228999972343445, 0.3141300082206726, 0.09697499871253967, -0.21615999937057495, 0.11934000253677368, 0.1415800005197525, 0.12211000174283981, -0.24722999334335327, -0.5694699883460999, -0.6579399704933167, 0.0891529992222786, 0.21461999416351318, -0.3493199944496155, 0.1714099943637848, 0.09115400165319443, -0.557640016078949, -0.10458000004291534, 0.01065600011497736, -0.09652400016784668, 0.08570399880409241, 0.06460999697446823, -0.0687279999256134, 0.1804099977016449, 0.15594999492168427, 0.12814000248908997, 0.01645199954509735, 0.0016550000291317701, 0.4145599901676178, -0.02121400088071823, 0.07385999709367752, 0.21315999329090118, 0.029834000393748283, 0.24059000611305237, -0.05165399983525276, -0.10135000199079514, 0.034421999007463455, -0.1905599981546402, -0.02182300016283989, 0.13194000720977783, 0.489439994096756, -0.05034999921917915, 0.3111400008201599, -0.07296700030565262, -0.08268699795007706, -0.3533399999141693, -0.013307999819517136, 0.2494100034236908, -0.13371999561786652, 0.1616699993610382, -0.5195000171661377, -0.087008997797966, 0.21789999306201935, 0.2538599967956543, -0.07347600162029266, 0.16087999939918518, -0.05938199907541275, -0.5024899840354919, -0.15806999802589417, -0.16756999492645264, 0.44968000054359436, 0.22458000481128693, 0.1919499933719635, 0.330020010471344, -0.03356600180268288, -0.22206999361515045, 0.15534000098705292, 0.06911300122737885, 0.26469001173973083, -0.005183400120586157, -0.20115000009536743, -0.22658999264240265, -0.12001000344753265, -0.07406000047922134, 0.05587099865078926, -0.0437919981777668, -0.06620900332927704, -0.4711500108242035, -0.27074000239372253, 0.17172999680042267, -0.2523699998855591, -0.2657800018787384, -0.28925999999046326, -0.006259600166231394, 0.4977099895477295, 0.048774998635053635, 0.3230299949645996, -0.12184999883174896, 0.212459996342659, -0.06889600306749344, 0.37685999274253845, -0.497079998254776, 0.15415999293327332, 0.1789799928665161, 0.18014000356197357, -0.10665000230073929, 0.4231399893760681, 0.48976999521255493, 0.12410999834537506, 0.17776000499725342, 0.19731000065803528, 0.5033900141716003, 0.021515000611543655, -0.19975000619888306, -0.1969500035047531, -0.2827500104904175, 0.6962400078773499, 0.016805000603199005, -0.28102999925613403, 0.2284799963235855, 0.12902000546455383, -0.2939299941062927, -0.383870005607605, 0.07118599861860275, -0.04830700159072876, -0.09056700021028519, 0.28123998641967773, 0.07756999880075455, -0.06627500057220459, -0.2098499983549118, 0.12430000305175781, 0.08687499910593033, 0.4458099901676178, -0.02241699956357479, -0.42190998792648315, 0.19197000563144684, 0.4508199989795685, 0.11105000227689743, -0.49147000908851624, -0.09086000174283981, 0.13809999823570251, 0.0023229001089930534, 0.021260999143123627, -0.22925999760627747, 0.07124000042676926, -0.09533900022506714, 0.08205900341272354, -0.5006200075149536, -0.302590012550354, 0.061177000403404236, 0.45982998609542847, 0.47468000650405884, 0.09174799919128418, 0.2226399928331375, -0.37202998995780945, 0.10785999894142151, 0.3549000024795532, 0.21040000021457672, 0.19999000430107117, 0.07610400021076202, -1.3044999837875366, -0.5774700045585632, 0.5189999938011169, 0.06846900284290314, -0.38346999883651733, -0.12574000656604767, 0.04781100153923035, -0.21213999390602112, -0.24007000029087067, -0.26385998725891113, 0.5067899823188782, 0.6416000127792358, -0.1755100041627884, -0.20360000431537628, -0.22473999857902527, 0.2270900011062622, 0.20689000189304352, 0.08132000267505646, 0.28826001286506653, 0.15282000601291656, 0.19621999561786652, -0.35670000314712524, -0.2560400068759918, 0.21318000555038452, -0.1404300034046173, 0.5110599994659424, -0.1319500058889389, 0.17746999859809875, -0.12300000339746475, 0.19979999959468842, -0.20782999694347382, 0.3435499966144562, -2.408900022506714, 0.34228000044822693, -0.3987399935722351, 0.2849400043487549, -0.5406000018119812, 0.5463100075721741, -0.14949999749660492, 0.016374999657273293, -0.30254000425338745, 0.2932499945163727, -0.0723629966378212, 0.1933099925518036, 0.44071000814437866, 0.31411001086235046, -0.06312499940395355, -0.28707000613212585, -0.16933000087738037, -0.15031999349594116, -0.30976998805999756, 0.8141099810600281, -0.2567700147628784, -0.1940699964761734, -0.11113999783992767, -0.05807400122284889], u'engraved': [-0.43452998995780945, 0.3598499894142151, 0.23623999953269958, -0.23125000298023224, 0.16184000670909882, 0.6300299763679504, -0.13207000494003296, -0.15051999688148499, -0.2340400069952011, 0.036600999534130096, 0.0414000004529953, -0.11862999945878983, -0.23813000321388245, -0.22032000124454498, -0.051819998770952225, 0.07554099708795547, -0.3864000141620636, -0.021784000098705292, -0.3029100000858307, -0.9160400032997131, -0.09522400051355362, 0.25808998942375183, -0.2265699952840805, 0.22559000551700592, -0.2434699982404709, -0.526170015335083, 0.10474000126123428, 0.550790011882782, 0.33421000838279724, -0.12020000070333481, 1.1718000173568726, 0.722320020198822, -0.48045000433921814, 0.25949999690055847, 0.2859799861907959, 0.2923299968242645, -0.04812299832701683, -0.5016999840736389, 0.22888000309467316, -0.62882000207901, -0.335750013589859, 0.1511400043964386, 0.22524000704288483, -0.30204999446868896, -0.16975000500679016, 0.4307200014591217, 0.14041000604629517, -0.10211999714374542, -0.025241000577807426, 0.2550399899482727, -0.010137000121176243, 0.16328999400138855, 0.36671000719070435, 0.5118899941444397, 0.04336300119757652, -0.1809699982404709, -0.5410199761390686, 0.8869900107383728, 0.15702000260353088, 0.271369993686676, 0.5035099983215332, 0.13218000531196594, 0.10242000222206116, 0.0695900022983551, 0.8793500065803528, 0.09108799695968628, -0.11868000030517578, -0.3486799895763397, 0.2399500012397766, 0.010135999880731106, 0.3633100092411041, -0.2924700081348419, -0.07973700016736984, 0.3780499994754791, 0.10877999663352966, 0.12227000296115875, 0.8129799962043762, 0.007986299693584442, -0.1334100067615509, -0.5207200050354004, 0.21051999926567078, 0.26704999804496765, -0.16944000124931335, -0.05673300102353096, 0.009598899632692337, 0.1214900016784668, -0.38909998536109924, -0.4415299892425537, 0.16071000695228577, 0.6309700012207031, 0.45263001322746277, 0.0677110031247139, -0.27188000082969666, 0.0200009997934103, 0.056063998490571976, 0.3075000047683716, 0.19128000736236572, -0.22513000667095184, 0.00781320035457611, -0.47088000178337097, 0.16303999722003937, 0.40997999906539917, -0.08120600134134293, 0.5678600072860718, -0.258789986371994, -0.17026999592781067, 0.40540000796318054, -0.19999000430107117, 0.12530000507831573, -0.5343400239944458, -0.04160400107502937, 0.6162700057029724, 0.1999099999666214, -0.3034200072288513, -0.7403900027275085, -0.22538000345230103, -0.5112199783325195, 0.3515700101852417, 0.38969001173973083, -0.6724299788475037, -0.5938799977302551, 0.19550999999046326, 0.10120999813079834, 0.35275998711586, -0.09288199990987778, -0.05041300132870674, -0.13977999985218048, -0.3655700087547302, -0.4263499975204468, 0.27312999963760376, -0.16662000119686127, 0.3405500054359436, 0.3432700037956238, 0.18984000384807587, -0.6032199859619141, -0.11957000195980072, 0.39153000712394714, 0.28439998626708984, 0.3676699995994568, 0.13123999536037445, -0.23631000518798828, 0.5982499718666077, -0.15025000274181366, 0.002215699991211295, 0.7170500159263611, -0.4022499918937683, 0.14749999344348907, -0.10916999727487564, 0.5312700271606445, -0.4554400146007538, -0.17357000708580017, 0.22471000254154205, -0.35767999291419983, -0.5989199876785278, -0.007253699935972691, -0.07427600026130676, -0.5131300091743469, -0.5176900029182434, 0.14603999257087708, -0.3369300067424774, -0.35003000497817993, 0.6688600182533264, 0.3122299909591675, 0.12713000178337097, 0.6713700294494629, 0.6833900213241577, 0.559909999370575, 0.5911499857902527, 0.0428679995238781, -0.6751999855041504, -0.06499800086021423, -0.10187000036239624, 0.16915999352931976, -0.3193100094795227, 0.2950800061225891, -0.2865299880504608, 0.336899995803833, 0.1320600062608719, 0.004507699981331825, -0.6428599953651428, -0.15780000388622284, -0.1160999983549118, 0.4821000099182129, -0.17260999977588654, 0.06718699634075165, -1.1044000387191772, -0.20441000163555145, 0.5193799734115601, 0.3139899969100952, 0.07821100205183029, 0.6814799904823303, -0.13176999986171722, 0.7002099752426147, 0.6751300096511841, 0.20118999481201172, -0.10294000059366226, -0.07170800119638443, -0.2946999967098236, -0.17454999685287476, -0.06045199930667877, 0.6505600214004517, -0.21549999713897705, -0.16272999346256256, -0.04428799822926521, 0.8347100019454956, -0.23317000269889832, -0.1394300013780594, -0.06198300048708916, -0.8511599898338318, -0.05264599993824959, 0.7227500081062317, -0.12734000384807587, 0.43129000067710876, -0.2655999958515167, 0.0923290029168129, -0.018882999196648598, 0.11440999805927277, -0.17291000485420227, -0.19148999452590942, 0.2525799870491028, -0.5490599870681763, 0.21570000052452087, 0.480540007352829, -0.09147900342941284, -0.6113899946212769, 0.10791999846696854, 0.1572200059890747, 0.07649099826812744, 0.01720299944281578, -0.49577999114990234, -0.6250200271606445, -0.028231000527739525, -0.7504400014877319, -0.22338999807834625, 0.08939500153064728, 0.11841999739408493, -0.5070099830627441, -0.9208400249481201, -0.3536500036716461, -0.0852229967713356, -0.3002299964427948, -0.026938000693917274, 0.06625799834728241, 0.013562999665737152, -0.0501209981739521, -0.05583899840712547, -0.7778599858283997, 0.03979700058698654, -0.10211999714374542, 0.4994199872016907, 0.15320000052452087, -0.37296000123023987, 0.36699000000953674, -0.27355000376701355, 0.29249998927116394, 0.0962510034441948, 0.12309999763965607, 0.10307999700307846, 0.14619000256061554, 0.03869200125336647, -0.501579999923706, 0.44736000895500183, 0.7435899972915649, 0.1474200040102005, 0.41835999488830566, 0.08231300115585327, 0.06412000209093094, 0.4334299862384796, -0.2728300094604492, -0.12284000217914581, 0.1950799971818924, -0.16332000494003296, 0.5615500211715698, -0.22585000097751617, -0.3653799891471863, 0.1667100042104721, 0.03258100152015686, -0.7032999992370605, -0.22800999879837036, 0.11344999819993973, 0.2585200071334839, -0.09365600347518921, -0.2404700070619583, -0.384660005569458, -0.018775999546051025, 0.3822300136089325, -0.04211999848484993, 0.008228999562561512, 0.3146800100803375, -0.13062000274658203, 0.03703499957919121, 0.07483900338411331, 0.39965999126434326, 0.25878000259399414, -0.2984499931335449, -0.3012999892234802, 0.8981299996376038, 0.35822001099586487, -0.05330900102853775, -0.3840799927711487], u'heavy': [-0.13578000664710999, -0.06529100239276886, -0.5670199990272522, -0.3486599922180176, -0.3861300051212311, -0.5605199933052063, 0.4320400059223175, 0.9040399789810181, -0.13005000352859497, -1.6455999612808228, 0.2558700144290924, -0.19011999666690826, -0.25925999879837036, 0.629289984703064, 0.1531199961900711, -0.4971199929714203, -0.2600899934768677, 0.1381399929523468, -0.22084000706672668, -0.29736998677253723, 0.36847999691963196, -0.5065400004386902, 0.448419988155365, -0.008393200114369392, -0.3974300026893616, -0.32607001066207886, 1.121500015258789, -0.2834799885749817, -0.14452999830245972, 0.11264000087976456, -0.3057200014591217, 0.14454999566078186, -0.07509499788284302, 0.05433199927210808, -0.4008899927139282, -0.2137099951505661, -0.5329700112342834, -0.19859999418258667, -0.11337999999523163, 0.5511400103569031, -0.081557996571064, 0.06276199966669083, 0.7843000292778015, -0.13333000242710114, 0.14530999958515167, 0.19388000667095184, 0.40257999300956726, -0.7350500226020813, 0.14365999400615692, 0.2283799946308136, 0.18345999717712402, 0.39201998710632324, -0.4188399910926819, -0.0023791000712662935, -0.6967099905014038, 0.07688800245523453, -0.025460999459028244, -0.37970998883247375, 0.7129600048065186, 0.43707001209259033, 0.22919000685214996, -0.056710001081228256, -0.03832799941301346, -0.2110700011253357, -0.19598999619483948, 0.05630800127983093, -0.4298799932003021, 0.6636599898338318, -0.19163000583648682, 0.11703000217676163, 0.17500999569892883, -0.047318000346422195, -0.20674000680446625, -0.3388400077819824, -0.2175000011920929, 0.2011599987745285, -0.2533800005912781, 0.40797001123428345, -0.05505499988794327, -0.48721998929977417, -0.12570999562740326, 0.004084100015461445, 0.16957999765872955, -0.5475299954414368, -0.09499000012874603, -0.05362899973988533, 0.08155699819326401, 0.19363999366760254, 0.1930599957704544, 0.05285000056028366, 0.6945099830627441, -0.12664000689983368, -0.028881000354886055, -0.2084600031375885, -0.4299600124359131, 0.11116000264883041, -0.155239999294281, -0.16673000156879425, 0.10035999864339828, 0.2867400050163269, -0.3159500062465668, 0.5745900273323059, 0.03458299860358238, -0.13009999692440033, -0.1622299998998642, 0.012409999966621399, 0.11828000098466873, -0.16923999786376953, -0.16911999881267548, -0.260919988155365, -0.39482998847961426, -0.3335399925708771, -0.29194000363349915, 0.03290500119328499, 0.3743700087070465, 0.48131999373435974, -0.3035700023174286, -0.13644999265670776, 0.20401999354362488, -0.7091400027275085, 0.09368100017309189, -0.4850099980831146, -0.2875500023365021, 0.23449000716209412, 0.15237000584602356, 0.0851140022277832, 0.2286600023508072, 0.11197999864816666, -0.12922999262809753, 0.12891000509262085, 0.2966499924659729, 1.3634999990463257, -0.11800999939441681, -0.10118000209331512, 0.43195998668670654, 0.04748399928212166, -0.33360999822616577, 0.5836600065231323, 0.38780999183654785, 0.5909600257873535, -0.3102799952030182, 0.13141000270843506, 0.01898300088942051, -0.2009200006723404, -0.08831799775362015, -0.23925000429153442, 0.4243699908256531, -0.20352999866008759, -0.4397999942302704, 0.035771001130342484, 0.3730100095272064, -0.6192799806594849, -0.5001699924468994, 0.00834949966520071, 0.6571900248527527, 0.0132020004093647, 0.3142099976539612, -0.0960799977183342, 0.21040000021457672, 0.47569000720977783, 0.3190299868583679, -0.2547299861907959, 0.4888699948787689, -0.21125000715255737, 0.007092100102454424, -0.09973999857902527, 1.1324000358581543, 0.3127099871635437, -0.030541999265551567, -0.3701600134372711, 0.4009000062942505, 0.63919997215271, -0.366129994392395, -0.2535400092601776, 0.053050000220537186, -0.3894200026988983, -0.004502600058913231, 0.08182699978351593, -0.122079998254776, 0.46713998913764954, 0.002755699912086129, 0.07050599902868271, 0.05032400041818619, -0.007806300185620785, -0.21679000556468964, -0.035496000200510025, 0.20127999782562256, 0.22092999517917633, -0.15065999329090118, -0.823639988899231, -0.1437000036239624, 0.1886799931526184, -0.2992199957370758, -0.2959200143814087, 0.3587299883365631, -0.4736500084400177, -0.3378700017929077, 0.18127000331878662, 0.7256100177764893, -0.0451509989798069, 0.18172000348567963, -0.5284900069236755, 0.40911000967025757, 0.4581199884414673, 0.08561699837446213, 0.22984999418258667, -0.33197999000549316, 0.2001499980688095, 0.3929600119590759, -0.2687399983406067, 0.16051000356674194, 0.16089999675750732, -0.27630001306533813, 0.1497499942779541, 0.17323000729084015, -0.5038899779319763, 0.5059999823570251, -0.05981700122356415, 0.5348899960517883, 0.25148001313209534, 0.5533900260925293, 0.15994000434875488, 0.32934999465942383, -0.11613000184297562, -0.36838001012802124, 0.6706100106239319, 0.22569000720977783, -0.6144300103187561, 0.2549000084400177, -0.33878999948501587, 0.21265999972820282, -0.3494099974632263, -0.32760998606681824, -0.256989985704422, 0.646809995174408, -0.034758999943733215, -0.35725000500679016, -0.30663999915122986, -0.3630000054836273, 0.013372000306844711, -0.05564400181174278, -0.05540600046515465, 0.20987999439239502, -0.3871000111103058, -0.9238899946212769, 0.05221499875187874, 0.023062000051140785, -0.4336499869823456, -0.3144899904727936, -0.05601000040769577, -0.4280700087547302, 0.2253500074148178, 0.5399100184440613, -0.04361699894070625, 0.33230000734329224, -0.29513999819755554, -0.49876999855041504, -0.4372299909591675, -0.4097000062465668, -0.11853999644517899, -0.04733600094914436, 0.14226999878883362, -0.5440099835395813, 0.3964399993419647, 0.12347999960184097, 0.21887999773025513, -0.2982900142669678, -0.44075000286102295, -0.22890999913215637, -0.01723100058734417, -0.037772998213768005, 0.19226999580860138, -0.2600800096988678, 0.0706150010228157, -0.4999000132083893, 0.3316600024700165, -1.743499994277954, -0.6188899874687195, -0.42879000306129456, 0.24769000709056854, -0.4759800136089325, 0.2597599923610687, 0.3974500000476837, -0.14527000486850739, 0.6950700283050537, 0.2907100021839142, -0.6821200251579285, 0.04848200082778931, 0.11294999718666077, -0.5275700092315674, -0.13375000655651093, 0.00598399993032217, -0.08500900119543076, -0.053745999932289124, 0.6357399821281433, 1.2187999486923218, -0.34549999237060547, -0.15076999366283417, -0.18821999430656433, 0.17374999821186066], u'old': [-0.3785800039768219, -0.06678199768066406, -0.37432000041007996, -0.3420499861240387, 0.5022100210189819, -0.08733399957418442, -0.3554700016975403, -0.5183699727058411, 0.1834300011396408, -1.0293999910354614, 0.1830500066280365, -0.13017000257968903, 0.17023999989032745, -0.35791000723838806, 0.18327000737190247, 0.06514299660921097, -0.02112000063061714, -0.14507000148296356, 0.3589400053024292, -0.15388000011444092, -0.005598700139671564, -0.13589000701904297, 0.207519993185997, -0.1268099993467331, -0.815559983253479, -0.19618000090122223, -0.19070999324321747, -0.23140999674797058, -0.10531999915838242, 0.5067200064659119, 0.009219200350344181, 0.46568000316619873, -0.14369000494480133, 0.4954499900341034, -0.6873000264167786, 0.3394100069999695, -0.01938300020992756, -0.29058998823165894, 0.2322700023651123, 0.43838000297546387, 0.9489399790763855, -0.265639990568161, -0.054600998759269714, 0.18342000246047974, 0.14369000494480133, 0.11625999957323074, 0.33893999457359314, 0.5922799706459045, -0.37279000878334045, -0.6063799858093262, 0.27862998843193054, -0.8024100065231323, -0.3012999892234802, 0.1830500066280365, 0.41179999709129333, -0.13805000483989716, 0.43661999702453613, -0.15162000060081482, -0.6118999719619751, -0.40237000584602356, 0.8246999979019165, 0.11190000176429749, 0.9744499921798706, 0.02654300071299076, -0.5165200233459473, -0.27167001366615295, -0.1117900013923645, 0.21585999429225922, 0.48104000091552734, 0.06661000102758408, -0.27654001116752625, -0.15873000025749207, -0.18477000296115875, 0.16584999859333038, -0.006548999808728695, 0.4541800022125244, -0.3147200047969818, -0.5801200270652771, 0.2353699952363968, 0.33851000666618347, 0.034297000616788864, -0.07563100010156631, 0.43160000443458557, -0.035808999091386795, -0.21894000470638275, 0.012994999997317791, -0.30327001214027405, -0.003152499906718731, 0.396450012922287, 0.4835500121116638, 0.05906299874186516, 0.08168099820613861, 0.12898999452590942, -0.0874829962849617, -0.04108100011944771, 0.16259999573230743, 0.5898900032043457, -0.15484000742435455, 0.16869999468326569, -0.1381099969148636, -0.03777199983596802, 0.28314998745918274, 0.5532299876213074, -0.40863001346588135, -0.10078000277280807, 0.23221999406814575, 0.25971999764442444, -0.1354600042104721, 0.12189000099897385, -0.016534000635147095, -0.04877299815416336, -0.17985999584197998, -0.3939799964427948, -0.2212499976158142, 0.2595599889755249, 0.2168000042438507, -0.6478300094604492, 0.5326499938964844, 0.2705099880695343, -0.06788399815559387, 0.32910001277923584, 0.2815600037574768, -0.01957700029015541, 0.2997699975967407, 0.0890130028128624, 0.22524000704288483, 0.031196000054478645, 0.34046000242233276, 0.6869699954986572, -0.5680699944496155, 0.2508699893951416, -0.2263299971818924, -0.18107999861240387, -0.2668600082397461, 0.42462000250816345, 0.33004000782966614, 0.3547999858856201, -0.12249000370502472, -0.22832000255584717, 0.1130099967122078, 0.6870700120925903, -0.21111999452114105, 0.3806999921798706, 0.3690299987792969, 0.029291000217199326, 0.459850013256073, -0.030047999694943428, 0.7087399959564209, -0.09295599907636642, 0.07261800020933151, 0.13203999400138855, 0.049692001193761826, -0.033055998384952545, 0.19449999928474426, 0.27191999554634094, 0.3380900025367737, -0.8259900212287903, -0.3857100009918213, -0.2738899886608124, 0.1964000016450882, 0.6307200193405151, -0.1137700006365776, 0.21955999732017517, -0.23965999484062195, -0.2851400077342987, 0.6158000230789185, 0.24237999320030212, 0.6168699860572815, 0.5202500224113464, -0.5633000135421753, -0.3201900124549866, 0.2687999904155731, -0.6193000078201294, 0.16301999986171722, -0.3964200019836426, 0.42570000886917114, 0.3624899983406067, -0.31769001483917236, 0.11440999805927277, 0.21875999867916107, 0.22081999480724335, 0.6196399927139282, 0.5738300085067749, 0.058921001851558685, 0.3974300026893616, 0.030050000175833702, -0.05147000029683113, -0.15988999605178833, 0.8932899832725525, 0.5665000081062317, -0.07131599634885788, -0.06486299633979797, -0.04782800003886223, -0.027481000870466232, -0.38530999422073364, -0.2588599920272827, -0.35596999526023865, -0.5031700134277344, -0.11175999790430069, 0.1759900003671646, 1.7202999591827393, -0.03616899996995926, 0.10885000228881836, 0.46296000480651855, 0.007524800021201372, -0.6669600009918213, -0.36131998896598816, 0.49011000990867615, 0.41422000527381897, 0.425029993057251, 0.1154400035738945, -0.1540299952030182, 0.04034300148487091, -0.21299000084400177, 0.5292500257492065, -0.19267000257968903, -0.0716169998049736, -0.4687800109386444, -0.32229000329971313, 0.09903199970722198, 0.21412000060081482, -0.45096999406814575, 0.1299699991941452, -0.34529000520706177, -0.012385999783873558, 0.5382400155067444, 0.37185001373291016, -0.5532400012016296, -0.1687300056219101, 0.529990017414093, 0.21663999557495117, 0.06574399769306183, 0.21014000475406647, -0.015118000097572803, 0.25505000352859497, 0.3856399953365326, 0.22741000354290009, -0.26782000064849854, -0.35427001118659973, 0.13133999705314636, -0.2889400124549866, -0.1404300034046173, 0.30943000316619873, -0.03412099927663803, -0.35332998633384705, 0.22269000113010406, 0.0332380011677742, -0.11766000092029572, 0.05524099990725517, -0.06635899841785431, 0.1278800070285797, -0.09824000298976898, -0.1558700054883957, -0.2620300054550171, 1.3269000053405762, -0.18580999970436096, -0.16731999814510345, 0.0380220003426075, 0.34237000346183777, -0.7374600172042847, -0.21876999735832214, 0.6086699962615967, -0.28422999382019043, 0.22999000549316406, 0.19847999513149261, 0.6673300266265869, 0.18241000175476074, 0.2603900134563446, 0.07524199783802032, -0.06287399679422379, -0.3416700065135956, -0.09212300181388855, 0.7612199783325195, -0.2893100082874298, 0.20387999713420868, 0.054545000195503235, -2.1073999404907227, 0.23086999356746674, 0.13876000046730042, 0.14904999732971191, 0.5039299726486206, 0.5610799789428711, 0.13950000703334808, -0.0757180005311966, 0.27039000391960144, 0.8401700258255005, -0.2964099943637848, -0.027130000293254852, -0.8069800138473511, -0.03687100112438202, 0.08108600229024887, 0.450219988822937, 0.029342999681830406, 0.012153999879956245, -0.09494899958372116, 0.10762999951839447, 0.06310799717903137, -0.4196400046348572, -0.8080099821090698, 1.124500036239624], u'diced': [0.011966000311076641, -0.10313999652862549, 0.14655999839305878, -0.34894001483917236, 0.35367000102996826, -0.36485999822616577, 0.45416000485420227, -0.06583499908447266, -0.5989000201225281, 0.8279299736022949, 0.6877700090408325, 0.05584599822759628, 0.31852999329566956, 0.9975900053977966, -0.1906300038099289, 0.4380199909210205, -0.8342099785804749, 0.050078000873327255, -0.5665199756622314, 0.7531899809837341, 0.28738000988960266, 0.13391999900341034, 0.4502499997615814, -0.05903400108218193, -0.11640000343322754, -1.0751999616622925, -0.1610099971294403, 0.9544199705123901, -0.8421199917793274, -0.4630599915981293, -0.8270599842071533, 0.2243800014257431, 0.06439399719238281, 0.4270699918270111, 0.3651899993419647, 0.8377199769020081, 0.1507200002670288, 0.24525000154972076, -0.34053999185562134, -0.4510599970817566, 0.23643000423908234, -0.3209500014781952, 0.1529099941253662, 0.20994000136852264, 0.22824999690055847, -0.04747600108385086, -0.3606399893760681, 0.7257400155067444, -0.49928000569343567, 0.15871000289916992, -0.17628000676631927, 0.29548001289367676, 0.43077000975608826, 0.10081999748945236, -0.7648800015449524, -0.5348100066184998, -0.10781999677419662, -0.10767000168561935, 0.36675000190734863, -0.30118998885154724, 0.5103700160980225, -0.20931999385356903, -0.6982600092887878, 0.2435300052165985, -0.48500001430511475, -0.45107999444007874, -0.4526900053024292, 0.45013999938964844, 0.612030029296875, -0.5950899720191956, 0.21683000028133392, -0.29225000739097595, 0.20124000310897827, 0.08918999880552292, -0.7924100160598755, 1.0058000087738037, 1.0917999744415283, 0.002845000009983778, 0.4643099904060364, -0.40345999598503113, -0.2141599953174591, -0.2360299974679947, -0.17188000679016113, -0.16249999403953552, 0.022105000913143158, -0.27785998582839966, -0.9045400023460388, -0.21067999303340912, 0.3101699948310852, 0.23738999664783478, 0.7404900193214417, 0.029436999931931496, 0.2209399938583374, -0.09822099655866623, -0.30893999338150024, 0.3340800106525421, -0.1690800040960312, 0.5028300285339355, 0.2688800096511841, 0.7790799736976624, -0.15094000101089478, 0.08971499651670456, 0.6944599747657776, -1.0983999967575073, -1.2821999788284302, 0.7837899923324585, -0.014074999839067459, 0.18645000457763672, -0.3144499957561493, -0.4045099914073944, 0.3259600102901459, 0.28130999207496643, -0.008569399826228619, -0.3627299964427948, -0.36730000376701355, -0.2682900130748749, -0.6024699807167053, 0.6187499761581421, 0.7735199928283691, 0.27775999903678894, 0.11458999663591385, -0.6573299765586853, 0.1503800004720688, 0.2632400095462799, -0.42340001463890076, 0.13694000244140625, -0.22880999743938446, 0.10819000005722046, -0.421999990940094, 0.8273299932479858, -0.17166000604629517, 1.0699000358581543, -0.15699000656604767, 0.7244499921798706, -0.24872000515460968, -0.033702999353408813, -0.13693000376224518, 0.049198001623153687, -0.8662099838256836, -0.06523899734020233, 0.256089985370636, 0.21356000006198883, -0.512939989566803, -0.06709600239992142, -0.5572800040245056, -0.3509399890899658, -0.15500999987125397, -0.19032999873161316, 1.0223000049591064, -0.6503000259399414, -1.2239999771118164, 0.4749999940395355, 0.1604599952697754, 0.7439200282096863, -0.9620599746704102, -0.4883599877357483, 0.29017001390457153, -0.07528900355100632, -1.135200023651123, -0.0836080014705658, -0.18418000638484955, 0.698419988155365, 0.21935999393463135, -0.6560800075531006, 0.6469600200653076, -0.4895699918270111, -0.5887600183486938, 0.16629000008106232, -0.49246999621391296, -0.6952000260353088, 0.3795500099658966, 0.19009000062942505, 0.030220000073313713, -0.007156100124120712, -0.1604900062084198, -0.6818699836730957, 0.20689000189304352, -0.46156999468803406, 0.6667500138282776, -0.1573300063610077, 0.09140200167894363, 0.01662999950349331, 0.5243300199508667, -0.5934600234031677, -0.5359100103378296, -0.6521099805831909, 0.2865999937057495, 0.36430999636650085, 0.9602599740028381, 0.31731998920440674, 0.13842999935150146, 0.9325299859046936, -0.20489999651908875, 0.08205299824476242, 0.5018799901008606, 0.10320000350475311, -0.11354999989271164, 0.6639000177383423, 0.465719997882843, -0.03064499981701374, -0.22436000406742096, -0.03510100021958351, 0.41095998883247375, 0.32910001277923584, 0.21412000060081482, 1.2137000560760498, -0.09852699935436249, 0.6180999875068665, 0.08336199820041656, 0.05687100067734718, 0.5037400126457214, -0.08250299841165543, -0.34894999861717224, 0.1942799985408783, 0.7544299960136414, 0.15018999576568604, 1.2623000144958496, -0.44960999488830566, 0.2899700105190277, 0.5621600151062012, 0.025971999391913414, 0.2240699976682663, -0.8214200139045715, -0.08159899711608887, -0.025169000029563904, -0.16023999452590942, -0.030090000480413437, -0.45680001378059387, -0.050554998219013214, -0.19913999736309052, -0.13635000586509705, 0.676609992980957, 0.02268899977207184, -0.41165000200271606, 0.39316999912261963, 0.7414500117301941, 0.025266999378800392, 0.13043999671936035, -0.8199599981307983, 0.23193000257015228, -0.1859399974346161, -0.12730999290943146, 0.05341099947690964, 0.08136399835348129, 0.03945299983024597, -0.37994998693466187, 0.5092099905014038, 0.07654400169849396, -0.18313999474048615, -1.0015000104904175, -0.17121000587940216, 0.3834500014781952, -0.6383100152015686, -0.43004000186920166, -0.42921000719070435, 0.46643999218940735, -0.10909000039100647, 0.28913000226020813, -0.6144999861717224, 0.42941999435424805, 0.37606000900268555, -0.06342600286006927, 0.5750799775123596, 0.2888700067996979, 0.38659998774528503, -0.606440007686615, -0.17041000723838806, 0.031543999910354614, -0.16182999312877655, -0.07624799758195877, -0.22202999889850616, 0.4221400022506714, -0.001893899985589087, 0.32409000396728516, -0.5765299797058105, 0.32236000895500183, 0.38304999470710754, -0.36351001262664795, -0.6772900223731995, -1.4574999809265137, 0.27897000312805176, -0.5560700297355652, 0.34314998984336853, 0.28951001167297363, 0.45583999156951904, -0.3115600049495697, 0.3588100075721741, 0.04856700077652931, -0.3453800082206726, 0.4162999987602234, 0.01886500045657158, 0.14101000130176544, 0.22121000289916992, -0.28268998861312866, -0.4235000014305115, -1.0627000331878662, -0.34567001461982727, -0.4325999915599823, 0.8613600134849548, 0.28110000491142273], u'rusty': [0.3589499890804291, 0.15086999535560608, -0.3316799998283386, -0.010436000302433968, -0.14811000227928162, -0.05069100111722946, -0.22645999491214752, 0.17053000628948212, 0.5123500227928162, 0.6370400190353394, 0.00402839994058013, -0.06331799924373627, -0.8127300143241882, 0.04369499906897545, -0.49116000533103943, -0.1244100034236908, -0.3550499975681305, 0.1813800036907196, 0.02537900023162365, -0.3089100122451782, 0.7411199808120728, 0.2838299870491028, -0.10191000252962112, 0.16631999611854553, -0.1810699999332428, -0.1964000016450882, 0.2505800127983093, 0.17418000102043152, -0.16107000410556793, -0.02121499925851822, 0.21938000619411469, 0.3338499963283539, 0.011101000010967255, 0.14213000237941742, -0.45138001441955566, 0.41203999519348145, -0.25255998969078064, -0.0029132000636309385, 0.10200999677181244, 0.18231000006198883, 0.09123100340366364, 0.5217199921607971, 0.3476099967956543, -0.6840100288391113, 0.14318999648094177, -0.07542099803686142, -0.3157599866390228, 0.1396999955177307, -0.18685999512672424, -0.31518998742103577, 0.0368649996817112, -0.26607000827789307, 0.16753000020980835, -0.11012999713420868, 0.08008900284767151, 0.06265799701213837, 0.122809998691082, -0.24747000634670258, 0.22396999597549438, -0.1934799998998642, 0.1360899955034256, 0.1222200021147728, 0.3047400116920471, 0.3570399880409241, 0.2728399932384491, -0.4553399980068207, -0.4538399875164032, 0.049518000334501266, 0.5612199902534485, 0.005668399855494499, -0.3352299928665161, 0.0064941998571157455, 0.21660999953746796, 0.9763299822807312, -0.4798699915409088, -0.08244600147008896, -0.35036998987197876, 0.35604000091552734, -0.04118400067090988, -0.2778699994087219, 0.4377099871635437, 0.20765000581741333, 0.1277099996805191, -0.04747400060296059, 0.026959000155329704, -0.316540002822876, 0.11739999800920486, 0.0670740008354187, -0.3115899860858917, -0.08907999843358994, 0.5805699825286865, 0.5746999979019165, -0.5234799981117249, -1.179800033569336, -0.4703199863433838, 0.49300000071525574, 0.39487001299858093, -0.28543001413345337, 0.15207000076770782, -0.31306999921798706, -0.09061499685049057, -0.12138000130653381, -0.3875100016593933, -0.34488001465797424, 0.1604599952697754, -0.29381000995635986, 0.18647000193595886, -0.025498000904917717, -0.6065400242805481, -0.3456200063228607, -0.36733999848365784, 0.09311699867248535, -0.3034000098705292, -1.0808000564575195, -0.3693599998950958, 0.16259999573230743, -0.2791599929332733, 0.4841099977493286, 0.17045000195503235, 0.39267000555992126, -0.33913999795913696, -0.6438400149345398, -0.07168000191450119, -0.2817299962043762, 0.09761899709701538, -0.04388599842786789, -0.23819999396800995, 0.14628000557422638, -0.18614999949932098, 0.3844499886035919, -0.04369200021028519, -0.03560600057244301, 0.29903000593185425, -0.17182999849319458, 0.11477000266313553, 0.053279999643564224, 0.38732001185417175, -0.05216600000858307, 0.15185999870300293, 0.19133999943733215, 0.3030799925327301, 0.06765300035476685, 0.23458999395370483, -0.4150800108909607, 0.2606399953365326, 0.13459999859333038, -0.04493600130081177, 0.6767299771308899, -0.20438000559806824, -0.05549800023436546, 0.18491999804973602, -0.07366099953651428, -0.4737800061702728, -0.14393000304698944, -0.1013299971818924, -0.6888999938964844, 0.4224399924278259, -0.5041400194168091, 0.352620005607605, 0.6248400211334229, 0.3610199987888336, 0.012884000316262245, -0.17749999463558197, -0.5255399942398071, -0.2683500051498413, 0.22020000219345093, -0.2971999943256378, 0.3912000060081482, 0.046539999544620514, -0.11643999814987183, -0.07336000353097916, 0.8762400150299072, 0.192440003156662, -0.46994999051094055, -0.054120998829603195, -0.3230699896812439, 0.21397000551223755, -0.4611800014972687, 0.3148599863052368, -0.1381099969148636, 0.4322099983692169, 0.7524799704551697, 0.42963001132011414, 0.18567000329494476, -0.1888200044631958, -0.21448999643325806, 0.34376999735832214, 0.1651500016450882, 0.6547499895095825, 0.2320600003004074, -0.5556899905204773, -0.4830000102519989, 0.33656999468803406, 0.7341399788856506, 0.33302000164985657, -0.1521800011396408, -0.3334900140762329, -0.06613600254058838, -0.440420001745224, -0.46340999007225037, 0.8845700025558472, 0.003378999885171652, -0.20413999259471893, -0.12471000105142593, 0.47095000743865967, 0.2689000070095062, 0.9251400232315063, -0.7149199843406677, -0.38934001326560974, 0.13670000433921814, -0.07590299844741821, 0.3302899897098541, -0.17274999618530273, -0.47453001141548157, 0.11275000125169754, -0.04537099972367287, 0.2658199965953827, 0.7965099811553955, -0.47282999753952026, -0.08234000205993652, 0.32190001010894775, -0.40108001232147217, -0.1276800036430359, 0.09072200208902359, 0.07256600260734558, 0.2899399995803833, -0.016428999602794647, -0.17922000586986542, -0.3117299973964691, -0.21834999322891235, 0.09499599784612656, -0.25690001249313354, -0.06894899904727936, 0.2549000084400177, -0.3507100045681, 0.7877399921417236, -0.12791000306606293, -0.032464999705553055, -0.3131999969482422, -0.38071000576019287, 0.1939300000667572, -0.3364199995994568, -0.3216400146484375, -0.3255299925804138, 0.26965001225471497, -0.37428998947143555, 0.4415000081062317, -0.16231000423431396, 0.3570300042629242, 0.3934299945831299, -0.5858299732208252, -0.12015999853610992, 0.08549799770116806, -0.7776700258255005, 0.9037899971008301, -0.13947999477386475, 0.13342000544071198, -0.4952299892902374, 0.18445000052452087, 0.12195999920368195, -0.6122099757194519, 0.19006000459194183, -0.1473200023174286, -0.08844900131225586, 0.18624000251293182, -0.30774998664855957, -0.3872799873352051, -0.2130099982023239, -0.42555999755859375, 0.25859999656677246, -0.19856999814510345, -0.46560001373291016, -0.415149986743927, -0.2337999939918518, -0.26006001234054565, 0.24627000093460083, 0.07649099826812744, 0.026606999337673187, -0.7224100232124329, 0.12201999872922897, 0.15494999289512634, 0.26669999957084656, -0.019536999985575676, 0.16058999300003052, 0.17980000376701355, -0.3450999855995178, 0.08337599784135818, 0.28185999393463135, -0.32879000902175903, 0.15228000283241272, 0.3415600061416626, -0.17744000256061554, -0.015312000177800655, 0.3476000130176544, -0.3615399897098541, 0.052048999816179276, 0.07923799753189087, -0.21788999438285828, -0.198730006814003, 0.505050003528595], u'inflated': [0.7446900010108948, 0.5210599899291992, 0.38201001286506653, 0.2749199867248535, 0.10175999999046326, -0.06488999724388123, 0.27452999353408813, 0.4761500060558319, -0.10036999732255936, -0.7969800233840942, -0.7605100274085999, 0.09193799644708633, -0.1372700035572052, 0.07847800105810165, -0.4244900047779083, 0.6371300220489502, 0.3089999854564667, 0.1607300043106079, 0.2923299968242645, 0.12524999678134918, 0.5001400113105774, 0.04458199813961983, -0.023507999256253242, -0.004742399789392948, 0.03998500108718872, 0.28227001428604126, 0.2530600130558014, 0.17684000730514526, 0.22146999835968018, 0.9616199731826782, -0.6115599870681763, 0.1271899938583374, -0.46904999017715454, 0.10283999890089035, 0.10847000032663345, 0.03799999877810478, -0.2937600016593933, -0.40782999992370605, 0.13558000326156616, 0.2017199993133545, -0.42287999391555786, -0.4734500050544739, -0.40564000606536865, 0.469650000333786, -0.1844100058078766, -0.15690000355243683, -0.4509600102901459, -0.10012999922037125, 0.4013899862766266, 0.6919800043106079, 0.70933997631073, -0.39612001180648804, -0.5105900168418884, -0.162540003657341, -0.0071159000508487225, 0.06723900139331818, -0.02276100032031536, 0.19776000082492828, -0.27028000354766846, -0.3732700049877167, 0.29434001445770264, -0.336899995803833, -0.04615199938416481, -0.5659700036048889, 0.05907600000500679, 0.03058600053191185, 0.039976999163627625, -0.6438199877738953, 0.036393001675605774, 0.40845000743865967, 0.31490999460220337, 0.4459899961948395, 0.3933500051498413, 0.4027099907398224, 0.2409300059080124, -0.006198499817401171, 0.9829800128936768, -0.01551000028848648, -0.04663800075650215, -0.3825699985027313, -0.4330100119113922, 0.5571799874305725, 0.17372000217437744, 0.37038999795913696, 0.23601999878883362, 0.915440022945404, 0.1624699980020523, -0.3675200045108795, 0.043540000915527344, 0.712909996509552, 0.20420999825000763, 0.3139199912548065, -0.005445499904453754, 0.21612000465393066, -0.028140999376773834, 0.6580700278282166, -0.6716499924659729, 0.21738000214099884, -0.5853599905967712, -0.11665999889373779, -0.16962000727653503, -0.15982000529766083, -0.16496999561786652, -0.20764000713825226, 0.4228399991989136, 0.20589999854564667, -0.8206800222396851, 0.05876300111413002, -0.07170499861240387, -0.006776699796319008, 0.06852100044488907, 0.6305999755859375, 0.034758999943733215, -0.39348000288009644, 0.600380003452301, -0.11271999776363373, 0.1863200068473816, -0.09860900044441223, 0.03350900113582611, -0.6133700013160706, 0.7075200080871582, -0.5535600185394287, 0.5861999988555908, 0.46841999888420105, 0.15002000331878662, 0.027194999158382416, -0.5203400254249573, -0.4796200096607208, -0.11258000135421753, -0.335099995136261, -0.420989990234375, 0.6390500068664551, -0.06223899871110916, 0.658240020275116, 0.006413700059056282, -0.15357999503612518, 0.09366100281476974, -0.34731000661849976, -0.13412000238895416, 0.6646999716758728, 0.12637999653816223, -0.23806999623775482, -0.004153899848461151, 0.3269999921321869, -0.008877900429069996, 0.5081400275230408, -0.03635700047016144, -0.5515400171279907, 1.0849000215530396, 0.4077399969100952, -0.020152999088168144, 0.0651170015335083, -0.05298899859189987, -0.3339099884033203, -0.46751001477241516, 0.7845500111579895, 0.15721000730991364, -0.010958000086247921, -0.19035999476909637, 0.10046999901533127, -0.31749001145362854, -0.5464299917221069, -0.054016001522541046, -0.05049699917435646, 0.7362300157546997, -0.986810028553009, -0.1640399992465973, 0.02959199994802475, -0.11215999722480774, -0.09952999651432037, 0.05914999917149544, 0.15803000330924988, -0.5074899792671204, -0.2306399941444397, 0.35175999999046326, -0.4529699981212616, 0.03135799989104271, 0.18639999628067017, -0.23763999342918396, 0.13443000614643097, 0.31738001108169556, -0.3694800138473511, -0.22460000216960907, 0.13673999905586243, 0.5093700289726257, 0.07156900316476822, 0.3177900016307831, -0.026507999747991562, -0.1383499950170517, -0.021198000758886337, 0.6035699844360352, 0.14284999668598175, -0.1262200027704239, -0.16565999388694763, -0.14404000341892242, 0.16072000563144684, 0.32265999913215637, 0.49709999561309814, 0.29403001070022583, 0.27577000856399536, -0.462909996509552, -0.22511999309062958, -0.459089994430542, -0.6212499737739563, 0.6215699911117554, 0.1873600035905838, -0.24683000147342682, 0.3369799852371216, -0.6226999759674072, -0.0427200011909008, 0.06773199886083603, 0.4148699939250946, 0.06169100105762482, -0.5471100211143494, 0.22537000477313995, 0.11163000017404556, 0.25523000955581665, 0.2418999969959259, -0.29194000363349915, 0.47554999589920044, 0.367249995470047, 0.20618000626564026, 0.11958999931812286, -0.4672600030899048, -0.09388499706983566, -0.004397499840706587, -0.8908799886703491, 0.3649600148200989, 0.23440000414848328, -0.34922999143600464, -0.2731899917125702, -0.16333000361919403, -0.5620700120925903, 0.07197900116443634, -0.5419899821281433, -0.17021000385284424, -0.29030001163482666, -0.4329800009727478, -0.4326300024986267, -0.13747000694274902, 0.4782400131225586, -0.33904001116752625, 0.4171200096607208, 0.1493300050497055, -0.8820899724960327, -1.145300030708313, 0.7820299863815308, -0.47415000200271606, 0.20904000103473663, 0.07560399919748306, -0.3130599856376648, -0.05954800173640251, 0.20666000247001648, -0.5373700261116028, -0.39980998635292053, 0.03975699841976166, -0.3270399868488312, 0.17499999701976776, -0.16068999469280243, -0.4926399886608124, -0.028158999979496002, -0.1779100000858307, -0.11314000189304352, 0.08161900192499161, -0.1237500011920929, 0.31407999992370605, 0.6134999990463257, -0.7365599870681763, -0.11875999718904495, 0.28554999828338623, -0.16630999743938446, 0.8116499781608582, 0.44686999917030334, 0.38385000824928284, -0.23962000012397766, 0.052685000002384186, -0.44795000553131104, -0.11818999797105789, -0.147039994597435, -0.1398099958896637, 0.13609999418258667, 0.027494000270962715, 0.3862900137901306, -0.013996000401675701, -0.026321999728679657, 0.14701999723911285, 0.26590999960899353, -0.31341999769210815, -0.5815899968147278, -0.2827000021934509, -0.20773999392986298, -0.4511699974536896, 0.10108000040054321, -0.0049080997705459595, 0.3524700105190277, -0.5781300067901611, 0.1853400021791458, -0.2198999971151352, -0.272460013628006, -0.21137000620365143], u'ruffled': [-0.17609000205993652, -0.35888999700546265, 0.0735659971833229, 0.35958001017570496, -0.35273998975753784, -0.1856600046157837, -0.15154999494552612, 0.0025315999519079924, 0.44780001044273376, -0.25692999362945557, -0.32071998715400696, 0.6065700054168701, 0.01755400002002716, 0.1409199982881546, -0.5308300256729126, 0.41971999406814575, 0.20002999901771545, 0.14768999814987183, 0.10136999934911728, 0.3071500062942505, -0.06778399646282196, 0.2195100039243698, 0.27279001474380493, 0.2890799939632416, -1.141800045967102, -0.07773599773645401, -0.023645000532269478, 0.1935500055551529, -0.013686000369489193, 0.5383599996566772, 0.14597000181674957, -0.5724999904632568, -0.4596799910068512, -0.011273999698460102, 0.10087999701499939, 0.2119700014591217, -0.1462399959564209, -0.29997000098228455, 0.2552199959754944, -0.15725000202655792, -0.5885699987411499, -0.21689000725746155, 0.08321700245141983, -0.44699999690055847, -0.13559000194072723, -0.0235580001026392, -0.22623999416828156, -0.2144400030374527, -0.8785799741744995, -0.009295100346207619, -0.28529998660087585, -0.5990700125694275, 0.6368100047111511, -0.29756999015808105, -0.25113001465797424, 0.06439699977636337, -0.8350200057029724, 0.06524500250816345, -0.030462000519037247, 0.24536000192165375, 0.9441400170326233, -0.05403999984264374, -0.13116000592708588, -0.6266800165176392, -0.48976999521255493, -0.19812999665737152, 0.9238200187683105, 0.516260027885437, 0.16779999434947968, -0.06577199697494507, 0.4283300042152405, 0.29177001118659973, 0.09906700253486633, 0.03976999968290329, 0.3889800012111664, 0.46086999773979187, -0.2925400137901306, -0.3805699944496155, -0.4378100037574768, 0.1289999932050705, -0.07726100087165833, 0.14521999657154083, 0.09201599657535553, -0.12134999781847, 0.774150013923645, 0.6377800107002258, 0.16346000134944916, -0.6713899970054626, -0.20327000319957733, -0.19968000054359436, 0.1377200037240982, 0.15569999814033508, -0.10963000357151031, 0.26273998618125916, -0.23454000055789948, -0.046546999365091324, 0.5550900101661682, 0.28248998522758484, -0.5739499926567078, 0.7012799978256226, 0.1417900025844574, -0.367000013589859, -0.6893699765205383, -0.2914600074291229, -0.6497200131416321, 0.5338900089263916, -0.0015691999578848481, 0.046574998646974564, 0.06812600046396255, 0.04167899861931801, -0.01611199975013733, 0.38201001286506653, 0.018511999398469925, -0.2719700038433075, -0.33702000975608826, 0.10619000345468521, -0.21682000160217285, 0.545490026473999, 0.022700000554323196, -0.741100013256073, 0.5268200039863586, -0.42972999811172485, 0.4614799916744232, -0.02605300024151802, -0.012505999766290188, 0.047345999628305435, -0.5852100253105164, 0.3603599965572357, -0.2337300032377243, -0.26326000690460205, 0.11309000104665756, 0.029326999559998512, 0.00796709954738617, -0.18815000355243683, -0.6710100173950195, -0.24874000251293182, -0.26186999678611755, -0.30656999349594116, 0.5209800004959106, -0.07674600183963776, -0.15634000301361084, -0.397460013628006, 0.0011295999865978956, 0.26719000935554504, 0.10972999781370163, 0.23711000382900238, 0.12110000103712082, -0.23296000063419342, 0.33566999435424805, 0.2537499964237213, -0.047189000993967056, -0.2141299992799759, -0.08642300218343735, 0.36739999055862427, -0.5279399752616882, -0.21961000561714172, 0.12846000492572784, 0.025543000549077988, 0.36164000630378723, 0.43386000394821167, -0.2730199992656708, -0.2760699987411499, -1.291200041770935, 0.3594299852848053, 0.5911399722099304, -0.21423999965190887, -0.6683200001716614, 0.1551699936389923, 0.2672500014305115, -0.1264999955892563, -0.25870999693870544, -0.5036900043487549, -0.3549500107765198, -0.38363000750541687, -0.3841800093650818, -0.5601900219917297, -0.045896001160144806, 0.5711699724197388, -0.32673999667167664, -0.28891998529434204, -0.38874998688697815, -0.5297300219535828, -0.29600000381469727, -0.02340400032699108, -0.0939830020070076, -0.05863700062036514, 0.3929699957370758, 0.10678000003099442, -0.2837499976158142, -0.023336999118328094, -0.2875699996948242, 0.030469000339508057, -0.7466599941253662, -0.07932499796152115, 0.2791000008583069, 0.0565200001001358, 0.1616699993610382, -0.27998998761177063, -0.34696000814437866, -0.18010999262332916, 0.45249998569488525, 0.14416000247001648, 0.30671998858451843, 0.5064600110054016, 0.4343299865722656, -0.37286999821662903, 0.12163999676704407, 0.27184998989105225, -0.34303998947143555, 0.2580200135707855, 0.040460001677274704, -0.2610799968242645, 0.7001000046730042, 0.13784000277519226, 0.2137400060892105, -0.6163700222969055, 0.5452399849891663, -0.8688600063323975, -0.4376699924468994, -0.058504000306129456, 0.5267599821090698, -0.130390003323555, 0.0015713999746367335, -0.42603999376296997, -0.19480000436306, -0.6966699957847595, -0.18102000653743744, -0.6116600036621094, -0.040160998702049255, -0.6179100275039673, 0.47929999232292175, -0.03929800167679787, 0.20262999832630157, -0.14952999353408813, 0.2547700107097626, -0.02991200052201748, 0.34929001331329346, -0.18276000022888184, -0.3622500002384186, -0.39732998609542847, 0.28119000792503357, -0.0476670004427433, -0.7611299753189087, 0.5879899859428406, -0.24932999908924103, 0.502269983291626, 0.2774699926376343, -0.09909900277853012, 0.2996799945831299, -0.16133999824523926, -0.1525000035762787, -0.4755600094795227, 0.35618001222610474, -0.3040800094604492, 0.11348000168800354, -0.11298999935388565, 0.4999600052833557, 0.8591099977493286, -0.3662799894809723, -0.21985000371932983, 0.033358000218868256, 0.5215299725532532, 0.36134999990463257, 0.34031999111175537, -0.30869999527931213, -0.294979989528656, -0.07150500267744064, 0.2669200003147125, -0.4867199957370758, 0.5740000009536743, 0.013757999986410141, -0.35409000515937805, 0.2035199999809265, -0.5303199887275696, 0.009911599569022655, 0.4235199987888336, 1.127500057220459, -0.1453399956226349, -0.3542500138282776, -0.09583500027656555, 0.40838000178337097, 0.5229600071907043, 0.1926099956035614, 0.08637800067663193, -0.3071399927139282, -0.46358999609947205, 0.5384899973869324, 0.7268199920654297, -0.14313000440597534, -0.4339599907398224, 0.05225500091910362, -0.0036295000463724136, 0.3246900141239166, 0.7442299723625183, 0.357369989156723, -0.7246500253677368, 0.3153499960899353, 0.18459999561309814, 0.6110799908638, -0.2739799916744232], u'steaming': [-0.13163000345230103, -0.1920199990272522, 0.5442100167274475, -0.1286800056695938, -0.3221000134944916, -0.16678999364376068, 0.3677699863910675, -0.3281700015068054, 0.2506200075149536, -0.16874000430107117, -0.12645000219345093, 0.25824999809265137, -0.3693599998950958, -0.48636001348495483, 0.24075999855995178, 0.19329999387264252, 0.3599199950695038, -0.34645000100135803, 0.20208999514579773, 0.391620010137558, -0.16452999413013458, -0.1124500036239624, -0.3316600024700165, -0.24000999331474304, -0.703719973564148, -0.48517000675201416, -0.010325999930500984, 0.1890600025653839, 0.37272000312805176, 0.1506499946117401, -0.46860000491142273, 0.3809399902820587, 0.18190999329090118, -0.22226999700069427, 0.1029599979519844, 1.0485999584197998, -0.30768999457359314, 0.2504799962043762, -0.5103800296783447, -0.007208399940282106, -0.2749199867248535, 0.10542000085115433, -0.1313299983739853, -0.708840012550354, 0.6108199954032898, -0.004699099808931351, 1.0621000528335571, 0.6338099837303162, -0.22245000302791595, 0.21473999321460724, 0.2858999967575073, 0.4708000123500824, -0.08790899813175201, -0.2609800100326538, -0.324070006608963, 0.1944900006055832, -0.24517999589443207, -0.04124699905514717, -0.2885200083255768, 0.5937899947166443, -0.2872599959373474, -0.7327399849891663, 0.15088999271392822, 0.25960999727249146, -0.4994199872016907, 0.4918299913406372, -0.06489600241184235, 0.3778499960899353, -0.4454900026321411, -0.20329000055789948, 0.03370799869298935, 0.2206300050020218, -0.2286899983882904, -0.8544999957084656, -0.660040020942688, 0.1298999935388565, 0.7818400263786316, -0.035211000591516495, -0.38837000727653503, -0.28499001264572144, -0.3692399859428406, -0.589959979057312, -0.11253999918699265, 0.0418579988181591, 0.03987500071525574, -0.5505800247192383, 0.26155000925064087, 0.08763299882411957, 0.5313299894332886, -0.7662500143051147, 0.20171000063419342, -0.23624999821186066, -0.249549999833107, -0.1726199984550476, -0.6242300271987915, 0.07408899813890457, -0.04798100143671036, 0.17599999904632568, -0.22166000306606293, 0.5908399820327759, -0.04017899930477142, -0.0487309992313385, -0.3164899945259094, -0.33267998695373535, -0.2869899868965149, 0.1813800036907196, 0.379830002784729, 0.13617999851703644, 0.2889600098133087, 0.2231599986553192, 0.43112999200820923, 0.17591999471187592, -0.6615800261497498, -0.6037300229072571, -0.36777999997138977, -0.6704599857330322, -0.5088499784469604, 0.12453000247478485, -0.08170600235462189, 0.11590000241994858, 0.008635899983346462, 0.07579100131988525, -0.259909987449646, 0.0582440011203289, 0.23062999546527863, -0.14358000457286835, -0.21630999445915222, -0.6976600289344788, 0.18672999739646912, 0.05871500074863434, -0.004474100191146135, 0.7597900032997131, 0.40707001090049744, 0.18453000485897064, -0.1912200003862381, 0.46834999322891235, -0.2424899935722351, -0.011497999541461468, 0.3562900125980377, 0.48315000534057617, 0.12003999948501587, 0.5739200115203857, -0.2875699996948242, 0.26802998781204224, -0.3135699927806854, -0.2116899937391281, -0.490339994430542, 0.6936200261116028, 0.06985300034284592, -0.5743399858474731, -0.1162400022149086, -0.19102999567985535, -0.21170000731945038, -0.162990003824234, 0.38732999563217163, -0.05188300088047981, 0.002175800036638975, -0.4398599863052368, 0.024629000574350357, -0.11595000326633453, -0.4263400137424469, -0.40623000264167786, -0.302700012922287, -0.4318999946117401, 0.3428100049495697, -0.07446199655532837, 0.4743399918079376, 0.1840900033712387, 0.03837500140070915, -0.26677998900413513, 0.30856001377105713, 0.3427799940109253, -0.07773499935865402, -0.6313999891281128, -0.3577499985694885, -0.4165700078010559, -0.400519996881485, 0.42344000935554504, 0.6249499917030334, -0.34553998708724976, 0.036357998847961426, 0.35297998785972595, 0.5111299753189087, 0.13186000287532806, 0.2091600000858307, 0.1166900023818016, 0.5629000067710876, 0.3521299958229065, -0.008126599714159966, -1.0987000465393066, -0.0066877999342978, 0.6217700242996216, -0.15705999732017517, -0.24887999892234802, -0.09701599925756454, -0.48673999309539795, 0.03477099910378456, 0.11386000365018845, -0.5888199806213379, -0.4360699951648712, 0.05620099976658821, -0.2570199966430664, 0.10217999666929245, 0.054058000445365906, 0.3092699944972992, -0.12560999393463135, 0.26524001359939575, -0.41220998764038086, 0.23225000500679016, -0.546180009841919, -0.17217999696731567, -0.09967800229787827, 0.12785999476909637, 0.22041000425815582, -0.17422999441623688, 0.057711999863386154, -0.0588500015437603, -0.6140000224113464, -0.13742999732494354, -0.10036999732255936, 0.8664199709892273, 0.22919000685214996, 0.06752599775791168, -0.4012199938297272, -0.30331000685691833, -0.5530999898910522, -0.08914399892091751, -0.38207998871803284, 0.403329998254776, -0.033348001539707184, 0.16110999882221222, -0.18176999688148499, -0.11650999635457993, 0.7713599801063538, 0.08498399704694748, -0.4567199945449829, 0.006076099816709757, 0.08161800354719162, -0.12941999733448029, -0.370959997177124, -0.9083999991416931, -0.0359329991042614, -0.5314900279045105, 0.2478400021791458, 0.054680999368429184, -0.5075100064277649, 0.2965399920940399, 0.4820599853992462, -0.24108000099658966, 0.22578999400138855, -0.07761699706315994, -0.9019899964332581, -0.07494799792766571, 0.36131998896598816, -0.3300600051879883, 0.05034999921917915, -0.7294399738311768, -0.10267999768257141, -0.402319997549057, 0.08621499687433243, 0.1595499962568283, -0.5216599702835083, 0.17922000586986542, -0.03137800097465515, 0.11782000213861465, 0.22666999697685242, -0.22056999802589417, -0.47435998916625977, -0.25356000661849976, -0.33428001403808594, -0.8691400289535522, -0.18643000721931458, 0.006151299923658371, 0.7702699899673462, 0.12172999978065491, 0.06430699676275253, -0.1257600039243698, 0.18856999278068542, -0.9592700004577637, -0.3277699947357178, -0.5229099988937378, -0.02279599942266941, -0.28648000955581665, -0.04737100005149841, 0.1773100048303604, -0.20401999354362488, 0.20781999826431274, -0.34556999802589417, 0.7011299729347229, 0.22506000101566315, -0.46584999561309814, 0.5174400210380554, 0.00831419974565506, 0.24786999821662903, -0.31463000178337097, 0.16954000294208527, 0.1656000018119812, -0.4154900014400482, -0.35447999835014343, -0.03244499862194061], u'unripe': [0.2581399977207184, 0.018199000507593155, 0.642549991607666, -0.16637000441551208, 0.8677700161933899, -0.6459599733352661, 0.2749899923801422, 0.6733199954032898, -0.07122799754142761, 1.1871000528335571, -0.16347000002861023, -0.49915000796318054, 0.18211999535560608, -0.9434599876403809, 0.05178700014948845, -0.23492999374866486, -0.35409998893737793, -0.5893099904060364, -0.3805899918079376, -0.23555000126361847, -0.26844000816345215, 0.4318999946117401, 0.05338200181722641, -0.3859899938106537, -0.5138599872589111, -0.8748000264167786, -0.07736100256443024, 0.005160199943929911, -0.023327000439167023, 0.1033800020813942, -0.4998599886894226, 0.035969000309705734, -0.5328999757766724, -0.17329999804496765, 0.13474999368190765, 0.3203299939632416, -0.5596100091934204, -0.9842299818992615, 0.06649799644947052, -0.20701999962329865, 0.33489999175071716, 0.2663100063800812, 0.38071998953819275, -0.24500000476837158, -0.502560019493103, 0.42671000957489014, 0.03044000081717968, -0.18102000653743744, -0.4769200086593628, 0.06161699816584587, -0.2784099876880646, -0.13639000058174133, 0.6489700078964233, -0.44912999868392944, -0.33559998869895935, -0.7152299880981445, 0.9919300079345703, -0.07607399672269821, 0.5651199817657471, 0.288129985332489, -0.11894000321626663, -0.8536700010299683, -0.5864999890327454, 0.3921299874782562, -0.34007999300956726, -0.35899001359939575, -0.267520010471344, -0.6710000038146973, 0.14891000092029572, 0.21302999556064606, -0.022842999547719955, -0.029397999867796898, 0.11776000261306763, 0.2935500144958496, 0.26280999183654785, 0.3534500002861023, 0.23643000423908234, -0.20444999635219574, 0.29089999198913574, 0.2699800133705139, -0.16527999937534332, 0.15444999933242798, -0.027861999347805977, 0.016939999535679817, 0.10860999673604965, -0.33472999930381775, -0.26085999608039856, 0.09712100028991699, 0.24236999452114105, 0.17833000421524048, -0.2045300006866455, 0.21458999812602997, 0.07340200245380402, -0.7831799983978271, -0.45798999071121216, 0.26725998520851135, -0.20645000040531158, 0.033865999430418015, -0.24528999626636505, 0.5717300176620483, -0.0751819983124733, -0.04054800048470497, -0.1348000019788742, 0.7198299765586853, -0.34470999240875244, 0.3221000134944916, -0.055045999586582184, 0.15388000011444092, -0.05774100124835968, -0.5886200070381165, 0.7476999759674072, 0.562030017375946, 0.2890099883079529, 0.16367000341415405, 0.44655999541282654, -0.005057500209659338, -0.07774099707603455, 0.07755400240421295, 0.03691700100898743, 0.8013499975204468, -0.4079299867153168, -0.4039100110530853, -0.08391200006008148, 0.5358099937438965, -0.13223999738693237, 0.08136799931526184, -0.0971980020403862, 0.06262999773025513, 0.6481999754905701, 0.14069999754428864, -0.7120800018310547, 0.013512999750673771, 0.3244900107383728, -0.43367999792099, -0.6759200096130371, -0.011568999849259853, 0.05354899913072586, 0.02284100092947483, -0.009438999928534031, 0.10497000068426132, 0.32760998606681824, 0.5708000063896179, -0.0037175999023020267, -0.04093199968338013, 0.3737800121307373, -0.4380800127983093, -0.07753600180149078, -0.5090799927711487, 0.9219300150871277, -0.5863500237464905, -0.8077999949455261, -0.08833499997854233, 0.057301998138427734, 0.07485800236463547, -0.20502999424934387, -0.2073100060224533, 0.6690499782562256, 0.28047001361846924, 0.011297999881207943, 0.18328000605106354, -0.2998799979686737, -0.06164899840950966, -0.13970999419689178, 0.18113000690937042, -0.0277319997549057, -0.753250002861023, -0.5247799754142761, -0.004347099922597408, -0.41982999444007874, -0.44620999693870544, -0.015363000333309174, -0.4341199994087219, 0.6093299984931946, -0.05136699974536896, 0.2728799879550934, -0.09243500232696533, 0.31529000401496887, 0.3567799925804138, 0.2488500028848648, -0.4145300090312958, 0.08755599707365036, -0.1625099927186966, 0.02673099935054779, -0.5346800088882446, -0.4212400019168854, -0.43472999334335327, 0.5053099989891052, 0.10583999752998352, 0.7502999901771545, -0.11979000270366669, -0.0636420026421547, 0.3300899863243103, 0.3909499943256378, -0.05845699831843376, 0.018830999732017517, 0.022034000605344772, -0.19952000677585602, 0.6334800124168396, -0.207179993391037, -0.10360000282526016, -0.8142799735069275, -0.4451099932193756, 0.25380000472068787, 0.12500999867916107, -0.2581700086593628, -0.23704999685287476, 0.23399999737739563, 0.6521999835968018, 0.4972200095653534, -0.01153900008648634, 0.5544000267982483, -0.001762300031259656, -0.257099986076355, 0.05259399861097336, 0.20539000630378723, 0.08598200231790543, 1.0782999992370605, 0.16933999955654144, -0.20725999772548676, 0.16854000091552734, 0.134770005941391, -0.12492000311613083, -0.6861000061035156, -0.1428699940443039, -0.766730010509491, -0.5274900197982788, 0.17971999943256378, 0.20693999528884888, 0.40902000665664673, -0.07378499954938889, 0.2233400046825409, -0.20809000730514526, 0.09723000228404999, 0.544439971446991, -0.006854100152850151, 0.5757700204849243, -0.027255000546574593, -0.10221999883651733, -0.3031899929046631, -0.18460999429225922, 0.596530020236969, 0.22806000709533691, -0.31101998686790466, -0.13745999336242676, -0.2625899910926819, 0.28970998525619507, 0.22019000351428986, 0.12208999693393707, -0.11981000006198883, -0.004918999969959259, 0.04537200182676315, 0.12917999923229218, -1.0104000568389893, -0.2782300114631653, -0.7398099899291992, 0.44567999243736267, 0.13134999573230743, -0.0700870007276535, 0.21624000370502472, -0.08827199786901474, 0.03187499940395355, 0.3073599934577942, 0.1565999984741211, -0.3662700057029724, 0.5841400027275085, 0.0001746600028127432, 0.35484999418258667, -0.3232699930667877, 0.05176199972629547, 0.4368399977684021, -0.3049300014972687, 0.41666001081466675, -0.2162500023841858, 0.59934002161026, -0.4907599985599518, -0.6288700103759766, 0.19558000564575195, -0.24243000149726868, -0.5022799968719482, -0.16377000510692596, -0.2607699930667877, -0.4474000036716461, -0.02324499934911728, -0.11767999827861786, -0.6305099725723267, 0.22317999601364136, -0.03282000124454498, 0.01975400000810623, 0.2506200075149536, 0.35322999954223633, 0.13139000535011292, 0.052786000072956085, 0.9693999886512756, -0.14695000648498535, 0.2534700036048889, -0.15939000248908997, -0.5284500122070312, -0.35833999514579773, 0.19064000248908997, -0.8554099798202515], u'moldy': [0.023076999932527542, 0.11131999641656876, -0.36719998717308044, 0.09723000228404999, 0.32951998710632324, -0.2857399880886078, -0.2829799950122833, -0.03387900069355965, 0.48572999238967896, 0.6061800122261047, -0.15707999467849731, -0.4094499945640564, 0.11585000157356262, -0.34619998931884766, 0.21195000410079956, -0.32638001441955566, -0.1865299940109253, -0.48871999979019165, 0.2480199933052063, 0.07789299637079239, 0.1786399930715561, 0.15835000574588776, -0.32050999999046326, -0.4259699881076813, -0.05028799921274185, -0.6898699998855591, -0.016690000891685486, -0.1711300015449524, 0.08015900105237961, 0.16683000326156616, -0.3654699921607971, -0.4691599905490875, -0.510640025138855, -0.12047000229358673, 0.0920419991016388, 0.3117299973964691, -0.718970000743866, -0.6953499913215637, 0.2284799963235855, 0.18818999826908112, 0.355459988117218, -0.13229000568389893, -0.22739000618457794, -0.12849999964237213, 0.16962000727653503, 0.4796200096607208, 0.0036720000207424164, 0.0674239993095398, -0.8260599970817566, -0.32659998536109924, 0.09504099935293198, -0.18562999367713928, 0.3686800003051758, 0.22925999760627747, 0.4778900146484375, -0.6942800283432007, -0.21842999756336212, 0.06343100219964981, -0.28876999020576477, -0.2550399899482727, 0.16015000641345978, -0.3824700117111206, 0.04225600138306618, 0.5802199840545654, -0.9297099709510803, 0.2976199984550476, 0.9105200171470642, 0.20874999463558197, 0.4108999967575073, -0.12253999710083008, 0.7265999913215637, -0.1601399928331375, -0.21052999794483185, -0.3089599907398224, -0.33559998869895935, -0.23104000091552734, 0.20295000076293945, 0.30153000354766846, 0.09621000289916992, 0.04148999974131584, 0.1399500072002411, -0.5499200224876404, 0.4454599916934967, 0.13631999492645264, -0.23523999750614166, -0.3599100112915039, -0.2307800054550171, 0.14348000288009644, 0.04858100041747093, 0.4366700053215027, 0.3869599997997284, 0.043779000639915466, 0.23047000169754028, -0.14503000676631927, -0.40026000142097473, -0.02611600048840046, 0.1958799958229065, 0.27098000049591064, -0.35479000210762024, 0.3874399960041046, -0.10206999629735947, 0.1464100033044815, 0.13225999474525452, 0.18068000674247742, -0.9162399768829346, -0.32811999320983887, -0.1551699936389923, 0.09369199723005295, -0.5098000168800354, -0.21367000043392181, -0.18398000299930573, 0.44269001483917236, -0.34286001324653625, -0.41273999214172363, -0.146479994058609, 0.043063998222351074, 0.26886001229286194, 0.7992500066757202, 0.17295999825000763, 0.23492999374866486, 0.2356099933385849, -0.4668700098991394, 0.056418001651763916, 0.8784000277519226, 0.017534000799059868, 0.07828199863433838, -0.4747700095176697, 0.27605998516082764, 0.3928300142288208, 0.13370999693870544, -0.16335999965667725, -0.09049700200557709, 0.46206000447273254, -0.1571899950504303, 0.34064000844955444, -0.3732999861240387, -0.13471999764442444, 0.8006700277328491, -0.5448899865150452, -0.060851000249385834, 0.4013800024986267, 0.21044999361038208, 0.1603900045156479, -0.07330700010061264, 0.17839999496936798, -0.3229700028896332, -0.8254200220108032, 0.1694599986076355, 0.10582000017166138, -0.4920099973678589, -0.38938000798225403, 0.20770999789237976, -0.1537500023841858, 0.00854090042412281, -0.7846500277519226, 0.5831800103187561, -0.05505099892616272, -0.0083553995937109, 0.17732000350952148, 0.5093299746513367, -0.28964999318122864, -0.14607000350952148, 0.03534400090575218, 0.05023600161075592, 0.5659800171852112, -0.2022400051355362, -0.20206999778747559, -0.20958000421524048, 0.6416500210762024, -0.46086999773979187, 0.21261000633239746, 0.5271700024604797, 0.2758300006389618, 0.11802999675273895, -0.11665000021457672, 0.24900999665260315, 0.2834300100803375, 0.08072300255298615, 0.44152000546455383, -0.8723400235176086, -0.046925000846385956, -0.05173100158572197, -0.005035200156271458, -0.46386998891830444, 0.1331299990415573, 0.03751799836754799, 1.010200023651123, -0.06535399705171585, 0.20654000341892242, 0.3031199872493744, 0.5047399997711182, -0.1565999984741211, -0.4407300055027008, -0.6196699738502502, 0.05369500070810318, -0.5371800065040588, -0.6744300127029419, 0.3463999927043915, -0.08087699860334396, 0.31338000297546387, -0.729390025138855, -0.2376600056886673, 0.16512000560760498, -0.2025900036096573, -0.25064000487327576, -0.4191100001335144, 0.27921000123023987, -0.2689400017261505, -0.3025299906730652, 0.18871000409126282, -0.7278500199317932, 0.29649001359939575, 0.28422999382019043, 0.04222000017762184, 0.1455399990081787, -0.27788999676704407, 0.5072900056838989, -0.013309000059962273, 0.023979999125003815, 0.2032800018787384, 0.39493000507354736, -0.4892500042915344, 0.0819609984755516, 0.52947998046875, -0.333869993686676, -0.05803599953651428, -0.21222999691963196, 0.09520599991083145, 0.4756999909877777, -0.13710999488830566, 0.12234000116586685, -0.005540600046515465, -0.0015026000328361988, -0.7502599954605103, -0.3600099980831146, -0.015170999802649021, 0.33893999457359314, -0.2870199978351593, -0.8062800168991089, -0.4089699983596802, 0.4647200107574463, -0.2392899990081787, -0.07331199944019318, -0.30956000089645386, -0.3195900022983551, 0.18554000556468964, -0.22030000388622284, -0.02029299922287464, -0.01711300015449524, -0.28567999601364136, -0.10206999629735947, -0.34804001450538635, -0.4433700144290924, -0.40507999062538147, 0.35565999150276184, 0.5631700158119202, -0.1751299947500229, -0.6636599898338318, 0.7685400247573853, 0.14811000227928162, -0.10109999775886536, -0.02991200052201748, -0.19314999878406525, -0.28161999583244324, 0.7391300201416016, -0.021601999178528786, -0.05890500172972679, -0.3285599946975708, -0.10777000337839127, 0.1304199993610382, -0.3037300109863281, 0.916670024394989, -0.2712700068950653, 0.23154999315738678, -0.741599977016449, -0.1355700045824051, 0.6347600221633911, -0.21118000149726868, -0.3763499855995178, -0.12690000236034393, -0.024038000032305717, 0.2589600086212158, -0.1276800036430359, 0.2191299945116043, 0.2936199903488159, 0.5212200284004211, 0.26750001311302185, 0.39434999227523804, 0.1151999980211258, -0.20529000461101532, -0.1526300013065338, -0.20246000587940216, 0.6830599904060364, -0.05640999972820282, -0.0810910016298294, -1.0044000148773193, 0.052393000572919846, 0.3549500107765198, -0.6046500205993652, 0.07589200139045715], u'closed': [0.11336000263690948, -0.2579199969768524, -0.052698999643325806, 0.11604999750852585, 0.4495199918746948, -0.3488200008869171, -0.2971999943256378, 0.24997000396251678, 0.5176699757575989, -1.5504000186920166, -0.4903799891471863, 0.21504999697208405, 0.31637999415397644, 0.5331500172615051, 0.06844999641180038, -0.5721499919891357, 0.09312800318002701, 0.31988000869750977, -0.13380999863147736, -0.33445000648498535, -0.2130099982023239, -0.5467600226402283, 0.3090200126171112, -0.37327998876571655, 0.19112999737262726, 0.09407299757003784, -0.3256100118160248, -0.15161000192165375, 0.15894000232219696, 0.09517399966716766, 0.47714999318122864, 0.13165000081062317, 0.09290900081396103, 0.8852800130844116, -0.7392500042915344, -0.08809000253677368, -0.2776699960231781, 0.03026299923658371, -0.15680000185966492, 0.15275000035762787, -0.4865399897098541, 0.34786999225616455, -0.4719200134277344, 1.0282000303268433, -0.41176000237464905, 0.2200700044631958, 0.24663999676704407, 0.48827001452445984, -0.2886199951171875, 0.13676999509334564, -0.1890300065279007, -0.25088998675346375, -0.4450699985027313, -0.23765000700950623, 0.3740299940109253, 5.1402999815763906e-05, 0.3363400101661682, 0.48548999428749084, 0.4590199887752533, -0.5743200182914734, 0.3956199884414673, 0.05204299837350845, -0.10920999944210052, -0.23513999581336975, 0.0299529992043972, -0.7893000245094299, 0.2463800013065338, -0.2747099995613098, -0.1666100025177002, -0.17274999618530273, -0.44449999928474426, -0.028248000890016556, 0.20715999603271484, 0.371069997549057, 0.34606000781059265, -0.15237000584602356, -0.30125001072883606, 0.38631999492645264, -0.4121299982070923, -0.45364999771118164, -0.07933899760246277, -0.5354899764060974, -0.3633599877357483, 0.07116200029850006, 0.16060000658035278, 0.21533000469207764, 0.17587999999523163, -0.06349600106477737, -0.2447900027036667, 0.07012999802827835, -0.11226999759674072, -0.7314199805259705, 0.039351001381874084, 0.25209999084472656, 0.0401029996573925, 0.14925000071525574, -0.3304600119590759, 0.31115999817848206, -0.22269000113010406, -0.5621500015258789, 0.6611700057983398, 0.10332000255584717, -0.2860899865627289, -0.35168999433517456, -0.12173999845981598, -0.2048799991607666, 0.11174999922513962, 0.20040999352931976, -0.4067299962043762, 0.3658599853515625, -0.8601400256156921, -0.6618800163269043, 0.2084600031375885, -0.008277099579572678, -0.16662999987602234, 0.36419999599456787, 0.12827999889850616, 0.12942999601364136, 0.05962200090289116, 0.091280996799469, -0.2857699990272522, -0.45638999342918396, 0.44275999069213867, -0.3288699984550476, 0.1447100043296814, -0.029955999925732613, -0.11437000334262848, 0.07021799683570862, -0.5988199710845947, 0.016333000734448433, 0.22686000168323517, 0.6117299795150757, 0.06244400143623352, -0.20178000628948212, -0.11066000163555145, 0.07011699676513672, -0.0010370999807491899, 0.028901999816298485, 0.16224999725818634, 0.027638999745249748, 0.2119400054216385, 0.051291000097990036, -0.5224400162696838, 0.47832000255584717, -0.7702999711036682, -0.3288800120353699, 0.42274001240730286, -0.3947499990463257, -0.15650999546051025, -0.1872200071811676, 0.49160000681877136, -0.20194999873638153, -0.045848000794649124, 0.11907999962568283, 0.7610700130462646, -0.07969299703836441, -0.5167199969291687, -0.3487899899482727, 0.6670799851417542, 0.07275599986314774, -0.13630999624729156, -0.04736199975013733, -0.5185099840164185, 0.10174000263214111, -0.17246000468730927, 0.42691999673843384, 0.32276999950408936, -0.0016343999886885285, 0.27643001079559326, -0.09407699853181839, 0.09136199951171875, -0.08952099829912186, 0.11405999958515167, 0.2426300048828125, 0.47437000274658203, 0.1470700055360794, 0.07256700098514557, 0.4443399906158447, 0.44617000222206116, 0.28661999106407166, -0.01372199971228838, 0.6611599922180176, -0.4436599910259247, 0.009575899690389633, -0.4064599871635437, 0.04743799939751625, -0.06543800234794617, -0.15536999702453613, 0.26945000886917114, 0.27336999773979187, -0.06419400125741959, -0.3648900091648102, -0.41517001390457153, -0.014585000462830067, -0.029743999242782593, -0.26895999908447266, -0.4986400008201599, -0.28891998529434204, -0.4555799961090088, -0.12366999685764313, 0.3927200138568878, -0.17315000295639038, -0.09940599650144577, 0.3900899887084961, -0.4906100034713745, 0.36574000120162964, -0.3085399866104126, -0.8977100253105164, 0.40424999594688416, -0.19633999466896057, -0.06814400106668472, -0.30496999621391296, -0.6050800085067749, -0.11445000022649765, -0.034384001046419144, 0.19113999605178833, 0.09234199672937393, -0.00606010016053915, 0.4475100040435791, 0.5085999965667725, 0.9874799847602844, -0.4251900017261505, -0.14723999798297882, -0.31529000401496887, -0.16769999265670776, -0.051621001213788986, -0.11421000212430954, -0.262580007314682, -0.13816000521183014, -0.03140300139784813, 0.3072499930858612, -0.6319100260734558, -0.315310001373291, -0.2322400063276291, 0.42113998532295227, 0.3805600106716156, 0.26135000586509705, -0.11964000016450882, 0.11924999952316284, 0.6006699800491333, -0.15474000573158264, 0.13023999333381653, -0.07242800295352936, -0.04631400108337402, -0.12037999927997589, -0.7528899908065796, 0.3667899966239929, -0.47106000781059265, 0.019943000748753548, -0.195810005068779, 0.17994999885559082, 0.25415998697280884, 0.10676000267267227, -0.09086000174283981, -0.6699100136756897, -0.22043000161647797, -0.15821999311447144, -0.1518000066280365, -0.08159100264310837, 0.4435499906539917, -0.07368099689483643, 0.02420699968934059, -0.07635600119829178, -0.21602000296115875, 0.0738309994339943, -0.0859609991312027, 0.5145300030708313, -0.20336000621318817, 0.05870499834418297, -0.38447999954223633, 0.14381000399589539, -0.039037998765707016, 0.4691300094127655, -0.25922998785972595, -0.4352700114250183, 0.2698099911212921, -1.2098000049591064, -0.5157399773597717, -0.010590000078082085, 0.8353700041770935, -0.7598400115966797, -0.16484999656677246, 0.08658099919557571, -0.9365599751472473, 0.16529999673366547, -0.058733001351356506, -0.09713400155305862, -0.09156499803066254, -0.08815599977970123, -0.47936001420021057, 0.16820000112056732, -0.18213999271392822, -0.4281800091266632, 0.6791099905967712, -0.07255999743938446, 1.0047999620437622, -0.15932999551296234, -1.2136000394821167, 0.2816599905490875, -0.07649099826812744], u'new': [-0.6233299970626831, -0.42434000968933105, -0.03532100096344948, -0.02669299952685833, 0.23119999468326569, 0.1763100028038025, 0.2872200012207031, -0.24921000003814697, 0.222120001912117, -1.6779999732971191, 0.3710300028324127, -0.11761999875307083, 0.07749100029468536, 0.0906670019030571, 0.3978999853134155, 0.6239299774169922, -0.46143999695777893, -0.0950779989361763, 0.09238400310277939, -0.014494000002741814, -0.36805999279022217, 0.370959997177124, 0.4930900037288666, 0.3688800036907196, 0.10792999714612961, 0.1754399985074997, 0.25029999017715454, 0.4418700039386749, -0.1150600016117096, 0.10503000020980835, 0.2095700055360794, 0.19103999435901642, -0.17090000212192535, 0.891480028629303, -1.0973000526428223, 0.45796999335289, 0.17506000399589539, -0.00014930999896023422, 0.35701000690460205, 0.15610000491142273, -0.20892000198364258, 0.5382199883460999, -0.3108299970626831, 0.39403998851776123, 0.029394999146461487, 0.3453800082206726, -0.02304000034928322, 0.3652600049972534, -0.09128200262784958, -0.24337999522686005, -0.09748999774456024, -0.5985900163650513, -0.15198999643325806, -0.27588000893592834, -0.04460800066590309, 0.01334299985319376, -0.17576000094413757, 0.06688299775123596, 0.12439999729394913, -0.41804999113082886, 0.09104499965906143, 0.10093999654054642, 0.2768000066280365, -0.3449400067329407, 0.3817099928855896, 0.16173000633716583, 0.33254000544548035, -0.25571000576019287, 0.11421000212430954, 0.11263000220060349, -0.06486999988555908, 0.18190999329090118, -0.04058299958705902, 0.00441939989104867, -0.4027999937534332, 0.22875000536441803, -0.4865100085735321, 0.2034199982881546, -0.13837000727653503, -0.027806999161839485, -0.409960001707077, 0.17770999670028687, -0.005822900217026472, -0.10168000310659409, 0.021131999790668488, 0.14128999412059784, 0.1146399974822998, -0.4013800024986267, 0.37797999382019043, -0.195810005068779, 0.13854999840259552, -0.30581000447273254, 0.20364999771118164, -0.3731299936771393, -0.718529999256134, -0.34696000814437866, -0.7994899749755859, -0.432669997215271, 0.1897200047969818, -0.5842800140380859, -0.08920899778604507, 0.2359900027513504, 0.22807000577449799, -0.12161000072956085, -0.07857199758291245, -0.29761001467704773, 0.35760000348091125, 0.48434001207351685, 0.057360000908374786, 0.061778999865055084, 0.6281300187110901, -0.10907000303268433, -0.6646299958229065, -0.1392199993133545, 0.13837000727653503, -0.11042000353336334, -0.17531000077724457, 0.1453000009059906, 0.0033203999046236277, -0.9372599720954895, 0.343860000371933, -0.2601799964904785, -0.11917000263929367, 0.2045300006866455, -0.1109199970960617, -0.35100001096725464, 0.2174299955368042, -0.0461760014295578, 0.09403499960899353, -0.14177000522613525, 0.3123199939727783, 0.11681000143289566, -0.05601099878549576, -0.32106998562812805, 0.11947999894618988, -0.02967200055718422, 0.009140499867498875, -0.024924999102950096, -0.19246000051498413, 0.0176170002669096, -0.28365999460220337, 0.016294000670313835, 0.1660500019788742, 0.2710700035095215, -0.4182800054550171, 0.12791000306606293, -0.17348000407218933, 0.04563299939036369, -0.21362000703811646, -0.09851100295782089, 0.8175600171089172, -0.16543999314308167, 0.1680299937725067, -0.08945100009441376, 0.17106999456882477, -0.02994599938392639, -0.8314999938011169, 0.2027900069952011, -0.14590999484062195, -0.24493999779224396, 0.5791599750518799, 0.026843000203371048, -0.6091499924659729, 0.21699999272823334, -0.21601000428199768, 0.09811999648809433, 0.18690000474452972, 0.2801100015640259, 0.11309000104665756, 0.0951479971408844, 0.16718000173568726, -0.17298999428749084, -0.7786300182342529, 0.49693000316619873, -0.08809299767017365, -0.12110000103712082, 0.8159000277519226, -0.3386799991130829, -0.15790000557899475, 0.3224000036716461, 0.10812000185251236, 0.4168500006198883, 0.3488599956035614, 0.20563000440597534, 0.10628999769687653, 0.10474999994039536, -0.464819997549057, -0.23170000314712524, 0.17055000364780426, -0.3699299991130829, 0.1707800030708313, 0.26872000098228455, 0.0008636100101284683, -0.019946999847888947, -0.1561499983072281, 0.05335500091314316, -0.07825800031423569, -0.13425999879837036, -0.03585999831557274, 0.4826900064945221, 0.6561099886894226, 0.37292999029159546, -0.12687000632286072, -0.20077000558376312, -0.12775999307632446, -0.11849000304937363, -0.07305499911308289, 0.6110900044441223, -0.09624800086021423, -0.1341399997472763, -0.13631999492645264, -0.18695999681949615, 0.37692001461982727, 0.1463399976491928, -0.1275700032711029, -0.33055999875068665, 0.09097100049257278, 0.3413600027561188, -0.19731999933719635, -0.10374999791383743, 0.6424099802970886, 0.3172900080680847, 0.007083899807184935, 0.6125800013542175, 0.3071799874305725, -0.06650400161743164, 0.36864998936653137, 0.4057700037956238, -0.34727999567985535, 0.37602999806404114, -0.1970600038766861, 0.3204599916934967, -0.13319000601768494, 0.3225100040435791, 0.3225100040435791, -0.04604800045490265, 0.28165000677108765, -0.06755000352859497, 0.16264000535011292, 0.009487899951636791, -0.4144099950790405, -0.30511000752449036, 0.5883899927139282, 0.32493001222610474, -0.890470027923584, 0.003149600001052022, 0.20548999309539795, -0.229420006275177, -0.3486799895763397, 0.02744700014591217, 0.34775999188423157, -0.29881998896598816, -0.3077099919319153, 0.39355000853538513, 0.2671299874782562, -0.2293200045824051, 0.04659400135278702, -0.150409996509552, 0.36368998885154724, 0.11947999894618988, -0.37470999360084534, -0.21202999353408813, 0.4194500148296356, 0.18002000451087952, 0.2841300070285797, -0.09569399803876877, -0.07278600335121155, 0.4898099899291992, -0.2620300054550171, -0.24184000492095947, 0.04769200086593628, 0.10931999981403351, 0.02446500025689602, -0.07646200060844421, 0.30094999074935913, 0.6703100204467773, -2.0557000637054443, 0.2428400069475174, 0.5646799802780151, 0.4503600001335144, -0.25780999660491943, -0.0274059996008873, -0.04879099875688553, 0.06238500028848648, -0.2771100103855133, 0.05746399983763695, -0.5352699756622314, 0.7819100022315979, -0.03819999843835831, -0.5181999802589417, -0.36520999670028687, -0.9028599858283997, -0.42851001024246216, 0.10705000162124634, 0.03800300136208534, 0.6803399920463562, -0.040102001279592514, -0.13613000512123108, 0.09867999702692032, 0.609000027179718], u'filled': [-0.2484399974346161, 0.1095300018787384, 0.14767999947071075, -0.29607999324798584, 0.16097000241279602, 0.3223699927330017, 0.6643000245094299, -0.026207000017166138, 0.22109000384807587, -0.6866899728775024, -0.21559999883174896, -0.03875499963760376, -0.36779001355171204, 0.07008799910545349, -0.28582000732421875, 0.023416999727487564, -0.35133999586105347, 0.24106000363826752, 0.42166000604629517, 0.46748000383377075, 0.0347599983215332, 0.04793199896812439, 0.04811900109052658, 0.3060300052165985, -0.31380999088287354, -0.01955600082874298, -0.0861629992723465, 0.06063299998641014, 0.27955999970436096, -0.11123999953269958, -0.11067000031471252, 0.038697000592947006, -0.43981999158859253, 0.06891799718141556, -0.4462699890136719, 0.36757999658584595, -0.32460999488830566, -0.3749200105667114, -0.07600300014019012, 0.25161001086235046, -0.4065200090408325, 0.0271029993891716, 0.17093999683856964, 0.25393998622894287, 0.04888699948787689, 0.08045099675655365, 0.29679998755455017, 0.05970599874854088, 0.164560005068779, 0.15233999490737915, 0.3853999972343445, 0.18209999799728394, -0.4308199882507324, 0.09931900352239609, -0.06942299753427505, 0.018081000074744225, 0.2519400119781494, -0.17725999653339386, 0.5076500177383423, 0.34228000044822693, -0.08672299981117249, -0.23496000468730927, 0.4071199893951416, -0.06883999705314636, 0.01160299964249134, -0.4270800054073334, 0.0003502700128592551, 0.11940000206232071, -0.15028999745845795, -0.1347000002861023, -0.16032999753952026, -0.26622000336647034, 0.14815999567508698, 0.1133200004696846, -0.12738999724388123, 0.02592400088906288, 0.7854999899864197, 0.17135000228881836, 0.1316400021314621, -0.3087500035762787, 0.32666999101638794, 0.22734999656677246, -0.19935999810695648, 0.25964999198913574, -0.041659001260995865, 0.4351400136947632, 0.3679499924182892, -0.27845999598503113, -0.007259699981659651, 0.11597999930381775, 0.4353100061416626, -0.23619000613689423, -0.2195899933576584, -0.40400999784469604, -0.08863099664449692, 0.4063799977302551, 0.1309099942445755, -0.05802199989557266, 0.4953399896621704, -0.7809699773788452, 0.27526000142097473, 0.43094998598098755, -0.09029699862003326, -0.9166600108146667, -0.15401999652385712, 0.043772000819444656, 0.15681999921798706, 0.023382000625133514, -0.14801999926567078, -0.14305000007152557, -0.46790000796318054, 0.18424999713897705, 0.2476000040769577, -0.16372999548912048, -0.2600899934768677, 0.4108799993991852, -0.050287000834941864, 0.5880600214004517, 0.29872000217437744, -0.5498800277709961, 0.18077999353408813, -0.32482999563217163, -0.22378000617027283, 0.7628200054168701, -0.3179199993610382, -0.031325001269578934, -0.008356899954378605, -0.24459999799728394, 0.01396199967712164, 0.2893899977207184, 0.33092001080513, 0.2844400107860565, 0.12246999889612198, 0.28839001059532166, 0.09957800060510635, -0.14256000518798828, -0.03643200173974037, 0.41978999972343445, -0.0903019979596138, -0.00687129981815815, 0.13476000726222992, -0.15355999767780304, -0.18106000125408173, 0.14902999997138977, -0.02625199966132641, 0.13882000744342804, 0.2849699854850769, 0.1531900018453598, -0.14079999923706055, 0.06332899630069733, 0.2328999936580658, 0.5783900022506714, -0.4207000136375427, -0.2068600058555603, 0.5579699873924255, -0.03434300050139427, -0.2724800109863281, 0.1341399997472763, 0.34575000405311584, 0.08697500079870224, 0.11089999973773956, -0.04084400087594986, 0.797569990158081, 0.00405769981443882, 0.2235099971294403, -0.13854999840259552, 0.18876999616622925, 0.3432700037956238, -0.11083000153303146, -0.3651300072669983, 0.19343000650405884, 0.5355100035667419, -0.4408699870109558, -0.03242599964141846, -0.15723000466823578, -0.018827000632882118, -0.44005998969078064, 0.28119000792503357, -0.11168999969959259, -0.3910999894142151, 0.33917999267578125, 0.3506399989128113, 0.4812999963760376, -0.060798998922109604, -0.02805499918758869, -0.333050012588501, 0.4968299865722656, -0.060593001544475555, 0.25731000304222107, -0.031077999621629715, 0.4228900074958801, -0.28883999586105347, -0.2603699862957001, 0.05926299840211868, 0.16827000677585602, 0.022616000846028328, -0.6137099862098694, 0.6521099805831909, -0.36880001425743103, 0.6741700172424316, 0.23406000435352325, -0.19704000651836395, -0.013499000109732151, -0.021748000755906105, 0.06271400302648544, -0.31874001026153564, 0.09165599942207336, 0.09640000015497208, -0.022670000791549683, 0.023632999509572983, -0.058357998728752136, -0.1801300048828125, -0.06636500358581543, -0.0034990001004189253, -0.1962900012731552, 0.02959199994802475, 0.12853999435901642, -0.5999000072479248, 0.346670001745224, 0.11123000085353851, 0.7455899715423584, 0.29328998923301697, -0.07658799737691879, -0.08907300233840942, 0.008762500248849392, 0.20077000558376312, -0.09180200099945068, -0.09661699831485748, 0.2370299994945526, -0.6121000051498413, -0.15649999678134918, -0.2337699979543686, -0.04465499892830849, -0.36083999276161194, 0.36250001192092896, 0.7058299779891968, 0.24514999985694885, -0.1455100029706955, -0.9977999925613403, 0.13986000418663025, -0.11462000012397766, -0.013830999843776226, -0.060054998844861984, 0.4337399899959564, -0.528689980506897, -0.48726001381874084, 0.5799700021743774, 0.16056999564170837, 0.2845500111579895, -0.0032567998860031366, 0.527679979801178, -0.31856998801231384, 0.13884000480175018, -0.34165000915527344, 0.13892999291419983, -0.25694000720977783, 0.007579899858683348, -0.4309000074863434, 0.40801000595092773, 0.2732900083065033, -0.3561600148677826, -0.22548000514507294, 0.33230000734329224, -0.07362499833106995, 0.49254000186920166, -0.5676299929618835, -0.18644000589847565, -0.296779990196228, -0.12415000051259995, 0.08393500000238419, -0.26600998640060425, 0.07288599759340286, 0.22297999262809753, 0.0346749983727932, 0.056435998529195786, -0.09437499940395355, -1.6384999752044678, 0.5309299826622009, 0.16824999451637268, 0.07121200114488602, -0.5063400268554688, 0.13030000030994415, -0.07644400000572205, -0.07983800023794174, 0.23447999358177185, 0.33612000942230225, 0.0049760001711547375, 0.39340001344680786, -0.11890000104904175, -0.1842000037431717, 0.11462999880313873, -0.01002699974924326, -0.027356000617146492, 0.4434100091457367, -0.08795499801635742, -0.10666000097990036, 0.13200999796390533, -0.25001001358032227, -0.6524699926376343, -0.14404000341892242], u'pressed': [-0.08301199972629547, -0.026364000514149666, -0.4564799964427948, -0.46507999300956726, 0.32161998748779297, -0.4771699905395508, 0.19077999889850616, -0.2235099971294403, 0.3104900121688843, -0.9205399751663208, -0.33586999773979187, -0.15672999620437622, 0.26802000403404236, 0.3125300109386444, -0.14343999326229095, 0.31617000699043274, -0.2884500026702881, -0.14885999262332916, -0.1261100023984909, -0.11269000172615051, 0.22227999567985535, -0.15300999581813812, 0.2311200052499771, -0.09746900200843811, -0.5300400257110596, -0.040467001497745514, 0.4168199896812439, -0.16196000576019287, -0.12256000190973282, 0.054976001381874084, 0.14319999516010284, -0.2483299970626831, -0.2200700044631958, -0.23853999376296997, -0.734749972820282, 0.05989300087094307, -0.1806900054216385, 0.0070269000716507435, -0.18347999453544617, -0.11618000268936157, -0.1059499979019165, 0.007067999802529812, 0.148049995303154, 0.10597000271081924, 0.48333999514579773, 0.254830002784729, -0.1612900048494339, -0.49818000197410583, -0.0879879966378212, -0.05274700000882149, 0.3654400110244751, 0.14192000031471252, -0.009357799775898457, -0.06186800077557564, 0.328110009431839, 0.10361000150442123, -0.22101999819278717, -0.01663300022482872, 0.17844000458717346, 0.031980000436306, 0.25742000341415405, -0.29649999737739563, -0.2943600118160248, 0.22604000568389893, 0.13395999372005463, 0.1779100000858307, -0.1341100037097931, 0.03645699843764305, -0.02811400033533573, -0.4084399938583374, 0.09756100177764893, -0.08131500333547592, 0.19047999382019043, 0.4947099983692169, 0.6145899891853333, 0.29513999819755554, -0.2724800109863281, 0.44047001004219055, -0.2267100065946579, -0.35436999797821045, -0.11218000203371048, 0.042854998260736465, 0.03231799975037575, -0.08418499678373337, -0.10322999954223633, -0.060373999178409576, -0.29892000555992126, 0.33136001229286194, -0.2523399889469147, -0.2443999946117401, 0.020831000059843063, 0.2718999981880188, -0.5549600124359131, 0.3526900112628937, -0.212459996342659, 0.17942999303340912, -0.2576200067996979, 0.3217799961566925, 0.10110999643802643, 0.1078300029039383, -0.12678000330924988, -0.23297999799251556, -0.10328000038862228, 0.17229999601840973, 0.292820006608963, -0.039889998733997345, -0.03768699988722801, 0.09892600029706955, -0.2390899956226349, 0.025107000023126602, 0.47411999106407166, 0.6269999742507935, -0.18592000007629395, -0.09502600133419037, -0.6489499807357788, 0.021087000146508217, -0.23319999873638153, -0.14263999462127686, 0.2533699870109558, -0.5001400113105774, -0.32899001240730286, -0.053909000009298325, 0.40639999508857727, -0.11066000163555145, -0.21491999924182892, 0.324319988489151, -0.16189999878406525, -0.006978900171816349, 0.1255899965763092, 0.2006099969148636, -0.002268299926072359, 0.18967999517917633, -0.01614600047469139, 0.30612000823020935, -0.20125000178813934, 0.4208100140094757, 0.051297999918460846, 0.1077599972486496, 0.18893000483512878, -0.16500000655651093, 0.34275001287460327, 0.02758900076150894, -0.3714999854564667, -0.005630100145936012, -0.16234999895095825, 0.4625900089740753, -0.20169000327587128, -0.47885000705718994, 0.05803399905562401, -0.006945100147277117, -0.07366299629211426, -0.02951500006020069, 0.26096001267433167, 0.0195700004696846, -0.1564899981021881, -0.4374000132083893, -0.12421000003814697, -0.6821699738502502, 0.004951400216668844, 0.14047999680042267, 0.03586199879646301, -0.14778999984264374, 0.09483399987220764, 0.11751999706029892, 0.6356099843978882, -0.0009079599985852838, -0.2259799987077713, 0.18967999517917633, 0.20343999564647675, -0.186039999127388, -0.24506999552249908, 0.18421000242233276, -0.029366999864578247, -0.23965999484062195, 0.4632300138473511, 0.034800998866558075, -0.302590012550354, 0.4293000102043152, -0.17907999455928802, 0.38690000772476196, -0.1739799976348877, -0.21884000301361084, -0.17844000458717346, -0.30632999539375305, -0.22627000510692596, -0.14979000389575958, 0.02472900040447712, 0.195250004529953, 0.6827099919319153, 0.5151299834251404, 0.14439000189304352, -0.05569100007414818, 0.10270000249147415, 0.25321999192237854, 0.3206999897956848, 0.1316400021314621, 0.09596099704504013, 0.04500199854373932, -0.16463999450206757, 0.05651199817657471, 0.19708000123500824, -0.22495000064373016, 0.32315000891685486, 0.4497700035572052, 0.14196999371051788, -0.04551900178194046, 0.2917500138282776, 0.16843000054359436, -0.21310000121593475, -0.015143999829888344, 0.2248300015926361, 0.20332999527454376, 0.008471200242638588, 0.6275299787521362, 0.3645299971103668, 0.0786449983716011, -0.22664999961853027, -0.2688699960708618, 0.07626300305128098, 0.1062999963760376, 0.9330899715423584, 0.20509999990463257, 0.18400999903678894, 0.15904000401496887, -0.07730100303888321, 0.2693899869918823, -0.03988400101661682, 0.044047001749277115, -0.45642998814582825, -0.22176000475883484, 0.12020000070333481, -0.2220499962568283, 0.3035399913787842, 0.3841699957847595, 0.17453999817371368, -0.1052900031208992, -0.11986999958753586, 0.39452001452445984, 0.06115400046110153, -0.3098599910736084, -0.33643001317977905, -0.006455599796026945, 0.03866500034928322, -0.1415500044822693, 0.18188999593257904, 0.09803599864244461, 0.19574999809265137, -0.04686899855732918, -0.30292001366615295, -0.19609999656677246, 0.14354999363422394, 0.06365600228309631, 0.1833599954843521, 0.17829999327659607, 0.7864300012588501, 0.036010999232530594, -0.5100499987602234, 0.5902100205421448, -0.5464199781417847, 0.25760000944137573, -0.2319599986076355, -0.2059199959039688, 0.11044000089168549, 0.5289099812507629, -0.14462999999523163, -0.11236999928951263, -0.3322399854660034, 0.0016716000391170382, -0.21953999996185303, 0.1378300040960312, -0.18366999924182892, 0.13449999690055847, -0.35780999064445496, 0.01054100040346384, -0.49702998995780945, 0.25565001368522644, -1.2630000114440918, -0.30660998821258545, 0.5122399926185608, -0.4102100133895874, 0.2401600033044815, -0.35102999210357666, 0.13021999597549438, 0.24955999851226807, -0.16117000579833984, -0.2188200056552887, 0.14636999368667603, 0.11361999809741974, 0.35109999775886536, 0.13561999797821045, -0.09620700031518936, 0.12892000377178192, 0.43083998560905457, 0.21164999902248383, -0.09333600103855133, 0.38839998841285706, -0.07981300354003906, -0.23662999272346497, -0.15262000262737274, 0.19527000188827515], u'ripped': [0.5440499782562256, -0.36103999614715576, -0.3600899875164032, 0.03627000004053116, 0.08781400322914124, 0.2030699998140335, -0.4982300102710724, 0.4430600106716156, -0.008371200412511826, -0.2395700067281723, 0.10093999654054642, 0.3501800000667572, 0.08918800204992294, -0.19523000717163086, -0.8097599744796753, 0.8827400207519531, -0.17817999422550201, 0.48747000098228455, 0.12759999930858612, 0.6452699899673462, 0.2492000013589859, 0.018554000183939934, -0.12894999980926514, -0.11537999659776688, -0.017256999388337135, 0.52920001745224, -0.16087999939918518, -0.001994800055399537, -0.03067299909889698, -0.46832001209259033, 0.1732800006866455, 0.41572999954223633, -0.33184999227523804, 0.32269999384880066, -0.3243499994277954, -0.10661999881267548, -0.38082998991012573, -0.2773900032043457, 0.19594000279903412, 0.49755001068115234, 0.16422000527381897, -0.12654000520706177, -0.2025199979543686, -0.4089300036430359, 0.14788000285625458, 0.3882899880409241, 0.36904001235961914, -0.38113000988960266, -0.09807199984788895, -0.28815001249313354, 0.12291000038385391, -0.1131099984049797, 0.2561599910259247, -0.5065799951553345, -0.14948999881744385, -0.03820899873971939, -0.2058199942111969, -0.20714999735355377, -0.3061099946498871, -0.4458099901676178, -0.34606000781059265, -0.35155999660491943, -0.16419999301433563, -0.34248998761177063, 0.15703000128269196, -0.29420000314712524, 0.314410001039505, -0.3371700048446655, -0.3893199861049652, 0.11027000099420547, 0.5384100079536438, -0.1477700024843216, 0.0788009986281395, 0.3475799858570099, 0.38892000913619995, -0.2785399854183197, -0.17993000149726868, -0.48666998744010925, -0.3842400014400482, 0.2809799909591675, 0.3250899910926819, -0.6640599966049194, 0.05525299906730652, 0.18685999512672424, -0.15785999596118927, -0.047249000519514084, -0.30972999334335327, -0.23284000158309937, 0.46355000138282776, 0.38253000378608704, 0.47088000178337097, 0.1703599989414215, -0.0006557800224982202, -0.5617700219154358, 0.1399500072002411, 0.2748199999332428, 0.18333999812602997, -0.16120000183582306, 0.4258500039577484, -0.4076699912548065, 0.2002599984407425, 0.21522000432014465, 0.1333799958229065, -0.12093999981880188, 0.5710300207138062, 0.08769900351762772, 0.5751699805259705, 0.18974000215530396, -0.2871899902820587, -0.21692000329494476, -0.31689000129699707, 0.19121000170707703, 0.24105000495910645, -0.1161699965596199, -0.1736299991607666, 0.6675099730491638, 0.21696999669075012, 0.1632000058889389, 0.4400300085544586, -0.6578199863433838, 0.14890000224113464, -0.8824700117111206, 0.09760800004005432, 0.33785000443458557, -0.03671000152826309, -0.2391500025987625, -0.4025300145149231, -0.25418001413345337, 0.06729499995708466, -0.16718000173568726, 0.15059000253677368, 0.47266000509262085, -0.13446000218391418, -0.11176999658346176, 0.05962499976158142, 0.13463999330997467, -0.20702999830245972, 0.3492400050163269, 0.4587000012397766, 0.015317000448703766, -0.6258000135421753, 0.0541049987077713, 0.1844799965620041, 0.76528000831604, -0.532509982585907, 0.4132100045681, 0.5280600190162659, 0.5415300130844116, -0.027488000690937042, -0.11032000184059143, 0.16585999727249146, -0.1353600025177002, 0.08364800363779068, -0.5613700151443481, 0.1281999945640564, 0.04467400163412094, 0.13154999911785126, -0.007688600104302168, 0.5499699711799622, 0.3528200089931488, 0.25231000781059265, -0.12343999743461609, 0.10752999782562256, -0.1638299971818924, 0.1680299937725067, -0.1748100072145462, 0.1629199981689453, -0.13888999819755554, 0.13907000422477722, -0.8507000207901001, -0.42607998847961426, -0.24324999749660492, 0.22842000424861908, -0.31400999426841736, 0.18584999442100525, 0.328110009431839, -0.265859991312027, 0.9803799986839294, 0.21152999997138977, -0.7243899703025818, 0.4495300054550171, -0.6973199844360352, 0.18129000067710876, -0.47095999121665955, 0.26249000430107117, 0.2718299925327301, -0.014422999694943428, 0.6351400017738342, 0.05372000113129616, -0.08246000111103058, 0.2969299852848053, -0.3625899851322174, -0.16539999842643738, -0.043094001710414886, 0.6153299808502197, 0.22735999524593353, -0.522599995136261, 0.13771000504493713, -0.3493199944496155, 0.31286999583244324, 0.435699999332428, -0.2486100047826767, 0.04661000147461891, -0.30737999081611633, 0.08231999725103378, -0.013495000079274178, 0.29752999544143677, 0.12721000611782074, -0.015223000198602676, 0.6355400085449219, -0.5234100222587585, 0.0746690034866333, -0.14211000502109528, 0.08680299669504166, 0.4652000069618225, 0.1771100014448166, 0.3708899915218353, -0.5366700291633606, 0.0072546000592410564, 0.20242999494075775, 1.020900011062622, 0.48871999979019165, -0.25720998644828796, -0.6790900230407715, 0.3113499879837036, 0.0742729976773262, -0.5831999778747559, -0.8118199706077576, -0.011172999627888203, -0.23029999434947968, 0.4513300061225891, 0.02407499961555004, -0.1999099999666214, -0.04141300171613693, 0.10999000072479248, -0.07419099658727646, 0.6347699761390686, -0.027056999504566193, -0.6163700222969055, -0.358599990606308, 0.5167099833488464, -0.006665899883955717, -0.2762199938297272, -0.25644999742507935, -0.0530100017786026, -0.7048900127410889, 0.08827599883079529, 0.01003700029104948, 0.13616999983787537, 0.17653000354766846, 0.22573000192642212, 0.03118699975311756, -0.022621000185608864, -0.9043099880218506, 0.7182199954986572, -0.23246000707149506, 0.07546400278806686, -0.040706999599933624, -0.01578499935567379, -0.13474999368190765, -0.033472999930381775, 0.13707999885082245, -0.12108000367879868, 0.4257499873638153, 0.135110005736351, -0.32622000575065613, -0.08049099892377853, -0.1463800072669983, -0.301800012588501, -0.12411999702453613, -0.5653799772262573, -0.5177900195121765, -0.13829000294208527, -0.09048999845981598, -0.7254199981689453, -0.3946300148963928, -0.6691200137138367, 0.1648000031709671, -0.48458001017570496, 0.23420999944210052, -0.10407000035047531, 0.3562699854373932, 0.3971500098705292, 0.020493000745773315, -0.8027099967002869, 0.534529983997345, -0.06752800196409225, -0.06341399997472763, 0.4223499894142151, -0.38119998574256897, 0.19227999448776245, -0.08831100165843964, 0.016064999625086784, 0.4280500113964081, -0.010083000175654888, 0.6279699802398682, 0.16524000465869904, -0.48691999912261963, 0.208639994263649, 0.21006999909877777], u'full': [-0.31240999698638916, -0.01357599999755621, -0.040824998170137405, -0.16829000413417816, -0.1109900027513504, 0.42392998933792114, 0.09300100058317184, -0.30862998962402344, 0.1830900013446808, -1.582900047302246, -0.09753599762916565, 0.3878200054168701, -0.10337000340223312, 0.01447100006043911, -0.5398399829864502, 0.24076999723911285, 0.1871899962425232, 0.1465499997138977, 0.08146899938583374, 0.13689999282360077, 0.20059999823570251, -0.03168800100684166, 0.000683640013448894, 0.11490999907255173, 0.0279690008610487, 0.27588000893592834, -0.14343999326229095, -0.27636000514030457, 0.33840999007225037, 0.1030300036072731, -0.0684949979186058, -0.10502000153064728, -0.04906399920582771, 0.05467600002884865, -0.8385900259017944, 0.28602999448776245, 0.04468400031328201, -0.044537000358104706, -0.3036099970340729, 0.1204100027680397, -0.1996999979019165, -0.1348000019788742, -0.1440500020980835, -0.159620001912117, 0.43907999992370605, 0.044992998242378235, 0.22915999591350555, 0.2643899917602539, 0.02570899948477745, -0.47516998648643494, -0.0901700034737587, 0.21945999562740326, 0.04332999885082245, 0.10401000082492828, -0.2699599862098694, 0.38791000843048096, 0.23419000208377838, 0.10628999769687653, 0.2368900030851364, 0.024974999949336052, -0.005063999909907579, -0.2539899945259094, 0.1101899966597557, -0.3119499981403351, -0.48532000184059143, -0.3865300118923187, 0.452210009098053, -0.3343999981880188, 0.2543399930000305, -0.2659899890422821, 0.1907700002193451, 0.21907000243663788, 0.4102100133895874, -0.22860999405384064, 0.2011999934911728, 0.24492000043392181, -0.03442399948835373, 0.219310000538826, -0.18735000491142273, 0.04595699906349182, -0.002543400041759014, -0.04234699904918671, 0.014147999696433544, 0.15491999685764313, 0.2755100131034851, -0.0823260024189949, 0.21828000247478485, 0.1493300050497055, -0.042608000338077545, 0.2401600033044815, -0.13544000685214996, -0.4683299958705902, -0.18700000643730164, -0.10527999699115753, -0.3761500120162964, 0.2455900013446808, -0.523389995098114, -0.42430999875068665, 0.30215001106262207, -0.6250600218772888, -0.29385998845100403, -0.10735999792814255, -0.21020999550819397, -0.514549970626831, -0.16592000424861908, 0.007136300206184387, 0.38433998823165894, 0.47870001196861267, -0.3895399868488312, -0.40421000123023987, 0.46160998940467834, 0.007226500194519758, -0.14184999465942383, -0.11291000247001648, -0.05782200023531914, 0.0968250036239624, -0.16056999564170837, -0.15796999633312225, 0.3112500011920929, -0.17483000457286835, 0.020323999226093292, -0.1905200034379959, 0.2567000091075897, 0.5149099826812744, -0.12363000214099884, -0.17104999721050262, 0.11738000065088272, 0.479449987411499, 0.09005700051784515, 0.32739999890327454, 0.0025774999521672726, 0.2793999910354614, 0.0037136999890208244, 0.03731200098991394, -0.007642900105565786, 0.28780001401901245, -0.008460099808871746, -0.06688699871301651, 0.09051299840211868, 0.06502900272607803, -0.04130899906158447, 0.13239000737667084, 0.07184100151062012, -0.46129998564720154, -0.27469998598098755, -0.5365800261497498, -0.5389999747276306, -0.03149800002574921, 0.025436999276280403, 0.5450699925422668, 0.43340998888015747, -0.050873998552560806, -0.3394699990749359, -0.06284199655056, 0.7656099796295166, 0.0027151000685989857, -0.6161100268363953, -0.3273800015449524, 0.15288999676704407, -0.03862399980425835, 0.38222000002861023, 0.024375999346375465, 0.009404599666595459, 0.0508899986743927, -0.3354400098323822, -0.1436000019311905, -0.10565000027418137, 0.5697500109672546, 0.0703589990735054, 0.5422000288963318, -0.010553999803960323, 0.6090400218963623, -0.4766499996185303, 0.33191001415252686, 0.2362000048160553, -0.2535800039768219, -0.056327998638153076, 0.4451200067996979, 0.153889998793602, 0.19645999372005463, -0.02246199920773506, -0.17273999750614166, 0.41051000356674194, 0.44764000177383423, -0.04877899959683418, -0.09530799835920334, -0.15690000355243683, 0.16061000525951385, 0.12947000563144684, 0.07820100337266922, 0.09734199941158295, 0.0026581999845802784, -0.08608700335025787, -0.359360009431839, 0.17506000399589539, 0.13872000575065613, -0.1035899966955185, 0.7298099994659424, -0.08879200369119644, 0.3058899939060211, 0.7699900269508362, 0.043682001531124115, -0.16050000488758087, 0.0951479971408844, 0.3563399910926819, -0.23194999992847443, -0.16637000441551208, 0.2636300027370453, 0.02791599929332733, -0.5003299713134766, 0.13646000623703003, -0.588919997215271, -0.27599000930786133, 0.5594800114631653, 0.25560998916625977, 0.1388999968767166, -0.25909000635147095, -0.2356400042772293, 0.037101998925209045, -0.01642400026321411, 0.34178999066352844, 0.27623000741004944, -0.4994800090789795, 0.14419999718666077, -0.12506000697612762, -0.040686000138521194, -0.36535999178886414, 0.150409996509552, -0.07221399992704391, -0.5252799987792969, -0.26969000697135925, -0.1503400057554245, 0.1808300018310547, -0.4564000070095062, 0.24653999507427216, 0.2778800129890442, 0.20191000401973724, -0.3079099953174591, -0.7050399780273438, 0.14527000486850739, 0.34356001019477844, 0.2084600031375885, 0.3361699879169464, 0.15026000142097473, -0.6608200073242188, -0.08402200043201447, 0.4792900085449219, 0.05412000045180321, -0.289359986782074, 0.14408999681472778, -0.12424000352621078, 0.2904199957847595, 0.004477200098335743, -0.20315000414848328, -0.1829500049352646, -0.1734600067138672, -0.09787800163030624, 0.06348899751901627, 0.3792800009250641, 0.2881599962711334, -0.060440000146627426, 0.18793000280857086, 0.43413999676704407, 0.7384300231933594, -0.1835400015115738, -0.08534800261259079, -0.06778600066900253, -0.3532699942588806, 0.019951999187469482, 0.3219299912452698, -0.2989700138568878, -0.025259999558329582, -0.03766600042581558, 0.19612999260425568, 0.32993999123573303, -0.41668999195098877, -2.2235000133514404, 0.0702119991183281, 0.47881999611854553, -0.2445800006389618, 0.0794060006737709, -0.07999599725008011, 0.004836599808186293, -0.18174000084400177, 0.3596999943256378, -0.00779950013384223, 0.02508999966084957, 0.2650600075721741, 0.009178600274026394, -0.1864199936389923, -0.1666399985551834, -0.21352000534534454, 0.12626999616622925, -0.3060699999332428, -0.005703900009393692, 0.32510998845100403, 0.20603999495506287, 0.0898979976773262, 0.2839199900627136, -0.5108799934387207], u'squished': [-0.34244999289512634, 0.48385000228881836, -0.14688000082969666, 0.23637999594211578, -0.23723000288009644, 0.21841999888420105, -0.014457999728620052, -0.46184998750686646, -0.22721000015735626, 0.6403099894523621, -0.38694998621940613, -0.643809974193573, -0.07682099938392639, -0.19905999302864075, -0.6960999965667725, 0.09310399740934372, -0.03923099860548973, 0.704200029373169, 0.06169600039720535, 0.05894999951124191, 0.509909987449646, 0.11844000220298767, -0.03735800087451935, 0.23145000636577606, -0.33608999848365784, 0.16158999502658844, -0.053063999861478806, -0.282039999961853, 0.21770000457763672, 0.07814399898052216, -0.0063137998804450035, -0.5088000297546387, -0.0510220006108284, -0.16288000345230103, 0.6398900151252747, 0.217289999127388, -0.5277400016784668, -0.2558499872684479, -0.483489990234375, 0.05889099836349487, -0.27265000343322754, 0.33256998658180237, 0.3632200062274933, -0.1720999926328659, 0.022948000580072403, 0.4301699995994568, 0.11866000294685364, 0.28325000405311584, -0.01358800008893013, -0.3371700048446655, -0.20789000391960144, -0.11004000157117844, -0.1553799957036972, -0.035471998155117035, -0.354420006275177, 0.025844000279903412, 0.29750001430511475, -0.6186800003051758, -0.24355000257492065, 0.06798399984836578, 0.5981500148773193, -0.03574899956583977, -0.759630024433136, 0.399370014667511, -0.290120005607605, 0.08360099792480469, -0.09764699637889862, 0.263619989156723, 0.049851998686790466, 0.40713998675346375, -0.16395999491214752, 0.671500027179718, -0.17910000681877136, 0.10349000245332718, 0.3745099902153015, -0.19134999811649323, -0.08291900157928467, -0.13884000480175018, 0.026420999318361282, -0.10965999960899353, -0.36476001143455505, -0.2777099907398224, 0.1995300054550171, -0.24556000530719757, -0.5867800116539001, 0.005154000129550695, -0.09120699763298035, -0.7579399943351746, 0.1970299929380417, 0.16481000185012817, -0.22741000354290009, 0.22059999406337738, 0.711870014667511, 0.32934001088142395, -0.13287000358104706, -0.22231000661849976, 0.042263999581336975, 0.06009100005030632, -0.03139499947428703, 0.2771500051021576, 0.0778530016541481, -0.3914099931716919, 0.1411599963903427, -0.5103600025177002, -0.012039000168442726, 0.08843400329351425, 0.08111199736595154, -0.3050599992275238, 0.013586999848484993, -0.32620999217033386, 0.07796099781990051, 0.04200400039553642, -0.09624099731445312, -0.18355000019073486, -0.462799996137619, -0.4845699965953827, 0.023314999416470528, 0.08026900142431259, 0.29989999532699585, 0.39476001262664795, 0.4582900106906891, -0.8633900284767151, -0.12127000093460083, 0.21198999881744385, 0.30842000246047974, -0.34358999133110046, 0.2847500145435333, -0.39914000034332275, 0.547569990158081, -0.021175000816583633, 0.05323899909853935, 0.04237800091505051, -0.12172999978065491, -0.0077124000526964664, -0.22675999999046326, -0.3871600031852722, -0.15906000137329102, 0.15004000067710876, -0.20473000407218933, -0.2176399976015091, 0.08934599906206131, 0.47102999687194824, -0.44411998987197876, 0.05390100181102753, -0.022487999871373177, -0.09368699789047241, 0.003211099887266755, 0.2908799946308136, 0.44635000824928284, -0.5770000219345093, -0.4319800138473511, -0.4402799904346466, -0.0784280002117157, 0.17170999944210052, -0.9954800009727478, -0.26888999342918396, 0.5006300210952759, -0.6160500049591064, 0.4394400119781494, 0.3479500114917755, -0.5042300224304199, 0.34060999751091003, -0.24214999377727509, 0.24511000514030457, 0.8881000280380249, -0.4802899956703186, -0.08929599821567535, 0.29221999645233154, 0.10434000194072723, -0.24598999321460724, -0.09065599739551544, 0.08881600201129913, 0.2760300040245056, -0.3438200056552887, -0.6004199981689453, -0.3566499948501587, -0.08564399927854538, 0.6499699950218201, 0.34463998675346375, -0.7547199726104736, 0.4548799991607666, -0.5493199825286865, -0.04005400091409683, 0.661870002746582, 0.18252000212669373, -0.5677599906921387, 0.3682500123977661, 0.32585999369621277, 0.36864998936653137, 0.2283100038766861, 0.19346000254154205, -0.7522600293159485, -0.09154599905014038, -0.01496300008147955, 0.20173999667167664, -0.08432900160551071, -0.24085000157356262, -0.11653999984264374, -0.020409999415278435, -0.6511600017547607, -0.269569993019104, -0.18039999902248383, 0.48423999547958374, -0.09281200170516968, 0.08705999702215195, 0.06174499914050102, -0.2961699962615967, -0.28878000378608704, -0.15035000443458557, 0.15724000334739685, -0.24771000444889069, 0.9333599805831909, 0.16120000183582306, 0.17247000336647034, 0.26137998700141907, 0.38308000564575195, 0.30153000354766846, 0.33333998918533325, 0.031870000064373016, 0.03186199814081192, 0.20862999558448792, 0.45715001225471497, -0.18088999390602112, 0.2708199918270111, -0.0676020011305809, 0.03833699971437454, 0.503250002861023, 0.37588000297546387, 0.3815099895000458, 0.1021599993109703, -0.11122000217437744, 0.07957199960947037, 0.00773209985345602, -0.6422299742698669, 0.13378000259399414, -0.22053000330924988, -0.411080002784729, 0.1404699981212616, -0.12544000148773193, -0.08150099962949753, 0.34244000911712646, -0.2908099889755249, -0.1899300068616867, 0.29131999611854553, -0.5397999882698059, -0.38666999340057373, 0.06435299664735794, 0.35975998640060425, -0.1261100023984909, 0.15163999795913696, -0.3747299909591675, -0.6726599931716919, 0.12690000236034393, -0.1462399959564209, -0.47336000204086304, 0.2090499997138977, 0.3590500056743622, 0.24332000315189362, -0.15952999889850616, 0.09401299804449081, 0.3742400109767914, 0.10890000313520432, 0.6215999722480774, 0.013674000278115273, 0.1938299983739853, 0.10516999661922455, -0.1338600069284439, 0.05406099930405617, 0.009904500097036362, 0.45938000082969666, 0.3248400092124939, 0.01617399975657463, -0.757830023765564, 0.2930600047111511, -0.5577399730682373, -0.01603199914097786, 0.9431599974632263, -1.09089994430542, -0.1862500011920929, -0.20667999982833862, -0.24049000442028046, -0.14323000609874725, 0.0739080011844635, -0.21020999550819397, -0.09980600327253342, 0.13947999477386475, 0.7135800123214722, 0.2586899995803833, -0.16625000536441803, -0.26903998851776123, 0.05157199874520302, -0.24277999997138977, 0.43713998794555664, -0.08553300052881241, -0.3085300028324127, -0.2724500000476837, 0.510919988155365, 0.449319988489151, -0.16264000535011292, 0.12807999551296234], u'peeled': [0.07986100018024445, -0.6189600229263306, -0.06793499737977982, -0.27730000019073486, 0.3383600115776062, -0.9883300065994263, 0.04370399937033653, -0.17552000284194946, -0.9785100221633911, 0.6529200077056885, 0.6718000173568726, 0.6746900081634521, 1.183500051498413, -0.12660999596118927, -0.7865200042724609, 0.9339399933815002, 0.05103300139307976, -0.014694999903440475, -0.5760999917984009, 0.3489300012588501, 0.15320000052452087, 0.28130999207496643, 0.5695899724960327, -0.3210799992084503, -0.19839000701904297, -0.46459001302719116, -0.19171999394893646, 0.5552700161933899, -0.809660017490387, -0.4836199879646301, -0.503279983997345, 0.4499100148677826, -0.034699998795986176, -0.01688399910926819, 0.04799399897456169, 0.7301499843597412, -0.4578799903392792, 0.523580014705658, -0.19292999804019928, 0.158720001578331, 0.7450500130653381, -0.15949000418186188, 0.06856899708509445, -0.12387000024318695, 0.1919800043106079, 0.5758299827575684, -0.031530000269412994, 0.7150599956512451, -0.6212700009346008, 0.03238200023770332, 0.19820000231266022, -0.13357999920845032, 0.4251999855041504, 0.14778999984264374, -0.347790002822876, -0.573639988899231, -0.24079999327659607, 0.21696999669075012, 0.15175999701023102, 0.00515210023149848, 0.12168999761343002, 0.24040000140666962, -0.7770000100135803, 0.9240700006484985, -0.03896800056099892, -0.4475499987602234, -0.2204499989748001, -0.24605999886989594, -0.04351000115275383, -0.7107700109481812, 0.10241000354290009, -0.23294000327587128, 0.007580699864774942, 0.3975200057029724, -0.15824000537395477, 0.5801799893379211, 0.848110020160675, -0.36566001176834106, 0.3355500102043152, -0.563480019569397, -0.5797299742698669, -0.2504900097846985, -0.04702100157737732, -0.12054000049829483, -0.6999300122261047, 0.08151400089263916, -0.9364100098609924, 0.45691001415252686, 0.7303699851036072, 0.4103100001811981, 0.42719998955726624, 0.07830200344324112, -0.01862799935042858, -0.2384900003671646, -0.18749000132083893, -0.5656300187110901, -0.6791399717330933, 0.6180199980735779, 0.4643299877643585, 0.6359400153160095, -0.11087000370025635, -0.4840399920940399, 0.8615999817848206, -0.8451099991798401, -0.44554001092910767, 0.5615000128746033, 0.050032999366521835, 0.22306999564170837, -0.4996899962425232, 0.03658699989318848, 0.6922399997711182, 0.31345000863075256, 0.6802600026130676, -0.42541998624801636, -1.023300051689148, -0.03223999962210655, -0.1414099931716919, 0.5714499950408936, 0.3755300045013428, -0.5226500034332275, 0.1607999950647354, -0.6214600205421448, 0.06825999915599823, 0.767520010471344, -0.3449699878692627, 0.12460999935865402, -0.6374800205230713, 0.22257000207901, -0.14519000053405762, 0.34297001361846924, 0.09367100149393082, 1.05649995803833, -0.31692999601364136, -0.3278000056743622, 0.10683999955654144, 0.35885000228881836, -0.16323000192642212, 0.06856100261211395, -0.14869000017642975, -0.5184900164604187, 0.490229994058609, 0.5338699817657471, -0.12221000343561172, 0.02507299929857254, -0.004557500127702951, -0.2692500054836273, 0.34125998616218567, 0.2020300030708313, 0.5038099884986877, -0.0724639967083931, -0.7108399868011475, 0.30935001373291016, 0.2062000036239624, 0.40893998742103577, -0.22179000079631805, -0.2395700067281723, 0.12953999638557434, 0.18907000124454498, -0.059537000954151154, 0.3697899878025055, -0.15362000465393066, -0.023099999874830246, -0.12687000632286072, -0.06819000095129013, 1.1311999559402466, -0.3591800034046173, 0.12707999348640442, 0.35962000489234924, 0.18129999935626984, -0.7623100280761719, -0.5226399898529053, -0.09510800242424011, 0.24128000438213348, 0.006469400133937597, 0.3145799934864044, -0.4652099907398224, 0.2817299962043762, 0.5385900139808655, 0.8054800033569336, -0.3245899975299835, 0.13922999799251556, -0.36191999912261963, 0.11750999838113785, -0.7340099811553955, -0.47343000769615173, -0.55690997838974, 1.2414000034332275, 0.7110300064086914, 1.5413999557495117, 0.7033299803733826, 0.2541100084781647, 1.0684000253677368, -0.8092899918556213, 0.2814500033855438, 0.5725799798965454, 0.4391399919986725, -0.29585000872612, -0.11963000148534775, 0.46560001373291016, -0.493910014629364, -0.05106600001454353, 0.005758299957960844, 0.006535099819302559, 0.29385000467300415, 0.3130899965763092, 0.8406299948692322, 0.21334999799728394, 0.28488001227378845, 0.10699000209569931, 0.0212980005890131, 0.3415899872779846, 0.08353199809789658, -0.9171199798583984, 0.4553399980068207, 0.8494600057601929, -0.21392999589443207, 1.0634000301361084, -0.5402799844741821, 0.3440600037574768, -0.37560999393463135, 0.9243599772453308, 0.4482699930667877, -0.18142999708652496, -0.026984000578522682, -0.20329999923706055, -0.06447300314903259, -0.25850000977516174, -0.49160999059677124, -0.3806299865245819, -0.5054500102996826, 0.2773999869823456, 0.34619998931884766, -0.04339899867773056, -0.2902100086212158, -0.047547001391649246, 0.0002013199991779402, 0.5176200270652771, -0.45434001088142395, -0.5537300109863281, -0.27625998854637146, 0.22277000546455383, 0.06561200320720673, -0.3492400050163269, -0.17533999681472778, -0.5393099784851074, -0.3159399926662445, 0.45798999071121216, 0.08337199687957764, -0.2071000039577484, -0.9250400066375732, 0.4735200107097626, 0.9170500040054321, -1.0946999788284302, -0.8060600161552429, -0.1659500002861023, 0.13268999755382538, -0.3937700092792511, -0.4380899965763092, -0.5870699882507324, 0.974839985370636, 0.08905100077390671, 0.08563099801540375, -0.131400004029274, 0.996999979019165, 0.33566001057624817, -0.37797999382019043, 0.026034999638795853, -0.483379989862442, -0.28624001145362854, 0.5432599782943726, 0.07804500311613083, 0.555679976940155, -0.3675999939441681, 0.12065999954938889, -0.8104100227355957, 0.2874700129032135, 0.010978000238537788, -0.5900300145149231, -1.0885000228881836, -0.9687399864196777, 0.17170000076293945, -0.022127000615000725, 0.3526400029659271, 0.18577000498771667, -0.11985000222921371, -0.006141200195997953, 0.41898998618125916, 0.2706100046634674, 0.37828001379966736, 0.6998199820518494, -0.25172001123428345, 0.5098199844360352, -0.03372199833393097, -0.5414999723434448, -0.273140013217926, -0.2507700026035309, -0.2678399980068207, 0.025831999257206917, 0.6459599733352661, 0.6179800033569336], u'broken': [-0.41819998621940613, -0.06783399730920792, -0.631659984588623, -0.16255000233650208, -0.28411999344825745, -0.053355999290943146, -0.1617799997329712, -0.04227700084447861, 0.13287000358104706, -1.0652999877929688, -0.05471799895167351, 0.24568000435829163, -0.511680006980896, -0.014480000361800194, -0.05324900150299072, -0.24835999310016632, -0.010173000395298004, 0.7535300254821777, -0.2945699989795685, 0.06570599973201752, -0.03291599825024605, 0.2508400082588196, 0.18074999749660492, -0.0951320007443428, -0.17363999783992767, -0.19554999470710754, -0.3045400083065033, -0.47075000405311584, -0.03793400153517723, -0.017109999433159828, -0.04517500102519989, 0.5387399792671204, 0.1315000057220459, 0.37117999792099, -0.6607300043106079, -0.1732800006866455, -0.22776000201702118, 0.0890749990940094, 0.04219700023531914, 0.702530026435852, -0.3374899923801422, -0.47440001368522644, -0.28883999586105347, -0.3052299916744232, -0.3530299961566925, 0.3412399888038635, -0.228860005736351, 0.1288599967956543, -0.05370299890637398, 0.36864998936653137, 0.26291999220848083, 0.05880900099873543, 0.04358699917793274, 0.10262999683618546, 0.033661000430583954, -0.006239099893718958, -0.23201000690460205, -0.036688998341560364, -0.4483200013637543, 0.22428999841213226, 0.4679200053215027, 0.3217799961566925, -0.27869999408721924, 0.429390013217926, -0.2568199932575226, -0.48162001371383667, 0.2711600065231323, 0.24219000339508057, 0.5400599837303162, 0.15972000360488892, -0.006765199825167656, -0.8050400018692017, 0.10610999912023544, 0.5536199808120728, -0.10984999686479568, -0.21261000633239746, -0.016493000090122223, -0.39006999135017395, -0.2630400061607361, 0.5021399855613708, 0.14170999825000763, -0.031091999262571335, 0.5118499994277954, 0.041241999715566635, -0.12090999633073807, 0.003783399937674403, 0.25415998697280884, -0.15842999517917633, -0.18711000680923462, 0.29833000898361206, 0.43334001302719116, 0.32427000999450684, 0.31494998931884766, 0.21717000007629395, 0.3128499984741211, 0.005180600099265575, 0.3219600021839142, -0.047495998442173004, 0.5054100155830383, -0.34463998675346375, 0.39858999848365784, 0.15953999757766724, 0.018559999763965607, -0.1139800027012825, 0.17354999482631683, 0.3496299982070923, 0.36107999086380005, -0.24431000649929047, -0.4563100039958954, -0.3065600097179413, -0.4139299988746643, -0.5663400292396545, -0.19137999415397644, -0.5317699909210205, -0.3508099913597107, -0.08984100073575974, -0.6286600232124329, -0.12883000075817108, 0.10350000113248825, -0.3606700003147125, 0.12213999778032303, -0.532069981098175, -0.2864600121974945, 0.06527099758386612, 0.0039968001656234264, -0.1973399966955185, -0.4347899854183197, -0.2190299928188324, -0.032777998596429825, 0.13514000177383423, 0.2204899936914444, 0.8335199952125549, 0.3677699863910675, 0.4717499911785126, 0.4304800033569336, 0.16392000019550323, 0.631659984588623, 0.18604999780654907, 0.26978999376296997, -0.57805997133255, -0.05358999967575073, 0.5554900169372559, -0.16339999437332153, 0.5577099919319153, -0.2688399851322174, 0.11905000358819962, 0.050182998180389404, 0.5628600120544434, -0.033562999218702316, 0.012396999634802341, -0.03870199993252754, -0.19357000291347504, -0.43132999539375305, -0.15181000530719757, 0.32058000564575195, -0.3444400131702423, 0.24674999713897705, -0.31505000591278076, -0.3129200041294098, 0.5070199966430664, 0.2718600034713745, -0.0964680016040802, -0.19438999891281128, 0.009580000303685665, 0.6439499855041504, 0.6980900168418884, 0.2007399946451187, -0.11766999959945679, -0.02739799953997135, 0.2330400049686432, -0.4804899990558624, 0.27202001214027405, 0.03877300024032593, 0.016731999814510345, 0.0036406998988240957, 0.04779699817299843, 0.3900800049304962, 0.32093000411987305, -0.04110400006175041, -0.24730999767780304, 0.14868000149726868, 0.032391998916864395, 0.2757500112056732, -0.38694000244140625, 0.12963999807834625, -0.7285100221633911, 0.007037099916487932, 0.2143400013446808, 0.20728999376296997, -0.06538400053977966, -0.0058852001093328, -0.36699000000953674, 0.21342000365257263, 0.17378999292850494, -0.10187999904155731, 0.19874000549316406, -0.46143001317977905, -0.10666999965906143, -0.23477999866008759, 0.19976000487804413, 1.0029000043869019, 0.6875, 0.41293999552726746, -0.13660000264644623, -0.24216000735759735, -0.29976001381874084, 0.03275100141763687, -0.177279993891716, -0.4720799922943115, 0.16805000603199005, 0.11392000317573547, -0.04361899942159653, -0.11614999920129776, 0.38102999329566956, 0.41391000151634216, 0.2042199969291687, 0.6006100177764893, 0.11085999757051468, 0.3156599998474121, 0.5296400189399719, 0.4248400032520294, 0.024940000846982002, 0.7414299845695496, -0.44435998797416687, 0.15439000725746155, 0.23920999467372894, -0.016441000625491142, -0.3375000059604645, 0.020052000880241394, 0.3843899965286255, 0.24455000460147858, -0.6682400107383728, 0.026644999161362648, -0.5950700044631958, -0.2787899971008301, 0.2924500107765198, -0.03255299851298332, -0.042381998151540756, -0.14680999517440796, -0.5315499901771545, -0.0047173998318612576, -0.7576000094413757, 0.14994999766349792, -0.49000999331474304, -0.18219999969005585, 0.07380300015211105, -0.12613999843597412, 0.24855999648571014, 0.12932999432086945, 0.08466199785470963, 0.4924899935722351, 0.168830007314682, -0.25325000286102295, -0.7411199808120728, 0.6215999722480774, 0.06285399943590164, -0.402319997549057, -0.18182000517845154, 0.22877000272274017, 0.22267000377178192, -0.08665399998426437, -0.1388300061225891, -0.3344399929046631, 0.16313999891281128, 0.03843099996447563, 0.08140899986028671, -0.1717900037765503, -0.22366000711917877, -0.42469000816345215, 0.3900899887084961, -0.6144199967384338, -0.34595000743865967, 0.05090299993753433, -0.12791000306606293, -0.3379499912261963, -0.04326200112700462, -1.6916999816894531, 0.10010000318288803, 0.21297000348567963, -0.2416200041770935, 0.06850399821996689, -0.263700008392334, 0.3837200105190277, -0.022546999156475067, -0.0294599998742342, 0.3117600083351135, -0.432559996843338, -0.0368879996240139, 0.3689199984073639, -0.2888599932193756, -0.16200999915599823, 0.09984000027179718, -0.19222000241279602, 0.2836900055408478, -0.3386699855327606, 0.16836999356746674, 0.0057657998986542225, -0.6230199933052063, 0.2714099884033203, 0.3090499937534332], u'mashed': [-0.15400999784469604, 0.1858700066804886, 0.8317499756813049, 0.8797500133514404, -0.18252000212669373, -0.004838299937546253, -0.1263899952173233, -0.19539999961853027, -0.26256000995635986, 0.4867900013923645, 0.17599999904632568, 0.03615500032901764, -0.04193300008773804, 0.5983099937438965, -0.12711000442504883, 0.33145999908447266, -0.5501599907875061, 0.022221000865101814, -0.14811000227928162, 0.3856799900531769, -0.12853999435901642, 0.4383699893951416, -0.356550008058548, -0.054492998868227005, -0.6507200002670288, -0.10346999764442444, 0.6888200044631958, 0.1670600026845932, 0.11886999756097794, -0.2672699987888336, -0.8540099859237671, 0.2626599967479706, -0.2703799903392792, 0.025499999523162842, 0.07083100080490112, 0.8816900253295898, -0.42177000641822815, 0.4796999990940094, 0.08557499945163727, -0.02819100022315979, 0.07366199791431427, -0.11242000013589859, 0.3543199896812439, -0.5605599880218506, 0.5188000202178955, 0.6758700013160706, 0.5380300283432007, 0.12946000695228577, 0.14101000130176544, 0.06372399628162384, -0.0980909988284111, 0.17050999402999878, 0.35113999247550964, 0.053711000829935074, -0.6121000051498413, -0.1087300032377243, 0.024129999801516533, -0.22200000286102295, -0.21845999360084534, 0.25332000851631165, 0.11585000157356262, -0.035624999552965164, -0.3835799992084503, 0.2768999934196472, -0.8335899710655212, -0.26249998807907104, 0.2990899980068207, 0.2379399985074997, 0.08913999795913696, -0.03939399868249893, -0.16234999895095825, -0.020812999457120895, -0.48256000876426697, 0.011943000368773937, -0.20979000627994537, -0.01670899987220764, 0.8386600017547607, -0.020323999226093292, 0.15004000067710876, -0.1357100009918213, 0.0357850007712841, 0.33917999267578125, 0.13499000668525696, -0.39524999260902405, 0.23669999837875366, -0.18558000028133392, -0.28644001483917236, 0.4899199903011322, 0.19530999660491943, -0.36750999093055725, 0.1374099999666214, -0.013019000180065632, 0.13740000128746033, 0.0010065999813377857, -0.5142599940299988, -0.1600400060415268, -0.4018700122833252, 0.4009999930858612, 0.02744399942457676, 0.8424800038337708, -0.20601999759674072, -0.4499000012874603, 0.46553999185562134, -0.4960800111293793, -0.6521099805831909, 0.3998199999332428, -0.2007800042629242, 0.04098200052976608, -0.6916300058364868, -0.6477100253105164, 0.5373799800872803, 0.684719979763031, -0.15692000091075897, -0.25084999203681946, -0.5601999759674072, 0.055883001536130905, -0.524649977684021, 0.5112599730491638, 0.41947999596595764, 0.030750000849366188, -0.0006708800210617483, -0.06712199747562408, 0.08765199780464172, 0.2499299943447113, -0.6653500199317932, -0.43626999855041504, 0.20527000725269318, 0.8896899819374084, 0.03698499873280525, 0.8212599754333496, -0.21897000074386597, 1.1263999938964844, -0.10882999747991562, 0.3021099865436554, -0.24594999849796295, -0.43119001388549805, 0.6019899845123291, 0.26736000180244446, -0.3487200140953064, 0.27333998680114746, 0.16309000551700592, 0.12385000288486481, -0.00964209996163845, -0.0857739970088005, 0.4557499885559082, 0.05596400052309036, -0.4465700089931488, -0.09934800118207932, 0.30180999636650085, -0.6714500188827515, -0.9287999868392944, 0.5757499933242798, 0.6327599883079529, 0.5654600262641907, -0.7533599734306335, 0.16869999468326569, -0.06900700181722641, -0.03520999848842621, 0.4199399948120117, 0.3631899952888489, -0.3852899968624115, 0.0961650013923645, -0.012186000123620033, -0.27577999234199524, 0.49428999423980713, -0.050269998610019684, 0.2605000138282776, 0.3237200081348419, 0.012884999625384808, -0.8923699855804443, 0.1385599970817566, 0.1795399934053421, -0.16357000172138214, -0.28633999824523926, -0.24671000242233276, -0.17257000505924225, -0.12567000091075897, 0.18752999603748322, 0.2189200073480606, -0.7139999866485596, 0.6374599933624268, 0.10352999716997147, -0.021119000390172005, -0.455049991607666, -0.22382000088691711, -0.2442599982023239, 0.4530700147151947, 0.7095100283622742, -0.09087900072336197, 0.2073500007390976, -0.149399995803833, 0.7115700244903564, -0.15939000248908997, -0.2009200006723404, -0.06352700293064117, -0.011229000054299831, -0.44235000014305115, 0.20777000486850739, 0.07980500161647797, 0.09408699721097946, -0.20590999722480774, -0.059661999344825745, 0.4815399944782257, 0.490200012922287, 0.7463200092315674, 0.20789000391960144, 0.3989900052547455, 0.315310001373291, -0.3401300013065338, -0.45802000164985657, 0.04104100167751312, -0.10535000264644623, 0.09223400056362152, 0.44593000411987305, 0.23664000630378723, 0.056435998529195786, 0.4396600127220154, -0.8150799870491028, 0.15804000198841095, 0.2869200110435486, 0.20276999473571777, -0.24445000290870667, -0.24985000491142273, -0.5147799849510193, -0.23019999265670776, -0.7464399933815002, 0.267410010099411, 0.05429299920797348, -0.10430999845266342, -0.17709000408649445, -0.5163599848747253, 0.26620998978614807, -0.2379000037908554, -0.20884999632835388, 0.2797999978065491, -0.055031001567840576, 0.5691800117492676, 0.2758199870586395, 0.007667299825698137, -0.41725000739097595, -0.8449500203132629, -0.30803999304771423, 0.1779700070619583, -0.13530999422073364, -0.3670499920845032, -0.6147199869155884, 0.5738000273704529, 0.6443300247192383, -0.12387000024318695, -0.9534500241279602, 0.17009000480175018, 0.1425900012254715, -0.24991999566555023, 0.14069999754428864, -0.5730400085449219, 0.037289999425411224, -0.4187299907207489, -0.16572000086307526, -0.38558998703956604, 0.1758500039577484, -0.32010000944137573, -0.0359640009701252, 0.4165000021457672, 0.030004000291228294, 0.29280000925064087, 0.2091899961233139, -0.23260000348091125, -0.3028300106525421, 0.2078000009059906, 0.3851099908351898, -0.7724599838256836, -0.19930000603199005, 0.08893200010061264, 0.8156700134277344, 0.033810000866651535, 0.34525999426841736, 0.09325099736452103, 0.10220000147819519, -0.598770022392273, -0.809440016746521, 0.002129900036379695, -0.1665399968624115, 0.532039999961853, -0.01515199989080429, -0.09445899724960327, 0.09635800123214722, 0.7471299767494202, -0.1128700003027916, 0.6272199749946594, 0.13948999345302582, -0.10740000009536743, 0.011269999668002129, 0.040307000279426575, -0.6204900145530701, -0.5863699913024902, -0.8980100154876709, 0.18190999329090118, 0.07096599787473679, -0.17045000195503235, 0.3719399869441986], u'pureed': [0.2803800106048584, -0.12020999938249588, 0.8449599742889404, -0.1314300000667572, 0.24044999480247498, -0.0838489979505539, 0.2709299921989441, 0.09199900180101395, -0.46467000246047974, 0.15522000193595886, 0.41940000653266907, -0.48392999172210693, 0.76419997215271, 0.3816100060939789, -0.40817001461982727, -0.14961999654769897, -0.5145300030708313, 0.22431999444961548, -0.020061999559402466, 0.774150013923645, -0.6811599731445312, -0.6165199875831604, -0.14203999936580658, -0.5895199775695801, 0.03767300024628639, -0.4836899936199188, -0.047231998294591904, 0.10606999695301056, -0.12208999693393707, -0.16843000054359436, -1.1094000339508057, 0.08125299960374832, -0.061223000288009644, 0.148499995470047, 0.8066099882125854, 1.0384999513626099, -0.5956199765205383, 0.43011000752449036, -0.06851200014352798, 0.05641999840736389, -0.17982999980449677, -0.5804100036621094, -0.210099995136261, -0.7005500197410583, 0.738070011138916, 0.3904699981212616, 0.12714999914169312, 0.7078800201416016, -0.1799899935722351, 0.8437399864196777, -0.21062999963760376, 0.5518500208854675, 0.3824099898338318, -0.21797999739646912, -0.5781599879264832, 0.16315999627113342, 0.31317999958992004, -0.30946001410484314, 0.42100000381469727, 0.34261998534202576, 0.42197999358177185, -0.16322000324726105, -0.09329099953174591, 0.6807699799537659, -0.8309599757194519, 0.1589599996805191, 0.5263800024986267, 0.3362399935722351, 0.5370200276374817, -0.24688999354839325, 0.5347099900245667, -0.24921999871730804, -0.3164199888706207, 0.12280000001192093, -0.4118900001049042, 0.82955002784729, 0.8317499756813049, -0.11083000153303146, 0.5514699816703796, -0.13603000342845917, 0.0047109997831285, -0.0534450002014637, -0.051902998238801956, 0.024744000285863876, 0.20180000364780426, -0.6283100247383118, -0.6197699904441833, 0.3551599979400635, -0.14469000697135925, -0.23672999441623688, -0.5117300152778625, -0.17308999598026276, -0.3203999996185303, -0.12941999733448029, -0.19900000095367432, -0.509660005569458, -0.02223600074648857, 0.23532000184059143, -0.01576099917292595, 0.5919399857521057, 0.07629899680614471, -0.0952259972691536, 1.0135999917984009, 0.1563200056552887, -0.8643199801445007, 0.1965699940919876, -0.04580099880695343, -0.4193499982357025, -0.41196998953819275, -0.1329600065946579, 0.2422100007534027, 0.6164299845695496, -0.011893999762833118, -0.011150999926030636, -0.021261999383568764, 0.37088000774383545, -0.731249988079071, 0.4893699884414673, 0.27816998958587646, 0.9111700057983398, -0.35242000222206116, -0.509440004825592, 0.5952600240707397, 0.23406000435352325, -0.045928001403808594, -1.0637999773025513, 0.2459300011396408, 0.37386998534202576, -0.016377000138163567, 0.8689799904823303, -0.5737199783325195, 0.8433700203895569, 0.3496699929237366, 0.38468998670578003, 0.09955599904060364, 0.1945600062608719, 0.024486999958753586, 0.01770699955523014, -0.2855300009250641, 0.10490000247955322, -0.09564799815416336, 0.6741099953651428, -0.5014299750328064, 0.22248999774456024, 0.5663599967956543, -0.17184999585151672, -0.18655000627040863, 0.05882500112056732, 0.5952900052070618, -0.6559900045394897, -1.3955999612808228, -0.27775999903678894, 0.08461999893188477, 0.1396999955177307, -0.6153500080108643, -0.3810499906539917, 0.210439994931221, -0.6295499801635742, 0.5968300104141235, 0.5817999839782715, -0.4490100145339966, -0.3510400056838989, 0.21018999814987183, -0.5985400080680847, 0.001752799958921969, -0.16221000254154205, 0.10693000257015228, 0.006219599861651659, -0.4144600033760071, -0.4361099898815155, 0.44958001375198364, 0.40139999985694885, -0.418940007686615, -0.03652799874544144, -0.06707999855279922, 0.06382100284099579, 0.1623699963092804, -0.07669799774885178, 0.7346900105476379, -0.14339999854564667, -0.19744999706745148, -0.3792699873447418, 0.08125200122594833, 0.11320000141859055, 0.37768998742103577, -0.1610099971294403, 0.6520500183105469, 0.17958000302314758, -0.155799999833107, -0.035905998200178146, 0.1330299973487854, 0.38367000222206116, 0.020103000104427338, -0.8852900266647339, -0.09735000133514404, 0.28150999546051025, 0.028074000030755997, 1.0636999607086182, 0.20068000257015228, 0.22156000137329102, -0.7237799763679504, -0.4429999887943268, 1.1948000192642212, 0.512499988079071, 0.2991800010204315, 0.5044100284576416, 0.11661999672651291, 0.14936000108718872, -0.44670000672340393, -0.19338999688625336, 0.6331999897956848, -0.3937399983406067, -0.4381200075149536, 0.5612599849700928, -0.11055000126361847, -0.008088699541985989, 0.32973000407218933, -0.510420024394989, 0.04005400091409683, 0.5829200148582458, 0.18959000706672668, -0.015313000418245792, -0.3953000009059906, -0.494269996881485, -0.04871800169348717, -0.5575500130653381, -0.03330700099468231, 0.6849700212478638, 0.0196749996393919, -0.5978000164031982, -0.07518500089645386, 0.4217199981212616, 0.42765000462532043, -0.13415999710559845, 0.12929999828338623, 1.0717999935150146, 0.09229700267314911, 0.5896999835968018, -0.6348000168800354, -0.08995600044727325, -0.3666200041770935, -0.3271400034427643, -0.19147999584674835, 0.48680999875068665, -0.4125500023365021, -0.28529998660087585, 1.0371999740600586, 0.05515599995851517, -0.23799000680446625, -0.8902300000190735, -0.011775000020861626, -0.05325600132346153, -0.062185000628232956, -0.1786399930715561, -1.027500033378601, -0.00526219978928566, -0.0828929990530014, 0.39259999990463257, -0.282260000705719, 0.29311999678611755, 0.0219930000603199, 0.8593000173568726, -0.13759000599384308, 0.17497999966144562, 0.2834399938583374, -0.16541999578475952, 0.30869999527931213, -0.22951999306678772, 0.25262999534606934, 0.10595999658107758, -0.25143998861312866, 0.23624999821186066, -0.020201999694108963, 0.7269999980926514, 0.1445000022649765, 0.1092199981212616, 0.7182199954986572, -0.5603200197219849, -0.23810000717639923, -0.13535000383853912, 0.3135699927806854, -0.23388999700546265, 0.5079500079154968, 0.27775999903678894, -0.09686999768018723, -0.004205599892884493, 0.3812600076198578, 0.6888099908828735, 0.13339999318122864, -0.20297999680042267, 0.019866999238729477, -0.24211999773979187, 0.42677998542785645, -0.3961299955844879, -0.09815800189971924, -0.9291200041770935, -0.05937499925494194, -0.16925999522209167, 0.38109999895095825, 0.20178000628948212], u'dry': [0.15289999544620514, -0.005403299815952778, -0.3314400017261505, -0.6283800005912781, 0.25418001413345337, 0.027487000450491905, 0.6869999766349792, 0.4720500111579895, 0.6048300266265869, -1.4944000244140625, 0.21390999853610992, -0.5304499864578247, -0.12701000273227692, -0.3584800064563751, -0.07543899863958359, -0.3135499954223633, -0.13840000331401825, -0.0030149000231176615, 0.2897700071334839, 0.37018001079559326, -0.052661001682281494, -0.29811999201774597, 0.48069000244140625, 0.20201000571250916, -0.5689600110054016, -0.05577699840068817, 0.1438400000333786, 0.023409999907016754, -0.43230998516082764, -0.296889990568161, -0.016950000077486038, 0.8777499794960022, -0.38951000571250916, -0.177839994430542, -0.5053499937057495, 0.37542998790740967, -0.15154999494552612, 0.2881999909877777, -0.41600000858306885, 0.30066999793052673, -0.23333999514579773, 0.326229989528656, 0.4441399872303009, -0.006952300202101469, 0.6920099854469299, -0.17911000549793243, 0.3488999903202057, 0.7972000241279602, -0.04105599969625473, 0.027041999623179436, 0.3297800123691559, -0.06867299973964691, 0.3500699996948242, 0.078404001891613, -0.05593699961900711, 0.21907000243663788, -0.14896999299526215, -0.7351499795913696, 0.49404001235961914, 0.11924000084400177, 0.3060399889945984, -0.23386000096797943, 0.47788000106811523, -0.003222400089725852, -0.4574899971485138, -0.6755300164222717, -0.2145799994468689, 0.2952499985694885, -0.07964999973773956, -0.2964000105857849, 0.19701999425888062, -0.231330007314682, -0.23220999538898468, 0.012911000289022923, -0.5203400254249573, -0.3815700113773346, 0.4448699951171875, 0.3401699960231781, -0.38262999057769775, -0.11326000094413757, -0.16516000032424927, 0.09528300166130066, -0.6661199927330017, -0.2165900021791458, -0.21900999546051025, 0.34139999747276306, -0.5781999826431274, -0.02717900089919567, 0.03133799880743027, 0.2125999927520752, 0.120619997382164, 0.29987001419067383, 0.4097200036048889, 0.03527799993753433, 0.13033999502658844, 0.13885000348091125, 0.2413100004196167, -0.10228999704122543, 0.4290899932384491, 0.10299000144004822, 0.14831000566482544, 0.06208699941635132, -0.6787199974060059, 0.039972998201847076, -0.852370023727417, 0.04872800037264824, -0.29875001311302185, 0.5361800193786621, -0.1666799932718277, -0.018825000151991844, -0.4662100076675415, -0.4290499985218048, -0.043630000203847885, 0.005871700122952461, -0.490229994058609, -0.2088100016117096, -0.40953001379966736, 0.652400016784668, 0.6366000175476074, 0.007924799807369709, -0.2465900033712387, -0.7132200002670288, -0.16060000658035278, 0.704289972782135, 0.10982000082731247, 0.44176000356674194, -0.03670699894428253, 0.3389799892902374, 0.6519700288772583, 0.1723400056362152, 0.3310000002384186, 0.6677500009536743, 0.4497300088405609, 0.46974000334739685, -0.32635998725891113, 0.22755999863147736, 0.06997399777173996, 0.6946200132369995, -0.08340699970722198, -0.33202001452445984, 0.6356899738311768, -0.18761000037193298, -0.5335299968719482, -0.34779998660087585, -0.6511099934577942, 0.0458110012114048, -0.03227299824357033, -0.09360300004482269, 0.26012998819351196, 0.18150000274181366, -0.4813399910926819, -0.04008999839425087, -0.44110000133514404, -0.2808699905872345, 0.4093399941921234, -0.19637000560760498, 0.0557899996638298, -0.21295000612735748, 0.29117000102996826, 0.9233300089836121, -0.11112000048160553, -0.702489972114563, 0.1214200034737587, 0.22431999444961548, 0.40821999311447144, -0.1800300031900406, 0.4966000020503998, -0.26183000206947327, 0.038589999079704285, 0.31167998909950256, 0.44988998770713806, 0.7782400250434875, -0.3474000096321106, 0.455949991941452, 0.19377000629901886, 0.4033699929714203, 0.2810699939727783, -0.6003400087356567, 0.2978599965572357, -0.7170699834823608, 0.3276999890804291, 0.32067999243736267, 0.1703599989414215, 0.017458999529480934, 0.14143000543117523, -0.2335200011730194, 1.3503999710083008, -0.3646000027656555, -0.1250700056552887, -0.38931000232696533, 0.06065699830651283, 1.2367000579833984, -0.1639000028371811, 0.21541999280452728, -0.04382200166583061, -0.05809900164604187, -0.19393999874591827, -0.4487999975681305, -0.4392699897289276, 0.2379000037908554, 0.13816000521183014, 0.13527999818325043, 0.1809300035238266, 0.3705100119113922, 0.23183000087738037, 0.11264999955892563, -0.28384000062942505, 0.12276999652385712, -0.032033998519182205, -0.7879599928855896, -0.06435299664735794, -0.5548200011253357, -0.21017999947071075, -0.39256998896598816, 0.3619900047779083, -0.33044999837875366, 0.12035000324249268, -0.6043000221252441, 0.2671799957752228, -0.4914799928665161, 0.794409990310669, 0.19351999461650848, -0.1612199991941452, -0.10541000217199326, -0.2625899910926819, -0.056233000010252, 0.15838000178337097, -0.1333799958229065, -0.1006999984383583, 0.0893229991197586, 0.7503899931907654, -0.32293999195098877, -0.36528000235557556, -0.34272000193595886, 0.2978900074958801, 0.21608999371528625, -0.6894500255584717, -0.33754000067710876, -0.6105599999427795, -0.2967199981212616, -0.5813199877738953, 0.19411000609397888, -0.11438000202178955, -0.0033227999228984118, -0.7329400181770325, 0.0015737999929115176, 0.5920199751853943, 0.18029999732971191, -0.016797000542283058, -1.0812000036239624, 0.4685800075531006, -0.1863200068473816, 0.4359999895095825, -0.10102999955415726, 0.3570699989795685, 0.09970100224018097, -0.019222000613808632, 0.09495200216770172, 0.023631000891327858, 0.9517099857330322, -0.01234500017017126, -0.3777799904346466, -0.9020100235939026, 0.015177000313997269, -0.3447999954223633, -0.21392999589443207, -0.41464999318122864, -0.10570000112056732, 0.5497499704360962, -0.2963100075721741, 0.10831999778747559, 0.03918199986219406, -0.5602200031280518, 0.17037999629974365, 0.33235999941825867, -0.2263599932193756, -0.6844800114631653, 0.29027000069618225, -0.05076700076460838, -0.0610090009868145, -0.6776999831199646, 0.0351639986038208, 0.1160999983549118, 0.30667001008987427, 0.04535200074315071, 0.6385899782180786, 0.47457998991012573, -0.5680400133132935, -0.0585240013897419, 0.24556000530719757, -0.059783000499010086, 0.36980000138282776, -0.36586999893188477, 0.053509000688791275, 0.1770000010728836, 0.24266000092029572, -0.4117099940776825, -0.1237500011920929, 0.1321299970149994, 0.7542300224304199], u'chipped': [-0.31213000416755676, 0.17440000176429749, -0.2814599871635437, 0.3399899899959564, 0.2832300066947937, -0.29054999351501465, 0.044259000569581985, 0.03573499992489815, 0.4390699863433838, 0.0983320027589798, 0.20866000652313232, 0.24650999903678894, -0.04144499823451042, 0.19431999325752258, -0.49748000502586365, 0.13369999825954437, -0.2092200070619583, 0.1030300036072731, 0.13003000617027283, 0.5257099866867065, -0.12191999703645706, 0.29047998785972595, 0.124269999563694, -0.6374899744987488, -0.2933799922466278, -0.19913999736309052, -0.35986998677253723, 0.2797499895095825, -0.08085799962282181, 0.1178399994969368, 0.1554899960756302, 0.14575999975204468, 0.3708699941635132, 0.07855899631977081, -0.5904899835586548, -0.5648900270462036, 0.45781999826431274, 0.3752799928188324, -0.5678899884223938, 0.11339999735355377, -0.2514899969100952, 0.07832799851894379, 0.4076699912548065, -0.4118799865245819, 0.3138499855995178, 0.06852500140666962, 0.24747000634670258, -0.16561999917030334, -0.5995200276374817, 0.038152001798152924, -0.36798998713493347, -0.19283999502658844, 0.2998499870300293, -0.002689500106498599, -0.08223100006580353, -0.5086299777030945, -0.020889999344944954, 0.3306100070476532, -0.5103899836540222, -0.3896700143814087, 0.1300400048494339, 0.318340003490448, -0.12590999901294708, -0.03598799929022789, 0.22657999396324158, -0.1614599972963333, 0.4141499996185303, -0.3605499863624573, 0.4461199939250946, -0.7955800294876099, 0.3567099869251251, -0.24301999807357788, 0.6027600169181824, 0.3677000105381012, 0.3043000102043152, -0.18032999336719513, 0.15760000050067902, -0.6226599812507629, -0.00901539996266365, -0.05819699913263321, 0.06472499668598175, 0.005552100017666817, 0.8971400260925293, -0.3842200040817261, -0.4587000012397766, 0.39897000789642334, 0.11146000027656555, -0.3595600128173828, -0.0537789985537529, -0.3857499957084656, 0.7480000257492065, 0.8907899856567383, -0.41144001483917236, -0.07215700298547745, -0.31349000334739685, -0.3682200014591217, -0.044089000672101974, 0.13443000614643097, -0.2596200108528137, 0.5684300065040588, -0.06359799951314926, -0.14981000125408173, -0.18795999884605408, 0.06435099989175797, 0.23055000603199005, -0.08258199691772461, -0.020764999091625214, -0.16367000341415405, -0.22654999792575836, -0.4594700038433075, -0.21491999924182892, -0.08380699902772903, -0.13446000218391418, -0.7379699945449829, -0.5849400162696838, 0.17966000735759735, -0.26712000370025635, 0.03632400184869766, -0.16126999258995056, 0.11378999799489975, 0.030711999163031578, -0.008472800254821777, -0.20271000266075134, 0.5613499879837036, -0.3160499930381775, -0.03436100110411644, -0.049800001084804535, -0.1419599950313568, 0.15960000455379486, 0.11545000225305557, 0.1505099982023239, -0.05409200116991997, 0.0011642000172287226, 0.17045000195503235, 0.32982000708580017, 0.012551000341773033, -0.028769999742507935, -0.03336299955844879, -0.10087999701499939, -0.09474299848079681, -0.021877000108361244, 0.7356699705123901, -0.1815200001001358, 0.21514999866485596, -0.33246999979019165, 0.5279300212860107, 0.1601399928331375, 0.4466100037097931, -0.27952998876571655, -0.704990029335022, -0.11247999966144562, 0.4198000133037567, -0.6775299906730652, -0.4258599877357483, -0.37117999792099, 0.012826000340282917, -0.2498600035905838, -0.5240200161933899, 0.15164999663829803, 0.12536999583244324, -0.22612999379634857, -0.20875999331474304, -0.32809001207351685, -0.6744800209999084, 0.61531001329422, 0.0173799991607666, -0.12421999871730804, -0.27316001057624817, 0.10653000324964523, 0.06531299650669098, -0.5431600213050842, -0.3152799904346466, 0.293040007352829, -0.06997100263834, -0.5095499753952026, -0.010332000441849232, -0.023391999304294586, 0.7914800047874451, -0.1816300004720688, -0.20297999680042267, -0.40696999430656433, 0.2074899971485138, 0.6003199815750122, -0.7117499709129333, -0.5030800104141235, -0.46654999256134033, 0.43101000785827637, -0.10463999956846237, 0.3248800039291382, 0.8973000049591064, 0.7640299797058105, 0.11668000370264053, 0.45344001054763794, 0.034811001271009445, -0.16223999857902527, -0.2821199893951416, -0.08381500095129013, -0.2591100037097931, -0.13318000733852386, -0.028603000566363335, 1.0161999464035034, 0.16701999306678772, 0.05335899814963341, 0.21376000344753265, -0.3868899941444397, 0.09831299632787704, -0.13662000000476837, -0.2997500002384186, -0.7913699746131897, 0.4883800148963928, 0.8431599736213684, 0.013741999864578247, 0.0315449982881546, 0.3930099904537201, 0.398140013217926, -0.18313999474048615, 0.37288999557495117, 0.006524200085550547, 0.07588999718427658, 0.3142400085926056, 0.2828899919986725, 0.0433959998190403, -0.3062799870967865, -0.20317000150680542, -0.17434999346733093, -0.22936999797821045, 0.32396000623703003, -0.17462000250816345, -0.061795998364686966, 0.3161799907684326, -0.3197900056838989, 0.18961000442504883, 0.06836000084877014, 0.7779600024223328, -0.32934999465942383, 0.14464999735355377, -0.3129499852657318, 0.030355000868439674, 0.16132999956607819, 0.0022609999869018793, -0.07354699820280075, -0.03841700032353401, -0.7515299916267395, -0.02432600036263466, -0.6569399833679199, 0.08754999935626984, 0.06603699922561646, 0.19585999846458435, 0.4095900058746338, 0.1247899979352951, -0.20318999886512756, -0.5753499865531921, 0.4552600085735321, -1.1859999895095825, 0.19102999567985535, 0.02333899959921837, -0.07354100048542023, -0.4078899919986725, -0.6258599758148193, 0.3794800043106079, -0.07962000370025635, 0.4128499925136566, -0.06111399829387665, -0.12769000232219696, -0.16458000242710114, -0.08386500179767609, -0.28665000200271606, -0.3297500014305115, -0.35565000772476196, -0.2019599974155426, -0.21122999489307404, -0.030748000368475914, -0.4294399917125702, 0.11552000045776367, -0.06970100104808807, -0.38288000226020813, 0.13714000582695007, -0.07909700274467468, -0.8637599945068359, -0.446370005607605, -0.18560999631881714, -0.15151000022888184, 0.48431000113487244, 0.24356000125408173, 0.3934899866580963, -0.04483100026845932, 0.21377000212669373, -0.2247599959373474, 0.42285001277923584, 0.40373000502586365, 0.5245100259780884, 0.15343999862670898, 0.30858999490737915, 0.4869599938392639, -0.06780499964952469, -0.48166000843048096, 0.5959699749946594, -0.9977700114250183, 0.14478999376296997, -0.3744699954986572], u'spilled': [0.2516399919986725, 0.1715400069952011, 0.26618000864982605, 0.2796500027179718, -0.07316700369119644, 0.41416001319885254, 0.1384900063276291, 0.03096500039100647, 0.6639000177383423, -0.5573599934577942, -0.19859999418258667, 0.23868000507354736, -0.5473700165748596, -0.4575900137424469, -0.14222000539302826, -0.004537399858236313, -0.11461000144481659, 0.672249972820282, -0.09132800251245499, 0.6270999908447266, -0.13370999693870544, 0.24652999639511108, 0.22411000728607178, -0.5345699787139893, -0.3923799991607666, -0.17178000509738922, 0.18991999328136444, 0.10955999791622162, 0.060858000069856644, -0.09887400269508362, 0.3723500072956085, 0.0832270011305809, 0.20010000467300415, 0.34404000639915466, 0.29868999123573303, -0.42952999472618103, -0.29256001114845276, -0.10728999972343445, -0.008739699609577656, 0.31650999188423157, -0.46255001425743103, -0.34731999039649963, 0.249439999461174, 0.16147999465465546, 0.6529399752616882, -0.01792999915778637, 0.09309399873018265, 0.03417100012302399, -0.21528999507427216, 0.3900099992752075, 0.0200399998575449, 0.36039999127388, -0.11055999994277954, -0.2888599932193756, -0.03341300040483475, 0.40156999230384827, 0.6434400081634521, 0.17951999604701996, -0.06594300270080566, -0.14979000389575958, -0.0045934999361634254, -0.08480899780988693, -0.1071000024676323, -0.24975000321865082, -0.35106998682022095, -0.7042199969291687, -0.02121499925851822, -0.10847999900579453, -0.07600200176239014, -0.33212000131607056, -0.05744300037622452, -0.30131998658180237, 0.6276999711990356, 0.05038300156593323, 0.3420200049877167, -0.555429995059967, 0.8152400255203247, -0.3684200048446655, -0.3330000042915344, -0.44725000858306885, 0.1399500072002411, -0.6014999747276306, 0.40779998898506165, 0.12999999523162842, 0.2440900057554245, -0.33212000131607056, 0.27619999647140503, -0.43557998538017273, 0.3490599989891052, -0.011908999644219875, -0.11768999695777893, 0.18633000552654266, 0.06981600075960159, -0.02029399946331978, -0.6523100137710571, 0.19271999597549438, 0.6222599744796753, -0.022213999181985855, -0.22970999777317047, 0.15127000212669373, 0.1261499971151352, 0.07760299742221832, -0.2688399851322174, -0.2378299981355667, 0.5869200229644775, 0.2027599960565567, 0.38815000653266907, 0.054381001740694046, 0.13564999401569366, 0.6456000208854675, -0.5281999707221985, -0.2848399877548218, 0.11788000166416168, -0.006899999920278788, -0.3158299922943115, 0.3361400067806244, 0.15658000111579895, 0.44481998682022095, 0.025286000221967697, -0.21755999326705933, 0.05016100034117699, -0.4997900128364563, -0.2629599869251251, 1.1526000499725342, 0.2908099889755249, -0.33594998717308044, -0.12939000129699707, -0.21943999826908112, 0.5133500099182129, -0.0011458999942988157, 0.15789000689983368, 0.4708400070667267, 0.08987399935722351, 0.166360005736351, 0.5331199765205383, 0.2906300127506256, -0.0039033000357449055, 0.14111000299453735, 0.017225999385118484, -0.19571000337600708, -0.10131999850273132, -0.20913000404834747, -0.11404000222682953, 0.04696999862790108, -0.21383999288082123, 0.1472499966621399, -0.1199600026011467, -0.013539000414311886, 0.03714999929070473, 0.2549999952316284, 0.08311399817466736, 0.5992500185966492, 0.3423300087451935, 0.0028562000952661037, 0.2976900041103363, 0.5685399770736694, 0.20952999591827393, 0.23513999581336975, 0.6204100251197815, -0.030215999111533165, 0.4132300019264221, -0.23587000370025635, 0.11226999759674072, 0.19799000024795532, -0.020089000463485718, -0.6419699788093567, 0.01982799917459488, -0.13471999764442444, -0.6039699912071228, -0.04891800135374069, -0.2150299996137619, 0.125450000166893, 0.1618099957704544, -0.6684399843215942, -0.1789499968290329, -0.34251001477241516, 0.11298999935388565, 0.1602499932050705, 0.3097800016403198, -0.3069100081920624, -0.2692300081253052, 0.18077999353408813, -0.2583500146865845, -0.07897400110960007, 0.05466099828481674, -0.2670699954032898, 1.1629999876022339, -0.24944999814033508, 0.15809999406337738, -0.13738000392913818, 0.6810700297355652, -0.5912899971008301, -0.0020896000787615776, -0.23317000269889832, 0.2847999930381775, -0.336899995803833, 0.17030000686645508, -0.004288500174880028, -0.6960800290107727, 0.10485000163316727, 0.2671999931335449, -0.0029174000956118107, 0.6483299732208252, 0.010173000395298004, 0.2544800043106079, -0.20521999895572662, 0.3499299883842468, 0.28843000531196594, -0.3269999921321869, 0.36441001296043396, -0.2446800023317337, 0.48816999793052673, -0.20430000126361847, 0.1851000040769577, 0.25374001264572144, 0.40459001064300537, 0.3023799955844879, -0.41137999296188354, 0.23785999417304993, 0.15376999974250793, 0.5321199893951416, 0.35857999324798584, -0.36890000104904175, -0.31905999779701233, 0.2666099965572357, -0.329910010099411, 0.1031000018119812, -0.31477999687194824, 0.13371999561786652, 0.16362999379634857, -0.31095001101493835, 0.048889998346567154, -0.7164099812507629, 0.48969000577926636, 0.57955002784729, 0.4916900098323822, 0.42906999588012695, 0.023333000019192696, -0.4900200068950653, -0.39590999484062195, -0.31099000573158264, 0.17388999462127686, -0.289359986782074, -0.06300599873065948, 0.20000000298023224, -0.4370799958705902, 0.41909000277519226, 0.5019500255584717, 0.07653199881315231, 0.1035500019788742, 0.36921000480651855, -0.5248799920082092, -0.3464600145816803, -0.44012001156806946, -0.06886400282382965, -0.10386999696493149, -0.554639995098114, -0.3576900064945221, 0.20855000615119934, 0.32613998651504517, 0.007543900050222874, 0.5048900246620178, -0.3609200119972229, -0.30976998805999756, 0.12256000190973282, 0.25266000628471375, -0.7429100275039673, -0.11597000062465668, -0.2584199905395508, -0.3729400038719177, 0.2005700021982193, 0.1749500036239624, -0.295960009098053, -0.1758899986743927, -0.15645000338554382, -0.28659000992774963, -0.6169700026512146, -0.4735400080680847, -0.21443000435829163, -0.14124000072479248, -0.3570599853992462, 0.3025299906730652, 0.7387099862098694, 0.09503400325775146, 0.3376699984073639, -0.22867999970912933, 0.06550700217485428, -0.3055399954319, 0.08460000157356262, 0.6154500246047974, -0.08884699642658234, 0.23533999919891357, 0.8664500117301941, 0.5340099930763245, 0.5305299758911133, -0.026141000911593437, 0.7993999719619751, -0.47150999307632446, -0.0158929992467165, 0.08520399779081345], u'coiled': [-0.12775999307632446, 0.5202199816703796, -0.04901999980211258, -0.0532820001244545, 0.1365399956703186, 0.5410400032997131, -0.2401999980211258, -0.02729799970984459, 0.07803100347518921, 0.24646000564098358, -0.3703800141811371, 0.029179999604821205, -0.15277999639511108, -0.31134000420570374, -0.36201998591423035, 0.12484999746084213, -0.3248400092124939, 0.22864000499248505, 0.10225000232458115, 0.055612001568078995, 0.1835400015115738, 0.26756998896598816, -0.6685000061988831, 0.6442800164222717, 0.3086499869823456, -0.035725001245737076, 0.05925999954342842, 0.2856999933719635, -0.08648999780416489, 0.6449400186538696, 0.1506499946117401, -0.37003999948501587, 0.20843000710010529, -0.07938499748706818, 0.7426499724388123, 0.5715699791908264, -0.18706999719142914, 0.25018998980522156, -0.41102999448776245, 0.5163999795913696, -0.022036999464035034, -0.48895999789237976, 0.412200003862381, -0.47275999188423157, -0.15526999533176422, -0.055424999445676804, -0.2652699947357178, -0.18727000057697296, 0.2792400121688843, 0.4655599892139435, -0.08371700346469879, 0.3043000102043152, 0.35989999771118164, 0.03155599907040596, 0.22078999876976013, -0.8164600133895874, -0.3437800109386444, 0.32635000348091125, 0.22039000689983368, 0.4273200035095215, 0.6479899883270264, 0.4041999876499176, 0.6875500082969666, 0.7195500135421753, 0.38207000494003296, -0.38732999563217163, -0.4708699882030487, 0.4292599856853485, 0.6961299777030945, 0.6334599852561951, -0.2906300127506256, 0.32631000876426697, 0.24718999862670898, 0.10920999944210052, 0.04060199856758118, 0.7221900224685669, 0.1326500028371811, -0.3433699905872345, -0.481330007314682, -0.09199199825525284, 0.34321001172065735, -0.8288099765777588, 0.10444000363349915, 0.37106001377105713, -0.45263999700546265, 0.2823199927806854, -0.33449000120162964, 0.4866200089454651, -0.1295900046825409, 0.49595001339912415, 0.3508799970149994, 0.005773699842393398, -0.17788000404834747, 0.0640449970960617, -0.6214699745178223, 0.0505560003221035, -0.2413800060749054, 1.0347000360488892, 0.35471999645233154, 0.290800005197525, 0.033757999539375305, 0.09017699956893921, -0.4771699905395508, -0.3653700053691864, 0.24289000034332275, 0.16711999475955963, 0.5926600098609924, 0.28262001276016235, -0.5277600288391113, 0.10317999869585037, 0.007893599569797516, 0.42697998881340027, -0.19681000709533691, -0.09323199838399887, 0.019550999626517296, 0.045625001192092896, -0.7581499814987183, -0.13686999678611755, 0.1331000030040741, 0.0014416000340133905, -0.28589001297950745, -1.1035000085830688, 0.2590799927711487, 0.5345600247383118, 0.03163899853825569, -0.022422000765800476, -0.6533399820327759, -0.10976000130176544, -0.7371900081634521, 0.32468000054359436, 0.2900199890136719, -0.0662980005145073, -0.46000999212265015, -0.002981900004670024, -0.79721999168396, 0.31038999557495117, -0.04358899965882301, -0.47437000274658203, 0.3434000015258789, -0.07131899893283844, 0.10202000290155411, -0.14451000094413757, 0.16088999807834625, -0.49355000257492065, 0.11917000263929367, -0.2319599986076355, -0.0760200023651123, -0.14900000393390656, 0.21995000541210175, -0.1646600067615509, -0.08970700204372406, 0.09528899937868118, -0.46893998980522156, -0.021568000316619873, -0.21881000697612762, -0.7824900150299072, 0.6100800037384033, -0.5583099722862244, -0.09916400164365768, 0.632610023021698, -0.3292900025844574, 0.07863499969244003, -0.8154100179672241, -0.23633000254631042, 0.21773000061511993, 0.23506000638008118, -0.25023001432418823, -0.013697000220417976, 0.28672999143600464, -0.5021399855613708, -0.23333999514579773, 0.5179100036621094, 0.31512999534606934, 0.25659000873565674, -0.15547999739646912, 0.06775400042533875, -0.4268999993801117, 0.491210013628006, 0.3779599964618683, -0.8979899883270264, 0.1118599995970726, -0.557200014591217, 0.2808400094509125, 0.9380300045013428, 0.40874001383781433, 0.016140999272465706, 0.6212499737739563, 0.4159199893474579, 0.11924999952316284, -0.5316799879074097, -0.3208000063896179, -0.0177449993789196, -0.056412000209093094, -0.05732500180602074, -0.006222300231456757, -0.3390499949455261, -0.26493000984191895, -0.5656999945640564, -0.1640699952840805, 0.2689799964427948, -0.11456000059843063, 0.7756199836730957, 0.2631700038909912, 0.2274399995803833, 0.05685799941420555, 0.6024399995803833, -0.3803099989891052, -0.4346199929714203, -0.17267000675201416, 0.5512499809265137, -0.1740500032901764, 0.42129001021385193, 0.6624500155448914, -0.4183099865913391, -0.7219099998474121, 0.2885200083255768, 0.293940007686615, -0.8342499732971191, -0.018036000430583954, -0.3240799903869629, -0.11813999712467194, 0.0704289972782135, 0.28172001242637634, -0.1234000027179718, -0.49195000529289246, 0.3117299973964691, -0.3790299892425537, 0.21067999303340912, -0.09180299937725067, -0.6584299802780151, 0.19750000536441803, -0.4314500093460083, 0.2463800013065338, 0.0974079966545105, -0.1657799929380417, 0.0772470012307167, -0.3026899993419647, -0.8722400069236755, -0.9085500240325928, 0.49838000535964966, 0.25053998827934265, -0.06983499974012375, -0.48313000798225403, 0.2399200052022934, -0.20614999532699585, -0.2557699978351593, 0.36289000511169434, 0.4161800146102905, -0.45548000931739807, -0.4045099914073944, -0.27955999970436096, 0.26475000381469727, 0.08611500263214111, -0.32168999314308167, 0.2552799880504608, -0.14833000302314758, 0.5610499978065491, 0.1979999989271164, 0.10544999688863754, 0.32951000332832336, -0.1445399969816208, -0.15076999366283417, 0.5740699768066406, -0.5286200046539307, -0.4288800060749054, -0.4156099855899811, 0.5113300085067749, -0.2223999947309494, 0.4246799945831299, 0.866129994392395, -0.20513999462127686, -0.11085999757051468, 0.09714499861001968, 0.8520100116729736, -0.1861799955368042, 0.06672900170087814, 0.28777000308036804, -0.07134400308132172, -0.5644599795341492, 0.09599900245666504, 0.23066000640392303, -0.5483599901199341, -0.04496699944138527, 0.5896400213241577, -1.055999994277954, -0.38269999623298645, 0.2820900082588196, 1.016800045967102, 0.061599001288414, -0.43362998962402344, 0.44749999046325684, 0.009499600157141685, 0.042433999478816986, 0.3701399862766266, 0.608460009098053, 0.2591499984264374, 0.8380500078201294, 0.007387000136077404, 0.3268299996852875, -0.32311001420021057], u'wrinkled': [-0.5680099725723267, -0.21379999816417694, 0.050533000379800797, -0.6460400223731995, -0.11457999795675278, -0.2645600140094757, -0.05771299824118614, 0.05344599857926369, 0.25933000445365906, 0.18523000180721283, -0.6527699828147888, 0.007204900030046701, 0.21129000186920166, 0.19092999398708344, -0.3531799912452698, 0.5329999923706055, -0.013275000266730785, -0.3520300090312958, -0.15241000056266785, -0.034529998898506165, 0.005095100030303001, 0.1072700023651123, -0.1083500012755394, 0.06477800011634827, -1.0252000093460083, 0.11565999686717987, 0.6279900074005127, 0.05815200135111809, 0.2672500014305115, 0.4013899862766266, -0.0694890022277832, 0.1335200071334839, -0.6624699831008911, -0.11331000179052353, 0.1282999962568283, 0.4243600070476532, -0.38826999068260193, -0.4787899851799011, 0.10823000222444534, 0.18681000173091888, 0.2378299981355667, -0.07175300270318985, 0.33281999826431274, -0.5527300238609314, 0.3106200098991394, 0.01659799925982952, 0.5769500136375427, 0.13801999390125275, -0.34804001450538635, -0.6721699833869934, 0.150409996509552, -0.6197599768638611, 0.25567999482154846, 0.027480000630021095, 0.2969000041484833, -0.47404998540878296, 0.18750999867916107, -0.3749699890613556, 0.5598999857902527, -0.179639995098114, 0.08192700147628784, -0.46924999356269836, -0.3663400113582611, 0.31571000814437866, -0.30948999524116516, 0.07088799774646759, 0.23940999805927277, 0.08974599838256836, 0.23598000407218933, -0.38317999243736267, 0.289110004901886, -0.0061425999738276005, -0.08184400200843811, 0.5829499959945679, 0.7932599782943726, 0.2602100074291229, -0.4632200002670288, -0.1802700012922287, 0.09619300067424774, -0.1745000034570694, -0.5113300085067749, 0.002235099906101823, -0.27546000480651855, -0.2740899920463562, -0.3887900114059448, 0.3721100091934204, -0.1410199999809265, 0.03738600015640259, -0.02719699963927269, 0.48177000880241394, -0.3556300103664398, -0.10109999775886536, -0.4088200032711029, 0.10198000073432922, -0.6096299886703491, 0.08680099993944168, -0.20440000295639038, 0.04738900065422058, 0.34692999720573425, 0.5085999965667725, 0.28428998589515686, -0.1551699936389923, 0.030889999121427536, 0.06318700313568115, -0.25018998980522156, 0.01506900042295456, 0.12598000466823578, -0.10102000087499619, 0.000208760000532493, -0.2633500099182129, -0.3432300090789795, 0.616599977016449, -0.2945599853992462, -0.3318699896335602, -0.05559000000357628, 0.21244999766349792, -0.16333000361919403, 0.488319993019104, 0.07063499838113785, 0.004807299934327602, -0.030525999143719673, -0.7148500084877014, 0.2606399953365326, 0.3253200054168701, -0.10773999989032745, 0.3242500126361847, -0.2076999992132187, 0.08510900288820267, 0.1660899966955185, -0.12492000311613083, -0.36052998900413513, -0.4885599911212921, -0.35923001170158386, 0.1205499991774559, -0.5592700242996216, 0.12126000225543976, 0.3912999927997589, 0.11819999665021896, 0.38179001212120056, 0.2726399898529053, 0.8351399898529053, 0.28720998764038086, -0.15219999849796295, 0.05793999880552292, 0.19280999898910522, 0.3586600124835968, -0.28374001383781433, 0.33730998635292053, 0.5071600079536438, -0.17615999281406403, -0.8306000232696533, -0.0035455001052469015, -0.5570600032806396, -0.5996500253677368, -0.28501999378204346, -0.13605999946594238, 0.12272000312805176, -0.6401699781417847, 0.029145000502467155, 0.785290002822876, -0.5562899708747864, -0.6279900074005127, -0.27932998538017273, 0.02360299974679947, 0.3019300103187561, -0.4187000095844269, -0.1371700018644333, 0.4659700095653534, 0.5446100234985352, -0.651960015296936, 0.01740100048482418, 0.46713998913764954, -0.1370999962091446, -0.23114000260829926, -0.7392399907112122, -0.5148500204086304, 0.5205100178718567, 0.10712999850511551, 0.22863000631332397, -0.0628260001540184, 0.4331899881362915, -0.12927000224590302, -0.18793000280857086, 0.05008799955248833, -0.08012799918651581, -0.4882200062274933, 1.2359000444412231, 0.06383399665355682, 0.011358000338077545, 0.052639998495578766, 0.3387799859046936, 0.3655799925327301, 0.19304999709129333, 0.29864001274108887, -0.3073900043964386, 0.33500000834465027, 0.06735499948263168, -0.3090899884700775, -0.3195199966430664, -0.07559199631214142, 0.044491998851299286, 0.03881699964404106, 0.16098999977111816, 0.2662400007247925, 0.3274900019168854, -0.45794999599456787, 0.13642999529838562, -0.029217999428510666, 0.13962000608444214, -0.4729500114917755, 0.11249999701976776, 0.24988999962806702, -0.6179699897766113, 0.041117001324892044, 0.6456300020217896, 0.1049799993634224, 0.5491799712181091, -0.831059992313385, 0.176269993185997, 0.21039000153541565, 0.17124000191688538, 0.15934999287128448, 0.514710009098053, -0.06460099667310715, -0.5721700191497803, 0.24557000398635864, -0.2717599868774414, -0.12329000234603882, -0.29159998893737793, 0.01962899975478649, 0.6112499833106995, 0.18480999767780304, -0.25815001130104065, 0.29743000864982605, -0.121629998087883, -0.3627299964427948, -0.1357399970293045, -0.33094000816345215, -0.4333699941635132, -0.23331999778747559, 0.1636500060558319, -0.1693200021982193, -0.09502299875020981, 0.19625000655651093, -0.41244998574256897, 0.5011399984359741, -0.3583599925041199, 0.19171999394893646, 0.1442600041627884, -0.1418900042772293, -0.1531199961900711, -0.02758900076150894, 0.051725998520851135, -0.4771899878978729, 0.4968799948692322, 0.8049600124359131, 0.03275299817323685, 0.7173900008201599, -0.37373000383377075, 0.05906900018453598, -0.09941600263118744, 0.007719200104475021, 0.12703999876976013, 0.25512000918388367, 0.06663300096988678, 0.21202999353408813, 0.29159000515937805, 0.11873999983072281, -0.17323000729084015, 0.36177998781204224, -0.21073000133037567, 0.15875999629497528, 0.4731200039386749, 0.03966100141406059, -0.28992998600006104, -0.10450000315904617, 0.98430997133255, -0.8133100271224976, -0.3727099895477295, 0.20146000385284424, 0.3268600106239319, 0.13437999784946442, 0.08814600110054016, -0.04892599955201149, -0.49904000759124756, 0.1287900060415268, 0.1007699966430664, 0.12246000021696091, 0.36687999963760376, -0.10677000135183334, -0.20453999936580658, 0.37755998969078064, -0.4664100110530853, 0.2656700015068054, -0.19089999794960022, -0.572409987449646, 0.22768999636173248, 0.19311000406742096, 0.12703000009059906, 0.020260000601410866], u'unpainted': [0.0484750010073185, -0.054019998759031296, -0.6508299708366394, -0.4651699960231781, -0.13765999674797058, 0.16218000650405884, -0.069582998752594, -0.24924999475479126, -0.5485799908638, 0.1623699963092804, -0.7757200002670288, -0.02963699959218502, -0.05329599976539612, -0.5814700126647949, 0.1593800038099289, 0.1366499960422516, -0.1190899983048439, 0.4608199894428253, -0.1523600071668625, -0.0836699977517128, 0.08420000225305557, 0.2937999963760376, 0.5667399764060974, 0.33417999744415283, 0.048868998885154724, -0.512969970703125, 0.738569974899292, 0.18316000699996948, -0.21478000283241272, 0.05291000008583069, 0.5954800248146057, 0.21056999266147614, 0.05113999918103218, -0.3222599923610687, 0.7050600051879883, 0.17204000055789948, -0.14823000133037567, -0.031408000737428665, 0.25929999351501465, 0.20830999314785004, 0.3378100097179413, -0.12782999873161316, -0.03741300106048584, -0.4547800123691559, -0.2946699857711792, 0.3354800045490265, 0.08483000099658966, -0.1352899968624115, -0.08942300081253052, 0.5170699954032898, -0.13842999935150146, 0.12950000166893005, 0.49149999022483826, -0.3334699869155884, 0.3421100080013275, -0.07402300089597702, -0.012117999605834484, -0.05748099833726883, -0.2100600004196167, 0.1402900069952011, -0.25679999589920044, -0.009081199765205383, -0.4584299921989441, -0.19363999366760254, 0.17773999273777008, -0.2754499912261963, 0.42640000581741333, -0.6273099780082703, 0.3476400077342987, -0.3922699987888336, -0.2727299928665161, 0.35359999537467957, -0.366100013256073, -0.1443299949169159, 0.015768999233841896, -0.12949000298976898, -0.13096000254154205, -0.011188000440597534, 0.06954900175333023, -0.23861999809741974, -0.33586999773979187, 0.05789700150489807, 0.16911999881267548, -0.32199999690055847, 0.1134599968791008, 0.36517998576164246, -0.08680500090122223, -0.09848300367593765, -0.02214200049638748, 0.6692399978637695, 0.15459999442100525, 0.36274999380111694, 0.6518300175666809, -0.17698000371456146, -0.34578999876976013, -0.5353299975395203, 0.16207000613212585, -0.31042999029159546, 0.09087099879980087, 0.23407000303268433, 0.3011600077152252, -0.29493001103401184, 0.1872200071811676, 0.3642899990081787, -0.038635000586509705, 0.007895800285041332, -0.03305500000715256, -0.8318799734115601, -0.1658799946308136, -0.5459499955177307, -0.7013499736785889, 0.18814000487327576, -0.5276299715042114, -0.6772300004959106, -0.43011000752449036, -0.1403599977493286, 0.011617000214755535, 0.5383300185203552, -0.17757999897003174, 0.5134699940681458, -0.34810999035835266, -0.46472999453544617, -0.12050999701023102, 0.454800009727478, 0.07160600274801254, 0.39280998706817627, -0.6725900173187256, -0.39410001039505005, -0.5232399702072144, -0.20895999670028687, -0.20767000317573547, -0.1743299961090088, 0.321399986743927, -0.005056300200521946, -0.2025499939918518, 0.29848000407218933, -0.1772100031375885, 0.8346199989318848, -0.16315999627113342, 0.016565000638365746, 0.5166299939155579, 0.456820011138916, -0.38798001408576965, -0.6556800007820129, 0.05239399895071983, -0.28944000601768494, 0.38227999210357666, -0.13436999917030334, -0.24360999464988708, -0.2992999851703644, -0.5415499806404114, 0.05764099955558777, -0.05343100056052208, -0.8559899926185608, -0.3363800048828125, 0.16481000185012817, 0.2985000014305115, -0.18806999921798706, 0.2414799928665161, 0.21324999630451202, -0.047589998692274094, 0.6351000070571899, -0.10544999688863754, 0.2601499855518341, 0.23391999304294586, 0.4277699887752533, -0.021902000531554222, 0.3931399881839752, 0.4555499851703644, -0.16218000650405884, -0.5195299983024597, 0.2688800096511841, 0.4119499921798706, -0.16261999309062958, -0.19314000010490417, -0.5144699811935425, 0.1587499976158142, -0.3039200007915497, 0.09608899801969528, -1.3020999431610107, 0.22669999301433563, -0.12472999840974808, 0.38363000750541687, 0.26291999220848083, -0.07770299911499023, -0.14817999303340912, 0.5799400210380554, -0.00917890015989542, -0.003190699964761734, 0.17130999267101288, 0.1974799931049347, -0.21077999472618103, 0.4242100119590759, -0.03801500052213669, 0.31551000475883484, -0.12408000230789185, -0.6810500025749207, 0.37147000432014465, -0.164450004696846, -0.3163599967956543, -0.025232000276446342, -0.33425000309944153, -0.46922001242637634, -0.186039999127388, 0.00014077000378165394, 0.29884999990463257, 0.153889998793602, 0.1652200073003769, -0.5487200021743774, 0.20162999629974365, 0.5693100094795227, 0.44617998600006104, -0.010913999751210213, 0.05114400014281273, -0.5629500150680542, 0.026207000017166138, 0.23287999629974365, -0.454010009765625, 0.27011001110076904, -0.017199000343680382, 0.39737001061439514, -0.16785000264644623, 0.11136999726295471, -0.7521499991416931, -0.013886000029742718, 0.2335200011730194, -0.030921999365091324, -0.07893099635839462, -0.2221599966287613, -0.709119975566864, -0.1293099969625473, -0.48346999287605286, -0.08663400262594223, -0.16335999965667725, 0.012246999889612198, -0.07206299901008606, 0.020167000591754913, -0.037411998957395554, -0.6321499943733215, 0.07067599892616272, -0.013918999582529068, 0.05753900110721588, -0.15789000689983368, 0.29631999135017395, -0.08957500010728836, -0.19584999978542328, 0.25422999262809753, -0.3437100052833557, -0.004139599855989218, 0.19957999885082245, -0.3773599863052368, 0.10811000317335129, 0.27368998527526855, -0.3608100116252899, -0.09392800182104111, 0.7405400276184082, -0.22718000411987305, -0.06227099895477295, 0.3265399932861328, 0.22245000302791595, 0.003875100053846836, 0.42983999848365784, -0.11975999921560287, -0.43953999876976013, 0.09118100255727768, 0.368259996175766, 0.12623000144958496, -0.12247999757528305, -0.20795999467372894, 0.18267999589443207, -0.1802300065755844, 0.1994200050830841, -0.23333999514579773, -0.6029999852180481, -1.0961999893188477, 0.49160000681877136, 0.732990026473999, 0.4974699914455414, -0.8760200142860413, 0.2009900063276291, 0.9696000218391418, -0.10130000114440918, -0.719290018081665, 0.241689994931221, 0.5187399983406067, 0.1687999963760376, 0.4159500002861023, 0.45386001467704773, -0.26023998856544495, -0.02514299936592579, -0.6554200053215027, 0.03244499862194061, 0.5915499925613403, 0.2056799978017807, -0.15688000619411469, 0.009970500133931637, -0.2387399971485138, -0.08876200020313263, 0.22905999422073364, 0.22529999911785126], u'narrow': [-0.3843500018119812, -0.16827000677585602, -0.25613999366760254, -0.0030886998865753412, 0.272460013628006, 0.4359799921512604, 0.3502199947834015, 0.10391999781131744, 0.586870014667511, -1.4782999753952026, -0.47760000824928284, -0.22930000722408295, -0.3739300072193146, 0.14585000276565552, -0.08918499946594238, 0.21637000143527985, -0.3196699917316437, -0.03787299990653992, 0.605459988117218, -0.27974000573158264, -0.030626000836491585, -0.13051000237464905, 0.14142000675201416, 0.2053699940443039, -0.7974100112915039, -0.3990600109100342, 0.30952000617980957, -0.2538500130176544, -0.20809000730514526, 0.427480012178421, 0.22391000390052795, 0.2162500023841858, -0.04972999915480614, 0.08652599900960922, -0.6320800185203552, 0.7570099830627441, -0.0018615999724715948, -0.09445100277662277, -0.5245400071144104, -0.2597000002861023, -0.08195900171995163, 0.6264899969100952, 0.05332000181078911, 0.03905700147151947, -0.2545599937438965, 0.8190000057220459, -0.07481999695301056, 0.14342999458312988, 0.006480500102043152, -0.15166999399662018, -0.7053899765014648, 0.3755599856376648, 0.21699999272823334, -0.3568499982357025, -0.004267300013452768, -0.04601699858903885, -0.63850998878479, -0.6990299820899963, 0.3584800064563751, 0.7464100122451782, 0.212909996509552, -0.2534500062465668, 0.06824400275945663, 0.10040999948978424, 0.6213899850845337, -0.2318899929523468, -0.04388900101184845, 0.5128600001335144, 0.03828499838709831, 0.017568999901413918, -0.12580999732017517, 0.3192700147628784, 0.22664999961853027, 0.5204399824142456, 0.44269999861717224, -0.39952000975608826, -0.4012199938297272, 0.19628000259399414, -0.07975099980831146, -0.591920018196106, 0.05147400125861168, 0.24855999648571014, 0.20548999309539795, -0.23342999815940857, -0.17792999744415283, 0.2525700032711029, 0.5158100128173828, -0.09721600264310837, 0.13473999500274658, 0.6139299869537354, 0.3971399962902069, -0.02185099944472313, -0.04022099822759628, -0.4303399920463562, -0.30983999371528625, 0.3047899901866913, 0.41554999351501465, 0.39427000284194946, 0.3068700134754181, -0.0025567999109625816, -0.06969700008630753, 0.11800000071525574, -0.13210999965667725, -0.3522700071334839, -0.7900500297546387, 0.40342000126838684, 0.370959997177124, -0.46050000190734863, 0.21675999462604523, 0.2108200043439865, -0.5036900043487549, -0.09506800025701523, 0.5617700219154358, -0.5183600187301636, 0.1426600068807602, -0.1844799965620041, 0.07818000018596649, 0.26357999444007874, -0.04739199951291084, -0.042725998908281326, 0.24959999322891235, -0.3214600086212158, 0.19346000254154205, -0.41857999563217163, 0.12690000236034393, 0.18389999866485596, 0.039115000516176224, 0.18345999717712402, -0.22371000051498413, -0.14762000739574432, -0.29638001322746277, -0.046549998223781586, -0.07047200202941895, 0.4702500104904175, 0.550819993019104, 0.4477500021457672, 0.15805000066757202, 0.5064200162887573, 0.3126699924468994, -0.3415200114250183, 0.29030001163482666, -0.08523699641227722, -0.12650999426841736, 0.028666000813245773, -0.661080002784729, 0.2445099949836731, -0.04680899903178215, 0.04642099887132645, -0.07426299899816513, 0.07990700006484985, -0.24176999926567078, 0.31172001361846924, 0.31852999329566956, -0.4109500050544739, 0.9584299921989441, 0.4721899926662445, -0.022283999249339104, 0.5471600294113159, 0.35580000281333923, 0.22719000279903412, -0.5806699991226196, 0.18328000605106354, 0.6488800048828125, 0.2794800102710724, 0.2999500036239624, -0.07333700358867645, -0.030724000185728073, -0.11597000062465668, -0.6334900259971619, 0.03931700065732002, -0.037608999758958817, -0.18052999675273895, 0.40149998664855957, -0.18264000117778778, -0.11210999637842178, -0.009101400151848793, -0.7544000148773193, 0.5438600182533264, 0.11708000302314758, -0.24518999457359314, 0.361519992351532, 0.17069999873638153, -0.06318599730730057, 0.39948999881744385, -0.09421700239181519, -0.2666400074958801, 0.2538299858570099, 0.02652899920940399, 0.5087000131607056, 0.8512099981307983, 0.38012999296188354, 0.4152100086212158, -0.2522900104522705, 0.4528599977493286, 0.07220199704170227, -0.1371700018644333, -0.2994300127029419, -0.48697999119758606, 0.0034153000451624393, 0.2398100048303604, 0.5454000234603882, 0.1453399956226349, -0.06259199976921082, -0.19855999946594238, 0.002239000052213669, -0.1383100003004074, -0.305620014667511, -0.41179001331329346, 0.5314599871635437, 0.3130300045013428, 0.045775000005960464, -0.14941999316215515, 0.4350000023841858, 0.5905399918556213, -0.08189799636602402, -0.1603900045156479, 0.29701998829841614, -0.34442999958992004, 0.25367000699043274, -0.5094000101089478, 0.833299994468689, -0.16143999993801117, -0.14061999320983887, 0.0572969987988472, 0.025728000327944756, 0.082505002617836, -0.1372700035572052, -0.1594800055027008, -0.3707300126552582, -0.01068899966776371, 0.0008281799964606762, -0.25174999237060547, -0.09517599642276764, 0.18896999955177307, 0.09772499650716782, -0.06120600178837776, -0.438400000333786, 0.19196000695228577, -0.2547299861907959, 0.16321000456809998, 0.3323200047016144, -0.06297100335359573, 0.4655500054359436, 0.3285300135612488, -1.579300045967102, -0.5052800178527832, 0.2560499906539917, 0.3677000105381012, 0.14384999871253967, 0.31619998812675476, -0.19886000454425812, -0.480679988861084, 0.39228999614715576, -0.8505799770355225, -0.5113599896430969, 0.11142999678850174, -0.4243899881839752, 0.3996399939060211, -0.24352000653743744, 0.33851999044418335, 0.3697499930858612, -0.5473099946975708, 0.18791000545024872, -0.10228999704122543, -0.16067999601364136, 0.12256000190973282, 0.030709000304341316, -0.4235000014305115, -0.07968500256538391, -0.6065000295639038, 0.09026700258255005, -0.07610800117254257, 0.4264799952507019, 0.1264200061559677, -0.799019992351532, -0.18964000046253204, -0.8261200189590454, 0.13779999315738678, 0.2737799882888794, 0.46663999557495117, 0.14480000734329224, 0.19485999643802643, -0.04396099969744682, -0.43571001291275024, 0.10716000199317932, 0.17622999846935272, -0.4142799973487854, 0.07224299758672714, 0.04208099842071533, -0.01104000024497509, 0.02437400072813034, 0.3019700050354004, -0.4708099961280823, 0.7061799764633179, 0.03355500102043152, 1.2359999418258667, -0.6992200016975403, 0.053755998611450195, 0.25297999382019043, 0.20513999462127686], u'fallen': [-0.3457300066947937, -0.48080000281333923, 0.35850000381469727, 0.222680002450943, -0.18663999438285828, 0.465719997882843, -0.153329998254776, 0.5331299901008606, 0.06461499631404877, -0.9145399928092957, -0.2727999985218048, 0.2406100034713745, -0.23416000604629517, 0.0066281999461352825, -0.2399500012397766, -0.3573499917984009, 0.0867689996957779, -0.2609100043773651, -0.2089499980211258, -0.4496699869632721, -0.23975999653339386, 0.419050008058548, 0.5429999828338623, -0.044176001101732254, 0.3980399966239929, -0.2918800115585327, -0.12766000628471375, -0.2367199957370758, 0.0797479972243309, 0.21373000741004944, 0.23062999546527863, 0.3177100121974945, 0.02435299940407276, -0.31946998834609985, -0.8154299855232239, -0.5670700073242188, 0.13133999705314636, -0.11096999794244766, 0.5985599756240845, 0.049956999719142914, 0.1161699965596199, -0.09246599674224854, -0.3447299897670746, -0.053296998143196106, 0.03928200155496597, 0.1665399968624115, 0.2450300008058548, -0.008183499798178673, 0.1714099943637848, -0.04855100065469742, 0.2791999876499176, -0.3280999958515167, -0.38075000047683716, 0.2630699872970581, -0.13413000106811523, -0.15679000318050385, 0.047731999307870865, 0.290039986371994, 0.3895600140094757, -0.5005999803543091, 0.04409699887037277, 0.06182999908924103, 0.4687800109386444, 0.1038300022482872, -0.4624199867248535, -0.6405900120735168, 0.13431000709533691, 0.31731000542640686, -0.39403000473976135, 0.5870400071144104, -0.037480998784303665, 0.5260000228881836, -0.4442099928855896, -0.08574900031089783, 0.2064100056886673, 0.32186999917030334, 0.45107999444007874, -0.1625799983739853, -0.13339999318122864, -0.027726000174880028, -0.17395000159740448, 0.024980999529361725, 0.1633400022983551, 0.2846600115299225, -0.028620000928640366, 0.6403200030326843, -0.14905999600887299, 0.02937299944460392, -0.02123500034213066, 0.16978999972343445, 0.8588500022888184, 0.12942999601364136, -0.0077228001318871975, -0.0488400012254715, 0.050342999398708344, -0.02579299919307232, -0.09522400051355362, 0.0408720001578331, 0.3572399914264679, 0.0437610000371933, 0.3576200008392334, 0.31428998708724976, 0.1338600069284439, 0.04005799815058708, 0.12129999697208405, -0.225600004196167, 0.11834000051021576, 0.06663700193166733, -0.08366800099611282, -0.14430999755859375, -0.4903700053691864, -0.06728599965572357, -0.12905000150203705, -0.6591399908065796, 0.032896000891923904, 0.05693800002336502, 0.21222999691963196, -0.21258999407291412, -0.07882600277662277, -0.29148000478744507, 0.17517000436782837, -0.6338199973106384, -0.17017999291419983, 1.089900016784668, -0.2518700063228607, 0.5914300084114075, -0.3244200050830841, 0.08224800229072571, 0.17789000272750854, 0.16469000279903412, -0.39544999599456787, 0.6742500066757202, 0.46522998809814453, 0.5672799944877625, 0.4217199981212616, 0.1795399934053421, 0.03632500022649765, -0.07518800348043442, 0.04693000018596649, -0.19064000248908997, 0.3596400022506714, 0.06165200099349022, -0.23836000263690948, 0.416810005903244, -0.2032800018787384, 0.16428999602794647, -0.07153400033712387, 0.0028574999887496233, -0.0036319000646471977, -0.6676700115203857, 0.13348999619483948, 0.0082547003403306, -0.26715001463890076, 0.05615299940109253, 0.49671998620033264, 0.36664000153541565, -0.055521998554468155, -0.18844999372959137, -0.07959099858999252, 0.14090999960899353, 0.04964600130915642, 0.024606000632047653, 0.09203699976205826, 0.019204000011086464, 0.6639500260353088, 0.14972999691963196, 0.20740999281406403, -0.3931199908256531, -0.3560599982738495, 0.0060132998041808605, -0.4280700087547302, 0.21443000435829163, 0.05213199928402901, 0.19163000583648682, 0.2427300065755844, 0.08962900191545486, 0.4822799861431122, 0.30597999691963196, -0.20327000319957733, 0.6648600101470947, -0.4550600051879883, -0.12246000021696091, 0.26396000385284424, -0.2630600035190582, 0.11626999825239182, -0.18217000365257263, 0.4788399934768677, -0.20708000659942627, 0.09737499803304672, 0.289139986038208, 0.23962000012397766, -0.6081299781799316, 0.3540000021457672, -0.24944999814033508, -0.6883100271224976, 0.08171900361776352, -0.5153499841690063, -0.04387500137090683, 0.36313000321388245, 0.027780000120401382, 0.9591400027275085, 0.07507500052452087, 0.2123900055885315, 0.18105000257492065, -0.7178900241851807, -0.06535500288009644, 0.14541000127792358, -0.07846699655056, -0.16853000223636627, 0.2966099977493286, -0.12816999852657318, 0.017923999577760696, 0.12545999884605408, -0.6294400095939636, 0.23532000184059143, 0.11987999826669693, 0.13718000054359436, 0.3004699945449829, 0.047008998692035675, 0.2837800085544586, 0.46152999997138977, -0.18378999829292297, 0.04102100059390068, -0.45614001154899597, -0.18783000111579895, 0.0486610010266304, -0.1109900027513504, 0.037709999829530716, 0.06535100191831589, 0.23980000615119934, -0.1848900020122528, -0.37536001205444336, -0.1589300036430359, 0.34064000844955444, 0.0635870024561882, 0.09266600012779236, 0.1684499979019165, 0.04363299906253815, -0.1031700000166893, -0.5142199993133545, 0.1505099982023239, -0.6083400249481201, 0.4562000036239624, -0.5163300037384033, -0.36061999201774597, -0.03053000010550022, 0.25380998849868774, 0.13880999386310577, 0.17648999392986298, 0.11569999903440475, 0.3629100024700165, 0.2630400061607361, 0.29559001326560974, -0.20993000268936157, 0.633620023727417, -0.11676999926567078, 0.3089999854564667, -0.09956300258636475, -0.4043000042438507, 0.12711000442504883, -0.3442299962043762, 0.7283899784088135, -0.39904001355171204, -0.13204999268054962, -0.1973699927330017, 0.5176900029182434, 0.24993999302387238, -0.37863001227378845, -0.2798599898815155, -0.054055001586675644, -0.042118001729249954, 0.22788000106811523, -0.16992999613285065, -0.598360002040863, -0.5868300199508667, -0.04710099846124649, -1.0118999481201172, -0.7867900133132935, 0.27643001079559326, -0.15745000541210175, -0.36579999327659607, -0.27970001101493835, 0.05076799914240837, -0.6947199702262878, -0.07672899961471558, 0.09528599679470062, 0.04050000011920929, -0.3002200126647949, 0.1557600051164627, 0.10869000107049942, 0.4050399959087372, 0.273250013589859, 0.10378000140190125, 0.12896999716758728, 0.31262001395225525, 0.44315001368522644, -0.11080999672412872, -0.3230400085449219, -0.10527999699115753, -0.10307999700307846], u'muddy': [-0.07881399989128113, -0.17417000234127045, -0.35673001408576965, 0.2466599941253662, -0.2605000138282776, -0.3694399893283844, 0.5315300226211548, -0.02218100056052208, 0.6573899984359741, 0.015943000093102455, -0.3164899945259094, 0.0119420001283288, -0.39017000794410706, -0.2204499989748001, -0.13476000726222992, -0.40143999457359314, -0.44703999161720276, -0.009136900305747986, 0.9582200050354004, 0.2531000077724457, 0.09302400052547455, 0.33656999468803406, -0.21744999289512634, 0.005783699918538332, -0.7428900003433228, -0.37738001346588135, 0.4637500047683716, -0.0827070027589798, 0.13620999455451965, 0.7778000235557556, -0.22267000377178192, -0.08745600283145905, -0.17958000302314758, 0.1849299967288971, 0.14875000715255737, 0.7362599968910217, 0.3674300014972687, -0.11518000066280365, -0.14339999854564667, -0.14151999354362488, 0.03879399970173836, 0.19183999300003052, 0.5409299731254578, 0.23617999255657196, 0.3214699923992157, 0.825950026512146, 0.5636600255966187, 0.24332000315189362, -0.23770000040531158, -0.29497000575065613, -0.2948800027370453, -0.008986099623143673, 0.12803000211715698, -0.3925800025463104, 0.27312999963760376, 0.23011000454425812, 0.0424950011074543, -0.7258300185203552, 0.12025000154972076, 0.7104200124740601, -0.17890000343322754, -0.3406600058078766, 0.4323199987411499, 0.0757950022816658, 0.023442000150680542, -0.2718900144100189, 0.5322099924087524, -0.09651099890470505, -0.3058899939060211, -0.013350999914109707, 0.45611000061035156, 0.5356600284576416, -1.0296000242233276, 0.2210800051689148, -0.37136000394821167, -0.5721200108528137, 0.03765600174665451, 0.6896499991416931, 0.4278300106525421, -0.6969199776649475, 0.66184002161026, -0.16811999678611755, 0.05260099843144417, -0.3428800106048584, 0.004031000193208456, -0.10653000324964523, 0.12364000082015991, -0.0924450010061264, 0.39045000076293945, -0.04288699850440025, 0.2729400098323822, 0.43827998638153076, 0.38708001375198364, -0.17149999737739563, -0.4027400016784668, 0.13973000645637512, 0.6298099756240845, -0.011714999563992023, 0.009743199683725834, 0.05212799832224846, 0.15103000402450562, 0.22145000100135803, -0.5778099894523621, 0.17749999463558197, -1.0477999448776245, 0.37022000551223755, 0.8099200129508972, 0.06441599875688553, -0.08541099727153778, -0.047821998596191406, -0.4258599877357483, -0.3419800102710724, -0.18589000403881073, -0.04604100063443184, -0.17847000062465668, -0.1782200038433075, 0.5251299738883972, 0.014162000268697739, 0.03908099979162216, -0.37891000509262085, 0.1751900017261505, -0.37623998522758484, 0.6626899838447571, 0.311379998922348, 0.11912000179290771, 0.4784199893474579, 0.14621999859809875, -0.271589994430542, -0.27055999636650085, -0.32284998893737793, -0.6636000275611877, 0.8454700112342834, 0.47560998797416687, 0.5524299740791321, -0.024755999445915222, -0.2996799945831299, 0.39542001485824585, 0.2985000014305115, -0.1035500019788742, -0.017914999276399612, 0.14267000555992126, -0.0602170005440712, 0.038982000201940536, -0.5570799708366394, -0.49202999472618103, -0.08960700035095215, 0.050422001630067825, 0.7524999976158142, -0.19679999351501465, 0.025452999398112297, -0.7284600138664246, -0.10313999652862549, -0.4360800087451935, -0.6318399906158447, 0.6423500180244446, 0.2569600045681, 0.7495200037956238, -0.3081600069999695, 0.8285300135612488, 0.8631899952888489, -0.35795000195503235, -0.8553000092506409, 0.05733000114560127, 0.09184200316667557, -0.02145799994468689, -0.21153999865055084, -0.00658079981803894, 0.38378000259399414, -0.561269998550415, -0.5382099747657776, 0.30138999223709106, 0.8531699776649475, 0.4457800090312958, -0.4734399914741516, -0.6007800102233887, -0.17994000017642975, 0.096110999584198, -0.15922999382019043, -0.2993899881839752, -0.1856600046157837, 0.2109300047159195, 0.7297400236129761, 0.12883000075817108, 0.8126599788665771, -0.50382000207901, -0.5432000160217285, 0.4703800082206726, 0.10435999929904938, 0.20182999968528748, 0.256089985370636, 0.014514000155031681, -0.0008769099949859083, -0.414249986410141, -0.5109500288963318, 0.21852999925613403, 0.07348299771547318, 0.002150400076061487, -0.12071000039577484, -0.3222000002861023, 0.24390999972820282, 0.6590399742126465, 0.2817299962043762, 0.5123699903488159, 0.15294000506401062, 0.2946699857711792, -0.09406699985265732, 0.40105000138282776, -0.001464199973270297, -0.3610199987888336, 0.11326000094413757, -0.5136100053787231, 0.30928000807762146, -0.2325499951839447, -0.2579900026321411, -0.26912999153137207, 0.5395200252532959, 0.020893000066280365, -0.3863300085067749, 0.32642999291419983, -0.2980499863624573, 0.8685299754142761, -0.05977199971675873, 0.3145900070667267, -0.19314999878406525, 0.5576099753379822, 0.12759000062942505, -0.21573999524116516, -0.11320000141859055, 0.12502999603748322, 0.08494400233030319, 0.5345100164413452, 0.2934400141239166, -0.5549299716949463, -0.05372900143265724, 0.3565100133419037, 0.5420100092887878, -0.08880999684333801, -0.16574999690055847, -0.4345499873161316, -0.15087999403476715, -0.08510400354862213, 0.6943699717521667, -0.10022000223398209, -0.7767300009727478, -0.5959699749946594, -0.5797500014305115, 0.2952600121498108, 0.21301999688148499, -0.053300000727176666, 0.17399999499320984, 0.33539000153541565, -0.14776000380516052, 0.24818000197410583, -0.4929099977016449, 0.4514800012111664, -0.09160599857568741, -0.21730999648571014, 0.0976099967956543, 0.1636199951171875, 0.30469000339508057, 0.39013001322746277, -0.0978889986872673, -0.3083299994468689, -0.2888599932193756, 0.09766600281000137, 0.435479998588562, -0.43077000975608826, -0.40619999170303345, -0.17330999672412872, -0.3517000079154968, -0.3675999939441681, -0.12921999394893646, -0.21693000197410583, 0.2771199941635132, 0.0027826998848468065, 0.04095299914479256, -0.268779993057251, -0.022864999249577522, -0.16175000369548798, -0.06718999892473221, -0.11947999894618988, -0.10559999942779541, 0.7979400157928467, -0.6437100172042847, -0.28648999333381653, -0.06192699819803238, 0.09409199655056, -0.060812000185251236, 0.17937999963760376, -0.3142299950122833, -0.3785800039768219, 0.03545700013637543, 0.046135999262332916, 0.7069000005722046, -0.19750000536441803, -0.06167199835181236, 0.33375000953674316, 0.8209599852561951, -0.25804999470710754, 0.2644299864768982], u'sliced': [0.2107599973678589, -0.047933001071214676, 0.21748000383377075, 0.0011232000542804599, 0.5576000213623047, -0.0896259993314743, -0.20023000240325928, 0.05078800022602081, -0.3491100072860718, -0.04533100128173828, 0.5632299780845642, 0.19036999344825745, 0.027163999155163765, 0.25964999198913574, -0.5776399970054626, 0.39862000942230225, -0.3337700068950653, -0.16915999352931976, -0.32541000843048096, 0.6125800013542175, -0.006275299936532974, 0.23499000072479248, -0.11894000321626663, -0.48583000898361206, 0.20545999705791473, -0.47143998742103577, -0.24835999310016632, 0.031012000516057014, -0.5071300268173218, -0.6012200117111206, -0.735260009765625, 0.556689977645874, 0.1741199940443039, 0.08443299680948257, -0.4653699994087219, 0.24773000180721283, -0.07545100152492523, 0.05602699890732765, -0.38787999749183655, 0.16547000408172607, -0.09047500044107437, -0.38631999492645264, -0.08863899856805801, -0.0994039997458458, 0.42263999581336975, 0.5582200288772583, -0.1792600005865097, 0.17312000691890717, -0.4768100082874298, 0.32565000653266907, -0.3986800014972687, 0.0023169999476522207, 0.38400998711586, 0.4982199966907501, -0.8013799786567688, -1.0398000478744507, -0.21083000302314758, 0.15699000656604767, -0.014328000135719776, 0.32339999079704285, 0.013513999991118908, 0.1149199977517128, -0.5245800018310547, 0.2056799978017807, 0.08072599768638611, -0.11670999974012375, -0.1880200058221817, -0.0656680017709732, 0.24299000203609467, -0.27748000621795654, 0.29471999406814575, 0.41492000222206116, 0.3015199899673462, 0.49851998686790466, 0.03595900163054466, 0.4825499951839447, 0.7806599736213684, 0.15567000210285187, -0.20543000102043152, 0.24267999827861786, -0.21353000402450562, 0.09734299778938293, 0.456930011510849, -0.15101000666618347, 0.08085399866104126, 0.0710889995098114, -0.7318599820137024, -0.11722999811172485, -0.17264999449253082, -0.12689000368118286, 0.7570499777793884, -0.06881500035524368, -0.1010499969124794, -0.4368300139904022, -0.1783899962902069, -0.11034999787807465, -0.1842299997806549, 0.7304099798202515, 0.23061999678611755, 0.7373300194740295, 0.09120800346136093, 0.010728999972343445, 0.5657299757003784, -0.7963100075721741, -0.5873799920082092, -0.17961999773979187, 0.24255000054836273, 0.3475399911403656, -0.5513899922370911, -0.04035799950361252, 0.2726899981498718, 0.7152900099754333, 0.5270400047302246, -0.805840015411377, -0.14219999313354492, 0.15900999307632446, -0.04412499815225601, 0.542739987373352, 0.7749999761581421, 0.016600999981164932, -0.10296999663114548, -0.6305999755859375, 0.1536799967288971, 0.0863339975476265, -0.36653000116348267, 0.49483999609947205, -0.40782999992370605, -0.07726799696683884, -0.25786998867988586, 0.39208000898361206, -0.15512000024318695, 1.0931999683380127, -0.05376499891281128, 0.5036900043487549, -0.1034500002861023, 0.46035999059677124, -0.10429000109434128, 0.17625999450683594, -0.5569800138473511, 0.17534999549388885, 0.6125900149345398, 0.06643100082874298, -0.363290011882782, 0.12049999833106995, -0.6060100197792053, 0.026102999225258827, 0.04826999828219414, -0.458979994058609, 0.4893699884414673, -0.5557900071144104, -0.5260300040245056, 0.23925000429153442, 0.6039800047874451, 0.3465000092983246, -0.11094000190496445, -0.2414100021123886, 0.14542999863624573, -0.1491599977016449, 0.03743400052189827, 0.39559999108314514, -0.335750013589859, 0.2091200053691864, -0.2062699943780899, -0.005764800123870373, 0.5204100012779236, -0.39566999673843384, 0.1855500042438507, -0.10662999749183655, -0.2376299947500229, -0.884090006351471, 0.05832599848508835, -0.33302998542785645, -0.3935900032520294, -0.021098000928759575, -0.2908700108528137, -0.04408600181341171, -0.17467999458312988, 0.07216800004243851, 0.5371299982070923, -0.32315999269485474, 0.3433400094509125, 0.1335899978876114, 0.4369199872016907, -0.5641700029373169, -0.01435100007802248, -0.7563499808311462, 0.26868999004364014, 0.2822200059890747, 0.3845199942588806, 0.8928800225257874, 0.08329000324010849, 1.0277999639511108, -0.14313000440597534, 0.28001999855041504, 0.4681699872016907, -0.018254000693559647, -0.5981299877166748, -0.31025999784469604, -0.006105899810791016, -0.050613999366760254, 0.25582998991012573, -0.12011999636888504, 0.16825999319553375, 0.052691999822854996, -0.13078999519348145, 0.768310010433197, 0.06616699695587158, 0.3956199884414673, -0.058097999542951584, 0.4036400020122528, 0.36719000339508057, -0.1569100022315979, -0.12772999703884125, 0.04493099823594093, 0.463019996881485, -0.08798199892044067, 1.0384000539779663, -0.7986099720001221, 0.3396899998188019, -0.12001000344753265, 0.6549000144004822, 0.5654199719429016, -0.6055799722671509, -0.2078000009059906, -0.09837900102138519, -0.34630998969078064, -0.11947000026702881, -0.8618199825286865, -0.014445999637246132, -0.2838500142097473, 0.20781999826431274, 0.15702000260353088, 0.11050999909639359, -0.2914299964904785, 0.19192999601364136, 0.22477999329566956, 0.18693000078201294, 0.1137399971485138, -0.7406499981880188, -0.4259200096130371, -0.21132999658584595, -0.2338699996471405, -0.03520699962973595, -0.2647300064563751, -0.6987199783325195, -0.17666999995708466, 0.29482999444007874, 0.23785999417304993, 0.2607100009918213, -1.0263999700546265, 0.5579599738121033, 0.47301000356674194, 0.20527000725269318, -0.904229998588562, -0.13860000669956207, 0.1381099969148636, -0.3496699929237366, 0.08154399693012238, -0.3795900046825409, 0.5296099781990051, 0.4538800120353699, 0.03888300061225891, 0.03604999929666519, 0.323529988527298, 0.007317000068724155, -0.3905099928379059, -0.36879000067710876, 0.17696000635623932, -0.22776000201702118, 0.10158000141382217, -0.10238000005483627, 0.3333800137042999, -0.3198600113391876, 0.9359400272369385, -0.35725998878479004, 0.19040000438690186, -0.22026999294757843, -0.07388900220394135, -1.3005000352859497, -1.041700005531311, -0.16673000156879425, -0.19014999270439148, 0.35234999656677246, -0.009963000193238258, 0.2659299969673157, 0.10644999891519547, 0.39772000908851624, -0.19221000373363495, -0.1766500025987625, 0.6199600100517273, 0.20524999499320984, 0.041377998888492584, 0.09436800330877304, -0.26298999786376953, -0.1604200005531311, -0.14234000444412231, -0.35842999815940857, -0.3224000036716461, 0.4677000045776367, -0.2793999910354614], u'sharp': [0.1820800006389618, -0.010888000018894672, -0.04377700015902519, -0.17396999895572662, -0.2607699930667877, -0.27008000016212463, -0.059429001063108444, 0.017322000116109848, 0.3670800030231476, -1.7067999839782715, -0.3711700141429901, 0.5894799828529358, -0.072564996778965, 0.12422999739646912, 0.3122600018978119, -0.049323998391628265, -0.3757599890232086, 0.541920006275177, 0.14733999967575073, -0.40362998843193054, -0.05249800160527229, 0.14622999727725983, 0.4770500063896179, 0.20205999910831451, 0.4202899932861328, -0.07429099828004837, 0.013718999922275543, -0.5710600018501282, -0.04606800153851509, -0.04977000132203102, -0.3152399957180023, 0.5346199870109558, -0.6736999750137329, 0.43112000823020935, -1.2761000394821167, -0.15185999870300293, -0.2172500044107437, -0.2172199934720993, 0.33103999495506287, 0.35148000717163086, 0.14437000453472137, 0.7562400102615356, 0.6957200169563293, -0.17324000597000122, -0.2513599991798401, 0.16921000182628632, -0.6578699946403503, -0.29142001271247864, -0.2347400039434433, 0.24303999543190002, -0.31367000937461853, 0.17418000102043152, 0.3158699870109558, 0.058115001767873764, -0.05507100000977516, -0.3654400110244751, -0.581570029258728, 0.11183000355958939, 0.09990499913692474, 0.23859000205993652, 0.46869999170303345, 0.2972100079059601, 0.3546200096607208, 0.11441999673843384, -0.10734999924898148, -0.5180400013923645, -0.559719979763031, 0.0006833000225014985, 0.13270999491214752, -0.44642001390457153, -0.6218400001525879, 0.23454999923706055, 0.2815600037574768, -0.15977999567985535, 0.5632200241088867, -0.4138599932193756, -0.3354699909687042, 0.21207000315189362, -0.8078100085258484, -0.7756800055503845, -0.19513000547885895, -0.3806599974632263, 0.016131000593304634, 0.01395300030708313, 0.27757999300956726, -0.17463000118732452, -0.23750999569892883, 0.00924570020288229, 0.11361999809741974, 0.2333499938249588, 0.6911500096321106, 0.6723499894142151, -0.7782099843025208, -0.38098999857902527, 0.22100000083446503, -0.0461370013654232, -0.21775999665260315, 0.18306000530719757, -0.04059699922800064, 0.06375200301408768, -0.5095400214195251, -0.045708999037742615, -0.322409987449646, 0.2044599950313568, -0.5356600284576416, -0.0019886998925358057, -0.017006000503897667, 0.30838000774383545, -0.17782999575138092, 0.053777001798152924, -0.13872000575065613, -0.15300999581813812, 0.21167999505996704, -0.036173999309539795, 0.39851999282836914, 0.0693420022726059, -0.15028999745845795, 0.1383499950170517, -0.5005199909210205, -0.5591800212860107, -0.17444999516010284, -0.5323399901390076, -0.6340199708938599, -0.3528600037097931, -0.24045999348163605, 0.6266499757766724, -0.48003000020980835, 0.06601700186729431, 0.4816400110721588, -0.4045200049877167, -0.3131299912929535, 0.9553800225257874, -0.6645500063896179, 0.47279998660087585, -0.5767099857330322, -0.17880000174045563, -0.532800018787384, 0.025496000424027443, 0.504830002784729, 0.3666999936103821, 0.4190399944782257, 0.19946999847888947, 0.08709000051021576, -0.19077999889850616, -0.12284000217914581, 0.5391799807548523, -0.18222999572753906, -0.08961299806833267, 0.14024999737739563, -0.2888300120830536, 0.4081200063228607, 0.3119199872016907, 0.11016999930143356, 0.012988000176846981, 0.2597399950027466, -0.0685420036315918, -0.15929999947547913, -0.11309999972581863, 0.20769000053405762, -0.04625999927520752, -0.07197199761867523, -0.05009299889206886, 0.6161999702453613, 0.12675000727176666, -0.11184000223875046, 0.2989000082015991, 0.4219900071620941, -0.02936900034546852, -0.054492998868227005, -0.0467739999294281, -0.2503100037574768, -0.24754999577999115, -0.021794000640511513, -0.08595000207424164, -0.4269599914550781, -0.27796000242233276, -0.17882999777793884, -0.16179999709129333, 0.19046999514102936, 0.7340899705886841, 0.15117000043392181, -0.1517000049352646, -0.2768999934196472, -0.060825999826192856, -0.33799999952316284, 0.10993999987840652, -0.12279000133275986, -0.12758000195026398, -0.44975000619888306, 0.6259400248527527, -0.22095000743865967, 0.12197999656200409, -0.10080999881029129, 0.02040099911391735, -0.20777000486850739, 0.8035299777984619, -0.5374100208282471, -0.5461699962615967, 0.14924000203609467, 0.14789000153541565, 0.6489999890327454, -0.4084799885749817, 0.14736999571323395, 0.23916000127792358, -0.5307700037956238, 0.3693099915981293, -0.07921099662780762, 0.538919985294342, -0.3784399926662445, -0.10582000017166138, 0.30098000168800354, -0.38196998834609985, -0.029196999967098236, -0.2081100046634674, 0.12791000306606293, -0.10678999871015549, 0.3792699873447418, 0.048955000936985016, -0.3490400016307831, -0.16338999569416046, -0.1262899935245514, -0.07849100232124329, 0.294840008020401, 0.21517999470233917, -0.22036999464035034, 0.07375200092792511, -0.16453999280929565, 0.20116999745368958, 0.024142000824213028, -0.2982099950313568, -0.1174900010228157, -0.1789100021123886, 0.15544000267982483, -0.9215099811553955, -0.2559199929237366, 0.4379099905490875, -0.3477500081062317, -0.22641000151634216, -0.36414000391960144, 0.29458001255989075, 0.7387199997901917, -0.6427900195121765, -0.47808998823165894, 0.16975000500679016, -0.8323699831962585, -0.4183099865913391, -0.016367999836802483, -0.2779200077056885, 0.22067999839782715, -0.31011998653411865, 0.25356999039649963, -0.2697100043296814, 0.28251001238822937, 0.23994000256061554, -0.056411001831293106, 0.0537789985537529, 0.487419992685318, -0.18232999742031097, -0.7522600293159485, 0.8946400284767151, -0.3132300078868866, 0.18355999886989594, -0.6101400256156921, 0.2512199878692627, -0.0027759999502450228, -0.3690600097179413, -0.10540000349283218, 0.3275899887084961, -0.7913600206375122, 0.24235999584197998, 0.18066999316215515, -0.18775999546051025, -0.1347299963235855, -0.2576200067996979, 0.15816999971866608, -0.2032500058412552, -0.797730028629303, 0.25547999143600464, -0.1423799991607666, -0.05604200065135956, -0.1257999986410141, 0.5911300182342529, 0.13524000346660614, 0.23029999434947968, 0.22877000272274017, -0.5716699957847595, 0.20145000517368317, -0.512440025806427, 0.29429998993873596, 0.2880299985408783, 0.3916800022125244, 0.36261001229286194, 0.34869998693466187, 0.2337300032377243, -0.10119999945163727, 0.9408900141716003, -0.025616999715566635, -0.00802330020815134, 0.37257999181747437, -0.25165998935699463], u'thick': [-0.514930009841919, -0.2964499890804291, -0.18660999834537506, -0.5892500281333923, -0.45903998613357544, -0.2935500144958496, 0.7203199863433838, 0.947160005569458, 0.28992000222206116, -1.1787999868392944, -0.004043799825012684, 0.508899986743927, -0.33456000685691833, 0.19781999289989471, -0.33687999844551086, -0.004278200212866068, -0.3326700031757355, 0.35989999771118164, 0.17470000684261322, 0.1910499930381775, 0.0029859000351279974, -0.38877999782562256, -0.5571500062942505, 0.5522599816322327, -0.16118000447750092, 0.04484599828720093, 0.643339991569519, -0.1589599996805191, -0.5793700218200684, 0.21292999386787415, -0.24556000530719757, 0.4159500002861023, -0.816100001335144, -0.27020999789237976, -0.1758500039577484, 0.09703599661588669, -0.17684000730514526, -0.08414799720048904, 0.20562000572681427, 0.5306900143623352, -0.49077001214027405, -0.23064999282360077, 0.26736998558044434, 0.05273300036787987, 0.351639986038208, 0.22318999469280243, 0.3655399978160858, -0.08468399941921234, -0.2989000082015991, -0.32420000433921814, 0.1418199986219406, 0.34852999448776245, -0.01830199919641018, -0.3396100103855133, -0.20693999528884888, 0.1520799994468689, -0.06948699802160263, -1.0461000204086304, 0.34022998809814453, 0.17964999377727509, 0.038221001625061035, -0.04958200082182884, 0.28224000334739685, 0.09704899787902832, 0.17479999363422394, -0.16951000690460205, 0.0747620016336441, 0.5671600103378296, 0.2572900056838989, -0.6130099892616272, 0.2936899960041046, -0.23586000502109528, -0.19133000075817108, -0.29927000403404236, -0.19880999624729156, -0.05774800106883049, 0.488070011138916, -0.029380999505519867, -0.020611999556422234, -0.2736400067806244, -0.06873500347137451, 0.03603300079703331, 0.33695998787879944, -0.3796600103378296, -0.23257000744342804, 0.18604999780654907, 0.36011001467704773, 0.0055518001317977905, -0.11665999889373779, 0.23920999467372894, 0.11078999936580658, -0.357699990272522, -0.41269999742507935, 0.2622799873352051, 0.00714130001142621, 0.16619999706745148, -0.3163900077342987, 0.5895900130271912, 0.5920299887657166, -0.09269700199365616, 0.1735599935054779, 0.10626000165939331, -0.31147000193595886, -0.6957200169563293, -0.37046000361442566, 0.04158300161361694, 0.45528000593185425, 0.19585999846458435, -0.5260900259017944, 0.08729799836874008, -0.4062199890613556, 0.4324299991130829, -0.0709879994392395, -0.9937899708747864, -0.28216999769210815, 0.16584999859333038, -0.4386399984359741, 0.03857700154185295, 0.09362400323152542, -0.6528900265693665, -0.34365999698638916, -0.8098800182342529, -0.007272500079125166, 0.6051899790763855, -0.3784399926662445, 0.30730000138282776, 0.3163599967956543, 0.08342500030994415, 0.09172499924898148, 0.1280599981546402, 0.12716999650001526, 1.0408999919891357, -0.39458000659942627, 0.3615399897098541, 0.600059986114502, -0.02810000069439411, -0.12154000252485275, 0.3606399893760681, 0.1676200032234192, -0.037337999790906906, 0.7956500053405762, 0.16572999954223633, -0.17940999567508698, -0.2937900125980377, -0.3210099935531616, 0.16298000514507294, 0.14907999336719513, -0.1882299929857254, -0.3369700014591217, 0.07560200244188309, -0.18257999420166016, 0.10046999901533127, -0.25501999258995056, -0.19452999532222748, 0.34624001383781433, -0.40112000703811646, 0.39899998903274536, -1.0246000289916992, 0.5758500099182129, 0.3787899911403656, -0.38738998770713806, -0.09255299717187881, 0.6556900143623352, -0.31283000111579895, 0.27390000224113464, -0.26444000005722046, 0.3845599889755249, 0.29747000336647034, 0.0189800001680851, -0.88919997215271, 0.12115000188350677, 0.03810599818825722, -0.3666499853134155, 0.3608799874782562, -0.12804999947547913, -0.47887998819351196, 0.09923899918794632, 0.15300999581813812, 0.3521299958229065, -1.2519999742507935, 0.34845998883247375, -0.1764799952507019, 0.06211499869823456, -0.3126699924468994, -0.25266000628471375, -0.8638799786567688, 0.7656400203704834, 0.2761699855327606, 0.18177999556064606, 0.3330099880695343, 0.17312000691890717, 0.9821799993515015, 0.3219600021839142, 0.19175000488758087, 0.8319600224494934, -0.7551299929618835, -0.395220011472702, 0.26172998547554016, -0.012404000386595726, 0.11922000348567963, 0.6129400134086609, -0.01571900025010109, 0.43977001309394836, 0.46632999181747437, 0.21753999590873718, -0.07754600048065186, -0.0755470022559166, -0.19404000043869019, -0.18494999408721924, -0.22032000124454498, 0.3421800136566162, -0.09079200029373169, -0.08360700309276581, -0.4997900128364563, 0.0795229971408844, -0.005776300095021725, 0.5695000290870667, -0.558139979839325, 0.3153499960899353, -0.5265200138092041, 0.9581400156021118, -0.0299260001629591, 0.5057500004768372, -0.049219001084566116, -0.2959100008010864, 0.368120014667511, -0.2703399956226349, -0.4646100103855133, -0.3582099974155426, -0.5222899913787842, 0.5680500268936157, 0.3237000107765198, -0.3876200020313263, -0.20975999534130096, 0.04035099968314171, -1.0002000331878662, 0.19988000392913818, -0.32280999422073364, -0.4429900050163269, 0.06591100245714188, 0.275519996881485, -0.10057999938726425, -0.19377000629901886, -0.03002000041306019, -1.033400058746338, -0.22383999824523926, 0.3404400050640106, 0.0896570011973381, 0.1090800017118454, -0.7318099737167358, -0.05723100155591965, -0.3862299919128418, 0.6227499842643738, -1.0738999843597412, 0.26677998900413513, 0.1390099972486496, -0.312610000371933, -0.2752299904823303, -0.22729000449180603, 0.38969001173973083, 0.48104000091552734, 0.22227999567985535, 0.3473599851131439, 0.012222999706864357, 0.1670999974012375, -0.07928100228309631, -0.3228600025177002, -0.25297999382019043, 0.2726399898529053, 0.0070720999501645565, -0.2275799959897995, -0.23330999910831451, -0.3087500035762787, 0.2050500065088272, -0.5001199841499329, 0.5350900292396545, -0.6263499855995178, 0.022492000833153725, -0.9655799865722656, -0.25523000955581665, 0.2500999867916107, -0.28856998682022095, -0.17476999759674072, -0.40582001209259033, -0.32074999809265137, -0.03718600049614906, -0.026743000373244286, 0.7074499726295471, 0.39827999472618103, 0.008241499774158001, 0.6285600066184998, 0.4882200062274933, -0.5789300203323364, -0.16649000346660614, 0.256089985370636, 0.3158000111579895, 0.09753400087356567, 0.28415000438690186, -0.3956199884414673, 0.16338999569416046], u'open': [-0.26464998722076416, -0.24112999439239502, -0.09739299863576889, -0.5604299902915955, 0.26969000697135925, 0.5215700268745422, -0.33869001269340515, 0.04112499952316284, 0.41211000084877014, -1.5943000316619873, 0.5292199850082397, 0.46474000811576843, -0.07146800309419632, 0.19329999387264252, -0.7118399739265442, -0.10515999794006348, -0.3193399906158447, 0.26642000675201416, 0.4515100121498108, 0.5453799962997437, 0.13933999836444855, -0.3451099991798401, -0.2583500146865845, -0.2429399937391281, -0.32396000623703003, -0.18738999962806702, 0.1473200023174286, -0.00409960001707077, -0.04346499964594841, 0.2381500005722046, 0.15484000742435455, 0.20076000690460205, 0.20634999871253967, 0.41098999977111816, -0.7900699973106384, 0.17083999514579773, 0.16689999401569366, -0.5867800116539001, -0.2717300057411194, 0.25887998938560486, -0.09176500141620636, -0.270440012216568, -0.130840003490448, 0.25999000668525696, -0.1735299974679947, 0.2452400028705597, 0.3755599856376648, 0.42925000190734863, -0.7740399837493896, 0.06834699958562851, 0.272379994392395, -0.2864300012588501, 0.17208999395370483, -0.289110004901886, -0.3390200138092041, 0.13516999781131744, 0.10064999759197235, -0.04580799862742424, 0.47626999020576477, -0.2399899959564209, 0.021709999069571495, -0.1357100009918213, -0.2360599935054779, 0.18774999678134918, -0.5312399864196777, -0.7277399897575378, 0.3435400128364563, -0.04974900186061859, -0.3615800142288208, -0.3655099868774414, -0.29137998819351196, -0.26010000705718994, 0.6204699873924255, 0.530709981918335, 0.24139000475406647, 0.17337000370025635, -0.18553000688552856, -0.06481699645519257, -0.1956299990415573, -0.48087000846862793, -0.02090900018811226, -0.393530011177063, 0.0015318000223487616, -0.17020000517368317, 0.3376300036907196, -0.31593000888824463, 0.04390000179409981, 0.1082099974155426, 0.11032000184059143, -0.24232999980449677, 0.11448000371456146, -0.7907699942588806, -0.22518999874591827, 0.04301900044083595, 0.328110009431839, -0.24589000642299652, -0.144679993391037, 0.427700012922287, -0.14116999506950378, -1.118499994277954, 0.5083000063896179, -0.10329999774694443, -0.5839899778366089, -0.43988001346588135, -0.2465900033712387, 0.14541999995708466, -0.18082000315189362, -0.23791000247001648, -0.7254999876022339, -0.23883000016212463, -0.09284599870443344, -0.6507099866867065, 0.050349000841379166, -0.27963000535964966, -0.5459100008010864, 0.3119199872016907, -0.36952000856399536, 0.21613000333309174, 0.43055999279022217, 0.28519999980926514, -0.3432599902153015, -0.013492000289261341, 0.3891800045967102, -0.08618699759244919, 0.09626200050115585, -0.193790003657341, -0.125560000538826, 0.09884700179100037, -0.3465999960899353, -0.21283000707626343, 0.14277000725269318, 0.4727100133895874, 0.12623000144958496, -0.28101998567581177, -0.3956100046634674, 0.09313700348138809, 0.5503799915313721, 0.23587000370025635, 0.33945000171661377, -0.09863100200891495, 0.1770000010728836, 0.02243500016629696, 0.0913499966263771, 0.5608000159263611, -0.825219988822937, -0.5847300291061401, 0.1701900064945221, 0.29923000931739807, -0.469539999961853, 0.35457998514175415, 0.3734999895095825, -0.4604499936103821, -0.10236000269651413, -0.11387000232934952, 0.6621900200843811, -0.04563299939036369, -0.5354999899864197, 0.22634999454021454, 0.32907000184059143, 0.33577999472618103, -0.05077299848198891, 0.16997000575065613, -0.3265700042247772, 0.18708999454975128, -0.31321999430656433, 0.12963999807834625, 0.34373000264167786, -0.004516200162470341, 0.41677001118659973, -0.29142001271247864, 0.01789500005543232, 0.23667000234127045, -0.3968900144100189, 0.14988000690937042, 0.021161999553442, 0.024373000487685204, 0.14212000370025635, 0.4034000039100647, 0.08564399927854538, 0.17328999936580658, 0.5354400277137756, 0.02335299924015999, 0.23824000358581543, -0.08795300126075745, -0.0633929967880249, 0.012839999981224537, -0.3515399992465973, 0.4313099980354309, 0.4130699932575226, 0.21199999749660492, 0.0728600025177002, 0.19044999778270721, -0.15129999816417694, 0.012702999636530876, 0.32916000485420227, -0.06260000169277191, 0.15835000574588776, 0.13451999425888062, -0.4215700030326843, 0.16008999943733215, 1.5988999605178833, -0.02271600067615509, -0.4650599956512451, -0.23494000732898712, -0.04673299938440323, -0.06047400087118149, -0.6405500173568726, -0.6226199865341187, 0.018470000475645065, 0.08370800316333771, -0.22382000088691711, -0.12400999665260315, -0.24472999572753906, -0.03831300139427185, -0.3508700132369995, -0.3174000084400177, -0.10279999673366547, 0.19539999961853027, -0.010840999893844128, -0.396699994802475, 0.8539100289344788, 0.042472999542951584, -0.24794000387191772, -0.2041500061750412, -0.38185998797416687, 0.1823900043964386, -0.5756499767303467, -0.35771000385284424, 0.1396999955177307, -0.1831900030374527, 0.5048900246620178, -0.16019000113010406, 0.3657900094985962, -0.17396999895572662, 0.31624001264572144, 0.3702000081539154, 0.03533000126481056, 0.3388800024986267, -0.531499981880188, 0.2987099885940552, -0.900600016117096, 0.24783000349998474, 0.050606999546289444, -0.03163199871778488, -0.1070299968123436, 0.20040999352931976, -0.10160999745130539, -0.2618800103664398, -0.11191999912261963, -0.6275500059127808, 0.31905999779701233, 0.22390000522136688, -0.19191999733448029, -0.7875099778175354, -0.39807000756263733, -0.20454999804496765, 0.3601599931716919, 0.056689999997615814, 0.01075700018554926, 0.704479992389679, 0.34637999534606934, -0.6401200294494629, -0.15910999476909637, -0.25178998708724976, 0.20172999799251556, -0.3168399930000305, 0.32850000262260437, 0.2272700071334839, 0.16548000276088715, -0.2471199929714203, 0.03987099975347519, 0.5881199836730957, 0.9093800187110901, -0.15591999888420105, -0.03474099934101105, -0.7272599935531616, -1.8011000156402588, 0.2503199875354767, 0.3488999903202057, 0.2500700056552887, -0.15343999862670898, -0.6090899705886841, 0.458979994058609, 0.1401199996471405, -0.6883699893951416, -0.32242000102996826, -0.2641800045967102, -0.06370200216770172, 0.08653999865055084, -0.20629000663757324, -0.15062999725341797, -0.1339299976825714, -0.3808700144290924, 0.9434199929237366, 0.4322499930858612, 0.8225700259208679, -0.17910000681877136, -0.38113999366760254, 0.5359899997711182, 0.2935999929904938], u'runny': [0.19286000728607178, 0.5246999859809875, 0.17779000103473663, -0.24163000285625458, -0.09245999902486801, -0.32141000032424927, -0.09771399945020676, -0.11253000050783157, 0.17941999435424805, 0.38166001439094543, -0.36983999609947205, -0.020517000928521156, -0.022586999461054802, -0.24672000110149384, -0.009180399589240551, -0.2803100049495697, -0.3743700087070465, -0.6874899864196777, 0.2502700090408325, 0.24873000383377075, 0.2297700047492981, 0.1399800032377243, -0.25547000765800476, 0.529770016670227, -0.9703999757766724, -0.05473899841308594, 0.5150600075721741, -0.9917299747467041, 0.3632499873638153, -0.2910600006580353, -0.2639000117778778, 0.4864799976348877, 0.12269999831914902, -0.4140399992465973, 0.5846199989318848, 0.6188600063323975, -0.7126299738883972, 0.36994999647140503, 0.023276999592781067, 0.2916400134563446, 0.25898998975753784, 0.46786999702453613, 0.8884900212287903, -0.2933099865913391, -0.018449999392032623, 0.5474399924278259, -0.2935999929904938, 0.9279800057411194, -0.16306999325752258, -0.04763999953866005, 0.9708600044250488, -0.35806000232696533, 0.5613600015640259, -0.18151000142097473, -0.8845000267028809, -0.2004999965429306, -0.4787899851799011, -0.5477499961853027, 0.2386700063943863, 0.09669200330972672, 0.14363999664783478, -0.12374000251293182, -0.6440100073814392, 0.7576500177383423, -0.36932000517845154, -0.2420700043439865, 0.9833499789237976, -0.04442699998617172, 0.09197299927473068, -0.5966600179672241, 0.36030998826026917, 0.020627999678254128, -0.030616000294685364, 0.2712799906730652, 0.7761200070381165, -0.5695599913597107, 0.36932000517845154, 0.6828699707984924, -0.3724299967288971, 0.006556100212037563, -0.42357000708580017, -0.1747100055217743, -0.341729998588562, -0.49873000383377075, 0.18637999892234802, 0.25102999806404114, 0.983680009841919, -0.056171998381614685, 0.05138000100851059, -0.05154100060462952, -0.44710999727249146, 0.0005206000059843063, -0.20145000517368317, 0.5123299956321716, -0.6048399806022644, -0.10231000185012817, -0.0077148000709712505, 0.5864700078964233, -0.2875100076198578, 0.5553100109100342, 0.5331900119781494, -0.43046998977661133, -0.45135000348091125, 0.2913999855518341, -0.6075500249862671, 0.3085300028324127, -0.7626000046730042, 0.03194800019264221, -0.7636200189590454, 0.17422999441623688, -0.1512800008058548, -0.12598000466823578, -0.6930099725723267, 0.2990500032901764, -0.46856001019477844, -0.1896200031042099, -0.9263299703598022, 0.9986000061035156, -0.013334999792277813, 0.3399899899959564, 0.01945200003683567, -1.1953999996185303, -0.11403000354766846, 0.6284199953079224, 0.4318000078201294, -0.31095999479293823, -0.7368599772453308, 0.09923700243234634, 0.17228999733924866, -0.2749499976634979, 0.6417800188064575, 0.15335999429225922, -0.43136999011039734, 1.0556999444961548, 0.01843300089240074, 0.16832999885082245, 0.24672000110149384, -0.2902800142765045, 0.03669999912381172, 0.22923000156879425, 0.6999499797821045, 0.22462999820709229, -0.4860199987888336, -0.33935999870300293, 0.5483499765396118, 0.4909000098705292, 0.045510999858379364, -0.42149001359939575, -0.4162999987602234, 0.6670500040054321, 0.037351999431848526, 0.5173500180244446, 0.39427000284194946, 0.48917001485824585, 0.34599000215530396, 0.02796499989926815, -0.12707999348640442, 0.1602499932050705, 0.46327999234199524, 0.3788900077342987, -0.31321001052856445, -0.34762999415397644, -0.15581999719142914, -0.25016000866889954, 0.48802000284194946, -0.17332999408245087, -0.2643199861049652, 0.12456999719142914, 0.2411700040102005, -0.4551199972629547, 0.7092999815940857, 0.45085999369621277, 0.31407999992370605, -0.1288899928331375, -0.9036999940872192, -0.5920900106430054, 0.4069400131702423, -0.4336499869823456, 0.030594000592827797, -0.5931299924850464, -0.23704999685287476, 0.5640699863433838, 0.011699000373482704, 0.3159100115299225, -0.8569499850273132, -0.36083000898361206, 0.8839200139045715, -0.8210099935531616, -0.5696300268173218, -0.42618998885154724, 0.013261999934911728, -0.038036998361349106, -0.5924500226974487, -0.4679900109767914, 0.45085999369621277, 0.19210000336170197, -0.23331999778747559, -0.15353000164031982, 0.6756299734115601, 0.22968000173568726, -0.3129099905490875, 0.07426299899816513, 0.6639099717140198, 0.2786400020122528, 0.3133000135421753, 0.175369992852211, -0.7055400013923645, -0.5516499876976013, 0.29840001463890076, -0.13782000541687012, -0.02433899976313114, -0.3308899998664856, -0.16224999725818634, -0.355320006608963, 0.41025999188423157, 0.04611799865961075, -0.1779700070619583, -0.0546329990029335, 0.21831999719142914, 0.35346999764442444, -0.0898820012807846, -0.1434600055217743, 0.6265299916267395, -0.024403000250458717, -0.31172001361846924, 0.09467300027608871, 0.4099999964237213, 0.4491899907588959, 0.42732998728752136, -0.07311400026082993, 0.628059983253479, -0.14767999947071075, 0.39629000425338745, -0.46035999059677124, 0.18672999739646912, 0.23980000615119934, 0.22142000496387482, 0.30900999903678894, -0.28968000411987305, -0.8424000144004822, 0.18086999654769897, -0.9722300171852112, -0.629010021686554, -0.22009000182151794, 0.17096999287605286, -0.0825209990143776, 0.28481999039649963, 0.44578999280929565, -0.18738000094890594, -0.7771400213241577, 0.3865000009536743, -0.1764100044965744, -0.034398000687360764, -0.15423999726772308, -1.0839999914169312, 0.8177499771118164, -0.7846800088882446, -0.15076999366283417, -0.4834800064563751, 0.5302199721336365, -0.5745199918746948, -0.16868999600410461, 0.06484100222587585, 0.5532199740409851, -0.20541000366210938, 0.07991600036621094, 0.22154000401496887, -0.05899199843406677, 0.37988001108169556, 1.0154000520706177, 0.47277000546455383, -0.4300599992275238, 0.11898999661207199, -0.13899999856948853, -0.2603999972343445, 0.2517400085926056, 0.32100000977516174, -0.21570999920368195, -0.47468000650405884, -0.7043399810791016, 0.7173500061035156, 0.5989500284194946, 0.6586499810218811, -0.1208299994468689, 0.43452998995780945, 0.07610700279474258, 0.13582000136375427, 0.3375599980354309, -0.288349986076355, -0.38666999340057373, -0.2233400046825409, -0.40417999029159546, 0.41251999139785767, -0.23959000408649445, -0.1829500049352646, -1.1231000423431396, 0.12399999797344208, 0.027766000479459763, -0.0011542000574991107, 0.33122000098228455], u'standing': [-0.07662300020456314, -0.044557999819517136, -0.12822000682353973, -0.41047000885009766, -0.3423500061035156, 0.06074199825525284, 0.17190000414848328, 0.10773999989032745, 0.0564659982919693, -1.1282000541687012, -0.13086000084877014, 0.10316000133752823, 0.05017799884080887, -0.39155998826026917, -0.10700000077486038, 0.36934998631477356, 0.07501699775457382, 0.22776000201702118, -0.14303000271320343, -0.29510998725891113, -0.15670999884605408, 0.24753999710083008, 0.450439989566803, -0.13741999864578247, -0.11078000068664551, 0.2614299952983856, 0.11032000184059143, -0.2749199867248535, 0.04405000060796738, 0.41220998764038086, 0.032919999212026596, -0.17451000213623047, 0.2030400037765503, -0.18951000273227692, -1.1990000009536743, 0.0313429981470108, 0.2786700129508972, -0.3421100080013275, 0.03283200040459633, 0.36090999841690063, 0.32471001148223877, -0.03961599990725517, -0.0396369993686676, 0.1780800074338913, 0.08296900242567062, 0.2537800073623657, 0.20054000616073608, -0.0682850033044815, 0.21448999643325806, 0.23563000559806824, -0.2016099989414215, -0.2682499885559082, -0.4538300037384033, 0.004545200150460005, 0.04217899963259697, 0.21618999540805817, 0.1338299959897995, 0.2798599898815155, -0.18535000085830688, 0.405460000038147, 0.6658499836921692, -0.06129999831318855, 0.10583999752998352, 0.3940800130367279, -0.4074600040912628, -0.5960999727249146, 0.058476001024246216, 0.387470006942749, -0.05758700147271156, 0.1545100063085556, -0.0660649985074997, 0.057036999613046646, -0.2913599908351898, -0.5083799958229065, -0.12219999730587006, 0.06114700064063072, 0.08432299643754959, -0.07107599824666977, -0.030263999477028847, -0.1058100014925003, -0.022026000544428825, 0.39478999376296997, -0.16797000169754028, 0.3660700023174286, 0.22023999691009521, 0.2537600100040436, -0.012160000391304493, -0.040897998958826065, -0.13446000218391418, -0.16056999564170837, 0.40389999747276306, -0.23377999663352966, 0.025273000821471214, 0.22078000009059906, -0.19994999468326569, -0.12775999307632446, 0.019735999405384064, -0.05281699821352959, 0.016109999269247055, 0.006651800125837326, -0.06711500138044357, 0.22809000313282013, -0.34766000509262085, -0.4165799915790558, -0.462009996175766, 0.47387000918388367, 0.25902000069618225, 0.10819999873638153, -0.08917000144720078, -0.18488000333309174, -0.09481199830770493, 0.060596998780965805, -0.2299100011587143, -0.1418900042772293, -0.0901390016078949, 0.17586000263690948, -0.0614360012114048, 0.14880000054836273, -0.12836000323295593, -0.023691000416874886, -0.4203700125217438, 0.2941800057888031, 0.1983499974012375, 0.2687300145626068, -0.3932400047779083, -0.36438998579978943, -0.007804399821907282, -0.09981399774551392, 0.3640500009059906, -0.6302899718284607, -0.37362000346183777, 0.14139999449253082, 0.03854500129818916, 0.10050000250339508, -0.07310199737548828, 0.041731998324394226, 0.03853899985551834, -0.042746998369693756, 0.310589998960495, 0.3833799958229065, -0.4690299928188324, 0.15285000205039978, 0.01724799908697605, 0.1364700049161911, -0.49222999811172485, 0.14034000039100647, 0.2790299952030182, 0.45993998646736145, -0.14058999717235565, -0.41273999214172363, 0.04051100090146065, 0.22269000113010406, 0.12466999888420105, -0.09563799947500229, 0.02829599939286709, 0.45291000604629517, -0.02371799945831299, 0.32221999764442444, 0.2594299912452698, 0.6240500211715698, 0.1530900001525879, 0.5085700154304504, 0.039774999022483826, 0.06643900275230408, -0.08910399675369263, 0.044902000576257706, -0.3672800064086914, 0.18975000083446503, -0.04534199833869934, -0.0184749998152256, 0.13898000121116638, 0.4536300003528595, -0.054639000445604324, -0.6113899946212769, 0.10540000349283218, 0.048941001296043396, -0.06449300050735474, 0.5118299722671509, -0.03315800055861473, -0.15208999812602997, 0.03996099904179573, -0.12370999902486801, 0.43737998604774475, 0.07667600363492966, -0.29423001408576965, -0.05012499913573265, 0.11569999903440475, 0.1787099987268448, -0.14879000186920166, 0.5176100134849548, -0.44538000226020813, -0.08406899869441986, 0.05869099870324135, -0.057617999613285065, -0.31940001249313354, -0.34463000297546387, -0.258899986743927, -0.11100000143051147, -0.4035399854183197, -0.06620799750089645, 1.3783999681472778, 0.038231998682022095, 0.4670400023460388, -0.060589998960494995, 0.16740000247955322, -0.2943800091743469, 0.1438799947500229, -0.25519999861717224, 0.3236599862575531, 0.2887299954891205, 0.27316999435424805, 0.04504700005054474, -0.31553998589515686, -0.5052300095558167, -0.09548799693584442, -0.07488200068473816, -0.4787200093269348, 0.18690000474452972, -0.05212799832224846, 0.3422600030899048, 0.1325799971818924, -0.20767000317573547, 0.3957900106906891, 0.03326600044965744, -0.01852799952030182, 0.013605000451207161, -0.039285000413656235, -0.08621600270271301, -0.5659199953079224, 0.03632799908518791, 0.28499001264572144, -0.24945999681949615, -0.07225599884986877, 0.057479001581668854, -0.01736599951982498, -0.52360999584198, -0.15078000724315643, -0.46452999114990234, 0.3742699921131134, 0.014150000177323818, -0.13040000200271606, 0.1370300054550171, -0.16297000646591187, 0.10193999856710434, -0.524399995803833, -0.0014284000499173999, 0.122529998421669, -0.08393199741840363, -0.13790999352931976, -0.05134100094437599, 0.4658699929714203, -0.052345000207424164, 0.8083400130271912, -0.6633099913597107, 0.5253999829292297, -0.024423999711871147, -0.6037499904632568, -0.16912999749183655, 0.00576619990170002, 0.10440000146627426, 0.1913899928331375, 0.06453900039196014, 0.36805999279022217, -0.12976999580860138, -0.13333000242710114, -0.3528900146484375, -0.05359499901533127, -0.08466000109910965, -0.25508999824523926, -0.2256699949502945, -0.6590099930763245, -0.18411999940872192, -0.28821998834609985, -0.08090300112962723, 0.10540000349283218, 0.12021999806165695, -1.623900055885315, 0.18264000117778778, 0.6505200266838074, 0.21356000006198883, 0.26941999793052673, -0.46786999702453613, 0.0023479999508708715, -0.37887001037597656, 0.30305999517440796, 0.6798200011253357, 0.23547999560832977, 0.5517100095748901, 0.4196999967098236, -0.04390399903059006, 0.3471199870109558, 0.4264200031757355, -0.32447001338005066, -0.1548299938440323, -0.24778999388217926, 0.041370000690221786, 0.09977000206708908, 0.04495500028133392, 0.016320999711751938, 0.0831189975142479], u'ancient': [0.07925000041723251, -0.4121200144290924, -0.3648900091648102, -0.09852100163698196, 0.43149998784065247, -0.2943600118160248, 0.20134000480175018, 0.16780999302864075, 0.42614999413490295, -1.2059999704360962, -0.3405599892139435, -0.06162299960851669, -0.35144999623298645, 0.4043999910354614, 0.31334999203681946, -0.21357999742031097, -0.15379999577999115, 0.619949996471405, -0.1945600062608719, 0.1603900045156479, -0.6560400128364563, -0.13850000500679016, 0.07389000058174133, 0.9286900162696838, 0.4762200117111206, -0.5522199869155884, -0.10214000195264816, -0.8024200201034546, -0.05412000045180321, 0.9965100288391113, 0.619920015335083, 0.9068700075149536, -1.2424999475479126, 0.1647000014781952, 0.20636999607086182, 0.09434700012207031, 0.21730999648571014, 0.01076900027692318, -0.12407000362873077, -0.1147800013422966, 0.8507999777793884, -0.5394799709320068, -0.02676199935376644, -0.12714999914169312, 0.5200200080871582, 0.06517300009727478, 0.5862399935722351, 0.816789984703064, -0.17562000453472137, -0.3003300130367279, 0.07223299890756607, -0.15026000142097473, 0.29881998896598816, -0.29725998640060425, 0.056492000818252563, -0.08480799943208694, -0.23430000245571136, 0.04483100026845932, 0.14847999811172485, 0.3466300070285797, -0.002430099993944168, 0.6433299779891968, 0.8232600092887878, 0.30164000391960144, -0.047784000635147095, 0.46713000535964966, -0.3490400016307831, 0.8692899942398071, 0.27312999963760376, 0.022221999242901802, -0.062442000955343246, -0.40195998549461365, 0.15504999458789825, -0.23929999768733978, -0.38971999287605286, 0.4873200058937073, 0.24142999947071075, -0.7748200297355652, 0.2381100058555603, -0.12610000371932983, -0.2690800130367279, -0.16095000505447388, -0.9326300024986267, 0.1533699929714203, 0.08197099715471268, 0.8297899961471558, -0.04685800150036812, 0.865119993686676, 0.49099001288414, 0.3963100016117096, 0.059602998197078705, 0.14151999354362488, 0.339819997549057, 0.06648600101470947, 0.29260000586509705, 0.5137400031089783, 0.7304499745368958, 0.05510900169610977, 0.38767001032829285, -0.0606440007686615, 0.25905999541282654, 0.8640000224113464, 0.17710000276565552, 0.10588999837636948, 0.10385999828577042, 0.19588999450206757, 0.2006099969148636, -0.49428001046180725, -0.0103169996291399, 0.14474999904632568, 0.2674500048160553, -0.3370800018310547, -0.40031999349594116, -0.1873299926519394, -0.5985900163650513, -0.23473000526428223, -0.11404000222682953, 0.050331998616456985, 0.2662000060081482, -0.4256899952888489, -0.659500002861023, 0.1979299932718277, -0.8297600150108337, 0.1799200028181076, -0.5117899775505066, 0.5305600166320801, -0.2176000028848648, 0.7406700253486633, -0.19458000361919403, -0.5259799957275391, 0.044346000999212265, 0.27305999398231506, 0.7355200052261353, -0.028996000066399574, -0.18330000340938568, -0.37836000323295593, 0.04144199937582016, -0.08832400292158127, -0.42820000648498535, -0.22477999329566956, 0.16519999504089355, -0.5485699772834778, 0.07937400043010712, -0.2389499992132187, 0.33333998918533325, -0.12723000347614288, 0.14879000186920166, 0.35881999135017395, -0.19603000581264496, -0.41082000732421875, -0.0467820018529892, -0.15002000331878662, -0.2033900022506714, -0.015776000916957855, 0.2184000015258789, 0.2669599950313568, -0.6042799949645996, 0.42932000756263733, 0.5001400113105774, -0.16810999810695648, 0.49404001235961914, 0.1395300030708313, 0.5095700025558472, 0.3728100061416626, -0.4828900098800659, 0.19550000131130219, 0.1900700032711029, 0.08821599930524826, 0.0827070027589798, -0.5041000247001648, -0.37505999207496643, -0.5341500043869019, 0.4429500102996826, 0.37661999464035034, 0.3484799861907959, 0.49507999420166016, -0.02464500069618225, 0.266620010137558, -0.04751100018620491, -0.5983099937438965, -0.19224999845027924, 0.5898699760437012, 0.07330100238323212, -0.008520100265741348, 0.7243899703025818, -0.3476400077342987, -0.49987998604774475, 0.34887999296188354, 0.6002200245857239, -0.2404700070619583, -0.016327999532222748, -0.043198999017477036, 0.4138199985027313, 0.021480999886989594, 0.2492399960756302, -0.720740020275116, 0.024178000167012215, -0.6484400033950806, -0.4297899901866913, 0.6016499996185303, 0.7875300049781799, 0.2632400095462799, -0.14651000499725342, 0.5756999850273132, 0.41385000944137573, -0.4472300112247467, -0.1906300038099289, -0.07212799787521362, -0.10728000104427338, 0.4005100131034851, 0.038888998329639435, 0.6488699913024902, 0.13537000119686127, -0.6677200198173523, -0.4441399872303009, -0.28784000873565674, -0.16766999661922455, -0.0024546999484300613, -0.542900025844574, 0.2476000040769577, 0.02450999990105629, 0.030036000534892082, -0.06919199973344803, -0.581309974193573, -0.4201500117778778, -0.43766000866889954, -0.25540998578071594, 0.2597300112247467, -0.05141700059175491, 0.2580200135707855, -0.4119200110435486, -0.08453600108623505, -0.4854600131511688, 0.2526099979877472, -0.09655400365591049, 0.130840003490448, -0.06131000071763992, -0.8082399964332581, -0.10687000304460526, 0.13707999885082245, -0.43841999769210815, 0.18197999894618988, 0.7392799854278564, 0.558709979057312, -0.8188599944114685, 0.18740999698638916, -0.9320999979972839, 0.669160008430481, 0.0786219984292984, 0.5651100277900696, 0.43292999267578125, 0.3589800000190735, -0.13267000019550323, -0.3027600049972534, 0.2846600115299225, 0.0870710015296936, -0.08517400175333023, -0.1692200005054474, 0.09904500097036362, -0.366349995136261, -0.25523000955581665, -0.22595000267028809, 0.44262000918388367, -0.3771800100803375, 0.07201399654150009, 0.18565000593662262, 0.07628799974918365, -0.055702000856399536, -0.04382700100541115, -0.07082200050354004, -0.5291600227355957, 0.06921699643135071, 0.879830002784729, 0.4251199960708618, 0.061918001621961594, 0.05029800161719322, -1.5305999517440796, -0.30375999212265015, 0.5049099922180176, -0.17907999455928802, 0.1058100014925003, 0.09501200169324875, 0.47152000665664673, -0.2362699955701828, 0.0521089993417263, -0.07584100216627121, -0.13086000084877014, -0.2760300040245056, 0.5535699725151062, 0.3061999976634979, 0.25859999656677246, 0.27107998728752136, -0.5536400079727173, 0.43953999876976013, -0.22273999452590942, -0.311710000038147, -0.05524900183081627, 0.008963599801063538, -0.70346999168396, 0.19930000603199005], u'toppled': [-0.05917700007557869, -0.6508200168609619, 0.0747859999537468, -0.5095000267028809, 0.1926400065422058, 0.34446001052856445, -0.5439199805259705, -0.013926000334322453, 0.4473299980163574, -0.33028000593185425, -0.5573499798774719, 0.7644400000572205, 0.2945699989795685, -0.3208000063896179, -0.3888300061225891, 0.77947998046875, 0.6909700036048889, -0.2660300135612488, -0.03606399893760681, -0.12134999781847, 0.2863500118255615, 0.014182999730110168, 0.9580699801445007, -0.36406001448631287, 0.06066200137138367, -0.06650599837303162, -0.5738400220870972, 0.06176299974322319, 0.10486999899148941, 0.389849990606308, -0.398389995098114, 0.08459199965000153, 0.3415299952030182, -0.22981999814510345, 0.41734999418258667, -0.4151900112628937, 0.24299000203609467, -0.4973199963569641, 0.5865700244903564, 0.17374999821186066, 0.25137001276016235, -0.4201500117778778, -0.40358999371528625, -0.07457900047302246, 0.06709499657154083, -0.3142699897289276, 0.30212000012397766, -0.20609000325202942, -0.015196999534964561, -0.25461000204086304, -0.10379999876022339, -0.14003999531269073, 0.22442999482154846, -0.4516499936580658, 0.7843800187110901, -0.03776799887418747, 0.35085999965667725, -0.16176000237464905, -0.11469999700784683, -0.15902000665664673, -0.42572999000549316, 0.4196400046348572, -0.8962299823760986, -0.04911499843001366, -0.41703999042510986, -0.22746999561786652, 0.021929999813437462, 0.7942600250244141, -0.6626899838447571, -0.1280899941921234, 0.0022700000554323196, 0.37053999304771423, -0.921970009803772, 0.06797099858522415, 0.27052998542785645, 0.5807300209999084, -0.413129985332489, -0.27006998658180237, -0.4177800118923187, -0.36733999848365784, 0.32350000739097595, -0.35280001163482666, -0.30421000719070435, 0.6610400080680847, 0.07208199799060822, 0.0908140018582344, -0.1440500020980835, 1.0153000354766846, -0.12703000009059906, -0.5354599952697754, 0.6584699749946594, -0.5975000262260437, 0.5422999858856201, -0.43832001090049744, -0.12570999562740326, 0.08389700204133987, 0.4480000138282776, -0.27156001329421997, 0.4679799973964691, 1.1220999956130981, 0.22506999969482422, 0.5259900093078613, 0.5715299844741821, -0.44846999645233154, 0.3291800022125244, 0.45983999967575073, 0.11631999909877777, -0.3219600021839142, -0.11635000258684158, -0.6709399819374084, -0.6258900165557861, -0.6126199960708618, 0.07269400358200073, -0.018177999183535576, 0.3485400080680847, 0.6053799986839294, 0.1590700000524521, -0.32732000946998596, -0.10964000225067139, -0.6139199733734131, 0.4863399863243103, -0.4715699851512909, 0.09915799647569656, -0.03550200164318085, -0.3980399966239929, -0.4332599937915802, -0.17504000663757324, 0.5989000201225281, -0.18807999789714813, 0.4045099914073944, -0.6259300112724304, 1.3539999723434448, -0.3387100100517273, 0.09819100052118301, 0.3061999976634979, -0.3225800096988678, 0.015433999709784985, 0.17996999621391296, 0.32429999113082886, -0.324970006942749, -0.3080799877643585, 0.06214600056409836, -0.016757000237703323, 0.8181399703025818, -0.018783999606966972, -0.26401999592781067, 0.19822999835014343, 0.19296999275684357, -0.05305999889969826, -0.4731700122356415, 0.6621400117874146, -0.6193400025367737, -0.24427999556064606, 0.5626599788665771, 0.08354099839925766, 0.5564900040626526, 0.946340024471283, 0.07220499962568283, -0.04542599990963936, 0.25077998638153076, -0.12947000563144684, 0.2817699909210205, 0.028750000521540642, 0.3656199872493744, 0.4743100106716156, -0.4457800090312958, 0.8660200238227844, -0.5877699851989746, 0.06779000163078308, -0.0592540018260479, -0.08640699833631516, -0.12078999727964401, -0.21355000138282776, -0.632070004940033, -0.07773400098085403, 0.2816300094127655, 0.027070000767707825, 0.6226000189781189, -0.36250001192092896, 0.15302999317646027, -0.09756699949502945, 0.053679000586271286, 0.5696399807929993, -0.08245900273323059, -0.1621900051832199, -0.12303999811410904, -0.15219999849796295, 0.6043699979782104, 0.5919899940490723, -0.09039799869060516, -0.006600699853152037, -0.5172399878501892, -0.05281800031661987, 0.14997999370098114, 0.05378099903464317, 0.11540000140666962, -0.8686100244522095, 0.4849399924278259, 0.029405999928712845, 0.11868999898433685, 0.30094000697135925, -0.07302100211381912, -0.1752299964427948, -0.7566999793052673, -0.274370014667511, -0.15970000624656677, 0.9558200240135193, 0.44550999999046326, -0.352539986371994, 0.518339991569519, -0.06050100177526474, -0.2967599928379059, 0.5143300294876099, -0.2004999965429306, 0.3791100084781647, 0.31782999634742737, 0.1571200042963028, -0.6561599969863892, -0.6918100118637085, 0.3073599934577942, 0.7281699776649475, -0.41534000635147095, -0.35863998532295227, -0.5341299772262573, 0.20352999866008759, 0.3812899887561798, 0.10888999700546265, -0.01575000025331974, -0.22339999675750732, 0.015483999624848366, -0.025599999353289604, -0.002606299938634038, -0.24236999452114105, 0.46024999022483826, 0.3584800064563751, -0.3383899927139282, 0.23627999424934387, 0.13328999280929565, 0.8365799784660339, -0.7434800267219543, -0.11512000113725662, -0.05778900161385536, -0.3031899929046631, -0.18154999613761902, 0.1414799988269806, -0.40057000517845154, 0.7005599737167358, -0.05257600173354149, 0.6065899729728699, 0.4649899899959564, 0.4915499985218048, -0.016061000525951385, -0.24356000125408173, -0.7138199806213379, 0.9844800233840942, -0.1585800051689148, 0.8453599810600281, -0.2547599971294403, -0.25624001026153564, -0.3405500054359436, -0.750220000743866, 0.33000001311302185, -0.22356000542640686, -0.249439999461174, 0.3174000084400177, -0.4995900094509125, -0.16372999548912048, -0.39500999450683594, 0.4156099855899811, 0.08071400225162506, -0.7939599752426147, -0.1754699945449829, 0.4205400049686432, -0.31457000970840454, -0.0786919966340065, 0.17357000708580017, -0.7615399956703186, -0.20916999876499176, -0.1360899955034256, -0.06976799666881561, 0.2916499972343445, -0.23517000675201416, 0.24584999680519104, -0.36462000012397766, -0.025313999503850937, 0.19057999551296234, -0.7814099788665771, 0.0459819994866848, -0.2886500060558319, -0.05769500136375427, 0.693880021572113, 0.208639994263649, 0.850570023059845, 0.3315100073814392, 0.45570001006126404, 0.7593299746513367, 0.5968499779701233, -0.8145599961280823, -0.07997599989175797, -0.29660001397132874], u'weathered': [-0.2621000111103058, -0.21702000498771667, -0.48427000641822815, -0.35060998797416687, 0.027400000020861626, -0.2971700131893158, -0.614329993724823, -0.11603999882936478, 0.44308000802993774, -0.302700012922287, 0.14681999385356903, 0.2660300135612488, -0.026002999395132065, -0.18004000186920166, -0.4032999873161316, -0.5024099946022034, -0.4607599973678589, 0.07077699899673462, 0.11168000102043152, -0.2703799903392792, -0.16313999891281128, 0.27327999472618103, 0.4699400067329407, -0.12392999976873398, -0.5652599930763245, -0.05915699899196625, -0.08835700154304504, 0.07076700031757355, -0.5226399898529053, 0.5127300024032593, 0.29778000712394714, 0.6202600002288818, -0.44787999987602234, -0.28349998593330383, -0.14986999332904816, 0.03440700098872185, -0.6213799715042114, -0.5773500204086304, 0.5567600131034851, 0.10420999675989151, 0.11044000089168549, 0.19088000059127808, 0.2952300012111664, -0.49970999360084534, 0.1548900008201599, 0.4020499885082245, -0.23718999326229095, -0.9081500172615051, -0.18345999717712402, 0.02135300077497959, -0.4187900125980377, -0.05267399922013283, 0.3241899907588959, 0.1457899957895279, 0.5646200180053711, -0.35131001472473145, -0.12551000714302063, 0.09412100166082382, 0.15421000123023987, -0.11135999858379364, 0.326229989528656, 0.12285000085830688, -0.018974000588059425, -0.1695999950170517, 0.011075999587774277, -0.28606998920440674, -0.12058000266551971, -0.1357399970293045, -0.1188800036907196, -0.5275800228118896, 0.07319200038909912, 0.047554001212120056, -0.5012999773025513, 0.011442000046372414, 0.11049000173807144, -0.3286600112915039, -0.5153800249099731, -0.5989000201225281, 0.05640200152993202, -0.18571999669075012, -0.33847999572753906, 0.1325799971818924, -0.03023100085556507, 0.12408000230789185, 0.1492300033569336, 0.5081599950790405, 0.06467799842357635, 0.20333999395370483, -0.30375999212265015, 0.22392000257968903, 0.004708699882030487, 0.35390999913215637, -0.004608300048857927, 0.1379999965429306, -0.22980999946594238, 0.23859000205993652, -0.05701100081205368, 0.10036999732255936, 0.6804199814796448, 0.43821001052856445, 0.10817000269889832, 0.5697500109672546, -0.32120001316070557, -0.32677000761032104, 0.32381001114845276, 0.15900999307632446, -0.195250004529953, 0.18794000148773193, 0.07353799790143967, -0.6650300025939941, 0.03494900092482567, -0.46094998717308044, -0.2920899987220764, -0.07414399832487106, 0.0013729999773204327, 0.05723100155591965, 0.07005199790000916, 0.2614699900150299, -0.17330999672412872, -0.25672000646591187, 0.15634000301361084, -0.5087900161743164, -0.25123000144958496, 0.6720100045204163, -0.06378600001335144, 0.6935200095176697, -0.9570299983024597, 0.3840799927711487, -0.14308999478816986, -0.12257999926805496, 0.0412600003182888, 0.05514900013804436, -0.25404998660087585, -0.1904900074005127, 0.3039099872112274, -0.10286000370979309, -0.33507999777793884, 0.6501500010490417, 0.40195000171661377, 0.18961000442504883, 0.22111999988555908, 0.5486099720001221, -0.47714000940322876, 0.7097200155258179, 0.37880000472068787, 0.380840003490448, -0.11880999803543091, 0.2982200086116791, -0.0640920028090477, -0.1384200006723404, -0.290910005569458, -0.2901799976825714, -0.2430099993944168, 0.13950000703334808, -0.2508699893951416, 0.35113000869750977, -0.10779999941587448, -0.11433999985456467, 0.04546000063419342, 0.6573699712753296, -0.21150000393390656, -0.10819000005722046, -0.3814600110054016, 0.571399986743927, -0.21967999637126923, 0.09407400339841843, 0.02390800043940544, -0.08772499859333038, 0.5117300152778625, -0.09766799956560135, -0.3165600001811981, 0.7846999764442444, -0.06339100003242493, -0.48708999156951904, -0.2853899896144867, -0.0018687000265344977, -0.06116100028157234, 0.06207000091671944, 0.3561899960041046, -0.21817000210285187, -0.10176999866962433, 0.033649999648332596, 0.1103999987244606, -0.23127000033855438, -0.25001999735832214, -0.2942500114440918, 0.25870001316070557, 0.24360999464988708, -0.27013999223709106, 0.2183700054883957, -0.01831899955868721, -0.1866299957036972, 0.21607999503612518, -0.3704099953174591, 0.24026000499725342, -0.11477000266313553, 0.4121600091457367, -0.26954999566078186, -0.5900999903678894, 0.03590400144457817, 0.4875600039958954, -0.384770005941391, 0.07730700075626373, -0.10786999762058258, 0.20784999430179596, -0.36906999349594116, 0.30932000279426575, 0.04787300154566765, -0.6533899903297424, -0.0838489979505539, 0.15518000721931458, 0.39871999621391296, -0.30000999569892883, -0.5285599827766418, 0.47475001215934753, -0.003792600007727742, 0.3065299987792969, -0.3873499929904938, -0.15769000351428986, 0.08149799704551697, 0.6575400233268738, 0.40860000252723694, 0.32795000076293945, -0.23442000150680542, -0.1336899995803833, 0.27608999609947205, -0.013381999917328358, -0.11885999888181686, -0.292930006980896, 0.13579000532627106, 0.1875399947166443, 0.30737000703811646, -0.3933500051498413, -0.07467400282621384, -0.5189700126647949, 0.3405599892139435, 0.3004299998283386, -0.6077499985694885, 0.10347999632358551, 0.2010200023651123, -0.05909299850463867, 0.4779599905014038, -0.6585699915885925, -0.6749100089073181, -0.48969998955726624, -0.296860009431839, -0.03590700030326843, 0.18832999467849731, 0.1216999962925911, 0.32552000880241394, -0.18714000284671783, -0.354779988527298, 0.4465799927711487, -0.020301999524235725, 0.45796000957489014, -0.08963699638843536, 0.14094999432563782, 0.23005999624729156, -0.21344999969005585, -0.018341999500989914, -0.5889400243759155, 0.5313699841499329, -0.06330099701881409, 0.14946000277996063, 0.11217000335454941, 0.20642000436782837, 0.12088999897241592, -0.7514299750328064, 0.1688700020313263, 0.2604700028896332, -0.241689994931221, 0.7544699907302856, -0.022971000522375107, -0.4276300072669983, 0.1413699984550476, -0.23357999324798584, 0.039301998913288116, 0.021541999652981758, -0.5016800165176392, 0.15846000611782074, 0.07354599982500076, 0.002975800074636936, -0.13274000585079193, 0.2644200026988983, 0.24177999794483185, -0.12223999947309494, -0.2676500082015991, 0.3426699936389923, 0.5304200053215027, -0.42763999104499817, 0.1685200035572052, 0.5045999884605408, -0.19682000577449799, 0.07256799936294556, 0.4308899939060211, 0.2700200080871582, -0.00031570999999530613, -0.014689000323414803, 0.008294500410556793, 0.009020400233566761], u'murky': [0.3206599950790405, -0.4352799952030182, 0.6713200211524963, 0.08953599631786346, 0.19273999333381653, 0.012167000211775303, -0.008598599582910538, -0.0007618900272063911, 0.41510000824928284, -0.7739099860191345, -0.017224999144673347, 0.08097399771213531, -0.06494099646806717, -0.21100999414920807, -0.31595999002456665, -0.33618998527526855, -0.6271899938583374, 0.39879000186920166, 0.21731999516487122, 0.7505599856376648, -0.21785999834537506, 0.636929988861084, -0.027501000091433525, 0.08060000091791153, -0.22020000219345093, -0.2838999927043915, 0.19109000265598297, -0.013326999731361866, -0.4710899889469147, 0.31836000084877014, 0.21223999559879303, -0.024335000663995743, 0.031105000525712967, -0.04228400066494942, 0.483599990606308, 0.6211000084877014, 0.47819000482559204, -0.259880006313324, -0.5062000155448914, 0.01235199999064207, 0.37342000007629395, 0.426690012216568, 0.25262001156806946, 0.5932400226593018, 0.4872699975967407, -0.1542000025510788, -0.21036000549793243, -0.20273999869823456, -0.4150499999523163, 0.2505899965763092, -0.09416600316762924, 0.2354699969291687, 0.518779993057251, -0.7449300289154053, 0.04975999891757965, -0.3609200119972229, 0.06578200310468674, 0.20378999412059784, 0.20277999341487885, 0.20016999542713165, 0.16670000553131104, 0.029695000499486923, -0.2866100072860718, 0.08812999725341797, 0.2819499969482422, -0.16543999314308167, 0.304610013961792, -0.02229500003159046, 0.04971500113606453, -0.061292000114917755, 0.2927199900150299, 0.42486000061035156, -0.33678001165390015, -0.2160699963569641, 0.06418400257825851, 0.022554000839591026, -0.10281000286340714, 0.5124099850654602, 0.2887899875640869, -0.07952900230884552, 0.40389999747276306, -0.2839699983596802, 0.3512899875640869, 0.18877999484539032, 0.4650999903678894, 0.041802000254392624, 0.3646700084209442, 0.011233000084757805, 0.055417001247406006, 0.3735499978065491, -0.625029981136322, 0.37797001004219055, 0.054134998470544815, 0.2535000145435333, 0.00401319982483983, 0.6550700068473816, -0.0261049997061491, 0.33362001180648804, 0.18750999867916107, -0.6616600155830383, 0.12228000164031982, -0.04847000166773796, -0.20183999836444855, 0.6075900197029114, -0.2888700067996979, -0.0951709970831871, 0.4617300033569336, 0.2981500029563904, 0.04309700056910515, 0.36597999930381775, 0.1231900006532669, -0.17417000234127045, 0.11112000048160553, 0.01730700023472309, 0.5419099926948547, -0.3782700002193451, 0.4519299864768982, -0.24089999496936798, 0.19044999778270721, -0.35701000690460205, 0.26743000745773315, -0.01930299960076809, 0.48155999183654785, 0.3739199936389923, 0.10651999711990356, 0.2618499994277954, -0.16675999760627747, 0.019618000835180283, -0.4371899962425232, -0.21154999732971191, -0.23091000318527222, 0.4534899890422821, 0.3000899851322174, 0.1639699935913086, -0.2404399961233139, 0.050269998610019684, 0.24106000363826752, -0.11868000030517578, -0.4672900140285492, 0.06284800171852112, 0.14122000336647034, 0.30803999304771423, -0.149959996342659, -0.20749999582767487, -0.4884200096130371, -0.49390000104904175, -0.038759998977184296, 0.39173001050949097, 0.29319000244140625, 0.4433000087738037, -0.5313500165939331, -0.31766000390052795, -0.042573001235723495, -0.22971999645233154, 0.19349999725818634, -0.19076000154018402, 0.42767998576164246, -0.3445200026035309, 0.196150004863739, 0.537090003490448, -0.5610100030899048, -0.009526499547064304, 0.6973099708557129, 0.1028899997472763, 0.06503599882125854, -0.19760000705718994, -0.13282999396324158, -0.028284000232815742, -1.1013000011444092, 0.10200999677181244, 0.3032299876213074, 0.31428998708724976, -0.6410999894142151, -0.21152999997138977, -0.3033599853515625, -0.2606799900531769, 0.11793000251054764, -0.19682000577449799, -0.11585000157356262, -0.17133000493049622, 0.17451000213623047, 0.8406199812889099, 0.09110800176858902, 0.27303001284599304, 0.24558000266551971, -0.03612999990582466, 1.0601999759674072, -0.34213000535964966, 0.05584200099110603, -0.22317999601364136, -0.0011490000179037452, -0.5101100206375122, -0.4035300016403198, -0.2349800020456314, 0.009324699640274048, -0.38784000277519226, -0.5708799958229065, 0.15248000621795654, -0.6861299872398376, -0.152879998087883, 0.4106000065803528, 0.3394100069999695, -0.0063403998501598835, -0.738510012626648, 0.13416999578475952, -0.7339000105857849, 0.1370999962091446, 0.10191000252962112, -0.13471999764442444, 0.37049001455307007, 0.20186999440193176, 0.6244000196456909, 0.28147000074386597, 0.06727000325918198, -0.11490000039339066, -0.05934600159525871, 0.6137499809265137, -0.00602689990773797, 0.1075500026345253, 0.6745100021362305, 0.7728000283241272, -0.3946399986743927, 0.3655099868774414, 0.1609800010919571, -0.03249799832701683, -0.04827199876308441, -0.43599000573158264, -0.35300999879837036, -0.053070999681949615, 0.132860004901886, 0.32714998722076416, 0.21803000569343567, 0.034956999123096466, 0.25999999046325684, -0.25769999623298645, 0.2889299988746643, 0.2640700042247772, -0.36212998628616333, -0.5405700206756592, -0.35503000020980835, -0.0020244999323040247, 0.022053999826312065, 0.398250013589859, -0.30013999342918396, -0.8770400285720825, -0.654990017414093, 0.7044900059700012, 0.021036000922322273, -0.2730900049209595, 0.6829599738121033, -0.28303998708724976, -0.21276000142097473, 0.369159996509552, -0.08546099811792374, -0.1892700046300888, -0.18172000348567963, -0.17294000089168549, 0.46140000224113464, -0.2016099989414215, 0.7850199937820435, -0.11823000013828278, -0.1674399971961975, -0.5763599872589111, -0.38576000928878784, 0.09894800186157227, 0.509909987449646, -0.3487800061702728, -0.24318000674247742, -0.682449996471405, -0.2884800136089325, 0.05921600013971329, 0.29256999492645264, -0.2092200070619583, 0.9050899744033813, 0.273389995098114, 0.5126399993896484, 0.18292999267578125, -0.2558499872684479, 0.4087100028991699, -0.4097500145435333, 0.09512200206518173, 0.5059400200843811, 0.41907998919487, -0.3529700040817261, 0.8125, -0.7599999904632568, 0.02911899983882904, 0.5961199998855591, 0.0856349989771843, 0.09440799802541733, 0.0433490015566349, 0.5099300146102905, 0.2475699931383133, 0.5202999711036682, 0.16416999697685242, -0.348470002412796, -0.0007087800186127424, 0.9274299740791321, -0.5356699824333191, 0.6256999969482422], u'damp': [-0.35126999020576477, 0.0006216799956746399, -0.6144400238990784, -0.1772499978542328, -0.010160000063478947, -0.22524000704288483, 0.3825699985027313, 1.0570000410079956, 0.5297600030899048, -0.5682700276374817, -0.06798200309276581, 0.13079999387264252, 0.23366999626159668, -0.651889979839325, -0.2888300120830536, -0.4187299907207489, -0.7974399924278259, -0.06738399714231491, 0.07227899879217148, 0.17951999604701996, -0.37022000551223755, 0.1049100011587143, -0.1580599993467331, -0.12826000154018402, -0.5160700082778931, -0.8441500067710876, 0.9424499869346619, -0.3765299916267395, -0.11959999799728394, -0.09953100234270096, 0.062066998332738876, -0.20215000212192535, -0.4153499901294708, -0.36191999912261963, -0.4111599922180176, 0.13796000182628632, -0.4845699965953827, 0.0012701000086963177, -0.4497799873352051, 0.4007999897003174, -0.018021000549197197, 0.272599995136261, -0.002948800101876259, -0.2718200087547302, 0.9998900294303894, 0.3424000144004822, 0.26767998933792114, 0.49503999948501587, -0.51705002784729, -0.2679100036621094, -0.06632100045681, -0.3340100049972534, 0.10701999813318253, -0.6165900230407715, 0.3717299997806549, 0.2567799985408783, -0.3566400110721588, -0.0963279977440834, 0.3127099871635437, 0.3508400022983551, 0.4324699938297272, -0.524399995803833, 0.36037999391555786, 0.5037099719047546, -0.5607200264930725, -0.13266000151634216, 0.4318099915981293, 0.04879499971866608, 0.1002499982714653, -0.024112999439239502, 0.12443999946117401, 0.2501699924468994, -0.4558500051498413, -0.3195599913597107, -0.5303300023078918, 0.14191000163555145, 0.016100000590085983, 0.2761099934577942, -0.0431860014796257, -0.13714000582695007, 0.2700600028038025, -0.27072998881340027, -0.43121999502182007, 0.1284399926662445, -0.1766899973154068, 0.4676800072193146, 0.07349099963903427, 0.1440100073814392, -0.15974999964237213, 0.19032999873161316, 0.3315800130367279, -0.0066581000573933125, 0.7309399843215942, 0.1408499926328659, -0.35067999362945557, 0.2646400034427643, 0.4996599853038788, 0.47130000591278076, -0.18730999529361725, -0.21277999877929688, 0.2934499979019165, -0.4866499900817871, -1.0283000469207764, 0.4915199875831604, 0.016491999849677086, 0.3522599935531616, -0.39302998781204224, 0.3651899993419647, -0.39667999744415283, -0.19022999703884125, -0.21876999735832214, -0.36131998896598816, -0.1161699965596199, -0.06780300289392471, -0.16776999831199646, -0.19226999580860138, 0.0964839980006218, 0.5875899791717529, -0.07430399954319, -0.36741000413894653, -0.182669997215271, -0.5720099806785583, 0.23457999527454376, 0.8097599744796753, 0.2139499932527542, 0.7749099731445312, -0.2153400033712387, -0.6716399788856506, 0.5508300065994263, -0.4632300138473511, -0.27535000443458557, 1.2619999647140503, 0.48881998658180237, -0.132750004529953, 0.3065899908542633, -0.251910001039505, -0.16633999347686768, 0.5954999923706055, -0.34255000948905945, -0.040546998381614685, 0.38631001114845276, -0.5064600110054016, -0.08930400013923645, -0.2126999944448471, -0.1260800063610077, -0.1438400000333786, -0.5283200144767761, -0.0670970007777214, 0.07824499905109406, -0.7170000076293945, -1.0851999521255493, -0.1332699954509735, -0.3050200045108795, -0.4109399914741516, 0.08494500070810318, -0.15609000623226166, -0.1277499943971634, -0.2432900071144104, 0.20821000635623932, 0.31272000074386597, -0.8521599769592285, -0.5373600125312805, -0.05422800034284592, 0.38861000537872314, 0.6118699908256531, -0.14990000426769257, 0.631089985370636, 0.09213700145483017, 0.17110000550746918, -0.017952999100089073, 0.01020899973809719, 0.27129998803138733, 0.05405300110578537, 0.3595699965953827, 0.08774299919605255, 0.18929000198841095, -0.003578400006517768, 0.237419992685318, 0.20403000712394714, -0.22071999311447144, 0.3592900037765503, -0.12076999992132187, 0.19749000668525696, 0.010823000222444534, 0.23750999569892883, 0.5334200263023376, 1.4325000047683716, -0.5363399982452393, -0.33945998549461365, 0.3522399961948395, 0.4790300130844116, 0.1256600022315979, -0.021379999816417694, -0.33202001452445984, -0.12376999855041504, -0.06839600205421448, -0.13537999987602234, 0.022128000855445862, -0.7252200245857239, -0.006065499968826771, -0.588670015335083, -0.03206000104546547, 0.027744000777602196, 0.548770010471344, 0.21646000444889069, -0.32343000173568726, -0.007517899852246046, -0.24094000458717346, -0.35607999563217163, -0.6580299735069275, -0.3960300087928772, 0.06733500212430954, 0.036421999335289, -1.0263999700546265, -0.19253000617027283, 0.06083200126886368, 0.0036353999748826027, -0.4690699875354767, 0.37560001015663147, -0.1699499934911728, 0.6080499887466431, 0.09324900060892105, -0.5845900177955627, 0.2508400082588196, -0.10232000052928925, 0.28832000494003296, -0.056147001683712006, -0.42803001403808594, 0.052223000675439835, -0.4414600133895874, 0.6827899813652039, -0.29322999715805054, -0.25655001401901245, -0.09956999868154526, -0.2790200114250183, -0.10961999744176865, -0.2695100009441376, 0.17062999308109283, -0.5376899838447571, -0.3434399962425232, -0.04294700175523758, -0.16958999633789062, -0.2680799961090088, 0.1331699937582016, -0.7021899819374084, 0.2835800051689148, 0.7021600008010864, 0.036386001855134964, -0.36994999647140503, -0.5469899773597717, -0.09925699979066849, -0.06539300084114075, 0.8657600283622742, -0.2915099859237671, 0.7955399751663208, 0.3927899897098541, 0.11706999689340591, -0.14504000544548035, -0.03181099891662598, 0.4585399925708771, 0.2701900005340576, -0.7235599756240845, -0.9078099727630615, 0.4874899983406067, 0.054294999688863754, 0.21071000397205353, -0.2940399944782257, 0.4993099868297577, 0.42381998896598816, -0.6208299994468689, 0.17899000644683838, 0.019728999584913254, -0.5537700057029724, 0.1675499975681305, -0.5845500230789185, -0.1712699979543686, 0.07278700172901154, 0.30237001180648804, -0.21908000111579895, 0.3407000005245209, -0.7448400259017944, 0.4785600006580353, -0.17951999604701996, 0.6304299831390381, -0.27142998576164246, -0.007223700173199177, 0.22688999772071838, 0.092958003282547, -0.16391000151634216, 0.15873999893665314, -0.14057999849319458, 0.4981600046157837, -0.4235199987888336, 0.5484899878501892, 0.15951000154018402, 0.2556299865245819, 0.10260000079870224, 0.9950100183486938, -0.7751299738883972, 0.5012400150299072], u'tiny': [-0.5124800205230713, 0.07902800291776657, -0.32315000891685486, -0.21187999844551086, 0.08389399945735931, 0.08426299691200256, -0.07468699663877487, -0.1402300000190735, 0.7714999914169312, -1.0180000066757202, -0.3325600028038025, 0.06422500312328339, -0.06452500075101852, 0.2696300148963928, 0.4171299934387207, 0.7300199866294861, -0.14667999744415283, -0.039719000458717346, -0.007759499829262495, -0.2533699870109558, 0.24381999671459198, 0.46845000982284546, 0.3018200099468231, 0.49560999870300293, -0.42493999004364014, -0.3663899898529053, 0.024337999522686005, -0.08187399804592133, -0.22078000009059906, -0.039680998772382736, -0.2868399918079376, 0.150969997048378, -0.5763099789619446, 0.7287099957466125, -0.05861499905586243, 0.5063400268554688, -0.19682000577449799, 0.3239699900150299, 0.0987749993801117, 0.08326700329780579, -0.3729400038719177, -0.2002899944782257, 0.10672000050544739, 0.18934999406337738, 0.30867999792099, -0.37213000655174255, -0.1460999995470047, -0.20103999972343445, 0.20206999778747559, 0.3695699870586395, 0.28238001465797424, 0.27279001474380493, 0.6245599985122681, 0.03748700022697449, -0.2579300105571747, -0.31707999110221863, -0.1403300017118454, -0.35690000653266907, 0.6080800294876099, -0.26627999544143677, 0.09121900051832199, -0.2940399944782257, 0.7275599837303162, 0.1532299965620041, 0.6008999943733215, 0.07089599967002869, 0.10829000174999237, 0.5397300124168396, -0.07285799831151962, 0.06689299643039703, -0.12010999768972397, 0.12256000190973282, 0.11852999776601791, 0.013120000250637531, -0.36107000708580017, 0.10399000346660614, -0.31022998690605164, -0.5346400141716003, 0.06081400066614151, -0.478410005569458, -0.05378299951553345, 0.13639000058174133, -0.2747400104999542, 0.3927299976348877, 0.08556299656629562, 0.05681899935007095, 0.1636900007724762, -0.04482100158929825, -0.3421500027179718, -0.1995600014925003, 0.265390008687973, 0.036931999027729034, -0.527679979801178, -0.35117000341415405, 0.24111999571323395, -0.11004000157117844, 0.3346500098705292, 0.2026199996471405, -0.14563000202178955, 0.12634000182151794, 0.3429900109767914, 0.4027999937534332, -0.1912200003862381, -0.7516099810600281, -0.5005199909210205, 0.25001001358032227, 0.4622800052165985, -0.2900499999523163, 0.21549999713897705, -0.020143000409007072, -0.20103000104427338, 0.3635300099849701, 0.1699499934911728, 0.012817000038921833, -0.08401499688625336, -0.21549999713897705, 0.13041000068187714, 0.5611199736595154, 0.2243500053882599, 0.3696799874305725, 0.13503000140190125, -0.013757999986410141, 0.4484499990940094, 0.10454999655485153, -0.1756500005722046, 0.31839001178741455, -0.2199299931526184, 0.3320600092411041, 0.09164299815893173, 0.20821000635623932, -0.008315499871969223, -0.24038000404834747, -0.17790000140666962, 0.43865999579429626, 0.462660014629364, -0.12456999719142914, 0.4791499972343445, 0.4058299958705902, -0.188960000872612, -0.5514799952507019, 0.24605000019073486, 0.1782499998807907, -0.2804499864578247, -0.11215999722480774, -0.542680025100708, -0.1867399960756302, 0.1761299967765808, 0.007350000087171793, 0.10086999833583832, -0.18438999354839325, 0.06794200092554092, -0.5788099765777588, -0.227510005235672, -0.36190998554229736, 0.629010021686554, 0.21813000738620758, -0.3139599859714508, 0.48454999923706055, -0.18616999685764313, 0.07162299752235413, 0.29886001348495483, 0.3124600052833557, 0.670490026473999, -0.13280999660491943, -0.021575000137090683, -0.3851499855518341, 0.21373000741004944, -0.05884600058197975, 0.16820000112056732, -0.1462700068950653, -0.19912999868392944, -0.2563900053501129, -0.018120000138878822, 0.17871999740600586, -0.4075999855995178, -0.4130299985408783, -0.13880999386310577, 0.645829975605011, 0.21177999675273895, -0.037494998425245285, 0.22982999682426453, -0.2195499986410141, 0.26368001103401184, 0.259770005941391, 0.39673998951911926, -0.33967000246047974, 0.7720100283622742, -0.18488000333309174, -0.2044299989938736, -0.1530199944972992, 0.5836399793624878, 0.05836600065231323, 0.0960180014371872, 0.05722200125455856, 0.38534998893737793, 0.3483699858188629, 0.45100998878479004, -0.05692800134420395, -0.5913100242614746, 0.15082000195980072, 1.2242000102996826, 0.11168999969959259, -0.012513999827206135, 0.3767299950122833, -0.002835199935361743, -0.5667499899864197, -0.2824999988079071, -0.021463999524712563, -0.36796000599861145, 0.3892099857330322, 0.13610999286174774, 0.409060001373291, 0.3090200126171112, 0.06171499937772751, 0.3733600080013275, 0.31641000509262085, 0.9152100086212158, -0.45712000131607056, -0.5378000140190125, 0.3538300096988678, 0.34540998935699463, 0.20523999631404877, -0.30246999859809875, 0.08977200090885162, 0.2764100134372711, -0.3171299993991852, -0.04040199890732765, -0.17497999966144562, -0.327349990606308, -0.06767100095748901, 0.20987999439239502, -0.6288599967956543, -0.2008499950170517, 0.09164000302553177, 0.3767699897289276, 0.19249999523162842, 0.2765600085258484, -0.020732000470161438, 0.05051799863576889, -0.3760400116443634, 0.2409600019454956, -0.2518100142478943, 0.14538000524044037, 0.5299699902534485, -0.5080599784851074, -0.737529993057251, 0.3245899975299835, 0.2047400027513504, -0.6376799941062927, -0.3987500071525574, -0.24060000479221344, 0.04120299965143204, 0.022269999608397484, -0.47780001163482666, 0.6542199850082397, 0.5955600142478943, 0.10780999809503555, -0.148499995470047, -0.23894000053405762, 0.04747999832034111, 0.36680999398231506, -0.17454999685287476, 0.0031739999540150166, -0.3650299906730652, 0.4756700098514557, -0.37338000535964966, -0.11851000040769577, 0.20499999821186066, -0.12709000706672668, 0.5150399804115295, -0.33278998732566833, 0.5073999762535095, -0.16797000169754028, -0.17333999276161194, -0.44538000226020813, 0.25084999203681946, -1.767300009727478, 0.22277000546455383, -0.9117400050163269, 0.04096899926662445, -0.25262001156806946, 0.8083699941635132, -0.35043999552726746, -0.06772200018167496, -0.3207699954509735, -0.33750998973846436, -0.1057400032877922, 0.053787000477313995, -0.4064899981021881, -0.052218999713659286, 0.09694399684667587, -0.22996999323368073, 0.16529999673366547, 0.08282700181007385, -0.718280017375946, 0.7595700025558472, 0.3504199981689453, 0.03890800103545189, -0.05213300138711929, -0.2072400003671646], u'grimy': [0.0019964000675827265, -0.15526999533176422, -0.25606998801231384, -0.4662500023841858, -0.3706499934196472, 0.11467999964952469, -0.2882300019264221, 0.033684998750686646, 0.15581999719142914, 0.48949000239372253, -0.4161800146102905, -0.33305999636650085, -0.11204999685287476, 0.4613899886608124, -0.0313819982111454, -0.36177998781204224, -0.6395599842071533, -0.049525998532772064, 0.07457000017166138, -0.04346200078725815, 0.027780000120401382, -0.07780800014734268, -0.07606600224971771, 0.4759800136089325, 0.1036200001835823, -0.39972999691963196, 0.6317700147628784, 0.0699789971113205, -0.1815599948167801, 0.22488999366760254, 0.4396499991416931, -0.08446799963712692, -0.5964999794960022, -0.06382600218057632, 0.6457099914550781, 0.5857999920845032, -0.38514000177383423, -0.1365099996328354, -0.2085999995470047, -0.27862000465393066, 0.11779999732971191, 0.059843000024557114, -0.11811000108718872, -0.0917460024356842, 0.28115999698638916, 0.47530001401901245, 0.2679400146007538, 0.03467300161719322, -0.17856000363826752, -0.4130200147628784, 0.18979999423027039, -0.2363699972629547, 0.3724899888038635, 0.09185999631881714, 0.49577999114990234, -0.07678599655628204, 0.05526699870824814, -0.04129000008106232, -0.02565399929881096, -0.02933499962091446, 0.10417000204324722, -0.6805099844932556, -0.042010001838207245, -0.08790799975395203, -0.14780999720096588, 0.5825300216674805, 0.1585800051689148, 0.12105000019073486, 0.332830011844635, -0.4985699951648712, 0.25766000151634216, -6.577299791388214e-05, -0.12939000129699707, -0.2685700058937073, 0.061312999576330185, -0.026534000411629677, -0.7476900219917297, 0.046147000044584274, 0.2706100046634674, -0.10461000353097916, -0.05530799925327301, -0.31571000814437866, 0.20467999577522278, -0.27566999197006226, 0.226610004901886, -0.21161000430583954, 0.3051300048828125, -0.24931000173091888, 0.14420999586582184, 0.5732799768447876, 0.26725998520851135, 0.1309400051832199, 0.3972100019454956, 0.019607000052928925, -0.34586000442504883, -0.052053000777959824, 0.4184899926185608, -0.16711999475955963, 0.47512000799179077, -0.003980699926614761, 0.5282400250434875, 0.16011999547481537, -0.4745199978351593, 0.27445998787879944, -0.22931000590324402, -0.06835000216960907, 0.13120999932289124, 0.20369000732898712, -0.23886999487876892, 0.08767800033092499, -0.5739099979400635, -0.11877000331878662, -0.491239994764328, -0.34373000264167786, -0.11788000166416168, 0.06367900222539902, 0.1587499976158142, 0.11069999635219574, -0.38047999143600464, -0.18212999403476715, 0.21562999486923218, -0.19585999846458435, -0.0878629982471466, 0.6292499899864197, 0.33772000670433044, 0.42735999822616577, -0.21875999867916107, -0.46136000752449036, 0.2864300012588501, -0.0583450011909008, 0.3167000114917755, -0.21875999867916107, 0.19933000206947327, -0.04798299819231033, -0.3606399893760681, -0.08240900188684464, 0.31828001141548157, 0.35436999797821045, 0.263619989156723, -0.30629000067710876, 0.30177000164985657, -0.0701960027217865, 0.04332200065255165, 0.29537999629974365, -0.08124600350856781, 0.062070999294519424, 0.031922999769449234, 0.40946999192237854, -0.1509000062942505, -0.2550800144672394, -0.5267000198364258, -0.03126699849963188, 0.048245999962091446, -0.11721999943256378, 0.2222999930381775, 0.2567099928855896, -0.17621000111103058, -0.0219969991594553, 0.7765899896621704, 0.17670999467372894, -0.5278699994087219, 0.18170000612735748, 0.187950000166893, -0.25148001313209534, 0.1827400028705597, -0.13447999954223633, 0.0846090018749237, 0.1024399995803833, 0.08153100311756134, -0.36695000529289246, -0.3930099904537201, 0.3389599919319153, -0.018022999167442322, -0.1360899955034256, -0.5100799798965454, -0.18121999502182007, -0.050579000264406204, 0.2588599920272827, -0.1280899941921234, -0.8151999711990356, 0.033723000437021255, -0.05351800099015236, 0.24031999707221985, 0.2540299892425537, 0.32728999853134155, 0.1671299934387207, 1.0490000247955322, -0.13307000696659088, 0.06979300081729889, -0.034999001771211624, 0.516759991645813, -0.6758700013160706, -0.20991000533103943, -0.03751299902796745, 0.4422999918460846, -0.07169599831104279, -0.8487200140953064, 0.3836199939250946, -0.37428998947143555, 0.33614999055862427, 0.17110000550746918, -0.046943001449108124, 0.4257200062274933, 0.11653999984264374, -0.21458999812602997, -0.23074999451637268, 0.23229999840259552, -0.3616499900817871, -0.0966159999370575, -0.09881100058555603, -0.6422899961471558, 0.41442999243736267, -0.5642099976539612, 0.3188199996948242, 0.362309992313385, 0.226610004901886, 0.46261999011039734, -0.19412000477313995, -0.49786999821662903, 0.08812999725341797, 0.08641599863767624, 0.1427299976348877, 0.19302000105381012, 0.6150199770927429, 0.1449500024318695, -0.11020000278949738, 0.03234799951314926, -0.4338499903678894, -0.09269800037145615, -0.21178999543190002, 0.21455000340938568, -0.30608999729156494, -0.1634099930524826, -0.1538199931383133, 0.18950000405311584, 0.3554700016975403, 0.27487999200820923, 0.2662299871444702, -0.385809987783432, 0.07788799703121185, 0.34571000933647156, -0.21544000506401062, -0.3181999921798706, 0.016460999846458435, -0.03818599879741669, -0.09752999991178513, -0.1832199990749359, -0.0988290011882782, -0.17934000492095947, -0.0916299968957901, 0.024562999606132507, -0.13878999650478363, 0.4838300049304962, -0.24413999915122986, 0.06755699962377548, 0.1887200027704239, -0.23545999825000763, 0.1851699948310852, -0.1796800047159195, 0.18779000639915466, 0.10752999782562256, 0.06946499645709991, 0.33427000045776367, 0.3099299967288971, 0.4679799973964691, 0.33535999059677124, 0.043223001062870026, -0.11210999637842178, -0.3964200019836426, -0.13178999722003937, -0.4618299901485443, 0.2391899973154068, -0.1386300027370453, 0.07191299647092819, -0.38008999824523926, 0.019891999661922455, 0.1895499974489212, 0.28589001297950745, -0.3335300087928772, 0.36024001240730286, -0.04623999819159508, 0.3255299925804138, -0.3119499981403351, -0.10538999736309052, 0.20298999547958374, 0.23096999526023865, 0.2612999975681305, 0.3600800037384033, -0.20970000326633453, -0.3273400068283081, -0.13112999498844147, 0.575760006904602, -0.08953800052404404, 0.2657400071620941, 0.09938099980354309, -0.12105000019073486, 0.2276799976825714, 0.14320999383926392, -0.1395999938249588, 0.6225799918174744], u'viscous': [-0.012016000226140022, 0.38032999634742737, 0.742169976234436, -0.11530999839305878, -0.24112999439239502, -0.644320011138916, 0.5855000019073486, 0.02223300002515316, 0.5372700095176697, -0.2632499933242798, 0.33901000022888184, 0.08056700229644775, -0.2063799947500229, -0.7435899972915649, -0.6353499889373779, 0.07789699733257294, -0.8103200197219849, -0.18815000355243683, -0.29493001103401184, -0.16674000024795532, -0.43970000743865967, 0.07786200195550919, -0.20714999735355377, 0.07633999735116959, -0.5499399900436401, -0.02575100027024746, 0.32603999972343445, 0.17281000316143036, -0.12370999902486801, -0.057263001799583435, 0.04303999990224838, 0.12524999678134918, -0.04842400178313255, -0.4456399977207184, 1.333899974822998, 0.7993599772453308, 0.4553700089454651, 0.23096999526023865, 0.5553200244903564, 0.5588600039482117, -0.4644300043582916, 0.09018100053071976, -0.10063000023365021, -0.847000002861023, 0.7127599716186523, -0.2799299955368042, -0.023271000012755394, -0.5715100169181824, 0.1249300017952919, 0.5085999965667725, 0.18942999839782715, -0.06276000291109085, -0.13380999863147736, -0.4567300081253052, 0.27393999695777893, -0.32596999406814575, -0.47720998525619507, -0.6187499761581421, 0.4281199872493744, 0.7856600284576416, 0.09574799984693527, -0.34490999579429626, 0.7013900279998779, 0.3882899880409241, 0.2602500021457672, 0.1483200043439865, -0.10317999869585037, -0.1280599981546402, -0.013038000091910362, 0.7678400278091431, 0.2204200029373169, -0.22427000105381012, -0.1506499946117401, 0.3366599977016449, 0.014979000203311443, 0.28009000420570374, 0.5968300104141235, -0.6120399832725525, -0.23377999663352966, -0.9478700160980225, 0.2394700050354004, -0.24128000438213348, -0.04904099926352501, -0.7946100234985352, 0.013117000460624695, 0.021251000463962555, 1.246399998664856, 0.3658300042152405, 0.01862799935042858, 0.0984250009059906, -0.5565800070762634, 0.24952000379562378, 0.2987399995326996, 0.06260800361633301, -0.3067399859428406, 0.16399000585079193, -0.10181999951601028, 0.17378999292850494, 0.31567999720573425, 0.3464899957180023, 0.20773999392986298, 0.6307600140571594, -0.0971279963850975, 0.21112999320030212, -0.6550899744033813, 0.720990002155304, -0.3967300057411194, 0.44071999192237854, -0.2635999917984009, -0.3968699872493744, -0.11324000358581543, 0.5296199917793274, -0.11224000155925751, 0.10379000008106232, -0.2728999853134155, 0.5996599793434143, -0.011334000155329704, 0.03202499821782112, 0.09058000147342682, -0.24334999918937683, 0.6358500123023987, -0.3508400022983551, -0.019951000809669495, 0.40070000290870667, 0.1311199963092804, 0.21926000714302063, 0.9142600297927856, -0.3767299950122833, -0.022182999178767204, 0.6657800078392029, 0.07564699649810791, 0.5864599943161011, -0.522130012512207, -0.21950000524520874, -0.41418999433517456, -0.41425999999046326, 0.19495999813079834, -0.6094499826431274, -0.33557000756263733, -0.12206999957561493, -0.07070700079202652, 0.16982999444007874, -0.42570000886917114, -0.6214600205421448, 0.40380001068115234, -0.2529299855232239, -1.0236999988555908, -0.6972399950027466, -0.13638000190258026, 0.5248299837112427, -0.13610999286174774, -0.29725000262260437, -0.6103000044822693, 0.5773000121116638, 0.6071299910545349, -0.19585999846458435, 0.4375799894332886, -0.5407400131225586, 0.27211999893188477, -0.2767300009727478, -0.45151999592781067, -0.8443700075149536, 0.3072499930858612, -0.48506999015808105, -0.3094399869441986, -0.27382001280784607, 0.043591998517513275, -0.07336799800395966, 0.28290998935699463, -0.11072999984025955, 0.7582299709320068, 0.42399999499320984, 0.4686700105667114, 0.24683000147342682, -0.706250011920929, -0.8338900208473206, -0.18585999310016632, -0.5248399972915649, 0.2568199932575226, -0.10580000281333923, -0.13826000690460205, 0.023031000047922134, -0.1286499947309494, 0.3048799932003021, -0.1709499955177307, -0.40880000591278076, 0.9891300201416016, 0.20161999762058258, -0.6914200186729431, -0.3114199936389923, -0.36504998803138733, 0.6486799716949463, -0.06663600355386734, 0.011486999690532684, 0.31407999992370605, 0.24502000212669373, -0.20996999740600586, 0.18821999430656433, -0.31905999779701233, -0.26594001054763794, -0.010222000069916248, -0.04594999924302101, -0.0991860032081604, 0.10932999849319458, 0.7103999853134155, 0.5509099960327148, 0.017090000212192535, -0.07906100153923035, -0.28088998794555664, -0.015564000234007835, -0.39068999886512756, 0.1134599968791008, 0.2617399990558624, -0.0631830021739006, 0.4250600039958954, 0.3528200089931488, 0.53889000415802, -0.12362000346183777, 0.13335999846458435, 0.3477799892425537, -0.49601998925209045, 0.6546000242233276, 0.051575999706983566, 0.2986699938774109, -0.631600022315979, -0.11663000285625458, 0.16857999563217163, 0.19758999347686768, -0.04711199924349785, -0.3654100000858307, 0.33709999918937683, -0.3524700105190277, 0.728410005569458, -0.46553999185562134, 0.35148000717163086, -0.4244599938392639, 1.031000018119812, -0.3733699917793274, -0.07102300226688385, 0.05209999904036522, 0.23342999815940857, 0.1171099990606308, 0.15497000515460968, -0.6897199749946594, -0.12129999697208405, -0.3992699980735779, 0.9369300007820129, 0.19257000088691711, 0.2945300042629242, 0.10685999691486359, -0.158160001039505, -1.1131000518798828, -0.02899700030684471, -0.3479900062084198, -0.3574199974536896, -0.10857000201940536, -0.8297899961471558, -0.5253099799156189, 0.20432999730110168, -0.02966099977493286, -0.692300021648407, -0.31255000829696655, 0.0286289993673563, -0.06920800358057022, -0.27008000016212463, -0.34384000301361084, 0.08771000057458878, -0.2429800033569336, 0.17913000285625458, 0.4898500144481659, 0.2722100019454956, -0.14928999543190002, -0.261709988117218, 0.05178999900817871, -0.2655700147151947, 0.5923699736595154, 1.045799970626831, 0.17079000174999237, -1.0699000358581543, 0.1261499971151352, 0.33678001165390015, -0.20980000495910645, 1.3348000049591064, -0.11230000108480453, 0.07121200114488602, -0.6809899806976318, -0.245619997382164, -0.16829000413417816, 0.2235500067472458, -0.06634200364351273, -0.43865999579429626, -0.2205899953842163, 0.23468999564647675, 0.7768099904060364, 0.6315500140190125, -0.002058400074020028, 0.19160999357700348, -0.09983199834823608, -0.14780999720096588, -0.3234100043773651], u'empty': [0.1783200055360794, 0.4011099934577942, -0.4459100067615509, -0.22748999297618866, 0.012694000266492367, 0.13301999866962433, 0.14531999826431274, -0.24171000719070435, 0.028807999566197395, -0.5825499892234802, -0.45945000648498535, -0.33118000626564026, -0.7542799711227417, -0.13107000291347504, -0.22846999764442444, 0.22879000008106232, -0.30542999505996704, 0.3982900083065033, 0.02027199976146221, 0.16888999938964844, 0.11823000013828278, 0.14226999878883362, 0.3559100031852722, -0.10628999769687653, -0.3342300057411194, -0.07937400043010712, 0.23255999386310577, 0.21815000474452972, 0.6110000014305115, 0.019021999090909958, 0.08918900042772293, -0.05686600133776665, -0.05260299891233444, 0.26137998700141907, -0.6862800121307373, 0.38778001070022583, -0.32879000902175903, -0.12936000525951385, -0.3481000065803528, 0.7654100060462952, -0.15921999514102936, -0.026270000264048576, -0.4210500121116638, 0.16277000308036804, -0.043786998838186264, 0.051368001848459244, 0.2031400054693222, 0.16520999372005463, -0.193900004029274, 0.28356999158859253, 0.3250899910926819, -0.08907099813222885, -0.07999899983406067, -0.05616400018334389, 0.1684499979019165, 0.16824999451637268, 0.1518000066280365, 0.13211999833583832, 0.20135000348091125, 0.5544700026512146, -0.11641000211238861, 0.01272599957883358, -0.17868000268936157, -0.16162000596523285, -0.06916200369596481, -0.4411799907684326, -0.08553899824619293, -0.15695999562740326, 0.12502999603748322, -0.043505001813173294, -0.25975000858306885, -0.27737000584602356, 0.15896999835968018, 0.3424299955368042, -0.08558399975299835, -0.05421200022101402, 0.3715200126171112, 0.25001999735832214, 0.28365999460220337, -0.056738998740911484, -0.011606999672949314, 0.312610000371933, -0.673259973526001, 0.49219000339508057, -0.022506000474095345, -0.0612649992108345, -0.0014979999978095293, -0.15696999430656433, -0.42890000343322754, 0.06271299719810486, 0.6863499879837036, 0.028013000264763832, -0.14770999550819397, -0.2558000087738037, -0.16368000209331512, 0.0839489996433258, 0.16134999692440033, 0.24718999862670898, 0.5512499809265137, -0.6045600175857544, 0.2772200107574463, 0.28727999329566956, 0.03283900022506714, -0.061507999897003174, -0.40529999136924744, -0.35927000641822815, 0.08311299979686737, -0.43755999207496643, -0.3012099862098694, 0.2468000054359436, -0.9840400218963623, -0.077845998108387, 0.060123998671770096, 0.21131999790668488, -0.669510006904602, 0.2440200001001358, 0.4200100004673004, 0.3619399964809418, 0.21817000210285187, 0.004279899876564741, 0.07360800355672836, -0.3434999883174896, 0.11102999746799469, 1.0780999660491943, -0.12323000282049179, -0.06786499917507172, 0.1311900019645691, -0.32280001044273376, -0.4532099962234497, 0.11316999793052673, 0.23889000713825226, 0.0740320011973381, -0.030851999297738075, 0.18313999474048615, 0.05844099819660187, 0.20928999781608582, 0.3929100036621094, 0.21622000634670258, -0.2020300030708313, -0.16554999351501465, -0.06233600154519081, -0.03686999902129173, -0.5653600096702576, 0.36629000306129456, -0.6222900152206421, -0.15846000611782074, 0.23816999793052673, 0.6546400189399719, -0.4267500042915344, -0.17735999822616577, -0.2610900104045868, 0.3542500138282776, -0.5670999884605408, -0.3950499892234802, 0.3469499945640564, -0.08939400315284729, 0.10372000187635422, 0.03263700008392334, 0.460889995098114, 0.16122999787330627, 0.5404800176620483, -0.2308499962091446, 0.7088599801063538, 0.11801999807357788, 0.24639999866485596, 0.09329599887132645, -0.14810000360012054, 0.20813000202178955, -0.03448399901390076, -0.39923998713493347, 0.015270999632775784, 0.44343000650405884, 0.22360999882221222, -0.14248999953269958, 0.07535199820995331, -0.280349999666214, -0.4066999852657318, 0.23172999918460846, -0.08386299759149551, -0.7204499840736389, 0.06125200167298317, 0.06366299837827682, 0.5512800216674805, 0.2595899999141693, 0.3965800106525421, -0.044589001685380936, 0.7660300135612488, -0.2730099856853485, 0.28804999589920044, 0.43108001351356506, 0.9266600012779236, -0.3902600109577179, 0.3035300076007843, -0.07004900276660919, 0.1060200035572052, 0.041572000831365585, -0.9336199760437012, 0.22633999586105347, -0.17353999614715576, 0.45735999941825867, 0.44179001450538635, -0.24627000093460083, -0.13492999970912933, -0.25593000650405884, 0.01929900050163269, -0.7587199807167053, 0.1348399966955185, -0.5712500214576721, 0.049355000257492065, -0.49154001474380493, -0.22960999608039856, -0.0126740001142025, -0.582069993019104, 0.24806000292301178, -0.1341799944639206, 0.08921799808740616, -0.14215999841690063, -0.47218000888824463, -0.16484999656677246, 0.0442189984023571, 0.6217700242996216, 0.06485100090503693, 0.12467999756336212, -0.031484998762607574, -0.3064500093460083, 0.14201000332832336, 0.38826000690460205, -0.2685000002384186, 0.3666299879550934, -0.599399983882904, 0.22450999915599823, 0.22857999801635742, -0.3038100004196167, -0.14532999694347382, 0.0759269967675209, 0.8286200165748596, -0.2738400101661682, 0.18559999763965607, -0.6794000267982483, 0.144679993391037, -0.23503999412059784, 0.1320900022983551, -0.09014300256967545, 0.44982999563217163, -0.1568399965763092, -0.5352399945259094, 0.6652299761772156, 0.28971999883651733, -0.48883000016212463, 0.09801699966192245, 0.6065899729728699, 0.4771600067615509, 0.31775999069213867, -0.3855400085449219, -0.13312000036239624, -0.09733600169420242, -0.5842499732971191, -0.39412999153137207, 0.3074699938297272, -0.01055699959397316, -0.307779997587204, -0.26236000657081604, 0.009162100031971931, 0.04321800172328949, 0.2274399995803833, -0.5664100050926208, 0.34825000166893005, -0.43421998620033264, -0.058139000087976456, 0.34373000264167786, -0.24226999282836914, -0.0011881999671459198, -0.26159000396728516, -0.253930002450943, -0.03936599940061569, -0.293830007314682, -1.9585000276565552, 0.6626099944114685, 0.23322999477386475, -0.07777199894189835, -0.4111199975013733, 0.03878600150346756, -0.34325000643730164, -0.32429999113082886, 0.10864999890327454, 0.7098900079727173, 0.39465999603271484, 0.5443900227546692, -0.11796999722719193, 0.3312000036239624, 0.1863500028848648, 0.18398000299930573, 0.13083000481128693, 0.6655200123786926, -0.13407999277114868, 0.17816999554634094, 0.2646099925041199, -0.18167999386787415, -0.32565999031066895, -0.052769001573324203], u'scratched': [0.055792998522520065, 0.17569999396800995, -0.8767200112342834, 0.30649998784065247, -0.06575000286102295, 0.033341001719236374, -0.4231100082397461, -0.10397999733686447, 0.20502999424934387, 0.22353999316692352, 0.0729840025305748, -0.28731998801231384, -0.4742099940776825, -0.3783400058746338, -0.4296799898147583, 0.2715199887752533, 0.11076000332832336, 0.7771099805831909, -0.17956000566482544, -0.21243000030517578, -0.15512000024318695, -0.04329200088977814, -0.2003300040960312, -0.2046699970960617, -0.004031499847769737, -0.0952640026807785, 0.3792699873447418, 0.05966600030660629, 0.06626100093126297, 0.27884000539779663, 0.2498600035905838, 0.07879699766635895, -0.014980999752879143, -0.07182300090789795, -0.7054200172424316, 0.16664999723434448, -0.5077400207519531, -0.2167699933052063, -0.07465200126171112, 0.32405000925064087, 0.052737001329660416, 0.2947399914264679, 0.00484029995277524, -0.6975200176239014, 0.4303700029850006, 0.5776299834251404, -0.016580000519752502, 0.26583999395370483, -0.15862999856472015, -0.1826999932527542, 0.0945110023021698, -0.3082999885082245, 0.07659199833869934, 0.041763000190258026, -0.3632499873638153, 0.1310500055551529, -0.08730900287628174, -0.13033999502658844, 0.189860001206398, 0.40542998909950256, 0.01039700023829937, 0.3841699957847595, -0.616320013999939, 0.1124500036239624, 0.00276309996843338, -0.20816999673843384, 0.21149000525474548, -0.28519999980926514, 0.4293000102043152, -0.5019599795341492, 0.5859900116920471, 0.265720009803772, 0.3234499990940094, 0.37477999925613403, 0.4500100016593933, -0.6055300235748291, 0.08129599690437317, 0.1381399929523468, 0.3668299913406372, 0.06925100088119507, -0.248089998960495, -0.0001846999948611483, -0.12052000313997269, -0.2691099941730499, -0.4411500096321106, -0.16394999623298645, -0.14805999398231506, -0.1805099993944168, 0.33427000045776367, 0.25374001264572144, -0.10818000137805939, 0.16089999675750732, -0.09666399657726288, -0.5519599914550781, 0.18216000497341156, 0.017551999539136887, -0.24257999658584595, -0.20311999320983887, -0.31679001450538635, -0.1818699985742569, -0.13745999336242676, -0.28637999296188354, -0.09840500354766846, 0.30862998962402344, 0.26043999195098877, 0.4325000047683716, 0.09707000106573105, -0.630299985408783, -0.6037899851799011, 0.449290007352829, -0.3292199969291687, -0.13367000222206116, -0.7388200163841248, 0.017105000093579292, -0.575410008430481, 0.005414300132542849, -0.7552400231361389, -0.18643000721931458, 0.17204000055789948, -0.398389995098114, -0.19654999673366547, -0.6878899931907654, -0.7472800016403198, 0.5038899779319763, -0.10074999928474426, 0.3083899915218353, -0.5711399912834167, -0.5342400074005127, 0.20266999304294586, 0.14846999943256378, 0.03228599950671196, -0.1542000025510788, 0.3598000109195709, 0.4049200117588043, -0.2538299858570099, -0.1864600032567978, 0.5710399746894836, -0.03677000105381012, 0.34584999084472656, 0.38054999709129333, 0.3176099956035614, 0.7414699792861938, -0.1271599978208542, 0.16767999529838562, 0.45392000675201416, 0.09112299978733063, -0.04626400023698807, 0.2795400023460388, -0.0020481001120060682, -0.19054000079631805, 0.25029000639915466, -0.21276000142097473, -0.03966899961233139, -0.32829999923706055, -0.3491300046443939, -0.409170001745224, 0.07867299765348434, -0.26815998554229736, 0.015324000269174576, 0.417820006608963, -0.3808099925518036, -0.30285000801086426, -0.929830014705658, 0.3052600026130676, 1.0893000364303589, 0.38791000843048096, 0.21379999816417694, 0.1443299949169159, 0.13210000097751617, -0.4568899869918823, -0.34178999066352844, -0.08152099698781967, 0.48758000135421753, -0.5628100037574768, -0.6002399921417236, -0.20720000565052032, 0.45590999722480774, 0.2540000081062317, 0.11394999921321869, -0.12773999571800232, 0.005075199995189905, 0.6150100231170654, 0.02361300028860569, -0.019300000742077827, -0.4934999942779541, -0.2642099857330322, 0.6944800019264221, -0.4984099864959717, 0.2680000066757202, 0.1775600016117096, -0.03454200178384781, -0.09089499711990356, -0.052553001791238785, -0.020073000341653824, 0.32611000537872314, 0.11993999779224396, -0.2599700093269348, -0.043820999562740326, -0.038130998611450195, -0.05715800076723099, 0.5460600256919861, -0.4847100079059601, -0.0034364000894129276, -0.2117999941110611, 0.3811500072479248, -0.13312000036239624, 0.12910999357700348, -0.2640399932861328, 0.010147999972105026, 0.35447999835014343, 0.20300999283790588, -0.23704999685287476, 0.012920999899506569, -0.36855998635292053, 0.09010999649763107, 0.27584999799728394, 0.17329999804496765, -0.10243000090122223, 0.2052599936723709, 0.15202000737190247, 0.05720699951052666, 0.3269299864768982, -0.1226700022816658, -0.3509500026702881, 0.5402699708938599, 0.23177999258041382, 0.11802999675273895, -0.17979000508785248, -0.054510001093149185, 0.35583001375198364, 0.08555900305509567, -0.23622000217437744, -0.6547899842262268, -0.2819899916648865, -0.03558899834752083, -0.05448399856686592, 0.009893300011754036, -0.25231000781059265, 0.1256999969482422, -0.45263001322746277, 0.2656500041484833, -0.21597999334335327, -0.27757999300956726, -0.03341500088572502, 0.3161599934101105, -0.14876000583171844, 0.06259699910879135, 0.6144400238990784, 0.15971000492572784, 0.6241000294685364, 0.1515199989080429, -0.02941099926829338, 0.3596700131893158, -0.19713999330997467, 0.2280299961566925, 0.23872999846935272, 0.3625200092792511, 0.06732700020074844, -0.0818680003285408, 0.21940000355243683, -0.2496200054883957, 0.7796099781990051, -0.2768799960613251, 0.17297999560832977, 0.07907599955797195, 0.022254999727010727, 0.28501999378204346, 0.036458998918533325, -0.32708001136779785, 0.7202799916267395, -0.23016999661922455, -0.5081899762153625, 0.17045000195503235, -0.34558001160621643, -0.4874899983406067, 0.28560999035835266, -0.18253999948501587, -0.1750199943780899, -0.33788999915122986, -0.009437699802219868, 0.019352000206708908, 0.18264999985694885, -0.10073000192642212, 0.6393300294876099, -0.2206999957561493, 0.24653999507427216, 0.08288899809122086, -0.39386001229286194, 0.17997999489307404, -0.3540700078010559, 0.058051999658346176, -0.04868999868631363, -0.09416700154542923, 0.41363000869750977, -0.4344500005245209, -0.5980799794197083, 0.42961999773979187, -0.10958000272512436, -0.02828899957239628, 0.21730999648571014], u'painted': [0.09827099740505219, 0.08364000171422958, -0.436599999666214, -0.35335999727249146, 0.0764629989862442, 0.4095599949359894, -0.6532700061798096, -0.02299400046467781, -0.4695500135421753, -0.7430999875068665, -0.07309900224208832, -0.06191200017929077, 0.25301000475883484, 0.4149799942970276, 0.30292999744415283, 0.1892700046300888, 0.40242999792099, -0.11445000022649765, -0.24873000383377075, -0.22384999692440033, -0.1949400007724762, 0.5077999830245972, 0.72257000207901, 0.05707700178027153, 0.04020899906754494, -0.5655699968338013, -0.13964000344276428, -0.30783000588417053, 0.06130700185894966, 0.48342999815940857, 0.8298299908638, 0.6000300049781799, -0.6261600255966187, 0.08101800084114075, 0.14247000217437744, 0.9586099982261658, -0.6230199933052063, -0.795710027217865, -0.18004000186920166, -0.2542499899864197, -0.08688300102949142, -0.10056000202894211, -0.38477998971939087, -0.3391200006008148, 0.1859399974346161, 0.39800000190734863, -0.07513400167226791, -0.13122999668121338, 0.10839000344276428, -0.495959997177124, -0.342960000038147, 0.2932800054550171, 0.7237600088119507, 0.1896599978208542, 0.15629999339580536, 0.012388000264763832, -0.31112998723983765, 0.03822999820113182, 0.5317299962043762, -0.15994000434875488, -0.022060999646782875, -0.1997700035572052, 0.3155600130558014, -0.26194998621940613, 0.5076799988746643, -0.49985000491142273, -0.3118799924850464, -0.7376599907875061, 0.5996699929237366, -0.6805199980735779, -0.41130000352859497, -0.4296500086784363, -0.2991099953651428, -0.0656369999051094, -0.20986999571323395, -0.10318999737501144, 0.4685400128364563, 0.6021199822425842, 0.10892000049352646, -0.2571699917316437, -0.3754900097846985, -0.11455000191926956, -0.6425099968910217, -0.22221000492572784, -0.0487309992313385, 0.5625100135803223, 0.2838299870491028, 0.4368700087070465, -0.37171000242233276, 0.4470899999141693, 0.6687800288200378, -0.17520999908447266, 0.06668499857187271, -0.16353000700473785, 0.019984999671578407, 0.2901799976825714, 0.10251999646425247, -0.5002700090408325, 0.20938999950885773, -0.4599500000476837, -0.1141199991106987, -0.0451899990439415, 0.1488800048828125, 0.26346999406814575, -0.13463999330997467, 0.3908100128173828, 0.0034984999801963568, -0.07513400167226791, -0.0349700003862381, -0.1825300008058548, -0.09586700052022934, 0.006965000182390213, 0.26809000968933105, 0.06910700350999832, -0.050018999725580215, 0.007995099760591984, -0.19128000736236572, 0.8888099789619446, 0.10982999950647354, -0.32232001423835754, -0.1753000020980835, -0.2558499872684479, -0.10426999628543854, 0.6226199865341187, -0.19088000059127808, 0.23128999769687653, -0.6088799834251404, 0.26493000984191895, 0.02145100012421608, 0.28540998697280884, 0.01191799994558096, 0.07838299870491028, -0.04975299909710884, 0.29774999618530273, -0.527209997177124, -0.12873999774456024, 0.15680000185966492, 0.527899980545044, 0.3285900056362152, -0.10932999849319458, 0.18609000742435455, 0.8507000207901001, -0.5814599990844727, -0.3644700050354004, 0.08756399899721146, 0.20389999449253082, 0.26767000555992126, 0.17798000574111938, 0.0680759996175766, -0.19327999651432037, 0.19833000004291534, 0.40665000677108765, -0.32396000623703003, -0.4069899916648865, -0.28933000564575195, 0.11588999629020691, -0.21453000605106354, 0.3246299922466278, 0.295740008354187, 0.10871999710798264, -0.3660599887371063, 0.31481000781059265, 0.06256599724292755, 0.21599000692367554, 0.4210599958896637, 0.11368999630212784, -0.3905799984931946, 0.506600022315979, 0.10548000037670135, -0.15227000415325165, 0.20691999793052673, -0.1174900010228157, 0.12589000165462494, -0.033541999757289886, 0.11694999784231186, -0.21258999407291412, 0.05466800183057785, -0.03751000016927719, -0.044555000960826874, -0.7578399777412415, -0.35097000002861023, 0.492900013923645, 0.17509999871253967, 0.2937900125980377, 0.02316400036215782, -0.8973399996757507, -0.01743300072848797, 0.1631699949502945, 0.657010018825531, 0.49327000975608826, 0.5159599781036377, -0.05886299908161163, 0.001689799944870174, 0.23486000299453735, 0.119889996945858, -0.31679001450538635, -0.11648999899625778, 0.42583000659942627, -0.3655799925327301, -0.36820998787879944, 0.6301500201225281, -0.28641000390052795, -0.10583999752998352, -0.3375000059604645, 0.8719499707221985, -0.31224000453948975, -0.16872000694274902, 0.40568000078201294, -0.5260499715805054, -0.058844998478889465, 0.687690019607544, 0.00011950000043725595, 0.07012499868869781, -0.778219997882843, 0.6301900148391724, 0.08089400082826614, 0.7409999966621399, -0.3038400113582611, 0.12317000329494476, -0.010397999547421932, 1.0073000192642212, 0.37856000661849976, 0.36507999897003174, -0.5227500200271606, -0.15629999339580536, -0.16325999796390533, -0.09424199908971786, 0.0018016999820247293, -0.1397400051355362, -0.6391400098800659, -0.4660100042819977, -0.17497000098228455, -0.23208999633789062, -0.11027000099420547, -0.04583299905061722, 0.04197800159454346, -0.3403100073337555, -0.054441001266241074, -0.5481799840927124, -0.14981000125408173, -0.4440299868583679, -0.08458399772644043, -0.5004799962043762, 0.564740002155304, -0.32763001322746277, -0.08906599879264832, -0.11954999715089798, -0.6657000184059143, -0.07044800370931625, 0.6366099715232849, -0.1265300065279007, -0.4875600039958954, 0.6215500235557556, -0.16550999879837036, 0.9951599836349487, -0.11396999657154083, 0.13409000635147095, 0.0849360004067421, 0.17007000744342804, 0.3957799971103668, -0.210439994931221, -0.11009000241756439, 0.6281599998474121, 0.06082899868488312, 0.17803999781608582, -0.23836000263690948, -0.2051600068807602, -0.2816300094127655, -0.43143999576568604, -0.1435600072145462, 0.10332000255584717, -0.14305999875068665, 0.2790200114250183, -0.12026000022888184, -0.06215199828147888, 0.3334299921989441, -1.0379999876022339, -0.52360999584198, -0.38743001222610474, -0.27219000458717346, 0.19840000569820404, -0.1550299972295761, -0.3455199897289276, 0.14673000574111938, 0.18647000193595886, 0.6245399713516235, 0.11437000334262848, 0.2669300138950348, 0.2824699878692627, -0.1289999932050705, -0.07017800211906433, 0.010684000328183174, -0.09247100353240967, 0.2035199999809265, -0.4122999906539917, -0.1638599932193756, 0.7753400206565857, 0.18616999685764313, -0.00937539990991354, 0.11241000145673752], u'pierced': [-0.18466000258922577, -0.42610999941825867, -0.25488999485969543, -0.22342999279499054, 0.17359000444412231, 0.26816999912261963, 0.2160000056028366, 0.008522200398147106, -0.3134300112724304, -0.15715999901294708, -0.29497000575065613, 0.27667999267578125, 0.2111400067806244, 0.08559100329875946, -0.01116899959743023, 0.5413399934768677, -0.03890800103545189, 0.0075622000731527805, -0.31007999181747437, 0.44422000646591187, -0.0728290006518364, 0.6169999837875366, 0.379040002822876, -0.37342000007629395, 0.3907899856567383, -0.10047999769449234, 0.27632999420166016, 0.32385000586509705, -0.4556800127029419, -0.07819200307130814, 0.625469982624054, 0.8508899807929993, 0.09972500056028366, 0.458189994096756, 0.45837000012397766, -0.19431999325752258, -0.3043400049209595, -0.3684700131416321, 0.53125, 1.0533000230789185, 0.541379988193512, 0.14764000475406647, -0.37975001335144043, -0.2941800057888031, 0.09756399691104889, 0.7520700097084045, 0.020330000668764114, 0.009584399871528149, 0.154789999127388, -0.48614999651908875, -0.00920020043849945, 0.2990800142288208, 0.35447001457214355, -0.23339000344276428, -0.3326700031757355, -0.35569998621940613, -0.20181000232696533, -0.1795399934053421, 0.36719000339508057, -0.014019000343978405, 0.3964399993419647, -0.10329999774694443, -0.18622000515460968, 0.36327001452445984, -0.07953599840402603, -0.2565400004386902, 0.40446001291275024, -0.09622299671173096, 0.649370014667511, -0.06547299772500992, 0.09716299921274185, -0.026789000257849693, 0.48072001338005066, 1.0601999759674072, 0.4386399984359741, 0.02749899961054325, 0.5618500113487244, -0.3123700022697449, -0.6308799982070923, -0.37946999073028564, -0.16011999547481537, 0.1613599956035614, 0.4683400094509125, 0.3623799979686737, -0.7125599980354309, 0.6033999919891357, -0.41822001338005066, -0.4377399981021881, -0.3172599971294403, 0.21491000056266785, 0.3461199998855591, 0.1603499948978424, -0.23176999390125275, 0.1612599939107895, -0.19468000531196594, 0.07935000211000443, -0.30298998951911926, 0.416920006275177, 0.214819997549057, 0.2696300148963928, -0.4611699879169464, 0.01897300034761429, 0.28769999742507935, -0.36221998929977417, 0.24838000535964966, -0.044874999672174454, -0.031140999868512154, -0.25881001353263855, -0.3983199894428253, 0.14722000062465668, -0.06023300066590309, 0.6414399743080139, 0.19547000527381897, -0.6972399950027466, -0.0875220000743866, -0.2251099944114685, -0.7579299807548523, 0.46345001459121704, 0.18272000551223755, -0.015130000188946724, -0.018331000581383705, -0.33204999566078186, -0.22904999554157257, 0.8624200224876404, -0.6113799810409546, -0.2479500025510788, -0.33469998836517334, -0.1078300029039383, -0.16448000073432922, -0.4212000072002411, 0.20204000174999237, 0.10465999692678452, 0.344650000333786, -0.24827000498771667, -0.0031477001029998064, 0.4702399969100952, -0.28885000944137573, -0.11020000278949738, 0.5316500067710876, 0.04328399896621704, -0.010925999842584133, 0.49919000267982483, -0.16405999660491943, -0.1496099978685379, 0.04466300085186958, -0.01784300059080124, 0.8093500137329102, -0.1912499964237213, 0.1687300056219101, -0.12921999394893646, -0.09175200015306473, -0.042167000472545624, 0.11037000268697739, 0.11088000237941742, 0.6654999852180481, -0.2612900137901306, 0.16166000068187714, -0.3296099901199341, 0.03200700134038925, 0.3045699894428253, -0.5521299839019775, 0.20205999910831451, 0.14892999827861786, -0.035663001239299774, 0.5272600054740906, 0.19035999476909637, -0.16211000084877014, 0.25731998682022095, 0.19530999660491943, -0.8571400046348572, -0.24355000257492065, 0.7067099809646606, 0.2573699951171875, -0.21619999408721924, -0.478769987821579, -0.0516510009765625, -0.44571998715400696, 0.3248000144958496, 0.22166000306606293, -0.5069800019264221, 0.344760000705719, -0.012670000083744526, 0.4406999945640564, -0.5024899840354919, 0.09582199901342392, -0.11386000365018845, 0.9744799733161926, 0.42438000440597534, -0.07456400245428085, 0.0562409982085228, -0.42405998706817627, -0.5570499897003174, -0.4070099890232086, 0.025374000892043114, 0.05849500000476837, 0.403439998626709, -0.3730500042438507, -0.2627899944782257, -0.07631199806928635, 0.4763999879360199, 0.3811100125312805, -0.11918000131845474, -0.058371998369693756, -0.21536000072956085, -0.2628600001335144, 0.40257999300956726, -0.28224000334739685, 0.2958900034427643, -0.4812699854373932, 0.06254500150680542, 0.6200100183486938, -0.1282700002193451, -0.4650900065898895, -0.2713199853897095, 0.10356000065803528, -0.4726099967956543, 0.8733000159263611, -0.1842299997806549, -0.22081999480724335, 0.2512100040912628, 0.25977998971939087, 0.10683000087738037, 0.46011999249458313, -0.1349399983882904, -0.1999800056219101, 0.25922998785972595, -0.6039800047874451, -0.701449990272522, 0.1893399953842163, -0.31139999628067017, 0.25314998626708984, 0.3465900123119354, -0.43709999322891235, -0.3341499865055084, -0.5534600019454956, 0.07331400364637375, -0.018503999337553978, -0.3479999899864197, -0.4853299856185913, -0.5130699872970581, 0.49713999032974243, -0.8154500126838684, -0.011795000173151493, -0.4299499988555908, -0.022935999557375908, -0.2527500092983246, -0.041032999753952026, -0.08618099987506866, 0.2760300040245056, -0.701960027217865, -0.23172999918460846, -0.14857999980449677, 0.08417999744415283, -1.017699956893921, -0.2702699899673462, 0.35040000081062317, 0.04826200008392334, -0.2993600070476532, -0.4752199947834015, 0.6262900233268738, -0.22950999438762665, -0.08324100077152252, 0.0746999979019165, -0.006308699958026409, -0.14764000475406647, 0.7234699726104736, -0.2771199941635132, -0.06765799969434738, -0.4646399915218353, 0.24792000651359558, -0.10758999735116959, -0.6436700224876404, 0.26962000131607056, -0.3442099988460541, -0.6744899749755859, -0.042897000908851624, -0.1586800068616867, -0.6807900071144104, -1.2503999471664429, 0.2762500047683716, -0.31953001022338867, -0.04716299846768379, -0.4147399961948395, 0.19840000569820404, -0.4199399948120117, 0.5058500170707703, 0.38207998871803284, -0.18862999975681305, 0.24677999317646027, -0.27090001106262207, 0.07745800167322159, -0.007953999564051628, -0.13278000056743622, 0.04938799887895584, 0.23827999830245972, -0.5420799851417542, -0.15068000555038452, -0.03177599981427193, -0.05890800058841705, 0.10294000059366226], u'draped': [-0.1932699978351593, -0.3521299958229065, 0.3307499885559082, -0.254720002412796, -0.2659299969673157, 0.2247599959373474, -0.4267500042915344, -0.22450999915599823, -0.1641799956560135, 0.32166001200675964, -0.4142400026321411, 0.02124599926173687, -0.6119800209999084, -0.19472000002861023, 0.15746000409126282, 0.685670018196106, -0.5203400254249573, 0.272599995136261, -0.047724999487400055, -0.20227999985218048, -0.12058000266551971, -0.5664299726486206, 0.4279800057411194, 0.08070400357246399, -0.1480100005865097, -0.4737200140953064, -0.09064500033855438, 0.2214300036430359, 0.20970000326633453, -0.1348699927330017, 0.2498299926519394, -0.21051999926567078, -0.23097999393939972, 0.524619996547699, 0.05746300145983696, 0.41402000188827515, -0.18569999933242798, -0.6124600172042847, 0.33980000019073486, -0.033351000398397446, -0.364300012588501, -0.9481499791145325, -0.4273099899291992, -0.27706000208854675, 0.4092699885368347, -0.15524999797344208, 0.5085700154304504, -0.18339000642299652, 0.3274799883365631, 0.0765409991145134, -0.7838799953460693, -0.2805500030517578, 0.17590999603271484, -0.6443300247192383, -0.7729399800300598, -0.27529001235961914, -0.3574399948120117, -0.4735200107097626, -0.0036611000541597605, 0.7525500059127808, 0.6362599730491638, -0.08443699777126312, 0.20117999613285065, 0.0861470028758049, -0.1060900017619133, -0.4916900098323822, -0.17630000412464142, 0.27849000692367554, 0.5818399786949158, 0.07282400131225586, -0.5225099921226501, 0.11439000070095062, -0.5715699791908264, -0.45625001192092896, -0.2526000142097473, 0.5594800114631653, 0.28745999932289124, -0.08981099724769592, 0.15940000116825104, -0.11467999964952469, -0.3884600102901459, 0.003492099931463599, -0.3429099917411804, 0.14717000722885132, -0.24252000451087952, 0.5364199876785278, 0.11779999732971191, 0.5335400104522705, -0.23431000113487244, 0.18914000689983368, 0.8062199950218201, -0.7493299841880798, 0.3487600088119507, 0.3732300102710724, -0.19485999643802643, -0.2542099952697754, 0.22643999755382538, 0.27748000621795654, -0.20531000196933746, 0.36127999424934387, 1.0598000288009644, 0.042479000985622406, -0.0026114999782294035, 0.10829000174999237, 0.3797700107097626, 0.1936500072479248, 0.6205800175666809, 0.07559700310230255, -0.1376899927854538, -0.29941999912261963, -0.8480799794197083, 0.8325499892234802, -0.3551900088787079, -0.1023700013756752, 0.14799000322818756, -0.09973999857902527, -0.039367999881505966, 0.7017899751663208, -0.04295700043439865, -0.8641999959945679, -0.3105199933052063, -0.23371000587940216, 0.9836699962615967, 0.7777100205421448, -0.31314998865127563, -0.04054899886250496, -0.442440003156662, -0.1177000030875206, -0.24624000489711761, 0.12996000051498413, -0.018451999872922897, 0.209989994764328, 0.0027054999954998493, 0.20615999400615692, -0.07684600353240967, 0.10176999866962433, -0.19990000128746033, -0.1354600042104721, -0.04997200146317482, 0.3425700068473816, -0.03568999841809273, -0.2044599950313568, -0.06822700053453445, -0.15772999823093414, -0.4756599962711334, 0.2693899869918823, 0.03783699870109558, -0.2772899866104126, -0.19338999688625336, -0.21875999867916107, 0.08938899636268616, 0.0009676400222815573, 0.038252998143434525, -0.266620010137558, 0.12083999812602997, 0.19603000581264496, -0.29264000058174133, -0.21400000154972076, 0.2605299949645996, 0.455049991607666, -0.36032000184059143, -0.12714999914169312, -0.2191700041294098, 0.64205002784729, 0.31154999136924744, -0.2604300081729889, -0.16534000635147095, 0.7585700154304504, 0.08002100139856339, -0.38857999444007874, -0.8036800026893616, 0.018682999536395073, 0.45458999276161194, -0.07515600323677063, 0.08399800211191177, -0.7797999978065491, -0.4195599853992462, 0.7277500033378601, 0.03341300040483475, -0.8661500215530396, 0.38335999846458435, -0.2726599872112274, 0.7341300249099731, 0.20815999805927277, 0.4684399962425232, -0.22384999692440033, 0.05894799903035164, -0.3312099874019623, -0.06618700176477432, 0.2802099883556366, 0.4667400121688843, -0.6595600247383118, -0.04626699909567833, -0.09490600228309631, 0.2822299897670746, 0.37450000643730164, -0.07790900021791458, 0.3207699954509735, -0.4073199927806854, 0.021598000079393387, 0.4031899869441986, -0.8073300123214722, -0.13222000002861023, 0.2465900033712387, 1.087399959564209, -0.5960900187492371, 0.2699800133705139, 0.32065001130104065, 0.08441299945116043, -0.02251799963414669, 0.43998000025749207, 0.35357001423835754, -0.3243100047111511, -0.01115499995648861, 0.4347499907016754, 0.005315899848937988, 0.6792600154876709, -1.1406999826431274, -0.24316999316215515, -0.04244700074195862, 0.6126999855041504, -0.14122000336647034, 0.4925999939441681, -0.27074000239372253, -0.20733000338077545, 0.5482699871063232, 0.13659000396728516, -0.35940998792648315, -0.0990540012717247, -0.6011099815368652, 0.5580199956893921, -0.3519900143146515, 0.0054259998723864555, 0.2898400127887726, 0.4839800000190735, 0.28630000352859497, -0.31220999360084534, -0.6830099821090698, -0.5715000033378601, 0.08013399690389633, 0.1173200011253357, 0.2614699900150299, -0.3167000114917755, 0.3712500035762787, 0.09046100080013275, 0.22481000423431396, 0.2681399881839752, -0.07522399723529816, -0.2490600049495697, 0.19559000432491302, -0.24740000069141388, 0.1427599936723709, 0.5180000066757202, -0.8582800030708313, 1.156000018119812, -0.31970998644828796, -0.36421000957489014, 0.18116000294685364, -0.1358799934387207, -0.29287999868392944, 0.3737899959087372, -0.26969000697135925, 0.6833400130271912, 0.735319972038269, -0.12342000007629395, 0.16046999394893646, 0.015352999791502953, -0.07906000316143036, -0.4102199971675873, -0.6922000050544739, 0.10774999856948853, -0.45135998725891113, 0.2984200119972229, 0.16669000685214996, -0.44214001297950745, -0.13770000636577606, -0.42629000544548035, -0.20239999890327454, -0.4263400137424469, -0.19062000513076782, 0.13919000327587128, -0.030587999150156975, -0.11939000338315964, -0.45903000235557556, 0.045896999537944794, 0.6673600077629089, 0.15824000537395477, 0.39282000064849854, 0.1642799973487854, -0.45386001467704773, 1.3295999765396118, 0.22620999813079834, -0.0356689989566803, 0.8477500081062317, -0.4685499966144562, -0.10259000211954117, 0.9244300127029419, 0.5844500064849854, -0.3212999999523163, -0.3601300120353699], u'loose': [-0.43884000182151794, -0.37283000349998474, 0.05142800137400627, -0.40821000933647156, 0.00959550030529499, -0.3765600025653839, 0.21921999752521515, 0.44516998529434204, 0.6433299779891968, -0.8225200176239014, 0.3134300112724304, 0.0976559966802597, -0.3722600042819977, 0.11270999908447266, -0.507830023765564, -0.20723000168800354, 0.2763899862766266, 0.32965001463890076, 0.46327000856399536, 0.9818599820137024, 0.39184001088142395, 0.3720499873161316, 0.4276899993419647, -0.09592799842357635, -0.3761500120162964, -0.162540003657341, -0.162090003490448, -0.2815900146961212, -0.17207999527454376, -0.10591000318527222, 0.3160800039768219, 0.2312300056219101, 0.6747499704360962, 0.7858200073242188, -0.5503799915313721, 0.1144300028681755, 0.5459499955177307, 0.6373299956321716, 0.20956000685691833, 0.2656799852848053, -0.707099974155426, 0.03874199837446213, -0.06333699822425842, -0.47484999895095825, 0.3200800120830536, 0.09262800216674805, -0.12304999679327011, -0.10696999728679657, -0.3773899972438812, -0.41284000873565674, 0.04252700135111809, 0.07717099785804749, -0.3774299919605255, -0.3357599973678589, -0.022123999893665314, 0.06031300127506256, -0.06504800170660019, -0.1811400055885315, -0.09034299850463867, -0.2740199863910675, 0.4139600098133087, 0.16440999507904053, -0.188060000538826, -0.2436400055885315, 0.011068000458180904, -0.44550999999046326, -0.045155998319387436, -0.07810100167989731, 0.3937700092792511, 0.46581000089645386, -0.372979998588562, 0.19255000352859497, 0.17056000232696533, 0.042426999658346176, 0.12536999583244324, 0.23247000575065613, 0.6741499900817871, -0.3066900074481964, -0.09453500062227249, -0.47369998693466187, 0.012582999654114246, -0.6134999990463257, 0.3176400065422058, -0.039942000061273575, -0.08276499807834625, -0.034991998225450516, 0.2593800127506256, 0.15494999289512634, -0.7721899747848511, 0.022384999319911003, 0.25446000695228577, 0.21191999316215515, -0.2565700113773346, -0.023547999560832977, -0.11924999952316284, -0.3180299997329712, -0.11264999955892563, 0.159620001912117, 0.043434999883174896, -0.49004998803138733, 0.2067900002002716, 0.0006949100061319768, -0.07971200346946716, 0.15998999774456024, -0.611050009727478, 0.10035999864339828, 0.35034000873565674, 0.13460999727249146, -0.181659996509552, -0.0663129985332489, 0.3956100046634674, -0.4122700095176697, -0.02864699997007847, 0.15737000107765198, 0.04095400124788284, 0.680400013923645, -0.2544200122356415, 0.3003099858760834, 0.43641000986099243, -0.6561999917030334, 0.02943599969148636, -0.34272000193595886, 0.8726699948310852, 0.45715999603271484, 0.22147999703884125, 0.49279001355171204, -0.6058700084686279, 0.6827399730682373, 0.24542999267578125, -0.19444000720977783, 0.26034000515937805, -0.061597999185323715, 0.041120000183582306, -0.44106000661849976, 0.5417799949645996, 0.23206999897956848, -0.12472999840974808, -0.209539994597435, -0.20340000092983246, -0.9033899903297424, -0.37275999784469604, 0.7630900144577026, -0.3034200072288513, 0.09843900054693222, -0.17403000593185425, -0.032561998814344406, -0.3695400059223175, 0.09335900098085403, 0.5278699994087219, 0.14379000663757324, 0.045524001121520996, -0.4854399859905243, -0.32339999079704285, -0.3665100038051605, 0.5495200157165527, -0.32315000891685486, 0.37358999252319336, 0.28185999393463135, 0.3677000105381012, 0.5407900214195251, 0.07761000096797943, -0.164560005068779, -0.045577000826597214, -0.3130800127983093, 0.17093999683856964, -0.5870500206947327, -0.09158799797296524, -0.0044153002090752125, 0.5620599985122681, 0.07941800355911255, -0.022053999826312065, 0.16767999529838562, -0.043244000524282455, 0.5655099749565125, 0.46417000889778137, -0.14584000408649445, -0.07386499643325806, 1.0441999435424805, 0.151869997382164, -0.4203599989414215, 1.0216000080108643, -0.8083099722862244, 0.6356899738311768, -0.7268900275230408, -0.2694399952888489, 0.23503999412059784, 0.09272900223731995, -0.5756700038909912, 0.3040800094604492, -0.23779000341892242, 0.5671799778938293, 0.30235999822616577, 0.32276999950408936, -0.03140600025653839, 0.19212999939918518, -0.5821800231933594, -0.6245200037956238, -0.1952199935913086, -0.17478999495506287, 0.4348300099372864, 1.291200041770935, 0.5976499915122986, 0.7386299967765808, 0.30504000186920166, 0.2863599956035614, -0.0298870000988245, 0.23928000032901764, -0.035725999623537064, -0.8786600232124329, 0.43577998876571655, -0.23417000472545624, 0.07124099880456924, 0.645110011100769, 0.6164399981498718, -0.04495000094175339, -0.21879999339580536, 0.230320006608963, -0.29677000641822815, -0.3193100094795227, 0.1812800019979477, -0.010544000193476677, 0.24864999949932098, 0.4393500089645386, -0.42076000571250916, -0.1218700036406517, 0.15644000470638275, 0.49358001351356506, -0.08716200292110443, 0.26050999760627747, 0.28130000829696655, 0.5920600295066833, -0.2658199965953827, -0.10356999933719635, -0.011943000368773937, 0.05550599843263626, 0.14194999635219574, -0.5235400199890137, -0.3545199930667877, -0.3878900110721588, 0.1820400059223175, 0.20419000089168549, -0.09446500241756439, -0.46487000584602356, -0.6187999844551086, -0.660260021686554, -0.04412899911403656, 0.10503000020980835, 0.4573099911212921, -0.03817199915647507, -0.0587569996714592, -0.07651399821043015, -0.5858200192451477, 0.1067499965429306, -0.422870010137558, 0.6490600109100342, 0.08288100361824036, 0.011365000158548355, -0.17952999472618103, -0.005516699980944395, 0.6928200125694275, 0.036552999168634415, -0.2392899990081787, -0.5177599787712097, 0.27173998951911926, -0.09750799834728241, -0.19492000341415405, -0.06196499988436699, 0.21800999343395233, -0.4413299858570099, 0.20016999542713165, -0.09873899817466736, 0.17252999544143677, -0.14632000029087067, 0.07597800344228745, -0.4701499938964844, -0.11186999827623367, -0.5659599900245667, 0.35920000076293945, -0.45813998579978943, -0.31272000074386597, 0.10025999695062637, -0.10369999706745148, 0.7967000007629395, 0.03639800101518631, -0.25372999906539917, -0.11225999891757965, 0.008486299775540829, -0.20048999786376953, 0.09582299739122391, -0.5155199766159058, -0.36221998929977417, -0.3783800005912781, -0.49891000986099243, 0.49077001214027405, 0.008483000099658966, 0.559909999370575, 0.03344700112938881, -0.14791999757289886, 0.22924000024795532, 0.3699699938297272], u'browned': [0.8735100030899048, 0.27351999282836914, 0.07877200096845627, 0.3834399878978729, -0.5583199858665466, -0.5151299834251404, 0.02184399962425232, 0.2384600043296814, 1.2259000539779663, -0.16896000504493713, -0.617169976234436, 0.5988900065422058, 0.670009970664978, 0.9340699911117554, -0.7557399868965149, 0.626800000667572, -0.09500200301408768, -0.11969999969005585, 0.57819002866745, 0.1770700067281723, 0.14315000176429749, 0.8917199969291687, 0.11789000034332275, -0.4089600145816803, 0.2671099901199341, 0.6289799809455872, 0.21442000567913055, 0.43116000294685364, -0.5143799781799316, 0.4346599876880646, -0.4607599973678589, 0.7082399725914001, 0.0905120000243187, -1.042099952697754, -0.3889699876308441, -0.40248000621795654, 0.43549999594688416, 0.7800899744033813, -0.5193099975585938, 0.11612000316381454, 1.2882000207901, 0.4174000024795532, -0.917169988155365, -0.471670001745224, 0.852590024471283, 0.5977699756622314, 1.0113999843597412, 0.5464400053024292, -0.44130998849868774, 1.4082000255584717, 0.28273001313209534, 0.21607999503612518, 0.41464999318122864, -0.7986299991607666, -0.08166699856519699, -0.1271200031042099, -0.42563000321388245, -0.10724999755620956, -0.6036700010299683, 0.760919988155365, 0.4141699969768524, -0.8418499827384949, 0.3053799867630005, -0.4056600034236908, 0.09812100231647491, -0.34523001313209534, 0.8776800036430359, 0.27730000019073486, -0.6752499938011169, 0.08583799749612808, -0.014813999645411968, 0.0877159982919693, 0.6836599707603455, 0.19370999932289124, -0.15277999639511108, 1.0657000541687012, 1.436900019645691, 0.7004200220108032, -0.4338400065898895, -0.8631700277328491, 0.30820000171661377, -0.6946300268173218, 0.4779700040817261, -0.27654001116752625, -0.36656999588012695, 0.3558399975299835, -0.644760012626648, 0.0863180011510849, -1.0627000331878662, -0.12873999774456024, -0.3585200011730194, 0.3357299864292145, -0.15410999953746796, 0.9977700114250183, -1.0723999738693237, 0.5777999758720398, -0.7890300154685974, 0.9480000138282776, -0.3995000123977661, 0.7210299968719482, -0.18358999490737915, -0.3904600143432617, -0.2532599866390228, -0.9884200096130371, -0.4529300034046173, -0.002723699901252985, 0.5943899750709534, -0.21563999354839325, 0.6072499752044678, 0.021258000284433365, 0.42612001299858093, 0.6094599962234497, 0.45688000321388245, 0.033296000212430954, -0.8698300123214722, 0.299019992351532, -1.0613000392913818, 0.06437700241804123, 0.43988001346588135, 0.5724700093269348, -0.13824999332427979, 0.13583000004291534, 0.13343000411987305, 0.9340699911117554, -0.9150800108909607, 0.5935199856758118, -0.38743001222610474, 0.5033299922943115, -0.8632799983024597, 0.5299500226974487, -0.22086000442504883, 1.145400047302246, 0.3980199992656708, 0.44530999660491943, -0.663349986076355, -0.6476799845695496, 0.6221699714660645, 0.6083800196647644, 0.06095699965953827, 0.02833000011742115, 0.5249500274658203, 0.4015200138092041, -0.8994799852371216, 0.6025699973106384, -0.04124100133776665, 0.021832000464200974, -0.5932599902153015, 0.4345499873161316, 0.11298000067472458, 0.011227999813854694, -0.026983000338077545, -0.2886900007724762, -0.9895099997520447, -0.47064000368118286, -0.12884999811649323, -0.16549000144004822, 1.2243000268936157, -1.128999948501587, -0.6761900186538696, 0.5282599925994873, -0.2919299900531769, -0.607509970664978, 0.03955800086259842, -1.5643999576568604, 0.4947499930858612, 0.1438799947500229, -0.07771900296211243, 0.4818499982357025, 0.7727599740028381, -0.6364700198173523, -0.6223400235176086, -0.17437000572681427, -0.2917799949645996, -0.6494500041007996, -0.6337100267410278, -0.45590001344680786, -0.3957099914550781, -1.3387999534606934, 0.3036800026893616, -0.8321800231933594, -1.1813000440597534, -0.4683000147342682, 0.8422399759292603, -0.18667000532150269, -0.36500000953674316, -0.1887200027704239, 1.0921000242233276, -0.4333699941635132, -0.6693500280380249, 0.1348699927330017, -0.10626000165939331, 0.06474900245666504, 0.020478999242186546, 0.8679699897766113, 0.6367999911308289, -0.6543200016021729, 0.036687999963760376, 0.2959499955177307, -0.10095000267028809, -0.4912700057029724, 0.015416000038385391, -0.1835000067949295, 0.3985599875450134, -0.08235500007867813, 0.3002200126647949, 0.22287000715732574, 0.9281100034713745, -0.4429199993610382, -0.34228000044822693, -0.5994099974632263, 1.191100001335144, -0.21593999862670898, -0.6978800296783447, -0.06807699799537659, 0.008585699833929539, 0.2176699936389923, 0.30149000883102417, -0.7658399939537048, -0.7878900170326233, 0.3613699972629547, -0.21453000605106354, 0.03750399872660637, -0.2710599899291992, -0.25586000084877014, 0.12330000102519989, -1.105299949645996, -0.12284000217914581, 0.8231800198554993, 0.5052599906921387, 0.2643499970436096, -0.14962999522686005, -0.018045000731945038, 0.3959999978542328, -0.6531800031661987, 0.42638999223709106, 0.9783599972724915, 0.12297999858856201, 0.15945999324321747, -1.1445000171661377, -0.6407300233840942, 0.12092000246047974, -0.06970299780368805, 0.05146700143814087, 0.006768899969756603, -0.0007617900264449418, 0.706250011920929, 0.8620399832725525, -0.7349500060081482, -0.3700000047683716, -0.9976599812507629, -0.32475000619888306, -1.4217000007629395, 0.4335399866104126, -0.23548999428749084, 0.23265999555587769, 1.1238000392913818, 0.4168800115585327, -0.10033000260591507, -0.6019099950790405, 1.1670000553131104, 0.07371699810028076, -0.10769999772310257, -0.9971399903297424, 0.2722800076007843, -0.2165600061416626, -0.0937659963965416, -0.13274000585079193, -0.2015099972486496, 0.518779993057251, -0.274370014667511, -0.24603000283241272, -0.13359999656677246, -0.28648999333381653, 1.1747000217437744, -0.36157000064849854, 0.3756999969482422, 0.838699996471405, -0.5888500213623047, -1.127500057220459, -0.3121100068092346, 0.48728999495506287, -0.3930000066757202, -1.2538000345230103, 0.33011001348495483, -0.4252299964427948, 0.1763100028038025, 0.8350600004196167, 0.011986000463366508, 0.11208000034093857, 0.13389000296592712, 0.24297000467777252, -0.2750900089740753, -0.13574999570846558, -0.3199999928474426, -0.5287600159645081, -1.4424999952316284, -0.9900799989700317, -0.4917300045490265, -0.2331800013780594, 0.6391500234603882], u'foggy': [0.1920499950647354, -0.44808998703956604, -0.7609599828720093, -0.22559000551700592, -0.2908799946308136, -0.060899000614881516, 0.3211199939250946, 0.8578199744224548, 0.2827799916267395, 0.0018999000312760472, -0.013008000329136848, -0.10444000363349915, 0.010576999746263027, -0.11456000059843063, -0.328220009803772, -0.10158000141382217, 0.35708001255989075, -0.46070998907089233, 0.33296999335289, 0.24199999868869781, 0.4187000095844269, 0.3922699987888336, -0.16203999519348145, 0.14201000332832336, -0.7420399785041809, -0.7402399778366089, 0.33610999584198, 0.2478799968957901, 0.010433999821543694, -0.19833999872207642, 0.8184000253677368, -0.27702999114990234, -0.035732999444007874, -0.16029000282287598, 0.16006000339984894, 0.24597999453544617, -0.10980000346899033, -0.04018799960613251, -0.39939001202583313, -0.0144640002399683, 0.1588599979877472, 0.9081699848175049, -0.14135999977588654, -0.122359998524189, 0.20430999994277954, -0.007774699945002794, 0.24404999613761902, 0.16253000497817993, -0.6618099808692932, -0.38168999552726746, -0.061539001762866974, -0.4624499976634979, 0.4497700035572052, -0.2057799994945526, -0.40163999795913696, 0.5601400136947632, -0.14395999908447266, -0.43599000573158264, -0.02244899980723858, 0.5482100248336792, 0.13492000102996826, -0.42416998744010925, 0.013821999542415142, 0.3014799952507019, -0.38631001114845276, 0.17114000022411346, 0.3465000092983246, 0.32385000586509705, -0.08792699873447418, -0.4438300132751465, -0.21080000698566437, 0.3555000126361847, -0.8550199866294861, 0.08095899969339371, -0.8232100009918213, -0.21737000346183777, -0.09657300263643265, 0.4867599904537201, -0.10515999794006348, -0.3980900049209595, -0.2781600058078766, -0.02382799983024597, 0.056012000888586044, 0.24108999967575073, -0.4527300000190735, -0.06790799647569656, 0.33406999707221985, 0.33066999912261963, -0.11254999786615372, 0.39906999468803406, 0.1979999989271164, 0.13673999905586243, -0.2756600081920624, 0.10588999837636948, -0.22176000475883484, 0.7641400098800659, 0.627269983291626, 0.4507099986076355, -0.4154199957847595, -0.10801000148057938, 0.24447999894618988, -0.24638999998569489, 0.16267000138759613, 0.6016499996185303, -0.453220009803772, 0.270440012216568, 0.2274799942970276, 0.023809000849723816, -0.14334000647068024, 0.02387000061571598, -0.1737699955701828, -0.6927099823951721, 0.2736800014972687, -0.14680999517440796, 0.329259991645813, -0.47227999567985535, 0.2547599971294403, -0.6102200150489807, -0.14485999941825867, 0.00938310008496046, 0.20305000245571136, -0.7452999949455261, 0.22869999706745148, 0.03332199901342392, -0.17889000475406647, -0.5324100255966187, -0.01153900008648634, -0.5480700135231018, 0.25328999757766724, -0.17893999814987183, -0.01799199916422367, 1.1038999557495117, 0.5671799778938293, 0.38874998688697815, 0.06275799870491028, -0.24683000147342682, -0.11326000094413757, 0.6088399887084961, -0.4463199973106384, 0.08059000223875046, -0.053164999932050705, 0.09143999963998795, -0.12055999785661697, -0.2846499979496002, -0.6037600040435791, -0.38523998856544495, -0.12809999287128448, 0.10623999685049057, 0.20362000167369843, 0.19001999497413635, -0.41854000091552734, -0.18731999397277832, 0.44993001222610474, 0.0374549999833107, 0.21515999734401703, -0.42423999309539795, 0.41593000292778015, -0.12029000371694565, 0.4593200087547302, 0.5239499807357788, -0.6253499984741211, -1.1883000135421753, 0.15557999908924103, -0.7656400203704834, 0.35965999960899353, -0.42056000232696533, -0.009497099556028843, -0.0642160028219223, -0.18986999988555908, -0.41655001044273376, -0.1365399956703186, 0.11739999800920486, 0.26774999499320984, -0.5538399815559387, -0.3175100088119507, -0.3403100073337555, -0.339029997587204, -0.32332998514175415, -0.43202000856399536, -0.2731899917125702, 0.3128199875354767, 0.8273299932479858, 0.4622499942779541, -0.1206900030374527, 0.40151000022888184, 0.17106999456882477, 1.0241999626159668, -0.5577399730682373, -0.3907899856567383, -0.1629599928855896, 0.05680999904870987, -0.010095000267028809, -0.10779999941587448, -0.36768999695777893, -0.1610099971294403, -0.18943999707698822, -0.6578500270843506, -0.10480000078678131, -0.5941799879074097, 0.1923000067472458, 0.21788999438285828, -0.28227001428604126, 0.2930600047111511, -0.039000000804662704, 0.07778099924325943, -0.40557000041007996, -0.3912700116634369, -0.16410000622272491, -0.0322050005197525, -0.4102799892425537, -0.04393099993467331, 0.3045800030231476, -0.2567099928855896, -0.35012999176979065, -0.6296600103378296, -0.016945000737905502, 0.24940000474452972, -0.47196000814437866, 0.7145500183105469, 0.14037999510765076, 0.26892000436782837, 0.23680999875068665, 0.03850499913096428, 0.6157299876213074, 0.17795999348163605, 0.39364999532699585, 0.07385600358247757, -0.45656999945640564, 0.21660000085830688, -0.05530700087547302, -0.1291700005531311, -0.16639000177383423, -0.20611999928951263, -0.5526000261306763, 0.20167000591754913, -0.37713000178337097, -0.42197999358177185, 0.09210100024938583, 0.0593549981713295, -0.11429999768733978, 0.20723000168800354, -0.08421699702739716, -0.36524999141693115, -0.05537699908018112, -0.20340999960899353, -0.1958799958229065, -0.21780000627040863, 0.09577299654483795, 0.10153999924659729, -0.30303001403808594, -0.6665499806404114, 0.1585099995136261, 0.7972000241279602, 0.03154800087213516, -0.17979000508785248, 0.11991000175476074, 0.32163000106811523, 0.050436001271009445, -0.037987999618053436, 0.43000999093055725, -0.19934000074863434, 0.34233999252319336, -0.1242000013589859, 0.41804999113082886, 0.3709999918937683, 0.054228998720645905, -0.04266799986362457, -0.28321999311447144, 0.5960599780082703, 0.022505000233650208, 0.3235799968242645, -0.010817999951541424, -0.4487999975681305, 0.4029499888420105, 0.19493000209331512, 0.019034000113606453, 0.6373900175094604, -0.28338998556137085, 0.13981999456882477, 0.3032599985599518, -0.7367500066757202, 0.3300800025463104, 0.02949400059878826, -0.4720599949359894, 0.10745999962091446, 0.06429100036621094, -0.17798000574111938, 0.043494001030921936, -0.002572299912571907, -0.2418700009584427, 0.12479999661445618, -0.14458000659942627, -0.40529999136924744, 0.2917799949645996, 0.03389500081539154, -0.42467001080513, 0.31714001297950745, 0.6227700114250183, -0.5037699937820435, 0.5270900130271912], u'brushed': [0.13954000174999237, -0.07866699993610382, -0.5022600293159485, 0.16447000205516815, 0.3174000084400177, -0.7925599813461304, -0.3911300003528595, -0.22689999639987946, 0.34558001160621643, -0.6677799820899963, 0.2757900059223175, 0.15588000416755676, 0.3786199986934662, 0.047766998410224915, 0.09138700366020203, 0.36456000804901123, 0.1125200018286705, 0.12563000619411469, 0.3138299882411957, -0.2305999994277954, 0.34871000051498413, 0.334199994802475, -0.07136499881744385, -0.28536999225616455, -0.4962100088596344, 0.1123799979686737, 0.1964299976825714, 0.5842000246047974, -0.07354799658060074, 0.035975001752376556, 0.28621000051498413, -0.031197000294923782, 0.1839199960231781, -0.3317900002002716, -0.7240300178527832, -0.05497400090098381, -0.23135000467300415, 0.23555000126361847, 0.22842000424861908, 0.48256000876426697, 0.05604900047183037, 0.10869999974966049, -0.040856000036001205, -0.19050000607967377, 0.3297800123691559, 0.45572999119758606, -0.5095999836921692, -0.3471899926662445, -0.24776999652385712, 0.5306500196456909, -0.20347000658512115, 0.21032999455928802, 0.515209972858429, 0.12886999547481537, 0.4579299986362457, -0.08200100064277649, -0.31040000915527344, -0.07321999967098236, 0.3562999963760376, 0.17141999304294586, 0.2072799950838089, 0.19304999709129333, 0.012896000407636166, 0.13891999423503876, 0.07138500362634659, -0.2958900034427643, 0.07981500029563904, 0.06630399823188782, -0.03167000040411949, -0.6541799902915955, 0.31092000007629395, -0.47870999574661255, 0.6204000115394592, -0.18831999599933624, 0.3388200104236603, 0.08119700103998184, -0.2696700096130371, 0.17824000120162964, 0.13197000324726105, 0.17743000388145447, 0.19099000096321106, 0.3486599922180176, -0.07537899911403656, 0.12695999443531036, 0.23691000044345856, -0.021196000277996063, -0.47953999042510986, 0.1125200018286705, 0.14133000373840332, 0.2420099973678589, 0.17410999536514282, -0.06509999930858612, 0.03813000023365021, -0.14817999303340912, -0.40035998821258545, 0.03578300029039383, -0.31314998865127563, 0.4222300052642822, -0.09985599666833878, 0.26159000396728516, 0.42836999893188477, 0.14059999585151672, 0.010111999697983265, -0.22269000113010406, 0.552299976348877, -0.005577700212597847, -0.21538999676704407, -0.1998700052499771, -0.44929999113082886, 0.23122000694274902, 0.24216000735759735, 0.2380100041627884, -0.3162199854850769, -0.08183500170707703, 0.18459999561309814, 0.6019200086593628, 0.007736300118267536, 0.18758000433444977, -0.21945999562740326, -0.5058900117874146, -0.17574000358581543, -0.2170500010251999, -0.5418499708175659, 0.0917849987745285, -0.41370999813079834, 0.30744001269340515, -0.6054400205612183, 0.037776000797748566, 0.002914499957114458, 0.15150000154972076, -0.2265699952840805, 0.1629199981689453, -0.22503000497817993, 0.16006000339984894, 0.19262999296188354, 0.19269999861717224, 0.17021000385284424, 0.47314000129699707, 0.20796999335289001, -0.4228399991989136, 0.7288500070571899, 0.432559996843338, 0.47613999247550964, -0.15298999845981598, -0.014053000137209892, 0.7924000024795532, 0.40836000442504883, -0.34915998578071594, 0.04157700017094612, -0.6896100044250488, 0.35078001022338867, -0.3225899934768677, -0.05848199874162674, 0.41666001081466675, -0.2947799861431122, -0.1608400046825409, 0.09184599667787552, -0.4282200038433075, 0.1358100026845932, 0.2866399884223938, 0.4937399923801422, -0.25372999906539917, -0.08024399727582932, -0.4217599928379059, 0.5554599761962891, 0.023250000551342964, 0.09004499763250351, 0.31723999977111816, 0.7531099915504456, -0.8209800124168396, -0.5594599843025208, -0.09074600040912628, -0.0690469965338707, -0.5347899794578552, -0.02853200025856495, -0.4035300016403198, 0.25710999965667725, 0.40766000747680664, 0.33274999260902405, -0.31095001101493835, -0.21315999329090118, 0.04692399874329567, 0.46726998686790466, -0.17788000404834747, -0.4720599949359894, 0.06422500312328339, 0.19892999529838562, 0.24778999388217926, 0.2978000044822693, 0.4970099925994873, -0.06865400075912476, -0.1481200009584427, -0.26752999424934387, 0.10862000286579132, -0.16017000377178192, 0.08053400367498398, 0.38593000173568726, -0.02408899925649166, -0.3412100076675415, -0.4513700008392334, 0.2796899974346161, -0.35512998700141907, -0.0038614000659435987, -0.24320000410079956, -0.193900004029274, -0.04079100117087364, 0.06522200256586075, -0.4021500051021576, -0.3566800057888031, 0.18916000425815582, -0.04039900004863739, 0.3876200020313263, 0.2024500072002411, 0.14837999641895294, 0.36581000685691833, -0.4935399889945984, 0.4506799876689911, -0.8060600161552429, 0.29521000385284424, -0.24607999622821808, 0.8088899850845337, 0.03404900059103966, 0.09428299963474274, -0.2731199860572815, 0.1879899948835373, 0.025962000712752342, 0.6382799744606018, -0.023086000233888626, -0.0058651999570429325, -0.3033300042152405, 0.20496000349521637, -0.3079800009727478, 0.3383300006389618, 0.01863200031220913, 0.27584999799728394, -0.2420700043439865, -0.015432000160217285, -0.22812999784946442, -0.11148999631404877, -0.26052001118659973, -0.05091699957847595, 0.030331000685691833, -0.8456699848175049, 0.12161000072956085, -0.03299900144338608, -0.18809999525547028, 0.016659999266266823, -0.397599995136261, -0.1903499960899353, 0.02274000085890293, -0.027677999809384346, -0.2456900030374527, 0.45938000082969666, -0.019437000155448914, 0.19584999978542328, -0.44290998578071594, -0.3844900131225586, 0.23487000167369843, -0.7052599787712097, 0.057043999433517456, -0.29017001390457153, -0.4092099964618683, -0.27904000878334045, 0.2527500092983246, 0.12791000306606293, 0.1837099939584732, -0.33037999272346497, -0.1846799999475479, -0.27803000807762146, 0.21087999641895294, 0.1517000049352646, 0.05944500118494034, -0.3933899998664856, -0.33649998903274536, -0.42699000239372253, 0.4369400143623352, -0.0259380005300045, -0.2810699939727783, -0.07350300252437592, -0.15196000039577484, 0.5099800229072571, 0.07492099702358246, -0.22394999861717224, 0.35613998770713806, 0.023382000625133514, -0.0445530004799366, 0.6392300128936768, -0.18463000655174255, 0.3089199960231781, 0.34544000029563904, -0.19683000445365906, 0.5128399729728699, 0.46441999077796936, 0.3277300000190735, -0.1862799972295761, 0.4585599899291992, -0.5186499953269958, -0.3045499920845032, -0.03577199950814247, 0.16335999965667725], u'dull': [0.18584999442100525, 0.02883799932897091, -0.14858999848365784, -0.22972999513149261, 0.3456900119781494, 0.01106099970638752, -0.22700999677181244, 0.6614099740982056, 0.3231399953365326, -0.5746200084686279, -0.3912700116634369, 0.03861900046467781, -0.425819993019104, -0.005762199871242046, -0.008040999993681908, -0.4318400025367737, -0.39980000257492065, -0.010863999836146832, 0.15473000705242157, -0.5899199843406677, -0.28571999073028564, 0.5085899829864502, 0.1268800050020218, 0.25571998953819275, -0.2371399998664856, 0.003424100112169981, 0.5954200029373169, -0.811460018157959, 0.11712999641895294, -0.16241000592708588, -0.4702500104904175, 0.13087999820709229, 0.06576500087976456, 0.10633999854326248, -0.7402200102806091, 1.1837999820709229, -0.13808999955654144, 0.04258599877357483, -0.12647999823093414, -0.062334999442100525, 0.8489000201225281, 0.4855400025844574, -0.05917000025510788, -0.8351200222969055, 0.9609400033950806, 0.19380000233650208, -0.37196001410484314, -0.45813000202178955, 0.23026999831199646, -0.24143999814987183, 0.2606799900531769, 0.0992640033364296, 0.8162999749183655, -0.21157999336719513, 0.155689999461174, 0.23781999945640564, -0.06647200137376785, -0.3992699980735779, 0.34356001019477844, 0.29631999135017395, 0.050296999514102936, -0.7691400051116943, 0.27132999897003174, 0.005022699944674969, 0.15995000302791595, -0.3725599944591522, 0.6954900026321411, -0.2714900076389313, 0.7671499848365784, -0.31248998641967773, -0.02417300082743168, 0.04933999851346016, 0.4163700044155121, 0.48737001419067383, 0.12679000198841095, 0.15205000340938568, -0.46852999925613403, 0.6898199915885925, 0.22303999960422516, 0.2725200057029724, 0.05376499891281128, 0.3765900135040283, 0.03622899949550629, -0.2557699978351593, 0.2806600034236908, 0.14330999553203583, 0.5565299987792969, 0.03005800023674965, -0.02542800083756447, 0.6120100021362305, 0.24624000489711761, 0.3362399935722351, 0.4717099964618683, -0.420879989862442, -0.1775200068950653, 0.5474900007247925, 0.2267799973487854, 0.440530002117157, 0.4054499864578247, 0.17615999281406403, -0.07519800215959549, -0.1251399964094162, -0.35815000534057617, 0.37909001111984253, -0.3764300048351288, -0.4201900064945221, -0.05858499929308891, -0.2045000046491623, 0.002391000045463443, 0.2379000037908554, -0.4523099958896637, 0.14079000055789948, -0.01721400022506714, -0.4280500113964081, -0.0017450000159442425, -0.0641150027513504, 0.2573699951171875, 0.23465999960899353, 0.126010000705719, -0.20562000572681427, -0.2805500030517578, -0.5196099877357483, -0.3946099877357483, 0.793690025806427, 0.032260000705718994, 0.6100500226020813, 0.2788200080394745, 0.3039099872112274, -0.00590580003336072, -0.10569000244140625, -0.47543999552726746, 0.0899059996008873, 0.03222699835896492, 0.2519499957561493, -0.5217000246047974, 0.08195699751377106, -0.013701999559998512, 0.27663999795913696, 0.42100998759269714, 0.4839499890804291, 0.7553899884223938, 0.21821999549865723, 0.02720700018107891, -0.25512999296188354, -0.01998100057244301, 0.09703700244426727, 0.6378200054168701, 0.032315000891685486, -0.5253300070762634, -0.024903999641537666, -0.6669099926948547, 0.1571200042963028, -0.11687000095844269, -0.46004000306129456, 0.335099995136261, -0.2608799934387207, 0.35304999351501465, -0.6343899965286255, 0.294979989528656, 0.3474999964237213, -0.7785999774932861, -0.13716000318527222, 0.6595699787139893, -0.0787770003080368, 0.30382001399993896, 0.40873000025749207, -0.4047999978065491, -0.15910999476909637, -0.17305999994277954, -0.1850699931383133, -0.20111000537872314, -0.2959200143814087, -0.6208299994468689, 0.16301000118255615, -0.24863000214099884, -0.14523999392986298, 0.09615399688482285, -0.31038999557495117, 0.10097000002861023, -0.17601999640464783, 0.11708000302314758, -0.1514900028705597, -0.40128999948501587, 0.27741000056266785, 0.06046200171113014, -0.16909000277519226, 1.1644999980926514, 0.08109699934720993, -0.4767000079154968, 0.06322299689054489, 0.3812600076198578, -0.331930011510849, 0.051513999700546265, -0.2894499897956848, 0.2728300094604492, 0.10232000052928925, -0.7619199752807617, 0.033094000071287155, -0.10322000086307526, -0.0023203000891953707, 0.22520999610424042, -0.26120999455451965, -0.012089000083506107, 0.15616999566555023, 0.22653000056743622, -0.21112999320030212, 0.1836400032043457, 0.08416400104761124, -0.06900099664926529, -0.04487600177526474, 0.045899998396635056, -0.21466000378131866, -0.5708000063896179, 0.19111000001430511, -0.23819999396800995, -0.06490100175142288, 0.5831800103187561, -0.049031998962163925, -0.0895489975810051, -0.35512998700141907, -0.2781299948692322, -0.2983100116252899, -0.30608001351356506, 0.0824970006942749, -0.6245399713516235, -0.03314099833369255, 0.39228999614715576, -0.3050599992275238, 0.1174200028181076, -0.2079399973154068, 0.30028000473976135, 0.08245600014925003, 0.15031999349594116, -0.8282999992370605, 0.26875999569892883, 0.3484500050544739, -0.20258000493049622, 0.42298999428749084, -0.23836000263690948, -0.15376000106334686, 0.5131099820137024, -0.48596999049186707, -0.4549500048160553, 0.08403400331735611, -0.3254300057888031, 0.23142999410629272, 0.06543999910354614, -0.20879000425338745, -0.11269000172615051, -0.34213000535964966, 0.2945399880409241, -0.08821400254964828, 0.09436099976301193, 0.20590999722480774, 0.0162540003657341, -0.19850000739097595, 0.4143100082874298, -0.24580000340938568, -0.35148999094963074, 0.2091899961233139, -0.022881999611854553, -0.2630699872970581, 0.12815000116825104, -0.15279999375343323, 0.18203000724315643, 0.5323799848556519, 0.1923999935388565, -0.23503999412059784, 0.011156000196933746, 0.49625998735427856, -0.09220000356435776, -0.14100000262260437, 0.1565600037574768, -0.08679600059986115, -0.39395999908447266, 0.36383000016212463, -0.34784001111984253, -0.1234700009226799, -0.020201999694108963, 0.23336000740528107, -0.11094000190496445, 0.6462500095367432, -0.05222100019454956, 0.039632998406887054, 0.5599799752235413, 0.17499999701976776, -0.1996700018644333, 0.20687000453472137, -0.4896099865436554, 0.016242999583482742, 0.5666999816894531, 0.6817799806594849, -0.6073099970817566, 0.37685999274253845, -0.2147900015115738, -0.25325000286102295, -0.37432000041007996, 0.19086000323295593, 0.17282000184059143, 0.29221999645233154], u'wide': [-0.45120999217033386, 0.06519900262355804, -0.07132399827241898, -0.3358500003814697, 0.42524999380111694, 0.6678100228309631, -0.1014999970793724, -0.25652000308036804, 0.041138000786304474, -1.2138999700546265, 0.356550008058548, 0.9125400185585022, -0.37985000014305115, -0.031401000916957855, 0.10429999977350235, -0.11485999822616577, -0.3640100061893463, 0.5606799721717834, 0.008043100126087666, 0.5273000001907349, 0.5118700265884399, 0.3109300136566162, -0.21176999807357788, -0.17482000589370728, -0.30136001110076904, 0.4031299948692322, -0.15434999763965607, -0.6145399808883667, -0.012741000391542912, -0.003686700016260147, -0.06703799962997437, 0.19200000166893005, 0.017035000026226044, 0.05317400023341179, -0.9898999929428101, -0.09114400297403336, -0.4139400124549866, -0.069022998213768, -0.03223299980163574, -0.15636999905109406, -0.7103400230407715, 0.20167000591754913, 0.28512001037597656, -0.05289199948310852, -0.06861399859189987, 0.5667700171470642, 0.3297100067138672, -0.29850998520851135, 0.02566700056195259, -0.02413100004196167, -0.2413800060749054, -0.03793900087475777, 0.2360299974679947, -0.28227999806404114, -0.05395599827170372, -0.5365800261497498, 0.3521600067615509, -0.5562899708747864, -0.046163998544216156, -0.09248600155115128, 0.04679099842905998, -0.08770299702882767, -0.25738000869750977, -0.09344100207090378, 0.17655999958515167, -0.6270700097084045, 0.421779990196228, 0.07002600282430649, 0.18624000251293182, -0.22779999673366547, -0.015771999955177307, 0.13197000324726105, 0.3914499878883362, 0.07135999947786331, 0.4372499883174896, 0.19446000456809998, 0.31237998604774475, 0.14067000150680542, 0.05547399818897247, 0.2248000055551529, 0.1469700038433075, -0.48399001359939575, -0.17624999582767487, -0.26743000745773315, 0.032944999635219574, 0.2147900015115738, 0.7063199877738953, -0.263839989900589, 0.10214000195264816, 0.15365000069141388, -0.1027899980545044, 0.12306000292301178, -0.3452000021934509, -0.12432999908924103, -0.3199700117111206, -0.34112998843193054, 0.1612900048494339, -0.2512100040912628, 0.3395799994468689, -0.46970000863075256, -0.2528400123119354, -0.3594000041484833, -0.025141999125480652, -0.23284000158309937, -0.44165998697280884, 0.2951200008392334, 0.4241099953651428, 0.23756000399589539, -0.19554999470710754, -0.03553999960422516, 0.008429300040006638, -0.10002999752759933, 0.6079999804496765, -0.4519999921321869, 0.1361600011587143, -0.016002999618649483, -0.18945999443531036, 0.3930700123310089, 0.1856900006532669, 0.05595000088214874, -0.25044000148773193, -0.23694999516010284, 0.39989998936653137, -0.10057999938726425, 0.40261998772621155, 0.14722999930381775, 0.07740499824285507, 0.8052600026130676, -0.15851999819278717, -0.006513500120490789, -0.2501800060272217, -0.2532399892807007, -0.5436000227928162, 0.3422600030899048, 0.34762001037597656, -0.591159999370575, 0.13107000291347504, -0.07986299693584442, -0.2805100083351135, 0.12498000264167786, -0.047988999634981155, -0.015402999706566334, 0.39517998695373535, -0.4146899878978729, -0.7235299944877625, 0.4734500050544739, -0.38095998764038086, -0.4769900143146515, 0.17034000158309937, -0.24539999663829803, 0.22237999737262726, 0.16006000339984894, 0.10632000118494034, -0.4997999966144562, 1.0799000263214111, 0.33066999912261963, 0.08892100304365158, -0.03309199959039688, 0.1663299947977066, -0.14169000089168549, -0.06741099804639816, -0.2500300109386444, 0.5012400150299072, -0.0665069967508316, -0.09261900186538696, -0.4097200036048889, 0.06714800000190735, 0.7380499839782715, -0.12571999430656433, 0.27557000517845154, -0.13221000134944916, -0.3892199993133545, -0.40821000933647156, 0.024032000452280045, 0.3443000018596649, 0.3266099989414215, -0.3999600112438202, 0.18803000450134277, 0.1994899958372116, -0.4398599863052368, 0.06222100183367729, -0.5560299754142761, 0.4400700032711029, 0.2711699903011322, -0.030691999942064285, -0.846589982509613, 0.08955900371074677, 0.1305299997329712, 0.3818899989128113, 0.8453400135040283, 0.008801200427114964, 0.6435800194740295, -0.26875999569892883, 0.19584999978542328, 0.06049500033259392, -0.21461999416351318, 0.44470998644828796, -0.22436000406742096, 0.44426000118255615, 0.2999599874019623, 0.5945600271224976, 0.46492999792099, -0.25964999198913574, 0.01797099970281124, 0.13381999731063843, -0.09787599742412567, -0.42879998683929443, -0.3097200095653534, 0.18592999875545502, 0.16985000669956207, 1.0795999765396118, -0.14941999316215515, -0.040546998381614685, 0.2897700071334839, -0.09529399871826172, 0.21980999410152435, -0.23869000375270844, -0.06202799826860428, 0.2706100046634674, -0.5857300162315369, 0.8098499774932861, -0.40577998757362366, -0.0320810005068779, -0.17194999754428864, 0.542900025844574, 0.6728000044822693, 0.1436000019311905, -0.23939000070095062, 0.0794999971985817, -0.06754600256681442, 0.3359200060367584, 0.32708999514579773, -0.1342500001192093, 0.39609000086784363, -0.029892999678850174, -0.1269499957561493, -0.1124500036239624, -0.21589000523090363, -0.5635300278663635, 0.08305300027132034, -0.018225999549031258, 0.13068999350070953, 0.02495099976658821, -0.11315999925136566, -1.0578999519348145, 0.2329699993133545, -0.21991999447345734, 0.2306700050830841, 0.3049199879169464, 0.6161800026893616, 0.17213000357151031, -0.07189299911260605, 0.38117000460624695, -0.9196500182151794, -0.10749000310897827, 0.21784000098705292, -0.25297001004219055, -0.028023000806570053, -0.23537999391555786, 0.4410899877548218, 0.24031999707221985, -0.2740600109100342, 0.49441999197006226, -0.47216999530792236, -0.487060010433197, -0.22246000170707703, -0.49022001028060913, 0.33809998631477356, 0.33493998646736145, -0.26017001271247864, 0.15421999990940094, -0.11270000040531158, 0.13371999561786652, 0.3950299918651581, -0.09216099977493286, -0.20535999536514282, -1.891700029373169, 0.4166800081729889, -0.14847999811172485, -0.3845599889755249, -0.13985000550746918, -0.11449000239372253, 0.4321100115776062, 0.16958999633789062, 0.1505099982023239, 0.0715939998626709, -0.8312900066375732, -0.04621899873018265, 0.4296799898147583, -0.03534799814224243, 0.2073799967765808, 0.30278998613357544, -0.15098999440670013, 0.30121999979019165, 0.2910600006580353, 0.7753700017929077, -0.4822100102901459, -0.06549999862909317, 0.034143999218940735, -0.7738900184631348], u'winding': [-0.16143999993801117, -0.17175999283790588, 0.44203999638557434, 0.5006200075149536, -0.10292000323534012, 0.07138299942016602, -0.010772000066936016, -0.050269998610019684, 0.5128899812698364, -0.33719000220298767, -0.5076000094413757, -0.1876000016927719, -0.11326000094413757, -0.6269800066947937, -0.4005799889564514, 0.21726000308990479, -0.613070011138916, -0.6958100199699402, 0.5583599805831909, 0.2457199990749359, -0.31867000460624695, -0.05759900063276291, -0.1837099939584732, 0.3487899899482727, -0.22811000049114227, -0.2791700065135956, 0.2678700089454651, -0.7391999959945679, -0.06328299641609192, 0.6096299886703491, 0.5703200101852417, 0.14263999462127686, 0.28700000047683716, 0.12447000294923782, -0.49004998803138733, 0.6540600061416626, -0.32409000396728516, -0.44958001375198364, -0.23375000059604645, -0.19881999492645264, -0.4292899966239929, 0.04081299901008606, -0.259660005569458, 0.035252999514341354, -0.06926199793815613, 0.16439999639987946, 0.7162899971008301, 0.7671800255775452, -0.09631799906492233, -0.32378000020980835, -0.47846001386642456, 0.3795500099658966, 0.4572499990463257, 0.18118999898433685, 0.3994799852371216, -0.053415000438690186, 0.04441099986433983, -0.12230999767780304, 0.21897999942302704, 0.5827500224113464, 0.178739994764328, -0.23351000249385834, 0.7782999873161316, 0.1597999930381775, -0.009454299695789814, 0.22242000699043274, -0.09848500043153763, 0.45622000098228455, 0.29585000872612, -0.39243000745773315, 0.06812600046396255, 0.30171000957489014, 0.09155400097370148, 0.31112998723983765, 0.5073800086975098, 0.3744100034236908, 0.05374399945139885, -0.05392500013113022, 0.34992000460624695, -0.4348300099372864, 0.167480006814003, -0.16068999469280243, -0.04196099936962128, 0.18328000605106354, -0.00044517999049276114, -0.08443000167608261, 0.1897200047969818, 0.17496000230312347, -0.06956499814987183, 0.4628799855709076, 0.6558099985122681, -0.17515000700950623, 0.09093999862670898, -0.3731499910354614, -0.23826000094413757, -0.015845999121665955, 0.01463400013744831, -0.06509199738502502, 0.2888599932193756, 0.0719119980931282, -0.2896699905395508, 0.27390000224113464, -0.1623699963092804, 0.16801999509334564, -0.5184599757194519, -0.21897999942302704, 0.49667999148368835, -0.32565999031066895, -0.42649999260902405, -0.09298799932003021, -0.4438900053501129, -0.2634199857711792, -0.012914000079035759, 0.11326999962329865, 0.03668700158596039, 0.31749001145362854, 0.3179300129413605, 0.04684299975633621, -0.1787700057029724, 0.07107900083065033, 0.06544200330972672, -0.5736200213432312, 0.3100000023841858, -0.12132000178098679, 0.16814999282360077, 0.25867000222206116, 0.13699999451637268, -0.0022108000703155994, -0.5400300025939941, -0.1719599962234497, 0.15945999324321747, 0.5127099752426147, -0.051867999136447906, 0.11235000193119049, 0.06235399842262268, 0.425790011882782, 0.20886999368667603, 0.328220009803772, -0.030841000378131866, -0.5344499945640564, 0.1586800068616867, -0.2809399962425232, -0.17467999458312988, 0.15553000569343567, -0.4383400082588196, 0.1584099978208542, 0.12048999965190887, -0.5007799863815308, 0.4301399886608124, 0.5738099813461304, -0.023632999509572983, -0.019488999620079994, -0.5479900240898132, -0.21060000360012054, 1.07260000705719, -0.17521999776363373, 0.43050000071525574, 0.002440399955958128, 0.11223000288009644, 0.356469988822937, -0.3718999922275543, -0.0483269989490509, -0.3628300130367279, -0.10301999747753143, 0.43542999029159546, 0.5466600060462952, 0.36901000142097473, -0.11919999867677689, -0.03416400030255318, -0.2476699948310852, -0.18862000107765198, -0.03972399979829788, 0.5114700198173523, -0.15850000083446503, -0.17734000086784363, 0.11534000188112259, -0.6032400131225586, 0.11441999673843384, -0.05931999906897545, -0.05646099895238876, -0.24132999777793884, 0.11007999628782272, -0.25523000955581665, 0.31630998849868774, -0.1383800059556961, -0.12456999719142914, -0.15244999527931213, -0.5750499963760376, -0.11221999675035477, 0.015908999368548393, -0.11387000232934952, 0.2608399987220764, -0.22082999348640442, -0.03252999857068062, 0.2542499899864197, 0.04151900112628937, -0.38938000798225403, -0.20827999711036682, 0.15223999321460724, -0.16625000536441803, 0.10384000092744827, 0.5586000084877014, 0.34751999378204346, 0.5608500242233276, 0.60794997215271, 0.39100998640060425, -0.5064100027084351, -0.5483099818229675, 0.2730399966239929, 0.341839998960495, -0.08987899869680405, 0.1880200058221817, 0.44405001401901245, -0.3013800084590912, -0.351639986038208, 0.05383700132369995, -0.013953999616205692, -0.45664000511169434, 0.13474999368190765, -0.06553000211715698, 0.49939000606536865, -0.4682900011539459, -0.46650001406669617, -0.05999099835753441, 0.19352999329566956, 0.06631000339984894, 0.00031341001158580184, -0.049199000000953674, -0.4242599904537201, -0.42083001136779785, -0.3697200119495392, -0.21146999299526215, 0.24403999745845795, -0.04330800101161003, 0.1708499938249588, 0.2932499945163727, 0.23190000653266907, -0.5338199734687805, 0.2300799936056137, -0.03809700161218643, 0.524619996547699, 0.43935999274253845, 0.07876300066709518, -0.05877299979329109, -0.26183998584747314, -0.11846999824047089, 0.1468600034713745, 0.5202299952507019, 0.028084000572562218, 0.1737300008535385, 0.3602699935436249, -0.23723000288009644, -0.13931000232696533, -0.9176599979400635, 0.5181999802589417, 0.012129999697208405, -0.2812199890613556, 0.4586699903011322, -0.4437299966812134, -0.09870000183582306, 0.04066700115799904, -0.03921100124716759, 0.2504200041294098, -0.2593100070953369, 0.5504299998283386, 0.11219000071287155, 0.16701999306678772, -0.45517000555992126, 0.6432600021362305, -0.4597199857234955, 0.05745299905538559, 0.15095999836921692, 0.26197999715805054, 0.2767300009727478, 0.1743600070476532, 0.3111500144004822, -0.48087000846862793, -0.05780800059437752, 0.5390899777412415, 0.10488999634981155, 0.34707000851631165, -0.4662500023841858, -0.02337699942290783, -0.32256999611854553, -0.33855998516082764, 0.17428000271320343, 0.09445200115442276, 0.23677000403404236, -0.28363001346588135, -0.1995600014925003, 0.11855000257492065, 0.45765000581741333, -0.05752300098538399, 0.642009973526001, -0.2015099972486496, 0.8726400136947632, -0.11902999877929688, 0.6165199875831604, -0.15143999457359314, -0.02578599937260151], u'frozen': [0.07587900012731552, 0.25369998812675476, 0.37575000524520874, -0.055431999266147614, 0.2945899963378906, -0.32067999243736267, 0.46432000398635864, -0.0036973999813199043, -0.19314000010490417, -1.1694999933242798, -0.4463900029659271, -0.7726399898529053, -0.27674999833106995, -0.607699990272522, -0.34564000368118286, -0.02418600022792816, -0.020287999883294106, -0.160180002450943, -0.27605998516082764, 1.0261000394821167, -0.03417599946260452, 0.22279000282287598, 0.16840000450611115, -0.2537199854850769, -0.5106899738311768, 0.5115500092506409, -0.43285998702049255, -0.32350000739097595, 0.3586300015449524, -0.020766999572515488, -0.4193600118160248, -0.10870999842882156, 0.268669992685318, -0.06802400201559067, 0.11914999783039093, 0.4412499964237213, 0.07993800193071365, 0.7500900030136108, -0.27483999729156494, 0.5049499869346619, -0.46643999218940735, -0.05189099907875061, -0.2462799996137619, 0.8567500114440918, -0.39660000801086426, -0.0259380005300045, -0.23774999380111694, 0.17735999822616577, -0.10762999951839447, 0.4309700131416321, -0.30875998735427856, 0.1396999955177307, 0.28525999188423157, -0.0315140001475811, -0.35909000039100647, -0.05594399943947792, 0.8547000288963318, -0.0723470002412796, 0.37147998809814453, 0.2071399986743927, 0.15769000351428986, 0.5688199996948242, -0.10001000016927719, -0.2103700041770935, -0.5521900057792664, -0.19867999851703644, -0.46584999561309814, -0.0995749980211258, -0.2836399972438812, 0.2903600037097931, 0.5253099799156189, 0.788670003414154, 0.04072500020265579, 0.026768000796437263, 0.06382600218057632, -0.056657999753952026, 0.5696899890899658, -0.39702001214027405, 0.4217199981212616, -0.008147199638187885, -0.15112000703811646, -0.004907799884676933, -0.3365899920463562, 0.6466100215911865, -0.09740900248289108, -0.8722800016403198, -0.20542000234127045, 0.10055000334978104, -0.5379300117492676, -0.35148999094963074, -0.1858299970626831, -0.09597799926996231, -0.38464999198913574, -0.01190400030463934, 0.010936000384390354, 0.2535499930381775, -0.4515500068664551, -0.10762999951839447, 0.14153000712394714, 0.07518500089645386, 0.3086099922657013, -0.15259000658988953, 0.3262700140476227, -0.3104900121688843, -0.6045600175857544, -0.23026999831199646, 0.17906999588012695, 0.6757100224494934, -0.3552899956703186, -0.18648000061511993, -0.19268999993801117, -0.32319000363349915, 0.11354000121355057, -0.34637001156806946, -0.4662100076675415, -0.7745000123977661, 0.23240000009536743, 0.01634100079536438, 0.16670000553131104, 0.3326199948787689, -0.20282000303268433, -0.37003999948501587, -0.22468000650405884, 0.38253000378608704, 0.0039311000145971775, 0.48225998878479004, -0.467849999666214, 0.37275001406669617, 0.1380700021982193, -0.022064000368118286, -0.4654900133609772, 0.8111299872398376, 0.17903000116348267, 0.12913000583648682, -0.40931999683380127, 0.1291400045156479, 0.18950000405311584, 0.2776699960231781, -0.609969973564148, -0.09055399894714355, 0.19892999529838562, -0.5876299738883972, -0.3178600072860718, -0.3596000075340271, -0.33719998598098755, -0.020524999126791954, -0.3599900007247925, -0.04706500098109245, -0.07538300007581711, -0.5600200295448303, -0.43650999665260315, 0.05698399990797043, -0.17757999897003174, 0.09262499958276749, 0.35767000913619995, -0.1820400059223175, -0.5436400175094604, -0.7774199843406677, 0.06318099796772003, 0.2555199861526489, -0.08567000180482864, 0.333189994096756, -0.14114999771118164, 0.7617999911308289, 0.28016000986099243, 0.159170001745224, 0.8454399704933167, -0.32649001479148865, -0.1025099977850914, -0.37130001187324524, 0.47889000177383423, 0.37376001477241516, -0.48548999428749084, -0.06286100298166275, -0.03560199961066246, 0.23734000325202942, 0.38929998874664307, -0.23356999456882477, 0.2462099939584732, 0.030473999679088593, 0.38332998752593994, -0.5684099793434143, 0.3461099863052368, 0.03613400086760521, -0.21604999899864197, -0.17800000309944153, 0.8453400135040283, -0.6884599924087524, 0.04306799918413162, -0.4694100022315979, 0.24782000482082367, 0.7042099833488464, -0.19808000326156616, -0.2942500114440918, -0.4216499924659729, -0.26888999342918396, -0.45625999569892883, 0.004610300064086914, -0.17041000723838806, 0.4266200065612793, 0.8109700083732605, -0.3591499924659729, 0.4918000102043152, 0.4611999988555908, -0.010999999940395355, -0.5588499903678894, 0.34341999888420105, -0.02009199932217598, -0.32879000902175903, 0.015269000083208084, 0.023242000490427017, 0.1014299988746643, -0.5371000170707703, 0.05004800111055374, -0.2917900085449219, -0.0015213999431580305, 0.7375800013542175, -0.4875499904155731, -0.06169300153851509, 0.7496399879455566, 0.9489200115203857, -0.1649399995803833, 0.24683000147342682, -0.5043399930000305, 0.06172500178217888, 0.19633999466896057, -0.014582999981939793, 0.2067600041627884, -0.5167099833488464, -0.13142000138759613, 0.04201199859380722, -0.05884300172328949, 0.3364900052547455, -0.22281000018119812, 5.558400062000146e-06, 0.41923999786376953, -0.10644999891519547, 0.4005900025367737, -0.2370699942111969, -0.36858999729156494, -0.6717600226402283, -0.4097599983215332, 0.4347200095653534, -0.1883700042963028, -1.0771000385284424, -0.10978999733924866, 0.4881899952888489, 0.3393099904060364, -0.3332099914550781, -0.8123499751091003, 0.4552200138568878, 0.39921000599861145, 0.09402400255203247, 0.06826300173997879, 0.0766490027308464, -0.22291000187397003, -0.20207999646663666, 0.17555999755859375, -0.07166600227355957, 0.6143500208854675, 0.4148299992084503, 0.18355000019073486, -0.21743999421596527, -0.027612000703811646, 0.4424000084400177, -0.2994700074195862, 0.16259999573230743, 0.5188999772071838, 0.05053900182247162, -0.27456000447273254, -0.38214999437332153, 0.345550000667572, -0.008546999655663967, 0.3525800108909607, 0.6261399984359741, 0.2054000049829483, -1.019700050354004, -0.6795799732208252, -0.40018001198768616, -0.42173001170158386, -0.1491899937391281, -0.04976100102066994, 0.016330000013113022, -0.5316600203514099, -0.3441999852657318, -0.006844600196927786, 0.22382999956607819, 0.2970300018787384, 0.3915199935436249, 0.42100998759269714, -0.028849000111222267, -0.49164000153541565, 0.17964999377727509, 0.08798299729824066, -0.5353400111198425, -0.3065299987792969, 0.9651600122451782, -0.06115800142288208, -0.07816799730062485, -0.1784300059080124], u'straight': [0.022686999291181564, 0.29695001244544983, -0.2200700044631958, -0.11010999977588654, -0.10238999873399734, 0.09401199966669083, -0.44881999492645264, -0.1159299984574318, 0.3345000147819519, -0.7172300219535828, 0.29322001338005066, 0.13605999946594238, -0.20242999494075775, 0.034508999437093735, -0.36142998933792114, -0.4166499972343445, -0.1396300047636032, 0.22386999428272247, 0.48649001121520996, -0.3097600042819977, -0.32284000515937805, -0.42587000131607056, -0.05627899989485741, 0.1747400015592575, 0.4581199884414673, -0.4005900025367737, 0.3454599976539612, -0.4135800004005432, 0.1606599986553192, 0.25995999574661255, -0.03979500010609627, 0.28181999921798706, 0.2261199951171875, -0.46717000007629395, -1.8819999694824219, 0.16151000559329987, -0.255840003490448, -0.333840012550354, -0.06818900257349014, 0.4807800054550171, -0.11118000000715256, 0.47832998633384705, -0.32304999232292175, -0.21642999351024628, -0.011744000017642975, 0.4431299865245819, -0.15790000557899475, -0.023699000477790833, -0.39403998851776123, 0.10920999944210052, -0.019791999831795692, 0.2991600036621094, 0.516260027885437, 0.08876799792051315, -0.16280999779701233, -0.24730999767780304, -0.025731999427080154, -0.049915000796318054, -0.16095000505447388, 0.08058799803256989, -0.1733900010585785, -0.3992699980735779, -0.11918000131845474, 0.20872999727725983, -0.12839999794960022, -0.4701699912548065, -0.08325599879026413, 0.20909999310970306, 0.2984600067138672, -0.26353999972343445, 0.05584599822759628, -0.03706900030374527, -0.3727099895477295, 0.2442999929189682, 0.2438800036907196, -0.26006001234054565, -0.13485999405384064, -0.3073999881744385, -0.038672998547554016, -0.30239999294281006, -0.12557999789714813, 0.11819999665021896, 0.3788299858570099, 0.13221000134944916, -0.2331400066614151, -0.029733000323176384, -0.09860700368881226, -0.035023000091314316, 0.4549799859523773, -0.1289599984884262, 0.9165999889373779, 0.4334999918937683, -0.2758300006389618, -0.4065600037574768, -0.12026000022888184, 0.33153998851776123, -0.7650200128555298, 0.40985000133514404, -0.18911999464035034, -0.6794999837875366, -0.01553099974989891, 0.29910001158714294, -0.04772400110960007, -0.37119999527931213, -0.14305000007152557, -0.02316099964082241, 0.1497499942779541, -0.4450100064277649, -0.38995999097824097, 0.007939600385725498, -0.213469997048378, -0.3151499927043915, -0.2599300146102905, -0.7043099999427795, -0.2617399990558624, 0.48987001180648804, -0.007559699937701225, -0.047228001058101654, -0.20027999579906464, -0.13479000329971313, -0.011009999550879002, -0.048813000321388245, 0.21772000193595886, -0.06869100034236908, -0.018654000014066696, 0.3159399926662445, -0.0948370024561882, -0.14792999625205994, 0.1975499987602234, -0.06429900228977203, -0.1546500027179718, 0.47095000743865967, -0.1408900022506714, 0.24130000174045563, -0.18604999780654907, 0.544439971446991, 0.19662000238895416, 0.5259900093078613, -0.008229799568653107, 0.4359099864959717, 0.33331000804901123, 0.2155900001525879, 0.09027499705553055, 0.450190007686615, -0.5750200152397156, 0.7978699803352356, -0.04209600016474724, 0.015052000060677528, 0.1388999968767166, 0.18504999577999115, 0.4518600106239319, 0.28630000352859497, -0.49399998784065247, 0.13646000623703003, 0.5453799962997437, -0.22126999497413635, -0.39774999022483826, -0.6904100179672241, -0.016112999990582466, -0.09537900239229202, -0.6011099815368652, -0.05463999882340431, -0.3136900067329407, -0.6043000221252441, -0.18799999356269836, 0.5095199942588806, 0.040373001247644424, 9.096899884752929e-05, -0.10145000368356705, 0.09342999756336212, 0.16311000287532806, -0.33702999353408813, -0.3016499876976013, -0.08643700182437897, -0.26513999700546265, 0.07641399651765823, 0.19818000495433807, 0.6949300169944763, -0.19377000629901886, 0.27987998723983765, 0.49588000774383545, 0.13760000467300415, 0.4047499895095825, 0.20675000548362732, -0.35743001103401184, 0.08738499879837036, -0.07846000045537949, 0.1439100056886673, 0.06793099641799927, 0.6019600033760071, -0.44218000769615173, 0.27015000581741333, -0.06887199729681015, 0.11145000159740448, 0.004039600025862455, -0.1613599956035614, -0.37617000937461853, -0.22051000595092773, 0.06437499821186066, 0.33228999376296997, 2.140700101852417, -0.24042999744415283, 0.058299001306295395, -0.5954700112342834, -0.3781900107860565, -0.1740099936723709, -0.37397998571395874, -0.07274500280618668, -0.0556580014526844, 0.292169988155365, -0.516290009021759, 0.4361700117588043, -0.015716999769210815, 0.3374600112438202, 0.22846999764442444, -0.1266299933195114, 0.3160499930381775, -0.36559998989105225, 0.4081999957561493, -0.7359099984169006, 0.41091999411582947, -0.11757999658584595, -0.026045000180602074, 0.1279900074005127, -0.5730000138282776, -0.24818000197410583, 0.23627999424934387, -0.22142000496387482, 0.30507999658584595, 0.21963000297546387, -0.08028200268745422, -0.032030001282691956, 0.20689000189304352, -0.43007001280784607, -0.08452799916267395, -0.01740800030529499, -0.09818899631500244, 0.18485000729560852, -0.27737998962402344, 0.5682399868965149, 0.22381000220775604, 0.018566999584436417, -0.33788999915122986, 0.00023690999660175294, -0.060426998883485794, -0.41084998846054077, 0.021882999688386917, 0.712660014629364, 0.19979999959468842, -0.09876900166273117, 0.20257000625133514, -0.38822999596595764, 0.29761001467704773, -0.3632600009441376, -0.13061000406742096, -0.4618400037288666, 0.059992000460624695, 0.24753999710083008, -0.6529899835586548, 0.09479600191116333, 0.0250489991158247, -0.29012998938560486, -0.12032999843358994, 0.0974849984049797, -0.4753499925136566, 0.16116000711917877, 0.1149900034070015, -0.436379998922348, -0.13152000308036804, 0.23231999576091766, 0.06580699980258942, -0.19554999470710754, 0.013799999840557575, 0.263700008392334, -0.02533400058746338, -0.442330002784729, -1.1081000566482544, 0.10327000170946121, -0.09800200164318085, 0.0843920037150383, -0.1727299988269806, 0.07960999757051468, 0.08456599712371826, 0.15592999756336212, -0.4507899880409241, 0.3256700038909912, 0.045754000544548035, -0.07719100266695023, -0.16898000240325928, 0.26973000168800354, 0.09831999987363815, 0.4173400104045868, -0.6349700093269348, 0.4119099974632263, 0.43342000246047974, 0.569570004940033, -0.12110999971628189, -0.6228700280189514, 0.37964001297950745, -0.1475600004196167], u'smooth': [0.24142999947071075, -0.3982200026512146, 0.5451499819755554, -0.5755800008773804, -0.8050600290298462, -0.20399999618530273, 0.3181000053882599, 0.5865100026130676, 0.5510299801826477, -1.8502000570297241, -0.5545899868011475, -0.1311199963092804, 0.19790999591350555, -0.10475999861955643, -0.3700000047683716, 0.3217799961566925, -0.31929999589920044, 0.5432599782943726, -0.08385899662971497, 0.47141000628471375, -0.6614400148391724, 0.16920000314712524, -0.40404000878334045, 0.18918000161647797, -0.5499299764633179, 0.12884999811649323, -0.18520000576972961, 0.022709999233484268, -0.07941699773073196, 0.0801210030913353, -0.33809998631477356, 0.5795400142669678, -0.33882999420166016, 0.14603999257087708, -0.46129000186920166, 1.05239999294281, 0.17292000353336334, -0.221220001578331, -0.16833999752998352, 0.330020010471344, -0.8710600137710571, 0.11503999680280685, -0.19946999847888947, -0.514490008354187, 0.1959100067615509, 0.4448699951171875, 0.039333000779151917, 0.6333600282669067, -0.2833099961280823, 0.07165300101041794, -0.36805999279022217, -0.08939500153064728, -0.17437000572681427, 0.0834140032529831, 0.07066000252962112, 0.4351300001144409, -0.38238999247550964, -0.06428200006484985, 0.08211900293827057, 0.5648499727249146, 0.5326799750328064, 0.4923500120639801, 0.39100000262260437, -0.2819400131702423, -0.13568000495433807, 0.25582998991012573, 0.7018100023269653, 0.46522000432014465, 0.5315600037574768, 0.1667100042104721, -0.17448000609874725, 0.2814899981021881, -0.05717200040817261, 0.6387100219726562, 0.3421199917793274, 0.12848000228405, -0.34578999876976013, 0.25624001026153564, 0.4602000117301941, -0.17677000164985657, -0.193790003657341, 0.17117999494075775, -0.011133000254631042, -0.12031000107526779, 0.47516998648643494, 0.15372000634670258, 0.09124699980020523, -0.15183000266551971, -0.4743799865245819, -0.04283500090241432, -0.2315800040960312, 0.21504999697208405, -1.0439000129699707, -0.378030002117157, -0.3499799966812134, -0.935949981212616, 0.07454600185155869, 0.2752000093460083, 0.6502900123596191, 0.5494199991226196, -0.19791999459266663, -0.13808000087738037, -0.019478000700473785, -0.5733100175857544, -0.2616499960422516, 0.6136400103569031, -0.4493800103664398, -0.37676000595092773, 0.08503799885511398, -0.0178849995136261, 0.13912999629974365, 0.1510699987411499, 0.32168999314308167, -0.19643999636173248, -0.26017001271247864, 0.10639999806880951, -0.427839994430542, 0.029593000188469887, -0.41903001070022583, 0.1331000030040741, -0.03430600091814995, -0.3642500042915344, 0.5367199778556824, -0.6318399906158447, -0.35813000798225403, 0.2088800072669983, 0.3059700131416321, 1.0987999439239502, -0.4088500142097473, 0.3949899971485138, -0.5407900214195251, 0.27689000964164734, -0.3144400119781494, 0.36041000485420227, -0.7649400234222412, -0.2603900134563446, -0.21720999479293823, -0.3502799868583679, 0.4953500032424927, 0.14830000698566437, 0.6323699951171875, 0.29701000452041626, -0.40841999650001526, -0.26030999422073364, 0.10321000218391418, 0.13975000381469727, -0.24518999457359314, -0.5580199956893921, 0.36090001463890076, 0.43314000964164734, -0.6275799870491028, 0.08314000070095062, -0.42085000872612, -0.07521700114011765, 0.2363400012254715, -0.7329300045967102, -0.22488999366760254, -0.3559400141239166, 0.09523999691009521, 0.05760100111365318, -0.6392499804496765, -0.38106998801231384, -0.5220000147819519, -0.19627000391483307, 0.057962000370025635, 0.1763100028038025, 0.430869996547699, 0.14630000293254852, 0.11789999902248383, 0.12925000488758087, 0.22770999372005463, -0.01854199916124344, -0.2728700041770935, -0.005569600034505129, -0.1291700005531311, -0.2692500054836273, 0.09411799907684326, -0.30331000685691833, -0.3495500087738037, -0.4392000138759613, -0.41304001212120056, -0.144569993019104, -0.266510009765625, 0.16965000331401825, -0.49039000272750854, -0.3837699890136719, 0.7988499999046326, -0.016896000131964684, -0.870169997215271, 0.4388999938964844, 0.45186999440193176, 0.8279500007629395, -0.27897000312805176, 0.22934000194072723, 0.7653899788856506, 0.306549996137619, 0.03505700081586838, 0.21713000535964966, 0.033048998564481735, -0.18876999616622925, 1.159000039100647, 0.11035999655723572, 0.7443100214004517, 0.5020700097084045, 0.11738000065088272, -0.4300900101661682, 0.11962000280618668, -0.14114999771118164, -0.06982800364494324, 0.22543999552726746, 0.37567999958992004, -0.19616000354290009, -0.23548999428749084, -0.0398159995675087, -0.2957899868488312, -0.31396999955177307, 0.060759998857975006, -0.7837299704551697, -0.20543000102043152, -0.24553999304771423, 0.4101699888706207, -0.2505199909210205, 0.3104400038719177, -0.500190019607544, -0.6230199933052063, -0.15275000035762787, 0.19452999532222748, -0.17733000218868256, -0.09669800102710724, -0.04294800013303757, 0.02462499961256981, 0.32036998867988586, 0.21720999479293823, -0.5174300074577332, 0.07434500008821487, 0.2035199999809265, -0.11482000350952148, -0.07954099774360657, -0.5839999914169312, -0.35001999139785767, 0.46994999051094055, -0.20753000676631927, -0.4397900104522705, 0.4833599925041199, -0.6843100190162659, 0.29440999031066895, 0.4869999885559082, 0.30601999163627625, 0.033070001751184464, -0.3951599895954132, 0.12161999940872192, -0.41762998700141907, 0.07517000287771225, 0.06356900185346603, -0.17148999869823456, -0.08851899951696396, 0.24851000308990479, -0.07467400282621384, 0.1553100049495697, 1.0227999687194824, -0.2577199935913086, -0.2413800060749054, 0.27932000160217285, 0.4486199915409088, -0.2278600037097931, 0.13181999325752258, 0.7501699924468994, -0.6841899752616882, 0.4287300109863281, 0.1304599940776825, 0.010564000345766544, -0.25902000069618225, 0.24461999535560608, -0.007364099845290184, 0.6541100144386292, 0.5917999744415283, -0.4576300084590912, 0.03750300034880638, -0.2528400123119354, -0.19726000726222992, 0.2031800001859665, -0.03218499943614006, 0.19912999868392944, 0.8309599757194519, -0.24201999604701996, -0.2250099927186966, 0.1645199954509735, 0.3417400121688843, 0.29649001359939575, -0.04292700067162514, 0.13176999986171722, 0.7107499837875366, -0.14529000222682953, 0.48100998997688293, 0.5354800224304199, 0.9853500127792358, -0.23702000081539154, 0.053070999681949615, -0.1846199929714203, 0.24044999480247498], u'worn': [-0.2008100003004074, -0.2331800013780594, -0.2216300070285797, -0.1306300014257431, -0.14986999332904816, -0.04550199955701828, -0.2194499969482422, 0.2834799885749817, -0.0767270028591156, -1.0013999938964844, 0.4783799946308136, 0.06791099905967712, -0.2863599956035614, 0.18964000046253204, -0.3642300069332123, -0.40634000301361084, 0.07452300190925598, 0.17233000695705414, -0.29833000898361206, -0.688730001449585, -0.03677599877119064, -0.2246900051832199, 0.10333000123500824, -0.07874900102615356, -0.5344700217247009, -0.4420599937438965, 0.08697500079870224, -0.31490999460220337, 0.4474300146102905, 0.714460015296936, 0.8500099778175354, 0.16290000081062317, -0.43873998522758484, 0.05167299881577492, -0.6727399826049805, 0.4690600037574768, -0.07526999711990356, -0.22362999618053436, 0.72434002161026, 0.44736000895500183, -0.357369989156723, -0.6448000073432922, -0.4601700007915497, -0.6219499707221985, 0.23237000405788422, 0.17663000524044037, 0.2105100005865097, -0.3678799867630005, 0.013287999667227268, -0.1746399998664856, -0.416130006313324, -0.35293999314308167, 0.30362001061439514, 0.05057799816131592, 0.09421399980783463, -0.4333600103855133, -0.15106000006198883, -0.5412700176239014, 0.03771600127220154, 0.12615999579429626, 0.3459100127220154, -0.5698099732398987, 0.13183000683784485, 0.1264200061559677, -0.04909199848771095, -0.639490008354187, -0.1990099996328354, 0.09013599902391434, 0.2016800045967102, 0.5217499732971191, 0.22304999828338623, 0.09433399885892868, -0.06864599883556366, 0.09748200327157974, 0.21480999886989594, -0.04447999969124794, 0.4879400134086609, 0.02130500040948391, -0.24894000589847565, -0.27397000789642334, 0.1649799942970276, 0.3379899859428406, -0.44238001108169556, -0.03790799900889397, -0.03334200009703636, 0.08891300112009048, 0.2209099978208542, 0.08610299974679947, -0.39737001061439514, 0.7678899765014648, 0.016519999131560326, 0.5947800278663635, 0.09813199937343597, 0.1410900056362152, -0.16080999374389648, 0.14657999575138092, 0.41888999938964844, 0.06750400364398956, 0.4881399869918823, -0.05338900163769722, 0.44815999269485474, 0.631879985332489, -0.3393999934196472, 0.02944299951195717, -0.04537700116634369, 0.01190400030463934, -0.11514999717473984, 0.20645000040531158, -0.055080998688936234, -0.14462999999523163, -0.3322100043296814, 0.6635900139808655, 0.15262000262737274, -0.5115600228309631, -0.7095999717712402, 0.06048800051212311, 0.11417999863624573, 0.3495199978351593, 0.290039986371994, -0.619700014591217, 0.27761998772621155, -0.17121000587940216, 0.5562899708747864, 0.04103099927306175, -0.0484439991414547, 0.6003900170326233, -0.22283999621868134, -0.00034381001023575664, 0.28068000078201294, -0.024450000375509262, 0.05834000185132027, -0.265720009803772, 0.1915699988603592, -0.2697499990463257, -0.4075799882411957, -0.07997100055217743, -0.17609000205993652, 0.3166399896144867, 0.1137000024318695, -0.09419699758291245, 0.24220000207424164, 0.15102000534534454, 0.023256000131368637, 0.04947499930858612, -0.02510800026357174, 0.2548600137233734, -0.3244900107383728, 0.3309899866580963, 0.37880998849868774, -0.0781790018081665, 0.14188000559806824, -0.5621799826622009, -0.3540000021457672, -0.5283100008964539, 0.16461999714374542, -0.21331000328063965, -0.028586000204086304, -0.35899001359939575, 0.37042000889778137, 0.7379000186920166, 0.03517900034785271, -0.4319800138473511, -0.42664000391960144, 0.03521399945020676, 0.5086600184440613, 0.004157400224357843, -0.3292900025844574, 0.3668299913406372, 0.1747799962759018, -0.3547700047492981, -0.2468400001525879, 0.3993299901485443, -0.015169999562203884, 0.25854000449180603, 0.022285999730229378, -0.4264400005340576, 0.24541999399662018, 0.9605000019073486, -0.23452000319957733, -0.24493999779224396, -0.20771999657154083, 0.3671000003814697, 0.3399699926376343, 0.04010799899697304, 0.49983999133110046, 0.018391000106930733, 0.4863399863243103, 0.3897800147533417, -0.09081199765205383, -0.3119800090789795, 0.38429000973701477, -0.11368999630212784, 0.18886999785900116, 0.02033500000834465, 0.10779999941587448, 0.02925099991261959, -0.4964100122451782, -0.3486199975013733, 0.15623000264167786, -0.4917300045490265, 0.8873599767684937, 0.08887799829244614, 0.5366799831390381, 0.6075699925422668, 1.0509999990463257, -0.2091200053691864, 0.379720002412796, 0.04439900070428848, -0.5882300138473511, 0.060903001576662064, 0.2990500032901764, 0.0972760021686554, 0.18118000030517578, 0.036708999425172806, 0.7442799806594849, -0.6609200239181519, 0.5646399855613708, -0.6348400115966797, 0.03610600158572197, -0.31547999382019043, 0.18949000537395477, -0.23075999319553375, 0.47404998540878296, -0.16343000531196594, 0.3464600145816803, 0.0383480004966259, 0.10722000151872635, -0.26903000473976135, -0.11563000082969666, -0.19168999791145325, 0.5474900007247925, -0.030163999646902084, -0.22104999423027039, 0.03557400032877922, -0.016742000356316566, -0.06010400131344795, 0.4005599915981293, -0.35097000002861023, -0.28773000836372375, 0.4964999854564667, 0.33842000365257263, 0.1963299959897995, 0.11556000262498856, 0.1056400015950203, -0.2863599956035614, 0.27046000957489014, -0.2325499951839447, -0.36932000517845154, 0.29214999079704285, -0.2821600139141083, 0.09113399684429169, -0.29684001207351685, 0.2213200032711029, -0.7299200296401978, 0.3059599995613098, -0.3357599973678589, 0.2500300109386444, 0.23011000454425812, -0.359609991312027, -0.48840001225471497, -0.3847300112247467, -0.14306999742984772, 0.5923299789428711, 0.2358900010585785, -0.4965299963951111, -0.240339994430542, -0.42882001399993896, 0.09147399663925171, 0.09274999797344208, 0.282039999961853, -0.31995999813079834, -0.14643000066280365, 0.25874999165534973, -0.6088600158691406, -0.894070029258728, 0.4041999876499176, -0.9740999937057495, -0.41843000054359436, -0.4811600148677826, 0.13580000400543213, 0.7236599922180176, -0.04789699986577034, 0.23707999289035797, 0.1106799989938736, -0.35192999243736267, 0.6217399835586548, -0.4171999990940094, 0.287090003490448, 0.02034600079059601, -0.2964099943637848, 0.3406200110912323, -0.04448400065302849, -0.40182000398635864, 1.007200002670288, -0.878570020198822, -0.5429900288581848, 0.2565999925136566, 0.3381099998950958, 0.34968000650405884, -0.5691900253295898], u'melted': [0.05640700086951256, -0.37957999110221863, -0.09575200080871582, 0.16033999621868134, -0.2917900085449219, -0.36976000666618347, 0.4383400082588196, 0.24974000453948975, 0.35262998938560486, -0.7900300025939941, -0.14656999707221985, -0.16836999356746674, -0.0488939993083477, 0.1260800063610077, -0.4142000079154968, 0.07322899997234344, 0.22614000737667084, 0.08938899636268616, -0.36695998907089233, 0.7232900261878967, 0.051667001098394394, 0.13819000124931335, 0.2380400002002716, 0.10751999914646149, -0.28115999698638916, -0.46911001205444336, -0.2237199991941452, 0.17899000644683838, -0.14842000603675842, -0.5082899928092957, 0.040119998157024384, 0.2830600142478943, -0.21514999866485596, -0.3087199926376343, 0.18978999555110931, 0.2638700008392334, -0.553659975528717, 0.8008599877357483, 0.3849799931049347, 0.5171899795532227, -0.16309000551700592, -0.3853900134563446, 0.13716000318527222, 0.0375249981880188, 0.42056000232696533, 0.07960599660873413, 0.15818999707698822, 0.2163199931383133, 0.1514499932527542, 0.24901999533176422, -0.0207310002297163, 0.03750799968838692, -0.631820023059845, 0.299699991941452, 0.2906999886035919, -0.13928000628948212, 0.2037699967622757, -0.23372000455856323, 0.6827800273895264, 0.9360100030899048, 0.0230260007083416, 0.8820199966430664, -0.17803999781608582, 0.14741000533103943, 0.05628199875354767, -0.11474999785423279, 0.02241400070488453, 0.6340000033378601, -0.3715899884700775, -0.17388999462127686, -0.043191999197006226, -0.20499999821186066, -0.035353001207113266, 0.28154999017715454, -0.009570100344717503, 0.6762199997901917, 0.14234000444412231, -0.6030300259590149, -0.1970899999141693, -0.11440999805927277, -0.03876499831676483, -0.10100000351667404, -0.25725001096725464, -0.08108899742364883, 0.007143999915570021, -0.2720000147819519, -0.4578000009059906, 0.07525999844074249, -0.4837599992752075, 0.05117499828338623, -0.00693049980327487, -0.39208999276161194, 0.17377999424934387, -0.008514399640262127, -0.5875899791717529, -0.16580000519752502, 0.032173000276088715, 0.43062999844551086, -0.13277000188827515, 0.7712100148200989, 0.305649995803833, 0.3829900026321411, 0.1944500058889389, -0.35047999024391174, 0.16186000406742096, -0.2605699896812439, -0.1273999959230423, 0.1685599982738495, -0.28543001413345337, 0.5946999788284302, -0.08851800113916397, -0.07153800129890442, 0.23197999596595764, -0.12623000144958496, -0.43599000573158264, 0.28262001276016235, -0.7100200057029724, 0.44157999753952026, 0.41165998578071594, -0.09820699691772461, -0.151419997215271, -0.7820500135421753, 0.014585999771952629, 0.5024200081825256, -0.31119000911712646, -0.07992800325155258, -0.07607799768447876, -0.023680999875068665, -0.6609899997711182, 0.3333899974822998, -0.5085700154304504, 0.9535300135612488, 0.043136999011039734, 0.667110025882721, 0.2753100097179413, 0.20670999586582184, 0.0698700025677681, 0.12281999737024307, 0.04407300055027008, -0.10992000252008438, 0.26377999782562256, -0.08384999632835388, -0.9329100251197815, 0.6578800082206726, 0.01622699946165085, -0.0009995599975809455, 0.25947999954223633, 0.12246000021696091, 0.18088999390602112, -0.8450300097465515, -0.355569988489151, 0.3645099997520447, -0.11416999995708466, -0.1939300000667572, 0.21544000506401062, -0.44242000579833984, 0.11998999863862991, -0.24759000539779663, -0.2346400022506714, -0.124719999730587, 0.20202000439167023, -0.701259970664978, -0.011416000314056873, -0.026695000007748604, 0.5075799822807312, 0.22161999344825745, 0.5323399901390076, 0.06355500221252441, 0.27035999298095703, -1.1128000020980835, 0.33000001311302185, 0.3880000114440918, 0.22930000722408295, 0.04566900059580803, -0.028152000159025192, -0.42497000098228455, 0.1737300008535385, -0.633840024471283, 0.655210018157959, -0.30386999249458313, -0.2144400030374527, 0.18422000110149384, 0.36772000789642334, -0.6244199872016907, -0.21254000067710876, -0.8247100114822388, 1.1438000202178955, 0.16574999690055847, -0.22937999665737152, 0.13630999624729156, 0.4679099917411804, 0.45535001158714294, 0.18520000576972961, 0.07363499701023102, 0.08399800211191177, -0.1954299956560135, -0.3708600103855133, 0.4647200107574463, 0.44850000739097595, -0.032545000314712524, -0.019078999757766724, -0.5341699719429016, 1.0865999460220337, 0.4225099980831146, 0.13631999492645264, -0.3333800137042999, 0.13843999803066254, -0.10135000199079514, -0.6648200154304504, 0.09822999686002731, 0.7721999883651733, 0.21651999652385712, -0.2697199881076813, -0.09648100286722183, 0.05390699952840805, 0.1010499969124794, 0.34292998909950256, -0.574429988861084, 0.12714999914169312, 0.40470001101493835, 0.35420000553131104, 0.41670000553131104, -0.050099000334739685, -0.7800800204277039, -0.11108999699354172, -0.2252800017595291, 0.06662700325250626, -0.044148001819849014, 0.24040000140666962, -0.23443999886512756, 0.29467999935150146, -0.34139999747276306, 0.039073001593351364, -0.5999900102615356, 0.0032832000870257616, -0.18605999648571014, 0.037223998457193375, 0.2091600000858307, -0.3805899918079376, -0.6986600160598755, -0.2121099978685379, -0.27851998805999756, -0.17719000577926636, 0.10989999771118164, -0.5463700294494629, -0.1964299976825714, 0.3660599887371063, -0.09536100178956985, -0.13583999872207642, -0.5411800146102905, 0.39640000462532043, -0.5487099885940552, 0.20895999670028687, -0.32464998960494995, -0.19617000222206116, 0.122359998524189, 0.15729999542236328, -0.11728999763727188, -0.48930999636650085, 0.26260998845100403, -0.4806300103664398, -0.4025599956512451, -0.013137999922037125, 0.5834500193595886, 0.2233400046825409, 0.01929200068116188, -0.35367000102996826, 0.06174600124359131, 0.036354999989271164, -0.1978600025177002, 0.1278200000524521, 0.11203999817371368, 0.00922240037471056, 0.5819600224494934, -0.2567799985408783, 0.24461999535560608, -0.2917500138282776, -0.6431699991226196, -0.7361500263214111, -0.2814300060272217, 0.230430006980896, 0.17437000572681427, -0.16809000074863434, -0.1253100037574768, 0.39743998646736145, 0.5278099775314331, -0.10294999927282333, -0.07281800359487534, 0.2711600065231323, 0.4285300076007843, -0.31422001123428345, 0.29561999440193176, 0.4630900025367737, 0.7299399971961975, 0.19913999736309052, -0.46292001008987427, 0.384909987449646, -0.2530199885368347, -0.32001999020576477, 0.30799001455307007], u'thin': [-0.30489999055862427, -0.14603999257087708, -0.14328999817371368, -0.3572700023651123, 0.2979699969291687, -0.12443999946117401, -0.006986199878156185, 0.2798599898815155, 0.2845599949359894, -1.4534000158309937, 0.008996300399303436, -0.22311000525951385, -0.7560700178146362, 0.21785999834537506, -0.471780002117157, -0.3724699914455414, -0.45914000272750854, 0.5285999774932861, -0.18862999975681305, -0.4004499912261963, -0.1941000074148178, -0.3700000047683716, -0.1412999927997589, 0.04258500039577484, 0.1986899971961975, 0.17034000158309937, 0.6481800079345703, -0.18250000476837158, -0.29969000816345215, 0.12918999791145325, -0.37696999311447144, -0.021734999492764473, -0.3241199851036072, 0.3275200128555298, -0.9185699820518494, 0.3809399902820587, -0.29822999238967896, 0.1237500011920929, 0.5603600144386292, 0.551800012588501, -0.07063700258731842, -0.16165000200271606, 0.10232999920845032, 0.03321399912238121, 0.11595000326633453, 0.33649998903274536, 0.15800000727176666, -0.16120000183582306, -0.0803230032324791, 0.11599999666213989, 0.09505899995565414, 0.0334630012512207, -0.22095000743865967, 0.3720400035381317, 0.20170000195503235, -0.5026400089263916, -0.28068000078201294, -0.4553599953651428, 0.5567100048065186, 0.34143999218940735, 0.6480600237846375, -0.3382900059223175, 0.6358299851417542, 0.16177000105381012, 0.6495699882507324, -0.32183000445365906, -0.33597999811172485, 0.029743000864982605, 0.2335200011730194, 0.5345500111579895, -0.011580999940633774, -0.07080700248479843, 0.12043999880552292, 0.21199999749660492, 0.45649999380111694, -0.1378999948501587, 0.06564100086688995, 0.3747200071811676, -0.030262000858783722, -0.455020010471344, -0.2147199958562851, -0.023655999451875687, -0.11520999670028687, -0.015375000424683094, -0.10148999840021133, 0.30094000697135925, 0.03627200052142143, 0.0685420036315918, -0.44095999002456665, 0.18371999263763428, -0.4701699912548065, -0.10321000218391418, -0.33750998973846436, -0.3198300004005432, -0.1785299926996231, 0.24501000344753265, -0.3287599980831146, 0.5542700290679932, 0.1671299934387207, 0.29245999455451965, 0.3487800061702728, 0.07585500180721283, -0.13526999950408936, -0.7264599800109863, -0.3077400028705597, 0.14244000613689423, 0.050328999757766724, 0.2607499957084656, -0.5513399839401245, 0.2144699990749359, -0.5765200257301331, 0.37929001450538635, 0.11804000288248062, -1.0429999828338623, -0.0803619995713234, 0.0534139983355999, -0.05460299924015999, 0.7210999727249146, 0.26403000950813293, -0.6032699942588806, -0.2519499957561493, -0.44297000765800476, 0.2885200083255768, 0.13005000352859497, -0.1356000006198883, 0.1928199976682663, 0.14424000680446625, 0.1227400004863739, -0.2870599925518036, 0.008961900137364864, -0.6833199858665466, 0.41611000895500183, -0.602150022983551, 0.6931300163269043, 0.5688700079917908, 0.11858999729156494, 0.06510400027036667, 0.2915799915790558, 0.09470400214195251, 0.224030002951622, 0.9757000207901001, 0.20927000045776367, -0.23284000158309937, -0.5250999927520752, -0.20725999772548676, 0.5779500007629395, -0.2739599943161011, -0.25764000415802, -0.11727999895811081, -0.674839973449707, -0.11334999650716782, -0.1265600025653839, -0.1500300019979477, 0.10806000232696533, 0.641510009765625, -0.15860000252723694, -0.43206000328063965, -0.3678700029850006, 0.26524999737739563, 0.542739987373352, -0.7814499735832214, -0.5216400027275085, 0.5835599899291992, 0.1909099966287613, 0.5566099882125854, 0.15395000576972961, -0.2994599938392639, -0.21323999762535095, -0.39743998646736145, -0.3758000135421753, 0.37610000371932983, 0.02621600031852722, -0.21069000661373138, -0.034147001802921295, -0.6523000001907349, -0.14486999809741974, 0.3913399875164032, 0.37435001134872437, 0.6059899926185608, -0.8157100081443787, 0.29093998670578003, -0.2045699954032898, -0.21323999762535095, 0.20010000467300415, -0.08331900089979172, -0.3842200040817261, 0.6794000267982483, -0.36800000071525574, 0.2696399986743927, 0.46873998641967773, 0.3509800136089325, 0.8999699950218201, 0.4436100125312805, 0.35701999068260193, -0.020927999168634415, 0.16368000209331512, -0.5918400287628174, -0.29719001054763794, -0.13077999651432037, 0.14756999909877777, 0.652679979801178, 0.18456000089645386, 0.35583001375198364, 0.5500199794769287, 0.18779000639915466, 0.11094000190496445, 0.6742299795150757, -0.10712999850511551, 0.06652399897575378, 0.04892300069332123, 0.21634000539779663, -0.018605999648571014, 0.3733200132846832, -0.12567999958992004, -0.03543800115585327, -0.06493999809026718, 0.8510599732398987, -0.5980100035667419, -0.016673000529408455, -0.34002000093460083, 0.7684100270271301, 0.14393000304698944, -0.06837499886751175, 0.42340999841690063, -0.4108099937438965, 0.510640025138855, -0.6370700001716614, -0.3013499975204468, -0.43566998839378357, -0.1556600034236908, 0.5133799910545349, -0.5097299814224243, 0.1531600058078766, -0.45124000310897827, 0.10967999696731567, -0.7389699816703796, -0.22961999475955963, -0.12833000719547272, -0.41032999753952026, -0.31123998761177063, 0.5146899819374084, 0.0015982999466359615, -0.12286999821662903, 0.19050000607967377, -1.2044999599456787, -0.5742700099945068, 0.15625, -0.16200999915599823, 0.15175999701023102, -0.431410014629364, 0.17850999534130096, -0.33774998784065247, 0.3325499892234802, -0.39904001355171204, 0.06760100275278091, 0.29023000597953796, -0.011242999695241451, 0.2973099946975708, -0.3264699876308441, 0.41058000922203064, 0.3417600095272064, -0.17645999789237976, 0.030681999400258064, 0.370279997587204, 0.2795099914073944, -0.12274999916553497, 0.23573000729084015, -0.019497999921441078, 0.3891899883747101, 0.41157999634742737, -0.03151300176978111, 0.24815000593662262, -0.16766999661922455, -0.05474900081753731, -0.8652399778366089, 0.6807100176811218, -0.5615000128746033, -0.2050900012254715, -1.0922000408172607, 0.3107199966907501, 0.3691500127315521, -0.20839999616146088, -0.35558998584747314, 0.07471299916505814, 0.1546200066804886, -0.2010899931192398, 0.09536900371313095, 1.149999976158142, -0.10284999758005142, 0.11191999912261963, 0.5137100219726562, 0.30660998821258545, -1.2003999948501587, 0.2906700074672699, -0.14751000702381134, 0.2779099941253662, -0.6337299942970276, -0.12906000018119812, 0.20541000366210938, 0.12967999279499054], u'cracked': [0.22575999796390533, 0.1646600067615509, -0.3442699909210205, -0.46389999985694885, -0.31648001074790955, -0.1277499943971634, -0.3375299870967865, 0.09653600305318832, 0.0985419973731041, -0.4477199912071228, -0.28457000851631165, 0.2046699970960617, 0.25174999237060547, 0.37900999188423157, -0.49950000643730164, 0.30535998940467834, 0.20645000040531158, 0.6007999777793884, -0.28060001134872437, 0.08180899918079376, 0.3806599974632263, 0.5205199718475342, 0.032134998589754105, -0.7040600180625916, -0.921209990978241, 0.12646999955177307, 0.11314000189304352, 0.16155999898910522, -0.3649600148200989, 0.026058999821543694, -0.420199990272522, 0.25095000863075256, -0.24271999299526215, 0.38791999220848083, -0.3463299870491028, 0.09628300368785858, -0.011857000179588795, 0.03197300061583519, 0.1277099996805191, 0.2011999934911728, 0.26319000124931335, 0.29747000336647034, 0.001000500051304698, 0.07572200149297714, -0.13155999779701233, 0.2928699851036072, -0.09213799983263016, 0.37821000814437866, -0.967270016670227, 0.1961899995803833, 0.11014000326395035, 0.18896999955177307, 0.2737799882888794, 0.00488980021327734, 0.6878799796104431, 0.21213999390602112, -0.1345299929380417, -0.2903999984264374, -0.27623000741004944, -0.47036001086235046, 0.4493600130081177, 0.41666001081466675, -0.3957799971103668, 0.06300099939107895, -0.11598999798297882, 0.09327200055122375, 0.10546000301837921, 0.24491000175476074, 0.7094600200653076, -0.08120699971914291, 0.026295000687241554, -0.3364900052547455, 0.07899600267410278, 0.30691999197006226, 0.2676999866962433, -0.044975001364946365, 0.32517001032829285, -0.3778199851512909, -0.2654300034046173, 0.6007500290870667, -0.26642999053001404, -0.12897999584674835, 0.3129499852657318, 0.05264899879693985, -0.1653600037097931, 0.14357000589370728, 0.03901499882340431, 0.2555199861526489, -0.18889999389648438, -0.21568000316619873, -0.008182800374925137, 0.43806999921798706, -0.24073000252246857, 0.46351000666618347, 0.06803599745035172, 0.49570998549461365, -0.08592300117015839, 0.05101799964904785, 0.5338000059127808, 0.2666099965572357, 0.46689000725746155, -0.11450999975204468, 0.26677998900413513, -0.44764000177383423, -0.14192000031471252, 0.3443099856376648, 0.12249000370502472, 0.1354299932718277, -0.5213599801063538, -0.14213000237941742, -0.5029399991035461, -0.7477499842643738, 0.3156000077724457, -0.6320099830627441, -0.463809996843338, 0.39994001388549805, -0.40202000737190247, 0.27674999833106995, -0.3227100074291229, -0.37988001108169556, -0.11399000138044357, -0.6238300204277039, -0.28839001059532166, 0.11819999665021896, -0.15846000611782074, -0.186489999294281, 0.07698799669742584, 0.20223000645637512, 0.326200008392334, 0.6712700128555298, -0.010792000219225883, 0.6125400066375732, 0.04642599821090698, 0.5329800248146057, 0.6037700176239014, -0.03715699911117554, 0.1792300045490265, 0.015711000189185143, -0.11097999662160873, -0.09990499913692474, 0.3259499967098236, 0.844219982624054, -0.538070023059845, 0.3918299973011017, -0.2025199979543686, 0.148049995303154, 0.13965000212192535, 0.2715100049972534, 0.2650099992752075, 0.39333000779151917, 0.1343500018119812, 0.09547699987888336, -0.2667900025844574, 0.10852000117301941, 0.06495799869298935, 0.15744000673294067, 0.0031975999008864164, 0.033403001725673676, -0.3913300037384033, 0.30877000093460083, -0.1392900049686432, 0.2983199954032898, -0.047161001712083817, 0.22477999329566956, 0.5677700042724609, -0.10719999670982361, 0.042465001344680786, -0.3813199996948242, 0.6795600056648254, -0.026197999715805054, -0.29297998547554016, 0.07999899983406067, 0.5517399907112122, -0.35069000720977783, 0.25088000297546387, 0.5254700183868408, 0.22457000613212585, 0.3139899969100952, 0.2538500130176544, -0.3690199851989746, -0.1904900074005127, 0.09080199897289276, 0.4562099874019623, -0.3800700008869171, -0.2059600055217743, -0.3267199993133545, 0.8014900088310242, 0.251120001077652, 0.08612699806690216, -0.09132999926805496, 0.330020010471344, -0.07312499731779099, 0.033188000321388245, 0.2030400037765503, 0.42708998918533325, -0.009790199808776379, -0.5067200064659119, -0.1320900022983551, 0.27063000202178955, 0.04326599836349487, 0.5899900197982788, 0.21310000121593475, 0.3953999876976013, -0.23296000063419342, -0.29763999581336975, 0.32078999280929565, 0.354420006275177, -0.26427000761032104, -0.3071799874305725, 0.4531700015068054, 0.10299000144004822, -0.04839000105857849, 0.13922999799251556, 0.12245000153779984, 0.10098999738693237, -0.3355900049209595, -0.2796199917793274, 0.12793999910354614, 0.24829000234603882, 0.7894300222396851, 0.6558799743652344, 0.5575000047683716, 0.3586300015449524, -0.2370000034570694, -0.04442400112748146, 0.2106200009584427, 0.11375000327825546, -0.38752999901771545, -0.3456200063228607, 0.2742899954319, 0.3217099905014038, -0.8353899717330933, -0.3472999930381775, -0.23055000603199005, -0.43241000175476074, 0.12616999447345734, -0.12011999636888504, -0.2258799970149994, -0.14488999545574188, -0.7916499972343445, -0.08445700258016586, -0.32328000664711, -0.4402399957180023, -0.3796299993991852, 0.3966499865055084, -0.353300005197525, -0.34558001160621643, 0.02959899976849556, 0.24060000479221344, -0.08760300278663635, 0.5013399720191956, -0.08540400117635727, 0.457720011472702, -1.080299973487854, 0.563979983329773, 0.13308000564575195, -0.13056999444961548, -0.2921600043773651, -0.24244999885559082, 0.340939998626709, -0.6646900177001953, -0.010156000033020973, -0.35387998819351196, -0.06290800124406815, -0.16287000477313995, -0.5129200220108032, -0.23463000357151031, -0.4809800088405609, -0.3853999972343445, 0.04008999839425087, -0.14538000524044037, 0.1010499969124794, 0.0914200022816658, -0.17225000262260437, -0.48080000281333923, 0.3305099904537201, -0.5702800154685974, 0.10700000077486038, -0.46568000316619873, -0.329800009727478, 0.13279999792575836, -0.7267600297927856, 0.6030700206756592, 0.4150499999523163, -0.010080999694764614, 0.21112999320030212, -0.8644599914550781, -0.21031999588012695, 0.7029799818992615, 0.15011000633239746, -0.14642000198364258, -0.3355900049209595, -0.06220899894833565, 0.8187999725341797, -0.23917999863624573, -0.014125999994575977, 0.052003998309373856, -0.8257799744606018, 0.1679999977350235, 0.5234400033950806], u'bent': [-0.05858999863266945, -0.5743299722671509, -0.13122999668121338, -0.21863999962806702, 0.416920006275177, -0.15328000485897064, -0.1234000027179718, 0.19413000345230103, 0.5684300065040588, -0.457940012216568, -0.14927999675273895, 0.38203001022338867, 0.41183000802993774, 0.17573000490665436, -0.6881600022315979, 0.38495999574661255, 0.6352300047874451, 0.2314700037240982, 0.23231999576091766, 0.12981000542640686, 0.4299499988555908, -0.14865000545978546, 0.4059000015258789, -0.07422100007534027, -0.4569700062274933, 0.5433800220489502, -0.0643410012125969, -0.20036999881267548, 0.04615899920463562, 0.36024001240730286, 0.07235600054264069, 0.23770999908447266, 0.3337100148200989, -0.1382399946451187, -0.5942500233650208, 0.2758199870586395, 0.20788000524044037, -0.04610000178217888, 0.15586000680923462, 0.25402000546455383, 0.06630100309848785, 0.19596999883651733, -0.06437599658966064, -0.3439599871635437, 0.20512999594211578, 0.01067699957638979, 0.051284998655319214, 0.09355399757623672, 0.16249999403953552, 0.13673999905586243, -0.08623600006103516, -0.14855000376701355, 0.3880699872970581, -0.12262000143527985, 0.25554999709129333, -0.1970299929380417, 0.09390199929475784, 0.00851960014551878, 0.13808999955654144, -0.002766899997368455, 0.26794999837875366, -0.03365800157189369, -0.012826000340282917, 0.30485999584198, -0.19744999706745148, -0.03464899957180023, -0.27489998936653137, 0.5830900073051453, 0.3101600110530853, 0.02358900010585785, 0.008391600102186203, 0.19181999564170837, 0.04226699844002724, 0.37867000699043274, 0.2681899964809418, 0.26118001341819763, -0.3570899963378906, 0.3741700053215027, -0.8590800166130066, 0.29308000206947327, 0.21528999507427216, -0.05113799870014191, -0.004858000203967094, 0.35286998748779297, -0.02739099971950054, -0.1089399978518486, 0.1074799969792366, 0.21517999470233917, -0.017689000815153122, 0.1848600059747696, 0.05072199925780296, -0.031537000089883804, 0.06210299953818321, 0.08088099956512451, -0.30730000138282776, -0.6896799802780151, 0.2731899917125702, -0.15509000420570374, 0.04168900102376938, -0.032033998519182205, 0.017091000452637672, -0.20237000286579132, 0.15264999866485596, 0.030155999585986137, -0.47464999556541443, 0.06527400016784668, 0.2426699995994568, -0.06742999702692032, 0.007569099776446819, -0.08631200343370438, -0.09858699887990952, 0.2020999938249588, 0.3417600095272064, -0.8214899897575378, -0.0886790007352829, 0.288239985704422, -0.4498800039291382, 0.045093998312950134, -0.32517001032829285, -0.23451000452041626, -0.12197999656200409, -0.4588199853897095, 0.07093200087547302, 0.4067099988460541, -0.09077399969100952, -0.2287600040435791, 0.17478999495506287, -0.42792001366615295, 0.22668999433517456, -0.5365399718284607, 0.04271300137042999, 0.5348399877548218, -0.3284200131893158, 0.49439001083374023, -0.24079999327659607, 0.05732399970293045, 0.3280400037765503, 0.296970009803772, -0.2556400001049042, -0.2702299952507019, -0.29982998967170715, 0.28262999653816223, -0.11069999635219574, -0.11896999925374985, -0.3296099901199341, 0.7940800189971924, -0.029241999611258507, 0.12883000075817108, -0.12699000537395477, -0.7144700288772583, 0.38086000084877014, 0.25306999683380127, -1.0270999670028687, -0.3634699881076813, -0.0814879983663559, -0.10642000287771225, 0.2871200144290924, 0.3066299855709076, 0.15023000538349152, 0.34095999598503113, 0.46538999676704407, -0.080485999584198, 0.3542099893093109, -0.5493199825286865, 0.3091700077056885, -0.46167001128196716, -0.16345000267028809, -0.17971999943256378, 0.5355799794197083, -0.25578001141548157, -0.05750399827957153, -0.41815999150276184, 0.19833000004291534, -0.5280399918556213, 0.7720199823379517, 0.2524600028991699, -0.10593999922275543, 0.7081199884414673, -0.27845001220703125, -0.24668000638484955, -0.11406999826431274, -0.6192200183868408, 0.3517099916934967, -0.036277998238801956, 0.12043999880552292, -0.09424100071191788, -0.12472999840974808, -0.5705199837684631, 0.5887899994850159, -0.40542998909950256, -0.19181999564170837, -0.20880000293254852, 0.484279990196228, 0.8394100069999695, -0.17217999696731567, 0.2338400036096573, -0.015232999809086323, -0.6682500243186951, 0.2048099935054779, -0.053339000791311264, 0.8228899836540222, 0.25369998812675476, -0.20492999255657196, -0.14270000159740448, 0.1743299961090088, -0.13760000467300415, 0.0684719979763031, -0.056738998740911484, 0.22250999510288239, 0.11855000257492065, 0.20871999859809875, 0.7244700193405151, 0.5686600208282471, 0.5313400030136108, 0.7139599919319153, 0.08396100252866745, 0.31411001086235046, -0.0630899965763092, -0.2621000111103058, 0.2898699939250946, -0.54830002784729, 0.07806000113487244, -0.1523600071668625, 0.10120999813079834, -0.3522000014781952, -0.0689840018749237, -0.08373299986124039, 0.18637000024318695, 0.1941699981689453, 0.19247999787330627, 0.5887899994850159, 0.10121999680995941, 0.05160199850797653, 0.24568000435829163, -0.04686100035905838, -0.271369993686676, -0.5144500136375427, 0.23962999880313873, -0.47165000438690186, -0.10057000070810318, 0.420199990272522, 0.23703999817371368, -0.33719998598098755, -0.2946400046348572, -0.4918000102043152, -0.0617620013654232, 0.19850000739097595, -0.00042878001113422215, -0.1155100017786026, 0.385809987783432, 0.0549050010740757, 0.2812100052833557, 0.01561800017952919, -0.35133999586105347, 0.4946799874305725, 0.3972100019454956, -0.13016000390052795, -0.8359699845314026, -0.43446001410484314, 0.07370500266551971, 0.2067900002002716, -0.2969900071620941, 0.005889399908483028, 0.12640999257564545, -0.662850022315979, 0.29826998710632324, -0.36388999223709106, -0.1694599986076355, -0.27682000398635864, 0.6686099767684937, -0.09361600130796432, -0.3579300045967102, 0.6222400069236755, 0.2773900032043457, -0.22356000542640686, -0.32106998562812805, -0.42849001288414, -0.4232900142669678, -0.3747999966144562, -0.5849699974060059, 0.4307500123977661, -0.6479700207710266, -0.17297999560832977, 0.2517699897289276, 0.37751999497413635, 0.24048000574111938, -0.15151000022888184, -0.013988999649882317, 0.5276100039482117, 0.06848099827766418, 0.31850001215934753, -0.05014299973845482, -0.07982199639081955, 0.48568999767303467, 0.37553998827934265, 0.22770999372005463, -0.061218999326229095, -0.23759999871253967, 0.09156099706888199, 0.24688999354839325], u'ripe': [-0.37779000401496887, -0.0417959988117218, 0.6163399815559387, 0.05130000039935112, 0.7323200106620789, -0.20241999626159668, 0.07568900287151337, 0.10789000242948532, 0.4814999997615814, -0.29183000326156616, 0.7526199817657471, 0.1545500010251999, 0.14274999499320984, 0.40062999725341797, 0.19627000391483307, -0.2779499888420105, -0.45892998576164246, -0.4898799955844879, -0.12077999860048294, 0.42849001288414, -0.47154000401496887, 0.6864699721336365, -0.058793000876903534, -0.2798300087451935, -0.8570299744606018, -0.33893001079559326, 0.07214199751615524, -0.05707700178027153, -0.3428199887275696, -0.22018000483512878, -0.7053200006484985, 0.24820999801158905, -0.7208600044250488, 0.1234700009226799, -0.3969399929046631, 0.7214400172233582, -0.6776800155639648, 0.2063400000333786, 0.2023099958896637, 0.10542000085115433, 0.9295399785041809, -0.01559200044721365, 0.309579998254776, -0.14550000429153442, -0.1062999963760376, 0.4654799997806549, -0.29451000690460205, 0.36100998520851135, -0.17493000626564026, -0.24256999790668488, -0.434689998626709, -0.23345999419689178, -0.10707999765872955, -0.2614400088787079, -0.11862000077962875, -0.6269699931144714, -0.04569299891591072, 0.07754500210285187, 0.5554400086402893, -0.2772200107574463, -0.19328999519348145, -0.5758299827575684, -0.17673000693321228, 0.11191999912261963, -0.5951099991798401, 0.04406600072979927, 0.38686999678611755, -0.5923299789428711, -0.2650200128555298, -0.2836500108242035, 0.006693399976938963, 0.2186799943447113, -0.18690000474452972, 0.2744799852371216, -0.04130600020289421, -0.30292001366615295, 0.4125699996948242, -0.18920999765396118, 0.7084900140762329, 0.32436999678611755, -0.26262998580932617, -0.221670001745224, -0.1515199989080429, 0.013913000002503395, 0.6226199865341187, 0.20029999315738678, -0.8553699851036072, 0.19088000059127808, 0.48186999559402466, 0.246629998087883, -0.0908610001206398, -0.23330999910831451, -0.26780998706817627, -0.4683000147342682, -0.6939299702644348, 0.34081000089645386, -0.22193999588489532, 0.26128000020980835, -0.2824600040912628, 0.040272001177072525, 0.19415999948978424, -0.09954199939966202, -0.016248000785708427, -0.29069000482559204, -0.9442800283432007, 0.35732999444007874, -0.4521400034427643, 0.48721998929977417, -0.1096000000834465, -0.30816999077796936, 0.14300000667572021, 0.23270000517368317, 0.44971999526023865, -0.29416000843048096, 0.4756999909877777, -0.29826998710632324, -0.21030999720096588, 0.5295600295066833, 0.8479099869728088, 0.2081100046634674, -0.34231001138687134, -0.5752099752426147, 0.24557000398635864, 0.32548999786376953, -0.5764399766921997, -0.09084399789571762, -0.046953000128269196, 1.1223000288009644, -0.12231999635696411, 0.11660999804735184, 0.11083000153303146, 0.8925099968910217, -0.4160099923610687, -0.15358999371528625, -0.5637000203132629, 0.1720000058412552, -0.453359991312027, -0.12781000137329102, 0.03889999911189079, -0.2490299940109253, 0.41620001196861267, 0.19905999302864075, -0.30612000823020935, -0.20880000293254852, 0.19122999906539917, -0.15098999440670013, -0.24616999924182892, 0.11057999730110168, 0.1950400024652481, -0.060743000358343124, -1.194200038909912, 0.076323002576828, 0.20841999351978302, 0.02419300004839897, -0.293069988489151, -0.38721001148223877, 0.2401600033044815, -0.2360599935054779, -0.45186999440193176, 0.5415999889373779, -0.17410999536514282, 0.047724999487400055, 0.010614999569952488, -0.33379998803138733, 0.2902800142765045, -0.7196199893951416, 0.3398500084877014, 0.19099999964237213, 0.006125899963080883, 0.03640799969434738, 0.03547300025820732, 0.2457599937915802, -0.5003899931907654, -0.11807999759912491, 0.18279999494552612, -0.04270299896597862, 0.22235000133514404, 0.04336300119757652, -0.1424500048160553, 0.12971000373363495, -0.10402999818325043, -0.5586000084877014, 0.6128600239753723, -0.8687199950218201, -0.13311000168323517, -0.4999699890613556, 0.48941999673843384, 0.2144699990749359, 0.41005998849868774, 0.3478800058364868, 0.07034599781036377, 0.47843000292778015, -0.20220999419689178, -0.29844000935554504, 0.30827000737190247, -0.3992699980735779, 0.005983499810099602, 0.2672399878501892, -0.14386999607086182, 0.19402000308036804, -0.002934900112450123, -0.6762199997901917, 0.03379499912261963, -0.2665500044822693, -0.0017312000272795558, -0.19391000270843506, -0.049251001328229904, 0.5270000100135803, 0.5687800049781799, -0.32627999782562256, 0.2565700113773346, -0.4787200093269348, -0.3141700029373169, 0.4372900128364563, 0.28009000420570374, -0.280349999666214, 0.6156100034713745, -0.059686001390218735, 0.14361000061035156, 0.021028000861406326, 0.1677200049161911, -0.3811799883842468, -0.2930000126361847, 0.07124000042676926, -1.0139000415802002, 0.23082000017166138, 0.21665999293327332, -0.46164000034332275, -0.23027999699115753, 0.4222699999809265, 0.29846999049186707, 0.3220300078392029, 0.5563200116157532, 0.04975999891757965, 0.07373200356960297, 0.39581000804901123, -0.03550000116229057, -0.3536899983882904, -0.25303998589515686, -0.1646600067615509, -0.04814299941062927, -0.026856999844312668, 0.1035199984908104, -0.18959000706672668, -0.606440007686615, 0.38394999504089355, 0.3212200105190277, 0.336760014295578, 0.14063000679016113, -0.7091400027275085, 0.19381000101566315, 0.9063699841499329, -0.925599992275238, -0.2129800021648407, -0.028245000168681145, 0.08607400208711624, -0.3391200006008148, -0.15491999685764313, 0.012306000106036663, 0.7781299948692322, 0.40400999784469604, -0.143669992685318, 0.19025999307632446, 0.07265099883079529, 0.27008000016212463, -0.16719000041484833, -0.22578999400138855, 0.07980400323867798, 0.22623999416828156, 0.5813500285148621, -0.39930999279022217, 0.516979992389679, 0.1429399996995926, 0.39127999544143677, 0.1471399962902069, 0.17924000322818756, -0.5397400259971619, 0.24292999505996704, -0.05299599841237068, -0.7781500220298767, -0.0298870000988245, -0.19749000668525696, -0.14573000371456146, -0.1704699993133545, 0.11593999713659286, -0.08704700320959091, 0.12647999823093414, 0.1538199931383133, 0.30184999108314514, 0.28282999992370605, -0.05808499827980995, 0.0453450009226799, 0.7099499702453613, -0.1661600023508072, 0.10741999745368958, 0.049539998173713684, -0.598770022392273, -0.07930999994277954, 0.11691000312566757, 0.05235299840569496], u'mossy': [-0.8922200202941895, 0.002853000070899725, 0.0018988000229001045, 0.1407099962234497, -0.25784000754356384, -0.1055700033903122, 0.4760200083255768, -0.22134000062942505, 0.18104000389575958, 0.9843400120735168, -0.11620999872684479, 0.03847600147128105, -0.11789000034332275, -0.4375300109386444, -0.30461999773979187, 0.19899000227451324, -0.9419599771499634, 0.08454100042581558, 0.030076999217271805, 0.50968998670578, -0.07696299999952316, -0.12349999696016312, -0.39079999923706055, -0.2840299904346466, -0.8856199979782104, -0.17759999632835388, -0.21634000539779663, -0.4904100000858307, -0.13779999315738678, 0.775950014591217, 0.07889600098133087, -0.10947000235319138, 0.09368500113487244, 0.2801699936389923, 0.49717000126838684, -0.16769999265670776, 0.04872699826955795, -0.4020000100135803, -0.05226600170135498, 0.014507000334560871, -0.46206000447273254, 0.2944500148296356, 0.058837998658418655, -1.1172000169754028, 0.33232998847961426, 0.2593199908733368, 0.2581000030040741, -0.28057000041007996, -0.17378999292850494, -0.2438499927520752, -0.6560999751091003, 0.37297001481056213, -0.3343299925327301, 0.4772000014781952, -0.3531999886035919, -0.2596699893474579, 0.12735000252723694, -0.3702299892902374, 0.21496999263763428, 0.08182699978351593, 0.20002000033855438, -0.4181100130081177, 0.08449199795722961, 0.10221999883651733, 0.10374999791383743, -0.03503900021314621, 0.0082566998898983, 0.3542900085449219, -0.16350999474525452, 0.2824400067329407, -0.5090100169181824, 0.481440007686615, -0.8422300219535828, 0.020385000854730606, -0.3714100122451782, 0.8107100129127502, -0.227960005402565, -0.06003599986433983, -0.376800000667572, 0.15117000043392181, -0.4457100033760071, -0.3536899983882904, -0.05261300131678581, -0.2639000117778778, -0.03779900074005127, 0.06334400177001953, 0.2020999938249588, 0.2662599980831146, -0.10211999714374542, 0.3024600148200989, -0.02147500030696392, -0.48833999037742615, 0.5265200138092041, 0.4441800117492676, -0.22178000211715698, 0.016103999689221382, 0.2926200032234192, 0.03252999857068062, 0.24129000306129456, 0.19780999422073364, 0.19489000737667084, 0.2397499978542328, -0.2879300117492676, 0.43470999598503113, -0.19598999619483948, -0.04196299985051155, 0.3286600112915039, 0.021345000714063644, -0.09303899854421616, -0.029486000537872314, -0.3800300061702728, -0.40178999304771423, 0.6659799814224243, 0.13064000010490417, -0.006889999844133854, -0.5733399987220764, -0.09321899712085724, 0.1033099964261055, -0.054666999727487564, 0.9993199706077576, -0.05313099920749664, -0.03660700097680092, 0.3119699954986572, 0.5438100099563599, 0.25609999895095825, -0.5148000121116638, -0.09289500117301941, -0.3596299886703491, 0.504830002784729, -0.6882200241088867, -0.12050999701023102, 0.20855000615119934, -0.13008999824523926, 0.32780998945236206, 0.3575200140476227, -0.29861998558044434, 0.27632999420166016, 0.46094000339508057, 0.017544999718666077, -0.5461900234222412, 0.7201399803161621, 0.16872000694274902, 0.12268999963998795, -0.11635000258684158, 0.18287000060081482, -0.6614099740982056, -0.7537500262260437, -0.5536999702453613, -0.06605599820613861, -0.4447399973869324, -0.7752799987792969, 0.6306999921798706, -0.42322999238967896, 0.0068061999045312405, -0.08042799681425095, 0.2812899947166443, 0.3087399899959564, 0.0019785999320447445, -0.19120000302791595, 0.4076800048351288, -0.5534800291061401, -0.23533999919891357, 0.31165000796318054, 0.17398999631404877, -0.22912000119686127, 0.638189971446991, 0.3414100110530853, -0.12049999833106995, -0.403439998626709, -0.09234999865293503, 0.619949996471405, 0.8109999895095825, 0.4264099895954132, -0.17323000729084015, -0.3871699869632721, -0.09821700304746628, 0.17691999673843384, 0.3393299877643585, 0.13947999477386475, -0.4697900116443634, -0.2876099944114685, -0.5458700060844421, 0.46581000089645386, -0.16814999282360077, -0.15425999462604523, -0.12430000305175781, 0.4825800061225891, 0.1347000002861023, 0.5105400085449219, -0.029464000836014748, 0.725409984588623, 0.06659000366926193, -0.07009900361299515, -0.5819500088691711, 0.3067399859428406, 0.05098399892449379, 0.24376000463962555, -0.22925999760627747, -0.11935999989509583, -0.07365400344133377, -0.09195800125598907, -0.3805199861526489, 0.7192999720573425, -0.40397000312805176, -0.11141999810934067, -0.4943099915981293, -0.2192700058221817, 0.7585999965667725, -0.7916200160980225, -0.4466800093650818, 0.11553999781608582, -0.11392000317573547, 0.029241999611258507, -0.4344800114631653, -0.5509799718856812, 0.30994001030921936, 0.6956200003623962, 0.0016209000023081899, -0.004556300118565559, -0.31029000878334045, 0.0017227999633178115, -0.4185999929904938, -0.16259999573230743, -0.42135998606681824, 0.32580000162124634, 0.016471000388264656, -0.13923999667167664, 0.6896899938583374, -0.3456900119781494, 0.21825000643730164, -0.2568100094795227, 0.4609000086784363, -0.12213999778032303, -0.1361899971961975, 0.03121500089764595, 0.2060299962759018, 0.005435400176793337, -0.47690001130104065, 0.3743300139904022, -0.23270000517368317, 0.5138400197029114, 0.05092500150203705, -0.22237999737262726, -0.1870799958705902, -0.22821000218391418, 0.13549000024795532, -0.24942000210285187, -0.38863998651504517, 0.02728700079023838, -0.01896500028669834, -0.062109000980854034, -0.5260000228881836, 0.0349389985203743, -0.465039998292923, 0.12385000288486481, 0.09495799988508224, 0.17419999837875366, 0.4258500039577484, -0.14969000220298767, -0.7078800201416016, 0.189410001039505, 0.21544000506401062, -0.11056999862194061, -0.401529997587204, -0.008231500163674355, 0.15970000624656677, 0.03557800129055977, -0.3147299885749817, 0.06045600026845932, 0.3775700032711029, -0.4736100137233734, -0.02710600011050701, -0.4860999882221222, 0.14444999396800995, -0.3967199921607971, 0.27781999111175537, 1.051900029182434, 0.5049899816513062, -0.33562999963760376, 0.03918299823999405, -0.39375001192092896, 0.325300008058548, -0.24979999661445618, 0.2776400148868561, -0.5475299954414368, 0.08759099990129471, 0.3273099958896637, -0.5456500053405762, 0.08798299729824066, -0.3517799973487854, -0.48089998960494995, 0.013694999739527702, -0.030073000118136406, 0.060756999999284744, 0.16473999619483948, 0.6279900074005127, -0.25911998748779297, 0.7101500034332275, -0.16474999487400055, 0.05113000050187111], u'modern': [0.13252000510692596, -0.3820199966430664, 0.054878998547792435, -0.48726001381874084, 0.2947399914264679, 0.15839999914169312, -0.06145099923014641, 0.05080299824476242, 0.03597300127148628, -1.628100037574768, 0.5833399891853333, 0.360370010137558, 0.38269999623298645, 0.7184799909591675, 0.7989599704742432, -0.6327999830245972, 0.0792199969291687, 0.1556600034236908, 0.07697699964046478, -0.14309999346733093, -0.22768999636173248, 0.3457300066947937, 0.24919000267982483, 1.001099944114685, 0.27807000279426575, 0.06501299887895584, 0.16412000358104706, -0.10890000313520432, -0.04735900089144707, 0.5763700008392334, 0.24578000605106354, 0.637440025806427, -0.6235899925231934, 0.8143100142478943, 0.017487000674009323, 0.5067700147628784, 0.4702399969100952, 0.025337999686598778, 0.007697599940001965, 0.13048000633716583, 0.1909399926662445, 0.00047461999929510057, 0.02802800014615059, -0.217739999294281, 0.6809200048446655, 0.31345999240875244, 0.2750900089740753, 0.25659000873565674, -0.08561000227928162, 0.4060100018978119, -0.0032313999254256487, -0.5059999823570251, -0.04957599937915802, 0.044488001614809036, 0.26385000348091125, -0.10023000091314316, -0.2113099992275238, -0.22197000682353973, -0.11159999668598175, 0.20372000336647034, -0.1253499984741211, -0.05216600000858307, 0.5880500078201294, -0.40116000175476074, -0.36243000626564026, 0.579200029373169, 0.07197099924087524, 0.6019600033760071, -0.005964499898254871, 0.1814900040626526, -0.0873199999332428, -0.35148999094963074, -0.061785999685525894, 0.1050100028514862, -0.3666599988937378, 0.347790002822876, -0.5250700116157532, 0.3711099922657013, 0.18121999502182007, -0.06492800265550613, -0.17709000408649445, -0.1182899996638298, -0.47543999552726746, -0.3134700059890747, 0.39252999424934387, -0.04524800181388855, 0.07625000178813934, 0.304720014333725, 0.21768000721931458, 0.35295000672340393, 0.34747999906539917, 0.17338000237941742, 0.0839029997587204, 0.5495100021362305, 0.2790200114250183, -0.1953199952840805, -0.007938000373542309, -0.11230000108480453, 0.2674799859523773, -0.4073899984359741, -0.12084999680519104, 0.5450800061225891, 0.5372099876403809, -0.12233000248670578, -0.4165300130844116, 0.4112800061702728, 0.05913100019097328, -0.0331140011548996, -0.29513001441955566, 0.7320600152015686, 0.2074500024318695, -0.2319599986076355, -0.4523699879646301, -0.13569000363349915, 0.0327330008149147, -0.3353300094604492, -0.18322999775409698, 0.2541700005531311, -0.34286999702453613, -0.46219998598098755, -0.0035677000414580107, 0.31185001134872437, -0.2413100004196167, -0.14945000410079956, -0.26559001207351685, 0.35137999057769775, -0.32592999935150146, 0.5407299995422363, -0.14142000675201416, 0.1286199986934662, 0.13327999413013458, -0.18852999806404114, 0.5399199724197388, 0.05596400052309036, -0.15360000729560852, -0.3643600046634674, 0.014259000308811665, -0.0692100003361702, -0.41065001487731934, 0.38416001200675964, 0.026667000725865364, -0.5091099739074707, 0.12182000279426575, -0.037338998168706894, 0.5055299997329712, -0.20531000196933746, 0.334960013628006, 0.3096500039100647, -0.6407099962234497, 0.6131600141525269, 0.1331000030040741, -0.6039199829101562, 0.08725699782371521, -0.27678000926971436, 0.24244000017642975, 0.3626900017261505, -0.6169099807739258, 0.17448000609874725, 0.2899099886417389, -0.4402500092983246, 0.5961099863052368, 0.4634599983692169, -0.2535800039768219, -0.45155999064445496, -0.33689001202583313, 0.20499999821186066, 0.2976599931716919, 0.12160000205039978, 0.15017999708652496, -0.3887900114059448, 0.07288999855518341, -0.07212399691343307, -0.40000998973846436, 0.4948199987411499, 0.2076600044965744, -0.1165200024843216, 0.007473600097000599, -0.3156200051307678, -0.2430099993944168, -0.37255001068115234, 0.010638999752700329, 0.1785999983549118, 0.13508999347686768, 0.3645699918270111, 0.3437100052833557, 0.04601399973034859, -0.2257400006055832, 0.7379000186920166, 0.15870000422000885, -0.1566700041294098, 0.19523000717163086, 0.11561000347137451, 0.2212900072336197, -0.09227900207042694, -0.47808000445365906, 0.22130000591278076, -0.658270001411438, -0.19288000464439392, 0.04915900155901909, 0.4531700015068054, 0.7912499904632568, -0.35339999198913574, 0.19805000722408295, -0.3999600112438202, 0.07036200165748596, -0.4626699984073639, -0.030943000689148903, 0.2989400029182434, -0.2837800085544586, 0.2625400125980377, -0.12234000116586685, 0.3665800094604492, 0.2308100014925003, 0.02712099999189377, 0.1488800048828125, 0.010885000228881836, -0.5199800133705139, -0.15103000402450562, -0.20960000157356262, -0.37977999448776245, -0.30546998977661133, 0.5326600074768066, -0.13312000036239624, -0.22680999338626862, 0.10328000038862228, -0.655780017375946, -0.018122000619769096, -0.14208999276161194, 0.22075000405311584, -0.08541599661111832, 0.15056000649929047, 0.1214200034737587, -0.4458500146865845, 0.47589001059532166, 0.04131900146603584, 0.2932499945163727, -0.42333999276161194, -0.20395000278949738, -0.4083000123500824, 0.272350013256073, -0.014689000323414803, 0.08156400173902512, 0.6524699926376343, 0.643339991569519, -0.7841600179672241, 0.09074699878692627, -0.6505799889564514, 0.14643999934196472, -0.2633199989795685, 0.2835800051689148, -0.0643249973654747, -0.13380999863147736, -0.06481800228357315, 0.4794999957084656, 0.2241699993610382, 0.08106499910354614, -0.018908999860286713, -0.05789300054311752, 0.09888900071382523, -0.33610999584198, -0.20297999680042267, -0.43992000818252563, 0.2619599997997284, -0.2943800091743469, -0.07560399919748306, -0.017392000183463097, -0.4627799987792969, -0.12190999835729599, 0.7332500219345093, 0.1261499971151352, 0.3720000088214874, 0.3434999883174896, 0.3157599866390228, -0.25387999415397644, -0.16912999749183655, 0.27171000838279724, -1.5390000343322754, 0.1457899957895279, 0.19935999810695648, -0.39711999893188477, -0.0444520004093647, -0.39882001280784607, 0.2916499972343445, 0.03629099950194359, 0.48263999819755554, -0.04026300087571144, -0.40022000670433044, 0.10154999792575836, -0.01866699941456318, -0.048927001655101776, -0.004292599856853485, 0.01040400005877018, -0.1805499941110611, 0.12072999775409698, 0.16610999405384064, 0.24309000372886658, 0.05232800170779228, -0.2867799997329712, 0.28696998953819275, 0.38065001368522644], u'raw': [0.2100200057029724, 0.777209997177124, 0.8061699867248535, -0.2309899926185608, -0.36559998989105225, -0.03929400071501732, 0.03553999960422516, -0.14519000053405762, 0.10249000042676926, -1.1324000358581543, 0.2228900045156479, -1.0688999891281128, -0.10328999906778336, 0.3265799880027771, -0.2696700096130371, -0.8722900152206421, -0.40981999039649963, 0.292059987783432, -0.07105699926614761, 0.4623500108718872, -0.4281400144100189, -0.20782999694347382, 0.10292000323534012, -0.15230000019073486, -0.15547999739646912, 0.04537099972367287, 0.12723000347614288, 0.05892600119113922, -0.15919999778270721, 0.3417600095272064, -0.5763400197029114, 0.39958998560905457, -0.708299994468689, 0.24769000709056854, -0.5502200126647949, 0.37509000301361084, 0.03617599979043007, -0.19891999661922455, 0.04375100135803223, -0.4540199935436249, -0.45732998847961426, -0.31735000014305115, 0.4387800097465515, -0.34797000885009766, 0.10736999660730362, 0.10301999747753143, -0.38694000244140625, -0.0639989972114563, 0.07831200212240219, 0.2873300015926361, 0.6743699908256531, 0.6917499899864197, -0.3294000029563904, -0.2907699942588806, -0.07475200295448303, 0.0026978999376296997, 0.3039900064468384, 0.20130999386310577, 0.03578399866819382, -0.31529998779296875, -0.21866999566555023, -0.06143999844789505, -0.1820800006389618, -0.35095998644828796, -0.2665500044822693, -0.18592999875545502, -0.16947999596595764, -0.02718299999833107, 0.3967599868774414, 0.7773000001907349, -0.17520999908447266, 0.611299991607666, -0.4792500138282776, 0.2782300114631653, -0.02786099910736084, 0.1556600034236908, 0.11006999760866165, 0.05732100084424019, -0.4519500136375427, 0.4492500126361847, 0.11494000256061554, -0.5679799914360046, 0.1125200018286705, -0.3287599980831146, -0.024737000465393066, -0.4367299973964691, -0.2480199933052063, -0.0740320011973381, -0.0683170035481453, 0.08447100222110748, 0.09764199703931808, 0.26895999908447266, 0.22397999465465546, -0.1517300009727478, -0.20667999982833862, -0.22869999706745148, -0.5229600071907043, -0.46213001012802124, -0.15334999561309814, -0.0885310024023056, -0.2785699963569641, -0.4565100073814392, 0.2611199915409088, -0.447270005941391, -0.27557000517845154, -0.32065001130104065, 0.08236400038003922, 0.1252399981021881, -0.2300799936056137, 0.22754999995231628, 0.8993899822235107, 0.06962399929761887, -0.12301000207662582, -0.44374001026153564, 0.17324000597000122, 0.5067600011825562, 0.7101699709892273, 0.7550299763679504, 0.20438000559806824, -0.45419999957084656, -0.6032199859619141, 0.015845000743865967, -0.22454999387264252, 0.6440600156784058, 0.18694999814033508, 0.31643998622894287, -0.4110899865627289, -0.23124000430107117, -0.15578000247478485, -0.0702660009264946, -0.07556399703025818, 0.6619099974632263, 0.3709700107574463, 0.0641229972243309, -0.39493998885154724, -0.10407999902963638, -0.24416999518871307, 0.2634199857711792, -0.06408499926328659, 0.27393999695777893, 0.5037000179290771, 0.1683499962091446, 0.2984600067138672, -0.37362000346183777, -0.045382000505924225, 0.36500999331474304, 0.3135800063610077, -0.06318999826908112, -0.1190200001001358, -0.10911999642848969, 0.13562999665737152, 0.2659800052642822, -0.0894709974527359, -0.003094600047916174, 0.27213001251220703, 0.05240299925208092, -0.07497800141572952, 0.22678999602794647, 0.12511000037193298, -0.8220599889755249, -0.03414199873805046, -0.3289799988269806, -0.040171001106500626, 0.14334000647068024, 0.374099999666214, -0.13322000205516815, -0.17718000710010529, -0.5971599817276001, -0.4845399856567383, 0.3137499988079071, 0.03727300092577934, -0.05269800126552582, -0.46884000301361084, -0.15530000627040863, 0.09230999648571014, 0.18321000039577484, 0.3905400037765503, 0.2568199932575226, 0.019317999482154846, -0.38613998889923096, 0.060913000255823135, 0.1238899976015091, -0.5660099983215332, -0.7198600172996521, -0.06829400360584259, -0.14074000716209412, 1.2008999586105347, 0.44086000323295593, 0.6536999940872192, 0.04788200184702873, 0.03772899881005287, 1.1258000135421753, -0.1698099970817566, -0.08836200088262558, 0.31400999426841736, 0.39739999175071716, -0.6829000115394592, -0.5135599970817566, -0.29102998971939087, 0.4645400047302246, 0.48083001375198364, -0.46792998909950256, 0.38837000727653503, 0.3265500068664551, -0.3257800042629242, 0.6363499760627747, 0.3931800127029419, 0.8820099830627441, -0.5075200200080872, -0.16418999433517456, 0.0457179993391037, -0.19790999591350555, 0.030702000483870506, 0.04870999976992607, -0.11575999855995178, 0.1694599986076355, 0.6875699758529663, -0.208529993891716, -0.10649000108242035, 0.35179999470710754, -0.40946000814437866, -0.03332100063562393, 0.030400000512599945, -0.5186100006103516, -0.4565599858760834, 0.16006000339984894, -0.03645800054073334, 0.027417000383138657, -0.07037899643182755, -0.1534299999475479, 0.07051499933004379, -0.1530199944972992, -0.14499999582767487, -0.26249000430107117, 0.33577001094818115, 0.4744400084018707, 0.4148400127887726, -0.3735100030899048, -0.7559099793434143, 0.09375400096178055, -0.4543899893760681, 0.25255000591278076, -0.12274999916553497, 0.08462899923324585, -0.7339299917221069, 0.1459999978542328, -0.019682999700307846, -0.28101998567581177, -0.2239599972963333, -1.1061999797821045, 0.669439971446991, -0.10984999686479568, -0.4327000081539154, 0.060724999755620956, -0.2811500132083893, 0.12343999743461609, -0.020329000428318977, 0.044541001319885254, -0.4029900133609772, 0.7916499972343445, -0.06800799816846848, -0.059331998229026794, -0.6583700180053711, -0.2503499984741211, 0.18557000160217285, 0.546459972858429, -0.25363999605178833, -0.1691499948501587, -0.37623998522758484, -0.42572999000549316, -0.423770010471344, 0.09001900255680084, 0.04984600096940994, 0.058706000447273254, -0.8695899844169617, 0.502839982509613, -1.062000036239624, 0.11838000267744064, -0.22838999330997467, -0.3568600118160248, -0.5143399834632874, -0.27772000432014465, -0.011996000073850155, 0.8253600001335144, 0.38798001408576965, -0.06571999937295914, -0.04089599847793579, -0.3253600001335144, -0.10401999950408936, -0.03536299988627434, -0.14169000089168549, 0.32600998878479004, 0.6867200136184692, 0.07794400304555893, 0.2961300015449524, 0.4802600145339966, 0.3548699915409088, -0.2410999983549118, -0.09715200215578079, -0.37692999839782715], u'lightweight': [0.35916998982429504, 0.05203999951481819, 0.5814899802207947, -0.7731900215148926, -0.011033999733626842, 0.3783099949359894, 0.274399995803833, 0.6372900009155273, 0.0324460007250309, -0.6797699928283691, 0.7037000060081482, -0.04625599831342697, -0.41350001096725464, 0.12439999729394913, -0.4672200083732605, -0.6305699944496155, -0.24247999489307404, -0.019638000056147575, 0.08132000267505646, -0.027739999815821648, 0.41124001145362854, 0.07493100315332413, -0.119159996509552, 0.27546998858451843, 0.08372599631547928, -0.6476699709892273, 0.6217399835586548, 0.29271000623703003, 0.04679499939084053, 0.34303998947143555, -0.04347199946641922, 0.4888400137424469, 0.085316002368927, -0.031585000455379486, -0.2810400128364563, 0.4012500047683716, 0.17159999907016754, -0.23989999294281006, 0.5496600270271301, 1.1411999464035034, -0.3239800035953522, 0.13490000367164612, 0.364439994096756, 0.04641599953174591, -0.031615000218153, -0.026417000219225883, -0.23107999563217163, -0.6031200289726257, 0.31560999155044556, 0.14857999980449677, -0.10514000058174133, -0.007356300018727779, -0.04444799944758415, -0.12637999653816223, -0.3312000036239624, -0.1881600022315979, -0.04394900053739548, -0.5758200287818909, -0.023600000888109207, -0.012446999549865723, 0.11800999939441681, 0.3157300055027008, -0.6067399978637695, 0.2327899932861328, -0.153889998793602, 0.14653000235557556, -0.7190700173377991, 0.6682900190353394, 0.5552300214767456, -0.24269999563694, -0.5492600202560425, 0.7758399844169617, -0.07019700109958649, -0.6886399984359741, -0.08205699920654297, 0.5329300165176392, -0.1641799956560135, -0.3800700008869171, 0.13804000616073608, 0.535040020942688, 0.24028000235557556, 0.5374400019645691, -0.022352000698447227, -0.3827100098133087, -0.9018399715423584, 0.07497099786996841, 0.19056999683380127, 0.3067399859428406, 0.45688000321388245, 0.3120200037956238, 0.6508600115776062, 0.14792999625205994, 0.07024499773979187, -0.5602399706840515, 0.16322000324726105, -0.31887999176979065, -0.4889500141143799, 0.34450000524520874, -0.1766899973154068, -0.38370999693870544, -0.10862000286579132, -0.20261000096797943, 0.09072499722242355, -0.0037446001078933477, 0.18231000006198883, -0.22811000049114227, -0.13145999610424042, -0.1180500015616417, -0.7899199724197388, -0.6004700064659119, -0.31909000873565674, 0.24023999273777008, 0.4838399887084961, -0.24095000326633453, -0.3399600088596344, 0.6844599843025208, -0.09142400324344635, 0.5845900177955627, 0.09865500032901764, 0.2323099970817566, 0.16057999432086945, 0.5242499709129333, 0.38457000255584717, -0.39629998803138733, -0.3460099995136261, 0.1896599978208542, 0.08134599775075912, 0.949429988861084, 0.17750999331474304, 0.10091999918222427, -0.4355199933052063, -0.1132500022649765, 0.4833100140094757, 0.07771100103855133, 0.10941000282764435, -0.20194000005722046, -0.7249199748039246, -0.17981000244617462, -0.18016000092029572, -0.15477000176906586, 0.09271900355815887, 0.47523999214172363, 0.23654000461101532, -0.2787500023841858, 0.2426699995994568, -0.000738409988116473, 0.12466999888420105, -0.35133999586105347, -1.215499997138977, 0.06126900017261505, 0.591480016708374, -0.2673099935054779, -0.24277999997138977, -0.029413999989628792, 0.31092000007629395, -0.18062999844551086, -0.6031699776649475, 0.41585999727249146, -0.3109399974346161, 0.3142099976539612, 0.06630299985408783, -0.5352799892425537, 0.030451999977231026, 0.5048900246620178, -0.021438000723719597, -0.29987001419067383, -0.2827399969100952, 0.567799985408783, 0.8888800144195557, -0.18382999300956726, 0.2572700083255768, 0.12933999300003052, -0.744979977607727, 0.06474000215530396, -0.23075999319553375, -0.6254299879074097, -0.017839999869465828, 0.5669999718666077, -0.10879000276327133, -0.7994099855422974, 0.5912899971008301, -0.11190000176429749, 0.8788800239562988, -0.021849000826478004, 0.2937900125980377, -0.27865999937057495, 0.20430999994277954, 0.5055199861526489, 0.13877999782562256, -0.14386999607086182, 0.10305000096559525, 0.57396000623703, 0.3997099995613098, -0.06486999988555908, -0.4244599938392639, 0.44718998670578003, -1.0161000490188599, 0.14869000017642975, 0.764549970626831, -0.5976399779319763, -0.1483200043439865, -0.09698399901390076, 0.32293999195098877, -0.1359499990940094, 0.09128200262784958, -0.6099100112915039, 0.20021000504493713, 0.24713000655174255, -0.520359992980957, 0.29361000657081604, 0.01636200025677681, 0.1437000036239624, -0.4059399962425232, 0.9113399982452393, 0.013260999694466591, -0.187950000166893, -0.972540020942688, -0.9979900121688843, -0.13765999674797058, -0.7050999999046326, 0.10424000024795532, -0.5502600073814392, 0.47887998819351196, -0.1117900013923645, 0.06122700124979019, 0.44624999165534973, 0.2858000099658966, 0.057009000331163406, -0.33059000968933105, -0.08320900052785873, 0.13030000030994415, 0.2443999946117401, 0.2611199915409088, -0.6654300093650818, 0.9840599894523621, -0.9545199871063232, 0.22898000478744507, 0.009248100221157074, -0.30232998728752136, 0.7837200164794922, 0.026876000687479973, 0.15744000673294067, -0.27924999594688416, 0.28791001439094543, -0.42660000920295715, -0.1925400048494339, -0.4373599886894226, -0.6669899821281433, -0.5079299807548523, -0.2785300016403198, -0.024546999484300613, -0.24000999331474304, -0.2501800060272217, -0.24233999848365784, -0.19559000432491302, 0.14488999545574188, 0.21768000721931458, -0.050244998186826706, 0.2168699949979782, 0.09205999970436096, -0.9622700214385986, -0.03836600109934807, -0.07605300098657608, 0.4033699929714203, 0.2821800112724304, 0.49779999256134033, -0.15674999356269836, 0.31178998947143555, -0.1618800014257431, -0.04499400034546852, 0.10096000134944916, 0.31237998604774475, 0.29102998971939087, 0.19393999874591827, -0.8493099808692932, -0.2301499992609024, -0.2427700012922287, 0.37836000323295593, -0.7228800058364868, 0.40090999007225037, 0.5932499766349792, -0.5862299799919128, -0.2775900065898895, 0.8224899768829346, -0.0572660006582737, -0.2884899973869324, -0.21581999957561493, 0.0750259980559349, -0.618369996547699, -0.0541750006377697, -0.4353800117969513, 0.1418599933385849, -0.36548998951911926, -0.6010100245475769, 0.34053000807762146, 0.7404900193214417, -0.16774000227451324, -0.14077000319957733, -0.07974400371313095, 0.3597800135612488], u'creased': [-0.17789000272750854, -0.010824000462889671, 0.07090800255537033, -0.47993001341819763, -0.16106000542640686, 0.4375399947166443, 0.0455159991979599, -0.21806000173091888, 0.29976001381874084, 0.26256999373435974, -0.5846800208091736, 0.08634600043296814, -0.07489900290966034, -0.10056000202894211, -0.4773299992084503, 0.4293000102043152, 0.3707599937915802, 0.08080200105905533, 0.2857699990272522, -0.0905819982290268, 0.43011999130249023, 0.32587000727653503, 0.2480199933052063, 0.21557000279426575, -0.7363200187683105, 0.05396199971437454, 0.23159000277519226, -0.21424999833106995, 0.30485999584198, -0.006378700025379658, 0.30055001378059387, 0.22407999634742737, -0.7326599955558777, -0.08125399798154831, 0.5999000072479248, 0.2682099938392639, -0.7058699727058411, -0.3070800006389618, 0.005210299976170063, 0.5806099772453308, 0.33368000388145447, 0.08041200041770935, 0.39416998624801636, -0.06694400310516357, 0.12303999811410904, 0.18648000061511993, 0.2077299952507019, 0.13183000683784485, -0.2244900017976761, -1.2355999946594238, -0.017266999930143356, -0.20140999555587769, 0.1371700018644333, 0.6892200112342834, 0.18908999860286713, -0.6283000111579895, 0.06307400017976761, -0.18704000115394592, 0.39076998829841614, 0.3478499948978424, 0.2889699935913086, -0.31411999464035034, -0.3424699902534485, -0.06477200239896774, -0.007551299873739481, 0.04259499907493591, -0.47018998861312866, -0.13559000194072723, 0.22989000380039215, -0.07434900104999542, -0.010885999538004398, -0.16652999818325043, 0.30270999670028687, 0.17937999963760376, 0.7900599837303162, 0.23669999837875366, -0.4548400044441223, -0.03208199888467789, -0.40845999121665955, 0.1253499984741211, -0.23217999935150146, -0.2763499915599823, -0.3472500145435333, -0.1814499944448471, -0.4874599874019623, -0.2497200071811676, -0.463019996881485, -0.28073999285697937, 0.06999199837446213, 0.682669997215271, -0.056042999029159546, 0.23184999823570251, -0.28189000487327576, 0.15828000009059906, -0.6254600286483765, -0.26214998960494995, 0.20499999821186066, 0.18820999562740326, 0.3299500048160553, 0.3781900107860565, 0.1367799937725067, 0.026885999366641045, 0.24258999526500702, 0.43841999769210815, -0.04546700045466423, 0.021017000079154968, 0.12488000094890594, 0.1431799978017807, -0.033392999321222305, -0.31929001212120056, -0.5889099836349487, -0.39236998558044434, -0.0726810023188591, -0.14079000055789948, -0.03803899884223938, 0.5095300078392029, -0.09887199848890305, 0.3432300090789795, 0.36910998821258545, -0.1932400017976761, -0.2615000009536743, -0.006226500030606985, 0.2524299919605255, 0.25957000255584717, 0.1099499985575676, -0.010703999549150467, 0.018977999687194824, -0.1956699937582016, 0.39983999729156494, 0.0027542999014258385, 0.17598000168800354, -0.563510000705719, -0.6004599928855896, 0.36072999238967896, -0.4790700078010559, 0.2296600043773651, -0.14188000559806824, 0.7350500226020813, 0.654009997844696, -0.37222999334335327, 0.5923500061035156, -0.13936999440193176, -0.22735999524593353, 0.18233999609947205, -0.23726999759674072, 0.21852000057697296, -0.044537998735904694, 0.23305000364780426, 0.03384099900722504, 0.02254600077867508, -0.18714000284671783, -0.19242000579833984, -0.09879600256681442, -0.31578999757766724, 0.08426400274038315, -0.4952000081539154, 0.05534299835562706, -0.5482400059700012, -0.010358000174164772, 0.5853000283241272, -0.1641400009393692, -0.19405999779701233, -0.029374999925494194, 0.4980199933052063, 0.2769100069999695, -0.15665000677108765, -0.05174599960446358, 0.29197001457214355, 0.1803400069475174, -0.30169999599456787, -0.42601001262664795, 0.28022998571395874, -0.13258999586105347, -0.904229998588562, -0.5252599716186523, -0.1832900047302246, 0.3113900125026703, 0.23691000044345856, 0.5911300182342529, -0.006227000150829554, -0.04861399903893471, -0.04948800057172775, -0.5041400194168091, 0.3299500048160553, 0.07709100097417831, -0.7758700251579285, 1.0924999713897705, -0.08888000249862671, -0.14951999485492706, 0.34345000982284546, 0.010569999925792217, -0.12196999788284302, 0.2167699933052063, 0.4860199987888336, 0.07417900115251541, 0.5181099772453308, -0.5373799800872803, -0.38741999864578247, 0.0707240030169487, 0.018487000837922096, -0.576479971408844, -0.09265200048685074, -0.21938000619411469, 0.4136900007724762, 0.18862000107765198, -0.4866900146007538, -0.2629700005054474, 0.29394999146461487, -0.5743499994277954, -0.4126400053501129, 0.24126000702381134, -0.2671000063419342, -0.5744199752807617, 0.7650600075721741, 0.5081999897956848, 0.3037799894809723, -0.17969000339508057, -0.7697299718856812, 0.5998600125312805, 0.7324299812316895, 0.05794300138950348, 0.6677299737930298, 0.29201000928878784, 0.11090999841690063, -0.2967599928379059, 0.30191999673843384, 0.2007399946451187, 0.5793899893760681, -0.268449991941452, -0.4798400104045868, 0.4586699903011322, 0.19085000455379486, -0.36136001348495483, -0.3345000147819519, -0.4829599857330322, -0.0756400004029274, -0.20709000527858734, -0.3201799988746643, -0.5949900150299072, -0.06453099846839905, -0.018634000793099403, 0.4231100082397461, -0.6583200097084045, 0.06328900158405304, -0.04719400033354759, 0.19553999602794647, -0.6382899880409241, -0.25014999508857727, 0.7742300033569336, -0.04500599950551987, -0.30935001373291016, -0.29335999488830566, 0.49261999130249023, -0.6346799731254578, 0.17922000586986542, -0.04802799969911575, 0.15283000469207764, 0.9646999835968018, -0.76555997133255, -0.23512999713420868, -0.1612199991941452, 0.2703999876976013, 0.5321699976921082, 0.006666599772870541, 0.13194000720977783, -0.440530002117157, 0.10362999886274338, -0.1915300041437149, -0.5702300071716309, 0.1936500072479248, -0.2418700009584427, 0.03408699855208397, 0.39838001132011414, -0.007085300050675869, -0.3127399981021881, 0.035638000816106796, 1.3674999475479126, -0.25764000415802, -0.411080002784729, 0.3644999861717224, 0.682449996471405, 0.3139899969100952, -0.09895599633455276, 0.3216100037097931, -0.22679999470710754, 0.11052999645471573, 0.07059500366449356, -0.3412100076675415, 0.02999899908900261, -0.17701999843120575, 0.04126200079917908, 0.3803200125694275, -0.060169000178575516, 0.3843800127506256, -0.12755000591278076, -0.2856000065803528, 0.0974849984049797, -0.541949987411499, 0.16787000000476837, -0.64055997133255], u'curved': [-0.17023999989032745, 0.28279998898506165, -0.443589985370636, -0.8779600262641907, -0.12660999596118927, 0.2776400148868561, -0.3030700087547302, 0.18966999650001526, 0.2624100148677826, -0.5062999725341797, -0.3012799918651581, 0.13694000244140625, 0.09320999681949615, 0.02443300001323223, -0.18559999763965607, 0.4986000061035156, -0.3628300130367279, 0.3833000063896179, 0.6855000257492065, -0.17563000321388245, -0.08872000128030777, 0.04637699946761131, -0.5004400014877319, 1.0260000228881836, -0.050801001489162445, 0.3949599862098694, 0.03863000124692917, -0.20845000445842743, -0.4079799950122833, 0.502240002155304, 0.5097699761390686, 1.1327999830245972, -0.23385000228881836, -0.1139800027012825, 0.2484699934720993, 0.26614999771118164, 0.3304600119590759, -0.5375800132751465, 0.25586000084877014, 0.4997299909591675, -0.011284999549388885, 0.32168999314308167, -0.6967200040817261, -0.3314499855041504, -0.07772400230169296, 0.6994100213050842, -0.0761369988322258, 0.2098200023174286, -0.19663000106811523, -0.3722499907016754, -0.3424200117588043, 0.11311999708414078, 0.6312800049781799, -0.17149999737739563, 0.294050008058548, -0.5989699959754944, -0.36379000544548035, 0.4875200092792511, 0.39680999517440796, 0.24386000633239746, 0.580049991607666, 0.1657799929380417, 0.5192800164222717, 0.26579999923706055, -0.02758600004017353, -0.36928001046180725, -0.3340100049972534, 0.786549985408783, 0.8786100149154663, -0.3031199872493744, 0.08878599852323532, 0.03584799915552139, 0.006009100005030632, 0.30717000365257263, 1.0694999694824219, -0.006479800213128328, -0.48875001072883606, 0.08581600338220596, -0.7428500056266785, -0.742579996585846, -0.08578599989414215, 0.3346399962902069, 0.07101300358772278, -0.5526000261306763, 0.3118000030517578, -0.2814899981021881, 0.15852999687194824, -0.047258999198675156, 0.36430999636650085, 0.2633799910545349, 0.9203600287437439, 0.3711400032043457, 0.47262999415397644, -0.2593599855899811, -0.8753299713134766, -0.33504998683929443, -0.08041399717330933, -0.5775499939918518, 0.600600004196167, 0.35097000002861023, -0.3849799931049347, 0.3467499911785126, -0.04377400130033493, 0.12174999713897705, -0.24810999631881714, 0.21258999407291412, -0.05596600100398064, -0.5622400045394897, -0.2536099851131439, -0.038346000015735626, -0.13095000386238098, 0.6622899770736694, 0.025359999388456345, -0.640529990196228, -0.5785499811172485, 0.03446299955248833, -0.8155999779701233, 0.3619700074195862, -0.2345000058412552, -0.44808000326156616, -0.4324600100517273, -0.6394799947738647, 0.5464500188827515, -0.14562000334262848, 0.04326999932527542, 0.39513999223709106, -0.4769900143146515, -0.08711499720811844, -0.7158399820327759, 0.011254999786615372, -0.5423399806022644, 0.3750799894332886, -0.03037399984896183, 0.5743299722671509, 0.16832999885082245, -0.07587199658155441, -0.03941499814391136, -0.024481000378727913, 0.285290002822876, 0.15378999710083008, 0.22754999995231628, 0.2799699902534485, -0.7028099894523621, -0.31352999806404114, 0.16943000257015228, 0.15814000368118286, -0.00842059962451458, -0.12647999823093414, 0.37547001242637634, -0.2318599969148636, -0.04663600027561188, -0.20578999817371368, -0.27814000844955444, -0.8112499713897705, 0.21295000612735748, 0.24640999734401703, -0.04346099868416786, -0.9266200065612793, 0.18233999609947205, 0.08812300115823746, -0.3619999885559082, 0.03217099979519844, -0.19687999784946442, -0.18302999436855316, 0.4062800109386444, 0.20107999444007874, -0.07198599725961685, 0.2878899872303009, 0.03750799968838692, -0.7573999762535095, -0.10147000104188919, -0.39546999335289, 0.7219799757003784, -0.10200999677181244, -0.05658400058746338, -0.3934600055217743, -0.44277000427246094, 0.28679001331329346, -0.11706999689340591, -1.302899956703186, 0.06687500327825546, -0.5934900045394897, 0.008759699761867523, 0.6683400273323059, 0.23684999346733093, -0.5961800217628479, 0.5570999979972839, 0.6769400238990784, 0.0999239981174469, 0.6071799993515015, 0.18282000720500946, 0.7136899828910828, -0.09142199903726578, 0.4988600015640259, -0.23115000128746033, 0.47822999954223633, -0.16538000106811523, -0.21863999962806702, 0.11918000131845474, 0.13325999677181244, 0.14319999516010284, -0.36967000365257263, -0.7174299955368042, -0.29967001080513, 0.44602999091148376, 0.4618600010871887, -0.5329800248146057, -0.12245000153779984, -0.034563999623060226, 0.6688500046730042, 0.618619978427887, 0.033948998898267746, 0.7501099705696106, -0.0434969998896122, 0.19312000274658203, 0.046831000596284866, 0.5042799711227417, -0.3028799891471863, 0.14962999522686005, -0.38506001234054565, 0.2503199875354767, -0.08322799950838089, 0.14291000366210938, -0.07219400256872177, -0.7009599804878235, -0.13042999804019928, 0.17844000458717346, -0.10036999732255936, 0.09703999757766724, -0.09944000095129013, 0.4369699954986572, -0.23190000653266907, 0.45445001125335693, -0.023406999185681343, -0.410290002822876, 0.05849599838256836, -0.3522000014781952, -0.0764480009675026, -0.30970001220703125, 0.18084999918937683, 0.6285200119018555, -0.4394899904727936, -0.1781499981880188, 0.11585000157356262, -0.44200998544692993, -0.44336000084877014, -0.06538800150156021, 0.03585800155997276, 0.0409419983625412, 0.4573099911212921, -0.36024001240730286, -0.292169988155365, -0.19271999597549438, -0.02649799920618534, -0.5768499970436096, 0.14474999904632568, -0.2350499927997589, -0.20774999260902405, -0.48717001080513, 0.5993499755859375, -0.37692999839782715, -0.3237999975681305, 0.34321001172065735, 0.03792500123381615, -0.3022199869155884, -0.11430999636650085, 0.16473999619483948, -0.029277000576257706, -0.06145400181412697, 0.3932099938392639, 0.32653000950813293, -0.4219599962234497, -0.29260000586509705, 0.35367000102996826, -0.3326900005340576, 0.1574999988079071, -0.32152000069618225, 0.34130001068115234, -0.8508999943733215, 0.2141299992799759, 0.2992999851703644, 0.0010317000560462475, -0.12772999703884125, -0.35701999068260193, -0.43327999114990234, 0.0739080011844635, 0.028044000267982483, 0.2699800133705139, -0.03560600057244301, -0.1959799975156784, 0.4629899859428406, 0.35326001048088074, -0.30546998977661133, 0.6827200055122375, 0.43904998898506165, 0.1084199994802475, -0.3540700078010559, -0.21994000673294067, 0.5826600193977356, -0.45219001173973083], u'huge': [0.00863569974899292, 0.04323500022292137, 0.10826999694108963, -0.4933899939060211, 0.031105000525712967, 0.34536001086235046, 0.44176000356674194, 0.1060900017619133, -0.2687300145626068, -1.2101999521255493, -0.005691499914973974, 0.24459999799728394, -0.40035998821258545, 0.10162000358104706, 0.050523001700639725, -0.10093999654054642, -0.17821000516414642, 0.08861999958753586, -0.0026004998944699764, 0.12685999274253845, 0.1762000024318695, -0.028074000030755997, 0.4271099865436554, -0.11744999885559082, -0.1983799934387207, 0.4214400053024292, 0.20364999771118164, -0.18929000198841095, 0.12053000181913376, 0.147489994764328, -0.5519499778747559, 0.06803199648857117, -0.8004400134086609, 0.4056900143623352, -0.8070200085639954, 0.06293799728155136, -0.6312400102615356, -0.12952999770641327, 0.08231700211763382, 0.3749000132083893, -0.09302099794149399, -0.4615499973297119, 0.2876400053501129, 0.1489800065755844, -0.257889986038208, 0.0629659965634346, 0.3624800145626068, -0.4963800013065338, 0.4743100106716156, -0.022802000865340233, 0.21250000596046448, 0.2549799978733063, -0.4630900025367737, -0.18571999669075012, -0.11483000218868256, 0.037144001573324203, -0.21351000666618347, 0.17996999621391296, 0.19043000042438507, 0.1905200034379959, -0.19411000609397888, -0.147599995136261, 0.2835400104522705, -0.026713000610470772, 0.15452000498771667, 0.1569799929857254, -0.3568600118160248, 0.31553998589515686, -0.2785300016403198, 0.1296599954366684, -0.19949999451637268, 0.1577499955892563, -0.005440299864858389, 0.19505000114440918, 0.05037099868059158, -0.11546000093221664, -0.06547100096940994, -0.4185200035572052, 0.47905001044273376, -0.15148000419139862, 0.0033128000795841217, -0.05282599851489067, -0.03830600157380104, -0.3754799962043762, 0.38729000091552734, 0.30702000856399536, 0.2778699994087219, 0.06358800083398819, 0.23237000405788422, -0.29725998640060425, 0.38947999477386475, -0.06902799755334854, -0.3737500011920929, -0.2692500054836273, -0.23868000507354736, -0.13044999539852142, 0.08064199984073639, -0.4270099997520447, -0.055987998843193054, -0.1842000037431717, 0.051867999136447906, 0.3656199872493744, -0.2722499966621399, -0.3847599923610687, -0.014818999916315079, 0.33410000801086426, 0.06721299886703491, 0.05581200122833252, -0.22292999923229218, -0.2996099889278412, -0.40602999925613403, -0.10226999968290329, -0.1837099939584732, -0.19185000658035278, 0.5508300065994263, -0.03803100064396858, 0.1811400055885315, 0.5398100018501282, 0.1853100061416626, -0.8243200182914734, 0.32444998621940613, -0.15076999366283417, -0.036299001425504684, 0.5232099890708923, 0.4499500095844269, -0.29969000816345215, -0.21503999829292297, 0.12946000695228577, -0.4123699963092804, -0.10683999955654144, 0.1610500067472458, 0.5338900089263916, -0.6125100255012512, 0.03601599857211113, 0.35416001081466675, -0.12594999372959137, -0.30893000960350037, -0.11017999798059464, 0.052400000393390656, 0.2935900092124939, -0.5838099718093872, -0.13266000151634216, 0.24751000106334686, 0.1841599941253662, 0.031853001564741135, -0.08540699630975723, 0.32910001277923584, 0.1052900031208992, 0.1754699945449829, -0.1281300038099289, 0.021846000105142593, 0.14541999995708466, -0.43316999077796936, -0.2838599979877472, 0.32728999853134155, 0.42719998955726624, 0.10363999754190445, 0.0014054999919608235, -0.46143001317977905, -0.2661699950695038, -0.1761700063943863, 0.3441399931907654, 0.5932199954986572, 0.3492699861526489, -0.06324099749326706, -0.4242599904537201, 0.4000599980354309, -0.06829799711704254, -0.18127000331878662, 0.09875000268220901, -0.008396299555897713, -0.4538100063800812, -0.1632699966430664, -1.049399971961975, 0.2042199969291687, 0.11795999854803085, -0.1197500005364418, 0.4033200144767761, 0.6066200137138367, 0.24350999295711517, 0.19870999455451965, -0.2806999981403351, 0.4175100028514862, -0.17294000089168549, -0.08625999838113785, -0.005944199860095978, 0.22285999357700348, 0.11404000222682953, -0.14343999326229095, -0.006550599820911884, 0.2989400029182434, 0.2828899919986725, -0.19880999624729156, -0.16810999810695648, 0.5521100163459778, -0.07300399988889694, 0.22585999965667725, 0.33048000931739807, 0.17151999473571777, 0.2169400006532669, 0.960640013217926, -0.09608200192451477, -0.36114001274108887, -0.321370005607605, 0.12551000714302063, -0.07792600244283676, -0.10100000351667404, 0.27959999442100525, 0.23127000033855438, -0.25154998898506165, -0.21469999849796295, 0.13665999472141266, -0.2124200016260147, -0.5083699822425842, 0.3070800006389618, 0.3319700062274933, 0.04848700016736984, 0.032033998519182205, 0.017839999869465828, 0.4566099941730499, 0.5717099905014038, 0.25505998730659485, 0.17098000645637512, -0.35194000601768494, -0.04078799858689308, -0.35040000081062317, -0.25863999128341675, 0.02930299937725067, 0.029131000861525536, -0.35019001364707947, -0.06272699683904648, -0.08138199895620346, -0.23784999549388885, 0.10130999982357025, 0.0031063000205904245, 0.05632700026035309, 0.051676999777555466, -0.0843610018491745, 0.052545998245477676, -0.33671998977661133, 0.4686099886894226, 0.16574999690055847, 0.15692999958992004, 0.04687599837779999, -1.291200041770935, -0.5343999862670898, 0.12208999693393707, 0.01876699924468994, 0.34393998980522156, -0.22247999906539917, -0.014216000214219093, -0.0479310005903244, 0.07381899654865265, -0.4269599914550781, 0.6587299704551697, -0.17101000249385834, -0.9706799983978271, -0.45458000898361206, -0.38363999128341675, -0.071834996342659, 0.22139999270439148, 0.03582699969410896, 0.7309899926185608, 0.4006800055503845, 0.4792400002479553, -0.12366999685764313, -0.06890100240707397, -0.04371500015258789, -0.004552800208330154, -0.2032500058412552, 0.15467000007629395, 0.06066400185227394, -0.15028999745845795, -0.09242700040340424, 0.09410399943590164, -0.166020005941391, -2.128499984741211, 0.22896000742912292, 0.03430800139904022, -0.015879999846220016, -0.4869900047779083, 0.6048099994659424, 0.2511799931526184, 0.1272200047969818, 0.12703999876976013, -0.04326599836349487, -0.382099986076355, 0.131290003657341, 0.17560000717639923, 0.10326000303030014, 0.0605739988386631, 0.3229900002479553, -0.007013999857008457, 0.41416001319885254, 0.36695000529289246, 0.5144000053405762, 0.17696000635623932, -0.1310500055551529, -0.3701300024986267, -0.45785999298095703], u'tight': [-0.003175100078806281, 0.24496999382972717, -0.34606999158859253, -0.10074000060558319, 0.5974000096321106, -0.46053001284599304, 0.37654998898506165, 0.23699000477790833, -0.018989000469446182, -1.0663000345230103, -0.6137099862098694, 0.10022000223398209, 0.0008233800181187689, 0.2596699893474579, -0.522570013999939, -0.23101000487804413, -0.2896600067615509, 0.3899100124835968, -0.19787000119686127, -0.43355000019073486, 0.2318200021982193, -0.13053999841213226, 0.20160000026226044, -0.35166001319885254, 0.32405000925064087, -0.21157999336719513, -0.044902000576257706, -0.1758899986743927, -0.6149799823760986, 0.09677200019359589, 0.1712000072002411, -0.2560200095176697, -0.32095998525619507, 0.9065999984741211, -1.1444000005722046, 0.000780489994212985, -0.3215799927711487, 0.42381998896598816, -0.40733999013900757, -0.09149499982595444, -0.8649700284004211, -0.1741199940443039, 0.47075000405311584, -0.6208400130271912, -0.23968000710010529, 0.17448000609874725, -0.19407999515533447, -0.27873000502586365, 0.4119499921798706, 0.32308998703956604, -0.21091000735759735, -0.0802680030465126, -0.3795199990272522, -0.4645000100135803, 0.11422999948263168, -0.606939971446991, -0.3203499913215637, -0.34869998693466187, -0.2934499979019165, -0.010712999850511551, 0.329800009727478, -0.27702000737190247, -0.6378399729728699, 0.48155999183654785, -0.033208999782800674, -0.4986400008201599, 0.22468000650405884, -0.20621000230312347, 0.5084099769592285, -0.06553799659013748, -0.43963998556137085, 0.3620699942111969, 0.08259300142526627, -0.03406799957156181, -0.037974998354911804, -0.14523999392986298, 0.006250900216400623, 0.3072800040245056, -0.45392000675201416, -0.45094001293182373, 0.4187999963760376, -0.7192100286483765, -0.07366999983787537, 0.4424999952316284, 0.23194000124931335, 0.10414999723434448, 0.5838599801063538, 0.17673000693321228, -0.5844799876213074, 0.31624001264572144, -0.14256000518798828, 0.2287299931049347, -0.17520000040531158, -0.3467999994754791, -0.1691499948501587, 0.41909000277519226, 0.09281100332736969, 0.5336199998855591, -0.23387999832630157, -0.022096000611782074, 0.13895000517368317, -0.11539000272750854, -0.44394999742507935, -0.3205299973487854, -0.5831900238990784, 0.7133399844169617, 0.291269987821579, 0.18181000649929047, -0.3513599932193756, -0.09878399968147278, -0.40887001156806946, -0.3312300145626068, 0.028723999857902527, 0.3612299859523773, -0.14720000326633453, 0.27382999658584595, 0.24036000669002533, -0.06753899902105331, 0.1341100037097931, -0.5811799764633179, 0.097291000187397, -0.614799976348877, 0.6023899912834167, -0.31951001286506653, 0.6323500275611877, -0.17689000070095062, -0.00046872999519109726, -0.30048999190330505, 0.04253099858760834, -0.062334999442100525, 0.15317000448703766, 0.13691000640392303, -0.42037999629974365, -0.0633699968457222, 0.09891100227832794, -0.3979800045490265, 0.04292900115251541, -0.48629000782966614, 0.3499799966812134, 0.08994700014591217, -0.4671800136566162, 0.20281000435352325, 0.08077099919319153, -0.10886000096797943, -0.48177000880241394, 0.1938599944114685, -0.8159700036048889, -0.4885900020599365, 0.607420027256012, 0.8094300031661987, 0.17809000611305237, -0.34018999338150024, 0.06374199688434601, -0.5239499807357788, 0.903410017490387, -0.6460199952125549, -0.5124300122261047, 0.018817000091075897, -0.18685999512672424, 0.19373999536037445, -0.0331760011613369, 0.022717999294400215, 0.18794000148773193, -0.26368001103401184, 0.004374399781227112, -0.5314499735832214, -0.1692499965429306, 0.06942799687385559, 0.3544999957084656, 0.0302910003811121, 0.19128000736236572, 0.1847900003194809, -0.5082499980926514, 0.026825999841094017, -0.04188999906182289, 0.4272899925708771, -0.4952299892902374, 0.26363998651504517, -0.20052999258041382, 0.07696100324392319, 0.13955999910831451, -0.4520300030708313, 0.13259999454021454, -0.019425999373197556, 0.07137200236320496, -0.1657799929380417, 0.2131900042295456, -0.6406999826431274, 0.17392000555992126, 0.643090009689331, 0.11111000180244446, 0.06926800310611725, -0.2743000090122223, 0.8039799928665161, -0.2690199911594391, -0.8870900273323059, -0.4758700132369995, -0.05830400064587593, 0.39873000979423523, 0.08926399797201157, 1.1418999433517456, 0.1613900065422058, 1.0355000495910645, 0.21788999438285828, 0.412990003824234, -0.354559987783432, 0.12997999787330627, -0.13675999641418457, 0.2277200073003769, -0.12334000319242477, 0.18425999581813812, 0.22789999842643738, 0.44780999422073364, 0.208529993891716, -0.1251000016927719, -0.6595699787139893, 0.01015700027346611, -0.8545299768447876, 0.02410000003874302, -0.7259299755096436, 0.8716099858283997, 0.13755999505519867, 0.21879999339580536, 0.568149983882904, 0.40643998980522156, 0.5386800169944763, 0.07515499740839005, 0.10126999765634537, -0.06758199632167816, -0.3973900079727173, 0.5940899848937988, -0.5428000092506409, 0.4649699926376343, -0.31856998801231384, -0.3878200054168701, 0.0279690008610487, -0.06844300031661987, -0.4092699885368347, 0.1088699996471405, 0.5304499864578247, 0.7037799954414368, 0.5977299809455872, 0.3121800124645233, 0.8125699758529663, -0.5958399772644043, 0.16966000199317932, 0.24754999577999115, 0.240339994430542, 0.15296000242233276, -0.19648000597953796, 0.09487800300121307, -0.26565998792648315, 0.17294000089168549, 0.12013000249862671, 0.40202000737190247, 0.17222000658512115, -0.10006999969482422, 0.15164999663829803, -0.14121000468730927, 0.45454999804496765, -0.01873200014233589, -0.24379999935626984, -0.1811400055885315, -0.40577998757362366, -0.17007000744342804, 0.0556269995868206, 0.2295600026845932, -0.12723000347614288, -0.30417001247406006, 0.015946000814437866, -0.15160000324249268, 0.0879950001835823, 0.11296000331640244, 0.41745999455451965, -0.1310500055551529, -0.09718099981546402, -0.9289699792861938, 0.2777499854564667, -0.37525999546051025, -0.0023348999675363302, 0.01989700086414814, 0.11680000275373459, 0.4275699853897095, 0.26337000727653503, -0.12212999910116196, -0.5601900219917297, -0.2573300004005432, 0.12654000520706177, -0.30465999245643616, -0.7993800044059753, 0.3253900110721588, 0.4001300036907196, -0.34777000546455383, 0.7813500165939331, -0.21146999299526215, 1.0676000118255615, -0.36608999967575073, -0.2260199934244156, -0.5120999813079834, 0.1280200034379959], u'crinkled': [-0.789080023765564, -0.4828200042247772, -0.26368001103401184, -0.3868100047111511, -0.27312999963760376, 0.08906400203704834, -0.0262449998408556, -1.0002000331878662, -0.09451299905776978, 0.8140299916267395, -0.047676000744104385, -0.031975001096725464, 0.06877200305461884, 0.12467999756336212, -0.6108099818229675, 0.015768000856041908, 0.03432999923825264, 0.029270000755786896, -0.1460600048303604, 0.030632000416517258, 0.22357000410556793, -0.14904999732971191, -0.4139299988746643, -0.079865001142025, -0.3171299993991852, -0.06016499921679497, 0.24135999381542206, -0.42559000849723816, 0.44947001338005066, -0.08009099960327148, -0.21483999490737915, 0.0960870012640953, -0.396369993686676, -0.31926000118255615, 0.31435999274253845, 0.38464000821113586, -0.33941999077796936, 0.22705000638961792, 0.3832800090312958, 0.02292099967598915, -0.5042399764060974, 0.1627199947834015, 0.4015200138092041, -0.4723300039768219, -0.11546000093221664, 0.48537999391555786, 0.15865999460220337, -0.01799199916422367, -0.5936999917030334, -0.2023400068283081, 0.23827999830245972, -0.6449800133705139, 0.10363999754190445, -0.05690699815750122, 0.0672840029001236, -0.5116900205612183, -0.12926000356674194, -0.13457000255584717, 0.6032999753952026, 0.14042000472545624, -0.08386799693107605, 0.18283000588417053, -0.3837299942970276, 0.5905900001525879, 0.4916499853134155, 0.10903999954462051, 0.15374000370502472, 0.045639000833034515, 0.16418999433517456, -0.5200300216674805, -0.13267000019550323, -0.22213000059127808, -0.23603999614715576, 0.4891799986362457, 0.7579100131988525, 0.6155300140380859, -0.7918800115585327, -0.03884899988770485, 0.10220000147819519, 0.09458400309085846, 0.03304100036621094, -0.3796899914741516, -0.31981000304222107, -0.19655999541282654, 0.16197000443935394, 0.13947999477386475, 0.18308000266551971, 0.064690001308918, 0.4580099880695343, -0.08781100064516068, 0.29677000641822815, 0.045531999319791794, 0.11396999657154083, -0.20103000104427338, -0.2069299966096878, -0.05556200072169304, 0.06504900008440018, 0.3056800067424774, 0.27417999505996704, 0.4261600077152252, 0.5788999795913696, -0.30504998564720154, -0.40290001034736633, 0.28933000564575195, -0.7356100082397461, 0.09380999952554703, 0.14544999599456787, 0.06883899867534637, -0.6455699801445007, -0.4489299952983856, 0.0011542000574991107, -0.04788900166749954, 0.23342999815940857, 0.03632200136780739, 0.16495999693870544, 0.4499000012874603, 0.15509000420570374, 1.385200023651123, -0.03919599950313568, 0.0076406002044677734, 0.12020999938249588, -0.9880099892616272, -0.4106999933719635, -0.3772999942302704, 0.23497000336647034, -0.1907999962568283, -0.3866400122642517, -2.304199915670324e-05, 0.005921099800616503, 0.5738300085067749, -0.1594499945640564, -0.06247900053858757, -0.11738000065088272, -0.07791399955749512, -0.41791999340057373, -0.10715000331401825, -0.17237000167369843, 0.28696998953819275, 0.6076300144195557, 0.005875300150364637, 0.8039399981498718, -0.010235000401735306, -0.10548000037670135, -0.24747000634670258, 0.3276500105857849, 0.3148899972438812, 0.1652500033378601, 0.19554999470710754, 0.35530000925064087, -0.3155899941921234, -0.1521500051021576, -0.3836100101470947, -0.5005800127983093, -0.4682900011539459, -0.2998400032520294, 0.3893899917602539, 0.16923999786376953, -0.39054998755455017, -0.19022999703884125, 0.4892300069332123, -0.8838099837303162, -0.3557499945163727, -0.3956199884414673, -0.06951700150966644, 0.3108299970626831, -0.24879999458789825, -0.19710999727249146, 0.5427799820899963, 0.2559399902820587, -0.10126999765634537, -0.12108000367879868, -0.16008000075817108, -0.06268999725580215, -0.7860699892044067, -0.3094800114631653, -0.6350100040435791, 0.04993699863553047, 0.47343000769615173, 0.0707160010933876, -0.8310999870300293, 0.25812000036239624, -0.23378999531269073, -0.0612029992043972, 0.12419000267982483, 0.38499999046325684, -0.19533999264240265, 0.404449999332428, 0.07834500074386597, 0.18158000707626343, -0.38850998878479004, -0.0426580011844635, -0.19947999715805054, -0.1497800052165985, 0.39695999026298523, 0.21295000612735748, 0.30037999153137207, 0.16372999548912048, -0.2060299962759018, -0.026093000546097755, 0.09695799648761749, -0.8242700099945068, -0.21969999372959137, -0.376120001077652, -0.25791001319885254, 0.1536100059747696, -0.5589600205421448, 0.39160001277923584, 0.48166000843048096, -0.7765799760818481, -0.01146399974822998, -0.05117800086736679, -0.4844000041484833, -0.1700499951839447, 0.30414000153541565, 0.24442000687122345, -0.2554300129413605, -0.02422799915075302, -0.48260998725891113, 0.25679001212120056, 0.3919900059700012, 0.2870199978351593, 0.24461999535560608, 0.318230003118515, -0.3227800130844116, -0.16263000667095184, -0.19113999605178833, 0.2156900018453598, 0.17021000385284424, 0.00431300001218915, -0.27698999643325806, 0.365229994058609, 0.21928000450134277, -0.14711999893188477, 0.4535300135612488, 0.10627000033855438, 0.1710200011730194, 0.13228000700473785, -0.3386799991130829, -0.5505200028419495, 0.0015041000442579389, 0.17015999555587769, -0.01418600045144558, -0.45809999108314514, 0.6060000061988831, -0.22109000384807587, 0.1869100034236908, 0.28731000423431396, 0.18316000699996948, 0.3069800138473511, -0.08730799704790115, -0.23855000734329224, -0.21592000126838684, 0.4761500060558319, 0.07798100262880325, -0.3100399971008301, 0.5688499808311462, -0.2302599996328354, 1.1722999811172485, -0.47178998589515686, -0.5298900008201599, -0.14624999463558197, -0.13088999688625336, 0.49160000681877136, 0.7078700065612793, 0.28005000948905945, -0.11072999984025955, 0.1761700063943863, 0.06640200316905975, -0.5208399891853333, 0.3555600047111511, 0.46237000823020935, 0.012346000410616398, 0.3366900086402893, 0.5501599907875061, -0.01875000074505806, 0.12105999886989594, 1.4208999872207642, -0.4591299891471863, -0.21980999410152435, 0.06453300267457962, 0.03346500173211098, 0.460099995136261, 0.25049999356269836, -0.19154000282287598, 0.1385899931192398, 0.28567999601364136, 0.555180013179779, 0.061264000833034515, -0.17462000250816345, -0.036357998847961426, -0.19298000633716583, 0.16637000441551208, -0.2505500018596649, 0.36098000407218933, -0.4210200011730194, -0.14903999865055084, 0.33768001198768616, 0.25290998816490173, 0.1515900045633316, 0.1147800013422966], u'wilted': [0.10886000096797943, -0.31457000970840454, -0.3236500024795532, -0.03974900022149086, 0.22954000532627106, -0.09851600229740143, -0.36250001192092896, 0.21212999522686005, 0.6715999841690063, 0.10823000222444534, -0.37869998812675476, 0.5713499784469604, -0.4368799924850464, 0.2969900071620941, 0.16387000679969788, -0.28235000371932983, -0.0681150034070015, 0.40321001410484314, 0.2110999971628189, 0.46108999848365784, 0.08843199908733368, 0.04240399971604347, 0.11513999849557877, -0.34325000643730164, 0.4432399868965149, -0.014759000390768051, -0.06429299712181091, 0.5624399781227112, -0.21442000567913055, 0.09627799689769745, 0.01486399956047535, -0.1452299952507019, 0.3675200045108795, -0.010270999744534492, -0.5386099815368652, -0.2522299885749817, 0.1482599973678589, -0.22150999307632446, 0.029411999508738518, 0.38844001293182373, 0.5059700012207031, 0.07345700263977051, 0.4451499879360199, -0.2834799885749817, 0.42800000309944153, -0.14182999730110168, 0.020486999303102493, -0.21241000294685364, -0.22476999461650848, 0.04399999976158142, 0.3684000074863434, -0.1948699951171875, -0.3432900011539459, -0.5645899772644043, 0.22182999551296234, -0.5215799808502197, 0.13829000294208527, 0.07067699730396271, 0.48840999603271484, -0.19965000450611115, 0.6562100052833557, -0.5014299750328064, -0.4337800145149231, 0.26412999629974365, -0.03834100067615509, 0.46985000371932983, 0.09215600043535233, 0.07247699797153473, -0.5846400260925293, -0.6098700165748596, -0.12236999720335007, 0.2955099940299988, 0.27691999077796936, 0.023037999868392944, 0.011495999991893768, 0.5857399702072144, -0.019440000876784325, -0.24208000302314758, -0.3937700092792511, 0.43191999197006226, -0.512690007686615, -0.0289900004863739, 0.21740999817848206, 0.2659200131893158, 0.26183000206947327, 0.6587499976158142, -0.31452998518943787, -0.10753999650478363, -0.10074000060558319, -0.24469000101089478, 0.16631999611854553, -0.46797001361846924, 0.6387900114059448, 0.41405999660491943, -0.45201000571250916, 0.6188700199127197, -0.3710800111293793, 0.0378279983997345, -0.21806000173091888, 0.6293399930000305, 0.4140099883079529, -0.6104999780654907, 0.014047999866306782, -0.30261000990867615, -0.3407599925994873, 0.1725900024175644, -0.04005099833011627, 0.0896570011973381, -0.029619000852108, 0.26570001244544983, 0.3308199942111969, 0.4770599901676178, -0.1410900056362152, -0.027736999094486237, -0.025165999308228493, 0.5307899713516235, -0.5969399809837341, 0.6536200046539307, 0.4765099883079529, 0.2163500040769577, 0.26583999395370483, -0.9967300295829773, -0.15866999328136444, 0.6169400215148926, -0.022502999752759933, 0.33924001455307007, -0.3881100118160248, 0.37373000383377075, -0.4404999911785126, 0.5751699805259705, 0.4572199881076813, 0.6266999840736389, 0.4069100022315979, 0.5083000063896179, -0.4792799949645996, 0.08657299727201462, 0.5366500020027161, -0.442220002412796, 0.15622000396251678, 0.9513099789619446, 0.24821999669075012, -0.004914199933409691, 0.054033998399972916, 0.8683000206947327, -0.513759970664978, 0.4554300010204315, 0.05302400141954422, 0.34279000759124756, 0.449290007352829, -0.4969500005245209, -0.9799399971961975, -0.5816100239753723, -0.23859000205993652, 0.09346000105142593, -0.17015999555587769, -0.14422999322414398, -0.4573799967765808, -0.9608200192451477, -0.3779900074005127, 0.22481000423431396, -0.74413001537323, 0.005401900038123131, -0.25273001194000244, -0.8001899719238281, 0.2679400146007538, -0.36177998781204224, -0.5902400016784668, -0.08025699853897095, -0.058184001594781876, -1.1470999717712402, 0.007338599767535925, 0.04558800160884857, -0.17675000429153442, -0.28534001111984253, 0.3110800087451935, -0.12812000513076782, 0.278219997882843, -0.12219999730587006, -0.06955599784851074, 0.24124999344348907, -0.4469900131225586, -0.11830999702215195, -0.11247999966144562, -0.33878999948501587, 0.01583700068295002, 0.5121300220489502, 0.046796999871730804, -0.08391900360584259, -0.5587400197982788, -0.5639299750328064, -0.008528799749910831, 0.050668999552726746, 0.13219000399112701, -0.1618099957704544, -0.38495001196861267, -0.2634499967098236, -0.07936300337314606, 0.5141000151634216, -0.22417999804019928, 0.1691499948501587, -0.3372200131416321, -0.42671000957489014, 0.26023000478744507, -0.3359000086784363, -0.06759999692440033, -0.4936999976634979, 0.11517000198364258, -0.28200000524520874, 0.030667999759316444, 0.18024000525474548, 0.1186399981379509, -0.03720499947667122, -0.469870001077652, -0.7335900068283081, 0.17709000408649445, -0.3612000048160553, 0.7999200224876404, -0.009791599586606026, -0.2717599868774414, -0.20371000468730927, 0.43876999616622925, 0.07919800281524658, -0.9825900197029114, -0.4247699975967407, -0.2910900115966797, -0.24432000517845154, -0.25117000937461853, 0.15711000561714172, 0.26238998770713806, 0.21254999935626984, 0.45153000950813293, -0.2239599972963333, -0.25409001111984253, 0.040421001613140106, -0.337119996547699, -0.0855100005865097, -0.16554999351501465, 0.37428998947143555, -0.19781999289989471, -0.3305000066757202, 0.3187499940395355, -0.4576900005340576, -0.3829199969768524, 0.16788999736309052, 0.14322000741958618, 0.0383870005607605, 0.29276999831199646, -0.35392001271247864, -0.09404800087213516, -1.0820000171661377, 0.1878799945116043, 0.17223000526428223, 1.0082000494003296, -0.45928001403808594, -0.08964700251817703, -0.24190999567508698, 0.3130300045013428, 0.24420000612735748, -0.4666300117969513, 0.6084200143814087, -0.0162189994007349, -0.365200012922287, -0.05488700047135353, 0.13955000042915344, -0.16120000183582306, 0.04190399870276451, 0.006258599925786257, -0.30630001425743103, -0.1200300008058548, 0.020006999373435974, -0.12387999892234802, 0.19012999534606934, -0.23771999776363373, 0.4233100116252899, -0.15512000024318695, 0.45930999517440796, 0.704509973526001, -0.6803500056266785, -0.6668499708175659, 0.5607600212097168, 0.004256099928170443, -0.3716999888420105, -0.1821500062942505, -0.32245999574661255, 0.04159000143408775, -0.4068300127983093, -0.06735099852085114, 0.47315001487731934, -0.06127699837088585, -0.35030999779701233, 0.5620999932289124, 0.21705999970436096, -0.05830400064587593, -0.46794000267982483, -0.3179300129413605, -0.6409000158309937, 0.03660300001502037, -0.49494999647140503, 0.2994000017642975, -0.006877399981021881], u'dented': [0.7420700192451477, 0.25235000252723694, -0.44328999519348145, 0.048645999282598495, -0.22285999357700348, 0.4100300073623657, 0.06973200291395187, 0.5691400170326233, -0.24792000651359558, -0.4940800070762634, -0.09137500077486038, 0.1961199939250946, 0.5045400261878967, -0.02121799997985363, -0.3654400110244751, 0.1687600016593933, 0.45048999786376953, -0.010378999635577202, -0.05195600166916847, -0.913919985294342, 0.17059999704360962, 0.3695699870586395, 0.2815999984741211, -0.7528600096702576, 0.18696999549865723, -0.030595000833272934, 0.09653999656438828, 0.323529988527298, 0.32670000195503235, 0.6152200102806091, 0.12871000170707703, -0.29096999764442444, 0.4299899935722351, -0.1757200062274933, -0.37257999181747437, 0.13384999334812164, -0.47148001194000244, -0.30897998809814453, 0.4246099889278412, -0.020347999408841133, 0.11810000240802765, -0.07509700208902359, 0.20723000168800354, -0.559149980545044, -0.37178000807762146, 0.2596200108528137, -0.5220900177955627, -0.3381499946117401, -0.6470999717712402, 0.19386999309062958, 0.3763200044631958, -0.35433998703956604, 0.5714899897575378, 0.11033999919891357, 0.3029400110244751, 0.18213999271392822, 0.03631199896335602, -0.04462499916553497, 0.026023000478744507, 0.5362600088119507, 0.2730900049209595, 0.2109300047159195, -0.38752999901771545, 0.12571999430656433, -0.11638999730348587, 0.7843199968338013, -0.16863000392913818, -0.06706500053405762, 0.23240000009536743, -0.19709999859333038, -0.16764000058174133, 0.009412500075995922, 0.40143999457359314, 0.12612999975681305, 0.6247199773788452, -0.30031999945640564, -0.037679001688957214, -0.1118599995970726, -0.6216300129890442, 0.20347000658512115, -0.14789000153541565, 0.03159099817276001, 0.12838000059127808, 0.36917999386787415, 0.38725998997688293, -0.38870999217033386, -0.23093999922275543, -0.2943600118160248, 0.010697999969124794, 0.2650899887084961, 0.8376500010490417, 0.273499995470047, -0.0010671999771147966, 0.016628999263048172, -0.06789399683475494, 0.4495300054550171, 0.6012899875640869, 0.578220009803772, -0.937309980392456, 0.6818900108337402, -0.16759000718593597, -0.06418800354003906, -0.2759599983692169, -0.41012999415397644, 0.3229700028896332, 0.19821999967098236, 0.2440599948167801, -0.20878000557422638, -0.09998700022697449, -0.4409500062465668, 0.2711299955844879, -0.13725000619888306, -0.07755500078201294, -0.5807200074195862, 0.06197400018572807, -0.29739001393318176, 0.043671999126672745, 0.2730199992656708, -0.031082000583410263, -0.6568400263786316, 0.020061999559402466, -0.972599983215332, -0.011345000006258488, 0.4616200029850006, -0.08049800246953964, 0.11613000184297562, -0.7299500107765198, -0.26528000831604004, 0.23300999402999878, 0.4358699917793274, 0.14966000616550446, 0.8611900210380554, 0.36956000328063965, 0.2728999853134155, 0.5168099999427795, 0.08673500269651413, 0.2721099853515625, 0.19866999983787537, 0.28755998611450195, 0.2680499851703644, 0.1050800010561943, 0.21025000512599945, 0.4822399914264679, 0.4118900001049042, 0.37059998512268066, -0.1471100002527237, 0.19322000443935394, 0.06090199947357178, 0.429390013217926, -0.28172001242637634, 0.3873499929904938, -0.10409999638795853, 0.10405000299215317, 0.21265999972820282, -0.42030999064445496, 0.1808300018310547, 0.007125900126993656, -0.20110000669956207, -0.2260800004005432, 0.46472999453544617, -0.36675000190734863, 0.11477000266313553, -0.3503499925136566, 0.4025300145149231, 0.9960799813270569, -0.30142998695373535, -0.3997499942779541, -0.09249900281429291, 0.02565399929881096, -0.2525300085544586, -0.18592000007629395, 0.17059999704360962, 0.028922999277710915, -0.8028500080108643, 0.2516399919986725, -0.20130999386310577, 0.13850000500679016, 0.06065500155091286, 0.6417499780654907, -0.24560999870300293, -0.28022000193595886, 0.21574999392032623, 0.03495100140571594, -0.07199499756097794, 0.2560200095176697, -0.029572000727057457, 1.041599988937378, -0.0763309970498085, -0.015838999301195145, 0.1839199960231781, 0.049345001578330994, -0.6139400005340576, -0.25769999623298645, -0.18421000242233276, 0.10181000083684921, -0.07666300237178802, 0.3031100034713745, -0.22082999348640442, 0.0025341000873595476, 0.16256999969482422, 0.24607999622821808, -0.010262000374495983, 0.12382999807596207, -0.12462999671697617, -0.6219499707221985, -0.9957500100135803, 0.6277999877929688, -0.4000299870967865, -1.1633000373840332, 0.24208000302314758, -0.4440700113773346, 0.10266000032424927, -0.25525999069213867, -0.10571999847888947, 0.28777000308036804, -0.28178998827934265, 0.1530500054359436, -0.020979000255465508, -0.11275999993085861, 0.27118000388145447, 0.18612000346183777, 0.15386000275611877, -0.3206399977207184, -0.4078199863433838, 0.2719799876213074, 0.10226999968290329, -0.11175999790430069, -0.02212500013411045, 0.31446999311447144, 0.07056699693202972, 0.018285999074578285, 0.002532100072130561, -0.6250699758529663, -0.21119999885559082, -0.20829999446868896, 0.031228000298142433, 1.1552000045776367, -0.016081999987363815, -0.4359399974346161, -0.22780999541282654, 0.2018200010061264, -0.10589999705553055, -0.46189001202583313, -0.10668999701738358, -0.39660000801086426, -0.23149000108242035, -0.15564000606536865, -0.2382500022649765, -0.03476899862289429, 0.3577600121498108, 0.09183000028133392, -0.319130003452301, 0.36812999844551086, -0.47791001200675964, -0.1347000002861023, -0.11343999952077866, 0.18756000697612762, 0.4184400141239166, 0.05038699880242348, 0.07169999927282333, -0.32499998807907104, 0.583549976348877, -0.43849000334739685, 0.9107699990272522, -0.25609999895095825, 0.05653199926018715, 0.29008999466896057, -0.5616199970245361, -0.18095000088214874, -0.27897998690605164, -0.14702999591827393, -0.22202999889850616, 0.1479099988937378, -0.19699999690055847, -0.1261499971151352, 0.19728000462055206, 0.45159000158309937, -0.42667001485824585, 0.06324999779462814, 0.21185000240802765, -0.03469200059771538, 0.2438099980354309, -0.420199990272522, 0.15039999783039093, -0.08297000080347061, -0.391759991645813, -0.14770999550819397, 0.2518399953842163, 0.22085000574588776, 0.0984560027718544, -0.1989399939775467, -0.043480001389980316, 0.2137800008058548, 0.23186999559402466, -0.010363999754190445, 0.48372000455856323, 0.21668000519275665, -0.5144400000572205, -0.41370999813079834, -0.1934400051832199], u'crushed': [-0.13232000172138214, 0.14618000388145447, -0.15557999908924103, -0.2857399880886078, 0.7050399780273438, -0.3298499882221222, -0.20874999463558197, 0.7010200023651123, 0.4908199906349182, -0.20071999728679657, -0.06128399819135666, 0.16685999929904938, 0.41916000843048096, 0.05105099827051163, 0.031307999044656754, 0.4752500057220459, 0.04842500016093254, 0.590179979801178, -0.6628000140190125, -0.32771000266075134, -0.10307999700307846, 0.3352000117301941, 0.17956000566482544, -0.46209999918937683, -0.5854099988937378, -0.48829999566078186, -0.2317499965429306, 0.15185999870300293, 0.010975000448524952, 0.318450003862381, -0.6943399906158447, 0.1962299942970276, -0.24650000035762787, -0.07070600241422653, -0.16518999636173248, 0.07124900072813034, -0.07012499868869781, 0.6780200004577637, 0.42006999254226685, -0.02791699953377247, 0.32221999764442444, -0.08312000334262848, 0.5248500108718872, -0.3070800006389618, 0.3643699884414673, -0.06631699949502945, -0.21056999266147614, 0.4018700122833252, -0.20740999281406403, -0.21254999935626984, 0.2780100107192993, 0.2776699960231781, -0.3183000087738037, 0.0065162000246346, 0.5230900049209595, 0.019311999902129173, -0.035353999584913254, -0.5794699788093567, -0.3036699891090393, 0.06953299790620804, -0.059700001031160355, -0.010467000305652618, -0.2700900137424469, 0.6779500246047974, -0.6349300146102905, -0.2558799982070923, -0.2062000036239624, 0.16312000155448914, -0.0831810012459755, 0.020642999559640884, -0.19133000075817108, 0.1529799997806549, -0.534529983997345, 0.2533999979496002, -0.009072699584066868, 0.0287299994379282, 0.26096999645233154, -0.6484599709510803, 0.19679999351501465, 0.5034499764442444, 0.13190999627113342, 0.07670900225639343, 0.177279993891716, -0.10779000073671341, -0.19943000376224518, -0.3372499942779541, -0.03620399907231331, 0.27035000920295715, 0.12385000288486481, 0.196710005402565, 0.621720016002655, 0.055500999093055725, 0.2300499975681305, -0.19710999727249146, 0.07608100026845932, 0.30741000175476074, 0.017914000898599625, 0.44203999638557434, 0.3153899908065796, 0.4717699885368347, 0.41710999608039856, 0.21541999280452728, 0.388700008392334, -1.0851000547409058, 0.41776999831199646, 0.546779990196228, 0.20565000176429749, -0.33504000306129456, 0.029596999287605286, -0.5308499932289124, -0.16438999772071838, -0.044137001037597656, 0.3246999979019165, -0.47293999791145325, -0.015526999719440937, 0.12058000266551971, -0.47251999378204346, 0.2528899908065796, -0.00475780013948679, -0.2390899956226349, -0.24991999566555023, -0.7643899917602539, -0.25415998697280884, 0.08763500303030014, -0.011477000080049038, -0.5408899784088135, -0.18429000675678253, 0.12693999707698822, -0.23826000094413757, 0.5226200222969055, -0.2668200135231018, 1.3208999633789062, -0.23050999641418457, 0.07603800296783447, 0.4447900056838989, 0.28957000374794006, 0.03600800037384033, 0.002092099981382489, 0.2395000010728836, 0.6296499967575073, 0.586679995059967, 0.4625999927520752, -0.546239972114563, 0.1490200012922287, -0.26603999733924866, 0.17700999975204468, 0.1214900016784668, 0.023374000564217567, -0.012533999979496002, -0.6356099843978882, 0.05025799944996834, -0.19367000460624695, -0.18176999688148499, 0.23810000717639923, 0.3857499957084656, 0.29082000255584717, 0.48100998997688293, 0.1853100061416626, -0.5424399971961975, -0.20050999522209167, 0.052806999534368515, 0.25488001108169556, -0.1997700035572052, -0.07838000357151031, 1.1727999448776245, -0.38982999324798584, 0.13642999529838562, -0.20441000163555145, 0.19266000390052795, -0.5450299978256226, 0.19527000188827515, -0.10826999694108963, 0.49601998925209045, -0.20440000295639038, -0.09955000132322311, -0.1301400065422058, 0.36594000458717346, -0.01949400082230568, 0.30500999093055725, 0.09521500021219254, 0.3041299879550934, -0.21527999639511108, 0.28091999888420105, -0.5671499967575073, 0.1814900040626526, -0.11050000041723251, 0.012628999538719654, 0.07552000135183334, 0.7430099844932556, 0.10666000097990036, 0.5376600027084351, 0.12741999328136444, 0.18104000389575958, 0.07818900048732758, -0.013975000008940697, 0.2818000018596649, -0.05114800110459328, 0.11844000220298767, 0.32186999917030334, 0.23029999434947968, 0.7516599893569946, -0.024435000494122505, -0.11909999698400497, -0.015843000262975693, -0.4413599967956543, -0.39730000495910645, 0.7835900187492371, 0.030448999255895615, -0.5166500210762024, -0.08905799686908722, -0.5737199783325195, -0.04021900147199631, -0.1646299958229065, 0.6122000217437744, 0.523580014705658, -0.1784999966621399, 0.4429900050163269, -0.7046200037002563, 0.1448100060224533, 0.1138399988412857, 0.7751500010490417, 0.39653000235557556, -0.17922000586986542, -0.6399999856948853, -0.3492699861526489, 0.027698000892996788, 0.27153000235557556, -0.35583001375198364, -0.5706999897956848, -0.3965499997138977, -0.2630400061607361, -0.3180899918079376, 0.19057999551296234, -0.16777999699115753, 0.16857999563217163, -0.0009389100014232099, 0.10834000259637833, 0.40977001190185547, -0.4862399995326996, -0.7399100065231323, -0.5401700139045715, 0.12777000665664673, -0.3471300005912781, -0.07060100138187408, -0.2889299988746643, -0.24480000138282776, 0.8502699732780457, 0.5089499950408936, 0.402209997177124, 0.002867799950763583, 0.7773600220680237, 0.11321999877691269, 0.19056999683380127, -0.6864799857139587, 0.7149199843406677, -0.2096100002527237, 0.24535000324249268, -0.10487999767065048, -0.25738000869750977, -0.2630000114440918, -0.4638499915599823, -0.28123000264167786, 0.0670199990272522, -0.010715000331401825, 0.31942999362945557, -0.1081399992108345, -0.3084999918937683, -0.17023000121116638, 0.06515499949455261, 0.06355399638414383, -0.3580299913883209, -0.6852700114250183, 0.27647000551223755, -0.1576099991798401, -0.333840012550354, 0.007211099844425917, -1.0641000270843506, -0.7095400094985962, -0.2848300039768219, 0.07070600241422653, 0.13032999634742737, -0.11097999662160873, 0.3967199921607971, -0.22348999977111816, 0.06349799782037735, 0.6082000136375427, -0.477510005235672, -0.10204999893903732, 0.07791800051927567, 0.17111000418663025, -0.011962000280618668, -0.3046500086784363, 0.4106999933719635, 0.4221400022506714, 0.06203300133347511, 0.476859986782074, 0.3044799864292145, -0.33094000816345215, 0.18887999653816223, 0.2582699954509735], u'tall': [-0.4674600064754486, -0.148049995303154, -0.18253999948501587, -0.9249899983406067, -0.17010000348091125, 1.0987999439239502, 0.5065799951553345, 0.5976999998092651, -0.006434199865907431, -0.29892000555992126, 0.516260027885437, 0.37334999442100525, 0.12748999893665314, 0.4759199917316437, -0.004873599857091904, 0.03724399954080582, -0.013038000091910362, -0.569890022277832, -0.057204000651836395, -0.1009799987077713, -0.1745299994945526, 0.2547000050544739, -0.09666600078344345, 1.1092000007629395, -0.20072999596595764, 0.6959699988365173, 0.16015000641345978, -0.043476998805999756, -0.21455000340938568, 0.8214200139045715, -0.05917099863290787, 0.580780029296875, -0.6954900026321411, -0.4794600009918213, -0.5287600159645081, 0.2696700096130371, 0.10627999901771545, -0.2754800021648407, -0.22958000004291534, 0.5943300127983093, -0.5613399744033813, -0.37217000126838684, -0.040417999029159546, -0.05324700102210045, -0.5296199917793274, -0.06340599805116653, 0.46994999051094055, -0.3559499979019165, 0.3372400104999542, 0.09365499764680862, -0.4466800093650818, 0.3147999942302704, -0.7069900035858154, -0.36574000120162964, -0.2195100039243698, 0.41776999831199646, -0.07701700180768967, -0.2386700063943863, 0.3466799855232239, 0.08192399889230728, 0.12724000215530396, 0.03790700063109398, 0.36765000224113464, -0.40101999044418335, -0.18824000656604767, -0.3025600016117096, -0.07918599992990494, 0.7968900203704834, 0.26368001103401184, -0.4302699863910675, 0.04044400155544281, 0.24541999399662018, -0.3905099928379059, -0.3430599868297577, -0.46213001012802124, 0.23374000191688538, 0.44172000885009766, 0.05147499963641167, 0.360509991645813, -0.2718299925327301, -0.1406099945306778, 0.6693599820137024, -0.062438998371362686, 0.04705100134015083, -0.20981000363826752, 0.7657899856567383, 0.1569100022315979, 0.49511000514030457, 0.528190016746521, 0.3168799877166748, 0.709879994392395, -0.6939799785614014, 0.12647999823093414, 0.4714199900627136, -0.46564000844955444, -0.36107000708580017, -0.02944999933242798, -0.18020999431610107, 0.3857400119304657, -0.07752899825572968, -0.1090800017118454, 0.26003000140190125, -0.2221599966287613, -0.920989990234375, -0.31047001481056213, 0.06048800051212311, 0.5447999835014343, 0.24713000655174255, -0.15966999530792236, -0.4246799945831299, -0.4304499924182892, 0.48458999395370483, 0.024011999368667603, -0.7855899930000305, 0.3980199992656708, 0.08258199691772461, -0.28279000520706177, 0.4537599980831146, -0.06699100136756897, 0.054301999509334564, -0.1280200034379959, -0.0005238900193944573, 0.33796000480651855, 0.2999100089073181, -0.5521000027656555, 0.22447000443935394, 0.29892000555992126, 0.5837100148200989, 0.4659000039100647, -0.5967000126838684, -0.22577999532222748, 0.5828499794006348, -0.8237199783325195, 0.24660000205039978, 0.4578700065612793, -0.05622899904847145, -0.024654999375343323, -0.29822999238967896, -0.3557400107383728, -0.6068599820137024, 0.34619998931884766, 0.14268000423908234, 0.26467999815940857, 0.30055001378059387, -0.8672199845314026, 0.3405599892139435, -0.0915369987487793, -0.06899499893188477, -0.4250600039958954, -0.0418040007352829, -0.15554000437259674, -0.08647699654102325, -0.05952100083231926, 0.023145999759435654, 0.05968799814581871, 0.32447999715805054, 0.09770900011062622, -0.7817500233650208, -0.02657400071620941, 0.9914699792861938, 0.11125999689102173, 0.04238799959421158, 0.7509499788284302, -0.22169999778270721, -0.11949999630451202, -0.07219800353050232, -0.19280000030994415, 0.4647499918937683, 0.557699978351593, -0.6005100011825562, -0.14980000257492065, -0.25356000661849976, -0.09113500267267227, -0.1441500037908554, 0.4950200021266937, -0.21950000524520874, -0.05674799904227257, 0.21216000616550446, -0.05994100123643875, -0.7737799882888794, -0.3285199999809265, -0.5017799735069275, 0.6303499937057495, -0.07420600205659866, 0.19025999307632446, -0.22746999561786652, 0.38047999143600464, 0.3343299925327301, 0.8745899796485901, 0.7727599740028381, 0.10575000196695328, 0.19592000544071198, 0.5282899737358093, 0.34334999322891235, -0.05425399914383888, -0.21952000260353088, -0.5216400027275085, -0.11847999691963196, -0.11513999849557877, -0.10987000167369843, 1.4049999713897705, 0.1795099973678589, -0.07070499658584595, 0.18357999622821808, -0.18568000197410583, -0.12815000116825104, -0.35220998525619507, 0.2557399868965149, 0.24132999777793884, -0.24958999454975128, 0.8209099769592285, -0.022234000265598297, -0.27768000960350037, -0.9954100251197815, -0.03119399957358837, -0.05007300153374672, -0.24852000176906586, -0.18070000410079956, -0.04574500024318695, -0.5995799899101257, 0.6198899745941162, -0.3441999852657318, 0.7303299903869629, 0.24221999943256378, -0.14528000354766846, 0.5735200047492981, -0.3971799910068512, -0.1497499942779541, -0.38249000906944275, -0.05126800015568733, 0.300570011138916, 0.1721400022506714, -0.4424000084400177, 0.47293001413345337, -0.30118000507354736, -0.22981999814510345, -0.4401699900627136, -0.2798500061035156, -0.10478000342845917, -0.13979999721050262, 0.4453299939632416, -0.2624000012874603, -0.8432000279426575, -0.03097900003194809, -0.6630899906158447, 0.003246000036597252, 0.1413400024175644, -0.023452000692486763, 0.17086000740528107, 0.08601000159978867, 0.5145000219345093, -0.46401000022888184, 0.015580999664962292, -0.7008299827575684, 0.5151799917221069, -0.09098999947309494, -0.10029999911785126, -0.2847000062465668, -0.2086700052022934, -0.09992799907922745, 0.5821200013160706, 0.03906700015068054, 0.4460499882698059, -0.2603200078010559, -0.5224499702453613, -0.515030026435852, 0.14282000064849854, -0.2377600073814392, 0.43827998638153076, 0.22457000613212585, -0.37560001015663147, -0.3126299977302551, -0.13344000279903412, -0.27529001235961914, -0.431769996881485, 0.3789600133895874, -0.9571499824523926, 0.460750013589859, -0.8727999925613403, -0.09992899745702744, 0.5471699833869934, -0.3349199891090393, 0.1498900055885315, 0.21240000426769257, -0.24392999708652496, 0.512470006942749, -0.5176200270652771, 0.5915300250053406, -0.11693000048398972, 0.16933000087738037, 0.9299499988555908, 0.38413000106811523, -0.32510998845100403, -0.7393100261688232, 0.7983400225639343, 0.10834000259637833, -0.3936600089073181, -0.07108200341463089, 0.28251001238822937, 0.2349099963903427], u'short': [-0.20486000180244446, -0.267520010471344, -0.13951000571250916, 0.14983999729156494, 0.12790000438690186, 0.09535899758338928, -0.1877799928188324, 0.047616999596357346, 0.03429900109767914, -1.521399974822998, 0.3456900119781494, 0.29065001010894775, -0.2540299892425537, 0.18497000634670258, 0.17077000439167023, -0.14982999861240387, -0.0440480001270771, 0.34834998846054077, 0.10121999680995941, -0.26475000381469727, -0.5768600106239319, -0.07568400353193283, 0.19694000482559204, 0.3450300097465515, 0.013477999716997147, 0.3838900029659271, 0.38245999813079834, -0.2622700035572052, -0.21392999589443207, 0.23553000390529633, -0.2057500034570694, 0.2470400035381317, 0.21220999956130981, 0.00023573999351356179, -1.0607000589370728, 0.04586600139737129, -0.3050299882888794, 0.4069100022315979, 0.10013999789953232, 0.1517000049352646, -0.5293499827384949, -0.014732999727129936, 0.06774300336837769, 0.16784000396728516, 0.13116000592708588, 0.3902600109577179, -0.13503000140190125, 0.007235900033265352, -0.3853299915790558, 0.37626001238822937, -0.014399999752640724, -0.039090000092983246, -0.005426399875432253, -0.08377200365066528, 0.21782000362873077, 0.2450300008058548, -0.1836100071668625, -0.1654299944639206, 0.18811999261379242, 0.08195500075817108, 0.217289999127388, -0.19405999779701233, 0.11633999645709991, -0.47769999504089355, 0.11113999783992767, -0.46116000413894653, 0.2301499992609024, 0.4808099865913391, 0.9110199809074402, 0.23937000334262848, 0.32276999950408936, 0.3422600030899048, 0.42796000838279724, -0.15693999826908112, 0.27292999625205994, -0.25440001487731934, 0.016534000635147095, 0.42598000168800354, -0.17940999567508698, -0.5573899745941162, 0.11630000174045563, 0.3968999981880188, 0.4254400134086609, 0.19901999831199646, -0.05855099856853485, 0.719219982624054, 0.5692499876022339, 0.3362500071525574, 0.3357900083065033, 0.20140999555587769, 0.6989499926567078, 0.43463000655174255, -0.254720002412796, -0.1677599996328354, 0.33417999744415283, 0.13673999905586243, -0.40681999921798706, 0.06971099972724915, -0.08000300079584122, -0.0031487001106142998, 0.15312999486923218, -0.11387000232934952, -0.45928001403808594, 0.17784999310970306, -0.5211799740791321, -0.012802000157535076, 0.12134999781847, -0.3250100016593933, -0.2533400058746338, -0.20127999782562256, -0.6543800234794617, 0.35245999693870544, 0.1448500007390976, -0.12846000492572784, 0.033925000578165054, -0.15335999429225922, -0.10683999955654144, 0.14291000366210938, 0.22101999819278717, -0.6492599844932556, -0.1423099935054779, -0.20527000725269318, 0.1752600073814392, -0.06923700124025345, 0.30601999163627625, 0.29291000962257385, 0.18100999295711517, -0.12301000207662582, 0.06629499793052673, -0.014347000047564507, 0.08201199769973755, 0.23115000128746033, -0.45205000042915344, -0.12263999879360199, 0.07292100042104721, -0.1426900029182434, -0.016414999961853027, -0.08073300123214722, 0.04135200008749962, -0.06312599778175354, -0.16078999638557434, -0.17858000099658966, 0.011483999900519848, 0.01346299983561039, -0.24010999500751495, 0.16895000636577606, -0.028665000572800636, 0.15277999639511108, 0.3982299864292145, -0.2517699897289276, 0.4292300045490265, -0.10859999805688858, -0.44764000177383423, -0.06401599943637848, 0.4003799855709076, -0.2961199879646301, 0.16347000002861023, -0.20872999727725983, 0.16008999943733215, 0.005459799896925688, -0.2137400060892105, -0.030417999252676964, 0.12172000110149384, -0.3441399931907654, -0.2505500018596649, 0.5839300155639648, -0.3820500075817108, 0.2744700014591217, -0.043310001492500305, 0.16221000254154205, 0.2900699973106384, -0.3079800009727478, -0.840399980545044, 0.3626599907875061, -0.2700999975204468, 0.16588999330997467, 0.046594999730587006, 0.15994000434875488, -0.17035000026226044, -0.022657999768853188, 0.14993999898433685, -0.5769199728965759, 0.3615800142288208, -0.022242000326514244, 0.006812499836087227, -0.04345899820327759, -0.12790000438690186, 0.03246799856424332, 0.04552699998021126, 0.15103000402450562, -0.39316999912261963, 0.45563000440597534, 0.42555001378059387, -0.1705700010061264, -0.609000027179718, -0.25196999311447144, -0.46566998958587646, -0.5758500099182129, 0.11151999980211258, 0.01771700009703636, 1.0197999477386475, 0.07121700048446655, -0.3767400085926056, 0.08540499955415726, 0.30845001339912415, 0.22497999668121338, -0.28668999671936035, 0.39239001274108887, -0.17363999783992767, -0.21231000125408173, 0.3663899898529053, -0.8876500129699707, 0.023287000134587288, 0.1718900054693222, 0.03940499946475029, 0.17001000046730042, -0.2218399941921234, -0.2766000032424927, -0.12494999915361404, -0.4624600112438202, 0.4603799879550934, -0.26864001154899597, -0.3149699866771698, 0.13898000121116638, 0.2830300033092499, -0.22051000595092773, 0.20500999689102173, -0.3544600009918213, -0.13357999920845032, -0.08810599893331528, 0.22006000578403473, -0.17055000364780426, -0.32245999574661255, -0.126910001039505, -0.05182899907231331, 0.12345000356435776, -0.12272000312805176, -0.09690000116825104, 0.255840003490448, 0.21390999853610992, 0.6003199815750122, 0.12052000313997269, -0.01936499960720539, 0.04144899919629097, -1.0799000263214111, -0.3430899977684021, -0.05277400091290474, 0.08383800089359283, -0.07457999885082245, -0.32361000776290894, -0.07893799990415573, -0.131740003824234, -0.3129900097846985, -0.4710099995136261, 0.1585800051689148, -0.4742400050163269, -0.2896600067615509, 0.5426899790763855, 0.08773399889469147, 0.09475799649953842, 0.18094000220298767, 0.13027000427246094, -0.4317300021648407, -0.1638299971818924, -0.36945000290870667, 0.11495999991893768, -0.07663100212812424, 0.00691050011664629, -0.03061399981379509, 0.33855998516082764, 0.10577999800443649, -0.23723000288009644, -0.430400013923645, 0.5481600165367126, 0.06669799983501434, 0.0613970011472702, -1.7977999448776245, -0.012563000433146954, -0.07506400346755981, -0.20784999430179596, 0.0748559981584549, -0.3881399929523468, 0.10366000235080719, -0.24790999293327332, -0.28505998849868774, 0.07514700293540955, 0.0027681998908519745, 0.30913999676704407, -0.5832499861717224, 0.09537100046873093, -0.34551000595092773, -0.04350600019097328, -0.15490999817848206, -0.5308399796485901, 0.011629999615252018, 0.0938510000705719, -0.24615000188350677, -0.042330000549554825, -0.05276799947023392, -0.1764100044965744], u'shiny': [-0.042796000838279724, -0.23962000012397766, -0.2287299931049347, -0.571619987487793, -0.4779700040817261, -0.03560300171375275, 0.2903600037097931, -0.00836469978094101, 0.14591999351978302, -0.34984999895095825, -0.23770999908447266, -0.022074999287724495, 0.23229999840259552, 0.18657000362873077, -0.18407000601291656, 0.34073999524116516, -0.2293200045824051, 0.12767000496387482, 0.17116999626159668, -0.35238999128341675, 0.09687899798154831, 0.7608799934387207, 0.2762399911880493, 0.3579599857330322, -0.22800999879837036, -0.27344998717308044, 0.43647998571395874, 0.1027199998497963, 0.08952900022268295, 0.005603400059044361, -0.0989689975976944, 0.11941999942064285, -0.5870199799537659, 0.21184000372886658, -0.4396600127220154, 0.7828900218009949, 0.009549600072205067, -0.49375998973846436, 0.10087999701499939, 0.49689000844955444, -0.10147000104188919, -0.3228299915790558, -0.28700000047683716, -0.0019934000447392464, 0.42882001399993896, 0.2227099984884262, 0.2581700086593628, -0.1385599970817566, -0.2175299972295761, 0.01075700018554926, -0.18893000483512878, -0.41916999220848083, 0.2547900080680847, -0.1838500052690506, 0.12064000219106674, 0.06669600307941437, -0.4472000002861023, -0.41488999128341675, 0.20455999672412872, 0.08067700266838074, -0.05966800078749657, -0.2331800013780594, -0.14455999433994293, -0.2260800004005432, 0.6571300029754639, 0.13609999418258667, 0.06707700341939926, 0.34863999485969543, 0.260809987783432, -0.10779000073671341, -0.021762000396847725, -0.025272000581026077, 0.11925999820232391, 0.28310999274253845, 0.06049500033259392, 0.1513500064611435, -0.5190899968147278, 0.21028000116348267, 0.7067499756813049, -0.4821400046348572, 0.044906001538038254, 0.4742499887943268, 0.07575199753046036, -0.4178999960422516, 0.463019996881485, 0.36208000779151917, 0.1540900021791458, -0.13485999405384064, -0.21238000690937042, 0.28224998712539673, 0.5206800103187561, -0.10531000047922134, 0.0572349987924099, -0.13973000645637512, -0.6937299966812134, 0.1578799933195114, -0.3815999925136566, 0.03965499997138977, 0.23704999685287476, -0.06283999979496002, 0.4983699917793274, 0.11457999795675278, -0.034738000482320786, -0.06371600180864334, -0.29693999886512756, -0.3797599971294403, 0.43647000193595886, -0.4037100076675415, -0.7574399709701538, -0.4280500113964081, 0.023725999519228935, 0.6340299844741821, 0.2145799994468689, -0.5103399753570557, -0.19337999820709229, 0.15929000079631805, -0.06691800057888031, 0.6567599773406982, 0.3577199876308441, -0.3223299980163574, 0.1437699943780899, -0.6105999946594238, 0.302729994058609, 0.44067999720573425, -0.33375000953674316, 0.18212999403476715, 0.12065000087022781, 0.8152300119400024, -0.043453000485897064, 0.09612999856472015, -0.028163999319076538, 0.023459000512957573, 0.1719300001859665, 0.3340499997138977, -0.577430009841919, 0.08864299952983856, 0.01270699966698885, 0.3666900098323822, 0.004350699950009584, 0.05245000123977661, 0.39902999997138977, 0.1913599967956543, 0.028264999389648438, -0.251120001077652, 0.8016800284385681, 0.2938700020313263, -0.12396000325679779, -0.08309800177812576, 0.1695300042629242, 0.31119000911712646, -0.13800999522209167, -0.157710000872612, -0.3159799873828888, -0.19041000306606293, 0.24470999836921692, -0.49939998984336853, -0.1457899957895279, -0.6146399974822998, -0.12701000273227692, 0.4108999967575073, -0.02761800028383732, -0.37742000818252563, 0.11794000118970871, 0.13686999678611755, 0.6192399859428406, -0.1668899953365326, 0.07415799796581268, 0.7569000124931335, 0.33910998702049255, -0.7174400091171265, -0.49053001403808594, -0.13064000010490417, 0.20418000221252441, 0.049956001341342926, -0.0804620012640953, -0.8817200064659119, -0.10582999885082245, 0.31911998987197876, -0.39656001329421997, -0.9360299706459045, 0.17149999737739563, -0.263700008392334, 0.5589100122451782, 0.10322999954223633, 0.36052000522613525, -0.07816699892282486, 1.3652000427246094, 0.03701400011777878, 0.05831800028681755, 0.06963100284337997, 0.6496999859809875, -0.08415599912405014, -0.38082998991012573, 0.4914399981498718, 0.14285999536514282, -0.06461600214242935, -0.5382500290870667, 0.0057160998694598675, 0.05046800151467323, 0.2542000114917755, 0.5899500250816345, -0.49974000453948975, 0.0466109998524189, 0.01498199999332428, 0.12483000010251999, -0.22532999515533447, 0.5878599882125854, 0.12679000198841095, -0.5236700177192688, -0.20468999445438385, 0.08881500363349915, 0.10141000151634216, -0.2518500089645386, -0.2424899935722351, 0.16558000445365906, -0.22804999351501465, 0.26715001463890076, -0.2520799934864044, -0.1885399967432022, -0.4092699885368347, 0.11836999654769897, -0.307669997215271, 0.2397100031375885, 0.003465099958702922, -0.6224799752235413, -0.04017699882388115, 0.23253999650478363, 0.09500999748706818, 0.20201000571250916, -0.13660000264644623, 0.13118000328540802, 0.3188999891281128, -0.01671000011265278, -0.4155600070953369, 0.19318999350070953, 0.18129999935626984, 0.26256999373435974, -0.29660001397132874, -0.6294800043106079, -0.43189001083374023, 0.5141800045967102, -0.04567699879407883, -0.4117699861526489, 0.43274998664855957, -0.5585100054740906, 0.04227700084447861, 0.07611799985170364, -0.4537000060081482, 0.07163800299167633, -0.0872109979391098, -0.30347999930381775, -0.2978599965572357, 0.1633100062608719, 0.25999000668525696, 0.13744999468326569, 0.009554600343108177, 0.029815999791026115, -0.008456399664282799, -0.390500009059906, -0.08795899897813797, -0.07837100327014923, -0.24855999648571014, 0.6240699887275696, 0.02490299940109253, 0.20559999346733093, 0.2833999991416931, 0.017194999381899834, -0.23161999881267548, 0.13738000392913818, 0.5001000165939331, 0.008027499541640282, -0.2773500084877014, 0.060554999858140945, -0.16068999469280243, -0.1339000016450882, 0.5945299863815308, -0.1653600037097931, -0.07300200313329697, -0.9456599950790405, -0.08900800347328186, 0.4730300009250641, 0.20045000314712524, -0.07699800282716751, 0.6105899810791016, -0.40511998534202576, 0.47968000173568726, -0.2221899926662445, 0.38335999846458435, -0.14817999303340912, -0.3008800148963928, 0.2608799934387207, 0.27643001079559326, -0.25582998991012573, 0.8455700278282166, -0.17505000531673431, 0.031092999503016472, 0.30404001474380493, 0.029543999582529068, 0.25407999753952026, -0.0033776999916881323], u'clear': [-0.08102300018072128, -0.2917900085449219, 0.052021000534296036, -0.1332399994134903, 0.028162000700831413, -0.003144599962979555, -0.17156000435352325, 0.06332399696111679, 0.16568000614643097, -2.1721999645233154, -0.1412699967622757, 0.08789099752902985, -0.2298000007867813, 0.06901700049638748, 0.216729998588562, 0.36555999517440796, -0.3997899889945984, -0.15505999326705933, 0.09972800314426422, 0.20200000703334808, 0.16989000141620636, 0.14806999266147614, 0.10937999933958054, -0.1714099943637848, -0.7257999777793884, -0.13188999891281128, -0.05276799947023392, -0.2638300061225891, -0.13188999891281128, -0.11407999694347382, 0.08175700157880783, 0.1477299928665161, -0.24342000484466553, 0.007636399939656258, -1.0992000102996826, 0.1366100013256073, 0.19261999428272247, -0.3001199960708618, 0.03152399882674217, 0.11439000070095062, -0.10853999853134155, 0.210889995098114, -0.03736500069499016, 0.23449000716209412, 0.05463799834251404, 0.21504999697208405, 0.02307100035250187, 0.20917999744415283, -0.08606000244617462, -0.07858899980783463, -0.26945000886917114, -0.0408019982278347, -0.042601000517606735, -0.12093000113964081, -0.3361400067806244, 0.25624001026153564, -0.35266000032424927, -0.1722400039434433, 0.31018000841140747, 0.6425999999046326, -0.03607200086116791, 0.155799999833107, 0.2660900056362152, 0.17297999560832977, -0.08157999813556671, 0.008563599549233913, 0.13196000456809998, -0.11875999718904495, -0.1920499950647354, -0.32203999161720276, -0.0926939994096756, -0.19273999333381653, 0.005683199968189001, 0.17193999886512756, 0.24010999500751495, 0.014739000238478184, 0.09118799865245819, 0.45903000235557556, 0.004775300156325102, -0.18136000633239746, -0.16434000432491302, 0.012617000378668308, 0.4279100000858307, 0.07531800121068954, -0.042847998440265656, -0.05595200136303902, -0.07189500331878662, 0.08680599927902222, 0.07809200137853622, 0.20169000327587128, -0.34189000725746155, -0.019750000908970833, -0.44578999280929565, -0.09325399994850159, 0.23683999478816986, 0.09807900339365005, -0.0018185999942943454, -0.13012999296188354, 0.05425199866294861, -0.6840800046920776, 0.2137800008058548, -0.0847420021891594, -0.12382999807596207, 0.3664500117301941, -0.4643400013446808, 0.5679900050163269, 0.2234099954366684, 0.31606999039649963, -0.23558999598026276, 0.03388899937272072, 0.06250900030136108, -0.3146800100803375, 0.2768400013446808, -0.13729000091552734, -0.027180999517440796, 0.17143000662326813, -0.35534998774528503, 0.1442600041627884, 0.1413699984550476, -0.27987000346183777, 0.051006998866796494, 0.1688999980688095, 0.48614001274108887, 0.4324699938297272, -0.3101400136947632, -0.2273000031709671, -0.17252999544143677, 0.5022100210189819, -0.29023000597953796, -0.16832999885082245, -0.02758600004017353, 0.25613999366760254, 0.09605100005865097, 0.19144999980926514, -0.1557600051164627, 0.507669985294342, 0.006482699885964394, -0.047304000705480576, 0.473580002784729, -0.02966500073671341, -0.09588199853897095, 0.06457400321960449, 0.12470000237226486, -0.34389999508857727, -0.5959100127220154, -0.1730699986219406, 0.3062700033187866, 0.16350999474525452, -0.21708999574184418, -0.13142000138759613, -0.029781000688672066, 0.07941199839115143, 0.36017999053001404, -0.0687209963798523, 0.367000013589859, 0.2645399868488312, 0.1306000053882599, -0.34602001309394836, 0.22326000034809113, 0.22999000549316406, 0.14122000336647034, -0.3084000051021576, 0.22238999605178833, -0.13700999319553375, 0.2453799992799759, 0.10902000218629837, 0.33083999156951904, 0.05215900018811226, -0.5481699705123901, 0.3292100131511688, 0.3388899862766266, -0.06038200110197067, -0.16610999405384064, -0.26388001441955566, 0.13997000455856323, -0.1548600047826767, -0.05012999847531319, -0.08962800353765488, -0.008095400407910347, 0.13154999911785126, -0.019734999164938927, 0.2575800120830536, 0.37509000301361084, -0.012095999903976917, -0.49246999621391296, 0.13436000049114227, -0.2107200026512146, -0.13763000071048737, 0.2404700070619583, 0.13327999413013458, -0.043418001383543015, 0.007065100129693747, 0.3049600124359131, -0.11184000223875046, 0.6801699995994568, -0.6541699767112732, -0.39197999238967896, 0.07554599642753601, -0.20430000126361847, 0.041099000722169876, 0.8458600044250488, -0.3361000120639801, -0.26385000348091125, -0.39416998624801636, -0.25468000769615173, -0.09534899890422821, 0.19946999847888947, -0.30772000551223755, -0.5384600162506104, 0.18257999420166016, -0.09137900173664093, -0.2718299925327301, 0.10918000340461731, -0.04210200160741806, -0.25613999366760254, -0.03969400003552437, 0.3498699963092804, -0.24526000022888184, -0.011982999742031097, -0.024230999872088432, 0.6278499960899353, -0.16640999913215637, 0.02610900066792965, 0.029095999896526337, -0.16936999559402466, 0.25328999757766724, -0.12065999954938889, 0.023087000474333763, 0.16152000427246094, -0.14057999849319458, 0.04484599828720093, 0.45329999923706055, 0.34099000692367554, -0.028432000428438187, -0.39406999945640564, -0.06892400234937668, -0.29128000140190125, -0.012954000383615494, 0.04817600175738335, -0.09045500308275223, -0.0098770996555686, -0.022352000698447227, 0.09153500199317932, -0.08467300236225128, -0.4395500123500824, -0.2523699998855591, 0.7971900105476379, 0.21525999903678894, 0.001963400049135089, -0.10022000223398209, -0.07566899806261063, -0.25113001465797424, -0.12675000727176666, 0.12178999930620193, 0.25892001390457153, 0.026660999283194542, -0.38418999314308167, -0.1856600046157837, -0.15324999392032623, 0.4448400139808655, -0.08881500363349915, 0.1011900007724762, 0.0060883997939527035, 0.2930000126361847, -0.41499999165534973, 0.26712000370025635, 0.03368299826979637, -0.4231700003147125, 0.2202499955892563, -0.027350999414920807, 0.40922999382019043, -0.013338999822735786, -0.2954300045967102, 0.3769899904727936, -0.019656000658869743, -0.08289600163698196, -1.5197999477386475, 0.296099990606308, 0.8126299977302551, -0.18198999762535095, 0.5908200144767761, 0.007938000373542309, 0.23090000450611115, 0.23573000729084015, 0.2494100034236908, -0.1875399947166443, -0.04029000177979469, 0.17258000373840332, 0.19480000436306, 0.13099999725818634, -0.2155199944972992, 0.01635199971497059, 0.6225600242614746, 0.4128299951553345, 0.40386998653411865, -0.06291099637746811, -0.09315899759531021, -0.07813700288534164, -0.30083000659942627, -0.035913001745939255], u'splintered': [0.02184399962425232, -0.5934799909591675, 0.09295199811458588, 0.16787000000476837, 0.7092999815940857, 0.28714999556541443, -0.052685000002384186, 0.15379999577999115, 0.644819974899292, -0.27564001083374023, -0.031346000730991364, -0.06938999891281128, -0.40206998586654663, -0.5226200222969055, 0.034170001745224, -0.09263800084590912, -0.032019998878240585, 0.37408000230789185, 0.2178799957036972, -0.10051999986171722, 0.3564099967479706, 0.6556699872016907, 0.26438000798225403, 0.12312000244855881, -0.2065100073814392, -0.4352099895477295, -0.0680989995598793, -0.11663000285625458, -0.3876599967479706, 0.6505600214004517, 0.04149100184440613, -0.23799000680446625, 0.2145799994468689, 0.012338999658823013, 0.06899400055408478, 0.048907000571489334, 0.45715999603271484, -0.046824000775814056, -0.09761200100183487, 0.17861999571323395, 0.4721300005912781, 0.06840799748897552, 0.07137200236320496, -0.5817700028419495, 0.19673000276088715, 0.23840999603271484, -0.45579999685287476, -0.5134199857711792, -0.20764000713825226, -0.07761000096797943, -0.04556100070476532, -0.07515399903059006, -0.2140199989080429, -0.4353100061416626, 0.4500100016593933, -0.26864001154899597, -0.4828000068664551, -0.017343999817967415, -0.2390500009059906, 0.415149986743927, -0.027615999802947044, 0.18925000727176666, -0.4708099961280823, 0.43233999609947205, -0.1823199987411499, -0.11977999657392502, -0.18456999957561493, 0.5418199896812439, 0.1400499939918518, 0.05395499989390373, -0.16571000218391418, -0.1262899935245514, -0.7482500076293945, 0.12547999620437622, 0.7115300297737122, 0.04285300150513649, 0.031293001025915146, -0.9803400039672852, -0.2787899971008301, -0.03919500112533569, -0.44402000308036804, -0.12392999976873398, -0.048312000930309296, -0.025182999670505524, -0.42570000886917114, -0.14875000715255737, 0.08631899952888489, -0.0651869997382164, 0.2786700129508972, 0.596809983253479, 0.2687000036239624, 0.054274000227451324, 0.3396399915218353, -0.4175400137901306, 0.12536999583244324, -0.3784399926662445, 0.04493600130081177, -0.542389988899231, -0.049910999834537506, 0.6714900135993958, 0.031387001276016235, 0.44078999757766724, 0.4074999988079071, -0.2890700101852417, 0.34964999556541443, 0.18693000078201294, -0.12346000224351883, -0.15095999836921692, 0.07266300171613693, -0.004919900093227625, -0.5176399946212769, -0.4018400013446808, 0.09887900203466415, -0.08507099747657776, -0.28828001022338867, -0.16877999901771545, -0.4197799861431122, 0.4085400104522705, 0.24592000246047974, 0.12161999940872192, -0.0023717000149190426, -0.6291499733924866, 0.05758000165224075, 0.42228999733924866, 0.28565001487731934, 0.050560999661684036, -0.40498000383377075, -0.4147599935531616, 0.08022499829530716, 0.24128000438213348, -0.6696799993515015, 0.24344000220298767, -0.09069699794054031, -0.03921100124716759, 0.820609986782074, 0.17568999528884888, -0.057468000799417496, 0.2842499911785126, 0.10175999999046326, -0.8631200194358826, -0.48183000087738037, 0.5329399704933167, -0.4075300097465515, 0.8440799713134766, 0.09320300072431564, 0.04601399973034859, 0.1566700041294098, 0.5199699997901917, -0.013534000143408775, -0.6231399774551392, -0.23544000089168549, -0.23488999903202057, -0.47516000270843506, -0.12116000056266785, -0.33052000403404236, 0.5235900282859802, 0.9366400241851807, -0.22690999507904053, 0.01686199940741062, 0.4924300014972687, -0.09936200082302094, 0.16053999960422516, -0.29715999960899353, 0.6118199825286865, 0.3405599892139435, 0.09903399646282196, -0.22753000259399414, 0.024893000721931458, -0.10552000254392624, -0.5407199859619141, -0.45072999596595764, 0.2798500061035156, 0.4655100107192993, 0.2174600064754486, 0.30959999561309814, 0.026318000629544258, 0.3097600042819977, 0.08135999739170074, 0.23494000732898712, -0.28294000029563904, 0.26886001229286194, -0.014817999675869942, 0.048923999071121216, -0.062345001846551895, 0.19599999487400055, -0.19043999910354614, -0.008719200268387794, 0.2737399935722351, -0.2928299903869629, 0.18482999503612518, -0.45822998881340027, -0.691860020160675, -0.0702579990029335, -0.02796800062060356, 0.6266099810600281, 0.9642199873924255, -0.0934469997882843, 0.5939099788665771, -0.43244001269340515, -0.17061999440193176, -0.2187899947166443, -0.30967000126838684, 0.1782200038433075, -0.6524400115013123, -0.19307999312877655, 0.2344599962234497, 0.48559001088142395, -0.39146000146865845, -0.15147000551223755, 0.43501999974250793, 0.1724099963903427, 0.5806099772453308, 0.2533699870109558, 0.3859800100326538, 0.06715299934148788, 0.3567799925804138, 0.3499999940395355, -0.07796099781990051, 0.3324899971485138, 0.6735600233078003, 0.00021949999791104347, -0.3296099901199341, -0.25957000255584717, -0.47192999720573425, -0.22175000607967377, 0.2212499976158142, -0.0006423500017262995, -0.5164999961853027, -0.35322999954223633, 0.20959000289440155, -0.0401809997856617, -0.37003999948501587, -0.4803900122642517, 0.5178300142288208, 0.4351400136947632, -0.02911200001835823, 0.4063200056552887, -0.1408199965953827, -0.45285001397132874, -0.7658100128173828, 0.37542998790740967, -0.33709999918937683, 0.10293000191450119, 0.012512000277638435, -0.577489972114563, -0.4388499855995178, 0.05674099922180176, 0.7258399724960327, -0.27434998750686646, 0.6647300124168396, 0.08129599690437317, -0.36267000436782837, 0.14026999473571777, -0.847599983215332, 0.6410800218582153, 0.15666000545024872, -0.1987999975681305, -0.4833100140094757, -0.12921999394893646, 0.5436199903488159, 0.2297399938106537, -0.16746999323368073, -0.3763900101184845, -0.27160999178886414, 0.23582999408245087, -0.0373929999768734, -0.7344499826431274, 0.33807000517845154, 0.1420699954032898, 0.06317800283432007, -0.3020800054073334, 0.20636999607086182, 0.0008364099776372313, -0.5401600003242493, -0.682889997959137, -0.19041000306606293, 0.11642000079154968, 0.15007999539375305, 0.23763999342918396, -0.02845500037074089, -0.05930599942803383, -0.27153000235557556, -0.43907999992370605, 0.12349999696016312, 0.21198999881744385, -0.19245000183582306, -0.11976999789476395, 0.6960200071334839, 0.7171800136566162, 0.11089999973773956, 0.27911999821662903, -0.1341399997472763, 0.3644599914550781, 0.2212499976158142, 0.07973600178956985, 0.35043999552726746, 0.37323999404907227, -0.3127399981021881, 0.04508800059556961, 0.1219400018453598], u'cored': [0.3912599980831146, -0.7712500095367432, -0.2642900049686432, -1.002500057220459, 0.02796800062060356, -0.4409500062465668, 0.16211000084877014, 0.46661001443862915, -0.5052400231361389, 0.8194800019264221, 0.8666800260543823, 0.7601400017738342, 0.6386600136756897, 0.09304100275039673, -0.7213199734687805, 0.22210000455379486, -0.1060900017619133, 0.1498199999332428, -0.5176799893379211, 0.3475799858570099, -0.05955899879336357, 0.0406779982149601, 0.2114800065755844, 1.017199993133545, 0.19255000352859497, -0.21668000519275665, 0.20489999651908875, 0.6017799973487854, 0.639549970626831, 0.1536799967288971, -0.4247100055217743, -0.3011600077152252, 0.38853999972343445, 0.06859900057315826, 0.47846999764442444, 0.3555999994277954, 0.260699987411499, 0.3096100091934204, 0.05330599844455719, -0.9982900023460388, 0.6980599761009216, -0.49077001214027405, -0.2502099871635437, -0.12789000570774078, -0.6524199843406677, 0.21490000188350677, -0.8127099871635437, 0.89410001039505, 0.3695099949836731, -0.045906998217105865, -0.1847500056028366, -0.12083999812602997, 0.09247799962759018, 0.7689499855041504, -0.12451999634504318, -1.4926999807357788, 0.2785300016403198, -0.01522000040858984, 0.10632999986410141, -0.6269099712371826, -0.09266900271177292, -0.08927500247955322, -0.9155499935150146, 0.48409000039100647, -0.3388200104236603, 0.15825000405311584, -0.4756700098514557, 0.44683000445365906, -0.3795199990272522, 0.14045999944210052, 0.05371600016951561, -0.7390599846839905, 0.06629499793052673, 0.555649995803833, -0.8970299959182739, 0.5885099768638611, 0.7092499732971191, 0.3399600088596344, 0.5239400267601013, -1.141700029373169, -0.45972999930381775, -0.4105600118637085, 1.0549999475479126, -0.4413500130176544, -0.7365800142288208, 0.2920199930667877, -0.23623999953269958, 0.4315299987792969, 0.5101699829101562, 0.260670006275177, 0.5705599784851074, 0.5820599794387817, -0.5013399720191956, 0.1990399956703186, -0.8998299837112427, -0.20502999424934387, 0.33017000555992126, 0.7128999829292297, -0.15782000124454498, 0.19286000728607178, -0.1950799971818924, 0.09791500121355057, 0.810509979724884, -1.11080002784729, -1.0694999694824219, 0.79926997423172, -0.17720000445842743, 0.06399500370025635, -0.33726999163627625, -0.29951000213623047, -0.23986999690532684, -0.5848900079727173, 0.9623299837112427, -0.6047700047492981, -0.7932000160217285, -0.020457999780774117, -0.28196001052856445, 0.07498499751091003, 0.9877499938011169, 0.1630299985408783, 0.5226399898529053, -0.46441999077796936, -0.5316799879074097, -0.05425800010561943, -0.6535500288009644, -0.16540999710559845, -0.8645300269126892, -0.40494000911712646, -1.0698000192642212, -0.1950799971818924, 0.528689980506897, 0.6302800178527832, -0.04916299879550934, 0.29736998677253723, 0.08417700231075287, 0.11004000157117844, 0.2115200012922287, 0.5511299967765808, 0.2912299931049347, 0.7075899839401245, 0.509909987449646, 0.18100999295711517, 0.3470599949359894, 0.44235000014305115, 0.16349999606609344, 0.22396999597549438, 0.46733999252319336, -0.4189299941062927, 0.9215099811553955, -0.9783400297164917, -0.19986000657081604, -0.2277899980545044, 0.3042599856853485, -0.0841199979186058, -0.3762800097465515, -0.2194100022315979, 0.4938800036907196, -0.03262399882078171, -1.0765999555587769, -0.0961960032582283, -0.42757999897003174, 0.5538899898529053, 1.1694999933242798, -1.0313999652862549, 0.7024000287055969, -0.2380400002002716, -0.4186600148677826, 0.3913100063800812, 0.0325080007314682, -0.4239799976348877, -0.8261500000953674, 0.28641000390052795, 0.4345000088214874, -0.5720900297164917, -0.11788000166416168, -0.906029999256134, 0.36570999026298523, 0.09272400289773941, 0.6400799751281738, -0.6992499828338623, 0.1544100046157837, -0.10287000238895416, 0.47659000754356384, -0.9597600102424622, -0.44029998779296875, -1.5994000434875488, 0.21026000380516052, 1.5254000425338745, 0.8843899965286255, 0.44975998997688293, 0.6934900283813477, 0.8531200289726257, -0.8978700041770935, 0.013616000302135944, 0.7402300238609314, 0.07758700102567673, -0.438510000705719, -0.4433799982070923, 0.7145000100135803, -0.07545100152492523, -0.3448300063610077, 0.3956199884414673, -0.9360499978065491, -0.23691999912261963, -0.03649500012397766, 0.6232399940490723, 0.4434100091457367, 0.00023258000146597624, -0.09995800256729126, -0.07772000133991241, 0.5399199724197388, 0.7082200050354004, -0.1998399943113327, 0.8828399777412415, -0.05993400141596794, 0.028776999562978745, 1.3626999855041504, -0.2817800045013428, 0.7436500191688538, -0.9376000165939331, -0.6131299734115601, 0.8243399858474731, -0.42785999178886414, 0.5022000074386597, -0.5564000010490417, -0.09689299762248993, -0.6695899963378906, -0.4083999991416931, 0.2992100119590759, -0.35491999983787537, -0.1685899943113327, 0.14184999465942383, -0.5776200294494629, -0.7934399843215942, 0.07140299677848816, 0.40713000297546387, 0.1174900010228157, -0.23578999936580658, -0.566569983959198, 0.6563699841499329, 0.14176000654697418, 0.5095999836921692, -0.5834199786186218, -0.26846998929977417, 0.06911300122737885, -0.19122999906539917, -0.3578299880027771, 0.09902399778366089, 0.432559996843338, -0.41523000597953796, 0.7903199791908264, 1.2422000169754028, -1.304900050163269, -0.5973899960517883, -0.6855999827384949, 0.21852999925613403, -0.4481000006198883, 0.08411300182342529, 0.03642300143837929, 0.2586199939250946, 0.19965000450611115, 0.7753000259399414, 0.14425000548362732, 0.2101300060749054, -0.3526799976825714, 0.01744000054895878, -0.5753999948501587, 0.46588999032974243, 0.05481800064444542, 0.21219000220298767, 0.43720000982284546, 1.0342999696731567, -1.225100040435791, 0.5697799921035767, -0.41602998971939087, 0.8475900292396545, 0.902180016040802, -0.6025400161743164, -1.2314000129699707, -0.759880006313324, -0.6635900139808655, 0.7537699937820435, 0.31068000197410583, 0.007109799887984991, 0.4593000113964081, -0.01787799969315529, 0.5504900217056274, 0.5648400187492371, -0.6225699782371521, 0.07521600276231766, -0.039406001567840576, 0.09207600355148315, 0.7464500069618225, -0.016076000407338142, -0.11468999832868576, -0.08615399897098541, -0.9761199951171875, -0.11195000261068344, 1.1456999778747559, -0.01739799976348877], u'cooked': [0.002950600115582347, 0.5060300230979919, 0.42423000931739807, 0.13815000653266907, 0.0894630029797554, -0.21825000643730164, 0.2632800042629242, 0.38262999057769775, 0.013236000202596188, -0.5251299738883972, 0.27849000692367554, -0.7051699757575989, -0.048948999494314194, 0.4390299916267395, -0.6769899725914001, -0.19620999693870544, -0.27305999398231506, -0.05324599891901016, -0.14191000163555145, 0.40661999583244324, 0.02373499982059002, -0.0992949977517128, 0.257860004901886, -0.06647399812936783, -0.26100000739097595, 0.19676999747753143, -0.5002599954605103, -0.0011810000287368894, -0.033952999860048294, -0.4869000017642975, -0.8672800064086914, 0.519070029258728, -0.5826200246810913, -0.12771999835968018, -0.24613000452518463, 0.8961799740791321, -0.1033099964261055, 0.4461899995803833, -0.22234000265598297, 0.04130899906158447, 0.2679600119590759, -0.20607000589370728, -0.2662700116634369, -0.2353699952363968, 0.27024999260902405, 0.26886001229286194, 0.3704499900341034, 0.21270999312400818, 0.05715399980545044, 0.6140000224113464, 0.06215300038456917, 0.2538500130176544, 0.5369200110435486, -0.38526999950408936, -0.297650009393692, -0.3852800130844116, 0.1332699954509735, -0.38690999150276184, 0.14925000071525574, -0.03937000036239624, 0.2632000148296356, -0.1434900015592575, 0.4133700132369995, 0.01114100031554699, -0.5419700145721436, -0.5706899762153625, 0.01929200068116188, 0.03469099849462509, -0.576229989528656, -0.041735999286174774, 0.46693000197410583, -0.09967999905347824, -0.09896700084209442, -0.07040199637413025, -0.2438499927520752, 0.5158100128173828, 1.1187000274658203, 0.3855299949645996, -0.2842499911785126, -0.15863999724388123, -0.37584999203681946, 0.1374099999666214, 0.2772899866104126, 0.11772000044584274, 0.47293999791145325, -0.4117400050163269, -0.5288100242614746, 0.300029993057251, -0.10159999877214432, 0.06470199674367905, -0.12660999596118927, -0.08420900255441666, -0.08552899956703186, 0.6862300038337708, 0.3045099973678589, 0.11554999649524689, -0.43884000182151794, 0.5001299977302551, -0.11117000132799149, 0.40365999937057495, 0.27360999584198, -0.5352799892425537, 0.3040800094604492, -0.8785600066184998, -0.009310499764978886, 0.1659799963235855, 0.26194000244140625, 0.573930025100708, -0.16949999332427979, 0.12831999361515045, 0.3653700053691864, 0.4476900100708008, 0.007591899950057268, -0.4857200086116791, -0.2696300148963928, -0.19999000430107117, -0.8143200278282166, 0.10453999787569046, 0.4395500123500824, -0.1381700038909912, -0.3827100098133087, -0.4239499866962433, -0.2207300066947937, 0.4509100019931793, -0.2102299928665161, 0.3755500018596649, -0.2858099937438965, 0.24577000737190247, -0.23263999819755554, 0.7732899785041809, 0.1438400000333786, 0.903469979763031, 0.20722000300884247, 0.2844899892807007, -0.3350299894809723, -0.2500999867916107, 0.16840000450611115, -0.33382999897003174, -0.493120014667511, 0.7313500046730042, 0.7634999752044678, 0.14207999408245087, -0.1535400003194809, 0.06297700107097626, -0.8814799785614014, 0.10419999808073044, 0.11112000048160553, 0.07572899758815765, 0.3104499876499176, -0.42059001326560974, -0.7462599873542786, 0.6202300190925598, -0.06604199856519699, 0.18976999819278717, -0.39111998677253723, -0.29030999541282654, 0.0373929999768734, -0.4378899931907654, -0.09396299719810486, -0.18100999295711517, -0.3206999897956848, -0.03690300136804581, -0.12872999906539917, -0.08564499765634537, 0.2922700047492981, 0.18205000460147858, -0.07048200070858002, -0.4287700057029724, 0.15557000041007996, -0.5944600105285645, 0.06831199675798416, -0.11512000113725662, -0.20387999713420868, -0.12036000192165375, -0.16203999519348145, -0.15487000346183777, -0.036965999752283096, -0.4143899977207184, 0.46893998980522156, -0.7359099984169006, -0.08721400052309036, 0.15117999911308289, 0.19629999995231628, -0.397489994764328, -0.4138000011444092, 0.3610999882221222, 0.34060999751091003, 0.5287600159645081, 0.6146699786186218, -0.4057300090789795, 0.17100000381469727, 0.927839994430542, -0.5759099721908569, 0.16944000124931335, -0.12178999930620193, -0.15746000409126282, -0.18382999300956726, 0.2922999858856201, -0.4645000100135803, -0.44999998807907104, 0.028286000713706017, -0.2708300054073334, 0.18669000267982483, 0.3604600131511688, 0.6096000075340271, 0.388619989156723, 0.7026299834251404, -0.08224300295114517, -0.3149000108242035, -0.2880200147628784, 0.09455999732017517, -0.6084399819374084, -0.06696200370788574, -0.024098999798297882, 0.34084999561309814, 0.07325799763202667, 0.8287799954414368, -0.8551599979400635, -0.27316999435424805, 0.2756899893283844, 0.6378499865531921, 0.07248999923467636, -0.7058600187301636, -0.9104599952697754, -0.1994599997997284, -0.7653700113296509, 0.21353000402450562, -0.06747400015592575, -0.13373999297618866, 0.08478400111198425, 0.05001400038599968, 0.07335200160741806, -0.2101999968290329, -0.10546000301837921, 0.125900000333786, -0.019378000870347023, 0.24679000675678253, 0.27781999111175537, -0.7709900140762329, -0.4554400146007538, -0.12234999984502792, -0.5432599782943726, -0.1436000019311905, -0.015106000006198883, -0.5230200290679932, -0.0800039991736412, 0.4400300085544586, 0.20983000099658966, 0.050898998975753784, -1.0211000442504883, 0.3035599887371063, -0.0018178999889642, -0.32708999514579773, 0.01619100011885166, -0.153889998793602, 0.20537999272346497, -0.07218900322914124, 0.20135000348091125, -0.42037999629974365, 0.7199900150299072, -0.229980006814003, -0.35657998919487, -0.17506000399589539, -0.19981999695301056, 0.12935000658035278, 0.11333999782800674, -0.22799000144004822, -0.0245789997279644, 0.6243900060653687, -0.20830999314785004, -0.8930400013923645, 0.039347998797893524, 0.47235000133514404, 0.7776399850845337, -0.01664699986577034, 0.32881999015808105, -0.6951299905776978, 0.17809000611305237, -1.201799988746643, -0.9382200241088867, 0.3151400089263916, -0.12777000665664673, -0.04115400090813637, 0.18092000484466553, -0.2016099989414215, 0.25262001156806946, 0.7688199877738953, 0.04885999858379364, 0.29102998971939087, 0.36403998732566833, 0.05232999846339226, -0.03563300147652626, 0.09517999738454819, 0.0009574100258760154, -0.26148998737335205, -1.2085000276565552, -0.039358001202344894, -0.4370400011539459, -0.32332998514175415, -0.16161000728607178], u'clean': [0.2783200144767761, -0.04442400112748146, -0.5575600266456604, -1.0219999551773071, 0.03052300028502941, -0.04794200137257576, 0.24502000212669373, 0.2623000144958496, 0.3472200036048889, -1.5707000494003296, 0.3107700049877167, -0.05641699954867363, -0.1247899979352951, 0.239779993891716, -0.5646399855613708, 0.21052999794483185, -0.08142100274562836, 0.06959199905395508, 0.007063699886202812, 0.0850209966301918, -0.41721001267433167, 0.30548998713493347, 0.07680899649858475, 0.33520999550819397, 0.17608000338077545, -0.12450999766588211, 0.2185100018978119, 0.22617000341415405, 0.3792699873447418, -0.34338000416755676, 0.013063999824225903, 0.3081800043582916, -0.18570999801158905, 0.11490999907255173, -0.981190025806427, 0.4011000096797943, 0.21710999310016632, -0.3632799983024597, -0.326449990272522, 0.07357999682426453, -0.21644000709056854, -0.10360000282526016, 0.5972099900245667, 0.2101600021123886, -0.0004983000108040869, 0.24706000089645386, 0.06412100046873093, -0.16660000383853912, 0.4308899939060211, -0.03754600137472153, -0.4012199938297272, -0.017376000061631203, 0.4305799901485443, -0.4935300052165985, 0.12905000150203705, 0.23633000254631042, 0.13971999287605286, -0.13806000351905823, -0.39169999957084656, 0.24018999934196472, -0.20607000589370728, -0.14667999744415283, -0.4124999940395355, -0.1580599993467331, -0.18353000283241272, 0.1937199980020523, -0.016468999907374382, -0.27876999974250793, -0.18111999332904816, -0.13078999519348145, 0.005813499912619591, -0.25641998648643494, 0.023144999518990517, 0.40119001269340515, 0.2771500051021576, 0.12328000366687775, -0.0041970000602304935, 0.7121800184249878, 0.32322999835014343, -0.23577000200748444, -0.011481000110507011, -0.15293000638484955, 0.3347100019454956, 0.10010000318288803, 0.4767799973487854, 0.1743900030851364, -0.5059800148010254, 0.46184998750686646, -0.04833900183439255, -0.45712000131607056, -0.12764999270439148, 0.2645300030708313, 0.41655001044273376, -0.15445999801158905, 0.0077817002311348915, -0.38666999340057373, 0.12744000554084778, -0.3421899974346161, 0.4945000112056732, 0.32760998606681824, -0.13154000043869019, -0.29093000292778015, -0.2782900035381317, 0.092739999294281, -0.041367001831531525, 0.23027999699115753, 0.22191999852657318, -0.09614299982786179, -0.41471999883651733, -0.12515999376773834, -0.01334299985319376, -0.7575500011444092, -0.3552600145339966, -0.4725399911403656, -0.30226001143455505, 0.3665199875831604, 0.07861799746751785, -0.2605299949645996, -0.27008000016212463, -0.3153400123119354, -0.31147000193595886, 0.39392998814582825, 0.1603199988603592, 0.23960000276565552, -0.09602800011634827, 0.5193799734115601, -0.5836399793624878, 0.35095998644828796, -0.3799099922180176, 0.40024998784065247, 0.13443000614643097, -0.1297300010919571, 0.40220001339912415, 0.1141899973154068, -0.09274999797344208, 0.16186000406742096, -0.14350999891757965, 0.2780100107192993, 0.40015000104904175, -0.22307999432086945, 0.618690013885498, 0.007821000181138515, 0.4809400141239166, -0.26794999837875366, -0.4489099979400635, 0.3339099884033203, 0.15925000607967377, 0.034595001488924026, 0.444350004196167, 0.7104399800300598, 0.07846300303936005, 0.11503999680280685, -0.21089999377727509, -0.3307499885559082, 0.22694000601768494, -0.004253000020980835, -0.20880000293254852, -0.11467999964952469, 0.09940499812364578, -0.015622000209987164, -0.16353000700473785, -0.5167700052261353, -0.051876001060009, 0.3224399983882904, -0.21926000714302063, -0.238769993185997, 0.812720000743866, 0.002436900045722723, 0.4703899919986725, 0.23683999478816986, -0.14640000462532043, 0.13016000390052795, -0.16196000576019287, 0.07682199776172638, 0.058997999876737595, 0.035725999623537064, 0.44012999534606934, -0.031362999230623245, -0.7252900004386902, -0.20317000150680542, -0.41508999466896057, -0.31000998616218567, 0.5944499969482422, -0.18172000348567963, -0.22224000096321106, 0.06682799756526947, 0.872730016708374, 0.03930699825286865, 0.5479400157928467, -0.04082600027322769, 0.2980000078678131, 0.37130001187324524, -0.6876599788665771, 0.2598699927330017, 0.40742000937461853, 0.08954600244760513, -0.7065200209617615, -0.024467000737786293, -0.3898400068283081, 0.17991000413894653, 0.29061999917030334, 0.3660599887371063, 0.5552399754524231, -0.0711439996957779, -0.37584999203681946, -0.2981500029563904, 0.3827599883079529, -0.4232400059700012, -0.04602200165390968, 0.164560005068779, -0.6338599920272827, -0.3326199948787689, -0.6178699731826782, 0.3754099905490875, 0.4749299883842468, 0.21398000419139862, -0.09518799930810928, -0.5218200087547302, -0.17333999276161194, -0.06932999938726425, 0.2916199862957001, 0.10620000213384628, 0.02401600033044815, 0.1824900060892105, -0.08026000112295151, -0.3509899973869324, -0.18831999599933624, -0.1906999945640564, -0.00014381000073626637, 0.1697700023651123, 0.465939998626709, 0.41725999116897583, -0.05653500184416771, -0.16141000390052795, -0.025141000747680664, -0.3417400121688843, -0.3761399984359741, -0.03874899819493294, -0.06873399764299393, -0.19686000049114227, 0.2249000072479248, -0.3286600112915039, -0.2172199934720993, 0.42441999912261963, -0.7790899872779846, 0.19085000455379486, 0.5230799913406372, 0.29686999320983887, -0.4746899902820587, -0.48284000158309937, 0.26208001375198364, -0.85698002576828, -0.05196300148963928, 0.12839999794960022, 0.8116099834442139, -0.3655500113964081, -0.08382400125265121, 0.07368700206279755, 0.11878000199794769, 0.3757399916648865, -0.04257100075483322, -0.07650399953126907, -0.7250000238418579, 0.15532000362873077, 0.15873999893665314, 0.45785000920295715, 0.18782000243663788, -0.1417199969291687, 0.2803800106048584, -0.060718998312950134, -0.04270099848508835, 0.019208999350667, -0.5972200036048889, 0.18016000092029572, -0.20252999663352966, 0.09983500093221664, -1.9105000495910645, 0.12475000321865082, 0.329120010137558, -0.502560019493103, -0.041593998670578, 0.18898999691009521, -0.05632900074124336, 1.038100004196167, -0.037911999970674515, 0.43237999081611633, -0.10006999969482422, -0.1074799969792366, -0.1125200018286705, -0.4786199927330017, -0.5037699937820435, 0.41124001145362854, -0.4321100115776062, 0.18820999562740326, 0.4423699975013733, -0.09234800189733505, 0.5383999943733215, -0.33991000056266785, -0.19088000059127808, 0.4124799966812134], u'deflated': [0.48868998885154724, 0.11987999826669693, 0.09869100153446198, -0.05164099857211113, 0.2934899926185608, -0.28540000319480896, 0.2824600040912628, 0.35436999797821045, -0.14305000007152557, 0.2889699935913086, -0.5073999762535095, -0.023920999839901924, 0.05768999829888344, -0.2566699981689453, -0.05392099916934967, 0.24237999320030212, 0.048861999064683914, -0.22397999465465546, 0.3695499897003174, 0.25874000787734985, 0.4005500078201294, 0.06799499690532684, 0.18741999566555023, -0.12276999652385712, -0.19550000131130219, 0.049929000437259674, -0.21309000253677368, 0.21705999970436096, 0.010049000382423401, 0.5700799822807312, 0.10377000272274017, -0.40619000792503357, -0.12658999860286713, 0.10716000199317932, -0.25819000601768494, 0.09481099992990494, -0.32475000619888306, 0.33337000012397766, 0.5849599838256836, 0.6812300086021423, 0.040417999029159546, -0.2642900049686432, -0.18250000476837158, -0.3352400064468384, -0.18129000067710876, 0.19315999746322632, -0.4738300144672394, -0.05762699991464615, -0.19652999937534332, 0.3322100043296814, 0.659500002861023, -0.7608000040054321, -0.08721400052309036, 0.007683999836444855, -0.01271899975836277, -0.1258700042963028, 0.18306000530719757, 0.09472700208425522, -0.044440001249313354, -0.21106000244617462, 0.20600999891757965, -0.17361000180244446, 0.18846000730991364, -0.4981600046157837, -0.21232999861240387, 0.30041998624801636, -0.021800000220537186, -0.4893200099468231, 0.11138000339269638, -0.18174000084400177, -0.26607000827789307, 0.03150000050663948, 0.22035999596118927, 0.6697700023651123, 0.4717999994754791, 0.1350100040435791, 0.4742000102996826, -0.18998000025749207, -0.24792000651359558, -0.07294999808073044, -0.2586100101470947, 0.2752000093460083, 0.4744400084018707, 0.20024000108242035, -0.25119999051094055, 0.14358000457286835, 0.08843500167131424, -0.2933200001716614, 0.16752000153064728, 0.5569800138473511, 0.67535001039505, 0.07674799859523773, 0.21236999332904816, 0.0851529985666275, -0.16216999292373657, 0.5125899910926819, -0.15814000368118286, 0.6326799988746643, -0.9574000239372253, 0.20032000541687012, 0.02254600077867508, 0.14700999855995178, -0.08574800193309784, -0.31518998742103577, 0.457040011882782, 0.33956998586654663, -0.4352000057697296, -0.010073999874293804, -0.16110000014305115, 0.29875999689102173, -0.30362001061439514, 0.7728599905967712, 0.06978800147771835, -0.32534000277519226, 0.20719000697135925, -0.16913999617099762, 0.24408000707626343, 0.16737000644207, 0.04023899883031845, -0.4234200119972229, 0.6728000044822693, -1.1655000448226929, 0.18619999289512634, 0.4604800045490265, 0.04763999953866005, -0.0793830007314682, -0.8170499801635742, -0.3546999990940094, -0.008618799969553947, 0.05003499984741211, 0.1428000032901764, 0.5889999866485596, -0.20031000673770905, 0.10313999652862549, 0.2643600106239319, -0.1244800016283989, 0.4691700041294098, -0.44277000427246094, -0.229980006814003, 0.223130002617836, 0.00527910003438592, -0.03729100152850151, -0.08903799951076508, 0.4612799882888794, -0.10683000087738037, 0.33785000443458557, 0.10583999752998352, 0.2917400002479553, 0.14831000566482544, -0.18690000474452972, -0.4059300124645233, -0.350490003824234, 0.06155800074338913, 0.1040399968624115, 0.2580699920654297, 0.30994001030921936, 0.5048800110816956, -0.04506099969148636, -0.27456000447273254, 0.10035999864339828, -0.6400200128555298, -0.25714001059532166, -0.5722100138664246, -0.09252800047397614, 1.2339999675750732, -0.8190900087356567, -0.3944999873638153, 0.3616800010204315, -0.22995999455451965, 0.07539600133895874, -0.19527000188827515, 0.13726000487804413, -0.054885998368263245, -0.1848900020122528, 0.28593000769615173, -0.42052000761032104, 0.030006999149918556, 0.006729099899530411, 0.1921599954366684, 0.18807999789714813, 0.20782999694347382, -0.3463999927043915, 0.284280002117157, -0.18504999577999115, 0.2194499969482422, 0.0824659988284111, 0.31641000509262085, -0.1894499957561493, -0.4649899899959564, 0.11973000317811966, 0.4409799873828888, -0.5841699838638306, -0.27939000725746155, -0.15148000419139862, -0.20769000053405762, 0.16368000209331512, 0.03677599877119064, 0.5505499839782715, 0.008092200383543968, 0.2570599913597107, -0.06428000330924988, -0.20319999754428864, -0.16930000483989716, -0.1252399981021881, -0.1468300074338913, -0.6593499779701233, -0.01953599974513054, 0.027479000389575958, -0.7515299916267395, 0.16539999842643738, -0.42906999588012695, 0.4057300090789795, -0.0504009984433651, 0.09681200236082077, -0.07779300212860107, -0.11655999720096588, 0.2974100112915039, -0.271450012922287, -0.09152799844741821, 0.17887000739574432, 0.6692600250244141, -0.16051000356674194, -0.22744999825954437, -0.19054000079631805, 0.34839001297950745, 0.2958900034427643, -0.40112000703811646, 0.47314000129699707, 0.2267799973487854, -0.4166400134563446, 0.19196000695228577, 0.04642599821090698, 0.24504999816417694, -0.2618899941444397, -0.48148998618125916, 0.026771999895572662, -0.17716999351978302, -0.013055000454187393, -0.11277999728918076, -0.1332399994134903, 0.37981998920440674, -0.1357399970293045, -0.4526199996471405, 0.4130600094795227, -0.005553800147026777, -0.46577000617980957, 0.1923000067472458, -0.29041001200675964, 0.2977199852466583, 0.08070400357246399, -0.04410399869084358, -0.5238199830055237, 0.13463999330997467, -0.5358800292015076, -0.38944000005722046, 0.3800800144672394, -0.18970000743865967, 0.16568000614643097, -0.19290000200271606, -0.44892001152038574, -0.18941999971866608, -0.37351998686790466, -0.2050500065088272, 0.3434000015258789, 0.17313000559806824, 0.1447400003671646, 0.07157599925994873, -0.25867998600006104, 0.17358000576496124, 0.3275800049304962, -0.23374000191688538, -0.14921000599861145, 0.26677998900413513, 0.15060000121593475, -0.10943999886512756, -0.15591999888420105, 0.5373700261116028, -0.12928999960422516, 0.17990000545978546, 0.3577199876308441, -0.0992719978094101, -0.04654200002551079, -0.19654999673366547, 0.13233999907970428, 0.2585600018501282, -0.15783999860286713, 0.02881699986755848, 0.0015323000261560082, -0.23237000405788422, -0.0534840002655983, 0.014659999869763851, -0.4417099952697754, 0.15365999937057495, 0.06386400014162064, -0.020653000101447105, -0.7426900267601013, 0.1860799938440323, -0.31264999508857727, -0.2386700063943863, -0.1521800011396408], u'barren': [0.002853600075468421, 0.16272999346256256, -0.27889999747276306, 0.021730000153183937, 0.2180500030517578, -0.05281100049614906, -0.008775399997830391, -0.25703001022338867, 0.2589699923992157, -0.009204699657857418, -0.07027500122785568, -0.10023999959230423, -0.30184999108314514, -0.32197999954223633, -0.2312999963760376, 0.056547001004219055, 0.07387600094079971, -0.0429529994726181, 0.48778998851776123, 0.31279000639915466, -0.3113900125026703, 0.6157199740409851, 0.13694000244140625, 0.008385200053453445, -0.11097999662160873, -0.34845998883247375, 0.22793999314308167, 0.07491400092840195, -0.6456300020217896, 0.09500999748706818, 0.4752900004386902, -0.0027834000065922737, -0.284170001745224, -0.12741999328136444, 0.7234200239181519, 0.6096299886703491, -0.27928999066352844, -0.2037999927997589, 0.2536799907684326, 0.055528998374938965, 0.2573600113391876, 0.3100000023841858, -0.045076001435518265, -0.2828800082206726, 0.5406000018119812, 0.08336800336837769, -0.4720799922943115, 0.2777099907398224, 0.0751660019159317, 0.1909099966287613, -0.1562899947166443, 0.11175999790430069, 0.5418199896812439, -0.1920199990272522, 0.07441899925470352, -0.09205000102519989, 0.10824999958276749, -0.7247899770736694, -0.04551500082015991, 0.13779999315738678, 0.08688399940729141, -0.03715699911117554, 0.5524799823760986, -0.48982998728752136, 0.21749000251293182, -0.011648000217974186, 0.19717000424861908, 0.36340999603271484, 0.1417199969291687, 0.05459899827837944, -0.3948099911212921, 0.23083999752998352, -0.3324500024318695, 0.26399001479148865, -0.7446100115776062, -0.6517599821090698, 0.010463000275194645, -0.24108000099658966, 0.40206000208854675, 0.3418799936771393, -0.075873002409935, 0.384880006313324, -0.4421899914741516, -0.04539500176906586, -0.09967699646949768, 0.2879300117492676, 0.23301999270915985, -0.011102999560534954, 0.46410998702049255, 0.27796998620033264, -0.08517900109291077, 0.026517000049352646, 0.5478000044822693, 0.43953999876976013, -0.3033599853515625, 0.31887000799179077, 0.06019499897956848, -0.22396999597549438, 0.10481999814510345, 0.46667999029159546, 0.2829299867153168, 0.3093000054359436, -0.5491099953651428, 0.2749899923801422, -1.062000036239624, -0.05841999873518944, -0.12445999681949615, 0.08284299820661545, -0.026693999767303467, 0.057016998529434204, -0.5052099823951721, -0.3492799997329712, 0.058747999370098114, -0.4018400013446808, -0.21852999925613403, -0.19526000320911407, 0.08087000250816345, 0.36616000533103943, 0.6306399703025818, 0.41025999188423157, 0.0861240029335022, -0.07229000329971313, -0.40233999490737915, 0.7247599959373474, 0.07303199917078018, 0.4957900047302246, -0.17478999495506287, -0.036649998277425766, -0.08220499753952026, -0.14386999607086182, 0.2887600064277649, 0.29469001293182373, 0.1444700062274933, 0.707099974155426, 0.04668600112199783, -0.06447699666023254, 0.4479900002479553, 0.47694000601768494, -0.27601999044418335, -0.5641000270843506, 0.3822300136089325, -0.39155998826026917, -0.33809998631477356, -0.2039799988269806, -0.7742199897766113, 0.05801999941468239, 0.45669999718666077, 0.5881400108337402, -0.07427500188350677, -0.60343998670578, -0.7118600010871887, -0.7471699714660645, -1.152500033378601, -0.07665599882602692, 0.11488000303506851, -0.027650000527501106, -0.05909999832510948, 0.15041999518871307, 0.559440016746521, 0.7117199897766113, -0.3391000032424927, -0.47797998785972595, 0.7160900235176086, 0.8845400214195251, -0.06698600202798843, -0.3812499940395355, -0.011637000367045403, -0.3494200110435486, -0.3879300057888031, -0.575410008430481, 0.10715000331401825, 0.022286999970674515, 0.17278000712394714, -0.5533599853515625, -0.20782999694347382, 0.04414299875497818, -0.0026310000102967024, 0.400299996137619, -0.6755099892616272, -0.2719799876213074, -0.3737100064754486, 0.4256100058555603, 0.3149400055408478, -0.008764199912548065, -0.0878790020942688, -0.11043000221252441, 0.7280300259590149, -0.42076998949050903, -0.5861799716949463, 0.18262000381946564, -0.053346000611782074, 0.06521499902009964, 0.49974000453948975, -0.2890399992465973, 0.5809000134468079, 0.6430500149726868, -0.41471999883651733, 0.09320899844169617, -0.13638000190258026, 0.4510200023651123, 0.9355999827384949, -0.5302600264549255, -0.36847999691963196, 0.2671999931335449, 0.14489999413490295, -0.03706999868154526, 0.5864999890327454, -0.5497000217437744, 0.4923099875450134, -0.19046999514102936, -0.6663299798965454, -0.07881899923086166, -0.11113999783992767, -0.38721999526023865, -0.008895300328731537, 0.09501399844884872, 0.05553499981760979, -0.07639200240373611, -0.20841999351978302, -0.13224999606609344, 0.6649900078773499, 0.027132000774145126, -0.002118099946528673, -0.10728000104427338, -0.3972100019454956, -0.31452998518943787, 0.44738999009132385, -0.24202999472618103, -0.39733999967575073, 0.31415000557899475, 0.424560010433197, 0.16133999824523926, -0.6214500069618225, -0.7350599765777588, 0.05576299875974655, 0.3402999937534332, -0.8388400077819824, 0.05178700014948845, -0.16485999524593353, -0.3745799958705902, 0.2348099946975708, 0.3474400043487549, 0.22988000512123108, -0.08785299956798553, -0.3325600028038025, 0.2796899974346161, 0.11925999820232391, 0.3574399948120117, 0.22628000378608704, -0.39278000593185425, 0.0913190022110939, 0.4781999886035919, 0.44986000657081604, -0.7383800148963928, 0.44944998621940613, -0.08138299733400345, -0.5081899762153625, 0.10350000113248825, 0.011532999575138092, 0.566100001335144, 0.4231399893760681, -0.07482600212097168, -0.11343000084161758, -0.20576000213623047, -0.18468999862670898, -0.321289986371994, 0.23962000012397766, -0.30136001110076904, 0.5315999984741211, -0.044450998306274414, -0.4993700087070465, -0.06843999773263931, -0.456059992313385, -0.13303999602794647, 0.07673300057649612, 0.14653000235557556, -0.41027000546455383, 0.7758700251579285, 0.055119000375270844, -0.24529999494552612, -0.46709999442100525, -0.1407800018787384, -0.3025299906730652, 0.04288399964570999, -0.08716700226068497, 0.11181999742984772, 0.2637600004673004, 0.3537200093269348, -0.07527299970388412, 0.22799000144004822, 0.30834999680519104, 0.17531000077724457, -0.1291700005531311, 0.6115999817848206, -0.33886000514030457, 0.33858001232147217, 0.5645999908447266, 0.24666999280452728, -0.2121499925851822, -0.2294600009918213], u'fresh': [0.19193999469280243, -0.35721999406814575, 0.05487700179219246, -0.14247000217437744, 0.25613000988960266, -0.49257999658584595, 0.3346099853515625, -0.0925929993391037, 0.5489299893379211, -1.500499963760376, 0.5852400064468384, -0.1373700052499771, 0.20675000548362732, 0.526170015335083, 0.022770000621676445, 0.030021000653505325, -0.617900013923645, 0.17746999859809875, 0.05431000143289566, 0.3825500011444092, -0.5747799873352051, 0.0401029996573925, -0.022590000182390213, -0.3934899866580963, 0.2327200025320053, -0.25328001379966736, 0.028098000213503838, 0.23080000281333923, 0.06789100170135498, 0.1168999969959259, -0.5803200006484985, -0.06251300126314163, -0.3975900113582611, -0.05566899850964546, -0.8806800246238708, 0.4604099988937378, -0.31442001461982727, 0.044725000858306885, 0.16824999451637268, -0.03160399943590164, -0.2037000060081482, -0.0825520008802414, 0.8884199857711792, 0.14424000680446625, 0.09517599642276764, 0.1046300008893013, -0.2371399998664856, 0.013570000417530537, 0.051580000668764114, -0.025426000356674194, -0.14177000522613525, 0.09591200202703476, 0.0525749996304512, 0.302619993686676, 0.05833100154995918, -0.12746000289916992, 0.10604999959468842, 0.17273999750614166, 0.11962000280618668, 0.20969000458717346, -0.15649999678134918, -0.3441399931907654, 0.3769800066947937, 0.2229599952697754, -0.275160014629364, 0.20938000082969666, -0.21521000564098358, -0.7274199724197388, -0.37522000074386597, 0.1457200050354004, -0.025818999856710434, 0.11095999926328659, -0.23917999863624573, -0.04699200019240379, -0.11994999647140503, 0.1035199984908104, 0.43832001090049744, 0.032958999276161194, 0.09805399924516678, -0.06772200018167496, -0.027199000120162964, -0.21283000707626343, 0.10142000019550323, 0.21541999280452728, 0.24582000076770782, 0.12111999839544296, -0.35036998987197876, -0.2667500078678131, -0.05182100087404251, -0.06440400332212448, 0.3186500072479248, -0.45816999673843384, -0.5890899896621704, -0.5154899954795837, 0.1745699942111969, 0.12369000166654587, -0.21408000588417053, -0.3246299922466278, 0.34419000148773193, 0.4272199869155884, -0.19221000373363495, -0.18675999343395233, 0.28387999534606934, -0.3730500042438507, -0.3212299942970276, -0.21973000466823578, 0.07992900162935257, 0.31463998556137085, 0.03294600173830986, -0.41642001271247864, 0.4492399990558624, 0.05191899836063385, -0.28082001209259033, -0.35499998927116394, 0.22762000560760498, 0.0439159981906414, -0.4318700134754181, 0.44018998742103577, 0.4873200058937073, -0.860729992389679, -0.12700000405311584, -0.3106899857521057, -0.2693899869918823, 0.8238400220870972, -0.08789800107479095, 0.1367100030183792, -0.24440999329090118, 0.3667899966239929, 0.032499998807907104, 0.6011599898338318, -0.4046599864959717, 0.6090499758720398, -0.2890099883079529, -0.05502700060606003, -0.1368499994277954, 0.014170000329613686, -0.20321999490261078, 0.5735300183296204, -0.02718999981880188, 0.23204000294208527, 0.46845000982284546, 0.3295300006866455, 0.20319999754428864, 0.01583000086247921, -0.8450800180435181, 0.39614999294281006, -0.6039100289344788, -0.2117999941110611, 0.38506999611854553, -0.3509199917316437, -0.2847900092601776, 0.2835099995136261, 0.3197000026702881, 0.6069200038909912, 0.18693000078201294, -0.5572199821472168, -0.056731998920440674, -0.35484999418258667, -0.4047999978065491, 0.267520010471344, 0.2486100047826767, 0.0033581999596208334, -0.18579000234603882, 0.22530999779701233, -0.054113999009132385, 0.12809999287128448, 0.8205400109291077, 0.13459999859333038, -0.17539000511169434, -0.19553999602794647, 0.5865600109100342, 0.10447999835014343, -0.5707100033760071, -0.32864999771118164, 0.4521700143814087, 0.4238399863243103, 0.40070998668670654, -0.2473600059747696, 0.2549799978733063, 0.024380000308156013, -0.22506000101566315, -0.3188000023365021, 0.2535400092601776, -0.5785999894142151, -0.14979000389575958, -0.06769700348377228, 0.4629800021648407, -0.21431000530719757, 0.547029972076416, -0.38708001375198364, -0.1027199998497963, 0.4758099913597107, -0.38451001048088074, 0.06760500371456146, 0.007639199960976839, -0.2469400018453598, -0.0865119993686676, -0.7114999890327454, -0.3016299903392792, 0.7315999865531921, 0.4274199903011322, -0.38196998834609985, -0.07972200214862823, 0.35069000720977783, -0.43588000535964966, 0.07256100326776505, 0.07981599867343903, 0.42621999979019165, -0.099590003490448, 0.20624999701976776, 0.07884199917316437, -0.3804900050163269, 0.07181499898433685, 0.016147000715136528, 0.3558799922466278, -0.558929979801178, 0.8861299753189087, -0.30987998843193054, 0.07470700144767761, -0.16344000399112701, 0.8938500285148621, 0.3528999984264374, -0.10446999967098236, 0.2085999995470047, 0.003992199897766113, -0.11022000014781952, 0.29486000537872314, 0.13592000305652618, 0.15474000573158264, 0.49862000346183777, 0.08034300059080124, 0.16176000237464905, 0.12208999693393707, -0.44332000613212585, 0.8429099917411804, 0.7894200086593628, 0.20003999769687653, -0.20611999928951263, -0.6820499897003174, -0.19524000585079193, -0.4300299882888794, -0.18296000361442566, -0.49970000982284546, -0.08182299882173538, -0.9503499865531921, -0.2126699984073639, 0.5194500088691711, 0.6648499965667725, -0.48938998579978943, -1.1943999528884888, 0.6985499858856201, -0.03613400086760521, 0.2656799852848053, 0.04061700031161308, -0.18208999931812286, -0.17603999376296997, 0.044992998242378235, 0.3267099857330322, 0.023291999474167824, 1.0861999988555908, 0.11350999772548676, -0.13506999611854553, -0.11248999834060669, -0.07234799861907959, 0.12894000113010406, -0.4377399981021881, -0.10874000191688538, 0.3824799954891205, -0.13431000709533691, -0.4534499943256378, -0.0544620007276535, 0.6208500266075134, -0.14797000586986542, 0.011827999725937843, 0.2957800030708313, 0.6198700070381165, -1.7071000337600708, -0.24108999967575073, 0.39500999450683594, -0.5930299758911133, 0.09757299721240997, 0.22703999280929565, 0.43678000569343567, -0.047635000199079514, -0.19584999978542328, -0.25442999601364136, -0.08994299918413162, 0.41909998655319214, 0.15826000273227692, -0.5313599705696106, -0.5766199827194214, 0.07935299724340439, 0.3697499930858612, -0.060210999101400375, -0.19899000227451324, 0.5399399995803833, 0.2136400043964386, -0.3405799865722656, -0.0267730001360178, 0.39726999402046204], u'caramelized': [0.05956200137734413, -0.5109599828720093, 0.5732200145721436, 0.09378200024366379, -0.4690000116825104, -0.586430013179779, 0.04416000097990036, 0.04065300151705742, -0.041478000581264496, 0.42559999227523804, -0.1813099980354309, -0.0506649985909462, -0.18539999425411224, 0.3189300000667572, -0.8448500037193298, 0.5692600011825562, -0.40560999512672424, -0.2997399866580963, 0.14187000691890717, 0.7349799871444702, -0.562749981880188, 0.26853999495506287, -0.44192999601364136, -0.2220200002193451, -0.17396999895572662, -0.2942900061607361, -0.13377000391483307, 0.18206000328063965, -0.9232699871063232, -0.17870000004768372, -1.1506999731063843, 0.3995400071144104, -0.15710000693798065, -0.711359977722168, 0.1745299994945526, 0.48607000708580017, 0.01624000072479248, 0.2623000144958496, -0.44721999764442444, 0.026642000302672386, 0.7536299824714661, 0.1474200040102005, 0.2032099962234497, -0.6159600019454956, 0.5329300165176392, 0.6000499725341797, 0.004666000138968229, -0.10452000051736832, -0.6576700210571289, 0.37376001477241516, 0.10832999646663666, -0.18288999795913696, 0.37231001257896423, 0.02317499928176403, -0.35620999336242676, -0.20054000616073608, -0.016774000599980354, 0.20826999843120575, 0.3177100121974945, -0.026173999533057213, 0.13026000559329987, -0.03378000110387802, -0.265639990568161, 0.268779993057251, -0.24365000426769257, -0.27757999300956726, 0.2657800018787384, 0.38060998916625977, -0.11183000355958939, 0.05772000178694725, -0.0076512000523507595, 0.14103999733924866, 0.04018700122833252, 0.2509300112724304, 0.2674899995326996, 0.18363000452518463, 1.131700038909912, -0.46299999952316284, -0.3280700147151947, 0.04955499991774559, 0.11992000043392181, 0.13675999641418457, 0.3777500092983246, -1.1162999868392944, -0.2252500057220459, 0.006415899842977524, -0.40448999404907227, 0.407150000333786, -0.4515799880027771, -0.14217999577522278, -0.0322519987821579, 0.16327999532222748, -0.056168001145124435, 0.8915299773216248, -0.6185399889945984, 0.08663800358772278, -0.12910999357700348, 0.2901799976825714, -0.2177100032567978, 0.663670003414154, 0.10785999894142151, -0.1468300074338913, 0.2676999866962433, -0.20122000575065613, -0.33285999298095703, -0.21281999349594116, 0.14751000702381134, -0.37790000438690186, 0.11864999681711197, 0.1738699972629547, 0.3711499869823456, 0.2252199947834015, 0.2932499945163727, -0.39438000321388245, 0.2792600095272064, 0.01093399990350008, -0.8381100296974182, 0.5834900140762329, 0.2378000020980835, 0.20685000717639923, 0.2358900010585785, -0.8155099749565125, -0.009106099605560303, 0.52156001329422, -0.7259600162506104, -0.395579993724823, 0.04810500144958496, 0.2955099940299988, -0.7823600172996521, 0.8487100005149841, -0.43112999200820923, 0.7455499768257141, 0.5201299786567688, 0.8130199909210205, -0.08693599700927734, 0.04953400045633316, -0.03103099949657917, 0.4066700041294098, -0.016690999269485474, -0.3093099892139435, 0.07331100106239319, 0.5691499710083008, -0.7739700078964233, 0.1215599998831749, 0.7649700045585632, -0.354310005903244, -0.14514000713825226, -0.08902300149202347, 0.9200900197029114, -0.17343999445438385, -0.29791998863220215, 0.24886000156402588, 0.30724000930786133, 0.014922999776899815, -0.4582900106906891, -0.7666500210762024, -0.01463599968701601, -0.3590500056743622, -0.412090003490448, -0.2222599983215332, -0.31463998556137085, 0.25, 0.1028899997472763, -0.5420299768447876, -0.05037299916148186, 0.44273000955581665, -0.31746000051498413, -0.11212000250816345, 0.015437000431120396, -0.552869975566864, -0.509660005569458, -0.08525300025939941, 0.07165399938821793, -0.6937599778175354, -0.2347099930047989, -0.340939998626709, -0.33065998554229736, -0.2522900104522705, 0.09813699871301651, -0.9500300288200378, -0.6013799905776978, 0.13199999928474426, 0.18580999970436096, -0.5703099966049194, 0.2856200039386749, -0.2378299981355667, 1.0714000463485718, -0.07173600047826767, -0.7520800232887268, -0.04187700152397156, 0.22053000330924988, 0.728410005569458, -0.199070006608963, -0.2971299886703491, 0.1175599992275238, -0.2920899987220764, -0.3690199851989746, 0.6185399889945984, -0.4946799874305725, -0.39225998520851135, -0.3566400110721588, -0.6976900100708008, -0.15349000692367554, -0.49237000942230225, 0.07394000142812729, 0.44113999605178833, 0.4420500099658966, -0.2500399947166443, -0.21558000147342682, -0.0784360021352768, 0.9256100058555603, -0.3810499906539917, -0.32774001359939575, 0.5161399841308594, -0.8748400211334229, 0.3246400058269501, 0.6775500178337097, -0.8969299793243408, -0.11655999720096588, 0.11783000081777573, 0.3451800048351288, 0.17736999690532684, -0.2345000058412552, 0.06850399821996689, -0.6053400039672852, -0.2872200012207031, -0.21355000138282776, 0.505840003490448, 0.10154999792575836, -0.6596999764442444, 0.19543999433517456, 0.2918899953365326, 0.32870998978614807, -0.39348000288009644, 0.25426000356674194, 0.24267999827861786, 1.4011000394821167, 0.05383500084280968, -0.10683000087738037, 0.06231600046157837, -0.16086000204086304, -0.1852799952030182, -0.14328999817371368, 0.10666000097990036, -0.121069997549057, 0.12310999631881714, -0.07655499875545502, -0.11952999979257584, -0.44453001022338867, -1.010699987411499, -0.11823999881744385, -0.13556000590324402, -0.01268799975514412, 0.4039500057697296, -0.1642400026321411, 0.807449996471405, 0.18368999660015106, 0.31558001041412354, -0.3335399925708771, 0.47095000743865967, -0.3942500054836273, -0.11483000218868256, -0.13338999450206757, 0.5040199756622314, 0.2700200080871582, 0.11518999934196472, 0.259660005569458, -0.8532500267028809, -0.06224599853157997, 0.719730019569397, -0.4469600021839142, 0.02721099928021431, -0.0596730001270771, 0.9594500064849854, -0.1512400060892105, 0.6936699748039246, 0.5910800099372864, -0.342739999294281, -1.3806999921798706, -0.44530001282691956, -0.12482000142335892, -0.17080999910831451, -0.6913599967956543, -0.2002200037240982, 0.23946000635623932, -0.062428999692201614, 0.42215999960899353, 0.1417199969291687, -0.297760009765625, 0.1151600033044815, 0.2655799984931946, -0.40384000539779663, 0.19550000131130219, -0.3483099937438965, -0.701990008354187, -0.9829800128936768, -0.6521099805831909, -0.34757000207901, -0.38837000727653503, -0.07676299661397934]} +objs_dict = {u'lightbulb': [0.39017000794410706, -0.36684998869895935, 0.1300400048494339, 0.19380000233650208, -0.5776399970054626, 0.27017998695373535, -0.7988600134849548, -0.08235999941825867, 0.23645000159740448, 0.1733900010585785, -0.5525500178337097, 0.4142799973487854, -0.14318999648094177, 0.007144200149923563, -0.028845999389886856, 0.13551999628543854, 0.5674499869346619, -0.21085000038146973, -1.063099980354309, 0.3390200138092041, 0.4120999872684479, 0.8149099946022034, 0.135110005736351, 0.33788999915122986, 0.19972999393939972, -0.3126400113105774, -0.18885000050067902, 0.16535000503063202, 0.3117699921131134, -0.097632996737957, 0.1426900029182434, 0.11766999959945679, -0.2812199890613556, 0.13745999336242676, 0.0774179995059967, 0.13732999563217163, -0.19167999923229218, 0.41762998700141907, 0.6315199732780457, 0.7547199726104736, 0.018557999283075333, 0.018137000501155853, -0.4241200089454651, -0.028156999498605728, -0.6999899744987488, 0.16718000173568726, -0.04638899862766266, -0.40248000621795654, -0.23138000071048737, -0.12861000001430511, 0.14595000445842743, 0.1890600025653839, 0.3117400109767914, -0.04619399830698967, 0.44506001472473145, 0.24942000210285187, -0.11096999794244766, 0.4408099949359894, -0.19471000134944916, 0.731909990310669, -0.15719999372959137, 0.1534699946641922, -0.20674000680446625, 0.20428000390529633, -0.19735999405384064, 0.3512600064277649, 0.12592999637126923, 0.04709799960255623, 0.35806000232696533, -0.27121999859809875, 0.21445000171661377, 0.6810399889945984, 0.09149599820375443, -0.5373799800872803, 0.5092599987983704, 0.63086998462677, -0.5224599838256836, -0.386680006980896, 0.7476999759674072, 0.6594200134277344, -0.6299899816513062, 0.0064603001810610294, -0.4437899887561798, -0.14836999773979187, 0.40689998865127563, -0.15915000438690186, 0.4200499951839447, 0.31779998540878296, -0.1754000037908554, -0.07346100360155106, -0.2871299982070923, -0.11997000128030777, -0.24899999797344208, 0.6814299821853638, 0.04824800044298172, -0.19682000577449799, 0.3444899916648865, -0.49375998973846436, -0.15234999358654022, 0.13875000178813934, -0.007455199956893921, 0.38697999715805054, -0.08914099633693695, 0.47183001041412354, -0.5498600006103516, -0.4045400023460388, -0.5654500126838684, -0.021882999688386917, -0.8551999926567078, 0.3111000061035156, -0.15335999429225922, 0.0587100014090538, 0.15383000671863556, 0.5809999704360962, 0.035016998648643494, 0.3586199879646301, -0.04457699880003929, 0.5574600100517273, -0.0649000033736229, 0.11229000240564346, -0.041402000933885574, -0.32308998703956604, 0.3281700015068054, 0.7347699999809265, 0.38506999611854553, -0.08412999659776688, 0.4682199954986572, 0.3113099932670593, -0.2499299943447113, -0.5948200225830078, 1.0299999713897705, -0.4258100092411041, 0.699180006980896, -0.06161599978804588, -0.039395999163389206, 0.5107700228691101, -0.41225001215934753, 0.013923999853432178, 0.09260500222444534, -0.36204999685287476, -0.16267000138759613, -0.3536500036716461, -0.11341000348329544, -0.21154999732971191, 0.01783600077033043, 0.4005100131034851, 0.27781999111175537, 0.13565999269485474, 0.5120599865913391, -0.10018999874591827, -0.41117000579833984, 0.13854999840259552, 0.13693000376224518, 0.03209799900650978, -0.29809999465942383, 0.21804000437259674, 0.2985999882221222, -0.14616000652313232, -0.389629989862442, -0.051516998559236526, -0.8532000184059143, 0.06994500011205673, -0.1830500066280365, 0.4226199984550476, -0.32989999651908875, 0.3575200140476227, -0.1711300015449524, 0.27667999267578125, -0.0194690003991127, -0.4866600036621094, -0.7117900252342224, 0.10836999863386154, 0.3392300009727478, -0.7555500268936157, -0.3968000113964081, -0.7511799931526184, 0.07553199678659439, 0.43248000741004944, 0.22290000319480896, -0.3882099986076355, 0.31161001324653625, -0.17733000218868256, 0.3491100072860718, 0.3080500066280365, -0.2782599925994873, -0.31810998916625977, 0.6185100078582764, 0.18017999827861786, -0.6533200144767761, -0.3118700087070465, 0.4415299892425537, -0.19760000705718994, 0.7589100003242493, -0.7913200259208679, -0.05096900090575218, 0.6225500106811523, -1.1895999908447266, 0.02027300000190735, 0.024000000208616257, -0.1612900048494339, -0.25044000148773193, 0.2095700055360794, 0.35286998748779297, 0.0946120023727417, -0.09207499772310257, -0.3238300085067749, 0.3717299997806549, -0.24932999908924103, 0.06595700234174728, -0.4003399908542633, -0.04682600125670433, -0.2981700003147125, -0.06402499973773956, 0.5217099785804749, 0.20072999596595764, 0.9763299822807312, -0.04685100167989731, -0.32427000999450684, -0.10874000191688538, 0.3020699918270111, -0.3841100037097931, 0.7464399933815002, -0.42761000990867615, 0.7340099811553955, -0.24122999608516693, -0.4282500147819519, -0.28064998984336853, 0.20432999730110168, 0.4332300126552582, 0.6038200259208679, 0.18182000517845154, -0.31321999430656433, -0.1927500069141388, -0.654770016670227, -0.29526999592781067, -0.37307998538017273, -0.725600004196167, -0.10050000250339508, 0.19492000341415405, -0.608709990978241, -0.16140000522136688, -0.3903599977493286, -0.9850199818611145, 0.08120600134134293, 0.3489699959754944, -0.930620014667511, -0.1898300051689148, 0.0692100003361702, -0.15218999981880188, -0.334089994430542, -0.06312300264835358, 0.16547000408172607, 0.19426999986171722, -0.648169994354248, 0.1098100021481514, -0.11388999968767166, -0.3305400013923645, 0.2590999901294708, -0.07720399647951126, -0.8772000074386597, -0.09768400341272354, -0.12125000357627869, 0.36511000990867615, -0.13431000709533691, 0.004244800191372633, 0.14496000111103058, -0.3638100028038025, 0.471560001373291, 0.386929988861084, 0.38763999938964844, -0.1603900045156479, 0.4681699872016907, -0.33748000860214233, -0.11840000003576279, -0.27928999066352844, -0.58024001121521, 0.5039899945259094, -0.03803899884223938, -0.3761099874973297, 0.1617799997329712, -0.3414599895477295, 0.18852999806404114, -0.7964000105857849, 0.26203998923301697, -0.2649500072002411, 0.1618099957704544, -0.4299600124359131, -0.5538300275802612, -0.019088000059127808, 0.33772000670433044, 0.09833700209856033, 0.1729699969291687, 0.38273000717163086, -0.13450999557971954, -0.574679970741272, -0.5538600087165833, -0.4624199867248535, 0.28975000977516174, 0.5906299948692322, 0.32332998514175415], u'shoes': [0.046521998941898346, -0.27535000443458557, -0.1372399926185608, -0.08483199775218964, -0.5181000232696533, -0.1770700067281723, 0.10560999810695648, 0.21041999757289886, 0.371069997549057, -1.121399998664856, -0.31126001477241516, -0.028116999194025993, -0.15352000296115875, 0.04626300185918808, 0.0881119966506958, -0.30849000811576843, 0.2911199927330017, 0.26403000950813293, 0.42719000577926636, -0.34049999713897705, 0.1041800007224083, 0.062320999801158905, 0.3102000057697296, -0.1408499926328659, -0.6470400094985962, -0.11184000223875046, -0.3789699971675873, 0.19210000336170197, 0.7177799940109253, 0.5410400032997131, -0.06356599926948547, -0.07503599673509598, -0.42344000935554504, 0.030515000224113464, -1.092900037765503, 0.449290007352829, -0.30285999178886414, -0.05439300090074539, 0.30504000186920166, 0.37779998779296875, -0.15199999511241913, -0.6460199952125549, 0.0035019998904317617, -0.3173699975013733, -0.21862000226974487, -0.15986000001430511, 0.7918099761009216, 0.05972500145435333, -0.1509000062942505, 0.46226999163627625, -0.18327000737190247, -0.28367000818252563, 0.18201999366283417, 0.12201999872922897, -0.005777500104159117, 0.5082899928092957, -0.12477999925613403, -0.1820099949836731, -0.12711000442504883, 0.02223999984562397, -0.043411001563072205, -0.2563900053501129, -0.3502100110054016, -0.11584000289440155, 0.1497800052165985, -0.2808699905872345, -0.6232699751853943, 0.041839998215436935, -0.37849000096321106, 0.13702000677585602, 0.4625000059604645, 0.31520000100135803, -0.3492699861526489, -0.5148699879646301, 0.47793999314308167, -0.47211000323295593, 0.06896500289440155, 0.04206300154328346, 0.20796999335289001, -0.46062999963760376, -0.07726799696683884, 0.2194100022315979, 0.10565000027418137, 0.008249400183558464, 0.2724500000476837, -0.37880000472068787, 0.18285000324249268, -0.23850999772548676, -0.23803000152111053, 0.5057399868965149, 0.12291999906301498, 0.3009200096130371, 0.04097500070929527, 0.16286000609397888, 0.0921889990568161, 0.10074000060558319, -0.12800000607967377, -0.28922998905181885, 0.030912000685930252, -0.4964599907398224, 0.1638299971818924, 0.5025299787521362, -0.7382400035858154, -0.13186000287532806, -0.35128000378608704, -0.8575000166893005, 0.780269980430603, -0.18528999388217926, 0.2434300035238266, -0.9970300197601318, 0.04215500131249428, 0.2493000030517578, 0.025662999600172043, -0.2630000114440918, -0.06221200153231621, -0.16773000359535217, 0.6916599869728088, 0.011309999972581863, 0.3172900080680847, -0.6394699811935425, -0.10209999978542328, -0.20327000319957733, 0.47415998578071594, -0.1436299979686737, -0.3637300133705139, 0.24241000413894653, -0.05324700102210045, 0.5356199741363525, 0.2931300103664398, -0.11685000360012054, -0.14448000490665436, -0.026388999074697495, 0.19352999329566956, 0.61080002784729, -0.4250600039958954, -0.5867800116539001, -0.1386300027370453, 0.15971000492572784, -0.11920999735593796, 0.17622999846935272, -0.008022700436413288, -0.3856300115585327, 0.4962399899959564, -0.28029999136924744, 0.046500999480485916, 0.19912000000476837, -0.238429993391037, 0.11766999959945679, -0.010824000462889671, 0.013438999652862549, 0.14736999571323395, 0.39594998955726624, -0.3389599919319153, -1.0918999910354614, -0.24478000402450562, -0.3876799941062927, -0.07248000055551529, -0.5232700109481812, 0.6285399794578552, 0.18720999360084534, 0.7936699986457825, -0.5734900236129761, -0.1639000028371811, -0.1250700056552887, 0.47115999460220337, -0.4240100085735321, 0.22926999628543854, 0.7875199913978577, 0.29151999950408936, 0.4116100072860718, 0.004468199796974659, 0.3899799883365631, -0.27469000220298767, 0.17663000524044037, -0.06794200092554092, -0.3611299991607666, 0.17212000489234924, 0.4335100054740906, -0.21216000616550446, -0.5775600075721741, 0.4483500123023987, -0.11044000089168549, 0.2762199938297272, -0.08030200004577637, 0.022432999685406685, -0.1305599957704544, 0.9050700068473816, 0.7572399973869324, 0.44690999388694763, -0.049949001520872116, 0.03932100161910057, -0.2561799883842468, -0.015061999671161175, 0.24647000432014465, -0.12950000166893005, 0.31459999084472656, -0.7015399932861328, -0.3108200132846832, -0.09731300175189972, -0.08591300249099731, 0.7679200172424316, 0.2945899963378906, 0.5856500267982483, 0.5761200189590454, 0.359279990196228, 0.18246999382972717, 0.49358001351356506, 0.3626999855041504, -1.4315999746322632, -0.46276000142097473, -0.032113999128341675, 0.04262800142168999, -0.13220000267028809, 0.5428299903869629, 0.24456000328063965, -0.1214900016784668, 0.3379800021648407, -0.6558399796485901, -0.2924099862575531, -0.6022499799728394, 0.6264500021934509, 0.16839000582695007, 0.1530199944972992, 0.050641000270843506, 0.6398599743843079, 0.25516000390052795, -0.25940001010894775, 0.5928000211715698, -0.17903999984264374, 0.028286000713706017, 0.492000013589859, -0.15595999360084534, -0.15252000093460083, 0.1951099932193756, -0.05823900178074837, 0.14026999473571777, 0.015316000208258629, 0.43463999032974243, -0.38975998759269714, 0.0024409000761806965, -0.033796001225709915, 0.07804200053215027, -0.7078800201416016, 0.4417400062084198, 0.11490000039339066, -0.014995000325143337, 0.062279000878334045, -0.5150399804115295, 0.3796199858188629, -0.4562000036239624, 0.015585999935865402, 0.03340499848127365, -0.27535998821258545, -0.3035700023174286, 0.3631199896335602, -0.22878000140190125, -0.12161999940872192, 0.133310005068779, -0.015417000278830528, -0.42552000284194946, -0.09953100234270096, -0.7592700123786926, 0.08535800129175186, -0.42236000299453735, 0.12310999631881714, -0.07830899953842163, -0.6050599813461304, 0.22946999967098236, -0.60930997133255, 0.07077299803495407, -0.17032000422477722, 0.14959999918937683, -0.02638299949467182, -0.704990029335022, -0.7353900074958801, -0.11537999659776688, -1.2410999536514282, 0.029536999762058258, -0.7642499804496765, 0.4077099859714508, 0.5358999967575073, -0.12793999910354614, 0.2875800132751465, -0.15876999497413635, -0.45684000849723816, 1.0506000518798828, -0.11748000234365463, 0.5167499780654907, -0.34022000432014465, -0.5885800123214722, 0.23378999531269073, 0.3157399892807007, 0.1094600036740303, 1.0147000551223755, -0.8254799842834473, -0.6924700140953064, 0.21558000147342682, 0.003895200090482831, 0.2953599989414215, 0.10051999986171722], u'deck': [0.69691002368927, -0.4374000132083893, -0.13625000417232513, -0.7106299996376038, -0.914929986000061, 0.5428299903869629, 0.19729000329971313, 0.09845999628305435, 0.0030793999321758747, -0.7409300208091736, 0.05412900075316429, 0.29629001021385193, 0.08075899630784988, -0.6501700282096863, -0.3341600000858307, 0.22018000483512878, 0.46525999903678894, 0.3407999873161316, 0.46261000633239746, -0.20417000353336334, 0.16092999279499054, -0.10333999991416931, -0.11806999891996384, -0.24074000120162964, 0.2425999939441681, 0.3346799910068512, 0.250789999961853, 0.7631499767303467, 0.16992999613285065, 0.40459999442100525, 0.06604199856519699, 0.2781600058078766, 0.29857999086380005, -0.4919399917125702, -0.39059001207351685, 0.17373999953269958, 0.7179099917411804, -0.4869000017642975, 0.040453001856803894, 0.5164700150489807, -0.06567899882793427, -0.09547200053930283, -0.46623000502586365, -0.023152999579906464, 0.12078999727964401, 0.22202999889850616, 1.0042999982833862, -0.325080007314682, 0.14590999484062195, -0.4718500077724457, -0.5068299770355225, 0.2634499967098236, -0.21773000061511993, -0.6363499760627747, -0.28349000215530396, -0.18341000378131866, 0.1960500031709671, 0.015974000096321106, 0.11800000071525574, 0.5454800128936768, 0.02817000076174736, -0.2699199914932251, 0.10920000076293945, 0.1384200006723404, 0.005056200083345175, -0.584089994430542, -0.42236998677253723, -0.10407000035047531, -0.33177998661994934, -0.09125299751758575, 0.29273998737335205, -0.09028299897909164, -0.06210099905729294, -0.0797630026936531, 0.21528999507427216, 0.40342000126838684, -0.12875999510288239, 0.6309199929237366, -0.3145099878311157, -0.3585500121116638, -0.3861599862575531, 0.21863999962806702, 0.14024999737739563, -0.1501300036907196, 0.5015100240707397, -0.5294899940490723, -0.24684999883174896, 0.020258000120520592, -0.08620300143957138, 0.0627020001411438, 0.644070029258728, 0.11206000298261642, 0.25505000352859497, 0.20242999494075775, -0.10660000145435333, 0.49424999952316284, -0.7115700244903564, -0.2545199990272522, 0.6300600171089172, -0.7193199992179871, -0.6070399880409241, 0.43880000710487366, -0.027922000735998154, 0.15880000591278076, 0.10409999638795853, 0.15421999990940094, 0.2420399934053421, -0.12806999683380127, -0.2630999982357025, -0.19005000591278076, -0.18519000709056854, 0.30410000681877136, 0.3132700026035309, -0.3409300148487091, -0.7431700229644775, 0.02123899944126606, -0.19077999889850616, -0.08377499878406525, -0.5788599848747253, -0.027431000024080276, -0.24100999534130096, -0.8638100028038025, 0.1374099999666214, 0.6240100264549255, -0.3848699927330017, -0.17685000598430634, 0.40880000591278076, -0.7565699815750122, 0.5967599749565125, 0.1837500035762787, -0.10745999962091446, 0.9901999831199646, 0.2269899994134903, 0.21472999453544617, 1.0563000440597534, 0.1211400032043457, 0.04199400171637535, -0.1426600068807602, -0.29493001103401184, 0.30270999670028687, -0.3529599905014038, 0.3832100033760071, 0.41718000173568726, 0.7058200240135193, -0.055309001356363297, -0.1169700026512146, 0.4711799919605255, 0.43057000637054443, -0.3125799894332886, 0.2535099983215332, -0.11665000021457672, -0.3036699891090393, 0.3680399954319, -0.9888299703598022, 0.47940999269485474, 0.12943999469280243, 0.473470002412796, 0.1965000033378601, -0.26750001311302185, 0.42260000109672546, 0.4845699965953827, -0.08237899839878082, -0.07620400190353394, 0.13961000740528107, 0.5386099815368652, 0.27289000153541565, 0.11027000099420547, 0.5671399831771851, 0.45739999413490295, 0.3138900101184845, -0.3137499988079071, 0.12953999638557434, 0.35791999101638794, -0.34782999753952026, 0.11586999893188477, -0.25905001163482666, -0.4595699906349182, 0.041085001081228256, -0.35653001070022583, -1.281599998474121, 0.5504199862480164, 0.3612399995326996, 0.5407900214195251, 0.3236199915409088, -0.4746299982070923, -0.2639000117778778, 0.8781399726867676, 0.590499997138977, 0.49818000197410583, 0.679610013961792, 0.13700999319553375, 0.6757000088691711, 0.15826000273227692, -0.15910999476909637, 0.16505999863147736, 0.09252800047397614, -0.14408999681472778, 0.1283400058746338, -0.2853899896144867, -0.49939998984336853, 0.5272499918937683, 0.07024700194597244, -0.14131000638008118, -0.5463500022888184, 0.6265900135040283, -0.06199999898672104, 0.2564699947834015, 0.11210999637842178, 0.25900998711586, -0.3294000029563904, 0.17476999759674072, -0.41095998883247375, -0.18583999574184418, -0.5845199823379517, 0.24878999590873718, -0.22044000029563904, -0.10166999697685242, -0.021967999637126923, 0.30601999163627625, -0.22926999628543854, 0.3323099911212921, 0.5666199922561646, 0.2862200140953064, -0.08959700167179108, 0.17831000685691833, 0.4972600042819977, -0.1788100004196167, -0.49803999066352844, 0.2033900022506714, -0.01592000015079975, 0.31327998638153076, -0.1381099969148636, -0.31543999910354614, 0.28547999262809753, 0.4487999975681305, -0.1222200021147728, -0.14895999431610107, -0.05668500065803528, -0.27987000346183777, -0.022300999611616135, 0.3535799980163574, 0.05703600123524666, -0.020421000197529793, -0.0033696999307721853, -0.15573999285697937, -0.6741600036621094, -0.24705000221729279, 0.2989000082015991, 0.04337399825453758, 0.44207999110221863, 0.4908500015735626, -0.37494000792503357, 0.6210600137710571, -0.18344999849796295, 0.07318200170993805, -0.1977899968624115, -0.35951000452041626, -0.3811100125312805, 0.3591800034046173, 0.1415800005197525, -0.37369000911712646, -0.5125799775123596, 0.08153899759054184, -0.5162100195884705, -0.2304600030183792, -0.051472000777721405, -0.3932900130748749, -0.016713999211788177, -0.0037444999907165766, -0.1876000016927719, 0.08778099715709686, -0.57396000623703, 0.3039900064468384, -0.06687399744987488, 0.07144399732351303, -0.36111000180244446, -1.0394999980926514, 0.09242600202560425, -0.7790899872779846, -0.03511200100183487, 0.1467600017786026, -0.08915399760007858, -0.5047500133514404, -0.5969300270080566, -0.3001300096511841, -0.25609999895095825, -0.08163800090551376, 0.17563000321388245, 0.18988999724388123, -0.40108001232147217, 0.09762699902057648, -0.12918999791145325, -0.9747499823570251, 0.124719999730587, -0.06618999689817429, 0.43408000469207764, 0.6983699798583984, -0.05463999882340431, -0.07890299707651138, 0.040130000561475754], u'laptop': [-0.3197399973869324, 0.09940899908542633, -0.4389300048351288, -0.6219900250434875, -0.008528199978172779, -0.21390999853610992, -0.12591999769210815, -0.5920799970626831, 0.2059600055217743, -1.097599983215332, -0.055291999131441116, 0.22302000224590302, 0.18996000289916992, -0.5440499782562256, -0.14157000184059143, 0.04588799923658371, -0.4753200113773346, -0.45403000712394714, 0.04497399926185608, -0.5168099999427795, 0.46459001302719116, -0.006091599818319082, -0.43261000514030457, -0.7541199922561646, -0.09027300029993057, -0.6691300272941589, 0.2708199918270111, 0.3124200105667114, 0.9091100096702576, -0.1919099986553192, 0.2019300013780594, 0.2066899985074997, -0.1155799999833107, 0.16946999728679657, -0.2565099895000458, -0.42590999603271484, -0.4595699906349182, -0.5330299735069275, -0.4637799859046936, 0.2397100031375885, 0.0917230024933815, -0.10288000106811523, -0.7892199754714966, 0.3324599862098694, 0.1102600023150444, -0.07122399657964706, 0.6078299880027771, 0.07784900069236755, -0.10509999841451645, -0.1695999950170517, 0.5229300260543823, -0.3479599952697754, -0.23378999531269073, -0.08229699730873108, 0.09516000002622604, -0.3396100103855133, 0.04419099912047386, 0.19259999692440033, 0.06369899958372116, 0.28233999013900757, -0.38982000946998596, 0.18195000290870667, -0.12083999812602997, 1.2324999570846558, -0.020860999822616577, 0.7671899795532227, -0.5358399748802185, 0.15178999304771423, -0.3432300090789795, -0.12007000297307968, -0.09675800055265427, -0.07334599643945694, 0.4356299936771393, -0.14846999943256378, 0.479310005903244, 0.3108600080013275, -0.43070000410079956, -0.3904600143432617, 0.12038999795913696, -0.09047900140285492, -0.3712100088596344, -0.42034000158309937, 0.10134000331163406, -0.0938820019364357, 0.13843999803066254, -0.16446000337600708, -0.6844599843025208, 0.29440999031066895, -0.0011560999555513263, -0.15252000093460083, -0.00358260003849864, 0.10377000272274017, -0.3623799979686737, -0.07077399641275406, 0.3465000092983246, -0.20412999391555786, -0.45486998558044434, -0.39724001288414, -0.0818059965968132, -0.25235000252723694, -0.5283499956130981, 0.6159300208091736, 0.10723000019788742, -0.5950000286102295, -0.032173000276088715, -1.1188000440597534, 0.3410100042819977, 0.22583000361919403, -1.032099962234497, -0.3566100001335144, -0.2975200116634369, 0.024728000164031982, 0.282370001077652, 0.24553999304771423, -0.23187999427318573, 0.19226999580860138, 0.3171600103378296, 0.2989499866962433, 0.14879000186920166, -0.1639299988746643, -0.20702999830245972, -0.5932899713516235, 0.351639986038208, -0.5176799893379211, -0.039131999015808105, -0.09025599807500839, -0.19136999547481537, -0.19857999682426453, -5.1574999815784395e-05, 0.1761299967765808, 0.06115199998021126, -0.11427000164985657, -0.22460000216960907, 0.1594499945640564, 0.6940900087356567, -0.1817999929189682, 0.7967600226402283, 0.6018199920654297, -0.11208000034093857, -0.10676000267267227, 0.0766569972038269, 0.4040200114250183, 0.35694000124931335, -0.18156999349594116, -0.16489000618457794, 0.190420001745224, 0.042716000229120255, -0.3733699917793274, -0.09698499739170074, 0.18820999562740326, 0.33096998929977417, 0.17222000658512115, 0.13019999861717224, -0.09499199688434601, -0.373199999332428, 0.15008999407291412, -0.08366599678993225, 0.4581100046634674, -0.27921000123023987, 0.1322699934244156, -0.27678000926971436, -0.17643000185489655, -0.16198000311851501, 0.1289599984884262, 0.4005100131034851, -0.34209001064300537, 0.027540000155568123, 0.34049999713897705, 0.02452000044286251, 0.11129999905824661, -0.5092300176620483, -0.41593998670578003, -0.8233699798583984, 0.5596399903297424, 0.11937999725341797, -1.0306999683380127, -0.11959999799728394, -0.22045999765396118, 0.006281800102442503, -0.946619987487793, 0.37046000361442566, 0.1314300000667572, 0.32989001274108887, -0.06603600084781647, 0.10290999710559845, -0.015588999725878239, 1.093400001525879, 0.09572499990463257, 0.6458100080490112, -0.35951998829841614, 0.21754999458789825, 0.052678000181913376, 0.3529700040817261, 0.27667000889778137, -0.4320800006389618, 0.2940100133419037, -0.5991899967193604, 0.2792400121688843, -0.06321600079536438, -0.08550199866294861, -0.11305999755859375, -0.14008000493049622, 0.3562699854373932, 0.2809999883174896, 0.15004999935626984, -0.585070013999939, -0.24605000019073486, 0.3669799864292145, -0.9398000240325928, -0.49480998516082764, 0.20930999517440796, -0.03752399981021881, -0.1067499965429306, 0.42195001244544983, 0.01066299993544817, -0.0981839969754219, -0.550790011882782, -0.18578000366687775, 0.1588200032711029, 0.6535000205039978, -0.42072001099586487, 0.4550899863243103, -0.40490999817848206, 0.5183899998664856, 0.42772001028060913, 0.9472000002861023, -0.08227299898862839, -0.13679000735282898, 0.1755799949169159, -0.18482999503612518, -0.12331999838352203, -0.21297000348567963, -0.37843000888824463, -0.034637998789548874, 0.29905998706817627, 0.262580007314682, 0.16068999469280243, 0.5089600086212158, -0.3084299862384796, 0.18508000671863556, 0.44137999415397644, -0.021534999832510948, -0.1449899971485138, -0.12835000455379486, 0.049880001693964005, 0.1035500019788742, 0.10927999764680862, -0.40099000930786133, -0.24247999489307404, 0.29774999618530273, -0.13009999692440033, 0.6781499981880188, -0.7126200199127197, 0.11727000027894974, -0.22732999920845032, 0.3942900002002716, 0.4095500111579895, 0.2748900055885315, 0.15384000539779663, 0.07833600044250488, -0.1302500069141388, -0.11405999958515167, -0.6139699816703796, 0.016589000821113586, 0.41130998730659485, -0.03935199975967407, 0.016479000449180603, -0.2939099967479706, 0.1035899966955185, 0.24490000307559967, 0.03974299877882004, 0.2199700027704239, 0.10600999742746353, -0.3029100000858307, -0.21254000067710876, -0.1254200041294098, -1.1943000555038452, 0.5750899910926819, -0.4384100139141083, 0.017083000391721725, 0.2617500126361847, 0.3351899981498718, 0.20221999287605286, 0.2803100049495697, -0.2176399976015091, -0.1438400000333786, 0.09978500008583069, -0.0837009996175766, -0.40358999371528625, -0.17118999361991882, 0.2846499979496002, -0.15994000434875488, -0.06177400052547455, -0.21613000333309174, -0.1444299966096878, 0.11918999999761581, 0.36340999603271484, 0.3137899935245514, -0.06488999724388123, -0.10329999774694443], u'ceramic': [0.29096001386642456, 0.32806000113487244, -0.3333500027656555, -0.8796300292015076, 0.13797999918460846, -0.35710999369621277, -0.22844000160694122, 0.09686099737882614, -0.22282999753952026, -0.49849000573158264, -0.27052998542785645, 0.22554999589920044, -0.33945998549461365, 0.4998700022697449, 0.05628599971532822, -0.08721499890089035, -0.3024899959564209, -0.0017562999855726957, -0.29809001088142395, -0.25282999873161316, -0.04520300030708313, -0.17353999614715576, 0.16926999390125275, 0.5368599891662598, -0.2620599865913391, -0.7876200079917908, -0.5418199896812439, 0.03324799984693527, 0.14775000512599945, 0.46959999203681946, 0.1491200029850006, 0.8819000124931335, -0.17856000363826752, -0.10531999915838242, 0.48232999444007874, 0.48899000883102417, 0.06590099632740021, 0.15470999479293823, 0.16227999329566956, 0.41089001297950745, -0.2509799897670746, -0.0540350005030632, 0.15862999856472015, -0.29725000262260437, -0.1667100042104721, 0.4029099941253662, 0.29166001081466675, -0.015351000241935253, -0.41648998856544495, 0.08175799995660782, 0.3480199873447418, 0.2819899916648865, 0.12906000018119812, 0.46977001428604126, 0.06429799646139145, 0.09673299640417099, -0.07455699890851974, 0.20237000286579132, 0.5577700138092041, 0.15835000574588776, -0.459850013256073, -0.21213999390602112, 0.18694999814033508, -0.03374199941754341, 0.5175399780273438, 0.3855699896812439, -0.27028998732566833, 0.15300999581813812, 0.16646000742912292, 0.27206000685691833, -0.31025999784469604, -0.5119600296020508, 0.09119699895381927, -0.11508999764919281, -0.5515599846839905, 0.5489000082015991, 0.007398500107228756, -0.5202500224113464, -0.10723999887704849, -0.3726100027561188, -0.93954998254776, -0.5260699987411499, -0.46977999806404114, -0.5259000062942505, 0.1742199957370758, 0.7323200106620789, 0.5035600066184998, 0.2131199985742569, -0.5149000287055969, -0.2639800012111664, 0.5360599756240845, -0.10221999883651733, 0.025575000792741776, 0.218189999461174, 0.04934300109744072, 0.11561000347137451, 0.05479700118303299, 0.022360000759363174, 0.10363999754190445, 0.20410999655723572, 0.07729999721050262, 0.3136099874973297, 0.003474599914625287, -0.25266000628471375, 0.3030500113964081, -0.35267001390457153, 0.14191000163555145, -0.05992399901151657, -0.6609899997711182, 0.15073999762535095, -0.011672000400722027, -0.03029699996113777, -0.5700899958610535, -0.7286700010299683, -0.1418199986219406, -0.09427200257778168, -0.3732700049877167, 0.2811200022697449, -0.002144899917766452, 0.24060000479221344, 0.4051699936389923, 0.5243300199508667, -0.21367999911308289, 0.26342999935150146, 0.020018000155687332, 0.21369999647140503, -0.02598400041460991, 0.17096999287605286, 0.23779000341892242, 0.258650004863739, 0.06009799987077713, 0.6063699722290039, 0.49351000785827637, 0.2884199917316437, -0.1036200001835823, -0.43274998664855957, -0.21616999804973602, 0.3667199909687042, 0.14562000334262848, 0.05089699849486351, 0.43748998641967773, 0.447519987821579, 0.05122299864888191, -0.9952499866485596, 0.8561099767684937, 0.12032999843358994, -0.5425300002098083, -0.19234000146389008, -0.27087000012397766, -0.4677799940109253, -0.08596699684858322, 0.028870999813079834, 0.029069000855088234, 0.13078999519348145, 0.15060000121593475, 0.18066999316215515, -0.8923500180244446, -0.15672999620437622, 0.08953599631786346, -0.17714999616146088, 0.0954039990901947, 0.21018999814987183, 0.04994799941778183, 0.012415999546647072, 0.6855300068855286, 0.27312999963760376, 0.4864499866962433, 0.3749200105667114, -0.02666199952363968, 0.11751999706029892, -0.037842001765966415, 0.42601001262664795, 0.3291899859905243, 0.11106999963521957, -0.3092699944972992, -0.012272999621927738, -0.593999981880188, 0.078063003718853, 0.2068299949169159, -0.8553299903869629, -0.17412999272346497, -0.3673799932003021, 0.5479900240898132, -0.23966999351978302, 0.031029000878334045, -0.697700023651123, 0.5946499705314636, 0.23930999636650085, 0.23274999856948853, -0.05335899814963341, 0.8104100227355957, 0.23800000548362732, 0.18842999637126923, 0.744949996471405, -0.15017999708652496, 0.1604599952697754, -0.4240500032901764, 0.5793899893760681, -0.03870600089430809, -0.17430000007152557, -0.05190499871969223, 0.32785001397132874, 0.5059999823570251, -0.11683999747037888, 0.8556100130081177, -0.09983000159263611, 0.22630000114440918, 0.14796000719070435, -0.9079700112342834, -0.13503000140190125, 1.037500023841858, 0.43195000290870667, 0.3591800034046173, 0.08081399649381638, 0.11231999844312668, 0.1244100034236908, 0.2107899934053421, -0.4378499984741211, 0.04831400141119957, 0.258899986743927, 0.24922999739646912, 0.21765999495983124, 0.01648700051009655, -0.3374199867248535, -0.31301000714302063, 0.027674999088048935, -0.0830800011754036, 0.14687000215053558, 0.19317999482154846, 0.12279000133275986, -0.0193060003221035, -0.3012999892234802, -0.005157399922609329, 0.43369001150131226, 0.2845200002193451, 0.049876000732183456, -0.011303000152111053, -0.24264000356197357, 0.01685200072824955, 0.03271299973130226, -0.1256999969482422, -0.292279988527298, -0.5070099830627441, 0.3986800014972687, -0.7585999965667725, 0.3989900052547455, -0.8003100156784058, -0.4430699944496155, 0.05423500016331673, 0.8514500260353088, 0.6157600283622742, -0.6433200240135193, -0.3063899874687195, -0.2411399930715561, 0.11007999628782272, 0.6075199842453003, -0.032311998307704926, -0.1411599963903427, -0.11422999948263168, 0.025666000321507454, -0.20378999412059784, -0.2104800045490265, 0.5684400200843811, -0.19202999770641327, 0.44168999791145325, 0.34751999378204346, -0.10860999673604965, 0.8176400065422058, 0.19077999889850616, 0.07202400267124176, -0.22384999692440033, 0.14685000479221344, 0.655489981174469, 0.4004400074481964, -0.40132999420166016, 0.0806960016489029, -0.37167999148368835, 0.02910199947655201, -1.6109000444412231, -0.03283200040459633, -0.013608000241219997, -0.3787499964237213, -0.14643999934196472, -0.01447100006043911, 0.030779000371694565, 0.41912001371383667, 0.09714800119400024, -0.051725998520851135, 0.24536000192165375, -0.1320199966430664, -0.3731200098991394, 0.18570999801158905, 0.2585600018501282, 0.49818000197410583, 0.38051000237464905, 0.10650999844074249, 0.4054099917411804, -0.9791600108146667, 0.1843699961900711, 0.2357800006866455], u'paper': [-0.009166699834167957, 0.3133299946784973, 0.21573999524116516, -0.4844000041484833, -0.20145000517368317, -0.3103399872779846, -0.12467999756336212, 0.1876399964094162, 0.12060000002384186, -1.7350000143051147, 0.005279500037431717, -0.37244999408721924, 0.36862999200820923, -0.05180500075221062, 0.3111099898815155, -0.17445999383926392, -0.154339998960495, 0.34498000144958496, -0.21369999647140503, -0.493910014629364, 0.12894000113010406, -0.389490008354187, 0.15620000660419464, 0.7556700110435486, 0.025001000612974167, -0.40832000970840454, -0.11947000026702881, -0.21365000307559967, 0.3034999966621399, -0.5856500267982483, -0.1625099927186966, 0.07111000269651413, -0.5045099854469299, 0.31536000967025757, -1.1837999820709229, 0.10942000150680542, -0.38694000244140625, 0.226500004529953, -0.1339299976825714, 0.23969000577926636, -0.5136500000953674, -0.2578299939632416, 0.11444000154733658, 0.3739199936389923, 0.0893860012292862, 0.0463160015642643, 0.2914600074291229, 0.23055000603199005, -0.19162000715732574, 0.22559000551700592, 0.5584499835968018, 0.13547000288963318, -0.002864199923351407, -0.027580000460147858, 0.14036999642848969, 0.5564000010490417, -0.16137999296188354, 0.11903999745845795, 0.18276000022888184, -0.41297999024391174, 0.49257999658584595, 0.4067699909210205, -0.15057000517845154, -0.0626320019364357, 0.22046999633312225, -0.4693000018596649, 0.17723999917507172, -0.4510500133037567, -0.1375100016593933, -0.13362999260425568, 0.40154001116752625, -0.23718999326229095, -0.1681399941444397, 0.22892999649047852, -0.07190900295972824, 0.5708699822425842, 0.34685999155044556, 0.3931800127029419, -0.30059999227523804, -0.019259000197052956, -0.7989100217819214, -0.5016999840736389, -0.31957998871803284, -0.11919999867677689, 0.05229799821972847, -0.08737500011920929, -0.5333999991416931, 0.08890999853610992, -0.3181299865245819, 0.29559001326560974, -0.1119299978017807, -0.23306000232696533, -0.20031000673770905, -0.0992870032787323, 0.10849999636411667, -0.01115499995648861, -0.3337000012397766, 0.15963999927043915, -0.1243399977684021, -0.9348800182342529, 0.26958000659942627, 0.02748199924826622, 0.16795000433921814, -0.15407000482082367, -0.15403999388217926, -0.10283999890089035, -0.21977999806404114, 0.3467999994754791, -0.19941000640392303, 0.20074999332427979, -0.26499998569488525, 0.12060999870300293, -0.1609800010919571, -0.3847300112247467, 0.12358000129461288, 0.14700999855995178, -0.05960699915885925, 1.0282000303268433, 0.3377000093460083, -0.5563899874687195, 0.16734999418258667, 0.023375999182462692, 0.453110009431839, 0.18964999914169312, -0.08354999870061874, 0.20201000571250916, -0.05205700173974037, -0.35938000679016113, -0.026081999763846397, -0.05106300115585327, -0.07021600008010864, 0.004509900230914354, 0.33006998896598816, 0.004580100066959858, -0.17990000545978546, 0.054917000234127045, -0.3544900119304657, 0.17339999973773956, 0.6235600113868713, -0.11945000290870667, 0.8096500039100647, 0.025310000404715538, -0.0760359987616539, -0.68927001953125, 0.41697999835014343, 0.5502899885177612, 0.11768999695777893, 0.177839994430542, 0.040681999176740646, -0.5024799704551697, 0.3255099952220917, 0.32565000653266907, -0.2141299992799759, -0.6255499720573425, -0.16440999507904053, -0.3764899969100952, -0.35179999470710754, -0.47352999448776245, 0.21554000675678253, -0.18925000727176666, -0.1791200041770935, -0.0038487999700009823, 0.3281500041484833, -0.019485000520944595, -0.027943000197410583, 0.167480006814003, 0.09610799700021744, 0.07386799901723862, -0.21402999758720398, 0.09362500160932541, -0.28029999136924744, -0.5480499863624573, -0.7960100173950195, 0.11749999970197678, 0.01576399989426136, -0.8767399787902832, 0.22468000650405884, 0.35350000858306885, 0.13624000549316406, -0.47124001383781433, 0.6100299954414368, -0.2046000063419342, 0.14500999450683594, 0.2095700055360794, -0.13234999775886536, -0.3615500032901764, -0.03981899842619896, -0.05695899948477745, 0.055355001240968704, 0.2267799973487854, 0.38133999705314636, 0.9799900054931641, 0.500249981880188, 0.050168998539447784, 0.1607699990272522, 0.5623000264167786, -0.21612000465393066, 0.11857999861240387, -0.44071999192237854, -0.0647210031747818, -0.38113000988960266, -0.0520160011947155, -0.2728100121021271, 0.24169999361038208, 0.1281599998474121, -0.46814998984336853, 0.15618999302387238, -0.013542000204324722, -0.3079499900341034, -0.20678000152111053, -0.10942000150680542, -0.08545900136232376, 0.2385299950838089, 0.08461099863052368, 0.6839900016784668, 0.09225299954414368, -0.2515600025653839, -0.21142999827861786, 0.12976999580860138, 0.22427000105381012, 0.06334800273180008, 0.29589998722076416, -0.39570000767707825, 0.34532999992370605, -0.14253999292850494, 0.061101000756025314, -0.03179299831390381, 0.36392998695373535, 0.1590700000524521, -0.4318999946117401, 0.049157001078128815, 0.03246200084686279, -0.8956900238990784, -0.07560399919748306, 0.3447999954223633, -0.1779700070619583, -0.24866999685764313, -0.47843000292778015, -0.3652400076389313, -0.4975000023841858, -0.06752700358629227, -0.4250200092792511, -0.1118599995970726, -0.24121999740600586, -0.8824499845504761, 0.09088800102472305, 0.21852000057697296, -0.49445000290870667, 0.23729999363422394, 0.29245999455451965, 0.03074900060892105, -0.3163599967956543, 0.14194999635219574, -0.17996999621391296, 1.159000039100647, 0.17678000032901764, 0.005684900097548962, -0.0335719995200634, 0.16925999522209167, -0.55485999584198, 0.1505099982023239, -0.06223899871110916, -0.3303999900817871, -0.2874999940395355, 0.7548699975013733, 0.035760000348091125, -0.17118999361991882, 0.11343000084161758, -0.06799300014972687, 0.15911999344825745, -0.2078700065612793, 0.3206599950790405, 0.06883099675178528, 0.027248000726103783, -0.4615499973297119, 0.036708999425172806, -1.2466000318527222, -0.35089001059532166, 0.06853599846363068, 0.22759999334812164, 0.2426699995994568, -0.14012999832630157, -0.4547100067138672, -0.2965700030326843, 0.36924999952316284, 0.09262699633836746, 0.858240008354187, 0.08398400247097015, -0.12720000743865967, 0.15137000381946564, -0.25259000062942505, 0.2832599878311157, -0.1179099977016449, 0.34191998839378357, 0.2184399962425232, 0.9151399731636047, 0.5141100287437439, 0.007992600090801716, -0.2508400082588196, 0.05672299861907959], u'keyboard': [-0.516510009765625, 0.09091100096702576, -0.15025000274181366, -0.6994400024414062, -0.3595600128173828, -0.20853999257087708, -0.6225600242614746, -0.775629997253418, 0.4004400074481964, -0.45462000370025635, -0.35763999819755554, 0.3844900131225586, -0.017059000208973885, -0.007276200223714113, 0.5527499914169312, -0.29787999391555786, -0.1676200032234192, -0.23332999646663666, 0.13050000369548798, 0.09944900125265121, 0.2721799910068512, 0.06843899935483932, -0.57955002784729, -0.07878699898719788, -0.26993998885154724, 0.49448999762535095, 0.3315100073814392, 0.2828400135040283, 0.27160000801086426, -0.042753998190164566, -0.35784000158309937, 0.20915000140666962, -0.5829799771308899, -0.08330900222063065, -0.3259100019931793, -0.6766899824142456, 0.1771399974822998, -0.6737200021743774, -0.23093999922275543, 1.0160000324249268, -0.05075199902057648, 0.006068299990147352, -0.8216599822044373, -0.20377999544143677, 0.31644999980926514, 0.3520500063896179, 0.605929970741272, 0.00024734000908210874, 0.031222999095916748, -0.06225400045514107, 0.6196100115776062, 0.35060998797416687, 0.20295999944210052, 0.09565400332212448, 0.33212000131607056, 0.007508900016546249, 0.3944999873638153, -0.1041800007224083, 0.058451998978853226, 0.4007900059223175, 0.5192800164222717, 0.3424699902534485, 0.5424900054931641, 0.4711199998855591, 0.28352999687194824, 0.4379200041294098, 0.14219999313354492, -0.08105599880218506, 0.20633000135421753, -0.05450500175356865, 0.298909991979599, 0.04256799817085266, 0.31786999106407166, -0.10892999917268753, -0.0368489995598793, -0.01971299946308136, -0.18352000415325165, 0.6676200032234192, 0.24116000533103943, -0.4736100137233734, 0.06381300091743469, 0.01809299923479557, -0.5497900247573853, -0.6638299822807312, -0.055344998836517334, -0.007459099870175123, -0.7695199847221375, 0.6425700187683105, -0.1520099937915802, 0.1489199995994568, -0.14122000336647034, 0.6054499745368958, -0.37770000100135803, -0.6582199931144714, 0.6379799842834473, 0.37867000699043274, -0.16266000270843506, -1.108199954032898, 0.37160998582839966, -0.23354999721050262, -0.9902300238609314, 0.25275999307632446, -0.04953400045633316, -0.9568600058555603, -0.3727799952030182, -0.37782999873161316, -0.31992000341415405, 0.2337000072002411, -0.6390699744224548, -0.45124000310897827, 0.34384000301361084, 0.842199981212616, -0.01068700011819601, 0.6490700244903564, -1.2288000583648682, -0.2614299952983856, -0.12338999658823013, 0.1377599984407425, -0.7955099940299988, -0.41909998655319214, -0.31433001160621643, -0.5230600237846375, 0.07140100002288818, -1.2239999771118164, -0.029637999832630157, -0.18559999763965607, -0.37860000133514404, 0.15672999620437622, -0.5562499761581421, 0.16202999651432037, 0.154789999127388, -0.026683000847697258, -0.2501299977302551, -0.5713899731636047, 0.061879001557826996, -0.14319999516010284, 0.782480001449585, 0.09357199817895889, 0.44106000661849976, -0.3117400109767914, -0.03965200111269951, 0.02897699922323227, -0.07759100198745728, -0.32881999015808105, -0.190420001745224, 0.14678999781608582, -0.04083799943327904, -0.04810599982738495, -0.3776400089263916, 0.16027000546455383, -0.6079999804496765, -0.7069299817085266, 0.21772000193595886, -0.5675699710845947, 0.38938000798225403, 0.03588400036096573, 0.04171700030565262, 0.32528001070022583, 0.32368001341819763, 0.38995999097824097, 0.21977999806404114, 0.07033199816942215, -0.1012599989771843, -0.2243800014257431, 0.1130400002002716, 0.028697000816464424, -0.24115000665187836, 0.6093800067901611, -0.025808999314904213, 0.02915799990296364, -1.0017999410629272, -0.17093999683856964, -0.07370500266551971, 0.7739199995994568, -0.2693299949169159, -0.6563699841499329, 0.0644410029053688, -0.31244999170303345, -0.6209400296211243, -0.28909000754356384, -0.4030500054359436, 0.18190999329090118, 0.450080007314682, 0.380840003490448, -0.27423998713493347, -0.7322099804878235, 0.6711900234222412, 0.1812800019979477, 0.17184999585151672, -0.12471000105142593, -0.17047999799251556, 0.223580002784729, 0.6314200162887573, -0.33956000208854675, 0.19803999364376068, 0.14012999832630157, -0.17541000247001648, 0.289110004901886, -0.26006001234054565, -0.6520199775695801, 0.7555400133132935, 0.26982998847961426, 0.511139988899231, 0.07364899665117264, 0.06162000074982643, 0.03284800052642822, -0.35220998525619507, 0.10385999828577042, -0.38850998878479004, -0.11095999926328659, 0.35409998893737793, 0.06132199987769127, 0.7140100002288818, -0.10377000272274017, 0.5850099921226501, 0.3919999897480011, 0.015714000910520554, -0.2078000009059906, -0.4268699884414673, 0.7204499840736389, -0.6637899875640869, 0.4914900064468384, -0.7437999844551086, 0.2843399941921234, 0.038247000426054, -0.01247899979352951, -0.20138999819755554, 0.19133000075817108, 0.10537000000476837, -0.5995100140571594, 0.285970002412796, 0.25238001346588135, -0.34929001331329346, -0.17178000509738922, 0.4633600115776062, 0.7087500095367432, -0.3457599878311157, 0.8426399827003479, -0.8436999917030334, 0.31439998745918274, 0.4044100046157837, -0.14751000702381134, 0.02610900066792965, 0.057263001799583435, -0.47898000478744507, -0.05691799893975258, -0.27792999148368835, 0.1576700061559677, -0.24025000631809235, 0.12397000193595886, -0.024519000202417374, -0.19177000224590302, -0.20859000086784363, -0.33855998516082764, -0.5284900069236755, 0.522059977054596, 0.6395000219345093, -0.03539599850773811, -0.01571599952876568, 0.04297100007534027, -0.5798299908638, -0.30349001288414, -0.48969998955726624, 0.1761000007390976, 0.21588000655174255, -0.2731499969959259, -0.07138500362634659, 0.11761999875307083, -0.2807599902153015, -0.0912109985947609, -0.3280099928379059, -0.12910999357700348, 0.19210000336170197, -0.7851999998092651, -0.252020001411438, -0.0347369983792305, -0.6778799891471863, -0.21328000724315643, -0.6976799964904785, 0.1593800038099289, -0.21747000515460968, 0.2808299958705902, -0.5977299809455872, 0.3565100133419037, 0.07142700254917145, -0.5395799875259399, -0.5880299806594849, -0.14239999651908875, -0.6807500123977661, -0.5361199975013733, 0.4502300024032593, -0.41238000988960266, -0.008000900037586689, -0.39638999104499817, -0.16068999469280243, 0.1805499941110611, 0.33899998664855957, 0.17309999465942383, 0.09473499655723572, -0.6293500065803528], u'chair': [0.26287999749183655, -0.34735000133514404, -0.06681100279092789, -0.5413699746131897, -0.1654299944639206, -0.41130000352859497, -0.15191000699996948, -0.7251099944114685, -0.09152600169181824, -1.073099970817566, -0.21671999990940094, 0.18073999881744385, 0.0071319998241961, -0.3741599917411804, 0.4346199929714203, 0.4003700017929077, 0.2278600037097931, 0.6564300060272217, -0.021995000541210175, -0.2340800017118454, 0.011830000206828117, 0.5048400163650513, -0.35343000292778015, -0.04830100014805794, -0.16913999617099762, 0.1082099974155426, 0.2671400010585785, -0.19253000617027283, 0.1493300050497055, -0.3642599880695343, 0.227510005235672, -0.34850001335144043, 0.4112299978733063, 0.4484800100326538, -1.0097999572753906, 0.5613600015640259, 0.2844499945640564, -0.46062999963760376, -0.21184000372886658, 0.2615799903869629, 0.05406000092625618, -0.3945100009441376, -0.7251600027084351, -0.2441900074481964, 0.22812999784946442, -0.04066399857401848, -0.17152999341487885, -0.3496299982070923, 0.23770000040531158, 0.23925000429153442, -0.35809001326560974, 0.2228499948978424, 0.04532900080084801, -0.1647700071334839, -0.16047999262809753, 0.1600400060415268, -0.14869999885559082, -0.2853600084781647, 0.06768900156021118, 0.1628500074148178, 0.16503000259399414, 0.41007000207901, 0.19621999561786652, 0.4339900016784668, -0.17326000332832336, -0.8454700112342834, -0.48517000675201416, 0.1844100058078766, -0.48346999287605286, -0.16788999736309052, -0.393669992685318, 0.22717000544071198, -0.012973000295460224, 0.005787400063127279, -0.11799000203609467, -0.07160300016403198, -0.027664000168442726, 0.6246500015258789, 0.11687999963760376, -0.852150022983551, -0.16933999955654144, -0.061496999114751816, -0.2391200065612793, 0.16617999970912933, 0.2426300048828125, -0.40026000142097473, 0.10967999696731567, 0.9017000198364258, -0.5371400117874146, -0.06190799921751022, 0.27382999658584595, 0.021372999995946884, -0.08977899700403214, -0.1812400072813034, 0.015042000450193882, -0.4366599917411804, -0.04990300163626671, 0.03473899886012077, 0.10565999895334244, -0.06626500189304352, 0.2614299952983856, 0.3048900067806244, 0.09348300099372864, -0.07574799656867981, 0.3256300091743469, -0.055994998663663864, 0.08477400243282318, 0.02731800079345703, -0.2612200081348419, -0.5651500225067139, -0.14590999484062195, 0.03209900110960007, -0.6313300132751465, 0.02594600059092045, -0.24345999956130981, 0.18219000101089478, -0.12268000096082687, -0.16399000585079193, 0.09029699862003326, 0.3832100033760071, -0.5982699990272522, 0.2570199966430664, -0.41776999831199646, -0.32479000091552734, 0.07399400323629379, -0.2951599955558777, -0.13134999573230743, -0.3954100012779236, 0.1166900023818016, 0.1421400010585785, 0.23186999559402466, -0.298660010099411, 0.08726199716329575, -0.38218000531196594, -0.4986500144004822, -0.2582400143146515, -0.06451600044965744, 0.584309995174408, -0.5666999816894531, 0.08214300125837326, 0.2921999990940094, 0.46549999713897705, 0.22288000583648682, 0.016992000862956047, 0.21743999421596527, 0.356550008058548, 0.06735800206661224, -0.019022999331355095, -0.35231998562812805, -0.12150999903678894, 0.6293100118637085, 0.36017000675201416, 0.5008400082588196, -0.2669599950313568, -0.6836000084877014, 0.25891000032424927, 0.08094999939203262, -0.4337399899959564, 0.05247100070118904, 0.3930499851703644, 0.16621999442577362, 0.717739999294281, 0.11807999759912491, -0.3293200135231018, 0.40801000595092773, 0.006457299925386906, -0.043032001703977585, 0.2934199869632721, 0.2556700110435486, 0.42704999446868896, -0.5355200171470642, 0.6764900088310242, -0.10678000003099442, -0.3977999985218048, -0.12916000187397003, -0.30145999789237976, -0.1408900022506714, 0.9960100054740906, -0.13050000369548798, -0.5565800070762634, 0.17820000648498535, -0.1392499953508377, 0.05777899920940399, 0.4366399943828583, 0.3500100076198578, -0.22999000549316406, -0.6261799931526184, 0.40345001220703125, -0.032496001571416855, -0.022292999550700188, 0.582859992980957, -0.15579000115394592, 0.11271999776363373, -0.2690899968147278, -0.43672001361846924, 0.45899999141693115, -0.08141600340604782, 0.65420001745224, -0.24706999957561493, 0.14470000565052032, 0.8074899911880493, 0.13561999797821045, 0.19220000505447388, 0.03100699931383133, -0.07134100049734116, -0.4036099910736084, 0.4171299934387207, -0.10425999760627747, -0.19787000119686127, -0.022537000477313995, 0.428739994764328, -0.11561000347137451, 0.12082000076770782, -0.13224999606609344, 0.09584800153970718, 0.32152000069618225, -0.597000002861023, -0.7554799914360046, -0.25992000102996826, -0.6354900002479553, -0.3130300045013428, 0.047325000166893005, -0.1944199949502945, 0.11597999930381775, -0.14563000202178955, 0.26155000925064087, -0.18571999669075012, 0.23457999527454376, -0.4477500021457672, -0.03043000027537346, 0.40136998891830444, -0.1163799986243248, -0.15205000340938568, 0.06029000133275986, 0.21924999356269836, -0.06702599674463272, -0.3574100136756897, 0.17170999944210052, -0.33893001079559326, -0.3023200035095215, 0.13413000106811523, 0.09029799699783325, -0.38745999336242676, 0.10395999997854233, -0.21243999898433685, 0.6090800166130066, -0.09574700146913528, -0.26721999049186707, -0.5835599899291992, -0.13920000195503235, -0.27570000290870667, -0.37957999110221863, 0.5087299942970276, -0.5353099703788757, 0.2642599940299988, 0.24383999407291412, -0.5884900093078613, -0.22609999775886536, 0.13120000064373016, -0.06507200002670288, -0.5305799841880798, -0.41470998525619507, 0.37222999334335327, 0.5992900133132935, -0.16639000177383423, -0.8086199760437012, 0.4308600127696991, 0.5467399954795837, 0.0002752399886958301, 0.7196699976921082, -0.6357399821281433, -0.22461000084877014, -0.12460000067949295, -0.353630006313324, -0.12981000542640686, -0.34681999683380127, -1.007699966430664, 0.4916900098323822, 0.16505999863147736, 0.28804001212120056, -0.6623799800872803, -0.42212000489234924, -0.268449991941452, -0.5160499811172485, 0.03111799992620945, 0.49397000670433044, -0.03925900161266327, 0.43592000007629395, -0.0017541999695822597, -0.329010009765625, 0.40112999081611633, 0.05714000016450882, -0.22851000726222992, -0.014979000203311443, -0.5059400200843811, 0.6295099854469299, 0.10739000141620636, 0.10382000356912613, -0.21383999288082123, 0.8368399739265442], u'milk': [0.1580599993467331, 0.7882300019264221, -0.05890500172972679, -0.20678000152111053, -0.07413200289011002, -0.33476999402046204, -0.016550999134778976, 0.12451999634504318, -0.04703599959611893, -0.9745699763298035, -0.33827999234199524, -1.354200005531311, -0.11853999644517899, -0.08978699892759323, -0.224140003323555, 0.022633999586105347, -0.023969000205397606, -0.23534999787807465, -0.45862001180648804, 0.46491000056266785, -0.05933700129389763, 0.0012326999567449093, 0.1951500028371811, 0.21275000274181366, -0.6399199962615967, -0.2803899943828583, -0.512470006942749, -0.12139999866485596, -0.4227199852466583, -0.3751800060272217, -1.2879999876022339, 0.45021000504493713, -0.21514999866485596, -0.08137000352144241, -0.1682800054550171, 1.0740000009536743, 0.5863900184631348, 0.2500300109386444, 0.28147000074386597, -0.08528400212526321, -0.672730028629303, -0.2300100028514862, 0.5469899773597717, -0.3288800120353699, -0.07443299889564514, -0.07081999629735947, -0.2245199978351593, 0.2079000025987625, 0.11399000138044357, 0.28248000144958496, 0.23951999843120575, 0.5756199955940247, 0.22811999917030334, 0.021656999364495277, 0.007967500016093254, 0.44137001037597656, 0.3181000053882599, 0.506630003452301, -0.407260000705719, -0.29840999841690063, 0.20155000686645508, 0.3490299880504608, 0.13040000200271606, -0.5171599984169006, -0.004941800143569708, -0.0602400004863739, -0.18689000606536865, -0.4040699899196625, -0.4755899906158447, 0.09739600121974945, 0.16584999859333038, -0.03692600131034851, -0.13439999520778656, -0.30281999707221985, -0.0013096999609842896, -0.19842000305652618, 0.3572799861431122, -0.43209001421928406, -0.33998000621795654, 0.220660001039505, -0.09944400191307068, 0.07326900213956833, -0.2926799952983856, -0.005749300122261047, 0.15147000551223755, -0.2012999951839447, 0.25231999158859253, -0.17282000184059143, -0.29826000332832336, -0.38065001368522644, 0.18448999524116516, -0.07777900248765945, -0.13651999831199646, 0.20938999950885773, -0.40511998534202576, 0.24651999771595, 0.24751000106334686, -0.024102000519633293, -0.5044999718666077, 0.4476099908351898, 0.4109399914741516, 0.18087999522686005, 0.027851000428199768, -0.6047800183296204, -0.10147000104188919, -0.0033811000175774097, -0.2738899886608124, -0.35815000534057617, -0.08317500352859497, 0.7244600057601929, 0.05825100094079971, 0.229980006814003, -0.5896999835968018, -0.1071700006723404, -0.18674999475479126, 0.5962499976158142, 0.2654399871826172, 0.5790899991989136, -0.04557200148701668, -0.6993600130081177, -0.8087599873542786, 0.256630003452301, 0.45245999097824097, 0.6049500107765198, 0.08347400277853012, -0.468860000371933, 0.39125001430511475, 0.1784600019454956, -0.22457000613212585, -0.020476000383496284, 0.19464999437332153, -0.04759500175714493, 0.13402000069618225, 1.0053000450134277, -0.1599700003862381, 0.11009000241756439, -0.33709999918937683, 0.002159199910238385, -0.034609001129865646, 0.7600600123405457, 0.7500500082969666, 0.258109986782074, -0.1798200011253357, -0.4456000030040741, -0.5230100154876709, -0.07207199931144714, -0.09433499723672867, 0.015796000137925148, 0.8754400014877319, -0.2894600033760071, -0.7467300295829773, 0.3243899941444397, 0.3559100031852722, 0.4259899854660034, -0.11395999789237976, -0.24609999358654022, -0.35962000489234924, -0.48917001485824585, 0.039691999554634094, -0.49277999997138977, 0.16333000361919403, -0.011978000402450562, -0.08750800043344498, -0.5123999714851379, -0.04473999887704849, -0.0867609977722168, -0.011491999961435795, -0.4089600145816803, -0.3234499990940094, -0.11145000159740448, 0.8706499934196472, 0.7098699808120728, -0.32548999786376953, 0.4471699893474579, -0.26280999183654785, -0.5411800146102905, 0.1359100043773651, -0.7397199869155884, 0.3251599967479706, -0.296750009059906, -0.4438199996948242, 0.5437600016593933, -0.006426199804991484, -0.21708999574184418, 0.08110599964857101, -0.6612799763679504, 0.9485499858856201, -0.42462000250816345, 0.623170018196106, -0.5222200155258179, 0.36017000675201416, 1.1901999711990356, -0.27542001008987427, -0.020097000524401665, -0.5267199873924255, -0.35120999813079834, -0.14163999259471893, -0.15518000721931458, 0.00153929996304214, 0.5573599934577942, 0.3988899886608124, -0.44312000274658203, 0.6738799810409546, 0.284960001707077, -0.17587999999523163, -0.1345600038766861, 0.13233999907970428, 0.3457399904727936, -0.64683997631073, -0.1751600056886673, 0.08346500247716904, -0.09916699677705765, -0.38763999938964844, 0.17204000055789948, -0.5371500253677368, -0.5995000004768372, 0.12377999722957611, -0.7326400279998779, 0.3926999866962433, 0.036986999213695526, 0.11212000250816345, 0.6006500124931335, 0.0413689985871315, -0.7774900197982788, -0.1216999962925911, -0.11048000305891037, 0.05912800133228302, 0.3351399898529053, 0.29354000091552734, 0.18817000091075897, 0.1631699949502945, -0.008710700087249279, -0.6405500173568726, -0.06720700114965439, 0.920989990234375, 0.45796000957489014, 0.3363899886608124, 0.07987499982118607, -0.4713299870491028, -0.5886499881744385, -0.8215399980545044, -0.2997500002384186, -0.26787999272346497, -0.1125900000333786, -1.3270000219345093, 0.022292999550700188, 0.445279985666275, 0.41762998700141907, -0.022009000182151794, -0.16019999980926514, 0.34352999925613403, -0.45142999291419983, 0.2002899944782257, 0.5572900176048279, -0.1722099930047989, 0.062279000878334045, -0.3955000042915344, 0.06017399951815605, 0.6518800258636475, -0.12976999580860138, -0.36844000220298767, -0.20155000686645508, 0.12999999523162842, -0.48708000779151917, 0.34193000197410583, -0.10388000309467316, 0.2318599969148636, -0.5546200275421143, 0.07915499806404114, 0.06605000048875809, -0.17350000143051147, 0.33601999282836914, -0.35161998867988586, -0.000979120028205216, 0.1831900030374527, 0.3419100046157837, -1.281599998474121, -0.38446998596191406, -0.36375001072883606, -0.246629998087883, -0.4165000021457672, -0.29712000489234924, 0.4579800069332123, -0.16561000049114227, -0.20555000007152557, 1.2928999662399292, 0.5939300060272217, -0.4812999963760376, 0.31029999256134033, 0.7236599922180176, -0.3996500074863434, 0.02092299982905388, 0.22832000255584717, 0.043248001486063004, 0.1295900046825409, -0.024810999631881714, 0.2974100112915039, -0.9133099913597107, -0.23362000286579132, 0.24119000136852264], u'roots': [-0.19890999794006348, 0.11631999909877777, -0.35732999444007874, 0.23071999847888947, 0.18400000035762787, -0.44363999366760254, -0.1539199948310852, -0.10354000329971313, 0.44839999079704285, -0.6488800048828125, -0.2261500060558319, 0.5501599907875061, 0.1413400024175644, 0.35385000705718994, 0.11189000308513641, 0.11274000257253647, -0.2631799876689911, 0.19717000424861908, 0.08624500036239624, 0.2935599982738495, -0.27292001247406006, -0.09246300160884857, 0.036226000636816025, 0.030706999823451042, -0.1370600014925003, -0.1411300003528595, 0.29697999358177185, 0.007127800025045872, -0.4349299967288971, 1.066499948501587, -0.37382999062538147, 0.4985100030899048, -0.8560600280761719, -0.3397600054740906, -0.37918001413345337, -0.11828000098466873, 0.800320029258728, 0.1157900020480156, 0.11356999725103378, -0.00483600003644824, 0.011397000402212143, -0.045513998717069626, 0.6478800177574158, -0.31273001432418823, 0.4712100028991699, 0.00917030032724142, 0.26326000690460205, -0.010001000016927719, -0.28505000472068787, -0.08539900183677673, 0.26756998896598816, 0.2978000044822693, -0.122529998421669, -0.2601200044155121, -0.4005599915981293, -0.10640999674797058, 0.19228999316692352, -0.3370400071144104, 0.058302998542785645, 0.3569900095462799, 0.7301099896430969, 0.008640400134027004, 0.4413599967956543, 0.47418999671936035, -0.13467000424861908, 0.23317000269889832, 0.04541200026869774, 1.0631999969482422, 0.1931699961423874, 0.2529299855232239, -0.0655829980969429, -0.33917000889778137, -0.2384600043296814, 0.6130200028419495, -0.46459001302719116, -0.3643600046634674, 0.22123000025749207, 0.008185399696230888, 0.15564000606536865, 0.22477999329566956, -0.2673400044441223, 0.5306699872016907, 0.3654699921607971, -0.41547998785972595, 0.03828199952840805, 0.22925999760627747, 0.2590399980545044, -0.19784000515937805, -0.33531999588012695, 0.03922000154852867, 0.20262999832630157, -0.10137999802827835, 0.31255000829696655, -0.20111000537872314, 0.02492300048470497, -1.1593999862670898, 0.4219900071620941, 0.05191199854016304, 0.38016000390052795, -0.5419700145721436, -0.1929199993610382, 0.1642400026321411, 0.016398999840021133, -0.21007999777793884, -0.45458000898361206, 0.10569000244140625, 0.42858999967575073, -0.25679001212120056, 0.5730400085449219, 0.09234300255775452, 0.6782699823379517, -0.4771299958229065, 0.23615999519824982, -0.2848399877548218, 0.012253999710083008, -0.26243001222610474, -0.1302099972963333, 0.20337000489234924, -0.07750000059604645, -0.6873900294303894, -0.3562000095844269, -0.19563999772071838, 0.3805299997329712, 0.28979000449180603, 0.21626999974250793, 0.4782100021839142, 0.1712699979543686, 0.44132000207901, -0.09697499871253967, 0.17835000157356262, -0.10046999901533127, 0.3029400110244751, 0.36539000272750854, -0.5506899952888489, -0.01336199976503849, -0.2533099949359894, -0.029222000390291214, 0.6012799739837646, -0.47683000564575195, 0.06351199746131897, 0.49467000365257263, 0.1921599954366684, 0.07274799793958664, -0.30713000893592834, 0.2122800052165985, 0.6492499709129333, -0.5218300223350525, -0.21472999453544617, -0.002536599989980459, 0.5972499847412109, -0.020889999344944954, 0.047745998948812485, -0.32207000255584717, -0.025622999295592308, 0.3583900034427643, 0.34782999753952026, 0.4174399971961975, -0.13597999513149261, 0.5496299862861633, 0.29315000772476196, -0.06792200356721878, 0.4375, -0.40669000148773193, 0.23308999836444855, -0.22046999633312225, 0.029097000136971474, -0.20201000571250916, -0.48927000164985657, 0.05811699852347374, -0.24829000234603882, 0.39864999055862427, -0.16601000726222992, -0.6187000274658203, 0.4637799859046936, 0.6260899901390076, 0.5808799862861633, 0.06145999953150749, -0.03550200164318085, 0.15395000576972961, -0.17118999361991882, -0.05191799998283386, 0.27507999539375305, 0.2469100058078766, 0.23734000325202942, -0.09836400300264359, 0.5217400193214417, -0.026667000725865364, 0.3767299950122833, 0.7433500289916992, -0.41479000449180603, -0.478769987821579, -0.1294499933719635, 0.06263300031423569, 0.5688700079917908, 0.11135999858379364, -0.07127600163221359, 0.46560001373291016, -0.2138500064611435, -0.39337998628616333, 0.43536999821662903, 0.825469970703125, -0.04288699850440025, 0.49724000692367554, 0.5552099943161011, 0.08378300070762634, -0.33941999077796936, 0.03849099949002266, 0.6405900120735168, -0.008678499609231949, 0.8011299967765808, -0.4174799919128418, -0.05693599954247475, 0.21875999867916107, 0.34143000841140747, -0.16148999333381653, 0.5150099992752075, 0.544160008430481, 0.23653000593185425, 0.18062999844551086, 0.30234000086784363, 0.4678399860858917, -0.19769999384880066, -0.43494001030921936, -0.4562700092792511, -0.2782300114631653, -0.5544400215148926, -0.050732001662254333, 0.05240900069475174, -0.22339999675750732, 0.3985700011253357, 0.31558001041412354, 0.2779799997806549, -0.02501400001347065, 0.5418300032615662, -0.5199599862098694, -0.3347499966621399, 0.11486999690532684, -0.5906800031661987, -0.6252999901771545, -0.10155999660491943, -0.12281999737024307, -0.4355100095272064, 0.1882600039243698, -0.3259899914264679, -0.8993399739265442, -0.2630299925804138, 0.213809996843338, 0.19683000445365906, -0.35326001048088074, 0.3477500081062317, 0.14704999327659607, 0.4181100130081177, -0.15074999630451202, 0.09931299835443497, 0.3148699998855591, 0.007646599784493446, 0.32541000843048096, -0.22300000488758087, -0.2537800073623657, 0.03277000039815903, 0.5575799942016602, -0.12489999830722809, 0.45614001154899597, 0.007024699822068214, -0.047210998833179474, 0.4726400077342987, -0.23377999663352966, 0.43511998653411865, 0.18233999609947205, 0.5705400109291077, -0.3294200003147125, 0.12908999621868134, -0.2918199896812439, -0.42465999722480774, -0.2038699984550476, 0.08919800072908401, -1.0736000537872314, -0.08311200141906738, 0.8252900242805481, -0.1979999989271164, -0.4365200102329254, -0.41262999176979065, -0.24984000623226166, 0.10764999687671661, -0.4654900133609772, 0.08481500297784805, 0.1354600042104721, 0.32989999651908875, 0.4083000123500824, 0.08812399953603745, 0.19639000296592712, 0.13027000427246094, 0.08715199679136276, 0.11757999658584595, -0.06256700307130814, 0.41593000292778015, -0.07584699988365173, -0.21299000084400177, -0.1878499984741211, 0.09532000124454498], u'carpet': [0.6022999882698059, 0.16408999264240265, 0.3446800112724304, -0.5269200205802917, -0.23120999336242676, -0.30935999751091003, -0.22423000633716583, 0.22099000215530396, 0.2876400053501129, -0.32047000527381897, 0.4043099880218506, -0.01571499928832054, 0.2666800022125244, -0.1313299983739853, 0.021014999598264694, -0.3890100121498108, -0.6150199770927429, 0.3624599874019623, -0.1824900060892105, 0.11221999675035477, -0.20728999376296997, -0.34900999069213867, 0.07086899876594543, 0.28216999769210815, -0.16895000636577606, -0.13650000095367432, -0.36991000175476074, -0.5695800185203552, 0.17007000744342804, 0.360260009765625, 0.05866200104355812, 0.003904900047928095, -0.09133099764585495, 0.08667699992656708, -0.7409899830818176, 0.17188000679016113, -0.1487800031900406, -0.5667399764060974, 0.021389000117778778, -0.11674000322818756, -0.34869998693466187, -0.19102999567985535, 0.31227999925613403, -0.2275400012731552, 0.43891000747680664, 0.1775899976491928, 0.7806299924850464, 0.11221999675035477, -0.16765999794006348, -0.6744999885559082, 0.3827599883079529, -0.31047001481056213, 0.2553499937057495, 0.2753100097179413, -0.012098999693989754, -0.02462499961256981, -0.4157699942588806, -0.6743500232696533, 0.7452700138092041, -0.08000999689102173, -0.021150000393390656, -0.5877199769020081, -0.058573998510837555, 0.2610799968242645, 0.6595399975776672, -0.15415999293327332, 0.2992999851703644, 0.16189000010490417, -0.5498300194740295, 0.125450000166893, 0.8374199867248535, 0.19732999801635742, 0.07498499751091003, -0.32135000824928284, 0.51569002866745, 0.5159299969673157, 0.1297599971294403, -0.3421500027179718, 0.6105499863624573, -0.026838000863790512, -0.209989994764328, -0.6682299971580505, -0.12701000273227692, -0.47082000970840454, 0.5005300045013428, 0.10903000086545944, -0.25150999426841736, -0.46992000937461853, -0.25196000933647156, 0.18497000634670258, 0.3126299977302551, -0.3989900052547455, 0.2943800091743469, 0.20728999376296997, -0.018908999860286713, -0.09216699749231339, 0.42364001274108887, 0.008761200122535229, 0.5197399854660034, -0.12981000542640686, 0.5846899747848511, 0.727869987487793, -0.2866100072860718, 0.28407999873161316, 0.12437000125646591, -0.21080000698566437, 0.5133699774742126, -0.13792000710964203, -0.11063999682664871, 0.23047000169754028, 0.22062000632286072, 0.32958000898361206, -0.1376499980688095, -0.15097999572753906, -0.17892000079154968, 0.2944900095462799, 0.15599000453948975, 0.24065999686717987, -0.567359983921051, -0.40692999958992004, 0.24390000104904175, -0.29458001255989075, 0.624970018863678, 0.7133499979972839, 0.610450029373169, 0.4713999927043915, 0.209989994764328, -0.07009000331163406, 0.28446000814437866, -0.043772000819444656, 0.0374470017850399, 0.05378299951553345, -0.11495999991893768, 0.6305099725723267, -0.42239001393318176, -0.20387999713420868, -0.22104999423027039, 0.07767300307750702, -0.3296299874782562, -0.24295000731945038, 0.2937600016593933, 0.336650013923645, 0.28738000988960266, -0.28797999024391174, 0.3401600122451782, 0.29548999667167664, -0.14907999336719513, -0.06903199851512909, 0.030362000688910484, 0.23371000587940216, -0.12841999530792236, -0.05620000138878822, -0.44137001037597656, -0.20882000029087067, 0.16283999383449554, 0.26489999890327454, 0.13604000210762024, -0.1659799963235855, 0.46698999404907227, -0.08998200297355652, 0.2399200052022934, 0.00680350000038743, -0.19674000144004822, 0.12099000066518784, 0.4700999855995178, 0.5191599726676941, 0.49660998582839966, -0.23711000382900238, 0.16627000272274017, 0.47200000286102295, -0.42181000113487244, -0.30208998918533325, 0.5261600017547607, -0.07861199975013733, -0.4461599886417389, -0.013539000414311886, 0.3637099862098694, 0.6146399974822998, -0.054069001227617264, -0.5083199739456177, -0.02906700037419796, -0.022518999874591827, 0.19878000020980835, 0.1324699968099594, -0.08847799897193909, 0.2458599954843521, 0.7593299746513367, 0.43533000349998474, 0.5113800168037415, -0.0031993999145925045, 0.21945999562740326, 0.3021399974822998, -0.4129999876022339, -0.6958600282669067, 0.5581099987030029, 0.0687979981303215, -0.08137699961662292, 0.6065199971199036, -0.040998999029397964, -0.30410000681877136, 0.9818800091743469, -0.22139999270439148, 0.03657799959182739, 0.006023699883371592, 0.923009991645813, 0.18485000729560852, 0.029412999749183655, 0.08692199736833572, -0.5613899827003479, -0.036786001175642014, -0.4990299940109253, 0.4927299916744232, -0.015401000156998634, -0.2510800063610077, 0.4150800108909607, -0.4205699861049652, 0.24658000469207764, -0.5856299996376038, -0.6213499903678894, -0.32798999547958374, 0.8840600252151489, -0.37358999252319336, 0.017312999814748764, 0.03265099972486496, -0.4531500041484833, -0.298909991979599, 0.3584499955177307, 0.08102499693632126, 0.08153899759054184, -0.33427000045776367, 0.6594700217247009, -0.03332800045609474, 0.4715699851512909, 0.4955199956893921, 0.9209799766540527, 0.021679000928997993, 0.2890399992465973, -0.5443900227546692, 0.2925199866294861, -0.16292999684810638, -0.22620999813079834, -0.12556999921798706, -0.7642599940299988, 0.30629000067710876, 0.022272000089287758, 0.21188999712467194, -0.6499900221824646, -0.22120000422000885, -0.2515299916267395, 0.37703999876976013, 0.43303999304771423, -0.3405500054359436, 0.06711400300264359, -0.4897199869155884, 0.8231599926948547, -0.13526000082492828, -0.21127000451087952, 0.1609800010919571, 0.6484400033950806, -0.14614999294281006, 0.0037754999939352274, -0.2997699975967407, 0.4064199924468994, 0.22283999621868134, 0.5862299799919128, -0.3505699932575226, 0.09504300355911255, 0.3059999942779541, 0.6176400184631348, -0.33809998631477356, 0.17986999452114105, -0.4346599876880646, -0.5706899762153625, -0.4101699888706207, -0.19115999341011047, 0.0701029971241951, -0.7644100189208984, 0.02881000004708767, -0.06799600273370743, 0.333050012588501, -0.5267099738121033, -0.057739000767469406, 0.1544799953699112, 0.2960599958896637, 0.3680199980735779, 0.6439200043678284, 0.3500800132751465, 0.28338998556137085, -0.44176000356674194, -0.06122000142931938, 0.8133999705314636, 0.5333200097084045, -0.16538000106811523, 0.8967999815940857, -0.7287999987602234, 0.2905299961566925, 0.8054500222206116, 0.45085999369621277, -0.08126100152730942, 0.7598299980163574], u'tire': [1.0125000476837158, 0.5006800293922424, -0.3492699861526489, -0.3671700060367584, -0.7460600137710571, -0.4223000109195709, 0.04518499970436096, 0.377020001411438, -0.20502999424934387, -0.5750399827957153, -0.050815001130104065, 0.0347759984433651, 0.07670500129461288, -0.2539899945259094, -0.21156999468803406, -0.2752400040626526, -0.05556600168347359, 0.3274799883365631, 0.3310700058937073, 0.04201500117778778, 0.0819770023226738, 0.7226399779319763, 1.041700005531311, 0.12796999514102936, -0.9150500297546387, 0.04868699982762337, -0.3884600102901459, 0.06117900088429451, -0.0006185999955050647, -0.10372000187635422, -0.123539999127388, 0.5887200236320496, 0.162650004029274, 0.13018999993801117, -0.6390600204467773, 0.1448799967765808, -0.7425199747085571, 0.17587000131607056, 0.33774998784065247, 0.4050000011920929, -0.2577199935913086, -0.05798200145363808, 0.050501998513936996, -0.46386998891830444, -0.15520000457763672, 0.3158999979496002, 0.003759700106456876, -0.24594999849796295, -0.35830000042915344, 0.4684300124645233, 0.19668999314308167, 0.09707300364971161, -0.0605349987745285, 0.36197999119758606, 0.3384700119495392, 0.33623000979423523, 0.19492000341415405, -0.2045699954032898, -0.059856001287698746, 0.10705000162124634, 0.02020999975502491, 0.10786999762058258, 0.30138999223709106, -0.5902199745178223, 0.3542500138282776, 0.15433000028133392, -0.03650199994444847, -0.1783200055360794, -0.16329999268054962, 0.8699100017547607, -0.2739199995994568, -0.13892999291419983, 0.444130003452301, 0.7191399931907654, -0.41589000821113586, 0.24959999322891235, -0.5811899900436401, -0.8042899966239929, -0.11108999699354172, -0.5197799801826477, -0.2754000127315521, 0.22333000600337982, 0.0858369991183281, 0.5522199869155884, -0.9371799826622009, 0.30138999223709106, 0.21414999663829803, -0.01964700035750866, -0.07277899980545044, 1.0382000207901, 0.48923999071121216, 0.07148200273513794, 0.054680999368429184, -0.09137000143527985, 0.4475800096988678, 0.10036999732255936, -0.11258000135421753, -0.12838999927043915, -0.6423400044441223, -0.7128900289535522, -0.7397400140762329, 0.7812399864196777, 0.068572998046875, -0.6719300150871277, 0.19303999841213226, 0.06831599771976471, -0.4320800006389618, 0.39041000604629517, 0.444599986076355, 0.47995999455451965, 0.31321001052856445, -0.2685199975967407, -0.11685000360012054, -0.278219997882843, -0.2081499993801117, -0.05432099848985672, -0.05465000122785568, 0.24833999574184418, -0.32016000151634216, 0.11269000172615051, 0.17970000207424164, -0.09021099656820297, 0.6362400054931641, -0.26743000745773315, -0.8658699989318848, -0.050999999046325684, -0.5239899754524231, -0.10429999977350235, 0.2712399959564209, 0.08341000229120255, 0.38850000500679016, 0.6070700287818909, 0.34132999181747437, 0.44422999024391174, 0.027025999501347542, 0.5666999816894531, -0.3440200090408325, -0.15916000306606293, 0.16809000074863434, -0.19417999684810638, 0.46417000889778137, -0.14168000221252441, 0.7452800273895264, -0.15202000737190247, -0.08281400054693222, 0.3936299979686737, -0.718779981136322, -0.37891000509262085, 0.241239994764328, 0.3598000109195709, -0.03017299994826317, -0.08826100081205368, 0.03422499820590019, -0.3912000060081482, 0.7809799909591675, -0.5808299779891968, 0.5374699831008911, -0.2707799971103668, 0.1396300047636032, -0.3288300037384033, 0.3068000078201294, -0.8100799918174744, -0.8544800281524658, 0.16548000276088715, 0.7173600196838379, -0.18086999654769897, 0.17145000398159027, 0.7568299770355225, 0.2777400016784668, 0.446370005607605, -0.5047299861907959, 0.3059900104999542, 0.64478999376297, 0.22944000363349915, 0.46535998582839966, 0.06398700177669525, 0.042374998331069946, 0.03903299942612648, 0.562749981880188, 0.3304100036621094, 0.3625499904155731, -0.2406499981880188, -0.16598999500274658, 0.11540000140666962, 0.2773500084877014, -0.5482000112533569, 1.003499984741211, 0.5533499717712402, 0.3804300129413605, -0.027452999725937843, 0.3118399977684021, -0.2501699924468994, -0.7132300138473511, 0.09541799873113632, 0.047495000064373016, 0.21428999304771423, 0.40560999512672424, -0.4190399944782257, 0.3626599907875061, 0.13731999695301056, 0.2573400139808655, 0.20393000543117523, 0.857230007648468, -0.3125399947166443, 0.08967699855566025, 0.43094000220298767, -0.0641620010137558, -0.4518600106239319, -0.41907998919487, 0.0802370011806488, -0.13946999609470367, -0.04527999833226204, 0.41506001353263855, -0.3752399981021881, -0.18443000316619873, -0.13312000036239624, 0.03919500112533569, 0.003468800103291869, -0.005438200198113918, -0.5455800294876099, 0.5348600149154663, -0.06086299940943718, 0.22604000568389893, 0.09922400116920471, 0.6825000047683716, 0.4595000147819519, 0.1602800041437149, 0.44850000739097595, 0.11131999641656876, -0.32714998722076416, 0.6012700200080872, -0.550000011920929, -0.13241000473499298, -0.11080999672412872, 0.1076899990439415, 0.18979999423027039, 0.44117000699043274, -0.25665000081062317, 0.022079000249505043, -0.1032399982213974, 0.0713450014591217, -0.8023099899291992, 0.04469100013375282, -0.06649699807167053, -0.33678001165390015, -0.18588000535964966, 0.09856399893760681, -0.4162899851799011, 0.7382299900054932, 0.13485999405384064, 0.2823599874973297, -0.4436900019645691, -0.2527399957180023, -0.35335999727249146, 0.4942300021648407, 0.03414199873805046, -0.8171899914741516, -0.09656599909067154, -0.21299000084400177, -0.026135999709367752, -0.06534399837255478, -0.7734900116920471, -0.3580699861049652, 0.42879998683929443, 0.3815999925136566, -0.006460899952799082, -0.4143899977207184, -0.08447200059890747, 0.17664000391960144, -0.23202000558376312, -0.1962299942970276, -0.04444200173020363, 0.10621999949216843, 0.07670699805021286, -0.32627999782562256, -0.05210699886083603, -0.5983200073242188, 0.08668600022792816, -0.17844000458717346, 0.579990029335022, 0.2175000011920929, -0.11037000268697739, 0.0961180031299591, -0.23670999705791473, 0.12195000052452087, 0.14835000038146973, 0.47986000776290894, -0.8471900224685669, -0.6442300081253052, -0.020161999389529228, 0.46445998549461365, -0.08032199740409851, -0.26280999183654785, -0.10382000356912613, 0.1292400062084198, 0.1009799987077713, -0.25453001260757446, 0.45285001397132874, 0.2258400022983551, -0.27281999588012695], u'sky': [-0.02631399966776371, -0.21511000394821167, 0.7220399975776672, 0.1962299942970276, -0.5379599928855896, 0.367000013589859, -0.5703099966049194, 0.46239998936653137, -0.23777000606060028, -0.8634999990463257, 0.1628900021314621, -0.2936199903488159, 0.3343299925327301, 0.1888899952173233, 0.24337999522686005, 0.7423700094223022, 0.002166799968108535, -0.11714000254869461, 0.23875999450683594, 0.07627800107002258, 0.1057400032877922, 0.4585599899291992, 0.04949000105261803, 0.6210700273513794, 0.5119500160217285, -0.5013999938964844, 0.18643000721931458, 0.02526099979877472, -0.1485999971628189, -0.30722999572753906, 0.3679099977016449, -0.5548800230026245, -0.625819981098175, 0.121069997549057, -0.7511399984359741, 0.41780000925064087, -0.2055799961090088, -0.39239999651908875, -0.12825000286102295, 0.657010018825531, 0.02577199973165989, 0.07030799984931946, -0.09190700203180313, 0.777999997138977, 0.005051900167018175, -0.3305499851703644, 0.21613000333309174, 0.4873200058937073, 0.2708300054073334, -0.9314900040626526, -0.07851800322532654, -0.0009389999904669821, 0.1712699979543686, -0.7330700159072876, -0.5172600150108337, 0.4720500111579895, -0.020462999120354652, 0.008467099629342556, 0.38482001423835754, -0.16966000199317932, -0.5202599763870239, 0.4186300039291382, 0.5118200182914734, 0.09505099803209305, 0.14345000684261322, -0.03013000078499317, 0.15567000210285187, 0.20674000680446625, 0.07333199679851532, -0.32583001255989075, 0.034536998718976974, 0.27261000871658325, -0.44249001145362854, -0.09140300005674362, 0.0635640025138855, 0.5067899823188782, -0.09900099784135818, -0.17885999381542206, 0.18558000028133392, 0.09766100347042084, -0.02224699966609478, 0.3191399872303009, 0.10361000150442123, 0.1964700073003769, -0.16193999350070953, 0.2366500049829483, 0.14650000631809235, 0.2690800130367279, 0.1846500039100647, -0.05592900142073631, 0.259799987077713, -0.013791999779641628, -0.02143700048327446, 0.2925800085067749, -0.2675899863243103, 0.4132699966430664, -0.04095999896526337, 0.06119399890303612, 0.10187000036239624, -0.17990000545978546, 0.23463000357151031, 0.22597000002861023, -0.4406200051307678, 0.6581799983978271, 0.05048400163650513, 0.2943600118160248, 0.08011999726295471, 0.46755000948905945, -0.042562998831272125, -0.09205999970436096, -0.09654500335454941, -0.2983199954032898, 0.9643200039863586, -0.14222000539302826, 0.20348000526428223, -0.25251999497413635, -0.2781200110912323, 0.23176999390125275, 0.0007631899788975716, -0.7354599833488464, 0.03572800010442734, -0.13555000722408295, -0.11455000191926956, 0.8334699869155884, 0.12065999954938889, -0.5934799909591675, -0.35677000880241394, 0.7792400121688843, -0.33472999930381775, -0.34393998980522156, -0.3331100046634674, 0.3606700003147125, 0.19912999868392944, 0.6769499778747559, 0.30866000056266785, -0.14143000543117523, -0.15514999628067017, 0.14007000625133514, -0.17817999422550201, -0.24532000720500946, -0.1480100005865097, 0.3624500036239624, -0.10685999691486359, -0.2431900054216385, -0.4590100049972534, -0.031366001814603806, 0.5648400187492371, 0.5408899784088135, -0.2446800023317337, -0.1072700023651123, 0.36726000905036926, 0.39465001225471497, -0.003948899917304516, -0.21515999734401703, 0.45364001393318176, -0.037613000720739365, 0.591159999370575, -0.13030000030994415, -0.22857999801635742, -0.3564999997615814, -0.047717999666929245, -0.7384300231933594, 0.475739985704422, 0.11437000334262848, 0.5913500189781189, -0.013233000412583351, 0.05935300141572952, 0.3376699984073639, -0.43533000349998474, 0.330159991979599, -0.39778000116348267, 0.29732000827789307, 0.3846000134944916, 0.30149999260902405, -0.23589999973773956, 0.1541299968957901, -0.21657000482082367, 0.20455999672412872, 0.08562800288200378, 0.12801000475883484, 0.11283999681472778, 0.20205000042915344, 0.5295799970626831, -0.05208799988031387, -0.09955800324678421, -0.4620699882507324, 0.7719900012016296, -0.13091999292373657, -0.49755001068115234, -0.41971999406814575, 0.08098600059747696, 0.10332000255584717, -0.5033199787139893, -0.33204999566078186, -0.10910999774932861, -0.36438000202178955, -0.42506998777389526, 0.12387999892234802, -0.22226999700069427, 0.13003000617027283, 1.5613000392913818, 0.17709000408649445, -0.4491199851036072, -0.09582400321960449, -0.29488998651504517, 0.2103399932384491, -0.07987000048160553, 0.11031000316143036, 0.20056000351905823, -0.2531900107860565, -0.03889799863100052, 0.2733500003814697, -0.19516000151634216, -0.38569000363349915, -0.10457000136375427, 0.008478599600493908, 0.6632400155067444, 0.030435999855399132, 0.0828080028295517, -0.4027999937534332, 0.863860011100769, 0.14507000148296356, 0.2176699936389923, -0.5141900181770325, -0.5190899968147278, 0.15425999462604523, -0.2540299892425537, -0.35879001021385193, 0.4064500033855438, -0.3332099914550781, 0.34035998582839966, 0.2190299928188324, 0.11383000016212463, -0.4647499918937683, -0.16853000223636627, -0.14775000512599945, -0.39882999658584595, 0.08050200343132019, -0.8762000203132629, -0.49952998757362366, -0.12010999768972397, -0.1274300068616867, -0.47207000851631165, 0.048395998775959015, 0.35975998640060425, 0.18980999290943146, -0.37053000926971436, -0.38286998867988586, -0.10439000278711319, 0.1321299970149994, -0.2382200062274933, 0.5006800293922424, 0.10941000282764435, -0.020653000101447105, -0.25777000188827515, -0.07558099925518036, -0.6736400127410889, -0.07993000000715256, -0.024802999570965767, 0.47363999485969543, 0.3543199896812439, 0.018657000735402107, 0.23295000195503235, 0.003118300111964345, -0.4269599914550781, -0.48510000109672546, 0.03892200067639351, 0.0702190026640892, -0.24286000430583954, 0.34727001190185547, 0.18783999979496002, 0.25900998711586, 0.037498001009225845, -0.22065000236034393, -0.021453000605106354, -0.27417999505996704, -1.270400047302246, 0.024389000609517097, -0.17258000373840332, -0.1375499963760376, -0.22618000209331512, 0.2342499941587448, -0.6434000134468079, -0.2792600095272064, 0.22002999484539032, -0.5743399858474731, -0.34821000695228577, -0.1783200055360794, -0.09125900268554688, -0.04607899859547615, 0.5280500054359436, 0.43915000557899475, -0.8200500011444092, 0.1710900068283081, -0.14970999956130981, 0.03767399862408638, 0.2010200023651123, -0.03651199862360954, -0.1030300036072731, -0.08137200027704239], u'lake': [-0.4185999929904938, 0.017361000180244446, -0.6574900150299072, -0.3973200023174286, 0.3380799889564514, 0.16595999896526337, 0.48050999641418457, -0.01699800044298172, -0.037675000727176666, -0.7266799807548523, -0.13384999334812164, 0.050641998648643494, -0.22875000536441803, 0.06661900132894516, 0.43024998903274536, 0.13015000522136688, -0.09972299635410309, 0.3322399854660034, 0.38763999938964844, 0.6245499849319458, -1.1957000494003296, -0.023615000769495964, -0.27713000774383545, 0.35051000118255615, 0.41940999031066895, 0.020733999088406563, -0.023298000916838646, -0.19892999529838562, -0.03473600000143051, 0.2347699999809265, 0.5961599946022034, 0.23532000184059143, -0.26969999074935913, 0.17475000023841858, 0.020570000633597374, 0.3936299979686737, 0.14893999695777893, 0.0905890017747879, -0.34314000606536865, -0.5323399901390076, -0.7184600234031677, 0.2424899935722351, 0.516700029373169, 1.0823999643325806, 0.1714099943637848, 0.4431400001049042, 0.6402400135993958, 0.5467399954795837, 0.6172900199890137, 0.8371300101280212, -0.29745998978614807, 0.2861599922180176, -0.3441700041294098, -0.08467800170183182, 0.46050000190734863, -0.1605300009250641, 0.24108999967575073, 0.2749899923801422, 0.4967299997806549, 0.437610000371933, -0.004288400057703257, 0.09171800315380096, 0.5394799709320068, -0.08484599739313126, 0.2718699872493744, -0.49573999643325806, -1.0992000102996826, 0.09044499695301056, -0.45146000385284424, -0.37560999393463135, 0.4055800139904022, -0.8655700087547302, 0.1081399992108345, 0.5349100232124329, -1.0657999515533447, 0.05038600042462349, 0.5169299840927124, 0.569570004940033, 0.15727999806404114, -0.5072799921035767, -0.048990000039339066, 0.3195199966430664, 0.07800199836492538, -0.3591800034046173, 0.49000999331474304, -0.128930002450943, -0.51774001121521, 0.12268999963998795, 0.09758199751377106, -0.6491400003433228, -0.07332699745893478, 0.3867799937725067, 0.7206599712371826, 0.024560000747442245, 0.4801500141620636, 0.38672998547554016, 0.2955299913883209, -0.13659000396728516, 0.07972999662160873, 0.01677200011909008, 0.49632999300956726, 0.18242999911308289, -0.40059998631477356, -0.0671980008482933, -0.23819999396800995, 0.8135700225830078, 0.33087000250816345, -0.018644999712705612, -0.2700200080871582, -0.057714998722076416, 0.060398999601602554, -0.4062899947166443, -0.13616999983787537, -0.4077500104904175, -0.11368999630212784, -0.3425599932670593, 0.26653000712394714, 0.6821200251579285, -0.4092000126838684, 0.543150007724762, -0.24934999644756317, -0.12125000357627869, -0.3596000075340271, 0.05407699942588806, 0.016951000317931175, -0.0633540004491806, 0.5711399912834167, 0.12009000033140182, -0.006327900104224682, -0.47929999232292175, -0.507889986038208, 0.5483999848365784, 0.8992900252342224, -0.3071900010108948, 0.4668799936771393, 0.16783000528812408, -0.03912600129842758, -0.0729999989271164, -0.19085000455379486, -0.036782000213861465, 0.049616001546382904, -0.41214999556541443, -0.3992899954319, -0.32747000455856323, -0.36228999495506287, -0.3013699948787689, 0.8098700046539307, -0.4106999933719635, -0.09696400165557861, -0.006721800193190575, 0.842960000038147, 0.5695599913597107, -0.07679200172424316, -0.3212699890136719, 0.8727499842643738, 0.21797999739646912, 0.4418700039386749, -0.0334319993853569, -0.19130000472068787, 0.08118599653244019, 0.2984200119972229, -0.8860499858856201, 0.1813499927520752, 0.13923999667167664, -0.46950000524520874, -0.12599000334739685, 0.03966199979186058, -0.17648999392986298, 0.13410000503063202, 0.22144000232219696, -0.4716300070285797, 0.5821499824523926, 0.04631299898028374, 0.24244000017642975, 0.19925999641418457, 0.2951200008392334, 0.5077999830245972, -0.18264000117778778, -0.12926000356674194, 0.2490600049495697, -0.1867700070142746, 0.8432199954986572, -0.033969998359680176, -0.15084999799728394, 0.33215001225471497, -0.7080100178718567, -0.14695000648498535, -0.4000299870967865, -0.05258899927139282, -0.14812999963760376, 0.32179999351501465, 0.5656099915504456, -0.24948999285697937, -0.056386999785900116, -0.3294900059700012, 0.06014300137758255, 0.5208699703216553, -1.1858999729156494, -0.03716300055384636, 0.41005998849868774, 1.307800054550171, -0.6196100115776062, -0.4647600054740906, -0.5207300186157227, -0.40365999937057495, -0.16300000250339508, -0.28839999437332153, -0.13804000616073608, -0.04821600019931793, 0.2408200055360794, 0.028551999479532242, 0.48945000767707825, 0.17155000567436218, -0.6380800008773804, 0.23082999885082245, 0.2552799880504608, -0.04844199866056442, 0.10095000267028809, 0.16175000369548798, -0.9472200274467468, 0.8845400214195251, -0.19548000395298004, -0.024744000285863876, 0.07474499940872192, 0.8663399815559387, 0.05909400060772896, 0.0018780999816954136, 0.10262999683618546, 0.1660500019788742, -0.003298999974504113, 0.357340008020401, -0.20065000653266907, -0.2997100055217743, -0.4977400004863739, -0.04432599991559982, 0.20424999296665192, -0.024900000542402267, 0.14330999553203583, 0.49327000975608826, -0.7701500058174133, 0.2333800047636032, 0.5857599973678589, 0.11857999861240387, -0.37349000573158264, -0.7671999931335449, -0.4333899915218353, 0.40035000443458557, 0.1530500054359436, -0.1282300055027008, -0.1410199999809265, -0.17985999584197998, 0.030215999111533165, 0.5425999760627747, -0.5472000241279602, 0.3329800069332123, -0.10107000172138214, -0.07327000051736832, -0.2788499891757965, -0.06503699719905853, -0.11939000338315964, -0.4634000062942505, -0.3260599970817566, 0.01011900044977665, -0.17725999653339386, -0.5975300073623657, -0.5046399831771851, 1.1511000394821167, -0.060058001428842545, 0.06997100263834, -0.016746999695897102, -0.0444829985499382, 0.07627800107002258, 0.3555299937725067, 1.0546000003814697, 0.9896799921989441, 0.2555899918079376, -1.2197999954223633, 0.2347699999809265, 0.07054000347852707, -0.5222899913787842, -0.14322000741958618, 0.9070500135421753, -0.08330199867486954, -0.6820799708366394, -0.4507400095462799, -0.43283000588417053, 0.26034000515937805, 0.05567900091409683, 0.45612001419067383, 0.08878599852323532, -0.5658000111579895, -0.11924999952316284, -0.2872599959373474, 0.6148499846458435, -0.4973900020122528, -0.40832000970840454, 0.2856299877166748, 0.5578100085258484, -0.14098000526428223, 0.135670006275177], u'sugar': [-0.40450000762939453, 0.2778100073337555, 0.10035999864339828, 0.08349400013685226, -0.3647100031375885, -0.6815199851989746, -0.09159000217914581, 0.024819999933242798, 0.00750999990850687, -0.7480900287628174, -0.49160000681877136, -0.9749900102615356, -0.04872199892997742, 0.4165700078010559, -0.004584699869155884, 0.009519600309431553, -0.7276300191879272, 0.05014000087976456, -0.3006899952888489, -0.1274999976158142, -0.6680300235748291, -0.14262999594211578, 0.7099900245666504, 0.38058000802993774, -0.764930009841919, -0.0011931000044569373, -0.5756700038909912, -0.04459099844098091, -1.253000020980835, -0.14119000732898712, -0.6205599904060364, 0.795799970626831, -0.6817799806594849, -0.049003999680280685, -0.40095001459121704, 0.9579799771308899, 0.36535000801086426, 0.35335999727249146, -0.5702900290489197, 0.251910001039505, -0.5676500201225281, -0.6066499948501587, 0.3712100088596344, 0.17272000014781952, 0.2737399935722351, -1.0450999736785889, -0.6182399988174438, -0.4057900011539459, 0.035815998911857605, 0.36879000067710876, 0.6897199749946594, 0.4776900112628937, -0.5020400285720825, 0.21765999495983124, -0.6435700058937073, -0.003627199912443757, -0.16674000024795532, 0.09730999916791916, 0.5424500107765198, -0.3609499931335449, -0.23995999991893768, -0.28745999932289124, -0.06606400012969971, 0.19074000418186188, 0.458979994058609, -0.10777000337839127, -0.32829999923706055, 0.5212399959564209, -0.29951998591423035, -0.13533000648021698, 0.24178999662399292, 0.37435001134872437, -0.8556299805641174, 0.054962001740932465, -0.29728999733924866, 0.04898500069975853, 0.1689399927854538, -0.8374300003051758, -0.007092200219631195, 0.17726999521255493, 0.5040799975395203, 0.39789000153541565, 0.06350400298833847, 0.038109999150037766, 0.2701900005340576, -0.11309999972581863, -0.5763800144195557, -0.18795999884605408, 0.36719998717308044, -0.717519998550415, 0.049323998391628265, -0.2639999985694885, -0.05143800005316734, 0.19922000169754028, -0.4713299870491028, -0.2989000082015991, 0.6114199757575989, 0.1052900031208992, -0.15790000557899475, 0.46911001205444336, 0.14619000256061554, -0.012984000146389008, 0.2721500098705292, -0.6993700265884399, -0.019453000277280807, -0.1309400051832199, -0.23578999936580658, -0.3182399868965149, -0.48041999340057373, 0.36327001452445984, 0.20489999651908875, -0.39921000599861145, 0.24818000197410583, 0.7075200080871582, 0.008642500266432762, 0.16946999728679657, 0.3899500072002411, 0.8349400162696838, 0.1817300021648407, 0.3427700102329254, -0.4681299924850464, -0.05234599858522415, 0.06570500135421753, -0.13395999372005463, -0.1263899952173233, -0.33583998680114746, 0.3023799955844879, 0.38541001081466675, -0.26930001378059387, 0.6486999988555908, -0.030260000377893448, 1.2324999570846558, -0.093299001455307, 0.5858700275421143, -0.22849999368190765, 0.01182899996638298, -0.2899700105190277, -0.1691100001335144, -0.45730000734329224, -0.2377299964427948, 0.4688299894332886, 0.00043814998934976757, -0.8804799914360046, 0.18609000742435455, -0.023336000740528107, 0.42691001296043396, 0.23513999581336975, -0.0743890032172203, 0.6009699702262878, -0.26517999172210693, -0.4715900123119354, 0.3773699998855591, -0.1841599941253662, 0.0267340000718832, -0.10138999670743942, 0.2714900076389313, -0.4145199954509735, -0.08031900227069855, -0.2015099972486496, -0.029992999508976936, 0.673259973526001, -0.4908500015735626, -0.3434300124645233, -0.5859900116920471, -0.3714500069618225, -0.12256000190973282, 0.08431600034236908, 0.06784500181674957, 0.16120000183582306, 0.09379100054502487, 0.21588000655174255, 0.5735499858856201, -0.8880500197410583, 0.35572001338005066, 0.42726999521255493, -0.2285500019788742, -0.025975000113248825, -0.3153400123119354, -0.3382200002670288, -0.26128000020980835, -0.054405998438596725, 0.6937800049781799, 0.1037599965929985, -0.3362799882888794, -0.11653999984264374, -0.7545999884605408, 0.8476399779319763, -0.0357699990272522, 0.13955000042915344, -0.27340999245643616, 0.21834999322891235, 1.2999000549316406, 0.02841299958527088, -0.16136999428272247, -0.6156200170516968, -0.33434000611305237, 0.3795500099658966, -0.29137998819351196, 0.4105199873447418, -0.3892500102519989, 0.5625399947166443, -0.03929699957370758, 0.5788900256156921, -0.16056999564170837, -0.5616999864578247, -0.3305499851703644, 0.6188200116157532, -0.00811379961669445, -0.0531190000474453, -0.4207499921321869, 0.013922000303864479, -0.25593000650405884, -0.6202300190925598, 0.978950023651123, -0.5017099976539612, 0.11009000241756439, 0.2912200093269348, -0.3125399947166443, 0.13579000532627106, -0.09214600175619125, 0.11328999698162079, -0.23612000048160553, -0.31266000866889954, -0.4435800015926361, -0.21511000394821167, 0.19221000373363495, 0.16325999796390533, 0.8626599907875061, 0.16286000609397888, -0.2507700026035309, 0.17506000399589539, 0.265390008687973, -0.16574999690055847, 0.47727999091148376, 0.5682399868965149, -0.5807899832725525, 0.7470999956130981, -0.1690800040960312, -0.7240800261497498, -0.8362200260162354, -0.6340399980545044, -0.18756000697612762, -0.41571998596191406, 0.24674999713897705, -1.2028000354766846, -0.029221000149846077, 0.48083001375198364, -0.04078099876642227, -0.41670000553131104, -0.7512500286102295, 0.17231999337673187, -0.18097999691963196, -0.20667999982833862, 0.3010900020599365, 0.07049500197172165, 0.13845999538898468, -0.37580999732017517, -0.068790003657341, -0.028699999675154686, 0.04602900147438049, -0.37582001090049744, -0.2510499954223633, 0.014518000185489655, -0.48945000767707825, 0.304610013961792, 0.01991499960422516, -0.15536999702453613, -0.477649986743927, -0.16504999995231628, 0.0580810010433197, -0.46491000056266785, 0.20170000195503235, 0.07062699645757675, 0.29236000776290894, -0.297789990901947, 0.06345000118017197, -1.0634000301361084, -0.34915998578071594, -0.6043499708175659, -0.5004299879074097, -0.4124000072479248, -0.301690012216568, -0.2561100125312805, -0.2320300042629242, 0.15192000567913055, 0.2011599987745285, 0.5486099720001221, -0.7600299715995789, -0.15445999801158905, 0.02697099931538105, -0.6072099804878235, -0.13165999948978424, -0.27851998805999756, -0.5519700050354004, 0.5866600275039673, 0.4135099947452545, -0.9335799813270569, -0.794920027256012, -0.41422998905181885, 0.3686800003051758], u'bush': [-0.21908000111579895, 0.290010005235672, -0.11343000084161758, -0.14796000719070435, -0.14478999376296997, 0.2706499993801117, -0.25655001401901245, 0.04499800130724907, 0.055977001786231995, -1.6960999965667725, -0.0007705899770371616, 0.3699199855327606, -0.15699000656604767, -0.09675300121307373, 0.24677999317646027, 0.4632999897003174, -0.3402099907398224, -0.3410699963569641, 0.3529199957847595, 0.32986998558044434, -0.026227999478578568, -0.2814300060272217, 0.7144700288772583, -0.15894000232219696, 0.03106600046157837, 0.3259600102901459, -0.2974399924278259, 0.22217999398708344, 0.14020000398159027, 0.21558000147342682, 0.4212700128555298, -0.2011599987745285, -0.3144899904727936, -0.12264999747276306, -1.405900001525879, -0.12156999856233597, -0.26458999514579773, -0.5867599844932556, -0.552649974822998, -0.3362500071525574, 0.2589400112628937, 0.3838900029659271, 0.006109099835157394, -0.26684999465942383, -0.47690001130104065, -0.16861000657081604, -0.041843000799417496, -0.6252599954605103, 0.2421800047159195, -0.007134200073778629, -0.3212999999523163, 0.27237001061439514, -0.3314700126647949, 0.5247600078582764, 0.09276799857616425, -0.28073999285697937, -0.23702000081539154, -0.14417999982833862, 0.6414899826049805, 0.31452998518943787, 0.3510499894618988, 0.14529000222682953, 0.4229399859905243, -0.3676699995994568, 0.4182400107383728, -0.5751799941062927, 0.08245600014925003, 0.4581800103187561, -0.1383100003004074, 0.02452700026333332, 0.01351999957114458, -0.014492000453174114, 0.07130599766969681, 0.2582300007343292, 0.4727100133895874, -0.07401800155639648, -0.06421799957752228, 0.9634299874305725, -0.6310999989509583, 0.11761000007390976, 0.05829999968409538, 0.1004600003361702, 0.4258599877357483, 0.1193699985742569, 0.27752000093460083, 0.021462999284267426, -0.839900016784668, 0.49842000007629395, 0.06832700222730637, -0.40867000818252563, 0.07727299630641937, -0.18672999739646912, -0.4577699899673462, 0.1119299978017807, -0.20062999427318573, -0.361380010843277, -0.34856000542640686, 0.6028599739074707, -0.12351000308990479, -0.39395999908447266, -0.13550999760627747, -0.11901000142097473, 0.19818000495433807, 0.5400300025939941, -0.31457000970840454, 0.21807999908924103, -0.7609500288963318, 0.14988000690937042, 0.512179970741272, -0.13395999372005463, 0.2875399887561798, 0.27605998516082764, -0.07295600324869156, 0.4213100075721741, 0.2594299912452698, -0.035287998616695404, 0.1171799972653389, -0.13782000541687012, -0.1193699985742569, -0.48151999711990356, -0.17072999477386475, -0.3982599973678589, -0.5049399733543396, -0.0698539987206459, -0.09981899708509445, 0.13978999853134155, -0.38367000222206116, 0.04927799850702286, 0.3674499988555908, 0.10101000219583511, -0.45875999331474304, -0.07138899713754654, -0.16628000140190125, -0.08022899925708771, -0.394540011882782, 0.05620799958705902, -0.3018699884414673, 0.2561500072479248, 0.9162499904632568, -0.23781000077724457, 0.12487000226974487, -0.28001001477241516, -0.23246000707149506, -0.18122999370098114, -0.8097900152206421, 0.24536000192165375, -0.26684001088142395, -0.641539990901947, -0.008338799700140953, 0.10598000138998032, 0.18949000537395477, 0.09990300238132477, 0.21337999403476715, 0.16436000168323517, -0.7061399817466736, -0.08276999741792679, 0.4909699857234955, -0.252920001745224, 0.5917500257492065, 0.007123699877411127, 0.8086299896240234, -0.2577199935913086, 0.17117999494075775, 0.5247600078582764, 0.26572999358177185, -0.02971000038087368, -0.3145599961280823, -0.08096300065517426, -0.07880400121212006, 0.025550000369548798, 0.15724000334739685, -0.5020700097084045, -0.4759500026702881, -0.2028300017118454, 0.14390000700950623, -0.10926999896764755, 0.22462999820709229, 0.0781169980764389, 0.5073000192642212, 0.4106299877166748, 0.34599000215530396, 0.11620999872684479, 0.08459100127220154, -0.15571999549865723, -0.5447400212287903, -0.07292799651622772, -0.2953599989414215, -0.2883400022983551, 0.12156999856233597, -0.0019672999624162912, -0.5072299838066101, -0.1229500025510788, 0.1682800054550171, -0.33065998554229736, 0.06265799701213837, 0.28773000836372375, 0.8335099816322327, 0.1896599978208542, 0.33114001154899597, -0.32506999373435974, 0.8929299712181091, -0.3502100110054016, 0.3879300057888031, 0.5267500281333923, -0.21507999300956726, -0.2837499976158142, 0.5434100031852722, -0.20135000348091125, -0.29488998651504517, -0.24244000017642975, -0.09268199652433395, -0.4966999888420105, 0.24616000056266785, 0.05816899985074997, 0.28878000378608704, 0.18024000525474548, -0.4900600016117096, -0.4333699941635132, -0.014348000288009644, 0.2693600058555603, 1.2337000370025635, 0.11196999996900558, 0.2641400098800659, 0.48541000485420227, 0.3101699948310852, -0.07801199704408646, 0.03883500024676323, 0.22324000298976898, -0.5756099820137024, -0.017340999096632004, 0.17970000207424164, -0.3379400074481964, 0.7383700013160706, 0.48697999119758606, -0.2666400074958801, -0.16496999561786652, -0.3608900010585785, 0.010335000231862068, 0.9348599910736084, 0.004520699847489595, -0.24449999630451202, 0.03443700075149536, 0.3292199969291687, 0.11657000333070755, -0.5246400237083435, -0.5305200219154358, 0.35835000872612, -0.33570998907089233, 0.36682000756263733, -0.404449999332428, 0.2135400027036667, -0.4437299966812134, 0.24874000251293182, 0.012502999976277351, 0.6342599987983704, -0.1467600017786026, 0.4611000120639801, 0.37393999099731445, 0.0005246200016699731, -0.1507599949836731, 0.1896899938583374, 0.3260200023651123, -0.11450999975204468, 0.2382899969816208, 0.08997400104999542, -0.007820400409400463, 0.18841999769210815, -0.20528000593185425, -0.08384700119495392, -0.08453699946403503, 0.12519000470638275, -0.2644200026988983, 0.16859999299049377, 0.060527998954057693, -0.47606000304222107, -0.41780000925064087, -2.031599998474121, 0.4199199974536896, 1.6030999422073364, -0.7821599841117859, -0.2536900043487549, -0.6892300248146057, 0.26420000195503235, 0.04044400155544281, 0.2144699990749359, 0.3502500057220459, -0.10147999972105026, 0.3278599977493286, 0.46538999676704407, -0.04176799952983856, 0.2886599898338318, 0.47150999307632446, 0.32014000415802, 0.46810999512672424, -0.2481900006532669, -0.010181999765336514, -0.5091699957847595, -0.15886999666690826, -0.8985499739646912, 0.8518999814987183], u'bike': [-0.029796000570058823, -0.43119001388549805, -0.06935500353574753, -0.18479999899864197, 0.07714000344276428, 0.2913599908351898, 0.0770450010895729, 0.12447000294923782, 0.04058799892663956, -0.29912999272346497, 0.32523998618125916, -0.23069000244140625, 0.014662000350654125, 0.38185998797416687, 0.38137999176979065, 0.3201200067996979, 0.18668000400066376, 0.04465299844741821, 0.10176999866962433, 0.15674999356269836, 0.2623400092124939, 0.43724000453948975, 0.1512400060892105, -0.0968180000782013, -0.21859000623226166, -0.622979998588562, -0.10836999863386154, 0.08058200031518936, -0.047129999846220016, 0.0435979999601841, -0.05147299915552139, 0.10206999629735947, 0.618399977684021, -0.041110001504421234, -0.7313100099563599, 0.8008400201797485, -0.8603100180625916, -0.5800999999046326, -0.05719799920916557, 0.32798001170158386, -0.8982700109481812, 0.0764629989862442, -0.5547400116920471, -0.6623200178146362, -0.2862800061702728, 0.39267998933792114, 1.148300051689148, 0.1280599981546402, 0.28951001167297363, 0.010130999609827995, -0.2379399985074997, -0.4232900142669678, 0.5331699848175049, 0.24087999761104584, 0.295879989862442, 0.6086400151252747, -0.12419000267982483, -0.3430899977684021, -0.4422999918460846, 0.01576000079512596, 0.016465000808238983, 0.6015899777412415, -0.09357000142335892, -0.12077999860048294, -0.18458999693393707, 0.2440200001001358, -0.3180899918079376, -0.06169100105762482, -0.09923499822616577, -0.08308599889278412, -0.09708599746227264, 0.29565000534057617, 0.3487499952316284, 0.11366000026464462, -0.03494400158524513, -0.008169399574398994, 0.11138000339269638, -0.11706999689340591, -0.08688200265169144, -0.036146000027656555, -0.05923900008201599, 0.5625900030136108, 0.5179700255393982, -0.034244999289512634, -0.5043900012969971, -0.2553600072860718, 0.03993000090122223, 0.6642400026321411, -0.16898000240325928, 0.6917700171470642, 1.19350004196167, -0.12556999921798706, 0.6662999987602234, -0.7691500186920166, 0.21125000715255737, -0.4758400022983551, 0.4633699953556061, -0.06496799737215042, 0.2252500057220459, 0.02080499939620495, -0.8317199945449829, 0.37240999937057495, -0.16690999269485474, -0.25275999307632446, 0.022691000252962112, -0.1720000058412552, 0.5857899785041809, 0.03449099883437157, 0.09302199631929398, -0.2903200089931488, -0.741129994392395, -0.19192999601364136, 0.08716099709272385, -0.37790998816490173, 0.12626999616622925, 0.42851001024246216, 0.38457000255584717, 0.06684499979019165, 0.18174000084400177, 0.825980007648468, 0.04208900034427643, 0.13244999945163727, 0.4571300148963928, -0.5327500104904175, -0.24501000344753265, 0.3345400094985962, -0.038290999829769135, 0.2582699954509735, -0.45291000604629517, 0.2084999978542328, 0.15699000656604767, -0.12097000330686569, 0.264739990234375, 0.6802800297737122, 0.21945999562740326, 0.052230000495910645, -0.02990500070154667, -0.2936300039291382, 0.49129000306129456, -0.5534899830818176, 0.10577999800443649, -0.20603999495506287, 0.4777800142765045, -0.05848899856209755, -0.22529999911785126, -0.02385599911212921, -0.18660999834537506, -0.13289999961853027, 0.16218000650405884, 0.2966499924659729, 0.20545999705791473, 0.49998000264167786, -0.44374001026153564, 0.018828999251127243, 0.2067600041627884, -0.6842899918556213, -0.03416400030255318, 0.22419999539852142, -0.24087999761104584, 0.2315399944782257, 0.3987799882888794, -1.0504000186920166, -0.418040007352829, -0.30979999899864197, 0.4285700023174286, -0.4210300147533417, 0.6469100117683411, 0.3043299913406372, 0.19391000270843506, 0.13739000260829926, -0.3988099992275238, -0.025147000327706337, -0.2266799956560135, 0.09873499721288681, -0.19415999948978424, -0.828719973564148, 0.5539199709892273, 0.03838000074028969, 0.11653000116348267, -0.08775299787521362, -0.1424199938774109, 0.18523000180721283, 0.049911998212337494, 0.27393001317977905, 0.7687000036239624, -0.07566200196743011, 0.6265699863433838, 0.623769998550415, 0.31404998898506165, -0.12931999564170837, -0.15078000724315643, -0.032947998493909836, -0.19001999497413635, -0.2869099974632263, -0.3423900008201599, -0.17241999506950378, -0.3940899968147278, -0.014089999720454216, 0.08963800221681595, -0.37942999601364136, 0.5897899866104126, 0.055309999734163284, 0.47473999857902527, 0.11799000203609467, 0.42983999848365784, 0.5571200251579285, -0.4093700051307678, -0.04685699939727783, -0.36834999918937683, 0.24059000611305237, -0.2462500035762787, -0.08381099998950958, -0.38391000032424927, -0.18082000315189362, -0.5211600065231323, -0.09241099655628204, -0.542169988155365, -0.12075000256299973, -0.09776999801397324, -0.24376000463962555, 0.1931300014257431, -0.18900999426841736, -0.3329299986362457, -0.060384999960660934, 1.2355999946594238, 0.04770800098776817, 0.03451500087976456, -0.051816001534461975, -0.5768799781799316, 0.061406999826431274, -0.12645000219345093, -0.5856599807739258, -0.1387699991464615, -0.772159993648529, 0.7821300029754639, 0.25189998745918274, -0.20294000208377838, 0.28321000933647156, 0.25470998883247375, -0.06075499951839447, 0.29745998978614807, -0.2903900146484375, 0.015884000808000565, -0.21404999494552612, -0.38214999437332153, -0.2939299941062927, -0.33316001296043396, 0.22137999534606934, -0.04992000013589859, 0.1253499984741211, -0.36274001002311707, -0.17098000645637512, 0.09488300234079361, -0.35245999693870544, 0.37053000926971436, -0.10129000246524811, -0.03988099843263626, -0.1382800042629242, 0.06619799882173538, 0.009970299899578094, -0.14020000398159027, -0.3915799856185913, -0.004230800084769726, 0.3801499903202057, -0.08377200365066528, 0.0075806002132594585, -0.3177799880504608, -0.005093399900943041, -0.01969200000166893, -0.18193000555038452, -0.26611000299453735, 0.4517500102519989, -0.11488000303506851, 0.026270000264048576, 0.16580000519752502, -0.29927998781204224, -1.3992999792099, -0.2581999897956848, -0.14869000017642975, 0.18688000738620758, 0.16022999584674835, -0.7991799712181091, 0.13460999727249146, 0.2958199977874756, -0.7216299772262573, 0.16078999638557434, 0.05095899850130081, -0.10017000138759613, 0.036368001252412796, -0.4857099950313568, 0.1731799989938736, -0.20611999928951263, -1.121399998664856, 0.1783200055360794, -0.29186001420021057, -0.010370999574661255, -0.2838299870491028, 1.0164999961853027, 0.4701499938964844, -0.17529000341892242], u'fig': [-0.12270999699831009, 0.07804299890995026, 0.09805800020694733, -0.43389999866485596, -0.331059992313385, -0.2435300052165985, -0.7221800088882446, 0.027682000771164894, -0.0099804000928998, 0.09856600314378738, 0.050916001200675964, 0.6344500184059143, -0.30302000045776367, 0.04570600017905235, 0.038839999586343765, 0.7194100022315979, -0.1033099964261055, 0.1527000069618225, -0.6234400272369385, 0.30799001455307007, 0.23778000473976135, 0.11395999789237976, -0.22181999683380127, -0.5233399868011475, 0.25971999764442444, 0.10547000169754028, 0.15730999410152435, -0.5886300206184387, 0.14583000540733337, 0.8184700012207031, 0.0863490030169487, -0.3083699941635132, -0.2544899880886078, 0.11255999654531479, -0.06542400270700455, 0.5412399768829346, 0.29646000266075134, 0.3243899941444397, 0.47071000933647156, -0.7111999988555908, -0.4399600028991699, 0.41508999466896057, 0.17260000109672546, -0.0641620010137558, -0.11535000056028366, 0.0034175999462604523, 0.01550500001758337, 0.12897999584674835, -0.11964000016450882, -0.0753370001912117, 0.3407500088214874, -0.518750011920929, -0.2793000042438507, 0.18873000144958496, -0.20904000103473663, -0.627810001373291, -0.04039100185036659, 0.06909999996423721, 0.551360011100769, 0.14074000716209412, 0.6201199889183044, 0.024570999667048454, 0.050374001264572144, 0.26298001408576965, -0.42236000299453735, -0.17818999290466309, -0.11031000316143036, 0.4473100006580353, -0.4410000145435333, 0.01845799945294857, -0.7580500245094299, 0.44495999813079834, -1.1892999410629272, 0.021611999720335007, -1.011299967765808, 0.21991999447345734, 0.32611000537872314, 0.4353199899196625, -0.047387998551130295, 0.5217000246047974, -0.1799200028181076, 0.4125399887561798, -0.03298399969935417, -0.7134600281715393, -0.19099000096321106, 0.01344200037419796, -0.3065600097179413, 0.2215700000524521, -0.2722499966621399, -0.3679099977016449, -0.9896299839019775, -0.3688200116157532, 0.16576999425888062, -0.3625899851322174, 0.2616899907588959, 0.16332000494003296, -0.1320600062608719, -0.15307000279426575, -0.2663699984550476, 0.58815997838974, 0.648360013961792, 0.037129998207092285, 0.22206999361515045, -0.32965999841690063, -0.5860700011253357, -0.4280700087547302, -0.3278700113296509, -0.8241099715232849, -0.13436999917030334, 0.028084000572562218, 0.2331400066614151, 0.3683899939060211, -0.2632899880409241, -0.0691400021314621, -0.0367249995470047, 0.322160005569458, -0.5042600035667419, 0.4146299958229065, -0.3216800093650818, 0.22463999688625336, -0.6372799873352051, 0.013683999888598919, 0.9792900085449219, -0.0006413999944925308, -0.32510000467300415, 0.09183699637651443, -0.21695999801158905, 0.9944999814033508, -0.0070814997889101505, 0.07033900171518326, -0.7610899806022644, -0.13308000564575195, 0.3665100038051605, 0.5422099828720093, 0.5267999768257141, 0.026605000719428062, 0.39122000336647034, -0.9233700037002563, -0.6154000163078308, -0.3410699963569641, 0.513979971408844, 0.7303000092506409, -0.21201999485492706, -0.24178999662399292, 0.13888999819755554, -0.21435000002384186, 0.13033999502658844, -0.5455800294876099, 0.4950999915599823, -0.17461000382900238, -0.4072999954223633, 0.19160999357700348, -0.11573000252246857, -0.058014001697301865, -0.3139599859714508, -1.052299976348877, 0.11879000067710876, -0.004033899866044521, -0.06697200238704681, 0.3881100118160248, -0.15758000314235687, 0.3373500108718872, 0.7082599997520447, 0.24105000495910645, -0.363209992647171, -0.5336599946022034, -0.15639999508857727, 0.5153800249099731, -0.0759890004992485, -1.0789999961853027, -0.1687300056219101, -0.42546001076698303, 0.22734999656677246, 0.12533999979496002, 0.7747600078582764, 0.1742600053548813, 1.0062999725341797, 0.33945998549461365, 0.20985999703407288, 0.05042000114917755, 0.17946000397205353, 0.4034999907016754, 0.02195099927484989, -0.2560200095176697, 0.09057100117206573, -0.04645499959588051, 0.7434399724006653, -0.12067999690771103, 1.0295000076293945, -0.015440000221133232, 0.07715000212192535, 0.3813300132751465, 0.29954999685287476, -0.11349000036716461, 0.06161399930715561, 0.023932000622153282, 0.6867200136184692, 0.37327998876571655, -0.31735000014305115, 0.13589000701904297, 0.100040003657341, -0.43952998518943787, -0.17003999650478363, -0.321260005235672, -0.31066998839378357, 0.23454999923706055, 0.2335900068283081, -0.20106999576091766, 0.6071100234985352, 0.07596000283956528, 0.048468999564647675, -0.5053899884223938, -0.09065999835729599, 0.012907999567687511, 0.05458199977874756, -0.054878998547792435, 0.07045300304889679, -0.406360000371933, -0.40900999307632446, -0.04399200156331062, 0.35763999819755554, -0.48941999673843384, -0.23699000477790833, 0.30974000692367554, -0.46241000294685364, 0.36287999153137207, -0.39945998787879944, -0.1814199984073639, -0.008555700071156025, 0.035371001809835434, -0.12624000012874603, 0.21990999579429626, 0.5753399729728699, -0.30855000019073486, 0.36862000823020935, 0.149959996342659, -0.039751000702381134, -0.3905999958515167, -0.19537000358104706, -0.6911699771881104, -0.01066100038588047, -0.6654300093650818, -0.3297399878501892, -0.12342999875545502, -0.6621099710464478, 0.6137999892234802, -0.2551800012588501, 0.7578399777412415, -0.1514900028705597, -0.3266400098800659, 0.43241000175476074, 1.2418999671936035, 0.6049500107765198, -0.4894599914550781, -0.0307180006057024, 0.04542100057005882, -0.2042199969291687, -0.6118999719619751, 0.9125499725341797, 0.08146899938583374, -0.37610000371932983, 0.2040500044822693, 0.3174099922180176, -0.3471499979496002, 0.15408000349998474, 0.3805600106716156, -0.24320000410079956, 0.3467499911785126, -0.024538999423384666, -0.07591000199317932, -0.5169199705123901, 0.33948999643325806, -0.20385000109672546, 0.8934500217437744, 0.30531999468803406, 0.6686999797821045, -0.08830200135707855, -0.24886000156402588, -0.21984000504016876, -0.06476899981498718, -0.44218000769615173, 0.33160001039505005, -0.4510299861431122, -0.09206099808216095, -0.2127400040626526, 0.09550800174474716, 0.43487998843193054, 0.03488900139927864, -0.44753000140190125, 0.06630799919366837, 0.17207999527454376, 0.3790299892425537, 0.8129299879074097, 0.44589000940322876, 0.34902000427246094, -0.40178999304771423, -0.3420099914073944, 0.6049200296401978, -0.045850999653339386, -0.4782699942588806], u'orange': [-0.24775999784469604, -0.12358999997377396, 0.20985999703407288, -0.15834000706672668, -0.158270001411438, -0.9011600017547607, -0.09570199996232986, -0.2300499975681305, 0.27094000577926636, -0.18885000050067902, -0.6093999743461609, -0.2914600074291229, -0.14546999335289001, -0.17565999925136566, 0.7756999731063843, 0.23427000641822815, -0.7333999872207642, -0.3403399884700775, -0.5699700117111206, -0.046918001025915146, 0.024907000362873077, -0.1827400028705597, 0.14791999757289886, 0.18594999611377716, -0.0466650016605854, -0.5565699934959412, -0.3818199932575226, 0.21154999732971191, -1.138800024986267, 0.2463199943304062, -0.27489998936653137, -0.21952000260353088, -0.6977099776268005, 0.05891000106930733, -0.3705799877643585, 1.0525000095367432, -0.1956299990415573, -0.1786399930715561, -0.24309000372886658, 0.021317999809980392, -0.05516500025987625, -0.27761000394821167, -0.217849999666214, 0.5232300162315369, 0.16325999796390533, -0.5455700159072876, 0.0014318999601528049, -0.08784600347280502, 0.6144300103187561, -0.725820004940033, -0.06120600178837776, 0.3518199920654297, 0.5500100255012512, -0.6703799962997437, -0.06033900007605553, -0.0018221000209450722, -0.28547000885009766, -0.36713001132011414, 0.6633399724960327, -0.8300399780273438, -0.26006001234054565, -0.3976300060749054, -0.387719988822937, 0.4136100113391876, 0.22863000631332397, -0.6484000086784363, -0.14765000343322754, -0.13465000689029694, -0.18153999745845795, -0.548550009727478, -0.07490000128746033, 0.21008999645709991, 0.05589799955487251, 0.5410699844360352, -0.5395600199699402, -0.289110004901886, -0.06219499930739403, 0.03349599987268448, -0.27441999316215515, -0.24379000067710876, 0.6012300252914429, 0.3373500108718872, -0.45934000611305237, 0.22089000046253204, 0.28856000304222107, -0.5455099940299988, 0.03418299928307533, 0.48993000388145447, 0.038961999118328094, -0.04527299851179123, 0.15440000593662262, -0.3797999918460846, -0.11647000163793564, 0.061434999108314514, -0.4374299943447113, 0.7728899717330933, 0.3194200098514557, -0.0697380006313324, 0.023406999185681343, 0.10732000321149826, -0.08948899805545807, -0.10486000031232834, 0.04256900027394295, -0.026283999904990196, 0.3334299921989441, 0.212349995970726, 0.07399000227451324, 0.1830500066280365, -0.5078700184822083, 0.11003000289201736, -0.41797998547554016, 0.10016000270843506, 0.5114499926567078, 0.03635700047016144, 0.04974700137972832, -0.25303998589515686, -0.11242000013589859, 0.8452399969100952, -0.09808299690485, -0.44179001450538635, 0.35958001017570496, -0.6562299728393555, 0.39122000336647034, -0.35646000504493713, -0.7998700141906738, -0.055275000631809235, -0.038644999265670776, 0.4357199966907501, 0.07128500193357468, 0.4419200122356415, -0.40933001041412354, 0.026579000055789948, -0.5595099925994873, 0.18181000649929047, -0.16561000049114227, -0.17276999354362488, -0.20476000010967255, -0.47508999705314636, 0.19046999514102936, 0.02533699944615364, 0.5610899925231934, 0.23522000014781952, -0.048615001142024994, 0.02029399946331978, 0.1580200046300888, 0.45451000332832336, -0.23931999504566193, 0.06862200051546097, 0.5082100033760071, -0.24706000089645386, 0.8049299716949463, 0.05498899891972542, 0.46608999371528625, -0.1808300018310547, 0.7378299832344055, -0.27206000685691833, 0.2641800045967102, -0.4946100115776062, -0.024972999468445778, 0.1933099925518036, -0.3761500120162964, 0.3346799910068512, -0.2435300052165985, 0.18171000480651855, 0.04149699956178665, -0.06338799744844437, 0.03601500019431114, 0.2895199954509735, -0.5293499827384949, -0.06390299648046494, 0.692110002040863, 0.12150000035762787, -0.6273099780082703, 0.2662700116634369, 0.36438000202178955, -0.7710800170898438, 0.40560999512672424, -0.3077999949455261, 0.5591899752616882, -0.32124000787734985, -0.1427599936723709, 0.07034599781036377, 0.19113999605178833, -0.3928999900817871, 0.004515999928116798, -0.7387099862098694, 0.8073999881744385, 0.13539999723434448, -0.12414000183343887, -0.7956799864768982, 0.058827001601457596, 0.48552000522613525, -0.29019999504089355, -0.1130099967122078, 0.018115000799298286, -0.16891999542713165, -0.4266299903392792, -0.2062000036239624, -0.21115000545978546, 0.4212599992752075, 0.9180200099945068, 0.0701799988746643, -0.01013300009071827, -0.16455000638961792, 0.21174000203609467, 0.14026999473571777, 0.5228899717330933, 0.759190022945404, 0.05075199902057648, 0.7546700239181519, -0.007933000102639198, 0.23611000180244446, -0.6852200031280518, -0.42566999793052673, 0.3409099876880646, 0.02098499983549118, 1.051800012588501, -0.03134499862790108, -0.08606100082397461, -0.5776799917221069, 1.3026000261306763, -0.37066999077796936, -0.35319000482559204, 0.05228099972009659, -0.16381999850273132, -0.46568000316619873, -0.10995999723672867, -0.4207099974155426, -0.5061600208282471, -0.5033699870109558, -0.3158299922943115, 0.4721600115299225, -0.053557999432086945, 0.15372000634670258, 0.31000998616218567, -0.10349000245332718, 0.1790899932384491, -0.32471001148223877, -0.16193999350070953, -0.5347899794578552, -0.13763999938964844, -0.7111799716949463, 0.18694999814033508, 0.1693200021982193, -0.7379900217056274, 0.03736399859189987, 1.020900011062622, -0.42802000045776367, 0.13443000614643097, -0.35760998725891113, 0.3981899917125702, 0.4380199909210205, -0.1639699935913086, -0.15302999317646027, 0.271369993686676, -0.5281000137329102, 0.31446999311447144, -0.11778999865055084, 0.275299996137619, -0.20476999878883362, 0.19547000527381897, 0.1483200043439865, 0.7838000059127808, -0.347460001707077, -0.5382000207901001, -0.7468400001525879, -0.30636999011039734, -0.23923000693321228, -0.16769999265670776, 0.30750998854637146, -0.11027999967336655, -0.007679900154471397, -0.2139499932527542, -0.055121999233961105, -0.4410400092601776, 0.13752000033855438, -1.3947999477386475, -0.11890999972820282, -0.36035001277923584, 0.05143199861049652, 0.008985799737274647, -0.029621999710798264, -0.2038400024175644, -0.23499999940395355, -0.06545300036668777, 0.5482800006866455, -0.331959992647171, -0.11157000064849854, -0.005047900136560202, 0.13196000456809998, 0.3384400010108948, -0.15592999756336212, -0.10277000069618225, -0.08295299857854843, 0.43792998790740967, -0.22457000613212585, 0.31512999534606934, 0.0797170028090477, 0.23864999413490295, -0.014213000424206257], u'furniture': [0.2879300117492676, 0.10170000046491623, -0.6632099747657776, -0.3328799903392792, -0.07068400084972382, -0.11704999953508377, 0.5600500106811523, -0.16865000128746033, -0.18546999990940094, -1.080899953842163, -0.27191001176834106, -0.10354000329971313, 0.07688099890947342, 0.2826499938964844, 0.3684200048446655, -0.5241900086402893, 0.14218999445438385, 0.3217099905014038, 0.24828000366687775, -0.11710000038146973, 0.5079699754714966, 0.4826900064945221, 0.401529997587204, -0.01259199995547533, -0.08412999659776688, -0.24316999316215515, -0.7035700082778931, -0.06500499695539474, 0.13815000653266907, 0.5220500230789185, 0.11556000262498856, 1.1104999780654907, -0.16440999507904053, 0.45882999897003174, -0.6487399935722351, 0.2875800132751465, -0.34904998540878296, -0.5207300186157227, 0.21358999609947205, -0.38530001044273376, -0.43884000182151794, -0.4136900007724762, 0.04776399955153465, -0.29374998807907104, -0.013895000331103802, 0.027101000770926476, 0.39524999260902405, -0.21509000658988953, -0.06926900148391724, -0.2100200057029724, 0.16830000281333923, -0.020069999620318413, 0.012252000160515308, 0.031222999095916748, -0.3190000057220459, -0.07209599763154984, -0.46764999628067017, -0.17855000495910645, -0.08872800320386887, -0.04049599915742874, 0.06234600022435188, 0.07220099866390228, 0.07961200177669525, -0.1767600029706955, 0.1073400005698204, -0.2025900036096573, -0.5039700269699097, -0.0743589997291565, -0.15817999839782715, -0.3865799903869629, -0.3092400133609772, -0.6970999836921692, -0.29938000440597534, -0.07273200154304504, 0.015367000363767147, 0.3233799934387207, -0.3306399881839752, -0.05425899848341942, -0.007138700224459171, -0.6454200148582458, -0.3633599877357483, 0.07767099887132645, -0.25786998867988586, -0.17529000341892242, 0.43018999695777893, -0.18831999599933624, -0.3616900146007538, -0.31226998567581177, -0.34060999751091003, 0.6136699914932251, 0.531499981880188, -0.16121000051498413, 0.20061999559402466, 0.08767899870872498, 0.30441999435424805, -0.1761299967765808, -0.07031600177288055, -0.769070029258728, 0.017416000366210938, -0.2869099974632263, -0.02006799913942814, 0.4056200087070465, 0.06114500015974045, -0.20272000133991241, -0.049977000802755356, -0.725629985332489, 0.4398399889469147, -0.30893000960350037, 0.3125999867916107, -0.3421100080013275, -0.0024248999543488026, -0.3373599946498871, -0.4771699905395508, -0.12862999737262726, 0.10608000308275223, 0.04122300073504448, 0.08205799758434296, 0.31283000111579895, -0.23095999658107758, -0.026496000587940216, 0.45989999175071716, 0.015236999839544296, 0.14052000641822815, -0.03949899971485138, -0.1439799964427948, 0.5381100177764893, -0.059140998870134354, 0.14681999385356903, 0.24955999851226807, 0.3969399929046631, 0.48927000164985657, 0.3030399978160858, 0.4773100018501282, -0.12054000049829483, 0.31661999225616455, -0.004521199967712164, 0.16571000218391418, 0.4026300013065338, -0.32308000326156616, 0.26061001420021057, 0.2379699945449829, 0.18127000331878662, 0.7674599885940552, 0.25508999824523926, 0.7516999840736389, 0.32378000020980835, 0.12818999588489532, 0.5608400106430054, -0.6273599863052368, -0.7227799892425537, 0.19092999398708344, 0.14030000567436218, -0.3764599859714508, -0.7795299887657166, -0.7971699833869934, 0.2634199857711792, -0.44020000100135803, -0.1787700057029724, 0.07543099671602249, -0.09569600224494934, 0.5834500193595886, 0.28150999546051025, -0.21028000116348267, 0.11694999784231186, 0.8996400237083435, 0.2953200042247772, 0.7457600235939026, 0.1073400005698204, 0.41356998682022095, 0.6133300065994263, -0.24570000171661377, 0.17076000571250916, -0.40648001432418823, 0.3628700077533722, -0.0021244999952614307, 0.1559700071811676, -0.1982399970293045, 0.21893000602722168, -0.19559000432491302, -0.5217800140380859, -0.08135999739170074, -0.7869300246238708, 0.057353999465703964, 0.029014000669121742, 0.21755999326705933, -0.18748000264167786, 0.25196000933647156, 0.2852500081062317, 0.41260001063346863, 0.3366999924182892, 0.19394999742507935, 0.004717899952083826, -0.4910599887371063, 0.04746200144290924, 0.15294000506401062, 0.2169400006532669, -0.588919997215271, 0.8276100158691406, -0.523360013961792, 0.09288500249385834, 0.16729000210762024, -0.7281200289726257, 0.020344000309705734, -0.260560005903244, 0.41418999433517456, -0.24379000067710876, 0.36237001419067383, 0.062164001166820526, -1.1054999828338623, -0.3285500109195709, -0.14291000366210938, 0.3442400097846985, 0.31244999170303345, -0.11661999672651291, 0.4118199944496155, 0.5152599811553955, 0.5363799929618835, -0.062401000410318375, -0.10243000090122223, -0.2621999979019165, 0.5264300107955933, -0.5538300275802612, -0.5491899847984314, -0.49323999881744385, -0.4120599925518036, 0.5520600080490112, 0.03526899963617325, 0.6246100068092346, 0.5922600030899048, -0.009066100232303143, 0.14834000170230865, -0.2620300054550171, -0.04692300036549568, 0.507319986820221, 0.6991699934005737, 0.08202499896287918, 0.05177599936723709, -0.14871999621391296, -0.9417099952697754, 0.037241000682115555, 0.2484399974346161, -0.04810300096869469, -0.5167400240898132, 0.517769992351532, -0.12557999789714813, 0.14374999701976776, -0.2851699888706207, 0.07683400064706802, -0.024692000821232796, 0.41495001316070557, 0.3191800117492676, -0.14151999354362488, -0.031151000410318375, -0.7999600172042847, 1.0684000253677368, 0.2757300138473511, -0.6056200265884399, 0.16350999474525452, 0.6867899894714355, 0.03789500147104263, 0.06038700044155121, -0.7957500219345093, -0.49632999300956726, -0.14061999320983887, 0.2075899988412857, -0.3343299925327301, 0.14994999766349792, 0.04329700022935867, 0.6432899832725525, -0.005141799803823233, -0.17663000524044037, 0.2701900005340576, -0.07544399797916412, -0.570930004119873, -0.5136799812316895, 0.11924999952316284, -0.9453200101852417, 0.4372600018978119, -1.1604000329971313, -0.26078000664711, -0.30682000517845154, -0.16857999563217163, 0.15252000093460083, -0.5585600137710571, 0.537090003490448, 0.7450799942016602, 0.17818999290466309, 0.3912999927997589, -0.11304999887943268, -0.2856200039386749, 0.2904199957847595, -0.11935000121593475, 0.10604999959468842, 0.2775000035762787, -0.0371600016951561, 0.19202999770641327, 0.3248800039291382, -0.04304900020360947, 0.22250999510288239, 0.5167800188064575], u'sauce': [-0.4912799894809723, 0.08678100258111954, 0.45028001070022583, -0.2935999929904938, -0.2700999975204468, -0.9139900207519531, -0.3487299978733063, 0.3296799957752228, 0.439520001411438, -0.20037999749183655, 0.6023899912834167, -0.5339699983596802, -0.15737999975681305, 0.7094500064849854, -0.04077399894595146, -0.16850000619888306, -0.2849400043487549, 0.4675300121307373, -0.3402400016784668, 0.011261999607086182, -0.2944500148296356, 0.15622000396251678, -0.390610009431839, -0.06457699835300446, -0.08048400282859802, 0.007212100084871054, 0.2456900030374527, 0.3045499920845032, -0.695930004119873, -1.0498000383377075, -1.2414000034332275, 0.35879001021385193, -0.5421599745750427, -0.1022299975156784, -0.08626999706029892, 0.8935400247573853, 0.06863900274038315, 0.24318000674247742, 0.32008999586105347, -0.17941999435424805, 0.28591999411582947, -0.44200000166893005, 0.24247999489307404, 0.4338099956512451, 0.4815100133419037, -0.08582700043916702, 0.6686199903488159, 0.7315300107002258, -0.5763900279998779, 0.4736199975013733, 0.16269999742507935, -0.24821999669075012, 0.5798799991607666, -0.350380003452301, -0.7595999836921692, 0.005692299921065569, -0.34953999519348145, -0.4933199882507324, 0.652999997138977, -0.11203999817371368, 0.4807800054550171, -0.21683000028133392, 0.4894300103187561, -0.15936000645160675, -0.045361001044511795, -0.5789300203323364, -0.572950005531311, 0.4389300048351288, 0.03179600089788437, -0.2590000033378601, -0.24964000284671783, -0.3422900140285492, 0.058038000017404556, -0.13325999677181244, -0.5112299919128418, -0.257779985666275, 0.9112899899482727, 0.38433000445365906, -0.626579999923706, -0.6764000058174133, 0.10444000363349915, 0.6102399826049805, -0.0011901999823749065, -0.4240399897098541, 0.5981600284576416, -0.616159975528717, -0.24862000346183777, 0.5285500288009644, -0.3306899964809418, -0.674780011177063, -0.028737999498844147, 0.13300999999046326, -0.02261500060558319, 0.13062000274658203, 0.001590500003658235, 0.3195500075817108, 0.22934000194072723, 0.8839399814605713, 0.2747099995613098, 0.6643099784851074, 0.5510299801826477, 0.08673900365829468, 0.17294000089168549, -0.43015000224113464, -0.37143000960350037, -0.6429299712181091, -0.19731000065803528, -0.016047000885009766, -0.5163300037384033, 0.7140899896621704, 0.7308499813079834, 0.3958800137042999, -0.6976799964904785, -0.7676699757575989, -0.20976999402046204, -0.4062899947166443, -1.1658999919891357, 0.6307700276374817, 0.5982699990272522, -0.17903000116348267, -0.3435699939727783, -0.24639999866485596, 0.21332000195980072, -0.24350999295711517, -0.05949300155043602, -0.569100022315979, 0.026984000578522682, 0.3686800003051758, -0.3999600112438202, 1.5508999824523926, -0.08703599870204926, 0.9812399744987488, -0.2776300013065338, 0.9264000058174133, 0.1600400060415268, -0.495959997177124, -0.4697900116443634, -0.042472999542951584, -0.018066000193357468, 0.1626099944114685, 0.44604000449180603, 0.3743799924850464, -0.4851599931716919, -0.15355999767780304, -0.239329993724823, 0.1617099940776825, -0.686020016670227, 0.2845500111579895, -0.04755600169301033, -0.13213999569416046, -0.9258099794387817, 0.5341500043869019, -0.2056799978017807, -0.5968199968338013, -0.1954600065946579, -0.9164000153541565, 0.16881999373435974, -0.6952000260353088, 0.2980499863624573, -0.04011800140142441, 0.41479000449180603, -0.0297279991209507, -0.2014700025320053, -0.3555000126361847, 5.430699820863083e-05, -0.6569799780845642, -0.15669000148773193, 0.40939000248908997, -0.30101001262664795, -1.0252000093460083, 0.19512000679969788, 0.12865999341011047, -0.5149199962615967, -0.0520550012588501, -0.28077998757362366, -0.3441999852657318, -0.2556900084018707, -0.4133000075817108, 0.8656299710273743, -0.9536399841308594, 0.26576000452041626, 0.5355100035667419, -0.20667999982833862, -0.37786999344825745, 0.2021699994802475, -0.6403200030326843, 0.8085200190544128, 0.12176000326871872, -0.4898500144481659, 0.04730900004506111, 0.2693299949169159, 0.8985400199890137, -0.5151500105857849, 0.3726600110530853, 0.20855000615119934, -0.26232999563217163, -0.40217000246047974, 0.4501500129699707, -0.6263499855995178, 0.09183800220489502, 0.2302200049161911, 0.10803999751806259, 1.1482000350952148, 0.7099999785423279, -0.3960399925708771, 0.797510027885437, 0.3500399887561798, 0.05378499999642372, -0.2218800038099289, -0.4264400005340576, 0.48840999603271484, -0.4711500108242035, -0.1723800003528595, 0.2607100009918213, -0.49031999707221985, -0.027354000136256218, 0.5867999792098999, -0.48747000098228455, 0.0322830006480217, 0.39166998863220215, -0.027691999450325966, 0.15365999937057495, -0.7025399804115295, -0.7036299705505371, -0.3439300060272217, -0.6671000123023987, 0.5698400139808655, -0.0014612999511882663, -0.25411999225616455, -0.2315800040960312, -0.3188300132751465, -0.16444000601768494, 0.30737000703811646, 0.2574700117111206, 0.9469500184059143, 0.15188999474048615, 0.23837999999523163, 0.37345999479293823, -0.25169000029563904, 0.2633500099182129, -0.6885799765586853, -0.18345999717712402, -0.13102999329566956, 0.06240199878811836, -0.6977400183677673, 0.17291000485420227, 0.6440600156784058, -0.018814999610185623, -0.22711999714374542, -1.2973999977111816, 0.5178599953651428, -0.4300999939441681, 0.08817099779844284, 0.6949800252914429, -0.7227200269699097, 0.17862999439239502, -0.8801299929618835, 0.32853999733924866, 0.05117600038647652, 0.8358500003814697, -0.07459600269794464, 0.048020001500844955, -0.011309999972581863, -0.33858001232147217, 0.31286001205444336, -0.16674000024795532, -0.6057199835777283, -0.06600400060415268, 0.42937999963760376, -0.10734999924898148, -0.16854999959468842, -0.4920800030231476, 0.25916001200675964, 0.8906300067901611, 0.47238001227378845, 0.8729900121688843, -0.47464001178741455, -0.19812999665737152, -1.246500015258789, -0.49066999554634094, 0.3214600086212158, 0.4853399991989136, -0.025888999924063683, -0.2016099989414215, -0.3012999892234802, 0.3393700122833252, 0.8394299745559692, -0.2210099995136261, 0.5507100224494934, 0.6546400189399719, -0.37185999751091003, 0.46553000807762146, 0.6421899795532227, -0.09417299926280975, -0.2672399878501892, -0.8180400133132935, 0.01742600090801716, -0.6424700021743774, -0.24448999762535095, 0.1559700071811676], u'persimmon': [0.5388299822807312, 0.06907899677753448, 0.8176800012588501, 0.25977998971939087, -0.5052800178527832, -0.5225800275802612, 0.19272999465465546, 0.3228600025177002, 0.3251599967479706, 1.1461999416351318, -0.3867399990558624, 0.3168500065803528, 0.1064700037240982, 0.23552000522613525, 0.19652000069618225, -0.5372800230979919, 0.08672299981117249, -0.0880960002541542, -0.19821999967098236, -0.5305299758911133, -0.13681000471115112, -0.018720999360084534, -0.11999999731779099, 0.03800800070166588, -0.41391000151634216, -0.7345600128173828, -0.22367000579833984, -0.07356099784374237, -0.07690399885177612, 0.2043199986219406, -0.5019500255584717, 0.22495000064373016, -0.15987999737262726, -0.1141899973154068, 0.33208999037742615, 0.4683699905872345, -0.32774001359939575, -0.4298500120639801, -0.1190200001001358, 0.328359991312027, 0.03308900073170662, -0.14565999805927277, -0.11358000338077545, -0.4480699896812439, -0.13888999819755554, -0.34911999106407166, 0.1032399982213974, -0.08347900211811066, 0.3709299862384796, -0.46046000719070435, 0.2327899932861328, 0.12442000210285187, 0.3513199985027313, 0.30024001002311707, -0.07081300020217896, -0.19333000481128693, 0.13490000367164612, -0.22300000488758087, 0.012381999753415585, 0.7963100075721741, 0.28453001379966736, 0.09931699931621552, 0.0926709994673729, 0.42594000697135925, 0.044374000281095505, 0.12375999987125397, -0.32475000619888306, 0.17663000524044037, -0.0490260012447834, -0.4278799891471863, 0.05437399819493294, 0.3470599949359894, -0.9222000241279602, 0.2944900095462799, -0.17069000005722046, 0.3909200131893158, -0.07920800149440765, 0.07957600057125092, -0.547760009765625, 0.12512999773025513, -0.16112999618053436, 0.22301000356674194, 0.16118000447750092, -0.3452399969100952, 0.05602499842643738, -0.1022299975156784, -0.7440800070762634, -0.08133599907159805, 0.21006999909877777, -0.20464999973773956, 0.11534000188112259, -0.5141199827194214, 0.4448699951171875, -0.17746999859809875, 0.3719399869441986, 0.04616999998688698, 0.23362000286579132, -0.21067999303340912, -0.13169999420642853, 0.09418900310993195, -0.16103999316692352, 0.0844929963350296, -0.12247999757528305, 0.08784700185060501, 0.3268299996852875, 0.2643899917602539, 0.14143000543117523, 0.010023999959230423, -0.4302299916744232, -0.1852799952030182, 0.21483999490737915, 0.02617100067436695, 0.06086000055074692, -0.02127699926495552, 0.28418999910354614, -0.0855410024523735, -0.42517000436782837, -0.04405000060796738, 0.34299999475479126, -0.028630999848246574, -0.09972099959850311, -0.29269999265670776, 0.5571600198745728, 0.1599700003862381, -0.32023999094963074, -0.24728000164031982, -0.29482999444007874, 0.23205000162124634, 0.41837000846862793, -0.46154001355171204, -0.6409000158309937, 0.7137399911880493, 0.5252400040626526, 0.8786100149154663, -0.4032900035381317, 0.04155600070953369, -0.7378900051116943, -0.45451998710632324, -0.3264099955558777, -0.011126999743282795, 0.9007400274276733, 0.24121999740600586, 0.334879994392395, 0.019504999741911888, 0.8051900267601013, 0.3768700063228607, -0.2604900002479553, -0.42893001437187195, -0.36748000979423523, -0.18977999687194824, -0.8392000198364258, 0.38012000918388367, 0.25918999314308167, 0.009673899970948696, -0.1481499969959259, -0.4976300001144409, 0.24303999543190002, -0.7193800210952759, 0.10847999900579453, 0.5359299778938293, -0.11716999858617783, 0.3841499984264374, -0.1173200011253357, 0.0270409993827343, -0.13892999291419983, 0.01867399923503399, -0.10842999815940857, 0.058035001158714294, -0.19915999472141266, -0.8992599844932556, -0.0014615999534726143, -0.21145999431610107, 0.2074500024318695, 0.5023999810218811, 0.15785999596118927, -0.05256899818778038, -0.7759000062942505, -0.11588999629020691, 0.9560999870300293, 0.1415800005197525, -0.2098899930715561, 0.00268030003644526, 0.4878099858760834, -0.09927300363779068, 0.11638999730348587, -0.6862999796867371, 0.5311499834060669, 0.21671999990940094, -0.2698499858379364, 0.31700000166893005, -0.7327799797058105, -0.08250000327825546, 0.2362699955701828, -0.047850001603364944, 0.12794999778270721, 0.1869100034236908, 0.07333000004291534, 0.4612100124359131, -0.28738000988960266, -0.05543600022792816, -0.1655299961566925, -0.5201900005340576, -0.2951900064945221, 0.2632000148296356, -0.1622599959373474, 0.9936800003051758, 0.19461999833583832, 0.49900001287460327, -0.23206999897956848, 0.054340001195669174, -0.3763200044631958, -0.24908000230789185, -0.13253000378608704, -0.4971199929714203, 0.33608001470565796, 0.12724000215530396, 0.4248499870300293, -0.10256999731063843, 0.3515999913215637, 0.012613000348210335, 0.4472399950027466, -0.7318699955940247, -0.544160008430481, 0.10498999804258347, -0.5730500221252441, 0.33733001351356506, -0.15487000346183777, 0.23844000697135925, 0.4164699912071228, 0.03070100024342537, -0.4444499909877777, -0.055642999708652496, -0.4697999954223633, 0.5534600019454956, 0.1848199963569641, 0.5357999801635742, 0.1265300065279007, -0.6107800006866455, -0.11766000092029572, -0.16870999336242676, 0.014475000090897083, 0.10367000102996826, -0.43035000562667847, -0.12658999860286713, -0.02590099908411503, 0.5347499847412109, -0.0698930025100708, 0.26864999532699585, 0.6594499945640564, 0.027816999703645706, -0.08632700145244598, 0.3519800007343292, -0.26969000697135925, -0.8441699743270874, -0.16514000296592712, -0.1564600020647049, -0.19674000144004822, 0.39785999059677124, 0.4241200089454651, 0.3946099877357483, 0.2715199887752533, 0.2309200018644333, -0.45892998576164246, -0.18564000725746155, 0.13991999626159668, 0.13634000718593597, 0.05447499826550484, 0.060113999992609024, 0.43522000312805176, 0.39289000630378723, 0.0044339001178741455, 0.1550000011920929, 0.16210000216960907, -0.2179500013589859, -0.13404999673366547, -0.23518000543117523, 0.9390299916267395, -0.09654200077056885, -0.16381999850273132, -0.1266999989748001, -0.3238399922847748, 0.15549999475479126, -0.08449900150299072, -0.1628199964761734, -0.3609299957752228, 0.45399999618530273, 0.2907100021839142, -0.5715000033378601, 0.29875001311302185, 0.1463399976491928, 0.20223000645637512, -0.3928999900817871, 0.7607399821281433, 0.28075000643730164, -0.042118001729249954, 0.07041700184345245, -0.04766400158405304, 0.049010999500751495, 0.3722499907016754, 0.4234499931335449], u'boulder': [-0.462909996509552, 0.4040699899196625, -0.18230000138282776, 0.05449200049042702, 0.47565001249313354, -0.2337300032377243, 0.36063000559806824, -0.3552800118923187, 0.2973099946975708, 0.22642000019550323, -0.11151000112295151, 0.1633400022983551, 0.16539999842643738, 0.05408100038766861, 0.22529000043869019, 0.39544999599456787, 0.2738400101661682, 0.14128999412059784, 0.404229998588562, 0.04613799974322319, 0.027977000921964645, 0.24381999671459198, 0.06596799939870834, 0.23492999374866486, -0.49314001202583313, -0.1261499971151352, -0.09884600341320038, 0.3693700134754181, -0.586899995803833, -0.23690000176429749, 0.44780999422073364, -0.09896399825811386, -0.16372999548912048, 0.00389509997330606, 0.04602399840950966, -0.019990000873804092, -0.40832000970840454, -0.04343299940228462, 0.02221900038421154, -0.5066099762916565, -0.3183099925518036, 0.52947998046875, 0.37988001108169556, 0.21455000340938568, 0.3077999949455261, 0.1728300005197525, 0.3396100103855133, -0.07902099937200546, 0.42500001192092896, -0.34512999653816223, 0.24887999892234802, -0.30052998661994934, -0.2485799938440323, 0.21714000403881073, 0.31602001190185547, 0.3878200054168701, -0.2721500098705292, -0.3355099856853485, -0.07605700194835663, -0.22120000422000885, -0.040883999317884445, 0.21407000720500946, 0.6119700074195862, 0.17095999419689178, 0.016032999381422997, -0.1927500069141388, -0.41822001338005066, 0.42214998602867126, -0.5049200057983398, -0.39921998977661133, -0.13199999928474426, 0.2785399854183197, -0.5737000107765198, 0.4606199860572815, -0.034157998859882355, 0.24911999702453613, 0.11108999699354172, 0.3399699926376343, -0.31540998816490173, -0.06936000287532806, -0.06837199628353119, -0.02835099957883358, -0.1216999962925911, 0.19021999835968018, -0.16220000386238098, -0.44541001319885254, -0.01674100011587143, 0.4728899896144867, -0.4151400029659271, -0.043115999549627304, 0.22458000481128693, 0.45028001070022583, 0.6726300120353699, 0.199070006608963, 0.15620000660419464, 0.1877100020647049, -0.16925999522209167, -0.18039999902248383, -0.1243399977684021, -0.22612999379634857, -0.0685880035161972, 0.1832900047302246, -0.4517099857330322, -0.11347000300884247, -0.3103100061416626, -0.007965600118041039, 0.6881099939346313, 0.4037800133228302, 0.14213000237941742, -0.489190012216568, -0.7330499887466431, -0.46900999546051025, -0.10033000260591507, -0.26662999391555786, 0.12195999920368195, 0.2624399960041046, 0.20467999577522278, -0.5083699822425842, 0.4168500006198883, 0.2150000035762787, 0.6952400207519531, 0.5321999788284302, 0.26868999004364014, -0.03927600011229515, -0.5188500285148621, -0.2998200058937073, 0.3374199867248535, -0.2962000072002411, -0.2776600122451782, 0.13008999824523926, -0.19422000646591187, 0.4113599956035614, -0.023684000596404076, 0.6358000040054321, 0.1092199981212616, -0.09667400270700455, -0.09474000334739685, 0.3543500006198883, 0.1552799940109253, -0.335999995470047, 0.3984900116920471, 0.12002000212669373, -0.2882300019264221, -0.08698900043964386, 0.3434999883174896, -0.32280001044273376, 0.3201099932193756, 0.5331199765205383, 0.520550012588501, 0.10044000297784805, 0.5682799816131592, 0.05578799918293953, -0.20770999789237976, 0.10198000073432922, 0.26120999455451965, 0.38839998841285706, 0.5492299795150757, -0.5568400025367737, -0.7876899838447571, -0.11067000031471252, 0.08299700170755386, -0.34132999181747437, 0.06640499830245972, -0.47672000527381897, 0.7374899983406067, -0.3418999910354614, 0.45921000838279724, -0.47211000323295593, -0.30667999386787415, -0.2128099948167801, 0.10233999788761139, 0.003959100227802992, 0.20291000604629517, -0.17384999990463257, -0.03916199877858162, 0.24557000398635864, 0.28248998522758484, -0.05982999876141548, -0.1530199944972992, -0.3911600112915039, 0.1962900012731552, 0.06789799779653549, 0.4160600006580353, 0.03341799974441528, 0.15851999819278717, -0.6410599946975708, 0.18310000002384186, 0.18314999341964722, 0.3375900089740753, -0.25290998816490173, 0.25547000765800476, 0.02691599912941456, -0.1459999978542328, 0.5723000168800354, -0.3961000144481659, 0.18452000617980957, -0.10752999782562256, 0.06859900057315826, -0.24434000253677368, -0.020795000717043877, 0.4782100021839142, -0.21873000264167786, -0.6026300191879272, -0.047221001237630844, -0.19444000720977783, 0.028471000492572784, -0.0563029982149601, 0.2775000035762787, -0.010963000357151031, 0.05010300129652023, -0.0031647998839616776, 0.6249399781227112, -0.0008415200281888247, -0.3543199896812439, -0.025640999898314476, 0.42497000098228455, -0.8644800186157227, -0.2463199943304062, 0.03673100098967552, -0.29495999217033386, 0.03465000167489052, 0.2984299957752228, -0.1615000069141388, -0.06697999686002731, -0.14966000616550446, -0.07495799660682678, -0.5328199863433838, 0.02314699999988079, -0.10490000247955322, -0.4016900062561035, 0.10266000032424927, 0.12033999711275101, -0.0722000002861023, -0.6792100071907043, 0.044964998960494995, -0.05635000020265579, -0.2359900027513504, -0.0715700015425682, 0.38036999106407166, -0.6448900103569031, -0.7831299901008606, 0.4019800126552582, -0.12960000336170197, -0.2061000019311905, -1.117300033569336, -0.1176299974322319, 0.0035602001007646322, -0.058538999408483505, 0.1761000007390976, 0.8149099946022034, 0.27312999963760376, 0.024491000920534134, 0.23722000420093536, -0.7752900123596191, 0.6043199896812439, 0.29085999727249146, 0.6669899821281433, -0.5301799774169922, -0.026094000786542892, 0.18690000474452972, 0.022272000089287758, 0.09227199852466583, 0.5166699886322021, -0.29719001054763794, 0.16402000188827515, -0.15789000689983368, 0.4948900043964386, 0.6660900115966797, 0.2371699959039688, 0.6636300086975098, -0.645039975643158, -0.3431299924850464, -0.4151900112628937, 0.135670006275177, 0.3352000117301941, -0.1768999993801117, -0.251010000705719, 0.6211599707603455, -0.27612999081611633, 0.4160900115966797, -0.6760799884796143, 0.05117600038647652, -0.09780199825763702, -0.1678600013256073, -0.5386800169944763, -0.29166001081466675, -0.061785999685525894, -0.11475999653339386, 0.17755000293254852, -0.16154000163078308, 0.34922000765800476, 0.14535999298095703, -0.14922000467777252, 0.2320300042629242, 0.06279700249433517, 0.19293999671936035, 0.35620999336242676, 0.2804499864578247, 0.09851600229740143, 0.4085400104522705], u'plate': [0.22996999323368073, 0.46397000551223755, 0.0487309992313385, -0.28001001477241516, 0.09095600247383118, -0.3223699927330017, -0.6196200251579285, -0.3269200026988983, 0.4125500023365021, -0.8782100081443787, -0.2747499942779541, 0.41284000873565674, -0.7196000218391418, -0.007927199825644493, -0.53302001953125, -0.3446600139141083, -0.4163300096988678, 0.05273300036787987, 0.07143499702215195, -0.36719998717308044, 0.07962600141763687, 0.012903000228106976, -0.36539000272750854, -0.37470000982284546, -0.02250799909234047, -0.5860900282859802, -0.00031448001391254365, 0.4810500144958496, 0.17981000244617462, -0.6441900134086609, 0.31233999133110046, 0.7260500192642212, -0.0738229975104332, -0.1527000069618225, -0.8216400146484375, 0.15288999676704407, 0.0005836099735461175, 0.44251999258995056, -0.5082799792289734, 0.6480799913406372, -0.21101999282836914, 0.18111999332904816, -0.040862999856472015, -0.33550000190734863, 0.46386000514030457, 0.3365600109100342, 0.13620999455451965, -0.11591000109910965, -0.013919999822974205, 0.2960900068283081, 0.16875000298023224, 0.05621400102972984, 0.17653000354766846, 0.41154998540878296, -0.2856299877166748, 0.12939000129699707, -0.0519150011241436, -0.3217799961566925, -0.028023000806570053, 0.057496000081300735, 0.4810299873352051, -0.12076999992132187, 0.4929800033569336, -0.08502600342035294, 0.27882999181747437, 0.1863899976015091, -0.09891100227832794, 0.07700599730014801, -0.06128700077533722, 0.038600001484155655, -0.045586999505758286, 0.2882100045681, 0.37288999557495117, 0.16695000231266022, -0.6886100172996521, -0.17276999354362488, 0.24244000017642975, -0.23023000359535217, -0.3651300072669983, -0.4601399898529053, 0.03825400024652481, -0.10386999696493149, -0.5133900046348572, -0.3217799961566925, -0.398470014333725, -0.28411000967025757, -0.230880007147789, -0.19565999507904053, -0.29510998725891113, -0.0211970005184412, 1.0119999647140503, 0.044523000717163086, -0.7592800259590149, 0.08661100268363953, -0.2557600140571594, 0.3678100109100342, -0.4096199870109558, -0.16050000488758087, 0.06298799812793732, -0.0339290015399456, -0.06460899859666824, 0.09211599826812744, 0.21504999697208405, -0.20806999504566193, 0.5728099942207336, 0.17002999782562256, 0.45186999440193176, 0.4485200047492981, -0.13165999948978424, 0.24150000512599945, 0.08731900155544281, -0.0225249994546175, -0.18494999408721924, -0.8463799953460693, -0.7262399792671204, -0.35989001393318176, -0.8489099740982056, -0.33698999881744385, 0.10025999695062637, -0.24688999354839325, -0.2723900079727173, 0.05665599927306175, -0.06994199752807617, 0.025676000863313675, -0.029691999778151512, -0.42113998532295227, 0.3765900135040283, -0.5653499960899353, -0.028137000277638435, 0.5461099743843079, -0.01093399990350008, 0.7123900055885315, 0.4671100080013275, 1.095900058746338, 0.10728999972343445, 0.32058000564575195, 0.20038999617099762, 0.271450012922287, -0.29614999890327454, -0.10916999727487564, -0.21634000539779663, 0.16755999624729156, 0.0713379979133606, -0.2964499890804291, -0.03911300003528595, 0.05911099910736084, -0.3959900140762329, -0.08687900006771088, -0.11808999627828598, -0.8177099823951721, 0.3661699891090393, 0.1730400025844574, 0.221670001745224, -0.29113999009132385, 0.15686999261379242, -0.9015100002288818, -0.24005000293254852, -0.613510012626648, -0.06704600155353546, -0.48236000537872314, 0.028432000428438187, -0.030920999124646187, -0.39267000555992126, -0.07135199755430222, 0.680649995803833, -0.3089199960231781, -0.29826000332832336, 0.1732500046491623, 0.2641200125217438, -0.3480600118637085, -0.08890300244092941, -0.0738380029797554, 0.652180016040802, -0.9208199977874756, 0.2956700026988983, -0.45535001158714294, -0.2921999990940094, 0.18973000347614288, -0.08141600340604782, -0.8208000063896179, 0.6550400257110596, -0.21310999989509583, 0.41262000799179077, 0.20167000591754913, -0.2824000120162964, -0.36208999156951904, 0.3218800127506256, 0.3283900022506714, 0.052682001143693924, -0.028542999178171158, -0.19399000704288483, 1.1923999786376953, 0.33847999572753906, 0.7335299849510193, 0.6387199759483337, 0.4166699945926666, 0.3130500018596649, -0.18716999888420105, -0.6244400143623352, -0.06630299985408783, 1.25600004196167, -0.23559999465942383, 0.1802700012922287, -0.01635199971497059, 1.0326000452041626, 0.2404100000858307, 0.7878900170326233, -0.3090200126171112, 0.022861000150442123, 0.23323999345302582, -0.07205300033092499, -0.5209699869155884, 0.22487999498844147, 0.12037999927997589, -0.11823000013828278, -0.16132000088691711, -0.4834100008010864, -0.7554000020027161, 0.19968999922275543, 0.5443300008773804, -0.1458899974822998, 0.28233999013900757, 0.4460200071334839, -0.4038200080394745, -0.19175000488758087, -0.0643870010972023, 0.1740799993276596, 0.11693999916315079, 0.361380010843277, -0.34630000591278076, -0.7174100279808044, -0.019415000453591347, -0.5091400146484375, -0.005256799980998039, 0.27004000544548035, -0.42195001244544983, -0.14305999875068665, 0.3917900025844574, 0.123259998857975, 0.10919000208377838, -0.29350998997688293, 0.23645000159740448, -0.09896499663591385, 0.26444000005722046, -0.8996000289916992, -0.23207999765872955, -0.4567300081253052, -0.14708000421524048, 0.16579000651836395, -0.061650000512599945, 0.2840000092983246, -0.35460999608039856, 0.4699699878692627, -0.04667700082063675, 0.08284799754619598, 0.02938299998641014, 0.017597999423742294, -0.19598999619483948, -0.6678900122642517, 0.010618999600410461, -0.41850998997688293, -0.40766000747680664, 0.49007999897003174, 0.8429800271987915, 0.04131900146603584, 0.3179599940776825, -0.24973000586032867, 0.5012900233268738, 0.5120099782943726, 0.15557999908924103, -0.09777999669313431, -0.5386300086975098, -0.14619000256061554, 0.3721199929714203, 0.2412099987268448, 0.098191998898983, -1.1331000328063965, 0.27338001132011414, -0.694570004940033, 0.4390299916267395, -0.2557699978351593, 0.10986000299453735, 0.0818289965391159, -0.1289999932050705, -0.7240300178527832, 0.14067000150680542, 0.380950003862381, -0.49518001079559326, 0.40762999653816223, -0.06102300062775612, 0.006929200142621994, 0.08942600339651108, -0.16360999643802643, 0.11082000285387039, -0.053380001336336136, 0.1334100067615509, 0.6803500056266785, -0.5078799724578857, 0.5844699740409851, -0.10628999769687653], u'coffee': [-0.3468100130558014, 0.5370200276374817, 0.17779000103473663, 0.38572001457214355, -0.4906199872493744, 0.5654399991035461, 0.1420699954032898, -0.12881000339984894, 0.32262998819351196, -0.7728700041770935, -0.1995999962091446, -0.6172000169754028, -0.2544099986553192, -0.061365000903606415, -0.3371799886226654, -0.23259000480175018, -0.08780000358819962, -0.2569200098514557, -0.7098699808120728, 0.009064500220119953, -0.17636999487876892, 0.7657999992370605, 0.45509999990463257, 0.02457600086927414, -0.8898800015449524, -0.16298000514507294, -0.021198999136686325, -0.2335900068283081, -0.5103800296783447, -0.3519099950790405, -0.46494999527931213, 0.5050899982452393, -0.2670600116252899, 0.2824999988079071, -0.8600599765777588, 0.7673599720001221, -0.23765000700950623, -0.4856800138950348, -0.2890399992465973, -0.33779001235961914, -0.8194599747657776, -0.136230006814003, -0.4148600101470947, -0.05334100127220154, 0.3806900084018707, -0.4436100125312805, 0.6518999934196472, -0.17736999690532684, -0.05151800066232681, 0.3444899916648865, 0.46792998909950256, 0.024908000603318214, -0.005197300110012293, 0.08449900150299072, -0.18591000139713287, 0.4365200102329254, -0.16502000391483307, 0.35260000824928284, 0.03734099864959717, -0.3621799945831299, -0.3727400004863739, -0.6844300031661987, -0.1810699999332428, 0.13037000596523285, -0.5474900007247925, 0.30074000358581543, -0.05525900050997734, 0.4341700077056885, -0.5560200214385986, -0.39169999957084656, 0.40705999732017517, -0.060440000146627426, -0.11410000175237656, -0.3169400095939636, -0.4650300145149231, -0.669950008392334, 0.526390016078949, -0.6205099821090698, -0.742579996585846, -0.5906800031661987, -0.279449999332428, -0.1883399933576584, -0.15939000248908997, -0.011927000246942043, 0.34325000643730164, -0.3537999987602234, -0.17462000250816345, -0.006110699847340584, -0.10886000096797943, -0.43320000171661377, 0.153779998421669, -0.692520022392273, -0.09012500196695328, -0.20115000009536743, 0.1386300027370453, 0.5563399791717529, 0.04183100163936615, -0.453220009803772, -0.09133400022983551, 0.1266299933195114, -0.06559500098228455, -0.11974000185728073, -0.02257700078189373, -0.5090399980545044, -0.3653300106525421, -0.16644999384880066, -0.05056599900126457, 0.3029699921607971, -0.19582000374794006, 0.30390000343322754, -0.2041500061750412, -0.3171499967575073, 0.02098100073635578, -0.15164999663829803, 0.4764699935913086, 0.17773999273777008, -0.2156900018453598, -0.09064500033855438, -0.12728999555110931, 0.005275100003927946, -0.5076799988746643, 0.42706000804901123, 0.3704800009727478, 0.04797599837183952, -0.25808998942375183, -0.052730999886989594, 1.1952999830245972, 0.14158999919891357, 0.6507899761199951, 0.0801210030913353, -0.09184599667787552, 1.1764999628067017, -0.24573999643325806, -0.16606000065803528, -0.1759600043296814, -0.11052999645471573, -0.3586600124835968, 0.8274700045585632, -0.05659399926662445, -0.001865800004452467, 0.1569499969482422, 0.26311999559402466, 0.04719499871134758, 0.4426800012588501, 0.13415999710559845, 0.059971000999212265, 0.15809999406337738, -0.26664999127388, 0.456930011510849, -0.7328699827194214, -0.43999001383781433, 0.5022600293159485, 0.4971599876880646, 0.24583999812602997, -0.4971599876880646, -0.057725001126527786, -0.3832300007343292, -0.6013000011444092, 0.5894299745559692, -0.29102998971939087, 0.7193599939346313, -0.13576999306678772, -0.07969699800014496, -0.07197699695825577, -0.16380000114440918, -0.520579993724823, 0.2570900022983551, -0.01755799911916256, 0.19234000146389008, 0.15386000275611877, -0.27851998805999756, 0.4191800057888031, -0.6672000288963318, 0.43612998723983765, 0.3616900146007538, -0.4888699948787689, 0.508870005607605, 0.2955699861049652, 0.16021999716758728, -0.14515000581741333, -0.38231000304222107, 0.3613100051879883, -0.027483999729156494, -0.37362000346183777, 0.2564600110054016, 0.056488998234272, 0.9410499930381775, 0.3788900077342987, 0.17239999771118164, -0.5256199836730957, 0.40191999077796936, 0.6528300046920776, -0.06520800292491913, 0.052955999970436096, -0.7592999935150146, -0.23736999928951263, -0.4041900038719177, 0.14212000370025635, -0.6594899892807007, 0.6136900186538696, 0.2742699980735779, -0.2680799961090088, 0.3306500017642975, 0.44764000177383423, 0.01825300045311451, -0.5714499950408936, 0.33156999945640564, 0.3542799949645996, -0.4913400113582611, -0.7191699743270874, 0.010734999552369118, -0.4503600001335144, -0.05372000113129616, 0.22210000455379486, 0.07198099792003632, 0.2849400043487549, 0.2805599868297577, -0.32148000597953796, 0.13151000440120697, 0.3542900085449219, 0.7686499953269958, -0.36581000685691833, -0.26934999227523804, 0.1004600003361702, -0.21607999503612518, 0.5572699904441833, -0.1684899926185608, 0.5522900223731995, -0.014996999874711037, 0.3045400083065033, 0.14036999642848969, 0.15790000557899475, -0.4514699876308441, 0.8884999752044678, 0.5707600116729736, 0.17141999304294586, 0.2805100083351135, -0.33809998631477356, -0.44110000133514404, -0.58433997631073, -0.5178200006484985, -0.002272099955007434, -1.0285999774932861, -0.6263899803161621, -0.6028100252151489, 0.06740900129079819, -0.0890130028128624, 0.21807000041007996, -0.16535000503063202, -0.23286999762058258, 0.8490099906921387, -0.22221000492572784, 0.2612000107765198, 0.012125000357627869, 0.14645999670028687, 0.6585400104522705, -0.046188000589609146, 0.2547999918460846, 0.3788299858570099, -0.05311800166964531, -0.001664399984292686, 0.3487600088119507, 0.26844000816345215, -0.33862999081611633, 0.005444900132715702, -0.31810998916625977, -0.20492999255657196, -0.0982310026884079, 0.264849990606308, -0.2850100100040436, -0.6182100176811218, 0.14268000423908234, 0.25881001353263855, -0.09572800248861313, -0.2813900113105774, 0.038995999842882156, -1.373900055885315, 0.24184000492095947, -0.5359799861907959, -0.06731899827718735, -1.0226000547409058, -0.3121500015258789, -0.08405400067567825, -0.8276900053024292, 0.21254999935626984, 0.10762999951839447, 0.8076900243759155, -0.4056299924850464, 0.08019699901342392, 0.5660499930381775, -0.11186999827623367, 0.48743999004364014, -0.6557000279426575, 0.06653100252151489, 0.2431199997663498, 0.38499999046325684, -0.1532900035381317, -0.5012800097465515, -0.4274199903011322, 0.601170003414154], u'handle': [-0.6350399851799011, 0.25558000802993774, 0.27101001143455505, -0.27967000007629395, -0.021522000432014465, 0.26151999831199646, 0.47936001420021057, 0.5839800238609314, -0.004087099805474281, -1.6094000339508057, -0.21633000671863556, 0.5021799802780151, 0.2329300045967102, -0.5065900087356567, -0.12039999663829803, -0.5412099957466125, -0.5085200071334839, -0.02715199999511242, 0.17560000717639923, 0.164110004901886, 0.03818399831652641, -0.16960999369621277, 0.10706000030040741, -0.3789899945259094, -0.3346000015735626, 0.8201799988746643, -0.16030000150203705, 0.22023999691009521, 0.008441399782896042, 0.06574299931526184, 0.01903199963271618, 0.15272000432014465, -0.04164300113916397, -0.28692999482154846, -0.6916000247001648, 0.008434800431132317, -0.2329699993133545, -0.4049699902534485, -0.18231000006198883, 0.1915699988603592, -0.5305299758911133, -0.1987600028514862, 0.2065799981355667, -0.4400700032711029, 0.058469001203775406, 0.21457000076770782, -0.23037000000476837, -0.09228099882602692, 0.23555999994277954, 0.7229499816894531, -0.09337600320577621, 0.15223999321460724, -0.6073600053787231, -0.30195000767707825, -0.08992599695920944, -0.05100800096988678, -0.22857999801635742, 0.450190007686615, -0.14904999732971191, -0.15498000383377075, 0.3719800114631653, -0.11683999747037888, -0.1871899962425232, 0.5112800002098083, 0.05845300108194351, -0.17605000734329224, -0.4953399896621704, 0.4288100004196167, -0.1837500035762787, -0.07569000124931335, 0.07360299676656723, 0.1844799965620041, -0.017477000132203102, 0.4407300055027008, 0.374889999628067, -0.29100000858306885, -0.44550999999046326, 0.37880000472068787, 0.1274999976158142, -0.5751299858093262, -0.3618600070476532, 0.06709899753332138, -0.06709600239992142, -0.5415300130844116, -0.08138500154018402, -0.03377300128340721, -0.22269000113010406, -0.04294800013303757, -0.3645800054073334, 0.10789000242948532, -0.319350004196167, 0.6587799787521362, -0.7722799777984619, -0.586929976940155, -0.14975999295711517, -0.4672299921512604, -0.3415299952030182, 0.18682000041007996, 0.35892000794410706, -0.22056999802589417, -0.24062000215053558, -0.24237999320030212, -0.4008600115776062, -1.0168999433517456, 0.264710009098053, -0.08926700055599213, 0.40650999546051025, 0.09264100342988968, -0.09869299829006195, 0.17815999686717987, -0.12067999690771103, -0.11885000020265579, -0.7850599884986877, -0.2972300052642822, -0.15508000552654266, -0.10123000293970108, -0.0009703100076876581, 0.2433300018310547, 0.026819000020623207, 0.20468999445438385, 0.07687199860811234, -0.30188998579978943, 0.13313999772071838, -0.13932999968528748, -0.09742099791765213, 0.21769000589847565, 0.01958400011062622, 0.4927699863910675, -0.01698100008070469, -0.17130999267101288, 0.48388999700546265, -0.19483999907970428, -0.03627299889922142, -0.02980799973011017, 0.22131000459194183, -0.11347000300884247, -0.36333000659942627, -0.19470000267028809, -0.30028998851776123, 0.16868999600410461, 0.11595000326633453, -0.13530999422073364, -0.2130800038576126, -0.17880000174045563, -0.33880001306533813, 0.42539000511169434, 0.03415900096297264, -0.4572399854660034, 0.4518199861049652, 0.1301400065422058, 0.4900600016117096, -0.14218999445438385, -0.0363599993288517, 0.1586800068616867, 0.353659987449646, 0.19483999907970428, -0.13268999755382538, -0.15080000460147858, -0.0896259993314743, -0.1260800063610077, 0.42412999272346497, 0.03244100138545036, -0.06661099940538406, -0.20079000294208527, 0.04473400115966797, -0.006118500139564276, 0.5240700244903564, 0.09656800329685211, 0.04802300035953522, 0.20646999776363373, -0.03967199847102165, 0.7225300073623657, -0.6320499777793884, -0.36743998527526855, 0.14670999348163605, -0.49351000785827637, 0.0009926300263032317, -0.7007200121879578, -0.0323369987308979, -0.5657200217247009, 0.26493000984191895, -0.28720998764038086, 0.14591999351978302, 0.20587000250816345, -0.3561199903488159, -0.06518100202083588, 0.4660699963569641, 0.3758600056171417, 0.2165900021791458, -0.04248199984431267, 0.0865660011768341, 0.12093999981880188, 0.2123900055885315, 0.3001999855041504, 0.4444499909877777, -0.053346000611782074, -0.14268000423908234, 0.3468799889087677, -0.36855998635292053, -0.302839994430542, 0.1516599953174591, -0.09013299643993378, 0.5504400134086609, -0.09816700220108032, 0.1338600069284439, 0.12031999975442886, 0.22641000151634216, 0.049279000610113144, 0.03812199831008911, -0.19720999896526337, 0.14573000371456146, 0.20492999255657196, 0.3987700045108795, -0.06722100079059601, -0.00036460001138038933, -0.9944599866867065, -0.10197000205516815, 0.08546499907970428, -0.3834500014781952, 0.22054000198841095, -0.04915900155901909, 0.045524999499320984, 0.4301699995994568, 0.5743799805641174, -0.021385999396443367, -0.6912199854850769, 0.04809999838471413, 0.24295000731945038, -0.29346001148223877, -0.08190199732780457, -0.03821299970149994, -0.17111000418663025, -0.18560999631881714, -0.20344999432563782, -0.14172999560832977, 0.8076900243759155, -0.2328599989414215, 0.04054199904203415, -0.17190000414848328, 0.07736799865961075, 0.05012499913573265, -0.15334999561309814, 0.1742600053548813, -0.31189000606536865, -0.2279299944639206, -0.2636600136756897, -0.09070699661970139, 0.04577599838376045, 0.1362999975681305, 0.06323900073766708, -0.0033666000235825777, 0.1399099975824356, 0.09754899889230728, -0.2567099928855896, 0.16345000267028809, -0.2222999930381775, -0.36098000407218933, -0.25321999192237854, -0.1263200044631958, 0.18671999871730804, -0.24653999507427216, -0.3219900131225586, -0.08645500242710114, 0.19750000536441803, 0.2914400100708008, -0.23571999371051788, -0.005081899929791689, -0.31134000420570374, -0.13816000521183014, -0.17786000669002533, 0.07928899675607681, 0.2300100028514862, 0.2985199987888336, 0.26954999566078186, 0.14499999582767487, -0.055011000484228134, -1.5063999891281128, 0.30542999505996704, -0.10802999883890152, 0.20830999314785004, -0.1183599978685379, 0.005499300081282854, 0.46465998888015747, 0.31207001209259033, 0.08366599678993225, -0.23604999482631683, 0.16725000739097595, 0.3367899954319, -0.4495700001716614, -0.0477680005133152, 0.11952000111341476, -0.01782199926674366, 0.227960005402565, -0.4270699918270111, 0.4380599856376648, 0.28327998518943787, -0.14788000285625458, -0.06647700071334839, 0.14156000316143036, -0.10936000198125839], u'garden': [-0.3815099895000458, -0.37696999311447144, 0.2855300009250641, -0.22542999684810638, 0.10474000126123428, 0.3144899904727936, 0.22423000633716583, -0.15057000517845154, 0.1826300024986267, -0.1294800043106079, 0.23156000673770905, 0.21854999661445618, -0.1908400058746338, 0.36695998907089233, 0.03639400005340576, 0.05786500126123428, -0.32440000772476196, -0.24842999875545502, 0.30524998903274536, 0.43773001432418823, -0.4292599856853485, 0.3825699985027313, -0.20917999744415283, 0.3992300033569336, -0.027998000383377075, -0.05781500041484833, -0.5520600080490112, -0.12752999365329742, -0.125900000333786, 0.6894400119781494, 0.857990026473999, 0.03945999965071678, -0.0792979970574379, 0.02505199983716011, -0.40748998522758484, 0.7513599991798401, 0.45625999569892883, -0.5597800016403198, -0.21382999420166016, -0.6349400281906128, 0.1618099957704544, 0.5070599913597107, -0.25475001335144043, 0.5692099928855896, 0.1527000069618225, 0.014781000092625618, 0.3423300087451935, 0.6582000255584717, -0.09254000335931778, 0.150969997048378, -0.44650998711586, 0.019342999905347824, -0.026875000447034836, -0.15076999366283417, 0.14729000627994537, -0.48680999875068665, 0.09150099754333496, 0.08454199880361557, 0.4682300090789795, -0.44352999329566956, 0.3041900098323822, -0.4485900104045868, 0.51555997133255, 0.5319700241088867, 0.16854000091552734, -0.06807299703359604, -0.21452000737190247, 0.3167400062084198, -0.4970000088214874, -0.5396900177001953, 0.125450000166893, 0.11830999702215195, 0.09286600351333618, -0.1215599998831749, -1.1497000455856323, 0.5708400011062622, 0.3026700019836426, -0.2992599904537201, 0.08565600216388702, -0.5900499820709229, -0.09740900248289108, 0.8000500202178955, 0.3870199918746948, -0.18768000602722168, 0.30121999979019165, 0.5868600010871887, 0.11291000247001648, 0.2039799988269806, -0.16124999523162842, -0.1702200025320053, 0.2853800058364868, -0.7242699861526489, 0.312610000371933, -0.4093399941921234, -0.00753450021147728, -0.26985999941825867, 0.6652600169181824, -0.31338000297546387, -0.1817300021648407, -0.6528800129890442, 0.07269400358200073, 0.2479500025510788, -0.39730000495910645, 0.014948000200092793, -0.2746399939060211, -0.4124299883842468, 0.17802000045776367, 0.10357999801635742, 0.3244900107383728, -0.03671099990606308, -0.031387001276016235, -0.24835999310016632, 0.3366299867630005, -0.002970699919387698, -0.2907699942588806, 0.23970000445842743, -0.34007999300956726, 0.5375000238418579, -0.061643000692129135, -0.3274100124835968, -0.2680400013923645, 0.22105999290943146, 0.05132700130343437, 0.18925000727176666, -0.29662999510765076, -0.4036400020122528, 0.12571999430656433, 0.37450000643730164, -0.39923998713493347, 0.1645900011062622, 0.674019992351532, 0.4233900010585785, 0.6137400269508362, 0.196260005235672, -0.6170799732208252, -0.15934999287128448, 0.36761999130249023, -0.16901999711990356, -0.11166000366210938, -0.04686199873685837, -0.19588999450206757, 0.21995000541210175, 0.5087400078773499, -0.011893999762833118, -0.038621000945568085, 0.5913800001144409, 0.10446000099182129, -0.012612000107765198, -0.7282500267028809, -0.20074999332427979, -0.1428299993276596, 0.16646000742912292, -0.5036200284957886, -0.31536000967025757, 0.059411000460386276, -0.06692200154066086, -0.3095400035381317, 0.6859800219535828, 0.1783200055360794, -0.14372000098228455, 0.5731599926948547, 0.33910998702049255, 0.4636799991130829, 0.18136000633239746, 0.22290000319480896, 0.5944100022315979, -0.16060000658035278, -0.2675800025463104, 0.6194999814033508, 0.01803700067102909, -0.13447000086307526, -0.07646600157022476, -0.24681000411510468, 0.20898999273777008, -0.1808999925851822, 0.3867500126361847, 0.3902199864387512, 0.3021300137042999, 0.6541000008583069, -0.46832001209259033, -0.0517209991812706, -0.12910999357700348, -0.0068398998118937016, -0.2579300105571747, -0.22234000265598297, 0.5822200179100037, 0.34984999895095825, 0.27858999371528625, 0.46055999398231506, -0.1822900027036667, -0.3108600080013275, 0.3313399851322174, -0.5105900168418884, -0.012795999646186829, -0.8314399719238281, 0.14110000431537628, 0.23273000121116638, 0.05725900083780289, -0.2703000009059906, -0.020945999771356583, 0.8648099899291992, -0.136570006608963, -0.37626999616622925, 0.021150000393390656, -0.0010658999672159553, -0.493259996175766, -0.0783730000257492, -0.3673200011253357, -0.12173999845981598, -0.2492000013589859, -0.273140013217926, 0.07824400067329407, 0.17736999690532684, -0.6940100193023682, 0.32315000891685486, 0.1722699999809265, 0.07948499917984009, -0.33959001302719116, 0.42671999335289, -0.17876000702381134, 0.9240900278091431, -0.36906999349594116, -0.5343599915504456, 0.18775999546051025, -0.3068400025367737, -0.41172999143600464, -0.18964999914169312, 0.3903000056743622, 0.0500200018286705, 0.006236200220882893, 0.367110013961792, 0.12999999523162842, 0.18671999871730804, -0.06464000046253204, 0.5920000076293945, 0.14650000631809235, -0.136570006608963, -0.5024200081825256, -0.5238800048828125, -0.32038000226020813, -0.31279999017715454, -0.3572799861431122, 0.04394200071692467, 0.1914599984884262, -0.4566099941730499, -0.17427000403404236, -0.11518000066280365, 0.4546000063419342, -0.10493999719619751, -0.07854799926280975, 0.991100013256073, 0.25859999656677246, -0.009918199852108955, -0.3179500102996826, 0.6255499720573425, 0.006936000194400549, 0.06283699721097946, -0.09808900207281113, 0.48958998918533325, -0.03616200014948845, -0.3287999927997589, -0.20322999358177185, 0.33671998977661133, -0.41905999183654785, -0.48342999815940857, -0.33577999472618103, -0.18427999317646027, 0.7384999990463257, 0.44089001417160034, -0.4633300006389618, 0.4697999954223633, -0.11963000148534775, 0.03388499841094017, -0.753790020942688, -0.08949100226163864, 0.14844000339508057, -1.8029999732971191, 0.07979899644851685, -0.08736500144004822, 0.026892000809311867, -0.4890199899673462, -0.20044000446796417, -0.06944800168275833, -0.448309987783432, -0.40529999136924744, 0.042635999619960785, 0.18982000648975372, 0.2551400065422058, -0.1647700071334839, -0.03965799883008003, 0.7552599906921387, -0.11817000061273575, -0.20559999346733093, 0.04431099817156792, 0.5842099785804749, 0.12741999328136444, 0.36162999272346497, 0.24651999771595, 0.7564100027084351, 0.26798999309539795], u'flower': [-0.5662500262260437, 0.20432999730110168, -0.5851500034332275, -0.3309299945831299, -0.11528000235557556, 0.5677400231361389, -0.209539994597435, 0.2922399938106537, -0.27884000539779663, 0.1757200062274933, -0.2682799994945526, 0.38054001331329346, -1.107200026512146, 0.292959988117218, 0.13242000341415405, 0.033291999250650406, -0.2502500116825104, -0.7677500247955322, -0.11358000338077545, -0.42972999811172485, -0.5192199945449829, 0.5524700284004211, -0.11015000194311142, 0.21106000244617462, 0.05629400163888931, 0.09303300082683563, -0.44808998703956604, -0.52183997631073, -0.4383600056171417, 0.4944800138473511, 0.1385599970817566, 0.1992799937725067, -0.02317800000309944, 0.14127999544143677, -0.6055300235748291, 0.5517799854278564, 0.5594099760055542, -0.8568099737167358, -0.943310022354126, -0.06471899896860123, -0.12499000132083893, -0.012474999763071537, 0.054218001663684845, 0.19483999907970428, -0.1574700027704239, -0.57014000415802, 0.4213300049304962, 0.39691999554634094, 0.07406599819660187, 0.15136000514030457, 0.15251000225543976, 0.11525999754667282, -0.12004999816417694, 0.2478100061416626, -0.2757999897003174, -0.06957600265741348, -0.4957599937915802, 0.08993899822235107, 0.36699000000953674, -0.4724400043487549, 0.437610000371933, -0.547760009765625, 0.4238399863243103, 0.01512099988758564, 0.251800000667572, 0.11751999706029892, 0.13941000401973724, -0.007396799977868795, -0.185479998588562, 0.18088999390602112, -0.41113001108169556, 0.1873299926519394, 0.04382999986410141, -0.6751599907875061, -0.36983001232147217, 0.5001199841499329, 0.37018999457359314, -0.9349799752235413, 0.730239987373352, 0.024934999644756317, 0.003587299957871437, 0.5699499845504761, -0.5312600135803223, 0.03549500182271004, 0.37011998891830444, 0.4763199985027313, 0.45197999477386475, -0.12177000194787979, 0.11737000197172165, 0.3409300148487091, 0.9555500149726868, -0.6446899771690369, -0.41471999883651733, -0.5304200053215027, 0.1923999935388565, 0.6453700065612793, 1.0368000268936157, -0.39090999960899353, 0.18783000111579895, -0.27827000617980957, 0.5083900094032288, -0.38374000787734985, -0.12257000058889389, -0.4944300055503845, -0.12424000352621078, 0.38025999069213867, 0.5948100090026855, -0.039329998195171356, 0.14562000334262848, 0.5093100070953369, 0.40623000264167786, 0.18896999955177307, 0.6166700124740601, -0.060210999101400375, 0.4706000089645386, 0.084927998483181, -0.5475299954414368, 0.8767499923706055, 0.20649999380111694, -0.6756899952888489, 0.01486899983137846, -0.42688998579978943, 0.014279000461101532, -0.26798000931739807, 0.27063998579978943, -0.14508000016212463, 0.0315839983522892, 0.7317699790000916, 0.11903999745845795, 0.5232099890708923, 0.5434799790382385, 0.3349300026893616, 0.4322499930858612, -0.024568000808358192, -0.5770000219345093, -0.006186699960380793, 0.011706000193953514, -0.5876299738883972, -0.3093099892139435, -0.1787700057029724, 0.42809998989105225, 0.16580000519752502, -0.11643999814987183, -1.0343999862670898, -0.5071600079536438, 0.3584200143814087, -0.09505400061607361, -0.13955999910831451, 0.23122000694274902, -0.09618300199508667, -0.1984899938106537, 0.35545000433921814, 0.03009999915957451, -0.03452900052070618, 0.05889200046658516, 0.1316000074148178, -0.6226800084114075, -0.5986599922180176, -0.3522399961948395, 0.26427000761032104, 0.05253500118851662, -0.32287999987602234, -0.053585998713970184, -0.11563999950885773, 0.05083899945020676, -0.009559599682688713, 0.03974900022149086, 0.17640000581741333, -0.3162600100040436, -0.3109000027179718, -0.6182000041007996, -0.015124999918043613, 0.01839200034737587, 0.12991000711917877, 0.2237900048494339, 0.2504099905490875, 0.5292099714279175, 0.7833200097084045, -0.31422001123428345, -0.2101999968290329, -0.5978699922561646, -0.7671599984169006, 0.18095000088214874, -0.01952500082552433, -0.1754000037908554, 0.29308000206947327, 0.7831299901008606, 0.3650699853897095, 0.0893929973244667, -0.49013999104499817, 0.21626000106334686, 0.24076999723911285, -0.01613299921154976, -0.22803999483585358, -0.09313199669122696, 0.3470099866390228, -0.07351800054311752, -0.24706000089645386, -0.1275400072336197, 0.11836999654769897, 0.8362900018692017, -0.13506999611854553, -0.017093999311327934, -0.4079799950122833, 0.519540011882782, -0.25209999084472656, -0.03884899988770485, 0.4420900046825409, -0.09170400351285934, -0.02496499940752983, 0.13481000065803528, -0.3832300007343292, 0.5194100141525269, -0.38631999492645264, 0.28165000677108765, 0.10380999743938446, -0.002802100032567978, 0.08509500324726105, 0.04745800048112869, -0.06684000045061111, 0.8299000263214111, -0.48078998923301697, -0.588890016078949, 0.25540000200271606, -0.5768700242042542, -0.05639899894595146, -0.0921109989285469, 0.30024999380111694, 0.4849799871444702, 0.2869099974632263, 0.5654199719429016, -0.18237000703811646, -0.03887699916958809, 0.517300009727478, -0.08642400056123734, 0.3870599865913391, -0.31314000487327576, -0.5476999878883362, -0.5207800269126892, -0.2874400019645691, 0.4049299955368042, -0.46720999479293823, -0.864109992980957, 0.29629001021385193, -0.8546599745750427, -0.010600999929010868, 0.3621099889278412, 0.10311999917030334, 0.09269800037145615, -0.1714400053024292, 0.5483499765396118, 0.3253200054168701, 0.24955999851226807, -0.7130200266838074, 1.0091999769210815, -0.22051000595092773, 0.5484200119972229, 0.08101800084114075, -0.08393599838018417, -0.1587499976158142, -0.09750600159168243, -0.29708999395370483, 0.2603900134563446, -0.13381999731063843, -0.17330999672412872, -0.38405999541282654, -0.24905000627040863, 0.3493500053882599, 0.1588899940252304, 0.42142000794410706, -0.15251000225543976, 0.569379985332489, -0.025880999863147736, -0.4279100000858307, -0.09410600364208221, 0.1973000019788742, -0.9737300276756287, -0.9771199822425842, -0.779009997844696, -0.1684899926185608, -0.3402999937534332, -0.44843998551368713, -0.13641999661922455, -0.2752099931240082, -0.026765000075101852, 0.3047100007534027, 0.20598000288009644, 0.2559800148010254, 0.41978999972343445, 0.003238100092858076, -0.0017529999604448676, -0.4491899907588959, 0.3981899917125702, 0.23364999890327454, 0.14860999584197998, 0.17371000349521637, 0.6088299751281738, -0.1115799993276596, 0.6574599742889404, 0.2155500054359436], u'bear': [0.08617699891328812, 0.05475499853491783, -0.44714000821113586, -0.022551000118255615, 0.3118300139904022, 0.03281800076365471, -0.1386999934911728, 0.965719997882843, 0.4887999892234802, -0.7509899735450745, -0.09366100281476974, -0.13359999656677246, -0.2696700096130371, 0.5577800273895264, 0.3718400001525879, -0.06423500180244446, -0.1288599967956543, -0.5601500272750854, -0.0642469972372055, -0.0416099987924099, 0.25532999634742737, -0.21694999933242798, 0.559440016746521, 0.4828700125217438, -0.19713999330997467, 0.07153700292110443, 0.036490000784397125, -0.33761000633239746, 0.16171999275684357, -0.01856599934399128, -0.004392500035464764, 0.05688200145959854, 0.0011433999752625823, -0.6351799964904785, -0.6394500136375427, -0.37049001455307007, -0.05787099897861481, 0.2994599938392639, -0.21265000104904175, -0.1446399986743927, -0.6208400130271912, -0.5991899967193604, 0.14505000412464142, -0.056853998452425, -0.6521599888801575, 0.23423999547958374, -0.16001999378204346, -0.13722999393939972, 0.4225499927997589, 0.029472999274730682, 0.40331000089645386, -0.43748000264167786, 0.01583399996161461, -0.20972999930381775, 0.2067900002002716, 0.7092999815940857, 0.19593000411987305, 0.5242400169372559, 0.2905600070953369, 0.0074848998337984085, 0.1034500002861023, -0.16943000257015228, 0.257860004901886, -0.2662599980831146, -0.19976000487804413, -0.11185000091791153, -0.5672399997711182, -0.4232900142669678, -0.3765000104904175, -0.2390100061893463, -0.29482999444007874, 0.3744400143623352, -0.5230900049209595, -0.15592999756336212, -0.11412999778985977, 0.01948400028049946, 0.2671099901199341, 0.057638999074697495, 0.3110100030899048, -0.3780199885368347, 0.3113600015640259, 0.07225000113248825, -0.020555000752210617, -0.4339100122451782, 0.7539399862289429, 0.012868000194430351, 0.05024399980902672, 0.24589000642299652, -0.15259000658988953, 0.015660999342799187, -0.10038000345230103, -0.3959600031375885, -0.3743799924850464, 0.18950000405311584, -0.4152899980545044, 0.3433000147342682, 0.0005279899924062192, -0.32638001441955566, -0.3639200031757355, 0.29912999272346497, 0.3400300145149231, 0.390859991312027, -0.04351300001144409, 0.11121000349521637, -0.11695999652147293, 0.42890000343322754, 0.13189999759197235, -0.016068000346422195, 0.6978899836540222, 0.51214998960495, -0.43073999881744385, 0.4399400055408478, -0.4082399904727936, 0.04582099989056587, 0.33180999755859375, 0.15765999257564545, -0.24086999893188477, 0.24838000535964966, 0.2809799909591675, -0.0416020005941391, -0.3338199853897095, -0.4464600086212158, 0.2276500016450882, 0.42092999815940857, 0.021709999069571495, -0.07294800132513046, -0.4520699977874756, 0.1491899937391281, -0.04959699884057045, -0.8039399981498718, -0.10510999709367752, 0.13964000344276428, 0.17542000114917755, 0.40327998995780945, -0.18581999838352203, 0.17392000555992126, -0.16662000119686127, 0.4273900091648102, 0.18717999756336212, -0.3443399965763092, 0.42816999554634094, -0.1311900019645691, 0.14406999945640564, 0.3389500081539154, 0.12115000188350677, -0.09330800175666809, 0.20791999995708466, 0.317440003156662, 0.15489999949932098, 0.3908100128173828, -0.2504799962043762, 0.9339100122451782, -0.18456000089645386, -0.606410026550293, 0.6893200278282166, 0.18998000025749207, 0.30239999294281006, -0.42274999618530273, -0.5629500150680542, 0.8706300258636475, 0.6314100027084351, 0.3581399917602539, 0.45691999793052673, -0.19333000481128693, -0.5554999709129333, 0.33449000120162964, 0.7002500295639038, 0.5532799959182739, -0.22769999504089355, -0.42976999282836914, -0.02907400019466877, -0.21066999435424805, -0.04041299968957901, 0.19192999601364136, 0.13761000335216522, -0.4858199954032898, 0.3165700137615204, -0.15511000156402588, -0.09555500000715256, -0.18359999358654022, 0.46821001172065735, -0.27362000942230225, -0.17750999331474304, -0.1513800024986267, -0.05668700113892555, -0.055984001606702805, -0.04369800165295601, -0.36201000213623047, 0.18331000208854675, 0.04332699999213219, 0.3891899883747101, -0.46320000290870667, -0.28213000297546387, -0.12514999508857727, -0.538860023021698, -0.4121600091457367, 0.45824000239372253, -0.09152700006961823, 0.1168299987912178, 0.2362000048160553, 1.3583999872207642, -0.4162999987602234, 0.4088299870491028, -0.3451699912548065, 0.0504009984433651, 0.25273001194000244, -0.4099999964237213, 0.6997299790382385, -0.029600000008940697, -0.04119500145316124, 0.11202000081539154, -0.49028000235557556, 0.010991999879479408, -0.4819900095462799, 0.4384300112724304, -0.5123100280761719, 0.3997899889945984, 0.6008300185203552, -0.40575000643730164, -0.04518299922347069, -0.24097999930381775, 0.4136100113391876, -0.14577999711036682, -0.20145000517368317, -0.08418600261211395, -0.23309999704360962, 0.3099699914455414, 0.06642299890518188, 0.3023099899291992, -0.1204100027680397, -0.5137500166893005, -0.21070000529289246, -0.4063799977302551, -0.23156000673770905, -0.40672001242637634, 0.41839998960494995, -0.3291099965572357, -0.8387799859046936, 0.10276000201702118, 0.29787999391555786, -0.24292999505996704, 0.6188899874687195, 0.5402600169181824, -0.12751999497413635, -1.1992000341415405, -0.2975099980831146, -0.213919997215271, -0.5308399796485901, -0.33414000272750854, -0.26833999156951904, -0.05181200057268143, 0.3443700075149536, -0.4065900146961212, 0.041439998894929886, 0.6415899991989136, 0.2142000049352646, -0.36100998520851135, -0.03551299870014191, -0.07894200086593628, -0.048973001539707184, 0.010626000352203846, 0.09264300018548965, 0.04282600060105324, 0.03621099889278412, -0.4253000020980835, 0.2589699923992157, 0.42135000228881836, -0.009285500273108482, 0.04488300159573555, 0.3364799916744232, -0.4607599973678589, 0.24865999817848206, -0.09607300162315369, 0.26530998945236206, -0.007200700230896473, -0.6796000003814697, -1.3896000385284424, -0.27316001057624817, 0.03496899828314781, -0.20169000327587128, -0.13490000367164612, 0.2436400055885315, -0.0804940015077591, -0.2445800006389618, -0.5914300084114075, 0.13549000024795532, 0.054294999688863754, 0.058038000017404556, 0.7219700217247009, -0.6249300241470337, -0.23878000676631927, -0.14982999861240387, 0.29794999957084656, -0.542900025844574, -0.24959999322891235, -0.019161000847816467, 0.2290000021457672, 0.530210018157959, 0.3533799946308136, -0.07489900290966034], u'coast': [0.18476000428199768, -0.054829999804496765, -0.15554000437259674, 0.36807000637054443, -0.29811999201774597, 0.17494000494480133, -0.25137999653816223, 0.5759599804878235, 0.5010899901390076, -0.8404200077056885, -0.5627400279045105, -0.15995000302791595, -0.016423000022768974, 0.080035001039505, 0.3162499964237213, 0.3257099986076355, 0.06914100050926208, -0.29295000433921814, 0.042440999299287796, 0.11362999677658081, 0.11885999888181686, 0.42904001474380493, -0.24097999930381775, 0.008985199965536594, -0.3980900049209595, -0.010440000332891941, 0.05829999968409538, 0.3160499930381775, -0.5098199844360352, 0.5718899965286255, 0.25383999943733215, 0.08062399923801422, -0.4825400114059448, 0.17856000363826752, -0.42559000849723816, -0.17031000554561615, 0.11525999754667282, 0.22018000483512878, 0.23568999767303467, -0.1494700014591217, -0.5316299796104431, -0.22055000066757202, 0.12425000220537186, 0.002504300093278289, -0.17228999733924866, -0.1413400024175644, 0.9818999767303467, 0.1315000057220459, 0.04089999943971634, -0.08827599883079529, -0.11316999793052673, -0.003083599964156747, 0.3110400140285492, -0.5289499759674072, -0.5083900094032288, 0.4027099907398224, -0.1421400010585785, 0.22384999692440033, -0.02384999953210354, -0.12529000639915466, -0.11513999849557877, 0.17488999664783478, 0.9042099714279175, -0.14842000603675842, 0.4966700077056885, 0.19479000568389893, -0.23375000059604645, 0.4857200086116791, 0.22551999986171722, -0.2933900058269501, 0.042385000735521317, -0.1869799941778183, -0.06704399734735489, -0.048367999494075775, -0.7627599835395813, 0.2479500025510788, 0.4133799970149994, -0.06189600005745888, -0.2040099948644638, 0.1316400021314621, -0.35989001393318176, 0.07717099785804749, -0.7646499872207642, 0.6609899997711182, 0.08921899646520615, -0.18388999998569489, -0.0015122999902814627, -0.19269999861717224, 0.2580699920654297, -0.260809987783432, -0.038541000336408615, 0.21127000451087952, 0.1434199959039688, -0.5691199898719788, -0.38161998987197876, 0.22025999426841736, 0.6022899746894836, 0.05518599972128868, 0.4117699861526489, 0.22617000341415405, 0.10053999722003937, 0.7587299942970276, 0.2819899916648865, 0.08801399916410446, 0.5708600282669067, -0.08093699812889099, 0.03926299884915352, -0.08093000203371048, 0.36579999327659607, 0.6579999923706055, -0.014445999637246132, -0.8527799844741821, -0.012292000465095043, -0.51774001121521, 0.4076499938964844, -0.15424999594688416, 0.30974000692367554, 0.09816800057888031, 0.29715999960899353, 0.3491399884223938, -0.23058000206947327, -0.5168200135231018, -0.8098400235176086, -0.21139000356197357, 0.3870899975299835, 0.3490400016307831, -0.32572999596595764, -0.2159699946641922, 0.45370998978614807, 0.15267999470233917, -0.4209200143814087, 0.40007999539375305, -0.11350999772548676, -0.5106099843978882, 0.5612199902534485, 0.34483999013900757, -0.10215000063180923, 0.20127999782562256, 0.20934000611305237, -0.3083600103855133, -0.1324400007724762, 0.09866800159215927, -0.36353999376296997, 0.5736799836158752, -0.6320199966430664, 0.09138999879360199, 0.4755699932575226, -0.27070000767707825, -0.3163299858570099, -0.30546000599861145, 1.0716999769210815, -0.35747000575065613, 0.8612599968910217, -0.036834001541137695, 0.809469997882843, -0.165910005569458, 0.004195299930870533, -0.268779993057251, 0.25429001450538635, 0.49386000633239746, 0.1433500051498413, -0.5352500081062317, 0.04150399938225746, -0.17204999923706055, -0.11562000215053558, -0.5773299932479858, 0.6537500023841858, -0.26767998933792114, 0.20674000680446625, 0.5782600045204163, 0.07100299745798111, -0.0531810000538826, -0.6875600218772888, 0.15049999952316284, 0.4337500035762787, 0.3257400095462799, -0.1465200036764145, 0.08299700170755386, -0.10615000128746033, -0.3589699864387512, -0.024723999202251434, -0.04822700098156929, 0.1179099977016449, -0.049793001264333725, 0.6533799767494202, -0.5912200212478638, -0.17812000215053558, 0.20091000199317932, -0.4951399862766266, -0.24344000220298767, -0.09558100253343582, 0.5836099982261658, 0.2781200110912323, -0.01460300013422966, 0.9128699898719788, -0.12604999542236328, 0.48563000559806824, -0.540340006351471, -0.17241999506950378, 0.08725299686193466, 0.9235600233078003, -0.22779999673366547, -0.009069600142538548, -0.1782499998807907, 0.3964200019836426, 0.22867999970912933, 0.10708999633789062, -0.0293550007045269, 0.6486300230026245, -0.19140000641345978, 0.033006999641656876, 0.28652000427246094, -0.2622399926185608, 0.6008800268173218, 0.20568999648094177, -0.14778999984264374, 0.002737900009378791, -0.42048001289367676, 0.14399999380111694, -0.29875999689102173, 1.1146999597549438, -0.4876599907875061, 0.5372999906539917, -0.2665899991989136, -0.02495799958705902, -0.09629400074481964, 0.529449999332428, -0.9615899920463562, -0.15806999802589417, 0.03431500121951103, 0.5185400247573853, 0.07953900098800659, -0.4985400140285492, 0.29767999053001404, 0.5569700002670288, -0.15275000035762787, -0.3267900049686432, 0.10113000124692917, 0.545009970664978, -0.2502000033855438, -0.6246600151062012, 0.24150000512599945, 0.32589998841285706, 0.19944000244140625, 0.16704000532627106, 0.01718899980187416, -0.30118998885154724, 0.12082000076770782, -0.42882001399993896, 0.14386999607086182, -0.06876199692487717, 0.7274399995803833, 0.21607999503612518, 0.6665999889373779, 0.04462200030684471, -0.2924399971961975, 0.12195000052452087, 0.395579993724823, -0.1437000036239624, 0.07192400097846985, 0.10955999791622162, -0.026350000873208046, -0.5658599734306335, 0.12941999733448029, -0.3005099892616272, -0.2526499927043915, -0.32743000984191895, -0.14485999941825867, 0.010331000201404095, -0.3880999982357025, 0.6939899921417236, -0.4418100118637085, -0.03872000053524971, -0.026512999087572098, 0.19482000172138214, 0.33456000685691833, -1.6979000568389893, 0.2643899917602539, 0.2859799861907959, -0.09531699866056442, -0.02472499944269657, 0.0828000009059906, -0.18671000003814697, 0.18203000724315643, -0.2981100082397461, -0.24921000003814697, -0.4860300123691559, -0.19699999690055847, 0.1914999932050705, -0.21690000593662262, -0.3404799997806549, 0.08874499797821045, 0.0532350018620491, -0.6068599820137024, 0.10875999927520752, 1.0820000171661377, 0.18987999856472015, -0.22105999290943146, 0.3443799912929535, -0.08415800333023071], u'vegetable': [0.21729999780654907, 0.0984639972448349, 0.3559400141239166, -0.01597600057721138, 0.10531000047922134, 0.07965700328350067, -0.07343000173568726, 0.07141300290822983, 0.19237999618053436, -0.37070998549461365, 0.08191099762916565, -0.13711999356746674, -0.3542799949645996, 0.5930600166320801, -0.24045999348163605, -0.027993999421596527, -0.43950000405311584, 0.15509000420570374, 0.013212000019848347, 0.12084999680519104, -0.6415600180625916, -0.04674199968576431, 0.3537999987602234, 0.40053001046180725, -0.011703000403940678, 0.26151999831199646, -0.3287400007247925, -0.10379999876022339, -0.47468000650405884, -0.11693999916315079, -0.4426000118255615, 0.6647300124168396, -0.20848000049591064, 0.023663999512791634, -0.15112000703811646, 0.5331400036811829, 0.4062100052833557, -0.39337998628616333, -0.5112900137901306, 0.1758500039577484, 0.48186999559402466, 0.20068000257015228, 0.2957899868488312, -0.604420006275177, 0.030236000195145607, -0.4623500108718872, 0.3656800091266632, 0.6788600087165833, -0.10965000092983246, 0.3525199890136719, 0.015644000843167305, 0.31365999579429626, 0.05926600098609924, -0.0556580014526844, -0.18001000583171844, -0.1976500004529953, -0.06275100260972977, -0.09548400342464447, 0.3606399893760681, -0.32554998993873596, -0.27445998787879944, -0.001310999970883131, 0.26409000158309937, 0.09819500148296356, -0.02389799989759922, 0.37130001187324524, -0.5283399820327759, -0.015675000846385956, -0.6756500005722046, 0.4046199917793274, 0.3767699897289276, 0.002157999901100993, 0.5101000070571899, -0.6043499708175659, -0.9886199831962585, 0.6396600008010864, 0.7393100261688232, -0.6098999977111816, 0.03654899820685387, -0.05273599922657013, 0.5414199829101562, 0.3220599889755249, -0.18312999606132507, 0.4940899908542633, 0.557919979095459, -0.014762000180780888, -0.30956000089645386, 0.08833400160074234, -0.014015999622642994, 0.004393099807202816, 0.3858200013637543, -0.6424800157546997, 0.11067000031471252, -0.8815400004386902, -0.18184000253677368, 0.5906800031661987, 0.3073199987411499, 0.34582000970840454, -0.208979994058609, 0.23800000548362732, -0.4095500111579895, 0.14857999980449677, 0.08945299685001373, -0.4607999920845032, -0.3876200020313263, 0.10400000214576721, 0.015938999131321907, -0.03952199965715408, 0.04806400090456009, 0.30316001176834106, -0.08085700124502182, 0.29747000336647034, 0.07598400115966797, -0.27452000975608826, 0.01611899957060814, 0.21320000290870667, -0.6390799880027771, 0.5472999811172485, 0.43553999066352844, 0.2109600007534027, -0.527649998664856, 0.26794999837875366, 0.8482699990272522, -0.10096000134944916, -0.2593599855899811, 0.3747900128364563, -0.027939999476075172, 0.3977400064468384, -0.05407299846410751, 0.5905799865722656, 0.29513999819755554, 0.9963200092315674, -0.05400199815630913, 1.1536999940872192, -0.4365699887275696, 0.0776590034365654, 0.11202000081539154, 0.18001000583171844, -0.0037555000744760036, 0.5334399938583374, 0.4668099880218506, 0.3799700140953064, 0.5722399950027466, -0.27967000007629395, -0.5732799768447876, 0.9338099956512451, 0.17646999657154083, -0.05966399982571602, -0.08203999698162079, -0.4496299922466278, -1.169700026512146, 0.35339999198913574, 0.12720000743865967, -0.27340999245643616, -0.36469998955726624, -0.3818399906158447, -0.7540000081062317, 0.31275999546051025, 0.1370300054550171, -0.05214599892497063, 0.41648998856544495, 0.08259499818086624, -0.09524799883365631, -0.18216000497341156, 0.3884499967098236, -0.29844000935554504, 0.07259999960660934, -0.030942000448703766, 0.005720099899917841, -0.5772600173950195, 0.1343899965286255, -0.3497300148010254, -0.43685001134872437, -0.2874799966812134, -0.34466999769210815, 0.47516000270843506, 0.8272799849510193, -0.4424099922180176, 0.4517900049686432, -0.7221999764442444, -0.328110009431839, 0.01982099935412407, -0.5112800002098083, -0.5726900100708008, 0.06115199998021126, 0.30129000544548035, 1.1593999862670898, 0.5637999773025513, 0.15433000028133392, -0.21719999611377716, -0.5037800073623657, 1.0830999612808228, -0.05734400078654289, -0.44442999362945557, -0.12693999707698822, 0.18623000383377075, -0.15383000671863556, -0.09798700362443924, -0.6098799705505371, 0.09770599752664566, -0.20691999793052673, -0.5501899719238281, 0.48590999841690063, 0.45115000009536743, 0.8721200227737427, 0.18870000541210175, 0.5269299745559692, -0.5496500134468079, 0.11745999753475189, 0.3884199857711792, -0.3377400040626526, -0.3686000108718872, -0.4266600012779236, -0.07110200077295303, -0.13864000141620636, 0.5024799704551697, 0.4150199890136719, 0.10392999649047852, 0.5456399917602539, 0.3037300109863281, 0.849560022354126, -0.24546000361442566, -0.9132999777793884, -0.44944998621940613, -0.09386000037193298, -0.14817999303340912, -0.15437999367713928, 0.3035399913787842, -0.007307900115847588, 0.28804001212120056, 0.5002300143241882, 0.5284199714660645, 0.14741000533103943, -0.1705400049686432, 1.0405000448226929, 0.8885899782180786, 0.13644999265670776, -0.32012999057769775, -0.9609500169754028, -0.5871099829673767, -0.14764000475406647, -0.2602899968624115, -0.7509599924087524, -0.01769999973475933, -1.024999976158142, -0.42761000990867615, 0.6018900275230408, 0.1872200071811676, -0.17507000267505646, -0.6437900066375732, 0.7432500123977661, -0.10275000333786011, 0.48848000168800354, 0.21227000653743744, 0.3015100061893463, -0.011025999672710896, -0.3559899926185608, 0.4997900128364563, -0.5618000030517578, 0.0763700008392334, -0.3087100088596344, -0.029935000464320183, 0.10777000337839127, -0.40779998898506165, 0.2976999878883362, -0.2607699930667877, -0.5365300178527832, 0.25609999895095825, 0.09694100171327591, -0.31428998708724976, -0.375110000371933, 0.5647600293159485, -0.05584700033068657, -0.2076600044965744, -0.3319999873638153, -0.048461999744176865, -1.0973999500274658, 0.03052699938416481, -0.8150399923324585, -0.01190400030463934, -0.10969000309705734, -0.5972999930381775, -0.21650999784469604, 0.23281000554561615, -0.22889000177383423, 0.5835300087928772, 0.9133700132369995, 0.16638000309467316, 0.2490600049495697, 0.373199999332428, -0.004070600029081106, -0.3506999909877777, 0.30507999658584595, -0.11868000030517578, 0.5072900056838989, -0.269459992647171, 0.24111999571323395, -0.8656399846076965, -0.02927899919450283, 0.35844001173973083], u'bean': [-0.10005000233650208, -0.2768000066280365, 0.7316799759864807, -0.15919999778270721, -0.4291499853134155, 0.009280200116336346, -0.09498400241136551, -0.23959000408649445, 0.03586899861693382, 0.27948999404907227, 0.18990999460220337, -0.02137400023639202, 0.38043999671936035, -0.31185999512672424, -0.6953999996185303, -0.42631998658180237, 0.010560999624431133, 0.20181000232696533, -0.4693799912929535, 0.2053299993276596, 0.16997000575065613, -0.34485000371932983, 0.07469700276851654, 0.14187000691890717, -0.16347000002861023, 0.31134000420570374, -0.1372700035572052, -0.04805200174450874, -0.24426999688148499, -0.10182999819517136, -0.16557000577449799, 0.00493970001116395, -0.3081200122833252, -0.0021522000897675753, -0.1956299990415573, 0.5063300132751465, 0.581089973449707, -0.39180999994277954, -0.46560001373291016, 0.16436000168323517, -0.1844799965620041, -0.021702999249100685, 0.561710000038147, 0.16362999379634857, 0.2215300053358078, -0.419189989566803, 0.3184800148010254, -0.09936100244522095, -0.6194199919700623, 0.6981199979782104, -0.05109899863600731, -0.08862199634313583, 0.4920099973678589, 0.0416099987924099, -0.3488599956035614, -0.29622000455856323, -0.044227998703718185, -0.09109000116586685, -0.5442399978637695, -0.775629997253418, -0.1861400008201599, 0.06032500043511391, -0.10231000185012817, 0.261029988527298, -0.4128200113773346, 0.2918800115585327, -0.48717001080513, -0.3464300036430359, -0.22910000383853912, -0.7088500261306763, -0.09190600365400314, 0.25165000557899475, 0.1693899929523468, -0.18459999561309814, -0.3606700003147125, -0.3406499922275543, 0.5945199728012085, -0.26278001070022583, -0.04757099971175194, -0.4606800079345703, -0.0838090032339096, 0.4432399868965149, 0.21074000000953674, 0.13380999863147736, 0.030650999397039413, 0.15386000275611877, 0.29221999645233154, -0.25025999546051025, 0.32427000999450684, -0.41214001178741455, -0.1960500031709671, -0.3941200077533722, -0.1409599930047989, -0.6968799829483032, -0.16798999905586243, 0.18208999931812286, -0.3104400038719177, 0.42405998706817627, -0.540340006351471, -0.19035999476909637, 0.34742000699043274, -0.21543000638484955, 0.24642999470233917, -0.6025800108909607, -0.5486299991607666, 0.1282999962568283, -1.030900001525879, -0.1537500023841858, -0.015731999650597572, 0.2691600024700165, 0.3274799883365631, 0.29409000277519226, 0.04467099905014038, -0.39695999026298523, -0.13884000480175018, -0.03950199857354164, -0.4570100009441376, 0.32506000995635986, 0.11772999912500381, -0.3903999924659729, -0.021398000419139862, -0.38387998938560486, 0.08085799962282181, -0.06576000154018402, 0.028836000710725784, -0.27204999327659607, 0.43303999304771423, 0.892490029335022, 0.40939000248908997, 0.03725200146436691, 0.0001485800021328032, 0.756600022315979, -0.48600998520851135, 0.1878499984741211, 0.11683999747037888, -0.5243399739265442, -0.2915399968624115, 0.7492799758911133, -0.22935999929904938, 0.430400013923645, 0.1687999963760376, 0.17800000309944153, 0.2584500014781952, -0.34224000573158264, -0.03501399978995323, 0.8488500118255615, -0.28143998980522156, -0.28235000371932983, -0.27184998989105225, -0.5338299870491028, -0.6155400276184082, 0.5588700175285339, 0.09440299868583679, 0.35760998725891113, 0.15197999775409698, -0.21467000246047974, 0.00109479995444417, -0.49526000022888184, -0.07193800061941147, 0.3154900074005127, 0.8080599904060364, -0.6856300234794617, 0.3038899898529053, 0.22371000051498413, -0.1662999987602234, -0.13979999721050262, -0.28883999586105347, 0.3519200086593628, -0.3463999927043915, -0.740119993686676, -0.05000799894332886, -0.5201200246810913, -0.1409599930047989, 0.21160000562667847, -0.15198999643325806, -0.14113999903202057, 0.3094800114631653, 0.1701499968767166, 0.2895900011062622, -0.4618600010871887, 0.033663999289274216, 1.003999948501587, 0.6055999994277954, -0.4102100133895874, -0.14162999391555786, -0.24729999899864197, 0.18413999676704407, 0.20961999893188477, -0.17338000237941742, -0.6462200284004211, 0.1712000072002411, 0.9049500226974487, -0.5607200264930725, -0.08720500022172928, -0.15805000066757202, 0.4823000133037567, -0.23194000124931335, 0.0625780001282692, -0.2797999978065491, -0.5670599937438965, 0.3131299912929535, -0.6820999979972839, 0.5687299966812134, 1.0245000123977661, -0.2699199914932251, -0.22112999856472015, 0.40667998790740967, 0.07110399752855301, -0.4284999966621399, -0.3109300136566162, -0.30893999338150024, -0.05122099816799164, -0.13098999857902527, -0.33618998527526855, -0.01637200079858303, 0.4449700117111206, 0.5041000247001648, 0.07619299739599228, -0.44141000509262085, -0.3547700047492981, -0.23019999265670776, -0.2731899917125702, -0.4393399953842163, -0.3922800123691559, -0.013887000270187855, 0.03947199881076813, -0.5381900072097778, 0.05164700001478195, -0.023163000121712685, -0.15748000144958496, 0.006848699878901243, -0.010599000379443169, -0.07139299809932709, -0.030122999101877213, 0.34950000047683716, 0.5228899717330933, -0.30079999566078186, 0.34060999751091003, -0.26629000902175903, -0.30636000633239746, -0.1564600020647049, -0.08171100169420242, -0.5854700207710266, -0.1349399983882904, -1.0379999876022339, 0.016919000074267387, 0.2967599928379059, -0.4312100112438202, -0.11574000120162964, -0.8266100287437439, 0.5648000240325928, 0.11615999788045883, -0.2861799895763397, -0.0693420022726059, 0.5545700192451477, 0.49511998891830444, 0.11437000334262848, 0.36232998967170715, 0.15105000138282776, -0.36757001280784607, -0.04566099867224693, 0.3592100143432617, 0.2578999996185303, -0.3930499851703644, -0.48458999395370483, -0.3573800027370453, -0.16694000363349915, -0.016440000385046005, 0.06214800104498863, 0.3093400001525879, -0.1654299944639206, -0.19133000075817108, -0.08608099818229675, 0.5221499800682068, -0.34845998883247375, 0.36221998929977417, -0.6352099776268005, 0.1414099931716919, -0.822409987449646, -0.26221001148223877, -0.36963000893592834, -0.40959998965263367, -0.028025999665260315, 0.006211500149220228, -0.26003000140190125, -0.03539099916815758, 0.4238300025463104, -0.07315699756145477, 0.012671000324189663, 0.15577000379562378, 0.4121600091457367, -0.12991000711917877, 0.21660999953746796, -0.14891000092029572, 0.03576099872589111, 0.07369499653577805, 0.08132799714803696, -0.8545299768447876, -0.2473900020122528, 0.09174799919128418], u'tulip': [-0.22193999588489532, -0.001726199989207089, -0.13503000140190125, -0.21547000110149384, 0.5516700148582458, 0.7713099718093872, -0.6813200116157532, -0.4697900116443634, -0.13026000559329987, 0.48357999324798584, -0.0935010015964508, 0.40487000346183777, -0.05278800055384636, 0.3020800054073334, 0.01358999963849783, 0.3172999918460846, 0.5663300156593323, 0.09827399998903275, -0.4528299868106842, -0.3490400016307831, 0.7783499956130981, 0.057833001017570496, 0.43773001432418823, -0.1525000035762787, 0.2576099932193756, -0.37790998816490173, -0.743340015411377, -0.2664699852466583, -0.33956000208854675, 0.7574599981307983, -0.13753999769687653, -0.3665199875831604, -0.6111699938774109, 0.346780002117157, 0.019137000665068626, 0.27465999126434326, -0.03574100136756897, -0.10899999737739563, 0.009040099568665028, 0.1409599930047989, -0.04606200009584427, 0.17854000627994537, -0.24172000586986542, 0.28887999057769775, -0.09272100031375885, -0.4828299880027771, -0.18557000160217285, -0.29886001348495483, -0.17242999374866486, 0.3434399962425232, 0.6723700165748596, -0.13962000608444214, -0.3424600064754486, -0.6299099922180176, -0.023677999153733253, -0.46320000290870667, -0.4350399971008301, 0.31136998534202576, 0.33610999584198, 0.28176000714302063, -0.389490008354187, -0.39902999997138977, -0.3979400098323822, 0.06917200237512589, 0.163100004196167, 0.3350900113582611, 0.03370700031518936, 0.772629976272583, -0.2900699973106384, -0.48938998579978943, -0.09667299687862396, 0.3465999960899353, 0.1517699956893921, 0.11000999808311462, -0.09611599892377853, 0.8544099926948547, 0.041134998202323914, -0.8745899796485901, -0.2768299877643585, -0.29565998911857605, -0.11614000052213669, -0.012985000386834145, 0.3814600110054016, 0.20479999482631683, 0.770550012588501, -0.43279001116752625, 0.46880000829696655, 0.5416799783706665, -0.16328999400138855, -0.5559899806976318, -0.12775999307632446, -0.5423499941825867, 0.8783000111579895, 0.4005599915981293, -0.4639599919319153, 0.7191200256347656, 0.6656799912452698, -0.23513999581336975, -0.05099000036716461, 0.8212800025939941, 0.2841799855232239, 0.39441999793052673, 0.15996000170707703, 0.04677499830722809, -0.5425000190734863, 0.30858999490737915, -0.10869999974966049, 0.1271899938583374, -0.4235999882221222, 0.5498300194740295, 0.6161100268363953, 0.48162999749183655, 0.02704400010406971, -0.1337900012731552, -0.07040199637413025, -0.29580000042915344, -0.03126699849963188, 0.33788999915122986, 0.16274000704288483, -0.385670006275177, -0.42849001288414, -0.5303400158882141, 0.4447000026702881, -0.49459999799728394, 0.5807399749755859, 0.330020010471344, -0.09945899993181229, 0.6947199702262878, -0.1188800036907196, -0.26232001185417175, 0.5384799838066101, 0.27632999420166016, 0.13560999929904938, 0.33199000358581543, 0.6054499745368958, -0.5400500297546387, 0.5225300192832947, -0.49678999185562134, -0.22227999567985535, -0.5784800052642822, 0.608739972114563, 1.016800045967102, -0.05918800085783005, -0.05518599972128868, 0.8960300087928772, 0.7001399993896484, -0.39204999804496765, -0.5321699976921082, -0.06215500086545944, 0.5748900175094604, -0.24217000603675842, 0.35381001234054565, -0.09098300337791443, 0.39313000440597534, -0.07773599773645401, 0.8279100060462952, 0.11956000328063965, -0.16143999993801117, -0.7084100246429443, -0.47874999046325684, -0.45058000087738037, -0.29308998584747314, -0.0008121100254356861, -0.08204799890518188, -0.09846799820661545, 0.5348600149154663, 0.16140000522136688, 0.045882001519203186, -0.43580999970436096, -0.17252999544143677, -0.03452200070023537, 0.09543900191783905, -0.07382600009441376, -0.12670999765396118, -0.11235000193119049, -0.5855200290679932, 0.22092999517917633, -0.11846999824047089, -0.8504599928855896, -0.14433999359607697, -0.7155100107192993, -0.37623000144958496, 0.7533599734306335, -0.2612699866294861, -0.2716499865055084, 0.39342001080513, 0.3228999972343445, 0.7473599910736084, 0.4523800015449524, -0.21220000088214874, 0.46248000860214233, -0.41040998697280884, -0.05240600183606148, -0.13696999847888947, -0.2718699872493744, 0.651390016078949, -0.6310700178146362, -0.2123900055885315, -0.04429600015282631, 0.24732999503612518, 0.17423999309539795, -0.2678700089454651, 0.14283999800682068, -0.014255999587476254, 0.38148999214172363, 0.10002999752759933, 0.6578800082206726, 0.9212700128555298, -0.2771899998188019, 0.1296200007200241, -0.035576000809669495, -0.6768699884414673, 0.9666000008583069, 0.14837999641895294, -0.38589000701904297, 0.9517800211906433, 0.37450000643730164, -0.5083299875259399, 0.02542800083756447, -0.18170000612735748, 0.2880600094795227, -0.4593999981880188, -1.1676000356674194, 0.10221000015735626, -0.4914200007915497, 0.3089199960231781, -0.42603999376296997, 0.31317999958992004, 0.43377000093460083, 0.05626299977302551, -0.025554999709129333, -0.34119999408721924, -0.011497999541461468, 0.34095999598503113, 0.09568899869918823, -0.7262099981307983, -0.1517699956893921, -0.6730700135231018, 0.1973399966955185, -0.7438499927520752, 0.1300400048494339, 0.0636959969997406, -0.23935000598430634, 0.6009200215339661, -0.2418999969959259, -0.2522999942302704, -0.4119499921798706, 0.9056500196456909, 0.8371300101280212, 0.1713699996471405, 0.381630003452301, 0.5275899767875671, -0.5289099812507629, -0.7609999775886536, 0.18341000378131866, -0.33779001235961914, 0.15379999577999115, 0.6125900149345398, 0.03673800081014633, -0.19311000406742096, -0.10130999982357025, 0.275519996881485, -0.17926999926567078, 0.22439000010490417, -0.5999299883842468, -0.02894500084221363, 0.3487299978733063, -0.18046000599861145, 0.47762998938560486, 0.47870001196861267, -0.4181100130081177, -0.05390800163149834, -0.5903900265693665, -0.5620999932289124, -0.08147499710321426, -0.051704999059438705, -0.004298099782317877, 0.21421000361442566, -0.7651900053024292, 0.05893599987030029, -0.8407099843025208, -0.37411999702453613, 0.5436999797821045, -0.7862100005149841, -0.22610999643802643, 0.15509000420570374, 0.4215399920940399, 0.207519993185997, -0.15331000089645386, -0.3806400001049042, 0.7032700181007385, -0.5277600288391113, 0.03634500131011009, -0.16660000383853912, 0.0934310033917427, -0.5026500225067139, -0.06847400218248367, 0.22421999275684357, 0.25883999466896057, -0.08711999654769897], u'fan': [-0.08864299952983856, 0.3103500008583069, 0.08443400263786316, -0.3838599920272827, 0.6256600022315979, -0.08180700242519379, 0.29559001326560974, -0.021588999778032303, -0.194240003824234, -0.36289000511169434, 0.05955500155687332, 0.3366200029850006, 0.3107999861240387, -0.46612000465393066, -0.09326600283384323, 0.19957999885082245, -0.41370999813079834, 0.19351999461650848, 0.034922998398542404, 0.19438999891281128, -0.1164499968290329, 0.1888899952173233, -0.35736000537872314, -0.2287999987602234, -0.19266000390052795, 0.025350000709295273, -0.0907140001654625, -0.13854999840259552, 0.5748100280761719, -0.18479999899864197, -0.2491299957036972, -0.15740999579429626, 0.0318400003015995, 0.07876700162887573, -1.1979000568389893, 0.07485300302505493, -0.7514899969100952, 0.035964999347925186, -0.0639059990644455, 0.5560299754142761, 0.381879985332489, -0.5989000201225281, 0.19739000499248505, 0.1507900059223175, 0.5664299726486206, 0.22854000329971313, 0.3759799897670746, 0.2990899980068207, 0.04547800123691559, -0.029145000502467155, -0.5536500215530396, -0.1382399946451187, -0.4784500002861023, 0.4080199897289276, -0.30783000588417053, 0.5845500230789185, -0.005273300223052502, 0.07105100154876709, 0.4487600028514862, -0.14149999618530273, 0.16951000690460205, -0.0530409999191761, 0.48107001185417175, 0.35666000843048096, -0.5259299874305725, -0.0504009984433651, -0.419840008020401, 0.30344998836517334, 0.46362000703811646, 0.46147000789642334, 0.40803998708724976, -0.5179100036621094, 0.2653200030326843, 0.32569000124931335, -0.12466999888420105, 0.4444800019264221, 0.20295000076293945, -0.4939500093460083, -0.06258399784564972, 0.04559699818491936, 0.17015999555587769, 0.4050399959087372, 0.07950600236654282, -0.8143399953842163, -0.04967999830842018, 0.18684999644756317, 0.21191999316215515, -0.11613000184297562, 0.02909800037741661, -0.21376000344753265, 0.2865000069141388, -0.02017500065267086, -0.23298999667167664, -0.5423399806022644, -0.23691000044345856, 0.38210999965667725, 0.5759199857711792, 0.005381300114095211, 0.17338000237941742, -0.6270099878311157, -0.04910000041127205, 0.07326400279998779, 0.1796099990606308, -0.49013999104499817, 0.06007000058889389, 1.105299949645996, 0.2055400013923645, 0.16569000482559204, 0.3388499915599823, 0.5460900068283081, -0.03290199860930443, -0.13665999472141266, 0.0009358699899166822, -0.4631600081920624, 0.22627000510692596, -0.13446000218391418, -0.6013399958610535, -0.13824999332427979, 0.0705140009522438, -0.6253299713134766, 0.05152200162410736, 0.0711819976568222, -0.023756999522447586, 0.25701001286506653, 0.04486599937081337, -0.28913000226020813, -0.31784000992774963, -0.11270999908447266, -0.026746999472379684, -0.5768499970436096, -0.455130010843277, 0.07979399710893631, -0.6107500195503235, -0.30546998977661133, 0.46875, -0.17821000516414642, -0.13484999537467957, 0.33111000061035156, 0.17520000040531158, 0.6368200182914734, -0.1559399962425232, -0.5509200096130371, 0.30133000016212463, -0.4688799977302551, 0.18856999278068542, 0.26478999853134155, -0.3832100033760071, -0.5910500288009644, 0.056474000215530396, -0.06899899989366531, 0.32078999280929565, 0.40625, -0.40588998794555664, -0.24567000567913055, 0.5453900098800659, -0.44633999466896057, 0.42302998900413513, 0.4810599982738495, -0.21735000610351562, -0.12529000639915466, -0.1017099991440773, 0.02198299951851368, -0.2693699896335602, -0.07818800210952759, 0.6690700054168701, -0.055332001298666, -0.27090001106262207, 0.06890299916267395, -0.5004199743270874, -0.3156599998474121, 0.1859399974346161, 0.198170006275177, -1.2998000383377075, -0.308789998292923, 0.3948799967765808, -0.07475899904966354, 0.1979999989271164, 0.2359900027513504, 0.6109799742698669, 0.18727999925613403, -0.047449998557567596, -0.306769996881485, -0.09702800214290619, 0.021323999390006065, 0.15059000253677368, -0.35374000668525696, -0.16514000296592712, 0.21222999691963196, 0.11957000195980072, 0.35308000445365906, -0.05137399956583977, 0.11193999648094177, -0.22888000309467316, -0.012624000199139118, -0.05252499878406525, -0.5806000232696533, 0.034609999507665634, -0.0872339978814125, 0.13067999482154846, -0.21111999452114105, 0.5719000101089478, 0.14757999777793884, 0.6701499819755554, 0.048236001282930374, 0.41903001070022583, -0.324970006942749, 0.32846999168395996, -0.2949100136756897, 0.06269799917936325, 0.5647100210189819, 0.018153000622987747, -0.34981998801231384, 0.5180000066757202, -0.040268998593091965, -0.05223200097680092, -0.10798999667167664, -0.19853000342845917, 0.17295999825000763, 0.015011999756097794, 0.2952300012111664, 0.025836000218987465, 0.13941000401973724, 0.044652000069618225, -0.11776000261306763, -0.10650999844074249, -0.185589998960495, -0.39395999908447266, -0.09781099855899811, -0.0009770100004971027, -0.34139999747276306, 0.21660999953746796, -0.4921700060367584, -0.1039000004529953, -0.5539000034332275, -0.010467000305652618, -0.5615699887275696, -0.11270000040531158, 0.4892899990081787, -0.5055599808692932, 0.3973099887371063, 0.47473999857902527, -0.3461399972438812, -0.45423001050949097, 0.23179000616073608, 0.1929599940776825, -0.012965000234544277, -0.31123998761177063, 0.06170399859547615, -0.11819999665021896, 0.011079000309109688, 0.31571999192237854, -0.21984000504016876, -0.09268099814653397, 0.2428700029850006, 0.6993700265884399, -0.29221999645233154, 0.1578499972820282, -1.2616000175476074, -0.18669000267982483, -1.1562999486923218, 0.008851200342178345, -0.023771999403834343, 0.16771000623703003, -0.39493998885154724, -0.6481999754905701, -0.21578000485897064, -0.493120014667511, 0.7049000263214111, 0.2575500011444092, -0.05648000165820122, 0.39427000284194946, -0.1490200012922287, -0.02531599998474121, -1.0728000402450562, -0.17089000344276428, -0.3450799882411957, -1.7000000476837158, -0.26047998666763306, 0.019063999876379967, 0.021164000034332275, -0.3025299906730652, 0.5586299896240234, -0.2753300070762634, -0.05570799857378006, -0.6289200186729431, 0.29980000853538513, 0.0018363000126555562, -0.2357099950313568, -0.04599199816584587, -0.1391099989414215, -0.017302000895142555, -0.06029000133275986, -0.5372700095176697, 0.024020999670028687, 0.6326199769973755, -0.16919000446796417, -0.34828001260757446, 0.24985000491142273, -0.051245998591184616, 0.09231500327587128], u'snake': [-0.15769000351428986, 0.43340998888015747, 0.030177999287843704, -0.013131000101566315, 0.12199000269174576, 0.2632099986076355, 0.1228799968957901, 0.5092399716377258, 0.013032999821007252, -0.21673999726772308, -0.24501000344753265, -0.21813000738620758, -0.28321999311447144, -0.09278500080108643, -0.254940003156662, -0.07129500061273575, -0.03096500039100647, 0.37957999110221863, -0.27202001214027405, 0.8872299790382385, -0.2249000072479248, 0.2695600092411041, 0.4129599928855896, 0.3750999867916107, -0.07028300315141678, -0.03931700065732002, -0.5843300223350525, -0.6086199879646301, -0.040265001356601715, 0.324429988861084, 0.2555699944496155, 0.16794000566005707, -0.2778800129890442, -0.008194699883460999, 0.328029990196228, 0.5092499852180481, -0.08032900094985962, -0.08487299829721451, -0.13673000037670135, 0.5002400279045105, -0.7290499806404114, 0.05210400000214577, -0.08894100040197372, -0.19699999690055847, -0.05819699913263321, -0.21874000132083893, 0.4378199875354767, 0.01959400065243244, 0.12913000583648682, -0.14439000189304352, 0.2046699970960617, 0.016551999375224113, 0.4283500015735626, 0.39188000559806824, 0.05693399906158447, 0.2953599989414215, -0.552079975605011, 0.2433300018310547, 0.5216299891471863, 0.5041700005531311, -0.03989800065755844, 0.14079000055789948, 0.7815899848937988, 0.5889800190925598, 0.14541000127792358, -0.8147900104522705, -0.32545000314712524, -0.06763199716806412, 0.5415899753570557, 0.28088998794555664, -0.06885000318288803, 0.6858199834823608, -0.08923099935054779, -0.2775700092315674, -0.20618000626564026, 0.36972999572753906, -0.14114999771118164, 0.010374000295996666, 0.17324000597000122, -0.2867499887943268, 0.8557699918746948, -0.5902799963951111, 0.09528899937868118, 0.14634999632835388, -0.017311999574303627, 0.3955399990081787, 0.06261199712753296, -0.033969998359680176, -0.190870001912117, -0.5575000047683716, -0.42594000697135925, 0.05035899952054024, 0.7269200086593628, -0.07382100075483322, -0.11535000056028366, 0.019395999610424042, 0.5784400105476379, 0.5133699774742126, 0.2901099920272827, -0.2730099856853485, -0.1012599989771843, 0.49136000871658325, 0.28751999139785767, -0.42214998602867126, 0.6375200152397156, -0.38593000173568726, 0.3177500069141388, 0.210999995470047, -0.04396799951791763, 0.6096199750900269, -0.0768980011343956, 0.11826000362634659, -0.714169979095459, 0.04132600128650665, 0.5378299951553345, -0.18389999866485596, 0.1183599978685379, 0.0640069991350174, -0.32401999831199646, -0.23869000375270844, -0.5829300284385681, -0.5385199785232544, -0.340719997882843, 0.4941500127315521, -0.5009300112724304, 0.12509000301361084, -0.2420700043439865, 0.6259599924087524, 0.4750500023365021, -0.16673000156879425, -0.09643500298261642, -0.12125000357627869, 0.17794999480247498, 0.5954700112342834, -0.26780998706817627, -0.08165399730205536, 0.3066299855709076, -0.5771899819374084, -0.17497999966144562, 0.19517000019550323, 0.35468000173568726, 0.5023400187492371, 0.11604999750852585, -1.3003000020980835, -0.5744699835777283, 0.08057200163602829, 0.39906999468803406, 0.07862900197505951, 0.0602709986269474, -0.07322899997234344, -0.33041998744010925, 0.4211199879646301, -0.45855000615119934, -0.0498960018157959, 0.09461399912834167, 0.26438000798225403, 0.495279997587204, -0.8656399846076965, -0.22164000570774078, 0.4512600004673004, -0.0882520005106926, -0.14903999865055084, 0.08970200270414352, 0.22540999948978424, 0.07802899926900864, 0.01567699946463108, 0.0011727999662980437, -0.19833999872207642, -0.518310010433197, -0.6139199733734131, -0.420960009098053, -0.329259991645813, 0.5616300106048584, 0.5903400182723999, 0.1254200041294098, -0.023499000817537308, -0.4348999857902527, -0.10286000370979309, 0.753000020980835, -0.44707998633384705, 0.17764000594615936, -0.007888800464570522, -0.19870999455451965, 0.4667699933052063, 0.1974100023508072, -0.7704799771308899, 0.7487099766731262, 0.003007899969816208, 0.22231000661849976, -0.944159984588623, -0.30390000343322754, 0.6541100144386292, -0.1931000053882599, 0.07450199872255325, 0.09241999685764313, 0.5187100172042847, -0.08989699929952621, -0.7590199708938599, -0.43814000487327576, 0.10560999810695648, 1.465999960899353, 0.8012300133705139, -0.27360999584198, 0.010635999962687492, -0.20993000268936157, 0.741320013999939, -0.5125799775123596, 0.0034294999204576015, 0.1620599925518036, 0.555840015411377, -0.4333600103855133, -0.1879200041294098, 0.5677099823951721, -0.30423998832702637, 0.04270099848508835, 0.2031400054693222, 0.2283399999141693, -0.4305900037288666, 0.49094000458717346, -0.30698999762535095, -0.11625999957323074, 0.32945001125335693, 0.3909299969673157, -0.20708000659942627, 0.28859999775886536, 0.11559999734163284, -0.4353399872779846, -0.4085099995136261, 0.23997999727725983, -0.2804499864578247, -0.4970700144767761, -0.27632999420166016, -0.07166600227355957, -0.015434999950230122, 0.23704999685287476, 0.12223000079393387, -0.33351001143455505, -0.3566499948501587, -0.3246999979019165, -0.4221400022506714, -0.23668000102043152, 0.36827999353408813, -0.47126999497413635, 0.031950999051332474, -0.6995999813079834, 0.33768999576568604, -0.10987000167369843, 0.3808799982070923, -0.341729998588562, 0.10671000182628632, -0.5283499956130981, -0.05839100107550621, -0.3968299925327301, 0.2020300030708313, 0.9500899910926819, 0.438400000333786, 0.10756999999284744, 0.5631999969482422, 0.2836199998855591, -0.09446399658918381, -0.46717000007629395, -0.624459981918335, 0.37457001209259033, -0.13722999393939972, -0.3451400101184845, 0.1863500028848648, 0.4189800024032593, -0.3441599905490875, -0.30452001094818115, 0.5331599712371826, -0.23048000037670135, -0.0844459980726242, 0.14092999696731567, 0.4407599866390228, 0.17058999836444855, -0.5088800191879272, -0.34158000349998474, -0.008167600259184837, -0.42500999569892883, 0.07152500003576279, -0.08985400199890137, 0.12421000003814697, 0.21734000742435455, 0.7699699997901917, -0.7335699796676636, 0.538919985294342, 0.13539999723434448, 0.1620199978351593, 0.6104000210762024, -0.36812999844551086, 0.4112200140953064, -0.21942000091075897, -0.15126000344753265, 0.6456699967384338, 0.0295219998806715, 0.0777989998459816, 0.2222999930381775, 0.1879200041294098, 0.24488000571727753, 0.13046999275684357], u'desk': [-0.7372599840164185, 0.4615199863910675, -0.5117200016975403, -0.5803700089454651, -0.10294999927282333, 0.2940100133419037, -0.34422001242637634, -0.06714200228452682, -0.45350000262260437, -1.1765999794006348, 0.05533500015735626, 0.8921300172805786, 0.5284900069236755, 0.39188000559806824, 0.14841000735759735, -0.15376000106334686, 0.028914999216794968, 0.24661000072956085, -0.2142000049352646, -0.07844699919223785, -0.09387200325727463, 0.18019999563694, -0.0007610099855810404, -0.11687000095844269, -0.7489399909973145, 0.20905999839305878, 0.4510599970817566, 0.0580499991774559, 1.0347000360488892, -0.3384999930858612, 0.00996679998934269, -0.1962299942970276, -0.05117600038647652, 0.18002000451087952, -0.8792499899864197, -0.15146000683307648, -0.45974001288414, -0.5840100049972534, -0.21755999326705933, 0.14563000202178955, -0.641480028629303, -0.5329800248146057, -0.5954300165176392, 0.13036000728607178, 0.34630000591278076, -0.20622000098228455, 0.16035999357700348, -0.35238000750541687, -0.11818999797105789, -0.09480399638414383, 0.34426000714302063, 0.11912000179290771, -0.09757299721240997, -0.2815000116825104, -0.14869999885559082, -0.08823800086975098, -0.11749999970197678, -0.040275998413562775, -0.3668299913406372, -0.26357999444007874, 1.054900050163269, 0.2165600061416626, -0.1400900036096573, 0.36542001366615295, -0.10907000303268433, -0.23113000392913818, -0.009483999572694302, 0.6450200080871582, 0.06804600358009338, -0.6388999819755554, -0.03178500011563301, 0.010525999590754509, -0.6494899988174438, 0.06312999874353409, -0.3068400025367737, 0.38694000244140625, -0.22328999638557434, 0.3450999855995178, 0.5926499962806702, -0.7514500021934509, 0.34532999992370605, 0.6376799941062927, -0.39157000184059143, 0.48392999172210693, 0.06879500299692154, -0.1976500004529953, -0.4975300133228302, -0.08575800061225891, -0.37105000019073486, -0.10072000324726105, -0.012934000231325626, -0.9448300004005432, -0.04775400087237358, -0.09099099785089493, -0.20652000606060028, 0.032047998160123825, -0.3066900074481964, -0.5813699960708618, 0.6902400255203247, -0.40470001101493835, 0.5223299860954285, 0.4591600000858307, -0.12627999484539032, -0.10999000072479248, 0.052018001675605774, -0.6498000025749207, 0.488319993019104, -0.0218339990824461, 0.5017600059509277, 0.1950799971818924, -0.3796899914741516, 0.3587000072002411, -0.12619000673294067, 0.2021699994802475, -0.7698500156402588, 0.04941299930214882, -0.4515100121498108, -0.44143998622894287, -0.30651000142097473, -0.36399000883102417, -0.23597000539302826, -0.002356099896132946, 0.14589999616146088, -0.05527999997138977, -0.2873600125312805, 0.35760000348091125, -0.40174999833106995, -1.4437999725341797, 0.2280299961566925, -0.032182998955249786, 0.6327300071716309, -0.2360599935054779, 0.1941000074148178, -0.4680199921131134, -0.023701999336481094, -0.05613499879837036, 0.07128900289535522, 0.4863399863243103, 0.2964800000190735, 0.049501001834869385, 0.10209000110626221, -0.04131700098514557, 0.3237900137901306, -0.16606999933719635, -0.09574300050735474, 0.08501499891281128, -0.4670099914073944, -0.04479200020432472, 0.33250001072883606, -0.8689900040626526, 0.4597199857234955, 0.6040800213813782, 1.1288000345230103, -0.8062899708747864, -0.5110399723052979, 0.3420799970626831, 0.014820000156760216, -0.21121999621391296, 0.4327299892902374, 0.0946659967303276, 0.18039000034332275, 0.1752600073814392, 0.4377500116825104, 0.6775699853897095, 0.6818199753761292, 0.3465900123119354, 0.20330999791622162, 0.09527900069952011, 0.1106799989938736, -0.040369000285863876, -0.7806699872016907, -0.47878000140190125, -0.5988900065422058, -0.08317700028419495, -0.35767000913619995, -0.4008300006389618, -0.07762599736452103, -0.10832999646663666, -0.3859499990940094, -0.893779993057251, -0.21774999797344208, -0.7900199890136719, 0.4937700033187866, 0.29791998863220215, 0.24856999516487122, -0.523419976234436, 1.0591000318527222, 0.35756999254226685, -0.33754000067710876, -0.2576200067996979, 0.42904001474380493, 0.40904000401496887, 0.07143600285053253, -0.3640899956226349, 0.22460000216960907, -0.3613100051879883, -0.2550100088119507, 0.020541999489068985, -0.48374998569488525, 0.09558799862861633, 0.8285199999809265, -0.35311999917030334, 0.12706999480724335, -0.11444000154733658, 0.7629600167274475, -0.077674999833107, -0.11896000057458878, -0.8481600284576416, -0.41422000527381897, -0.6296700239181519, -0.28393998742103577, -0.5783900022506714, 0.14538000524044037, -0.20128999650478363, 0.18170000612735748, -0.06585200130939484, -0.5333899855613708, -0.3158699870109558, 0.03213300183415413, 0.4113999903202057, -0.3053399920463562, 0.18352000415325165, -0.2593199908733368, 0.9710400104522705, 0.12437999993562698, 0.037376999855041504, 0.19830000400543213, -0.07700099796056747, -0.16267000138759613, -0.3997400104999542, 0.2531599998474121, 0.01089600007981062, -0.2644999921321869, -0.09471199661493301, 0.09311900287866592, 0.14131000638008118, -0.20295999944210052, 0.15098999440670013, 0.07073400169610977, -0.08685000240802765, -0.21842999756336212, 0.07689999788999557, -0.47321999073028564, 0.5206800103187561, 0.12511000037193298, -0.21521000564098358, -0.2505800127983093, 0.0041207000613212585, -0.2041500061750412, 0.413100004196167, 0.4249800145626068, -0.10485000163316727, 0.03199300169944763, -0.14439000189304352, 0.18825000524520874, -0.19493000209331512, -0.3836100101470947, 0.04325399920344353, 0.16870999336242676, 0.1014299988746643, -0.4458799958229065, 0.043907999992370605, 0.7081300020217896, 0.4113300144672394, 0.5978699922561646, 0.10012000054121017, 0.5499899983406067, 0.7413700222969055, -0.012017999775707722, 0.4767000079154968, -0.6293100118637085, -0.35530000925064087, 0.15884000062942505, -0.0028788000345230103, -0.14318999648094177, 0.30066001415252686, -0.6637799739837646, 0.9495999813079834, 0.10676000267267227, -0.24442000687122345, -0.5661699771881104, -0.17447000741958618, -0.11723999679088593, -0.5748500227928162, 0.3978100121021271, 0.11048000305891037, 0.1704999953508377, 0.3213199973106384, -0.7103099822998047, -0.5579500198364258, 0.39965999126434326, -0.003907599952071905, -0.19227999448776245, -0.009744799695909023, 0.10770999640226364, 0.1929900050163269, 0.28979000449180603, -0.1737699955701828, -0.6251199841499329, 0.6921200156211853], u'silk': [-0.1468300074338913, -0.37428998947143555, 0.13628999888896942, -0.28158000111579895, -0.10481999814510345, -0.5838299989700317, 0.023715000599622726, -0.4239700138568878, 0.14125999808311462, -0.65065997838974, -0.01218700036406517, -0.8608300089836121, -0.26541000604629517, 0.22586999833583832, 0.11266999691724777, -0.4014799892902374, -0.4954099953174591, 0.2945699989795685, -0.6165300011634827, 0.06436199694871902, -0.4790099859237671, -0.6855900287628174, -0.14632999897003174, 0.4204699993133545, -0.47589001059532166, -0.4716799855232239, -0.22689999639987946, -0.8791300058364868, 0.014316000044345856, 0.7702900171279907, 0.2510699927806854, -0.1427299976348877, -0.5308600068092346, -0.030786000192165375, -0.5089700222015381, 0.8341599702835083, -0.03745799884200096, -0.36302000284194946, 0.3224399983882904, -0.011745999567210674, -0.5540199875831604, -0.4317600131034851, -0.08170299977064133, -0.0008476100047118962, 0.41016000509262085, -0.21573999524116516, 0.4892500042915344, 0.07711099833250046, -0.3155499994754791, 0.0015799000393599272, 0.17882999777793884, -0.015675999224185944, 0.2737799882888794, -0.5409600138664246, -0.038672998547554016, -0.5223900079727173, -0.252020001411438, -0.5151299834251404, -0.19818000495433807, -0.30608999729156494, -0.1724500060081482, -0.47909998893737793, -0.05354100093245506, -0.38804998993873596, 0.9517999887466431, 0.6185100078582764, -0.14702999591827393, 0.19437000155448914, 0.05846500024199486, -0.10182999819517136, 0.4376800060272217, -0.03512100130319595, -0.09270299971103668, -0.3880099952220917, 0.2934199869632721, 0.9110100269317627, -0.2930299937725067, -0.24727000296115875, 0.149509996175766, -0.36636000871658325, -0.7692199945449829, -0.2440599948167801, -0.3851099908351898, -0.3563700020313263, 0.4674699902534485, 0.37665000557899475, 0.33059000968933105, 0.006176399998366833, 0.09207099676132202, 0.24724000692367554, 0.1683499962091446, -0.18678000569343567, -0.1390099972486496, -0.08335000276565552, 0.052848998457193375, 0.6152899861335754, 0.5221899747848511, 0.4476900100708008, 0.11971999704837799, 0.500760018825531, 0.42866000533103943, 0.7955899834632874, 0.35135000944137573, -0.18955999612808228, -0.3277300000190735, -0.2307399958372116, 0.20956000685691833, -0.0404760017991066, 0.07077000290155411, 0.07632700353860855, -0.4665899872779846, 0.22853000462055206, -0.028026999905705452, 0.20819999277591705, 0.41863998770713806, 0.35499000549316406, 0.3427099883556366, 1.2833000421524048, 0.3146499991416931, -0.8327199816703796, -0.32416000962257385, 0.15273000299930573, 0.31498000025749207, -0.41165998578071594, 0.050227999687194824, -0.08861199766397476, -0.05290599912405014, 0.5444499850273132, -0.3261699974536896, -0.13615000247955322, -0.013718999922275543, 0.23306000232696533, -0.540910005569458, -0.3404099941253662, -1.065500020980835, -0.35835000872612, -0.3916400074958801, -0.059689998626708984, -0.3144800066947937, -0.26385000348091125, -0.28367000818252563, 0.1164499968290329, 0.05382600054144859, -1.1721999645233154, -0.03487199917435646, -0.01634399965405464, 0.12132000178098679, -1.0753999948501587, -0.2786799967288971, 0.03777699917554855, 0.0004035900055896491, 0.04582099989056587, -0.030697999522089958, -0.8912799954414368, -0.17885999381542206, 0.37024998664855957, -0.3202599883079529, -0.18636000156402588, 0.2801699936389923, -0.2573400139808655, -0.028074000030755997, -0.3877899944782257, -0.3950600028038025, 0.14778999984264374, -0.036052998155355453, -0.42778998613357544, -0.3019700050354004, 0.13096000254154205, 0.18982000648975372, 0.28971999883651733, -0.5571100115776062, -0.7432600259780884, 0.11350999772548676, 0.21852999925613403, -0.22018000483512878, -0.40264999866485596, -0.4255799949169159, 0.5394099950790405, -0.7435200214385986, -0.7100499868392944, -0.2612299919128418, 0.3435699939727783, 0.03472699970006943, 0.37279999256134033, 0.7057999968528748, -0.3085800111293793, 0.12071999907493591, 0.4496900141239166, 0.414139986038208, -0.2993899881839752, 0.740149974822998, 0.6721400022506714, -0.2478799968957901, -0.10877999663352966, 0.03766300156712532, -0.22376999258995056, -0.2676199972629547, -0.4879699945449829, -0.29023998975753784, -0.389849990606308, 0.6633999943733215, -0.03832799941301346, 0.4392000138759613, 0.6101199984550476, 0.8256199955940247, -0.009805399924516678, 0.17723999917507172, 0.5815500020980835, -0.7833099961280823, -0.16354000568389893, 0.07369200140237808, -0.6641499996185303, 0.4745100140571594, -0.09685499966144562, 0.5087900161743164, -0.2388100028038025, 0.39746999740600586, -1.1002999544143677, -0.09082599729299545, -0.45458999276161194, 0.026770999655127525, -0.47971999645233154, -0.37244999408721924, -0.4261600077152252, -0.12852999567985535, -0.0386819988489151, -0.08196800202131271, 0.3540300130844116, -0.2598299980163574, -0.3544600009918213, 0.39680999517440796, -0.4910300076007843, -0.09347700327634811, 0.6276500225067139, 0.9261400103569031, -0.21152999997138977, 0.5726100206375122, -0.518809974193573, -0.6063500046730042, 0.02230899967253208, -0.07722599804401398, -0.2657400071620941, -0.40026000142097473, 0.906440019607544, -0.5757899880409241, 0.9242500066757202, -0.28812000155448914, -0.0858680009841919, 0.4864700138568878, -0.5689299702644348, -0.17726999521255493, 0.18657000362873077, 0.0675249993801117, -0.288239985704422, 0.8870199918746948, -0.11800999939441681, -0.04260599985718727, 0.5263599753379822, 0.403329998254776, -0.06495100259780884, 0.39618998765945435, -0.6810399889945984, 0.5148800015449524, 0.02668599970638752, 0.03379900008440018, 0.32203999161720276, -0.2722199857234955, -0.30414000153541565, -0.30827999114990234, 0.2444700002670288, -0.061524998396635056, 0.18871000409126282, 0.2731199860572815, 0.26883000135421753, -0.73471999168396, 0.03762799873948097, -0.4517099857330322, -0.8523799777030945, -0.9511899948120117, 0.21323999762535095, 0.037108998745679855, 0.03709400072693825, 0.36539000272750854, -0.32607001066207886, 0.18422000110149384, 0.17246000468730927, 0.39741000533103943, 0.3137899935245514, -0.20777000486850739, -0.12626999616622925, 0.3578200042247772, 0.5112599730491638, -0.16493000090122223, 0.8916199803352356, -0.7146499752998352, 0.3109399974346161, 0.1407099962234497, 0.16854000091552734, 0.22238999605178833, -0.01732799969613552], u'bread': [0.42445001006126404, 0.44214001297950745, 0.3783299922943115, -0.06940300017595291, -0.07333800196647644, -0.08113499730825424, -0.05778000131249428, 0.16374999284744263, -0.09904500097036362, -0.8168900012969971, -0.43911999464035034, -0.4971199929714203, -0.5049499869346619, 0.7461000084877014, 0.32350000739097595, -0.6949499845504761, -0.19990000128746033, 0.08571799844503403, 0.10033000260591507, 0.05936200171709061, -0.043522000312805176, 0.05022500082850456, -0.22728000581264496, -0.04965899884700775, 0.5257899761199951, -0.13038000464439392, 0.11082000285387039, -0.005702599883079529, -0.40167000889778137, -0.303600013256073, -0.3550400137901306, 0.5646499991416931, -0.42691001296043396, 0.09530500322580338, -0.8980699777603149, 0.17837999761104584, -0.02964700013399124, -0.12109000235795975, -0.13524000346660614, 0.40595999360084534, 0.1559700071811676, -0.8432400226593018, 0.517270028591156, -0.16569000482559204, -0.11146999895572662, 0.07732199877500534, 0.26822999119758606, 0.05721500143408775, -0.14571000635623932, 0.2316800057888031, 0.9179400205612183, 0.181099995970726, 0.446260005235672, 0.8429099917411804, -0.31894001364707947, -0.2061000019311905, -0.30366000533103943, 0.0045449999161064625, 0.03083300031721592, 0.17034000158309937, 0.3111099898815155, 0.12178000062704086, 0.10801000148057938, 0.07989300042390823, -0.6786999702453613, 0.08478700369596481, -0.5422400236129761, 0.15838000178337097, -0.3133600056171417, 0.1287900060415268, 0.6167700290679932, -0.053286999464035034, -0.38343000411987305, -0.23622000217437744, 0.004449700005352497, 0.1517300009727478, 0.5178499817848206, -0.11339999735355377, -0.6259499788284302, 0.03509499877691269, 0.12546999752521515, 0.5569400191307068, 0.051600001752376556, 0.08403799682855606, -0.08485099673271179, -0.44192999601364136, -0.46434998512268066, 0.36741000413894653, -0.18653999269008636, 0.3582800030708313, 0.22892999649047852, -0.7979699969291687, 0.10891000181436539, 0.061560001224279404, -0.24383999407291412, -0.2563199996948242, 0.6607499718666077, 0.5228999853134155, -0.3616800010204315, 0.6464400291442871, 0.19633999466896057, 0.1244800016283989, -0.036928001791238785, -0.9086700081825256, -0.2809000015258789, -0.10382000356912613, 0.07149799913167953, 0.3880699872970581, -0.8308299779891968, 0.12251999974250793, 0.43178999423980713, 0.6597999930381775, 0.04508600011467934, -0.6537700295448303, -0.39691001176834106, -0.08796899765729904, -0.47148001194000244, 0.3505899906158447, 0.7041000127792358, -0.09598200023174286, -0.27671000361442566, -0.29434001445770264, 0.49031001329421997, 0.35662001371383667, 0.027701999992132187, -0.28641998767852783, 0.3156599998474121, 0.5243800282478333, -0.2631700038909912, 0.8205900192260742, 0.07901199907064438, 0.47512999176979065, 0.33364999294281006, 0.801639974117279, 0.026969999074935913, -0.3341499865055084, -0.11802999675273895, 0.7964100241661072, -0.16586999595165253, 0.35163000226020813, 0.7006099820137024, 0.3594000041484833, -0.5951700210571289, -0.12043000012636185, -0.24310000240802765, 0.49751999974250793, -0.5605400204658508, -0.13812999427318573, 0.37623998522758484, -0.36406001448631287, -0.6373000144958496, 0.4753299951553345, 0.6435999870300293, -0.18634000420570374, -0.574209988117218, 0.16739000380039215, -0.017222000285983086, -0.5515400171279907, -0.09162700176239014, 0.0163589995354414, 0.0061147999949753284, 0.032249998301267624, -0.3087199926376343, 0.2383899986743927, -0.6533899903297424, 0.3114599883556366, -0.24672000110149384, -0.2788200080394745, 0.2989400029182434, -0.5313199758529663, -0.3832400143146515, 0.08935900032520294, -0.5534800291061401, 0.21006999909877777, -0.6627399921417236, 0.32095998525619507, -0.2917500138282776, -0.14104999601840973, 0.28332000970840454, -0.36122000217437744, 0.36750999093055725, 0.33959999680519104, -0.17524999380111694, -0.6083300113677979, 0.10298000276088715, 0.07603800296783447, 0.7550399899482727, 0.21258999407291412, 0.09431999921798706, 0.16234000027179718, 0.09964899718761444, 1.3594000339508057, -0.13559000194072723, -0.31185999512672424, -0.1212100014090538, -0.07656099647283554, -0.676639974117279, -0.8716300129890442, 0.0691860020160675, 0.23583999276161194, 0.3517799973487854, -0.5865300297737122, 1.0506000518798828, 0.7157800197601318, -0.05127900093793869, -0.7217299938201904, 0.5503100156784058, -0.18321000039577484, -0.32433000206947327, -0.19721999764442444, -0.21130000054836273, 0.08322100341320038, -0.20574000477790833, -0.14087000489234924, -0.20221999287605286, 0.11095000058412552, 0.49118998646736145, -0.5243499875068665, -0.022424999624490738, 0.03187299892306328, 0.514519989490509, 0.6174100041389465, -0.1301400065422058, -0.2434300035238266, -0.3547700047492981, -0.6711500287055969, 0.24244999885559082, 0.20685000717639923, 0.5862500071525574, 0.006843899842351675, 0.15636999905109406, 0.04175800085067749, -0.38749000430107117, 0.11131999641656876, 0.8875399827957153, 0.7852299809455872, -0.07043399661779404, 0.11204999685287476, -0.9423800110816956, -0.1041800007224083, -0.47953000664711, -0.04193099960684776, -0.20347000658512115, -0.47242000699043274, -0.7055799961090088, -0.18668000400066376, -0.14410999417304993, 0.41065001487731934, 0.11432000249624252, -0.9206100106239319, 0.7363799810409546, -0.0318400003015995, 0.1583700031042099, 0.26361000537872314, 0.45361000299453735, 0.8141499757766724, -0.5170800089836121, -0.2691799998283386, 0.5244100093841553, 0.5450999736785889, 0.08345700055360794, -0.45576998591423035, -0.1775600016117096, -0.7336000204086304, 0.6922900080680847, -0.39893999695777893, -0.4186300039291382, 0.057050999253988266, 0.2504900097846985, 0.1310800015926361, -0.737820029258728, 0.4501799941062927, 0.11530999839305878, 0.7658399939537048, 0.348690003156662, 0.01532800029963255, -1.1598000526428223, -0.22352999448776245, -0.9381399750709534, -0.5110999941825867, 0.07284300029277802, -0.3021399974822998, -0.16631999611854553, -0.31373998522758484, 0.05968799814581871, 0.6507300138473511, 0.9289299845695496, -0.6086400151252747, 0.2864300012588501, 0.5460299849510193, -0.1412300020456314, -0.34933000802993774, 0.27733999490737915, 0.3058899939060211, -0.004934099968522787, -0.17020000517368317, -0.4302600026130676, 0.023264000192284584, -0.26447999477386475, 0.4634000062942505], u'aluminum': [0.17599999904632568, -0.17916999757289886, -0.22026999294757843, -1.1598000526428223, -0.48719000816345215, -0.1257600039243698, -0.16440999507904053, 0.24255000054836273, -0.2106200009584427, -0.8602100014686584, -0.4559600055217743, -0.2480199933052063, -0.21770000457763672, -0.210999995470047, -0.3569999933242798, -0.4842599928379059, -0.19833000004291534, 0.20295000076293945, 0.09363599866628647, -0.7631800174713135, -0.1165900006890297, 0.010730000212788582, 0.10158000141382217, 0.705590009689331, 0.2343599945306778, -0.6247400045394897, 0.12303999811410904, 0.24070000648498535, -0.28356000781059265, -0.307779997587204, 0.012664999812841415, 0.38324999809265137, 0.3492099940776825, 0.24178999662399292, -0.20106999576091766, 0.6245599985122681, -0.3198400139808655, 0.011253000237047672, 0.15466000139713287, 0.7809699773788452, -0.9522500038146973, -0.18554000556468964, -0.26054999232292175, 0.12685999274253845, -0.1306300014257431, 0.06165999919176102, -0.4226999878883362, -0.34053000807762146, -0.04170700162649155, 0.4246000051498413, 0.07195200026035309, 0.2978599965572357, 0.07720199972391129, 0.02979999966919422, 0.5041499733924866, 0.2829500138759613, 0.5229300260543823, 0.2262199968099594, 0.849590003490448, 0.11650999635457993, 0.14608000218868256, 0.8113200068473816, 0.15674999356269836, -0.7514299750328064, 0.33184999227523804, 0.19913999736309052, -0.6223499774932861, 0.3961000144481659, -0.11960999667644501, 0.24818000197410583, -0.52360999584198, 0.08620499819517136, 0.2535800039768219, 0.23738999664783478, -0.2366899996995926, 0.18300999701023102, -0.18546999990940094, 0.0789019986987114, 0.043088000267744064, 0.20535999536514282, -0.12883000075817108, -0.3097200095653534, -0.22509999573230743, -0.34848999977111816, 0.16690999269485474, -0.048902999609708786, -0.040348999202251434, 0.064751997590065, -0.40968000888824463, 0.34488001465797424, 0.7453200221061707, 0.29899999499320984, 0.021176999434828758, 0.18389999866485596, -0.3481200039386749, -0.041058000177145004, -0.8974000215530396, -0.10379000008106232, -0.41065001487731934, -0.19429999589920044, -0.262690007686615, 0.3971399962902069, 0.2192700058221817, -0.6629700064659119, 0.9742500185966492, -0.18725000321865082, 0.2345699965953827, 0.12898999452590942, -0.7651799917221069, -0.03939099982380867, -0.016984999179840088, -0.37564998865127563, -0.35635998845100403, -0.7926499843597412, -0.0014945999719202518, -0.2800399959087372, -0.06327799707651138, 0.896809995174408, 0.3985399901866913, 0.5217800140380859, -0.533050000667572, -0.788100004196167, 0.45353999733924866, 0.2545500099658966, -0.18849000334739685, 0.11699999868869781, 0.1257299929857254, -0.1133200004696846, -0.020716000348329544, -0.0818220004439354, -0.2994000017642975, 0.7854099869728088, -0.3595300018787384, 0.2766000032424927, 0.0955910012125969, 0.6751800179481506, -1.1154999732971191, -0.08138900250196457, -0.195810005068779, -0.210999995470047, 0.7485399842262268, 0.6715400218963623, 0.5473200082778931, -0.7291899919509888, -0.1060200035572052, 0.09027499705553055, 0.18556000292301178, -0.7651699781417847, -0.049166999757289886, -0.7793099880218506, 0.6392199993133545, -0.5362399816513062, -0.19830000400543213, -0.9185500144958496, 0.3136900067329407, -0.3972199857234955, -0.2533099949359894, -0.354779988527298, -0.19825999438762665, 0.21185000240802765, 0.2993899881839752, 0.07434500008821487, -0.303710013628006, 0.307669997215271, 0.8894699811935425, 0.29905998706817627, 0.0627409964799881, 0.4778299927711487, 0.5847799777984619, -0.38130998611450195, -0.7740100026130676, 0.3546299934387207, -0.29151999950408936, 0.03466999903321266, 0.25475001335144043, -0.6431499719619751, -0.26249000430107117, -0.07220400124788284, 0.17542999982833862, -0.7444000244140625, 0.23960000276565552, 0.031383998692035675, 0.6073799729347229, 0.08769799768924713, 0.3034000098705292, -0.38172000646591187, 1.067199945449829, 0.4825499951839447, 0.43400999903678894, 0.2855899930000305, 0.16461999714374542, 0.5303400158882141, 0.004796300083398819, 0.2828100025653839, 0.22306999564170837, 0.015935000032186508, 0.2304600030183792, 0.5132399797439575, 0.039361998438835144, 0.08383200317621231, -0.33623000979423523, 0.1919499933719635, 0.15731999278068542, 0.14791999757289886, -0.0034574000164866447, 0.9742699861526489, 0.12710000574588776, -0.21036000549793243, -1.156499981880188, -0.23643000423908234, 0.5140100121498108, 0.5233200192451477, 0.1632000058889389, -0.39739999175071716, 0.3680799901485443, 0.4029200077056885, 0.21404999494552612, -0.3002600073814392, -0.03833499923348427, 0.1658799946308136, 0.3483699858188629, -0.036035001277923584, 0.6698799729347229, -0.7353299856185913, -0.0072591002099215984, 0.6537399888038635, 0.21122999489307404, 0.4236299991607666, -0.13958999514579773, -0.3765999972820282, -0.132750004529953, -0.14148999750614166, 0.06996600329875946, 0.19325000047683716, 0.3356100022792816, -0.03619299829006195, 0.47056999802589417, -0.37950998544692993, -0.47255000472068787, -0.3635599911212921, -0.04494599997997284, -0.15904000401496887, -0.47811999917030334, 0.17981000244617462, -0.5099700093269348, -0.578029990196228, 0.4670400023460388, -0.7562299966812134, -0.5599799752235413, 0.18540999293327332, 0.11266999691724777, 0.3117400109767914, 0.30632999539375305, -0.00705880019813776, 0.6329699754714966, 0.2193399965763092, -0.4521700143814087, -0.4639100134372711, -0.4603100121021271, -0.3538300096988678, -0.2660500109195709, -0.13044999539852142, -0.05231799930334091, -0.0576849989593029, 0.4932900071144104, 0.6589099764823914, 0.16798999905586243, -0.18418000638484955, 0.8499900102615356, 0.3012999892234802, 0.7892500162124634, -0.0687670037150383, 0.3700000047683716, -0.1483200043439865, -0.4945099949836731, -0.2732599973678589, -0.35962000489234924, 0.00682140002027154, -1.0233999490737915, 0.15985000133514404, 0.263839989900589, -0.9428899884223938, -0.7825300097465515, 0.4916900098323822, 0.44863998889923096, 0.3027699887752533, 0.5540800094604492, 0.039778001606464386, 0.08178900182247162, 0.04424599930644035, -0.5154299736022949, 0.057735998183488846, 0.1279900074005127, 0.23477999866008759, 0.40959998965263367, 0.5707899928092957, -0.008538800291717052, -0.4654200077056885, -0.19035999476909637, 0.7021300196647644], u'cable': [-0.05146399885416031, -0.35207998752593994, 0.20100000500679016, 0.14993999898433685, -0.08122500032186508, 0.7513899803161621, -0.46720999479293823, 0.028845999389886856, -0.07481399923563004, -1.191100001335144, 0.12366999685764313, 0.16857999563217163, 0.10486999899148941, -0.2913399934768677, 0.2505300045013428, 0.25154998898506165, -0.3727000057697296, -0.2721000015735626, 0.5524600148200989, -0.37446001172065735, 0.02131900005042553, -0.2718000113964081, 0.2156900018453598, 0.7822200059890747, -0.03781900182366371, -0.24950000643730164, 0.045726001262664795, 0.33566001057624817, 0.31345999240875244, -0.0029400999192148447, -0.459989994764328, -0.17204999923706055, -0.051093000918626785, 0.25630998611450195, -0.9099400043487549, 0.4119400084018707, -0.20878000557422638, -0.24544000625610352, 0.4009999930858612, 0.2533999979496002, -0.08786500245332718, 0.21265999972820282, -0.08917699754238129, 0.5202500224113464, -0.09254699945449829, 0.4588800072669983, -0.0036422000266611576, -0.27059999108314514, 0.36021000146865845, -0.2442300021648407, -0.3057900071144104, 0.06045600026845932, -0.6486499905586243, -0.4655199944972992, 0.6275200247764587, 0.44023001194000244, -0.1211400032043457, 0.1263899952173233, -0.25600001215934753, -0.11930999904870987, 0.022043999284505844, 0.18380999565124512, 0.2960300147533417, 0.18282000720500946, 0.3924899995326996, 0.7052599787712097, -0.07112199813127518, 0.7923399806022644, 0.005462599918246269, 0.6417499780654907, -0.2282399982213974, 0.659030020236969, -0.43773001432418823, 0.5220900177955627, 0.2149599939584732, 0.7552499771118164, -0.5569999814033508, -0.18152999877929688, -0.39458000659942627, 0.0272659994661808, -0.3030099868774414, -0.9894199967384338, 0.038644999265670776, -0.430510014295578, -0.34018000960350037, 0.6683499813079834, -0.08220600336790085, -0.3305700123310089, 0.15417000651359558, -0.24175000190734863, 0.015948999673128128, 0.4592599868774414, 0.08839999884366989, 0.4808099865913391, -0.11145000159740448, -0.20419999957084656, -0.4004400074481964, 0.4353100061416626, 0.5103700160980225, -0.7566800117492676, 0.03016900084912777, 6.3184997998178e-05, -0.3362500071525574, -0.3957599997520447, 0.9000999927520752, 0.4720900058746338, 0.166360005736351, 0.04321400076150894, -0.3369300067424774, 0.1467200070619583, 0.17870000004768372, -0.1816300004720688, -0.07033900171518326, -0.16576999425888062, 0.438289999961853, -0.05182800069451332, -0.3539299964904785, -0.07133299857378006, -0.5192000269889832, 0.0915059968829155, 0.60971999168396, -0.7322700023651123, 1.0537999868392944, -0.7340499758720398, 0.03989800065755844, -0.3202599883079529, -0.33059999346733093, 0.0625389963388443, -0.04299499839544296, -0.09900099784135818, -0.3373900055885315, -0.06803999841213226, 0.1408199965953827, 0.27074000239372253, 0.3261899948120117, 0.0223229993134737, 0.43053001165390015, 0.449290007352829, -0.08937200158834457, -0.1661899983882904, -0.7648599743843079, 0.20227999985218048, 0.782480001449585, -0.11686000227928162, -0.5615800023078918, 0.21127000451087952, -0.02514900080859661, -0.6136699914932251, -0.06180800125002861, -0.3741300106048584, 0.746429979801178, 0.373089998960495, -0.08556900173425674, -0.7012199759483337, 0.4394800066947937, -0.03111100010573864, 0.6742200255393982, 0.4632300138473511, -0.47404998540878296, -0.3353300094604492, 0.4498000144958496, -0.0786999985575676, -0.29857999086380005, 0.07008299976587296, 0.46904999017715454, 0.733489990234375, -0.11879999935626984, -0.3355199992656708, -0.011001000180840492, 0.9023299813270569, -0.3112100064754486, 0.4345499873161316, -1.307800054550171, 1.0051000118255615, 0.09266400337219238, 0.5561299920082092, -0.37185001373291016, 0.7740200161933899, 0.2670600116252899, 0.2784999907016754, 0.33851999044418335, -0.11977999657392502, 0.061278000473976135, -0.4486199915409088, 0.10836999863386154, 0.1432500034570694, 0.25975000858306885, 0.4418500065803528, -0.1614599972963333, -0.5469899773597717, 0.2760300040245056, 0.08781100064516068, 0.06585200130939484, 0.46869000792503357, 0.23431000113487244, -0.21890999376773834, -0.8044400215148926, 0.043793000280857086, -0.4413500130176544, -0.35708001255989075, 0.7927299737930298, 0.16496999561786652, 0.32861998677253723, -0.29554998874664307, 0.10380999743938446, 0.5320500135421753, -0.17837999761104584, 0.20695999264717102, 0.44501999020576477, -0.09987600147724152, -0.27167001366615295, 0.04826100170612335, 0.913320004940033, -0.06344600021839142, -0.12987999618053436, 0.20115000009536743, -0.3052099943161011, -0.5563099980354309, 0.18716000020503998, 0.29322001338005066, 0.40042999386787415, 0.09414300322532654, 0.664870023727417, -0.43619000911712646, 0.6904299855232239, 0.14833000302314758, 0.1311199963092804, -1.2005000114440918, 0.5590299963951111, -0.18788999319076538, -0.3432300090789795, 0.2449900060892105, 0.08178800344467163, 0.22637000679969788, 0.33173999190330505, -0.46654000878334045, 0.8101300001144409, -0.3457599878311157, -0.41440001130104065, -0.23288999497890472, 0.19394999742507935, -0.23594999313354492, 0.6739400029182434, -0.5682399868965149, -0.4743199944496155, -0.04985100030899048, -0.16715000569820404, -0.30695000290870667, 0.2936600148677826, -0.05527399852871895, -0.05916599929332733, 0.9057300090789795, -0.01783199980854988, 0.06046399846673012, 0.09474699944257736, 0.39458000659942627, -0.30066999793052673, -0.019545000046491623, 0.2834300100803375, 0.023520000278949738, 0.24264000356197357, -0.1669899970293045, -0.383109986782074, 0.5486999750137329, 0.2655099928379059, -0.3570599853992462, 0.5766699910163879, -0.026406999677419662, -0.024838000535964966, 0.13042999804019928, 0.1416199952363968, 0.04464700073003769, -0.16788999736309052, -0.133200004696846, -0.1578100025653839, 0.36866000294685364, -1.261199951171875, 0.036107998341321945, -0.1989700049161911, -0.22246000170707703, -0.21985000371932983, -0.30709999799728394, 0.013147000223398209, -0.1992100030183792, -0.36664000153541565, -0.3792099952697754, 0.04090899974107742, -0.37439998984336853, -0.27324000000953674, 0.5319700241088867, 0.07521100342273712, 0.40119999647140503, 0.18668000400066376, -0.32888999581336975, -0.6421700119972229, 0.22258999943733215, 0.15981000661849976, 0.020532000809907913, 0.36649999022483826, -0.22945000231266022], u'gemstone': [-0.18780000507831573, 0.8053500056266785, -0.20044000446796417, 0.5100799798965454, 0.022324999794363976, 0.10385999828577042, 0.7959499955177307, 0.025279000401496887, 0.0006029100040905178, -0.26899999380111694, -0.4075999855995178, 0.3266499936580658, 0.14544999599456787, 0.11693000048398972, 0.00922510027885437, 0.29563000798225403, -0.7214699983596802, 0.6591299772262573, 0.059974998235702515, -0.395550012588501, 0.24188999831676483, -0.22401000559329987, -0.45552998781204224, 0.13305999338626862, 0.14409999549388885, -0.48993000388145447, -0.6706200242042542, 0.298909991979599, 0.3515700101852417, 0.0153590003028512, 0.3896099925041199, 0.221110001206398, -0.16095000505447388, 0.5771499872207642, 0.26322999596595764, -0.2967900037765503, -0.5179399847984314, 0.23038999736309052, 0.5985999703407288, -0.38141998648643494, 0.06193799898028374, 0.990369975566864, 0.8338599801063538, -0.18015000224113464, -0.0757879987359047, -0.07968299835920334, -0.36777999997138977, 0.03830200061202049, -0.8865799903869629, -0.38651999831199646, -0.23983000218868256, -0.24258999526500702, -0.15226000547409058, 0.47258999943733215, 0.2859100103378296, -0.6857799887657166, -0.5169199705123901, 0.20969000458717346, -0.07196599990129471, 0.13136999309062958, -0.028568999841809273, 0.027679000049829483, -0.5332800149917603, -0.044318001717329025, 0.3905400037765503, 0.8212299942970276, -0.515209972858429, -0.21682000160217285, 0.3542400002479553, 0.056703999638557434, 0.3902899920940399, -0.053846001625061035, 0.13950000703334808, -0.2475699931383133, 0.47720998525619507, 0.3922100067138672, 0.14710000157356262, -0.43296998739242554, -0.1300099939107895, 0.08753100037574768, 0.6301100254058838, -0.2806200087070465, 0.24172000586986542, -0.11524999886751175, 1.0262000560760498, 0.4057199954986572, -0.1834000051021576, -0.5364500284194946, 0.4544200003147125, -0.3717699944972992, -0.5598199963569641, 0.4402199983596802, 0.2226399928331375, -0.3030099868774414, -0.4297400116920471, 0.06868100166320801, -0.11492999643087387, 0.3006199896335602, 0.18055999279022217, -0.135670006275177, 0.45313000679016113, 0.32809001207351685, 0.5915399789810181, 0.37564000487327576, -0.25251999497413635, -0.4645799994468689, 0.6043300032615662, 0.6634100079536438, 0.4778900146484375, 0.1719599962234497, -0.04328100010752678, 0.4922899901866913, -0.01979999989271164, -0.20693999528884888, 0.26677998900413513, 0.34994998574256897, 0.5174700021743774, -0.046785999089479446, 0.8976899981498718, 0.525439977645874, 0.40860000252723694, 0.4418500065803528, -0.28685998916625977, -0.22259999811649323, -0.08746100217103958, -0.1177700012922287, 0.09365999698638916, 0.7052000164985657, -0.45855000615119934, -0.02686299942433834, -0.3264400064945221, -0.2754800021648407, 0.04268399998545647, -0.5194900035858154, -0.10241000354290009, 0.39261001348495483, -0.4999299943447113, -0.1985500007867813, -0.13342000544071198, 0.266620010137558, 0.8465499877929688, 0.866599977016449, -0.2510800063610077, -0.19866999983787537, 1.2151000499725342, -0.3547999858856201, 0.025442000478506088, -0.7002599835395813, -0.11806000024080276, 0.31356000900268555, -0.8852900266647339, -0.054816000163555145, -0.7615699768066406, -0.25894999504089355, -0.7420399785041809, -0.07095500081777573, -0.7183700203895569, -0.5336300134658813, -0.20031000673770905, -0.12244000285863876, -0.6274899840354919, -0.4426099956035614, -0.4119499921798706, 0.4924899935722351, 0.3367300033569336, -0.9420499801635742, 0.19102999567985535, -0.27834001183509827, -0.6106100082397461, -0.4909000098705292, -0.41214999556541443, -0.14431999623775482, 0.3705500066280365, 0.7900000214576721, -0.7471200227737427, -0.03272299841046333, 0.4719499945640564, 0.16050000488758087, -0.17207999527454376, 0.17657999694347382, 0.42524999380111694, -0.07422900199890137, -0.1342500001192093, -0.44071999192237854, 0.04029799997806549, 0.11475999653339386, 0.1402300000190735, 0.645039975643158, 0.12454000115394592, -0.3558399975299835, -0.25957000255584717, -0.2290000021457672, -0.4287799894809723, 0.1622599959373474, 0.05758000165224075, 0.5437300205230713, -0.5887200236320496, -0.42849001288414, -0.6284300088882446, -0.03161599859595299, -0.3170199990272522, 0.2975600063800812, -0.2540700137615204, -0.5811499953269958, 0.38339999318122864, 0.6189900040626526, 0.3068599998950958, 0.2669000029563904, 0.294189989566803, 0.039489999413490295, 0.5809500217437744, 0.326090008020401, 0.29513999819755554, -0.19251999258995056, -0.195360004901886, -0.06774099916219711, 0.4944700002670288, -0.02295600064098835, -0.47867000102996826, 0.29688000679016113, -0.21525000035762787, -0.6385400295257568, -0.4099699854850769, -0.19280999898910522, 0.030027000233530998, 0.4763300120830536, 0.15976999700069427, 0.47512999176979065, -0.1797800064086914, -0.4706000089645386, 0.04486300051212311, -0.41995999217033386, -0.17238999903202057, 0.22397999465465546, 0.4524199962615967, -0.12081000208854675, 0.15178999304771423, -0.21710999310016632, 0.10723000019788742, -0.9957600235939026, 0.034818001091480255, 0.06515199691057205, -0.449429988861084, -0.6453400254249573, -0.3641600012779236, 0.7488399744033813, -0.5238900184631348, -0.2854900062084198, -0.09911300241947174, -0.06484100222587585, -0.5173699855804443, -0.12791000306606293, -0.092910997569561, -0.13683000206947327, 0.3066299855709076, 0.24720999598503113, 0.21523000299930573, -0.03353099897503853, 0.03069400042295456, 0.2695100009441376, 0.08676300197839737, -0.5222499966621399, 0.5436300039291382, -0.007751599885523319, 0.4653399884700775, 0.39812999963760376, -0.12498000264167786, 0.052726998925209045, -0.20417000353336334, -0.3931199908256531, -0.08870399743318558, -0.2672399878501892, 0.5480700135231018, -0.06661400198936462, -0.15945999324321747, 0.4079299867153168, 0.42879998683929443, 0.04992299899458885, -0.4629499912261963, 0.6256499886512756, -0.10894999653100967, -0.19742000102996826, -0.39034000039100647, -0.018959999084472656, 0.7026399970054626, -0.17615999281406403, -0.39726001024246216, 0.008772799745202065, 0.6149500012397766, -0.29111000895500183, 0.4207800030708313, 0.022019000723958015, -0.4659700095653534, 0.4154199957847595, -0.3496299982070923, 0.0817129984498024, 0.9029899835586548, -0.9203100204467773, 0.7313299775123596, 0.41534000635147095], u'bracelet': [-0.27364999055862427, -0.17628000676631927, -0.2822200059890747, -0.12601999938488007, -0.37702998518943787, -0.04797700047492981, -0.006893699988722801, -0.9677500128746033, 0.06383399665355682, -0.6755899786949158, 0.6672599911689758, 0.019509000703692436, 0.03403500095009804, -0.21258999407291412, -0.10106000304222107, -0.28404000401496887, -0.8128700256347656, 0.8264200091362, -0.641290009021759, -0.5070499777793884, 0.5334399938583374, -0.5412799715995789, -0.9398900270462036, -0.5779399871826172, -0.3076399862766266, -0.4890100061893463, -0.16690999269485474, 0.6061699986457825, -0.5570499897003174, -0.21825000643730164, 0.23388999700546265, 0.20900000631809235, -0.13792000710964203, 0.19588999450206757, -0.02885100059211254, 0.2856999933719635, -0.476500004529953, -0.05107500031590462, 0.03136200085282326, 0.1920199990272522, -0.4187900125980377, -0.7345899939537048, 0.5500699877738953, -0.04032700136303902, -0.2591400146484375, -0.1776300072669983, -0.051646001636981964, -1.0448999404907227, -0.07394599914550781, 0.6579399704933167, 0.3767400085926056, -0.014937000349164009, 0.5982999801635742, 0.13492000102996826, 0.02825699932873249, -0.8443700075149536, -0.9389299750328064, 0.10739000141620636, -0.10589999705553055, -0.12723000347614288, -0.13639000058174133, -0.07197900116443634, -0.23327000439167023, 0.3498699963092804, 0.6295599937438965, -0.15333999693393707, -0.45423001050949097, 0.21348999440670013, 0.28734999895095825, 0.24658000469207764, 0.061636000871658325, 0.0177800003439188, 0.042785000056028366, -0.2064400017261505, 0.3104900121688843, -0.4087600111961365, 0.8813199996948242, -0.586929976940155, -0.25536999106407166, -0.5845999717712402, 0.32311999797821045, 0.18810999393463135, 0.3161599934101105, 0.5306199789047241, -0.2351900041103363, -0.8393300175666809, -0.34029000997543335, 0.052354998886585236, 0.11528000235557556, 0.5014899969100952, -0.5580199956893921, 0.2768700122833252, 0.4003700017929077, 0.003302199998870492, 0.2418999969959259, 0.24060000479221344, -0.06254000216722488, -0.03411199897527695, 0.23823000490665436, -0.17607000470161438, 0.3039200007915497, 0.7606800198554993, -0.45691001415252686, 0.23642000555992126, 0.3541400134563446, -0.14680999517440796, 0.386790007352829, 0.2898699939250946, -0.4225600063800812, -0.9192100167274475, -0.044599998742341995, 0.6410099864006042, -0.39601999521255493, -0.34536001086235046, 0.3479900062084198, 0.028008999302983284, -0.0012504999758675694, 0.12419000267982483, 0.48096999526023865, 0.26510998606681824, -0.20826999843120575, 0.24849000573158264, 0.16438999772071838, -0.16380999982357025, 0.6984999775886536, 0.13981999456882477, -0.14817999303340912, -0.4187699854373932, -0.12886999547481537, 0.45427000522613525, 0.0381539985537529, -0.12115000188350677, -0.5959799885749817, -0.4442499876022339, -0.46035000681877136, -0.1218700036406517, 0.48500001430511475, -0.43160000443458557, -0.3063400089740753, -0.14080999791622162, 0.18855999410152435, 0.8740900158882141, 0.3910599946975708, 0.05705200135707855, 0.7956799864768982, -0.9171299934387207, -0.48072999715805054, 0.030045999214053154, 0.5679799914360046, 0.407150000333786, 0.007624499965459108, -0.3689799904823303, -0.19995999336242676, -0.09489999711513519, 0.2322700023651123, -0.04479200020432472, -0.056171998381614685, -0.5151399970054626, -0.30629000067710876, -0.17824000120162964, 0.5342000126838684, 0.032836999744176865, -0.19599999487400055, -0.06939700245857239, 0.5964499711990356, 0.31213998794555664, 0.5042799711227417, 0.21823999285697937, 0.016845999285578728, 0.149849995970726, -0.13161000609397888, 0.5379400253295898, 0.7817800045013428, 0.618619978427887, 0.44971999526023865, -0.7339400053024292, 0.04880300164222717, 0.16345000267028809, 0.05442899838089943, -0.41694000363349915, -0.1491599977016449, 0.48559001088142395, 0.424780011177063, -0.07589399814605713, -0.008934799581766129, -0.056115999817848206, 0.4068000018596649, 0.869379997253418, 0.14564000070095062, -0.5151399970054626, -0.4637399911880493, -0.19801999628543854, 0.16095000505447388, 0.6570299863815308, -0.03602699935436249, 0.28435999155044556, -0.09485500305891037, -0.21616999804973602, 0.39618998765945435, 0.024806000292301178, 0.7188299894332886, 0.2583000063896179, 0.35065001249313354, 0.5620999932289124, 0.31126999855041504, 0.1839900016784668, -0.25005999207496643, 0.01890300028026104, -0.7099699974060059, 0.4298799932003021, 0.5239999890327454, -0.2087000012397766, 0.5127699971199036, -0.3438900113105774, 0.25398001074790955, -0.46654000878334045, -0.4474300146102905, -0.21368999779224396, 0.1324000060558319, 0.8504400253295898, -0.19699999690055847, -0.4757699966430664, 0.5834599733352661, 0.7369499802589417, -0.03707199916243553, 0.4867900013923645, -0.5120000243186951, -0.16134999692440033, -0.3115699887275696, -0.06469999998807907, 0.6742299795150757, -0.4602999985218048, 0.09456299990415573, 0.16325999796390533, -0.06274200230836868, 0.16058999300003052, 0.6482899785041809, -0.34922999143600464, 0.36590999364852905, 0.2546899914741516, 0.3122600018978119, -0.1731799989938736, -0.4524900019168854, 0.6551100015640259, 0.436489999294281, 0.29580000042915344, 0.0005146400071680546, -0.418830007314682, 0.05124500021338463, -0.5802199840545654, -0.46408000588417053, -0.5262100100517273, -0.20140999555587769, -0.15910999476909637, -0.13680000603199005, 0.36134999990463257, 0.5358099937438965, -0.28470999002456665, -0.02320699952542782, -0.16189999878406525, -0.17030000686645508, -0.041161999106407166, 0.26409998536109924, 0.08777400106191635, -0.15814000368118286, 0.5673199892044067, 0.265859991312027, 0.12669000029563904, -0.14154000580310822, 0.017796000465750694, -0.005132900085300207, -0.7705100178718567, 0.4283300042152405, -0.07652000337839127, -0.6628100275993347, -0.5036600232124329, -0.4126499891281128, -0.29631999135017395, -0.4979900121688843, 0.4138599932193756, 0.0762609988451004, 0.518750011920929, -0.57819002866745, -0.06376200169324875, -0.40713998675346375, -0.024903999641537666, -0.34999001026153564, -0.43191999197006226, -0.46152999997138977, -0.5639100074768066, -0.29190000891685486, 0.7630599737167358, -0.4855000078678131, 0.3847000002861023, -0.050390999764204025, -1.2166999578475952, 1.0404000282287598, 0.6852700114250183, 0.36281999945640564, 0.028946999460458755], u'candy': [-0.2712700068950653, 0.10567999631166458, -0.4511899948120117, -0.21895000338554382, -0.44176000356674194, 0.13997000455856323, 0.37814998626708984, -0.18151000142097473, -0.1598999947309494, -0.43584999442100525, 0.18950000405311584, -0.8794199824333191, 0.20747999846935272, 0.25800999999046326, -0.18856999278068542, 0.17462000250816345, -0.047850001603364944, 0.27612000703811646, 0.10825999826192856, 0.32276999950408936, 0.5853300094604492, 0.1839500069618225, 0.05963600054383278, 0.414029985666275, -0.3967300057411194, -0.11305999755859375, -0.9660900235176086, -0.3007200062274933, -0.01568000018596649, -0.5967000126838684, -0.5478000044822693, 0.3081899881362915, -0.19231000542640686, 0.03352800011634827, -0.6618499755859375, 0.4592199921607971, -0.5140100121498108, -0.05220099911093712, -0.47220999002456665, 0.3303399980068207, -0.5598199963569641, -0.361519992351532, 0.14202000200748444, 1.0683000087738037, -0.3396500051021576, -0.35412999987602234, 0.4560199975967407, -0.7116199731826782, 0.14611999690532684, 0.2709699869155884, -0.008646699599921703, 0.17639000713825226, 0.027915000915527344, 0.3834800124168396, -0.6520699858665466, -0.2289000004529953, -0.4655900001525879, 0.051343001425266266, 0.3680799901485443, -0.05256599932909012, -0.04292500019073486, 0.0951400026679039, -0.27831000089645386, -0.08982300013303757, 0.5285400152206421, -0.250900000333786, -0.23795999586582184, -0.19089999794960022, -0.22804999351501465, 0.011768000200390816, -0.05910699814558029, 0.01338099967688322, -0.3485499918460846, -0.02216400019824505, 0.273250013589859, -0.26385998725891113, 0.10777000337839127, -0.16388000547885895, 0.3899799883365631, -0.12752999365329742, 0.6543999910354614, 0.1178399994969368, -0.2664099931716919, 0.05913800001144409, 0.36869001388549805, -0.5678200125694275, 0.13222000002861023, -0.4440099895000458, -0.0026889999862760305, 0.09115500003099442, -0.17732000350952148, 0.14215999841690063, -0.0340769998729229, 0.08935800194740295, -0.33908000588417053, 0.3816699981689453, 0.054607000201940536, -0.2186100035905838, -0.24501000344753265, -0.3643200099468231, 0.25211000442504883, 0.5177800059318542, -0.42610999941825867, -0.5710399746894836, 0.04250499978661537, -0.2646700143814087, -0.2231999933719635, 0.21525000035762787, -0.18925000727176666, 0.24997000396251678, 0.2335599958896637, 0.3848100006580353, 0.08289100229740143, -0.15147000551223755, 0.7358800172805786, -0.30779001116752625, -0.6512100100517273, 0.5105699896812439, 0.2388399988412857, -0.07330100238323212, -0.25968000292778015, -0.07529900223016739, 0.3352000117301941, 0.026405999436974525, -0.33621999621391296, -0.08651600033044815, 0.42504000663757324, 0.1171099990606308, 0.16568000614643097, 0.3096500039100647, -0.12987999618053436, 0.04003399983048439, -0.12836000323295593, 0.3402799963951111, -0.12244000285863876, 0.3197999894618988, 0.263619989156723, 0.7835599780082703, -0.1707800030708313, -0.1691100001335144, 0.26100000739097595, -0.029575999826192856, -0.27149999141693115, -0.11861000210046768, 0.15594999492168427, 0.3815099895000458, -0.4576300084590912, -0.04229599982500076, 0.32196998596191406, -0.4646199941635132, -0.6173999905586243, 0.17237000167369843, 0.21908000111579895, -0.03570700064301491, -0.5439299941062927, -0.3732300102710724, -0.646589994430542, -0.32714998722076416, -0.16500000655651093, 0.29082998633384705, 0.39621999859809875, -0.32102999091148376, 0.146479994058609, -0.31411001086235046, 0.1396300047636032, 0.3664399981498718, 0.2771899998188019, 0.21946999430656433, 0.47189998626708984, -0.22931000590324402, -0.23678000271320343, 0.06243100017309189, 0.03408300131559372, 0.5382400155067444, 0.26151999831199646, -0.158610001206398, 0.14361999928951263, -0.45083001255989075, -0.2779400050640106, -0.6116099953651428, -0.2453099936246872, 0.4394499957561493, -0.01825599931180477, 0.19986000657081604, 0.38172000646591187, -0.22221000492572784, 0.8997600078582764, -0.4653100073337555, 0.6444100141525269, -0.3047100007534027, 0.23577000200748444, 0.3693099915981293, -0.3744199872016907, -0.4802800118923187, -0.5652599930763245, 0.4419400095939636, -0.536620020866394, -0.005699600093066692, 0.08961299806833267, 0.2438099980354309, 0.8295300006866455, 0.11388999968767166, 0.9595500230789185, 0.24437999725341797, -0.42212000489234924, -0.5829899907112122, 0.19268999993801117, 0.5504000186920166, -0.11558999866247177, -0.21041999757289886, -0.20991000533103943, -0.5311800241470337, -0.30028998851776123, 0.2740600109100342, -0.24492000043392181, 0.38324999809265137, 0.543720006942749, -0.06838200241327286, 0.49017998576164246, -0.127470001578331, 0.08273299783468246, 0.19415000081062317, -0.57669997215271, 0.40292999148368835, -0.6495599746704102, 0.21570999920368195, 0.4196600019931793, 0.48535001277923584, 0.5220800042152405, -0.3100399971008301, 0.2827700078487396, -0.16354000568389893, -0.3217099905014038, -0.005062299780547619, 0.2720000147819519, 0.19543999433517456, 0.07369700074195862, -0.018691999837756157, -0.7116199731826782, -0.49799999594688416, -0.2390100061893463, -0.2677899897098541, -0.43400999903678894, -0.36945998668670654, -0.6635900139808655, -0.21819999814033508, -0.19644999504089355, 0.07073900103569031, 0.18957999348640442, 0.32183998823165894, 0.20506000518798828, -0.20507000386714935, -0.20645000040531158, 0.1736299991607666, 0.8125900030136108, 0.11441999673843384, -0.07720500230789185, -0.38778001070022583, 0.2223300039768219, -0.10916999727487564, 0.1100199967622757, -0.9075700044631958, 0.29072999954223633, -0.17694999277591705, 0.5400400161743164, -0.2893899977207184, 0.02980799973011017, -0.2323099970817566, 0.455159991979599, 0.938759982585907, -0.07577499747276306, -0.03305999934673309, -0.12300000339746475, 0.12515999376773834, -0.023930000141263008, -0.22142000496387482, -0.8155099749565125, -0.6269299983978271, -1.2692999839782715, 0.03082899935543537, 0.14956000447273254, 0.689050018787384, -0.36469998955726624, -0.3416000008583069, 0.0654740035533905, 0.7263500094413757, 0.45914000272750854, -0.3308199942111969, 0.21521000564098358, 0.26736000180244446, 0.18601000308990479, -0.1286199986934662, 0.0552930012345314, 0.43634000420570374, -0.4061799943447113, -0.41383999586105347, 0.04857200011610985, 0.21683000028133392, -0.3036800026893616, -0.2867799997329712], u'lightning': [0.11146000027656555, 0.12588000297546387, 0.15341000258922577, -0.4240500032901764, -0.17441999912261963, 0.07833100110292435, 0.27695000171661377, 0.16085000336170197, -0.359250009059906, -0.46340999007225037, 0.6337900161743164, 0.39684998989105225, -0.06038599833846092, -0.38804998993873596, 0.05378099903464317, 1.2375999689102173, -0.046817000955343246, 0.12072999775409698, -0.16721999645233154, 0.8514299988746643, -0.2523300051689148, -0.32311001420021057, -0.1337299942970276, -0.47760000824928284, 0.6457899808883667, 0.15198999643325806, 0.29137998819351196, -0.34751999378204346, 0.19035999476909637, -0.10639999806880951, 0.6656299829483032, 0.11839000135660172, -0.5293899774551392, 0.07421000301837921, -1.2192000150680542, -0.22386999428272247, -1.169700026512146, -0.014485999941825867, 0.5018500089645386, 0.06929299980401993, 0.34150999784469604, 0.4702799916267395, -0.6920999884605408, -0.016575999557971954, -0.49605000019073486, -0.5873799920082092, -0.12453000247478485, -0.5585799813270569, -0.7335000038146973, -0.43237999081611633, 0.20167000591754913, 0.3363899886608124, -0.15206000208854675, 0.11886999756097794, -0.33122000098228455, 0.03894300013780594, 0.05194900184869766, -0.1935500055551529, 0.994949996471405, 0.3053300082683563, -0.7037000060081482, 0.2305700033903122, -0.23051999509334564, -0.09398800134658813, -0.4099000096321106, -0.11451999843120575, 0.2612299919128418, 0.5791900157928467, -0.17896999418735504, 0.48087000846862793, 0.4170199930667877, 0.40918999910354614, 0.031178999692201614, 0.37229999899864197, -0.49215999245643616, -0.4555099904537201, -0.9924799799919128, -0.11022000014781952, 0.13558000326156616, -0.04499800130724907, -0.17687000334262848, -0.2507700026035309, -0.2840999960899353, -0.3217499852180481, -0.7855799794197083, -0.20714999735355377, -0.2300799936056137, 0.42493999004364014, -0.07356200367212296, -0.5911399722099304, 0.8143699765205383, 0.3484399914741516, 0.1163100004196167, -0.4097500145435333, 0.12939000129699707, -0.037452999502420425, -0.015758000314235687, -0.1269499957561493, 0.05047700181603432, -0.23820999264717102, -0.16797000169754028, 0.2468699961900711, 0.2528800070285797, 0.23124000430107117, 0.578790009021759, -0.46219998598098755, 0.4009400010108948, -0.047370001673698425, -0.5144000053405762, 0.08011700212955475, 0.0049911001697182655, -0.15068000555038452, -0.03886500000953674, 0.6095200181007385, 0.16958999633789062, -0.24924999475479126, 0.011517999693751335, -0.1674399971961975, 0.29910001158714294, -0.2399200052022934, -0.10468000173568726, -0.5138000249862671, -0.1412000060081482, 0.2436700016260147, -0.01764100044965744, -0.22923000156879425, 0.002992900088429451, 0.7187700271606445, 0.21153999865055084, 0.3814300000667572, 0.5801600217819214, 0.4986799955368042, -0.2120400071144104, 0.010354000143706799, 0.2697399854660034, -0.0336729995906353, 0.14287999272346497, -0.09644199907779694, 0.10524000227451324, -0.2811700105667114, 0.05214700102806091, 0.41578999161720276, -0.6911799907684326, 0.40393999218940735, 0.08596699684858322, 0.2793700098991394, 0.37290000915527344, 0.1553100049495697, -0.09401100128889084, -0.5860300064086914, 0.18749000132083893, -0.5836899876594543, 0.1775899976491928, 0.23976999521255493, -0.31040000915527344, -0.7390900254249573, 0.7756500244140625, -0.1143999993801117, 0.2746399939060211, -0.1680299937725067, 0.4920699894428253, -0.7187899947166443, 0.2109300047159195, 0.33629998564720154, 0.21901999413967133, 0.7154200077056885, 0.36379000544548035, 0.3693700134754181, -0.8571400046348572, -0.3561500012874603, 0.2198600023984909, -0.20860999822616577, -0.25731000304222107, 0.3865799903869629, -0.28975000977516174, -0.2162500023841858, -0.29563000798225403, 0.23717999458312988, 0.25297001004219055, 0.08723600208759308, -0.325080007314682, -0.2945399880409241, 0.35903000831604004, 0.014298000372946262, 0.03805699944496155, 0.09113100171089172, 0.39798998832702637, 0.3042300045490265, 0.19551999866962433, -0.5437300205230713, -0.37617000937461853, 0.3679400086402893, -0.25005000829696655, 0.28707000613212585, 0.7705100178718567, -0.21573999524116516, 0.07077399641275406, -0.5977500081062317, 0.292169988155365, 0.2043199986219406, 0.6434000134468079, 0.2622799873352051, -0.1306300014257431, -0.47742998600006104, 0.2018200010061264, 0.13500000536441803, -0.1943800002336502, -0.0066766999661922455, 0.05121999979019165, -0.024108000099658966, 0.32128000259399414, 0.09797099977731705, 0.16534000635147095, -0.3580799996852875, 0.0032611999195069075, -0.7239500284194946, 0.3982599973678589, 0.07629799842834473, 0.2871200144290924, -0.4272199869155884, 0.011233000084757805, -0.21907000243663788, 0.021724000573158264, -0.5832099914550781, -0.41725999116897583, -0.2898699939250946, 0.12841999530792236, 0.04485499858856201, 0.46560001373291016, -0.2617500126361847, 0.08452799916267395, 0.2965500056743622, 0.18987999856472015, -0.39169999957084656, -0.2919600009918213, -0.25185999274253845, -0.07912500202655792, -0.21699999272823334, -0.06152400001883507, 0.6246899962425232, 0.19877000153064728, -0.14573000371456146, -0.06499599665403366, -0.3375299870967865, 0.1486400067806244, -0.009059700183570385, 0.024337999522686005, 0.48412999510765076, -0.2782000005245209, 0.037790000438690186, -0.4313200116157532, 0.20338000357151031, -0.4259699881076813, -0.5651699900627136, 0.6243600249290466, 0.35607999563217163, 0.6241199970245361, -0.39131999015808105, -0.154339998960495, 0.02642199955880642, -0.5617799758911133, 0.16171999275684357, -0.14854000508785248, 0.28909000754356384, -0.2752799987792969, -0.05968499928712845, -0.13019999861717224, 0.08570100367069244, 0.05810900032520294, 0.2350199967622757, 0.04196399822831154, -0.6075900197029114, -0.05362499877810478, 0.21122999489307404, 0.3843100070953369, 0.7241399884223938, -1.0458999872207642, -0.21077999472618103, -0.3039799928665161, -0.0307219997048378, -0.5409500002861023, 0.7787500023841858, 0.366100013256073, 0.012509999796748161, 0.40713998675346375, 0.10286000370979309, -0.2942599952220917, -0.15232999622821808, -0.1020599976181984, -0.15414999425411224, 0.37424999475479126, 0.6883299946784973, -0.6214100122451782, -0.04521999880671501, 0.5323799848556519, 0.3894999921321869, 0.0010210999753326178, -0.37988001108169556, 0.3694100081920624, 0.2527399957180023], u'bag': [-0.08716700226068497, 0.23816999793052673, 0.1476999968290329, 0.11441999673843384, 0.3106600046157837, -0.2472500056028366, -0.16221000254154205, 0.1846199929714203, -0.06842699646949768, -1.0479999780654907, -0.238319993019104, -0.1743299961090088, -0.1501999944448471, 0.04142799973487854, -0.20486000180244446, 0.12535999715328217, -0.4661499857902527, 0.3384400010108948, -0.19524000585079193, 0.0013126999838277698, 0.36928999423980713, -0.636680006980896, -0.4994100034236908, 0.023308999836444855, -0.5803899765014648, -0.08631599694490433, -0.42041000723838806, 0.14440999925136566, 0.7267299890518188, -0.3476699888706207, -0.055667001754045486, -0.11565999686717987, 0.05093400180339813, 0.13926999270915985, -0.674780011177063, 0.7160500288009644, -0.5047900080680847, 0.4103100001811981, -0.980400025844574, 0.7102199792861938, -0.5832899808883667, -0.6017199754714966, 0.2511399984359741, 0.18577000498771667, 0.08054500073194504, 0.1468300074338913, 0.6465700268745422, -0.5127599835395813, -0.17569999396800995, 0.47404998540878296, 0.329120010137558, -0.3444800078868866, 0.0751900002360344, -0.07334399968385696, -0.049368999898433685, -0.04591900110244751, -0.14913000166416168, -0.5056999921798706, 0.3073500096797943, -0.2423200011253357, -0.007406599819660187, 0.10638000071048737, 0.0689300000667572, 0.4766699969768524, -0.11929000169038773, -0.3729499876499176, -0.5460799932479858, -0.4648500084877014, -0.34325000643730164, -0.10604000091552734, -0.07445300370454788, -0.41857001185417175, 0.021896999329328537, 0.07124800235033035, -0.18840999901294708, -0.03625800088047981, 0.08364800363779068, -0.5370399951934814, 0.286980003118515, -0.19628000259399414, -0.021577000617980957, 0.30862000584602356, 0.35095998644828796, 0.2174299955368042, -0.2586100101470947, -0.32332998514175415, -0.3237699866294861, -0.05172299966216087, -0.8105999827384949, -0.4495899975299835, 0.2753399908542633, -0.1963600069284439, 0.03679399937391281, -0.14298999309539795, 0.24472999572753906, -0.009774800390005112, -0.4097000062465668, 0.4298099875450134, 0.10670000314712524, -0.6617199778556824, -0.18402999639511108, 0.5734599828720093, -0.2961600124835968, -0.8413900136947632, -0.3398300111293793, -0.8353800177574158, 0.44457000494003296, 0.2858400046825409, -0.4588199853897095, -0.20305000245571136, -0.2971700131893158, 0.4233199954032898, -0.06123200058937073, 0.016468999907374382, 0.034832000732421875, 0.3804300129413605, 0.17538000643253326, 0.14916999638080597, 0.21717000007629395, -0.9813200235366821, 0.08072800189256668, -0.12070000171661377, 0.6788600087165833, 0.21741999685764313, -0.07941100001335144, 0.20531000196933746, 0.19668999314308167, -0.1268099993467331, 0.26541998982429504, 0.40689000487327576, 0.2401600033044815, 0.01769299991428852, 0.09059099853038788, 0.28352999687194824, -0.01999399997293949, -0.2498600035905838, 0.099542997777462, -0.031665001064538956, -0.3968200087547302, 0.30546000599861145, 0.05073099955916405, 0.2676199972629547, 0.04258500039577484, -0.5930799841880798, -0.38078001141548157, -0.049710001796483994, 0.08612599968910217, 0.164000004529953, -0.07929600030183792, -0.005903699900954962, -0.3168199956417084, 0.653980016708374, 0.05225500091910362, -0.44543999433517456, 0.18626999855041504, -0.07700400054454803, -0.15702000260353088, -0.25422000885009766, -0.02699200063943863, 0.4769200086593628, 0.48240000009536743, -0.5333600044250488, -0.07697799801826477, 0.415039986371994, 0.5536100268363953, -0.3506999909877777, 0.024065999314188957, 0.7519999742507935, 0.16339999437332153, -0.259799987077713, 0.1589999943971634, -0.07967200130224228, 0.09503799676895142, -0.04704400151968002, -0.03762499988079071, -0.5536100268363953, -0.028459999710321426, 0.26767998933792114, 0.0328500010073185, -0.7551699876785278, 0.7422599792480469, 0.16412000358104706, 0.11959999799728394, -0.010565999895334244, -0.16921000182628632, 0.17622999846935272, 0.8486899733543396, 0.34773001074790955, 0.21755999326705933, -0.6002100110054016, 0.43147000670433044, 0.4915899932384491, -0.10750000178813934, -0.20080000162124634, -0.8006899952888489, 0.20162999629974365, -0.3459300100803375, 0.38317999243736267, -0.1285099983215332, 0.38837000727653503, 0.4035399854183197, 0.0945729985833168, 0.8880000114440918, 0.047391001135110855, 0.04288699850440025, -0.6189299821853638, 0.119159996509552, 0.2092200070619583, -0.6278499960899353, -0.2210800051689148, -0.2716299891471863, -0.07879400253295898, -0.006659199949353933, 0.683709979057312, 0.08685000240802765, -0.9472200274467468, 0.09973599761724472, -0.37244999408721924, -0.4436500072479248, 0.2576799988746643, 0.27601000666618347, 0.4874500036239624, 0.16116000711917877, 0.26416999101638794, 0.39504000544548035, 0.3355399966239929, -0.38993000984191895, -0.21518999338150024, 0.5844399929046631, -0.36399000883102417, 0.08227600157260895, -0.11985000222921371, -0.29837000370025635, 0.25863999128341675, 0.5980200171470642, 0.4758799970149994, -0.09140399843454361, 0.22592000663280487, -0.5331900119781494, 0.19721999764442444, 0.12060000002384186, -0.009128199890255928, -0.2220900058746338, 0.09917999804019928, -0.4020799994468689, -0.40560001134872437, 0.3756699860095978, -0.5575299859046936, -0.20550000667572021, -0.2199299931526184, -0.17927999794483185, 0.16726000607013702, 0.35929998755455017, -0.5149700045585632, 0.4627299904823303, 0.41898998618125916, 0.16881999373435974, -0.22336000204086304, 0.003317799884825945, -0.258760005235672, 0.2272700071334839, -0.34178000688552856, 0.01863200031220913, 0.3862000107765198, -0.023222999647259712, 0.1501300036907196, 0.06524299830198288, 0.15684999525547028, -0.40525999665260315, 0.3463900089263916, 0.04640699923038483, 0.2367199957370758, 0.04885299876332283, 0.47095000743865967, -0.47889000177383423, -0.5506399869918823, -1.3133000135421753, 0.2515299916267395, -0.638159990310669, 0.27685999870300293, -0.4094099998474121, 0.21584999561309814, 0.34266000986099243, -0.32460999488830566, -0.48903998732566833, 0.3241499960422516, 0.44784000515937805, -0.43599000573158264, -0.5429499745368958, -0.09770099818706512, 0.08726900070905685, -0.04427900165319443, -0.13234999775886536, 0.11473000049591064, 0.029608000069856644, -0.368120014667511, 0.33768001198768616, -0.1555500030517578, -0.12961000204086304, 0.06895499676465988], u'sand': [-0.3140600025653839, -0.22137999534606934, -0.9797800183296204, 0.148499995470047, 0.2248300015926361, -0.2967100143432617, 0.3673099875450134, 0.3198600113391876, 0.5907899737358093, -0.6918699741363525, 0.12042000144720078, -0.5933700203895569, -0.19915999472141266, 0.14534999430179596, -0.45118001103401184, -0.5862399935722351, -0.2951200008392334, -0.06768099963665009, 0.3026599884033203, 0.4748600125312805, -0.16082000732421875, 0.08896999806165695, -0.18775999546051025, 0.3174999952316284, -0.8321300148963928, -0.04096199944615364, -0.18378999829292297, 0.4128299951553345, -0.2715800106525421, 0.6717399954795837, 0.5925599932670593, 0.6989799737930298, -0.5456399917602539, 0.18591000139713287, 0.03706600144505501, 0.28115999698638916, -0.2246599942445755, 0.43542999029159546, 0.21595999598503113, 0.665340006351471, -0.2791599929332733, 0.8006399869918823, 0.46219998598098755, -0.3126299977302551, 0.9716699719429016, -0.02214200049638748, 0.7474300265312195, 0.21974000334739685, 0.02550699934363365, 0.07299300283193588, -0.12355999648571014, 0.46491000056266785, -0.4521600008010864, -0.09266199916601181, 0.12514999508857727, 0.489439994096756, -0.1157900020480156, -0.19043000042438507, 0.6335700154304504, 0.37000998854637146, 0.08189799636602402, 0.3835099935531616, 0.8413900136947632, -0.15389999747276306, 0.11553999781608582, -0.38909000158309937, -0.1726599931716919, -0.09141399711370468, -0.5362100005149841, -0.2031099945306778, 0.014063999988138676, 0.3509199917316437, -0.5825899839401245, 0.11529000103473663, -0.4737200140953064, 0.38471001386642456, 0.2031099945306778, -0.03297099843621254, 0.5841500163078308, -0.185029998421669, -0.057948999106884, -0.22081999480724335, -0.21684999763965607, 0.05637900158762932, -0.342739999294281, 0.37415000796318054, 0.19541999697685242, -0.041172999888658524, 0.2795499861240387, -0.36219000816345215, 0.05913100019097328, 0.08673600107431412, 0.12122999876737595, -0.02703399956226349, -0.09205300360918045, -0.009580099955201149, 0.15039999783039093, 0.03610499948263168, 0.20965999364852905, -0.020299000665545464, 0.05116000026464462, 0.6039900183677673, -0.18577000498771667, -0.4963099956512451, -0.5071399807929993, 0.09376399964094162, 0.32249000668525696, -0.144679993391037, 0.15544000267982483, -0.8123300075531006, -0.08892499655485153, -0.5644400119781494, -0.08691500127315521, -0.16761000454425812, -0.23346999287605286, 0.37077000737190247, -0.04030599817633629, 0.4702700078487396, -0.2533099949359894, 0.12713000178337097, 0.16572999954223633, -0.11166000366210938, 0.030602000653743744, 0.1919099986553192, -0.17256000638008118, -0.05873199924826622, 0.0575140006840229, 0.44652000069618225, 0.12436000257730484, -0.4328700006008148, -0.1865600049495697, 0.7466300129890442, -0.029113000258803368, 0.39921998977661133, 0.02606399916112423, -0.2818300127983093, -0.10067000240087509, -0.08521600067615509, 0.30803999304771423, 0.305620014667511, 0.14539000391960144, 0.03853600099682808, -0.2734600007534027, -0.46557000279426575, -0.30858999490737915, -0.6644600033760071, 0.4230499863624573, 0.27981001138687134, -0.33803999423980713, 0.023533999919891357, 0.04069900140166283, 0.3662700057029724, -0.8810499906539917, -0.4159199893474579, 0.303600013256073, -0.16436000168323517, 0.09034900367259979, -0.3481200039386749, 0.9740099906921387, 0.6203100085258484, -0.12752999365329742, -0.6111000180244446, 0.053599998354911804, 0.681689977645874, 0.40755999088287354, -0.4740599989891052, 0.5660099983215332, 0.3921999931335449, 0.07912500202655792, 0.004698299802839756, 0.1160999983549118, 0.30594000220298767, 0.40435999631881714, 0.07709699869155884, 0.16311000287532806, -0.016870999708771706, -0.12419000267982483, 0.35776999592781067, -0.35638999938964844, -0.5653700232505798, 0.06326200067996979, -0.0996680036187172, 0.0745289996266365, 0.49314001202583313, -0.5114499926567078, -0.38565000891685486, 0.6060299873352051, -0.480459988117218, 0.6333600282669067, 0.19898000359535217, 0.5691800117492676, 0.5358999967575073, 0.24990999698638916, -0.09191100299358368, 0.6381199955940247, -0.1267700046300888, 0.39504000544548035, -0.39983999729156494, 0.12568999826908112, -0.38135001063346863, 1.1110999584197998, 0.37244001030921936, -0.02284500002861023, -0.1788800060749054, 0.3671700060367584, 0.3658199906349182, 0.5503399968147278, -0.681850016117096, -0.29392001032829285, 0.34185001254081726, -0.16335000097751617, 0.05252499878406525, 0.5426999926567078, -0.15227000415325165, 0.1833299994468689, 0.20358000695705414, 0.4751499891281128, -0.227960005402565, 0.004645800217986107, -0.6875100135803223, 0.7394999861717224, 0.048204999417066574, 0.35958999395370483, -0.23789000511169434, 0.16422000527381897, -0.3739599883556366, 0.18424999713897705, -0.3450700044631958, 0.18379999697208405, -0.4717099964618683, 0.1742199957370758, 0.06387700140476227, 0.10760000348091125, 0.18132999539375305, 0.2473199963569641, 0.20171000063419342, -0.5786399841308594, -0.21660999953746796, -0.06350299715995789, -0.6794899702072144, -0.5448799729347229, 0.3574399948120117, -0.5281199812889099, -0.37490999698638916, -1.2674000263214111, 0.30316001176834106, -0.0502999983727932, -0.17858000099658966, -0.29886001348495483, -0.784529983997345, -0.34564000368118286, -0.36201000213623047, 0.4776400029659271, -0.25898998975753784, 0.7557600140571594, -0.3415200114250183, -0.16266000270843506, -0.22499999403953552, -0.21952000260353088, 0.09250500053167343, -0.20566000044345856, -0.18153999745845795, -0.5005099773406982, -0.33364999294281006, 0.3940199911594391, -0.5600000023841858, 0.09220200031995773, -0.31885001063346863, -0.34389999508857727, -0.23899999260902405, -0.3129200041294098, -0.2751300036907196, -0.706820011138916, 0.5628700256347656, -0.006284600123763084, -0.31968000531196594, -1.0943000316619873, 0.08192799985408783, -0.6544600129127502, -0.16468000411987305, -0.8141400218009949, 0.23000000417232513, -0.6362199783325195, -0.11986000090837479, 0.479449987411499, 0.27785998582839966, 0.3490299880504608, -0.14264999330043793, 0.11527000367641449, -0.2388100028038025, -0.315530002117157, 0.31773000955581665, -0.25174999237060547, 0.7394999861717224, 0.16051000356674194, -0.19619999825954437, 0.8220900297164917, 0.3503299951553345, 0.25308001041412354, -0.5489199757575989], u'steps': [0.15883000195026398, -0.0876379981637001, 0.09270299971103668, -0.4241600036621094, -0.21265999972820282, -0.25971001386642456, -0.31738001108169556, -0.4050999879837036, 0.20552000403404236, -1.5115000009536743, -0.6522899866104126, 0.3138599991798401, -0.015577999874949455, -0.05442100018262863, -0.012713000178337097, 0.1636199951171875, -1.0582000017166138, -0.18842999637126923, -0.19870999455451965, -0.29455000162124634, -0.25804999470710754, -0.05260099843144417, 0.24792000651359558, 0.13422000408172607, -0.49751999974250793, 0.46693000197410583, -0.10796999931335449, -0.18081000447273254, -0.3216499984264374, 0.3686699867248535, -0.09230300039052963, 0.09832099825143814, 0.28852999210357666, -0.21543000638484955, -0.6790300011634827, 0.4548799991607666, 0.1076899990439415, -0.0223619993776083, -0.3540099859237671, -0.39201000332832336, -0.419840008020401, 0.36507999897003174, -0.23465000092983246, 0.11959999799728394, -0.553600013256073, -0.10958000272512436, 0.19096000492572784, 0.2950499951839447, -0.32267001271247864, -0.13970999419689178, -0.4331200122833252, -0.24003000557422638, 0.348470002412796, 0.1983499974012375, -0.14869999885559082, 0.7071999907493591, -0.1340699940919876, 0.15020999312400818, -0.3582099974155426, 0.44056999683380127, 0.5914599895477295, 0.3669300079345703, 0.24562999606132507, 0.3586699962615967, -0.10153999924659729, 0.16335000097751617, 0.13016000390052795, 0.16404999792575836, 0.16957999765872955, 0.017393000423908234, -0.005433899816125631, 0.0939600020647049, -0.04711100086569786, -0.41376999020576477, 0.8103600144386292, -0.015088999643921852, -0.268669992685318, 0.18292999267578125, 0.35097000002861023, -0.6283900141716003, -0.3849700093269348, 0.012236000038683414, 0.6336399912834167, 0.13638000190258026, 0.34942999482154846, -0.14746999740600586, -0.22530999779701233, 0.2668299973011017, -0.1902099996805191, -0.004433699883520603, 0.23236000537872314, 0.1734900027513504, -0.18463000655174255, 0.6227399706840515, -0.08800199627876282, -0.4624199867248535, -0.29649001359939575, -0.4023599922657013, 0.07100000232458115, -0.1553100049495697, -0.2829299867153168, 0.2448599934577942, -0.22960999608039856, -0.04380600154399872, -0.09300599992275238, -0.27818000316619873, -0.12217999994754791, -0.04897499829530716, 0.3071100115776062, -0.3811599910259247, -0.07570400089025497, -0.511430025100708, -0.6361100077629089, -0.013728000223636627, -0.5145800113677979, -0.19146999716758728, 0.5348899960517883, -0.4406999945640564, -0.4454199969768524, -0.41165998578071594, 0.0016261000419035554, 0.21137000620365143, -0.13444000482559204, -0.23930999636650085, -0.18106000125408173, -0.032287999987602234, 0.16629000008106232, 0.17428000271320343, -0.09110300242900848, -0.4654400050640106, 0.0887639969587326, 0.26739999651908875, 0.0008634600089862943, 0.4447900056838989, 0.19083000719547272, -0.24740999937057495, -0.01044899970293045, -0.10867000371217728, -0.1167600005865097, 0.03203999996185303, -0.05140399932861328, -0.41310998797416687, -0.09877099841833115, 0.18195000290870667, -0.5881100296974182, -0.0628189966082573, -0.26104000210762024, 0.2284799963235855, -0.11063999682664871, -0.09803800284862518, -0.4121699929237366, 0.22201000154018402, -0.04069399833679199, -0.023240000009536743, 0.061462998390197754, 0.15139000117778778, -0.006359400227665901, -0.13223999738693237, -0.7705900073051453, 0.1819400042295456, 0.46129998564720154, 0.23732000589370728, -0.1691499948501587, -0.038888998329639435, 0.11324000358581543, 0.018727999180555344, 0.20833000540733337, 0.27592000365257263, 0.05190499871969223, 0.40174999833106995, 0.0835300013422966, 0.10406000167131424, 0.6588299870491028, -0.4705600142478943, 0.21288999915122986, -0.17938999831676483, 0.34793999791145325, 0.11748000234365463, -0.005347100086510181, 0.025286000221967697, -0.12918999791145325, -0.532289981842041, 0.16263000667095184, -0.29802998900413513, -0.5353400111198425, 0.5308399796485901, -0.49842000007629395, -0.09080199897289276, 0.09679900109767914, 0.22458000481128693, 0.3072099983692169, 0.014202999882400036, 0.5249999761581421, -0.2983599901199341, 0.22056999802589417, 0.10075999796390533, -0.040043000131845474, -0.22994999587535858, 0.2908099889755249, -0.5747600197792053, 0.8543699979782104, 0.1805099993944168, -0.051899999380111694, 0.5638399720191956, 0.1838199943304062, 0.2028300017118454, -0.06865400075912476, -0.44380998611450195, -0.018323000520467758, 0.05788600072264671, 0.005382299888879061, 0.1304199993610382, -0.5315600037574768, 0.382779985666275, 0.1983499974012375, 0.18716000020503998, 0.49505001306533813, -0.6367899775505066, -0.08117999881505966, -0.16193999350070953, 0.28964999318122864, 0.3896600008010864, -0.24677999317646027, -0.02797500044107437, 0.07965300232172012, -0.19415000081062317, 0.03279000148177147, 0.6483200192451477, 0.13468000292778015, -0.22922000288963318, -0.2711699903011322, 0.1683499962091446, 0.02918899990618229, 0.21393999457359314, -0.272379994392395, 0.2894099950790405, 0.11969000101089478, -0.35607999563217163, 0.30296000838279724, -0.10100000351667404, -0.07376900315284729, -0.09662699699401855, -0.1853100061416626, 0.4560999870300293, -0.1655000001192093, 0.05059799924492836, 0.5618699789047241, 0.09545200318098068, -0.40397000312805176, 0.25637999176979065, 0.09924600273370743, -0.599049985408783, -0.023951999843120575, -0.05302799865603447, 0.4742499887943268, -0.17291000485420227, 0.07521799951791763, 0.2040500044822693, -0.0216279998421669, 0.557699978351593, 0.09115199744701385, 0.19828000664710999, 0.19035999476909637, -0.1677200049161911, 0.20003999769687653, 0.03245700150728226, -0.3128400146961212, 0.7114199995994568, 0.11828000098466873, -0.19892999529838562, 0.03208399936556816, -0.15118999779224396, -0.33862999081611633, 0.21041999757289886, 0.19970999658107758, -0.05726899951696396, -2.059499979019165, -0.09432800114154816, 1.034000039100647, -0.4780699908733368, 0.6254799962043762, -0.37101998925209045, 0.010324000380933285, -0.14327000081539154, -0.21740999817848206, -0.38339999318122864, -0.20582999289035797, 0.35580000281333923, -0.1340000033378601, -0.28185001015663147, 0.0941699966788292, -0.08494599908590317, 0.2356400042772293, 0.14842000603675842, -0.16323000192642212, 0.560670018196106, -0.46869999170303345, 0.07327400147914886, -0.08175099641084671, -0.11455000191926956], u'knife': [0.030812999233603477, 0.11738999933004379, 0.12256000190973282, -0.26554998755455017, 0.5069599747657776, 0.3734700083732605, -0.22257000207901, -0.20558999478816986, 0.10349000245332718, -0.8253499865531921, -0.3727700114250183, -0.05632299929857254, 0.3125, 0.5572699904441833, -0.3341200053691864, 0.042656999081373215, -0.5379199981689453, 0.4139299988746643, -0.20861999690532684, -0.18934999406337738, -0.10508999973535538, 0.039027001708745956, 0.19407999515533447, 0.01701500080525875, 0.37349000573158264, -0.23340000212192535, -0.09732100367546082, -0.7677299976348877, -0.14576999843120575, -0.45357999205589294, -0.05191199854016304, 0.8790799975395203, 0.32161998748779297, -0.17885999381542206, -0.21616999804973602, 0.05481300130486488, -0.21583999693393707, 0.2147500067949295, -0.6340000033378601, 0.20406000316143036, 0.7276999950408936, 0.14087000489234924, 0.2696000039577484, -0.8338000178337097, 0.15497000515460968, 0.6092299818992615, -0.24412000179290771, -0.2695100009441376, 0.2658799886703491, 0.5577700138092041, -0.26736998558044434, -0.26820001006126404, 0.6201000213623047, 0.11427000164985657, -0.4243299961090088, -0.629010021686554, -0.8113999962806702, -0.10407000035047531, 0.5546200275421143, 0.17541000247001648, 0.11727000027894974, 0.6423599720001221, -0.2276500016450882, 0.7026200294494629, -0.3978999853134155, -0.7211700081825256, -0.6951900124549866, -0.3364199995994568, 0.13402999937534332, -0.35604000091552734, 0.1060900017619133, 0.14013999700546265, -0.3269500136375427, 0.3714900016784668, 0.19643999636173248, 0.07169699668884277, -0.3003999888896942, -0.04162300005555153, -0.6243699789047241, -0.47718000411987305, 0.07504899799823761, 0.39827999472618103, 0.6649100184440613, -0.17440000176429749, 0.23631000518798828, -0.30052998661994934, -0.891319990158081, -0.22609999775886536, -0.6556699872016907, 0.013395999558269978, 0.09440100193023682, 0.30452001094818115, 0.009967000223696232, -0.3986299932003021, 0.04255099967122078, -0.46233999729156494, 0.2156900018453598, 0.3021000027656555, 0.6552600264549255, -0.11043000221252441, -0.32725998759269714, 0.4620499908924103, -0.175929993391037, -0.26673001050949097, 0.14573000371456146, -0.4440299868583679, 0.5926700234413147, 0.021059999242424965, -0.09191299974918365, 0.5620700120925903, -0.3388499915599823, 0.9434499740600586, 0.04715399816632271, -0.5935099720954895, -0.019881000742316246, -0.03565799817442894, -0.7500799894332886, 0.3149999976158142, -0.12417999655008316, -0.802079975605011, -0.5786799788475037, 0.4801099896430969, -0.3921000063419342, -0.6148300170898438, -0.5909900069236755, 0.2735300064086914, -0.23810000717639923, -0.41561999917030334, -0.09578400105237961, -0.4732399880886078, -0.23590999841690063, 0.5347300171852112, 0.7275699973106384, 0.1859699934720993, -0.5586599707603455, -0.1750199943780899, 0.31470999121665955, 0.3326900005340576, 0.8009700179100037, 0.038481999188661575, 0.6307799816131592, 0.21127000451087952, -0.23544000089168549, -0.4889500141143799, -0.024085000157356262, 0.8489400148391724, 0.37996000051498413, -0.009405200369656086, -0.12005999684333801, -0.16207000613212585, -0.08607800304889679, 0.9889299869537354, 0.4653800129890442, -0.3565399944782257, 0.3457399904727936, 0.07895100116729736, 0.2701599895954132, 0.0753839984536171, -0.16345000267028809, 0.4801200032234192, 0.4002000093460083, -0.06597200036048889, 0.3017500042915344, 0.04814299941062927, 0.28433001041412354, 0.02779800072312355, 0.4071800112724304, 0.11672999709844589, -0.31259000301361084, -0.40382999181747437, -0.3763900101184845, -0.14509999752044678, 0.10301999747753143, -0.2232300043106079, -0.7715399861335754, -0.026583999395370483, -0.30855000019073486, -0.20343999564647675, 0.7212499976158142, -0.37571001052856445, 0.28501999378204346, 0.04388900101184845, -0.08225700259208679, 0.10288000106811523, 0.06017100065946579, -0.43435001373291016, 0.4084700047969818, 1.1055999994277954, 0.22408999502658844, 0.4030100107192993, 0.06908000260591507, 0.43709999322891235, -0.024907000362873077, 0.07074800133705139, 0.2604199945926666, 0.5473899841308594, -0.7299699783325195, -0.42465999722480774, -0.09819900244474411, 0.34634000062942505, 0.3889099955558777, -0.24070000648498535, 0.45778998732566833, 0.6728600263595581, -0.28703999519348145, -0.20303000509738922, 0.1792300045490265, -0.05056999996304512, -0.581279993057251, 0.14159999787807465, 0.36956000328063965, -0.29596999287605286, -0.26958000659942627, 0.39897000789642334, 0.48568999767303467, -0.27663999795913696, 0.399370014667511, 0.11704999953508377, -0.7202000021934509, 0.031369999051094055, -0.7922999858856201, 0.31773999333381653, 0.33348000049591064, 0.06300199776887894, -0.9889000058174133, -0.5260099768638611, -0.5505599975585938, -0.5978999733924866, 0.059393998235464096, -0.5446299910545349, 0.7208799719810486, -0.14922000467777252, -0.5834599733352661, -0.547980010509491, 0.5172799825668335, 0.49994000792503357, -0.5111200213432312, 0.33037999272346497, -0.17681999504566193, 0.0316540002822876, 0.8673700094223022, -0.11810000240802765, -0.12665000557899475, -0.45333001017570496, -0.2688100039958954, -0.13364000618457794, 0.505810022354126, -0.1090100035071373, -0.05684899911284447, -0.4364300072193146, 0.0201990008354187, 0.004362999927252531, 0.45010998845100403, -0.14545999467372894, 0.45311999320983887, 0.4213300049304962, 0.12240999937057495, 0.12801000475883484, -0.03070100024342537, 0.015270000323653221, 0.3750300109386444, -0.4503900110721588, 0.1287499964237213, 0.37481001019477844, 0.006719899829477072, 0.6723600029945374, -0.4807400107383728, 0.7951899766921997, -0.9288899898529053, 0.5197299718856812, -0.02338399924337864, 0.004427900072187185, 0.19860999286174774, 0.4424099922180176, 0.3998900055885315, -0.3787499964237213, -1.426300048828125, 0.01693199947476387, -1.0957000255584717, 0.1262499988079071, 0.12782999873161316, 0.5864599943161011, -0.035920001566410065, 0.04347199946641922, -0.08051799982786179, 0.2965799868106842, -0.036584001034498215, -0.19008000195026398, -0.008589199744164944, 0.27129000425338745, 0.5537099838256836, -0.47505998611450195, 0.05384000018239021, 0.34703999757766724, -0.010308999568223953, 0.3165299892425537, -0.10096000134944916, 0.5074399709701538, 0.046778999269008636, 0.4003700017929077], u'clay': [-0.11208000034093857, 0.6687800288200378, -0.40283000469207764, -0.31185001134872437, 0.19189999997615814, -0.09656400233507156, -0.07435200363397598, -0.0738620012998581, -0.052418000996112823, -0.05637599900364876, 0.31988000869750977, 0.03547300025820732, -0.25527000427246094, 0.31975001096725464, -0.9006900191307068, -0.4411799907684326, -0.6830400228500366, 0.4436500072479248, 0.30667999386787415, 0.33090001344680786, -0.06155399978160858, -0.30292001366615295, 0.1629199981689453, 0.012275000102818012, -0.641260027885437, -0.6624699831008911, -0.2928699851036072, 0.48965999484062195, 0.12050999701023102, 1.0551999807357788, 0.07695599645376205, 0.7262700200080872, -0.7373999953269958, -0.12511999905109406, -0.4002299904823303, 0.19922000169754028, 0.04165399819612503, 0.020351000130176544, 0.029301999136805534, 0.033197999000549316, -0.048650000244379044, 0.04433400183916092, 0.5359100103378296, -0.010614999569952488, 0.9057000279426575, 0.28624001145362854, 0.2004300057888031, 0.7737100124359131, -0.007521599996834993, 0.14257000386714935, 0.20818999409675598, 0.6045299768447876, -0.3244999945163727, 0.2861799895763397, 0.6800900101661682, 0.6281999945640564, -0.2736299932003021, -0.3883500099182129, 0.7093200087547302, -0.1447100043296814, -0.09490799903869629, -0.5657399892807007, 0.32679998874664307, -0.11309000104665756, 0.18682999908924103, -0.6308599710464478, -0.5798400044441223, -0.1348399966955185, -0.3971700072288513, -0.563759982585907, 0.04866499826312065, -0.07224000245332718, -0.1471399962902069, 0.14505000412464142, -0.3956199884414673, -0.6394299864768982, 0.10326000303030014, 0.09154599905014038, -0.09855099767446518, -0.24952000379562378, 0.24133999645709991, -0.6085000038146973, -0.2377299964427948, -0.18324999511241913, 0.128370001912117, 0.2167699933052063, 0.8171200156211853, 0.3942599892616272, -0.16032999753952026, 0.1775600016117096, 0.03982599824666977, 0.259660005569458, -0.14214999973773956, -0.13011999428272247, 0.19518999755382538, 0.00652820011600852, -0.2825399935245514, 0.7265499830245972, 0.02528199926018715, -0.6133900284767151, 0.1114799976348877, 0.07554800063371658, -0.1400900036096573, -0.48704999685287476, 0.15828000009059906, 0.6477299928665161, -0.3684299886226654, -0.443230003118515, -0.274509996175766, -0.19133000075817108, 0.26399001479148865, 0.0859379991889, 0.1304599940776825, -0.36212998628616333, -0.9912400245666504, -0.178739994764328, -0.5744400024414062, 0.4431700110435486, 0.3959299921989441, -0.08637700229883194, -0.2900499999523163, 0.36649999022483826, -0.06011199951171875, -0.15838000178337097, 0.03855700045824051, 0.5385100245475769, 0.5131999850273132, -0.1812800019979477, 0.01533500012010336, 0.5263699889183044, -0.507070004940033, 0.8219599723815918, -0.1273999959230423, 0.22878000140190125, -0.32253000140190125, -0.1411599963903427, -0.08752299845218658, 0.38464000821113586, 0.12103000283241272, 0.3943899869918823, 0.6250699758529663, -0.2768400013446808, 0.08188100159168243, -0.08908600360155106, 0.2370699942111969, 0.12538999319076538, -0.7303599715232849, 0.6660400032997131, -0.3615100085735321, -0.28602999448776245, 0.10964000225067139, -0.2564600110054016, -0.7974600195884705, 0.06755100190639496, 0.47894999384880066, 0.12685999274253845, -0.6957499980926514, -0.17438000440597534, 0.2670300006866455, -0.09397900104522705, -0.41190001368522644, -0.25824999809265137, 0.0620650015771389, 0.6647700071334839, 0.4275200068950653, -0.03372799977660179, 0.4436900019645691, -0.075654998421669, -0.036942001432180405, -0.03510599955916405, 0.11085999757051468, 0.5747399926185608, 0.47991999983787537, 0.12671999633312225, -0.28933000564575195, 0.5222399830818176, -0.026652999222278595, -0.5372700095176697, -0.014010000042617321, -0.5968899726867676, 0.4077799916267395, 0.5501800179481506, 0.7299200296401978, -0.0939669981598854, -0.7684800028800964, -0.4064199924468994, -0.6251999735832214, 0.10199999809265137, 0.264710009098053, -0.301470011472702, 0.4244700074195862, 0.23388999700546265, -0.14695000648498535, 0.0704130008816719, 0.7194700241088867, 0.12859000265598297, 0.16824999451637268, 0.1407800018787384, 0.1482599973678589, -0.774590015411377, 1.4707000255584717, 0.009727099910378456, -0.30226999521255493, 0.031132999807596207, 0.5634099841117859, -0.5072000026702881, 0.10665000230073929, -0.00727220019325614, -0.7922999858856201, 0.13019999861717224, -0.3765999972820282, 0.7307900190353394, 0.4002099931240082, -0.6640300154685974, 0.23638999462127686, 0.20986999571323395, 0.07957500219345093, 0.16775000095367432, -0.16031000018119812, -1.2152999639511108, 0.059774000197649, -0.3184399902820587, -0.23723000288009644, 0.18565000593662262, -0.17714999616146088, 0.12411999702453613, 0.07231000065803528, 0.288349986076355, -0.1823599934577942, -0.13267000019550323, 0.023029999807476997, 0.09139200299978256, 0.4916599988937378, -0.14395000040531158, -0.1599300056695938, 0.23739999532699585, -0.39535999298095703, 0.685670018196106, 0.3532699942588806, 0.10118000209331512, -0.6079300045967102, 0.07167399674654007, -0.48987001180648804, -0.7636399865150452, -0.2854599952697754, 0.41732001304626465, -1.1122000217437744, -0.24764999747276306, -0.12064000219106674, 0.4493800103664398, 0.8939599990844727, -0.20276999473571777, -0.5140399932861328, -0.8954200148582458, 0.3558500111103058, -0.06787300109863281, 0.20467999577522278, 0.10357999801635742, 0.09644900262355804, -0.035020001232624054, -0.07549700140953064, 0.12693999707698822, -0.17663000524044037, -0.015496999956667423, 0.35666000843048096, 0.16176000237464905, 0.6505799889564514, 0.3805699944496155, 0.17655999958515167, 0.2199299931526184, -0.426829993724823, -0.24305999279022217, 0.07052399963140488, 0.2993699908256531, -0.06233600154519081, 0.09097900241613388, -0.7948600053787231, 0.5686200261116028, -0.8816199898719788, 0.5117400288581848, -0.10305000096559525, -0.2078399956226349, 0.01805800013244152, 0.3552199900150299, -0.04114999994635582, 0.0480399988591671, 0.3607400059700012, -0.12871000170707703, 0.29903000593185425, 0.4463199973106384, -0.15481999516487122, 0.4003100097179413, 0.3339399993419647, 0.7696599960327148, 0.3086000084877014, 0.1566700041294098, 0.3792099952697754, -0.13991999626159668, -0.29826000332832336, 0.5024700164794922], u'tower': [0.08844199776649475, -0.6464499831199646, -0.6453199982643127, -0.722760021686554, 0.18242000043392181, 0.91593998670578, 0.40852001309394836, 0.3038800060749054, -0.5125200152397156, -0.8531699776649475, 0.473690003156662, -0.4255799949169159, 1.337499976158142, 0.07779999822378159, 0.5524799823760986, 0.1243399977684021, -0.20398999750614166, 0.0003159299958497286, -0.39743998646736145, -0.4786899983882904, -0.351859986782074, -0.18738999962806702, 0.20496000349521637, 0.5571600198745728, 0.13763000071048737, 0.09175299853086472, -0.4067099988460541, 0.3119199872016907, -0.8923199772834778, 0.29350998997688293, 0.8664799928665161, 0.3420200049877167, -0.6423799991607666, 0.1979299932718277, 0.09714499861001968, 0.3304699957370758, 0.1009100005030632, -0.5315499901771545, 0.5561699867248535, 0.046817000955343246, -0.23946000635623932, 0.012226000428199768, -0.6647499799728394, 0.85930997133255, -0.11118000000715256, 0.035801999270915985, 0.019173000007867813, 0.08555000275373459, -0.08261699974536896, -0.38392001390457153, -0.34926000237464905, 0.13854999840259552, 0.18774999678134918, 0.02798300050199032, -0.03057200089097023, 0.11079999804496765, 0.2557699978351593, 0.5675600171089172, 0.3509800136089325, 0.13603000342845917, 0.15828000009059906, -0.03481699898838997, 0.6020799875259399, 0.30250999331474304, 0.3757399916648865, 0.024204999208450317, 0.5043500065803528, 0.4709799885749817, 0.6664000153541565, -0.43876999616622925, 0.15473000705242157, 0.1061599999666214, -0.2425999939441681, -0.09508399665355682, -0.2884199917316437, 0.8536800146102905, -0.1858299970626831, -0.3697800040245056, -0.22111999988555908, 0.023408999666571617, -0.2600899934768677, 0.4584999978542328, -0.33362001180648804, 0.5888599753379822, 0.21205000579357147, -0.19859999418258667, 0.3820500075817108, 0.47001001238822937, 0.15861999988555908, 0.0601780004799366, 0.9631100296974182, -0.4208100140094757, 0.3932499885559082, 0.7574700117111206, -0.3915199935436249, -0.2619200050830841, -0.3973200023174286, 0.11315999925136566, 0.6294900178909302, -0.4143899977207184, -0.5810099840164185, 0.3167099952697754, 0.11705999821424484, 0.02798599936068058, 0.18474000692367554, -0.4647899866104126, 0.03570299968123436, -0.01673799939453602, -0.13673999905586243, -0.04869699850678444, -0.4311800003051758, -0.23632000386714935, -0.20962999761104584, 0.11155000329017639, -0.0957380011677742, -0.25951001048088074, -0.8104400038719177, 0.365090012550354, -0.4386900067329407, -0.1075500026345253, 0.4053899943828583, -0.7540299892425537, 0.11428999900817871, -0.02718600071966648, -0.736840009689331, -0.7784199714660645, 0.2157299965620041, -0.0244159996509552, -0.43501999974250793, -0.4595800042152405, -0.10469000041484833, 0.7533699870109558, -0.047529999166727066, -0.4868600070476532, 0.22472000122070312, -0.20744000375270844, 0.24348999559879303, -0.38842999935150146, -0.5660200119018555, -0.36726999282836914, -0.43174999952316284, 0.11121000349521637, 0.10119999945163727, 0.7142000198364258, -0.29594001173973083, -0.3112800121307373, 0.2007800042629242, 0.1407099962234497, -0.08977500349283218, -0.5440999865531921, 0.17889000475406647, 0.24202999472618103, 0.21074999868869781, -0.396699994802475, 0.4738999903202057, 0.5051699876785278, -0.016520999372005463, 0.20381000638008118, -0.34060999751091003, 0.6606500148773193, 0.36368998885154724, -0.21708999574184418, 0.5725700259208679, -0.20449000597000122, -0.07725799828767776, 0.5527300238609314, 0.009973700158298016, -0.40702998638153076, 0.4844299852848053, 0.41019999980926514, -0.4998300075531006, -0.2179899960756302, 0.1513500064611435, -0.2759400010108948, 0.23568999767303467, 0.3649500012397766, -0.26669999957084656, -0.10633999854326248, 0.02662700042128563, -0.9807000160217285, -0.21905000507831573, 0.2800300121307373, 0.3210600018501282, -0.25481998920440674, -0.16283999383449554, -0.23523999750614166, -0.08395899832248688, 0.22996999323368073, -0.13785000145435333, 0.4673599898815155, 0.9836999773979187, 0.20948000252246857, -0.09576500207185745, -0.02334900014102459, -0.015758000314235687, -0.42037999629974365, -0.690779983997345, -0.4459800124168396, 0.19720999896526337, 0.007765800226479769, 0.9777299761772156, -0.18686999380588531, 0.006923899985849857, -0.12385000288486481, -0.2769100069999695, 0.1995999962091446, -0.03804999962449074, -0.35300999879837036, 0.49483001232147217, 0.11302000284194946, 0.7088800072669983, 0.516539990901947, -0.4744099974632263, -0.8736799955368042, -0.27410000562667847, -0.10080000013113022, -0.15237000584602356, -0.2786799967288971, 0.11174999922513962, -0.14722000062465668, -0.08376999944448471, -0.30309000611305237, 0.5986499786376953, 0.28821998834609985, 0.08493500202894211, -0.0029442000668495893, -0.30101001262664795, 0.022338999435305595, -0.15643000602722168, -0.5361999869346619, -0.0827300027012825, -0.038839999586343765, -0.6647999882698059, 0.294730007648468, 0.1434199959039688, -0.20991000533103943, 0.053328998386859894, 0.2582699954509735, 0.01896899938583374, -0.21689000725746155, -0.06409700214862823, -0.2135400027036667, 0.09598600119352341, -0.3113900125026703, -0.05347700044512749, 0.4627000093460083, 0.3053300082683563, -0.010877000167965889, 0.2967199981212616, -0.2303600013256073, 0.32962000370025635, -0.08162099868059158, -0.34373000264167786, 0.22463999688625336, -0.012392999604344368, 0.33197999000549316, -0.09198900312185287, -0.35394999384880066, -0.05057799816131592, -0.3258900046348572, -0.29969000816345215, 0.45662999153137207, 0.3862600028514862, -0.2820099890232086, -0.5008900165557861, -0.577750027179718, 0.4084399938583374, -0.019780000671744347, 0.32785001397132874, -0.34046000242233276, 0.08846300095319748, -0.0512159988284111, 0.6039800047874451, -0.04891199991106987, -0.3813199996948242, 0.15877999365329742, -1.5678000450134277, -0.08188299834728241, -0.3595600128173828, -0.1839900016784668, -0.18559999763965607, -0.3108699917793274, 0.09681499749422073, -1.2333999872207642, -0.022698000073432922, 0.02806299924850464, -0.2929899990558624, 0.5268200039863586, -0.3405799865722656, -0.0964839980006218, 0.5452899932861328, 0.38975000381469727, -0.49254000186920166, -0.5067800283432007, 0.6678500175476074, -0.01371499989181757, 0.3922100067138672, 0.060697998851537704, 0.5687000155448914, 0.009721499867737293], u'river': [0.045180998742580414, -0.5207200050354004, 0.3230400085449219, -0.6194900274276733, 0.030194999650120735, 0.36434000730514526, 0.49713999032974243, -0.09396900236606598, 0.2641899883747101, -1.0081000328063965, -0.6944100260734558, -0.4202499985694885, -0.5163900256156921, 0.04094399884343147, 0.48739001154899597, -0.08733899891376495, -0.34158000349998474, 0.1765899956226349, 0.9357600212097168, 0.8018500208854675, -0.6808900237083435, -0.06749200075864792, 0.3398500084877014, 0.05770200118422508, -0.37549999356269836, -0.5855799913406372, -0.17294999957084656, -0.6442099809646606, -0.42188000679016113, 0.4946199953556061, 1.1949000358581543, 0.40206998586654663, 0.26782000064849854, 0.6140099763870239, 0.6488500237464905, 0.2252500057220459, -0.27296000719070435, -0.20417000353336334, -0.08838000148534775, -0.1754399985074997, -0.895550012588501, 0.13083000481128693, 0.10717999935150146, 1.0121999979019165, 0.15881000459194183, 0.5350099802017212, 0.6352599859237671, 0.4994199872016907, 0.4065699875354767, -0.1137399971485138, 0.23615999519824982, 0.21438999474048615, 0.37382999062538147, -0.24774999916553497, -0.08225400000810623, 0.46057000756263733, 0.1935099959373474, -0.3178899884223938, 0.1306000053882599, 0.527239978313446, 0.05459300056099892, -0.267769992351532, 0.6119099855422974, -0.42372000217437744, 0.014569000340998173, -0.49717000126838684, -0.3415699899196625, 0.513159990310669, -0.4587399959564209, 0.2319899946451187, 0.4923200011253357, -0.08224800229072571, -0.08189400285482407, -0.3194600045681, -0.48107999563217163, -0.36792999505996704, 0.07378800213336945, 0.5062599778175354, -0.07232800126075745, -0.6378499865531921, -0.23090000450611115, -0.39798998832702637, -0.13124999403953552, -0.5937899947166443, 0.2797200083732605, -0.09862399846315384, -0.5949000120162964, -0.15528999269008636, 0.2121499925851822, -0.19054000079631805, 0.46081000566482544, 0.520799994468689, 0.9060500264167786, 0.32089999318122864, -0.06684699654579163, 0.05268700048327446, 0.616320013999939, -0.23680000007152557, 0.35097000002861023, -0.019245000556111336, -0.0726109966635704, 0.3259499967098236, 0.21556000411510468, -0.22434000670909882, 0.418830007314682, 0.4970499873161316, 0.7046399712562561, 0.31084999442100525, 0.003041400108486414, 0.07824599742889404, -0.3048799932003021, -1.0360000133514404, -0.5333399772644043, -0.17357000708580017, -0.6498200297355652, -0.14395000040531158, 0.329039990901947, 0.0372450016438961, 0.165910005569458, -0.32868000864982605, -0.220770001411438, -0.5665500164031982, -0.44047999382019043, -0.015084000304341316, -0.14847999811172485, -0.2239599972963333, 0.14966000616550446, 0.2659200131893158, -0.3380500078201294, -0.1361899971961975, -0.3566400110721588, 0.3741599917411804, 0.24166999757289886, -0.4426499903202057, -0.03126800060272217, -0.3034999966621399, 0.8968499898910522, -0.6000400185585022, -0.25571998953819275, 0.00032635999377816916, -0.12955999374389648, 0.39746999740600586, 0.033351998776197433, -0.3824000060558319, -0.7615500092506409, 0.0821790024638176, 0.9501199722290039, 0.47933998703956604, -0.4725300073623657, 0.08672799915075302, 0.7779800295829773, 0.2204499989748001, -0.4512600004673004, -0.45761001110076904, 1.5621000528335571, -0.06119000166654587, 0.3078399896621704, -0.42026999592781067, -0.24729999899864197, 0.4458500146865845, -0.14659999310970306, -0.2901799976825714, 0.581570029258728, -0.019120000302791595, -0.15714000165462494, -0.68163001537323, -0.04583200067281723, -0.5149700045585632, -1.2603000402450562, 0.15277999639511108, -0.5029500126838684, 0.5078099966049194, 0.015499000437557697, 0.06104699894785881, 0.16584999859333038, -0.45792001485824585, -0.5555400252342224, -0.8961899876594543, -0.5406500101089478, -0.2545900046825409, 0.13152000308036804, 0.6849700212478638, -0.39294999837875366, 0.20077000558376312, 0.25084999203681946, -0.7086499929428101, -0.10621999949216843, -0.12155000120401382, 0.4955900013446808, 0.2440200001001358, -0.04454699903726578, 1.4377000331878662, -0.19256000220775604, -0.2760399878025055, -0.022755000740289688, 0.5080999732017517, 0.49312999844551086, -0.9308800101280212, -0.14330999553203583, 0.7291300296783447, 1.6569000482559204, 0.3070099949836731, -0.6828299760818481, 0.10267999768257141, -0.39434000849723816, -0.16575999557971954, -0.3265399932861328, 0.717170000076294, -0.24232999980449677, 0.512220025062561, -0.3300800025463104, -0.19304999709129333, -0.10730999708175659, -0.19177000224590302, 0.5935099720954895, 0.051697999238967896, -0.2772800028324127, -0.004841200076043606, 0.10931000113487244, -0.439520001411438, 0.5745999813079834, -0.46386998891830444, 0.3660399913787842, -0.6293799877166748, 0.2795200049877167, 0.2614699900150299, -0.057978998869657516, 0.14678999781608582, 0.3129900097846985, 0.12464000284671783, -0.547819972038269, 0.3898400068283081, -0.6383299827575684, 0.07745900005102158, 0.7353000044822693, 0.13739000260829926, -0.5471900105476379, 0.055500999093055725, 0.4616200029850006, 0.11304999887943268, -0.40735000371932983, 0.7774199843406677, 0.21190999448299408, -0.18851999938488007, -0.6175199747085571, 0.0749329999089241, 0.46823999285697937, 0.614549994468689, -0.25110000371932983, -0.3348099887371063, 0.21493999660015106, 0.04192899912595749, 0.3560500144958496, 0.1621599942445755, 0.4277600049972534, -0.2175700068473816, -0.11337999999523163, 0.5008800029754639, 0.03180000185966492, 0.1472499966621399, -0.016445999965071678, 0.06293000280857086, -0.2939000129699707, -0.4066599905490875, -0.012122999876737595, 0.32444000244140625, 0.18939000368118286, -0.7382799983024597, -0.32747000455856323, 0.367220014333725, 0.1628900021314621, -1.0214999914169312, 0.06230499967932701, 0.6369699835777283, 0.4889200031757355, 0.3184399902820587, -1.2032999992370605, -0.5450500249862671, 0.23568999767303467, 0.5707799792289734, -0.2687999904155731, 0.6227499842643738, 0.593559980392456, -0.909600019454956, -0.8214600086212158, 0.29256001114845276, 0.4128200113773346, -0.3164600133895874, 0.631630003452301, 0.33722999691963196, -0.4163999855518341, -0.23096999526023865, 0.05191100016236305, 0.363290011882782, 0.03641999885439873, 0.07034800201654434, 0.2481900006532669, 0.5988600254058838, 0.32697999477386475, 0.6746699810028076], u'clothes': [-0.17869000136852264, -0.24796999990940094, -0.3010199964046478, -0.12793000042438507, -0.15004999935626984, 0.03686000034213066, 0.3825399875640869, 0.3225499987602234, 0.22105999290943146, -1.6690000295639038, -0.0006307900184765458, -0.326449990272522, 0.2598100006580353, 0.4945400059223175, 0.04696999862790108, -0.7570499777793884, 0.5304099917411804, -0.28327998518943787, 0.04687900096178055, -0.03711000084877014, 0.18803000450134277, -0.042319998145103455, 0.3472500145435333, -0.22623999416828156, 0.07767599821090698, -0.3522000014781952, 0.037443000823259354, 0.033576998859643936, 0.6958299875259399, 0.20543000102043152, 0.09134799987077713, 0.21845999360084534, -0.5120199918746948, 0.30292999744415283, -0.715939998626709, 0.5594199895858765, -0.16317999362945557, -0.27538999915122986, 0.010878999717533588, -0.4127100110054016, 0.08822900056838989, -1.159000039100647, 0.0748870000243187, -0.5860000252723694, 0.08146999776363373, 0.319240003824234, 0.594760000705719, -0.23608000576496124, 0.271479994058609, -0.11901000142097473, 0.03248799964785576, -0.2661600112915039, 0.35896000266075134, -0.3023500144481659, -0.3472599983215332, -0.2610599994659424, -0.5379800200462341, -0.7081699967384338, -0.047835998237133026, -0.25652000308036804, -0.05034799873828888, -0.4605099856853485, 0.22563999891281128, 0.1659799963235855, -0.2567700147628784, -0.43751999735832214, -0.4583899974822998, -0.08053900301456451, -0.2574099898338318, 0.20104999840259552, -0.0462459996342659, -0.26941999793052673, -0.37310999631881714, -0.2092600017786026, 0.34880998730659485, -0.21764999628067017, -0.018316000699996948, -0.17449000477790833, 0.019363999366760254, -0.3586600124835968, -0.09759599715471268, -0.04201199859380722, -0.2874700129032135, 0.2943199872970581, -0.09750699996948242, -0.009144400246441364, -0.19257000088691711, -0.11111000180244446, -0.15895000100135803, 0.33660998940467834, -0.09854800254106522, -0.0806180015206337, -0.09684000164270401, -0.07018700242042542, -0.11023999750614166, -0.12744000554084778, 0.1877399981021881, -0.5706899762153625, 0.45151999592781067, -0.12849000096321106, 0.06167599931359291, 0.14541000127792358, -0.4838300049304962, 0.1866299957036972, -0.20489999651908875, -0.4485599994659424, 0.24368000030517578, 0.0840580016374588, -0.2240699976682663, -0.17655999958515167, -0.29794999957084656, 0.49494999647140503, -0.17770999670028687, -0.09090600162744522, 0.09131599962711334, 0.5036600232124329, 0.2351599931716919, 0.5323200225830078, 0.38354000449180603, -0.8105000257492065, 0.06807100027799606, 0.2757999897003174, 0.6527000069618225, 0.6302000284194946, -0.3060399889945984, 0.39381998777389526, -0.19012999534606934, -0.0068720001727342606, 0.3942599892616272, 0.18344999849796295, -0.002738500013947487, -0.2594600021839142, 0.1971299946308136, 0.13259999454021454, -0.43650999665260315, 0.35868000984191895, 0.3059999942779541, -0.12358999997377396, -0.10778000205755234, 0.27175000309944153, -0.06260599941015244, -0.06289000064134598, 0.6302899718284607, -0.18118999898433685, -0.3339099884033203, 0.44729000329971313, 0.18639999628067017, 0.6368700265884399, 0.12202999740839005, -0.32653000950813293, -0.1934799998998642, 0.3658199906349182, -0.30164000391960144, -1.0664000511169434, 0.07546699792146683, -0.17969000339508057, -0.37049999833106995, -0.32892999053001404, 0.5911499857902527, 0.28042998909950256, 0.44203999638557434, -0.75586998462677, -0.34261998534202576, -0.0682620033621788, 0.045538000762462616, 0.04513600096106529, 0.40988999605178833, 0.6748999953269958, 0.4180600047111511, 0.0630050003528595, 0.06182200089097023, 0.3457599878311157, -0.5240300297737122, 0.14339999854564667, -0.46625998616218567, 0.1525299996137619, 0.19485999643802643, 0.11102999746799469, -0.13046999275684357, -0.2373100072145462, 0.07136400043964386, -0.3403399884700775, 0.24094000458717346, 0.12530000507831573, 0.34073999524116516, 0.5724800229072571, 0.6237499713897705, 0.40105998516082764, 0.22247999906539917, -0.42559999227523804, 0.149849995970726, -0.09210000187158585, -0.6617000102996826, 0.09449200332164764, -0.11705999821424484, 0.18546000123023987, -1.0740000009536743, -0.025388000532984734, -0.504800021648407, 0.2693899869918823, 0.2661300003528595, -0.3162499964237213, 0.621150016784668, 0.8365899920463562, 0.7097899913787842, -0.43772000074386597, 0.35864999890327454, 0.6612300276756287, -0.8861200213432312, -0.6374899744987488, -0.3001500070095062, 0.36243999004364014, -0.24623000621795654, 0.646399974822998, 0.37248000502586365, 0.020393000915646553, 0.9487599730491638, -0.6665400266647339, 0.1041100025177002, -0.22513000667095184, 0.3715600073337555, 0.03544899821281433, 0.07052099704742432, 0.1589300036430359, 0.23734000325202942, 0.20446999371051788, -0.20819999277591705, 0.07638999819755554, 0.21528999507427216, 0.10535000264644623, 0.5420699715614319, -0.3616800010204315, -0.3714199960231781, 0.07103200256824493, 0.6478400230407715, 0.08809500187635422, 0.1377599984407425, -0.13579000532627106, -0.776669979095459, 0.36796998977661133, 0.42232999205589294, -0.030086999759078026, -0.2118300050497055, 0.7991899847984314, -0.02989800088107586, 0.2724199891090393, 0.14500999450683594, -0.12777000665664673, -0.04631099849939346, 0.12020000070333481, 0.38686999678611755, 0.11259999871253967, 0.18233999609947205, -0.3519099950790405, 0.7046300172805786, 0.22045999765396118, -0.25867998600006104, 0.22022999823093414, -0.14282000064849854, -0.3405199944972992, -0.03556099906563759, -0.738860011100769, -0.3005000054836273, -0.1639299988746643, -0.17944000661373138, -0.14629000425338745, -0.2125300019979477, 0.25047001242637634, -0.162540003657341, 0.21811999380588531, 0.12387000024318695, -0.1143300011754036, -0.1208299994468689, -0.4331299960613251, -0.22171999514102936, 0.1919499933719635, -1.4453999996185303, 0.01727299951016903, -0.731440007686615, -0.14733999967575073, 0.36212000250816345, 0.13551999628543854, 0.6881099939346313, 0.05244100093841553, -0.2674799859523773, 0.923039972782135, 0.3885999917984009, 0.4530099928379059, -0.03413299843668938, -0.2528400123119354, -0.031571999192237854, 0.099310003221035, -0.07377000153064728, 0.7652199864387512, -0.1387999951839447, -0.6989700198173523, 0.3477399945259094, 0.49619001150131226, 0.4569399952888489, 0.3591800034046173], u'copper': [-0.36403000354766846, 0.07048899680376053, -0.21379999816417694, -0.3989599943161011, 0.2398100048303604, 0.037842001765966415, -0.10080000013113022, 0.1193000003695488, 0.1491599977016449, -1.1770000457763672, -1.263100028038025, -0.22429999709129333, -0.29236000776290894, -0.15929999947547913, -0.18455000221729279, -0.45511001348495483, -0.5346199870109558, -0.12258999794721603, -0.2295600026845932, -0.6386200189590454, -0.6267799735069275, -0.1433899998664856, 0.39184001088142395, 0.3112199902534485, 0.22265000641345978, -0.8851500153541565, -0.005137300118803978, 0.28876999020576477, -0.2268500030040741, 0.35705000162124634, 0.43349000811576843, 0.5987799763679504, -0.3267900049686432, 0.5318899750709534, 0.06676500290632248, 0.46761998534202576, -0.30094000697135925, 0.02613300085067749, 0.2951500117778778, 0.34275999665260315, -0.846780002117157, -0.010366000235080719, -0.17177000641822815, 0.12511000037193298, 0.03937400132417679, -0.2659800052642822, -0.26330000162124634, -0.2153400033712387, 0.006231499835848808, 0.14541999995708466, 0.35721999406814575, 0.5382400155067444, -0.05401400104165077, 0.5134599804878235, 0.7949399948120117, 0.08734799921512604, 0.08423999696969986, 0.10841000080108643, 0.3611299991607666, -0.2640399932861328, -0.15595999360084534, 0.4291900098323822, 0.49814000725746155, 0.26006001234054565, 0.5573499798774719, 0.17295999825000763, -0.33048000931739807, 0.28033000230789185, -0.18087999522686005, -0.08531899750232697, 0.07758600264787674, -0.19718000292778015, 0.07324399799108505, 0.5259799957275391, -0.7355999946594238, 0.049059998244047165, 0.20157000422477722, -0.19399000704288483, 0.0025202000979334116, -0.2953000068664551, -0.10633999854326248, -0.7253699898719788, -0.006385699845850468, -0.034926000982522964, 0.5615699887275696, 0.20134000480175018, -0.47058001160621643, -0.3740200102329254, -0.2087000012397766, -0.2172199934720993, 0.7144299745559692, -0.06872300058603287, -0.13333000242710114, -0.020711999386548996, -0.20823000371456146, 0.37856000661849976, -0.7364299893379211, 0.026917999610304832, 0.350739985704422, 0.4817099869251251, -0.1369599997997284, -0.1985500007867813, 0.21943999826908112, -0.16651999950408936, 0.6726899743080139, 0.23803000152111053, 0.2649100124835968, 0.5184400081634521, -0.7559000253677368, 0.22045999765396118, -0.3380599915981293, -0.5629500150680542, -0.27472999691963196, -0.7874699831008911, 0.4717000126838684, 0.012815999798476696, 0.3729200065135956, 0.5311899781227112, 0.45375001430511475, 0.606909990310669, -0.3468700051307678, -0.6684799790382385, -0.11069999635219574, -0.02751999907195568, -0.05407999828457832, -0.05538399890065193, 0.20059999823570251, 0.7958199977874756, -0.23656000196933746, -0.31725001335144043, -0.24171000719070435, 0.9965100288391113, -0.4148600101470947, 0.03309899941086769, 0.22244000434875488, 0.7388100028038025, -0.8443700075149536, 0.27039000391960144, 0.14093999564647675, 0.01713700033724308, -0.13634000718593597, 0.15285000205039978, 0.19074000418186188, -0.5971900224685669, 0.14970000088214874, -0.13122999668121338, 0.052271999418735504, -0.20868000388145447, 0.15494999289512634, -1.079300045967102, 0.5598000288009644, 0.32892000675201416, -0.320360004901886, -0.36333999037742615, 0.3866899907588959, -0.12270999699831009, -0.49616000056266785, -0.30948999524116516, -0.5662299990653992, -0.6761400103569031, 0.152319997549057, -0.12043999880552292, 0.20892000198364258, 0.27046999335289, 0.329259991645813, 0.30223000049591064, 0.22896000742912292, -0.22498999536037445, 0.31929001212120056, -0.16787999868392944, -0.9203699827194214, 0.7938699722290039, -0.11413999646902084, 0.08675800263881683, 0.5837299823760986, -0.30417001247406006, 0.1373099982738495, 0.05599899962544441, -0.045244000852108, 0.19583000242710114, 0.10814999788999557, 0.4247100055217743, 0.08388199657201767, -0.3097499907016754, 0.06558900326490402, -0.17159000039100647, 1.0889999866485596, 0.7397199869155884, 0.04033299908041954, -0.47679001092910767, 0.44273999333381653, 0.8685700297355652, 0.31080999970436096, 0.6389600038528442, -0.40625, -0.46678999066352844, -0.27250999212265015, -0.36880001425743103, -0.24860000610351562, 0.3322199881076813, 0.24515999853610992, 0.5231299996376038, -0.3043299913406372, 0.2707900106906891, 0.3686000108718872, 0.8670799732208252, 0.4289200007915497, -0.3238599896430969, -0.43957000970840454, -0.2547000050544739, 0.338809996843338, 0.1851699948310852, 0.33636000752449036, -0.16293999552726746, -0.049396999180316925, 0.761680006980896, 0.3090499937534332, -0.4079599976539612, -0.27366000413894653, 0.33678001165390015, -0.3573099970817566, -0.57573002576828, 0.1286800056695938, -0.7166900038719177, -0.2653200030326843, 0.38760998845100403, -0.39925000071525574, 0.09199099987745285, -0.2780900001525879, -0.3197399973869324, -0.7752500176429749, 0.6332899928092957, -0.16479000449180603, 0.3346500098705292, -0.047954998910427094, -0.22848999500274658, 0.7045300006866455, -0.7090100049972534, -0.29967001080513, -0.5168899893760681, -0.31700000166893005, 0.36305001378059387, -0.3231000006198883, 0.04182799905538559, -0.7771199941635132, -0.3124299943447113, -0.2333800047636032, -0.7452999949455261, 0.024234000593423843, 0.22909000515937805, -0.23837999999523163, 0.25892001390457153, -0.1897599995136261, -0.5654199719429016, 0.8763499855995178, 0.24275000393390656, -0.02606399916112423, 0.010691000148653984, -0.48458001017570496, -0.2713199853897095, -0.6277700066566467, 0.25248000025749207, 0.357589989900589, 0.48118001222610474, 0.18614999949932098, 0.43904998898506165, 0.4334999918937683, 0.20582999289035797, 0.08998599648475647, 0.13553999364376068, -0.08193500339984894, -0.6127499938011169, 0.5769299864768982, 0.4695500135421753, -0.6256499886512756, -0.27632999420166016, -0.48197001218795776, -0.3424200117588043, -0.9282100200653076, 0.07445099949836731, 0.03844200074672699, -0.1880899965763092, -0.7506099939346313, 0.420879989862442, 0.0308810006827116, -0.37915000319480896, -0.13503000140190125, -0.456059992313385, -0.33390000462532043, -0.00884309969842434, -0.7464900016784668, 0.4442000091075897, -0.40156999230384827, 0.5730199813842773, 0.5270100235939026, 0.7443400025367737, 0.08438099920749664, -0.8551300168037415, 0.10563000291585922, 0.06958799809217453], u'creek': [-0.9266700148582458, 0.08375100046396255, 0.029627999290823936, 0.199630007147789, -0.05751900002360344, 0.07459200173616409, -0.08342699706554413, 0.17159999907016754, 0.694350004196167, 0.02685300074517727, -0.7113900184631348, 0.3648900091648102, 0.5851500034332275, 0.37369000911712646, 0.3809199929237366, 0.006835499778389931, -0.14664000272750854, 0.1468999981880188, 1.0706000328063965, 0.7317600250244141, -0.17497999966144562, 0.03602899983525276, 0.4925599992275238, -0.037801001220941544, -0.42239999771118164, -0.042667001485824585, -0.3001500070095062, -0.41277000308036804, -0.5977200269699097, 0.4117000102996826, 1.021399974822998, 0.4178600013256073, 0.3230299949645996, 0.3805699944496155, 0.24081000685691833, 0.1836100071668625, -0.017041999846696854, 0.3800300061702728, -0.3422200083732605, -0.3075999915599823, -0.6651399731636047, 0.46445000171661377, 0.2932800054550171, 0.5777300000190735, 0.2776600122451782, 0.3870899975299835, 0.36653000116348267, 0.23972000181674957, 0.5089700222015381, 0.08202599734067917, 0.04336100071668625, -0.15272000432014465, 0.023141000419855118, 0.2558700144290924, 0.09656699746847153, -0.2655400037765503, -0.5883200168609619, 0.1657000035047531, 0.571150004863739, 0.6820899844169617, 0.16051000356674194, -0.44192999601364136, 0.44402000308036804, -0.18327000737190247, 0.17942999303340912, -0.7559300065040588, -0.19975000619888306, 0.04188000038266182, -0.30935999751091003, -0.28137001395225525, 0.26124000549316406, -0.20211000740528107, -0.8364400267601013, 0.49772998690605164, -0.7702800035476685, -0.49915000796318054, 0.328110009431839, 0.2047100067138672, -0.14016999304294586, -0.35229000449180603, -0.12483999878168106, -0.30118998885154724, 0.30706000328063965, -0.6517900228500366, 0.5860300064086914, -0.3822599947452545, -0.12609000504016876, 0.24626000225543976, 0.16824999451637268, -0.10513000190258026, 0.27309998869895935, 0.1933099925518036, 0.6980100274085999, 0.3771499991416931, -0.3303399980068207, 0.3375900089740753, 0.5341100096702576, -0.18820999562740326, -0.2083600014448166, 0.17067000269889832, -0.379830002784729, -0.3909499943256378, -0.3168500065803528, -0.10374999791383743, -0.02289400063455105, 0.40654999017715454, 0.6741399765014648, -0.25913000106811523, 0.01623399928212166, 0.12925000488758087, -0.4496699869632721, -0.8458700180053711, 0.24414999783039093, -0.11285000294446945, -0.353549987077713, -0.2662999927997589, -0.09400899708271027, 0.40490999817848206, -0.18045000731945038, 0.15333999693393707, -0.28290998935699463, 0.054882001131772995, -0.33322998881340027, 0.06170700117945671, -0.1736299991607666, 0.22303999960422516, 0.22694000601768494, 0.07227999716997147, -0.1094600036740303, -0.08017800003290176, -0.016373999416828156, 0.16263000667095184, 0.3249000012874603, -0.08958200365304947, 0.19598999619483948, 0.07358500361442566, 0.4465300142765045, 0.10307999700307846, 0.0452830009162426, -0.6822599768638611, 0.6848400235176086, 0.06135300174355507, -0.043372999876737595, -0.5710099935531616, 0.0334089994430542, -0.45840999484062195, 0.5986700057983398, 0.43101000785827637, -0.07049799710512161, 0.34498998522758484, 0.7813599705696106, 0.8924800157546997, -0.5401399731636047, -0.23122000694274902, 1.0920000076293945, 0.1677899956703186, 0.4568699896335602, -0.43669000267982483, -0.687690019607544, 0.08023399859666824, 0.6057800054550171, -0.7579799890518188, 0.5598199963569641, 0.07699599862098694, -0.035691998898983, 0.128370001912117, 0.4653800129890442, -0.11016000062227249, -0.6126999855041504, -0.053286999464035034, -0.3246299922466278, 0.40375998616218567, 0.6875699758529663, 0.609279990196228, -0.22957000136375427, 0.3353999853134155, -0.4439300000667572, -0.24804000556468964, 0.5254700183868408, -0.032336000353097916, 0.027811000123620033, 1.1497999429702759, 0.49382999539375305, -0.13872000575065613, 0.07478500157594681, -0.3806700110435486, -0.2638700008392334, -0.099932000041008, 0.5676699876785278, -0.01081900019198656, -0.004930099938064814, 1.4763000011444092, -0.46869999170303345, -0.2249400019645691, -0.11201000213623047, 0.2147199958562851, 0.3326599895954132, -1.388200044631958, 0.20753000676631927, 0.718280017375946, 1.5110000371932983, -0.18258999288082123, 0.20172999799251556, -0.4325900077819824, 0.030246000736951828, 0.4078899919986725, -0.325190007686615, 0.16446000337600708, -0.149959996342659, 0.3540300130844116, -0.08088699728250504, -0.06885600090026855, -0.10074000060558319, -0.40553000569343567, 0.1567399948835373, 0.16737000644207, 0.0654359981417656, 0.21494999527931213, 0.17116999626159668, -0.5433400273323059, 0.060784000903367996, -0.3022499978542328, 0.27195999026298523, -0.3019700050354004, 0.48087000846862793, -0.031654998660087585, -0.06790599972009659, 0.1036200001835823, 0.013519000262022018, 0.28422001004219055, -0.8393800258636475, -0.17580999433994293, -0.8161900043487549, -0.20284000039100647, 0.3065299987792969, 0.6274799704551697, 0.33939000964164734, -0.8287299871444702, 0.027726000174880028, -0.602370023727417, -0.333050012588501, 0.5429400205612183, -0.35936999320983887, -0.5770900249481201, -1.2203999757766724, -0.09741999953985214, 0.370279997587204, 0.2709900140762329, 0.38201001286506653, -0.7572799921035767, -0.22703999280929565, 0.4004899859428406, -0.3731299936771393, -0.30118000507354736, 0.5814800262451172, -0.700439989566803, 0.05105999857187271, 0.32615000009536743, 0.2912200093269348, 0.4559899866580963, -0.3451800048351288, 0.2790299952030182, -0.30399999022483826, -0.31363001465797424, -0.5919700264930725, 0.06913100183010101, 0.8052899837493896, -0.4144800007343292, -0.017568999901413918, 0.41071000695228577, -0.23201000690460205, -0.4195399880409241, 0.15129999816417694, 0.4348900020122528, -0.07431100308895111, 0.06973499804735184, -0.596809983253479, 0.8160300254821777, -0.16011999547481537, 0.34654998779296875, -0.34332001209259033, -0.029836999252438545, 0.5625100135803223, -0.38659998774528503, -0.6692399978637695, -0.11918999999761581, 0.31918999552726746, -0.5443500280380249, 0.21610000729560852, -0.4002400040626526, -0.5089399814605713, -0.2837499976158142, -0.0947989970445633, 0.49393001198768616, -0.40547001361846924, -0.024071000516414642, -0.09421999752521515, 0.6491000056266785, 0.09839700162410736, 0.6203799843788147], u'fence': [0.34518998861312866, -0.02495099976658821, -0.4591499865055084, -0.018334999680519104, -0.2356400042772293, -0.11479999870061874, 0.1720300018787384, -0.2775900065898895, -0.3025200068950653, -0.6962000131607056, -0.11714000254869461, 0.5007200241088867, 0.23672999441623688, -0.49079999327659607, -0.07819899916648865, 0.452210009098053, -0.7340400218963623, 0.11896000057458878, 0.18849000334739685, 0.6123200058937073, 0.24808000028133392, -0.22301000356674194, 0.13496999442577362, -0.36013999581336975, 0.11477000266313553, -0.4270299971103668, 0.08646199852228165, 0.5855500102043152, -0.11084000021219254, 0.2776699960231781, 0.27807000279426575, 0.26635000109672546, -0.1645900011062622, 0.3201799988746643, 0.07006700336933136, -0.13547000288963318, 0.10944999754428864, -0.3959999978542328, 0.036044999957084656, 0.06819400191307068, 0.10715000331401825, 0.11495000123977661, -0.2404399961233139, -0.4740000069141388, -0.363319993019104, 0.5615400075912476, -0.16705000400543213, -0.21397000551223755, 0.16498999297618866, 0.1296900063753128, -0.7336099743843079, -0.0005034999921917915, -0.32844001054763794, -0.14785000681877136, 0.008492800407111645, -0.013457000255584717, -0.2870100140571594, -0.7168700098991394, -0.37380000948905945, 0.1190200001001358, 0.5257599949836731, 0.18390999734401703, 0.2811200022697449, -0.08358900249004364, 0.4538800120353699, -0.3018999993801117, 0.21341000497341156, 0.3162800073623657, 0.508109986782074, -0.1902800053358078, -0.20826999843120575, 0.16575999557971954, -0.03958800062537193, 0.3531300127506256, -0.48194000124931335, -0.10445000231266022, -0.08695100247859955, 0.257099986076355, 0.14747999608516693, -0.27316999435424805, 0.429720014333725, -0.07298000156879425, -0.05423299968242645, -0.10937999933958054, 0.10785000026226044, 0.15222999453544617, -0.23062999546527863, -0.2322700023651123, 0.29243001341819763, -0.10977999866008759, 0.36552000045776367, 0.11490000039339066, 0.19686000049114227, 0.2593100070953369, -0.3215300142765045, -0.3295600116252899, -0.3436099886894226, -0.34536999464035034, -0.7465800046920776, -0.48173999786376953, -0.29241999983787537, 0.4200100004673004, 0.225490003824234, -0.3995400071144104, 0.24827000498771667, 0.10818000137805939, 0.39785000681877136, 0.25883999466896057, 0.12498000264167786, -0.2064799964427948, -0.7051500082015991, -0.33202001452445984, -0.20806999504566193, -1.0319000482559204, 0.37485000491142273, 0.4357900023460388, 0.13402000069618225, 0.07274399697780609, 0.16035999357700348, -0.35738998651504517, 0.3622100055217743, -0.2697100043296814, 0.08978799730539322, -0.3922399878501892, -0.2496200054883957, -0.27459999918937683, 0.31885001063346863, -0.06185400113463402, -0.26482000946998596, -0.23529000580310822, 0.2849999964237213, 0.7184399962425232, 0.11327999830245972, 0.8257499933242798, -0.19607999920845032, 0.16670000553131104, 0.2869200110435486, 0.38144999742507935, -0.43957000970840454, -0.6616299748420715, -0.3481999933719635, 0.07333599776029587, -0.19468000531196594, -0.6495000123977661, -0.8322799801826477, 0.17205999791622162, 0.2805800139904022, -0.2587999999523163, -0.13492999970912933, -0.08676400035619736, -0.4589399993419647, 0.185479998588562, 0.009118299931287766, -0.25488999485969543, -0.09997700154781342, -0.4025599956512451, -0.07979200035333633, 0.10791999846696854, 0.07288999855518341, 0.5490300059318542, 0.2703999876976013, 0.3800399899482727, 0.26728999614715576, -0.7456499934196472, 0.4607599973678589, 0.15182000398635864, -0.0884379968047142, 0.5080100297927856, 0.07694700360298157, -0.14339999854564667, -0.057374998927116394, -0.2685000002384186, 0.9142799973487854, -0.6523600220680237, -0.009935200214385986, -0.18217000365257263, -0.3469400107860565, 0.6860700249671936, 0.14768999814987183, -0.9436900019645691, 0.3362399935722351, -0.28534001111984253, 0.0403360016644001, 0.49028998613357544, -0.04170500114560127, 0.047874998301267624, 0.21448999643325806, 0.10823000222444534, 0.5079600214958191, 0.7926899790763855, -0.18458999693393707, -0.01711300015449524, 0.02300499938428402, -0.5745599865913391, -0.3811900019645691, -0.07134599983692169, -0.012749999761581421, -0.17781999707221985, 0.38141000270843506, -0.05749399960041046, 0.8695700168609619, 0.11856000125408173, -0.14429999887943268, -0.05313999950885773, 0.1125200018286705, 0.16866999864578247, 0.8716899752616882, -0.553629994392395, 0.30757999420166016, 0.5811499953269958, 0.2768799960613251, 0.2980799973011017, -0.10216999799013138, -0.37296000123023987, -0.3732599914073944, 0.23813000321388245, -0.4183799922466278, 0.3279300034046173, 0.5569300055503845, 0.563730001449585, 0.9991599917411804, -0.23758000135421753, 0.4967299997806549, -0.24740000069141388, 0.29721999168395996, -0.022724000737071037, -0.13018999993801117, -0.27261000871658325, -0.15172000229358673, -0.5199400186538696, -0.07863900065422058, -0.15094999969005585, -0.36333000659942627, 0.4931100010871887, 0.12342000007629395, -0.18167999386787415, -0.22832000255584717, -0.3619999885559082, 0.3715499937534332, 0.02287600003182888, 0.5174700021743774, 0.02789199911057949, -0.25303998589515686, -0.026523999869823456, -0.4309299886226654, -0.34439000487327576, 0.2789900004863739, -0.02971000038087368, 0.5281299948692322, -0.3089199960231781, -0.4291999936103821, -0.19277000427246094, 0.37310001254081726, -0.43046998977661133, 0.9323599934577942, 0.1269800066947937, 0.18105000257492065, -0.6622300148010254, 0.17048999667167664, 0.22604000568389893, 0.5872600078582764, -0.09323800355195999, 0.349480003118515, -0.31630000472068787, -0.5496900081634521, 0.24342000484466553, 0.0012354999780654907, -0.38420000672340393, 0.07673099637031555, 0.06598500162363052, 0.17858000099658966, -0.11860000342130661, -0.12710000574588776, -0.6823300123214722, -0.49498000741004944, -0.006443500053137541, -1.7972999811172485, 0.3347100019454956, -0.42146000266075134, 0.2932099997997284, 0.5449900031089783, -0.5997499823570251, -0.23127000033855438, 0.2383899986743927, -0.09004899859428406, -0.027363000437617302, 0.8503599762916565, 0.08011899888515472, -0.09209900349378586, 0.18775999546051025, 0.7207599878311157, -0.3140900135040283, -0.48138999938964844, -0.007485100068151951, 0.12063000351190567, 0.11877000331878662, 0.1092899963259697, -0.12117999792098999, 0.4206100106239319, 0.178849995136261], u'house': [-0.37070000171661377, -0.08120899647474289, -0.446260005235672, 0.09739500284194946, 0.19829000532627106, -0.04123200103640556, 0.21188999712467194, 0.223690003156662, -0.5991500020027161, -1.3555999994277954, -0.0037263999693095684, -0.5505899786949158, 0.021564999595284462, 0.0106819998472929, 0.04604699835181236, 0.4708299934864044, -0.19259999692440033, 0.09360300004482269, 0.1981000006198883, 0.18291999399662018, 0.2398499995470047, 0.448170006275177, 0.25240999460220337, 0.31303998827934265, -0.31769001483917236, 0.03759400174021721, -0.08782199770212173, -0.06956899911165237, -0.019032999873161316, 0.2518100142478943, 0.5274999737739563, 0.10401000082492828, -0.5695599913597107, 0.6812000274658203, -0.6893600225448608, 0.8408100008964539, 0.041774000972509384, -0.4463599920272827, -0.3075900077819824, -0.2814500033855438, 0.6351699829101562, 0.5041199922561646, -0.33981001377105713, 0.6919100284576416, -0.15073999762535095, 0.16806000471115112, -0.3420200049877167, -0.4484499990940094, 0.05982999876141548, 0.12643000483512878, -0.23142999410629272, -0.09223199635744095, -0.090829998254776, 0.2164199948310852, 0.6258000135421753, -0.3259899914264679, -0.5210400223731995, 0.34727001190185547, -0.0849670022726059, -0.19764000177383423, 0.44523000717163086, -0.4472300112247467, 0.4372600018978119, 0.2606300115585327, 0.654259979724884, -1.4531999826431274, 0.32054999470710754, -0.37514999508857727, -0.228970006108284, -0.700689971446991, -0.17773999273777008, -0.017621999606490135, -0.24696999788284302, -0.2395700067281723, -0.49052000045776367, 0.12087000161409378, -0.24289999902248383, 0.2923400104045868, -0.33522000908851624, -0.010882000438869, 0.27623000741004944, 0.5426200032234192, 0.5223600268363953, 0.056655000895261765, 0.523140013217926, 0.014538000337779522, -0.36858999729156494, 0.8135700225830078, -0.17749999463558197, -0.3927899897098541, -0.039007000625133514, -0.6505299806594849, -0.0841900035738945, 0.48217999935150146, 0.13495999574661255, -0.3684000074863434, -0.3318899869918823, 0.1666100025177002, 0.24202999472618103, -0.47508999705314636, -0.1902099996805191, 0.2973000109195709, -0.1351500004529953, 0.06829000264406204, 0.13021999597549438, -0.25433000922203064, -0.2024099975824356, -0.3799099922180176, 0.045892998576164246, 0.21821999549865723, -0.18371999263763428, -0.14904999732971191, -0.4565599858760834, 0.32638001441955566, -0.19266000390052795, 0.6675099730491638, -0.6721900105476379, -0.12582999467849731, -0.16200000047683716, -0.7183300256729126, 0.053339000791311264, -0.00148760003503412, -0.40470001101493835, -0.33921000361442566, 0.1545799970626831, -0.42247000336647034, -0.35561999678611755, -0.10341999679803848, 0.5255299806594849, -0.1607999950647354, -0.11343999952077866, 0.2539600133895874, -0.1341399997472763, -0.07925699651241302, 0.08544900268316269, 0.39976000785827637, 0.068122997879982, 0.2733300030231476, 0.006091199815273285, -0.3232400119304657, 0.004777499940246344, 0.09818000346422195, -0.2848699986934662, 0.6802899837493896, -0.55690997838974, -0.4576199948787689, 0.14469000697135925, -0.2055400013923645, -0.35850998759269714, -0.1738000065088272, 0.47363999485969543, 0.6671299934387207, -0.10373999923467636, -0.4124099910259247, -0.147039994597435, 0.3753199875354767, 0.06656000018119812, -0.016395000740885735, 0.1866299957036972, -0.4503200054168701, 0.5366399884223938, 0.034285999834537506, -0.3219200074672699, -0.34615999460220337, -0.2381799966096878, 0.44071000814437866, -0.478659987449646, -0.2984600067138672, 0.39070001244544983, 0.24291999638080597, 0.08303199708461761, -0.23303000628948212, -0.2309899926185608, 0.329800009727478, -0.07858700305223465, 0.4724999964237213, -0.1312599927186966, -0.41328999400138855, 0.4061700105667114, 0.0582519993185997, -0.20309999585151672, -0.470550000667572, 0.19533999264240265, 0.34303000569343567, 0.03748299926519394, -0.10955999791622162, 0.0378119982779026, 0.326449990272522, 0.15158000588417053, 0.4365699887275696, 0.18512000143527985, -0.30562999844551086, -0.3383199870586395, -0.3874399960041046, -0.028474999591708183, 0.5895900130271912, 0.3865399956703186, 0.2093600034713745, -0.39261001348495483, -0.38703998923301697, 0.7989199757575989, 0.03316599875688553, 0.08845599740743637, 0.04359599947929382, 0.07775100320577621, -0.4963499903678894, 0.15892000496387482, -0.20937000215053558, -0.31349000334739685, -0.17062999308109283, 0.07221899926662445, 0.007902700453996658, -0.012118999846279621, 0.06904800236225128, 0.016228999942541122, 0.44339001178741455, 0.0655049979686737, -0.41655999422073364, 0.4684799909591675, -0.06512100249528885, 0.7751299738883972, -0.667900025844574, -0.23964999616146088, -0.07467500120401382, -0.22267000377178192, 0.044819001108407974, -0.08320999890565872, 0.11062999814748764, -0.12897999584674835, -0.49514999985694885, -0.4446699917316437, -0.34624001383781433, 0.20625999569892883, 0.40264999866485596, 0.679390013217926, -0.3855400085449219, 0.24812999367713928, 0.38054999709129333, 0.09204600006341934, 0.15208999812602997, 0.1744299978017807, 0.47780999541282654, 0.386819988489151, 0.48688000440597534, -0.43606001138687134, -0.10044000297784805, 0.15226000547409058, 0.21901999413967133, -0.129380002617836, 0.06255000084638596, -0.06353899836540222, -0.2815999984741211, -0.05455699935555458, -0.28297001123428345, 0.7129999995231628, -0.09504199773073196, -0.13725000619888306, -0.01696299947798252, 0.766290009021759, 0.2501299977302551, 0.035075001418590546, 0.21472999453544617, -0.17035000026226044, -0.16234999895095825, -0.3463200032711029, 0.10513000190258026, 0.5209500193595886, 0.22473999857902527, 0.5482500195503235, 0.056366998702287674, -0.12455999851226807, -0.35433000326156616, -0.10479000210762024, -0.29269999265670776, -0.18943999707698822, -0.01806900091469288, -2.368499994277954, 0.2603299915790558, 0.5124800205230713, 0.14435000717639923, -0.4023300111293793, -0.019897999241948128, 0.08500000089406967, -0.022857999429106712, 0.05130600184202194, 0.5351300239562988, 0.08492299914360046, 0.7966700196266174, 0.08674400299787521, -0.35760998725891113, -0.39221999049186707, -0.12030000239610672, 0.3737899959087372, 0.10174000263214111, -0.07487300038337708, -0.009938499890267849, -0.2870199978351593, 0.030515000224113464, -0.3316799998283386, 1.0232000350952148], u'fish': [0.5639299750328064, 0.25832000374794006, 0.01178400032222271, 0.0413610003888607, 0.15147000551223755, 0.7130600214004517, 0.01647000014781952, 0.3509500026702881, 0.08946800231933594, -0.7242100238800049, 0.12383999675512314, -0.49437999725341797, -0.5038599967956543, 0.43674999475479126, 0.05016700178384781, -0.5058799982070923, 0.007323700003325939, -0.02775299921631813, -0.6970999836921692, 0.7293199896812439, -0.46779999136924744, 0.5557000041007996, 0.2325800061225891, 0.49132999777793884, -0.01938300020992756, 0.29284998774528503, -0.09325099736452103, -0.21550999581813812, -0.4063900113105774, 0.018716000020503998, -0.3604399859905243, 0.38124001026153564, -0.6636599898338318, -0.405239999294281, -0.3203999996185303, 0.2872200012207031, 0.5389699935913086, 0.01594799943268299, -0.2526000142097473, 0.17089000344276428, -0.22936999797821045, -0.10899999737739563, 0.4120500087738037, 0.5186799764633179, -0.418830007314682, 0.04595499858260155, 0.3628599941730499, -0.2630600035190582, 0.38183000683784485, 0.645550012588501, -0.11914999783039093, 0.23025000095367432, 0.6056100130081177, -0.4194999933242798, 0.06064099818468094, 0.6559200286865234, -0.24174000322818756, -0.04874899983406067, -0.1855199933052063, 0.15932999551296234, 0.21863000094890594, -0.31951001286506653, 0.9200800061225891, 0.04532599821686745, -0.05282700061798096, -0.6127300262451172, -0.8080599904060364, 0.032634999603033066, -0.10971999913454056, -0.002690100111067295, 0.4292599856853485, -0.04387100040912628, -0.09476800262928009, 0.23666000366210938, -0.45396000146865845, 0.2475000023841858, 0.5605900287628174, 0.7588599920272827, 0.03172500059008598, -0.2826499938964844, 0.3488200008869171, -0.0743580013513565, -0.43178001046180725, -0.31376001238822937, 0.2914400100708008, -0.3039900064468384, 0.13036000728607178, -0.02047700062394142, -0.4568899869918823, -0.4538399875164032, 0.15390999615192413, -0.1434199959039688, -0.0998070016503334, -0.16604000329971313, 0.33500000834465027, 0.4276899993419647, -0.19367000460624695, 0.06341800093650818, -0.10699000209569931, -0.2017199993133545, 0.12522999942302704, -0.21083000302314758, 0.5932199954986572, -0.7355800271034241, 0.197160005569458, 0.28216999769210815, 0.44826000928878784, 0.09268400073051453, 0.021158000454306602, 0.06668400019407272, 0.0900140032172203, 0.2198999971151352, -0.8599200248718262, -0.04577299952507019, 0.4328800141811371, -0.21527999639511108, -0.061218999326229095, 0.27171000838279724, -0.1775200068950653, 0.24192999303340912, -0.6338800191879272, -0.5251799821853638, -0.18950000405311584, 0.8159099817276001, -0.07454799860715866, 0.29976001381874084, 0.05737299844622612, 0.11857999861240387, 0.6703100204467773, 0.47484999895095825, -0.1309799998998642, 0.29945001006126404, 0.637220025062561, 0.09256300330162048, -0.16558000445365906, -0.20398999750614166, 0.7954400181770325, -0.20747999846935272, 0.01952200010418892, 0.8102800250053406, 0.6085500121116638, 0.0575530007481575, 0.4657900035381317, -0.8011500239372253, -0.38545000553131104, 0.3406499922275543, -0.02910199947655201, 0.16936999559402466, -0.11785999685525894, -0.3242200016975403, -0.2650899887084961, 0.23062999546527863, -0.1059499979019165, -0.15207000076770782, 0.17455999553203583, -0.25071999430656433, -0.2852199971675873, -0.2451300024986267, -0.11739999800920486, -0.23502999544143677, 0.3866400122642517, 0.19755999743938446, 0.32975998520851135, -0.11102999746799469, -0.002702699974179268, -0.21337999403476715, 0.3627200126647949, -0.20397000014781952, -0.41370001435279846, 0.16041000187397003, 0.0028880001045763493, -0.4208900034427643, 0.061051998287439346, 0.25992000102996826, -0.006703900173306465, 0.11914999783039093, 0.071492999792099, 0.06828700006008148, 0.4170700013637543, -0.5688499808311462, 0.4694400131702423, 0.18016000092029572, -0.23380999267101288, -0.5474299788475037, 0.21886000037193298, -0.568340003490448, 0.7118800282478333, 0.652679979801178, 0.6289399862289429, -0.14961999654769897, -0.054875001311302185, 0.8858199715614319, -0.4133700132369995, -0.18317000567913055, 0.49514999985694885, 0.4578700065612793, 0.013300999999046326, -0.6900299787521362, -0.3920300006866455, -0.34435999393463135, 0.9336699843406677, -0.08368899673223495, -0.26747000217437744, -0.30324000120162964, -0.38249000906944275, 0.7268999814987183, -0.060054000467061996, -0.3172900080680847, -0.06277500092983246, 0.17093999683856964, -0.0044479998759925365, -0.4891200065612793, 0.31272000074386597, -0.026562999933958054, 0.3335300087928772, 0.1052900031208992, 0.4193899929523468, 0.2240000069141388, 0.40509000420570374, -0.35280001163482666, 0.35705000162124634, -0.3838300108909607, -0.5392600297927856, -0.40195000171661377, 0.27781999111175537, 0.04694199934601784, -0.05998000130057335, -0.10933999717235565, 0.20747999846935272, 0.4494599997997284, 0.2678000032901764, 0.4910599887371063, 0.04539699852466583, -0.031589001417160034, 0.44442999362945557, 0.3296700119972229, -0.2503400146961212, 0.36469998955726624, -0.17036999762058258, -0.01307000033557415, -0.7895500063896179, 0.49720001220703125, -0.3121899962425232, -0.19155000150203705, -1.222000002861023, -0.0343950018286705, 0.785539984703064, -0.20058999955654144, -0.5918800234794617, -0.983519971370697, 0.1793999969959259, -0.4991599917411804, 0.03608199954032898, 0.27171000838279724, 0.8347899913787842, 0.5765699744224548, 0.21422000229358673, 0.8360199928283691, -0.4412499964237213, 0.17734000086784363, -0.2473199963569641, -0.03283800184726715, -0.5930600166320801, -0.39212000370025635, 0.5033800005912781, -0.23079000413417816, -0.10513000190258026, 0.3240000009536743, -0.3024199903011322, 0.24603000283241272, -0.14650000631809235, 0.35920000076293945, 0.5705900192260742, 0.49094000458717346, 0.257099986076355, 0.07566999644041061, -1.766800045967102, 0.1332699954509735, -0.79653000831604, -0.2462799996137619, -0.1972299963235855, 0.7951200008392334, 0.0775739997625351, 0.13919000327587128, -1.0390000343322754, -0.3458400070667267, -0.23251000046730042, -0.16495999693870544, 0.7552400231361389, 0.16896000504493713, -0.3830699920654297, 0.40898001194000244, 0.13253000378608704, -0.20523999631404877, -0.4056699872016907, -0.6198499798774719, 0.2983799874782562, -0.448060005903244, 0.20656000077724457, -0.38853999972343445], u'salmon': [0.5381799936294556, -0.4968799948692322, 0.06293699890375137, 0.5186600089073181, 0.04802900180220604, 0.8987699747085571, -0.651229977607727, 0.1014999970793724, -0.08582600206136703, -0.12411999702453613, -0.18250000476837158, -0.5287600159645081, -0.8230100274085999, 0.5202400088310242, -0.6508100032806396, -0.13535000383853912, -0.18807999789714813, 0.5265700221061707, -0.724590003490448, 0.8880900144577026, -0.8465399742126465, 0.01408699993044138, 0.13022999465465546, 0.12796999514102936, 0.06734900176525116, -0.4344500005245209, -0.19933000206947327, -0.30882999300956726, -0.5739499926567078, -0.7363499999046326, 0.5878599882125854, -0.11247000098228455, -0.09629999846220016, -0.953029990196228, -0.04456999897956848, 0.43869999051094055, 0.18176999688148499, 0.4895800054073334, -0.16101999580860138, 0.07997500151395798, -0.3261300027370453, 0.2484399974346161, 0.2030699998140335, 0.45471999049186707, -0.20983999967575073, 0.12263999879360199, -0.18176999688148499, 0.06629999727010727, 0.4401400089263916, 0.2690199911594391, -0.41839998960494995, -0.41628000140190125, 0.7650700211524963, -0.5841799974441528, 0.244719997048378, 0.6446999907493591, -0.1230200007557869, -0.33959001302719116, -0.2902899980545044, 0.752560019493103, 0.6245599985122681, -0.6749299764633179, 0.547819972038269, -0.28209999203681946, -0.4702099859714508, -0.3737800121307373, -1.0687999725341797, -0.18086999654769897, 0.1656699925661087, -0.03888799995183945, 0.8833299875259399, 0.27362000942230225, -0.25644999742507935, 0.5426099896430969, -0.534030020236969, 0.17656999826431274, 1.0242999792099, 0.6362000107765198, -0.23874999582767487, -0.29969000816345215, 0.14790000021457672, -0.14982999861240387, -0.5436999797821045, 0.006927299778908491, 0.2715800106525421, -0.0949689969420433, -0.34125998616218567, 0.3375000059604645, -0.24130000174045563, -0.8680800199508667, 0.47461000084877014, -0.01181500032544136, -0.8387600183486938, 0.11023999750614166, 0.1423500031232834, 0.5087699890136719, 0.39636000990867615, 0.025286000221967697, -0.03034299984574318, 0.6473600268363953, 0.20082999765872955, -0.4534200131893158, 0.8931000232696533, -0.9989799857139587, 0.004229600075632334, 0.4532800018787384, 0.20161999762058258, 0.587440013885498, -0.4649699926376343, 0.13759000599384308, -0.17839999496936798, -0.40112999081611633, -0.7224299907684326, -0.21863999962806702, 0.004026900045573711, -0.5290799736976624, -0.16029000282287598, 0.23836000263690948, 0.19663000106811523, -0.13309000432491302, -0.4846400022506714, -0.6205400228500366, -0.4418500065803528, 0.7200000286102295, -0.04707000032067299, -0.4378100037574768, 0.38444000482559204, 0.07661399990320206, 0.504859983921051, 0.27465999126434326, -0.2434300035238266, 0.6497200131416321, -0.04584300145506859, -0.21379999816417694, 0.3798699975013733, -0.5356400012969971, 0.2910600006580353, -0.09937799721956253, 0.0189449992030859, -0.11902999877929688, 0.5246400237083435, -0.16015000641345978, 0.12699000537395477, -0.7047299742698669, -0.24650999903678894, -0.155689999461174, 0.5434600114822388, 0.1019200012087822, 0.03423300012946129, -0.5579400062561035, -0.046199001371860504, -0.10763999819755554, -0.008882800117135048, -0.6093299984931946, -0.1789100021123886, -0.600130021572113, 0.15520000457763672, -0.5127599835395813, -0.5861600041389465, 0.10593999922275543, 0.22682000696659088, 0.4248400032520294, -0.023639999330043793, -0.10183999687433243, 0.12925000488758087, 0.11806000024080276, 0.06255800276994705, -0.2230300009250641, -0.20882000029087067, 0.5039700269699097, -0.7458500266075134, -0.5893800258636475, -0.3499299883842468, -0.18203000724315643, 0.36131998896598816, 0.05702599883079529, 0.1808300018310547, -0.30281999707221985, 0.13662000000476837, -0.34977999329566956, 0.3094100058078766, 0.4023300111293793, 0.1961199939250946, -0.7551299929618835, -0.11082000285387039, -0.5416399836540222, 0.4175199866294861, -0.22186000645160675, -0.05444300174713135, -0.09753499925136566, -0.6371600031852722, 1.0616999864578247, -0.6339700222015381, -0.15476000308990479, 0.7021300196647644, 0.47258999943733215, -0.3492000102996826, -0.5807899832725525, -0.265859991312027, 0.1918099969625473, 0.8179500102996826, -0.3146600127220154, -0.08087699860334396, -0.04121899977326393, -0.08067700266838074, 1.2178000211715698, 0.02085999958217144, 0.13944000005722046, 0.13890999555587769, 0.23298999667167664, 0.46889999508857727, -0.5668100118637085, 0.2705399990081787, 0.41589000821113586, -0.11925999820232391, 0.36548998951911926, 0.5374799966812134, -0.08124999701976776, -0.06354500353336334, -0.10863000154495239, 0.09667900204658508, -0.19801999628543854, -0.6133400201797485, -0.8194000124931335, 0.5563399791717529, 0.3181999921798706, 0.28964000940322876, 0.06093800067901611, 0.13760000467300415, 0.37178000807762146, -0.7610899806022644, 0.5280299782752991, 0.10570000112056732, -0.057013001292943954, 0.63441002368927, 0.08507800102233887, 0.07900899648666382, 0.7176399827003479, -0.13230000436306, -0.3285599946975708, -0.5917500257492065, 0.5164499878883362, 0.3436099886894226, 0.040327999740839005, -0.8047699928283691, 0.26537999510765076, 0.4305900037288666, -0.24108000099658966, -0.55035001039505, -0.6232799887657166, -0.22968000173568726, 0.07288999855518341, 0.4087800085544586, -0.06361299753189087, 1.0430999994277954, 0.17930999398231506, -0.05863200128078461, 0.7628200054168701, 0.12165000289678574, 0.3675900101661682, 0.16756999492645264, -0.3739500045776367, -0.40463000535964966, -0.1472799926996231, -0.1619500070810318, 0.033121999353170395, 0.014773000031709671, 0.25051000714302063, 0.2558499872684479, 0.22121000289916992, -0.12306000292301178, -0.04055299982428551, 0.03027700074017048, 0.05056999996304512, 0.04780999943614006, 0.12887999415397644, -0.6411399841308594, -0.04090600088238716, -0.2640700042247772, -0.23720000684261322, -0.2753799855709076, 0.42239999771118164, -0.12105999886989594, 0.6558399796485901, -1.0341999530792236, -0.31330999732017517, 0.049591001123189926, -0.1060900017619133, 0.6335800290107727, 0.23235000669956207, 0.06297799944877625, 0.07159499824047089, 0.3990199863910675, -0.23118999600410461, -0.516759991645813, -0.47214001417160034, 0.4208199977874756, -0.3530600070953369, 0.23722000420093536, 0.43678998947143555], u'library': [-0.6812199950218201, -0.35798001289367676, -0.40630000829696655, -0.20000000298023224, 0.7470399737358093, 0.22709999978542328, -0.029903000220656395, 0.02438499964773655, 0.26241999864578247, -0.9046300053596497, 0.2627499997615814, 0.04962800070643425, 0.43549999594688416, -0.1367799937725067, 0.19377000629901886, -0.04509799927473068, 0.01217699982225895, -0.1611199975013733, 0.16720999777317047, 0.07944999635219574, 0.23475000262260437, -0.6096199750900269, 0.051913000643253326, 0.28459998965263367, 0.41383999586105347, 0.4774700105190277, 0.0035383999347686768, 0.08730600029230118, -0.06851799786090851, 0.2184399962425232, 0.5075100064277649, 0.16121000051498413, -0.29471999406814575, 1.222599983215332, -0.5267699956893921, -0.11073999851942062, 0.08851999789476395, -0.1823599934577942, -0.3300800025463104, -0.5438299775123596, 0.039698999375104904, -0.42127999663352966, -0.2530199885368347, 0.9986199736595154, 0.3464300036430359, -0.028195999562740326, 0.8453599810600281, 0.12466000020503998, 0.04432699829339981, -0.5993199944496155, 0.11841999739408493, -0.021544000133872032, -0.16091999411582947, -0.01845799945294857, 0.41756001114845276, -0.34332001209259033, 0.1515900045633316, 0.17768999934196472, -0.34891998767852783, 0.16966000199317932, -0.16986000537872314, 0.1915999948978424, 0.5526599884033203, 0.4237000048160553, 0.3734999895095825, -0.3014799952507019, 0.028537999838590622, 0.06972000002861023, -0.30862000584602356, -0.4840199947357178, -0.5144699811935425, -0.3497700095176697, 0.3500500023365021, 0.40171998739242554, -0.2416200041770935, -0.25481998920440674, -0.3074899911880493, 0.13830000162124634, 0.5108500123023987, -0.3064900040626526, -0.34360000491142273, -0.25995999574661255, 0.11883000284433365, -0.7975299954414368, 0.14449000358581543, 0.03482300043106079, -0.34217000007629395, 0.3953999876976013, 0.11994999647140503, -0.3366200029850006, 0.05649000033736229, -0.23091000318527222, -0.20438000559806824, 0.476529985666275, 0.4717499911785126, 0.19395999610424042, 0.40880000591278076, 0.15428000688552856, -0.37011000514030457, -0.6371399760246277, 0.17649999260902405, -0.39952999353408813, 0.0004642799904104322, -0.03320299834012985, -0.05790799856185913, -0.370169997215271, 0.11917000263929367, 0.206619992852211, 0.18943999707698822, 0.2591400146484375, -0.5484300255775452, 0.13955999910831451, -0.05307599902153015, 0.09866400063037872, -0.8980799913406372, -0.06103700026869774, -0.2635500133037567, 0.14067000150680542, 0.2517800033092499, 0.044179998338222504, 0.025203000754117966, 0.889680027961731, -0.07183899730443954, -0.07375100255012512, 0.1404999941587448, -0.12964999675750732, -0.23968000710010529, -0.21063999831676483, 0.44086000323295593, 0.4304800033569336, -0.0685259997844696, -0.14072999358177185, 0.13989000022411346, -0.5454599857330322, 0.2602899968624115, 0.09465000033378601, -0.10552000254392624, 0.3487200140953064, -0.5598599910736084, 0.2157299965620041, -0.10429999977350235, -0.3565100133419037, -0.22976000607013702, 0.3032299876213074, 0.9207000136375427, -0.4894599914550781, -0.32256999611854553, -0.6109899878501892, -0.3729499876499176, -0.08690100163221359, 0.5157899856567383, 0.0003313100023660809, 0.26225998997688293, -0.18086999654769897, -0.37650999426841736, -0.05314100161194801, -0.11698000133037567, 0.16741999983787537, 0.07506900280714035, -0.3709399998188019, 0.34341999888420105, 0.5041099786758423, 0.30226001143455505, 0.1450899988412857, -0.07381000369787216, -0.21881000697612762, 0.03805200010538101, 0.23757000267505646, 0.20103999972343445, 0.5742200016975403, 0.034956999123096466, -0.687309980392456, -0.48475000262260437, 0.38479000329971313, 0.3863300085067749, 0.37428000569343567, -0.121799997985363, -0.2297700047492981, 0.12417999655008316, -0.9252399802207947, -0.09761299937963486, -0.01600000075995922, 0.21870000660419464, -0.5591999888420105, 0.15838000178337097, 0.01991800032556057, -0.12957000732421875, -0.13700999319553375, -0.20486000180244446, 0.4486500024795532, 0.06441599875688553, 0.5622599720954895, -0.22144000232219696, -0.8769000172615051, -0.35554999113082886, 0.1530500054359436, -0.18977999687194824, 0.24435000121593475, -0.5183500051498413, 0.10972999781370163, -0.016397999599575996, -0.2346699982881546, -0.14760999381542206, -0.18650999665260315, 0.21012000739574432, -0.8385400176048279, -0.7548400163650513, -0.4271399974822998, 0.09684299677610397, -0.37907999753952026, 0.15399999916553497, -0.00026077000075019896, -0.3015899956226349, 0.07277899980545044, 0.08723600208759308, 0.39131999015808105, -1.0255999565124512, -0.21863000094890594, 0.04416099935770035, -0.2554500102996826, -0.693880021572113, -0.09519200026988983, -0.9916800260543823, -0.1519400030374527, 0.21042999625205994, -0.314300000667572, -0.5400699973106384, 0.12345000356435776, -0.05558599904179573, -0.06242400035262108, -0.38888001441955566, -0.5507699847221375, -0.4194900095462799, 0.16346000134944916, 0.3404200077056885, 0.29460999369621277, 0.44866999983787537, 0.24368000030517578, -0.45100998878479004, -0.2641099989414215, 0.04971100017428398, 0.2288299947977066, 0.2020300030708313, -0.37849000096321106, -0.5625399947166443, 0.24903999269008636, -0.632319986820221, 0.12872999906539917, -0.246629998087883, -0.34466999769210815, 0.47578001022338867, -0.3571600019931793, -0.22472000122070312, -0.5600200295448303, 0.199180006980896, -0.33083999156951904, 0.07404900342226028, -0.18490999937057495, 0.7434899806976318, -0.20409999787807465, -0.2000499963760376, 0.7167999744415283, 0.12377999722957611, -0.1566299945116043, -0.30726000666618347, -0.0703049972653389, 0.2862899899482727, 0.22408999502658844, 0.072502002120018, 0.08740700036287308, -0.20239999890327454, -0.1523600071668625, 0.5208100080490112, -0.5297999978065491, -0.30445000529289246, 0.006233700085431337, -1.7771999835968018, 0.11753000319004059, 0.6676499843597412, 0.09624499827623367, -0.47348999977111816, -0.34314000606536865, 0.4630100131034851, -0.8426200151443481, 0.032506998628377914, 0.5720099806785583, -0.45559000968933105, 0.5372599959373474, 0.06559000164270401, -0.294950008392334, 0.40849998593330383, -0.06111900135874748, -0.6752300262451172, -0.05209200084209442, -0.041854001581668854, 0.05113700032234192, 0.8585600256919861, -0.40233999490737915, -0.31178000569343567, -0.00611159997060895], u'computer': [-0.2762799859046936, 0.13999000191688538, 0.09851899743080139, -0.6401900053024292, 0.0319879986345768, 0.10066000372171402, -0.18672999739646912, -0.371289998292923, 0.5974000096321106, -2.0404999256134033, 0.22368000447750092, -0.02631399966776371, 0.7240800261497498, -0.438289999961853, 0.48886001110076904, -0.003548600012436509, -0.10006000101566315, -0.305869996547699, -0.1562100052833557, -0.06813599914312363, 0.21104000508785248, 0.2928699851036072, -0.08886100351810455, -0.20462000370025635, -0.5760200023651123, 0.34525999426841736, 0.4138999879360199, 0.17916999757289886, 0.2514300048351288, -0.2267799973487854, -0.10102999955415726, 0.14575999975204468, 0.2012699991464615, 0.3181000053882599, -0.7890700101852417, -0.22193999588489532, -0.2483299970626831, -0.015103000216186047, -0.2004999965429306, -0.026441000401973724, 0.18550999462604523, 0.33781999349594116, -0.33542999625205994, 0.8611699938774109, -0.04708300158381462, -0.17009000480175018, 0.30437999963760376, 0.09411899745464325, 0.3243499994277954, -0.811710000038147, 0.8896600008010864, -0.39149001240730286, 0.1682800054550171, 0.14316000044345856, 0.0036339000798761845, -0.06455700099468231, 0.04577700048685074, -0.3224799931049347, 0.04894300177693367, 0.1681700050830841, 0.06834399700164795, 0.5422700047492981, 0.1249300017952919, 0.6974200010299683, -0.03719399869441986, 0.33079999685287476, -0.42193999886512756, 0.33970001339912415, 0.2764599919319153, -0.016002999618649483, -0.21827000379562378, 0.4453499913215637, 0.3537899851799011, -0.022089000791311264, 0.21375000476837158, 0.432669997215271, -0.3289699852466583, 0.0961650013923645, 0.31264999508857727, -0.30527999997138977, 0.2612600028514862, -0.6536399722099304, -0.7801399827003479, -0.2315399944782257, 0.12112999707460403, 0.3489600121974945, -0.5544400215148926, 0.46619001030921936, -0.16519999504089355, 0.11610999703407288, -0.766759991645813, 0.6950200200080872, -0.1569799929857254, -0.12489999830722809, 0.5650500059127808, 0.6449900269508362, -0.5740299820899963, -0.033548999577760696, 0.3289799988269806, -1.402500033378601, -0.3114300072193146, 0.6454899907112122, -0.06153399869799614, -0.6929500102996826, 0.0006089400267228484, -0.5654399991035461, 0.1918099969625473, -0.19208000600337982, -0.6267300248146057, -0.009747300297021866, -0.5504000186920166, -0.5612800121307373, -0.19603000581264496, 0.2925400137901306, 0.09857600182294846, -0.05939500033855438, 0.003361599985510111, 0.1951500028371811, -0.6070299744606018, 0.34261998534202576, 0.09521099925041199, -0.07941100001335144, 0.14305000007152557, -0.5656899809837341, -0.06588699668645859, 0.15166999399662018, -0.1350499987602234, 0.19571000337600708, 0.22811999917030334, 0.035346001386642456, -0.22508999705314636, 0.1890999972820282, -0.3734799921512604, 0.12504999339580536, 0.4624899923801422, -0.32218998670578003, 0.9064300060272217, 0.11595000326633453, 0.11627999693155289, 0.22960999608039856, 0.24009999632835388, -0.06160899996757507, 0.3932499885559082, -0.06506600230932236, 0.42256999015808105, 0.5687999725341797, 0.49803999066352844, -0.6130800247192383, 0.41468000411987305, -0.13447999954223633, 0.6043000221252441, -0.06546200066804886, -0.08537600189447403, 0.1911499947309494, 0.39925000071525574, 0.37494999170303345, -0.18491999804973602, 0.061751000583171844, -0.387470006942749, -0.3033500015735626, -0.38210999965667725, 0.28220999240875244, -0.10286000370979309, -0.5866000056266785, 0.8292199969291687, 0.25130999088287354, 0.24772000312805176, 0.8748199939727783, -0.31358999013900757, 0.8162099719047546, -0.9008100032806396, -0.7793300151824951, -1.0089999437332153, 0.3647199869155884, -0.11562000215053558, -0.24841000139713287, 0.0945269986987114, -0.4226599931716919, 0.060391999781131744, -0.15365000069141388, -0.06960400193929672, 0.00512919994071126, 0.3957200050354004, -0.15692000091075897, 0.35708001255989075, -0.3516499996185303, 0.3529599905014038, -0.5221999883651733, 0.5139999985694885, -0.17764000594615936, -0.1027199998497963, -0.39640000462532043, 0.30417999625205994, 0.0736590027809143, -0.11685000360012054, 0.14298999309539795, -0.36809998750686646, 0.276419997215271, -0.46682998538017273, -0.3263300061225891, 0.5110700130462646, 0.023945000022649765, 0.11722999811172485, 0.21761000156402588, -0.17388999462127686, -0.6119300127029419, -0.5944899916648865, 0.47749000787734985, -0.5900800228118896, -0.3609200119972229, -0.0995739996433258, -0.043097998946905136, -0.15106000006198883, -0.14336000382900238, -0.03113500028848648, 0.17887000739574432, -0.6422100067138672, 0.17241999506950378, 0.3391599953174591, 0.8718100190162659, -0.7723000049591064, 0.5319499969482422, -0.5276299715042114, 0.17509999871253967, 0.31042999029159546, -0.1517699956893921, -0.227060005068779, 0.10802999883890152, 0.4491899907588959, 0.07001599669456482, 0.20850999653339386, 0.2151699960231781, -0.6171200275421143, -0.09996999800205231, 0.005501999985426664, 0.07678599655628204, 0.280460000038147, 0.4233100116252899, -0.5892500281333923, 0.07055400311946869, 0.3992300033569336, 0.0902009978890419, 0.17138999700546265, -0.17282000184059143, -0.5367500185966492, -0.46439000964164734, -0.578499972820282, -0.6831099987030029, 0.059383001178503036, 0.124269999563694, -0.145579993724823, 0.5768700242042542, -0.5749899744987488, -0.05164499953389168, 0.3840999901294708, 0.13046999275684357, 0.33785998821258545, 0.332040011882782, 0.40119001269340515, 0.26388999819755554, -0.36952999234199524, -0.2979699969291687, -0.6681600213050842, -0.11883000284433365, 0.5013300180435181, 0.2060299962759018, -0.32558000087738037, -0.12241999804973602, 0.506659984588623, 0.16353000700473785, -0.10672000050544739, 0.22363999485969543, 0.2391500025987625, -0.5550900101661682, -0.4843200147151947, -0.012164999730885029, -1.7992000579833984, 0.3231000006198883, -0.26309001445770264, -0.32537999749183655, -0.5827000141143799, 0.15098999440670013, 0.33838000893592834, 0.12007000297307968, 0.41394999623298645, -0.15553000569343567, -0.19301000237464905, 0.05886000022292137, -0.5242000222206116, -0.3716999888420105, 0.5620499849319458, -0.6580100059509277, -0.49796000123023987, 0.2434699982404709, 0.12872999906539917, 0.336650013923645, -0.07260899990797043, -0.15685999393463135, -0.14187000691890717, -0.2648800015449524], u'palm': [-0.775950014591217, -0.31459999084472656, -0.08367999643087387, -0.18377000093460083, 0.2189600020647049, -0.19154000282287598, 0.17688000202178955, -0.40005001425743103, 0.7567300200462341, -0.3224000036716461, 0.0785129964351654, 0.09193599969148636, -0.03327300027012825, -0.22267000377178192, 0.27542001008987427, -0.17395000159740448, 0.09647999703884125, 0.06374000012874603, -0.11868999898433685, 0.33557000756263733, -0.2007399946451187, -0.23179000616073608, -0.13104000687599182, -0.1444700062274933, -0.2717899978160858, 0.49584001302719116, -0.22123000025749207, 0.6019999980926514, -0.17566999793052673, 0.7386900186538696, 0.3137800097465515, 0.9486799836158752, -0.6679800152778625, 0.7016500234603882, -1.0951999425888062, -0.23294000327587128, -0.09099700301885605, -0.34856998920440674, 0.2013300061225891, -0.20720000565052032, -0.5072900056838989, -0.2088800072669983, -0.42594999074935913, -0.2025199979543686, 0.6405500173568726, -1.0369000434875488, 0.6904500126838684, -0.08968500047922134, 1.0120999813079834, 0.22705000638961792, 0.14883999526500702, 0.061181001365184784, 0.11225999891757965, -0.2606300115585327, 0.040890999138355255, 0.16800999641418457, -0.7778099775314331, 0.19431999325752258, 0.6254500150680542, -0.71288001537323, 0.06409800052642822, 0.08820600062608719, 0.23565000295639038, 0.747730016708374, 0.036336999386548996, 0.07035599648952484, 0.07424599677324295, 0.528659999370575, -0.1626800000667572, -0.7003499865531921, -0.16898000240325928, -0.11599999666213989, 0.06902500241994858, 0.7322400212287903, -0.4152899980545044, 0.2054399996995926, 0.27915000915527344, 0.0670280009508133, -0.18193000555038452, 0.23934000730514526, -0.22255000472068787, 0.3876200020313263, -0.5497400164604187, 0.6407999992370605, 0.21783000230789185, -0.07008799910545349, -0.49671998620033264, 0.5160899758338928, 0.2885800004005432, -0.10357999801635742, -0.549560010433197, -0.7030199766159058, -0.028636999428272247, -0.3553299903869629, 0.5355700254440308, 0.21407000720500946, 0.19694000482559204, -0.6928799748420715, -0.09579099714756012, 0.007963400334119797, -0.1539900004863739, 0.4581199884414673, 0.2302899956703186, -0.03397500142455101, -0.26568999886512756, -0.14643999934196472, 0.02561499923467636, -0.1673000007867813, -0.24815000593662262, -0.47023001313209534, -0.16943000257015228, 0.19797000288963318, 0.2326200008392334, 0.18061000108718872, 0.10792999714612961, -0.4070200026035309, 0.0035999000538140535, 0.4155699908733368, -1.0342999696731567, -0.070421002805233, -0.3090899884700775, -0.426580011844635, 0.012701000086963177, -0.17566999793052673, -0.2604300081729889, 0.268310010433197, 0.3998500108718872, -0.3186500072479248, 0.04936100170016289, -0.44244998693466187, 0.7867599725723267, 0.4450500011444092, -0.5024799704551697, 1.0514999628067017, -0.2362000048160553, -0.46884000301361084, 0.14098000526428223, -0.2520500123500824, 0.6904900074005127, -0.017514999955892563, 0.4810599982738495, 0.3878999948501587, -0.08125600218772888, 0.39223000407218933, -0.20487000048160553, 0.6054999828338623, 0.0858360007405281, -0.2735700011253357, -0.26798999309539795, 0.2175299972295761, 1.100600004196167, 0.3875400125980377, 0.33849000930786133, -0.0746069997549057, -0.21854999661445618, -0.12483999878168106, 0.007656500209122896, -0.02785399928689003, -0.0691170021891594, 0.6370499730110168, 0.28913000226020813, -0.1456100046634674, 0.05744500085711479, 0.21096999943256378, -0.14080999791622162, 0.023406000807881355, 0.28773999214172363, 0.050032999366521835, -0.5184400081634521, 0.37975001335144043, -0.6410599946975708, -0.43873998522758484, -0.8748599886894226, 0.4437499940395355, 0.023687999695539474, -0.4341199994087219, 0.4934599995613098, 0.5383599996566772, -0.2823199927806854, -0.3142400085926056, 0.20388999581336975, 0.4454599916934967, 0.36344999074935913, 0.31130000948905945, 0.455949991941452, -0.4871399998664856, 0.3115200102329254, -0.35864999890327454, 0.21142999827861786, 0.036699000746011734, -0.2262900024652481, 1.264799952507019, -0.28679001331329346, 0.10206999629735947, -0.2618800103664398, 0.23747000098228455, 1.0155999660491943, 0.24438999593257904, -0.23555999994277954, -0.35857999324798584, 0.6015499830245972, -0.5440300107002258, -0.7541099786758423, -0.3112500011920929, 0.3020400106906891, -0.44374001026153564, 0.9757500290870667, -0.0678509995341301, 0.11004000157117844, -0.4259899854660034, -0.07255099713802338, 0.49182000756263733, 0.012757999822497368, -0.31746000051498413, 0.18246999382972717, 0.28415998816490173, 0.009879199787974358, 0.1261799931526184, 0.19323000311851501, -0.032072000205516815, 0.3677999973297119, -0.5252400040626526, 0.074413001537323, 0.647629976272583, -0.061500001698732376, 0.19054999947547913, -0.7880899906158447, -0.18000000715255737, -0.007250899914652109, -0.08842500299215317, 0.4481000006198883, 0.1419299989938736, 0.12586000561714172, 0.37084999680519104, 0.39013001322746277, 0.6409299969673157, 0.028728000819683075, -0.5300099849700928, -0.2569099962711334, -0.6962100267410278, -0.20812000334262848, -0.23868000507354736, -0.3286899924278259, 0.014693999662995338, -0.623740017414093, -0.2224999964237213, -0.22165000438690186, -0.531279981136322, -0.8339400291442871, -0.08353199809789658, 0.2943499982357025, 0.167820006608963, 0.07513400167226791, -0.4526900053024292, 0.007948500104248524, -0.1656000018119812, 0.6752899885177612, 0.212009996175766, 0.2171899974346161, -0.3057900071144104, 0.1290300041437149, 0.07416199892759323, -0.294050008058548, -1.0095000267028809, -0.4069899916648865, -0.09545599669218063, -0.13181999325752258, -0.18347999453544617, 0.12678000330924988, 0.06956499814987183, -0.6561099886894226, -0.5662000179290771, 0.13267000019550323, -0.030479000881314278, -0.6136999726295471, -0.5374000072479248, -1.2319999933242798, 0.4515700042247772, -0.8678299784660339, -0.3568100035190582, -0.37946000695228577, -0.46875, -1.0175000429153442, 0.22891999781131744, -0.6226400136947632, -0.4507899880409241, 0.44968000054359436, -0.7331200242042542, -0.022708000615239143, -0.06072600185871124, 0.04675000160932541, -0.010276000015437603, 0.41510000824928284, -0.008517700247466564, -0.33932000398635864, 0.16740000247955322, -0.5970500111579895, -0.03264100104570389, 0.33223000168800354, -0.7417399883270264], u'roof': [0.12231999635696411, -0.4127500057220459, -0.6300699710845947, -0.7417299747467041, -0.1795099973678589, 0.10960999876260757, -0.13210999965667725, 0.17680999636650085, -0.6793299913406372, -0.9522799849510193, -0.2356400042772293, 0.46022000908851624, 0.40143001079559326, 0.21593999862670898, -0.38113999366760254, 0.4383600056171417, -0.12193000316619873, 0.270330011844635, 0.167480006814003, -0.07858899980783463, 0.035937000066041946, 0.11649999767541885, -0.070933997631073, 0.2175299972295761, -0.07109200209379196, -0.1888899952173233, -0.051534999161958694, 0.37299999594688416, -0.8166099786758423, 0.8055700063705444, 0.39809998869895935, 0.6316199898719788, -0.4783099889755249, 0.3075700104236603, 0.025629999116063118, 0.14076000452041626, 0.20821000635623932, -0.714680016040802, 0.6875699758529663, 0.430510014295578, 0.23423999547958374, -0.019021999090909958, -0.3446800112724304, 0.19029000401496887, -0.1406099945306778, 0.5740900039672852, 0.42603999376296997, 0.3978399932384491, -0.5725499987602234, -0.5784199833869934, -0.6316999793052673, 0.3431600034236908, 0.01458400022238493, -0.48304998874664307, 0.16703000664710999, 0.41874000430107117, 0.3263700008392334, 0.317220002412796, 0.2091600000858307, 0.10507000237703323, -0.011634999886155128, 0.004651300143450499, 0.2805800139904022, 0.368910014629364, -0.27333998680114746, -0.4275200068950653, 0.1125200018286705, -0.0313120000064373, -0.16568000614643097, -0.4713900089263916, -0.475739985704422, -0.48952001333236694, 0.03479500114917755, 0.1880200058221817, -0.021219000220298767, -0.31817999482154846, -0.262719988822937, -0.3295600116252899, -0.2047400027513504, -0.5084699988365173, -0.008566300384700298, 0.26899999380111694, 0.09073100239038467, -0.026069000363349915, -0.2653200030326843, 0.4877699911594391, 0.23374000191688538, -0.07013200223445892, -0.14174999296665192, -0.15692000091075897, 0.8549900054931641, -0.09261500090360641, 0.2968200147151947, 0.40786001086235046, -0.2988100051879883, -0.4037899971008301, -0.2515600025653839, -0.1926400065422058, 0.039103999733924866, -0.43140000104904175, -0.7221400141716003, 0.6439999938011169, 0.39906999468803406, -0.20892000198364258, 0.6139600276947021, 0.321370005607605, -0.05509199947118759, -0.11405999958515167, -0.4834800064563751, 0.19724999368190765, -0.22099000215530396, -0.042642999440431595, 0.045542001724243164, -0.22902999818325043, -0.12530000507831573, 0.21209999918937683, -0.9394500255584717, 0.11234000325202942, -0.36682000756263733, -0.16298000514507294, 0.44391000270843506, -0.7934600114822388, 0.5387300252914429, 0.8042200207710266, -0.07570300251245499, -0.6395400166511536, 0.024210000410676003, 0.4285700023174286, 0.1417199969291687, 0.23472000658512115, 0.16007000207901, 1.0997999906539917, 0.11208000034093857, 0.39173999428749084, 0.89656001329422, -0.15071000158786774, -0.6248000264167786, 0.45879998803138733, -0.329039990901947, 0.13565999269485474, -0.02653300017118454, 0.4241600036621094, 0.020930999889969826, -0.09466099739074707, -0.5343300104141235, -0.04435800015926361, 0.5111799836158752, 0.11454000324010849, -0.027347000315785408, -0.40011999011039734, -0.19080999493598938, -0.08975800126791, 0.001053099986165762, -1.1067999601364136, 0.3188300132751465, 0.47773000597953796, 0.12144000083208084, 0.1857299953699112, -0.06771499663591385, 0.24548999965190887, 0.07485499978065491, -0.4612100124359131, -0.3677600026130676, 0.3131200075149536, 0.5026900172233582, 0.7251899838447571, -0.2261199951171875, 0.23393000662326813, 0.699720025062561, -0.45370998978614807, -0.32016000151634216, 0.32907000184059143, 0.47025999426841736, -0.5902100205421448, 0.027999000623822212, 0.3203499913215637, -0.21152999997138977, 0.07552699744701385, 0.2329300045967102, -0.9743300080299377, 0.35850998759269714, -0.5948299765586853, 0.166360005736351, -0.047322001308202744, -0.18328000605106354, 0.04675700142979622, 0.6582099795341492, 0.186599999666214, 0.27195999026298523, 0.24382999539375305, 0.5817999839782715, 0.3125799894332886, -0.3478200137615204, 0.15842999517917633, -0.427839994430542, 0.2736800014972687, -0.06623099744319916, 0.45318999886512756, 0.3184199929237366, 0.08279000222682953, 0.6981300115585327, 0.03355100005865097, -0.3113099932670593, -0.085316002368927, 0.05783899873495102, 0.11547999829053879, 0.11990000307559967, -0.5176100134849548, 0.04599599912762642, 0.13615000247955322, 0.40630999207496643, 0.1365399956703186, -0.09087800234556198, -0.35273998975753784, 0.6416500210762024, 0.12437999993562698, -0.0037533000577241182, -0.31810998916625977, 0.31259000301361084, 0.11173000186681747, 0.720300018787384, -0.20035000145435333, 0.6347200274467468, -0.4181399941444397, 0.135110005736351, -0.1468600034713745, -0.36904001235961914, -0.10577999800443649, 0.10148999840021133, -0.12841999530792236, 0.2668200135231018, -0.23883000016212463, -0.033695999532938004, -0.01674499921500683, 0.3252300024032593, -0.06547500193119049, -0.11649999767541885, -0.0032190000638365746, -0.36937999725341797, 0.17089000344276428, 0.6243199706077576, -0.2822200059890747, -0.16404999792575836, -0.2696399986743927, -0.32050999999046326, -0.4429599940776825, -0.03105200082063675, -0.5316100120544434, -0.32916000485420227, 0.5087599754333496, 0.010339999571442604, 0.21073000133037567, -0.19438999891281128, -0.7523900270462036, 0.5571399927139282, 0.41843000054359436, -0.10379000008106232, -0.37450000643730164, -0.015704000368714333, 0.016527000814676285, -0.57573002576828, -0.014599000103771687, 0.08227399736642838, -0.0545319989323616, -0.04583900049328804, -0.32194000482559204, 0.11524999886751175, -0.27303001284599304, 0.3343999981880188, -0.7879499793052673, -0.12660999596118927, -0.5397999882698059, 0.09739000350236893, -0.4290800094604492, -0.8177800178527832, -0.38222000002861023, -1.7383999824523926, -0.008944300003349781, -0.7174199819564819, 0.09707000106573105, -0.2130099982023239, -0.2368299961090088, -0.01927799917757511, -0.2884199917316437, -0.4212999939918518, 0.6562399864196777, 0.133310005068779, 0.09513899683952332, -0.0975549966096878, -0.49775001406669617, -0.23778000473976135, 0.1736000031232834, -0.3646399974822998, 0.442220002412796, 0.15665000677108765, 0.20353999733924866, -0.0018312999745830894, -0.059021998196840286, 0.6371899843215942, 0.3606399893760681], u'sea': [0.2991900146007538, -0.11731000244617462, -0.00899249967187643, -0.3705900013446808, -0.06722000241279602, 0.1516299992799759, -0.06110500171780586, 0.29587000608444214, 0.3651599884033203, -1.5087000131607056, 0.46160000562667847, -0.15761999785900116, 0.015131000429391861, 0.3137899935245514, 0.490339994430542, 0.23761999607086182, 0.27667000889778137, 0.448199987411499, -0.6463299989700317, 0.6601200103759766, -0.6513100266456604, 0.36983999609947205, -0.41850000619888306, -0.05362199991941452, -0.009783700108528137, -0.12771999835968018, 0.470550000667572, 0.6526399850845337, -0.37119001150131226, 0.480459988117218, 0.3928599953651428, -0.061889998614788055, -0.8892499804496765, -0.5509499907493591, 0.35034000873565674, -0.32708999514579773, 0.2997500002384186, -0.056088000535964966, -0.035725999623537064, 0.46678000688552856, -0.2754400074481964, -0.01793999969959259, 0.41067999601364136, 0.16943000257015228, -0.3851099908351898, 0.29284000396728516, 0.518589973449707, 0.5630900263786316, 0.24122999608516693, 0.09960699826478958, -0.2042199969291687, 0.11269000172615051, -0.49399998784065247, -0.8751500248908997, -0.3132700026035309, 0.4303700029850006, -0.11784999817609787, 0.4660800099372864, 0.13484999537467957, -0.2950800061225891, 0.07126399874687195, 0.3164699971675873, 1.1064000129699707, -0.35238999128341675, 0.11417999863624573, -0.30375999212265015, -0.5699599981307983, 0.7082399725914001, -0.15449999272823334, 0.16617999970912933, 0.19869999587535858, -0.17903000116348267, -0.1968899965286255, -0.2789100110530853, -0.766290009021759, 0.23562000691890717, 0.6958299875259399, -0.16906000673770905, 0.5733100175857544, 0.10814999788999557, -0.19524000585079193, -0.29041001200675964, -0.5941100120544434, 0.23573000729084015, 0.20467999577522278, 0.4740299880504608, -0.23048000037670135, -0.15125000476837158, -0.14287999272346497, -0.563480019569397, -0.10655999928712845, 0.4021199941635132, -0.08299700170755386, -0.22390000522136688, -0.3012799918651581, 0.6713799834251404, 0.5238999724388123, 0.37303999066352844, 0.14026999473571777, 0.16143999993801117, 0.43261998891830444, 0.5707700252532959, 0.425929993391037, 0.13321000337600708, -0.4432399868965149, 0.10221999883651733, 0.40268999338150024, 0.2715499997138977, 0.14914999902248383, 0.024383999407291412, 0.07134799659252167, -0.2731899917125702, -0.05303899943828583, -0.20827999711036682, 0.19783000648021698, -0.30608999729156494, 0.10706000030040741, 0.21874000132083893, 0.059144001454114914, 0.12594999372959137, -0.3573000133037567, -0.8370199799537659, -0.6871399879455566, 0.005110799800604582, 0.37950000166893005, 0.6943699717521667, 0.09544900059700012, 0.03564999997615814, 0.5260699987411499, -0.4436799883842468, -0.2946299910545349, 0.23533999919891357, 0.2520599961280823, 0.5491300225257874, 0.5469599962234497, 0.32997000217437744, 0.17746999859809875, -0.010207000188529491, -0.4081999957561493, -0.056547001004219055, 0.24876999855041504, 0.14090000092983246, -0.39412999153137207, -0.31325000524520874, -0.8692600131034851, -0.011931000277400017, 0.546209990978241, 0.511650025844574, -0.27309998869895935, -0.0036448000464588404, 0.07326500117778778, 0.09993100166320801, 0.16575999557971954, -0.37744998931884766, 0.7121099829673767, 0.6035000085830688, -0.13560999929904938, -0.4070200026035309, 0.16904999315738678, 0.10412999987602234, 0.08219199627637863, -0.15620000660419464, 0.4061200022697449, 0.291920006275177, 0.010975000448524952, -0.3542799949645996, 0.13127000629901886, 0.43439000844955444, -0.07363799959421158, 0.7523199915885925, -0.07870099693536758, -0.14765000343322754, 0.09442000091075897, 0.07187700271606445, -0.19167999923229218, 0.052296001464128494, 0.04760900139808655, 0.24071000516414642, -0.013849999755620956, -0.3634699881076813, -0.1253499984741211, 0.13027000427246094, 0.2674500048160553, 0.23916000127792358, 0.5708000063896179, -0.768530011177063, 0.13985000550746918, 0.3532100021839142, -0.20980000495910645, -0.16614000499248505, 0.12789000570774078, 0.41624999046325684, -0.03220200166106224, -1.0963000059127808, 0.2688100039958954, 0.5083900094032288, -0.2983100116252899, -1.1095000505447388, 0.25488999485969543, -0.2237900048494339, 1.267699956893921, 0.16649000346660614, -0.19984999299049377, -0.28110000491142273, 0.4884200096130371, 0.36777999997138977, 0.18152999877929688, -0.6755899786949158, 0.30105000734329224, 0.1632699966430664, 0.05102099850773811, -0.25863000750541687, 0.03452400118112564, -0.38958001136779785, -0.035516999661922455, -0.13760000467300415, 1.0162999629974365, -0.1066799983382225, -0.32596999406814575, -0.2824600040912628, 1.2192000150680542, 0.4191800057888031, 0.1242000013589859, 0.038982998579740524, -0.21337999403476715, -0.3449600040912628, -0.2699800133705139, -0.7308499813079834, -0.18140000104904175, -0.5179499983787537, 0.520110011100769, -0.22322000563144684, -0.22628000378608704, -0.07067199796438217, 0.8319100141525269, 0.19022999703884125, -0.24928000569343567, -0.18850000202655792, 0.021688999608159065, 0.3121199905872345, -0.7085199952125549, 0.23818999528884888, -0.12502999603748322, 0.16991999745368958, -0.758650004863739, 0.016327999532222748, 0.11298999935388565, 0.0034248000010848045, -0.03263400122523308, -0.16234999895095825, -0.5893700122833252, 0.5483800172805786, 0.4027400016784668, 0.23457999527454376, -0.02359599992632866, 0.1442900002002716, 0.4071199893951416, 0.13214999437332153, 0.21811999380588531, 0.5044800043106079, 0.06839899718761444, -0.5064899921417236, -0.01229500025510788, -0.5626099705696106, -0.24289999902248383, 0.19043999910354614, 0.07106100022792816, -0.7846400141716003, -0.3156000077724457, -0.3718299865722656, 0.31880998611450195, -0.2653599977493286, 0.14228999614715576, 0.33750998973846436, -0.08476399630308151, 0.5440899729728699, -1.8004000186920166, -0.020357999950647354, 0.21841000020503998, -0.27943000197410583, -0.4689899981021881, 0.6694700121879578, 0.1972299963235855, -0.46858999133110046, -0.15442000329494476, -0.6257799863815308, -0.2059900015592575, -0.08188900351524353, 0.36353999376296997, 0.22763000428676605, -0.9174200296401978, 0.6023399829864502, -0.0785290002822876, -0.21348999440670013, -0.36337000131607056, 0.6354699730873108, 0.25262999534606934, -0.2201399952173233, -0.11699999868869781, -0.19186000525951385], u'mirror': [-0.11970999836921692, -0.17784999310970306, 0.2176399976015091, -0.29218998551368713, 0.10636000335216522, 0.29308998584747314, -0.06045899912714958, -0.018866000697016716, 0.10152000188827515, -1.3595999479293823, 0.12535999715328217, 0.42642998695373535, 0.6161100268363953, -0.15353000164031982, 0.3160400092601776, 0.2696000039577484, 0.2719700038433075, 0.1520099937915802, -0.388590008020401, -0.48541000485420227, -0.07830800116062164, 0.6456999778747559, 0.21899999678134918, 0.6084100008010864, 0.42612001299858093, -0.2278899997472763, -0.0609779991209507, -0.09128700196743011, 0.4919799864292145, -0.014178999699652195, -0.15276999771595, 0.25731000304222107, -0.046904999762773514, 0.2815200090408325, -0.9347299933433533, 0.5311899781227112, -0.38168999552726746, -0.10678999871015549, -0.24514000117778778, 0.7162600159645081, -0.04313499853014946, 0.05887399986386299, -0.04393000155687332, -0.011203999631106853, -0.01894400082528591, 0.2874799966812134, -0.3307099938392639, -0.10625000298023224, -0.12101999670267105, -0.46869999170303345, -0.10042999684810638, 0.09999299794435501, 0.2976999878883362, -0.034995000809431076, 0.5749099850654602, 0.24387000501155853, 0.3080900013446808, 0.24595999717712402, 0.16344000399112701, 0.022098999470472336, -0.0061217001639306545, 0.20291000604629517, 0.25788000226020813, 0.5505300164222717, 0.43731001019477844, -0.13752000033855438, -0.20455999672412872, -0.11116000264883041, 0.21608999371528625, 0.030806999653577805, 0.16489000618457794, -0.4256500005722046, -0.02490999922156334, -0.06452299654483795, -0.03781300038099289, -0.031929999589920044, -0.17127999663352966, -0.3329800069332123, -0.15711000561714172, 0.0024111999664455652, -0.7387199997901917, 0.6450099945068359, -0.07308799773454666, -0.7452999949455261, 0.03266200050711632, 0.39221999049186707, -0.13431000709533691, 0.3710100054740906, -0.20344999432563782, 0.49413999915122986, 0.20746999979019165, 0.09418299794197083, -0.07815799862146378, 0.3849700093269348, -0.24196000397205353, 0.027532000094652176, -0.33722999691963196, -0.23997999727725983, 0.7018899917602539, -1.2038999795913696, 0.2797600030899048, 0.5508400201797485, -0.04078799858689308, -0.07926400005817413, 0.6586300134658813, 0.6244999766349792, 0.13471999764442444, 0.06862799823284149, 0.13220000267028809, 0.2884800136089325, -0.02814899943768978, -0.047995999455451965, 0.5134199857711792, -0.5525799989700317, -0.12555000185966492, -0.010224999859929085, -0.18126000463962555, 0.36065998673439026, -0.26969999074935913, -0.16208000481128693, 0.356469988822937, -0.26513999700546265, 0.1978600025177002, 0.19023999571800232, -0.07991400361061096, -0.5787799954414368, 0.14103999733924866, 0.14805999398231506, -0.506630003452301, -0.18756000697612762, 0.05982000008225441, -0.5251700282096863, 0.16968999803066254, 0.722100019454956, -0.00310550001449883, 0.43575000762939453, -0.49546000361442566, -0.37790000438690186, 0.09735400229692459, -0.4232400059700012, 0.2536799907684326, 0.1075500026345253, -0.7040200233459473, 0.0077149998396635056, 0.1693599969148636, 0.15746000409126282, 0.11845000088214874, 0.2646700143814087, 0.5791199803352356, -0.17475999891757965, 0.3806000053882599, -0.10018999874591827, -0.035634998232126236, -0.3655500113964081, -0.19280999898910522, -0.23215000331401825, -0.21143999695777893, -0.13176000118255615, 0.42803001403808594, 0.08159299939870834, 0.7097799777984619, -0.40630000829696655, 0.20547999441623688, -0.11924999952316284, 0.19920000433921814, 0.8547000288963318, 0.3738499879837036, -0.18196000158786774, 0.21435000002384186, 0.21198000013828278, -0.26034998893737793, -0.17236000299453735, 0.43612000346183777, 0.016753999516367912, -0.05230199918150902, -0.29151999950408936, -0.12362000346183777, 0.4868299961090088, 0.08014599978923798, -0.26003000140190125, 0.23670999705791473, -0.19845999777317047, -0.14957000315189362, 0.49285998940467834, 0.41960999369621277, -0.34751999378204346, 0.6831300258636475, -0.11028999835252762, -0.0403049997985363, 0.06521999835968018, -0.09002300351858139, 0.05179800093173981, 0.09877300262451172, 0.36127999424934387, -0.021183999255299568, 0.5860400199890137, 0.5109400153160095, -0.4011499881744385, -0.5110099911689758, -0.5504699945449829, 0.8011299967765808, -0.22940999269485474, -0.4809800088405609, 0.1495400071144104, 0.24282999336719513, -0.17007000744342804, -0.5137500166893005, -0.3238700032234192, -0.7590500116348267, -0.19255000352859497, 0.413239985704422, 0.8098800182342529, 0.03013399988412857, -0.05393899977207184, 0.3627600073814392, -0.00935280043631792, 0.23523999750614166, -0.568310022354126, 0.581309974193573, 0.5101000070571899, -0.09840899705886841, 0.7578700184822083, -0.5192300081253052, 0.4095500111579895, -0.14736999571323395, -0.032586000859737396, -0.1874600052833557, 0.1898300051689148, 0.16482999920845032, -0.4099999964237213, 0.30959001183509827, -0.03551800176501274, -0.2417600005865097, -0.7482399940490723, -0.11298999935388565, 0.0230260007083416, -0.19338999688625336, 0.133760005235672, -0.2289000004529953, -0.4424700140953064, 0.22896000742912292, -0.28314000368118286, -0.32328999042510986, 0.22283999621868134, -0.27761000394821167, -0.3314099907875061, -0.20268000662326813, 0.023507999256253242, 0.052274998277425766, 0.6073499917984009, -0.1799599975347519, -0.44887998700141907, 0.1958799958229065, -0.002768999896943569, -0.15602000057697296, 0.23886999487876892, -0.0012301000533625484, -0.18357999622821808, -0.20356999337673187, -0.7068700194358826, 0.2985599935054779, 0.024629000574350357, 0.5943099856376648, -0.23826999962329865, -0.19391000270843506, -0.31233999133110046, 0.23573000729084015, 0.5902699828147888, -0.05535700172185898, 0.27605000138282776, 0.31832998991012573, 0.3182699978351593, 0.5549299716949463, 0.539929986000061, -0.3454799950122833, 0.028540000319480896, -0.6972500085830688, 0.18998999893665314, 0.03994600102305412, -0.10413999855518341, 0.16629000008106232, 0.0478690005838871, -0.3021399974822998, -0.16898000240325928, 0.2991800010204315, -0.20860999822616577, -0.011056999675929546, -0.20720000565052032, 0.08986800163984299, 0.14139999449253082, 0.05796699970960617, 0.36500000953674316, -0.45677998661994934, 0.12152999639511108, 0.5478900074958801, 0.32986998558044434, 0.2265399992465973, 0.5720400214195251, -0.19199000298976898, 0.3895399868488312], u'candle': [-0.07668200135231018, -0.4842599928379059, -0.1455399990081787, -0.3152100145816803, -0.57955002784729, 0.14869999885559082, -0.553380012512207, -0.03180500119924545, -0.3228999972343445, 0.2850300073623657, -0.4923200011253357, 0.3931100070476532, 0.1736000031232834, -0.5565800070762634, -0.14196999371051788, -0.004003399983048439, -0.3459100127220154, -0.025615999475121498, -0.6811000108718872, -0.40261000394821167, 0.20241999626159668, 0.03062400035560131, 0.14350000023841858, 0.6521300077438354, 0.704479992389679, -0.2045300006866455, -0.3576200008392334, -0.44780999422073364, -0.09607400000095367, 0.41923999786376953, 0.210999995470047, 0.39337998628616333, -0.29381999373435974, 0.35523998737335205, -0.2967599928379059, 0.4269300103187561, -0.3355900049209595, -0.03167299926280975, 0.8666800260543823, -0.0389150008559227, 0.2521899938583374, 0.08900000154972076, 0.013415999710559845, 0.27208998799324036, -0.09778600186109543, -0.6355100274085999, 0.21229000389575958, -0.5107799768447876, 0.42263999581336975, 0.15984000265598297, 0.17782999575138092, 0.3167099952697754, -0.22001999616622925, -0.1851000040769577, -0.5895900130271912, 0.41620999574661255, -0.16557000577449799, -0.0693420022726059, 0.7465699911117554, 0.5395699739456177, 0.31650999188423157, 0.18848000466823578, -0.16999000310897827, 0.8103500008583069, 0.08360700309276581, -0.3157300055027008, 0.13919000327587128, 0.2545199990272522, -0.11839000135660172, 0.21477000415325165, 0.24879999458789825, -0.31812000274658203, 0.3238300085067749, 0.009194900281727314, 0.06631799787282944, 0.5143700242042542, 0.013780999928712845, -0.6297699809074402, -0.2610599994659424, -0.2910600006580353, -0.023972999304533005, 0.18253999948501587, -0.8212800025939941, 0.014402000233530998, 0.5950800180435181, 0.005069099832326174, -0.21743999421596527, 0.12781000137329102, -0.005985999945551157, 0.19354000687599182, 0.5131099820137024, -0.48622000217437744, -0.3228999972343445, -0.3444199860095978, 0.4017300009727478, 0.05168899893760681, 0.6782199740409851, 0.1636500060558319, -0.2918199896812439, -0.23214000463485718, 0.7417600154876709, 0.07350599765777588, 0.18433000147342682, 0.08044599741697311, 0.36531001329421997, -0.03249200060963631, 0.4645000100135803, 0.11085999757051468, -0.3680399954319, -0.26649999618530273, -0.20941999554634094, -0.07260199636220932, 0.1844799965620041, 0.30156001448631287, -0.44811999797821045, -0.5591800212860107, -0.5250399708747864, 0.2458599954843521, 0.4223000109195709, -0.6130499839782715, -0.32381999492645264, -0.11531999707221985, -0.03617800027132034, -0.014054999686777592, 0.18480999767780304, -0.619949996471405, 0.5867699980735779, -0.24156999588012695, -0.15613999962806702, -0.2546499967575073, 0.8978899717330933, 0.3329800069332123, 0.5216000080108643, 0.2327599972486496, 0.5948399901390076, 0.1970899999141693, -0.5131300091743469, -0.08337800204753876, 0.13711999356746674, -0.38453999161720276, 0.09527099877595901, -0.4677099883556366, -0.27136000990867615, -0.21187999844551086, -0.04604199901223183, 0.3357299864292145, -0.4536899924278259, 0.25488999485969543, -0.37768998742103577, -0.6456400156021118, -0.4495700001716614, 0.31251001358032227, 0.463809996843338, 0.147489994764328, -0.2916199862957001, 0.0009523199987597764, 0.05530799925327301, -0.3911600112915039, -0.46821001172065735, -0.2083600014448166, 0.2924799919128418, -0.3458099961280823, 0.11587999761104584, 0.13966000080108643, -0.08449199795722961, 0.634909987449646, -0.37310999631881714, -0.13853000104427338, 0.013663000427186489, -0.4478699862957001, -0.17118999361991882, 0.33351001143455505, 0.4304800033569336, -0.05955199897289276, -0.13247999548912048, -0.5168799757957458, -0.05322299897670746, 0.5647799968719482, 0.12348999828100204, -0.18425999581813812, 0.17369000613689423, 0.08464299887418747, 0.6146199703216553, -0.3571000099182129, 0.5393400192260742, -0.0654980018734932, 0.9539600014686584, 0.24192999303340912, 0.07283700257539749, -0.40880998969078064, 0.49191999435424805, -0.5601599812507629, -0.20633000135421753, 0.027775999158620834, -0.011900999583303928, -0.056196000427007675, -0.695330023765564, 0.056196000427007675, -0.46744000911712646, 0.1226700022816658, -0.019706999883055687, 0.6553400158882141, 0.681119978427887, -0.216729998588562, 0.4849799871444702, -0.06887499988079071, -0.13447000086307526, 0.2807300090789795, -0.2026599943637848, -0.004895600024610758, 0.0749799981713295, 0.13494999706745148, 0.16335000097751617, -0.6478000283241272, 0.46031999588012695, 0.304639995098114, 0.5028899908065796, -0.24687999486923218, 0.2568100094795227, 0.5776200294494629, 0.05226700007915497, -0.007865600287914276, -0.7519999742507935, 0.39902999997138977, -0.6618000268936157, -0.16946999728679657, -0.07511799782514572, 0.773140013217926, 0.36146000027656555, -0.03381200134754181, 0.4689199924468994, -0.4838399887084961, -0.020694000646471977, -0.15723000466823578, 0.48144999146461487, -0.3154500126838684, -0.4011000096797943, 0.25473999977111816, -0.1360200047492981, -0.4862000048160553, -0.08895300328731537, -0.4091799855232239, -0.8446400165557861, -0.6003999710083008, 0.049862999469041824, -0.15974999964237213, 0.20201000571250916, 0.11759000271558762, -0.1908400058746338, -0.15271000564098358, 0.17709000408649445, -0.4514800012111664, 0.2943499982357025, -0.08178000152111053, 0.2757300138473511, -0.10773999989032745, -0.32221001386642456, -0.6878799796104431, 0.024522999301552773, -0.6001600027084351, -0.37182000279426575, 0.21118000149726868, 0.5622000098228455, 0.26252999901771545, -0.3202100098133087, 0.10340999811887741, -0.3472999930381775, 0.22273999452590942, 0.5695199966430664, 0.12043999880552292, 0.3520300090312958, 0.10933999717235565, 0.605139970779419, 0.6152300238609314, -0.2351900041103363, -0.0790570005774498, -0.7979099750518799, -0.17506000399589539, -0.6397500038146973, -0.36107000708580017, -0.31839999556541443, -0.09679099917411804, -0.23577000200748444, -0.3986299932003021, 0.1617799997329712, 0.8054599761962891, -0.058389000594615936, -0.4486500024795532, -0.2947399914264679, 0.2590700089931488, 0.10409999638795853, 0.2336599975824356, 0.26078000664711, -0.13744999468326569, -0.020545000210404396, -0.31419000029563904, 0.8759199976921082, -0.1035500019788742, -0.1349100023508072, 0.7726200222969055], u'bay': [0.06016699969768524, -0.2179899960756302, -0.0459199994802475, -0.7308700084686279, 0.19224999845027924, -0.2993899881839752, -0.22123999893665314, 0.3984200060367584, -0.06162099912762642, -0.4421299993991852, 0.08299800008535385, 0.3107599914073944, 0.42204999923706055, 0.41328001022338867, 0.5591899752616882, 0.7189800143241882, -0.25968000292778015, 0.041179001331329346, 0.0361189991235733, 0.7811099886894226, -1.01010000705719, -0.807420015335083, -0.5646600127220154, -0.3921400010585785, -0.06810300052165985, -0.20092999935150146, 0.1385200023651123, 0.1833599954843521, -0.35058000683784485, 0.3301500082015991, 0.6371999979019165, 0.3432300090789795, -0.1551699936389923, 0.23851999640464783, -0.4697299897670746, 0.12088999897241592, -0.6423699855804443, -0.0067889997735619545, 0.007006899919360876, -0.8324699997901917, -0.6716099977493286, 0.7553799748420715, -0.3578000068664551, 0.976170003414154, -0.43042999505996704, 0.3506599962711334, 0.4445599913597107, 0.10600999742746353, -0.500469982624054, 0.40257999300956726, -0.3362100124359131, 0.5112800002098083, -0.25815001130104065, -0.12145999819040298, -0.05585699900984764, -0.45458000898361206, 0.5420600175857544, 0.31207001209259033, -0.5815200209617615, -0.12963999807834625, -0.1429000049829483, -0.021952999755740166, 0.1945900022983551, 0.06128599867224693, -0.05939599871635437, -1.1384999752044678, -0.10385999828577042, -0.07941199839115143, -0.05867600068449974, 0.4299300014972687, -0.1731799989938736, 0.08967199921607971, -0.44971999526023865, 0.04131700098514557, -0.8230199813842773, -0.5634199976921082, 0.3140600025653839, 0.1599300056695938, 0.23541000485420227, -0.23454000055789948, -0.6978999972343445, 0.23631000518798828, -0.03991499915719032, -0.029758000746369362, -0.1297300010919571, -0.20214000344276428, -0.018042000010609627, -0.42166000604629517, 0.3219600021839142, -0.6947000026702881, 0.2958199977874756, 0.22109000384807587, -0.05173899978399277, -0.09493099898099899, -0.39792999625205994, 0.35286998748779297, 0.2952300012111664, -0.456959992647171, 0.12966999411582947, -0.22600999474525452, -0.0771780014038086, -0.19032999873161316, 0.008196599781513214, 0.04529000073671341, 0.4569000005722046, 0.22925999760627747, -0.03200000151991844, -0.0980760008096695, -0.21291999518871307, 0.6635000109672546, -0.46435999870300293, -0.965969979763031, 0.009312000125646591, -0.027403000742197037, 0.127470001578331, -0.28534001111984253, 0.1593099981546402, 0.594219982624054, -0.4555000066757202, 0.4705600142478943, 0.10672000050544739, -0.6009799838066101, -0.07959400117397308, 0.08963800221681595, 0.3086400032043457, -0.5237399935722351, -0.3072899878025055, 0.39362001419067383, 0.0860230028629303, 0.3594299852848053, -0.006057499907910824, -0.18209999799728394, -0.3735800087451935, -0.36890000104904175, 0.3986800014972687, -0.06277400255203247, 0.6019999980926514, -0.40727001428604126, -0.16259999573230743, 0.08140400052070618, 0.6454200148582458, 0.003813300048932433, -0.2671400010585785, 0.4834800064563751, -0.3435800075531006, 0.4067099988460541, 0.25084999203681946, 0.054611001163721085, -0.4748300015926361, -0.12828999757766724, 0.8705400228500366, -0.6614699959754944, 0.3753199875354767, -0.10894999653100967, 0.2730199992656708, -0.6679999828338623, 0.08790100365877151, 0.029260000213980675, -0.2255299985408783, 0.42361000180244446, 0.5079699754714966, -0.26822999119758606, -0.12240999937057495, 0.4670799970626831, 0.2838599979877472, 0.0722000002861023, 0.5643399953842163, 0.3635900020599365, -0.5446299910545349, 0.16816000640392303, 0.4503600001335144, -0.30948999524116516, -0.40801000595092773, 0.08218800276517868, -0.6448400020599365, -0.2143000066280365, -0.6219199895858765, 0.49709001183509827, 0.0817900002002716, -0.06065399944782257, -0.12466999888420105, 0.4440099895000458, 0.3284200131893158, -0.12723000347614288, 0.7468000054359436, -0.3794899880886078, 0.4313499927520752, -0.11146000027656555, 0.6220499873161316, 0.6075199842453003, -0.18705999851226807, 1.1698999404907227, 0.2503100037574768, 0.03959900140762329, 0.5364900231361389, 0.13771000504493713, 0.558210015296936, -0.3703800141811371, 0.061260998249053955, -0.07236599922180176, 0.9876400232315063, 0.06622400134801865, -0.1308099925518036, -0.5860199928283691, -0.2017199993133545, 0.5201399922370911, 0.347460001707077, -0.08941300213336945, 0.3989199995994568, -0.1402300000190735, 0.08487900346517563, 0.03936300054192543, 0.13710999488830566, 0.3165999948978424, -0.19607999920845032, 0.016481999307870865, -0.3006899952888489, -0.4045400023460388, 0.007672599982470274, -0.642300009727478, 1.3315999507904053, -0.13989999890327454, 0.23968000710010529, 0.4806100130081177, 0.29864999651908875, -0.4408000111579895, 0.16091999411582947, -0.561460018157959, 0.31828999519348145, -0.19599999487400055, 0.2976900041103363, -0.38749998807907104, -0.3514299988746643, 0.2226099967956543, 0.015525000169873238, 0.3883500099182129, -0.20760999619960785, -0.3784100115299225, -0.5611799955368042, -0.29409998655319214, -0.4967299997806549, -0.11970999836921692, 0.9900500178337097, 0.36434000730514526, -0.4964900016784668, 0.0122060002759099, -0.15986000001430511, 0.8209400177001953, -0.5923100113868713, -0.4734799861907959, -0.1581300050020218, 0.616919994354248, 0.004963899962604046, 0.11768999695777893, 0.46790000796318054, 0.18140999972820282, 0.7960900068283081, -0.2870100140571594, -0.5921199917793274, 0.26365000009536743, -0.4244000017642975, -0.13334999978542328, -0.3171199858188629, 0.15139000117778778, -0.5071899890899658, -0.0994039997458458, 0.4974899888038635, -0.4655100107192993, 0.06041799858212471, -0.6138100028038025, -0.10023999959230423, -0.7870200276374817, 0.2088399976491928, 1.0699000358581543, -0.05134899914264679, -0.041450001299381256, -1.3986999988555908, 0.6289799809455872, 0.06752700358629227, 0.025384999811649323, -0.7588000297546387, 0.6349800229072571, -0.4118799865245819, -0.16707000136375427, -0.7528799772262573, 0.04942600056529045, -0.669189989566803, -0.38199999928474426, 0.7437800168991089, 0.016071999445557594, -0.15880000591278076, 0.14580999314785004, -0.5503799915313721, -0.6039400100708008, 0.230430006980896, 0.3794499933719635, 0.2344599962234497, 0.20985999703407288, -0.2729699909687042, 0.35113999247550964], u'chicken': [0.1857299953699112, 0.297870010137558, 0.5051900148391724, -0.27270999550819397, -0.3319999873638153, -0.7595499753952026, 0.16703000664710999, 0.23003999888896942, -0.21854999661445618, -0.17308999598026276, -0.28578001260757446, -0.4327000081539154, -0.6769000291824341, 0.6187400221824646, -0.24939000606536865, 0.30724000930786133, -0.10956999659538269, 0.5290700197219849, -0.13819999992847443, 0.03929800167679787, 0.09621699899435043, 0.2957000136375427, 0.4612500071525574, 0.021043000742793083, -0.31453999876976013, 0.1015700027346611, 0.11069999635219574, -0.3160800039768219, 0.2455500066280365, -0.37130001187324524, -1.2529000043869019, 0.03726299852132797, -0.36219000816345215, -0.03615099936723709, -0.48113998770713806, 0.7025600075721741, -0.09581100195646286, 0.15636999905109406, -0.1708800047636032, 0.22213000059127808, 0.2179100066423416, -0.4102799892425537, -0.37459999322891235, 0.09531500190496445, 0.11181999742984772, -0.3767699897289276, 0.5823000073432922, -0.1592400074005127, -0.1470700055360794, 0.5231299996376038, 0.26565998792648315, 0.07027199864387512, 0.22669999301433563, 0.09232600033283234, 0.1022299975156784, -0.018386000767350197, -0.04949900135397911, 0.005669999867677689, -0.14399999380111694, -0.30425000190734863, 0.21730999648571014, 0.032698001712560654, 0.24824999272823334, -0.3166700005531311, -0.3508700132369995, -0.3151499927043915, -0.01259199995547533, 0.025707000866532326, -0.08719400316476822, 0.5138999819755554, 0.49636998772621155, 0.5018799901008606, 0.45756998658180237, -0.2847299873828888, -0.45069000124931335, 0.11356999725103378, 0.895389974117279, 0.5763999819755554, 0.10357999801635742, -0.21513999998569489, 0.0010735000250861049, 0.42254000902175903, -0.08077900111675262, -0.181659996509552, 0.1457899957895279, -0.3189300000667572, -0.6599299907684326, 0.35144999623298645, -0.36711999773979187, -0.8466600179672241, 0.2761799991130829, -0.29684001207351685, -0.04216200113296509, 0.30250999331474304, -0.05523199960589409, -0.1989700049161911, -0.3081299960613251, 0.8073499798774719, -0.26262998580932617, 0.18628999590873718, -0.04262800142168999, -0.18352000415325165, 0.35016998648643494, -0.8415300250053406, -0.35253000259399414, -0.14361999928951263, 0.30807000398635864, 0.08849900215864182, -0.331169992685318, 0.5106800198554993, 0.3609200119972229, -0.03331499919295311, -0.7140200138092041, -0.07273399829864502, 0.13796000182628632, -0.66211998462677, -0.38346999883651733, 0.32236000895500183, 0.18488000333309174, -0.13273000717163086, 0.0629189983010292, 0.03178799897432327, 0.7077000141143799, -0.10100000351667404, -0.5551400184631348, 0.31273001432418823, -0.4293999969959259, 0.2781600058078766, -0.12116999924182892, 0.48096999526023865, 0.06317699700593948, 0.6760200262069702, -0.15480999648571014, 0.6930699944496155, 0.07733500003814697, -0.7076500058174133, -0.03657099977135658, -0.44304999709129333, -0.3924599885940552, 0.7982100248336792, 0.33744001388549805, 0.3371500074863434, -0.19704000651836395, -0.39570000767707825, -0.8966900110244751, 0.16811999678611755, -0.12935000658035278, 0.07649599760770798, -0.15501999855041504, -0.4110499918460846, -0.7488399744033813, 0.5437300205230713, 0.0343330018222332, 0.3377799987792969, -0.21813000738620758, -0.39607998728752136, -0.3887999951839447, -0.3910500109195709, -0.378930002450943, -0.4477500021457672, 0.5652199983596802, 0.5204499959945679, -0.3487499952316284, 0.17044000327587128, 0.308789998292923, -0.10163000226020813, 0.0520239993929863, -0.27689000964164734, -0.2171500027179718, -0.5583800077438354, 0.06545300036668777, -0.14778000116348267, -0.2936300039291382, 0.2188899964094162, -0.3069100081920624, 0.20344999432563782, -0.24541999399662018, -0.17137999832630157, 0.7340800166130066, -0.7634599804878235, 0.09624599665403366, -0.010023999959230423, 0.05215099826455116, -0.7559199929237366, -0.4585700035095215, -0.0014952999772503972, 0.5138099789619446, -0.03778799995779991, -0.00044748999061994255, -0.39594000577926636, -0.2882100045681, 0.9596199989318848, -0.6406599879264832, 0.05510300025343895, 0.07247699797153473, 0.09679999947547913, -0.017772000283002853, -0.5692800283432007, -0.34092000126838684, 0.21367999911308289, 0.8825600147247314, 0.10243000090122223, 0.12024000287055969, 0.5106599926948547, 0.01418600045144558, 0.815310001373291, 0.6623200178146362, -0.47609999775886536, 0.17948000133037567, -0.04558499902486801, -0.12848000228405, -0.6008399724960327, 0.22690999507904053, 0.3739599883556366, 0.3899399936199188, -0.03691500052809715, 0.650629997253418, -0.903659999370575, -0.1726199984550476, 0.5072199702262878, 0.46465998888015747, -0.2529299855232239, -0.3673200011253357, -0.717490017414093, 0.3084299862384796, -0.14390000700950623, 0.1265999972820282, -0.07255899906158447, -0.1506900042295456, 0.4753299951553345, 0.05038199946284294, 0.06401599943637848, -0.5073099732398987, 0.05009400099515915, 0.4137499928474426, 0.30331000685691833, 0.5964099764823914, -0.22583000361919403, -0.810230016708374, 0.301800012588501, -0.4647600054740906, -0.633080005645752, -0.34477999806404114, -0.4332900047302246, -1.0742000341415405, -0.08053699880838394, 0.15737000107765198, 0.14404000341892242, -0.36204999685287476, -1.0844999551773071, 0.3736099898815155, 0.1754699945449829, -0.0158270001411438, 0.47861000895500183, 0.30219998955726624, 0.33987998962402344, -0.0882129967212677, 0.5010700225830078, -0.26579999923706055, 0.43893998861312866, 0.3571699857711792, 0.07941599935293198, -0.4593900144100189, -0.4265100061893463, 0.22836999595165253, -0.1876700073480606, -0.4923799932003021, -0.09727499634027481, 0.029711000621318817, -0.528689980506897, -0.5270299911499023, 0.08676999807357788, 0.6906399726867676, 0.04197600111365318, 0.09796299785375595, 0.08734799921512604, -1.3765000104904175, 0.053008001297712326, -1.2448999881744385, -0.5357900261878967, -0.02945300005376339, -0.20711000263690948, 0.001144499983638525, 0.09033700078725815, -0.4087899923324585, 0.633430004119873, 0.4770599901676178, -0.08679100126028061, -0.17744000256061554, 0.04450799897313118, -0.22387999296188354, -0.11710000038146973, 0.41150999069213867, 0.19097000360488892, -0.5311300158500671, -1.0162999629974365, 0.33643001317977905, -0.6054499745368958, 0.26447001099586487, 0.28016000986099243], u'ribbon': [-0.009848699904978275, 0.20702999830245972, 0.31692999601364136, -0.5009999871253967, -0.4533900022506714, 0.6714000105857849, -0.7940300107002258, -0.2614699900150299, -0.1432799994945526, -0.45361000299453735, -0.030503999441862106, 0.5908300280570984, -0.672950029373169, 0.2701599895954132, 0.1031000018119812, 0.186939999461174, -0.3270600140094757, -0.0472709983587265, -0.27421998977661133, -0.005926600191742182, -0.2187100052833557, -0.30573999881744385, -0.5171099901199341, -0.027070000767707825, 0.3713900148868561, -0.1926099956035614, -0.20178000628948212, -0.4756700098514557, -0.1665399968624115, 0.1731799989938736, 1.0390000343322754, -0.618939995765686, 0.5534499883651733, 0.5559700131416321, -0.7806500196456909, 1.0073000192642212, 0.11721000075340271, -0.2291799932718277, 0.2102999985218048, 0.1192300021648407, -0.29732999205589294, 0.020695000886917114, 0.09226399660110474, 0.008838700130581856, -0.17673000693321228, -0.2798199951648712, -0.04322599992156029, -0.48524001240730286, 0.47595998644828796, -0.4473100006580353, -0.5034000277519226, 0.23113000392913818, 0.31905999779701233, -0.5041099786758423, -0.5676500201225281, -0.2809799909591675, -0.43814000487327576, 0.13502000272274017, 0.2977699935436249, 0.20202000439167023, 0.43845999240875244, -0.35412999987602234, 0.0994499996304512, -0.15631000697612762, 0.721310019493103, -0.11980000138282776, -0.07136400043964386, 0.6919800043106079, -0.03639199957251549, 0.16993999481201172, -0.05326500162482262, 0.045820001512765884, 0.09472999721765518, -0.1220100000500679, -0.13975000381469727, 0.21504999697208405, 0.26374998688697815, 0.5395399928092957, -0.09528400003910065, -0.4437499940395355, 0.230430006980896, -0.0895719975233078, 0.2224300056695938, -0.5598300099372864, 0.08292199671268463, -0.4099099934101105, -0.04439200088381767, -0.37852999567985535, -0.24492999911308289, 0.28543001413345337, -0.05346599966287613, 0.03712499886751175, 0.42684999108314514, -0.21577000617980957, -0.08299300074577332, 0.1563899964094162, 0.6797400116920471, 0.2163500040769577, -0.24572999775409698, 0.0571650005877018, 0.5648800134658813, 0.3914499878883362, 0.21778999269008636, -0.4793199896812439, 0.22322000563144684, -0.36563000082969666, 0.04432699829339981, -0.026352999731898308, -0.8022199869155884, -0.16221000254154205, -0.21435000002384186, 0.8636900186538696, 0.26287001371383667, -0.5364699959754944, -0.44905999302864075, -0.10533999651670456, 0.0422700010240078, 0.6452599763870239, 0.06846799701452255, -0.2760699987411499, 0.001781799946911633, 0.28598999977111816, 0.9682300090789795, -0.3683199882507324, 0.5940799713134766, -0.22224999964237213, -0.5803700089454651, -0.10199999809265137, -0.2950100004673004, -0.051173001527786255, -0.02436700090765953, -0.4219299852848053, 0.3390499949455261, -0.01285799965262413, -0.7595400214195251, -0.0472709983587265, -0.1906999945640564, 0.8527799844741821, 0.3813000023365021, -0.06608200073242188, 0.37973999977111816, 0.696340024471283, -0.3059599995613098, -0.930899977684021, 0.3790000081062317, -0.14722000062465668, -0.07463899999856949, -0.8017699718475342, 0.33834001421928406, 0.29864001274108887, 0.3143500089645386, -0.2796500027179718, 0.613290011882782, -0.19363999366760254, 0.2046000063419342, 0.05663599818944931, 0.16872000694274902, -1.2102999687194824, -0.40509000420570374, 0.4484899938106537, -0.05539900064468384, 0.06869199872016907, -0.3687799870967865, 0.23157000541687012, 0.3954299986362457, -0.1910800039768219, -0.2938700020313263, 0.492900013923645, -0.44971001148223877, -0.06988800317049026, -0.15525999665260315, -0.24963000416755676, 0.21568000316619873, 0.320279985666275, -0.20381000638008118, -0.6128100156784058, -0.4799099862575531, 0.011309999972581863, -0.05404699966311455, -0.46011999249458313, -0.4313800036907196, 0.03482399880886078, 0.4035699963569641, -0.12264999747276306, 0.359609991312027, -0.30149000883102417, 0.2081100046634674, 0.5590299963951111, 0.4422299861907959, 0.12205000221729279, 0.4675000011920929, 0.09279000014066696, 0.04067299887537956, -0.030307000502943993, 0.3043000102043152, 0.5864899754524231, -0.361380010843277, -0.16966000199317932, -0.0067750997841358185, 0.1396999955177307, 0.3454599976539612, 0.20126000046730042, 0.562030017375946, 0.44025999307632446, -0.23526999354362488, 0.3213199973106384, -0.10796000063419342, 0.3093000054359436, -0.17550000548362732, 0.26475998759269714, 0.690500020980835, -0.25666001439094543, 0.354449987411499, -0.12942999601364136, 0.10180000215768814, 0.2828100025653839, -0.030299000442028046, -0.8686699867248535, 0.42640000581741333, -0.13196000456809998, 0.44005000591278076, -0.7363899946212769, -0.06913500279188156, 0.13550999760627747, -0.10220000147819519, -0.6767600178718567, -0.15670999884605408, -0.06123699992895126, -0.26627999544143677, -0.52538001537323, 0.3892799913883209, -0.1646299958229065, -0.2815000116825104, 0.14469000697135925, 0.38133999705314636, -0.012435000389814377, 0.04326999932527542, -0.8684499859809875, 0.672249972820282, 0.030024999752640724, 0.2672800123691559, -0.19875000417232513, -0.12476000189781189, -0.5708500146865845, -0.7805500030517578, 0.06394200026988983, 0.178849995136261, -0.08741399645805359, 0.008418800309300423, -0.2551499903202057, 0.07440400123596191, 0.32183000445365906, 0.18213999271392822, -0.6424000263214111, 0.539870023727417, -0.28011998534202576, 0.26846998929977417, 0.16432000696659088, 0.032568998634815216, -0.08716999739408493, 0.4547399878501892, -0.26093998551368713, 0.576770007610321, -0.38457998633384705, 0.10990999639034271, -0.014228999614715576, -0.25224000215530396, 0.36820998787879944, -0.20430000126361847, -0.20624999701976776, 0.13787999749183655, -0.4221799969673157, -0.1905599981546402, 0.1737300008535385, -0.7495399713516235, 0.04674199968576431, -0.9477999806404114, -0.3044399917125702, 0.002579400083050132, -0.3366200029850006, 0.07441999763250351, 0.24831999838352203, -0.22755999863147736, -0.41888999938964844, -0.17178000509738922, 0.29407998919487, -0.12163999676704407, -0.4990899860858917, -0.055087000131607056, -0.41165000200271606, 0.3401300013065338, 0.5505300164222717, -0.719219982624054, 0.48166999220848083, -0.5316200256347656, 0.03697900101542473, 0.5092099905014038, 0.46531999111175537, 0.36939001083374023, -0.8857600092887878], u'redwood': [-0.022092999890446663, -0.41510000824928284, -0.4859899878501892, -0.24108999967575073, 0.5154899954795837, 0.007511700037866831, -0.060189999639987946, 0.3458299934864044, 0.4063299894332886, 0.02360999956727028, -0.7820500135421753, -0.02700899913907051, 0.05689699947834015, 0.0426350012421608, 0.23991000652313232, 0.20369000732898712, -0.028674999251961708, -0.5957900285720825, 0.2050900012254715, 0.292930006980896, 0.4417499899864197, 0.19979000091552734, 0.5782300233840942, -0.08459799736738205, -0.18074999749660492, -0.16975000500679016, 0.05812099948525429, -0.14639000594615936, -0.4360800087451935, 0.7268800139427185, -0.17531000077724457, 0.24673999845981598, -0.020076999440789223, -0.06588900089263916, -0.13440999388694763, -0.28600001335144043, 0.1840900033712387, -0.07851999998092651, -0.1438799947500229, -0.26708999276161194, 0.16760000586509705, 0.1402900069952011, 0.14601999521255493, -0.18174000084400177, 0.059661999344825745, -0.017690999433398247, 0.3545199930667877, 0.24657000601291656, 0.3762800097465515, -0.07627499848604202, -0.6124600172042847, -0.015131999738514423, -0.15914000570774078, -0.2927199900150299, -0.10374999791383743, -0.24692000448703766, -0.2043900042772293, -0.1406800001859665, -0.09880000352859497, 0.8027999997138977, -0.04992299899458885, -0.30546000599861145, 0.22719000279903412, 0.24256999790668488, 0.04142199829220772, -0.2214599996805191, -0.6615999937057495, 0.22758999466896057, 0.12870000302791595, -0.40217000246047974, -0.2751699984073639, -0.06149499863386154, -0.1691800057888031, 0.491210013628006, -0.2337000072002411, 0.9613400101661682, 0.043039001524448395, -0.375110000371933, 0.0044432999566197395, 0.038589999079704285, -0.9041500091552734, -0.005800699815154076, 0.009391400031745434, 0.0031512000132352114, 0.044335998594760895, 0.6532099843025208, -0.13167999684810638, 0.8915299773216248, 0.41367998719215393, 0.3906500041484833, 0.24859000742435455, 0.015561000443994999, 0.6982499957084656, 0.6823999881744385, -0.1434900015592575, 0.7448700070381165, 0.3949599862098694, -0.09178800135850906, -0.5370799899101257, 0.2569200098514557, 0.323419988155365, 0.8300099968910217, -0.7907500267028809, -0.014665000140666962, -0.28112998604774475, 0.29175999760627747, -0.09321100264787674, -0.12251000106334686, -0.04154700040817261, -0.2143000066280365, -0.6366400122642517, -0.9606099724769592, 0.23542000353336334, -0.08173900097608566, -0.13264000415802002, -0.488070011138916, -0.19946999847888947, 0.2926200032234192, -0.3628999888896942, 0.16007000207901, -0.46320000290870667, -0.09350399672985077, -0.29499998688697815, 0.35916998982429504, 0.00789059977978468, -0.4263699948787689, 0.0641620010137558, -0.09000799804925919, 0.02522199973464012, -0.24194000661373138, -0.10266000032424927, 0.28505998849868774, 0.22121000289916992, 0.09801699966192245, 0.8804399967193604, 0.3042699992656708, -0.16332000494003296, -0.25183001160621643, 0.12005999684333801, -0.3340800106525421, 0.9876899719238281, -0.009852300398051739, 0.0682540014386177, 0.12620000541210175, 0.7884100079536438, -0.33327001333236694, 1.0226999521255493, -0.2605299949645996, -0.49838998913764954, -0.5759900212287903, 0.41071999073028564, 0.3298499882221222, 0.16255000233650208, 0.02041199989616871, -0.5454000234603882, -0.1645900011062622, 0.350629985332489, 0.12002000212669373, -0.5202100276947021, -0.023249000310897827, 0.19829000532627106, 0.22269999980926514, 0.29958999156951904, 0.025002000853419304, 0.07946699857711792, 0.06418699771165848, 0.46351000666618347, 0.8749099969863892, -0.12246999889612198, 0.6118800044059753, -0.9440400004386902, -0.3212299942970276, -0.08634000271558762, 0.2974900007247925, 0.28644001483917236, -0.1115799993276596, 0.6936900019645691, 0.027204999700188637, 0.3553600013256073, -0.8110600113868713, 0.03317900002002716, 0.23973999917507172, 0.73471999168396, -0.12482000142335892, 0.30744001269340515, -0.8278700113296509, -0.1277499943971634, -0.6556400060653687, 0.04334200173616409, -0.15715999901294708, 0.2668200135231018, 0.16493000090122223, 0.5112000107765198, -0.48969000577926636, -0.05007600039243698, 0.486519992351532, 0.4637799859046936, -0.24573999643325806, -0.24856999516487122, 0.8388199806213379, -0.18485000729560852, -0.666920006275177, -0.1489800065755844, -0.2227499932050705, -0.6051300168037415, -0.05121999979019165, 0.18669000267982483, 0.5890600085258484, 0.1984100043773651, -0.46985000371932983, -0.0754299983382225, -0.21875999867916107, -0.22495999932289124, -0.554390013217926, -0.4661799967288971, 0.7549999952316284, -0.5712800025939941, 0.13534000515937805, -0.023951999843120575, 0.1411599963903427, 0.4976699948310852, 0.22694000601768494, -0.22432999312877655, -0.2844099998474121, 0.22909000515937805, 0.3948099911212921, -0.25940001010894775, -0.32708001136779785, -0.0385890007019043, 0.3778800070285797, -0.1431100070476532, 0.2662700116634369, -0.052584998309612274, -0.24435999989509583, 0.6470999717712402, -0.31949999928474426, -0.055091001093387604, 0.0001105900009861216, 0.1840600073337555, -0.4192799925804138, -0.07456699758768082, -0.23187999427318573, -0.041391998529434204, 0.3273000121116638, -0.3037700057029724, 0.5610100030899048, 0.1502700001001358, 0.14794999361038208, 0.13131000101566315, -0.3993400037288666, -0.07918799668550491, 0.410290002822876, 0.25940999388694763, -0.25964000821113586, 0.1405400037765503, -0.1346299946308136, 0.24547000229358673, 0.25944000482559204, 0.7033100128173828, -0.2788099944591522, 0.22147999703884125, -0.1295900046825409, -0.04453499987721443, -0.0006146300002001226, -0.24301999807357788, 0.10508999973535538, 0.19565999507904053, 0.25843000411987305, 0.10514000058174133, -0.19746999442577362, -0.4617699980735779, 0.047871001064777374, 0.1687600016593933, -0.16742999851703644, -0.34391000866889954, -0.3479999899864197, 0.24657000601291656, 0.6515799760818481, -0.05826700106263161, -0.6141300201416016, 0.26392999291419983, -0.1096000000834465, -0.7463399767875671, 0.5325700044631958, -0.12154000252485275, -0.2927600145339966, -0.05561700090765953, -0.14799000322818756, -0.3472599983215332, -0.40242999792099, 0.5656300187110901, -0.0794840008020401, -0.16710999608039856, 0.36316999793052673, 0.4144200086593628, 0.15790000557899475, -0.35249000787734985, 0.04843499884009361, -0.7094699740409851, 0.7198799848556519], u'shower': [-0.0248780008405447, -0.09989900141954422, -0.2076999992132187, -0.5239599943161011, -0.3131900131702423, 0.12793999910354614, -0.1576700061559677, 0.12437999993562698, 0.6261600255966187, -0.3679499924182892, -0.5946300029754639, 0.5443699955940247, 0.03122599981725216, -0.19902999699115753, 0.3468799889087677, -0.13346000015735626, 0.4906800091266632, 0.33886000514030457, 0.2501699924468994, -0.24291999638080597, -0.0845239982008934, 0.3203999996185303, -0.11969000101089478, 0.36965999007225037, 0.16851000487804413, -0.8165299892425537, 0.04784499853849411, -0.1552799940109253, 0.3258199989795685, -0.265500009059906, 0.18848000466823578, -0.3799799978733063, -0.2581599950790405, 0.05596499890089035, -0.6679900288581848, 0.3607900142669678, -0.29482999444007874, 0.541130006313324, -0.2747400104999542, -0.15873000025749207, 0.07702399790287018, 0.28185001015663147, 0.008907600305974483, -0.3694800138473511, -0.43825000524520874, 0.40950000286102295, 0.49698999524116516, 0.3469899892807007, 0.17539000511169434, -0.3564800024032593, -0.5878900289535522, -0.2522200047969818, 0.6005499958992004, 0.01075000036507845, -0.25725001096725464, 0.19659000635147095, 0.06299199908971786, 0.392520010471344, 0.6941099762916565, 0.31134000420570374, 0.17775000631809235, -0.18223999440670013, 0.16095000505447388, 0.42396000027656555, -0.13247999548912048, -0.4501799941062927, -0.38253000378608704, -0.08657799661159515, -0.25679001212120056, 0.15699000656604767, 0.062185000628232956, -0.42579999566078186, -0.11330000311136246, -0.05949399992823601, 0.12606999278068542, -0.07948800176382065, -0.3943699896335602, -0.3974500000476837, -0.36469000577926636, -0.6495400071144104, -0.04915900155901909, -0.18400000035762787, 0.12610000371932983, 0.46852999925613403, 0.5608599781990051, -0.08732099831104279, -0.05482599884271622, -0.2984899878501892, -0.11959999799728394, -0.5786200165748596, 0.48677998781204224, 0.2444400042295456, 0.5373299717903137, -0.03973200172185898, -0.5577399730682373, 0.3554700016975403, 0.22155000269412994, 0.14595000445842743, 0.6675500273704529, -0.050415001809597015, -0.3623200058937073, 0.4146600067615509, -0.6065899729728699, -0.15425999462604523, 0.5272700190544128, -0.20735999941825867, 0.22211000323295593, 0.3043699860572815, -0.7260199785232544, -0.061402998864650726, -0.120619997382164, 0.40786999464035034, 0.12454000115394592, 0.00823570042848587, -0.29366999864578247, 0.4565500020980835, -0.07100299745798111, 0.019874999299645424, -0.03212499991059303, -0.6812999844551086, 0.4566600024700165, -0.24163000285625458, -0.019960999488830566, 0.460099995136261, 0.2747899889945984, -0.2481199949979782, 0.040139999240636826, 0.37786000967025757, -0.18154999613761902, 0.10926000028848648, 0.34591999650001526, 0.01998800039291382, 0.4626399874687195, -0.009464999660849571, -0.09788300096988678, -0.15916000306606293, -0.5027499794960022, -0.3215000033378601, -0.088639996945858, -0.361299991607666, -0.49998000264167786, -0.7450199723243713, -0.16033999621868134, -0.09773600101470947, -0.3714599907398224, -0.18174999952316284, 0.07651200145483017, 0.2336599975824356, 0.6479399800300598, -0.35332998633384705, -0.5696499943733215, -0.3475799858570099, -0.14698000252246857, 0.2778399884700775, -0.11533000320196152, 0.08893799781799316, 0.2699599862098694, -0.28255000710487366, -0.4260700047016144, 0.31001999974250793, 0.2280000001192093, -0.550000011920929, 0.32447001338005066, 0.19294999539852142, 0.34551000595092773, 0.5882800221443176, 0.6524999737739563, 0.8994399905204773, 0.42761000990867615, 0.043494001030921936, -0.22978000342845917, 0.5869899988174438, 0.3200800120830536, -0.08139699697494507, -0.5559999942779541, -0.11153999716043472, 0.22439000010490417, 0.7022299766540527, 0.3793500065803528, -0.26914000511169434, 0.3525699973106384, -0.4631499946117401, 0.27375999093055725, 0.3246699869632721, -0.2406100034713745, 0.07803600281476974, 0.80308997631073, 0.9190700054168701, -0.39917999505996704, -0.5390400290489197, 0.7329800128936768, 0.029529999941587448, -0.9824699759483337, -0.2198999971151352, -0.3221699893474579, 0.037932999432086945, -0.4598200023174286, 0.3708699941635132, -0.13414999842643738, -0.24334999918937683, -0.04998200014233589, -0.06328800320625305, 0.019435999915003777, 0.1424800008535385, 0.18367999792099, 0.03049900010228157, -0.34404000639915466, -0.14361999928951263, -0.8181899785995483, -0.5065500140190125, -0.6820099949836731, -0.07453600317239761, -0.2663399875164032, -0.06389100104570389, 0.28532999753952026, -0.3074899911880493, -0.24564999341964722, -0.7802900075912476, -0.411080002784729, 0.12167999893426895, 0.15658999979496002, 0.35120999813079834, -0.10350000113248825, -0.3522000014781952, 0.06844499707221985, -0.4828900098800659, -0.7550600171089172, -0.07140800356864929, 0.5588099956512451, 0.18388999998569489, 0.8764500021934509, -0.7861499786376953, -0.2555699944496155, -0.9298200011253357, 0.23075999319553375, 0.04742300137877464, -0.8224200010299683, -0.35923001170158386, 0.16282999515533447, -0.5897200107574463, 0.33998000621795654, 0.028248999267816544, -0.19494999945163727, 0.3447299897670746, 0.028398999944329262, -0.18480999767780304, 0.24961000680923462, -0.1117200031876564, -0.6522200107574463, -0.008006599731743336, -0.13370999693870544, -0.5661500096321106, -0.029712000861763954, -0.3137899935245514, 0.34683001041412354, 0.08430899679660797, 0.08977500349283218, -0.7431600093841553, 0.21695999801158905, 0.7000600099563599, -0.38416001200675964, -0.5574700236320496, 0.06957399845123291, -0.4141499996185303, -0.2785800099372864, -0.737309992313385, -0.15836000442504883, 0.6645200252532959, 0.4093700051307678, 0.12633000314235687, 0.2251800000667572, 0.03995899856090546, -0.6047099828720093, -0.26302000880241394, -0.12039999663829803, 0.04015899822115898, -1.4299999475479126, 0.2793799936771393, -1.2755000591278076, 0.017896000295877457, -0.5390999913215637, 0.27272000908851624, 0.2637999951839447, -0.13167999684810638, 0.05492600053548813, 0.7888000011444092, 0.19315999746322632, 0.4765999913215637, -0.22949999570846558, -0.04249199852347374, -0.37487998604774475, 0.14184999465942383, 0.2649100124835968, -0.08745899796485901, -0.02522600069642067, -0.6392899751663208, 0.3814699947834015, 0.1508300006389618, 0.3535099923610687, 0.21107999980449677], u'wire': [0.021611999720335007, 0.05245399847626686, -0.3948099911212921, -0.4303300082683563, -0.1357100009918213, -0.06013999879360199, 0.39684998989105225, -0.30230000615119934, -0.15392999351024628, -1.260599970817566, -0.03999299928545952, 0.22322000563144684, 0.19800999760627747, -0.25110000371932983, -0.16493000090122223, -0.4054499864578247, -1.2448999881744385, 0.16929000616073608, 0.2951500117778778, -0.05433500185608864, 0.3520300090312958, -0.4683400094509125, 0.18839000165462494, 0.5962200164794922, -0.001604399993084371, -0.10463999956846237, -0.005458099767565727, 0.6032099723815918, 0.3870199918746948, 0.15240000188350677, -0.2999500036239624, -0.14646999537944794, 0.482340008020401, 0.4508799910545349, -0.5967699885368347, 0.10617999732494354, 0.25944000482559204, -0.2248300015926361, 0.29276999831199646, 0.7707499861717224, 0.00012815000081900507, -0.8351699709892273, -0.2576799988746643, 0.21149000525474548, -0.3807600140571594, 0.23930999636650085, -0.04959399998188019, 0.16742999851703644, 0.5343800187110901, 0.44242000579833984, 0.6391599774360657, 0.6018400192260742, 0.34101998805999756, -0.04975999891757965, 0.18459999561309814, -0.24818000197410583, -0.6600000262260437, -0.9811699986457825, -0.20206999778747559, -0.12634000182151794, 0.9605100154876709, 0.6040999889373779, 0.4684300124645233, 0.39939001202583313, 0.5146200060844421, 0.5221999883651733, -0.27702999114990234, 0.6761900186538696, 0.8201799988746643, 0.20758000016212463, 0.38495999574661255, 0.4597899913787842, 0.003339800052344799, 0.544979989528656, -0.5116999745368958, 0.6985599994659424, 0.11935999989509583, 0.1429399996995926, 0.38019999861717224, -0.24501000344753265, 0.6214600205421448, -0.24775999784469604, 0.05719299986958504, -0.1274999976158142, -0.6016899943351746, -0.08124300092458725, -0.3106600046157837, 0.1137399971485138, -0.1111999973654747, -0.03322400152683258, 0.05686299875378609, -0.26688000559806824, -0.07225099951028824, 0.36138999462127686, -0.16845999658107758, 0.10649999976158142, -0.2648000121116638, 0.1713400036096573, -0.10656999796628952, 0.1135300025343895, -0.1565999984741211, 0.36552000045776367, -0.1792300045490265, -0.40459999442100525, 0.9823300242424011, -0.301690012216568, 0.4115700125694275, 0.15175999701023102, -0.3581100106239319, 0.11479999870061874, -0.33816999197006226, 0.1392499953508377, -0.3652600049972534, -0.9844599962234497, 0.3004800081253052, 0.4672200083732605, -0.45688000321388245, 0.37957000732421875, -0.14760999381542206, -0.36757001280784607, 0.6692000031471252, -0.021656999364495277, 0.8418800234794617, -0.592710018157959, 0.19077999889850616, -0.22357000410556793, -0.7122700214385986, -0.593209981918335, -0.5712800025939941, 0.0241519995033741, 0.1485999971628189, 0.685920000076294, 0.44130000472068787, 0.7392200231552124, -0.6462200284004211, 0.21332000195980072, 0.30702999234199524, 0.7001199722290039, -0.3082199990749359, -0.7668600082397461, -0.6737200021743774, 0.17301000654697418, -0.2083200067281723, -0.8236500024795532, -0.23157000541687012, 0.1733900010585785, -0.1506499946117401, -1.0080000162124634, 0.11997000128030777, -0.4056999981403351, 0.9284300208091736, 0.30527999997138977, -0.3534500002861023, -0.4323999881744385, 0.21352000534534454, -0.4711500108242035, 0.3779500126838684, 0.1365399956703186, -0.048677001148462296, 0.23021000623703003, -0.24116000533103943, 0.08286699652671814, -0.17038999497890472, -0.25183001160621643, 0.14982999861240387, 0.6833999752998352, 0.0603489987552166, -0.044169001281261444, -0.3857100009918213, 0.05337199941277504, -0.36800000071525574, 0.4078199863433838, -0.5674899816513062, -0.014801000244915485, -0.11683999747037888, -0.16410000622272491, -0.4146000146865845, 0.44001999497413635, -0.012071000412106514, -0.7459499835968018, 0.4831700026988983, -0.18478000164031982, -0.10028000175952911, 0.5861899852752686, -0.4338200092315674, -0.11840999871492386, 0.7421900033950806, 0.12126000225543976, 0.3616600036621094, 0.2662999927997589, -0.5186600089073181, 0.3624500036239624, -0.11069999635219574, -0.1050800010561943, -0.3080100119113922, -0.4768500030040741, -0.5095800161361694, -0.4652099907398224, -0.16821999847888947, -0.012581000104546547, 0.23033000528812408, 0.36458998918533325, 0.1653199940919876, 0.24772000312805176, 0.24128000438213348, 0.794700026512146, 0.24796999990940094, -1.1758999824523926, -0.16561999917030334, -0.3568800091743469, 0.41363000869750977, 0.5619300007820129, 0.4020000100135803, -0.09793400019407272, -0.14392000436782837, 0.3863300085067749, 0.2658500075340271, -0.3933899998664856, 0.05049299821257591, -0.03240099921822548, 0.7394599914550781, 0.011323999613523483, 0.726610004901886, -0.05703999847173691, 0.27399998903274536, 0.12636999785900116, -0.3090600073337555, -0.3852100074291229, 0.2943199872970581, -0.14114999771118164, -0.2866399884223938, 0.1400900036096573, -0.0939439982175827, -0.05731400102376938, -0.1365399956703186, -0.23427000641822815, 0.03432299941778183, -0.6599799990653992, -0.16694000363349915, 0.27713000774383545, 0.11958999931812286, -0.3006100058555603, -0.2585600018501282, 0.213469997048378, -0.23250000178813934, -0.5044800043106079, 0.03039100021123886, 0.14961999654769897, 0.30243998765945435, -0.8649600148200989, -0.05845300108194351, -0.019686000421643257, 0.10708999633789062, -0.7445799708366394, 1.3562999963760376, -0.010790999978780746, 0.29673001170158386, -0.4191800057888031, 0.3146199882030487, 0.4111100137233734, 0.45859000086784363, -0.12709000706672668, 0.23739999532699585, 0.29350000619888306, 0.12272000312805176, -0.361050009727478, 0.034692998975515366, -0.3689500093460083, -0.11210999637842178, 0.0069367000833153725, -0.13892999291419983, -0.10366000235080719, 0.849120020866394, 0.1263899952173233, -0.39809998869895935, 0.6098399758338928, -1.3558000326156616, 0.4095799922943115, -0.834089994430542, -0.12363000214099884, 0.46070998907089233, -0.1745699942111969, -0.8152999877929688, 0.45579999685287476, 0.09597299993038177, -0.1712999939918518, 0.019442999735474586, 0.07479999959468842, -0.5562400221824646, 0.035937000066041946, 0.6139299869537354, -0.17691999673843384, -0.6892899870872498, 0.409960001707077, 0.36873000860214233, 0.10424000024795532, -0.3489600121974945, 0.26374000310897827, 0.03446599841117859, -0.05295500159263611], u'leaf': [-0.19212999939918518, 0.7793800234794617, 0.07630199939012527, -0.557420015335083, -0.2798500061035156, -0.14020000398159027, -0.2928999960422516, 0.14044000208377838, -0.040626998990774155, -0.3824400007724762, -0.22181999683380127, 0.5963799953460693, -0.7333899736404419, 0.37591999769210815, -0.034487999975681305, 0.3309899866580963, -0.844980001449585, -0.004673699848353863, -0.07080700248479843, -0.3259899914264679, -0.5351399779319763, 0.07971599698066711, 0.21478000283241272, 0.07250600308179855, 0.26280999183654785, -0.5806300044059753, -0.11929000169038773, -0.35666000843048096, 0.35440999269485474, 0.09118500351905823, 0.11935999989509583, 0.4087600111961365, -0.16301999986171722, 0.3161799907684326, -0.6691100001335144, 0.19944000244140625, -0.2874799966812134, -0.050613000988960266, -0.009379999712109566, -0.06776200234889984, -0.8511000275611877, 0.15921999514102936, -0.3678799867630005, -0.303739994764328, 0.3681100010871887, -0.8611400127410889, 0.21807999908924103, 0.30289000272750854, -0.6973099708557129, -0.44839999079704285, -0.06901299953460693, -0.2979399859905243, -0.03999499976634979, -0.03654199838638306, -0.10041999816894531, -0.2151000052690506, -0.3263300061225891, 0.323529988527298, 0.0070615001022815704, -0.21814000606536865, -0.1310500055551529, -0.33004000782966614, 0.38960000872612, -0.054037000983953476, -0.12093999981880188, -0.12189999967813492, -0.3631899952888489, 0.37233999371528625, -0.1726900041103363, 0.2797200083732605, -0.33932000398635864, -0.3147200047969818, -0.08184300363063812, 0.7458999752998352, -1.225000023841858, 0.3926900029182434, 0.24627000093460083, -0.42423999309539795, -0.08461199700832367, -0.008894099853932858, -0.4464299976825714, 0.19257000088691711, -0.5254899859428406, -0.3240399956703186, -0.2002599984407425, 0.15028999745845795, -0.3087199926376343, -0.3140000104904175, -0.6164000034332275, -0.006736000068485737, 0.3850399851799011, -0.42386001348495483, 0.23056000471115112, -0.334199994802475, 0.05225500091910362, -0.2492000013589859, 0.2298399955034256, -0.3070400059223175, 0.4330500066280365, -0.09096899628639221, 0.2942200005054474, -0.46452000737190247, -0.34233999252319336, 0.03380399942398071, -0.8305500149726868, 0.06793399900197983, 0.05587000027298927, -0.3074199855327606, -0.02418000064790249, 0.5957900285720825, -0.03846300020813942, 0.38398000597953796, 0.4547399878501892, -0.2642799913883209, -0.31992998719215393, 0.3152799904346466, -0.563510000705719, 0.5330700278282166, -0.41442999243736267, 0.17556999623775482, -0.45732998847961426, -0.8593699932098389, 0.5182499885559082, 0.0976639986038208, -0.5329099893569946, 0.028139999136328697, -0.07698400318622589, 0.6063799858093262, -0.13600000739097595, 0.6333000063896179, 0.2008499950170517, 1.0746999979019165, 0.13225999474525452, 0.09022200107574463, 0.3970299959182739, -0.04890900105237961, -0.23037000000476837, 0.04885600134730339, -0.06612599641084671, -0.11632999777793884, 0.79899001121521, 0.6460000276565552, -0.4943599998950958, -0.4103200137615204, 0.1004600003361702, 0.17518000304698944, 0.08052200078964233, -0.5375800132751465, 0.8523100018501282, -0.06580399721860886, -0.1773499995470047, -0.18474000692367554, -0.08566799759864807, -0.1801300048828125, 0.08231800049543381, -0.2902100086212158, 0.2743000090122223, -0.6952199935913086, -0.22116999328136444, 0.001855500042438507, -0.08706499636173248, -0.5199900269508362, -0.03853899985551834, 0.03623099997639656, 0.5069000124931335, 0.08224199712276459, -0.2621000111103058, 0.6905099749565125, -0.3601300120353699, -0.8814600110054016, -0.332179993391037, -0.48827001452445984, 0.02477400004863739, 0.4898500144481659, 0.2347699999809265, -0.45565998554229736, 0.6538199782371521, 0.7981299757957458, 0.061896998435258865, -0.35499998927116394, -0.35453000664711, -0.14390000700950623, -0.3614700138568878, -0.30292001366615295, 0.4651600122451782, 0.1421699970960617, 0.6559299826622009, 0.09432999789714813, 0.7712900042533875, 0.06218999996781349, -0.18250000476837158, 0.9620800018310547, 0.11771000176668167, 0.4495899975299835, 0.17566999793052673, 0.31957000494003296, 0.7640299797058105, -0.17362000048160553, -0.0039923000149428844, 1.0815000534057617, 0.21198999881744385, -0.035585999488830566, -0.055955998599529266, 0.03258499875664711, 0.20687000453472137, 0.18624000251293182, 0.5508099794387817, -0.00026592001086100936, 0.20347000658512115, -0.12004999816417694, 0.8617900013923645, -0.7152299880981445, 0.45596998929977417, -0.06038999930024147, 0.162540003657341, -0.06796000152826309, 0.272379994392395, 0.11022000014781952, -0.03898699954152107, -0.013275000266730785, 0.2610799968242645, -0.42318999767303467, -0.6974499821662903, 0.06792700290679932, -0.3170599937438965, 0.4312500059604645, 0.2641099989414215, -0.19794000685214996, 0.12643000483512878, 0.27358001470565796, -0.024153999984264374, -0.554669976234436, 0.3781299889087677, 0.30289000272750854, -0.05415499955415726, 0.21196000277996063, 0.2188200056552887, -0.6573100090026855, -0.7114499807357788, -0.5687299966812134, 0.29829999804496765, -0.5887799859046936, -0.5357900261878967, -0.24244000017642975, -1.333400011062622, -0.10194999724626541, 0.2649799883365631, 0.6249200105667114, -0.6280500292778015, -0.11416000127792358, -0.02203799970448017, 0.02959899976849556, -0.357699990272522, -0.4323999881744385, 0.7591599822044373, 0.5316399931907654, 0.561489999294281, -0.08079499751329422, -0.04645700007677078, -0.315310001373291, -0.4135900139808655, -0.605970025062561, 0.40018999576568604, 0.003300500102341175, -0.01563899964094162, 0.34419000148773193, 0.4146699905395508, 0.47694000601768494, 0.0731630027294159, -0.04755700007081032, -0.013125999830663204, -0.3549399971961975, -0.05705900117754936, 0.46845000982284546, -0.4762299954891205, 0.36445000767707825, -0.5850200057029724, -0.576449990272522, -0.04423699900507927, -0.180649995803833, -0.33417999744415283, -0.09279099851846695, -0.5704699754714966, -0.04216200113296509, -0.5335000157356262, 0.11591000109910965, 0.2337699979543686, -0.29603999853134155, 0.1011900007724762, -0.3671799898147583, 0.06294099986553192, 0.4457400143146515, -0.10228999704122543, 0.3844200074672699, 0.35600998997688293, 0.4993099868297577, 0.10209000110626221, 0.26774001121520996, -0.0037094999570399523, -0.48954999446868896], u'jewelry': [0.1306300014257431, 0.36125999689102173, -0.6030499935150146, 0.22869999706745148, 0.20601999759674072, 0.020987000316381454, 0.5874000191688538, -0.17427000403404236, -0.25540000200271606, -1.1065000295639038, -0.15514999628067017, -0.4785900115966797, -0.3109099864959717, 0.8440899848937988, 0.2244500070810318, -1.045799970626831, 0.09715799987316132, 0.07868599891662598, -0.25964000821113586, -0.20819999277591705, 0.37766000628471375, 0.1257999986410141, 0.009919200092554092, -0.13831999897956848, -0.15365000069141388, -0.5988799929618835, -0.31080999970436096, -0.2257000058889389, 0.20074999332427979, 0.06360699981451035, 0.3013800084590912, 0.9493100047111511, -0.10824000090360641, 0.3172900080680847, -0.523859977722168, 0.23863999545574188, -0.2738499939441681, -0.0536389984190464, 0.288129985332489, -0.3420200049877167, -0.48214998841285706, -0.7323499917984009, 0.23343999683856964, 0.3517400026321411, 0.10903999954462051, -0.23746000230312347, 0.46650999784469604, -0.4820300042629242, -0.024342000484466553, 0.4221299886703491, -0.1278800070285797, -0.4375, 0.4711199998855591, 0.2652300000190735, -0.33289000391960144, -0.6098099946975708, -1.0896999835968018, -0.07479699701070786, -0.10739000141620636, -0.4346100091934204, -0.051190998405218124, 0.22797000408172607, -0.134210005402565, -0.1062299981713295, 0.7431600093841553, 0.20521000027656555, -0.46435999870300293, -0.07148800045251846, 0.33261001110076904, -0.4952299892902374, -0.22519999742507935, -0.5933399796485901, 0.5269299745559692, -0.05869400128722191, 0.30013999342918396, -0.17092999815940857, -0.006229899823665619, -0.5732600092887878, 0.1305299997329712, -0.1936199963092804, -0.30518999695777893, -0.04757000133395195, -0.13913999497890472, 0.17422999441623688, 0.5319700241088867, -0.06374900043010712, -0.42792001366615295, -0.476500004529953, -0.2680499851703644, 0.4160600006580353, 0.11015000194311142, 0.09224899858236313, -0.13760000467300415, -0.30000999569892883, 0.2739199995994568, 0.3496699929237366, -0.20973999798297882, -0.41005000472068787, 0.5178999900817871, -0.37498000264167786, 0.42802000045776367, 0.3428399860858917, 0.03696399927139282, 0.06679300218820572, -0.016579000279307365, -0.9123799800872803, 0.9020000100135803, -0.25582998991012573, -0.04056699946522713, -0.5602200031280518, -0.0477680005133152, 0.3990800082683563, -0.04764999821782112, 0.03881699964404106, 0.397460013628006, 0.3102799952030182, 0.23246000707149506, 0.27077001333236694, 0.2381500005722046, -0.1482200026512146, 0.5036299824714661, 0.43206000328063965, 0.24900999665260315, -0.01815900020301342, -0.24669000506401062, -0.024431999772787094, 0.24483999609947205, 0.16913999617099762, -0.05115300044417381, -0.09657800197601318, -0.3643200099468231, -0.13502000272274017, 0.01974399946630001, -0.20985999703407288, -0.6910300254821777, 0.5125899910926819, 0.37882000207901, 0.12117999792098999, -0.13072000443935394, 0.25409001111984253, 0.05915600061416626, 0.09160099923610687, 0.8875100016593933, -0.3491300046443939, 0.7531700134277344, -0.22624999284744263, -0.1257600039243698, 0.3181599974632263, -0.15046000480651855, -0.41637998819351196, 0.32868000864982605, 0.028579000383615494, 0.13181999325752258, -0.7728000283241272, -0.5662599802017212, 0.02768700011074543, -0.7124699950218201, -0.10533999651670456, -0.10805000364780426, -0.20562000572681427, 0.5954300165176392, 0.2529999911785126, 0.30160000920295715, 0.21704000234603882, 0.6567000150680542, -0.2414100021123886, 1.1448999643325806, -0.3832800090312958, 0.16322000324726105, 0.36021000146865845, -0.5404800176620483, 0.22223000228405, -0.16355000436306, 0.29381999373435974, -0.08078700304031372, 0.35853999853134155, -0.2739199995994568, 0.14328999817371368, -0.018806999549269676, -0.023365000262856483, -0.23601000010967255, -0.2488500028848648, -0.12635000050067902, 0.043101999908685684, 0.5093799829483032, 0.15498000383377075, 0.9580199718475342, 0.5866600275039673, -0.06215300038456917, -0.44881999492645264, 0.17441999912261963, -0.27215999364852905, -0.3786099851131439, 0.541379988193512, 0.17524999380111694, -0.17654000222682953, -0.5603899955749512, -0.5316500067710876, -0.1426600068807602, 0.0217289999127388, 0.42778000235557556, -0.1500599980354309, 0.1664399951696396, 0.5444599986076355, 0.6568199992179871, 0.260919988155365, -0.01643799990415573, 0.3867500126361847, -0.6648499965667725, -0.3254700005054474, 0.2874700129032135, 0.618910014629364, 0.197270005941391, 0.325980007648468, 0.2025900036096573, -0.0310830008238554, 0.48691999912261963, -0.23122000694274902, -0.27915000915527344, 0.14067000150680542, 0.08503899723291397, -0.7408900260925293, -0.0763079971075058, -0.09667400270700455, -0.4153299927711487, 0.6246200203895569, -0.5590000152587891, 0.3683300018310547, 0.7324600219726562, 0.2487799972295761, 0.3530200123786926, -0.01524799969047308, -0.2555600106716156, 0.42204999923706055, 0.3224799931049347, 0.3008100092411041, 0.629610002040863, -0.3542500138282776, -0.7005400061607361, -0.23274999856948853, 0.11314000189304352, 0.23763999342918396, -0.15445999801158905, 0.6314299702644348, 0.05350799858570099, -0.05710100010037422, -0.1659500002861023, -0.5781800150871277, 0.0641779974102974, 0.38019001483917236, 0.2993600070476532, 0.15047000348567963, 0.05538799986243248, -0.17903999984264374, 0.30987000465393066, -0.021362999454140663, -0.3151499927043915, -0.044190000742673874, 0.1999099999666214, -0.2036599963903427, -0.27823999524116516, -0.777970016002655, 0.053463999181985855, 0.07854799926280975, 0.29183000326156616, -0.09916900098323822, -0.04066599905490875, 0.30074000358581543, 0.030030999332666397, 0.2980000078678131, 0.2478799968957901, -0.017465999349951744, 0.17595000565052032, -0.1448100060224533, -0.36493998765945435, -0.0508279986679554, -0.9142500162124634, -0.11789000034332275, -1.3460999727249146, -0.12081000208854675, 0.5376700162887573, 0.2845900058746338, 0.02741299942135811, -0.12256000190973282, -0.2008800059556961, 0.6075800061225891, 0.015484999865293503, 0.1899300068616867, 0.06322299689054489, -0.06603100150823593, 0.28384000062942505, -0.13744999468326569, -0.3203499913215637, 0.8785499930381775, -0.1655000001192093, -0.2723900079727173, 0.6957799792289734, -0.009079400449991226, 0.5099200010299683, 0.00026298000011593103], u'lead': [0.05884300172328949, 0.40626001358032227, -0.4595099985599518, 0.18254999816417694, -0.18449999392032623, -0.42201000452041626, -0.3834899961948395, 0.3056100010871887, 0.9052799940109253, -0.9515500068664551, 0.07426200062036514, 0.011189999990165234, -0.6607099771499634, 0.051079001277685165, 0.2122800052165985, -0.010638000443577766, -0.36777999997138977, 0.03553999960422516, -0.006157999858260155, 0.3153400123119354, -0.47102999687194824, -0.4758400022983551, 0.11174999922513962, -0.0649230033159256, -0.22556999325752258, -0.19111000001430511, 0.38078001141548157, -0.24695999920368195, -0.23588000237941742, -0.3880600035190582, -0.4882600009441376, 0.01669500023126602, 0.20069999992847443, 0.014360000379383564, -1.6449999809265137, -0.21942999958992004, 0.0117790000513196, 0.23160000145435333, 0.25220999121665955, 0.21119999885559082, -0.36149001121520996, -0.3856799900531769, 0.15584999322891235, -0.2127400040626526, -0.30191001296043396, -0.30243998765945435, 0.1966100037097931, -0.02796100080013275, -0.25602999329566956, -0.2854999899864197, -0.2531599998474121, 0.30289000272750854, -0.04812699928879738, 0.18382999300956726, 0.21132999658584595, -0.0027568999212235212, 0.3531099855899811, -0.08211199939250946, 0.10299000144004822, 0.13654999434947968, 0.06295599788427353, 0.5373700261116028, 0.35069000720977783, 0.13211999833583832, 0.5590699911117554, -0.065870001912117, 0.32401999831199646, 0.14076000452041626, 0.15848000347614288, -0.2483299970626831, -0.050390999764204025, -0.026580000296235085, 0.27605000138282776, 0.24664999544620514, 0.24849000573158264, 0.11648999899625778, -0.5921599864959717, 0.22859999537467957, -0.30616000294685364, -0.5024799704551697, -0.13109000027179718, 0.4385800063610077, 0.15320999920368195, 0.5393400192260742, -0.16731999814510345, 0.19540999829769135, 0.10822000354528427, 0.21003000438213348, 0.15423999726772308, -0.3940199911594391, 0.15255999565124512, 0.34014999866485596, 0.018799999728798866, -0.6295199990272522, -0.6229599714279175, -0.0425879992544651, -0.4133400022983551, -0.16401000320911407, -0.32412999868392944, -0.5534899830818176, -0.18785999715328217, -0.05865899845957756, 0.3675900101661682, -0.18709999322891235, 0.2172199934720993, 0.0006722899852320552, -0.24684999883174896, 0.19083000719547272, -0.5116699934005737, -0.3229900002479553, 0.03315199911594391, -0.20367999374866486, -0.06321299821138382, -0.1629199981689453, 0.3175700008869171, 0.6836100220680237, 0.30202001333236694, 0.039709001779556274, 0.3765699863433838, -0.007819700054824352, -0.4314799904823303, 0.21403999626636505, 0.33105000853538513, 0.12932999432086945, -0.21080000698566437, -0.31876999139785767, -0.07220300287008286, 0.07077699899673462, -0.1609800010919571, -0.08305999636650085, 0.4858100116252899, 0.2960900068283081, -0.08056899905204773, -0.11048000305891037, 0.6120399832725525, 0.7713900208473206, -0.25036001205444336, -0.22107000648975372, 0.3345000147819519, 0.5723000168800354, -0.45208999514579773, -0.2608700096607208, 0.33562999963760376, 0.20430999994277954, -0.42052000761032104, -0.050703998655080795, 0.20868000388145447, -0.27333998680114746, 0.13278000056743622, -0.20381000638008118, 0.46094998717308044, 0.10307999700307846, 0.27709999680519104, -0.1665399968624115, 0.6467599868774414, 0.4934900104999542, -0.412880003452301, 0.5123199820518494, -0.0905739963054657, 0.0196749996393919, -0.33928999304771423, -0.14539000391960144, 0.21020999550819397, -0.039882998913526535, -0.0879879966378212, 0.054179999977350235, -0.09771499782800674, -0.0031568999402225018, -0.597350001335144, 0.30807000398635864, 0.0778999999165535, -0.012392999604344368, 0.14861999452114105, -0.006022999994456768, 0.0989060029387474, -0.3591499924659729, -0.5066199898719788, 0.2686600089073181, -0.13600000739097595, 0.7709599733352661, 0.06710100173950195, 0.5381900072097778, 0.5603500008583069, 0.10734999924898148, -0.5701299905776978, -0.08855800330638885, -0.8523600101470947, -0.2088800072669983, -0.13221000134944916, 0.33258000016212463, 0.29269999265670776, 0.37209001183509827, -0.08570300042629242, -0.08284900337457657, 0.32951000332832336, -0.21844999492168427, 0.49897998571395874, -0.008831200189888477, 0.42407000064849854, 0.18640999495983124, 1.0520000457763672, 0.4218200147151947, -0.0013776000123471022, -0.41284000873565674, 0.02265400066971779, 0.6196799874305725, 0.010418999940156937, -0.2724199891090393, -0.7446500062942505, 0.34727999567985535, 0.14041000604629517, 0.20009000599384308, 0.33274000883102417, 0.6069899797439575, 0.35589998960494995, 0.19325000047683716, 0.41705000400543213, -0.051628999412059784, 0.10165999829769135, -0.3548699915409088, 0.05741700157523155, -0.10975000262260437, -0.5028799772262573, -0.0044824001379311085, -0.1246500015258789, 0.2747499942779541, -0.24688999354839325, 0.47238001227378845, -0.22267000377178192, 0.1170400008559227, -0.23537999391555786, 0.2984200119972229, 0.3627699911594391, -0.0512939989566803, -0.34560999274253845, 0.3357900083065033, 0.06130199879407883, 0.18357999622821808, 0.14981000125408173, 0.31856000423431396, -0.01792600005865097, 0.14003999531269073, 0.09427999705076218, 0.039361998438835144, -0.9168699979782104, -0.04997200146317482, 0.24792000651359558, 0.4244900047779083, -0.10007999837398529, 0.1926400065422058, -0.23684999346733093, -0.28582999110221863, -0.2364799976348877, -0.265500009059906, 0.7471699714660645, -0.06415999680757523, 0.28110000491142273, -0.3055199980735779, -0.28244999051094055, 0.2665500044822693, -0.09155400097370148, -0.6607999801635742, -0.02215700037777424, 0.2267400026321411, -0.37380000948905945, 0.14670999348163605, 0.4151900112628937, -0.060839999467134476, 0.23746000230312347, -0.7507299780845642, 0.2937299907207489, 0.22684000432491302, -0.19437000155448914, 0.18723000586032867, 0.19701999425888062, -0.2848599851131439, -1.3188999891281128, -0.4140099883079529, 0.23255999386310577, 0.12791000306606293, 0.09021099656820297, 0.3940199911594391, -0.07093299925327301, 0.4253700077533722, 0.24651999771595, 0.04112299904227257, -0.43007001280784607, 0.3092600107192993, 0.13289999961853027, 0.1844799965620041, -0.5990899801254272, -0.17847999930381775, -0.6263200044631958, 0.6103399991989136, 0.10062000155448914, 0.6920099854469299, -0.262470006942749, -0.7986099720001221, -0.46720001101493835, -0.25231000781059265], u'garage': [0.1714099943637848, -0.024204999208450317, -0.6056900024414062, -0.05585800111293793, 0.15432000160217285, -0.10322000086307526, 0.24619999527931213, 0.1661600023508072, 0.03523299843072891, -0.162540003657341, -0.047262001782655716, -0.020997999235987663, 0.736810028553009, 0.3774600028991699, 0.08424399793148041, 0.14032000303268433, -0.34095001220703125, -0.39838001132011414, -0.17810000479221344, 0.47067001461982727, 0.48820000886917114, 0.707610011100769, 0.054388001561164856, 0.041127000004053116, -0.18807999789714813, -0.21236999332904816, -0.011106000281870365, 0.4941500127315521, -0.1103999987244606, -0.25161999464035034, -0.2625100016593933, 0.11259999871253967, -0.11578000336885452, 0.17632000148296356, 0.029349999502301216, 0.5141100287437439, -0.48100998997688293, -0.32615000009536743, -0.16512000560760498, 0.047143999487161636, -0.0764160007238388, 0.2790899872779846, -0.32447001338005066, 0.13405999541282654, 0.5200300216674805, 0.5521399974822998, 0.5616899728775024, -0.049573998898267746, -0.25189000368118286, -0.4069100022315979, 0.13824999332427979, -0.35089999437332153, -0.15306000411510468, 0.2458599954843521, 0.33228999376296997, 0.03685100004076958, 0.04027299955487251, 0.24772000312805176, 0.000771439983509481, -0.3520199954509735, 0.05708400160074234, 0.24406999349594116, 0.1657799929380417, 0.2578200101852417, -0.126010000705719, -0.342629998922348, 0.33164000511169434, -0.24602000415325165, -0.2376600056886673, -0.2934899926185608, -0.30776000022888184, -0.2028300017118454, -0.09194900095462799, 0.40834999084472656, -0.8328999876976013, -0.057133998721838, -0.45809000730514526, -0.46604999899864197, 0.5087299942970276, -0.44130998849868774, -0.09651000052690506, 0.5616199970245361, 0.4296000003814697, -0.07686000317335129, -0.07923799753189087, -0.2331400066614151, 0.5392600297927856, 0.7534599900245667, -0.14530999958515167, 0.385560005903244, 0.9824900031089783, 0.43682000041007996, 0.4181300103664398, 0.07318700104951859, 0.03104100003838539, -0.3937700092792511, 0.013206999748945236, -0.6934599876403809, 0.4927099943161011, -0.6530100107192993, -0.12918999791145325, 0.19480000436306, 0.04659700021147728, -0.10897000133991241, 0.16000999510288239, -0.2090200036764145, 0.17044000327587128, 0.10763999819755554, -0.13662000000476837, -0.21734000742435455, -0.1492999941110611, -0.32300999760627747, 0.21521000564098358, 0.19824999570846558, 0.054558999836444855, 0.10277999937534332, -0.264490008354187, -0.1457500010728836, -0.5940300226211548, -0.13702000677585602, 0.16128000617027283, -0.1956000030040741, 0.33959001302719116, -0.3929400146007538, -0.2252500057220459, -0.04411400109529495, -0.3234800100326538, -0.41936999559402466, 0.23905999958515167, 0.24868999421596527, 0.8230699896812439, -0.017062000930309296, 0.6257299780845642, -0.19616000354290009, 0.23799000680446625, 0.12500999867916107, 0.13738000392913818, -0.15175999701023102, -0.48906001448631287, -0.14535999298095703, 0.10825999826192856, -0.21379999816417694, 0.30741000175476074, -0.03166399896144867, -0.17560000717639923, 0.07098899781703949, 0.04395899921655655, 0.07978100329637527, 0.09325499832630157, -0.00150090001989156, 0.005167100112885237, 0.6240299940109253, -0.1647000014781952, -0.9689800143241882, 0.3042300045490265, 0.11366000026464462, 0.07059799879789352, 0.42798998951911926, 0.2883799970149994, 0.32809001207351685, 0.09754899889230728, 0.2686299979686737, -0.2118300050497055, -0.009622800163924694, 0.3677600026130676, 0.3993299901485443, 0.16030000150203705, -0.09668800234794617, 0.44249001145362854, -0.2537600100040436, 0.12830999493598938, 0.4687899947166443, 0.5004900097846985, -0.16585999727249146, -0.17829999327659607, 0.36976999044418335, -0.43678000569343567, -0.1942799985408783, 0.43560999631881714, -0.36654001474380493, 0.16232000291347504, -0.10041999816894531, 0.09769999980926514, 0.3944999873638153, 0.19625000655651093, 0.05955599993467331, 0.9829999804496765, 0.1703999936580658, 0.2692300081253052, 0.16258999705314636, 0.484140008687973, -0.1906599998474121, -0.10045000165700912, 0.06488200277090073, -0.3911300003528595, 0.006660799961537123, -0.40619000792503357, 0.4228900074958801, -0.3800300061702728, 0.008769599720835686, 0.480459988117218, -0.3772900104522705, 0.43716999888420105, -0.350380003452301, 0.16902999579906464, -0.11907999962568283, -0.025557000190019608, -0.3018999993801117, -0.030758999288082123, -0.0023572000209242105, -0.2518799901008606, -0.17780999839305878, -0.25207000970840454, 0.13654999434947968, 0.06803800165653229, 0.3767299950122833, -0.2924000024795532, 0.16550999879837036, 0.3768399953842163, 0.5975099802017212, 0.7352200150489807, -0.4323199987411499, -0.48789000511169434, -0.26429998874664307, 0.1945900022983551, -0.08306500315666199, -0.527970016002655, -0.037762001156806946, 0.26949000358581543, -0.09740500152111053, 0.16592000424861908, -0.2879300117492676, -0.298909991979599, -0.31911998987197876, 0.5359399914741516, 0.057746998965740204, 0.5276600122451782, 0.5090699791908264, -0.9867600202560425, 0.45344001054763794, 0.26594001054763794, -0.2606799900531769, -0.24199999868869781, 0.1709900051355362, 0.060460999608039856, -0.6822999715805054, 0.4072299897670746, -0.16242000460624695, -0.12943999469280243, 0.0748559981584549, 0.06405899673700333, 0.24884000420570374, -0.23083999752998352, -0.06370899826288223, -0.24977999925613403, -0.03475100174546242, 0.1906999945640564, -0.07694800198078156, 0.4588199853897095, 0.010387999936938286, 0.13461999595165253, 0.08706299960613251, 0.14110000431537628, -0.038885001093149185, -0.11151000112295151, 0.10181999951601028, 0.05688700079917908, -0.0628649964928627, -0.0665379986166954, -0.4712600111961365, -0.12555000185966492, 0.16085000336170197, -0.13506999611854553, -0.6240500211715698, 0.3026300072669983, 0.1126599982380867, -1.5491000413894653, 0.22915999591350555, -0.2243500053882599, -0.07867400348186493, -0.4196299910545349, -0.10961999744176865, -0.21499000489711761, 0.25793999433517456, -0.21212999522686005, 0.690090000629425, 0.21730999648571014, 0.04353199899196625, -0.13773000240325928, -0.1834300011396408, 0.056046999990940094, -0.17971999943256378, -0.6489499807357788, 0.45614999532699585, 0.3722800016403198, 0.26506999135017395, 0.2355400025844574, 0.06105300039052963, 0.2696399986743927, 0.576229989528656], u'armor': [0.23994000256061554, -0.00035538000520318747, -0.4088999927043915, -0.18571999669075012, -0.30946001410484314, 0.07068099826574326, 0.45013999938964844, 0.3596700131893158, -0.1143300011754036, -1.0305999517440796, 0.3476400077342987, -0.10126999765634537, -0.613510012626648, 0.27250999212265015, -0.3903999924659729, 0.10938999801874161, 0.07823199778795242, 0.028032999485731125, -0.4499500095844269, -0.7025399804115295, 0.7197999954223633, -0.4544000029563904, 0.37303999066352844, 0.02646300010383129, 0.3995400071144104, -0.3359000086784363, 0.4725300073623657, 0.5789099931716919, 0.21936999261379242, 0.8840299844741821, 0.40459001064300537, 0.4774799942970276, 0.12042000144720078, -0.412990003824234, 0.21773000061511993, -0.5580400228500366, 0.27059000730514526, 0.11563000082969666, 0.4890500009059906, 0.09544499963521957, 0.07780399918556213, -0.5049700140953064, 0.16437000036239624, -0.17152999341487885, 0.6054999828338623, 0.10294000059366226, 0.14979000389575958, -0.5541899800300598, 0.2356099933385849, -0.45188000798225403, -0.13541999459266663, 0.13420000672340393, 0.1615699976682663, 0.3526900112628937, -0.3897700011730194, -0.6668499708175659, 0.14771999418735504, -0.2621000111103058, 0.539139986038208, -0.15119999647140503, -0.0838640034198761, -0.3408600091934204, -0.1408900022506714, -0.21353000402450562, 0.28317001461982727, 0.6348199844360352, -0.46435999870300293, -0.02496900036931038, 0.36447998881340027, -0.23021000623703003, 0.3963499963283539, -0.13409000635147095, 0.32401999831199646, -0.3032599985599518, 0.2652199864387512, 0.6595100164413452, -0.5621200203895569, 0.048955999314785004, -0.4673199951648712, -0.3825800120830536, 0.2889400124549866, 0.4965899884700775, 0.11625000089406967, 0.04799100011587143, -0.031867001205682755, 0.19875000417232513, -0.012144000269472599, 0.07087100297212601, -0.8351699709892273, -0.016769999638199806, 0.5306000113487244, 0.12547999620437622, 0.024497000500559807, 0.5043500065803528, -0.430869996547699, 0.40895000100135803, -1.121500015258789, 0.659060001373291, 0.573989987373352, -0.1603900045156479, -0.6369900107383728, 0.6139500141143799, -0.0073945000767707825, 0.5399600267410278, 0.6966699957847595, -0.675320029258728, 0.41251999139785767, 0.5406399965286255, -0.07754100114107132, -0.020428000018000603, 0.4071199893951416, 1.1593999862670898, -0.21439999341964722, -0.5227800011634827, -0.6320400238037109, 0.6303300261497498, 0.09421099722385406, -0.03286899998784065, 0.29420000314712524, -0.2706100046634674, 0.3599399924278259, -0.0684249997138977, -0.40821000933647156, 0.25655001401901245, -1.173699975013733, -0.4895699918270111, 0.27039000391960144, -0.06348399817943573, 0.06634700298309326, 0.4307500123977661, -0.14010000228881836, -0.01838500052690506, 0.28001999855041504, 0.6545699834823608, 0.23111000657081604, 0.1102600023150444, -0.16958999633789062, -0.1251399964094162, 0.3208400011062622, 0.7714800238609314, 0.39601999521255493, 0.3147299885749817, 0.20242999494075775, -0.06664100289344788, 0.2284500002861023, 0.10307999700307846, 0.2612600028514862, 0.0121069997549057, -1.1054999828338623, -0.44293999671936035, -0.037838999181985855, -0.9782299995422363, -0.40097999572753906, -0.3019300103187561, 0.6332700252532959, -0.053300999104976654, 0.19349999725818634, -0.2132200002670288, 0.26451000571250916, -0.14007000625133514, 0.14580999314785004, -0.20510999858379364, -0.009821799583733082, -0.17789000272750854, 0.43303000926971436, -0.4090900123119354, 0.06282400339841843, 0.3113499879837036, -0.18926000595092773, -0.031108999624848366, 0.17635999619960785, 0.7215999960899353, 0.4809400141239166, -0.02543400041759014, -0.16391000151634216, -0.5878599882125854, -0.5519000291824341, 0.2689099907875061, 0.20851999521255493, -0.7706500291824341, 0.3164600133895874, -0.3514400124549866, -0.010471999645233154, -0.18369999527931213, 0.0926389992237091, 0.35277000069618225, 0.3515700101852417, 0.6197800040245056, 0.2012300044298172, -0.6265900135040283, -0.27752000093460083, 0.359499990940094, 0.11183000355958939, 0.09637100249528885, 0.26736998558044434, 0.20600999891757965, -0.27138999104499817, -0.23360000550746918, 0.3198300004005432, -0.3139300048351288, 0.5764899849891663, 0.07877200096845627, 0.13761000335216522, -0.1780499964952469, 0.3720499873161316, -0.1878499984741211, -0.019564999267458916, 0.0631370022892952, -0.3354699909687042, -0.09998700022697449, 0.34599000215530396, -0.147939994931221, 0.008011600002646446, -0.2906999886035919, -0.2361299991607666, -0.8409000039100647, 0.8511800169944763, 0.41670000553131104, -0.2323800027370453, -0.10544999688863754, -0.01672700047492981, 0.18987999856472015, 0.3515099883079529, -0.4675599932670593, -0.1125200018286705, 0.21004000306129456, -0.3011699914932251, -0.3942199945449829, 0.052852001041173935, -0.6408600211143494, -0.0562639981508255, 0.10040999948978424, -0.2604300081729889, 0.057732000946998596, 0.15584999322891235, -0.5453199744224548, 0.20263999700546265, -0.2820900082588196, 0.14271000027656555, 0.6599699854850769, 0.46814000606536865, -0.13586999475955963, 0.39765000343322754, 0.07392100244760513, -0.33566999435424805, -0.17768999934196472, -0.8317599892616272, -0.305620014667511, 0.13273000717163086, -0.05307300016283989, -0.2418700009584427, -0.1286499947309494, -0.18765999376773834, -0.19884000718593597, 0.28567999601364136, -0.2965799868106842, -0.29526999592781067, -0.5496500134468079, 0.02849300019443035, -0.0791039988398552, -0.47661998867988586, 0.08991699665784836, 0.3023900091648102, 0.08818499743938446, -0.09723400324583054, 0.36851000785827637, -0.2793099880218506, -0.24462999403476715, -0.06382399797439575, 0.349590003490448, -0.5982000231742859, -0.16074000298976898, -0.08567100018262863, 0.19997000694274902, -0.7185699939727783, 0.05863400176167488, -0.7035099864006042, -0.1318800002336502, -1.1191999912261963, 0.3950499892234802, 0.7444999814033508, -0.1135300025343895, 0.23124000430107117, 0.23871000111103058, 0.23670999705791473, 0.42493999004364014, -0.2801100015640259, 0.40132999420166016, 0.9532999992370605, -0.32534000277519226, -0.16068999469280243, -0.24583999812602997, -0.4557200074195862, 0.5831699967384338, -0.14469000697135925, 0.8105199933052063, 0.29583001136779785, 0.14970999956130981, -0.17050999402999878, -0.5044000148773193], u'vacuum': [0.6152999997138977, 0.38826999068260193, 0.17948000133037567, -0.48980000615119934, 0.1623300015926361, 0.1844400018453598, 0.3628000020980835, 0.44784998893737793, 0.658050000667572, -1.7776000499725342, -0.0471780002117157, 0.1214200034737587, 0.23251000046730042, -0.5913500189781189, -0.1339299976825714, -0.016625000163912773, -0.3365199863910675, 0.24034999310970306, 0.07574199885129929, 0.48883000016212463, 0.2602800130844116, -0.35436999797821045, 0.6809800267219543, 0.19544999301433563, 0.09415200352668762, 0.2714200019836426, -0.18817000091075897, 0.36146000027656555, 0.6121799945831299, 0.06647499650716782, -0.21762999892234802, -0.16579000651836395, -0.1846799999475479, 0.06141100078821182, 0.40922001004219055, 0.1425900012254715, -0.0878710001707077, 0.47060999274253845, -0.3335599899291992, 0.7427700161933899, -0.6289399862289429, 0.6115999817848206, 0.161080002784729, -0.10839000344276428, -0.4788300096988678, -0.5418199896812439, 0.5981799960136414, 0.2568899989128113, 0.41183000802993774, 0.4809400141239166, 0.20034000277519226, 0.01743300072848797, -0.38269999623298645, 0.6329799890518188, 0.4431700110435486, -0.31619998812675476, 0.48583000898361206, 0.2874799966812134, 0.09720099717378616, 1.0535000562667847, 0.13244999945163727, 0.06641100347042084, 0.4598099887371063, 0.02369300089776516, 0.003754599951207638, 0.006022400222718716, -0.22256000339984894, -0.16223999857902527, -0.26447999477386475, 0.2592400014400482, 0.32813000679016113, -0.3216699957847595, 0.24894000589847565, -0.1732800006866455, -0.21800999343395233, -0.11789999902248383, -0.4745199978351593, 0.08332400023937225, -0.02511800080537796, -0.2816700041294098, -0.21276000142097473, -0.4196699857711792, -0.17295999825000763, -0.0724719986319542, -0.03559200093150139, 0.20893999934196472, 0.4976300001144409, 0.22152000665664673, -0.22506000101566315, -0.039657000452280045, -0.24562999606132507, -0.2509399950504303, -0.20249000191688538, 0.4550800025463104, -0.4436599910259247, -0.4175400137901306, -0.34057000279426575, -0.17228999733924866, 0.797819972038269, -0.4005500078201294, 0.09267999976873398, 0.4454199969768524, -0.21913999319076538, -0.7374200224876404, -0.42094001173973083, 0.15870000422000885, 0.015192000195384026, 0.28575998544692993, -0.2774699926376343, 0.6803299784660339, -0.17178000509738922, 0.18423999845981598, 0.8595700263977051, -0.014041000045835972, 0.16711999475955963, 0.1298699975013733, 0.21118000149726868, 0.020325999706983566, 0.1850699931383133, -0.5011000037193298, 0.8683199882507324, -0.13832999765872955, 0.2921600043773651, -0.3452799916267395, 0.22133000195026398, -0.20874999463558197, 0.3750999867916107, 0.06383199989795685, 0.08631200343370438, 0.8504899740219116, 0.5151299834251404, 0.14027999341487885, 0.15542000532150269, 0.35321998596191406, -0.09364999830722809, -0.00950970035046339, -0.15981000661849976, 0.11847999691963196, 0.09712500125169754, 0.20458999276161194, 0.24097999930381775, -0.02143999934196472, 0.03197300061583519, -0.23512999713420868, -0.4165799915790558, -0.3267099857330322, 0.01813500002026558, 0.1306300014257431, -0.07148399949073792, 0.10849999636411667, -0.3158400058746338, 0.15715999901294708, -0.3119100034236908, -0.22811000049114227, 0.4505099952220917, 0.2502799928188324, -0.1320600062608719, 0.18005000054836273, 0.6063699722290039, 0.1103300005197525, -0.131290003657341, -0.4361500144004822, 0.30779001116752625, 0.6259599924087524, 0.6969699859619141, 0.06123699992895126, 0.3158999979496002, 0.35975000262260437, -0.15525999665260315, -0.3361800014972687, 0.1761299967765808, 0.24675999581813812, 0.44863998889923096, -0.14170999825000763, 0.33511999249458313, -0.5248399972915649, -0.18434999883174896, 0.7419099807739258, -0.5706899762153625, -0.3315899968147278, -0.19115999341011047, 0.27006998658180237, 0.7192100286483765, 0.6462200284004211, -0.17297999560832977, 0.247639998793602, 0.4891799986362457, 0.14067000150680542, 0.3915199935436249, -0.5776699781417847, 0.8484200239181519, -0.13992999494075775, -0.0734969973564148, 0.7640399932861328, 0.09356500208377838, 0.4122300148010254, -0.4030799865722656, -0.0442189984023571, 0.03067700006067753, 0.5770099759101868, -0.2568100094795227, 0.9527599811553955, 0.3719100058078766, 0.07774099707603455, -0.019842000678181648, -0.3812200129032135, -0.09266100078821182, -0.15661999583244324, -0.13722999393939972, -0.18299999833106995, -0.21006999909877777, -0.018962999805808067, 0.7101799845695496, 0.6501799821853638, 0.35738998651504517, -0.2787100076675415, -0.11495000123977661, -0.6354600191116333, -0.21401000022888184, 0.09282799810171127, -0.04290600121021271, -0.0019525999668985605, -0.3347199857234955, -0.4361500144004822, 0.2394700050354004, -0.460860013961792, -0.22806000709533691, 0.1292400062084198, 0.7516099810600281, -0.04461599886417389, 0.22477999329566956, -0.2803399860858917, -0.009112999774515629, -0.3635199964046478, -0.2912299931049347, 0.17270000278949738, -0.10666000097990036, -0.4076699912548065, -0.17513999342918396, -0.350629985332489, 0.2624500095844269, 0.0722000002861023, -0.2714399993419647, 0.6073700189590454, -0.6652799844741821, -1.0428999662399292, 0.47701001167297363, -0.13234999775886536, 0.3078500032424927, -0.047338999807834625, 0.1523600071668625, -0.055803000926971436, -0.3248699903488159, -0.4328800141811371, -0.27195000648498535, 0.05489199981093407, -0.23161999881267548, 0.048948999494314194, 0.8257899880409241, 0.3560200035572052, -0.02659500017762184, -0.9639700055122375, -0.4085899889469147, 0.14368000626564026, 0.30573999881744385, -0.18860000371932983, -0.17630000412464142, 0.4378400146961212, 0.8414899706840515, -0.39294999837875366, -0.43481001257896423, 0.6561099886894226, -0.4321100115776062, -0.16413000226020813, -0.0072964997962117195, -0.0811379998922348, -0.39636000990867615, 0.3278599977493286, -0.07062800228595734, 0.43481001257896423, -0.05313200131058693, -0.006355599965900183, -0.16033999621868134, 0.367220014333725, 0.86531001329422, 0.13288000226020813, 0.30107998847961426, 0.4180600047111511, 0.11976999789476395, -0.3712399899959564, -0.30204999446868896, 0.1796099990606308, 0.6595199704170227, -0.010049999691545963, 0.6842700242996216, 0.21041999757289886, -0.12668000161647797, -0.20607000589370728, -0.2868100106716156, 0.9678699970245361], u'granite': [-0.44776999950408936, 0.026924999430775642, -0.2526099979877472, -0.5906699895858765, 0.40112000703811646, -0.06355900317430496, 0.2502099871635437, -0.11614000052213669, 0.14071999490261078, -0.28925999999046326, -0.7170000076293945, -0.38183000683784485, 0.39201000332832336, 0.39190998673439026, 0.579200029373169, -0.017532000318169594, -0.4298099875450134, -0.3496899902820587, -0.16888000071048737, -0.5410699844360352, -0.6516299843788147, 0.34551000595092773, 0.04324999824166298, 0.37389999628067017, -0.6895999908447266, -0.5691499710083008, -0.0379600003361702, 0.6198199987411499, -0.6168500185012817, 0.22883999347686768, 0.7884399890899658, 0.9860399961471558, -0.6023799777030945, 0.07298800349235535, 0.4183500111103058, 0.12393999844789505, -0.4476200044155121, -0.5673499703407288, 0.501990020275116, -0.3883900046348572, -0.2427700012922287, 0.1617400050163269, 0.4867100119590759, 0.1856199949979782, 0.08755899965763092, 0.20777000486850739, -0.023659000173211098, 0.044199999421834946, 0.3149299919605255, -0.5158900022506714, -0.601639986038208, 0.29892998933792114, 0.09891600161790848, 0.3328999876976013, -0.13097000122070312, 0.17381000518798828, -0.5385500192642212, 0.31915000081062317, -0.30171999335289, 0.3420700132846832, 0.45021000504493713, 0.25435999035835266, 0.25982001423835754, -0.3618200123310089, 0.2669599950313568, -0.19628000259399414, -0.5547000169754028, 0.5632299780845642, 0.015212999656796455, -0.31279999017715454, -0.10809999704360962, 0.17726999521255493, -0.6620299816131592, 0.008476699702441692, -0.033576998859643936, 0.3167699873447418, 0.20149999856948853, -0.02814899943768978, 0.33983999490737915, -0.7748299837112427, -0.34435001015663147, 0.60903000831604, 0.2898600101470947, -0.27191001176834106, 0.3434799909591675, 0.6937199831008911, 0.2360599935054779, -0.29273998737335205, 0.3200399875640869, 0.6014599800109863, 0.5288599729537964, 0.1684499979019165, 0.7798399925231934, 0.5504900217056274, -0.7130500078201294, 0.005068299826234579, 0.16348999738693237, -0.5522599816322327, 0.37240999937057495, 0.356440007686615, -0.16292999684810638, 0.5999400019645691, -0.3100700080394745, -0.34185001254081726, -0.33500999212265015, -0.20823000371456146, -0.028282999992370605, 0.23883000016212463, 0.28095999360084534, -0.8080899715423584, -0.14993999898433685, -0.48131000995635986, -0.06632100045681, -0.6892399787902832, -0.31134000420570374, -0.3363400101661682, 0.09663499891757965, 0.08554799854755402, 0.1439400017261505, -0.25185999274253845, 0.06011800095438957, 0.18297000229358673, -0.3297500014305115, 0.3855299949645996, -0.0676800012588501, -0.3006399869918823, 0.2439499944448471, 0.4064300060272217, -0.5809699892997742, -0.47628000378608704, -0.1117900013923645, 0.754859983921051, 0.22182999551296234, -0.2614000141620636, 0.44571998715400696, -0.1932000070810318, -0.7027699947357178, 0.25317999720573425, 0.41677001118659973, 0.04968399927020073, 0.06792400032281876, -0.16912999749183655, -0.09183099865913391, -0.356330007314682, 0.28321000933647156, 0.10683000087738037, 0.04958000034093857, -0.37457001209259033, 0.23082999885082245, -0.574679970741272, 0.335099995136261, -0.021283000707626343, -0.13913999497890472, -0.23632000386714935, 0.3675299882888794, 0.21126000583171844, -0.1662999987602234, -0.11776000261306763, 0.06913500279188156, 0.2963300049304962, -0.6310200095176697, 0.10691999644041061, 0.12309999763965607, 0.4159899950027466, 0.7999399900436401, 0.004567199852317572, 0.3956800103187561, 0.1806900054216385, 0.48127999901771545, 0.028502000495791435, -0.13252000510692596, 0.28167998790740967, 0.45111000537872314, -0.24634000658988953, -0.17090000212192535, 0.34360000491142273, -0.23946000635623932, 0.31477001309394836, 0.10213000327348709, -0.9388999938964844, 0.05179800093173981, 0.17635999619960785, 0.7978600263595581, -0.8182500004768372, -0.6885499954223633, -0.3402999937534332, 0.6537299752235413, 0.37606000900268555, 0.10452999919652939, 0.5648000240325928, 0.8003699779510498, 0.41947001218795776, 0.47881999611854553, 0.3121199905872345, 0.6906899809837341, 0.18685999512672424, -0.2565099895000458, -0.6862000226974487, -0.22914999723434448, -0.12591999769210815, 1.0651999711990356, -0.5066699981689453, -0.5161899924278259, -0.37615999579429626, -0.1325100064277649, 0.00955200009047985, 0.04469199851155281, -0.37112998962402344, -0.7353299856185913, -0.5263699889183044, 0.6973599791526794, 0.5205000042915344, -0.015980999916791916, -0.4322099983692169, -0.2512499988079071, 0.47086000442504883, 0.1315699964761734, -0.5607600212097168, -0.030417999252676964, -0.07482600212097168, 0.18910999596118927, 0.582069993019104, 0.6595900058746338, -0.4940299987792969, -0.02370000071823597, 0.018039999529719353, 0.08405599743127823, -0.06155800074338913, -0.09154199808835983, -0.43129000067710876, -0.46241000294685364, -0.239889994263649, -0.031008999794721603, -0.0632769986987114, -0.04704400151968002, -0.0648140013217926, -0.35019999742507935, -0.37073999643325806, 0.04134700074791908, -0.4359099864959717, -0.2353000044822693, 0.007486999966204166, -0.08688300102949142, -0.6108999848365784, -0.8270900249481201, 0.189410001039505, 0.18147000670433044, -0.021304000169038773, -0.07372000068426132, 0.13913999497890472, 0.28529998660087585, -0.1525000035762787, 0.1169700026512146, -0.3257800042629242, 0.24004000425338745, -0.09447699785232544, 0.0293550007045269, -0.29124000668525696, -0.43435999751091003, 0.18807999789714813, -0.12728999555110931, 0.4939500093460083, 0.7205299735069275, -0.5522199869155884, 0.4725799858570099, 0.026430999860167503, 0.9492200016975403, 0.6938599944114685, 0.6076800227165222, -0.1706400066614151, -0.1057400032877922, -0.33757999539375305, -0.09520000219345093, -0.5651000142097473, -0.2700999975204468, 0.4913400113582611, -0.31696999073028564, 0.3064599931240082, -0.4652799963951111, 0.23871999979019165, -0.09884999692440033, -0.24470999836921692, -0.2978599965572357, -0.17308999598026276, 0.18643000721931458, 0.2916800081729889, -0.5552700161933899, -0.13871000707149506, 0.8124099969863892, -0.2739099860191345, 0.40108999609947205, 0.6928399801254272, -0.07662499696016312, 0.1992100030183792, -0.06644099950790405, 0.3094800114631653, 0.15749000012874603, 0.061868999153375626, 0.0751579999923706, 0.027907000854611397], u'ice': [-0.2854599952697754, 0.2621999979019165, 0.04704200103878975, -0.19529999792575836, -0.2788200080394745, -0.021655000746250153, -0.09509900212287903, 0.21141000092029572, 0.11073999851942062, -0.6259499788284302, -0.460750013589859, -0.6428999900817871, -0.396479994058609, 0.08449999988079071, -0.2779200077056885, 0.17377999424934387, 0.1603499948978424, -0.007599900010973215, -0.595770001411438, 1.194000005722046, -0.1241300031542778, 0.15528999269008636, 0.16867999732494354, 0.46606001257896423, -0.22437000274658203, 0.3422900140285492, -0.04927099868655205, -0.03892999887466431, -0.788129985332489, -0.010598000138998032, -0.17640000581741333, 0.15535999834537506, 0.00852159969508648, -0.34130001068115234, -1.1270999908447266, 0.6012799739837646, 0.11288999766111374, 0.45170000195503235, 0.6342300176620483, 0.16797000169754028, -0.7915800213813782, 0.24708999693393707, 0.39906999468803406, 0.5657100081443787, -0.8123999834060669, 0.12134999781847, 0.677370011806488, 0.02910899929702282, -0.021738000214099884, 0.5476099848747253, -0.19484999775886536, 0.14618000388145447, -0.5586400032043457, -0.5699899792671204, -0.021345000714063644, 0.5679699778556824, 0.1447400003671646, -0.03406500071287155, 0.9571099877357483, 0.605459988117218, 0.12139999866485596, 0.6596400141716003, 0.07916100323200226, -0.6460300087928772, -0.5847399830818176, -0.08963999897241592, -0.8788999915122986, 0.597819983959198, -0.6710299849510193, -0.23485000431537628, 0.5512099862098694, 0.2851000130176544, -0.6505299806594849, -0.028214000165462494, -0.566349983215332, -0.6214399933815002, 0.2603699862957001, -0.7700700163841248, 0.17506000399589539, -0.21690000593662262, 0.0007989800069481134, 0.08847499638795853, -0.22025999426841736, -0.404339998960495, -0.3918200135231018, -0.2816999852657318, 0.32774999737739563, 0.037758998572826385, -0.6720200181007385, -0.14928999543190002, -0.15167999267578125, 0.49750998616218567, 0.07762700319290161, -0.36625999212265015, -0.08914700150489807, 0.29072999954223633, 0.028033999726176262, -0.558899998664856, -0.013319999910891056, -0.3795500099658966, 0.5084900259971619, 0.2526400089263916, -0.02739899978041649, -0.3032599985599518, -0.37637999653816223, 0.17502999305725098, 0.25336000323295593, 0.03205699846148491, -0.3242399990558624, 0.6835100054740906, -0.08072199672460556, 0.042858999222517014, 0.1859399974346161, -0.5240200161933899, -0.11776000261306763, -0.042534999549388885, 0.25519999861717224, 0.20552000403404236, -0.33355000615119934, 0.11388000100851059, -0.08852499723434448, 0.033066000789403915, 0.040192000567913055, -0.3893199861049652, -0.10941000282764435, 0.11795999854803085, 0.20632000267505646, 0.17016999423503876, 0.3871400058269501, -0.09019699692726135, -0.39364001154899597, 0.8182100057601929, 0.02098900079727173, 0.15177999436855316, 0.6746000051498413, 1.065400010702433e-05, 0.09870799630880356, 0.40536999702453613, -0.32148000597953796, 0.037087999284267426, 0.4867500066757202, 0.06635899841785431, -0.49908000230789185, 0.3417699933052063, 0.23074999451637268, 0.4280500113964081, 0.3642899990081787, 0.14172999560832977, -0.15952999889850616, -0.35701999068260193, 0.4326600134372711, 0.0756239965558052, -0.13559000194072723, -0.16539999842643738, 0.6652799844741821, -0.3898699879646301, -0.47269999980926514, -0.41471999883651733, 0.30077001452445984, -0.21100999414920807, 0.33427000045776367, -0.5004299879074097, -0.003216400044038892, 0.020512999966740608, 0.44488999247550964, 0.7107399702072144, 0.37229999899864197, 0.7131199836730957, 0.575689971446991, -0.017613999545574188, 0.1619500070810318, 0.09852900356054306, -0.19133000075817108, 0.07368200272321701, -0.0662819966673851, 0.3728800117969513, 0.3585599958896637, -0.24289000034332275, 0.20499999821186066, -0.14848999679088593, -0.2908500134944916, -0.22432999312877655, 0.6227800250053406, -0.398470014333725, 0.47839999198913574, -0.8413699865341187, 0.9330800175666809, -0.4489800035953522, -0.11824999749660492, -0.2974500060081482, 0.5526000261306763, 0.5634300112724304, 0.040762998163700104, -0.16187000274658203, -0.4032500088214874, 0.25279998779296875, -0.4518899917602539, 0.005002100020647049, 0.46772998571395874, 0.47979000210762024, 1.2833000421524048, -0.11958000063896179, 0.4235999882221222, 0.3447299897670746, -0.40542998909950256, -0.05929100140929222, -0.03743499889969826, -0.35148000717163086, -0.290910005569458, 0.10168000310659409, -0.07610300183296204, 0.4520600140094757, -0.30125999450683594, 0.4549500048160553, -0.24484999477863312, -0.5058500170707703, 0.2424899935722351, -0.07763499766588211, -0.41007000207901, -0.44086000323295593, 0.9355300068855286, 0.4338900148868561, 0.39028000831604004, -0.5943999886512756, -0.5176299810409546, 0.1259700059890747, -0.6052700281143188, 0.11204999685287476, -0.07743199914693832, -0.19059999287128448, 0.6840599775314331, -0.024775000289082527, 0.3369700014591217, -0.8956500291824341, 0.10716000199317932, -0.08750300109386444, -0.5202599763870239, -0.02258400060236454, 0.44620999693870544, 0.15815000236034393, -0.392769992351532, 0.34637001156806946, 0.6026399731636047, -0.45002999901771545, -0.8912400007247925, -0.29326000809669495, -0.03823100030422211, 0.16023999452590942, -0.04464299976825714, -0.05385800078511238, 0.5766100287437439, 0.09309399873018265, 0.19059999287128448, -0.3220899999141693, 0.1933099925518036, -0.21265000104904175, 0.45816001296043396, -0.3959999978542328, 0.5600799918174744, 0.6783000230789185, -0.6149600148200989, -0.08980300277471542, -0.0636110007762909, 0.5677099823951721, 0.2765499949455261, -0.6347299814224243, -0.19859999418258667, 0.4063499867916107, 0.12286999821662903, -0.34106001257896423, 0.15286000072956085, 0.2283399999141693, -0.02455800026655197, 0.3424699902534485, 0.614549994468689, 0.11918999999761581, -1.4321000576019287, -0.7882999777793884, -0.7006099820137024, -0.21618999540805817, -0.37731000781059265, 0.2895500063896179, -0.09918399900197983, -0.18212999403476715, 0.3160400092601776, 0.10509999841451645, -0.2064400017261505, 0.3104400038719177, 0.4412899911403656, 0.5892199873924255, -0.1780800074338913, 0.4921000003814697, -0.24550999701023102, 0.35863998532295227, 0.16121000051498413, -0.7044000029563904, 0.6419900059700012, -0.15297000110149384, -0.14902999997138977, 0.02326899953186512], u'mud': [-0.23960000276565552, 0.26589998602867126, -0.06528200209140778, 0.0576849989593029, -0.19271999597549438, -0.3058300018310547, 0.33243000507354736, 0.03688599914312363, 0.15846000611782074, -0.27935001254081726, -0.08395499736070633, -0.22010000050067902, -0.40446001291275024, 0.042952001094818115, 0.018411999568343163, -0.09898699820041656, -0.3703700006008148, 0.2596000134944916, 0.564329981803894, 0.17318999767303467, 0.06552600115537643, -0.29398998618125916, -0.06870300322771072, 0.32236000895500183, -0.5785599946975708, -0.5351799726486206, 0.39941999316215515, -0.18355999886989594, 0.46751001477241516, 0.6738499999046326, 0.3707999885082245, 0.40505000948905945, -0.263949990272522, -0.06920900195837021, 0.40950000286102295, 0.8893300294876099, -0.0937729999423027, 0.3359600007534027, 0.6573500037193298, 0.43852001428604126, 0.14351999759674072, 0.5148500204086304, 0.7762399911880493, -0.04614400118589401, 0.4276300072669983, 0.33094000816345215, 0.7215099930763245, 0.046806998550891876, -0.03466000035405159, -0.14010000228881836, -0.2718600034713745, 0.6959800124168396, 0.005632500164210796, -0.7038599848747253, 0.4301399886608124, 0.10028000175952911, 0.15998999774456024, -0.2819499969482422, -0.036472998559474945, 0.2270199954509735, 0.06719300150871277, -0.14688000082969666, 0.6230900287628174, 0.15113000571727753, 0.0016850000247359276, -0.2391899973154068, 0.016388999298214912, 0.23277999460697174, -0.3270600140094757, -0.365119993686676, 0.08861400187015533, 0.4965499937534332, -0.5794900059700012, 0.2023099958896637, -0.3009200096130371, -0.6479399800300598, 0.6458799839019775, -0.05709400027990341, 0.3182600140571594, -0.3149999976158142, 0.2351199984550476, -0.3009600043296814, -0.21213999390602112, 0.24650999903678894, -0.4430299997329712, 0.3846299946308136, 0.1028899997472763, -0.5370799899101257, -0.1607699990272522, -0.31205999851226807, 0.15625, 0.08000099658966064, 0.5498300194740295, -0.04794200137257576, 0.5011799931526184, -0.01588200032711029, -0.0370820015668869, 0.007052899803966284, 0.6273400187492371, 0.2592099905014038, 0.2847900092601776, 0.22750000655651093, -0.271230012178421, -0.6412000060081482, 0.053787000477313995, 0.3186599910259247, 0.40507999062538147, -0.05477600172162056, 0.013520999811589718, 0.2339800000190735, -0.48984000086784363, -0.4695799946784973, -0.9732999801635742, -0.3154599964618683, -0.3069800138473511, 0.5597699880599976, -0.25060999393463135, 0.26688000559806824, -0.002621399937197566, -0.63919997215271, 0.33392998576164246, -0.7914999723434448, 0.06451299786567688, 0.891510009765625, -0.34251999855041504, 0.20116999745368958, -0.2996799945831299, 0.48563000559806824, 0.18839000165462494, -0.07452599704265594, -0.24484999477863312, 1.2587000131607056, 0.3512200117111206, 0.49052000045776367, 0.27469000220298767, -0.16652999818325043, -0.30882999300956726, -0.018807999789714813, -0.13120000064373016, -0.12182000279426575, 0.47571998834609985, -0.008024300448596478, -0.6464999914169312, -0.5200600028038025, -0.5582000017166138, -0.10553999990224838, 0.46733999252319336, 0.6985099911689758, -0.6313899755477905, 0.3086099922657013, -0.19697999954223633, -0.1238899976015091, -1.146299958229065, -0.240339994430542, 0.48146000504493713, 0.696120023727417, 0.8715000152587891, -0.6117100119590759, 0.8672699928283691, 0.01916399970650673, -0.18092000484466553, -0.5820199847221375, -0.18324999511241913, 0.28005000948905945, -0.056735001504421234, 0.22457000613212585, 0.7300099730491638, 0.378030002117157, 0.06883600354194641, -0.5445799827575684, 0.4954499900341034, 0.7904899716377258, 0.3405799865722656, 0.10374999791383743, -0.3050999939441681, 0.47742998600006104, 0.1457200050354004, 0.20724999904632568, 0.13155999779701233, -0.2778699994087219, -0.13600000739097595, -0.16673000156879425, 0.483460009098053, 0.3235200047492981, -0.5304200053215027, -0.7199299931526184, 0.7875300049781799, 0.29429998993873596, 0.3633100092411041, -0.5151299834251404, 0.8825100064277649, 0.23593999445438385, -0.24026000499725342, -0.27577999234199524, 0.4924199879169464, -0.07902800291776657, -0.02528100088238716, -0.14284999668598175, -0.17473000288009644, -0.19429999589920044, 0.516219973564148, -0.02261199988424778, 0.2100600004196167, 0.871150016784668, 0.13322000205516815, -0.24361999332904816, 0.6028100252151489, -0.00267699989490211, -0.4820899963378906, 0.8833699822425842, -0.5318300127983093, 0.35986000299453735, 0.5504900217056274, -0.41025999188423157, -0.05238699913024902, 0.3928300142288208, -0.009624199941754341, -0.3815700113773346, 0.18334999680519104, -0.040084000676870346, 0.7571600079536438, -0.16695000231266022, 0.3325200080871582, 0.10172999650239944, 0.17964999377727509, -0.38955000042915344, -0.25001001358032227, -0.14398999512195587, -0.31404998898506165, -0.5506600141525269, -0.012978999875485897, -0.23478999733924866, 0.04658300057053566, -0.045841000974178314, 0.4576900005340576, -0.2744700014591217, -0.14429999887943268, -0.0669270008802414, 0.07580099999904633, 0.033376000821590424, -0.12487000226974487, 0.30498000979423523, -0.4549899995326996, -0.35339000821113586, -1.1202000379562378, -0.05764500051736832, 0.15996000170707703, 0.4395500123500824, 0.010395999997854233, -0.051975999027490616, 0.38582998514175415, 0.1453000009059906, -0.20559999346733093, -0.9771599769592285, 0.5684300065040588, -0.08461999893188477, 0.03756599873304367, -0.025515999644994736, -0.05997699871659279, -0.12596000730991364, 0.10029999911785126, -0.27952998876571655, -0.25870999693870544, -0.21352000534534454, 0.37716999650001526, 0.06299000233411789, 0.0622359998524189, -0.5963699817657471, -0.5259400010108948, -0.7220399975776672, -0.7326599955558777, -0.30160000920295715, 0.004407700151205063, 0.14041000604629517, -0.21066999435424805, 0.40345999598503113, -1.402500033378601, -0.15297000110149384, -0.7193400263786316, 0.005300600081682205, -0.3464300036430359, 0.13707999885082245, 0.4242999851703644, -0.30882999300956726, -0.038256000727415085, 0.03885199874639511, -0.044105999171733856, 0.0447469986975193, 0.3993600010871887, -0.20183999836444855, -0.599370002746582, 0.3842499852180481, 0.4286800026893616, 0.2872900068759918, 0.0626399964094162, -0.01881200075149536, 0.4224900007247925, 0.7691900134086609, -0.35604000091552734, 0.16143999993801117], u'floor': [-0.10661999881267548, -0.048402998596429825, -0.7442100048065186, -0.5770999789237976, -0.011385000310838223, 0.2476699948310852, 0.049240998923778534, -0.26166999340057373, 0.15440000593662262, -1.0801000595092773, -0.21741999685764313, -0.2257400006055832, 0.18351000547409058, 0.11620000004768372, -0.0025770000647753477, 0.5914099812507629, -0.04300900176167488, 0.9287999868392944, 0.07105699926614761, -0.022092999890446663, -0.13083000481128693, 0.17552000284194946, 0.07222100347280502, -0.13739000260829926, -0.022065000608563423, 0.04949900135397911, 0.76350998878479, -0.21209000051021576, 0.18020999431610107, -0.005227900110185146, 0.4724299907684326, 0.43595001101493835, -0.03910500183701515, -0.3131200075149536, -1.0908000469207764, 0.47394001483917236, 0.4640200138092041, -0.48113998770713806, 0.572629988193512, 0.11410000175237656, -0.33410000801086426, -0.213809996843338, -0.28325000405311584, 0.4623500108718872, 0.46108001470565796, 0.4574899971485138, 0.19652000069618225, -0.239329993724823, -0.5534499883651733, -0.29754000902175903, -0.0626550018787384, 0.3978799879550934, -0.11963000148534775, -0.40081000328063965, 0.2316800057888031, 0.07037899643182755, -0.22210000455379486, 0.3112800121307373, 0.24876999855041504, 0.2562200129032135, 0.1824900060892105, -0.3989199995994568, 0.47227999567985535, 0.2552100121974945, -0.1139099970459938, -0.6913599967956543, 0.6334599852561951, -0.19878999888896942, -0.022634999826550484, -0.2503100037574768, -0.4112200140953064, -0.2632800042629242, -0.3753199875354767, -0.04168599843978882, -0.24269999563694, 0.1637199968099594, -0.2782300114631653, -0.006637999787926674, 0.15253999829292297, -0.46691998839378357, 0.5690699815750122, -0.12456999719142914, 0.19102999567985535, -0.05768999829888344, 0.0935090035200119, 0.042830001562833786, -0.12049999833106995, 0.04492500051856041, -0.2955000102519989, 0.3725999891757965, 0.42827001214027405, -0.256989985704422, -0.021720999851822853, 0.4442099928855896, -0.27008000016212463, -0.4598599970340729, -0.7070599794387817, -0.03605400025844574, 0.7710999846458435, -0.7959100008010864, -0.0120430001989007, 0.5621200203895569, -0.3273099958896637, -0.33039000630378723, -0.16419999301433563, -0.4048599898815155, 0.3031100034713745, -0.1928199976682663, 0.3580099940299988, 0.32673999667167664, -0.6456000208854675, -0.05886499956250191, -0.2900699973106384, 0.34077000617980957, -0.9788100123405457, 0.7035499811172485, -0.32853999733924866, -0.03554699942469597, -0.5283799767494202, 0.09470999985933304, 0.07794900238513947, -0.06081800162792206, -0.08083400130271912, 0.31617000699043274, -0.48976999521255493, -0.3169899880886078, 0.11394000053405762, -0.22453999519348145, 0.6762999892234802, -0.008326999843120575, -0.09477700293064117, 0.5161399841308594, 0.28022000193595886, 0.009180099703371525, 0.1415800005197525, 0.31690001487731934, -0.2407499998807907, 0.5590699911117554, 0.04170000180602074, 0.2840000092983246, -0.058442000299692154, -0.08831299841403961, 0.029045000672340393, 0.21671000123023987, -0.5464900135993958, -0.2957899868488312, 0.1506499946117401, 0.005749399773776531, -0.07655700296163559, -0.6704400181770325, 0.03994100168347359, 0.5952600240707397, -0.23500999808311462, -0.3828999996185303, -0.20303000509738922, 0.8367300033569336, -0.3413499891757965, 0.26954999566078186, -0.15928000211715698, -0.18905000388622284, 0.09088200330734253, 0.05299999937415123, 0.08857399970293045, 0.33754000067710876, 0.5808600187301636, 0.15355999767780304, 0.11907999962568283, 0.478630006313324, 0.32346001267433167, 0.8260300159454346, -0.5983099937438965, 0.17885999381542206, 0.6408799886703491, -0.09970299899578094, -0.24710999429225922, 0.4671599864959717, 0.045430999249219894, 0.4502600133419037, -0.0946900025010109, -0.674340009689331, 0.17065000534057617, -0.357450008392334, -0.12477999925613403, 0.14250999689102173, -0.21321000158786774, -0.04715900123119354, 1.0307999849319458, 0.34637999534606934, 0.06478600203990936, 0.6726899743080139, 1.0441999435424805, -0.2889699935913086, -0.2900499999523163, -0.09123200178146362, 0.21230000257492065, 0.5176100134849548, -0.3479999899864197, 0.1696700006723404, -0.8184999823570251, 0.12060999870300293, 1.125599980354309, -0.11918999999761581, -0.2895300090312958, -0.24932000041007996, 0.19485999643802643, -0.0322050005197525, -0.162990003824234, -0.12167999893426895, -0.07488399744033813, 0.13262000679969788, -0.14234000444412231, -0.0662980005145073, -0.0008363800006918609, -0.19612999260425568, 0.018814999610185623, 0.25123000144958496, 0.20135000348091125, -0.5410100221633911, -0.08694600313901901, -0.5062500238418579, 0.2390899956226349, 0.28584998846054077, 0.004580399952828884, -0.012373000383377075, 0.09990900009870529, 0.17712000012397766, -0.5208600163459778, -0.0588809996843338, -0.4295699894428253, -0.15169000625610352, 0.1876399964094162, -0.45329999923706055, 0.4321399927139282, 0.17110000550746918, 0.8694999814033508, -0.48598000407218933, -0.27211999893188477, 0.3441700041294098, -0.12246000021696091, 0.2942200005054474, -0.034258000552654266, 0.304749995470047, 0.009088699705898762, 0.13187000155448914, -0.3961299955844879, -0.2527500092983246, 0.15360000729560852, 0.21729999780654907, -0.034919001162052155, 0.10885000228881836, 0.21921999752521515, -0.3891400098800659, 0.17753000557422638, -0.39563000202178955, 0.3386499881744385, 0.28703999519348145, -0.1102600023150444, -0.11879000067710876, 0.7639200091362, 0.4705199897289276, -0.45868000388145447, -0.322409987449646, 0.27796998620033264, -0.5098400115966797, -0.12099999934434891, -0.30720001459121704, 0.015119999647140503, 0.33970001339912415, -0.09121599793434143, -0.5014500021934509, -0.3580799996852875, -0.5096700191497803, -0.2313700020313263, 0.05990000069141388, -0.10493999719619751, 0.15752999484539032, -1.7925000190734863, 0.16116000711917877, -0.5370399951934814, 0.15515999495983124, -0.592960000038147, -0.28137001395225525, 0.22610999643802643, -0.41255998611450195, 0.09732300043106079, 0.51596999168396, -0.21673999726772308, 0.32923999428749084, -0.29218000173568726, -0.3955399990081787, 0.2874000072479248, 0.5148900151252747, -0.43264999985694885, 0.7076699733734131, 0.2824000120162964, 0.12664000689983368, 0.2561799883842468, -0.49974000453948975, -0.023440999910235405, 0.20058000087738037], u'branch': [-0.5733000040054321, -0.2707499861717224, 0.1964700073003769, -0.020711999386548996, 0.058646999299526215, -0.2318599969148636, -0.04538000002503395, 0.4377099871635437, 0.3581399917602539, -1.0059000253677368, -0.5924999713897705, 0.2624100148677826, 0.2795200049877167, -0.008023899979889393, 0.2244900017976761, 0.023017000406980515, -0.13989999890327454, 0.05886099860072136, 0.0026879000943154097, 0.2879500091075897, -0.21875999867916107, -0.7028499841690063, 0.17914000153541565, -0.19561000168323517, 0.31738001108169556, 0.7928100228309631, -0.08585300296545029, -0.19431999325752258, -0.26416999101638794, 0.2950200140476227, 0.3752799928188324, 0.029947999864816666, 0.5230699777603149, 0.5523099899291992, 0.23446999490261078, -0.14055000245571136, 0.4626300036907196, -0.08779200166463852, -0.224030002951622, -0.4138199985027313, -0.2771100103855133, 0.04714599996805191, 0.029827000573277473, 0.23506000638008118, 0.3042699992656708, 0.3171600103378296, -0.03584799915552139, 0.376120001077652, 0.16703000664710999, 0.03446200117468834, -0.8097299933433533, -0.1860799938440323, 0.16395999491214752, 0.38569000363349915, -0.040516000241041183, 0.1745000034570694, -0.0681380033493042, -0.12426000088453293, -0.15137000381946564, -0.41179001331329346, 0.47558000683784485, -0.02964800037443638, 0.2004700005054474, 0.3612099885940552, -0.03721199929714203, -0.4247500002384186, -0.29436999559402466, 0.4424999952316284, -0.12239000201225281, 0.5203199982643127, 0.2522299885749817, 0.126460000872612, 0.11121000349521637, 0.23847000300884247, -0.4754300117492676, -0.2027900069952011, -0.5682399868965149, 0.13036000728607178, -0.4876500070095062, -0.21728000044822693, -0.4491499960422516, -0.08861199766397476, 0.004897700157016516, -0.23350000381469727, 0.6295199990272522, -0.03409299999475479, 0.24925999343395233, 0.21514999866485596, 0.03952199965715408, 0.7230799794197083, -0.43055999279022217, -0.04562599956989288, -0.05239799991250038, 0.02776299975812435, 0.054621998220682144, -0.38383999466896057, 0.09033399820327759, -0.008381299674510956, 0.45232999324798584, -0.21513999998569489, 0.14969000220298767, -0.30234000086784363, -0.058681998401880264, -0.10397999733686447, 0.10243000090122223, -0.36427998542785645, 0.11879999935626984, -0.2713199853897095, -0.27928000688552856, 1.0115000009536743, -0.41071999073028564, -0.7978600263595581, 0.35238999128341675, 0.02286599949002266, 0.31578001379966736, 0.4002000093460083, -0.3618699908256531, 0.6045200228691101, -0.06934499740600586, -0.04493299871683121, 0.1846500039100647, -0.0021903999149799347, 0.6248700022697449, -0.3673500120639801, -0.2100600004196167, -0.23781999945640564, -0.18427999317646027, -0.10948000103235245, 0.33796000480651855, 0.10806000232696533, -0.1220100000500679, -0.027688000351190567, 0.11964000016450882, -0.5756099820137024, -0.017619000747799873, 0.26096999645233154, 0.43619000911712646, 0.30393001437187195, -0.2541100084781647, -0.2683500051498413, -0.04146699979901314, 0.008136999793350697, -0.3088200092315674, -0.4430199861526489, 0.17272000014781952, -0.043063998222351074, -0.15098999440670013, 0.34332001209259033, 0.13232000172138214, 0.3467099964618683, 0.852869987487793, -0.26469001173973083, 0.7257500290870667, -0.016787000000476837, 0.6721699833869934, 0.6713100075721741, 0.3034600019454956, -0.28115999698638916, -0.06975500285625458, 0.19528000056743622, -0.04373500123620033, 1.1582000255584717, 0.10712999850511551, 0.14159999787807465, -0.24361999332904816, -0.046852000057697296, -0.23124000430107117, -0.46748000383377075, -0.07114800065755844, 0.17362000048160553, -0.41086000204086304, -1.0246000289916992, -0.26072999835014343, 0.31196001172065735, 0.05522900074720383, 0.6034600138664246, 0.05663599818944931, -0.31477999687194824, 0.07338599860668182, -0.6514099836349487, 0.20794999599456787, 0.07230599969625473, -0.160180002450943, 0.3884600102901459, 0.4624600112438202, -0.10378000140190125, -0.4383299946784973, 0.06857699900865555, 0.22654999792575836, -0.00942359957844019, 0.27722999453544617, 0.47082000970840454, -0.22939999401569366, -0.036674000322818756, 0.03040499985218048, 0.2491299957036972, -0.38001999258995056, -0.7120699882507324, -0.29451000690460205, 0.6881700158119202, 0.5167700052261353, 0.25633999705314636, -0.41574999690055847, -0.21012000739574432, -0.003653299994766712, 0.12065000087022781, -0.010943000204861164, 0.2345300018787384, 0.6463900208473206, 0.2347699999809265, 0.1392199993133545, 0.25306999683380127, 0.43331000208854675, -0.07599300146102905, 0.14315000176429749, -0.2680400013923645, 0.2223300039768219, 0.3930400013923645, 0.028439000248908997, -0.6969299912452698, 0.06600800156593323, -0.5738800168037415, -0.701200008392334, -0.0007376900175586343, 0.43643999099731445, -0.507669985294342, -0.6751300096511841, -0.014883999712765217, -0.24157999455928802, 0.5513700246810913, -0.5332599878311157, -0.08859100192785263, 0.09609799832105637, 0.14678999781608582, 0.13560999929904938, 0.24174000322818756, 0.4395799934864044, -0.6146600246429443, 0.01695300079882145, -0.05677400156855583, 0.037369001656770706, -0.2734000086784363, 0.5824900269508362, -0.1539199948310852, -0.16551999747753143, -0.017062000930309296, -0.04882200062274933, -0.32256999611854553, -0.022769000381231308, -0.34926000237464905, 0.2823199927806854, 0.5879700183868408, -0.09590300172567368, -0.1917099952697754, 0.567799985408783, -0.534600019454956, -0.45511001348495483, 0.018205000087618828, 0.28150999546051025, 0.34929999709129333, 0.10469000041484833, 0.1325100064277649, -0.12624000012874603, -0.08381900191307068, -0.2022700011730194, -0.007815999910235405, 0.06477899849414825, 0.07924400269985199, 0.2980700135231018, 0.2434300035238266, 0.19769999384880066, -0.7393400073051453, -0.04800799861550331, 0.3006500005722046, -0.37213000655174255, -0.04086900129914284, -1.1448999643325806, 0.2750700116157532, 0.26708999276161194, 0.2758699953556061, -0.3323499858379364, -0.44811001420021057, 0.2893500030040741, -0.6904299855232239, -0.42034998536109924, 0.42177000641822815, 0.7403200268745422, 0.5193700194358826, 0.12304999679327011, -0.02227500081062317, -0.029474999755620956, -0.03985600173473358, 0.1269800066947937, -0.01752600073814392, -0.17688000202178955, 0.648639976978302, -0.26256000995635986, -0.26221999526023865, 0.10749000310897827, 0.14855000376701355], u'cloud': [-0.2805100083351135, -0.19200000166893005, 0.051024001091718674, -0.7455999851226807, -0.04206499829888344, -0.071383997797966, -0.2440599948167801, 0.4156000018119812, -0.38356998562812805, -1.3896000385284424, 0.4704900085926056, 0.48853999376296997, -0.23567000031471252, -0.9227799773216248, -0.4177800118923187, 0.5364800095558167, -0.32969000935554504, 0.05584200099110603, 0.3451800048351288, 0.7847099900245667, 0.11738000065088272, -0.1304599940776825, -0.4045400023460388, 0.3292999863624573, 0.22084000706672668, -0.1437000036239624, 0.12076999992132187, -0.06647899746894836, -0.5359600186347961, 0.2282799929380417, 0.4256399869918823, -0.3509500026702881, -0.25286000967025757, -0.36768999695777893, -0.007402199786156416, 0.06630700081586838, -0.3921700119972229, 0.03131699934601784, -0.0013400999596342444, 0.39691001176834106, -0.6192399859428406, -0.022501999512314796, 0.20875999331474304, 0.5168700218200684, 0.12432000041007996, -0.8095999956130981, -0.0029255999252200127, -0.0815420001745224, -0.0019700999837368727, -0.4565199911594391, 0.7024000287055969, 0.05347000062465668, -0.26930999755859375, -0.32655999064445496, -0.482450008392334, -0.5502399802207947, 0.20858000218868256, -0.08150099962949753, 0.17542999982833862, -0.04213299974799156, -0.06757000088691711, 0.24621999263763428, 0.47710999846458435, -0.12370999902486801, 0.035457998514175415, -0.41495001316070557, -0.02896600030362606, 0.44839999079704285, -0.14991000294685364, -0.4059300124645233, -0.023042000830173492, -0.07700499892234802, -0.3008800148963928, -0.7838600277900696, -0.2953700125217438, 0.213469997048378, -0.5080299973487854, 0.15463000535964966, 0.4288100004196167, -0.1935800015926361, -0.315310001373291, -0.19994999468326569, -0.2924000024795532, 0.17527000606060028, 0.4309599995613098, -0.09388700127601624, 0.34970998764038086, 0.5574600100517273, 0.38102999329566956, -0.15392999351024628, -0.3429799973964691, -0.43911001086235046, 0.3017500042915344, 0.20848999917507172, 0.09608999639749527, 0.7427700161933899, 0.27199000120162964, -0.0487620010972023, 0.49849000573158264, -0.1410900056362152, -0.2404700070619583, -0.08612000197172165, -0.2546899914741516, 0.04297899827361107, -0.06032299995422363, -0.017160000279545784, 0.5794699788093567, -0.26284000277519226, -0.16154000163078308, 0.09067700058221817, -0.6037499904632568, -0.3997800052165985, 0.35670000314712524, -0.05044199898838997, 0.3299199938774109, -0.2059199959039688, -0.022958999499678612, -0.004699300043284893, -0.03663700073957443, -0.5072600245475769, 0.0952180027961731, -0.3815799951553345, 0.10379000008106232, 0.44617998600006104, 0.39873000979423523, -0.5173500180244446, 0.2992900013923645, 0.8320800065994263, -0.12681999802589417, 0.15570999681949615, 0.13005000352859497, 0.5493999719619751, 0.16651999950408936, 0.2687300145626068, 0.8111600279808044, -0.3662700057029724, -0.3308500051498413, 0.3831300139427185, 0.3987100124359131, -0.15681999921798706, 0.10673999786376953, -0.6287099719047546, -0.1574999988079071, -0.07026199996471405, -0.4685100018978119, -0.40189000964164734, 0.28988000750541687, -0.00825829990208149, -0.014266000129282475, -0.08127100020647049, 0.4549599885940552, -0.20358000695705414, -0.4211600124835968, 0.056182000786066055, 0.1130400002002716, 0.288239985704422, 0.6017100214958191, -0.43011999130249023, -0.06278199702501297, -0.0007985800039023161, -0.6837800145149231, -0.49658000469207764, 0.5143899917602539, 0.06290599703788757, -0.08296900242567062, -0.12501999735832214, 0.08155100047588348, 0.8051000237464905, -0.4231399893760681, -0.13263000547885895, 0.17353999614715576, 0.13646000623703003, 0.0912880003452301, -0.6423500180244446, 0.2102700024843216, -0.41168999671936035, 0.3172700107097626, 0.12973999977111816, 0.07802099734544754, -0.5265200138092041, 0.28512001037597656, -0.24402999877929688, -0.09948199987411499, -0.1155799999833107, 0.15383000671863556, -0.7605400085449219, 0.1912499964237213, -0.6873499751091003, -0.8741700053215027, -0.5530499815940857, 0.4252600073814392, 0.3171600103378296, -0.24562999606132507, 0.15384000539779663, -0.21870000660419464, -0.7517899870872498, 0.48563000559806824, 0.3790999948978424, -0.5081200003623962, 0.012277999892830849, 0.7951499819755554, -0.17032000422477722, -0.01582299917936325, 0.03796200081706047, -0.20640000700950623, -0.07459200173616409, 0.007658100221306086, -0.23785999417304993, -0.489300012588501, 0.10660000145435333, 0.049180999398231506, 0.22382999956607819, 0.19992999732494354, -0.753570020198822, 0.018619999289512634, -0.6996200084686279, 0.5342699885368347, -0.08095300197601318, 0.5538300275802612, -0.04674699902534485, -0.00260449992492795, 0.36096999049186707, -0.43055999279022217, -0.11112000048160553, 0.12263000011444092, 0.001473700045607984, -0.3296299874782562, -0.1192300021648407, 0.04871400073170662, 0.08440899848937988, 0.27063998579978943, 0.41506001353263855, -0.17122000455856323, -0.5770800113677979, -0.1587900072336197, -0.7192000150680542, -0.18655000627040863, -0.06554900109767914, -0.1824599951505661, -0.4289200007915497, -0.11102999746799469, 0.4356899857521057, -0.43042001128196716, -0.3216699957847595, -0.665149986743927, -0.07851999998092651, 0.1804099977016449, -0.13955000042915344, 0.26510000228881836, 0.0027914000675082207, -0.8577499985694885, 0.09925500303506851, 0.3378799855709076, -0.24403999745845795, 0.21562999486923218, 0.19166000187397003, -0.42866000533103943, 0.05040900036692619, -0.21528999507427216, -0.026573000475764275, 0.3084700107574463, 0.01515199989080429, 0.6891800165176392, 0.06652799993753433, 0.015363000333309174, -0.09654200077056885, -0.2792400121688843, -0.09995400160551071, 0.02817000076174736, 0.005764400120824575, -0.3143500089645386, 0.9160199761390686, -0.18292999267578125, -0.1680700033903122, -0.5255500078201294, 0.12735000252723694, -0.9120799899101257, -0.33188000321388245, -0.07732000201940536, -0.3930000066757202, -0.844789981842041, 0.3250100016593933, -0.24488000571727753, -0.12859000265598297, 0.01358999963849783, -0.12918999791145325, -0.5825200080871582, 0.6482099890708923, 0.2908500134944916, -0.16473999619483948, 0.5126100182533264, 0.4730699956417084, -0.46705999970436096, 0.3874100148677826, 0.35196998715400696, -0.22756999731063843, -0.061567001044750214, -0.1102600023150444, -0.25714001059532166, 0.07034700363874435], u'iguana': [0.45021000504493713, 0.4857099950313568, -0.04655199870467186, 0.09879399836063385, 0.3781000077724457, -0.8409900069236755, 0.1239200010895729, 0.06869100034236908, -0.5535500049591064, 0.64205002784729, -0.27531999349594116, 0.1712000072002411, 0.18737000226974487, 0.12684999406337738, 0.27452999353408813, -0.10824000090360641, -0.08718100190162659, 0.2409600019454956, -0.46474000811576843, 0.35565999150276184, -0.23861999809741974, 0.9234700202941895, -0.1336199939250946, -0.10849999636411667, 0.22067999839782715, -0.14780999720096588, -0.20958000421524048, 0.29750001430511475, 0.06791400164365768, 0.7775899767875671, -0.3329100012779236, 0.06887099891901016, -0.7478700280189514, 0.08861999958753586, 1.090999960899353, 0.22638000547885895, -0.33671000599861145, 0.15591999888420105, -0.03412500023841858, -0.15955999493598938, -0.3015199899673462, 0.3336000144481659, 0.4529399871826172, -0.1988700032234192, -0.20467999577522278, -0.17666999995708466, -0.25051000714302063, -0.3263300061225891, -0.2955999970436096, 0.08582799881696701, 0.2280299961566925, -1.114799976348877, -0.12343999743461609, 0.4609299898147583, -0.25356000661849976, -0.4701099991798401, 0.030153000727295876, 0.34994998574256897, 0.5590599775314331, 0.04443399980664253, -0.6651899814605713, -0.29078999161720276, -0.29513999819755554, 0.4670099914073944, 0.05201299861073494, 0.3099899888038635, 0.24854999780654907, 0.4592300057411194, 0.41425999999046326, -0.02558699995279312, 0.2491600066423416, 0.8691499829292297, -0.2616499960422516, 0.008303600363433361, -0.9651100039482117, 0.5017799735069275, -0.6848899722099304, 0.3307099938392639, 0.5971099734306335, -0.014504999853670597, 0.0934000015258789, 0.1440500020980835, 0.21967999637126923, -0.21946999430656433, 0.3164199888706207, -0.2237599939107895, -0.029052000492811203, -0.11608999967575073, 0.2845099866390228, -0.6285300254821777, -0.5024099946022034, 0.03017600066959858, 0.01708099991083145, 0.49182000756263733, -0.3323900103569031, 0.05936399847269058, 0.38440999388694763, 0.06823299825191498, -0.7075200080871582, 0.29945001006126404, 0.3303399980068207, 0.20160000026226044, -0.4800100028514862, 0.11948999762535095, -0.039854999631643295, -0.5775499939918518, 0.258109986782074, -0.1915999948978424, 0.45267999172210693, -0.08801800012588501, 0.2070399969816208, -0.15057000517845154, -0.6100299954414368, 0.24467000365257263, 0.2224300056695938, -0.6617699861526489, -0.39493998885154724, -0.08246400207281113, -0.3721599876880646, 0.03350299969315529, 0.08851499855518341, 0.27368998527526855, -0.30425000190734863, 0.08325500041246414, 0.028742000460624695, -0.6061499714851379, -0.12392999976873398, 0.46410998702049255, 0.13303999602794647, -0.35124000906944275, 0.09183699637651443, -0.5787000060081482, -0.2868100106716156, 0.13708999752998352, 0.2623400092124939, -0.371289998292923, 0.5217199921607971, -0.33087998628616333, 0.014275999739766121, 0.44464001059532166, 0.20991000533103943, 0.44418999552726746, -0.23954999446868896, 0.3325200080871582, 0.39445000886917114, -0.1439100056886673, -0.013389999978244305, 0.1311199963092804, -0.31172001361846924, -0.18709999322891235, -0.1700199991464615, 0.09063299745321274, -0.17645999789237976, 0.29787999391555786, -0.8577100038528442, -0.5077999830245972, 0.5285500288009644, -0.04340200126171112, 0.1242000013589859, 0.42280998826026917, -0.36061999201774597, -0.4942399859428406, -0.26034000515937805, -0.2536199986934662, -0.33351999521255493, -0.07066600024700165, -0.3385300040245056, 0.5206000208854675, -0.7882800102233887, -0.5589600205421448, 0.4268999993801117, 0.041776999831199646, 0.44315001368522644, -0.11670999974012375, -0.17408999800682068, -0.22428999841213226, -0.06259500235319138, 0.23044000566005707, 0.3927200138568878, -0.35093000531196594, 0.17892000079154968, 0.28769999742507935, 0.07749400287866592, -0.1695999950170517, 0.17900000512599945, -0.23389999568462372, 0.6063399910926819, 0.156700000166893, 0.53507000207901, 0.3531999886035919, -0.17111000418663025, 0.46244001388549805, -0.41089001297950745, -0.36757999658584595, -0.35756000876426697, 0.7153400182723999, -0.1311500072479248, 0.794409990310669, -0.5868099927902222, 0.3156999945640564, 0.5763800144195557, 0.1433899998664856, -0.6600499749183655, -0.03448000177741051, 0.17096999287605286, 1.5499000549316406, 0.3218899965286255, -0.35315001010894775, 0.019293999299407005, 0.22345000505447388, -0.7517200112342834, -0.2306700050830841, -0.3552800118923187, 0.06102300062775612, 0.18021999299526215, 0.6492099761962891, 0.2791700065135956, 0.0615679994225502, 1.0041999816894531, 0.22213000059127808, 0.08159799873828888, 0.27845999598503113, 0.0074072000570595264, 0.07912799715995789, -0.6623899936676025, 0.04639999940991402, 0.5205600261688232, 0.19165000319480896, 0.53684002161026, -0.13590000569820404, 0.5735399723052979, -0.024961000308394432, -0.10941000282764435, 0.09179800003767014, 0.6439700126647949, -0.4549199938774109, -0.6042600274085999, -0.03753099963068962, -0.3869200050830841, -0.09364700317382812, -0.2786400020122528, 0.25213998556137085, -0.6773599982261658, -0.2802000045776367, -0.5940999984741211, -0.7900999784469604, -0.12477999925613403, -0.5616000294685364, -0.8808900117874146, -0.27599000930786133, -0.4787200093269348, 0.6349999904632568, -0.21461999416351318, 0.072223000228405, -0.2836099863052368, 0.21687999367713928, 0.32642999291419983, 0.3030500113964081, 0.1925400048494339, -0.05815799906849861, -0.08900800347328186, -0.16670000553131104, 0.34501999616622925, -0.08622100204229355, -0.556879997253418, 0.3303399980068207, 0.6853600144386292, 0.27156999707221985, -0.26346999406814575, 0.405349999666214, -0.6308900117874146, -0.617579996585846, 0.19497999548912048, 0.1774200052022934, 0.04934199899435043, -0.1803400069475174, 0.0038759999442845583, 0.3592900037765503, -0.9127399921417236, 0.3355399966239929, -0.31909000873565674, 0.40845999121665955, 0.08443800359964371, 0.4450500011444092, -0.784500002861023, -0.49751999974250793, -0.37988999485969543, 0.17733000218868256, 0.3478600084781647, -0.6480299830436707, -0.03282200172543526, 0.11005000025033951, 0.16460999846458435, -0.3482699990272522, -0.5826500058174133, -0.5470100045204163, 0.013900999911129475, 0.119439996778965, 0.21523000299930573, -0.9997699856758118], u'chains': [-0.11485999822616577, 0.1677599996328354, 0.009768400341272354, -0.330159991979599, 0.18975000083446503, 0.17685000598430634, 0.5934299826622009, 0.636900007724762, -0.1510699987411499, -0.8233199715614319, -0.16673000156879425, -0.6248700022697449, -0.06517700105905533, 0.35631999373435974, 0.08505100011825562, -0.516480028629303, -0.08417999744415283, -0.08903899788856506, -0.2074899971485138, -0.014151000417768955, -0.12856000661849976, 0.018355999141931534, 0.7885299921035767, 0.21020999550819397, 0.07272399961948395, -0.2686299979686737, 0.07738900184631348, -0.3447299897670746, 0.09032200276851654, -0.0998070016503334, -0.07644999772310257, 0.3662000000476837, -0.2850100100040436, 0.250900000333786, -0.5796499848365784, 0.41468000411987305, -0.3445799946784973, -0.22965000569820404, 0.18432000279426575, -0.21077999472618103, -1.016700029373169, -0.5137799978256226, -0.2331099957227707, 0.11122000217437744, -0.19541999697685242, -0.17969000339508057, 0.0030968000646680593, -0.4294799864292145, 0.06017899885773659, 0.40588000416755676, -0.16951000690460205, -0.376010000705719, 0.21703000366687775, 0.2734600007534027, 0.4572800099849701, 0.05500200018286705, -0.5817000269889832, 0.18970000743865967, -0.8190199732780457, 0.1784999966621399, 0.8881000280380249, 0.246629998087883, 0.018319999799132347, -0.09524299949407578, 0.1582300066947937, -0.15805000066757202, 0.08798699826002121, 0.85944002866745, 0.22789999842643738, 1.0317000150680542, 0.20577000081539154, 0.11044999957084656, -0.09017500281333923, -0.33079999685287476, -0.13294999301433563, -0.47214001417160034, -0.022898999974131584, -0.48173001408576965, -0.2087000012397766, -0.4570299983024597, -0.11368999630212784, 0.010518000461161137, 0.16933000087738037, -0.3192000091075897, -0.47249001264572144, -0.6345300078392029, 0.0308190006762743, 0.28584998846054077, -0.01081399992108345, -0.03739999979734421, 0.22800999879837036, 0.26822999119758606, -0.1101899966597557, 0.35679998993873596, 0.15226000547409058, 0.1514499932527542, -0.06650199741125107, 0.18606999516487122, 0.12590999901294708, -0.4254299998283386, 0.0776439979672432, -0.12913000583648682, -0.41231998801231384, -0.5776600241661072, -0.21963000297546387, -0.15102000534534454, 0.47005000710487366, 0.3531999886035919, 0.22825999557971954, 0.037436001002788544, -0.22526000440120697, -0.2258799970149994, 0.4121200144290924, 0.1676200032234192, 0.4106599986553192, -0.04123599827289581, -0.3940100073814392, -0.1631300002336502, 0.1691800057888031, -0.12605999410152435, 0.0862869992852211, -0.026458999142050743, 1.3868999481201172, -0.2675899863243103, -0.33285999298095703, 0.058145999908447266, -0.12379000335931778, -0.19267000257968903, -0.3757599890232086, -0.12132000178098679, 0.4658200144767761, -0.0882669985294342, 0.009779799729585648, 0.23204000294208527, 0.058437999337911606, -0.1496499925851822, 0.3592599928379059, 0.5861200094223022, -0.09783399850130081, 0.2697399854660034, -0.48917001485824585, 0.09633500128984451, -0.04612699896097183, 0.2875399887561798, 0.3106600046157837, 0.12571999430656433, -0.3287400007247925, 0.5593299865722656, 0.4159199893474579, -0.4399699866771698, -0.10752999782562256, -0.3926500082015991, -0.04826600104570389, -0.34077998995780945, -0.1650799959897995, -0.49625998735427856, -0.2824400067329407, -0.44707998633384705, -0.8216300010681152, -0.004548400174826384, 1.424399971961975, 0.009437399916350842, 0.03794100135564804, 0.20484000444412231, 0.11754000186920166, 0.44492998719215393, 0.1532900035381317, -0.09092099964618683, 0.36695998907089233, 0.3956499993801117, 0.09883999824523926, 0.2337999939918518, 0.11354999989271164, 0.5755100250244141, -0.01433700043708086, -0.023305999115109444, -0.5853300094604492, 0.6624799966812134, 0.298799991607666, 0.10847999900579453, -0.024172000586986542, -0.12650999426841736, 0.17940999567508698, -0.046987999230623245, 0.7141199707984924, -0.3480300009250641, -0.11088000237941742, 0.8741199970245361, 0.052960000932216644, -0.3312099874019623, 0.05454099923372269, 0.3070099949836731, -0.27810999751091003, -0.16684000194072723, -0.08818899840116501, 0.1507900059223175, -0.3558500111103058, -0.5542500019073486, -0.07572200149297714, 0.48256000876426697, 0.22193999588489532, -0.8392900228500366, 0.16348999738693237, 0.1810699999332428, -0.13755999505519867, 0.5785800218582153, -0.18012000620365143, 0.09278599917888641, 0.43786999583244324, -0.19426999986171722, -0.26820001006126404, 0.6426900029182434, 0.44988998770713806, 0.03657799959182739, -0.042546000331640244, 0.828760027885437, 0.5799300074577332, 0.0073679001070559025, 0.25808998942375183, -0.20769000053405762, 0.12922999262809753, 0.19132000207901, 0.3566499948501587, -0.04761900007724762, -0.036139000207185745, 0.3349800109863281, -0.5646899938583374, 0.23687000572681427, -0.21012000739574432, -0.44562000036239624, 1.024999976158142, -0.3416300117969513, -0.5559399724006653, -0.2668600082397461, 0.22992999851703644, 0.30849000811576843, 0.5115500092506409, -0.16543999314308167, -0.2140199989080429, 0.1903200000524521, -0.4607599973678589, -0.019812000915408134, -0.21964000165462494, -0.518559992313385, -0.6303499937057495, -0.45423999428749084, 0.43873998522758484, 0.32627999782562256, -0.5599899888038635, 0.33101001381874084, 0.18783999979496002, 0.47683998942375183, 0.35370999574661255, -0.11196999996900558, 0.06346800178289413, 0.4273099899291992, -0.6609699726104736, 0.19518999755382538, -0.18258999288082123, -0.157150000333786, 0.6140199899673462, -0.6000800132751465, 0.24603000283241272, -0.41029998660087585, 0.15341000258922577, 0.13786999881267548, -0.18065999448299408, -0.0025579999200999737, -0.10598000138998032, -0.13773000240325928, 0.09554000198841095, 0.39329999685287476, -0.5640199780464172, 0.08286300301551819, -0.4155699908733368, -0.49344998598098755, -1.0221999883651733, 0.05342999845743179, -1.0636999607086182, 0.05315599963068962, 0.27682000398635864, -0.09797299653291702, 0.050165001302957535, 0.259660005569458, -0.07532200217247009, 0.024907000362873077, -0.06522999703884125, -0.3992699980735779, 0.592960000038147, -0.39493998885154724, 0.8134400248527527, 0.027400000020861626, -0.5890100002288818, 0.040366001427173615, -0.5929700136184692, 0.31968000531196594, 0.43272000551223755, -0.1943800002336502, -0.08028099685907364, -0.5088099837303162], u'nest': [-0.5212299823760986, 0.9966800212860107, -0.18925000727176666, -0.09312699735164642, 0.030886000022292137, 0.17621999979019165, 0.5393000245094299, 0.8260499835014343, -0.23660999536514282, -0.3803600072860718, -0.196150004863739, -0.2708199918270111, 0.059192001819610596, -0.8037199974060059, -0.5113000273704529, 0.12949000298976898, 0.3109099864959717, -0.2869499921798706, -0.18741999566555023, 0.2961300015449524, 0.12998999655246735, 0.3233200013637543, 0.3404099941253662, -0.04642400145530701, -0.20722000300884247, -0.5531899929046631, 0.4036000072956085, -0.025810999795794487, -0.05017700046300888, 0.5977200269699097, -0.12365999817848206, -0.15820999443531036, -0.6231200098991394, 0.25777000188827515, 0.2528899908065796, 0.1838800013065338, -0.3979400098323822, 0.2825700044631958, -0.18649999797344208, 0.22440999746322632, 0.08158200234174728, 0.16814999282360077, 0.3147599995136261, 0.017186999320983887, -0.03234200179576874, 0.1151999980211258, 0.858680009841919, 1.0889999866485596, -0.19912999868392944, 0.5774800181388855, -0.33675000071525574, -0.24993999302387238, -0.683899998664856, -0.02543500065803528, -0.21737000346183777, 0.12335000187158585, -0.2959499955177307, 0.20689000189304352, 0.04068699851632118, 0.8250899910926819, -0.0834520012140274, 0.04593899846076965, 0.4104999899864197, -0.10537999868392944, 0.18651999533176422, -0.34606999158859253, 0.5993000268936157, 0.4919700026512146, 0.43891000747680664, 0.07271099835634232, -0.49706000089645386, -0.041708000004291534, -0.20948000252246857, 0.34417998790740967, -0.6905400156974792, 1.0917999744415283, 0.30921000242233276, -0.4926300048828125, 0.6374499797821045, -0.31088998913764954, -0.7717800140380859, 0.31696999073028564, -0.18337999284267426, -0.7800800204277039, -0.15744000673294067, -0.06453099846839905, 0.1714099943637848, -0.212459996342659, -0.43105000257492065, -0.36296001076698303, 0.20577000081539154, 0.20934000611305237, 0.23071999847888947, 0.3206399977207184, 0.04117799922823906, -0.3618299961090088, 0.4102500081062317, 0.4647600054740906, 0.06252200156450272, -0.5038999915122986, 0.3426400125026703, -0.17576000094413757, -0.3955700099468231, 0.4538699984550476, 0.24706000089645386, -0.6591600179672241, 0.09693899750709534, -0.47088000178337097, 0.20804999768733978, 0.0304540004581213, 0.17077000439167023, -0.24529999494552612, -0.46601998805999756, 0.15615999698638916, -0.5669000148773193, 0.4819299876689911, 0.3531799912452698, 0.5375099778175354, -0.12809999287128448, -0.1941699981689453, -0.2227499932050705, -0.5197399854660034, 0.48017001152038574, 1.042199969291687, 0.1911499947309494, 0.23739999532699585, -0.3462199866771698, 0.1341799944639206, -0.1391099989414215, -0.22678999602794647, -0.22968000173568726, -0.001601099967956543, -0.23662999272346497, 0.02943499945104122, 0.4064500033855438, -0.3524099886417389, -0.3230000138282776, 0.008310999721288681, -0.513260006904602, 0.18220999836921692, 0.0603410005569458, -0.1184300035238266, -0.598829984664917, -0.07903899997472763, -0.37882000207901, -0.17836999893188477, 0.7587400078773499, -0.0016246000304818153, -0.19062000513076782, -0.14002999663352966, -0.4812000095844269, 0.7283599972724915, -0.5143399834632874, -0.22599999606609344, 0.23051999509334564, -0.4779199957847595, 0.27241000533103943, 0.13561999797821045, -0.13104000687599182, 0.1630599945783615, -0.38023999333381653, -0.09384600073099136, 0.2779400050640106, 0.5236200094223022, -0.15189999341964722, 0.46724000573158264, -0.11416999995708466, -0.21001000702381134, 0.10232000052928925, -0.2283799946308136, 0.19434000551700592, 0.10486000031232834, -0.24955999851226807, 0.03376200050115585, 0.006175700109452009, 0.2855699956417084, -0.06672800332307816, -0.13595999777317047, 0.25496000051498413, -0.2826499938964844, 0.7601699829101562, -0.48899999260902405, 0.4896799921989441, -0.002595700090751052, -0.7728599905967712, -0.10496000200510025, 0.6682199835777283, 0.018830999732017517, 0.1607300043106079, -0.17112000286579132, 0.5369600057601929, 0.1837099939584732, -0.09180399775505066, -0.9158400297164917, -0.659850001335144, 0.09421399980783463, 0.13874000310897827, -0.45353999733924866, 0.8604199886322021, 0.0591839998960495, 0.7219899892807007, -0.17911000549793243, -0.48087000846862793, -0.34880998730659485, 0.060051001608371735, -0.07364899665117264, -0.04464799910783768, -1.287500023841858, 0.4074000120162964, 0.5521900057792664, 0.4685100018978119, -0.2223999947309494, 0.3322499990463257, -0.5056599974632263, 0.2946999967098236, -0.019985999912023544, -0.12358000129461288, -0.04463199898600578, -0.04339899867773056, -0.5175099968910217, 0.43518000841140747, 0.4973300099372864, 0.2813299894332886, -0.08029799908399582, -0.7994700074195862, -0.31057998538017273, 0.3220300078392029, -0.052404001355171204, 0.31301000714302063, 0.17555999755859375, 0.155799999833107, 0.15418000519275665, -0.0469370000064373, 0.5823799967765808, -0.44975998997688293, 0.5697299838066101, -0.4175199866294861, 0.34578999876976013, -0.38515999913215637, 0.04147600010037422, 0.43985000252723694, -0.6727499961853027, -0.41484999656677246, 0.2013700008392334, -1.311900019645691, 0.015514999628067017, 0.39392000436782837, -0.3557099997997284, -0.27059000730514526, -0.7345399856567383, 0.09599000215530396, 0.8202199935913086, 0.0860389992594719, -0.015800999477505684, 0.14688000082969666, 0.1328900009393692, 0.7006300091743469, -0.023699000477790833, 0.5356400012969971, 0.03341199830174446, -0.3743799924850464, -0.31946998834609985, -0.20533999800682068, -0.4508500099182129, 0.15902000665664673, -0.055456001311540604, -0.27414000034332275, -0.8453599810600281, -0.07082299888134003, 0.35712000727653503, -0.12015999853610992, 0.09702000021934509, 0.18254999816417694, -0.08364299684762955, -0.4338800013065338, -0.2071399986743927, -0.6868699789047241, 0.4139400124549866, -0.4482699930667877, -0.6610400080680847, -0.3693099915981293, 0.024312999099493027, -0.14268000423908234, -0.3865100145339966, -1.174399971961975, 0.49616000056266785, 0.4256500005722046, 0.8597099781036377, -0.3688499927520752, -0.3164899945259094, 0.17949999868869781, -0.2540700137615204, 0.19107000529766083, 0.15731999278068542, -0.4711900055408478, -0.20909999310970306, 0.2623099982738495, 0.09077899903059006, -0.23615999519824982, -0.2835400104522705], u'highway': [-0.4509199857711792, -0.5975199937820435, 0.12269999831914902, 0.044821999967098236, -0.18129000067710876, -0.3327000141143799, -0.07025499641895294, 0.10857000201940536, -0.1485999971628189, -0.7808499932289124, -0.999970018863678, 0.08012499660253525, -0.5044400095939636, 0.6087899804115295, 0.6427299976348877, 0.25602999329566956, -0.3952000141143799, -0.265720009803772, 0.17095999419689178, 0.07826200127601624, -0.5529500246047974, 0.49807000160217285, 0.23019999265670776, 0.20634999871253967, -0.6031200289726257, 0.21413999795913696, 0.031560998409986496, -0.11169999837875366, 0.14757999777793884, 0.21793000400066376, 0.7793300151824951, 0.6076400279998779, -0.34213998913764954, 0.39625999331474304, 0.4099400043487549, 0.23972000181674957, -0.2891699969768524, 0.0007338299765251577, -0.019917000085115433, -0.6383500099182129, -0.49834001064300537, -0.15390999615192413, -1.1538000106811523, -0.08235800266265869, 0.486050009727478, 0.002191399922594428, 0.48423001170158386, 0.40591999888420105, -0.2768099904060364, -0.037742000073194504, -0.6980800032615662, -0.11156000196933746, -0.7799500226974487, 0.0008801899966783822, 0.3159500062465668, 0.09310699999332428, -0.05854500085115433, -0.47143998742103577, 0.23383000493049622, -0.19166000187397003, -0.2726300060749054, 0.023087000474333763, 0.11437000334262848, -0.36542001366615295, 0.4406299889087677, 0.46404001116752625, -0.3873499929904938, 0.259550005197525, 0.5043699741363525, 0.15657000243663788, -0.27230000495910645, 0.1335500031709671, 0.19381999969482422, 0.5377900004386902, -0.7514100074768066, 0.27553999423980713, -0.09862300008535385, 0.5265499949455261, 0.18459999561309814, -0.3831300139427185, 0.07162000238895416, -0.2474599927663803, 0.3570300042629242, -0.13997000455856323, -0.13745999336242676, -0.5268099904060364, -0.5270900130271912, 0.5553299784660339, 0.9716200232505798, -0.12167999893426895, 0.4301399886608124, 0.41962000727653503, 0.3989799916744232, -0.6904100179672241, -0.1792600005865097, 0.4898500144481659, 0.036400001496076584, -0.2068600058555603, -0.1825300008058548, -0.0536159984767437, 0.27946001291275024, 0.37463998794555664, 0.754360020160675, 0.08789099752902985, -0.07469099760055542, 0.35297998785972595, 0.25196999311447144, 0.46408000588417053, -0.034040000289678574, 0.023375000804662704, -0.31972000002861023, -1.3485000133514404, 0.35653001070022583, -0.18062999844551086, -0.10882999747991562, 0.038839999586343765, 0.297789990901947, 0.11853999644517899, 0.20151999592781067, 0.25797000527381897, 0.20570999383926392, 0.414029985666275, -0.0019537999760359526, -0.858020007610321, -0.4628399908542633, -0.07392100244760513, -0.35220998525619507, -0.9417700171470642, -0.2526400089263916, 0.18886999785900116, 0.44562000036239624, 0.30761000514030457, 0.6077399849891663, 0.16759000718593597, 0.4138199985027313, -0.3916800022125244, -0.1271899938583374, 0.2730099856853485, 0.5665500164031982, -0.5044800043106079, -0.24630999565124512, 0.44374001026153564, -0.1515900045633316, 0.37130001187324524, -0.7531800270080566, -0.007116499822586775, 0.6103600263595581, -0.13416999578475952, -0.14298999309539795, -0.020320000126957893, 0.9328600168228149, 0.3550499975681305, 0.1485700011253357, -0.323419988155365, 1.0928000211715698, 0.06319800019264221, 0.517799973487854, -0.40272000432014465, -0.4822399914264679, -0.1994200050830841, 0.4781399965286255, -0.3876200020313263, -0.27695000171661377, -0.7289000153541565, -0.02491999976336956, -0.26210999488830566, 0.15756000578403473, -0.2584100067615509, -0.30153000354766846, -0.3022199869155884, -0.10789000242948532, -1.1194000244140625, 0.6294800043106079, 0.6627699732780457, -0.0988750010728836, -0.1096000000834465, -0.3579399883747101, -0.6220200061798096, 0.058219000697135925, -0.052570000290870667, -0.2518700063228607, 0.12219999730587006, 0.06391000002622604, 0.37345001101493835, 0.38988998532295227, -0.48673000931739807, 0.36368998885154724, -0.16513000428676605, 0.019509000703692436, -0.28033000230789185, 0.1509999930858612, 0.5382699966430664, -0.4561600089073181, -0.15230000019073486, -0.7528300285339355, 0.0531810000538826, 0.44679999351501465, -0.8669899702072144, 0.9319400191307068, 0.10339000076055527, 0.8925399780273438, -0.489980012178421, 0.5393099784851074, -0.3620299994945526, -0.002924799919128418, -0.22005000710487366, -0.17760999500751495, -0.49136000871658325, 1.1779999732971191, 0.33274999260902405, -0.4966599941253662, -0.2953000068664551, 0.09868700057268143, -0.27889999747276306, -0.15017999708652496, 0.12049999833106995, -0.4614900052547455, 0.4933199882507324, -0.08850699663162231, -0.09845300018787384, 0.5527399778366089, -0.17059999704360962, 0.19478000700473785, -0.18029999732971191, 0.6374300122261047, 0.27838000655174255, -0.06010900065302849, -0.7336400151252747, 0.013508999720215797, -0.22147999703884125, -0.3928700089454651, -0.16527999937534332, -0.20361000299453735, -0.5006899833679199, 0.45530998706817627, -0.01464799977838993, -0.18150000274181366, 0.19043000042438507, 0.11569999903440475, -0.23743000626564026, 0.2624399960041046, -0.2945699989795685, 0.3085399866104126, -0.4240100085735321, -0.52183997631073, 0.006982299964874983, 0.717989981174469, -0.3336400091648102, 0.2644599974155426, -0.16311000287532806, -0.20297999680042267, -0.5442299842834473, 0.4683600068092346, -0.2248300015926361, 0.024741999804973602, -0.6288700103759766, -0.47157999873161316, 0.7205100059509277, -0.08332599699497223, 0.0317780002951622, 0.30254998803138733, -0.2622300088405609, 0.20663000643253326, 0.020966000854969025, 0.3898099958896637, -0.01621999964118004, 0.641759991645813, -0.8989099860191345, 0.1356000006198883, -0.19892999529838562, 0.5958700180053711, -0.12365999817848206, 0.05283199995756149, 0.19749000668525696, 0.3980500102043152, 0.506600022315979, -1.3803999423980713, 0.13262000679969788, 0.33847999572753906, 0.09898199886083603, 0.5319399833679199, -0.49830999970436096, 1.038100004196167, -0.6497499942779541, -0.6150699853897095, 0.6145300269126892, 0.3474099934101105, -0.5671200156211853, 0.08579400181770325, -0.052344001829624176, 0.3825699985027313, -0.40296998620033264, -0.06474599987268448, 0.3631399869918823, -0.026074999943375587, 0.5799800157546997, -0.2934400141239166, -0.0728600025177002, 0.047582998871803284, 0.01569399982690811], u'pants': [-0.3399200141429901, -0.3626599907875061, -0.19109000265598297, 0.3065600097179413, -0.061211999505758286, -0.03582699969410896, -0.4848400056362152, -0.3382500112056732, -0.1002499982714653, -0.6689800024032593, -0.14936000108718872, 0.028745999559760094, -0.18091000616550446, 0.4794600009918213, -0.39702001214027405, 0.5224800109863281, 0.1335500031709671, -0.15998999774456024, -0.2439499944448471, -0.08598700165748596, -0.050652001053094864, 0.3833500146865845, 0.3378700017929077, -0.4655199944972992, -0.737309992313385, -0.4335399866104126, 0.8483999967575073, -0.73403000831604, 0.21084000170230865, 0.3668699860572815, 0.019217999652028084, -0.2752699851989746, -0.03343300148844719, -0.16163000464439392, -0.6180599927902222, 0.7047500014305115, -0.3506599962711334, 0.04406199976801872, 0.30660000443458557, 0.5641899704933167, -0.44661998748779297, -0.7345499992370605, -0.42809000611305237, -0.4837400019168854, 0.3272800147533417, 0.2901799976825714, 0.7362099885940552, -0.4998700022697449, -0.4500899910926819, 0.1516599953174591, -0.075033999979496, -0.3907400071620941, 0.16373999416828156, -0.31725001335144043, -0.20202000439167023, 0.11554999649524689, -0.42388999462127686, -0.8143200278282166, 0.08569099754095078, 0.19509999454021454, 0.08534900099039078, -0.3431299924850464, -0.3114300072193146, 0.1356399953365326, -0.17637999355793, -0.37567999958992004, -0.2003999948501587, 0.15223999321460724, -0.16859999299049377, 0.034341000020504, 0.5723000168800354, -0.12560999393463135, 0.13083000481128693, -0.04727799817919731, 0.34376999735832214, 0.04594700038433075, -0.06543199717998505, 0.2503100037574768, -0.12309999763965607, -0.8871999979019165, -0.19074000418186188, 0.4554400146007538, -0.4736199975013733, -0.09618599712848663, -0.19937999546527863, 0.400409996509552, 0.5511199831962585, 0.17461000382900238, -0.2845500111579895, 0.1256600022315979, -0.14077000319957733, 0.25453001260757446, -0.02278600074350834, 0.08260499686002731, 0.09240499883890152, 0.20453999936580658, 0.12995000183582306, 0.6599699854850769, 0.37773001194000244, 0.08169899880886078, 0.30160999298095703, 0.9395300149917603, -0.14208999276161194, 0.4401499927043915, -0.8134099841117859, -0.0394430011510849, 0.3045699894428253, 0.12946000695228577, -0.13172000646591187, -0.25828999280929565, -0.5732700228691101, 0.27893999218940735, -0.08608400076627731, 0.011264000087976456, -0.05420000106096268, 0.3541100025177002, -0.009279600344598293, 0.27059999108314514, 0.3201799988746643, -0.6868500113487244, -0.041099000722169876, -0.11073999851942062, 1.2164000272750854, 0.16767999529838562, -0.055897001177072525, 0.04774999991059303, 0.2761099934577942, 0.14294999837875366, 0.40832000970840454, 0.15841999650001526, -0.04703500121831894, -0.298550009727478, -0.6035100221633911, 0.19469000399112701, -0.16869999468326569, 0.06226800009608269, -0.47692999243736267, 0.09698499739170074, -0.00345359998755157, 0.03307399898767471, -0.23718999326229095, -0.4069100022315979, 0.1533699929714203, -0.46097999811172485, -0.16798000037670135, 0.2867699861526489, -0.7132400274276733, 0.09741099923849106, 1.1691999435424805, 0.08755999803543091, 0.0004632700001820922, 0.19585999846458435, 0.14538000524044037, -0.7311599850654602, 0.24199999868869781, -0.46261000633239746, 0.22924000024795532, 0.013167000375688076, 0.4755600094795227, 0.3686999976634979, 0.24817000329494476, -0.7726399898529053, -0.5282899737358093, -0.02626200020313263, 0.24883000552654266, -0.6965000033378601, 0.015282000415027142, 1.3006999492645264, 0.26072999835014343, 0.06730099767446518, 0.08557800203561783, 0.2665799856185913, -0.5307300090789795, 0.6076400279998779, -0.09575200080871582, -0.18985000252723694, 0.11133000254631042, 0.4707300066947937, 0.1131799966096878, -0.2312300056219101, 0.19315999746322632, 0.1494700014591217, 0.22078999876976013, 0.15403999388217926, 0.4726400077342987, -0.39430001378059387, 1.0069999694824219, 0.5279499888420105, 0.4073599874973297, -0.02179500088095665, 0.6087899804115295, 0.13681000471115112, -0.05164400115609169, 0.4097299873828888, -0.30788999795913696, -0.02817700058221817, -0.7759400010108948, -0.2763800024986267, -0.38086000084877014, -0.03829000145196915, 0.7557700276374817, 0.1630299985408783, 0.9860100150108337, 0.46904999017715454, 0.5394200086593628, 0.14198000729084015, 0.35370001196861267, 0.4687199890613556, -0.6852200031280518, -0.4367299973964691, -0.2653700113296509, -0.7123399972915649, -0.36239999532699585, 0.925819993019104, 0.8626599907875061, -0.07756900042295456, 0.3952600061893463, -0.6556100249290466, 0.3015100061893463, -0.9024800062179565, 0.5285000205039978, 0.08949600160121918, 0.3486500084400177, 0.4103100001811981, 0.19544999301433563, -0.30636000633239746, 0.020969999954104424, -0.2678700089454651, -0.5612900257110596, -0.45032998919487, 0.6909300088882446, -0.06911800056695938, -0.2698499858379364, 0.11289999634027481, 0.7720699906349182, -0.37411001324653625, 0.2751699984073639, -0.11638999730348587, -0.5840299725532532, 0.6394100189208984, 0.5990599989891052, -0.09331099689006805, -0.5723599791526794, 0.5740100145339966, -0.16082000732421875, 0.36643001437187195, -0.43292999267578125, -0.5491999983787537, 0.34790000319480896, -0.2795400023460388, -0.5593699812889099, -0.16349999606609344, 0.1420000046491623, -0.404229998588562, 0.4237000048160553, 0.06724599748849869, -0.188960000872612, 0.6046299934387207, -0.3546600043773651, -0.43022000789642334, 0.361160010099411, -0.6012899875640869, 0.08138500154018402, -0.031081000342965126, -0.36348000168800354, -0.08777499943971634, -0.5635600090026855, 0.24898000061511993, -0.930079996585846, 0.2950499951839447, 0.024757999926805496, -0.18133999407291412, -0.18905000388622284, -0.02982199937105179, -0.45364999771118164, -0.4007900059223175, -0.490119993686676, -0.08015900105237961, -0.7790899872779846, 0.38659998774528503, 0.40720000863075256, 0.14036999642848969, 0.5565999746322632, 0.26116999983787537, -0.5244600176811218, 0.37852001190185547, -0.529259979724884, 0.24800999462604523, -0.4345000088214874, -0.48517999053001404, -0.1941699981689453, 0.3940500020980835, -0.06754899770021439, 0.9402199983596802, -0.4588499963283539, -0.36030998826026917, 0.22881999611854553, 0.3225800096988678, 0.6101999878883362, -0.15681999921798706], u'cord': [-0.24864999949932098, 0.3299199938774109, -0.5297899842262268, -0.09530699998140335, -0.24772000312805176, -0.03909900039434433, -0.6102100014686584, -0.830780029296875, -0.301580011844635, -0.8588100075721741, -0.33228999376296997, 0.22620999813079834, 0.587939977645874, -0.2147500067949295, 0.11657000333070755, 0.4295499920845032, -0.9771900177001953, 0.04922199994325638, -0.47635000944137573, 0.41058000922203064, -0.16554999351501465, -0.6871899962425232, -0.5161299705505371, -0.10068999975919724, -0.20369000732898712, 0.32401999831199646, 0.06427200138568878, -0.6664299964904785, 0.18703000247478485, 0.3870700001716614, -0.7597399950027466, 0.35493001341819763, 0.2137099951505661, -0.08628900349140167, 0.14688999950885773, -0.42590999603271484, 0.46452999114990234, 0.3422499895095825, 0.3147599995136261, 0.6021100282669067, -0.12647999823093414, -0.20839999616146088, -0.2764599919319153, -1.0609999895095825, -0.025637999176979065, 0.2190299928188324, 0.2804099917411804, -0.20464999973773956, -0.21528999507427216, 0.012152000330388546, -0.22046999633312225, 0.47617998719215393, 0.004209999926388264, 0.29646000266075134, -0.1607999950647354, -0.7165899872779846, -0.40845000743865967, -0.24969999492168427, -1.1507999897003174, 0.6179500222206116, -0.08275800198316574, 0.6838499903678894, 0.3486100137233734, 0.019113000482320786, 0.970579981803894, 0.05671299993991852, -0.088748998939991, 0.4836600124835968, -0.10006999969482422, 0.49132001399993896, -0.04460800066590309, -0.38558000326156616, 0.2552500069141388, 0.8979499936103821, 0.2567799985408783, -0.33557000756263733, -0.06754700094461441, -0.3551500141620636, -0.1276800036430359, -0.31380999088287354, 0.8993300199508667, -0.12511000037193298, 0.398470014333725, 0.08698400110006332, -0.7666900157928467, 0.33588001132011414, -0.3947100043296814, 0.3236199915409088, -0.3588699996471405, 0.7911800146102905, 0.23235000669956207, 0.12890000641345978, 0.29541000723838806, -0.2922700047492981, 0.7346199750900269, -0.2928999960422516, 0.1775899976491928, 0.7889999747276306, 0.7107899785041809, -0.7410600185394287, 0.3976899981498718, -0.20630000531673431, 0.1265300065279007, -0.2634899914264679, 0.4997999966144562, 0.29815998673439026, 0.1407500058412552, -0.15360000729560852, -0.7604900002479553, 0.36667001247406006, -0.606939971446991, 0.576200008392334, -0.11445999890565872, -0.1962900012731552, 0.13294999301433563, 0.3315899968147278, 0.012381000444293022, 0.14113999903202057, 0.213469997048378, 0.15331000089645386, -0.22657999396324158, -0.49667999148368835, 0.48267999291419983, 0.04088500142097473, 0.30094000697135925, -0.30577000975608826, -0.6141300201416016, -0.40108001232147217, -0.43830999732017517, 0.3979800045490265, 0.9110000133514404, 0.2332800030708313, 0.14172999560832977, -0.24212999641895294, -0.6077499985694885, -0.22280000150203705, 0.44036000967025757, 0.20385999977588654, -0.2087700068950653, -0.08657699823379517, 0.1519699990749359, 0.3779599964618683, 0.536899983882904, -0.4737899899482727, 0.4300900101661682, 0.41231000423431396, -0.585669994354248, -1.1030000448226929, 0.07473199814558029, 0.48539999127388, -0.5699099898338318, -0.28551000356674194, 0.17903999984264374, -0.30066999793052673, 0.013120000250637531, 0.11623000353574753, 1.021399974822998, 0.1792300045490265, -0.3674300014972687, 0.7610599994659424, -0.30724000930786133, -0.42271000146865845, 0.06936299800872803, -0.02635199949145317, 0.7444499731063843, 0.08062300086021423, -0.09613599628210068, -0.7997999787330627, 0.2893500030040741, 0.4618000090122223, -0.17059999704360962, 0.4316500127315521, -0.1687999963760376, 0.44266998767852783, 0.084757000207901, -0.7951200008392334, -0.1941699981689453, 0.29971998929977417, 0.08904200047254562, -0.3711400032043457, 0.9644700288772583, -0.09007900208234787, 0.02833699993789196, -0.01935099996626377, -0.2826800048351288, 0.04558800160884857, 0.6031000018119812, -0.34665998816490173, -0.1344199925661087, -0.04288100078701973, 0.13165999948978424, 0.6812099814414978, -0.01824299991130829, -0.048151999711990356, 0.12225999683141708, 0.21367000043392181, 0.1801699995994568, -0.4775800108909607, -0.17903999984264374, 0.23824000358581543, 0.19067999720573425, 0.46720001101493835, 0.5825700163841248, 0.025080999359488487, 0.10392999649047852, 0.4314900040626526, -0.14191000163555145, 0.6472399830818176, -0.3689900040626526, 0.17893999814987183, 0.41541001200675964, -0.2875699996948242, -0.11556000262498856, -0.010889999568462372, 0.3436700105667114, 0.09372500330209732, 0.1681399941444397, -0.7315000295639038, -0.15435999631881714, -0.4636099934577942, -0.12444999814033508, -0.9769399762153625, 0.1603900045156479, -0.2079000025987625, 0.40015000104904175, 0.3882400095462799, -0.7297300100326538, 0.08138000220060349, 0.16651000082492828, -0.38065001368522644, 0.07708299905061722, -0.05558599904179573, -0.18748000264167786, 0.12943999469280243, -0.03918499872088432, -0.22487999498844147, -0.0689229965209961, 0.07273600250482559, 0.001776800025254488, -0.43108001351356506, 0.6598899960517883, -0.4712100028991699, 0.13037000596523285, 0.180759996175766, -0.6986600160598755, 0.3875199854373932, 0.1396999955177307, -0.02223300002515316, -0.04366200044751167, -0.36726000905036926, 0.020387999713420868, 0.7383300065994263, -0.27742999792099, -1.24399995803833, 0.5054299831390381, 0.09108000248670578, -0.0865359976887703, 0.2034199982881546, 0.46292001008987427, 0.10823000222444534, 0.31084001064300537, -0.7923200130462646, 0.06381099671125412, 0.5147500038146973, 0.4559600055217743, 0.20930999517440796, 0.3718000054359436, 0.07374799996614456, -0.3856799900531769, 0.48816001415252686, -0.45945000648498535, -0.1802700012922287, -0.04652699828147888, -0.026645999401807785, -0.7184799909591675, -0.24145999550819397, -0.6974300146102905, -0.18761999905109406, -0.5015000104904175, 0.22967000305652618, -0.4561600089073181, 0.044454000890254974, 0.4328100085258484, -0.039009999483823776, -0.515250027179718, 0.3909499943256378, -0.42715001106262207, 0.055987000465393066, -0.31387001276016235, -0.18472999334335327, 0.1584399938583374, -0.3763900101184845, 0.2688499987125397, -0.2814500033855438, 0.008802900090813637, -0.03647699952125549, 0.35940998792648315, 0.31446000933647156, 0.8064299821853638, -0.316210001707077], u'cabinet': [0.15560999512672424, 0.29030999541282654, -0.1756500005722046, -0.17847999930381775, 0.15143999457359314, 0.05660400167107582, 0.0073401001282036304, -0.3377799987792969, -0.4787600040435791, -1.74590003490448, -0.7050399780273438, -0.053217001259326935, -0.386680006980896, 0.20066000521183014, 0.0716560035943985, 0.07966700196266174, 0.09726399928331375, -0.20555000007152557, 0.6959800124168396, 0.1604200005531311, 0.14970000088214874, 0.080144003033638, 0.4943299889564514, -0.39820000529289246, -0.25290998816490173, -0.14811000227928162, -0.1915999948978424, -0.2764900028705597, 0.39928001165390015, 0.09875699877738953, -0.17671999335289001, 0.00793640036135912, 0.2355699986219406, 0.5211600065231323, -0.5923500061035156, 0.17403000593185425, 0.4692699909210205, 0.11407999694347382, -0.39941999316215515, 0.10713999718427658, -0.27083998918533325, 0.681119978427887, 0.062015000730752945, -0.3264400064945221, -0.46015000343322754, -0.12500999867916107, -0.7040500044822693, -0.9616699814796448, -0.2704299986362457, 0.03281699866056442, -0.5166599750518799, 0.21303999423980713, -0.4388499855995178, -0.11772999912500381, -0.6096699833869934, -0.0910160019993782, 0.001853400026448071, -0.026218999177217484, -0.19423000514507294, 0.7198200225830078, -0.09395500272512436, 0.3318899869918823, -0.737339973449707, 0.22561000287532806, 0.13175000250339508, -0.9971399903297424, 0.3010300099849701, -0.17732000350952148, -0.5843600034713745, 0.25325000286102295, 0.2238599956035614, 0.16654999554157257, 0.1426600068807602, -0.16208000481128693, 0.5889599919319153, -0.008844099938869476, -0.3717299997806549, -0.007860800251364708, -0.09458599984645844, -0.018528999760746956, -0.19228999316692352, 0.2438499927520752, 0.10474000126123428, 0.4465799927711487, 0.8977000117301941, 0.004924700129777193, -0.37643998861312866, -0.07427900284528732, -0.19547000527381897, -0.1546899974346161, -0.45489001274108887, -0.34711000323295593, -0.12671999633312225, 0.15443000197410583, -0.18637999892234802, -0.295879989862442, -0.3280999958515167, -0.4374600052833557, 0.44343000650405884, -0.6559100151062012, -0.4477800130844116, -0.06641799956560135, 0.35486000776290894, -0.27893000841140747, -0.23492999374866486, -0.08145900070667267, -0.3066999912261963, -0.28022998571395874, 0.31512999534606934, 0.12255000323057175, 0.5340800285339355, 0.27684998512268066, -0.3008500039577484, -0.5284000039100647, -0.01430600043386221, 0.6962400078773499, 0.08408199995756149, -0.6604099869728088, 0.19555999338626862, -0.7281100153923035, 0.1013299971818924, -0.07909499853849411, -0.7322900295257568, -0.33285000920295715, -0.20788000524044037, -0.04591900110244751, 0.0282600000500679, 0.412990003824234, 0.2968299984931946, 0.2332099974155426, -0.26440998911857605, -0.4272899925708771, 0.3736799955368042, -0.07227200269699097, 0.5138099789619446, 0.22228999435901642, -0.2108599990606308, 0.06628300249576569, 0.33671998977661133, 0.2281000018119812, 0.3356800079345703, 0.7344800233840942, -0.13328999280929565, 0.27726998925209045, -0.1011200025677681, 0.14753000438213348, 0.5641700029373169, 0.251800000667572, 0.2823199927806854, -0.35635000467300415, 0.9232100248336792, 0.29875999689102173, 0.16011999547481537, -0.0337349995970726, -0.021165000274777412, 0.416130006313324, -0.01312199980020523, -0.05900900065898895, 0.25224998593330383, -0.016919000074267387, -0.2878299951553345, 0.5735700130462646, -0.07199200242757797, 0.35468000173568726, -0.4520699977874756, 0.24511000514030457, -0.05984000116586685, 0.4426000118255615, -0.04325899854302406, 0.03365299850702286, -0.24437999725341797, 0.15074999630451202, -0.5023900270462036, -0.3338199853897095, -0.2589400112628937, 0.29934999346733093, -0.17038999497890472, 0.01133199967443943, 0.03790200129151344, 0.11102999746799469, 0.05024600028991699, 0.35141998529434204, 0.34786999225616455, 0.21119999885559082, 0.048158999532461166, 0.10401999950408936, -0.38040000200271606, 0.17238999903202057, -0.5078200101852417, 0.11118000000715256, 0.5057700276374817, -0.2381799966096878, 0.135220006108284, -0.4229699969291687, 0.12231999635696411, 0.6105999946594238, 0.1286199986934662, 0.20145000517368317, -0.17744000256061554, 0.16423000395298004, 0.37505000829696655, -0.07539699971675873, -0.36035001277923584, -0.17170000076293945, -0.1763100028038025, -0.2974900007247925, 0.30316999554634094, -0.8185200095176697, 0.35095998644828796, -0.2151300013065338, 0.3833799958229065, -0.6172299981117249, 0.4664599895477295, -0.19269999861717224, 0.25231000781059265, 0.034320998936891556, -0.08621799945831299, -0.37108999490737915, 0.9943199753761292, 0.05904100090265274, 0.6292399764060974, -0.09062299877405167, -0.4836199879646301, 0.5852400064468384, 0.17103999853134155, 0.5414900183677673, 0.4770300090312958, 0.47540000081062317, 0.45855000615119934, -0.06436199694871902, -0.18318000435829163, -0.30605000257492065, 0.027389999479055405, 0.1598300039768219, 0.7506899833679199, -0.12592999637126923, 0.11236000061035156, -0.44655001163482666, 0.6491299867630005, 0.5090600252151489, 0.26447999477386475, -0.010619999840855598, -0.11992999911308289, 0.3318600058555603, 0.16015000641345978, 0.7781699895858765, 0.5385100245475769, -0.10347999632358551, 0.27542001008987427, -0.2327899932861328, -0.16468000411987305, -0.7376700043678284, 0.6130200028419495, 0.24041999876499176, 0.08789700269699097, -0.20875999331474304, -0.1800300031900406, 0.3287599980831146, 0.301829993724823, 0.2764500081539154, -0.3558900058269501, -0.13747000694274902, 0.25786998867988586, -0.059856001287698746, 0.24774999916553497, -0.5677700042724609, -0.03894200176000595, 0.8575000166893005, -0.1596599966287613, 0.1917099952697754, -0.7373800277709961, 0.32284998893737793, 0.3628300130367279, -0.017872000113129616, 0.08971499651670456, 0.36844000220298767, -1.2723000049591064, 0.6621900200843811, 0.824150025844574, -0.4605099856853485, 1.0901999473571777, -0.03717200085520744, -0.23136000335216522, -0.18330000340938568, 0.3889099955558777, -0.09551600366830826, -0.1571899950504303, 0.9632099866867065, 0.2514899969100952, -0.29416999220848083, 0.10328999906778336, -0.675000011920929, 0.03931500017642975, -0.6732400059700012, 0.15082000195980072, 0.9156799912452698, -0.1823900043964386, -0.7811400294303894, -1.000100016593933, 0.10068000108003616], u'hose': [0.39485999941825867, -0.41405999660491943, 0.06214800104498863, -0.3012999892234802, -0.4568600058555603, 0.38534000515937805, 0.017940999940037727, -0.08021000027656555, 0.014995000325143337, -0.03534200042486191, 0.330020010471344, 0.17181000113487244, 0.36566999554634094, -0.3738099932670593, -0.0400330014526844, 0.5159500241279602, -0.30469998717308044, 0.24859000742435455, -0.010765000246465206, -0.08354099839925766, -0.48930999636650085, -0.1826999932527542, 0.01853499934077263, 0.22939999401569366, -0.281139999628067, 0.005629200022667646, 0.3232400119304657, 0.2563999891281128, 0.011212999932467937, 0.017774999141693115, 0.624809980392456, -0.5237500071525574, 0.20051999390125275, -0.04021399840712547, 0.245169997215271, 0.3813000023365021, 0.025181999430060387, -0.02733200043439865, 0.06506600230932236, 0.4537700116634369, -0.10750000178813934, 0.5352500081062317, 0.3763999938964844, -0.3410800099372864, -0.07503599673509598, 0.21472999453544617, 0.9287099838256836, 0.3752000033855438, 0.3256700038909912, 0.3605799973011017, -0.33048000931739807, 0.35659998655319214, -0.24741999804973602, 0.11163000017404556, 0.3748700022697449, 0.23637999594211578, 0.33414000272750854, 0.47453999519348145, -0.2012300044298172, 0.17687000334262848, 0.30338001251220703, -0.5295600295066833, 0.4202899932861328, 0.5702400207519531, 0.30072999000549316, -0.09310399740934372, -0.5429700016975403, 0.023521000519394875, 0.15919999778270721, 0.3427799940109253, 0.298770010471344, -0.6177399754524231, 0.1418599933385849, 0.37595999240875244, 0.1973000019788742, 0.4156000018119812, -0.6070299744606018, -0.3092299997806549, -0.6968899965286255, -0.8571699857711792, -0.3723199963569641, -0.07445000112056732, 0.5433300137519836, -0.36445000767707825, 0.03206599876284599, 0.2760300040245056, 0.26868000626564026, 0.4020799994468689, -0.4447399973869324, -0.06296700239181519, 0.004897600039839745, -0.39535000920295715, 0.26197999715805054, -0.2582400143146515, 0.16324999928474426, -0.2295999974012375, -0.17215000092983246, 0.5604900121688843, 0.17444999516010284, -0.6330400109291077, -0.07690100371837616, 0.612559974193573, -0.7958300113677979, -0.414000004529953, 0.386790007352829, -0.23226000368595123, -0.037842001765966415, 0.13007000088691711, -0.40408000349998474, 0.1878499984741211, -0.2461100071668625, 0.13853999972343445, 0.4185200035572052, -0.18920999765396118, -0.3960700035095215, 0.13565999269485474, -0.2805599868297577, 0.321399986743927, -0.11913999915122986, -0.6291599869728088, 0.3910500109195709, -0.5346099734306335, 0.8060799837112427, -0.30184999108314514, -0.40411001443862915, -0.22266000509262085, 0.11838000267744064, 0.3121800124645233, -0.12827999889850616, 0.16187000274658203, 0.6504499912261963, 0.3903299868106842, 0.3079800009727478, 0.22697000205516815, -0.28363001346588135, 0.12365999817848206, 0.49386000633239746, 0.37988001108169556, 0.176269993185997, 0.6072800159454346, -0.08199899643659592, -0.1434600055217743, 0.3724600076675415, -0.601580023765564, -0.3776000142097473, 0.28714999556541443, -0.0767270028591156, 0.08353099972009659, 0.03622400015592575, -0.0003630699939094484, -0.39322999119758606, 0.4906100034713745, 0.32771000266075134, -0.3597100079059601, 0.8656200170516968, -0.30000999569892883, 1.0496000051498413, 0.05278199911117554, 0.08252699673175812, 0.8296099901199341, -0.32006001472473145, -0.361050009727478, 0.2561100125312805, -0.07623299956321716, 0.2323099970817566, -0.25951001048088074, 0.01830100081861019, 0.22608999907970428, 0.6097599864006042, 0.017354000359773636, 0.05273500084877014, 0.39972999691963196, 0.02676999941468239, 0.3707900047302246, 0.11279000341892242, 0.10587000101804733, -0.21639999747276306, 0.899399995803833, 0.389739990234375, -0.05805699899792671, 0.04801100119948387, -0.17276999354362488, 0.35043999552726746, 0.3735699951648712, -0.05366099998354912, -0.03747599944472313, 1.1648000478744507, 0.5095700025558472, 0.8375999927520752, -0.5667499899864197, 0.3767299950122833, 0.17279000580310822, -0.28060999512672424, 0.10548000037670135, -0.30199000239372253, -0.3659600019454956, -0.2907699942588806, -0.31630000472068787, 0.03972499817609787, -0.3486100137233734, -0.5915700197219849, 0.45065000653266907, 0.5824699997901917, -0.04300500079989433, 0.46946999430656433, 0.23366999626159668, -0.41172000765800476, -0.2904900014400482, -0.32903000712394714, 0.03724600002169609, -0.5085200071334839, 0.22293999791145325, 0.04202999919652939, -0.0904029980301857, 1.1202000379562378, -0.17483000457286835, 0.2048500031232834, -0.24537000060081482, 0.15198999643325806, -0.5633800029754639, 0.2551800012588501, -0.2013300061225891, 0.3849700093269348, 0.09361500293016434, 0.2770099937915802, -0.2538999915122986, -0.6652600169181824, -0.32245001196861267, 0.1551699936389923, 0.14914000034332275, 0.46250998973846436, -0.4436199963092804, 0.013249999843537807, -0.1064400002360344, 0.4980199933052063, 0.09310699999332428, -0.21046000719070435, -0.5338500142097473, 0.014818999916315079, 0.0010244000004604459, -0.1430799961090088, -0.4599300026893616, -0.5293099880218506, 0.20980000495910645, 0.3463299870491028, -0.19228999316692352, 0.6941099762916565, -0.13786999881267548, 0.42034998536109924, -0.4876300096511841, 0.11388000100851059, -0.4901300072669983, 0.2789599895477295, -0.998009979724884, 0.7904599905014038, -0.1583700031042099, -0.7837399840354919, 0.5008999705314636, 0.08983699977397919, -0.42048001289367676, -0.5694299936294556, -0.3032599985599518, -0.41703999042510986, -0.4509199857711792, -0.29815998673439026, -0.3441300094127655, -0.4686700105667114, 0.4998599886894226, -0.3253999948501587, -0.07227800041437149, 0.27678000926971436, 0.40661999583244324, 0.0628649964928627, -0.042153000831604004, -0.29104000329971313, 0.041398998349905014, -0.1673399955034256, -0.3031499981880188, -0.8053200244903564, 0.4876999855041504, 0.13429999351501465, -0.18283000588417053, 0.4818800091743469, 0.43147000670433044, -0.19771000742912292, 0.4127900004386902, 0.039709001779556274, 0.5107899904251099, 0.03602999821305275, -0.12125000357627869, -0.027689000591635704, 0.19059999287128448, 0.5329300165176392, -0.11473999917507172, 0.7837700247764587, -0.23973999917507172, 0.15095999836921692, -0.14045000076293945, 0.3878999948501587, 0.6085500121116638], u'banana': [0.4214099943637848, 0.0204670000821352, 0.12666000425815582, 0.39761999249458313, -0.11016000062227249, -0.0359559990465641, -0.47214001417160034, -0.13916000723838806, 0.568120002746582, -0.3496899902820587, -0.09323199838399887, -0.17035000026226044, -0.38677000999450684, -0.16810999810695648, -0.1015700027346611, -0.26611998677253723, 0.0480940006673336, -0.4677099883556366, -0.6072499752044678, 0.4095200002193451, 0.3177100121974945, 0.500980019569397, 0.6636800169944763, -0.11827000230550766, -0.7426699995994568, -0.10471999645233154, -0.643530011177063, -0.44023001194000244, -0.39100998640060425, 0.35694000124931335, -0.9348899722099304, 0.4831700026988983, 0.15222999453544617, 0.07933899760246277, -0.2511099874973297, 0.3996799886226654, -0.1798200011253357, -0.28874000906944275, -0.10891000181436539, 0.3882099986076355, -0.2314700037240982, -0.5033699870109558, -0.25231000781059265, -0.02218399941921234, -0.2787399888038635, -0.24192999303340912, 0.05746600031852722, -0.5395500063896179, -0.03487500175833702, -0.4048199951648712, -0.03806700184941292, -0.42337000370025635, 0.4286099970340729, 0.35166001319885254, -0.18164999783039093, -0.3113099932670593, -0.5327600240707397, -0.050953999161720276, 0.6677899956703186, -0.40077000856399536, 0.21402999758720398, -0.29861000180244446, -0.36636999249458313, 0.28488999605178833, -0.3766300082206726, 0.05960400030016899, -0.3179500102996826, 0.2546299993991852, -0.22184999287128448, 0.230320006608963, -0.1230200007557869, 0.24175000190734863, -0.10706000030040741, -0.08659899979829788, -0.037363000214099884, -0.10402999818325043, 0.24492000043392181, -0.8406299948692322, -0.1535000056028366, -0.19362999498844147, -0.01854100078344345, 0.10937999933958054, -0.29401999711990356, -0.11270999908447266, -0.38885998725891113, -0.4283599853515625, -0.44859999418258667, -0.24650999903678894, -0.09497100114822388, -0.6327499747276306, 0.20590999722480774, -0.7771199941635132, -0.23887999355793, -0.7999399900436401, -0.36994001269340515, 0.37863001227378845, 0.27856001257896423, -0.10061000287532806, 0.06472799926996231, 0.09121400117874146, 0.2432200014591217, 0.3931899964809418, 0.2713800072669983, -0.6938999891281128, -0.37602999806404114, 0.19322000443935394, -0.28887999057769775, -0.0138330003246665, -0.2009200006723404, 0.2065100073814392, 1.1442999839782715, 0.20412999391555786, 0.07750300318002701, 0.3686800003051758, 0.26763999462127686, -0.1920499950647354, 0.12437000125646591, 0.7253999710083008, -0.4039199948310852, 0.20171000063419342, 0.02761100046336651, -0.7072700262069702, 0.7335299849510193, -0.2891800105571747, -0.07686500251293182, 0.16481000185012817, 0.47929999232292175, 1.0437999963760376, -0.012671000324189663, 0.21649999916553497, -0.5456299781799316, 0.7460299730300903, 0.05053500086069107, 0.43027999997138977, 0.28582999110221863, -0.22622999548912048, -0.10047999769449234, 0.021872999146580696, -0.015193000435829163, -0.36967000365257263, -0.01257999986410141, -0.033952999860048294, -0.08764400333166122, 0.06780900061130524, 0.07579299807548523, 0.7751399874687195, 0.36430999636650085, -0.3149400055408478, 0.44822999835014343, -0.49691998958587646, -0.395220011472702, 0.1720000058412552, 0.3274399936199188, 0.2806999981403351, -0.22450999915599823, 0.016309000551700592, -0.4960399866104126, -0.07068400084972382, 0.4458799958229065, 0.698360025882721, 0.5778599977493286, -0.08613300323486328, 0.0885000005364418, -0.130280002951622, -0.47819000482559204, -0.5680999755859375, -0.35058000683784485, 0.45372000336647034, -0.07701899856328964, -0.3914699852466583, -0.00625990005210042, -0.008847000077366829, -0.5588799715042114, -0.2786499857902527, 0.4582099914550781, 0.0404990017414093, 0.09659700095653534, 0.7932900190353394, -0.008188299834728241, -0.22360999882221222, 0.13948999345302582, 0.06399700045585632, -0.04814000055193901, -0.8996999859809875, 0.32938000559806824, -0.7324299812316895, 0.4952000081539154, 0.43428999185562134, 0.3959200084209442, -0.3604699969291687, -0.44325000047683716, 1.187399983406067, -0.14529000222682953, -0.2461400032043457, 0.1634799987077713, 0.24299000203609467, -0.08686599880456924, -0.3142000138759613, -0.10316000133752823, 0.44773998856544495, 0.12476000189781189, 0.29401999711990356, 0.05658499896526337, -0.008133400231599808, 0.4144800007343292, 0.07806500047445297, 0.42368999123573303, 0.5951399803161621, -0.18196000158786774, -0.11807999759912491, -0.16229000687599182, -0.3704400062561035, -0.455049991607666, 0.2321300059556961, -0.188060000538826, -0.057700999081134796, 0.3567799925804138, -0.29693999886512756, 0.4071100056171417, 0.2931399941444397, 0.5099700093269348, -0.49059998989105225, -0.03844200074672699, 0.27698999643325806, -0.17813999950885773, 0.561959981918335, -0.257750004529953, 0.16301999986171722, -0.12892000377178192, 0.18511000275611877, 0.044475000351667404, -0.05000400170683861, 0.0034030000679194927, 0.7243599891662598, 0.7284899950027466, -0.05083199962973595, 0.6350700259208679, -0.5197399854660034, -0.018574999645352364, -0.040821000933647156, -0.06515499949455261, -0.47369998693466187, 0.031050000339746475, -0.29190000891685486, -1.06850004196167, 0.1915699988603592, 0.3510400056838989, 0.65447998046875, 0.09460200369358063, -0.749530017375946, 0.2777099907398224, 0.8520299792289734, -0.13937999308109283, -0.0026958000380545855, 0.7590500116348267, 0.1525000035762787, -0.18057000637054443, 0.35791999101638794, 0.2209399938583374, -0.0026223999448120594, 0.2435699999332428, -0.04444900155067444, 0.024306999519467354, -0.18554000556468964, 0.5472999811172485, 0.06756199896335602, -0.17508000135421753, -0.4966999888420105, 0.19099999964237213, -0.12052000313997269, 0.0005621400196105242, -0.042702000588178635, 0.08379500359296799, 0.4198000133037567, 0.14462000131607056, 0.14565999805927277, -0.33083000779151917, -0.2593599855899811, -0.5849900245666504, 0.08274500072002411, -0.49893999099731445, -0.24472999572753906, -0.31758999824523926, -0.6223000288009644, -0.41370001435279846, 0.10231000185012817, 0.562529981136322, -0.411080002784729, 0.15782000124454498, 0.09359999746084213, -0.0667869970202446, -0.6504999995231628, 0.43919000029563904, -0.07727000117301941, -0.1035899966955185, 0.2017199993133545, -0.6401900053024292, 0.09386900067329407, 0.23951999843120575, 0.30140000581741333], u'dirt': [-0.43751001358032227, 0.20236000418663025, -0.023413000628352165, 0.42260000109672546, -0.32732999324798584, -0.2511399984359741, 0.03773999959230423, 0.008562499657273293, 0.8539800047874451, -0.18592000007629395, -0.35662001371383667, -0.05635000020265579, -0.07650700211524963, 0.22476999461650848, -0.2094700038433075, -0.08790100365877151, -0.8471500277519226, 0.06546899676322937, 0.7195500135421753, 0.2868799865245819, -0.1757899969816208, 0.23601999878883362, 0.2112399935722351, 0.4162200093269348, -0.3646799921989441, -0.6839200258255005, 0.26934999227523804, -0.024390000849962234, 0.1978600025177002, 0.24866999685764313, -0.3102099895477295, 0.24467000365257263, -0.26030001044273376, -0.07488799840211868, -0.2908700108528137, 1.03410005569458, -0.8112599849700928, 0.1872600018978119, 0.10379000008106232, 0.043533001095056534, -0.11423999816179276, 0.2687999904155731, 0.0875990018248558, -0.21336999535560608, 0.6154900193214417, 0.4585399925708771, 0.389739990234375, 0.13519999384880066, 0.33302000164985657, -0.4449799954891205, -0.2946000099182129, 0.31134000420570374, -0.26131001114845276, 0.16976000368595123, 0.15715999901294708, -0.01508800033479929, -0.01729699969291687, -1.1019999980926514, 0.40042001008987427, -0.2370299994945526, 0.1424199938774109, 0.07078400254249573, 0.4339599907398224, 0.1506499946117401, 0.03079500049352646, -0.5133200287818909, 0.1756799966096878, 0.10405000299215317, 0.04862299934029579, -0.3567799925804138, 0.36070001125335693, 0.6423500180244446, -0.09931699931621552, 0.23720000684261322, -0.37678998708724976, -0.1409599930047989, -0.045830998569726944, -0.44962000846862793, 0.6169700026512146, -0.6000199913978577, 0.40626001358032227, -0.04443899914622307, 0.4527600109577179, 0.2553499937057495, -0.8144699931144714, -0.1548600047826767, 0.12296999990940094, -0.08765900135040283, 0.3710800111293793, 0.23680000007152557, 0.7673699855804443, 0.01761000044643879, 0.46963000297546387, -0.6071900129318237, -0.10296999663114548, -0.49810001254081726, -0.19550000131130219, -0.3453100025653839, 0.6309300065040588, 0.17207999527454376, 0.21334999799728394, 0.17696000635623932, -0.47481000423431396, -0.014675999991595745, -0.4889200031757355, 0.12202999740839005, 0.5047699809074402, -0.5514600276947021, 0.14270000159740448, -0.488209992647171, -0.5903499722480774, -0.7287999987602234, -0.09192900359630585, -0.5440199971199036, -0.37696000933647156, 0.5186499953269958, 0.27814000844955444, 0.24053999781608582, 0.22800999879837036, -0.31839999556541443, -0.04325399920344353, 0.15821999311447144, 0.3152100145816803, -0.010089999996125698, -0.45583999156951904, 0.6175600290298462, -0.30967000126838684, 0.35214999318122864, -0.4807499945163727, 0.4636799991130829, 0.11632999777793884, 0.47571998834609985, 0.5779500007629395, 1.0983999967575073, 0.2744700014591217, -0.2492700070142746, 0.1563200056552887, 0.4180600047111511, -0.18051999807357788, -0.5913000106811523, 0.36882999539375305, 0.01720600016415119, -0.2018900066614151, -0.3333300054073334, -0.365090012550354, 0.2837199866771698, 0.19473999738693237, 0.4923200011253357, -0.27046000957489014, 0.08921399712562561, -0.06791999936103821, 0.49355000257492065, -0.7487300038337708, 0.0399399995803833, 0.259909987449646, 0.09633699804544449, 0.4144900143146515, 0.32479000091552734, 1.1176999807357788, 0.07241000235080719, 0.22107000648975372, -0.6722699999809265, -0.21860000491142273, 0.416020005941391, 0.43832001090049744, -0.2300100028514862, 0.38872000575065613, 0.46268999576568604, 0.710919976234436, -0.6340100169181824, -0.22103999555110931, -0.07221200317144394, 0.522819995880127, -0.5188500285148621, -0.2829900085926056, -0.22702999413013458, 0.005746299866586924, 0.15583999454975128, -0.5002999901771545, -0.35460999608039856, 0.1239200010895729, 0.37198999524116516, 0.3224799931049347, 0.45587000250816345, -0.23966999351978302, -0.23767000436782837, 1.1004999876022339, -0.40790998935699463, 0.5098199844360352, 0.28314000368118286, 0.11754000186920166, 0.20886999368667603, -0.029417000710964203, -0.11896999925374985, 0.20550000667572021, 0.09294799715280533, -0.1502700001001358, 0.08731500059366226, 0.015709999948740005, -0.12943999469280243, 0.9405900239944458, 0.40281999111175537, 0.40946000814437866, 0.2639800012111664, 0.5851500034332275, 0.2385600060224533, 0.538129985332489, -0.43323999643325806, -0.22717000544071198, 0.2572900056838989, -0.4472599923610687, 0.06193799898028374, 0.01828400045633316, -0.20218999683856964, -0.49538999795913696, -0.2912200093269348, -0.043396998196840286, -0.15663999319076538, -0.17844000458717346, -0.17737999558448792, 0.5352500081062317, -0.14854000508785248, -0.012392999604344368, -0.07962500303983688, 0.7431899905204773, -0.016884999349713326, 0.027688000351190567, -0.017565999180078506, -0.04420299828052521, -0.08822599798440933, 0.29600998759269714, -0.07883100211620331, -0.2911500036716461, 0.11918999999761581, 0.07238300144672394, 0.07003200054168701, -0.03177899867296219, -0.07889500260353088, -0.33649998903274536, 0.025963999330997467, 0.10261999815702438, -0.28738000988960266, -0.07051599770784378, -0.7975000143051147, -0.7711499929428101, -0.2838599979877472, 0.05637200176715851, 0.300029993057251, 0.15508000552654266, 0.1644199937582016, 0.12314999848604202, -0.385919988155365, -0.42357000708580017, -0.7495800256729126, 0.7329699993133545, -0.003159899963065982, -0.395579993724823, -0.2578499913215637, -0.33893999457359314, 0.15112000703811646, -0.009800899773836136, -0.5906599760055542, -0.33246999979019165, -0.07045599818229675, 0.5637199878692627, 0.19668999314308167, -0.07431100308895111, -0.025191999971866608, -0.13683000206947327, -0.190870001912117, -0.40338000655174255, 0.19819000363349915, -0.16665999591350555, -0.16008999943733215, -0.19925999641418457, -0.05905900150537491, -1.4867000579833984, -0.15133999288082123, -0.3502100110054016, -0.28810998797416687, 0.08647400140762329, -0.37117999792099, 0.1674100011587143, 0.5683199763298035, 0.03170200064778328, -0.014108999632298946, 0.4018799960613251, -0.11678999662399292, 0.13634000718593597, -0.45963001251220703, 0.0729679986834526, 0.3732900023460388, -0.31334999203681946, 0.7886499762535095, -0.3041999936103821, -0.07723300158977509, 0.5037199854850769, 0.2347099930047989, 0.07028000056743622, 0.24216000735759735], u'tree': [-0.5643500089645386, -0.12970000505447388, 0.1440799981355667, -0.44018998742103577, -0.33667999505996704, 0.4963900148868561, -0.05313500016927719, 0.22653000056743622, 0.10723000019788742, -0.7889400124549866, -0.3960599899291992, 0.7908400297164917, -0.08420299738645554, -0.05186599865555763, -0.16708000004291534, 0.18568000197410583, -0.4081000089645386, -0.05243200063705444, -0.42302000522613525, 0.23910999298095703, 0.015258999541401863, 0.19099000096321106, 0.2681800127029419, 0.06303399801254272, -0.06215300038456917, -0.10055000334978104, -0.49125999212265015, -0.41791999340057373, -0.6251800060272217, 0.8988699913024902, 0.08024100214242935, 0.350600004196167, -0.6131600141525269, -0.028335999697446823, -0.282150000333786, 0.12443999946117401, 0.8479700088500977, -0.3575400114059448, -0.37786999344825745, -0.36796000599861145, -0.36041000485420227, 0.1259399950504303, -0.06362199783325195, -0.2610900104045868, -0.1790899932384491, -0.3325999975204468, 0.7383300065994263, 0.05986899882555008, 0.25457000732421875, 0.13120999932289124, -0.19317999482154846, -0.5885900259017944, -0.23607000708580017, -0.2946400046348572, -0.4911800026893616, -0.11710000038146973, -0.3790299892425537, -0.17792999744415283, 0.48561999201774597, 0.0743580013513565, -0.0763780027627945, -0.12283000349998474, 0.3995400071144104, 0.8114399909973145, -0.22988000512123108, -0.23312999308109283, -0.06237899884581566, 0.9281299710273743, -0.039347000420093536, 0.3003300130367279, -0.9701300263404846, 0.4124299883842468, -0.9692699909210205, 0.5532500147819519, -0.8715900182723999, 0.2101999968290329, -0.038391999900341034, -0.3067600131034851, 0.22386999428272247, -0.07781700044870377, -0.40667998790740967, 0.2727400064468384, 0.3737199902534485, -0.11734999716281891, -0.13707000017166138, 0.2868799865245819, 0.008095799945294857, 0.3456900119781494, 0.1329299956560135, -0.023826999589800835, 0.16759000718593597, -0.2894600033760071, 0.1421000063419342, -0.49660998582839966, 0.2863200008869171, -0.3184399902820587, 0.42945000529289246, -0.36423999071121216, -0.264849990606308, -0.6266999840736389, 0.23427000641822815, 1.0377000570297241, 0.05925700068473816, 0.2542800009250641, 0.1869799941778183, -0.0750890001654625, 0.450300008058548, -0.3640100061893463, -0.2217099964618683, 0.18016000092029572, -0.04165700078010559, -0.2369299978017807, 0.2243800014257431, 0.3051399886608124, 0.5090799927711487, 0.07172399759292603, -0.10343000292778015, 0.5204600095748901, -0.28975000977516174, -0.5386899709701538, -0.40661999583244324, -0.11785999685525894, 0.6291999816894531, 0.13708999752998352, -0.4218499958515167, -0.014721999876201153, 0.061051998287439346, 0.17121000587940216, 0.14815999567508698, -0.2480199933052063, 0.1375100016593933, 0.6860700249671936, 0.5846199989318848, 0.5920000076293945, 0.12884999811649323, -0.2482600063085556, -0.14802999794483185, -0.13401000201702118, -0.3944000005722046, -0.2798199951648712, 0.9546899795532227, 0.615559995174408, -0.20237000286579132, -0.3582000136375427, 0.10751999914646149, 0.5261600017547607, 0.3650200068950653, -0.07371599972248077, -0.2789500057697296, -0.08061999827623367, 0.012601000256836414, -0.16496999561786652, -0.12163999676704407, 0.19826999306678772, -0.19991999864578247, -0.2991600036621094, 0.5088499784469604, -0.1912499964237213, -0.4416300058364868, 0.9007200002670288, -0.21377000212669373, 0.15911999344825745, 0.5800899863243103, 0.2237199991941452, 0.07000300288200378, -0.014042000286281109, -0.2401999980211258, 0.0560000017285347, -0.3109999895095825, -0.3831300139427185, -0.28600001335144043, -0.5686399936676025, 0.3478899896144867, 0.3955700099468231, 0.23172999918460846, 0.15285000205039978, 0.47383999824523926, 0.623740017414093, 0.13650000095367432, -0.8034399747848511, -0.2666099965572357, -0.1003900021314621, 0.6055200099945068, -0.7130500078201294, -0.05212600156664848, -0.29750001430511475, 0.31169000267982483, 0.1632400006055832, 0.4106999933719635, 0.27167001366615295, 0.1522199958562851, 0.09276899695396423, 0.1652899980545044, -0.25762999057769775, -0.45669999718666077, -0.00813239999115467, 0.4777800142765045, 0.15782999992370605, -0.021043000742793083, 0.3424600064754486, 1.0261000394821167, 0.20904000103473663, -0.1672700047492981, -0.04920399934053421, 0.047175999730825424, 0.181209996342659, -0.4126800000667572, 0.34681999683380127, 0.17674000561237335, 0.08312500268220901, -0.25703001022338867, -0.4511300027370453, 0.12679000198841095, -0.6566600203514099, 0.35139000415802, 0.11653000116348267, 0.1720000058412552, 0.26489999890327454, 0.5645599961280823, 0.0018132999539375305, 0.47595998644828796, -0.08804500102996826, -0.7088099718093872, -0.19062000513076782, -0.3620400130748749, 0.44005000591278076, -0.02842400036752224, 0.39779001474380493, 0.2567700147628784, 0.5215799808502197, -0.15253999829292297, 0.018074000254273415, -0.31516000628471375, 0.1226700022816658, 0.5056700110435486, -0.2184000015258789, -0.7624499797821045, -0.5314300060272217, -0.1516299992799759, -0.7990700006484985, 0.08384999632835388, -0.34650999307632446, -0.5321300029754639, -0.11588999629020691, -1.1181000471115112, 0.35541999340057373, 0.17688000202178955, 0.2788800001144409, 0.09194699674844742, -0.1151299998164177, 0.3136399984359741, 0.4215799868106842, -0.1584700047969818, -1.030500054359436, 1.2319999933242798, -0.09030800312757492, -0.03532499819993973, 0.0935640037059784, 0.44953998923301697, 0.2663300037384033, 0.19227999448776245, -0.0003578700125217438, 0.1420300006866455, -0.04377099871635437, -0.1436000019311905, 0.32043999433517456, 0.3376300036907196, -0.32284000515937805, 0.4618400037288666, -0.11823000013828278, -0.5093700289726257, -0.1748100072145462, 0.04470200091600418, -0.4547500014305115, -0.4753499925136566, -0.23446999490261078, -1.6026999950408936, -0.09156399965286255, -0.6283299922943115, -0.22317999601364136, -0.5234599709510803, -0.5900499820709229, -0.22773000597953796, -0.6454899907112122, -0.7945700287818909, 0.6166099905967712, 0.801289975643158, -0.5550500154495239, 0.1781499981880188, -0.1393599957227707, 0.5565299987792969, 0.07595200091600418, 0.21905000507831573, 0.08973100036382675, 0.26486000418663025, 0.11190000176429749, -0.18649999797344208, -0.14347000420093536, 0.11146000027656555, -0.02756199985742569], u'rock': [-0.14924000203609467, 0.021244000643491745, -0.3424000144004822, 0.13079999387264252, 0.3289400041103363, -0.3736099898815155, 0.18362000584602356, -0.1916400045156479, -0.06142999976873398, -0.3649100065231323, -0.07151699811220169, -0.4808399975299835, 0.5245800018310547, 0.6572099924087524, 0.5957599878311157, -0.43623998761177063, -0.47282999753952026, 0.0028810000512748957, 0.8374900221824646, 0.4743500053882599, 0.003642899915575981, 0.7466599941253662, -0.35537999868392944, 0.7269799709320068, -0.18288999795913696, -0.14542999863624573, -0.24578000605106354, 0.06619100272655487, -0.4679799973964691, 0.4799799919128418, -0.08480799943208694, -0.0024431999772787094, -0.49145999550819397, -0.15998999774456024, -0.10290999710559845, -0.10498999804258347, -0.3283199965953827, -0.46779999136924744, 0.4259999990463257, 0.5041999816894531, -0.049970999360084534, 0.23699000477790833, 0.2283799946308136, 0.4786199927330017, 0.8205900192260742, 0.796019971370697, 0.036733999848365784, -0.16439999639987946, -0.08344300091266632, 0.02761100046336651, -0.24106000363826752, 0.04969500005245209, -0.6582300066947937, 0.8054900169372559, -0.072332002222538, 0.5945199728012085, -0.753279983997345, 0.07180699706077576, 0.21376000344753265, -0.30292001366615295, 0.4744099974632263, 0.2221899926662445, 0.8807399868965149, 0.020281000062823296, 0.2296299934387207, 0.08228699862957001, 0.49948999285697937, 0.5645700097084045, -0.07046599686145782, 0.5507500171661377, -0.05661800131201744, 0.2922399938106537, -0.6312400102615356, 0.46619001030921936, -0.4676400125026703, -0.02842099964618683, 0.5287799835205078, 0.152319997549057, 0.2885900139808655, -0.5664100050926208, -0.45746999979019165, -0.21535000205039978, 0.26545000076293945, -0.12657000124454498, 0.2924000024795532, -0.16620999574661255, 0.41442999243736267, 0.5996599793434143, -0.5588799715042114, 0.020440999418497086, 0.4845600128173828, 0.8018800020217896, -0.07800699770450592, -0.04242999851703644, -0.2362699955701828, -0.21797999739646912, 0.3900600075721741, -0.5764200091362, 0.2874700129032135, -0.7298799753189087, -0.4214800000190735, 0.35624000430107117, 0.42260000109672546, -0.45972999930381775, -0.20791000127792358, 0.09794300049543381, -0.41051000356674194, 0.21299000084400177, 0.5526400208473206, -0.551859974861145, 0.3376300036907196, -0.6126400232315063, 0.3148599863052368, -0.24909000098705292, 0.48552000522613525, -0.08466800302267075, -0.2557699978351593, -0.039438001811504364, 0.12268999963998795, -0.6555100083351135, 0.16080999374389648, -0.05296599864959717, -0.5508599877357483, 0.14895999431610107, -0.18477000296115875, 0.032510001212358475, -0.027664000168442726, 0.4221000075340271, -0.19460999965667725, 0.039521001279354095, 0.020284000784158707, 0.3709700107574463, 0.5606200098991394, -0.5781599879264832, 0.2872900068759918, -0.43698999285697937, -0.16027000546455383, 0.5837399959564209, 0.24121999740600586, 0.2451999932527542, -0.09879200160503387, -0.47047001123428345, 0.08021800220012665, -0.5734900236129761, 0.07350800186395645, -0.28832000494003296, -0.029131000861525536, 0.26743000745773315, 0.053245000541210175, 0.3064199984073639, 0.6835100054740906, -0.04087100178003311, -0.45267999172210693, -0.07914599776268005, 0.8201799988746643, 0.7320399880409241, 0.3062799870967865, 0.021161999553442, 0.40149998664855957, -0.04770699888467789, -0.009555899538099766, -0.6060400009155273, -0.320609986782074, 0.1751900017261505, -0.29774999618530273, 0.3921799957752228, 0.12687000632286072, -0.07543499767780304, 0.3939099907875061, -0.5633900165557861, 0.578540027141571, 0.7305799722671509, 0.2731499969959259, -0.015254000201821327, 0.6136000156402588, 0.3523699939250946, 0.05799400061368942, 0.21626999974250793, 0.058605000376701355, 0.2213599979877472, 0.14385999739170074, 0.23177999258041382, 0.4700799882411957, -0.1077599972486496, -0.14722999930381775, -0.3502900004386902, 0.18793000280857086, -0.03472999855875969, 0.1309099942445755, 0.03489600121974945, 0.5054000020027161, 0.502020001411438, 0.11156000196933746, -0.12455999851226807, 0.25687000155448914, 0.06060900166630745, -0.09707300364971161, -0.3171499967575073, 0.2738400101661682, 0.31202998757362366, 2.2683000564575195, -0.2594200074672699, 0.3703800141811371, 0.2197200059890747, -0.47624000906944275, 0.25213998556137085, 0.389739990234375, 0.009023499675095081, -0.32826998829841614, 0.29782000184059143, -0.4212599992752075, 0.012543999589979649, 0.3880400061607361, 0.48434001207351685, -0.08104699850082397, 0.6566900014877319, 0.3664099872112274, -0.23236000537872314, 0.057353001087903976, -0.06555800139904022, 0.20959000289440155, 0.2563999891281128, 0.05363599956035614, -0.38089001178741455, -0.4455699920654297, 0.1752600073814392, -0.41488000750541687, -0.2941800057888031, -0.009781000204384327, 0.1623699963092804, -0.1071000024676323, -0.012271000072360039, -0.5038999915122986, -0.47321000695228577, 0.82805997133255, -0.08516799658536911, -0.41903001070022583, -0.006747799925506115, -0.695580005645752, 0.03451500087976456, -0.3866899907588959, 0.1752600073814392, -0.012690000236034393, -0.3371799886226654, -0.8362699747085571, 0.12447000294923782, -0.192330002784729, -0.3840799927711487, -0.46748998761177063, 0.3028799891471863, -0.14595000445842743, 0.13767999410629272, -0.3746500015258789, -0.32624000310897827, 0.25655001401901245, 0.061948999762535095, 0.6371600031852722, -0.469539999961853, -0.17587000131607056, -0.2759299874305725, 0.2595599889755249, -0.15139999985694885, 0.10802999883890152, -0.1671600043773651, -0.1122799962759018, -0.1830900013446808, 0.17872999608516693, 0.24427999556064606, 0.263949990272522, -0.07078000158071518, -0.4630900025367737, -0.31235000491142273, 0.25336000323295593, -0.5337899923324585, 0.11985000222921371, 0.2918199896812439, -1.5221999883651733, -0.23306000232696533, -0.07754699885845184, -0.1423099935054779, -0.5426499843597412, 0.07871799916028976, -0.2697499990463257, 0.4823099970817566, -0.444350004196167, 0.005996699910610914, -0.748520016670227, 0.3490999937057495, 0.6703299880027771, -0.21821999549865723, 0.3438200056552887, 0.10349000245332718, -0.4274500012397766, 0.3472599983215332, 0.3622399866580963, 0.3379800021648407, 0.22623999416828156, 0.6467999815940857, -0.3723900020122528, -0.08505500108003616], u'horse': [0.3664399981498718, 0.0444910004734993, 0.15735000371932983, -0.09656299650669098, -0.28672999143600464, 0.3847399950027466, 0.014716999605298042, -0.032079000025987625, -0.5931000113487244, -0.7580000162124634, 0.37953999638557434, 0.19648000597953796, -0.12906000018119812, 0.47898000478744507, -0.22356000542640686, 0.8326900005340576, 0.03692600131034851, 0.6404399871826172, 0.0035343000199645758, -0.370279997587204, 0.09827499836683273, 0.3658899962902069, 0.06961800158023834, 0.4744200110435486, 0.21356000006198883, -0.7069299817085266, 0.4824399948120117, -0.7325699925422668, 0.4402399957180023, 0.37384000420570374, -0.20110000669956207, -0.33331000804901123, 0.05814800038933754, -0.480679988861084, -0.7004500031471252, 0.35381999611854553, -0.04894600063562393, 0.21267999708652496, -0.31970998644828796, -0.2729800045490265, -0.3803099989891052, -0.1442600041627884, 0.32440999150276184, -0.4859200119972229, 0.2582800090312958, -0.13681000471115112, 0.6760200262069702, 0.07864999771118164, 0.22718000411987305, -0.3958500027656555, -0.4665899872779846, 0.09379100054502487, 0.13610999286174774, 0.1598999947309494, 0.27121999859809875, 0.18914000689983368, -0.5264999866485596, 0.36636000871658325, -0.4139400124549866, -0.19470000267028809, 0.15396000444889069, 0.26030999422073364, 0.6525300145149231, 0.11919999867677689, -0.07086999714374542, -0.33096998929977417, -0.5035499930381775, -0.03689999878406525, 0.055362001061439514, -0.48271000385284424, 0.008782699704170227, 0.6467300057411194, -0.007243500091135502, -0.6378800272941589, -0.1422100067138672, -0.40525999665260315, -0.06091900169849396, -0.6981499791145325, 0.12782999873161316, -0.2263299971818924, 0.2931399941444397, 0.3623400032520294, 0.1400199979543686, -0.040380001068115234, 0.08846399933099747, -0.4430600106716156, -0.16378000378608704, 0.03810900077223778, 0.08234699815511703, 0.5178400278091431, 0.572160005569458, -0.1584700047969818, 0.3739199936389923, 0.23109999299049377, 0.06400500237941742, -0.02712099999189377, 0.053415000438690186, 0.2267100065946579, 0.09813600033521652, 0.19453999400138855, -0.053677998483181, 0.06761299818754196, -0.2853800058364868, -0.2508600056171417, -0.07051199674606323, 0.18140999972820282, -0.3024100065231323, -0.6175600290298462, -0.24724000692367554, 0.5923200249671936, -0.22673000395298004, 0.28033000230789185, -0.23973999917507172, -0.02555900067090988, -0.2506600022315979, 0.2560099959373474, -0.2474299967288971, 0.3243899941444397, 0.35436999797821045, -0.15191000699996948, 0.007995200343430042, 0.14700999855995178, -0.0010966999689117074, -0.3889099955558777, 0.18956999480724335, 0.17553000152111053, -0.29420000314712524, 0.9186599850654602, -0.5516200065612793, -0.218299999833107, 0.41183000802993774, 0.2067600041627884, -0.18071000277996063, 0.8364700078964233, 0.019068999215960503, -0.1381099969148636, 0.3321099877357483, -0.2125300019979477, 0.04744600132107735, 0.369049996137619, 0.30452999472618103, 0.153329998254776, -0.30717000365257263, -0.41001999378204346, 0.14688999950885773, -0.8175699710845947, -0.24732999503612518, -0.31988000869750977, -0.5859799981117249, 0.4527199864387512, -0.10939999669790268, 0.9276999831199646, -0.4464600086212158, -0.15615999698638916, 0.08428899943828583, -0.5162400007247925, -0.1272599995136261, -0.03754600137472153, 0.47567999362945557, 0.13030999898910522, 0.0676639974117279, -0.17915000021457672, -0.20409999787807465, 0.10553000122308731, 0.25394999980926514, -0.044307999312877655, 0.7120500206947327, 0.12580999732017517, -0.2740199863910675, 0.29444000124931335, 0.03515499830245972, 0.6832299828529358, 0.05013300105929375, -0.18256999552249908, 0.29659000039100647, -0.723550021648407, 0.07641399651765823, -0.021216999739408493, 0.19489000737667084, 0.06313499808311462, 0.1986600011587143, 0.26377999782562256, -0.36750999093055725, -0.1822499930858612, 0.23068000376224518, 0.03733599931001663, 0.19641000032424927, -0.2619599997997284, 0.508870005607605, -0.4184499979019165, -0.6754800081253052, -0.07235699892044067, 0.17010000348091125, -0.6565300226211548, 0.10724999755620956, -0.08921200037002563, -0.40814998745918274, -0.47786998748779297, -0.20753000676631927, -0.1129399985074997, 2.0469000339508057, 0.18842999637126923, -0.026985999196767807, -0.36118999123573303, 0.8035299777984619, 0.6304299831390381, 0.3050999939441681, 0.004429299850016832, -0.11349000036716461, -0.10417000204324722, -0.06007000058889389, -0.34463998675346375, 0.22452999651432037, -0.33838000893592834, -0.05766100063920021, -0.3222399950027466, -0.2833400070667267, -0.23184999823570251, 0.41328999400138855, -0.09291800111532211, -0.10947000235319138, -0.5701799988746643, -0.011695999652147293, -0.978950023651123, 0.19359000027179718, -0.08729399740695953, -0.14663000404834747, -0.3612000048160553, -0.0021043000742793083, 0.8479899764060974, -0.32888999581336975, -0.4500199854373932, -0.18276000022888184, -0.06263300031423569, 0.563480019569397, 0.3745799958705902, -0.4757699966430664, -0.5530099868774414, -0.34314998984336853, 0.6974300146102905, -0.2616400122642517, -0.3512299954891205, 0.2032800018787384, -0.26568999886512756, -0.7132300138473511, -0.4450500011444092, -0.5652499794960022, 0.5028200149536133, 0.015069999732077122, 0.0498879998922348, -0.6930699944496155, 0.12744000554084778, -0.3495199978351593, -0.24252000451087952, 1.4931999444961548, -0.4332300126552582, 0.17231999337673187, 0.3375999927520752, -0.06550300121307373, -0.088748998939991, -0.06938699632883072, 0.05888799950480461, 0.0052999998442828655, 0.2045699954032898, -0.04205299913883209, -0.47909998893737793, 0.37696000933647156, -0.2683500051498413, -0.42893001437187195, 0.24199999868869781, -0.4404599964618683, -0.1682399958372116, 0.8218299746513367, -0.2443300038576126, -0.23360000550746918, 0.007401700131595135, -1.5592999458312988, 0.07047700136899948, -0.10251999646425247, -0.0675949975848198, -0.2643199861049652, -0.2220200002193451, 0.5819799900054932, 0.42261001467704773, -0.08629100024700165, 0.3684700131416321, -0.24740999937057495, -0.10417000204324722, 0.20433999598026276, -0.45976999402046204, 0.14710000157356262, 0.6023300290107727, -0.5692200064659119, -0.0634239986538887, 0.009367899969220161, -0.12520000338554382, -0.07530300319194794, 0.21883000433444977, 0.36607998609542847, 0.319379985332489], u'water': [0.2220499962568283, -0.3240100145339966, -0.22822999954223633, -0.8057000041007996, -0.03768099844455719, 0.4047600030899048, 0.6771299839019775, 0.06001799926161766, 0.2975200116634369, -1.719099998474121, 0.22618000209331512, -0.2806900143623352, -0.4343799948692322, -0.05376699939370155, 0.1976500004529953, -0.034735001623630524, -0.6284999847412109, 0.18106000125408173, 0.06645900011062622, 0.41741999983787537, -0.9447500109672546, 0.1068200021982193, 0.1310099959373474, 0.30309998989105225, 0.027403000742197037, -0.19389000535011292, 0.0919250026345253, 0.6007400155067444, -0.6415600180625916, 0.38916000723838806, -0.21421000361442566, 0.33862999081611633, -0.4434199929237366, 0.021516000851988792, 0.0087952995672822, 0.10592000186443329, 0.15940000116825104, -0.2514500021934509, -0.26791998744010925, 0.2719799876213074, -0.3533399999141693, -0.0028737999964505434, 0.45506998896598816, 0.16615000367164612, -0.07860799878835678, -0.06027499958872795, 0.40577998757362366, 0.4479700028896332, 0.06009700149297714, 0.3328399956226349, -0.3251200020313263, 0.3783699870109558, -0.22607000172138214, -0.41082999110221863, -0.022586999461054802, 0.8766000270843506, 0.6075699925422668, 0.5102900266647339, 0.35760000348091125, 0.7089300155639648, -0.19237999618053436, 0.15464000403881073, 0.4066300094127655, -0.11723999679088593, -0.5412899851799011, -0.317330002784729, -0.5423099994659424, 0.0892840027809143, -0.6983100175857544, -0.3391000032424927, 0.674560010433197, -0.32019999623298645, -0.39219000935554504, 0.05428700149059296, -0.43915998935699463, 0.27136000990867615, 0.1525299996137619, 0.4311099946498871, -0.6559600234031677, -0.30831000208854675, 0.20937000215053558, -0.28380000591278076, 0.0654660016298294, 0.125900000333786, 0.28123000264167786, 0.03261600062251091, -0.2798900008201599, -0.18884000182151794, -0.13447000086307526, -0.7694799900054932, 0.26649001240730286, 0.18922999501228333, 0.383760005235672, -0.054836999624967575, -0.00812860019505024, -0.03652599826455116, 0.25902000069618225, -0.25051000714302063, 0.3027999997138977, 0.08599399775266647, 0.019022999331355095, 0.03834100067615509, -0.49974000453948975, -0.4657999873161316, 0.04726399853825569, 0.3469899892807007, 0.2900499999523163, -0.07607799768447876, -0.5847200155258179, 0.1350100040435791, -0.07446300238370895, -0.7692700028419495, -0.330949991941452, -0.026612000539898872, -0.4411099851131439, 0.08346299827098846, -0.03464600071310997, 0.1808599978685379, 0.13040000200271606, -0.20407000184059143, -0.42886999249458313, -0.1618099957704544, -0.13519999384880066, 0.05839399993419647, -0.42886000871658325, 0.010762999765574932, 0.29914000630378723, 0.4166499972343445, -0.17066000401973724, -0.07713700085878372, 0.2140900045633316, 0.4183799922466278, 1.0125000476837158, 0.4678100049495697, -0.1396300047636032, -0.019572999328374863, 0.3461500108242035, -0.03228199854493141, -0.852400004863739, 0.37132999300956726, 0.34501999616622925, -0.06418000161647797, 0.06002499908208847, -0.3438499867916107, -0.8762099742889404, 0.03416400030255318, 0.4313099980354309, 0.6140999794006348, 0.0759660005569458, 0.21119999885559082, 0.537339985370636, 0.2916800081729889, -0.1699099987745285, -0.27702000737190247, 0.7384399771690369, -0.036017000675201416, 0.282260000705719, -0.6301699876785278, 0.2345699965953827, 0.3092600107192993, -0.1561100035905838, -0.7055100202560425, 0.35881999135017395, -0.43088001012802124, -0.12399999797344208, -0.5047600269317627, 0.07696899771690369, 0.06056100130081177, -0.3304400146007538, 0.6010199785232544, 0.14983999729156494, 1.1690000295639038, -0.38444000482559204, 0.409060001373291, -0.23013000190258026, 0.0638199970126152, -0.13923999667167664, -0.13470999896526337, 0.3265100121498108, -0.0440870001912117, -0.30351001024246216, 0.17597000300884247, 0.07372800260782242, -0.02886500023305416, -0.002206699922680855, -0.3250400125980377, 1.1460000276565552, -0.09170500189065933, 0.773859977722168, -0.2533400058746338, 0.6042400002479553, 1.0687999725341797, -0.6120399832725525, -0.34084999561309814, -0.43105000257492065, 0.13291999697685242, -0.27981001138687134, -0.39875999093055725, -0.19056999683380127, 0.4637199938297272, 0.3933599889278412, 0.6018999814987183, 0.16147999465465546, -0.2572599947452545, 0.04972999915480614, -0.12302999943494797, -0.010131999850273132, -0.3766399919986725, -0.045747000724077225, 0.2647700011730194, -0.4751800000667572, 0.19294999539852142, -0.03350599855184555, -0.7696599960327148, 0.6013299822807312, 0.0020898000802844763, 0.3170599937438965, -0.3054400086402893, 0.25220999121665955, -0.019572999328374863, 0.7219499945640564, -0.16319000720977783, 0.19155000150203705, -0.037105001509189606, 0.18615999817848206, -0.2165600061416626, -0.33924999833106995, -0.1399800032377243, -0.07266899943351746, -0.21922999620437622, 0.5192199945449829, 0.3541499972343445, -0.17231999337673187, -0.24327999353408813, 0.37116000056266785, -0.06547500193119049, -0.30715999007225037, -0.4252699911594391, 0.28077998757362366, 0.09956999868154526, -0.47909000515937805, 0.1532900035381317, -0.20140999555587769, -0.28286001086235046, -1.3442000150680542, 0.1044899970293045, 0.3509500026702881, -0.18156999349594116, -0.38624000549316406, 0.038182999938726425, 0.05276300013065338, -0.5024700164794922, 0.37810999155044556, -0.7225300073623657, 0.03748900070786476, -0.14437000453472137, -0.08874800056219101, -0.24034999310970306, 0.1064400002360344, 0.02821199968457222, -0.1739100068807602, -0.3609899878501892, -0.32631999254226685, -0.6368799805641174, -0.061330001801252365, 0.1550000011920929, -0.19269999861717224, 0.1465200036764145, -0.34178000688552856, 0.2491600066423416, -0.11614000052213669, 0.3970400094985962, -0.6134300231933594, 0.5999299883842468, -0.1428699940443039, 0.39445000886917114, -2.53439998626709, -0.23270000517368317, -0.17958000302314758, -0.30612999200820923, -0.4004400074481964, 0.2884899973869324, 0.5987899899482727, 0.049949001520872116, -0.08252199739217758, 0.08968900144100189, 0.09996499866247177, -0.5506500005722046, 0.08451700210571289, 0.4393799901008606, -1.0611000061035156, 0.14042000472545624, 0.03806599974632263, 0.14395999908447266, 0.5077099800109863, -0.2781200110912323, 0.04969099909067154, -0.616890013217926, -0.026677999645471573, 0.29267001152038574], u'newspaper': [-0.30730998516082764, 0.4069800078868866, 0.15977999567985535, -0.23850999772548676, 0.1147800013422966, -0.3314799964427948, -0.16374999284744263, 0.09027600288391113, -0.30546000599861145, -1.593000054359436, 0.08101200312376022, 0.04630399867892265, 0.6517099738121033, 0.14675000309944153, 0.5857499837875366, 0.4944300055503845, 0.3641299903392792, 0.7697200179100037, 0.05895499885082245, -0.5461999773979187, 0.0782879963517189, 0.08325500041246414, 0.8342199921607971, 0.6284400224685669, -0.19912000000476837, -0.6009299755096436, 0.20201000571250916, 0.15696999430656433, -0.006639199797064066, -0.31632000207901, -0.7090700268745422, -0.02462800033390522, 0.003017100039869547, 0.5487499833106995, -1.0358999967575073, -0.6599000096321106, -0.4434700012207031, -0.17237000167369843, -0.14670999348163605, 0.45142999291419983, -0.2068299949169159, -0.1766500025987625, 0.4735499918460846, 0.3378399908542633, 0.26969999074935913, 0.06473299860954285, 0.6533899903297424, 0.5038400292396545, -0.6890400052070618, 0.015181000344455242, 0.003863200079649687, 0.17815999686717987, 0.2026599943637848, -0.08516400307416916, 0.4244300127029419, 0.5546299815177917, -0.13420000672340393, 0.5739099979400635, 0.04264599829912186, -0.8879299759864807, 0.1914999932050705, 0.24921000003814697, -0.09513500332832336, -0.23045000433921814, -0.033994000405073166, -0.10944999754428864, 0.7758899927139282, -0.45032998919487, -0.05662799999117851, -0.18127000331878662, 0.21140000224113464, 0.08044499903917313, -0.4262399971485138, -0.22808000445365906, -0.19197000563144684, 0.2637999951839447, 0.4447999894618988, 0.2626200020313263, 0.0118410000577569, 0.7133100032806396, -0.39969000220298767, -0.07854700088500977, 0.11367999762296677, -0.10891000181436539, -0.26517000794410706, 0.0896110013127327, -0.8382200002670288, -0.3838199973106384, 0.11282999813556671, 0.6587499976158142, -0.28251999616622925, -0.08085399866104126, -0.13617999851703644, 0.6560199856758118, -0.11629000306129456, 0.3495500087738037, -0.09835900366306305, -0.12183000147342682, 0.0582440011203289, -0.7501599788665771, 0.28130999207496643, 0.3628700077533722, 0.03192500025033951, -0.015713000670075417, 0.5168200135231018, 0.15996000170707703, 0.04761099815368652, 0.13165000081062317, 0.9247699975967407, 0.5555400252342224, -0.22891999781131744, 0.1950400024652481, 0.20635999739170074, -0.6573899984359741, 0.49584999680519104, -0.17538000643253326, -0.33855000138282776, 0.15071000158786774, 0.47088000178337097, -0.5957800149917603, 0.6048799753189087, -0.19862000644207, 0.6237599849700928, -0.07865100353956223, 0.17323000729084015, -0.033201999962329865, 0.14733999967575073, 0.057454001158475876, -0.1983799934387207, -0.0945110023021698, 0.059822000563144684, -0.8823800086975098, 0.06293900310993195, 0.10600999742746353, -0.16006000339984894, 0.42930999398231506, -0.83160001039505, -0.15157000720500946, 0.8477200269699097, 0.08618699759244919, 0.2556299865245819, 0.10948000103235245, -0.4045200049877167, -0.26058998703956604, 0.07059399783611298, 0.10687000304460526, -0.09649199992418289, 0.63714998960495, 0.006535999942570925, -0.02540699951350689, 0.8781999945640564, 0.10561999678611755, -0.3404799997806549, 0.09895099699497223, -0.2423499971628189, -0.2103700041770935, -0.10920999944210052, 0.34536001086235046, 0.23657000064849854, -0.27087000012397766, 0.37863999605178833, 0.5069900155067444, -0.05421999841928482, -0.052319999784231186, -0.35791000723838806, 0.05279399827122688, -0.1286499947309494, -0.3989799916744232, -0.21326999366283417, 0.02012999914586544, -0.492900013923645, -0.42364001274108887, -1.2933000326156616, -0.013176999986171722, 0.22578999400138855, 0.038339998573064804, 0.29934000968933105, 0.31652000546455383, 0.1512800008058548, 0.4879400134086609, 0.5558300018310547, -0.009119000285863876, -0.299699991941452, 0.15796999633312225, -0.024838000535964966, -0.49873998761177063, -0.3823699951171875, -0.5590400099754333, -0.23284000158309937, -0.30028998851776123, -0.18291999399662018, 0.41640999913215637, 0.29659000039100647, 0.2767300009727478, 0.029954999685287476, 0.5847899913787842, -0.01028400007635355, -0.6733999848365784, -0.6505299806594849, 0.23691999912261963, 0.01497500017285347, 0.17851999402046204, -0.7197200059890747, 0.13078999519348145, -0.5083900094032288, -0.12117999792098999, -0.635200023651123, 0.15898999571800232, 0.1434199959039688, -0.2835499942302704, -0.16263000667095184, 0.2022700011730194, 0.041193000972270966, 0.4404599964618683, 0.4150699973106384, -0.2956799864768982, -0.41547998785972595, -0.5278000235557556, 0.31738999485969543, 0.36789000034332275, 0.5189399719238281, 0.6626099944114685, -0.27195999026298523, 0.41113999485969543, 0.08542200177907944, 0.24936999380588531, -0.4868600070476532, 0.4317300021648407, 0.5577099919319153, -0.266759991645813, -0.2057500034570694, 0.026064999401569366, -0.4562999904155731, -0.16312000155448914, 0.42076998949050903, -0.11445999890565872, 0.013466999866068363, -0.06432099640369415, -0.5005499720573425, -0.6849700212478638, -0.14895999431610107, -0.24595999717712402, -0.20864999294281006, -0.5787100195884705, -0.13812999427318573, 0.5131999850273132, 0.15458999574184418, -0.22178000211715698, 0.0756480023264885, 0.4549799859523773, -0.06296300143003464, -0.18161000311374664, -0.22012999653816223, 0.1345600038766861, 1.3818000555038452, 0.03735300153493881, 0.5512700080871582, 0.25512999296188354, 0.22307999432086945, -1.2972999811172485, 0.3921099901199341, 0.20302000641822815, 0.07729899883270264, -0.3026300072669983, 0.27959001064300537, -0.6104400157928467, 0.1965000033378601, 0.3115200102329254, -0.2716600000858307, -0.2371699959039688, -0.39434999227523804, 0.4754599928855896, 0.19776999950408936, 0.09195899963378906, 0.20183999836444855, 0.15929999947547913, -1.4239000082015991, 0.18322999775409698, 0.39730000495910645, 0.4549500048160553, 0.09599199891090393, 0.04534099996089935, -0.33219999074935913, -0.3828299939632416, 0.1700499951839447, -0.2982499897480011, 0.8048999905586243, -0.028690999373793602, -0.127920001745224, 0.2847500145435333, 0.001383200054988265, 0.40525001287460327, -0.4374699890613556, 0.00181639997754246, -0.09492199867963791, 0.7497000098228455, 0.04679600149393082, 0.20434999465942383, -0.5412399768829346, -0.2263599932193756], u'cookie': [-0.19312000274658203, 0.4603999853134155, -0.22982999682426453, -0.43105000257492065, -0.4259999990463257, 0.19241000711917877, -0.444130003452301, 0.10390999913215637, 0.021369000896811485, -0.18184000253677368, -0.5744100213050842, -0.4541899859905243, -0.09634800255298615, 0.6724100112915039, -0.579509973526001, 0.1088000014424324, -0.19061000645160675, -0.2016099989414215, -0.3626999855041504, -0.28310999274253845, 0.8441600203514099, 0.23201000690460205, 0.44898998737335205, 0.8156200051307678, 0.3794400095939636, 0.6345999836921692, -0.43015000224113464, 0.03784099966287613, 0.39173999428749084, -0.3254599869251251, -0.5137500166893005, 0.136230006814003, 0.340829998254776, -0.25227001309394836, -0.9487199783325195, 0.6352900266647339, -0.02355399914085865, 0.30480000376701355, -0.36559998989105225, -0.23430000245571136, 0.22145000100135803, -0.22565999627113342, 0.7607600092887878, 0.28373000025749207, -0.37198999524116516, -0.16868999600410461, 0.8530099987983704, -0.31310999393463135, -0.06389900296926498, 0.23062999546527863, 0.23749999701976776, -0.36118999123573303, 0.5897300243377686, 0.4185500144958496, 0.213919997215271, -0.6872900128364563, -0.4117000102996826, 0.2723099887371063, 0.5122500061988831, 0.019411999732255936, 0.13086000084877014, 0.2325800061225891, 0.10219000279903412, -0.10999999940395355, 0.7842199802398682, 0.07413800060749054, -0.027083000168204308, -0.031571000814437866, -0.43942999839782715, 0.04695099964737892, -0.3271600008010864, 0.04274100065231323, -0.1661600023508072, -0.05157899856567383, -0.6259099841117859, 0.4038499891757965, 0.25183001160621643, -0.6873900294303894, -0.2541300058364868, -0.05022900179028511, 0.18398000299930573, 0.03080499917268753, -0.042743999511003494, 0.006098899990320206, 0.17611999809741974, -0.5625200271606445, -0.6109799742698669, 0.1747799962759018, -0.37946000695228577, -0.1539199948310852, -0.8941199779510498, -0.20889000594615936, -0.24435999989509583, -0.510640025138855, -0.28832998871803284, 0.2729499936103821, 0.06664799898862839, 0.9880399703979492, -0.20895999670028687, -0.2776699960231781, -0.086326003074646, 0.1354999989271164, 0.3558500111103058, -0.5968400239944458, -0.0029287999495863914, -0.2555699944496155, -0.06059199944138527, 0.03816099837422371, -0.46731001138687134, 0.4988200068473816, 0.4927000105381012, 0.14930999279022217, -0.36157000064849854, -0.4413500130176544, 0.05173699930310249, 0.26589998602867126, -0.7897199988365173, 0.5476300120353699, -0.03520200029015541, 0.27063998579978943, -0.030632000416517258, 0.022648999467492104, 0.36932000517845154, -0.1276800036430359, -0.3059999942779541, 0.23184999823570251, -0.30024001002311707, 0.14688999950885773, -0.23601000010967255, 0.44312000274658203, 0.21800999343395233, 0.9530400037765503, -0.5293899774551392, 0.2936300039291382, 0.700659990310669, -0.057319000363349915, 0.05388500168919563, 0.2997100055217743, -0.7717599868774414, -0.24028000235557556, 0.48802000284194946, 0.25262999534606934, -0.9348800182342529, -0.23711000382900238, -0.40935999155044556, 0.3003000020980835, -0.3479599952697754, -0.3511500060558319, 0.2804900109767914, -0.3193100094795227, -0.8633300065994263, 0.5430200099945068, 0.5330600142478943, -0.33226001262664795, -0.2011599987745285, -0.24083000421524048, 0.2398499995470047, -0.32554998993873596, 0.06014300137758255, -0.1357399970293045, -0.1284099966287613, -0.3605400025844574, 0.13742999732494354, -0.4205799996852875, -0.10392999649047852, -0.03007899969816208, 0.3254700005054474, 0.565339982509613, 0.42131999135017395, -0.2387000024318695, -0.8555899858474731, -0.05720600113272667, -0.21942999958992004, -0.23904000222682953, -0.2225400060415268, -0.058166999369859695, 0.330049991607666, -0.11000999808311462, 0.2695100009441376, -0.8573600053787231, 0.0352960005402565, -0.23005999624729156, 1.0612000226974487, 0.08039899915456772, -0.1515199989080429, -0.04024999961256981, 0.8029500246047974, 0.09463900327682495, 0.35683000087738037, 0.43160000443458557, 0.10693000257015228, 0.5728499889373779, 0.01358100026845932, -0.20408999919891357, -0.29350998997688293, -0.2784300148487091, -0.1984499990940094, -0.2492399960756302, 0.3260599970817566, -0.06715799868106842, 0.07972099632024765, -0.26124998927116394, 1.1312999725341797, 0.2468000054359436, -0.26208001375198364, -0.6906499862670898, 0.16997000575065613, -0.02559500001370907, 0.15183000266551971, -0.13259999454021454, 0.02239999920129776, -0.30234000086784363, 0.10091999918222427, 0.0378899984061718, -0.5838900208473206, 0.7681300044059753, -0.3319700062274933, -0.00601059990003705, 0.18002000451087952, 0.15067000687122345, -0.2787800133228302, 0.9355700016021729, 0.43220001459121704, 0.2856200039386749, -0.4436500072479248, 0.08560500293970108, 0.6610900163650513, -0.04906199872493744, 0.6442899703979492, -0.526669979095459, -0.22610999643802643, -0.14316999912261963, -0.5916699767112732, 0.11477000266313553, 0.5470100045204163, -0.09187500178813934, -0.10326000303030014, 0.3004699945449829, -0.784250020980835, 0.10803999751806259, 0.17802999913692474, -0.25582000613212585, -0.37494999170303345, -0.0933379977941513, -0.8957700133323669, -0.135220006108284, -0.14359000325202942, 0.19271999597549438, 0.6233000159263611, -0.048215001821517944, 0.4028100073337555, -0.06640099734067917, 0.2523699998855591, 0.5831999778747559, 0.6037200093269348, -0.13360999524593353, 0.8317599892616272, -0.7384799718856812, 0.06101600080728531, 0.3824400007724762, -0.6099799871444702, -0.015277000144124031, -0.43230998516082764, 0.200080007314682, 0.6631699800491333, 0.41819000244140625, -0.3377299904823303, 0.04100799933075905, 0.5042499899864197, -0.14079000055789948, -0.27048999071121216, -0.2095700055360794, 0.4482100009918213, 0.27651000022888184, 0.7685400247573853, -0.11249999701976776, -0.2320300042629242, -0.39076998829841614, -1.0170999765396118, -0.6118199825286865, -0.07584399729967117, 0.21800999343395233, -0.8177499771118164, -0.1507200002670288, 0.0581820011138916, 0.35839998722076416, 0.4097900092601776, -0.10546000301837921, 0.15092000365257263, 0.059450000524520874, -0.19833999872207642, -0.08398199826478958, 0.02351599931716919, 0.2957499921321869, -0.18714000284671783, -0.2366199940443039, -0.09665899723768234, -0.016333000734448433, 0.07109799981117249, -0.4509899914264679], u'key': [0.20242999494075775, 0.08856700360774994, 0.04771500080823898, -0.6781299710273743, 0.40773001313209534, -0.23218999803066254, -0.31255999207496643, -0.011064000427722931, -0.6118299961090088, -1.5499999523162842, -0.4703499972820282, -0.2791900038719177, -0.17414000630378723, 0.2552199959754944, -0.018821999430656433, -0.22347000241279602, -0.03523100167512894, -0.3171600103378296, -0.08700200170278549, 0.23196999728679657, -0.28148001432418823, -0.19469000399112701, 0.358489990234375, -0.4288800060749054, -0.17925000190734863, -0.20884999632835388, -0.3470500111579895, 0.2455500066280365, -0.2823899984359741, 0.16143999993801117, 0.122809998691082, 0.19155000150203705, -0.579509973526001, 0.4797700047492981, -0.7302299737930298, 0.15448999404907227, 0.3006100058555603, 0.347680002450943, -0.5254899859428406, -0.5952600240707397, -0.03514900058507919, -0.24679000675678253, -0.48576998710632324, 0.014063999988138676, -0.6512899994850159, 0.19732999801635742, -0.20478999614715576, 0.040998999029397964, -0.7447699904441833, 0.37334001064300537, 0.5678099989891052, 0.010342000052332878, -0.07988899946212769, -0.0544469989836216, -0.34665998816490173, 0.025978999212384224, 0.1705400049686432, 0.19091999530792236, 0.22036999464035034, 0.4023500084877014, 0.2953700125217438, 0.3255400061607361, -0.1555899977684021, 0.12338999658823013, 0.10397999733686447, 0.006201600190252066, 0.30967000126838684, 0.30160000920295715, 0.12060999870300293, 0.2734600007534027, -0.5830000042915344, 0.34995999932289124, 0.11905000358819962, -0.40386998653411865, 0.13321000337600708, 0.010333999991416931, 0.22220000624656677, 0.1343899965286255, -0.4211300015449524, -0.004214299842715263, 0.19167999923229218, -0.4560700058937073, 0.11488000303506851, 0.22594000399112701, 0.2519800066947937, 0.15317000448703766, -0.2848699986934662, 0.1420699954032898, -0.4506100118160248, -0.36493998765945435, 0.33153000473976135, 0.2414499968290329, -0.40867000818252563, -0.21794000267982483, 0.3165600001811981, 0.03226400166749954, -0.05770900100469589, -0.29653000831604004, 0.24018000066280365, -0.46303001046180725, -0.4139699935913086, 0.4143800139427185, 0.25821998715400696, 0.05364200100302696, 0.045226000249385834, -0.35705000162124634, -0.1741899996995926, 0.05075899884104729, -0.29357999563217163, -0.1712000072002411, 0.2890799939632416, -0.11612000316381454, -0.06818100064992905, 0.20592999458312988, -0.020170999690890312, 0.20300999283790588, 0.24045999348163605, 0.11889000236988068, -0.2276100069284439, -0.38453999161720276, -0.00886279996484518, -0.2614699900150299, 0.2725299894809723, -0.36002999544143677, -0.2535899877548218, 0.08224000036716461, -0.15126000344753265, -0.3108699917793274, -0.041437000036239624, -0.34161001443862915, -0.11196999996900558, 0.09959100186824799, -0.4554300010204315, -0.13485999405384064, 0.2209099978208542, -0.10107000172138214, 0.41690000891685486, -0.3590700030326843, 0.5817899703979492, 0.19002999365329742, 0.2584500014781952, -0.3565399944782257, 0.2542800009250641, 0.32433000206947327, -0.6231499910354614, 0.3699600100517273, -0.34970998764038086, -0.04836500063538551, -0.473580002784729, -0.23916000127792358, 0.2921000123023987, 0.10814999788999557, -0.009099000133574009, 0.08623600006103516, 0.2246599942445755, -0.6055300235748291, -0.19307999312877655, -0.049550000578165054, -0.004373900126665831, 0.3918200135231018, -0.16825999319553375, -0.007255000062286854, -0.044165000319480896, -0.05655699968338013, -0.1771100014448166, -0.030894000083208084, 0.2610599994659424, -0.08443699777126312, -0.11716999858617783, 0.7537099719047546, 0.26872000098228455, -0.5215399861335754, -0.620140016078949, 0.3102000057697296, 0.1468999981880188, 0.18977999687194824, 0.42719000577926636, -0.0903559997677803, -0.3095400035381317, 0.35607999563217163, -0.22380000352859497, 0.056999001652002335, 0.0814799964427948, -0.14680999517440796, -0.4054200053215027, -0.0602790005505085, -0.3032500147819519, 0.017544999718666077, -0.17704999446868896, 0.13269999623298645, 0.17598000168800354, 0.08682499825954437, -0.06350699812173843, 0.25701001286506653, 0.5196599960327148, -0.4370500147342682, -0.11231999844312668, -0.3031499981880188, -0.18966999650001526, -0.06819300353527069, 0.938539981842041, -0.12520000338554382, 0.055911000818014145, -0.15692000091075897, -0.3989199995994568, -0.05561500042676926, -0.03918899968266487, -0.18455000221729279, 0.12713000178337097, 0.36103999614715576, 0.3839299976825714, -0.2980700135231018, 0.5496500134468079, -0.06895899772644043, 0.23598000407218933, 0.6028100252151489, 0.015204000286757946, 0.42243000864982605, 0.3174299895763397, 0.29861000180244446, 0.039354998618364334, -0.3468700051307678, 0.23781999945640564, 0.45629000663757324, 0.3182699978351593, 0.06888800114393234, -0.3374300003051758, 0.6126899719238281, -0.310699999332428, 0.08322200179100037, 0.3137199878692627, -0.1592700034379959, 0.22485999763011932, 0.3975600004196167, 0.3168199956417084, 0.6861900091171265, 0.16592000424861908, 0.12291999906301498, 0.23845000565052032, 0.20995000004768372, -0.03892400115728378, 0.396369993686676, 0.297760009765625, -0.2258799970149994, -0.46171998977661133, -0.11958999931812286, -0.0032132999040186405, 0.35899999737739563, -0.22176000475883484, -0.26927998661994934, -0.14256000518798828, -0.43773001432418823, -0.0037086999509483576, -0.35328999161720276, -0.31953999400138855, -0.4985499978065491, -0.17091000080108643, -0.11553999781608582, -0.04817099869251251, 0.44444000720977783, 0.2610900104045868, -0.16493000090122223, 0.3541199862957001, 0.302949994802475, -0.4073199927806854, 0.11166000366210938, -0.013590999878942966, 0.06391599774360657, -0.13605999946594238, 0.16518999636173248, 0.09781300276517868, 0.06664899736642838, -0.2898100018501282, 0.3146600127220154, -0.552619993686676, 0.0030686999671161175, -1.6970000267028809, -0.09374500066041946, 0.76214998960495, -0.08006999641656876, -0.25, 0.31786999106407166, -0.2547599971294403, -0.24864999949932098, 0.2868799865245819, -0.6273699998855591, 0.10931000113487244, -0.3528900146484375, -0.012397999875247478, -0.3555299937725067, 0.16419999301433563, -0.5167499780654907, 0.20555000007152557, 0.15859000384807587, 0.03828300163149834, 1.080199956893921, -0.14722999930381775, -0.8141000270843506, -1.0226999521255493, 0.16731999814510345], u'pasta': [-0.2415499985218048, 0.2994900047779083, 0.5929399728775024, 0.057443998754024506, 0.09962400048971176, 0.11980000138282776, -0.6064500212669373, 0.16256000101566315, 0.16268999874591827, -0.4401400089263916, -0.07220099866390228, -0.10023000091314316, 0.19926999509334564, 0.8849499821662903, 0.03638700023293495, -0.7399399876594543, -0.3799299895763397, 0.32760998606681824, -0.05830800160765648, 0.711080014705658, -0.30404001474380493, -0.1667499989271164, 0.13189999759197235, 0.22293999791145325, 0.0689380019903183, 0.015533000230789185, -0.4648599922657013, -0.19754000008106232, 0.1606599986553192, -0.9891700148582458, -0.35954999923706055, 0.6069999933242798, -0.16214999556541443, 0.2637700140476227, -0.29646000266075134, 0.9060099720954895, -0.027939999476075172, -0.39017000794410706, -0.4977000057697296, 0.36768001317977905, 0.09586399793624878, -0.05053900182247162, 0.31624001264572144, 0.16898000240325928, 0.23176999390125275, -0.2014400064945221, 0.7877200245857239, 0.2132599949836731, 0.5105000138282776, 0.5596399903297424, 0.10876999795436859, 0.3078399896621704, 0.4131999909877777, 0.12150000035762787, -0.25064998865127563, -0.26554998755455017, -0.30316001176834106, 0.08587200194597244, 0.6567999720573425, 0.13922999799251556, 0.5369499921798706, -0.5534499883651733, 0.30882999300956726, -0.469539999961853, -0.48945000767707825, -0.10815999656915665, -0.6630100011825562, 0.44756001234054565, -0.48532000184059143, 0.27998000383377075, 0.8120700120925903, -0.13412000238895416, 0.09437499940395355, -0.2904900014400482, -0.2407499998807907, 0.5233500003814697, 0.5052800178527832, 0.14248999953269958, -0.7584999799728394, -0.33779001235961914, -0.6112499833106995, 0.5449399948120117, 0.21336999535560608, 0.315310001373291, 0.7693799734115601, -0.050634998828172684, 0.08610700070858002, 0.0752979964017868, -0.05889900028705597, -0.1871899962425232, 0.39256998896598816, -0.07105600088834763, 0.06014600023627281, -0.12039999663829803, -0.06995099782943726, 0.4339999854564667, -0.38078999519348145, 0.046796999871730804, -0.2084600031375885, 0.7945399880409241, 0.10444000363349915, -0.28407999873161316, 0.14620999991893768, -0.5472699999809265, -0.4702000021934509, -0.2402999997138977, -0.24612000584602356, 0.17659999430179596, -0.1762000024318695, 0.21829000115394592, 0.3522300124168396, 0.5623800158500671, -0.07896199822425842, -0.7702599763870239, 0.04942600056529045, -0.22325000166893005, -1.1533000469207764, 0.12555000185966492, 0.5914700031280518, 0.6055999994277954, -0.44402000308036804, 0.4128299951553345, 0.3674199879169464, 0.370959997177124, 0.15815000236034393, 0.264629989862442, -0.14753000438213348, 0.7218899726867676, -0.5721700191497803, 0.8036500215530396, 0.289029985666275, 0.3666200041770935, -0.0205329991877079, 0.3530200123786926, -0.09975700080394745, -0.290910005569458, 0.034233998507261276, -0.2932800054550171, -0.14403000473976135, 0.2559399902820587, 0.359499990940094, 0.3710399866104126, -0.11941999942064285, -0.15987999737262726, -0.5122799873352051, 0.05214200168848038, -0.1697400063276291, -0.16896000504493713, 0.5455800294876099, -0.4839699864387512, -0.7077900171279907, 0.5088000297546387, -0.1626800000667572, -0.8128499984741211, -0.483599990606308, -0.736549973487854, 0.054958999156951904, -0.5171399712562561, -0.21872000396251678, -0.1292400062084198, -0.16717000305652618, 0.04520399868488312, -0.3771600127220154, 0.2903900146484375, 0.47172001004219055, -0.026009999215602875, -0.1373099982738495, 0.027388999238610268, -0.13541999459266663, -0.6532400250434875, 0.16523000597953796, 0.6921200156211853, -0.3355099856853485, 0.11816000193357468, -0.13356000185012817, 0.050335001200437546, -0.5526599884033203, 0.1734900027513504, 0.49199000000953674, -0.6490600109100342, 0.32238999009132385, 0.3323400020599365, 0.4060100018978119, 0.06520500034093857, -0.26047998666763306, 0.623769998550415, 0.46849000453948975, 0.4299199879169464, 0.1628199964761734, -0.13860000669956207, -0.15198999643325806, 1.4271999597549438, -0.5270299911499023, 0.3458000123500824, -0.2841399908065796, 0.23190000653266907, -0.4833100140094757, -0.3743399977684021, -0.29877999424934387, 0.22479000687599182, -0.06955400109291077, -0.007711499929428101, 1.176300048828125, 0.5738300085067749, 0.1412699967622757, 0.17542000114917755, 0.735759973526001, -0.07966499775648117, -0.16891999542713165, -0.3059200048446655, 0.27542001008987427, -0.14865000545978546, 0.647159993648529, 0.05118300020694733, -0.272489994764328, 0.11174999922513962, 0.6114100217819214, -0.6471099853515625, -0.26447999477386475, 0.2320300042629242, 0.3822399973869324, 0.3841699957847595, -0.52156001329422, -0.33059000968933105, -0.0037146001122891903, -0.7662000060081482, 0.5524200201034546, -0.49503999948501587, -0.2354000061750412, -0.4162899851799011, -0.21671000123023987, -0.008435600437223911, -0.060054000467061996, -0.03999999910593033, 1.166200041770935, -0.14031000435352325, 0.45612001419067383, 0.32517001032829285, -0.5694800019264221, -0.5034400224685669, 0.13562999665737152, -0.31200000643730164, -0.0010083999950438738, 0.010883999988436699, -0.41376999020576477, 0.016592999920248985, -0.36059001088142395, 0.011615999974310398, -0.12861000001430511, -0.8875200152397156, 0.751550018787384, 0.28431999683380127, 0.3939000070095062, 0.3860599994659424, -0.21366000175476074, -0.07703900337219238, -0.19095000624656677, 0.34066998958587646, -0.3636400103569031, 0.4984399974346161, -0.028704000636935234, -0.9305400252342224, 0.08826299756765366, -0.4257600009441376, 0.6523699760437012, -0.06792300194501877, -0.38040000200271606, 0.3942300081253052, -0.005965900141745806, -0.28867998719215393, -0.9074199795722961, -0.273140013217926, -0.37999001145362854, 1.0231000185012817, 0.19292999804019928, -0.04098200052976608, -0.289139986038208, 0.03792700171470642, -0.9358000159263611, -0.4061500132083893, 0.6666399836540222, 0.3924799859523773, 0.21285000443458557, -0.23631000518798828, 0.0671909973025322, 0.14517000317573547, 0.8532500267028809, -0.15503999590873718, 0.642579972743988, 0.49178001284599304, -0.11457999795675278, -0.23726999759674072, 0.2781899869441986, 0.4338200092315674, -0.16825999319553375, -1.0714000463485718, 0.049424998462200165, -0.748449981212616, -0.3986400067806244, 0.037801001220941544], u'paste': [0.07474400103092194, 0.059773001819849014, 0.4459100067615509, -0.6015300154685974, -0.667169988155365, -0.19972999393939972, 0.00398290017619729, 0.2663399875164032, 0.6725599765777588, -0.2047100067138672, -0.0312809981405735, -0.08782300353050232, 0.5356900095939636, 0.3782300055027008, -0.13169999420642853, -0.2048799991607666, -0.7049000263214111, 0.4551900029182434, -0.7262399792671204, -0.27959001064300537, -0.3297500014305115, -0.3117299973964691, -0.05013199895620346, 0.3831000030040741, -0.8070499897003174, -0.1581999957561493, -0.22190000116825104, 0.23759999871253967, -0.15431000292301178, -0.5090199708938599, -0.3876200020313263, -0.13513000309467316, 0.02454799972474575, 0.040049001574516296, -0.19990000128746033, 0.7958099842071533, -0.1090800017118454, -0.06096800044178963, 0.10525999963283539, -0.312389999628067, -0.09356500208377838, -0.23431000113487244, -0.049501001834869385, 0.06668300181627274, 1.1450999975204468, -0.6010500192642212, 0.367000013589859, 0.7564399838447571, -0.5087900161743164, -0.3775100111961365, 0.4742799997329712, -0.058035001158714294, 0.5221800208091736, 0.046838000416755676, 0.16506999731063843, -0.27678999304771423, 0.21216000616550446, -0.4522300064563751, 0.046792998909950256, 0.0024244000669568777, -0.14111000299453735, 0.13624000549316406, 0.553820013999939, 0.34393998980522156, 0.005389600060880184, 0.19357000291347504, -0.04738900065422058, 0.022009000182151794, 0.7805399894714355, -0.27814000844955444, -0.15976999700069427, -0.7082099914550781, -0.8752700090408325, 0.10593000054359436, -0.30404001474380493, 0.1898300051689148, 0.9958699941635132, -0.2556599974632263, 0.23191000521183014, -0.3417600095272064, -0.22753000259399414, -0.05607600137591362, -0.10028000175952911, -0.745959997177124, -0.26719000935554504, 0.04391000047326088, 0.12013000249862671, -0.42430999875068665, -0.08682800084352493, -0.3877899944782257, -0.4499500095844269, 0.09358300268650055, -0.03013800084590912, -0.45118001103401184, -0.4161199927330017, -0.31345000863075256, -0.44255000352859497, 0.5108500123023987, 0.16046999394893646, 0.1449500024318695, 0.5322399735450745, -0.32260000705718994, 0.6275699734687805, -0.7385600209236145, -0.469870001077652, -0.3183700144290924, -0.2290399968624115, -0.17598000168800354, 0.0022704999428242445, 0.038001999258995056, 0.4696800112724304, 0.3089900016784668, -0.1222200021147728, -0.4627299904823303, -0.41018998622894287, 0.4081000089645386, -0.5718200206756592, 0.8895800113677979, 0.06181799992918968, -0.3072499930858612, -0.0137320002540946, -0.6422899961471558, 0.2350499927997589, 0.09070199728012085, 0.049222998321056366, -0.28925999999046326, 0.15052999556064606, 0.38453999161720276, -0.1368899941444397, 0.7184699773788452, 0.2993200123310089, 0.6431900262832642, -0.2749600112438202, 0.1739400029182434, -0.6269299983978271, -0.5732899904251099, -0.3161799907684326, 0.022075999528169632, 0.03407299891114235, 0.760890007019043, 0.44762998819351196, 0.6376500129699707, -0.50559002161026, -1.1581000089645386, -0.16249999403953552, 0.41999998688697815, -0.01975500024855137, 0.0977109968662262, 0.3932499885559082, -0.2644999921321869, -1.0095000267028809, 0.5809199810028076, 0.008154500275850296, -0.35929998755455017, -0.8395299911499023, -0.5126299858093262, -0.03095499984920025, -0.5033699870109558, 0.2913399934768677, 0.1796099990606308, 0.3535099923610687, -0.20488999783992767, 0.4033200144767761, -0.03164200112223625, 0.3745799958705902, -0.3501499891281128, 0.14657999575138092, 0.7221300005912781, -0.1985500007867813, -0.7648800015449524, -0.3501800000667572, 0.10745000094175339, -0.17101000249385834, 0.2573600113391876, -0.5101900100708008, -0.15669000148773193, 0.048516999930143356, -0.1410199999809265, 0.606939971446991, -0.569320023059845, 0.06452900171279907, 0.39726001024246216, -0.25887998938560486, -0.3904399871826172, 0.030879000201821327, -0.7800300121307373, 0.9207299947738647, 0.3490000069141388, 0.3681600093841553, -0.009889299981296062, 0.3337000012397766, 1.2927000522613525, 0.05779600143432617, 0.3101100027561188, 0.6121399998664856, -0.18725000321865082, -0.16957999765872955, 0.6626999974250793, -0.30726999044418335, -0.20392000675201416, -0.2452400028705597, -0.08204899728298187, 0.6903899908065796, 1.1955000162124634, 0.007128399796783924, 0.4507000148296356, -0.011869999580085278, 0.18125000596046448, -0.7352200150489807, 0.01553799957036972, 0.14151999354362488, -0.14069999754428864, -0.3285199999809265, 0.45524001121520996, -0.3980900049209595, 0.47628000378608704, -0.12880000472068787, -0.13968999683856964, -0.23261000216007233, 0.5061399936676025, -0.421779990196228, 0.11940000206232071, -0.5628200173377991, -0.3119499981403351, -0.7191299796104431, -0.09365399926900864, 0.2624799907207489, 0.1066799983382225, 0.2688800096511841, -0.328139990568161, -0.09262599796056747, 0.06772799789905548, 0.19652000069618225, -0.13470999896526337, 0.6363700032234192, 0.18053999543190002, 0.13496999442577362, 0.022274000570178032, -0.5343000292778015, -0.5853000283241272, -0.16868999600410461, -0.14055000245571136, -0.8491899967193604, -0.23486000299453735, -0.5081599950790405, 0.47268998622894287, 0.5321499705314636, 0.14910000562667847, 0.02863200008869171, -0.9589800238609314, 0.1738000065088272, -0.6042900085449219, -0.5362899899482727, -0.2865299880504608, -0.028243999928236008, 0.649590015411377, -0.3788500130176544, 0.3166100084781647, 0.03891900181770325, 0.4622200131416321, -0.8024700284004211, 0.40421000123023987, -0.10805000364780426, -0.4042699933052063, 0.5980600118637085, -0.6228899955749512, -0.49889999628067017, 0.22148999571800232, -0.12466999888420105, -0.31022000312805176, 0.18285000324249268, -0.5053600072860718, 0.10255999863147736, 0.4614199995994568, -0.20055000483989716, 0.862529993057251, -0.010471999645233154, -0.6659200191497803, -0.6873300075531006, -0.36024001240730286, -0.007354999892413616, 0.16354000568389893, -0.350490003824234, 0.8148199915885925, -0.31433001160621643, 0.03402699902653694, 0.39535000920295715, -0.28593000769615173, 0.09355200082063675, 0.7666400074958801, -0.3010300099849701, 0.00407630018889904, 0.1791200041770935, -0.10089000314474106, 0.11641000211238861, -0.1368899941444397, 0.1704699993133545, -0.35514000058174133, -0.5421000123023987, -0.1954600065946579], u'card': [0.19724999368190765, 0.363070011138916, -0.006536299828439951, -0.13093000650405884, 0.09788099676370621, 0.10672000050544739, -0.1543000042438507, -0.031741999089717865, -0.051711998879909515, -0.9383299946784973, 0.4140799939632416, 0.20886999368667603, 0.6369900107383728, -0.6332100033760071, -0.17270000278949738, -0.22407999634742737, 0.20128999650478363, -0.43268999457359314, -0.2550700008869171, -0.13044999539852142, 0.44514000415802, -0.5927900075912476, -0.6276500225067139, -0.415149986743927, 0.40790998935699463, -0.06016099825501442, 0.1886100023984909, 0.5677099823951721, 0.16857999563217163, 0.06992600113153458, -0.31033000349998474, 0.3191100060939789, 0.20722000300884247, -0.418179988861084, -1.8162000179290771, -0.22084000706672668, 0.09088499844074249, -0.6320899724960327, -0.756850004196167, -0.011296999640762806, -0.10835999995470047, -0.162540003657341, 0.43498000502586365, 0.6968500018119812, -0.012919999659061432, -0.19296999275684357, 0.4190399944782257, -0.33156999945640564, -0.3321700096130371, -0.5793300271034241, 0.13878999650478363, 0.36684998869895935, 0.3218899965286255, 0.16017000377178192, -0.1809300035238266, -0.790149986743927, -0.5271099805831909, 0.12996000051498413, 0.05316599830985069, -0.5544700026512146, 0.4474300146102905, -0.003952099941670895, -0.375, 0.11905000358819962, -0.04835699871182442, -0.18988999724388123, 0.022412000223994255, -0.5875899791717529, 0.25898000597953796, -0.3413099944591522, 0.6186299920082092, 0.10907000303268433, 0.48197001218795776, -0.11946000158786774, 0.14188000559806824, 0.1074799969792366, 0.10221999883651733, -0.5980799794197083, 0.6488699913024902, -0.36847999691963196, 0.249099999666214, -0.04358899965882301, 0.1609400063753128, -0.21638000011444092, 0.6061699986457825, -0.532829999923706, -0.9720900058746338, -0.31505998969078064, -0.28929999470710754, 0.47762998938560486, -0.29416999220848083, 0.22115999460220337, -0.29864999651908875, -0.3831300139427185, 0.5752900242805481, 0.6204599738121033, -0.5260499715805054, 0.2750200033187866, 0.08338599652051926, -1.4884999990463257, -0.08667699992656708, -0.11037000268697739, 0.2700299918651581, -0.17166000604629517, 0.2218399941921234, -0.06063000112771988, 0.04717100039124489, 0.45385000109672546, -0.5358899831771851, -0.1408499926328659, 0.3043400049209595, 0.19571000337600708, 0.2436700016260147, 0.5813900232315063, 0.33246999979019165, 0.26798000931739807, -0.028144000098109245, 0.4720200002193451, -0.4269999861717224, -0.12646999955177307, 0.00361949997022748, -0.12772999703884125, 0.09014099836349487, 0.6222699880599976, 0.2743400037288666, 0.2474599927663803, 0.18348999321460724, -0.5975900292396545, 0.08799099922180176, -0.3322199881076813, 0.3427700102329254, 0.20140999555587769, 0.2762100100517273, 0.006245899945497513, -0.006750499829649925, 0.031975001096725464, 0.7275199890136719, -0.059519000351428986, 0.3593200147151947, 0.44916000962257385, -0.18613000214099884, 0.16562999784946442, 0.3513700067996979, 0.24275000393390656, 0.631380021572113, 0.16064000129699707, -0.5336899757385254, -0.45750999450683594, -0.08601000159978867, -0.18639999628067017, 0.12156999856233597, 0.03339599817991257, 0.3703100085258484, -0.6147699952125549, 0.1200300008058548, -0.11274000257253647, -0.14285999536514282, -0.3878200054168701, -0.7418400049209595, -0.2835899889469147, 0.49974000453948975, 0.11546999961137772, -0.013394000008702278, 0.08040899783372879, 0.4836899936199188, 0.3345699906349182, -0.1299699991941452, 0.09009599685668945, -0.05691299960017204, -0.2110999971628189, 0.10664000362157822, 0.014271000400185585, -0.7516400218009949, 0.15053999423980713, -0.06260699778795242, -0.7819300293922424, -0.35249000787734985, -0.14232000708580017, -0.003310699947178364, 0.2946299910545349, 0.29027000069618225, 0.03114200010895729, 0.6246899962425232, 0.3472500145435333, -0.00025993998860940337, -0.5097100138664246, 0.07053499668836594, 0.2267400026321411, 0.323199987411499, 0.3244200050830841, 0.26177000999450684, 0.866320013999939, 0.5278900265693665, 0.16214999556541443, -0.1512400060892105, -0.2312300056219101, 0.07147300243377686, 0.5040000081062317, -0.2674799859523773, 0.21177999675273895, 0.5737900137901306, 0.09273099899291992, 0.39645999670028687, -0.4047900140285492, 0.22015999257564545, -0.7876499891281128, 0.26660001277923584, 0.43261000514030457, 0.017820000648498535, -0.12839999794960022, 0.019742999225854874, -0.5356900095939636, 0.6377099752426147, -0.37459999322891235, -0.14381000399589539, -0.12707999348640442, 0.043278999626636505, 0.23930999636650085, -0.021555999293923378, 0.8281599879264832, -0.39998000860214233, -0.1785999983549118, -0.4397200047969818, 0.3400700092315674, 0.3428100049495697, 0.020316999405622482, -0.08626099675893784, -0.37553998827934265, 0.34929999709129333, 0.2809999883174896, -0.8827400207519531, 0.0777750015258789, -0.20419999957084656, 0.1775899976491928, 0.35124000906944275, -0.0652410015463829, -0.1084199994802475, -0.09232600033283234, 0.4076800048351288, 0.3095000088214874, -0.003758900100365281, 0.8249800205230713, 0.6673399806022644, -0.4135099947452545, -0.2339400053024292, -0.3540099859237671, -0.006112799979746342, -0.14883999526500702, 0.36263999342918396, -0.351610004901886, 0.3976899981498718, -0.07095500081777573, -0.1633799970149994, -0.05338900163769722, 0.21074999868869781, -0.17486000061035156, -0.291810005903244, 0.32537001371383667, 0.16092999279499054, -0.14063000679016113, -0.6914799809455872, 0.11873000115156174, -0.058118999004364014, 0.5812199711799622, 0.022280000150203705, -0.05697999894618988, -0.26631999015808105, -0.19961999356746674, -0.16053999960422516, -0.08043599873781204, 0.31516000628471375, 0.052629999816417694, 0.09787199646234512, 0.00622300012037158, -0.19530999660491943, -0.14122000336647034, -1.7589000463485718, -0.042010001838207245, -0.08443500101566315, 0.053300999104976654, -0.0720909982919693, 0.19603000581264496, -0.5868899822235107, 0.01584099978208542, -0.766730010509491, -0.042433999478816986, 0.057757001370191574, -0.05964000150561333, -0.3288300037384033, -0.41967999935150146, 0.4133700132369995, 0.10408999770879745, -0.38339000940322876, -0.057829998433589935, 0.24494999647140503, 0.049598000943660736, 0.9495499730110168, 0.11214999854564667, 0.0611019991338253, -1.093999981880188], u'kitchen': [0.1882999986410141, 0.2495799958705902, 0.04334399849176407, -0.7210699915885925, 0.2934100031852722, 0.32433000206947327, -0.2713100016117096, -0.39779001474380493, 0.13071000576019287, -0.778980016708374, -0.07216600328683853, 0.0131029998883605, 0.5432500243186951, 0.28507000207901, 0.05520499870181084, -0.03379099816083908, -0.012879000045359135, 0.01983099989593029, 0.17389999330043793, 0.27636000514030457, 0.07988499850034714, 0.4157699942588806, -0.06105799973011017, -0.042344000190496445, 0.14100000262260437, -0.27893999218940735, -0.04294100031256676, 0.15639999508857727, 0.5557799935340881, -0.11274000257253647, -0.03282000124454498, 0.6266999840736389, -0.41617000102996826, 0.24958999454975128, -0.650950014591217, 0.8596900105476379, -0.25023001432418823, -0.15288999676704407, -0.21809999644756317, -0.25115999579429626, 0.24252000451087952, -0.12785999476909637, -0.05236800014972687, -0.10830999910831451, 0.13925999402999878, 0.1805800050497055, 0.35780999064445496, -0.17010000348091125, 0.10245999693870544, -0.17610999941825867, 0.20520000159740448, -0.027307000011205673, 0.5910400152206421, -0.1344199925661087, -0.4666700065135956, -0.2737399935722351, 0.00825599953532219, -0.05016399919986725, -0.016307000070810318, 0.023679999634623528, 0.046658001840114594, -0.40542998909950256, 0.2463800013065338, 0.641260027885437, -0.5363100171089172, -0.825190007686615, 0.11849000304937363, 0.25953999161720276, -0.7239000201225281, -0.5614799857139587, 0.07575800269842148, -0.5997700095176697, -0.22429999709129333, 0.1774500012397766, -0.5881100296974182, 0.27496999502182007, -0.3549000024795532, 0.24111999571323395, -0.3387700021266937, -0.7327399849891663, -0.056706998497247696, 0.546720027923584, 0.16752000153064728, -0.20333999395370483, 0.47152000665664673, -0.261570006608963, -0.18310999870300293, 0.32100000977516174, -0.15699000656604767, -0.538569986820221, 0.4124799966812134, -0.19425000250339508, 0.4008699953556061, -0.19088999927043915, -0.300709992647171, -0.518310010433197, 0.0484049990773201, -0.3116999864578247, 0.2987099885940552, -0.6071199774742126, -0.286980003118515, 0.09414699673652649, -0.01996699906885624, -0.44453001022338867, 0.1403599977493286, -0.7457600235939026, 0.5160800218582153, 0.18178999423980713, -0.17441999912261963, 0.6547999978065491, -0.21053999662399292, 0.07117900252342224, 0.024986999109387398, -0.6736699938774109, -0.5777300000190735, -0.3114199936389923, -0.5563499927520752, -0.1548900008201599, -0.7103000283241272, -0.2806699872016907, -0.10220000147819519, 0.4419800043106079, -0.23559999465942383, 0.1196800023317337, -0.10656999796628952, 0.06384100019931793, -0.07205300033092499, -0.24406999349594116, -0.016788000240921974, 0.2318899929523468, 0.6017500162124634, 0.025885000824928284, 0.5277100205421448, -0.058660998940467834, 0.40077999234199524, -0.2781200110912323, 0.17430999875068665, 0.5049399733543396, -0.30542999505996704, 0.12939000129699707, 0.28321000933647156, 0.10249000042676926, 0.4066300094127655, -0.21074000000953674, -0.12331999838352203, 0.92330002784729, 0.37310001254081726, 0.24753999710083008, 0.025839999318122864, -0.4038200080394745, -0.3134300112724304, 0.5834000110626221, 0.32653000950813293, 0.005832499824464321, -0.16294999420642853, 0.24397000670433044, -0.6522300243377686, 0.35877999663352966, -0.12146999686956406, -0.022433999925851822, 0.6517599821090698, 0.562690019607544, 0.37907999753952026, 0.005012399982661009, 0.19349999725818634, 0.42976000905036926, 0.227400004863739, 0.006583999842405319, 0.4421899914741516, 0.19606000185012817, -0.4025300145149231, 0.23023000359535217, -0.19645999372005463, 0.19767999649047852, -0.7100899815559387, 0.4006499946117401, -0.21589000523090363, 0.24966000020503998, 0.5826299786567688, -0.7846900224685669, -0.11862000077962875, -0.14042000472545624, 0.21550999581813812, 0.16971999406814575, -0.000969930028077215, 0.2119700014591217, 0.6227800250053406, 0.7246999740600586, 0.31136998534202576, 0.002502199960872531, 0.517579972743988, 0.6261900067329407, -0.9153500199317932, 0.019060999155044556, -0.4207000136375427, 0.3684999942779541, -0.5485699772834778, 0.24741999804973602, -0.8594300150871277, 0.05429299920797348, 0.35326001048088074, 0.04369699954986572, 0.22725999355316162, 0.38113000988960266, 0.3151000142097473, -0.19860999286174774, 0.5117899775505066, -0.48445001244544983, -0.39416998624801636, -0.30737000703811646, -0.45100000500679016, -0.20221999287605286, -0.384799987077713, -0.08188900351524353, 0.44203001260757446, 0.32190999388694763, 0.14635999500751495, -0.45375001430511475, 0.1109900027513504, 0.1429000049829483, 0.264710009098053, 0.2534500062465668, -0.2648699879646301, -0.07571300119161606, 0.08168400079011917, -0.3759799897670746, -0.11631999909877777, 0.1399800032377243, 0.02987699955701828, -0.31174999475479126, -0.004738899879157543, -0.4505999982357025, -0.5667999982833862, -0.035314999520778656, 0.3040899932384491, 0.5339900255203247, 0.12283000349998474, 0.05163700133562088, -0.9492300152778625, -0.07885999977588654, 0.4176200032234192, -0.1673000007867813, -0.30164000391960144, 0.3057999908924103, -0.1828799992799759, -0.08071999996900558, 0.05821700021624565, 0.23405000567436218, -0.2560400068759918, -0.13062000274658203, 0.25099998712539673, -0.2232300043106079, 0.3101100027561188, 0.044982001185417175, 0.3117699921131134, 0.1423500031232834, -0.10217999666929245, -0.22226999700069427, 0.2648000121116638, 0.5758100152015686, 0.012672999873757362, -0.5259100198745728, -0.23756000399589539, -0.614870011806488, -0.17151999473571777, 0.2669999897480011, -0.005993899889290333, 0.5328599810600281, 0.4099400043487549, -0.3835099935531616, -0.24498000741004944, -0.04487200081348419, 0.23819999396800995, -0.2705399990081787, 0.206619992852211, 0.19021999835968018, -1.5609999895095825, 0.9348899722099304, -1.117900013923645, -0.31668001413345337, -0.05789899826049805, 0.4211699962615967, -0.13405999541282654, -0.20152999460697174, 0.28547999262809753, 0.4456999897956848, 0.18589000403881073, -0.015684999525547028, -0.1360899955034256, -0.2545199990272522, -0.2041199952363968, -0.10948999971151352, -0.28141000866889954, 0.18594999611377716, 0.1425199955701828, 0.00656609982252121, 0.21782000362873077, -0.0648529976606369, -0.1710200011730194, 0.6258900165557861], u'box': [-0.3104499876499176, 0.8351399898529053, -0.08395099639892578, 0.28532999753952026, 0.40733999013900757, 0.3388400077819824, -0.6449099779129028, 0.10490000247955322, -0.3458099961280823, -0.644569993019104, -0.009183299727737904, 0.2194100022315979, 0.14871999621391296, -0.13529999554157257, 0.08562599867582321, -0.08728300034999847, -0.19865000247955322, -0.2083600014448166, 0.16165000200271606, -0.04179200157523155, 0.48708000779151917, 0.11050999909639359, 0.08163999766111374, 0.06833899766206741, -0.4611699879169464, 0.154789999127388, 0.10162000358104706, -0.13061000406742096, 0.6540799736976624, 0.11920999735593796, -0.15320000052452087, -0.10272999852895737, -0.15017999708652496, 0.11231999844312668, -0.9524400234222412, 0.38405999541282654, -0.4893999993801117, 0.16067999601364136, -0.36774998903274536, 0.39035001397132874, -0.1844400018453598, -0.2187100052833557, -0.17876000702381134, 0.8737199902534485, 0.09975399821996689, -0.19158999621868134, 0.4818499982357025, -0.12870000302791595, 0.00680779991671443, 0.5019199848175049, 0.11867000162601471, -0.030571000650525093, -0.3529900014400482, -0.386790007352829, -0.11608000099658966, -0.14797000586986542, -0.4004800021648407, -0.055626001209020615, 0.17609000205993652, -0.04651600122451782, 0.4946900010108948, 0.596589982509613, 0.3900099992752075, 0.3062700033187866, 0.4533900022506714, -0.4928300082683563, 0.2348400056362152, -0.30733001232147217, 0.4692699909210205, -0.023509999737143517, 0.17258000373840332, 0.025407999753952026, 0.44130000472068787, 0.6116499900817871, 0.2442300021648407, 0.11260999739170074, -0.2729699909687042, -0.49070999026298523, 0.057381998747587204, -0.0786060020327568, -0.12992000579833984, 0.3065299987792969, 0.24338999390602112, -0.10583999752998352, 0.24255000054836273, -0.5624499917030334, 0.5926899909973145, 0.04778800159692764, -0.09722699970006943, -0.14535999298095703, 0.40612998604774475, 0.013309000059962273, -0.41749000549316406, -0.14435000717639923, 0.8156800270080566, 0.7414799928665161, -0.3193199932575226, 0.330049991607666, -0.1934400051832199, -0.7319499850273132, -0.011253000237047672, 0.18740999698638916, -0.15248000621795654, -0.30491000413894653, -0.06820099800825119, -0.3774299919605255, -0.11582999676465988, 0.18357999622821808, -0.022853000089526176, -0.08924099802970886, 0.5874000191688538, 0.421970009803772, -0.3720400035381317, 0.04050000011920929, -0.3866400122642517, -0.3542400002479553, -0.5670599937438965, 0.38903000950813293, -0.1801699995994568, -0.7808099985122681, -0.046964000910520554, 0.07321099936962128, 0.7019000053405762, 0.09091100096702576, -0.4509199857711792, -0.153779998421669, 0.05752300098538399, 0.1066799983382225, -0.27173998951911926, 0.2886199951171875, 0.1343899965286255, -0.029776999726891518, -0.2949399948120117, 0.144679993391037, 0.14576999843120575, -0.36866000294685364, -0.02790199965238571, 0.2303999960422516, -0.36733001470565796, 0.15828999876976013, -0.009538800455629826, 0.17851999402046204, -0.14775000512599945, -0.6016899943351746, -0.17552000284194946, -0.8912100195884705, 0.0587569996714592, -0.24794000387191772, -0.0715859979391098, -0.897849977016449, 0.4325200021266937, -0.21931999921798706, -0.18499000370502472, -0.7972000241279602, 0.2843500077724457, 0.196710005402565, 0.39618000388145447, -0.006930099800229073, -0.36465999484062195, 0.017545999959111214, 0.20361000299453735, -0.403219997882843, 0.6689599752426147, -0.2582400143146515, 0.7055000066757202, 0.49783000349998474, 0.18918000161647797, -0.0866359993815422, -0.3273699879646301, 0.3050200045108795, -0.1735299974679947, 0.023267999291419983, -0.7671099901199341, -0.01338099967688322, 0.02868800051510334, -0.18122999370098114, -0.11907000094652176, 0.6609699726104736, 0.07361199706792831, -0.90829998254776, 0.07111799716949463, -0.0015788000309839845, 0.5783200263977051, 0.4189999997615814, -0.25146999955177307, -0.6855000257492065, 1.0077999830245972, 0.5164700150489807, 0.4113200008869171, 0.23935000598430634, 0.3138299882411957, 0.3776499927043915, 0.46786999702453613, 0.2815699875354767, -0.15047000348567963, -0.3578200042247772, -0.022628000006079674, -0.023754000663757324, -0.008507300168275833, 0.029148999601602554, 1.138800024986267, 0.2903999984264374, 0.3337799906730652, -0.5153099894523621, -0.09672500193119049, -0.43827998638153076, -0.05324999988079071, -0.2777000069618225, -0.5662099719047546, -0.04731199890375137, -0.3908500075340271, 0.027590999379754066, -0.18341000378131866, -0.27695998549461365, 0.27856001257896423, -0.05909999832510948, -0.1404699981212616, -0.12730999290943146, 0.27309998869895935, 0.3060699999332428, 0.4341999888420105, 0.055459000170230865, 0.3610300123691559, 0.1935099959373474, -0.03987700119614601, -0.3788900077342987, -0.2577100098133087, 0.2271600067615509, 0.33153000473976135, -0.25157999992370605, -0.3959200084209442, 0.3121599853038788, -0.6400099992752075, -0.062477000057697296, 0.38995999097824097, 0.25095000863075256, -0.029844999313354492, 0.4664100110530853, -0.2945399880409241, 0.00553550012409687, -0.4411199986934662, -0.22856000065803528, -0.1777999997138977, 0.14851999282836914, -0.4227299988269806, -0.18628999590873718, 0.7613300085067749, -0.009586899541318417, 0.02790600061416626, 0.5830199718475342, 0.5343000292778015, 0.3414900004863739, -0.09443400055170059, 0.3924899995326996, 0.3167699873447418, -0.3351700007915497, 0.19723999500274658, -0.6297900080680847, 0.5081999897956848, 0.07424599677324295, -0.19871999323368073, -0.2237199991941452, 0.20127999782562256, -0.36063000559806824, 0.02638700045645237, -0.5251200199127197, 0.34323999285697937, -0.11050999909639359, 0.09836400300264359, 0.10818000137805939, -0.32561999559402466, -0.2740499973297119, 0.2575699985027313, -0.13289999961853027, -0.033018000423908234, -0.8244699835777283, -1.4335999488830566, 0.6445199847221375, -0.6942700147628784, -0.2866300046443939, -0.2444400042295456, -0.13048000633716583, -0.11648000031709671, -0.11641000211238861, 0.19517000019550323, 0.31536999344825745, 0.13426999747753143, -0.450080007314682, -0.04886399954557419, 0.10621999949216843, 0.31088000535964966, -0.13761000335216522, -0.32148998975753784, 0.44624999165534973, -0.3490700125694275, 0.6074600219726562, -0.3911699950695038, -0.07796700298786163, 0.41402000188827515, -0.2385299950838089], u'stone': [-0.3109700083732605, -0.2604300081729889, 0.13266000151634216, -0.28692999482154846, 0.3675200045108795, -0.040644001215696335, 0.2750299870967865, 0.06059800088405609, -0.19447000324726105, -0.2576799988746643, -0.06263100355863571, -0.49856001138687134, -0.07257399708032608, 0.05936799943447113, -0.10016000270843506, -0.09462600201368332, -0.8614599704742432, 0.13958999514579773, -0.17494000494480133, -0.02078999951481819, -0.06781899929046631, 0.20757000148296356, -0.007022600155323744, 0.420089989900589, -0.48151999711990356, -0.8421099781990051, -0.3430500030517578, -0.07961499691009521, 0.014619999565184116, 0.613319993019104, 0.1779700070619583, 1.2510000467300415, -0.56836998462677, 0.38119998574256897, -0.4788599908351898, 0.5001299977302551, -0.20603999495506287, -0.26980000734329224, 0.6306099891662598, -0.29739999771118164, 0.10373000055551529, 0.29447001218795776, -0.04227200150489807, 0.3188999891281128, 0.1509000062942505, 0.2853100001811981, 0.034547001123428345, 0.3708600103855133, 0.26058000326156616, -0.06841400265693665, -0.23247000575065613, 0.22404000163078308, -0.20282000303268433, 0.36967000365257263, 0.08528900146484375, 0.15680000185966492, -0.4014100134372711, 0.23202000558376312, -0.36840999126434326, -0.4483399987220764, 0.5156000256538391, 0.44064000248908997, 0.5836399793624878, 0.12522999942302704, -0.0658079981803894, -0.6127499938011169, -0.08696900308132172, 0.2356400042772293, 0.3822599947452545, -0.3707199990749359, 0.16298000514507294, 0.028217000886797905, -0.28821998834609985, -0.26232999563217163, -0.14499999582767487, 0.6955100297927856, 0.35168999433517456, -0.14635999500751495, -0.006881400011479855, -0.29886001348495483, 0.009642800316214561, 0.22526000440120697, -0.02734600007534027, -0.15861999988555908, 0.12509000301361084, 0.5300800204277039, 0.38694998621940613, 0.04954899847507477, -0.07844000309705734, -0.04417800158262253, 0.3022100031375885, 0.08030200004577637, -0.17972999811172485, 0.14985999464988708, -0.012540999799966812, -0.18185999989509583, 0.16952000558376312, -0.239889994263649, 0.34349000453948975, -0.21198000013828278, -0.42985999584198, 0.3974800109863281, 0.3778400123119354, -0.2115900069475174, 0.1381700038909912, 0.10982000082731247, 0.04827599972486496, -0.019078999757766724, 0.6395800113677979, -0.5687599778175354, -0.6159800291061401, -0.09634900093078613, -0.17075000703334808, -0.8264899849891663, -0.42829999327659607, 0.11012999713420868, -0.43261000514030457, -0.11176999658346176, -0.05974600091576576, -0.7710899710655212, -0.43650999665260315, 0.14180000126361847, -0.4483399987220764, 0.3885299861431122, -0.35526999831199646, -0.18509000539779663, 0.32510000467300415, 0.221110001206398, -0.6965199708938599, -0.46358001232147217, -0.07767900079488754, 0.7225499749183655, 0.3912299871444702, 0.1704300045967102, 0.08834400027990341, -0.23276999592781067, -0.7417600154876709, -0.21782000362873077, 0.054687999188899994, 0.10450000315904617, 0.09340699762105942, 0.22258000075817108, -0.3212999999523163, -0.5660600066184998, -0.2573699951171875, -0.07449299842119217, 0.34380999207496643, 0.19670000672340393, -0.21784000098705292, -0.290010005235672, -0.1594800055027008, 0.34672999382019043, -0.49136999249458313, -0.1190200001001358, 0.05010199919342995, 0.27445000410079956, -0.10836999863386154, 0.11016999930143356, -0.04095900058746338, 0.01256600022315979, 0.3413600027561188, 0.351749986410141, 0.38940998911857605, 0.4556500017642975, 0.08427800238132477, 0.8594300150871277, 0.24048000574111938, 0.44451001286506653, 0.4791400134563446, -0.09993000328540802, 0.09257099777460098, 0.2195499986410141, 0.7678899765014648, -0.40099000930786133, 0.19994999468326569, 0.662850022315979, -0.5150200128555298, -0.19237999618053436, -0.369159996509552, -0.9892600178718567, -0.30316001176834106, 0.22123999893665314, 0.5817499756813049, -0.5468000173568726, 0.020949000492691994, -0.8914600014686584, -0.1935800015926361, -0.016245000064373016, 0.34551000595092773, 0.4202899932861328, 0.532010018825531, 0.869379997253418, 0.062286000698804855, 0.027164999395608902, 0.22306999564170837, 0.5002899765968323, -0.23409000039100647, -0.8748599886894226, 0.10118000209331512, -0.20664000511169434, 1.3401000499725342, -0.4141499996185303, -0.3155499994754791, 0.37338000535964966, -0.0844929963350296, -0.09093499928712845, 0.30090001225471497, -0.2796199917793274, -0.6866599917411804, -0.20814000070095062, 0.7873200178146362, 0.27834001183509827, 0.3459399938583374, -0.2658199965953827, -0.15008999407291412, -0.2316499948501587, 0.1127299964427948, -0.020250000059604645, -0.16325999796390533, -0.30730998516082764, -0.06028199940919876, -0.11732999980449677, 0.626479983329773, -0.0005617199931293726, -0.7676600217819214, -0.10931000113487244, 0.16389000415802002, 0.15631000697612762, -0.2841399908065796, -0.5531100034713745, -0.27414000034332275, -0.23319000005722046, -0.24932000041007996, -0.1824900060892105, -0.15161000192165375, 0.3734999895095825, -0.27421998977661133, -0.3497300148010254, -0.3540700078010559, -0.19199000298976898, -0.17733000218868256, -0.02900799922645092, -0.061792001128196716, -0.3458699882030487, -0.6237900257110596, 0.2643199861049652, -0.43612998723983765, 0.07784900069236755, 0.017176000401377678, 0.38631999492645264, 0.21823999285697937, -0.49187999963760376, -0.013826999813318253, -0.3868899941444397, 0.6782100200653076, 0.34198999404907227, 0.05956500023603439, -0.8073700070381165, -0.17941999435424805, -0.3131999969482422, -0.07802200317382812, 0.3641499876976013, -0.03115300089120865, -0.5418800115585327, 0.07586199790239334, 0.17861999571323395, 0.33285000920295715, 0.0667319968342781, -0.1031700000166893, 0.10577999800443649, -0.18267999589443207, -0.14885999262332916, 0.4591600000858307, -0.4848800003528595, 0.07119899988174438, 0.23309999704360962, -1.570199966430664, 0.10712999850511551, -0.23986999690532684, -0.11913999915122986, -0.32245999574661255, -0.4098300039768219, -0.20754000544548035, 0.020099999383091927, 0.41227999329566956, 0.5045999884605408, -0.29315000772476196, 0.09919799864292145, 0.5278099775314331, 0.23382000625133514, 0.2187100052833557, -0.06102500110864639, -0.03415700048208237, 0.8191099762916565, -0.14328999817371368, 0.692110002040863, -0.15807999670505524, 0.21443000435829163, -0.07738599926233292, 0.48625999689102173], u'drum': [-0.15690000355243683, 0.4103200137615204, -0.8853200078010559, -0.12132000178098679, 0.13862000405788422, -0.19686000049114227, 0.47484999895095825, 0.6499000191688538, -0.1003199964761734, -0.2702000141143799, -0.10632999986410141, -0.1969899982213974, 0.21142999827861786, -0.014186999760568142, 0.5940799713134766, -0.24903999269008636, -0.24026000499725342, -0.0511539988219738, 0.04722899943590164, -0.14034000039100647, 0.5130599737167358, 0.23021000623703003, -0.6406800150871277, 0.34477001428604126, 0.16788999736309052, 0.08884800225496292, 0.4273500144481659, -0.46094998717308044, 0.14348000288009644, 0.6675400137901306, -0.36577001214027405, -0.6335899829864502, 0.005451700184494257, 0.1992499977350235, -0.4351699948310852, 0.5591999888420105, -0.09619499742984772, 0.09340299665927887, 0.07910799980163574, 0.8208799958229065, -0.021508999168872833, 0.04751700162887573, -0.6812199950218201, -0.18006999790668488, 0.3512899875640869, 0.7748799920082092, 0.7710700035095215, -0.3514400124549866, 0.4849799871444702, -0.09151600301265717, 0.6317999958992004, 1.1346999406814575, 0.24654999375343323, 0.5382699966430664, -0.4048599898815155, 0.09006199985742569, 0.23171000182628632, -0.06307800114154816, 0.21115000545978546, 0.6982399821281433, 0.6495599746704102, 0.06742800027132034, 0.891040027141571, 0.2211499959230423, 0.37171998620033264, 0.009001100435853004, 0.5187000036239624, -0.12592999637126923, 0.44624999165534973, 0.25115999579429626, -0.036042001098394394, 0.2096800059080124, 0.7221400141716003, 0.2486400008201599, 0.09607400000095367, 0.42734000086784363, 0.5309100151062012, -0.21548999845981598, 0.3595600128173828, 0.19548000395298004, 0.9301699995994568, -0.14234000444412231, 0.043164998292922974, -0.5745400190353394, -0.06234399974346161, -0.6322900056838989, 0.617900013923645, 0.5002099871635437, -0.9269000291824341, -0.14124999940395355, 1.5475000143051147, 0.03759099915623665, 0.35927000641822815, -0.280129998922348, -0.07076100260019302, 0.422650009393692, 0.08809500187635422, -0.1618099957704544, 0.35161998867988586, -0.20886999368667603, -0.5752500295639038, 0.4851900041103363, 0.07526899874210358, -0.7623699903488159, 0.3661699891090393, -0.052528999745845795, -0.22553999722003937, -0.3986400067806244, -0.40073999762535095, 0.2611599862575531, 0.478769987821579, -0.11014000326395035, -0.2288299947977066, 0.7471799850463867, -0.24560999870300293, -0.6845499873161316, -0.655019998550415, -0.07665900141000748, 0.03246600180864334, -0.2871899902820587, -0.1560799926519394, -0.2004300057888031, 0.15579000115394592, -0.35923999547958374, 0.12011999636888504, 0.059154998511075974, 0.30498000979423523, 0.03175399824976921, -0.2682200074195862, -0.1995999962091446, -0.25095000863075256, 0.3131999969482422, 0.400160014629364, -0.7584800124168396, 0.12630000710487366, 0.03585100173950195, 0.517009973526001, 0.21358999609947205, 0.20385000109672546, -0.00965190026909113, 0.12366999685764313, -0.6408399939537048, -0.07307399809360504, -0.5116599798202515, 0.03682500123977661, 0.12734000384807587, -0.220770001411438, -0.14478999376296997, 0.1722699999809265, 0.2913999855518341, 0.034384001046419144, 0.5869200229644775, 0.2951900064945221, -0.16902999579906464, 0.5678799748420715, 0.017255999147892, 0.04371599853038788, -0.2004700005054474, -0.31591999530792236, 0.18133999407291412, 0.5404300093650818, -0.33632999658584595, -0.6675500273704529, -0.27674001455307007, 0.1250399947166443, 0.25181999802589417, 0.515030026435852, 0.31762999296188354, 0.12578000128269196, 0.26739001274108887, -0.04141499847173691, 0.04875300079584122, -0.031449999660253525, -0.013457000255584717, 0.125, -0.5412700176239014, 0.19119000434875488, -0.08750700205564499, -0.5596100091934204, 0.275519996881485, -0.7623999714851379, 0.1861799955368042, 0.15645000338554382, 0.009935400448739529, -0.3871900141239166, -0.35280001163482666, -0.09842800348997116, 0.30230000615119934, 0.2930999994277954, -0.6548500061035156, 0.6406499743461609, -0.25964999198913574, 0.1995300054550171, 0.49028000235557556, 0.29554998874664307, 0.19939999282360077, 0.3143100142478943, -0.2376600056886673, -0.03962000086903572, -0.21710999310016632, 0.5414900183677673, 0.6448299884796143, 0.5371299982070923, -0.057906001806259155, 0.09062699973583221, 0.2994300127029419, 0.15713000297546387, 0.6077399849891663, -0.20307999849319458, -0.2575100064277649, 0.0661889985203743, 0.245169997215271, 0.9202100038528442, 0.030107999220490456, -0.09227800369262695, -0.20981000363826752, -0.20476999878883362, -0.5736899971961975, 0.03297099843621254, 0.35631999373435974, 0.004540699999779463, 0.241689994931221, -0.28723999857902527, 0.32291001081466675, 0.3691999912261963, -0.21849000453948975, -0.27417999505996704, 0.4253999888896942, -0.06290499866008759, -0.47947999835014343, 0.41025999188423157, 0.15315000712871552, 0.01650100015103817, 0.00944020040333271, 0.2567099928855896, 0.003350399900227785, -0.5527099967002869, -0.23666000366210938, -0.5347899794578552, -0.46312999725341797, -0.13096000254154205, 0.12941999733448029, -0.2721099853515625, 0.1907999962568283, -0.3822399973869324, -0.21942999958992004, 0.266539990901947, 0.58406001329422, -0.31248000264167786, 0.16143999993801117, 0.30417999625205994, -0.3728399872779846, 0.8487600088119507, -0.3540300130844116, 0.5126699805259705, 0.08377599716186523, 0.37900999188423157, 0.09564600139856339, -0.1163799986243248, -0.5206800103187561, -0.05090099945664406, -0.08795300126075745, -0.1514499932527542, 0.23792999982833862, 0.11178000271320343, -0.5993300080299377, -0.5351499915122986, 0.34307000041007996, -0.06441199779510498, 0.20116999745368958, -0.17098000645637512, 0.20845000445842743, 0.618369996547699, -0.2417300045490265, 0.02954999916255474, -0.0011138999834656715, -1.0546000003814697, 0.1976500004529953, -0.5507400035858154, -0.5133299827575684, -0.13610999286174774, -0.35168999433517456, -0.4518199861049652, 0.4457400143146515, 0.08858700096607208, 0.1459600031375885, -0.6299999952316284, 0.2503499984741211, -0.07353799790143967, -0.3639099895954132, 0.42072999477386475, -0.2432900071144104, -0.26017001271247864, 0.5755699872970581, 0.11124999821186066, 0.7351700067520142, 0.5936599969863892, 0.18494999408721924, -0.21838000416755676, 0.19514000415802002], u'necklace': [-0.30625998973846436, -0.005408199969679117, -0.7090200185775757, 0.3628399968147278, -0.13535000383853912, 0.32666999101638794, 0.1349399983882904, -0.4118399918079376, -0.31433001160621643, -0.47516000270843506, 0.14410999417304993, 0.3166300058364868, -0.4557099938392639, 0.6847800016403198, -0.2865299880504608, -0.30074000358581543, -0.25172001123428345, 0.3738499879837036, -0.19686999917030334, -0.06088100001215935, 0.042514998465776443, -0.16005000472068787, -0.07356300204992294, -0.2152000069618225, -0.362529993057251, -0.7672200202941895, -0.5150200128555298, -0.23186999559402466, 0.13663999736309052, 0.2560099959373474, 0.34231001138687134, 0.39142999053001404, -0.484389990568161, 0.4772599935531616, 0.23904000222682953, 0.29951998591423035, -0.35657998919487, 0.36702999472618103, 0.178849995136261, 0.20343999564647675, -0.5028600096702576, -0.22904999554157257, -0.14519000053405762, 0.08377599716186523, 0.18254999816417694, -0.5334500074386597, 0.2322400063276291, -0.45921000838279724, 0.03985400125384331, 0.1546200066804886, -0.3241499960422516, -0.2655099928379059, 0.6336100101470947, -0.013005999848246574, -0.2561500072479248, -0.9204800128936768, -0.8134400248527527, 0.5597599744796753, -0.483599990606308, -0.2367900013923645, 0.004536500200629234, 0.12365999817848206, 0.09036099910736084, 0.12484999746084213, 0.7699000239372253, -0.15429000556468964, -0.6317399740219116, -0.07393400371074677, 0.7487499713897705, 0.22454999387264252, -0.09101399779319763, 0.028227999806404114, 0.24178999662399292, -0.0752829983830452, 0.2953299880027771, 0.08230999857187271, 0.7360900044441223, -0.6854599714279175, -0.414110004901886, -0.07485099881887436, -0.1740099936723709, 0.3129900097846985, 0.47510001063346863, 0.5490800142288208, -0.014182999730110168, -0.134770005941391, -0.19068999588489532, 0.02232000045478344, -0.11546000093221664, -0.20276999473571777, -0.20112000405788422, 0.20294000208377838, 0.3315899968147278, -0.32899999618530273, -0.1809300035238266, 0.006445200182497501, 0.5297899842262268, -0.0411049984395504, 0.6164500117301941, 0.08037099987268448, 0.2107200026512146, 0.5542700290679932, 0.19077999889850616, 0.2412700057029724, 0.13371999561786652, -0.24377000331878662, 0.6679700016975403, -0.07836800068616867, -0.2018900066614151, -0.8328700065612793, -0.13505999743938446, 0.7006499767303467, 0.25328999757766724, -0.052744001150131226, 0.4204699993133545, 0.07602500170469284, 0.07374799996614456, 0.3437800109386444, 0.6558899879455566, -0.22168000042438507, -0.300570011138916, 0.20857000350952148, 0.19002999365329742, -0.030837999656796455, -0.05273300036787987, -0.4368099868297577, 0.08021199703216553, 0.4257499873638153, -0.5875800251960754, -0.3866199851036072, -0.27981001138687134, -0.05789199844002724, -0.3191800117492676, -0.23405000567436218, -0.659280002117157, 0.20186999440193176, 0.3003599941730499, -0.1109900027513504, -0.4214699864387512, -0.19517000019550323, 0.008856499567627907, 0.7920600175857544, -0.06739600002765656, -0.18679000437259674, 0.36500999331474304, -0.6594700217247009, 0.014996999874711037, 0.027441000565886497, 0.4721499979496002, 0.05543399974703789, -0.27312999963760376, -0.0747779980301857, -0.26864999532699585, -0.2343199998140335, -0.3494099974632263, -0.0747779980301857, 0.04933900013566017, -0.49858999252319336, -0.5171399712562561, 0.42941001057624817, 0.48173999786376953, -0.29140999913215637, 0.6081699728965759, 0.3992300033569336, 0.034846000373363495, -0.08112899959087372, 0.5042200088500977, 0.027939999476075172, -0.1766200065612793, 0.04721200093626976, -0.7427300214767456, -0.009729400277137756, 0.2978399991989136, 0.551859974861145, 0.21091000735759735, -0.517300009727478, -0.6195600032806396, 0.47088000178337097, 0.17145000398159027, -0.5319399833679199, -0.14700999855995178, 0.37400001287460327, 0.2198600023984909, -0.21602000296115875, 0.06343299895524979, -0.08468899875879288, 0.7007200121879578, 0.7634699940681458, -0.09494300186634064, -0.31262001395225525, -0.06472700089216232, -0.17121000587940216, 0.15431000292301178, -0.1592700034379959, -0.18487000465393066, 0.0019510999554768205, -0.33105000853538513, -0.8978000283241272, 0.25887998938560486, 0.034053999930620193, 0.7247099876403809, 0.06618300080299377, 0.31150999665260315, 0.27553001046180725, 0.633899986743927, 0.41527000069618225, -0.3162199854850769, 0.14996999502182007, -0.09278299659490585, 0.09026700258255005, 0.22834999859333038, 0.3939400017261505, 0.5316799879074097, -0.19137999415397644, 0.07091300189495087, -0.20479999482631683, 0.11393000185489655, -0.528410017490387, 0.28189998865127563, 0.4822100102901459, 0.1431400030851364, -0.38903000950813293, 0.4734500050544739, 0.891979992389679, -0.30987000465393066, 0.0017842999659478664, -0.1397700011730194, 0.15768000483512878, -0.08516500145196915, -0.3460499942302704, 0.5828400254249573, -0.1211400032043457, -0.353520005941391, 0.36390000581741333, -0.08957599848508835, 0.46529000997543335, 0.1002499982714653, -0.10899999737739563, 0.08137399703264236, -0.22156000137329102, 0.3968200087547302, -0.4056999981403351, -0.5262100100517273, 0.5019000172615051, 0.16962000727653503, 0.4772399961948395, -0.48210999369621277, -0.5260099768638611, 0.14959000051021576, -0.4542999863624573, -0.4704200029373169, -0.16801999509334564, 0.0787540003657341, -0.28073999285697937, 0.2525300085544586, 0.10350000113248825, -1.0149999980058055e-05, 0.013300999999046326, 0.3904699981212616, -0.526889979839325, -0.21041999757289886, -0.1395999938249588, 0.6901699900627136, 0.5108799934387207, 0.350849986076355, 0.20151999592781067, 0.10344000160694122, 0.39515000581741333, -0.08149699866771698, 0.5139600038528442, 0.08818899840116501, -0.3390600085258484, -0.06420999765396118, 0.3000999987125397, -0.26249000430107117, -0.49966999888420105, -0.21498000621795654, -0.30476999282836914, -0.6794099807739258, 0.35958999395370483, 0.18455000221729279, 0.714680016040802, -0.2059199959039688, -0.5919100046157837, -0.39500999450683594, -0.030448999255895615, -0.06861600279808044, -0.2732200026512146, 0.006375099997967482, -0.15647999942302704, 0.32833999395370483, -0.23733000457286835, -0.38144999742507935, 0.86913001537323, -0.25690001249313354, -1.163699984550476, 0.9863499999046326, 0.2032800018787384, 0.9477099776268005, -0.1793700009584427], u'thread': [-0.22910000383853912, -0.12601999938488007, 0.41582998633384705, -0.705560028553009, 0.08021499961614609, -0.1408900022506714, -0.3648200035095215, -0.18883000314235687, 0.1285800039768219, -0.9473999738693237, -0.10948999971151352, -0.40498000383377075, -0.17393000423908234, -0.2556999921798706, -0.6648799777030945, -0.2120400071144104, -0.513729989528656, -0.011361000128090382, -0.30753999948501587, -0.06629099696874619, -0.7246599793434143, -0.47143998742103577, 0.17699000239372253, 0.5509300231933594, 0.83024001121521, 0.04270400106906891, 0.15226000547409058, -0.26840001344680786, -0.4049299955368042, 0.4219200015068054, 0.5901600122451782, 0.3121800124645233, -0.31439000368118286, 0.4974600076675415, -0.3577300012111664, 0.7016000151634216, -0.27105000615119934, -0.026095999404788017, -0.06660400331020355, 0.343639999628067, -0.46830999851226807, -0.42949000000953674, -0.0977180004119873, -0.36847999691963196, 0.4025700092315674, -0.21984000504016876, 0.017775999382138252, -0.058917999267578125, -0.17547999322414398, 0.05720699951052666, -0.04317000135779381, 0.6095899939537048, 0.3938100039958954, -0.23984000086784363, -0.12216000258922577, -0.27239999175071716, -0.1815599948167801, -0.427839994430542, -0.03623000159859657, 0.3978300094604492, 0.1522500067949295, -0.08944900333881378, 0.3237699866294861, 0.16434000432491302, 0.7872200012207031, 0.3152100145816803, 0.10937999933958054, 0.31150001287460327, 0.5167700052261353, 0.5474799871444702, -0.034584999084472656, -0.318589985370636, -0.07220499962568283, -0.017264999449253082, 0.37902000546455383, 0.5690900087356567, 0.3284600079059601, -0.27858999371528625, -0.030559999868273735, -0.3849300146102905, -0.4134199917316437, -0.4941500127315521, 0.0148930000141263, -0.2962700128555298, -0.018936999142169952, 0.2703799903392792, -0.39006999135017395, -0.3544299900531769, -0.15870000422000885, 0.27042001485824585, 0.2954699993133545, -0.2604599893093109, 0.34624001383781433, -0.15304000675678253, 0.35266000032424927, 0.11646000295877457, 0.061521001160144806, 0.6220800280570984, -0.004860300105065107, -0.4832099974155426, 0.3456900119781494, 0.5846499800682068, 0.27632999420166016, -0.46386998891830444, -0.347460001707077, -0.1263899952173233, 0.6108099818229675, -0.5210599899291992, -0.6304000020027161, 0.11818999797105789, -0.5435299873352051, 0.18592999875545502, 0.192330002784729, 0.10943999886512756, -0.03729899972677231, 0.36796000599861145, -0.3201200067996979, 0.41995999217033386, 0.21908999979496002, -0.3209500014781952, 0.15387000143527985, -0.25578001141548157, 0.7136099934577942, 0.31075000762939453, 0.2862600088119507, -0.04438899829983711, -0.14444999396800995, 0.6966300010681152, -0.026200000196695328, 0.11480999737977982, 0.04049399867653847, 0.5097299814224243, -0.05225500091910362, -0.14332999289035797, -0.4060800075531006, 0.28766998648643494, -0.27375999093055725, 0.32455000281333923, 0.3218899965286255, -0.18985000252723694, -0.1452299952507019, 0.02865000069141388, 0.013910000212490559, -0.4715999960899353, -0.16163000464439392, 0.35378000140190125, 0.3361000120639801, -0.8298699855804443, 0.07018499821424484, 0.049111999571323395, -0.6013200283050537, 0.10028000175952911, 0.3676699995994568, -0.418969988822937, -0.23327000439167023, -0.3866199851036072, 0.6223599910736084, -0.6070799827575684, -0.16498999297618866, 0.2897300124168396, -0.11541999876499176, -0.3553699851036072, 0.2288299947977066, 0.047947000712156296, 0.08226799964904785, 0.02300800010561943, -0.1963299959897995, -0.11181999742984772, 0.32673999667167664, 0.4163399934768677, -0.11642000079154968, -1.023900032043457, -0.19160999357700348, 0.38363000750541687, 0.43950000405311584, -0.29916998744010925, -0.15908999741077423, 0.5910000205039978, -0.032345000654459, -0.7128700017929077, 0.49248000979423523, -0.13711999356746674, -0.05640900135040283, 0.11757999658584595, -0.29225999116897583, -0.08884300291538239, 0.1674100011587143, 0.11433999985456467, 0.10707999765872955, 0.1321599930524826, -0.007611399982124567, 0.1564600020647049, 0.03420199826359749, -0.15855999290943146, -0.24615000188350677, 0.10626000165939331, -0.4418799877166748, -0.2769800126552582, -0.1755400002002716, -0.26954999566078186, 0.0047193001955747604, 0.3314400017261505, 0.6454499959945679, 0.2804099917411804, 0.7819600105285645, 0.5001199841499329, 0.6108400225639343, -0.18389999866485596, -0.1847900003194809, 0.9117500185966492, -0.0980909988284111, -0.050030000507831573, 0.8803499937057495, 0.32245999574661255, 0.04338400065898895, -0.06580500304698944, 0.30188000202178955, -0.31297001242637634, -0.450219988822937, 0.06518500298261642, -1.1104999780654907, -0.18071000277996063, 0.055771999061107635, 0.5343999862670898, 0.11208000034093857, -0.24071000516414642, -0.1847500056028366, -0.35166001319885254, 0.17792999744415283, 0.3049199879169464, -0.017376000061631203, -0.12306000292301178, 0.14865000545978546, -0.2435300052165985, 0.5796800255775452, 0.0048628998920321465, 0.044449999928474426, -0.13607999682426453, 0.21206000447273254, -0.4124700129032135, -0.2659299969673157, -0.48232999444007874, -0.6491699814796448, -0.24192999303340912, -0.4954099953174591, -0.505620002746582, -0.05783899873495102, 0.504580020904541, 0.0702499970793724, -0.7088299989700317, -0.38284000754356384, 0.34567999839782715, 0.7394700050354004, -0.6599699854850769, 0.18648000061511993, 0.31725001335144043, 0.28470999002456665, 0.12756000459194183, 0.2621000111103058, 0.09949000179767609, 0.2834700047969818, -0.7630100250244141, 0.479310005903244, -0.3823699951171875, -0.29534998536109924, 0.7299200296401978, -0.79830002784729, 0.2716200053691864, -0.32554998993873596, 0.3219299912452698, 0.11406999826431274, 0.11913999915122986, 0.3043600022792816, 0.5139899849891663, -0.6384099721908569, 0.4830699861049652, -0.25095999240875244, -0.709559977054596, 0.4156399965286255, 0.044971998780965805, 0.5017799735069275, -0.07074200361967087, 0.26680999994277954, 0.5968499779701233, 0.12043000012636185, -0.11313000321388245, -0.17497999966144562, -0.2550399899482727, -0.5054299831390381, -0.38238999247550964, 0.6984800100326538, -0.21231000125408173, -0.2726700007915497, 0.23894000053405762, -0.4992600083351135, -0.39111000299453735, -0.07563500106334686, -0.13473999500274658, -0.404339998960495, 0.23109999299049377], u'column': [-0.12454000115394592, 0.24221999943256378, 0.23048999905586243, -0.43323999643325806, 0.3460099995136261, 0.5441399812698364, 0.36223000288009644, -0.8089699745178223, 0.27298998832702637, -0.6313599944114685, 0.11736000329256058, 0.44808998703956604, 0.673829972743988, 0.14710000157356262, 0.38565999269485474, 0.37244001030921936, 0.23354999721050262, 0.10785999894142151, 0.30028000473976135, -0.13761000335216522, -0.47470998764038086, 0.6132500171661377, 0.8553299903869629, 0.5646200180053711, -0.06295999884605408, -0.16076000034809113, 0.3778899908065796, 0.5093200206756592, 0.42184001207351685, 0.1560799926519394, -0.6615899801254272, 0.1921200007200241, 0.3364799916744232, -0.0524820014834404, -0.9946600198745728, -0.3080199956893921, -0.6591600179672241, -0.24586999416351318, 0.11315000057220459, 0.3169800043106079, 0.5256500244140625, -0.1617400050163269, -0.269430011510849, -0.2566800117492676, -0.2049199938774109, -0.29273998737335205, 0.21191999316215515, 0.36522001028060913, -0.5313299894332886, 0.42625999450683594, 0.5406500101089478, 0.8239799737930298, 0.2530899941921234, 0.19528000056743622, 0.11275999993085861, 0.23939000070095062, -0.19594000279903412, -0.04383299872279167, 0.34345999360084534, -0.7942900061607361, 0.27946001291275024, 0.055507998913526535, 0.27270999550819397, 0.23216000199317932, -0.25968998670578003, -0.2687700092792511, 0.019558999687433243, 0.6996099948883057, -0.0005324999801814556, -0.48816001415252686, 0.8296499848365784, -0.23962000012397766, -0.23517000675201416, -0.0037622000090777874, -0.625469982624054, 0.4796600043773651, 0.4018799960613251, -0.046539001166820526, -0.0015844999579712749, -0.5258600115776062, 0.23658999800682068, 0.45629000663757324, -0.2779499888420105, -0.19407999515533447, -0.12556999921798706, 0.04620499908924103, -0.14483000338077545, 0.36910000443458557, 0.44991999864578247, -0.10852000117301941, 0.6674699783325195, 0.29201000928878784, -0.0520550012588501, -0.6201099753379822, 0.22488999366760254, 0.7808700203895569, -0.6933299899101257, 0.04058599844574928, 0.22026999294757843, -0.5527099967002869, -0.11437000334262848, 1.0609999895095825, 0.5690600275993347, 0.46066001057624817, 0.1019200012087822, 0.17295999825000763, 0.6460300087928772, -0.3006100058555603, 0.5911099910736084, -0.28992998600006104, -0.19744999706745148, 0.7205700278282166, 0.16243000328540802, -0.05648199841380119, -0.4377500116825104, -0.19756999611854553, -0.18098999559879303, -0.03048500046133995, -0.11059000343084335, -0.7363899946212769, -0.029548000544309616, -0.09379199892282486, -0.036462001502513885, 0.28154999017715454, -0.2965500056743622, -0.10486999899148941, 0.21005000174045563, -0.8222500085830688, -0.3819499909877777, 0.18959000706672668, 0.26945000886917114, -0.2513200044631958, -0.6039800047874451, 0.545740008354187, 0.026366999372839928, 0.16117000579833984, -0.4743100106716156, -0.037762001156806946, 0.22935999929904938, 0.15214000642299652, -0.11337000131607056, 0.2925100028514862, 0.2916100025177002, -0.4209499955177307, -0.35260000824928284, 0.03397800028324127, -0.06994599848985672, 0.5319499969482422, -0.318340003490448, 0.6869500279426575, 0.5312700271606445, 0.10175999999046326, -0.04741799831390381, 0.06923899799585342, 0.2870199978351593, -0.3785099983215332, 0.7224199771881104, -0.19670000672340393, 0.19668999314308167, 0.439520001411438, -0.26780998706817627, -0.1531199961900711, 0.6323300004005432, -0.2710700035095215, -0.4323999881744385, 0.38477998971939087, 0.24564999341964722, -0.01707400009036064, -0.3718799948692322, 0.2284799963235855, -0.8283500075340271, -0.011250000447034836, -0.6900399923324585, 0.23604999482631683, -0.4556399881839752, -0.21949000656604767, 0.0824500024318695, 0.034136999398469925, 0.23989999294281006, -0.2318899929523468, 0.02920299954712391, -0.3070499897003174, -0.41385000944137573, -0.3220300078392029, -0.10961999744176865, 0.005263600032776594, 0.24336999654769897, -0.4830999970436096, 0.20806999504566193, -0.2733500003814697, -0.22915999591350555, 1.0358999967575073, -0.1395999938249588, 0.5093100070953369, -0.2567099928855896, 0.2925100028514862, 0.6052799820899963, 0.5914000272750854, -0.13098999857902527, -0.14789000153541565, 0.45603999495506287, -0.13098999857902527, -0.4945099949836731, 0.22144000232219696, 0.20784999430179596, -0.44765999913215637, -0.19062000513076782, -0.08641800284385681, -0.060109999030828476, 0.15876999497413635, -0.34907999634742737, 0.03143500164151192, 0.12655000388622284, 0.39958998560905457, -0.4443100094795227, 0.05005599930882454, 0.20826999843120575, 0.2470400035381317, 0.6626700162887573, 0.24410000443458557, 0.4506300091743469, 0.529009997844696, 0.22551999986171722, 0.859529972076416, 0.6669800281524658, -0.1689700037240982, -0.24389000236988068, 0.6438000202178955, 0.5952699780464172, -0.16407999396324158, -0.7310199737548828, 0.24570000171661377, 0.4764699935913086, -0.5435799956321716, 0.16272999346256256, -0.45860999822616577, -0.05431000143289566, -0.5278599858283997, -0.6914700269699097, -0.2500799894332886, -0.3566800057888031, -0.07497099786996841, 0.4671500027179718, -0.3659000098705292, -0.6596400141716003, -0.3451099991798401, -0.775879979133606, 0.26353999972343445, 0.5995399951934814, 0.3975299894809723, -0.006630599964410067, -0.4006499946117401, -0.032910000532865524, -0.5327100157737732, 0.486160010099411, -0.03505700081586838, 0.34038999676704407, -0.8795400261878967, -0.20702999830245972, -0.4596399962902069, -0.06718199700117111, 0.002022600034251809, 0.23253999650478363, -0.6056100130081177, -0.45548999309539795, -0.7700700163841248, 0.04606899991631508, 0.46178001165390015, -0.07134000211954117, -0.06310699880123138, -0.5484300255775452, -0.7107800245285034, 0.7994099855422974, -0.4298900067806244, -0.360150009393692, 0.6895800232887268, -1.048799991607666, 0.5213199853897095, -0.09979700297117233, 0.023708999156951904, 0.1456100046634674, -0.11779999732971191, -0.39100998640060425, 0.24562999606132507, 0.06712900102138519, -0.41266998648643494, -0.14585000276565552, -0.3803800046443939, 0.4862299859523773, 0.28810998797416687, 0.46654000878334045, 0.23284000158309937, 0.016806000843644142, 0.199180006980896, -0.17810000479221344, 0.11163000017404556, -0.6148399710655212, -0.4562700092792511, 0.2021999955177307, 0.0019042999483644962], u'island': [0.008194000460207462, -0.7360299825668335, -0.5106800198554993, -0.1906599998474121, 0.6697099804878235, -0.17493000626564026, 0.07728499919176102, 0.18118000030517578, 0.2859500050544739, -1.2364000082015991, 0.076774001121521, -0.49564000964164734, 0.4530999958515167, 0.15234999358654022, 0.5528799891471863, 0.8861100077629089, 0.15253999829292297, 0.05722000077366829, -0.16975000500679016, -0.07122299820184708, 0.04006500169634819, 0.8360300064086914, -0.21730999648571014, -0.41617000102996826, -0.4192200005054474, 0.16722999513149261, -0.29600000381469727, 0.10374999791383743, -0.12349999696016312, 0.2773599922657013, 0.6247400045394897, 0.7972699999809265, -0.4071800112724304, 0.3031400144100189, 0.3034999966621399, 0.4652000069618225, 0.28874000906944275, 0.1997399926185608, 0.5365599989891052, -0.22936999797821045, -0.30924999713897705, -0.2470400035381317, -0.14940999448299408, 0.09591100364923477, -0.09642700105905533, 0.44200998544692993, 0.7685700058937073, -0.012449000030755997, -0.22743000090122223, 0.9256200194358826, 0.1731799989938736, 0.06351099908351898, 0.7198699712753296, -0.31567999720573425, 0.06452099978923798, 0.47749000787734985, -0.2523599863052368, 0.5385599732398987, -0.31949999928474426, -0.1087300032377243, -0.28001999855041504, -0.05089600011706352, 0.44780001044273376, 0.17488999664783478, 0.6731899976730347, -0.9652199745178223, -0.13619999587535858, 0.6040400266647339, -0.1376899927854538, 0.3361000120639801, -0.8127899765968323, 0.3930400013923645, -0.12946000695228577, -0.6726400256156921, -0.9120799899101257, 0.17365999519824982, 0.180759996175766, -0.12735000252723694, -0.02064500004053116, 0.040084999054670334, 0.0026012000162154436, 0.16192999482154846, -0.2477400004863739, 0.05441499873995781, -0.023080000653862953, -0.09592899680137634, 0.14036999642848969, -0.05898699909448624, 0.19291000068187714, -0.5482500195503235, -0.42261001467704773, -0.5431100130081177, -0.48506999015808105, -0.8677700161933899, -0.054857999086380005, 0.08037900179624557, 0.5115299820899963, -0.012403000146150589, -0.30320999026298523, 0.16358999907970428, -0.2217700034379959, 0.5250599980354309, -0.13954000174999237, 0.3164899945259094, -0.27577000856399536, -0.1760299950838089, -0.004204200115054846, -0.7503700256347656, 0.41888999938964844, 0.39294999837875366, 0.15580999851226807, -0.47683000564575195, 0.09928300231695175, -0.15992000699043274, 0.1445399969816208, -0.08892100304365158, 0.035743001848459244, 0.5501300096511841, -0.11668000370264053, 0.35519999265670776, -0.514680027961731, 0.030897000804543495, -0.7862899899482727, -0.2543500065803528, 0.05466499924659729, 0.42403000593185425, 0.5517899990081787, 0.13505999743938446, -0.022926999256014824, -0.1414099931716919, -0.012272999621927738, 0.44710999727249146, 0.18848000466823578, -0.4696800112724304, 0.8051999807357788, -0.18366000056266785, 0.2301899939775467, -0.04120999947190285, -0.19404000043869019, -0.5836600065231323, 0.18953000009059906, -0.3822399973869324, -0.4741699993610382, -0.130390003323555, -0.545520007610321, 0.06525299698114395, 0.0946270003914833, 0.43413999676704407, -0.2090499997138977, -0.832360029220581, 1.024999976158142, -0.1741500049829483, -0.3560500144958496, 0.4513700008392334, 0.6738799810409546, -0.3626599907875061, -0.3583100140094757, 0.17151999473571777, -0.3352400064468384, 0.2600399851799011, 0.7537999749183655, -0.6449400186538696, 0.3197399973869324, 0.17035000026226044, -0.2558700144290924, -0.5918599963188171, 0.32311999797821045, 0.1118599995970726, 0.20656999945640564, 0.025784999132156372, 0.1782499998807907, -0.15078000724315643, -0.3350900113582611, 0.4312500059604645, 0.1578799933195114, 0.08889999985694885, 0.042323999106884, 0.07056300342082977, 0.20749999582767487, 0.38315001130104065, 0.06591899693012238, 0.4361700117588043, 0.34182998538017273, -0.04408000037074089, 0.1905599981546402, -0.31178000569343567, -0.28102999925613403, 0.025155000388622284, -0.47808000445365906, 0.44168999791145325, -0.4130200147628784, 0.30605000257492065, 0.3613100051879883, -0.5452100038528442, 0.42976000905036926, 0.3179300129413605, 0.13884000480175018, -0.4379900097846985, -0.4171000123023987, 0.3177100121974945, 1.1711000204086304, 0.4796000123023987, -0.6604999899864197, -0.0699160024523735, -0.03134699910879135, 0.3479200005531311, 0.03491799905896187, 0.1424500048160553, 0.9710699915885925, 0.10254000127315521, -0.40845000743865967, 0.4041700065135956, 0.29085999727249146, 0.026590999215841293, 0.8681100010871887, 0.06986600160598755, 0.04259999841451645, 0.02546899951994419, 0.19842000305652618, -0.0037048999220132828, 0.8452100157737732, 0.5911099910736084, 0.81072998046875, -0.038787998259067535, -0.047394998371601105, -0.7134900093078613, 0.6461099982261658, -0.5044599771499634, -0.07654500007629395, -0.24637000262737274, 0.587939977645874, -0.35120999813079834, -0.46533000469207764, 0.3425300121307373, 0.2734600007534027, -0.41029998660087585, 0.07001899927854538, 0.2211499959230423, -0.06873899698257446, 0.12312000244855881, -0.24105000495910645, -0.3876200020313263, 0.5690400004386902, -0.14610999822616577, -0.5833500027656555, 0.11472000181674957, 0.09593400359153748, 0.3427799940109253, -0.043296001851558685, -0.551010012626648, -0.23013000190258026, 0.5212000012397766, 0.22098000347614288, 0.3770500123500824, 0.4090299904346466, -0.14591999351978302, 0.16797000169754028, 0.10705000162124634, 0.09009499847888947, 0.19971999526023865, -0.20893999934196472, 0.011512000113725662, 0.04224799945950508, -0.16443000733852386, 0.36134999990463257, -0.3325900137424469, 0.6550800204277039, -0.5527099967002869, 0.3227199912071228, -0.23984000086784363, -0.00608769990503788, -0.2069700062274933, 0.43136999011039734, -0.02826800011098385, 0.06916099786758423, 0.6098300218582153, -1.9033000469207764, 0.45142999291419983, -0.3044399917125702, -0.28227999806404114, -0.4945000112056732, -0.26833000779151917, -0.3615399897098541, -0.5441200137138367, -1.0400999784469604, -0.4742499887943268, -0.5581899881362915, 0.09731400012969971, 0.6100199818611145, -0.29736000299453735, -0.512499988079071, -0.11957000195980072, -0.10296999663114548, -0.43988001346588135, -0.8293499946594238, 0.8639799952507019, 0.2233700007200241, 0.16582000255584717, 0.249099999666214, -0.29980000853538513], u'tie': [0.0013453999999910593, 0.4298200011253357, -0.39478999376296997, -0.25213998556137085, -0.536300003528595, -0.24785999953746796, -0.4077099859714508, 0.17882999777793884, 0.4995099902153015, -0.44315001368522644, 0.5842800140380859, 0.08076900243759155, -0.3687500059604645, 0.06247900053858757, -0.15248000621795654, 0.00035484001273289323, -0.18901999294757843, 0.4373300075531006, -0.10296999663114548, 0.06379999965429306, -0.2778699994087219, -1.0636999607086182, 0.10862000286579132, -0.13670000433921814, -0.2399200052022934, -0.512660026550293, 0.18070000410079956, -0.0807270035147667, -0.251910001039505, -0.16407999396324158, 0.08984900265932083, -0.4058400094509125, 0.7603700160980225, 0.22832000255584717, -1.815600037574768, 0.15575000643730164, 0.4993799924850464, 0.15160000324249268, -0.11959999799728394, 0.2198300063610077, 0.19242000579833984, -0.3702700138092041, -0.008975699543952942, -0.2280299961566925, -0.0487390011548996, -0.12477999925613403, -0.15068000555038452, -0.6034700274467468, 0.010553999803960323, -0.17817999422550201, -0.5543699860572815, 0.3465900123119354, 0.02993899956345558, -0.43393999338150024, 0.03480000048875809, -0.14092999696731567, -0.6312699913978577, -0.2178100049495697, -0.20733000338077545, -0.05918699875473976, -0.1925099939107895, -0.33803001046180725, -0.5557699799537659, 0.10408999770879745, 0.3658599853515625, -0.1915300041437149, 0.056092001497745514, 0.4563399851322174, 0.3571299910545349, -0.14158999919891357, 0.20432999730110168, 0.17463000118732452, -0.17270000278949738, 0.4946399927139282, -0.05522400140762329, 0.19625000655651093, -0.7027699947357178, 0.386790007352829, -0.00661229994148016, -0.32638999819755554, -0.1288599967956543, -0.2835899889469147, -0.17705999314785004, -0.28507000207901, 0.1432799994945526, -0.44481000304222107, 0.13921000063419342, -0.12050999701023102, -0.4084399938583374, -0.012498999945819378, 0.14573000371456146, 0.35425999760627747, -0.12511999905109406, -0.15547999739646912, 0.41391998529434204, 0.2170500010251999, -0.07860100269317627, 0.561240017414093, -0.4340299963951111, -0.5694000124931335, 0.6644200086593628, 0.5016400218009949, 0.3042899966239929, -0.058802999556064606, 0.27619001269340515, 0.1861799955368042, 0.0866440013051033, -0.05596800148487091, -0.7440999746322632, -0.4273500144481659, 0.09361200034618378, -0.29072999954223633, -0.17809000611305237, 0.23433999717235565, 0.05984099954366684, 0.08280099928379059, 0.0790800005197525, -0.15074999630451202, 0.7446100115776062, -0.23865999281406403, -0.20941999554634094, -0.17677000164985657, 0.48717001080513, -0.39243999123573303, 0.11225000023841858, -0.019519999623298645, 0.06347200274467468, -0.16245000064373016, 0.018438000231981277, -0.13189999759197235, 0.13812999427318573, 0.3046000003814697, -0.2636600136756897, -0.1821800023317337, -0.20740999281406403, -0.009603899903595448, -0.17994999885559082, 0.36068999767303467, 0.01710199937224388, 0.3646799921989441, -0.24063000082969666, -0.010258999653160572, -0.007919900119304657, 0.17159000039100647, -0.2898299992084503, 0.07615800201892853, -0.013470999896526337, -0.11964999884366989, 0.19097000360488892, -0.08269400149583817, -0.13133999705314636, 0.16783000528812408, 0.13151000440120697, -0.5698300004005432, -0.013477999716997147, -0.31393998861312866, -0.05473500117659569, -0.29958000779151917, -0.46731001138687134, 0.19541999697685242, 0.2513499855995178, -0.049316998571157455, -0.3049300014972687, 0.03821700066328049, 0.6164799928665161, 0.5346599817276001, -0.4443399906158447, 0.3824999928474426, 0.0613740012049675, 0.3034999966621399, 0.14273999631404877, -0.24092000722885132, -0.43358999490737915, 0.133310005068779, -0.07678200304508209, -0.43790000677108765, -0.861240029335022, 0.40165001153945923, -0.15836000442504883, 0.31887999176979065, 0.697629988193512, 0.21232999861240387, 0.5900400280952454, -0.1488499939441681, -0.11911000311374664, -0.1903499960899353, -0.2770400047302246, 0.35328999161720276, 0.2878299951553345, 0.6452500224113464, 0.12734000384807587, 0.3710399866104126, 0.0907059982419014, 0.40171998739242554, 0.28911998867988586, -0.5687100291252136, -0.14158999919891357, -0.14600999653339386, -0.46983999013900757, 0.216389998793602, 1.6722999811172485, -0.06868100166320801, 0.4542900025844574, -0.0888499990105629, -0.11642999947071075, -0.3922800123691559, -0.10898999869823456, 0.480569988489151, -0.5447900295257568, -0.12189999967813492, -0.32183000445365906, 0.06932900100946426, 0.04336100071668625, 0.9078199863433838, 0.2021999955177307, 0.04403200000524521, 0.5388299822807312, -0.21432000398635864, -0.0021657999604940414, -0.1284399926662445, 0.37081998586654663, -0.12199000269174576, 0.1719599962234497, -0.07961799949407578, -0.4477899968624115, -0.45028001070022583, 0.37505999207496643, -0.04124699905514717, -0.37349000573158264, 0.12329000234603882, 0.019368000328540802, 0.010332999750971794, 0.3968999981880188, 0.2436700016260147, 0.30414000153541565, -0.24618999660015106, 0.17058999836444855, 0.10993000119924545, 0.7585700154304504, 0.9488099813461304, 0.24792000651359558, -0.2305999994277954, -0.2276100069284439, 0.4618000090122223, -0.28679001331329346, 0.46775999665260315, -0.012938999570906162, 0.2283399999141693, 0.430759996175766, -0.7554399967193604, 0.02602599933743477, 0.20382000505924225, 0.13391000032424927, -0.7946699857711792, 0.3662300109863281, -0.11014000326395035, 0.054381001740694046, -0.07241799682378769, -0.2074899971485138, 0.15098999440670013, 0.4499799907207489, -0.4870400130748749, 0.2578999996185303, -0.0686430037021637, -0.3634699881076813, 0.22175000607967377, -0.22527000308036804, -0.40151000022888184, 0.043740998953580856, -0.14297999441623688, -0.1036899983882904, 0.23134000599384308, 0.18211999535560608, 0.06301599740982056, -0.20353999733924866, -0.006374000106006861, -0.779699981212616, -0.5640299916267395, 0.17080000042915344, 0.04231100156903267, -0.20674000680446625, 1.1624000072479248, 0.3548400104045868, -0.4547500014305115, -0.36629000306129456, 0.25850000977516174, -0.005032000131905079, 0.16035999357700348, -0.2614800035953522, 0.23587000370025635, 0.13663999736309052, 0.5952200293540955, -0.732699990272522, 0.7150300145149231, -0.0704910010099411, 0.09743700176477432, -0.04052300006151199, -0.35655999183654785, 0.7499799728393555, 0.3616200089454651], u'berry': [-0.41596999764442444, 0.18752999603748322, -0.08136899769306183, 0.0228240005671978, 0.24190999567508698, -0.4054900109767914, 0.413349986076355, -0.17722000181674957, 0.36647000908851624, 0.08905500173568726, 0.4178299903869629, -0.364300012588501, -0.09594999998807907, 0.19754000008106232, 0.18378999829292297, 0.16955000162124634, -0.2060600072145462, -0.07331299781799316, -0.18276000022888184, 0.31775999069213867, 0.0661889985203743, 0.07571599632501602, -0.5675699710845947, 0.29061999917030334, -0.31161001324653625, 0.3915500044822693, 0.01986899971961975, -0.6165300011634827, -0.05560100078582764, 0.017362000420689583, -0.1588899940252304, 0.3406299948692322, -0.5331400036811829, -0.28534001111984253, -0.46928998827934265, 0.35131001472473145, 0.013918999582529068, -0.129830002784729, 0.060412000864744186, -0.48486000299453735, 0.4496000111103058, -0.08207499980926514, 0.3344799876213074, 0.2144400030374527, -0.07102899998426437, 0.09070199728012085, -0.3853999972343445, 0.5633699893951416, 0.06863400340080261, -0.09499199688434601, 0.3414900004863739, 0.2458599954843521, 0.022593999281525612, 0.0023670000955462456, -0.28387001156806946, 0.04738700017333031, -0.22780999541282654, -0.3700900077819824, -0.010602000169456005, -0.5327500104904175, -0.07836700230836868, -0.46494999527931213, -0.1497199982404709, 0.09231500327587128, -0.17215000092983246, -0.5413500070571899, 0.12421000003814697, -0.4038600027561188, -0.2046699970960617, -0.4192599952220917, -0.3746800124645233, 0.07173000276088715, -0.45572999119758606, -0.21728000044822693, -0.5119500160217285, -0.6295499801635742, 0.4302099943161011, -0.5076500177383423, 0.3726600110530853, -0.06311199814081192, 0.25995999574661255, 0.2251800000667572, 0.49897000193595886, -0.3252899944782257, 0.4728200137615204, -0.10141000151634216, 0.3786599934101105, 0.5318700075149536, -0.2500999867916107, -0.6714500188827515, 0.04070499911904335, -0.27950000762939453, -0.09792199730873108, -0.20523999631404877, -0.8059999942779541, 0.3700200021266937, 0.503570020198822, -0.22768999636173248, 0.12132000178098679, -0.45179998874664307, -0.23433999717235565, -0.20013999938964844, -0.23833000659942627, 0.17621000111103058, -0.17183999717235565, 0.06736599653959274, -0.3755500018596649, -0.2930600047111511, -0.5032699704170227, -0.096219003200531, 0.22415000200271606, 0.01985199935734272, 0.05860700085759163, 0.16680000722408295, 0.6029300093650818, 0.1704300045967102, -0.3270600140094757, 0.006078899838030338, 0.40893998742103577, 0.21991999447345734, -0.695330023765564, -0.0758569985628128, 0.2660300135612488, -0.9465000033378601, 0.05823900178074837, -0.04732799902558327, 0.24156999588012695, 0.24235999584197998, -0.01925100013613701, 0.2737799882888794, -0.4503600001335144, 0.7289100289344788, -0.29794999957084656, 0.08091499656438828, -0.22234000265598297, -0.3495199978351593, -0.30110999941825867, 0.4915499985218048, -0.15129999816417694, -0.05161000043153763, 0.3405799865722656, 0.2741900086402893, 0.05052600055932999, -0.1594499945640564, 0.2872999906539917, 0.3041299879550934, -0.20159000158309937, -0.5179299712181091, 0.3785899877548218, 0.08012700080871582, 0.05618999898433685, -0.06709399819374084, 0.11482000350952148, -0.5253099799156189, 0.22840000689029694, -0.2990899980068207, -0.037964001297950745, -0.5363100171089172, 0.16920000314712524, 0.19439999759197235, 0.07004199922084808, -0.9741500020027161, -0.15710000693798065, 0.354669988155365, -0.3423199951648712, 0.28641000390052795, -0.06315899640321732, 0.5901100039482117, 0.1376899927854538, 0.2045000046491623, -0.1691100001335144, -0.5524399876594543, -0.3684200048446655, -0.3149699866771698, 0.3959200084209442, 0.3910500109195709, 0.3603900074958801, 0.1938299983739853, -0.1693899929523468, -0.3382599949836731, 0.13106000423431396, 0.77360999584198, -0.13095000386238098, -0.5539900064468384, -0.28850001096725464, -0.11879000067710876, -0.12540000677108765, -0.057881999760866165, -0.19074000418186188, -0.4418399930000305, -0.34205999970436096, 0.3058899939060211, -0.08392199873924255, -0.6191400289535522, 0.265859991312027, 0.3079400062561035, 0.33375000953674316, -0.014983000233769417, -0.07160700112581253, 0.06732899695634842, 0.7273399829864502, -0.453029990196228, 0.4145500063896179, 0.0333390012383461, 0.18592000007629395, 0.11042000353336334, 0.08852200210094452, 0.06951700150966644, 0.38519999384880066, 0.0017538999672979116, 0.04454199969768524, -0.3172299861907959, -0.22995999455451965, 0.06610599905252457, -0.007861300371587276, 0.08469799906015396, 0.4086900055408478, 0.22608999907970428, -0.19464999437332153, -0.5179499983787537, -0.16575999557971954, -0.07253299653530121, -0.00781519990414381, -0.17406000196933746, -0.5884100198745728, 0.43998000025749207, 0.049584001302719116, -0.0021949000656604767, -0.10734999924898148, -0.444350004196167, 0.06376399844884872, 0.0492589995265007, 0.026962999254465103, -0.2433599978685379, -0.07065200060606003, 0.2698200047016144, -0.06001000106334686, 0.24985000491142273, -0.5494400262832642, 0.3558799922466278, -0.0890669971704483, -0.06800100207328796, 0.1167600005865097, -0.002274200087413192, -0.19961999356746674, -0.013612000271677971, 0.1351899951696396, -0.36939001083374023, -0.08493100106716156, -0.24573999643325806, 0.04934899881482124, 0.21535000205039978, 0.04893599823117256, 0.1481499969959259, 0.4254699945449829, -0.08489900082349777, 0.1731099933385849, -0.2926599979400635, 0.5259600281715393, -0.3637000024318695, 0.3605400025844574, 0.4449799954891205, 0.18809999525547028, 0.13517999649047852, 0.38418999314308167, -0.41749000549316406, -0.26541000604629517, 0.3090499937534332, 0.08432400226593018, 0.2165299952030182, -0.5082100033760071, -0.36061999201774597, -0.2559399902820587, -0.19875000417232513, 0.06885100156068802, 0.2671299874782562, -0.07169199734926224, -0.29947999119758606, -0.2710300087928772, -0.09439200162887573, -0.39184001088142395, 0.265720009803772, 0.028022000566124916, -0.6565099954605103, -0.5091800093650818, 0.5680199861526489, 0.7437599897384644, -0.07880000025033951, 0.17607000470161438, 0.2191700041294098, 0.5786299705505371, -0.20996999740600586, 0.9531300067901611, -0.20484000444412231, -0.545490026473999, 0.009988999925553799, -0.2817400097846985, 0.30044999718666077, -0.19651000201702118, 0.07490000128746033], u'smoke': [0.05206599831581116, 0.2029699981212616, 0.5007699728012085, -0.33223000168800354, -1.0348000526428223, 0.3055900037288666, 0.43237000703811646, 0.7497599720954895, 0.21674999594688416, -1.1198999881744385, 0.3679099977016449, -0.09140300005674362, 0.0562639981508255, -0.39337000250816345, -0.0328110009431839, 0.43538999557495117, -0.6047099828720093, -0.09320999681949615, -0.06117900088429451, 0.5815799832344055, -0.008581000380218029, 0.2892099916934967, -0.26221999526023865, 0.4323599934577942, -0.028501000255346298, -0.27351999282836914, 0.005138800013810396, -0.43314000964164734, -0.4650599956512451, -0.13968999683856964, 0.03631199896335602, 0.07810100167989731, -0.2251800000667572, -0.1940300017595291, -0.27000999450683594, 0.274260014295578, -1.0839999914169312, -0.2512199878692627, 0.7644299864768982, 0.626800000667572, -0.047860000282526016, -0.14678999781608582, 0.027597999200224876, 0.06353099644184113, 0.13996000587940216, -0.3695000112056732, 0.5616099834442139, -0.6410199999809265, -0.05646499991416931, -0.5118700265884399, 0.5474799871444702, -0.10745000094175339, -0.025141999125480652, -0.6003900170326233, -0.4517900049686432, 0.23820999264717102, 0.0039252000860869884, -0.5944600105285645, 0.42789000272750854, 0.3664200007915497, -0.6562299728393555, -0.17135000228881836, 0.8448500037193298, 0.20791000127792358, 0.0418890006840229, -0.3376399874687195, -0.03707199916243553, 0.45159998536109924, -0.08466199785470963, -0.6835100054740906, 0.3694800138473511, -0.9451599717140198, -0.24363000690937042, -0.08170399814844131, -0.25255998969078064, -0.25589001178741455, 0.048618000000715256, -0.055020999163389206, 0.5467600226402283, -0.09574499726295471, 0.24458999931812286, -0.5526800155639648, 0.7022200226783752, 0.10127999633550644, 0.018364999443292618, -0.22234000265598297, 0.6496599912643433, 0.1855199933052063, 0.02564300037920475, 0.005777299869805574, -0.07931099832057953, -0.5591999888420105, -0.40961000323295593, 0.44756999611854553, 0.0643720030784607, 0.3071900010108948, -0.0064604999497532845, -0.12403000146150589, 0.30555999279022217, -0.4631200134754181, -0.31345000863075256, 0.16198000311851501, -0.41130998730659485, -0.3131999969482422, -0.3230699896812439, 0.17816999554634094, 0.125560000538826, 0.49401000142097473, -0.4035399854183197, 0.25891000032424927, -0.7391200065612793, -0.2151300013065338, 0.2606399953365326, -0.49410998821258545, 0.5429400205612183, 0.14345000684261322, -0.7237200140953064, 0.5725200176239014, -0.5125100016593933, -0.41495999693870544, -0.2664799988269806, -0.43588000535964966, -0.31586000323295593, 0.24163000285625458, -0.5517399907112122, -0.10980000346899033, 0.09886199980974197, -0.12977999448776245, -0.05490799993276596, 0.28301000595092773, 0.6102799773216248, 0.5434799790382385, -0.043216999620199203, -0.14926999807357788, 0.8735700249671936, 0.49401000142097473, -0.4263100028038025, -0.029407000169157982, 0.5651900172233582, -0.1911499947309494, 0.43417999148368835, -0.15146000683307648, -0.034081000834703445, 0.19000999629497528, -0.825190007686615, -0.5044000148773193, 0.690310001373291, 0.7822700142860413, -0.17318999767303467, 0.054558999836444855, -0.045837000012397766, 0.1980700045824051, 0.09509299695491791, 0.09733899682760239, 0.16721999645233154, 0.0898360013961792, 0.5815399885177612, -0.7397199869155884, 0.5655199885368347, -0.06377799808979034, 0.064580999314785, -0.34984999895095825, 0.3183000087738037, -0.5649799704551697, -0.006882899906486273, -0.004613200202584267, 0.003155200043693185, 0.2778100073337555, -0.21984000504016876, -0.44495999813079834, 0.15042999386787415, 0.47999998927116394, 0.5209599733352661, 0.2366899996995926, -0.19787999987602234, -0.41405001282691956, -0.3358300030231476, 0.22473999857902527, 0.37608999013900757, -0.2258400022983551, 0.04512299969792366, 0.24583999812602997, -0.30564001202583313, 0.04929700121283531, -0.27024999260902405, -0.1766200065612793, 0.3363499939441681, -0.3543800115585327, -0.11014000326395035, -0.39965999126434326, 0.19258999824523926, 0.17791999876499176, -0.3312399983406067, -0.17486999928951263, 0.4614799916744232, -0.7895500063896179, 0.15097999572753906, 1.1050000190734863, -0.254830002784729, 0.6579399704933167, 0.1443299949169159, 0.4991399943828583, 0.13826000690460205, 0.04596500098705292, -0.6534299850463867, 0.32754001021385193, 0.2114199995994568, -0.3450399935245514, -0.10264000296592712, 0.11601000279188156, -0.23783999681472778, -0.045024000108242035, -0.6321600079536438, -0.616379976272583, 0.383789986371994, -0.1428699940443039, 1.0853999853134155, -0.11811999976634979, 0.7695500254631042, -0.055647000670433044, 0.24410000443458557, 0.2969900071620941, 0.2190999984741211, -0.16178999841213226, -0.1023000031709671, 0.456930011510849, -0.2283399999141693, 0.021243000403046608, -0.24661000072956085, 0.1723099946975708, 0.2463500052690506, -0.10802999883890152, 0.17118999361991882, 0.1454399973154068, 0.03955100104212761, -0.360509991645813, 0.6618800163269043, 0.2971400022506714, -0.6998800039291382, -0.43108999729156494, -0.033555999398231506, -0.39873000979423523, -0.24462999403476715, -0.3495199978351593, 0.12139999866485596, -0.04579399898648262, 0.6800600290298462, 0.0722619965672493, 0.15666000545024872, -0.14657999575138092, -0.018554000183939934, -1.0032000541687012, 0.2623099982738495, -0.19654999673366547, 0.6671500205993652, 0.02089500054717064, -0.7971900105476379, -0.17494000494480133, -0.34516000747680664, 0.16479000449180603, 0.5544499754905701, -0.3756900131702423, 0.3740600049495697, -0.46876001358032227, 0.08771099895238876, -0.7715499997138977, -0.18384000658988953, -0.15546999871730804, -0.37762999534606934, -0.14877000451087952, 0.2951900064945221, 0.052097998559474945, 0.13766999542713165, -0.03999200090765953, -0.8703399896621704, -0.29910001158714294, -2.041100025177002, 0.5887699723243713, -0.6992800235748291, 0.1656699925661087, -0.4772399961948395, -0.10620000213384628, -0.39621999859809875, -0.14267000555992126, 0.2612200081348419, 0.6037300229072571, -0.07840999960899353, 0.3597300052642822, -0.24122999608516693, -0.09857600182294846, 0.06366799771785736, 0.694379985332489, -0.018464000895619392, 0.07899100333452225, 0.35870999097824097, -0.8085899949073792, -0.13862000405788422, 0.32839998602867126, -0.04350399971008301, 0.016488000750541687], u'garlic': [-0.2984499931335449, 0.1722400039434433, 0.30338001251220703, -0.15705999732017517, -0.2770499885082245, -0.35596001148223877, -0.4157800078392029, 0.3240000009536743, 0.572350025177002, 0.1585099995136261, 0.12371999770402908, 0.42952001094818115, 0.08792699873447418, 1.263800024986267, -0.28308001160621643, 0.34196001291275024, -0.46654000878334045, 0.46924999356269836, -0.5941299796104431, 0.21886999905109406, -0.7221599817276001, 0.01286999974399805, -0.07027299702167511, -0.20930999517440796, 0.2851400077342987, 0.09848099946975708, 0.28975000977516174, -0.09051100164651871, -0.9314600229263306, -0.20069999992847443, -0.5235999822616577, 0.8076000213623047, 0.1574700027704239, 0.12071999907493591, -0.30518999695777893, 0.49182000756263733, 0.008191400207579136, 0.47826001048088074, -0.18388999998569489, -0.49136000871658325, 0.9241700172424316, -0.17958000302314758, 0.25575000047683716, -0.19249999523162842, 0.8822699785232544, -0.08086500316858292, 0.4189299941062927, 0.5365300178527832, -0.31213000416755676, 0.35152000188827515, 0.6215900182723999, 0.42458000779151917, 0.19723999500274658, 0.21934999525547028, -0.11319000273942947, 0.13065999746322632, -0.42508000135421753, 0.17768999934196472, 0.38600999116897583, 0.04421500116586685, 0.6032000184059143, 0.09738200157880783, 0.5757799744606018, 0.6255199909210205, -0.05902000144124031, -0.25887998938560486, -0.0477450005710125, 0.20898999273777008, 0.3939499855041504, -0.2828899919986725, -0.1481200009584427, 0.11356999725103378, 0.13961000740528107, 0.08173999935388565, -0.19317999482154846, 0.17709000408649445, 1.5089999437332153, -0.4302999973297119, -0.1831900030374527, 0.0038735000416636467, -0.48607999086380005, -0.04434100165963173, 0.19312000274658203, 0.15836000442504883, 0.025203000754117966, -0.4230000078678131, -0.2730099856853485, 0.609279990196228, -0.21046000719070435, -0.786050021648407, 0.3324199914932251, -0.032186999917030334, 0.21911999583244324, 0.29460999369621277, -0.46219000220298767, 0.004194499924778938, -0.0386740006506443, 0.6680499911308289, 0.4110899865627289, 0.967989981174469, -0.09186699986457825, -0.72639000415802, 0.7717700004577637, -1.0591000318527222, -1.0746999979019165, -0.10537999868392944, -0.10943999886512756, -0.25492000579833984, -0.3165700137615204, -0.12251000106334686, 0.6479200124740601, 0.19494999945163727, 0.0730300024151802, 0.0024037999100983143, -0.25402000546455383, 0.08049599826335907, -0.7623000144958496, 0.9587000012397766, 0.7941399812698364, -0.267769992351532, -0.47878000140190125, -0.5661799907684326, 0.07927999645471573, -0.11084999889135361, -0.28328999876976013, -0.2777099907398224, 0.10002999752759933, 0.6366299986839294, -0.750760018825531, 1.0536999702453613, 0.36678001284599304, 0.6644700169563293, -0.4038800001144409, 0.5628899931907654, -0.09150099754333496, -0.15237000584602356, -0.021246999502182007, -0.16346000134944916, -0.05416100099682808, 0.531220018863678, 0.8278200030326843, 0.642009973526001, -0.5864499807357788, -0.23010000586509705, -0.3144899904727936, 0.053644999861717224, -0.36173000931739807, -0.2263599932193756, 0.7885000109672546, -0.08383999764919281, -0.9701399803161621, 0.18052999675273895, 0.43751001358032227, -0.09923899918794632, -0.38199999928474426, -0.350380003452301, 0.08901000022888184, -0.41668999195098877, -0.9490900039672852, 0.0239499993622303, 0.42906999588012695, 0.23802000284194946, 0.29993999004364014, -0.37125998735427856, 0.6682500243186951, -0.43213000893592834, 0.2035599946975708, -0.09971699863672256, -0.2375900000333786, -1.176300048828125, -0.0114120002835989, -0.15660999715328217, -0.13492999970912933, -0.0003938000008929521, -0.46970000863075256, -0.27206000685691833, 0.39667999744415283, -0.19228999316692352, 0.8475599884986877, -0.3158999979496002, 0.06427299976348877, 0.16669000685214996, -0.045423999428749084, -0.3841499984264374, 0.5521699786186218, -0.41451001167297363, 0.7785199880599976, 0.34815001487731934, -0.1339000016450882, -0.09152399748563766, 0.24424999952316284, 1.38100004196167, -0.14704999327659607, 0.2479500025510788, 0.5349500179290771, 0.11878000199794769, -0.17845000326633453, 0.22378000617027283, 0.13407999277114868, 0.28485000133514404, -0.46518000960350037, 0.09443199634552002, 0.4335800111293793, 0.7704600095748901, 0.16686999797821045, 0.855239987373352, 0.34981000423431396, 0.2248000055551529, -0.09969999641180038, -0.09830400347709656, 0.22746999561786652, -0.05112399905920029, 0.12030000239610672, 0.34126999974250793, -0.23923000693321228, -0.38433998823165894, 0.7012699842453003, -0.7129700183868408, 0.09511899948120117, 0.525950014591217, 0.27838000655174255, 0.0948759987950325, -0.7793999910354614, -0.15791000425815582, -0.005472199991345406, -0.59579998254776, -0.4768199920654297, 0.32912999391555786, -0.07521100342273712, -0.06058000028133392, -0.10402999818325043, -0.13872000575065613, -0.009295799769461155, -0.3247399926185608, 0.39750999212265015, 0.8292400240898132, 0.30121999979019165, 0.19912000000476837, -0.45329999923706055, -0.977840006351471, -0.8414999842643738, -0.26159000396728516, -0.05331199988722801, 0.38082998991012573, -0.45107001066207886, 0.1585099995136261, 0.6994699835777283, 0.18977999687194824, -0.5310699939727783, -1.4890999794006348, 0.8054699897766113, -0.07476100325584412, -0.2258799970149994, 0.12773999571800232, 0.03461199998855591, 0.3630799949169159, -0.3110100030899048, -0.27515000104904175, -0.7009400129318237, 0.2991800010204315, -0.11033999919891357, -0.4583800137042999, -0.36291998624801636, -0.7582100033760071, 0.1355700045824051, -0.4398899972438812, -0.4243699908256531, 0.34727999567985535, 0.18494999408721924, 0.08361499756574631, 0.03415299952030182, 0.05748699977993965, -0.6262400150299072, 0.8358700275421143, -0.1602499932050705, 0.7721400260925293, -0.7388799786567688, -0.5910300016403198, -1.0348000526428223, -0.4804399907588959, -0.33103999495506287, -0.6127600073814392, 0.24137000739574432, 0.16460999846458435, -0.42069000005722046, 0.709630012512207, 0.09975200146436691, -0.455949991941452, 0.46571001410484314, 0.4862299859523773, -0.18543000519275665, 0.18272000551223755, -0.11517000198364258, -0.9458699822425842, -0.7647600173950195, -0.8580300211906433, -0.3285599946975708, 0.20197999477386475, 0.6059100031852722, 0.8022599816322327], u'castle': [-0.17659999430179596, -0.10670000314712524, 0.09272799640893936, -0.2003600001335144, 0.7569299936294556, 0.34977999329566956, 0.8994399905204773, -0.19056999683380127, -0.6413800120353699, -0.7291799783706665, -0.4005100131034851, -0.8657500147819519, 0.44892001152038574, 0.1734199970960617, -0.42320001125335693, -0.165460005402565, 0.12554000318050385, -0.2722800076007843, 0.4046199917793274, -0.025894999504089355, 0.0733100026845932, 0.23048000037670135, -0.07999899983406067, 0.6754500269889832, -0.06824800372123718, -0.8405799865722656, -0.379040002822876, 0.3406600058078766, -0.4139400124549866, 0.8808199763298035, 1.0490000247955322, 0.06528899818658829, -0.4080300033092499, 0.27393999695777893, 0.2668600082397461, 0.2616100013256073, 0.3051599860191345, 0.17292000353336334, -0.12225999683141708, -0.4517199993133545, 0.2707200050354004, 0.12071999907493591, 0.10309000313282013, 0.6263300180435181, 0.15423999726772308, 0.06649199873209, 0.2740199863910675, -0.011358999647200108, 0.035617001354694366, -0.3697099983692169, -0.27211999893188477, 0.3041900098323822, -0.029469000175595284, 0.2145400047302246, 0.18797999620437622, -0.2558099925518036, 0.6420000195503235, 0.26256999373435974, 0.25793999433517456, 0.2569600045681, 0.1907300055027008, -0.9146900177001953, 0.28297001123428345, 0.7945799827575684, 0.5036699771881104, -0.33142998814582825, -0.035558998584747314, 0.19905999302864075, 0.4896300137042999, -0.9089800119400024, 0.0005973000079393387, 0.4142700135707855, 0.31812000274658203, -0.3819200098514557, -0.26506999135017395, -0.32502999901771545, -0.15800000727176666, -0.6435400247573853, 0.14048999547958374, -0.3824400007724762, 0.010944000445306301, 0.032186999917030334, 0.15312999486923218, 0.4730600118637085, 0.01787699945271015, 0.3369300067424774, 0.08428700268268585, 0.26405999064445496, -0.12575000524520874, -0.19099999964237213, 0.6771699786186218, -0.0587569996714592, 0.6567400097846985, 0.5557799935340881, -0.2112800031900406, -0.09298799932003021, 0.498199999332428, 0.051024001091718674, -0.01613900065422058, -0.35791999101638794, -0.5312399864196777, 0.3735800087451935, -0.041505999863147736, 0.4873799979686737, -0.04868699982762337, -0.10882999747991562, -0.07162600010633469, -0.2808600068092346, 0.06532599776983261, 0.2939800024032593, 0.34477001428604126, -0.020805999636650085, -0.3412399888038635, 0.0660339966416359, -0.01228800043463707, -0.13179999589920044, -0.3795900046825409, -0.08254099637269974, -0.10266000032424927, -0.7279599905014038, 0.37446001172065735, -0.260809987783432, -0.6001799702644348, -0.3734399974346161, -0.2658799886703491, -0.29280999302864075, -0.08286300301551819, 0.38762998580932617, -0.5301499962806702, -0.34863001108169556, 0.4082300066947937, 1.0276999473571777, 0.03478100150823593, -0.17895999550819397, 0.24130000174045563, -0.19571000337600708, 0.20633000135421753, -0.2429399937391281, -0.4692099988460541, -0.8019899725914001, -0.22871999442577362, -0.4339599907398224, -0.5964900255203247, 0.2955099940299988, 0.6147400140762329, -0.393559992313385, 0.9473599791526794, -0.028328999876976013, -0.7015500068664551, -0.3172299861907959, 0.154339998960495, 0.22620999813079834, -0.30667999386787415, -0.2207999974489212, 0.3116700053215027, 0.4971599876880646, 0.028341000899672508, -0.15126000344753265, 0.21324999630451202, -0.03059300035238266, 0.5108799934387207, 0.031773000955581665, -0.03658600151538849, -0.8284199833869934, -0.43059998750686646, 0.38012999296188354, -0.19724999368190765, -0.484609991312027, 0.1351899951696396, 0.4635399878025055, 0.536549985408783, -0.2673400044441223, 0.33009999990463257, 0.21889999508857727, -0.4859299957752228, 0.8478400111198425, -0.47738000750541687, 0.3002600073814392, 0.036952998489141464, -0.4603700041770935, -0.8576499819755554, 0.6675500273704529, 0.16101999580860138, -0.3163299858570099, 1.0018999576568604, -0.4095200002193451, -0.6383000016212463, -0.08943899720907211, 0.244159996509552, 0.2926599979400635, 0.05804099887609482, 0.17816999554634094, 0.3937399983406067, -0.17104999721050262, -0.3012799918651581, -0.013123000040650368, -0.5473099946975708, -0.10412000119686127, 0.18201999366283417, -0.2293899953365326, 1.0907000303268433, -0.39346998929977417, -0.6262699961662292, 0.4605900049209595, 0.0960329994559288, -0.24106000363826752, 0.24160000681877136, -0.2760300040245056, -0.2160400003194809, -0.2631100118160248, -0.15565000474452972, 0.24759000539779663, -0.06194999814033508, -1.2175999879837036, -0.17199000716209412, -0.3758000135421753, -0.10238000005483627, 0.041262999176979065, -0.19855999946594238, 0.20708000659942627, 0.12976999580860138, -0.31000998616218567, 0.32095998525619507, 0.004800899885594845, -0.9164699912071228, 0.11584000289440155, 0.1818999946117401, 0.17233000695705414, 0.2003300040960312, -0.41214999556541443, 0.04602300003170967, -0.2967100143432617, -0.5012000203132629, 0.2903999984264374, 0.5177099704742432, 0.05142899975180626, 0.18695999681949615, 0.7515699863433838, 0.19384999573230743, 0.84961998462677, -0.22296999394893646, -0.0814250037074089, 0.7527300119400024, 0.013326999731361866, -0.5661100149154663, 0.5769400000572205, 0.17465999722480774, 0.529770016670227, 0.2993200123310089, -0.8364999890327454, -0.5241199731826782, 0.044690001755952835, -0.049929000437259674, -0.46511000394821167, 0.3585500121116638, 0.18595999479293823, 0.46435999870300293, -0.45895999670028687, 0.36921000480651855, -0.06951499730348587, -0.3017599880695343, 0.3718799948692322, -0.08632300049066544, 0.10444000363349915, -0.9357200264930725, -0.879289984703064, 0.5389099717140198, -0.461650013923645, -0.021851999685168266, 0.16685999929904938, 0.04392499849200249, -0.6030700206756592, 0.3440600037574768, -0.19294999539852142, -0.4963200092315674, 0.12571999430656433, -1.1450999975204468, -0.38721001148223877, 0.20841999351978302, -0.2764900028705597, -0.48454999923706055, 0.19811999797821045, 0.018238000571727753, -0.7914000153541565, -0.12803000211715698, 0.24342000484466553, -0.33021000027656555, 0.3922100067138672, 0.08352799713611603, 0.10217999666929245, 0.17656999826431274, 0.25415000319480896, -0.3236199915409088, -0.2728100121021271, -0.31909000873565674, -0.3549700081348419, 0.7523000240325928, 0.6461899876594543, -0.25999999046325684, 0.539110004901886], u'glasses': [-0.7482699751853943, 0.08919499814510345, -0.6544100046157837, -1.0616999864578247, 0.03419800102710724, 0.015469999983906746, -0.10812000185251236, -0.2878600060939789, 0.861739993095398, -0.7230299711227417, 0.39190998673439026, -0.22197000682353973, -0.21392999589443207, -0.016821999102830887, -0.03988400101661682, -0.19494999945163727, -0.02596599981188774, -0.1593800038099289, -0.36381998658180237, -0.4792900085449219, 0.2801100015640259, 0.13736000657081604, -0.1429399996995926, 0.11281000077724457, -0.1544799953699112, -0.15839000046253204, -0.15222999453544617, 0.19981999695301056, 0.23983000218868256, -0.2827500104904175, -0.3469099998474121, 0.4045499861240387, 0.17860999703407288, 0.4588800072669983, -0.7826200127601624, 0.2959100008010864, -0.1887200027704239, -0.3055900037288666, -0.136680006980896, 0.1936500072479248, -0.31080999970436096, -0.7255100011825562, -0.5260199904441833, -0.21683000028133392, -0.5979200005531311, -0.2929399907588959, 0.11708000302314758, -0.13280999660491943, -0.24574999511241913, 0.10445000231266022, 0.04946599900722504, -0.21976999938488007, -0.14270000159740448, 0.12906000018119812, -0.26642000675201416, 0.543940007686615, 0.07861600071191788, -0.3274100124835968, -0.16347000002861023, 0.2797200083732605, 0.06906600296497345, -0.3771899938583374, -0.08146099746227264, 0.7360399961471558, -0.06456799805164337, 0.0005306800012476742, -0.6025099754333496, 0.274370014667511, 0.11896999925374985, -0.4633699953556061, 0.41258999705314636, -0.2600100040435791, 0.07930400222539902, 0.06444700062274933, 0.6821699738502502, -0.8787400126457214, 0.1930599957704544, -0.28338998556137085, -0.3953799903392792, -0.6665999889373779, -0.04438700154423714, 0.6623600125312805, 0.30483001470565796, 0.07265999913215637, 0.2849699854850769, -0.19955000281333923, 0.7210500240325928, -0.2902899980545044, -0.45513999462127686, -0.2457900047302246, -0.07770299911499023, 0.5768399834632874, -0.4496999979019165, 1.1937999725341797, -0.30338001251220703, 0.7678200006484985, 0.06359100341796875, 0.073294997215271, 0.3227599859237671, -0.19103999435901642, 0.3976300060749054, 0.6085000038146973, -0.25762999057769775, -0.08398400247097015, 0.1808999925851822, -0.025085000321269035, -0.4162200093269348, 0.1455399990081787, -0.6048499941825867, -0.49952998757362366, -0.20819999277591705, 0.7232199907302856, 0.351859986782074, -0.6691700220108032, 0.2352299988269806, -0.02961600013077259, -0.3753400146961212, 0.0672990009188652, 0.11429999768733978, -0.11130999773740768, 0.053098998963832855, 0.5240499973297119, 0.2034599930047989, 0.18463000655174255, -0.16494999825954437, -0.5618100166320801, 0.04759399965405464, -0.3638100028038025, 0.16806000471115112, -0.5159800052642822, -0.4034000039100647, 0.3731899857521057, -0.04589499905705452, 0.642009973526001, 0.059560999274253845, 0.47769999504089355, 0.14749999344348907, 0.3839600086212158, 0.021161999553442, -0.11479999870061874, 0.005305800121277571, 0.35339000821113586, 0.2550700008869171, 0.013756999745965004, 0.18562999367713928, 0.20140999555587769, 0.06328099966049194, 0.28001999855041504, 0.36410000920295715, -0.24214999377727509, -0.05967500060796738, 0.12064000219106674, -0.28650999069213867, -0.611810028553009, -0.08658099919557571, -0.28167998790740967, 0.10785999894142151, -1.1043000221252441, 0.6506400108337402, -0.24741999804973602, 0.0816899985074997, -0.4712199866771698, -0.03479599952697754, 0.20330999791622162, 0.6170300245285034, 0.02790199965238571, 0.07759000360965729, 0.6455100178718567, -0.12010999768972397, -0.5276600122451782, 0.13330000638961792, 0.2204200029373169, 0.047290001064538956, -0.03836200013756752, -0.09312999993562698, -1.2350000143051147, 0.427590012550354, 0.3756699860095978, 0.17591999471187592, -1.1029000282287598, 0.0009050699882209301, 0.0920879989862442, 0.579010009765625, 0.12773999571800232, 0.04800700023770332, -0.025560999289155006, 1.3174999952316284, 0.11698000133037567, 0.23440000414848328, 0.0898519977927208, 0.31553998589515686, 0.15042999386787415, -0.2655999958515167, 0.6982600092887878, -0.10593000054359436, -0.08979900181293488, -0.6718000173568726, 0.010796000249683857, -0.3377699851989746, -0.22777999937534332, 0.6135299801826477, 0.4954499900341034, 0.4625599980354309, 0.7880399823188782, -0.20837999880313873, 0.15530000627040863, 0.058851998299360275, -0.20430000126361847, -0.4589099884033203, 0.003811500035226345, 0.8260800242424011, 0.22502000629901886, -0.17885999381542206, 0.40327000617980957, 0.3866899907588959, 0.34228000044822693, 0.3428199887275696, -0.568149983882904, 0.5504599809646606, 0.3659999966621399, 0.3236500024795532, 0.3062100112438202, 0.3968699872493744, 0.4997999966144562, 0.052717000246047974, -0.026877999305725098, -0.043396998196840286, -0.5938699841499329, -0.1018500030040741, -0.25213000178337097, 0.18535999953746796, 0.3465699851512909, -0.47130000591278076, -0.35646000504493713, -0.14620999991893768, -0.16459999978542328, 0.2931399941444397, -0.2069000005722046, -0.48166999220848083, 0.3826499879360199, -0.16720999777317047, 0.3723599910736084, -0.9265300035476685, 0.6811599731445312, -0.5773599743843079, 0.2721500098705292, -0.5603299736976624, -0.49845001101493835, -0.20101000368595123, -0.5746999979019165, 0.7163900136947632, -0.30886998772621155, 0.6980299949645996, -0.5775799751281738, -0.5396100282669067, 0.5469300150871277, -0.09234300255775452, 0.06511399894952774, -0.2808600068092346, -0.09761899709701538, 0.4212000072002411, 0.29194000363349915, 0.32249000668525696, 0.39983999729156494, -0.20416000485420227, -0.6655799746513367, 0.16144999861717224, -0.130280002951622, 0.12031999975442886, 0.9390199780464172, -0.1306699961423874, 0.10902000218629837, 0.11010999977588654, -0.500220000743866, -0.07905100286006927, 0.5549200177192688, -1.407099962234497, -0.030626999214291573, -0.9504500031471252, -0.7295200228691101, 0.18084999918937683, 0.531059980392456, 0.04466399922966957, -0.2744700014591217, 0.4611299932003021, 0.7779800295829773, -0.49309998750686646, 0.43915998935699463, -0.29186999797821045, 0.6396999955177307, -0.27685999870300293, -0.0063646999187767506, -0.269430011510849, 0.2324800044298172, -0.09441299736499786, -0.8891599774360657, 0.22838999330997467, 0.37264999747276306, 0.24961000680923462, 0.127470001578331], u'book': [0.048732999712228775, -0.05508299916982651, 0.1494700014591217, -0.11269000172615051, 0.09879100322723389, 0.5433400273323059, -0.5120400190353394, 0.2788200080394745, 0.11496999859809875, -1.3396999835968018, 0.4116800129413605, -0.1474200040102005, 0.38694000244140625, -0.008241400122642517, -0.03348999843001366, -0.057760998606681824, 0.022662999108433723, 0.10580000281333923, 0.01069399993866682, -0.07761400192975998, 0.05708000063896179, 0.546459972858429, -0.2426699995994568, 0.6978899836540222, 0.3159700036048889, 0.06902600079774857, 0.03372599929571152, -0.10926999896764755, 0.19253000617027283, -0.2222599983215332, -0.11307000368833542, 0.4393799901008606, -0.6090499758720398, 0.11049000173807144, -1.4081000089645386, 0.3734300136566162, -0.3858700096607208, -0.31584998965263367, -0.2863999903202057, -0.33768999576568604, 0.44442999362945557, -0.14012999832630157, -0.40928998589515686, 0.5949199795722961, -0.07697100192308426, 0.08585499972105026, 0.11558999866247177, 0.38694000244140625, -0.6459500193595886, 0.14493000507354736, 0.4386500120162964, -0.01583399996161461, 0.20396000146865845, 0.08682899922132492, -0.06120099872350693, 0.11602000147104263, -0.6223800182342529, -0.3619599938392639, 0.065652996301651, -0.24650000035762787, 0.1281999945640564, 0.20121000707149506, 0.5719599723815918, -0.133760005235672, 0.13502000272274017, -0.3395099937915802, 0.24844999611377716, -0.29434001445770264, -0.02515999972820282, 0.03196699917316437, 0.7087200284004211, -0.3188900053501129, 0.4745199978351593, -0.10868000239133835, -0.31369999051094055, -0.22795000672340393, 0.28130000829696655, -0.1802700012922287, -0.12676000595092773, -0.3607499897480011, 0.1262200027704239, 0.2778800129890442, 0.32232001423835754, 0.049936000257730484, -0.16923999786376953, 0.14824999868869781, 0.19697999954223633, 0.6374499797821045, 0.07985399663448334, -0.16854999959468842, -0.34619998931884766, -0.22142000496387482, -0.15442000329494476, -0.10824999958276749, 0.2725200057029724, 0.27917999029159546, -0.1550000011920929, 0.6010299921035767, -0.2277200073003769, -0.7148500084877014, 0.43518999218940735, -0.06291499733924866, -0.05309699848294258, 0.0017235999694094062, -0.1523900032043457, -0.7707300186157227, 0.5434799790382385, 0.6617199778556824, 0.37839001417160034, -0.39162999391555786, -0.007715200074017048, 0.1524599939584732, 0.1938299983739853, -0.16701999306678772, -0.06928300112485886, -0.025211000815033913, -0.179639995098114, 0.04438000172376633, 0.1752600073814392, -0.9658200144767761, -0.10450000315904617, 0.057179998606443405, -0.4132300019264221, -0.329800009727478, 0.019054999575018883, -0.019053999334573746, -0.20476999878883362, -0.13634000718593597, -0.3303300142288208, -0.3521600067615509, 0.2953900098800659, 0.0897350013256073, -0.04208400100469589, -0.1926400065422058, 0.02238300070166588, -0.2060299962759018, -0.08659200370311737, -0.024302000179886818, -0.4967699944972992, 0.41227999329566956, 0.3437899947166443, 0.041338998824357986, -0.027496999129652977, 0.1326500028371811, 0.13721999526023865, 0.01975099928677082, 0.14308999478816986, 0.3212299942970276, 0.16590000689029694, 0.44637998938560486, -0.00794879999011755, 0.006652100011706352, -0.47415998578071594, -0.28036001324653625, -0.12137000262737274, -0.3882000148296356, -0.4201500117778778, -0.01307199988514185, 0.18059000372886658, -0.22992999851703644, 0.3541100025177002, 0.10779000073671341, 0.6287000179290771, 0.3661699891090393, -0.3801499903202057, 0.40376999974250793, 0.18682999908924103, 0.30017998814582825, -0.178849995136261, 0.22202999889850616, 0.026145000010728836, -0.6524199843406677, -1.371399998664856, -0.15031999349594116, 0.023778999224305153, -0.16981999576091766, 0.09613599628210068, 0.25005000829696655, -0.09224700182676315, -0.1578499972820282, -0.007779099978506565, -0.29607000946998596, -0.31178000569343567, -0.3204300105571747, 0.30184000730514526, -0.07809299975633621, -0.6267300248146057, -0.056442998349666595, 0.20640000700950623, 0.21788999438285828, -0.40171000361442566, 0.629069983959198, 0.21921999752521515, -0.3758400082588196, -0.4833100140094757, -0.021337000653147697, -0.5910000205039978, 0.03848600015044212, -0.6627100110054016, 0.06035799905657768, 0.6668999791145325, 0.08867000043392181, -0.29159998893737793, -0.2127400040626526, 0.36201998591423035, -0.3594599962234497, -0.40505000948905945, 0.23657000064849854, -0.08587999641895294, -0.1817300021648407, -0.31782999634742737, -0.7338399887084961, 0.20423999428749084, 0.2605299949645996, -0.14951999485492706, 0.22519999742507935, -0.45434999465942383, 0.27584001421928406, 0.07911799848079681, 0.098751001060009, -0.1345899999141693, 0.16389000415802002, -0.8331400156021118, 0.13740000128746033, 0.16485999524593353, -0.13199999928474426, -0.05398400127887726, 0.4087499976158142, -0.06286899745464325, -0.43362000584602356, -0.21252000331878662, -0.39647001028060913, -1.0161999464035034, 0.290910005569458, -0.03824000060558319, 0.017988000065088272, -0.13283999264240265, -0.2834399938583374, -0.4581800103187561, -0.18828000128269196, 0.062212999910116196, -0.1689700037240982, 0.012040000408887863, -0.3808099925518036, -0.8169900178909302, -0.21886000037193298, -0.6812599897384644, -0.0834830030798912, -0.02833000011742115, 0.2557600140571594, -0.33616000413894653, -0.3666299879550934, -0.11253999918699265, 0.09420499950647354, 0.6192299723625183, 0.13937999308109283, 0.35269999504089355, -0.27792999148368835, 0.4562300145626068, -0.31700000166893005, 0.14767999947071075, 0.17775000631809235, 0.029572999104857445, -0.33500999212265015, -0.005721500143408775, -0.05049699917435646, -0.24139000475406647, -0.2586899995803833, 0.13273000717163086, 0.3800300061702728, -0.32120001316070557, -0.16492000222206116, 0.5508800148963928, -0.023245999589562416, 0.1446000039577484, 0.12479999661445618, -1.3349000215530396, -0.2942200005054474, 0.5918400287628174, 0.1438400000333786, -0.057714998722076416, -0.03445899859070778, -0.22582000494003296, -0.16592000424861908, -0.10081999748945236, 0.2907800078392029, -0.5178800225257874, 0.11263000220060349, 0.002001600107178092, 0.297789990901947, -0.11647000163793564, -0.07208000123500824, -0.4182099997997284, 0.3923799991607666, -0.017030000686645508, -0.031026000156998634, 0.2542800009250641, 0.5135200023651123, 0.13666999340057373, -0.1263899952173233], u'road': [-0.25911998748779297, -0.241689994931221, 0.25626999139785767, 0.2731100022792816, -0.4716799855232239, -0.3705799877643585, 0.08574499934911728, 0.3772599995136261, 0.2070000022649765, -0.8073400259017944, -0.5752900242805481, -0.213919997215271, -0.13154000043869019, 0.29840999841690063, 0.18050000071525574, 0.010761000216007233, -0.6983399987220764, -0.23250000178813934, 0.35291001200675964, -0.37077000737190247, -0.46285000443458557, -0.08792100101709366, 0.22191999852657318, 0.45969998836517334, -0.6102200150489807, 0.12833000719547272, -0.09236200153827667, -0.24542999267578125, 0.3277600109577179, 0.903190016746521, 0.8157399892807007, 0.21535000205039978, -0.12246999889612198, 0.5736600160598755, -0.42285001277923584, 0.8798499703407288, -0.875220000743866, 0.1031700000166893, 0.06527400016784668, -0.6919999718666077, -0.3548400104045868, 0.14047999680042267, -0.47383999824523926, -0.14318999648094177, 0.2242099940776825, 0.4472599923610687, 0.41624000668525696, 0.25332000851631165, -0.21257999539375305, -0.3530600070953369, -0.42866000533103943, -0.023235000669956207, -0.37417998909950256, -0.08907300233840942, 0.8053900003433228, 0.189410001039505, -0.2477400004863739, -0.18211999535560608, -0.14358000457286835, -0.1468600034713745, 0.06814700365066528, -0.0874829962849617, 0.059774000197649, -0.1584399938583374, 0.5475999712944031, 0.27094000577926636, -0.4037399888038635, 0.35486000776290894, 0.009362200275063515, -0.3598499894142151, -0.12687000632286072, 0.2673400044441223, 0.08049900084733963, 0.40964001417160034, -0.506820023059845, 0.36142000555992126, -0.19668999314308167, -0.0928570032119751, -0.2652699947357178, -0.39478999376296997, 0.2935200035572052, 0.032010000199079514, 0.8571900129318237, 0.08010800182819366, -0.47286999225616455, -0.34848999977111816, 0.26528000831604004, 0.1531900018453598, 0.7727100253105164, 0.19639000296592712, 0.39041998982429504, 0.2582100033760071, 0.41297000646591187, -0.7048599720001221, 0.10100000351667404, 0.45871999859809875, 0.041402000933885574, -0.3035300076007843, -0.2935599982738495, -0.13961000740528107, -0.27208998799324036, 0.45210000872612, 0.3813199996948242, 0.15530000627040863, -0.400409996509552, 0.35234999656677246, 0.4878399968147278, 0.15169000625610352, 0.03170400112867355, -0.3533099889755249, -0.2516300082206726, -1.1505000591278076, 0.2371399998664856, -0.18314999341964722, 0.012498999945819378, -0.09241899847984314, 0.06656800210475922, 0.09735599905252457, -0.03275600075721741, -0.22737999260425568, -0.05514900013804436, 0.019996000453829765, 0.37588000297546387, -0.6020600199699402, -0.2656799852848053, -0.03471999987959862, -0.41958001255989075, -0.08593899756669998, -0.09946399927139282, -0.15910999476909637, 0.24860000610351562, 0.29780998826026917, 0.4365699887275696, 0.31064000725746155, -0.16584999859333038, 0.25672000646591187, 0.35923001170158386, 0.008114100433886051, 0.1399800032377243, -0.38771000504493713, -0.015355000272393227, 0.0695279985666275, 0.0009783200221136212, 0.17973999679088593, -0.7219899892807007, -0.06893199682235718, 0.26846998929977417, -0.08370199799537659, -0.6931700110435486, -0.027418000623583794, 0.4258599877357483, 0.29346001148223877, -0.3096800148487091, -0.04758099839091301, 0.7407600283622742, 0.047672998160123825, 0.2273000031709671, 0.3831399977207184, -0.20250000059604645, 0.010931000113487244, 0.04842999950051308, -0.6313599944114685, -0.4772700071334839, -1.0384000539779663, -0.35589998960494995, 0.1351500004529953, 0.1198199987411499, -0.11703000217676163, -0.15162000060081482, -0.5273100137710571, 0.05073099955916405, -0.5035899877548218, 0.7804800271987915, 0.15397000312805176, -0.48600998520851135, 0.06656300276517868, 0.019892999902367592, -0.7581400275230408, -0.1737699955701828, -0.008190600201487541, -0.4000900089740753, 0.42252999544143677, -0.07635799795389175, 0.16428999602794647, -0.041721999645233154, -0.19936999678611755, -0.007911100052297115, -0.09403199702501297, 0.12912000715732574, 0.1786700040102005, -0.003415199927985668, 0.542140007019043, 0.009330100379884243, -0.23409000039100647, -0.42528998851776123, 0.2135699987411499, -0.0005664399941451848, -0.628570020198822, 0.7073400020599365, -0.10832999646663666, 1.4354000091552734, 0.01991100050508976, 0.3401600122451782, -0.12549999356269836, 0.1821800023317337, -0.13449999690055847, 0.1163799986243248, -0.4765399992465973, 0.6053799986839294, 0.24842000007629395, -0.5873500108718872, -0.051993999630212784, -0.18920999765396118, -0.2598100006580353, -0.09816700220108032, -0.16091999411582947, 0.0697999969124794, 0.2244199961423874, 0.11416000127792358, -0.5557799935340881, 0.7075799703598022, -0.3850899934768677, -0.05022500082850456, 0.11855000257492065, 0.7030799984931946, -0.24196000397205353, -0.04937899857759476, -0.10101000219583511, 0.04006500169634819, -0.23386000096797943, -0.46173998713493347, -0.187049999833107, -0.09731400012969971, -0.42660999298095703, 0.5543199777603149, 0.3712399899959564, 0.19644999504089355, 0.37856000661849976, -0.1690800040960312, -0.0395440012216568, 0.33215999603271484, 0.04864099994301796, 0.7257500290870667, -0.5669100284576416, -0.6657199859619141, 0.16595999896526337, 0.17609000205993652, 0.27129000425338745, 0.3835900127887726, -0.10321000218391418, 0.38499999046325684, 0.11738999933004379, -0.13979999721050262, -0.2926500141620636, 0.49994000792503357, -0.5363600254058838, 0.022742999717593193, -0.1073400005698204, 0.0497869998216629, 0.0955279991030693, -0.2467000037431717, -0.5737599730491638, 0.39250001311302185, 0.23228999972343445, -0.06042499840259552, 0.34042999148368835, 0.6570500135421753, -0.49424999952316284, 0.2589299976825714, -0.4601700007915497, -0.07122600078582764, 0.05618700012564659, 0.18964000046253204, 0.4753499925136566, 0.3258399963378906, -0.038293998688459396, -1.877500057220459, -0.26462000608444214, 0.3657599985599518, 0.4708400070667267, 0.4840399920940399, -0.5046799778938293, 0.4634000062942505, -0.3917999863624573, -0.45151999592781067, 0.3857100009918213, 0.33948999643325806, -0.7425699830055237, 0.01709499955177307, -0.13865000009536743, -0.24453000724315643, 0.20273999869823456, -0.5342400074005127, 0.42384999990463257, -0.0984790027141571, 0.7218300104141235, -0.29297998547554016, 0.067051000893116, 0.22753000259399414, 0.15230999886989594], u'cheese': [0.20440000295639038, 0.6255599856376648, 0.19783000648021698, 0.06262899935245514, -0.4550600051879883, -0.5270599722862244, -0.4233199954032898, 0.2511399984359741, 0.27880001068115234, -0.33855998516082764, -0.398140013217926, -1.0094000101089478, -0.3307400047779083, 0.7735999822616577, -0.30535998940467834, -0.33302000164985657, -0.40443000197410583, -0.0009151999838650227, -0.06753599643707275, 0.7311999797821045, 0.05678899958729744, 0.335640013217926, -0.3104499876499176, 0.40448999404907227, -0.3398500084877014, -0.5138400197029114, -0.45006000995635986, -0.44378000497817993, -0.5903000235557556, -0.7061899900436401, -1.087399959564209, 0.03481600061058998, -0.4352099895477295, 0.1813499927520752, -0.5753300189971924, 0.6974200010299683, 0.12841999530792236, -0.1899300068616867, 0.22657999396324158, 0.04447599872946739, -0.178289994597435, -0.016289999708533287, 0.468860000371933, 0.12007000297307968, -0.1155100017786026, 0.5529800057411194, 0.5660099983215332, 0.08499500155448914, -0.1420699954032898, 0.1205499991774559, -0.4596399962902069, -0.09354300051927567, 0.59552001953125, 0.4995900094509125, -0.011040999554097652, 0.008682000450789928, -0.43737998604774475, 0.320279985666275, 0.1957399994134903, -0.18288999795913696, 0.9070900082588196, -0.06465300172567368, 0.28262999653816223, 0.0034278000239282846, -0.24969999492168427, -0.13393999636173248, -0.23779000341892242, -0.018837999552488327, -0.7973300218582153, 0.09049399942159653, 0.21219000220298767, 0.10254999995231628, 0.28297001123428345, -0.060006000101566315, -0.5714700222015381, -0.08190400153398514, 0.4987100064754486, -0.19006000459194183, -0.48107999563217163, -0.16128000617027283, -0.8036699891090393, 0.0084282997995615, -0.27911001443862915, 0.11826000362634659, 0.24307000637054443, -0.4034099876880646, -0.42294999957084656, 0.08992400020360947, -0.8083800077438354, -0.42465999722480774, -0.04212699830532074, -0.22337999939918518, -0.19878999888896942, -0.30153000354766846, -0.24205000698566437, -0.060871999710798264, 0.005346800200641155, 0.529420018196106, -0.6058300137519836, 0.7145400047302246, 0.19312000274658203, 0.6476600170135498, 0.5560399889945984, -0.8860300183296204, -0.6191400289535522, -0.41644999384880066, -0.31654998660087585, 0.4007500112056732, -0.48684000968933105, 0.5527200102806091, 0.4631499946117401, 0.397599995136261, -0.396230012178421, -0.6901000142097473, -0.22067999839782715, 0.05106600001454353, -0.3899399936199188, 0.6990900039672852, 0.4365600049495697, 0.29168999195098877, -0.5207800269126892, 0.02384999953210354, 0.26458999514579773, 0.14474999904632568, -0.1601099967956543, 0.3508700132369995, -0.07550299912691116, 0.4627099931240082, -0.30932000279426575, 0.5562199950218201, 0.06051500141620636, 0.8589000105857849, -0.3487200140953064, 0.5823400020599365, -0.21730999648571014, -0.16670000553131104, -0.11994999647140503, 0.6008399724960327, -0.4742000102996826, 0.1410599946975708, 0.7180699706077576, 0.13850000500679016, -0.11772000044584274, -0.08794800192117691, -0.13276000320911407, -0.30149000883102417, -0.26434001326560974, -0.5764300227165222, 0.23725999891757965, -0.4578000009059906, -0.816789984703064, 1.160099983215332, 0.5699300169944763, -0.11445000022649765, -0.08636900037527084, -0.9066399931907654, -0.3856300115585327, -0.046202000230550766, -0.25613999366760254, -0.4817900061607361, 0.5913199782371521, 0.09528099745512009, -0.5275700092315674, -0.12669000029563904, 0.15463000535964966, 0.04944499954581261, -0.015165000222623348, -0.6275100111961365, 0.124269999563694, -0.7701799869537354, 0.45758000016212463, -0.04668499901890755, -0.21507999300956726, 0.3360399901866913, -0.3206399977207184, -0.4098699986934662, -0.6112099885940552, -0.7212399840354919, 0.7035499811172485, -0.4464600086212158, 0.08000999689102173, -0.02267800085246563, 0.28415998816490173, -1.208400011062622, 0.08418300002813339, -0.6714199781417847, 0.5016700029373169, -0.5683500170707703, 0.19453999400138855, 0.2717899978160858, 0.11793000251054764, 1.4846999645233154, 0.32864999771118164, -0.006089500151574612, -0.12375999987125397, -0.1844100058078766, -0.7209600210189819, 0.05168699845671654, 0.549780011177063, 0.14678999781608582, 0.2655700147151947, -0.2371000051498413, 1.0551999807357788, 0.5737199783325195, -0.09763699769973755, -0.20746000111103058, 0.14222000539302826, 0.2185100018978119, -0.18764999508857727, 0.18494999408721924, 0.5442799925804138, 0.28301000595092773, -0.023590000346302986, 0.29763999581336975, 0.03301699832081795, 0.06667900085449219, 0.2842499911785126, -0.6955999732017517, 0.2008100003004074, 0.012159000150859356, 0.3568199872970581, 0.43977001309394836, -0.4295099973678589, -0.4272800087928772, -0.4514800012111664, -0.7074199914932251, 0.3629299998283386, 0.5086399912834167, 0.2286199927330017, 0.09614299982786179, 0.11138000339269638, -0.07697500288486481, -0.08763200044631958, -0.33476001024246216, 1.305299997329712, 0.2534500062465668, 0.5076199769973755, 0.7702400088310242, -0.9144300222396851, -0.29085999727249146, 0.0654670000076294, -0.518310010433197, -0.17521999776363373, -0.45778998732566833, -0.9201400279998779, 0.3778499960899353, -0.5139700174331665, -0.015824999660253525, -0.1836400032043457, -1.166700005531311, 0.6946600079536438, -0.031266000121831894, -0.019385000690817833, 0.4035800099372864, 0.18016000092029572, 0.5669299960136414, 0.1319199949502945, -0.23431000113487244, -0.4051699936389923, -0.09164000302553177, -0.3253999948501587, -0.6685100197792053, 0.42326000332832336, -0.19183999300003052, 0.1811700016260147, -0.8107500076293945, 0.07532200217247009, 0.08735500276088715, 0.36157000064849854, -0.43202000856399536, -0.6702499985694885, -0.11867000162601471, 0.13636000454425812, 0.7285799980163574, -0.1092899963259697, 0.24145999550819397, -0.6947900056838989, 0.0971129983663559, -0.8035100102424622, 0.08988899737596512, 0.04179200157523155, 0.37782999873161316, -0.06435099989175797, -0.02952899970114231, 0.5194500088691711, 0.7745800018310547, 0.3437800109386444, -0.6026899814605713, 0.49320998787879944, 0.3339200019836426, 0.20916999876499176, -0.2527399957180023, 0.5240899920463562, -0.3060699999332428, -0.17666999995708466, -0.49709999561309814, 0.4216499924659729, -0.2503800094127655, 0.10047999769449234, 0.2572999894618988], u'apple': [-0.20841999351978302, -0.01966799981892109, 0.06398099660873413, -0.7140300273895264, -0.21180999279022217, -0.5928300023078918, -0.1531600058078766, 0.044217001646757126, 0.632889986038208, -0.8482099771499634, -0.21129000186920166, -0.19763000309467316, 0.19029000401496887, -0.5622599720954895, 0.27125999331474304, 0.23781999945640564, -0.5188999772071838, -0.24517999589443207, 0.03524300083518028, 0.0968329980969429, 0.24898000061511993, 0.7127900123596191, 0.03827900066971779, -0.10514000058174133, -0.4778999984264374, -0.39515000581741333, -0.2719399929046631, -0.4442799985408783, 0.06112999841570854, -0.23180000483989716, -0.3590100109577179, -0.1823900043964386, 0.03550700098276138, -0.08771900087594986, -1.0815999507904053, -0.42520999908447266, 0.0032240001019090414, -0.45991000533103943, -0.04346200078725815, -0.39030998945236206, 0.5189999938011169, 0.21139000356197357, -0.25527000427246094, 1.1805000305175781, -0.19041000306606293, -0.1215599998831749, 0.034185998141765594, -0.06231600046157837, 0.14420999586582184, -0.5336599946022034, 0.4742499887943268, -0.4471000134944916, 0.5804700255393982, 0.43577998876571655, 0.13210000097751617, -0.09571199864149094, -0.37182000279426575, -0.013837000355124474, 0.20600999891757965, -0.10098999738693237, 0.10684999823570251, -0.33722999691963196, 0.10986000299453735, 0.3479599952697754, -0.09983900189399719, 0.36941999197006226, -0.5291699767112732, 0.12407000362873077, -0.4612700045108795, -0.3848299980163574, -0.10113999992609024, -0.1763399988412857, 0.3757399916648865, 0.16377000510692596, -0.21979999542236328, -0.26840999722480774, 0.8470600247383118, -0.3561899960041046, -0.08399199694395065, -0.2027599960565567, -0.5654199719429016, 0.1911199986934662, -0.1413400024175644, -0.7811999917030334, 0.6918799877166748, -0.08362799882888794, -0.542930006980896, 0.16437000036239624, 0.037606000900268555, -0.6889600157737732, -0.6871100068092346, -0.13367000222206116, -0.4778999984264374, 0.20125000178813934, 0.0851219967007637, -0.06386499851942062, -0.17103999853134155, -0.324319988489151, -0.17622999846935272, -0.5139999985694885, -0.5028899908065796, 0.23204000294208527, -0.11324000358581543, -1.0640000104904175, -0.03535899892449379, -0.5067999958992004, -0.27118000388145447, -0.16620999574661255, -0.6301599740982056, 0.05425199866294861, -0.04817799851298332, 0.292820006608963, -0.03066599927842617, -0.2464500069618225, -0.27083998918533325, -0.42563000321388245, -0.3917100131511688, 0.18427999317646027, -0.017772000283002853, -0.3533399999141693, -0.4907500147819519, -0.9078199863433838, 0.13872000575065613, -0.765209972858429, -0.4631800055503845, -0.32124000787734985, -0.08622799813747406, 1.044800043106079, -0.3991900086402893, 0.6947799921035767, -0.10377000272274017, 0.8671500086784363, 0.22742000222206116, 0.438400000333786, 0.08576700091362, -0.22845999896526337, 0.4309000074863434, 0.06418699771165848, -0.027925999835133553, -0.09305600076913834, 0.6518800258636475, 0.5914300084114075, -0.3375999927520752, -0.37731999158859253, 0.005221200175583363, 1.1193000078201294, -0.23845000565052032, -0.16029000282287598, 0.4287700057029724, -0.16227999329566956, -0.12201999872922897, -0.10610000044107437, 0.01576099917292595, 0.022745000198483467, -0.17734000086784363, -0.09171099960803986, -0.2915799915790558, 0.19033999741077423, -0.3516800105571747, 0.27562999725341797, -0.20577000081539154, 0.11472000181674957, -0.34125998616218567, -0.006591499783098698, 0.14895999431610107, -0.02676199935376644, 0.0019372999668121338, 0.5327900052070618, -0.7608799934387207, 0.06308499723672867, -0.7208899855613708, -0.041280001401901245, -0.9616400003433228, 0.02076900005340576, 0.16122999787330627, -0.34341999888420105, 0.697130024433136, -0.160180002450943, -0.11700999736785889, -0.07023900002241135, -0.3077400028705597, 0.39741000533103943, 0.39994001388549805, -0.6779999732971191, 0.5768399834632874, -0.4809899926185608, 0.5931699872016907, -0.4226199984550476, 0.28613001108169556, -0.2620300054550171, 0.052726998925209045, 0.6165900230407715, -0.368010014295578, -0.28428998589515686, -0.40053999423980713, -0.30055001378059387, -0.2744399905204773, -0.04572900012135506, -0.5610499978065491, 0.2417600005865097, 0.8663100004196167, -0.837149977684021, 0.13561999797821045, 0.2619599997997284, -0.4305500090122223, 0.34558001160621643, 0.05944100022315979, 0.6184499859809875, 0.11836999654769897, -0.019168000668287277, 0.47696998715400696, -0.32464998960494995, -0.15463000535964966, -0.23555999994277954, -0.6426299810409546, -0.09215600043535233, -0.19621999561786652, 0.4066599905490875, 0.18008999526500702, 0.094309002161026, 0.04691699892282486, 0.2636899948120117, -0.5072699785232544, 0.37490999698638916, -0.6677299737930298, 0.3509500026702881, -0.03383500128984451, 0.3053399920463562, 0.23165999352931976, 0.02352599985897541, -0.683650016784668, 0.26078000664711, -0.22526000440120697, -0.2655999958515167, 0.5996699929237366, 0.259799987077713, 0.3624800145626068, 0.15564000606536865, -0.45548999309539795, 0.11152999848127365, -0.3328700065612793, 0.08136399835348129, -0.3698900043964386, -0.2554300129413605, -1.1627999544143677, -0.14621999859809875, -0.03297099843621254, -0.556190013885498, 0.4771699905395508, -0.2902100086212158, 0.42688000202178955, 1.2396999597549438, -0.8139100074768066, 0.21084000170230865, -0.25426000356674194, -0.08683999627828598, -0.0784119963645935, 0.26034998893737793, 0.3280999958515167, -0.23777000606060028, 0.05138000100851059, -0.030246999114751816, -0.15669000148773193, 0.05714699998497963, 0.3390200138092041, 0.12794999778270721, -0.2146800011396408, -0.7520800232887268, 0.41422000527381897, 0.0062719001434743404, -0.5290399789810181, 0.9219300150871277, -0.4217900037765503, -0.6963800191879272, 0.07411500066518784, 0.19070999324321747, -1.2030999660491943, -0.08133299648761749, -0.49140000343322754, -0.22158999741077423, -0.29875999689102173, 0.30094000697135925, 0.018634000793099403, 0.18785999715328217, -0.4542900025844574, -0.292959988117218, 0.3695000112056732, -0.2421800047159195, -0.11802999675273895, 0.07177499681711197, 0.44025999307632446, -0.5997800230979919, 0.45353999733924866, 0.17854000627994537, -0.17155000567436218, 0.018811000511050224, -0.6235399842262268, -0.014162999577820301, 0.16798999905586243, -0.06439200043678284], u'wall': [0.2825300097465515, -0.19652999937534332, -0.6085500121116638, -0.2718000113964081, 0.3957599997520447, 0.11907000094652176, -0.19061000645160675, -0.008996600285172462, 0.28433001041412354, -1.5716999769210815, -0.1400900036096573, 0.4837299883365631, 0.6859300136566162, 0.26895999908447266, 0.4909000098705292, -0.04450099915266037, -0.6574400067329407, 0.3917500078678131, 0.1424800008535385, 0.23346999287605286, -0.11305999755859375, 0.020726000890135765, 0.6309199929237366, -0.19580000638961792, 0.06001799926161766, -0.2858400046825409, 0.031466998159885406, 0.12524999678134918, 0.3465000092983246, 0.1902099996805191, -0.0717419981956482, 0.6001200079917908, -0.11994999647140503, -0.045534998178482056, -1.05649995803833, -0.2000100016593933, -0.5394399762153625, -0.027837999165058136, 0.5200999975204468, 0.08101200312376022, 0.24279999732971191, 0.39131999015808105, -0.13479000329971313, 0.37174999713897705, 0.23291000723838806, 0.9757599830627441, -0.034262001514434814, -0.018996000289916992, -0.840499997138977, -0.23146000504493713, -0.17372000217437744, 0.027011999860405922, 0.2932400107383728, 0.18107999861240387, 0.5277600288391113, 0.2799600064754486, -0.17507000267505646, -0.07611899822950363, -0.17072999477386475, -0.1456499993801117, 0.7092099785804749, -0.13766999542713165, 0.7560799717903137, -0.04839299991726875, 0.29666998982429504, -0.322160005569458, 0.1751900017261505, -0.35370999574661255, 0.7437899708747864, -0.10571999847888947, -0.5667799711227417, -0.23680000007152557, -0.1820099949836731, 0.15960000455379486, 0.10916999727487564, 0.02900799922645092, 0.0710109993815422, -0.4250999987125397, -0.11035999655723572, -0.4702799916267395, 0.22070999443531036, -0.44345998764038086, -0.5656099915504456, -0.335640013217926, 0.5559599995613098, 0.6937299966812134, 0.25001001358032227, 0.3552199900150299, 0.4373199939727783, 0.09864600002765656, 0.6077600121498108, 0.08239799737930298, -0.2665899991989136, 0.22041000425815582, -0.492220014333725, 0.5787500143051147, -0.5648800134658813, -0.1584399938583374, 0.48445001244544983, -0.5337899923324585, -0.00787109974771738, 0.9000499844551086, -0.04410000145435333, -0.5153499841690063, 0.7136200070381165, 0.21015000343322754, 0.2657800018787384, -0.2501400113105774, 0.467739999294281, 0.3476400077342987, -0.8561000227928162, 0.04104100167751312, -0.43970999121665955, -0.712149977684021, 0.08592800050973892, 0.2574000060558319, 0.16549000144004822, -0.46595999598503113, -0.5379700064659119, -0.8678200244903564, -0.006239899899810553, -0.6587799787521362, 0.03532399982213974, 0.40518999099731445, 0.424919992685318, -0.03331900015473366, -0.27303001284599304, -0.24966000020503998, -0.523639976978302, -0.15470999479293823, 0.10604000091552734, 0.9021099805831909, -0.12815000116825104, 0.1907300055027008, -0.1498900055885315, -0.0988050028681755, -0.44391998648643494, 0.14012999832630157, -0.3021099865436554, -0.5181900262832642, 0.21258999407291412, 0.1539199948310852, -0.009134599938988686, -0.18437999486923218, -0.31209999322891235, 0.2718200087547302, -0.38596001267433167, -0.5322399735450745, 0.14351999759674072, 0.04673700034618378, -0.12159000337123871, 0.5311800241470337, -0.05612799897789955, -0.1960200071334839, 0.2506600022315979, 0.59934002161026, -0.3783699870109558, 0.5181099772453308, 0.10565999895334244, 0.3447299897670746, -0.0017124000005424023, 0.26014000177383423, 0.2143000066280365, -0.20029999315738678, 0.14219999313354492, 0.49625998735427856, 0.33855998516082764, 0.3059200048446655, 0.0984949991106987, 0.29409998655319214, 0.21875, -0.39803001284599304, 0.143669992685318, -0.6872400045394897, -0.1167600005865097, -0.036281000822782516, -0.2584500014781952, 0.30469000339508057, -0.08372800052165985, -0.17935000360012054, 0.2075899988412857, 0.21010999381542206, 0.0939909964799881, 0.051569998264312744, 0.23695999383926392, -0.22160999476909637, 0.1753000020980835, -0.13087999820709229, -0.0004976899945177138, 0.4946100115776062, 0.7041100263595581, -0.30428001284599304, -0.41861000657081604, -0.14404000341892242, -0.3627600073814392, -0.18288999795913696, 0.06165299937129021, -0.32771000266075134, -0.1573600023984909, -0.3081499934196472, 1.3617000579833984, -0.20724999904632568, -0.1834699958562851, 0.09818600118160248, -0.3170199990272522, 0.17597000300884247, -0.44196999073028564, 0.017103999853134155, -0.3511500060558319, 0.03200199827551842, 0.1141199991106987, 0.04697199910879135, -0.2337699979543686, -1.2343000173568726, 0.02359200082719326, 0.442220002412796, -0.08208999782800674, -0.1102600023150444, 0.14754000306129456, 0.04333600029349327, 0.893090009689331, -0.02488899976015091, -0.327129989862442, -0.33491000533103943, 0.0898440033197403, 0.2743600010871887, -0.5841299891471863, 0.463919997215271, 0.4342299997806549, -0.8429700136184692, -0.4185999929904938, 0.2484000027179718, -0.04813700169324875, 0.3381600081920624, -0.146139994263649, -0.21949000656604767, -0.22461000084877014, -0.25874999165534973, 0.01474399957805872, 0.03468799963593483, 0.1309099942445755, -0.5367199778556824, 0.03458100184798241, 0.10318999737501144, -0.6964799761772156, -0.5885499715805054, -0.06637699902057648, -0.4645799994468689, 0.4207099974155426, 0.055011000484228134, 0.2684899866580963, -0.1783600002527237, 0.018276000395417213, -0.3409099876880646, -0.12982000410556793, 0.26458999514579773, -0.3357299864292145, -0.39278000593185425, 0.1886100023984909, 0.45092999935150146, -0.46481001377105713, 0.18885000050067902, 0.32864001393318176, -0.09298399835824966, 0.14722999930381775, -0.14702999591827393, -0.28005000948905945, 0.0006643200176768005, -0.22210000455379486, -0.16102999448776245, -0.28231000900268555, -0.3145500123500824, 0.21143999695777893, -0.2505199909210205, -0.7300800085067749, 0.4901899993419647, -1.36080002784729, 0.1077599972486496, -0.3483799993991852, 0.13405999541282654, 0.1390399932861328, -0.036122001707553864, -0.028610000386834145, -0.2214300036430359, 0.1501999944448471, 0.10236000269651413, 0.6019899845123291, -0.017669999971985817, 0.5217900276184082, -0.06003300100564957, 0.10863000154495239, -0.2650200128555298, -0.45386001467704773, 0.12660999596118927, 0.23827999830245972, 0.39625999331474304, 0.2296999990940094, -0.12289000302553177, -0.05015400052070618, 0.1834300011396408], u'pot': [-0.3035599887371063, 0.39761000871658325, 0.022029999643564224, -0.32354000210762024, -0.10535000264644623, 0.29750001430511475, 0.7970499992370605, 0.2935500144958496, 0.5507299900054932, -0.36640000343322754, -0.05703200027346611, 0.14914000034332275, -0.882830023765564, 0.6955299973487854, -0.5447199940681458, 0.4092499911785126, -0.1571899950504303, 0.4455699920654297, -0.03859400004148483, -0.09162899851799011, 0.12370000034570694, -0.0495619997382164, 0.04808500036597252, 0.18649999797344208, 0.046932999044656754, -0.5706599950790405, -0.16064999997615814, 0.4329800009727478, 0.23858000338077545, -0.5050100088119507, -0.6118299961090088, 0.05005599930882454, 0.05323199927806854, -0.03099299967288971, 0.04461900144815445, 0.3198400139808655, 0.26469001173973083, -0.14080999791622162, -0.8047199845314026, 0.207519993185997, 0.02365799993276596, -0.31933000683784485, 0.17847000062465668, 0.13291999697685242, 0.5285500288009644, 0.08732900023460388, 0.6688299775123596, 0.004633000120520592, -0.42465001344680786, 0.4692800045013428, 0.00994119979441166, 0.4637700021266937, -0.48274001479148865, -0.1677200049161911, 0.3351300060749054, -0.22822999954223633, -0.10098999738693237, -0.2142300009727478, 0.6816999912261963, -0.10401000082492828, 0.0684180036187172, -0.10543999820947647, -0.16328999400138855, 0.43876999616622925, -0.27553999423980713, 0.05658299848437309, -0.2375199943780899, 0.22508999705314636, -0.7519400119781494, -0.0017752000130712986, -0.09089100360870361, -0.06790100038051605, 0.2595899999141693, 0.013269999995827675, -0.6188799738883972, 0.15063999593257904, 0.9584000110626221, -0.25637000799179077, -0.1066799983382225, -1.2793999910354614, -0.5577999949455261, -0.16368000209331512, 0.5703499913215637, -0.11698000133037567, 0.1749899983406067, -0.25317999720573425, 0.2543799877166748, 0.17308999598026276, -1.0196000337600708, -0.5488399863243103, 0.3839699923992157, -0.31325000524520874, -0.5181800127029419, 0.079475998878479, 0.05120699852705002, 0.022130999714136124, 0.0640610009431839, -0.4447700083255768, -0.08833499997854233, -0.21462999284267426, -0.3936299979686737, -0.04766400158405304, 0.26344001293182373, -0.3677400052547455, -0.10604000091552734, 0.554099977016449, -0.45162999629974365, 0.0780080035328865, -0.21784000098705292, 0.7125899791717529, -0.21827000379562378, 0.011675000190734863, 0.4682300090789795, -0.809249997138977, 0.2420700043439865, -0.1592700034379959, -0.6548799872398376, 0.3658500015735626, 0.37014999985694885, -0.3886899948120117, 0.11655999720096588, 0.2159699946641922, -0.14395000040531158, 0.20558999478816986, 0.34749001264572144, 0.04638100042939186, 1.028499960899353, 0.4963200092315674, -0.3051399886608124, 0.9729400277137756, 0.6049699783325195, 1.077299952507019, 0.005551000125706196, 0.0814879983663559, 0.17055000364780426, -0.4351100027561188, -0.2925100028514862, -0.5087000131607056, -0.24507999420166016, 0.20962999761104584, 0.18731999397277832, 0.5392699837684631, -0.20003999769687653, 0.044456999748945236, -0.7689899802207947, -0.3350299894809723, -0.15826000273227692, 0.552049994468689, 0.6225500106811523, -0.38117000460624695, -0.5233299732208252, 0.2599799931049347, -0.3792499899864197, 0.021352000534534454, -0.16008999943733215, 0.4473100006580353, -0.4286800026893616, -0.19158999621868134, -0.28431999683380127, 0.022523999214172363, 0.3466799855232239, 0.6464099884033203, 0.44444000720977783, 0.221670001745224, 0.149509996175766, -0.042417000979185104, 0.439410001039505, -0.06901499629020691, -0.47784000635147095, -1.0159000158309937, -0.2242799997329712, 0.2341500073671341, -0.2809999883174896, -0.6633700132369995, -0.1493300050497055, -0.405460000038147, 0.06832099705934525, -0.12790000438690186, 0.4992299973964691, 0.20465999841690063, -0.4696600139141083, 0.17484000325202942, 0.6531299948692322, 0.3078100085258484, -0.17486000061035156, -0.18115000426769257, 0.7466199994087219, 0.10080999881029129, 0.22023999691009521, -0.8507000207901001, 0.35078001022338867, 0.39449000358581543, -0.5337299704551697, 0.5403100252151489, -0.1987999975681305, -0.15568000078201294, -0.17850999534130096, 1.010599970817566, -0.19833999872207642, 0.09989099949598312, 0.46911001205444336, 0.5785800218582153, -0.03461199998855591, 0.09834499657154083, 0.09109500050544739, 0.19526000320911407, 0.1657399982213974, -0.24149000644683838, 0.014719000086188316, -0.07605999708175659, 0.2849000096321106, -0.3248000144958496, -0.00855919998139143, 0.10745000094175339, 0.1090100035071373, 0.33667001128196716, 0.04954500123858452, -0.08552999794483185, -0.28172001242637634, 0.361380010843277, -0.017319999635219574, -0.08038099855184555, -0.48381999135017395, -0.18714000284671783, -0.24842999875545502, 0.18839000165462494, 0.20061999559402466, -0.3358300030231476, -0.08220399916172028, 0.18860000371932983, 0.031230999156832695, -0.3639400005340576, -0.2121499925851822, 0.5205900073051453, 0.038725998252630234, -0.25, 0.22741000354290009, -0.5822499990463257, -0.2836199998855591, -0.3517799973487854, -0.3981899917125702, -0.30364999175071716, 0.21836000680923462, -0.1075500026345253, -0.42451998591423035, -0.21900999546051025, 0.6991299986839294, -0.022880999371409416, 0.12071000039577484, -0.5156499743461609, -0.09181699901819229, -0.4143899977207184, 0.37797999382019043, -0.3237000107765198, 0.4842100143432617, 0.17212000489234924, 0.39386001229286194, 0.26949000358581543, -1.0703999996185303, 0.008422999642789364, -0.3107999861240387, -0.20839999616146088, 0.023114999756217003, 0.04971100017428398, -0.17836999893188477, 0.042562998831272125, -0.48691999912261963, -0.006264300085604191, -0.2509100139141083, 0.2851400077342987, -0.7588099837303162, 0.33410000801086426, 0.5581200122833252, 0.5346300005912781, 0.49698999524116516, 0.44958001375198364, -1.1655000448226929, 0.1918099969625473, -0.9640499949455261, 0.19631999731063843, -0.05271200090646744, -0.36660999059677124, -0.619920015335083, 0.2604199945926666, 0.2579300105571747, 0.1121399998664856, 0.2059900015592575, 0.008213399909436703, 0.030733000487089157, 0.9135800004005432, -0.22201000154018402, -0.031130999326705933, 0.40623000264167786, 0.4858100116252899, 0.6208699941635132, -0.8264700174331665, 0.6453199982643127, -0.43024998903274536, -0.4779199957847595, 0.7664600014686584], u'canyon': [-0.03474799916148186, 0.29447001218795776, -0.3464600145816803, -0.298799991607666, 0.17125999927520752, 0.3460400104522705, -0.0845090001821518, 0.09528700262308121, 0.2011999934911728, -0.18663999438285828, -0.8067299723625183, -0.0025895999278873205, 0.4300299882888794, -0.0026360999327152967, -0.38920000195503235, 0.068852998316288, 0.09251300245523453, -0.2293500006198883, 0.640030026435852, 0.716509997844696, 0.39083999395370483, 0.39302000403404236, 0.27636998891830444, 0.14603999257087708, 0.43926000595092773, -0.08516799658536911, 0.2581599950790405, -0.22001999616622925, -0.331279993057251, 0.3917500078678131, 1.5671000480651855, 0.4352099895477295, -0.19900000095367432, -0.34272000193595886, 0.48104000091552734, 0.1997700035572052, -0.5305299758911133, -0.08659300208091736, 0.3035399913787842, -0.5047600269317627, -0.2902500033378601, 0.7964100241661072, 0.12307000160217285, 0.946690022945404, -0.2319899946451187, -0.2257699966430664, 0.8533599972724915, 0.12081000208854675, 1.1039999723434448, -0.3170599937438965, 0.05051400139927864, -0.30156999826431274, -0.030696000903844833, 0.1843400001525879, 0.4203599989414215, -0.09505199640989304, -0.9015300273895264, -0.323309987783432, 0.20372000336647034, 0.38345998525619507, -0.1819400042295456, -0.10592000186443329, 0.8131200075149536, 0.06746800243854523, 0.35982999205589294, -0.6602399945259094, 0.0007406399818137288, 0.20062999427318573, -0.33698999881744385, -0.41297000646591187, 0.2199299931526184, -0.12482000142335892, 0.12293999642133713, 1.252500057220459, -0.024457000195980072, 0.1530900001525879, 0.16391000151634216, -0.23732000589370728, -0.1848900020122528, -0.42923998832702637, -0.1601399928331375, -0.648389995098114, 0.38964998722076416, -0.23326000571250916, -0.020692000165581703, -0.1107499971985817, -0.14927999675273895, 0.5666199922561646, 0.5561500191688538, 0.17648999392986298, -0.11004000157117844, 0.04830300062894821, 0.7417500019073486, 0.2641899883747101, 0.15349000692367554, 0.32124000787734985, 0.7222599983215332, -0.4704500138759613, 0.048792000859975815, 0.3465699851512909, 0.032311998307704926, -0.0881659984588623, -0.3026899993419647, 0.14300000667572021, -0.38159000873565674, 0.017760999500751495, 0.45076000690460205, 0.5200799703598022, 0.06111299991607666, -0.4195300042629242, -0.7518100142478943, -0.5572500228881836, 0.3801499903202057, -0.5383800268173218, -0.277209997177124, -0.0160559993237257, 0.29335999488830566, -0.07743699848651886, -0.09614700078964233, 0.9449599981307983, 0.298909991979599, -0.48212000727653503, -0.23849999904632568, -0.1836100071668625, -0.1296599954366684, 0.0939980000257492, -0.10515999794006348, 0.3031400144100189, -0.2740600109100342, 0.05851700156927109, 0.18282000720500946, 0.13440999388694763, 0.3394399881362915, 0.20134000480175018, 0.23146000504493713, -0.13334999978542328, -0.04709000140428543, 0.21070000529289246, 0.042757000774145126, -0.29580000042915344, 0.20338000357151031, -0.5414900183677673, -0.21661999821662903, -0.2531900107860565, -0.36994999647140503, -0.8569300174713135, 0.42381998896598816, 0.1071000024676323, 0.10305000096559525, 0.31139999628067017, 1.1640000343322754, 0.3379899859428406, -0.18584999442100525, -0.30300000309944153, 0.7458800077438354, 0.0023831999860703945, 0.39427998661994934, -0.023396000266075134, -0.7628499865531921, 0.03441299870610237, 0.1492999941110611, -0.7780799865722656, 0.4321799874305725, 0.3895399868488312, 0.22947999835014343, -0.1445000022649765, 0.16269999742507935, -0.04318400099873543, -0.3559100031852722, -0.4847800135612488, -0.6810200214385986, -0.09739600121974945, 0.5027199983596802, -0.16875000298023224, -0.19997000694274902, 0.5891299843788147, -0.36798998713493347, -0.24345999956130981, 0.45159000158309937, -0.38951998949050903, 0.13932999968528748, 0.8313599824905396, 0.17794999480247498, -0.054455000907182693, -0.7297899723052979, -0.613610029220581, 0.3781200051307678, -0.35117998719215393, -0.13985000550746918, 0.25165000557899475, 0.007601900026202202, 0.9978899955749512, 0.09641200304031372, -0.45987001061439514, -0.2912999987602234, -0.16401000320911407, 0.019896000623703003, -0.78889000415802, 0.2131199985742569, 1.0104000568389893, 1.4816999435424805, 0.24984000623226166, -0.10103999823331833, -0.31560999155044556, -0.06527899950742722, 0.6673300266265869, -0.08919999748468399, 0.05490100011229515, 0.30406999588012695, 0.014537000097334385, -0.2691600024700165, 0.06142299994826317, -0.09693499654531479, -0.21533000469207764, 0.487529993057251, 0.16381999850273132, 0.08159200102090836, -0.06653100252151489, 0.1416199952363968, -0.2827700078487396, 0.6038900017738342, 0.20976999402046204, -0.2591400146484375, -0.3182600140571594, 0.3658500015735626, -0.17423999309539795, -0.0771699994802475, 0.019267000257968903, -0.23295000195503235, -0.2525100111961365, -0.9723600149154663, -0.4746600091457367, -0.4160099923610687, 0.06250300258398056, 0.674239993095398, -0.33243000507354736, 0.18738999962806702, -0.7771199941635132, 0.04057500138878822, -0.26023000478744507, -0.27188000082969666, 0.7025899887084961, -0.020896000787615776, 0.02082899957895279, -0.7577199935913086, -0.43338000774383545, 0.5478799939155579, -0.2388399988412857, -0.15454000234603882, 0.251800000667572, 0.19697000086307526, -0.10656999796628952, 0.07458899915218353, -0.8224300146102905, 0.2521600127220154, -0.04466899856925011, 0.4405199885368347, 0.4293999969959259, 0.2833099961280823, 0.3070099949836731, -0.38578000664711, -0.2357800006866455, 0.226500004529953, -0.761650025844574, -0.06182600185275078, -0.30410999059677124, 0.6492400169372559, 0.3963800072669983, -0.293040007352829, 0.1959500014781952, -0.35062000155448914, -0.6450799703598022, 0.7128300070762634, 0.4648300111293793, 0.5255900025367737, -0.3841499984264374, -0.35016998648643494, 0.09232600033283234, 0.04335800185799599, -0.2884399890899658, 0.5232599973678589, -0.008075299672782421, -0.10582999885082245, 0.2156199961900711, -0.5456500053405762, -0.40070000290870667, -0.005590999964624643, -0.36055999994277954, 0.21810999512672424, -0.3307799994945526, 0.22321000695228577, -0.33904001116752625, -0.5114700198173523, 0.5661600232124329, -0.18765999376773834, 0.06039299815893173, 0.04090199992060661, 0.5629900097846985, 0.4791400134563446, 0.34248998761177063], u'tomato': [0.00012323999544605613, 0.16989000141620636, 0.6841300129890442, -0.05591300129890442, -0.05171699821949005, -0.2835899889469147, -0.4241499900817871, -0.08672600239515305, 0.33351001143455505, 0.16857999563217163, -0.05616400018334389, 0.12058000266551971, -0.17020000517368317, 0.8130300045013428, -0.25679001212120056, -0.3809100091457367, -0.24729999899864197, 0.5611100196838379, -0.6093400120735168, 0.5872600078582764, -0.3638100028038025, 0.17069999873638153, -0.13510000705718994, -0.1612900048494339, 0.23927000164985657, -0.47113001346588135, -0.43588998913764954, 0.047022998332977295, -0.6501299738883972, -0.6676200032234192, -0.5403900146484375, 0.13683000206947327, -0.1368899941444397, -0.09548100084066391, 0.043428000062704086, 0.6247599720954895, 0.08243399858474731, -0.41791000962257385, 0.08307400345802307, 0.008580800145864487, 0.43768998980522156, -0.2641400098800659, 0.09447000175714493, 0.1717199981212616, 0.10018999874591827, -0.07764499634504318, 0.15557000041007996, 0.7396900057792664, -0.23803000152111053, -0.4867599904537201, -0.35280001163482666, -0.2157299965620041, 0.1710900068283081, -0.11144000291824341, -0.5041499733924866, -0.05042000114917755, -0.2810400128364563, -0.1352500021457672, 0.5760300159454346, -0.19083000719547272, 0.4499100148677826, -0.8385300040245056, 0.13956999778747559, 0.2933500111103058, -0.45882999897003174, 0.2739500105381012, -0.6987800002098083, 0.21110999584197998, -0.20419000089168549, -0.14642000198364258, 0.24172000586986542, 0.2598100006580353, 0.058795999735593796, -0.2548600137233734, -1.041200041770935, 0.04092400148510933, 0.646619975566864, -0.23747999966144562, -0.30908000469207764, 0.08539800345897675, -0.05808800086379051, 0.2693299949169159, -0.11799000203609467, -0.09245000034570694, 0.11145000159740448, -0.06930500268936157, -0.03245700150728226, 0.01961199939250946, -0.05620500072836876, -0.6439399719238281, 0.23890000581741333, -0.21863999962806702, 0.048889998346567154, -0.43439000844955444, -0.245619997382164, 0.49487999081611633, 0.02504199929535389, 0.5133100152015686, -0.3250499963760376, 0.3003999888896942, 0.4025000035762787, -0.01998800039291382, 0.586080014705658, -0.8011199831962585, -0.8271600008010864, -0.24754999577999115, -0.6194300055503845, 0.045329999178647995, -0.4081000089645386, 0.6614999771118164, 0.48431000113487244, 0.3459100127220154, -0.17208999395370483, -0.47606000304222107, -0.6940500140190125, -0.2707499861717224, -0.7260599732398987, 0.7622900009155273, 0.5876200199127197, 0.13833999633789062, -0.37953001260757446, -0.3191699981689453, 0.25224998593330383, 0.25192999839782715, -0.18104000389575958, -0.07645200192928314, 0.020004000514745712, 0.37288999557495117, -0.4978199899196625, 0.5290799736976624, 0.41631999611854553, 1.063599944114685, -0.19958999752998352, 0.3907899856567383, -0.20284000039100647, -0.8184700012207031, -0.4702099859714508, -0.1604200005531311, 0.313620001077652, 0.5222399830818176, 0.43907999992370605, 0.5079799890518188, -0.4714199900627136, -0.6390699744224548, -0.40946999192237854, 0.8994100093841553, 0.11080999672412872, -0.17489999532699585, 0.3797900080680847, -0.4682599902153015, -1.2525999546051025, -0.17086000740528107, 0.12594999372959137, -0.05062999948859215, -0.5598499774932861, -0.4000200033187866, -0.04924499988555908, -0.5987899899482727, -0.2952300012111664, 0.17428000271320343, 0.6156700253486633, 0.23380999267101288, 0.10188999772071838, 0.11584000289440155, 0.6598399877548218, -0.5494700074195862, -0.2262900024652481, 0.05720999836921692, -0.22901000082492828, -0.8382700085639954, -0.015420000068843365, 0.23438000679016113, -0.6172299981117249, 0.05475800111889839, -0.155689999461174, -0.45794999599456787, 0.2759299874305725, -0.43191999197006226, 0.8211600184440613, -0.2651500105857849, -0.21965999901294708, -0.13424000144004822, -0.09902799874544144, -0.3356499969959259, -0.11537999659776688, -0.7902100086212158, 0.28679999709129333, 0.035673998296260834, 0.4485499858856201, -0.017488999292254448, -0.4340600073337555, 1.089400053024292, -0.3917999863624573, -0.1436000019311905, 0.2784999907016754, 0.022319000214338303, 0.10081999748945236, 0.11349000036716461, -0.6227399706840515, 0.2113800048828125, 0.008100899867713451, -0.3587999939918518, 1.1435999870300293, 0.35034000873565674, -0.24295000731945038, 0.49838000535964966, 0.35023999214172363, 0.2662700116634369, 0.2624500095844269, -0.07592999935150146, -0.16993999481201172, -0.25394999980926514, -0.40119001269340515, -0.1964000016450882, 0.19185000658035278, 0.10937999933958054, 0.23752999305725098, -0.06031699851155281, -0.2042900025844574, 0.20830999314785004, 0.38708001375198364, -0.14952999353408813, -0.5768100023269653, 0.13395999372005463, -0.6581699848175049, -0.35558000206947327, 0.0803309977054596, -0.26190999150276184, -0.17889000475406647, -0.07965700328350067, -0.17308999598026276, 0.36546000838279724, 0.20096999406814575, -0.1904900074005127, 0.886650025844574, 0.2414499968290329, 0.22944000363349915, -0.2271299958229065, -0.3504999876022339, -0.07363799959421158, -0.20648999512195587, -0.42910000681877136, -0.2027300000190735, -0.32433000206947327, -0.8533499836921692, 0.09515900164842606, 0.3560200035572052, 0.07505100220441818, -0.6679999828338623, -1.2904000282287598, 0.5051199793815613, 0.36302998661994934, -0.36267998814582825, 0.3443700075149536, 0.6083199977874756, 0.1881600022315979, -0.3270300030708313, 0.28442999720573425, -0.1719599962234497, 0.3294000029563904, 0.2686299979686737, 0.13899999856948853, 0.42517000436782837, -0.4545699954032898, 0.27731001377105713, -0.6470000147819519, -0.38517001271247864, 0.10762999951839447, 0.15768000483512878, -0.16418999433517456, 0.18416999280452728, -0.052476998418569565, -0.1822499930858612, 0.47056999802589417, -0.055013999342918396, 0.4229699969291687, -0.617169976234436, -0.4837000072002411, -0.9350500106811523, -0.39381998777389526, -0.39423999190330505, -0.2851699888706207, -0.06003199890255928, 0.16607999801635742, -0.14687000215053558, -0.26203998923301697, 0.7261999845504761, -0.041958998888731, 0.2400200068950653, 0.048496998846530914, 0.32166001200675964, -0.22902999818325043, 0.7135000228881836, -0.18443000316619873, -0.3285900056362152, -0.4950999915599823, 0.1530500054359436, -0.7564299702644348, 0.36465999484062195, 0.37053000926971436], u'church': [-0.6523600220680237, -0.7469099760055542, -0.7139700055122375, -0.005951500032097101, -0.25791001319885254, -0.2159299999475479, -0.3519900143146515, -0.1160300001502037, -0.056035999208688736, -1.2818000316619873, -0.164110004901886, 0.7074800133705139, 0.5212299823760986, 0.3277899920940399, 0.1738699972629547, -0.5392000079154968, -0.18577000498771667, -0.47874999046325684, -0.24883000552654266, -0.6199399828910828, -0.023262999951839447, 0.1254899948835373, 0.04575200006365776, 0.11283999681472778, -0.02009899914264679, 0.23056000471115112, -0.41756001114845276, -0.25314998626708984, -0.697380006313324, 0.41157999634742737, 0.8880800008773804, 0.8385199904441833, -0.6606799960136414, 0.7071899771690369, -0.2674199938774109, 0.20890000462532043, -0.2784000039100647, -0.6108800172805786, -0.15424999594688416, -0.09471599757671356, -0.04770899936556816, 0.26721999049186707, -0.43974000215530396, 0.6377500295639038, 0.6514899730682373, 0.26826998591423035, 0.4333299994468689, -0.22958000004291534, 0.022456999868154526, -0.028403999283909798, -0.035516999661922455, 0.517989993095398, -0.48083001375198364, 0.47857001423835754, -0.05461199954152107, 0.2521199882030487, 0.18369999527931213, 0.6167899966239929, 0.013829999603331089, -0.14949999749660492, 0.9226499795913696, 0.17462000250816345, 0.46116000413894653, 1.1370999813079834, 0.0942080020904541, -1.12909996509552, 0.14715999364852905, -0.2794399857521057, -0.05511400103569031, -0.381740003824234, -0.773419976234436, -1.0166000127792358, -0.6523000001907349, 0.026551999151706696, 0.10459999740123749, -0.24240000545978546, -0.013206999748945236, 0.28134000301361084, -0.4312799870967865, -0.39136001467704773, -0.47672998905181885, -0.07255800068378448, -0.4636799991130829, 0.22186000645160675, 0.020483000203967094, 0.17291000485420227, 0.26030999422073364, 0.3154999911785126, 0.009201999753713608, 0.3549099862575531, 0.044172000139951706, -0.7893000245094299, -0.19731999933719635, 0.4070900082588196, -0.20552000403404236, -0.6404600143432617, 0.33855998516082764, 0.05195799842476845, -0.9975299835205078, 0.0970349982380867, -0.19654999673366547, 0.1561799943447113, 4.014799924334511e-05, 0.12240000069141388, 0.50559002161026, -0.09644100069999695, 0.1850699931383133, 0.6272500157356262, -0.23697000741958618, -0.3357200026512146, -0.22439000010490417, -0.3305400013923645, -0.07336600124835968, 0.23306000232696533, -0.38155001401901245, -0.46931999921798706, -0.15338000655174255, -0.4837000072002411, -0.47415000200271606, -0.3969300091266632, 0.07524800300598145, -0.07361199706792831, 0.536080002784729, -0.08191700279712677, 0.318230003118515, 0.03279300034046173, 0.46048998832702637, 0.3931399881839752, 0.060568999499082565, 0.03411899879574776, 0.5719699859619141, -0.4192599952220917, 0.1095300018787384, -0.06525500118732452, 0.7338500022888184, 0.041742000728845596, -0.11460000276565552, -0.16911999881267548, -0.42704999446868896, -0.5008299946784973, -0.09635499864816666, 0.10553000122308731, -0.3139899969100952, 0.21461999416351318, -0.1709900051355362, -0.20016999542713165, -0.08077699691057205, 0.20192000269889832, -0.008065699599683285, -0.12904000282287598, 0.3595600128173828, 0.06463699787855148, -0.15577000379562378, -0.002956199925392866, -0.2575500011444092, 0.9733899831771851, 0.09395399689674377, 0.5885499715805054, 0.19377000629901886, 0.11879000067710876, 0.39291998744010925, 0.4776799976825714, 0.7250800132751465, -0.16696999967098236, -1.1800999641418457, 0.25349000096321106, -0.47512000799179077, -0.10154999792575836, 0.7827500104904175, -0.5056599974632263, 0.1100199967622757, -0.05635499954223633, -0.147599995136261, 0.2896699905395508, 0.44562000036239624, 0.7997900247573853, 0.12427999824285507, 0.1240599974989891, -0.47624000906944275, 0.20964999496936798, 0.09463000297546387, 0.7068399786949158, 0.028186999261379242, -0.3064799904823303, 0.645359992980957, 0.13357000052928925, -0.9009900093078613, -0.17190000414848328, -0.06190900132060051, 0.40128999948501587, 0.10412999987602234, -0.08274800330400467, 0.021158000454306602, 0.4402399957180023, 0.019293000921607018, -0.18424999713897705, 0.4696600139141083, -0.7213900089263916, -0.18505999445915222, 0.413239985704422, 0.6156799793243408, -0.6087300181388855, 0.0037964999210089445, -0.41350001096725464, 0.15126000344753265, -0.4802199900150299, -0.055268000811338425, 0.11078000068664551, -0.20642000436782837, 0.5179200172424316, 0.12861000001430511, 0.7346900105476379, -0.723609983921051, -0.6522200107574463, -0.38199999928474426, 0.2768099904060364, 0.1567700058221817, -0.23744000494480133, 0.03060699999332428, 0.5936300158500671, 0.26096999645233154, -0.11371000111103058, -0.25780001282691956, -0.31369999051094055, -0.19726000726222992, -0.3654400110244751, -0.17271000146865845, 0.20527000725269318, 0.20419999957084656, 0.2219099998474121, -0.328249990940094, 0.3379499912261963, -0.048170000314712524, 0.1277800053358078, 0.031029999256134033, -0.377920001745224, 0.697350025177002, 0.18844999372959137, -1.2842999696731567, 0.20494000613689423, -0.26502999663352966, -0.1425500065088272, 0.4518199861049652, -0.6078699827194214, -0.1877100020647049, 0.43860000371932983, 0.48596999049186707, 0.4012399911880493, 0.18559999763965607, 0.11582999676465988, -0.028147000819444656, 0.31505000591278076, 0.35986000299453735, 0.05311400070786476, 0.5838000178337097, 0.07142700254917145, 0.07099799811840057, -0.6643499732017517, 0.25722000002861023, -0.18163999915122986, -0.3209899961948395, 0.20141999423503876, 0.15926000475883484, 0.0007454900187440217, 0.007360899820923805, -0.6877800226211548, -0.2913599908351898, -0.11625999957323074, 0.0503619983792305, 0.1766899973154068, -0.8539199829101562, -0.30375999212265015, 0.17467999458312988, 0.25613000988960266, -0.19380000233650208, 0.09501899778842926, -2.126699924468994, -0.04545700177550316, 0.7124699950218201, 0.7228599786758423, 0.4528599977493286, -0.05670500174164772, 0.22522999346256256, -0.19072000682353973, -0.30487000942230225, 0.7323899865150452, -0.49744001030921936, 0.37551000714302063, 0.18303999304771423, -0.06440000236034393, -0.382889986038208, -0.15444999933242798, 0.22412000596523285, 0.6525800228118896, 0.18424999713897705, 0.014895999804139137, -0.15188999474048615, 0.30928000807762146, 0.10806000232696533, -0.12449000030755997], u'table': [-0.256089985370636, 0.5052700042724609, 0.6702399849891663, -0.48322999477386475, -0.16091999411582947, 0.4055199921131134, -0.577530026435852, -0.6172699928283691, 0.27748000621795654, -1.1638000011444092, -0.2771199941635132, -0.020294999703764915, 0.02877499908208847, 0.22266000509262085, -0.12470000237226486, 0.21623000502586365, -0.34953999519348145, 0.4387199878692627, -0.11428999900817871, -0.5208799839019775, -0.09877599775791168, 0.36173999309539795, -0.10907000303268433, -0.33722999691963196, 0.12477999925613403, -0.17475999891757965, -0.028060000389814377, 0.29811999201774597, 0.4519999921321869, -0.1525299996137619, -0.08335699886083603, 0.03476100042462349, -0.24092000722885132, 0.3274900019168854, -1.4544999599456787, 0.48006001114845276, 0.331959992647171, -0.1540299952030182, -0.6942099928855896, -0.2776699960231781, -0.11926999688148499, -0.43105000257492065, -0.47290000319480896, 0.3703399896621704, 0.3416900038719177, -0.05325400084257126, 0.15647000074386597, -0.10772000253200531, 0.0165180005133152, 0.38008999824523926, 0.3429499864578247, 0.24506999552249908, -0.38752999901771545, -0.5432299971580505, -0.46239998936653137, 0.3305099904537201, -0.5591099858283997, -0.27595001459121704, 0.08159200102090836, 0.6352400183677673, 0.49963998794555664, -0.43428999185562134, 0.06719899922609329, 0.25352001190185547, -0.5093299746513367, -0.7463799715042114, -0.25850000977516174, 0.2326900064945221, -0.25115999579429626, -0.10638999938964844, 0.18583999574184418, 0.12071999907493591, -0.30594000220298767, -0.3820500075817108, -0.7889400124549866, 0.19583000242710114, -0.24714000523090363, -0.07462400197982788, -0.1596899926662445, -0.4459199905395508, -0.08155199885368347, 0.31977999210357666, 0.10503000020980835, 0.0054445997811853886, 0.2655400037765503, -0.7573400139808655, -0.5335999727249146, 0.290120005607605, -0.06411799788475037, 0.07188999652862549, -0.10019999742507935, 0.18322999775409698, -0.3672100007534027, 0.051837000995874405, 0.2561500072479248, 0.11507999897003174, -0.20353999733924866, -0.024862000718712807, 0.17288999259471893, -0.567870020866394, -0.1949699968099594, 0.16598999500274658, -0.02274000085890293, -0.12867000699043274, -0.16200000047683716, -0.17047999799251556, -0.1043199971318245, -0.2535000145435333, 0.2204499989748001, -0.4566099941730499, -0.13744999468326569, -0.030223999172449112, 0.043699000030756, -0.18161000311374664, -0.45375001430511475, 0.06096599996089935, -0.5672600269317627, -0.039767999202013016, -0.2670300006866455, -0.06397400051355362, -0.2601200044155121, 0.29440999031066895, 0.30542999505996704, 0.3277300000190735, -0.31902000308036804, 0.31057998538017273, 0.20735999941825867, 0.020728999748826027, -0.3487299978733063, -0.16662999987602234, -0.11727999895811081, 0.3334200084209442, 0.4122700095176697, -0.08525200188159943, 0.5206500291824341, 0.1964700073003769, 0.3780199885368347, 0.2924799919128418, -0.4431400001049042, 0.19523000717163086, 0.08237099647521973, 0.27869999408721924, 0.13965000212192535, -0.06909800320863724, -0.11195000261068344, 0.5214300155639648, 0.43849000334739685, 0.03121500089764595, 0.08999300003051758, -0.20983999967575073, -0.460750013589859, 0.3215799927711487, 0.312610000371933, -0.08153899759054184, 0.06409899890422821, 0.020493999123573303, -0.06891299784183502, 0.022847000509500504, -0.018045000731945038, 0.47409000992774963, 0.2556000053882599, 0.2894200086593628, 0.005348999984562397, 0.2218399941921234, 0.5758799910545349, 0.2708500027656555, 0.029016999527812004, -0.09782099723815918, 0.13407999277114868, 0.08263599872589111, -0.6502599716186523, 0.3704099953174591, -0.1696999967098236, -0.5220299959182739, -0.07504499703645706, -0.4008600115776062, -0.1476999968290329, 0.9749500155448914, -0.098860003054142, -0.16053999960422516, -0.09223999828100204, -0.37929999828338623, 0.3605400025844574, -0.10380999743938446, 0.4490100145339966, 0.08289200067520142, -0.07997699826955795, 0.08435600250959396, 0.04224799945950508, -0.0964210033416748, 0.691789984703064, 0.4988600015640259, 0.40619000792503357, -0.07779999822378159, -0.14788000285625458, 0.05270899832248688, -0.09787700325250626, 0.07082799822092056, -0.5629600286483765, 0.0522180013358593, 0.9761000275611877, -0.5536500215530396, -0.044514000415802, -0.18416999280452728, 0.30776000022888184, -0.6362900137901306, -0.10328999906778336, -0.7368500232696533, -0.3794099986553192, -0.0570329986512661, -0.3435800075531006, -0.2622700035572052, -0.2140900045633316, 0.18885000050067902, 0.5408099889755249, 0.5431200265884399, -0.03865300118923187, -0.33017000555992126, 0.16678999364376068, 0.10520999878644943, 0.23586000502109528, 0.13128000497817993, -0.0023244000039994717, -0.14755000174045563, -0.6543999910354614, 0.2253199964761734, 0.2753300070762634, 0.44426000118255615, -0.5224400162696838, -0.12011999636888504, 0.06167899817228317, -0.12355999648571014, 0.3502799868583679, 0.033955998718738556, 0.5760300159454346, 0.26243001222610474, -0.3162499964237213, 0.027056999504566193, 0.06856200098991394, 0.36305001378059387, -0.15706999599933624, -0.18637999892234802, -0.15244999527931213, 0.5138499736785889, 0.003051399951800704, 0.3636299967765808, -0.5427899956703186, 0.5440000295639038, -0.3303300142288208, -0.018278000876307487, 0.034519001841545105, -0.38429999351501465, 0.4817200005054474, -0.24718999862670898, 0.17587000131607056, 0.3404200077056885, -0.2586599886417389, 0.1147100031375885, -0.4248400032520294, 0.7757700085639954, -0.47343000769615173, -0.24318000674247742, 0.6615300178527832, 0.11480999737977982, 0.027111999690532684, 0.0797630026936531, -0.10655999928712845, 0.30877000093460083, 0.1464499980211258, -0.12334000319242477, -0.7975500226020813, 0.0829790011048317, -0.10762999951839447, 0.2561599910259247, 0.6034299731254578, -0.26589998602867126, -1.6927000284194946, 0.16208000481128693, 0.27090999484062195, -0.287990003824234, -0.2205599993467331, -0.14431999623775482, -0.5978099703788757, -0.5589900016784668, 0.6231899857521057, 0.10158000141382217, -0.06904800236225128, -0.35172998905181885, 0.08186700195074081, -0.19860999286174774, -0.35076001286506653, 0.29545000195503235, -0.1848199963569641, -0.10118000209331512, 0.25696998834609985, -0.40751001238822937, 0.6938700079917908, -0.4472000002861023, 0.18863999843597412, 0.18275000154972076], u'ring': [-0.11721000075340271, 0.24539999663829803, 0.1185699999332428, -0.9813100099563599, -0.5585299730300903, -0.265390008687973, 0.2814599871635437, -0.37237998843193054, -0.6319100260734558, -0.9711899757385254, 0.206169992685318, 0.27074000239372253, -0.5082399845123291, 0.05072199925780296, -0.7851399779319763, -0.8908100128173828, -0.5038099884986877, 0.1565299928188324, -0.028643999248743057, -0.11034999787807465, -0.023887999355793, -0.3088400065898895, -0.18371999263763428, -0.3676699995994568, 0.031279999762773514, -0.43595001101493835, -0.0892219990491867, 0.10869000107049942, 0.08690500259399414, 0.10420999675989151, 0.19302000105381012, 0.27608999609947205, -0.7346000075340271, -0.06097099930047989, -0.42318999767303467, 0.4728800058364868, -0.15012000501155853, 0.2462099939584732, 0.06635499745607376, 0.19592000544071198, -0.3055799901485443, 0.21487000584602356, -0.4521099925041199, 0.26381999254226685, 0.08730000257492065, 0.04546700045466423, 0.005125400144606829, -0.3407000005245209, -0.2781299948692322, 0.3693400025367737, -0.14648999273777008, -0.41291001439094543, 0.12087000161409378, 0.20656000077724457, -0.09556599706411362, -0.18004000186920166, -0.17222000658512115, 0.3383600115776062, -0.364329993724823, -0.6360999941825867, 0.2517299950122833, -0.2662299871444702, 0.0668720006942749, 0.31411001086235046, 0.2858699858188629, 0.14345000684261322, -0.2507399916648865, 0.2829299867153168, 0.688319981098175, 0.15331999957561493, 0.09967300295829773, 0.012165999971330166, 0.7277399897575378, 0.06235000118613243, -0.15580999851226807, -0.0738300010561943, 0.5005599856376648, -0.7478399872779846, -0.24350999295711517, 0.3585900068283081, 0.8984500169754028, -0.04245699942111969, 0.4090900123119354, 0.22050000727176666, 0.06284099817276001, -0.3595399856567383, -0.20117999613285065, 0.05004400014877319, -0.19519999623298645, 0.41982001066207886, -0.13659000396728516, 0.31064000725746155, 0.3150100111961365, 0.1501699984073639, -0.6877999901771545, 0.29361000657081604, -0.32655999064445496, -0.040160998702049255, 0.1735299974679947, -1.003999948501587, 0.22032999992370605, 0.657039999961853, -0.07238099724054337, 0.29580000042915344, 0.1300400048494339, -0.3652999997138977, 0.6482499837875366, 0.24666999280452728, -0.46797001361846924, 0.2587699890136719, -0.20638999342918396, -0.1790499985218048, 0.8060399889945984, 0.12060999870300293, -0.09498199820518494, 0.6838899850845337, -0.17973999679088593, 0.2234400063753128, -0.6307899951934814, -0.49154001474380493, 0.16638000309467316, -0.2963100075721741, 0.13561999797821045, -0.033633001148700714, -0.30430999398231506, -0.3549099862575531, 0.530210018157959, 0.25575000047683716, -0.5904200077056885, -0.570609986782074, 0.04123000055551529, 0.5628299713134766, 0.3980900049209595, 0.697920024394989, -0.03344700112938881, -0.21338999271392822, 0.23027999699115753, -0.03723499923944473, 0.017712999135255814, -0.8129900097846985, 0.06655900180339813, -0.19269999861717224, -0.24094000458717346, -0.1323300004005432, 0.6904100179672241, -0.2145400047302246, -0.1379999965429306, -0.046762000769376755, -0.19035999476909637, 0.4251900017261505, 0.22189000248908997, 0.3678700029850006, -0.2915300130844116, 0.08759000152349472, 0.1812800019979477, -0.09586700052022934, -0.0021575000137090683, 0.04371599853038788, -0.24954000115394592, -0.30612000823020935, -0.2606399953365326, 0.08471900224685669, 0.8294199705123901, -0.10296999663114548, -0.11150000244379044, 0.04097599908709526, -0.05347999930381775, -0.20416000485420227, 0.6662300229072571, 0.008208200335502625, -0.24562999606132507, -0.22896000742912292, 0.23218999803066254, 0.040445998311042786, 0.38938000798225403, 0.06386099755764008, 0.1007699966430664, 0.634119987487793, -0.47374001145362854, -0.6658400297164917, 0.19740000367164612, 0.3503600060939789, -0.0595569983124733, -0.3882899880409241, -0.1383100003004074, -0.5329099893569946, -0.15633000433444977, 0.7968199849128723, 0.10649000108242035, -0.747730016708374, 0.314410001039505, 0.0491890013217926, -0.2676999866962433, 0.6406499743461609, 0.09485699981451035, -0.05956900119781494, -0.19781999289989471, -0.5209599733352661, 0.7099199891090393, 0.03569699823856354, 1.3890999555587769, 0.30827000737190247, 0.4113900065422058, 0.24232999980449677, 0.05834199860692024, 0.09405799955129623, 0.06991100311279297, -0.07291000336408615, 0.41648998856544495, -0.06450500339269638, -0.10525999963283539, 0.460099995136261, 0.035597000271081924, 0.24525000154972076, -0.4066999852657318, -0.26159000396728516, -0.16272999346256256, -0.4374200105667114, -0.38694000244140625, 0.307779997587204, 0.0005994500243104994, -0.09296700358390808, 0.4405600130558014, -0.31338998675346375, 0.34147000312805176, 0.5964999794960022, 0.249549999833107, -0.046831000596284866, -0.038353998214006424, 0.09016799926757812, 0.7121300101280212, 0.04819199815392494, -0.24130000174045563, -0.5074999928474426, -0.20276999473571777, -0.048875000327825546, -0.24048000574111938, -0.3046700060367584, 0.2142300009727478, 0.2787899971008301, -0.213809996843338, -0.5873000025749207, 0.3118799924850464, -0.08219499886035919, -0.02106899954378605, -0.5440800189971924, 0.0818450003862381, 0.19750000536441803, -0.05853300169110298, -0.07960300147533417, -0.4162299931049347, -0.008661599829792976, -0.3086499869823456, -0.06142500042915344, 0.3128899931907654, 0.27360999584198, -0.032954998314380646, -0.04640600085258484, -0.12547999620437622, 0.2877199947834015, -0.40676000714302063, -0.22439000010490417, 0.733780026435852, 0.6861100196838379, -0.19526000320911407, -0.21149000525474548, -0.06520300358533859, 0.13526999950408936, -0.1444299966096878, 0.008596899919211864, 0.3714100122451782, -0.2142699956893921, 0.610729992389679, -0.24814000725746155, -0.5663700103759766, 0.032058000564575195, -1.5297000408172607, -0.28797999024391174, -0.34272998571395874, 0.014008999802172184, -0.14601999521255493, 0.1500999927520752, -0.5503699779510498, 0.2118300050497055, -0.6473000049591064, 0.33965998888015747, -0.10457000136375427, 0.3290500044822693, -0.2425999939441681, 0.059866998344659805, 0.262939989566803, 0.050891000777482986, -0.64205002784729, 0.16913999617099762, 0.2588599920272827, 0.014948000200092793, 0.5822700262069702, 0.1255200058221817, 0.13782000541687012, -0.32085999846458435], u'brass': [0.06683100014925003, 0.19354000687599182, -0.3096100091934204, -0.9099500179290771, -0.2556400001049042, -0.23122000694274902, 0.2293200045824051, 0.6523200273513794, 0.07953500002622604, 0.013922999612987041, -0.4369800090789795, 0.49678000807762146, -0.08599899709224701, 0.17768999934196472, 0.03076300024986267, -0.2015800029039383, -0.2981700003147125, -0.22840000689029694, 0.5393099784851074, -0.4948900043964386, 0.21101999282836914, 0.145579993724823, -0.11953999847173691, 0.29875001311302185, -0.21567000448703766, -0.4662800133228302, 0.13821999728679657, 0.4407599866390228, -0.007426000200212002, 0.11558999866247177, 0.6671299934387207, -0.058274999260902405, -0.6467199921607971, 0.44029998779296875, -0.1940000057220459, -0.10926000028848648, -0.25679999589920044, -0.10315000265836716, -0.04254499822854996, -0.030553000047802925, -0.4496699869632721, -0.2515000104904175, -0.2865299880504608, 0.024546999484300613, 0.09769900143146515, 0.3851900100708008, -0.0381460003554821, -0.8352699875831604, -0.5616300106048584, -0.07894500344991684, 0.19399000704288483, 0.06607300043106079, -0.3241899907588959, 0.44850000739097595, -0.32041001319885254, -0.36974000930786133, -0.23638999462127686, 0.7663999795913696, 0.434689998626709, 0.0032887000124901533, 0.553820013999939, 0.20092999935150146, 0.624019980430603, 0.10174000263214111, 0.13381999731063843, -0.1968899965286255, 0.3712100088596344, 0.3923400044441223, -0.161190003156662, 0.2602800130844116, 0.5844200253486633, -0.15832999348640442, -0.12417999655008316, 0.09628500044345856, 0.04539699852466583, 0.6668499708175659, 0.01960800029337406, 0.5048900246620178, 0.07898499816656113, -0.1697400063276291, -0.2151300013065338, 0.05169599875807762, 0.007002099882811308, -0.5042600035667419, 0.7182999849319458, -0.055309999734163284, -0.2759400010108948, -0.11298999935388565, -0.4856100082397461, 0.43031999468803406, 1.3759000301361084, 0.6440100073814392, -0.05973000079393387, 0.06098899990320206, -0.1326500028371811, 0.07191400229930878, -0.3809100091457367, -0.6963199973106384, -0.037650998681783676, -0.046404000371694565, -0.08046100288629532, 0.4794999957084656, -0.21842999756336212, -0.08115900307893753, 0.328139990568161, -0.4850499927997589, 0.23622000217437744, 0.08423200249671936, -0.8252500295639038, 0.2240999937057495, 0.5285000205039978, 0.3606800138950348, -0.10756999999284744, -0.04494199901819229, -0.37669000029563904, -0.27024000883102417, 0.08631099760532379, -0.083126001060009, 0.07261700183153152, -0.6345300078392029, -0.3484399914741516, -0.34380999207496643, 0.3760699927806854, -0.6257699728012085, -0.08703800290822983, 0.19248999655246735, 0.28271999955177307, 0.4333299994468689, -0.7499200105667114, 0.460750013589859, 0.15706999599933624, 0.1545799970626831, 0.13919000327587128, -0.41203001141548157, -0.06798899918794632, 0.29054999351501465, -0.1559000015258789, 0.37790000438690186, 0.36212000250816345, -0.3205600082874298, -0.11934000253677368, 0.32280001044273376, 0.0436829999089241, -0.07446099817752838, 0.4652999937534332, 0.0743279978632927, 0.2476000040769577, -0.029145000502467155, 0.22381000220775604, 0.20027999579906464, 0.05779699981212616, -0.16482999920845032, 0.2842499911785126, -0.17983999848365784, -0.1773100048303604, -0.16518999636173248, -0.27202001214027405, -0.47593000531196594, -0.8164299726486206, 0.4663800001144409, 0.44905000925064087, 0.29877999424934387, 0.21074000000953674, 0.09213600307703018, 0.3823400139808655, 0.06696899980306625, -0.18810999393463135, -0.046289000660181046, 0.12212000042200089, -0.4234200119972229, -0.4531799852848053, 0.25380998849868774, 0.03575199842453003, -0.044537998735904694, 0.36517998576164246, -0.39013001322746277, -0.4010699987411499, 0.12300000339746475, -0.5299000144004822, -0.5021600127220154, -0.6880000233650208, 0.5314599871635437, 0.3475300073623657, 0.18772000074386597, 0.23169000446796417, -0.391759991645813, -0.12408000230789185, 0.6614699959754944, 0.3137100040912628, -0.20192000269889832, 0.2597599923610687, 0.14837999641895294, 0.4694800078868866, 0.7822499871253967, 0.14055000245571136, 0.24483999609947205, -0.029682999476790428, 0.35135000944137573, -0.30994001030921936, 0.006032899953424931, 0.8123000264167786, 0.6439399719238281, 0.1543000042438507, -0.3754599988460541, 0.23072999715805054, 0.7886000275611877, 0.9674999713897705, -0.24942000210285187, -0.14199000597000122, -0.40261000394821167, 0.40985000133514404, 0.5825099945068359, 0.10412999987602234, -0.08302400261163712, 0.5371900200843811, -0.059324998408555984, 0.11680000275373459, -0.46494001150131226, -0.2578499913215637, 0.11508999764919281, -0.02079099975526333, -0.47971001267433167, 0.2759400010108948, -0.5087699890136719, -0.9694399833679199, 0.10216999799013138, -0.23442000150680542, -0.009116999804973602, 0.40661999583244324, -0.422760009765625, 0.2224300056695938, -0.15731999278068542, -0.24070000648498535, -0.4979499876499176, 0.6463199853897095, -0.23085999488830566, 0.20396000146865845, -0.9747999906539917, -0.30667001008987427, -0.2506200075149536, -0.10200999677181244, 0.29050999879837036, -0.2853499948978424, -0.29743000864982605, -0.00406369986012578, -0.643809974193573, -0.3960700035095215, -0.05259000137448311, -0.1685899943113327, 0.2871899902820587, -0.21810999512672424, -0.14338000118732452, 0.24081000685691833, -0.34248000383377075, 0.4365899860858917, 0.09233500063419342, 0.3304100036621094, 0.19059999287128448, -0.3443300127983093, 0.1795399934053421, -0.41446998715400696, -0.1322699934244156, 0.5361499786376953, 0.6968399882316589, 0.10988999903202057, 0.3807600140571594, 0.0964839980006218, 0.4244599938392639, -0.2045000046491623, 0.06664799898862839, 0.30072999000549316, 0.03622899949550629, 0.48089998960494995, -0.42188000679016113, -0.3022199869155884, 0.7854099869728088, -0.8534700274467468, 0.22251999378204346, -0.6414499878883362, -0.1405699998140335, 0.6650199890136719, 0.14821000397205353, -0.4163999855518341, 0.3315599858760834, 0.32576000690460205, 0.22663000226020813, -0.5044500231742859, 0.5424699783325195, -0.002589199924841523, -0.2703399956226349, 0.11766000092029572, -0.3487899899482727, -0.12171000242233276, 0.8061400055885315, -0.13964000344276428, 0.23058000206947327, 0.2835099995136261, -0.42247000336647034, -0.47446000576019287, 0.16615000367164612], u'boat': [0.31198999285697937, -0.880079984664917, 0.031275998800992966, -0.4682900011539459, -0.619920015335083, 0.06645599752664566, 0.7583699822425842, 0.23555999994277954, 0.23833000659942627, -0.8353300094604492, 0.23565000295639038, -0.0561549998819828, 0.15561999380588531, 0.006190800108015537, 0.10621000081300735, 0.30838000774383545, 0.8294399976730347, -0.2683500051498413, -0.596530020236969, 0.17771999537944794, -0.37112000584602356, 0.38133999705314636, -0.016913000494241714, 0.4101699888706207, -0.13732999563217163, -0.06548599898815155, -0.282370001077652, 0.4426400065422058, -0.2093999981880188, 0.4422299861907959, -0.2259099930524826, 0.1867700070142746, 0.05156800150871277, -0.07770100235939026, -0.1785700023174286, 0.31431999802589417, 0.05525499954819679, -0.6581699848175049, 0.12696999311447144, 0.6543899774551392, -0.40786001086235046, -0.11202999949455261, 0.30289000272750854, 0.17674000561237335, -0.7798799872398376, 0.46779000759124756, 1.0225000381469727, -0.3849399983882904, -0.154339998960495, 0.3730500042438507, -0.4521600008010864, -0.19812999665737152, -0.15857000648975372, -0.006847099866718054, -0.2829500138759613, 0.5117800235748291, -0.3528200089931488, 0.22723999619483948, -0.16730999946594238, 0.45864999294281006, -0.12184000015258789, 0.357589989900589, 0.5476999878883362, -0.2103399932384491, 0.44143998622894287, -0.16152000427246094, -0.8348100185394287, 0.1276099979877472, -0.16362999379634857, -0.18393999338150024, -0.034630000591278076, 0.14601999521255493, 0.07745900005102158, -0.2423499971628189, -0.39621999859809875, 0.5975300073623657, 0.6622200012207031, 0.3167499899864197, 0.30847999453544617, -0.21176999807357788, -0.41530001163482666, 0.6564099788665771, 0.09775000065565109, 0.44176000356674194, 0.08079300075769424, -0.31953999400138855, -0.14935000240802765, -0.3473300039768219, -0.2571299970149994, -0.013408999890089035, 0.9803299903869629, 0.14775000512599945, -0.16448000073432922, -1.1549999713897705, 0.387470006942749, -0.2112099975347519, 0.2152400016784668, -0.30320999026298523, 0.07429099828004837, -0.34455999732017517, 0.44920000433921814, 0.48392000794410706, 0.33215001225471497, -0.17788000404834747, 0.2982499897480011, -0.05204499885439873, 0.5995699763298035, -0.5530099868774414, 0.07928700000047684, -0.03363899886608124, -0.32784000039100647, -0.2054699957370758, 0.35203999280929565, -0.4661799967288971, 0.1286499947309494, -0.26175999641418457, -0.015201999805867672, 0.26673001050949097, -0.11351999640464783, 0.42827001214027405, -0.4164600074291229, -0.5390200018882751, -0.08824600279331207, -0.06731999665498734, 0.6886699795722961, 0.18788999319076538, 0.19282999634742737, 0.21589000523090363, 0.4315199851989746, -0.04521699994802475, -0.11389999836683273, 0.686710000038147, 0.6590399742126465, -0.10377000272274017, 0.14847999811172485, 0.5102900266647339, 0.21476000547409058, -0.6627200245857239, -0.4862099885940552, -0.07992400228977203, -0.1125900000333786, 0.3638400137424469, 0.027170000597834587, 0.17749999463558197, -0.8420500159263611, 0.06893099844455719, 0.05920900031924248, -0.05105400085449219, -0.20223000645637512, 0.4695799946784973, 0.7872499823570251, 0.5557199716567993, 0.28426000475883484, -0.2989799976348877, 0.3303300142288208, -0.14645999670028687, -0.09136799722909927, -0.058107998222112656, 0.3461399972438812, 0.4650900065898895, 0.6243799924850464, -0.6585900187492371, 0.09365800023078918, -0.391759991645813, -0.0071968999691307545, -0.09932299703359604, 0.06035900115966797, 0.05458800122141838, 0.025181999430060387, 0.15567000210285187, -0.5879700183868408, 0.453000009059906, -0.24653999507427216, -0.19312000274658203, -0.30329999327659607, -0.11970999836921692, -0.578220009803772, 0.02315800078213215, 0.3306199908256531, -0.20990000665187836, 0.6121299862861633, 0.07096900045871735, 0.004685199819505215, 0.09511200338602066, 0.2655799984931946, -0.6444500088691711, -0.24018999934196472, 0.9901999831199646, 0.47672998905181885, 0.010259999893605709, 0.09715700149536133, 0.12025000154972076, -0.3156999945640564, -0.08093500137329102, 0.5450299978256226, 0.2227499932050705, -0.16387000679969788, -0.1958799958229065, -0.22246000170707703, -0.2668299973011017, 0.6523000001907349, 0.4126800000667572, -0.33388999104499817, -0.11038000136613846, 0.6517699956893921, 0.2887299954891205, -0.1141899973154068, 0.4290899932384491, -0.6169599890708923, -0.22071999311447144, -0.2615300118923187, 0.06571300327777863, -0.4230000078678131, -0.1389400064945221, -0.26282998919487, -0.2606799900531769, -0.3849399983882904, 0.04139000177383423, -0.29997000098228455, 0.2162500023841858, 1.2156000137329102, 0.37026000022888184, 0.3501800000667572, -0.44367000460624695, 0.3431699872016907, -0.1044899970293045, 0.2754000127315521, -1.100600004196167, -0.20803000032901764, 0.4448699951171875, 0.14821000397205353, -0.43097999691963196, -0.1694599986076355, 0.2132900059223175, 0.750540018081665, -0.145019993185997, -0.3998900055885315, 0.060756001621484756, 0.06068199872970581, 0.026758000254631042, 0.48497000336647034, 0.378030002117157, 0.1137700006365776, -0.21310999989509583, -0.08793699741363525, -0.47258999943733215, 0.3668000102043152, 0.45458999276161194, -0.4116100072860718, 0.6033999919891357, -0.6270400285720825, 0.33539000153541565, -0.024436000734567642, 0.28951001167297363, 0.5086699724197388, -0.20969000458717346, 0.08255399763584137, 0.2063799947500229, -0.13819000124931335, -0.002455499954521656, -0.2952600121498108, -0.6017299890518188, -0.25014999508857727, 0.08215799927711487, 0.41075000166893005, 0.25606000423431396, -0.19425000250339508, -0.6413400173187256, -0.8073499798774719, 0.029879000037908554, 0.25391000509262085, -0.03175799921154976, 0.5085399746894836, 0.48217999935150146, 0.43724000453948975, -0.15343999862670898, -1.5049999952316284, -0.02385699935257435, -0.30458998680114746, 0.44947001338005066, -0.1464100033044815, 0.5387899875640869, 0.054166000336408615, -0.3234499990940094, -0.2826400101184845, -0.5533000230789185, -0.21884000301361084, 0.06473899632692337, 0.38499000668525696, 0.2071000039577484, -0.6473000049591064, -0.29802000522613525, 0.016973000019788742, -0.20329999923706055, -0.21879999339580536, 0.19306999444961548, -0.39688000082969666, 0.0688219964504242, 0.13479000329971313, 0.44435998797416687], u'belt': [0.007869799621403217, 0.06130500137805939, 0.185589998960495, 0.19442999362945557, -0.6005899906158447, -0.2858799993991852, -0.042514000087976456, -0.07513000071048737, -0.03147000074386597, -0.9010499715805054, -0.2439900040626526, 0.16580000519752502, -0.4849900007247925, 0.34233999252319336, -0.31553998589515686, -0.0446930006146431, -0.45638999342918396, 0.38117000460624695, -0.18573999404907227, 0.12929999828338623, 0.2664099931716919, -0.16218000650405884, -0.10869999974966049, -0.17326000332832336, -0.7199900150299072, -0.2094999998807907, 0.17760999500751495, 0.06070199981331825, -0.0955279991030693, 0.2575100064277649, 0.7762500047683716, 0.4901599884033203, -0.18084999918937683, 0.03974999859929085, -0.2562600076198578, 0.5105299949645996, -0.47304001450538635, 0.2076999992132187, -0.05882199853658676, 0.6611899733543396, -0.10554999858140945, -0.09921199828386307, -0.030977999791502953, -0.23286999762058258, 0.1867399960756302, 0.02920999936759472, 0.056001998484134674, -0.5640599727630615, -0.24985000491142273, -0.18192000687122345, -0.1974799931049347, 0.11918000131845474, 0.54475998878479, -0.04256200045347214, 0.07127399742603302, -0.32019999623298645, 0.11591999977827072, -0.8521900177001953, 0.37591999769210815, -0.17741000652313232, -0.10362999886274338, 0.13718999922275543, -0.10943999886512756, 0.4246799945831299, -0.17239999771118164, 0.4912799894809723, -0.7843999862670898, -0.015123999677598476, 0.36579999327659607, 0.44565001130104065, 0.35576000809669495, 0.12801000475883484, 0.23928000032901764, -0.3379499912261963, -0.5447999835014343, -0.26642999053001404, -0.20441000163555145, -0.7541599869728088, -0.3948200047016144, 0.047162000089883804, 0.6857100129127502, 0.3849300146102905, 0.06720300018787384, -0.5725700259208679, 0.04786499962210655, -0.01354300044476986, 0.014605999924242496, -0.0438929982483387, -0.5821200013160706, 0.654229998588562, -0.05036100000143051, 0.25464001297950745, 0.4906199872493744, 0.3915899991989136, -0.5347700119018555, 0.2828400135040283, -0.18100999295711517, 0.1278499960899353, 0.2828800082206726, -0.25442999601364136, 0.08684500306844711, 1.2223999500274658, -0.23837999999523163, 0.006146399769932032, -0.261929988861084, -0.3504999876022339, -0.28738999366760254, 0.5331500172615051, -0.13752000033855438, -0.6127399802207947, -0.20260000228881836, -0.21052999794483185, 0.03848600015044212, -0.030226999893784523, -0.19535000622272491, 0.7910299897193909, 0.21529999375343323, -0.11040999740362167, 0.70551997423172, -0.3736000061035156, 0.16259999573230743, -0.05664199963212013, 0.08076699823141098, 0.1800300031900406, -0.2722199857234955, 0.16613000631332397, -0.027316000312566757, 0.13594000041484833, 0.049911998212337494, -0.5149700045585632, 0.2116899937391281, 0.12937000393867493, 0.411080002784729, 0.1445399969816208, 0.0027914000675082207, -0.061351001262664795, -0.45660001039505005, 0.392659991979599, -0.09231799840927124, 0.2790699899196625, -0.21180999279022217, 0.4121600091457367, 0.11829999834299088, -0.3731499910354614, 0.42069000005722046, 0.21613000333309174, 0.04612400010228157, -0.5358999967575073, -0.14322000741958618, -0.17659999430179596, 0.27674999833106995, 0.4117099940776825, 0.12284000217914581, -0.19436000287532806, 0.7895799875259399, 0.006431899964809418, 0.30834001302719116, -0.10617999732494354, 0.04140400141477585, 0.5522400140762329, 0.28856000304222107, -0.43571001291275024, 0.19662000238895416, 0.02543400041759014, 0.07062699645757675, -0.8938699960708618, -0.04587100073695183, 0.008043699897825718, 0.2196200042963028, -0.3139899969100952, 0.34975001215934753, 0.2133300006389618, -0.2267799973487854, -0.05283600091934204, 0.4510599970817566, -0.34237998723983765, -0.4473699927330017, 0.37046000361442566, -0.05128699913620949, -0.02763199992477894, 0.44488999247550964, 0.40856999158859253, 0.29534000158309937, -0.3820599913597107, 0.8227800130844116, 0.04107299819588661, 0.14384999871253967, 0.5519999861717224, 0.05039399862289429, -0.6472399830818176, 0.14271000027656555, 0.29008999466896057, 0.29528000950813293, 0.9873999953269958, -0.31560999155044556, -0.1158600002527237, 0.00025378999998793006, -0.8471400141716003, 0.49584999680519104, -0.0750569999217987, 0.9266800284385681, 0.03747899830341339, 0.6072400212287903, 0.17020000517368317, 0.05251799896359444, -0.5836300253868103, 0.5243099927902222, 0.010348999872803688, 0.12419000267982483, 0.14291000366210938, -0.1022299975156784, -0.48201000690460205, 0.1975499987602234, 0.22461000084877014, 0.005458099767565727, -0.3553900122642517, -0.33636999130249023, -0.5927199721336365, -0.2504200041294098, -0.5158399939537048, 0.29357001185417175, -0.14836999773979187, 0.3477199971675873, -0.05791100114583969, 0.11131999641656876, 0.5914700031280518, 0.014581999741494656, 0.10294000059366226, 0.10067000240087509, -0.5547999739646912, 0.48210999369621277, 0.6074399948120117, -0.02719300054013729, -0.3434700071811676, 0.1049100011587143, -0.5963299870491028, -0.03787200152873993, 0.08230599761009216, 0.22262999415397644, 0.07102999836206436, -0.004231899976730347, 0.247529998421669, 0.06776300072669983, -0.02371799945831299, -0.5689899921417236, -0.1653199940919876, -0.053105998784303665, 0.08142399787902832, 0.024237999692559242, -0.35126999020576477, -0.44391000270843506, 0.17821000516414642, 0.5324199795722961, -0.21788999438285828, 0.27612999081611633, 0.21946999430656433, 0.009747699834406376, 0.4205999970436096, 0.32646000385284424, -0.48065000772476196, -0.2121099978685379, -0.2554199993610382, 0.15650999546051025, 0.058862000703811646, -0.5316100120544434, -0.2805500030517578, -0.6659799814224243, 0.32719001173973083, -0.5168200135231018, 0.04680100083351135, -0.3165299892425537, 0.18704000115394592, -0.3777799904346466, 0.7100300192832947, -0.6643700003623962, -0.7106000185012817, -1.3384000062942505, 0.5241199731826782, -0.37288999557495117, 0.3184100091457367, 0.0006277799839153886, 0.4103200137615204, -0.45023998618125916, -0.3210900127887726, -0.8971400260925293, 0.05420399829745293, 0.1161699965596199, -0.5403100252151489, -0.6186800003051758, -0.3241199851036072, 0.9971699714660645, -0.15070000290870667, -0.19715000689029694, -0.07416299730539322, -0.03561199828982353, 1.2838000059127808, -0.3251500129699707, -0.28321999311447144, -0.08195800334215164, -0.4646799862384796], u'city': [-0.2865700125694275, -0.2559700012207031, -0.1766899973154068, -0.46088001132011414, 0.31700000166893005, 0.06430400162935257, 0.5245400071144104, 0.18382999300956726, 0.06290599703788757, -0.9312400221824646, 0.2327200025320053, -0.1600400060415268, 0.06944700330495834, 0.9079499840736389, 0.733680009841919, 0.40591999888420105, -0.10001999884843826, 0.07107000052928925, 0.4305500090122223, -0.013252000324428082, -0.3742699921131134, -0.30006998777389526, 0.15565000474452972, 0.16303999722003937, 0.053762998431921005, -0.4435200095176697, -0.30542999505996704, 0.012330999597907066, -0.6302700042724609, 0.07493499666452408, 0.20353999733924866, 0.19314000010490417, -0.7472800016403198, 0.5630999803543091, -0.761210024356842, -0.07272099703550339, -0.07842499762773514, -0.07089299708604813, -0.7575299739837646, -0.3781200051307678, 0.2830199897289276, 0.29649001359939575, -0.28665000200271606, 0.7960000038146973, 0.3226499855518341, 0.18990999460220337, 0.5075200200080872, 0.6497099995613098, -0.33452001214027405, 0.6617799997329712, 0.24073000252246857, -0.028376000002026558, -0.01910099945962429, 0.20698000490665436, 0.22766000032424927, -0.17351000010967255, -0.21006999909877777, 0.1602499932050705, 0.013240999542176723, 0.023293999955058098, -0.9332200288772583, -0.24830999970436096, 0.3351300060749054, -0.3011699914932251, 0.2496200054883957, 0.2629599869251251, 0.08563899993896484, 0.3356499969959259, 0.28859999775886536, -0.5381699800491333, 0.6187899708747864, -0.38381001353263855, 0.05031700059771538, -0.2669900059700012, -0.3990499973297119, 0.5341600179672241, -0.3577499985694885, 0.7913299798965454, 0.5125300288200378, -0.08840099722146988, -0.4218499958515167, -0.26923999190330505, 0.05676700174808502, 0.17534999549388885, -0.1159600019454956, -0.15487000346183777, -0.18443000316619873, 0.013698999769985676, 0.6593300104141235, 0.8601899743080139, 0.14774000644683838, 0.22360000014305115, 0.670009970664978, -0.13346999883651733, -0.04261299967765808, 0.3181999921798706, 0.04762899875640869, 0.21619999408721924, 0.35401999950408936, -0.1964000016450882, 0.1341100037097931, 0.18039999902248383, -0.35455000400543213, -0.09550300240516663, 0.03751299902796745, 0.2381500005722046, 0.8464800119400024, 0.0734110027551651, 0.020255999639630318, 0.15228000283241272, 0.10236000269651413, -0.6400700211524963, -0.03209000080823898, -0.30110999941825867, 0.2730799913406372, -0.017981000244617462, 0.16007000207901, -0.39208999276161194, 0.025596000254154205, -0.18904000520706177, 0.02519500069320202, -0.07524199783802032, -0.010816000401973724, 0.15931999683380127, -0.049518000334501266, -0.08813899755477905, 0.06547500193119049, 0.02059900015592575, -0.06575799733400345, -0.1603499948978424, 0.3993299901485443, 0.2277500033378601, 0.20956000685691833, 0.3982599973678589, 0.40834999084472656, -0.10360000282526016, -0.3260500133037567, -0.25023001432418823, 0.5740699768066406, 0.07499100267887115, -0.3875899910926819, -0.08109000325202942, -0.4034300148487091, 0.3862600028514862, -0.10183999687433243, -0.1968500018119812, 0.5928000211715698, -0.16545000672340393, -0.6865500211715698, 0.1863899976015091, 1.1777000427246094, -0.06402499973773956, 0.32502999901771545, 0.22213000059127808, 0.6206799745559692, 0.3844900131225586, -0.20991000533103943, -0.17566999793052673, -0.188400000333786, -0.021687999367713928, 0.6399499773979187, 0.19934000074863434, 0.08156999945640564, -0.3480600118637085, -0.25446999073028564, -0.5855399966239929, 0.3698999881744385, -0.0860389992594719, 0.23027999699115753, 0.2263599932193756, -0.3526900112628937, -0.2540700137615204, -0.5889099836349487, 0.19766999781131744, 0.5724300146102905, 0.6460599899291992, 0.03308200091123581, -0.3396399915218353, -0.5152300000190735, 0.44029000401496887, -0.7647799849510193, 0.421999990940094, -0.598360002040863, 0.4193499982357025, 0.5269799828529358, 0.03686000034213066, -0.3892099857330322, -0.338809996843338, 0.1325799971818924, -0.01727299951016903, 0.516319990158081, 0.04737500101327896, -0.1709499955177307, 0.06734400242567062, 0.06772000342607498, -0.12745000422000885, 0.039087001234292984, -0.33333998918533325, -0.20740999281406403, 0.6955699920654297, 0.8088700175285339, -0.351639986038208, 0.4153900146484375, -0.048454999923706055, -0.41398999094963074, -0.3314099907875061, 0.4566200077533722, -0.13149000704288483, 0.4381600022315979, 0.014391000382602215, -0.7210599780082703, 0.12109000235795975, -0.29333001375198364, -0.2439499944448471, 0.5347200036048889, 0.3192700147628784, -0.21229000389575958, 0.06408800184726715, -0.09168499708175659, -0.02376900054514408, 0.4053100049495697, -0.08009299635887146, 0.19555999338626862, 0.20374999940395355, 0.08787699788808823, -0.21453000605106354, 0.6056600213050842, -0.5782399773597717, -0.1527400016784668, -0.35719001293182373, 0.21558000147342682, 0.34891000390052795, -0.095100998878479, -0.4847399890422821, 0.12691999971866608, 0.3505699932575226, 0.21382999420166016, -0.09953399747610092, 0.029399000108242035, 0.1995600014925003, -0.026928000152111053, -0.6252599954605103, 0.5483700037002563, 0.46810999512672424, -0.7199199795722961, 0.41600000858306885, -0.1772499978542328, -0.4005500078201294, 0.35986998677253723, -0.056536998599767685, 0.26458999514579773, -0.2575500011444092, 0.3052699863910675, 0.28266000747680664, 0.287990003824234, -0.11060000211000443, -0.3637099862098694, -0.5802199840545654, 0.11266999691724777, -0.2963100075721741, -0.02370999939739704, 0.2368299961090088, 0.5009300112724304, 0.1477700024843216, 0.04619999974966049, -0.32315999269485474, -0.09449400007724762, 0.008019300177693367, -0.39111998677253723, -0.13500000536441803, -0.15205000340938568, 0.017304999753832817, 0.1618500053882599, 0.24031999707221985, -0.0818760022521019, -0.16558000445365906, -2.197000026702881, 0.20448000729084015, 0.26172998547554016, 0.4123600125312805, -0.2985999882221222, 0.14020000398159027, -0.16569000482559204, 0.02792700007557869, -0.6799299716949463, 0.7832499742507935, -0.024013999849557877, 0.6438800096511841, 0.2513299882411957, -0.3861500024795532, 0.17024999856948853, -0.1058100014925003, -0.23545999825000763, 0.31477001309394836, 0.6870499849319458, 0.29326000809669495, 0.3920300006866455, -0.46542999148368835, -0.5854600071907043, 0.17404000461101532], u'bathroom': [0.210889995098114, 0.19731999933719635, -0.42181000113487244, -0.6922399997711182, 0.038933999836444855, 0.3290500044822693, -0.3830699920654297, -0.25523999333381653, 0.8396499752998352, -0.7738100290298462, -0.40560999512672424, 0.47161999344825745, 0.263700008392334, 0.06283199787139893, 0.38940000534057617, 0.15046000480651855, 0.38350000977516174, -0.11100000143051147, -0.012470000423491001, -0.48416998982429504, -0.17233000695705414, 0.21188999712467194, 0.013284999877214432, -0.3474099934101105, -0.10885000228881836, -0.8004800081253052, 0.3701600134372711, 0.03290800005197525, 0.43160000443458557, 0.01082799956202507, -0.3515099883079529, 0.6431099772453308, 0.02725999988615513, 0.030424000695347786, -0.6851599812507629, 0.6209800243377686, -0.7809699773788452, -0.1088000014424324, -0.2248300015926361, -0.06224900111556053, -0.30757999420166016, -0.3061800003051758, -0.05454099923372269, -0.37929999828338623, 0.06632199883460999, 0.8965299725532532, 0.7925199866294861, -0.36267000436782837, -0.2951200008392334, -0.6729699969291687, -0.3195900022983551, -0.37046000361442566, 0.616599977016449, 0.21713000535964966, -0.04698900133371353, 0.22710999846458435, 0.4572699964046478, 0.1640699952840805, -0.0072963000275194645, 0.18905000388622284, 0.02735700085759163, -0.17598000168800354, 0.06639499962329865, 0.9277300238609314, -0.37435001134872437, -0.7181199789047241, 0.14861999452114105, -0.2738400101661682, 0.06074099987745285, -0.33761999011039734, 0.05469899997115135, -0.9659900069236755, -0.13087999820709229, 0.042305998504161835, 0.44944000244140625, 0.14932000637054443, -0.24592000246047974, 0.09369099885225296, -0.27768000960350037, -0.6998900175094604, 0.06211400032043457, -0.09686599671840668, 0.20698000490665436, -0.05610699951648712, 0.35846999287605286, 0.12419000267982483, -0.38060998916625977, -0.643779993057251, -0.40408000349998474, -0.031019000336527824, 0.27008000016212463, 0.3400700092315674, 0.7353000044822693, 0.2574400007724762, -0.13876000046730042, 0.005710700061172247, 0.07821600139141083, -0.3242200016975403, 0.7358800172805786, -0.7105600237846375, -0.11757999658584595, 0.030389999970793724, -0.03332199901342392, -0.2692900002002716, 0.3310700058937073, -0.20653000473976135, 0.2511399984359741, 0.24081000685691833, -0.3740699887275696, 0.6488199830055237, -0.2691799998283386, 0.403329998254776, 0.12004999816417694, -0.3109700083732605, -0.2640500068664551, 0.5192999839782715, -0.11602000147104263, -0.05101900175213814, -0.6355699896812439, -0.2523599863052368, -0.007090900093317032, 0.06788100302219391, 0.01890699937939644, 0.2505199909210205, -0.29745998978614807, -0.12636999785900116, -0.0013011000119149685, -0.0792360007762909, 0.41640999913215637, -0.11298999935388565, 0.7971100211143494, -0.10779999941587448, 0.5601300001144409, 0.05114100128412247, 0.15118999779224396, 0.19130000472068787, -0.23526999354362488, -0.05152500048279762, -0.0016494999872520566, -0.4534499943256378, 0.05647199973464012, -0.7562800049781799, 0.17046000063419342, 0.23711000382900238, 0.05995500087738037, -0.1552100032567978, -0.028578000143170357, 0.1998099982738495, 0.419050008058548, -0.21499000489711761, -0.5368599891662598, 0.8199300169944763, 0.43031999468803406, -0.014688000082969666, -0.2712100148200989, 0.17348000407218933, -0.1538500040769577, 0.2443999946117401, -0.28703001141548157, 0.48309001326560974, 0.9138799905776978, -0.01486700028181076, 0.37702998518943787, -0.1820099949836731, 0.46748000383377075, 0.5122900009155273, 0.4341700077056885, 0.60930997133255, 0.22985999286174774, 0.17389999330043793, -0.4059700071811676, 0.20954999327659607, 0.3871600031852722, 0.25797998905181885, -0.80103999376297, 0.4822100102901459, 0.1897599995136261, 0.6438999772071838, 0.17812000215053558, -0.2935999929904938, 0.1132500022649765, -0.11101000010967255, -0.32804998755455017, -0.028063999488949776, -0.26429998874664307, -0.330049991607666, 1.0636999607086182, 1.163699984550476, 0.29837000370025635, 0.3132599890232086, 0.8723300099372864, 0.10369999706745148, -0.4006099998950958, -0.2354699969291687, -0.4753200113773346, 0.644540011882782, -0.4572499990463257, 0.41988998651504517, -0.6087899804115295, -0.32708001136779785, 0.02992900088429451, -0.2965799868106842, -0.5130900144577026, -0.22137999534606934, 0.342629998922348, -0.31099000573158264, -0.008452700451016426, -0.424809992313385, -0.6984000205993652, -0.46764999628067017, -0.23356999456882477, 0.01445899996906519, -0.2686299979686737, 0.20931999385356903, 0.909250020980835, 0.2217099964618683, -0.05706600099802017, -0.2906399965286255, -0.0022871000692248344, 0.3781299889087677, 0.23397000133991241, 0.6606500148773193, -0.040456999093294144, 0.09389399737119675, -0.16032999753952026, -0.3224300146102905, -0.7290999889373779, 0.04191699996590614, 0.13971999287605286, -0.18953000009059906, 0.3805699944496155, -0.39485999941825867, -0.2664699852466583, -0.331279993057251, 0.2888000011444092, -0.03466000035405159, -0.41152000427246094, 0.6222699880599976, -0.009905800223350525, -0.6385599970817566, 0.6025099754333496, -0.1507599949836731, -0.3511900007724762, 0.3052999973297119, 0.06552000343799591, -0.36357998847961426, 0.07423699647188187, 0.24481000006198883, -0.27153000235557556, 0.06297200173139572, 0.006244800053536892, -0.43031999468803406, 0.2948000133037567, -0.29660001397132874, 0.22104999423027039, 0.3761099874973297, 0.5480300188064575, -0.2641499936580658, 0.4379599988460541, 0.1433500051498413, -0.16816000640392303, -0.6358100175857544, 0.2547000050544739, -1.135200023651123, -0.18931999802589417, 0.011470000259578228, 0.3549700081348419, 0.4029499888420105, 0.2370699942111969, -0.044057998806238174, 0.2883799970149994, 0.13112999498844147, -0.12009000033140182, -0.27900999784469604, -0.30052998661994934, 0.12695999443531036, -1.2761000394821167, 0.6043300032615662, -0.9865800142288208, -0.1812400072813034, -0.1941400021314621, 0.46244001388549805, 0.26353999972343445, -0.11588999629020691, -0.12308000028133392, 0.9953399896621704, -0.18574999272823334, 0.010344999842345715, -0.08420100063085556, -0.3691200017929077, -0.32420000433921814, 0.12431000173091888, -0.19088999927043915, 0.01241500023752451, 0.4530400037765503, -0.291269987821579, 0.26798000931739807, 0.16088999807834625, -0.14059999585151672, 0.8823999762535095], u'toy': [0.2488200068473816, 0.3420099914073944, -0.36469998955726624, -0.42462000250816345, -0.49814000725746155, 0.42570000886917114, 0.12007000297307968, 0.3078700006008148, -0.3844600021839142, -0.42085000872612, 0.02996799908578396, -0.5368000268936157, -0.21859000623226166, 0.25115999579429626, 0.11045999825000763, 0.09190499782562256, 0.07184900343418121, 0.2183700054883957, -0.4106000065803528, 0.19212999939918518, 0.7674999833106995, 0.7892000079154968, 0.05742799863219261, 0.3805699944496155, -0.1496499925851822, 0.40202999114990234, -0.27439001202583313, -0.21613000333309174, 0.8946200013160706, -0.0048420000821352005, -0.3961600065231323, -0.06755899637937546, 0.22832000255584717, -0.23479999601840973, -0.7097200155258179, 0.4482100009918213, -0.08041200041770935, -0.014589999802410603, 0.22208000719547272, 0.12744000554084778, 0.47325000166893005, -0.5082600116729736, 0.3600600063800812, 0.3445500135421753, -0.33177998661994934, -0.05806799978017807, 0.5497300028800964, -0.9516299962997437, 0.3354400098323822, 0.48739001154899597, 0.41993001103401184, -0.1289599984884262, -0.5408899784088135, 0.7587900161743164, 0.23783999681472778, 0.046939998865127563, -0.1875399947166443, -0.1540900021791458, -0.3071900010108948, -0.19840000569820404, -0.08829700201749802, -0.17757000029087067, 0.05005599930882454, -0.5105500221252441, 0.4626300036907196, 0.2600100040435791, -0.5652199983596802, 0.04094899818301201, 0.1481200009584427, 0.3574399948120117, 0.008490899577736855, 0.6561999917030334, 0.36952000856399536, -0.3263700008392334, 0.3410100042819977, -0.11670999974012375, -0.2386299967765808, 0.24586999416351318, 0.1472499966621399, -0.5299299955368042, 0.10147000104188919, 0.3309899866580963, -0.08396100252866745, -0.07503300160169601, 0.4830099940299988, 0.18095000088214874, 0.3304100036621094, 0.12419000267982483, -0.29467999935150146, -0.07375799864530563, 0.2890799939632416, -0.022161999717354774, -0.3600200116634369, -0.17497999966144562, -0.07317999750375748, 0.7334700226783752, -0.29023998975753784, 0.5613700151443481, -0.3181999921798706, -0.31435999274253845, 0.5485000014305115, 0.34005001187324524, -0.5372999906539917, -0.30347999930381775, 0.27105000615119934, -0.7306200265884399, -0.061969999223947525, -0.34606000781059265, -0.1584399938583374, 0.36149999499320984, 0.2539600133895874, 0.4772300124168396, -0.3470599949359894, 0.500469982624054, 0.3568499982357025, -0.24368000030517578, -0.26377999782562256, 0.5062100291252136, -0.06723099946975708, -0.11896999925374985, 0.27382001280784607, 0.1016400009393692, 0.8228800296783447, -0.1011900007724762, -0.5995699763298035, 0.15007999539375305, -0.03185100108385086, 0.3674300014972687, -0.17892000079154968, -0.43601998686790466, 0.7782099843025208, 0.09120599925518036, 0.06673000007867813, 0.27689000964164734, 0.2582300007343292, 0.719760000705719, 0.7669100165367126, 0.3445200026035309, 0.2550800144672394, 0.44023001194000244, 0.4092999994754791, -0.06508500128984451, -0.2286199927330017, -0.4765099883079529, 0.7352100014686584, 0.08834700286388397, 0.34101998805999756, 0.3568899929523468, -0.26488998532295227, -0.48284000158309937, -0.14645999670028687, 0.04977700114250183, 0.2671999931335449, -0.14688999950885773, 0.3473599851131439, -0.27052000164985657, -0.3584100008010864, -0.24842999875545502, -0.36399999260902405, 0.4579100012779236, 0.8738399744033813, 0.8197199702262878, -0.29455000162124634, -0.5658199787139893, 0.8725299835205078, -0.2781299948692322, 0.6684399843215942, 0.34283000230789185, -0.6136699914932251, -0.04742100089788437, -0.32677000761032104, -0.1760600060224533, -0.2459699958562851, 0.5624499917030334, 0.2098499983549118, -0.08988799899816513, -0.46814000606536865, -0.011853000149130821, -0.11458999663591385, -0.015823999419808388, -0.38418999314308167, -0.7634900212287903, -0.14454999566078186, 0.2558499872684479, 0.45210000872612, -0.17513999342918396, 0.4485200047492981, -0.2639999985694885, 0.5020099878311157, -0.21521000564098358, -0.057374998927116394, -0.2324800044298172, -0.039354998618364334, 0.3839600086212158, -0.39638999104499817, 0.2643499970436096, -0.6281499862670898, 0.3152799904346466, -0.06404700130224228, -0.1921900063753128, 0.4851900041103363, 0.6782299876213074, 0.37883999943733215, -0.20569999516010284, 0.20255999267101288, 0.13213999569416046, -0.021456999704241753, 0.16839000582695007, -0.5339599847793579, 0.17354999482631683, -0.15814000368118286, -0.1696300059556961, 0.40733999013900757, -0.22589999437332153, 0.2445400059223175, 0.20928999781608582, -0.22639000415802002, 0.6538599729537964, -0.2080399990081787, -0.18689000606536865, 0.20728999376296997, -0.15464000403881073, -0.30643001198768616, -0.07170400023460388, -0.11420000344514847, 0.7200599908828735, 0.3071199953556061, 0.10339999943971634, 0.43121999502182007, 0.047506000846624374, 0.25317999720573425, -0.07164499908685684, -0.481330007314682, -0.05009499937295914, 0.6559900045394897, 0.8511000275611877, 0.7620400190353394, 0.27781999111175537, -0.2839199900627136, -0.04492099955677986, 0.4411199986934662, -0.5286099910736084, -0.2859100103378296, -0.04045400023460388, -0.7459999918937683, -0.5534600019454956, -0.5015199780464172, -0.23785999417304993, -0.08563800156116486, 0.7441700100898743, -0.005860200151801109, 0.11287999898195267, -0.4532400071620941, 0.03822200000286102, 0.37060999870300293, 0.18442000448703766, 0.04428400099277496, -0.27028998732566833, 0.22127999365329742, -0.30298998951911926, 0.04165099933743477, -0.7584699988365173, 0.19231000542640686, -0.40244001150131226, 0.3618299961090088, 0.0491579994559288, 0.2502000033855438, -0.2815900146961212, -0.08530200272798538, 0.11275999993085861, 0.1072700023651123, -0.26923999190330505, 0.3429799973964691, -0.6555399894714355, 0.5687500238418579, 0.12212000042200089, -1.2812000513076782, -0.24999000132083893, -1.197100043296814, -0.18935999274253845, -0.037344999611377716, 0.2565099895000458, -0.4664199948310852, 0.018365999683737755, -0.09190300107002258, 0.6605100035667419, -0.07821100205183029, 0.10401000082492828, 0.09447100013494492, -0.11862000077962875, -0.04299100115895271, -0.15880000591278076, 0.1761299967765808, 0.3628999888896942, -0.21177999675273895, 0.5624899864196777, 0.5824000239372253, 0.26868999004364014, 0.20997999608516693, 0.10206999629735947], u'fabric': [0.4597899913787842, -0.32366999983787537, -0.21985000371932983, -0.695360004901886, -0.3646399974822998, -0.3092400133609772, -0.08332599699497223, 0.0857509970664978, 0.3541499972343445, -1.36899995803833, 0.18024000525474548, -0.6548200249671936, 0.44637998938560486, -0.10407999902963638, 0.11958999931812286, -0.13048000633716583, 0.03250199928879738, 0.4216200113296509, -0.010658999904990196, -0.10468000173568726, -0.42570000886917114, -0.24081000685691833, 0.12973999977111816, 0.5767599940299988, -0.1407500058412552, -0.06717599928379059, -0.14277000725269318, -0.0411980003118515, -0.6523500084877014, 0.38749000430107117, 0.16629000008106232, 0.5909000039100647, -0.7674000263214111, -0.06391800194978714, -0.4040299952030182, 0.8325899839401245, -0.04119500145316124, -0.4313800036907196, 0.29780998826026917, 0.4009999930858612, -0.26423001289367676, -0.720579981803894, -0.11981000006198883, -0.6376299858093262, 0.2534399926662445, 0.26510998606681824, 0.3333800137042999, -0.20969000458717346, 0.1026500016450882, -0.08019600063562393, 0.21975000202655792, 0.4998700022697449, 0.14791999757289886, -0.6133700013160706, -0.19884000718593597, -0.3248000144958496, 0.12454000115394592, -0.7536399960517883, 0.20905999839305878, -0.11736000329256058, 0.257999986410141, -0.33807000517845154, -0.26241999864578247, -0.5127500295639038, 0.6377999782562256, -0.03644600138068199, 0.19309000670909882, -0.029146000742912292, 0.38530999422073364, 0.1684200018644333, -0.026513999328017235, -0.6972699761390686, -0.5192899703979492, -0.06184599921107292, 0.5554800033569336, 0.4974699914455414, -0.4909699857234955, -0.280349999666214, -0.460099995136261, 0.05354499816894531, -0.49581998586654663, -0.22543999552726746, -0.3713200092315674, -0.5301700234413147, 0.004980000201612711, 0.3340199887752533, 0.19790999591350555, -0.014355000108480453, -0.4279699921607971, 0.35464000701904297, 0.3659000098705292, -0.020183999091386795, 0.652459979057312, -0.15724000334739685, 0.09393300116062164, -0.02660599909722805, 0.3470799922943115, 0.6512100100517273, 0.17922000586986542, -0.27827998995780945, 0.18014000356197357, 0.4483399987220764, -0.4574899971485138, -0.37992000579833984, -0.027411000803112984, -0.12732000648975372, 0.5900499820709229, 0.059595998376607895, -0.44558998942375183, -0.014569999650120735, -0.057305000722408295, -0.056488998234272, 0.012807999737560749, -0.2365500032901764, -0.22131000459194183, 0.05862699821591377, 0.1585800051689148, 1.1862000226974487, -0.3981199860572815, -0.5476300120353699, 0.51214998960495, 0.13485999405384064, 0.7373200058937073, 0.5517600178718567, 0.3511199951171875, 0.008700200356543064, 0.10390999913215637, 0.6925399899482727, 0.031390998512506485, 0.4938800036907196, 0.055233001708984375, 0.0415400005877018, 0.11027999967336655, 0.0844850018620491, -0.5980899930000305, -0.06315600126981735, -0.6534799933433533, 0.45326000452041626, -0.16749000549316406, 0.08153200149536133, -0.2227499932050705, 0.5671300292015076, 0.0240860003978014, 0.044769998639822006, 0.26844000816345215, 0.5313299894332886, 0.10611999779939651, -0.40149998664855957, -0.6376199722290039, -0.2098499983549118, -0.028015000745654106, 0.038996998220682144, -0.19415999948978424, -1.2139999866485596, 0.04120299965143204, -0.4199199974536896, -0.3448599874973297, 0.10711000114679337, 0.25751999020576477, 0.32530999183654785, 0.02352200075984001, -0.2660199999809265, -0.3617599904537201, -0.030855000019073486, 0.249549999833107, -0.11007999628782272, -0.273499995470047, 0.2598299980163574, 0.4112600088119507, 0.24262000620365143, -0.27077001333236694, -0.4020799994468689, -0.03308200091123581, 0.4645799994468689, 0.06949400156736374, -0.07722999900579453, -0.10101000219583511, 1.0088000297546387, -0.020168999210000038, -0.7953100204467773, 0.40038999915122986, -0.15639999508857727, 0.08502800017595291, 0.005374699831008911, 0.13307000696659088, -0.11135999858379364, 0.4524199962615967, 0.17497000098228455, 0.28470999002456665, 0.24800999462604523, 0.47874999046325684, 0.42010000348091125, -0.1827400028705597, -0.21126000583171844, -0.01760699972510338, 0.45023998618125916, -0.03045699931681156, 0.2932699918746948, -0.022825999185442924, 0.0068465000949800014, -0.1342500001192093, 0.04915200173854828, 0.7936499714851379, 0.17584000527858734, 0.4009000062942505, -0.1978899985551834, 0.7498300075531006, 0.6071500182151794, -0.8074100017547607, 0.6734899878501892, 0.022165000438690186, -0.08215799927711487, 0.34661999344825745, 0.29785001277923584, 0.30816999077796936, 0.3515700101852417, 0.4222300052642822, -0.582319974899292, 0.014453000389039516, 0.3310700058937073, 0.19682000577449799, -0.258760005235672, 0.07034700363874435, -0.18904000520706177, 0.2445800006389618, -0.10801000148057938, 0.03373200073838234, 0.2596299946308136, 0.1353600025177002, -0.19943000376224518, 0.8191099762916565, 0.03748499974608421, 0.12887999415397644, 0.3676699995994568, 0.5988399982452393, 0.03728500008583069, 0.3084399998188019, -0.3633899986743927, -0.32673999667167664, 0.11867000162601471, 0.06322900205850601, -0.0552700012922287, 0.16327999532222748, 0.3421899974346161, -1.0357999801635742, 0.27755001187324524, -0.11386000365018845, -0.23082999885082245, 0.21232999861240387, 0.05545800179243088, -0.13728000223636627, 0.3403399884700775, 0.3637799918651581, -0.5817300081253052, 0.5636900067329407, 0.6712499856948853, -0.2664799988269806, -0.1516599953174591, 0.17784999310970306, -0.17423999309539795, 0.2809099853038788, -0.4611400067806244, 0.1306699961423874, 0.04040500149130821, -0.030780000612139702, 0.20914000272750854, -0.36476001143455505, 0.5862900018692017, 0.12912000715732574, -0.061455000191926956, 0.18310999870300293, 0.4012700021266937, -0.004809100180864334, 0.2001499980688095, -0.7415500283241272, 0.16835999488830566, -0.17371000349521637, -0.1835400015115738, -0.44527000188827515, 0.20183999836444855, 0.33438000082969666, -0.02038699947297573, -0.03563300147652626, -0.041735000908374786, 0.12894000113010406, 0.29128000140190125, 0.16297000646591187, 0.37470999360084534, -0.0737290009856224, -0.24607999622821808, 0.14431999623775482, -0.3086700141429901, -0.02659899927675724, 0.513260006904602, 0.011536000296473503, 0.09024599939584732, 0.1791599988937378, 0.3544900119304657, -0.02877499908208847, 0.30136001110076904], u'beef': [0.38418999314308167, 0.7373200058937073, 0.37911999225616455, -0.14169999957084656, 0.21337999403476715, -0.020600000396370888, 0.02699200063943863, 0.3477399945259094, -0.2723200023174286, -1.1676000356674194, -0.30594998598098755, -0.6174299716949463, -0.3601300120353699, 0.5017799735069275, -0.6700599789619446, 0.11541999876499176, -0.15343999862670898, 0.4165099859237671, -0.37286001443862915, 0.2414100021123886, -0.37035998702049255, 0.3246000111103058, 0.23485000431537628, -0.5974100232124329, -0.5433800220489502, 0.462009996175766, -0.3143799901008606, -0.4711799919605255, 0.09679300338029861, -0.13776999711990356, -1.301300048828125, 0.33090001344680786, -0.20726999640464783, 0.1081399992108345, -0.08944199979305267, 0.04882799834012985, 0.4250999987125397, 0.40147000551223755, -0.6609100103378296, 0.003524299943819642, -0.6097599864006042, -0.19648000597953796, 0.008346900343894958, -0.10475999861955643, -0.23768000304698944, -0.0940610021352768, -0.176269993185997, -0.16850000619888306, -0.3289699852466583, 0.17357000708580017, -0.22991999983787537, 0.09336499869823456, -0.397379994392395, 0.40817999839782715, 0.27083998918533325, -0.06536299735307693, -0.05735199898481369, 0.36864998936653137, -1.1102999448776245, -0.17489999532699585, -0.31009000539779663, 0.04815400019288063, 0.3606700003147125, -0.10711000114679337, -0.4731299877166748, 0.08267199993133545, -0.6000300049781799, 0.3489699959754944, 0.3639200031757355, 0.273470014333725, 0.16627000272274017, 0.28238001465797424, 0.2558799982070923, -0.1814499944448471, -0.028699999675154686, -0.15108999609947205, 0.4729500114917755, 0.8892599940299988, -0.7136499881744385, 0.023326000198721886, -0.11271999776363373, -0.012153999879956245, 0.041370000690221786, 0.23235000669956207, 0.041749998927116394, -0.5960900187492371, -0.6223000288009644, 0.1009799987077713, -0.8336499929428101, -0.5829399824142456, -0.2009900063276291, -0.004129699897021055, 0.17962999641895294, 0.40803998708724976, -0.04688100144267082, 0.11759000271558762, -0.7399899959564209, 0.7936400175094604, -0.7738999724388123, 1.0475000143051147, -0.2570599913597107, -0.06503699719905853, -0.26980000734329224, -1.0270999670028687, -0.8396199941635132, -0.11556000262498856, -0.46994999051094055, 0.3728199899196625, -0.02648800052702427, 0.09378699958324432, 0.4153999984264374, 0.1698800027370453, -0.7686300277709961, -0.6723600029945374, -0.20837000012397766, -0.27542999386787415, -0.06191699951887131, 0.3171499967575073, 0.4946799874305725, -0.5555300116539001, 0.059390000998973846, -0.2578200101852417, 0.27684998512268066, 0.19304999709129333, -0.540440022945404, -0.07680600136518478, -0.13996000587940216, 0.06564699858427048, 0.017093999311327934, 0.29826000332832336, -0.025575000792741776, 0.8802700042724609, -0.09462200105190277, -0.051332999020814896, 0.4837999939918518, -0.0649930015206337, -0.13981999456882477, -0.19370999932289124, 0.522599995136261, 0.37852999567985535, 0.15349000692367554, -0.014550000429153442, 0.42601001262664795, -0.31527000665664673, -0.5560399889945984, -0.0298289991915226, -0.12645000219345093, -0.30814000964164734, 0.13966000080108643, -0.5198500156402588, -0.6119700074195862, 0.023034999147057533, 0.06553799659013748, 0.5534899830818176, 0.28598999977111816, -0.1691100001335144, -1.1991000175476074, -0.5669199824333191, -0.5427500009536743, -0.16931000351905823, 0.28123000264167786, 0.8692600131034851, -0.7100099921226501, -0.15234999358654022, 0.48357999324798584, -0.37338000535964966, 0.391510009765625, -0.6742799878120422, -0.02424200065433979, -0.3779999911785126, -0.14553000032901764, 0.2525700032711029, -0.4360800087451935, 0.3378300070762634, 0.1432799994945526, -0.09504900127649307, 0.3635700047016144, -0.31578001379966736, 0.9197099804878235, -0.6057299971580505, 0.01533500012010336, 0.10706999897956848, -0.5602700114250183, -1.1068999767303467, -0.46733999252319336, -0.09567700326442719, 0.33118999004364014, -0.5071600079536438, 0.1485300064086914, -0.6740099787712097, -1.0435999631881714, 0.7375699877738953, 0.14219999313354492, -0.029123999178409576, -0.06775300204753876, -0.03140399977564812, 0.11653000116348267, -0.23920999467372894, -0.3671500086784363, 0.3073900043964386, 0.920710027217865, -0.37523001432418823, 0.071663998067379, 0.7733100056648254, -0.18776999413967133, 0.5087400078773499, 0.5778700113296509, -0.19800999760627747, -0.053998999297618866, -0.0022913001012057066, 0.06591399759054184, -0.4645400047302246, -0.5376399755477905, 1.173799991607666, -0.4019699990749359, -0.28613001108169556, 0.5895799994468689, -0.6225299835205078, -0.07800500094890594, 0.32624000310897827, 0.6195399761199951, -0.06505600363016129, -0.22971999645233154, -1.0384000539779663, 0.08250100165605545, 0.24005000293254852, 0.1536799967288971, 0.2209399938583374, -0.310479998588562, 0.460999995470047, 0.4170700013637543, 0.13726000487804413, -0.16934999823570251, 0.5644800066947937, 0.817870020866394, 0.0805789977312088, 0.6752499938011169, -0.07433599978685379, -0.05618299916386604, -0.07543499767780304, -0.7976300120353699, -0.5890899896621704, -0.2534100115299225, -0.48649999499320984, -0.8877400159835815, 0.24859000742435455, -0.1921900063753128, -0.37599998712539673, 0.22203999757766724, -0.9603700041770935, 0.4185200035572052, -0.4562999904155731, 0.20911000669002533, 0.23690000176429749, 0.07324100285768509, 0.17563000321388245, -0.3591499924659729, 0.8014199733734131, -0.23659999668598175, 0.6451600193977356, 0.4366999864578247, -0.07409500330686569, 0.09798900038003922, -0.5379300117492676, 0.14180000126361847, -0.02851399965584278, 0.028054000809788704, -0.1785999983549118, -0.25745999813079834, -0.7907299995422363, -0.9458799958229065, 0.20964999496936798, 0.2856999933719635, -0.25183001160621643, -0.07748100161552429, 0.14406000077724457, -1.2144999504089355, 0.17529000341892242, -0.15711000561714172, -0.3041299879550934, -0.2730799913406372, -0.44359999895095825, 0.05484199896454811, 0.6655700206756592, 0.03126800060272217, 0.11880999803543091, 0.162650004029274, -0.6270800232887268, 0.48539999127388, 0.05815500020980835, 0.4666700065135956, 0.02510399930179119, 0.2717899978160858, -0.22032999992370605, -0.38576000928878784, -0.41025999188423157, 0.004985800012946129, -0.7084400057792664, 0.20663000643253326, -0.565850019454956], u'window': [-0.02935199998319149, -0.1377200037240982, -0.19707000255584717, -0.7930300235748291, 0.146029993891716, 0.5632299780845642, -0.4949299991130829, -0.6106299757957458, -0.08615999668836594, -1.1164000034332275, -0.22384999692440033, 0.6619200110435486, 0.5520300269126892, -0.40070000290870667, -0.41332000494003296, -0.4676800072193146, 0.23107999563217163, -0.28341999650001526, -0.1782200038433075, -0.08456800132989883, 0.23765000700950623, 0.12309999763965607, -0.327890008687973, 0.004811599850654602, 0.4370500147342682, -0.028363000601530075, -0.4895800054073334, 0.024272000417113304, -0.2917400002479553, -0.19373999536037445, 0.4125100076198578, 0.3255400061607361, 0.22213999927043915, 0.05604099854826927, -0.5363900065422058, 0.5505899786949158, -0.7297400236129761, -0.5855299830436707, -0.31396999955177307, 0.08996099978685379, 0.06603600084781647, -0.21363000571727753, -0.7764099836349487, 0.29872000217437744, -0.18702000379562378, 0.31630998849868774, 0.40042001008987427, -0.06418099999427795, -0.5378400087356567, -0.5198500156402588, -0.38510000705718994, 0.1551000028848648, 0.3154299855232239, -0.2563599944114685, -0.30935001373291016, -0.13722999393939972, 0.1546500027179718, -0.273389995098114, -0.18640999495983124, -0.004489299841225147, 0.18005000054836273, 0.07652299851179123, 0.38826000690460205, 0.264710009098053, 0.1811700016260147, -0.15008999407291412, 0.2229200005531311, -0.5865600109100342, 0.543720006942749, -0.23267999291419983, -0.661050021648407, -0.5876200199127197, -0.3629100024700165, 0.21296000480651855, 0.07892899960279465, -0.2047400027513504, -0.6206499934196472, -0.26583001017570496, -0.21303999423980713, -0.4205999970436096, -0.237869992852211, 0.10604000091552734, -0.03660999983549118, 0.22916999459266663, -0.19742000102996826, -0.08526600152254105, 0.2006399929523468, 0.03665899857878685, -0.22883999347686768, 0.19280000030994415, 0.10701999813318253, -0.18900999426841736, -0.36629998683929443, 0.3629699945449829, 0.35989001393318176, 0.10723999887704849, -0.15028999745845795, -0.40692999958992004, 0.6793799996376038, -0.8113399744033813, -0.061278000473976135, 0.08823300153017044, -0.0561399981379509, -0.0800200030207634, -0.14855000376701355, -0.33191001415252686, -0.3669799864292145, 0.40004000067710876, 0.17354999482631683, 0.6588799953460693, -0.5107700228691101, 0.24131999909877777, 0.08997999876737595, -0.2281000018119812, 0.05576999858021736, -0.4065999984741211, -0.38155001401901245, -0.09332200139760971, -0.14158999919891357, -0.5864800214767456, 0.02506200037896633, -0.04271399974822998, 0.2152400016784668, 0.4627099931240082, 0.05352000147104263, -0.8374000191688538, 0.41635000705718994, 0.09492900222539902, 0.33972999453544617, -0.1483599990606308, 0.3784500062465668, 0.2785100042819977, -0.13729999959468842, 0.43841999769210815, 0.398360013961792, 0.3512899875640869, 0.08632499724626541, 0.13693000376224518, -0.008854400366544724, -0.014999999664723873, -0.08220600336790085, 0.33087998628616333, -0.08811099827289581, -0.03564399853348732, -0.5658900141716003, -0.051426999270915985, 0.06347499787807465, 0.39452001452445984, -0.30417001247406006, -0.38444000482559204, -0.2064799964427948, -0.11751999706029892, 0.0033388000447303057, -0.7390000224113464, 0.4571099877357483, -0.3586199879646301, 0.012137999758124352, 0.043389998376369476, -0.15127000212669373, 0.248089998960495, 0.2573699951171875, -0.08236400038003922, 0.2908500134944916, 0.40163999795913696, 0.629610002040863, 0.7008699774742126, 0.05362100154161453, 0.250789999961853, 0.569379985332489, -0.36814001202583313, -0.5489199757575989, 0.2649900019168854, 0.22363999485969543, -0.4128299951553345, -0.07380899786949158, 0.11022999882698059, -0.31676000356674194, 0.6286399960517883, -0.37231001257896423, -0.8543999791145325, 0.16981999576091766, -0.38159000873565674, 0.2874299883842468, 0.08392100036144257, 0.8780999779701233, -0.21692000329494476, 0.4973999857902527, 0.19453999400138855, 0.3939799964427948, 0.8596799969673157, 0.3397899866104126, 0.15546000003814697, -0.43678000569343567, 0.20220999419689178, 0.023786000907421112, -0.012294000014662743, -0.11344999819993973, 0.07120800018310547, -0.8302199840545654, -0.0923750028014183, 0.8054900169372559, -0.44710999727249146, 0.14127999544143677, 0.07535699754953384, 0.2508600056171417, -0.2203799933195114, -0.43858999013900757, -0.42302000522613525, -0.4155200123786926, 0.39252999424934387, 0.2029999941587448, -0.425790011882782, -0.16583000123500824, -0.28189998865127563, 0.22416000068187714, 0.11587999761104584, 0.5323899984359741, 0.12984000146389008, -0.24369999766349792, 0.387719988822937, 0.3793700039386749, 0.26684999465942383, 0.07568900287151337, 0.09129899740219116, 0.010397999547421932, -0.3372099995613098, -0.4106599986553192, 0.16582000255584717, 0.41308000683784485, -0.22527000308036804, 0.05639899894595146, -0.4154300093650818, 0.05482900142669678, -0.3645099997520447, 0.29510000348091125, 0.16410000622272491, -0.15146000683307648, 0.041165001690387726, -0.20789000391960144, -0.2698799967765808, 0.3179500102996826, -0.20322999358177185, -0.6952000260353088, 0.026635000482201576, -0.02634499967098236, -0.2614299952983856, -0.14812999963760376, -0.8162299990653992, -0.39146000146865845, -0.05653199926018715, 0.18988999724388123, 0.001270200009457767, 0.3334900140762329, -0.7097200155258179, -0.16098999977111816, 0.5174099802970886, -0.2517400085926056, -0.08118700236082077, -0.016148999333381653, 0.4074299931526184, 0.036986999213695526, -0.3237200081348419, 0.4758099913597107, 0.10057999938726425, 0.0032913999166339636, -0.5358899831771851, -0.10339999943971634, 0.14350000023841858, 0.1678999960422516, -0.22957000136375427, 0.13872000575065613, -0.43595001101493835, -0.41962000727653503, -0.11958999931812286, -0.0396759994328022, 0.12472999840974808, -2.108599901199341, 0.10892999917268753, -0.4744099974632263, 0.10075999796390533, -0.8949699997901917, -0.18799999356269836, 0.43974000215530396, -0.5261800289154053, 0.17544999718666077, 0.5946800112724304, -0.044555000960826874, -0.01109199970960617, 0.2818799912929535, -0.28404000401496887, -0.10081999748945236, 0.07663200050592422, -0.17502999305725098, 0.11089999973773956, 0.418830007314682, 0.29614999890327454, -0.23393000662326813, 0.399509996175766, 0.1678999960422516, 0.4560900032520294], u'plastic': [-0.1146399974822998, 0.04165700078010559, -0.12105000019073486, -0.7495800256729126, -0.15612000226974487, -0.33702000975608826, 0.1920499950647354, 0.015798000618815422, 0.33065998554229736, -1.0640000104904175, -0.2533999979496002, -0.10154999792575836, -0.3513000011444092, 0.22509999573230743, 0.2556599974632263, -0.11753000319004059, -0.8657199740409851, 0.24432000517845154, -0.10227999836206436, -0.07074899971485138, 0.5078999996185303, -0.4569700062274933, -0.4241600036621094, 0.8083099722862244, -0.5371099710464478, -0.0660490021109581, -0.7749699950218201, 0.13644999265670776, 0.45197001099586487, -0.5202299952507019, 0.12701000273227692, 0.32613998651504517, -0.05325999855995178, 0.05307700112462044, -0.06233600154519081, 0.9197199940681458, -0.0881740003824234, 0.06521400064229965, -0.2170100063085556, 0.5329599976539612, -0.4811600148677826, -0.4737499952316284, 0.005519900005310774, -0.20755000412464142, -0.17997999489307404, 0.07862299680709839, 0.03984899818897247, -0.10803999751806259, 0.4644399881362915, 0.6398299932479858, -0.08237200230360031, 0.25731000304222107, -0.15203000605106354, -0.00723630003631115, 0.08552499860525131, 0.09346599876880646, -0.3891899883747101, -0.2451000064611435, 0.34224000573158264, -0.2244900017976761, -0.04804600030183792, 0.1033099964261055, -0.11394000053405762, 0.3063400089740753, 0.445389986038208, -0.3289799988269806, -0.508650004863739, -0.07356300204992294, -0.2180899977684021, -0.057100001722574234, -0.25334998965263367, -0.1004600003361702, -0.12487000226974487, 0.6707299947738647, 0.18316000699996948, 0.18821999430656433, 0.3108200132846832, -0.20472000539302826, 0.09269200265407562, -0.6555500030517578, -0.08659400045871735, -0.2259799987077713, -0.2843500077724457, 0.39789000153541565, -0.3336299955844879, -0.1473899930715561, 0.3343699872493744, -0.028488000854849815, -0.9118800163269043, -0.4197700023651123, 0.3576500117778778, 0.32638001441955566, 0.22565999627113342, -0.1307699978351593, 0.19686999917030334, 0.40863001346588135, -0.21115000545978546, 0.21223999559879303, -0.1646299958229065, -0.9948099851608276, 0.4002699851989746, 0.8614199757575989, -0.16997000575065613, -0.7425500154495239, 0.05937900021672249, -0.30527999997138977, 0.09193900227546692, 0.33875998854637146, -1.0674999952316284, -0.18095000088214874, -0.023142000660300255, 0.5703099966049194, -0.25586000084877014, -0.6658999919891357, 0.2719700038433075, 0.3068000078201294, 0.09804099798202515, 0.6299200057983398, -0.28404998779296875, -0.5462599992752075, -0.16052000224590302, -0.010456000454723835, 0.6727700233459473, 0.4893999993801117, -0.1047699972987175, 0.36542999744415283, -0.1805800050497055, -0.45605000853538513, 0.10072000324726105, 0.12331999838352203, 0.23733000457286835, 0.5818600058555603, 0.4712499976158142, 0.5246400237083435, 0.28084999322891235, 0.004654400050640106, -0.15768000483512878, -0.24974000453948975, -0.11647000163793564, 0.7732099890708923, 0.2147199958562851, 0.00950899999588728, -0.021383000537753105, -0.6741499900817871, 0.26381000876426697, 0.4459899961948395, 0.37389999628067017, -0.01167600043118, -0.22056999802589417, -0.23265999555587769, -0.03893199935555458, -0.3626999855041504, 0.1411599963903427, -0.6144999861717224, 0.3101100027561188, 0.1862799972295761, -0.4864000082015991, -0.9128900170326233, -0.08351899683475494, 0.5416300296783447, 0.027289999648928642, 0.2563300132751465, -0.12664000689983368, 0.13394999504089355, 0.5806300044059753, -0.01207400020211935, 0.1575700044631958, 0.3822999894618988, 0.046456001698970795, -0.23138000071048737, 0.012354999780654907, 0.3247300088405609, -0.05217999964952469, 0.3119699954986572, -0.19898000359535217, -0.7729600071907043, -0.10413999855518341, 0.5137100219726562, 0.2654699981212616, -0.6519899964332581, 0.2517800033092499, -0.15006999671459198, 0.3392300009727478, 0.15033000707626343, -0.018449999392032623, -0.12515999376773834, 0.8515300154685974, 0.554610013961792, 0.5333999991416931, -0.13350999355316162, 0.48572999238967896, 0.7143099904060364, 0.08584299683570862, 0.20987999439239502, -0.2995400130748749, 0.45388999581336975, -0.17899000644683838, 0.729390025138855, -0.2682799994945526, 0.6700400114059448, 0.13761000335216522, 0.3846299946308136, 0.5726199746131897, 0.22878000140190125, 0.19381999969482422, -0.23127999901771545, 0.5232700109481812, 0.09125100076198578, -0.7266799807548523, 0.06074000149965286, 0.2770799994468689, 0.12292999774217606, 0.19332000613212585, -0.1625799983739853, 0.7951099872589111, -0.24195000529289246, 0.24582000076770782, -0.23548999428749084, -0.38655999302864075, 0.28301000595092773, 0.6000800132751465, 0.11630000174045563, 0.4925900101661682, -0.025467000901699066, -0.10808999836444855, 0.3215300142765045, -0.3564800024032593, -0.2721399962902069, 0.394320011138916, -0.5585899949073792, 0.7581999897956848, 0.45396000146865845, -0.092958003282547, -0.14940999448299408, 0.5105999708175659, 0.28047001361846924, -0.13685999810695648, -0.2926500141620636, -0.912090003490448, 0.1552100032567978, -0.05652499943971634, -0.4346800148487091, -0.4094800055027008, 0.2021300047636032, -0.6722400188446045, -0.5959699749946594, 0.5699599981307983, -0.6939499974250793, -0.21369999647140503, 0.3513300120830536, 0.31942999362945557, -0.2801800072193146, 0.36608999967575073, -0.3878900110721588, 0.4867900013923645, 0.6473299860954285, -0.22686000168323517, -0.5856900215148926, 0.07924400269985199, -0.24917000532150269, -0.13816000521183014, -0.2931399941444397, -0.20767000317573547, 0.37821999192237854, 0.8097800016403198, -0.0921970009803772, -0.19265000522136688, 0.033333998173475266, 0.00714890006929636, 0.2966899871826172, 0.09464699774980545, -0.19201000034809113, -0.001015600049868226, -0.3648799955844879, -0.7670300006866455, 0.1348399966955185, -1.6708999872207642, 0.09070499986410141, -1.1490000486373901, -0.15591999888420105, 0.1388300061225891, -0.2966499924659729, -0.28661999106407166, 0.2406100034713745, -0.004062400199472904, 0.6452699899673462, 0.27494001388549805, 0.2641499936580658, 0.11238999664783478, 0.06794100254774094, -0.3341200053691864, -0.3525800108909607, 0.1574999988079071, 0.8413400053977966, 0.0036891999188810587, 0.09168999642133713, 0.5486800074577332, 0.048879001289606094, -0.07929600030183792, 0.008929800242185593], u'paint': [0.6881700158119202, 0.04696499928832054, -0.23454000055789948, -0.3967899978160858, -0.16746999323368073, -0.2201700061559677, -0.2664699852466583, 0.04461099952459335, 0.32743000984191895, -0.9821900129318237, 0.05339900031685829, -0.15286999940872192, 0.4306800067424774, 0.06185400113463402, 0.5702700018882751, -0.4322099983692169, 0.1251399964094162, 0.2247599959373474, -0.21875999867916107, -0.22279000282287598, -0.2565799951553345, 0.05526699870824814, 0.7240800261497498, -0.15690000355243683, 0.19370000064373016, -0.8691999912261963, -0.3107999861240387, 0.19272999465465546, -0.057659000158309937, 0.06186100095510483, 0.20941999554634094, 0.4421199858188629, 0.07309199869632721, 0.020191000774502754, -0.16824999451637268, 0.6666399836540222, -0.6696299910545349, -0.23752999305725098, -0.015698999166488647, -0.1622299998998642, 0.021494999527931213, -0.06949999928474426, 0.13075000047683716, -0.26093998551368713, 0.24275000393390656, 0.12803000211715698, -0.019443999975919724, -0.4344800114631653, 0.047203000634908676, -0.7209799885749817, -0.1861400008201599, 0.28703001141548157, 0.5286099910736084, 0.2590300142765045, 0.3752500116825104, 0.425570011138916, -0.1272599995136261, -0.39054998755455017, 0.28984999656677246, 0.04244999960064888, -0.11294999718666077, 0.10516999661922455, 0.039778999984264374, -0.13412000238895416, 1.0508999824523926, -0.525409996509552, -0.3005099892616272, -0.8939899802207947, 0.23507000505924225, -0.21496999263763428, -0.21333999931812286, -0.710919976234436, 0.13199999928474426, 0.3957499861717224, -0.27081000804901123, -0.35593000054359436, -0.13431000709533691, 0.5307300090789795, 0.11475999653339386, -0.5056300163269043, -0.26680999994277954, -0.305649995803833, 0.09988900274038315, -0.6835700273513794, 0.18532000482082367, 0.19497999548912048, 0.42017999291419983, 0.22846999764442444, -0.6189000010490417, 0.47828999161720276, -0.09357199817895889, -0.12589000165462494, -0.008451900444924831, -0.5235900282859802, -0.14565999805927277, -0.0481639988720417, -0.020275000482797623, -0.6298800110816956, 0.4445900022983551, -0.8132699728012085, -0.16745999455451965, -0.0967089980840683, -0.37185999751091003, 0.14887000620365143, 0.3078700006008148, -0.1253799945116043, -0.13797999918460846, -0.056866999715566635, -0.03675299882888794, 0.09953700006008148, 0.09222599864006042, -0.4120999872684479, 0.07942300289869308, -0.05486899986863136, -0.09255599975585938, 0.372979998588562, -0.1818699985742569, 1.0681999921798706, 0.12861000001430511, -0.08238600194454193, 0.3012999892234802, 0.10277000069618225, -0.00920610036700964, 0.9937400221824646, -0.1686599999666214, -0.3070099949836731, -0.27654001116752625, 0.45083001255989075, 0.19484999775886536, 0.2246599942445755, 0.3932200074195862, 0.031129000708460808, 0.2184399962425232, 0.5541800260543823, -0.1162400022149086, 0.21773000061511993, -0.1822900027036667, 0.5115900039672852, 0.6313599944114685, -0.0075425999239087105, 0.8657400012016296, 0.608240008354187, -0.5919100046157837, -0.5079900026321411, 0.3832699954509735, 0.46397000551223755, 0.017861999571323395, 0.29403001070022583, 0.0969809964299202, 0.12985999882221222, -0.031943999230861664, 0.11812999844551086, -0.42285001277923584, -0.38672998547554016, -0.2554300129413605, 0.20148000121116638, -0.24602000415325165, 0.02132599987089634, 0.5070800185203552, 0.11246000230312347, 0.1726900041103363, 0.08912400156259537, 0.08745700120925903, -0.1001800000667572, 0.5652999877929688, -0.3119699954986572, -0.12081000208854675, 0.33337000012397766, -0.04576500132679939, 0.007720599882304668, 0.26218000054359436, -0.20374000072479248, -0.04077199846506119, 0.03457700088620186, 0.18851999938488007, -0.3617900013923645, 0.13660000264644623, -0.04727200046181679, 0.012593000195920467, -0.6578699946403503, -0.2908500134944916, 0.33202001452445984, 0.14236000180244446, 0.052156999707221985, -0.23479999601840973, -0.47936999797821045, 1.1711000204086304, -0.21507999300956726, 0.616320013999939, 0.2915099859237671, 0.6536499857902527, 0.2721700072288513, -0.30663999915122986, -0.12483999878168106, 0.19134999811649323, -0.5493500232696533, -0.13118000328540802, 0.6173800230026245, -0.13605999946594238, -0.2971400022506714, 0.5690600275993347, -0.048813000321388245, 0.27628999948501587, -0.12105000019073486, 0.3388499915599823, 0.3418799936771393, 0.34755000472068787, 0.5893099904060364, -0.6521499752998352, 0.2262600064277649, 0.12383999675512314, 0.13917000591754913, 0.2378299981355667, -0.5447800159454346, 0.1088000014424324, 0.07891400158405304, 0.8245199918746948, 0.13167999684810638, 0.20550000667572021, -0.40852999687194824, 0.593209981918335, 0.42142999172210693, -0.12981000542640686, -0.07282000035047531, -0.10440000146627426, -0.18167999386787415, 0.08472800254821777, 0.4136900007724762, -0.04206399992108345, -0.2896600067615509, -0.13742999732494354, -0.1078300029039383, 0.05520499870181084, -0.14993999898433685, 0.3797700107097626, 0.05873600021004677, 0.1192300021648407, -0.0062489998526871204, 0.07442999631166458, -0.1709499955177307, -0.20555999875068665, 0.19589999318122864, -0.4392099976539612, 0.020500000566244125, -0.5217499732971191, -0.1606999933719635, 0.19585999846458435, -0.5354400277137756, -0.10490000247955322, 0.13685999810695648, 0.14094999432563782, -0.6971399784088135, 0.46498000621795654, -0.5107499957084656, 1.135200023651123, -0.22700999677181244, -0.2716200053691864, 0.02680700086057186, -0.06416299939155579, 0.5015199780464172, -0.10120999813079834, -0.47494998574256897, -0.14587000012397766, -0.1481499969959259, 0.5161899924278259, -0.12239000201225281, -0.2223300039768219, -0.3571299910545349, -0.3078700006008148, -0.19166000187397003, 0.43331000208854675, 0.030101999640464783, 0.32409998774528503, -0.1857299953699112, -0.0835300013422966, 0.4021100103855133, -1.4035999774932861, -0.4217100143432617, -0.782800018787384, -0.14887000620365143, 0.2650800049304962, 0.1719599962234497, -0.005651600193232298, 0.29155999422073364, 0.47960999608039856, 0.5931699872016907, -0.11462999880313873, 0.17961999773979187, 0.1066799983382225, 0.02687700092792511, -0.026195000857114792, -0.2735700011253357, 0.2234400063753128, 0.6140900254249573, -0.1973699927330017, -0.24048000574111938, 0.9232699871063232, -0.09051299840211868, -0.05499900132417679, 0.18273000419139862], u'camera': [-0.6574000120162964, 0.4971500039100647, 0.0979280024766922, -0.46845000982284546, -0.40303000807762146, -0.36901000142097473, -0.33072999119758606, -0.3325999975204468, 0.18398000299930573, -1.3990000486373901, 0.39902999997138977, 0.190870001912117, 0.7778499722480774, -0.25971001386642456, 0.10313999652862549, 0.007594999857246876, -0.43595999479293823, -0.47464001178741455, -0.09808900207281113, -0.5037099719047546, 0.044638000428676605, 0.38106000423431396, 0.1388300061225891, 0.011346999555826187, 0.4741300046443939, -0.43939998745918274, 0.02391500025987625, -0.35067999362945557, 0.5179399847984314, 0.3743099868297577, -0.13241000473499298, -0.23303000628948212, -0.22878000140190125, 0.4795199930667877, -0.7980599999427795, 0.11108999699354172, -0.16981999576091766, -0.30529001355171204, 0.13650000095367432, 0.6090700030326843, -0.33507001399993896, 0.5057899951934814, 0.212459996342659, 0.536620020866394, -0.18045000731945038, 0.05961799994111061, 0.7680699825286865, -0.4996100068092346, 0.3641799986362457, 0.1864600032567978, -0.11094000190496445, 0.13989000022411346, 0.008154800161719322, 0.045504000037908554, 0.2840999960899353, 0.3405799865722656, 0.2580600082874298, -0.5271700024604797, -0.13138000667095184, 0.41791000962257385, -0.3524099886417389, 0.3831000030040741, 0.29264000058174133, 0.8238199949264526, 0.1265300065279007, 0.5624099969863892, -0.07955600321292877, -0.2215700000524521, 0.5883700251579285, -0.5557000041007996, 0.1507200002670288, 0.13612000644207, 0.24352000653743744, 0.23130999505519867, 0.4727799892425537, -0.34946000576019287, -0.25731998682022095, 0.127360001206398, 0.2644500136375427, -0.5936300158500671, -0.661080002784729, -0.021896999329328537, 0.1316400021314621, -0.046535998582839966, -0.18327000737190247, 0.24408000707626343, -0.09438399970531464, 0.15060999989509583, -0.22033999860286713, -0.011394999921321869, 0.2272700071334839, -0.11138000339269638, -0.3954100012779236, 0.35736000537872314, 0.3129900097846985, -0.5169600248336792, -1.1062999963760376, -0.6198099851608276, -0.04940799996256828, -1.6158000230789185, -0.2170500010251999, 0.7103000283241272, -0.16321000456809998, -0.11437000334262848, -0.013566000387072563, 0.16572999954223633, 0.3062500059604645, 0.6304600238800049, -0.45385000109672546, 0.03501100093126297, -0.15056000649929047, 0.4846700131893158, 0.19259999692440033, 0.1258399933576584, 0.004400299862027168, 0.12939999997615814, 0.09946800023317337, -0.15263999998569489, -0.5213800072669983, -0.01580600067973137, -0.07698799669742584, -0.02536799944937229, 0.4699299931526184, -0.397460013628006, 0.33246999979019165, -0.33730998635292053, -0.03269999846816063, 0.4821999967098236, 0.32774999737739563, 0.11952000111341476, -0.10726000368595123, 0.027844000607728958, 0.15175999701023102, 1.0055999755859375, -0.35585999488830566, 0.14406000077724457, 0.6886799931526184, 0.37369000911712646, 0.008435900323092937, -0.35712000727653503, -0.21814000606536865, -0.15399999916553497, -0.4567900002002716, -0.021337000653147697, -0.4050300121307373, -0.1818699985742569, 0.31624001264572144, 0.18219000101089478, 0.1448799967765808, -0.492110013961792, 0.24677999317646027, 0.1365099996328354, 0.3149000108242035, 0.009411700069904327, 0.23412999510765076, 0.24793000519275665, 0.4288899898529053, 0.3601300120353699, 0.03199699893593788, -0.37617000937461853, 0.22881999611854553, -0.4161899983882904, -0.011625000275671482, -0.3854300081729889, 0.5052599906921387, 0.2128800004720688, 0.08332300186157227, 0.14137999713420868, -0.008196000009775162, -0.008094199933111668, -0.04843899980187416, -0.25867000222206116, -0.3440200090408325, 0.48805999755859375, -0.039882998913526535, -0.2005700021982193, 0.10384999960660934, 0.46546000242233276, -0.284280002117157, -0.6759399771690369, 0.39068999886512756, -0.321150004863739, -0.13208000361919403, 0.8547199964523315, -0.21813000738620758, -0.7003700137138367, 0.9973000288009644, -0.15633000433444977, 0.1776300072669983, 0.05830100178718567, -0.31606999039649963, 0.15148000419139862, -0.38659998774528503, 0.5871800184249878, -0.7668600082397461, 0.15476000308990479, -0.6118000149726868, 0.16676999628543854, -0.10524000227451324, -0.41110000014305115, 1.065500020980835, -0.1532599925994873, -0.32238999009132385, 0.5523300170898438, 0.24126000702381134, -0.21928000450134277, -0.13151000440120697, 0.2526099979877472, -0.08763100206851959, -0.019693000242114067, 0.9140899777412415, -0.030525999143719673, -0.16524000465869904, -0.0499269999563694, 0.25409001111984253, -0.06051899865269661, -0.20736999809741974, -0.49022001028060913, -0.12901000678539276, 0.4164299964904785, -0.4849199950695038, 0.47099998593330383, 0.4692299962043762, 0.4485799968242645, 0.07812099903821945, 0.1917800009250641, 0.39164999127388, -0.8040500283241272, 0.07777699828147888, -0.13650000095367432, 0.6826099753379822, -0.37856999039649963, 0.08470799773931503, -0.3695000112056732, -0.012144000269472599, 0.10721000283956528, -0.04340000078082085, 0.08044099807739258, -0.4860599935054779, 0.2161100059747696, 0.43198999762535095, 0.5251299738883972, -0.3025299906730652, 0.6586599946022034, -0.09359099715948105, -0.643559992313385, -0.16896000504493713, -0.31606999039649963, -0.4033699929714203, -0.16064999997615814, 0.43678998947143555, -0.16449999809265137, 0.04187700152397156, 0.25426000356674194, -0.10852999985218048, 0.42660000920295715, -0.13113999366760254, -0.050925999879837036, -0.03819100186228752, -0.19343000650405884, 0.0475349985063076, -0.2748500108718872, -0.28933998942375183, 0.3750300109386444, -0.042392000555992126, -0.39921000599861145, -0.7611100077629089, 0.5607500076293945, -0.3660300076007843, 0.07413800060749054, 0.16203999519348145, 0.3393299877643585, -0.10029000043869019, 0.4008699953556061, 0.14476999640464783, -0.0087956003844738, -1.4069000482559204, 0.21164000034332275, -0.3052299916744232, -0.07240399718284607, -0.10627000033855438, 0.33041998744010925, -0.22461000084877014, -0.5578299760818481, -0.17459000647068024, 0.4375799894332886, -0.13597999513149261, -0.2750700116157532, -0.16226999461650848, 0.6728699803352356, 0.08968599885702133, -0.12782999873161316, -0.434469997882843, -0.6830499768257141, -0.8668699860572815, 0.13332000374794006, 0.0054294997826218605, 0.808929979801178, 0.11281000077724457, -0.2053000032901764], u'bronze': [0.3384599983692169, 0.4096499979496002, -0.38947999477386475, -0.8544899821281433, 0.30726000666618347, 0.5253900289535522, -0.16936999559402466, 0.20699000358581543, 0.33441001176834106, -0.26315000653266907, 0.23619000613689423, 0.2494100034236908, -1.004699945449829, 0.3458000123500824, 0.11845000088214874, 0.17499999701976776, 0.2617200016975403, 0.05951400101184845, -0.7339800000190735, -0.35923001170158386, -0.27452000975608826, 0.024867000058293343, 0.38405999541282654, -0.12797999382019043, 0.385019987821579, -0.7090700268745422, 0.1577499955892563, -0.026607999578118324, 0.05826399847865105, 0.6202899813652039, 0.20356999337673187, 0.6093900203704834, 0.10531000047922134, 0.3073500096797943, -1.0429999828338623, 0.07564199715852737, -0.04907499998807907, -0.09041199833154678, 0.27386999130249023, 0.6076800227165222, -0.458840012550354, -0.9152299761772156, 0.31356000900268555, 0.13379999995231628, 0.06581799685955048, -0.12957000732421875, 0.2626200020313263, -0.11553999781608582, 0.3032900094985962, 0.22333000600337982, -0.6681200265884399, 0.26350000500679016, -0.08604100346565247, -0.1963600069284439, -0.33807000517845154, 0.43560999631881714, -0.38899001479148865, 0.1250700056552887, 0.25189000368118286, -0.2799000144004822, -0.5206500291824341, 1.1606999635696411, -0.3478499948978424, -0.7976300120353699, 0.4283899962902069, -0.46410998702049255, -0.5646499991416931, 0.7145699858665466, 0.4902400076389313, -0.6840000152587891, -0.36017999053001404, -0.6751000285148621, -0.09897500276565552, -0.7138699889183044, -1.3202999830245972, 0.8542500138282776, 0.02653999999165535, -0.6954900026321411, 0.6356199979782104, -0.15191000699996948, 0.06390299648046494, 0.43101999163627625, -0.22067999839782715, -0.4756700098514557, 0.04480399936437607, 0.14117999374866486, -0.021947000175714493, -0.22935999929904938, 0.053300999104976654, 0.33809998631477356, 0.8876199722290039, 0.035381998866796494, 0.7687199711799622, -0.2803100049495697, 0.387580007314682, 0.05969800055027008, -0.2610799968242645, -0.32190999388694763, -0.2520500123500824, 0.20292000472545624, -0.10289999842643738, 0.005006699822843075, -0.34084999561309814, 0.03142499923706055, 0.48715001344680786, -0.2109300047159195, 0.18140999972820282, -0.19142000377178192, -0.8716999888420105, -0.9451799988746643, -0.29794999957084656, 0.4667699933052063, -0.1014999970793724, -1.0918999910354614, -0.34845998883247375, 0.08237600326538086, -0.5198400020599365, 0.3388200104236603, 0.13388000428676605, 0.19374999403953552, -0.6782000064849854, 0.5109500288963318, -0.0720440000295639, -0.4161899983882904, -0.0776199996471405, 0.859499990940094, -0.20601999759674072, 0.6528900265693665, -0.673550009727478, -0.48183000087738037, -0.9120299816131592, -0.1076200008392334, 0.5702999830245972, 0.15952999889850616, -0.31011998653411865, 0.16629000008106232, -0.22075000405311584, -0.025689000263810158, 0.32460999488830566, 0.41343000531196594, -0.19211000204086304, -0.05038600042462349, 0.10405000299215317, -0.36100998520851135, 0.10642000287771225, -0.6246399879455566, 0.10180000215768814, 0.28053998947143555, 0.2527799904346466, -0.5108199715614319, 0.46345001459121704, -0.2622799873352051, -0.16825999319553375, 0.07157400250434875, -0.32572001218795776, 0.3531999886035919, -1.0094000101089478, 0.0067980000749230385, -0.8047699928283691, -0.011037999764084816, -0.08323899656534195, 0.23407000303268433, 0.45333999395370483, 0.25374001264572144, 0.639490008354187, 0.47738000750541687, 0.26298999786376953, 0.2641200125217438, 0.5522500276565552, -0.4096300005912781, -0.2513999938964844, 0.061090998351573944, 0.7058600187301636, -0.6016700267791748, 0.006711000110954046, -0.25317999720573425, 0.26958000659942627, -0.26203998923301697, -0.1842299997806549, -0.2264299988746643, -0.4878399968147278, 0.8506600260734558, 0.21258999407291412, -1.0175000429153442, 0.6880300045013428, -0.20835000276565552, -0.7333700060844421, 0.26135000586509705, 0.47380000352859497, -0.017085000872612, 0.6045200228691101, 0.1327199935913086, 0.5197499990463257, 0.4483500123023987, -0.21743999421596527, 0.16631999611854553, 0.35738998651504517, -0.08986099809408188, 0.16166000068187714, -0.17973999679088593, 1.807800054550171, -0.5041000247001648, -0.2508000135421753, -0.2646099925041199, 0.4506399929523468, 0.19348999857902527, -0.28422999382019043, -0.7280099987983704, -0.8916400074958801, -0.11422999948263168, 1.0293999910354614, 0.6103699803352356, -0.13016000390052795, -0.03452499955892563, 0.031638000160455704, -0.29256001114845276, 0.0759660005569458, -0.4702500104904175, -0.5097900032997131, 0.22105999290943146, -0.20521999895572662, -0.7259699702262878, 0.1530500054359436, -0.16148999333381653, -0.5293200016021729, 0.24761000275611877, 0.059808000922203064, 0.18790000677108765, -0.07961899787187576, 0.37147000432014465, -0.5557000041007996, -0.07823900133371353, 0.030383000150322914, -0.06617199629545212, -0.13460999727249146, 0.25975000858306885, -0.43702998757362366, -0.41780999302864075, 0.6311500072479248, 0.15522000193595886, 0.03160199895501137, 0.6842600107192993, -0.42594999074935913, 0.3812299966812134, -0.7399200201034546, -0.4644800126552582, -0.5484300255775452, 0.1777700036764145, -0.4182800054550171, 0.4439699947834015, -0.2875399887561798, -0.6462299823760986, 0.23499999940395355, 0.08274400234222412, 0.41749000549316406, 0.05789399892091751, 0.5965800285339355, -0.06070299819111824, -0.542389988899231, 0.08203200250864029, -0.2556599974632263, -0.21017000079154968, 0.5551699995994568, 0.39840999245643616, 0.2489600032567978, 0.7242599725723267, -0.07504700124263763, 0.18553000688552856, -0.057728998363018036, 0.0068536000326275826, -0.36500999331474304, -0.1382800042629242, 0.39146000146865845, 0.5451700091362, -0.8068699836730957, 0.019863000139594078, -1.0372999906539917, -0.41492998600006104, -0.7566199898719788, -0.13097000122070312, 0.07906799763441086, -0.1477999985218048, -0.22842000424861908, -0.132860004901886, 0.20229999721050262, 0.24683000147342682, -0.5897899866104126, 0.10346999764442444, -0.2605299949645996, 0.22240999341011047, 0.006683799903839827, 0.6680700182914734, 0.15984000265598297, 0.1305599957704544, 0.4113200008869171, -0.10582999885082245, 0.6662600040435791, 0.20021000504493713, -0.007650400046259165, -0.32014000415802], u'tea': [-0.4025300145149231, 0.42706000804901123, 0.3381600081920624, -0.18929000198841095, -0.45596998929977417, -0.4218299984931946, 0.553629994392395, 0.1943099945783615, -0.12827999889850616, -0.42702001333236694, -0.1344500035047531, -0.4220300018787384, -0.8534899950027466, 0.23771999776363373, -0.019719000905752182, 0.06972700357437134, -0.31540998816490173, 0.19175000488758087, -0.7292100191116333, 0.22333000600337982, -0.8564800024032593, -0.05898800119757652, 0.14042000472545624, 0.14368000626564026, -0.45965999364852905, -0.09332799911499023, -0.23783999681472778, -0.29159000515937805, -0.1567399948835373, 0.2578999996185303, -0.22463999688625336, 0.13131999969482422, -0.08518800139427185, -0.1701200008392334, -1.1955000162124634, 0.4346500039100647, 0.2544899880886078, 0.023357000201940536, -0.38773998618125916, -0.8514599800109863, -0.5757700204849243, -0.2138500064611435, 0.226500004529953, -0.07189500331878662, 0.6692000031471252, -0.9154099822044373, 0.3861599862575531, -0.33320000767707825, -0.7032600045204163, 0.3607800006866455, 0.21115000545978546, -0.20754000544548035, 0.10693000257015228, -0.21401000022888184, -0.36006999015808105, 0.1005999967455864, 0.026876000687479973, 0.25393998622894287, 0.11582999676465988, -0.031060000881552696, 0.3731200098991394, -0.6224499940872192, -0.16193999350070953, 0.15487000346183777, -0.03646399825811386, 0.0874280035495758, -0.35989999771118164, -0.027122000232338905, -0.643060028553009, 0.06730999797582626, 0.026288999244570732, 0.005001800134778023, 0.17395000159740448, -0.7532899975776672, -0.5138700008392334, -0.45851001143455505, 0.5451200008392334, -0.4711799919605255, -0.568120002746582, -0.18957999348640442, -0.4984300136566162, 0.6013500094413757, 0.05993599817156792, 0.008689199574291706, 0.633679986000061, -0.24363000690937042, 0.10027000308036804, -0.3432300090789795, 0.27667999267578125, -0.5561800003051758, 0.34588000178337097, -0.5187699794769287, 0.21438999474048615, -0.021602999418973923, 0.04557099938392639, 0.523419976234436, 0.6201000213623047, -0.32875001430511475, -0.12518000602722168, 0.1294499933719635, 0.06881999969482422, 0.04765399917960167, -0.14451999962329865, -0.7504299879074097, 0.21296000480651855, -0.22195999324321747, -0.4238300025463104, 0.10209999978542328, -0.2152000069618225, 0.3081800043582916, 0.5379999876022339, -0.3705199956893921, 0.10055000334978104, 0.3053300082683563, 0.7466800212860107, 0.06467600166797638, -0.43525999784469604, 0.48541998863220215, 0.06054399907588959, -0.3380900025367737, -0.4910399913787842, 0.3347499966621399, -0.5116900205612183, 0.09603700041770935, -0.32440999150276184, -0.03807799890637398, 0.30281999707221985, 0.10826999694108963, 0.3712800145149231, 0.016793999820947647, -0.029103999957442284, 1.0161999464035034, 0.05937600135803223, -0.5531700253486633, -0.11869999766349792, 0.1117900013923645, -0.35550999641418457, -0.1113400012254715, -0.12941999733448029, 0.014305000193417072, 0.20890000462532043, 0.23783999681472778, 0.06496500223875046, 0.05922900140285492, -0.19102999567985535, 0.4505099952220917, 0.11279000341892242, -0.23030999302864075, 0.6736199855804443, -0.29111000895500183, -0.13068999350070953, 0.32666999101638794, 0.2787800133228302, -0.14643000066280365, -0.4352700114250183, 0.18806999921798706, -0.06706299632787704, -0.6856399774551392, 0.8972200155258179, -0.3846699893474579, 0.003322900040075183, -0.009023400023579597, -0.052560001611709595, -0.18094000220298767, -0.11050999909639359, -0.26482999324798584, -0.14375999569892883, -0.3432300090789795, -0.3415600061416626, 0.1845400035381317, -0.4987100064754486, -0.14036999642848969, -0.20767000317573547, 0.4474300146102905, -0.22968000173568726, -0.3125700056552887, 0.08646900206804276, 0.48673999309539795, 0.3831700086593628, -0.1700499951839447, -0.07340600341558456, 0.33048000931739807, 0.2327200025320053, -0.48969998955726624, 0.2994599938392639, 0.7903800010681152, 0.8020099997520447, 0.30441001057624817, 0.10057000070810318, -0.7137699723243713, 0.5745300054550171, 0.6071100234985352, 0.027581000700592995, 0.42985999584198, -0.4005599915981293, -0.2732599973678589, 0.1780800074338913, 0.14443999528884888, -0.3426400125026703, -0.12585000693798065, 0.21616999804973602, -0.14023999869823456, 0.21513999998569489, -0.13124999403953552, 0.19957000017166138, -0.740809977054596, 0.5173599720001221, 0.45021000504493713, -0.31654998660087585, -0.5055000185966492, -0.029413999989628792, -0.24864999949932098, 0.21371999382972717, 0.1107499971985817, -0.2935200035572052, -0.47859999537467957, 0.10192999988794327, -0.39739999175071716, 0.4124000072479248, 0.5594900250434875, 0.8376299738883972, 0.1626099944114685, -0.8637700080871582, -0.1397700011730194, -0.46546998620033264, 0.5931699872016907, -0.07872900366783142, 0.04498700052499771, -0.38155999779701233, 0.43316999077796936, -0.1358499974012375, -0.5601300001144409, -0.12777000665664673, 0.8423100113868713, 0.7644199728965759, -0.001141799963079393, -0.07063300162553787, -0.2035900056362152, -0.7478100061416626, -0.449970006942749, -0.4105699956417084, -0.06696099787950516, -1.0020999908447266, 0.1378600001335144, -0.8650199770927429, 0.7671800255775452, 0.09071599692106247, 0.6424099802970886, -0.29093000292778015, 0.34426000714302063, 0.579010009765625, -0.3556300103664398, 0.3086400032043457, -0.16402000188827515, 0.24647000432014465, 0.007475799880921841, 0.4132300019264221, -0.1655299961566925, 0.5422000288963318, 0.028829000890254974, 0.17851999402046204, -0.3033899962902069, 0.07403700053691864, -0.2439900040626526, -0.21166999638080597, 0.16749000549316406, 0.23077000677585602, 0.13235999643802643, 0.540690004825592, 0.17813000082969666, -0.3860799968242645, -0.299780011177063, 0.050857000052928925, -0.21155999600887299, -0.33972999453544617, -0.07616200298070908, -1.2664999961853027, 0.14374999701976776, -0.2676199972629547, -0.08023200184106827, -0.3915799856185913, -0.3077400028705597, 0.13547000288963318, -0.7868499755859375, 0.017347000539302826, 0.33682000637054443, 0.4455600082874298, -0.11958999931812286, 0.07876300066709518, 0.9348099827766418, -0.2633900046348572, 0.43151000142097473, -0.2648800015449524, 0.24240000545978546, 0.13819000124931335, 0.22812999784946442, 0.11071000248193741, -0.4334399998188019, -0.2746500074863434, 0.5893200039863586], u'valley': [-0.3966299891471863, -0.07944899797439575, 0.24487000703811646, -0.5664899945259094, 0.042121998965740204, -0.05698100104928017, 0.009821799583733082, 0.027734000235795975, 0.383870005607605, -0.5467699766159058, -0.5392199754714966, -0.38148999214172363, -0.02418299950659275, 0.5937100052833557, 0.4210200011730194, 0.3650200068950653, -0.287339985370636, -0.009405500255525112, 0.5926700234413147, 0.885890007019043, 0.07883399724960327, -0.017472999170422554, 0.2197899967432022, -0.05514200031757355, -0.21258999407291412, -0.5710800290107727, -0.3138900101184845, -0.4808500111103058, -0.02611199952661991, -0.43856000900268555, 0.9379000067710876, 0.2973499894142151, 0.008689399808645248, 0.46334001421928406, -0.11712999641895294, -0.2228900045156479, -0.1563500016927719, -0.09550300240516663, 0.019471999257802963, -1.0774999856948853, -0.09125199913978577, -0.12640999257564545, 0.24597999453544617, 0.9573500156402588, 0.4360100030899048, -0.22984999418258667, 0.15020999312400818, 0.5883100032806396, 0.9437000155448914, -0.6246899962425232, 0.4728600084781647, 0.0009095999994315207, 0.07069800049066544, 0.121799997985363, -0.020819000899791718, -0.27636000514030457, -0.20489999651908875, -0.2711299955844879, 0.7117499709129333, 0.4239799976348877, 0.03487500175833702, -0.7252500057220459, 0.21466000378131866, -0.3455199897289276, 0.010041000321507454, -0.303600013256073, -0.632319986820221, -0.29065001010894775, -0.4401699900627136, -0.3421100080013275, -0.1864600032567978, -0.14770999550819397, 0.15613999962806702, -0.1909399926662445, -0.4102100133895874, -0.35558998584747314, 0.31220000982284546, -0.061462000012397766, -0.2781899869441986, 0.10100000351667404, -0.4509100019931793, -0.25800999999046326, -0.4343700110912323, -0.5313199758529663, 0.5637699961662292, 0.30695998668670654, -0.31244000792503357, 0.3361800014972687, 0.09106100350618362, 0.3669300079345703, 0.2770000100135803, 0.4501500129699707, 0.8765199780464172, 1.0516999959945679, -0.46549999713897705, 0.21055999398231506, 0.4115299880504608, -0.41589000821113586, 0.1634099930524826, 0.08155900239944458, -0.10053999722003937, 0.3736700117588043, -0.3335700035095215, 0.11023999750614166, -0.1710200011730194, -0.0012255000183358788, 0.3961000144481659, 0.03082999959588051, 0.027842000126838684, -0.02520200051367283, -0.49788999557495117, -0.683709979057312, 0.3866899907588959, -0.2577100098133087, 0.09053999930620193, 0.28338000178337097, -0.002059499965980649, -0.05930300056934357, -0.1424800008535385, 0.2122199982404709, 0.010670999996364117, -0.17589999735355377, 0.1017799973487854, -0.04782800003886223, -0.0469449982047081, 0.30827000737190247, -0.05779699981212616, 0.41464999318122864, -0.4206700026988983, -0.2333499938249588, -0.20200000703334808, 0.2096399962902069, 0.08005599677562714, 0.25161001086235046, 0.24803000688552856, -0.024004999548196793, -0.06157299876213074, 0.08040499687194824, -0.2874799966812134, -0.807669997215271, 0.30570998787879944, 0.4168199896812439, -0.22556999325752258, -0.09548400342464447, -0.9985600113868713, -0.17238999903202057, 0.70073002576828, -0.12397000193595886, -0.8110399842262268, 0.18863999843597412, 0.5416100025177002, 0.08893699944019318, 0.27632999420166016, -0.2709699869155884, 1.6576000452041626, -0.2228900045156479, 0.22197000682353973, -0.32256001234054565, 0.04941299930214882, 0.23214000463485718, -0.3018200099468231, -0.15501999855041504, 0.06336499750614166, -0.18522000312805176, 0.39632999897003174, -0.2506699860095978, 0.3382599949836731, -0.5093799829483032, -0.9091699719429016, 0.2771799862384796, -0.39215001463890076, 0.289110004901886, 0.040160998702049255, 0.06240599974989891, 0.0680370032787323, 0.6716600060462952, -0.3896999955177307, -0.5616199970245361, 0.26934999227523804, 0.2418300062417984, 0.007696600165218115, 0.26930999755859375, -0.15639999508857727, -0.20358000695705414, 0.2818300127983093, -0.18002000451087952, -0.0913420021533966, -0.46248000860214233, 0.05213100090622902, -0.33719000220298767, -0.018369000405073166, 0.9624199867248535, 0.2025199979543686, 0.24229000508785248, -0.12381000071763992, 0.150969997048378, 0.21051999926567078, -0.9121400117874146, 0.1302500069141388, 1.1541999578475952, 1.1523000001907349, 0.09296400099992752, 0.04467099905014038, 0.12492000311613083, -0.6018199920654297, -0.6277499794960022, -0.8593199849128723, 0.6272199749946594, 0.3217099905014038, 0.2591699957847595, 0.3160400092601776, 0.135220006108284, 0.18513000011444092, -0.5494999885559082, 0.33465999364852905, -0.42598000168800354, -0.403439998626709, 0.04106299951672554, 0.23461000621318817, 0.2184000015258789, 0.32978999614715576, -0.3892500102519989, -0.1405400037765503, -0.6723099946975708, 0.3586600124835968, 0.2913300096988678, 0.296640008687973, 0.024229999631643295, 0.16656999289989471, 0.4370099902153015, -0.4154700040817261, 0.30090001225471497, -0.23879000544548035, -0.3337700068950653, 0.5356900095939636, 0.08448400348424911, 0.05645500123500824, -0.44484999775886536, -0.398470014333725, -0.23958000540733337, -0.515500009059906, 0.6663900017738342, 0.33921998739242554, -0.08227699995040894, -0.820330023765564, 0.0023380001075565815, -0.11941000074148178, 0.3691200017929077, -0.2887600064277649, -0.19494999945163727, 0.06059600040316582, 0.3480899930000305, 0.19850000739097595, 0.043891001492738724, 0.016207000240683556, -0.33474001288414, 0.23544999957084656, -0.13346999883651733, 0.345660001039505, 0.1653199940919876, -0.2533800005912781, -0.1137000024318695, 0.12691999971866608, -0.362199991941452, -0.6144099831581116, 0.20823000371456146, 0.2409999966621399, 0.23323999345302582, 0.3256100118160248, 0.6127200126647949, -0.2404100000858307, -0.26093000173568726, 0.2549000084400177, -0.1222200021147728, 0.29881998896598816, -0.18698999285697937, -1.075700044631958, -0.032891999930143356, 0.30028998851776123, 0.37681999802589417, -0.0752670019865036, -0.30035001039505005, -0.4359300136566162, 0.24729999899864197, -0.8755000233650208, 0.3039900064468384, 0.7029200196266174, -0.2678399980068207, 0.05610800161957741, -0.4253099858760834, -0.03186799958348274, -0.6667299866676331, -0.35141998529434204, 0.711080014705658, 0.11434999853372574, 0.3171299993991852, 0.1157199963927269, -0.03302000090479851, 0.05623500049114227, 0.6865299940109253], u'bubble': [0.6553000211715698, 0.762470006942749, 0.16042999923229218, -0.07451900094747543, 0.2834799885749817, 0.28435999155044556, -0.24381999671459198, 0.2231599986553192, 0.6081100106239319, -1.0015000104904175, -0.08194199949502945, 0.15242999792099, -0.26631999015808105, -0.21622000634670258, 0.4750399887561798, 0.32684001326560974, -0.0924300029873848, -0.15446999669075012, 0.1542000025510788, 0.8057900071144104, -0.0435979999601841, 0.6380299925804138, -0.08216799795627594, 0.2481900006532669, -0.11907000094652176, -0.04458799958229065, 0.15821999311447144, -0.4088299870491028, -0.4376400113105774, -0.06958899646997452, -0.3605400025844574, -0.254040002822876, -0.2552199959754944, -0.35012000799179077, -0.4262099862098694, 0.615339994430542, -0.44889000058174133, 0.22134999930858612, 0.34957998991012573, 0.8263900279998779, 0.1571899950504303, -0.14257000386714935, 0.12981000542640686, 0.7549800276756287, -0.1563899964094162, -0.34191998839378357, -0.2588300108909607, 0.1746000051498413, 0.14535999298095703, 0.39702001214027405, 0.3544299900531769, -0.37099000811576843, -0.35418999195098877, -0.4393700063228607, -0.22785000503063202, -0.10260999947786331, -0.24775999784469604, 0.2868399918079376, -0.017548000440001488, -0.40165001153945923, 0.45809000730514526, -0.2783699929714203, -0.09805499762296677, -0.10768000036478043, 0.3467999994754791, 0.3137100040912628, 0.04356199875473976, 0.0181450005620718, -0.3700999915599823, -0.223130002617836, 0.17705999314785004, -0.4915199875831604, -0.14720000326633453, -0.007882200181484222, -0.1231900006532669, -0.21792000532150269, 0.7539299726486206, -0.4689300060272217, -0.2198999971151352, -0.6166099905967712, 0.1517000049352646, -0.19051000475883484, -0.03436199948191643, 0.30149999260902405, 0.7850599884986877, 0.48750001192092896, 0.34358999133110046, -0.15534000098705292, -0.0372220017015934, -0.13579000532627106, 0.3734000027179718, 0.8224599957466125, 0.06487999856472015, -0.2796800136566162, 0.12807999551296234, 0.8532299995422363, -0.2880600094795227, 0.5034499764442444, 0.35346001386642456, -0.843280017375946, -0.25892001390457153, 0.8576599955558777, -0.44310998916625977, 0.12514999508857727, -0.02606300078332424, 0.37288999557495117, -1.0856000185012817, 0.36632999777793884, -0.8039399981498718, 0.40128999948501587, 0.09942799806594849, 0.20250999927520752, -0.01839499920606613, 0.003910600207746029, 0.44143998622894287, 0.10846000164747238, 0.06516300141811371, 0.8238999843597412, -0.4521999955177307, -1.1131999492645264, 0.6264299750328064, -1.2877999544143677, 0.1696300059556961, 0.36741000413894653, 0.4986400008201599, -0.3296799957752228, -0.5692200064659119, -0.10093999654054642, -0.2571299970149994, -0.11567000299692154, 0.4039900004863739, 1.0277999639511108, 0.4625900089740753, 0.30671000480651855, 0.27303001284599304, 0.24066999554634094, -0.5670999884605408, 0.0006810500053688884, -0.37077000737190247, 0.03775700181722641, -0.014330999925732613, -0.40939000248908997, -0.35931000113487244, 0.27685999870300293, 0.3948499858379364, -0.3013699948787689, 0.14452999830245972, 0.018275000154972076, 0.18689000606536865, 0.647159993648529, -0.5916299819946289, -0.3154599964618683, -0.2903900146484375, 0.20754000544548035, 0.5027599930763245, 0.5017600059509277, -0.027746999636292458, -0.019565999507904053, -0.1566700041294098, 0.6407300233840942, -0.2933399975299835, 0.12556999921798706, -0.4546799957752228, -0.36406999826431274, 0.5956400036811829, -0.6685299873352051, 0.3190400004386902, 0.5661600232124329, -0.1264200061559677, 0.10307999700307846, -0.3812499940395355, 0.1331699937582016, 0.17396000027656555, 0.4258899986743927, -0.5930399894714355, -0.7566499710083008, -0.48236000537872314, 0.2351900041103363, 0.5343899726867676, -0.05942400172352791, 0.388839989900589, -0.42142000794410706, 0.053849998861551285, -0.2998799979686737, 0.11607000231742859, 0.026233000680804253, 0.2960200011730194, -0.42267000675201416, -0.5613399744033813, -0.2325199991464615, 1.294600009918213, -0.010716999880969524, -0.04865799844264984, -0.3142000138759613, -0.3701300024986267, 0.1894800066947937, 0.14684000611305237, 0.26287999749183655, 0.14273999631404877, -0.4387499988079071, 0.4247399866580963, 0.3226900100708008, 0.6431699991226196, 0.17125000059604645, 0.2167000025510788, -0.42274999618530273, 0.028982000425457954, 0.37092000246047974, -0.8295400142669678, 0.24517999589443207, 0.06526599824428558, -0.6301000118255615, -0.026924999430775642, -0.4572800099849701, 0.11166000366210938, 0.11535999923944473, -0.1423099935054779, -0.16468000411987305, -0.2672100067138672, 0.48660001158714294, 0.4377500116825104, -0.018880000337958336, -0.2579500079154968, -0.3889800012111664, 0.057906001806259155, 0.3103399872779846, -0.9577400088310242, -0.07892200350761414, 0.5180400013923645, 0.15282000601291656, -0.2194499969482422, -0.12952999770641327, -0.29054000973701477, -0.0967240035533905, -0.569320023059845, -0.019871000200510025, -0.49439001083374023, -0.54271000623703, -0.14145000278949738, 0.02598400041460991, 0.4918400049209595, 0.32583001255989075, -0.37623000144958496, 0.35047999024391174, -0.5073599815368652, -0.44648998975753784, 0.5834699869155884, -0.5914199948310852, -0.07168500125408173, -0.19957999885082245, -0.3736700117588043, -0.1294800043106079, -0.03480900079011917, 0.10284999758005142, -0.5163900256156921, -0.10194999724626541, 0.04775699973106384, 0.21761000156402588, 0.2755100131034851, -0.17507000267505646, 0.03163599967956543, -0.6611300110816956, -0.33781999349594116, 0.008742200210690498, -0.0017080999678000808, -0.19541999697685242, -0.01916399970650673, -0.22405000030994415, 0.5041400194168091, 0.2136400043964386, -0.7603800296783447, 0.1887899935245514, 0.2496500015258789, -0.1467600017786026, 0.14575999975204468, -0.30810999870300293, -0.6258000135421753, 0.2629700005054474, -0.49136999249458313, -0.44350001215934753, -0.5262600183486938, -0.3024100065231323, -0.14891000092029572, -0.03240099921822548, 0.2910900115966797, 0.2444400042295456, 0.08959600329399109, 0.0704760029911995, 0.0895640030503273, -0.39487001299858093, -0.16166000068187714, 0.12862999737262726, 0.34297001361846924, 0.15320000052452087, 0.6456199884414673, -0.19109000265598297, 0.03224800154566765, 0.38339000940322876, -0.17639000713825226, 0.0341310016810894], u'frame': [-0.07082299888134003, -0.22466999292373657, -0.4513300061225891, -0.5768499970436096, 0.0709180012345314, 0.2065100073814392, -0.19704000651836395, 0.014574999921023846, -0.23472000658512115, -0.8733100295066833, 0.09668699651956558, 0.2125999927520752, 0.20528000593185425, -0.016186999157071114, -0.38339999318122864, -0.07573799788951874, -0.06878200173377991, -0.7065100073814392, -0.1770700067281723, -0.4411099851131439, 0.10591000318527222, 0.022810999304056168, 0.4802899956703186, 0.44968000054359436, -0.1260399967432022, -0.22833000123500824, 0.2587699890136719, -0.3119800090789795, -0.19088000059127808, 0.40696999430656433, -0.10401000082492828, 0.4753299951553345, -0.06376799941062927, 0.36687999963760376, -0.4476200044155121, 0.6761299967765808, -0.1661899983882904, -0.23079000413417816, 0.11642000079154968, 0.6683400273323059, -0.3110699951648712, -0.24852000176906586, -0.5908600091934204, -0.09800300002098083, -0.31442999839782715, 0.05247600004076958, -0.27279001474380493, -0.41273000836372375, -0.020719999447464943, -0.0871649980545044, -0.1988700032234192, 0.5776799917221069, -0.03325200080871582, -0.30886998772621155, 0.48368000984191895, 0.09059999883174896, 0.2897999882698059, -0.18533000349998474, -0.39886000752449036, -0.034400999546051025, 0.7437000274658203, 0.5067300200462341, 0.3398999869823456, 0.05244699865579605, 0.12241999804973602, -0.34876999258995056, -0.0636489987373352, -0.4208900034427643, 0.6794099807739258, -0.12026999890804291, -0.16147999465465546, 0.13842999935150146, -0.10221000015735626, 0.3793700039386749, -0.06115499883890152, 0.17659999430179596, -0.3466799855232239, -0.04374900087714195, -0.4482400119304657, -0.04506700113415718, -0.13259999454021454, 0.36059999465942383, -0.008670199662446976, -0.17732000350952148, -0.45570001006126404, 0.27590999007225037, 0.060120001435279846, 0.2007800042629242, -0.3132300078868866, 0.5133799910545349, 0.4460099935531616, -0.1808999925851822, -0.2147199958562851, -0.07431299984455109, -0.3256700038909912, -0.7508900165557861, -0.30153998732566833, -0.03068700060248375, 0.05413300171494484, -0.6828600168228149, -0.7317100167274475, 0.5458099842071533, 0.05244699865579605, -0.196260005235672, 0.056203000247478485, 0.36469000577926636, 0.06657899916172028, 0.2941100001335144, -0.3767800033092499, -0.4503999948501587, -0.6781499981880188, 0.4528000056743622, -0.07714500278234482, -0.04206300154328346, 0.02683199942111969, -0.123989999294281, -0.24830999970436096, 0.4829300045967102, -0.270330011844635, -0.007078600116074085, 0.10181999951601028, -0.15514999628067017, 0.5138499736785889, 0.2606000006198883, 0.08155699819326401, 0.02300499938428402, -0.050971999764442444, 0.30292999744415283, 0.019929999485611916, 0.05179800093173981, -0.04720799997448921, 0.4720599949359894, 0.005219100043177605, 0.20654000341892242, 0.4016000032424927, 0.5625100135803223, -0.24169999361038208, 0.03171800076961517, -0.2771100103855133, -0.1383499950170517, 0.012303999625146389, 0.03411199897527695, -0.16085000336170197, -0.11530999839305878, -0.5639299750328064, -0.15810999274253845, 0.14393000304698944, -0.16152000427246094, -0.3142000138759613, -0.3339399993419647, -0.25777000188827515, 0.42298999428749084, -0.1262899935245514, -0.2683599889278412, 0.12541000545024872, -0.5087199807167053, -0.11038000136613846, 0.1440100073814392, -0.47971001267433167, 0.09928400069475174, 0.03286400064826012, 0.15068000555038452, 0.06438799947500229, -0.4413299858570099, 0.3474999964237213, 0.30788999795913696, -0.23577000200748444, 0.5541999936103821, 0.31363001465797424, 0.17924000322818756, -0.0028941999189555645, 0.16635000705718994, 0.1473499983549118, 0.12135999649763107, 0.07540400326251984, -0.24726000428199768, -0.4576199948787689, 0.0682080015540123, 0.08237099647521973, -1.3794000148773193, -0.20991000533103943, -0.620169997215271, 0.6427099704742432, 0.2546499967575073, -0.46452999114990234, -0.2872900068759918, 0.2629700005054474, 0.373199999332428, 0.911109983921051, 1.0247000455856323, 0.25277000665664673, 0.3182600140571594, 0.008228800259530544, 0.3127099871635437, 0.03807999938726425, -0.2932699918746948, 0.06998100131750107, 0.27035999298095703, -0.21747000515460968, -0.5457500219345093, 0.5329200029373169, -0.48243001103401184, 0.3841499984264374, -0.12189999967813492, 0.27355000376701355, -0.05169999971985817, -0.2720299959182739, 0.23816999793052673, -0.3924500048160553, 0.30928999185562134, 0.41525998711586, 0.10146000236272812, 0.265720009803772, 0.35745999217033386, -0.06183699890971184, 0.26423999667167664, -0.24640999734401703, -0.46239998936653137, 0.0720909982919693, 0.1682800054550171, -0.5080999732017517, -0.6924099922180176, 0.6335700154304504, 0.14148999750614166, 0.2665899991989136, 0.34022000432014465, -0.22658999264240265, 0.25266000628471375, -0.19248999655246735, 0.06769900023937225, 0.32207000255584717, -0.4146299958229065, 0.15217000246047974, -0.19981999695301056, 0.03045099973678589, 0.05659899860620499, -0.45364999771118164, -0.050397999584674835, -0.3709000051021576, 0.3797900080680847, 0.5266799926757812, 0.17860999703407288, -0.2828899919986725, -0.04454899951815605, -0.6803799867630005, -0.43435001373291016, -0.20343999564647675, 0.45743998885154724, -0.9657899737358093, -0.14441999793052673, -0.150409996509552, 0.2985000014305115, 0.49685001373291016, -0.9794800281524658, 0.2693299949169159, 0.4752500057220459, -0.13798999786376953, 0.021133000031113625, 0.1403599977493286, 0.10044000297784805, 0.1227400004863739, 0.19752000272274017, 0.04906700178980827, 0.6761400103569031, -0.5151699781417847, -0.26210999488830566, 0.08286499977111816, 0.26743999123573303, 0.5351999998092651, 0.2316800057888031, -0.26405999064445496, -0.11003000289201736, 0.2305999994277954, 0.5277799963951111, -0.08015900105237961, 0.3816699981689453, -1.2509000301361084, 0.35784998536109924, 0.09530600160360336, 0.1995300054550171, 0.24434000253677368, -0.5171700119972229, -0.4197100102901459, 0.17031000554561615, 0.22846999764442444, 0.25433000922203064, -0.2399899959564209, -0.16062000393867493, -0.32253000140190125, 0.2581999897956848, 0.3198600113391876, 0.03651899844408035, -0.3893600106239319, -0.08688399940729141, 0.30063000321388245, 0.8522899746894836, -0.22702999413013458, 0.15877999365329742, 0.23127000033855438, 0.41561999917030334], u'building': [-0.14013999700546265, -0.1463800072669983, -0.5455300211906433, -0.6182399988174438, 0.2556999921798706, 0.19731999933719635, 0.1452600061893463, 0.13760000467300415, -0.3567799925804138, -1.8515000343322754, 0.15605999529361725, -0.36131998896598816, 0.38477998971939087, 0.22585999965667725, 0.11607000231742859, 0.3585599958896637, -0.2709699869155884, -0.05026800185441971, 0.03404799848794937, 0.16178999841213226, -0.04425400123000145, -0.05593099817633629, 0.6391900181770325, 0.5023900270462036, -0.03414800018072128, 0.054607998579740524, -0.08210299909114838, -0.11655999720096588, -0.59934002161026, 0.3470799922943115, 0.3967199921607971, 0.5220100283622742, -0.3116399943828583, 0.7624499797821045, 0.019247999414801598, 0.654229998588562, -0.17295999825000763, -0.4284299910068512, 0.5396400094032288, -0.08027199655771255, -0.29394999146461487, 0.10182999819517136, -0.5591999888420105, 0.5422599911689758, -0.12336000055074692, 0.14381000399589539, 0.44756999611854553, 0.42399001121520996, -0.003262300044298172, -0.25933998823165894, -0.29490000009536743, -0.008129199966788292, -0.16629000008106232, -0.09251199662685394, 0.530460000038147, 0.30612999200820923, 0.3000200092792511, 0.2553499937057495, -0.22261999547481537, -0.1820400059223175, 0.44854000210762024, 0.04427200183272362, 0.21807000041007996, -0.19434000551700592, 0.09023699909448624, -0.10029999911785126, 0.22558000683784485, 0.10898999869823456, 0.17378999292850494, -0.328220009803772, -0.1795700043439865, -0.07334200292825699, -0.1727299988269806, 0.3821200132369995, -0.3348200023174286, 0.25679999589920044, -0.33614999055862427, 0.17288999259471893, 0.22360999882221222, 0.08524999767541885, -0.08076299726963043, 0.0012095000129193068, -0.1447400003671646, 0.26436999440193176, 0.3089599907398224, 0.2284799963235855, -0.1135300025343895, -0.1692499965429306, 0.11903999745845795, -0.09701299667358398, 0.5356000065803528, 0.002848200034350157, 0.4676699936389923, 0.474839985370636, 0.08455599844455719, -0.5535899996757507, -0.2117300033569336, -0.2529599964618683, 0.1426900029182434, -0.33586999773979187, -0.5059400200843811, 0.5686699748039246, -0.14135999977588654, 0.01903500035405159, 0.03681299835443497, -0.0440949983894825, -0.035909999161958694, 0.002901799976825714, 0.08875399827957153, -0.07483600080013275, -0.3704099953174591, -0.3239699900150299, -0.3243100047111511, 0.08741000294685364, -0.38561001420021057, 0.07115600258111954, -0.23532000184059143, 0.2953900098800659, -0.1409900039434433, 0.013400999829173088, 0.3542099893093109, -0.14771999418735504, 0.3697200119495392, 0.4353100061416626, -0.07958199828863144, -0.6615899801254272, -0.07942599803209305, -0.33869001269340515, 0.07798899710178375, -0.45715999603271484, 0.27496999502182007, 0.6717000007629395, 0.18479999899864197, -0.0811690017580986, 0.09437599778175354, 0.2935599982738495, -0.33052000403404236, -0.04967600107192993, -0.1875, -0.01929200068116188, -0.43700000643730164, 0.04013599827885628, 0.30077001452445984, 0.7334799766540527, 0.09633400291204453, -0.3942599892616272, 0.04087100178003311, 0.3777799904346466, -0.4861699938774109, -0.18476000428199768, 0.4058699905872345, 0.414000004529953, -0.06283599883317947, -0.1303199976682663, 0.14225000143051147, 0.24244000017642975, -0.26183998584747314, 0.3017599880695343, -0.07235100120306015, -0.006480500102043152, 0.47450000047683716, 0.2512199878692627, 0.15990999341011047, -0.38756999373435974, -0.23367999494075775, 0.04874800145626068, -0.3237699866294861, 0.09564899653196335, 0.4573400020599365, 0.34874001145362854, 0.27682000398635864, -0.4275699853897095, 0.17215999960899353, -0.3614799976348877, 0.3462199866771698, 0.7900199890136719, -0.6648100018501282, -0.25084999203681946, 0.19074000418186188, -0.5186300277709961, -0.22564999759197235, -0.3371700048446655, 0.29412999749183655, -0.35802000761032104, -0.31894001364707947, 0.3839600086212158, -0.08231700211763382, 0.1839900016784668, -0.06706999987363815, 0.5265300273895264, 0.8694499731063843, 0.10657999664545059, -0.38475000858306885, 0.002615999896079302, -0.1561799943447113, 0.08438800275325775, -0.39342001080513, 0.12466000020503998, 0.08367700129747391, 0.09275799989700317, 0.40637001395225525, -0.49678000807762146, 0.04650900140404701, -0.17007000744342804, -0.301800012588501, -0.2879599928855896, 0.25527000427246094, -0.38258999586105347, 0.19752000272274017, 0.18796999752521515, 0.24400000274181366, 0.5716099739074707, -0.5894299745559692, -0.6353800296783447, 0.05121000111103058, 0.6137599945068359, -0.20079000294208527, 0.2721000015735626, 0.005741099826991558, 0.0021349999587982893, 0.5162299871444702, -0.5007299780845642, -0.07327699661254883, 0.32594001293182373, 0.002595700090751052, -0.07983600348234177, -0.18990999460220337, 0.19506999850273132, -0.032301001250743866, -0.03338700160384178, -0.059918999671936035, -0.03350000083446503, -0.2764599919319153, 0.45785000920295715, 0.19809000194072723, 0.01079300045967102, 0.5011000037193298, 0.1664000004529953, -0.22217999398708344, 0.28022998571395874, 0.33052998781204224, 0.0540120005607605, 0.22099000215530396, 0.005445399787276983, -0.5448899865150452, -0.03926999866962433, 0.20841999351978302, -0.22943000495433807, -0.018101999536156654, 0.10288000106811523, 0.4275600016117096, -0.27720001339912415, 0.09042000025510788, -0.23103000223636627, 0.38896000385284424, -0.14222000539302826, -0.036299001425504684, -0.12043000012636185, 0.3805600106716156, -0.0767270028591156, -0.14890000224113464, 0.12723000347614288, 0.07763099670410156, -0.1973000019788742, 0.4011499881744385, -0.043428998440504074, 0.016614999622106552, -0.1505099982023239, 0.29986000061035156, -0.19338999688625336, -0.3158000111579895, -0.07317200303077698, 0.19220000505447388, -0.2329999953508377, -0.12559999525547028, 0.1370999962091446, -2.4054999351501465, 0.32886001467704773, 0.2537899911403656, 0.3282899856567383, -0.06783399730920792, -0.26326000690460205, 0.15259000658988953, -0.3154999911785126, 0.47012999653816223, 0.9208599925041199, -0.5971199870109558, 0.7199100255966187, -0.04174700006842613, -0.376800000667572, 0.06751599907875061, -0.38293999433517456, -0.1724500060081482, 0.21085000038146973, 0.44398999214172363, 0.6731899976730347, -0.04161100089550018, -0.43939998745918274, 0.34351998567581177, 0.28992000222206116], u'ceiling': [0.022655000910162926, 0.19505999982357025, -0.5602499842643738, -0.4887399971485138, 0.05696199834346771, 0.4696199893951416, -0.05679599940776825, -0.19238999485969543, -0.4253000020980835, -1.4936000108718872, -0.12978999316692352, 0.6464300155639648, 0.3357299864292145, -0.2264000028371811, -0.23718999326229095, 0.521340012550354, 0.22630000114440918, 0.18100999295711517, -0.1726900041103363, -0.12556999921798706, 0.03142600134015083, 0.39421001076698303, 0.32502999901771545, -0.08521000295877457, 0.2070000022649765, -0.11880999803543091, -0.036364998668432236, -0.34158000349998474, -0.27678999304771423, 0.3204900026321411, 0.3064199984073639, 0.6265900135040283, -0.19853000342845917, 0.294189989566803, -0.07107599824666977, 0.37049001455307007, -0.37237000465393066, -0.3872300088405609, 0.6662899851799011, 0.5416100025177002, -0.313400000333786, 0.0642080008983612, -0.7456799745559692, 0.31485000252723694, 0.20632000267505646, 0.20946000516414642, -0.40077000856399536, -0.20358000695705414, -0.38411998748779297, -1.0390000343322754, -0.33278998732566833, 0.5157700181007385, -0.355540007352829, -0.19360999763011932, -0.11432000249624252, 0.35172000527381897, -0.27351000905036926, 0.45972999930381775, 0.1856199949979782, 0.2558499872684479, 0.03265799954533577, -0.16189999878406525, 0.7867599725723267, 0.3461199998855591, -0.2657899856567383, -0.6579300165176392, 0.22281000018119812, -0.0057530999183654785, 0.3143700063228607, -0.041770998388528824, -0.3667599856853485, -0.06117299944162369, -0.1795099973678589, -0.2405499964952469, 0.2702299952507019, 0.2131199985742569, 0.21782000362873077, 0.05902300029993057, -0.09606599807739258, -1.027999997138977, -0.17351000010967255, -0.4436500072479248, 0.02474300004541874, 0.16777999699115753, 0.07767999917268753, 0.5436599850654602, -0.22856999933719635, -0.23016999661922455, 0.04751000180840492, 0.5452100038528442, 0.9258400201797485, -0.02687999978661537, -0.008662199601531029, 0.1741199940443039, -0.19120000302791595, -0.16756999492645264, -0.09513100236654282, -0.3307900130748749, 0.5097600221633911, -0.5700299739837646, -0.27886998653411865, 0.7755799889564514, 0.06497199833393097, -0.32839998602867126, 0.018015999346971512, 0.3937999904155731, -0.17945000529289246, 0.18639999628067017, -0.026624999940395355, 0.3485200107097626, -0.27862000465393066, -0.04284999892115593, -0.03208300098776817, -0.042295001447200775, -0.27204999327659607, -0.13979999721050262, 0.012122999876737595, -0.16309000551700592, -0.2545500099658966, -0.306549996137619, 0.31762000918388367, -0.19354000687599182, 0.17441999912261963, 1.2632999420166016, 0.41874998807907104, -0.3010199964046478, -0.06307400017976761, 0.17750999331474304, 0.46612000465393066, 0.7980599999427795, -0.11231999844312668, 0.151869997382164, 0.22311000525951385, 0.26701000332832336, 0.43342000246047974, 0.009669600054621696, -0.24931000173091888, 0.7716799974441528, -0.09061899781227112, -0.4684099853038788, -0.31617000699043274, 0.18316000699996948, -0.1621199995279312, -0.4209499955177307, 0.18082000315189362, -0.19589999318122864, -0.4069100022315979, -0.5205199718475342, -0.047784000635147095, -0.5808899998664856, -0.20347000658512115, 0.11864999681711197, -0.2114199995994568, -0.580079972743988, -0.41176000237464905, 0.7824900150299072, -0.31825000047683716, 0.22605000436306, -0.7843700051307678, 0.07221399992704391, -0.1982100009918213, 0.7307299971580505, 0.07005400210618973, 0.01565299928188324, 0.8736699819564819, -0.13964000344276428, 0.01666400022804737, -0.20223000645637512, 0.22086000442504883, 0.23104999959468842, -0.15707999467849731, 0.4572399854660034, 0.7698699831962585, -0.0073645999655127525, -0.05960199981927872, 0.33823999762535095, 0.122079998254776, 0.5541599988937378, -0.22190000116825104, 0.07331500202417374, 0.5774800181388855, -0.5675899982452393, -0.08460699766874313, 0.18279999494552612, 0.01003200002014637, -0.27279001474380493, 1.059000015258789, -0.1302099972963333, 0.16641999781131744, 0.671180009841919, 0.328029990196228, 0.36469000577926636, -0.29140999913215637, -0.12916000187397003, -0.09120900183916092, -0.5630800127983093, -0.3245899975299835, 1.0616999864578247, 0.06823600083589554, 0.012543999589979649, 0.8325499892234802, 0.27814000844955444, -0.3878200054168701, -0.05307300016283989, 0.5956199765205383, 0.27570000290870667, 0.1565600037574768, -0.3293899893760681, 0.02268199995160103, 0.19633999466896057, 0.23096999526023865, -0.13812999427318573, 0.32113999128341675, -0.07158699631690979, 0.043324001133441925, 0.019246000796556473, 0.28547999262809753, -0.45802998542785645, 0.3003000020980835, 0.3256300091743469, 0.3882099986076355, 0.10909999907016754, 0.14914999902248383, -0.12055999785661697, -0.3754900097846985, -0.004435599781572819, -0.5868600010871887, 0.48061999678611755, 0.17893999814987183, -0.568149983882904, -0.05522599816322327, -0.5015599727630615, 0.027515999972820282, -0.09152399748563766, 0.4120999872684479, -0.4947200119495392, -0.10518000274896622, 0.16890999674797058, -0.22366000711917877, -0.37685999274253845, 0.5076199769973755, -0.7609800100326538, -0.3447900116443634, 0.3689199984073639, -0.07672300189733505, 0.2188200056552887, -0.04500100016593933, -0.30449000000953674, -0.2643499970436096, -0.25892001390457153, -0.4565199911594391, -0.456169992685318, 0.7052800059318542, -0.6798099875450134, 0.17476999759674072, -0.2531299889087677, -0.6579499840736389, -0.09599500149488449, 0.4737200140953064, 0.49028000235557556, 0.26673999428749084, -0.07473500072956085, 0.6661499738693237, -0.6043400168418884, -0.04832400009036064, -0.4578799903392792, 0.5304700136184692, 0.24488000571727753, -0.29978999495506287, -0.630050003528595, -0.14845000207424164, 0.34244999289512634, -0.3396799862384796, 0.2361699938774109, -0.9732400178909302, -0.2731800079345703, -1.3291000127792358, -0.3093099892139435, -0.7171000242233276, -0.2538500130176544, 0.16425000131130219, -0.07938399910926819, -0.2220499962568283, -0.8980699777603149, 0.030358999967575073, 0.6396999955177307, -0.17941999435424805, -0.38975998759269714, -0.48739001154899597, -0.410970002412796, -0.19423000514507294, 0.2578999996185303, -0.2536199986934662, 0.3167400062084198, 0.6815900206565857, 0.11020000278949738, -0.01042999979108572, -0.2243099957704544, -0.21706999838352203, 0.3790999948978424], u'diamond': [-0.14665000140666962, 0.21477000415325165, 0.05139100179076195, 0.44297999143600464, -0.6883299946784973, 0.42732998728752136, 0.1818999946117401, 0.07572299987077713, -0.4755299985408783, -0.9279900193214417, -0.21749000251293182, -0.29308000206947327, -0.1780800074338913, 0.3012099862098694, -0.49952998757362366, -0.6202600002288818, -0.07620099931955338, 0.43435999751091003, -0.5361899733543396, -0.5846400260925293, -0.10600999742746353, 0.40354999899864197, 0.03365800157189369, -0.006556299980729818, 0.2730900049209595, -0.1694899946451187, -0.08699300140142441, -0.07456400245428085, -0.1881600022315979, 0.0068280999548733234, 0.33726000785827637, 0.230320006608963, -0.1680700033903122, 0.5319300293922424, -0.4639100134372711, 0.158160001039505, 0.3149600028991699, 0.478769987821579, 0.18277999758720398, -0.38172999024391174, -0.5728899836540222, -0.08772300183773041, 0.18664999306201935, 0.5117800235748291, 0.4573900103569031, -0.32545000314712524, -0.14424000680446625, -0.1164499968290329, -0.04317700117826462, 0.005797300022095442, -0.09043099731206894, 0.03345600143074989, 0.29681000113487244, 0.6527100205421448, -0.12139999866485596, -0.19617000222206116, -1.1461999416351318, 0.3857499957084656, -0.24841000139713287, -0.4079500138759613, 0.14835000038146973, -0.09141000360250473, 0.265500009059906, -0.05576099827885628, 0.7226600050926208, 0.034696999937295914, -0.766319990158081, 0.08910500258207321, 0.35611000657081604, -0.16753999888896942, 0.21546000242233276, -0.30584999918937683, 0.3749299943447113, -0.1328199952840805, -0.15349000692367554, -0.11071000248193741, 0.4600200057029724, -0.7270900011062622, 0.015600999817252159, -0.3274900019168854, 0.33847999572753906, 0.062199998646974564, 0.3080900013446808, 0.0784199982881546, 0.6230300068855286, -1.25, 0.07237999886274338, -0.05417700111865997, 0.27011001110076904, 0.013124999590218067, -0.1820800006389618, 0.31266000866889954, -0.25936999917030334, 0.06369899958372116, -0.4949699938297272, 0.4262700080871582, 0.1626800000667572, 0.2199299931526184, 0.7084000110626221, -0.8030400276184082, 0.36765000224113464, 0.4684799909591675, 0.06483600288629532, 0.3603299856185913, -0.3158299922943115, 0.2512499988079071, 0.4432699978351593, 0.16190999746322632, -0.15467000007629395, -0.41484999656677246, 0.20448000729084015, -0.1780800074338913, 0.37005001306533813, -0.019812999293208122, -0.30691999197006226, 0.24196000397205353, 0.611299991607666, 0.03448300063610077, 0.17858999967575073, 0.2775999903678894, -0.04507699981331825, -0.09872200340032578, -0.1335899978876114, -0.29499998688697815, 0.027950000017881393, -0.16378000378608704, 0.6187300086021423, 0.39609000086784363, -0.8174800276756287, -0.2902199923992157, -0.4116800129413605, 0.11196000128984451, -0.5467699766159058, 0.12365999817848206, -0.0055541000328958035, 0.4251500070095062, -0.19203999638557434, -0.02569199912250042, -0.12883000075817108, -0.3767400085926056, 0.15855999290943146, 0.2899099886417389, 0.2560800015926361, -0.7645400166511536, 0.6155400276184082, 0.04296199977397919, 0.41398000717163086, -0.4324199855327606, 0.08176399767398834, 0.2438800036907196, 0.18871000409126282, 0.05878699943423271, -0.003190400078892708, -0.11271999776363373, 0.6328700184822083, 0.1466600000858307, -0.30296000838279724, -0.164000004529953, -0.1984899938106537, -0.1490200012922287, 0.4186500012874603, -0.40376999974250793, 0.4234600067138672, 0.5349500179290771, 0.2981399893760681, -0.16870999336242676, 0.3327699899673462, -0.2873600125312805, 0.20843000710010529, 0.19487999379634857, -1.0568000078201294, 0.06796500086784363, 0.36847999691963196, -0.15873000025749207, 0.01231400016695261, -0.24560000002384186, 0.03371800109744072, 0.3050000071525574, -0.7369800209999084, 0.062070999294519424, 0.07707499712705612, -0.007908299565315247, 0.0660569965839386, 0.17803999781608582, 0.31725001335144043, -0.1806199997663498, 0.37637001276016235, 0.4897499978542328, -0.3396199941635132, -0.22777000069618225, -0.024893000721931458, 0.4962399899959564, 0.23454000055789948, 0.38675999641418457, 0.3620299994945526, 0.12042000144720078, 0.05740800127387047, -1.163699984550476, 0.3988899886608124, 0.3316200077533722, 1.3666000366210938, -0.014810999855399132, 0.08490599691867828, -0.28790000081062317, 0.16529999673366547, 0.2526699900627136, 0.10270000249147415, -0.016589999198913574, 0.0960569977760315, -0.10021000355482101, 0.45669999718666077, -0.06590399891138077, 0.3325900137424469, -0.1198199987411499, -0.2429399937391281, 0.210889995098114, -0.1241300031542778, -0.09685300290584564, -0.4016999900341034, 0.020930999889969826, -0.042583998292684555, -0.7356899976730347, 0.5564500093460083, 0.37540000677108765, -0.37648001313209534, 0.166360005736351, -0.4644399881362915, 0.012075000442564487, -0.6067100167274475, -0.03959299996495247, 0.35905998945236206, -0.13311000168323517, -0.16227999329566956, -0.03957200050354004, 0.24041999876499176, 0.4314799904823303, 0.43404000997543335, 0.014449000358581543, -0.17374999821186066, -1.0946999788284302, -0.27476999163627625, -0.042396001517772675, -0.31575000286102295, -0.050060998648405075, -0.39768001437187195, 0.3009899854660034, -0.9642999768257141, -0.19165000319480896, 0.127470001578331, -0.48853999376296997, 0.2507399916648865, -0.11969000101089478, -0.8325600028038025, 0.04950200021266937, 0.7075499892234802, -0.15887999534606934, -0.018060000613331795, -0.2815000116825104, 0.061778999865055084, 0.025439999997615814, -0.18723000586032867, 0.2561799883842468, 0.21961000561714172, 0.29071998596191406, 0.384909987449646, 0.15182000398635864, -0.0006812100182287395, 0.17865000665187836, -0.27849000692367554, 0.33768001198768616, -0.14666999876499176, -0.6007699966430664, 0.34891998767852783, -0.36285001039505005, -0.010414999909698963, -0.23607000708580017, -0.8880400061607361, -0.2457599937915802, -0.6324499845504761, 0.04847799986600876, -0.08184699714183807, 0.13332000374794006, -0.83024001121521, -0.19607999920845032, -0.19505000114440918, -0.5726600289344788, -0.26688000559806824, -0.3237699866294861, -0.2126300036907196, -0.5323899984359741, -0.19266000390052795, -0.2851000130176544, -0.4788700044155121, 0.8149499893188477, -0.11314000189304352, 0.4853299856185913, 1.0247000455856323, -0.26759999990463257, 0.8132399916648865, 0.09302300214767456], u'door': [-0.012489999644458294, 0.10815999656915665, -0.24887999892234802, -0.6930500268936157, 0.3126699924468994, 0.12725000083446503, -0.5574600100517273, -0.12387000024318695, 0.06740999966859818, -1.395799994468689, -0.4479900002479553, 0.31584998965263367, 0.315420001745224, -0.20746999979019165, -0.48489001393318176, -0.21377000212669373, 0.07097700238227844, -0.4200800061225891, 0.059059999883174896, 0.19589999318122864, 0.4955900013446808, 0.5417100191116333, 0.27496999502182007, -0.30979999899864197, 0.00022559000353794545, -0.24526000022888184, 0.6417499780654907, -0.2055799961090088, 0.029498999938368797, -0.09467300027608871, 0.2482600063085556, -0.03787500038743019, 0.10341999679803848, 0.08182299882173538, -0.7453500032424927, 0.6909599900245667, -0.47304999828338623, -0.4354900121688843, -0.30689001083374023, -0.2794800102710724, -0.4773100018501282, -0.029867999255657196, -0.47119998931884766, 0.13644999265670776, -0.35482001304626465, 0.5277000069618225, 0.4647899866104126, -0.657509982585907, -0.796239972114563, -0.2315099984407425, -0.20946000516414642, 0.18559999763965607, 0.22272999584674835, -0.4546299874782562, 0.01732500083744526, 0.07587099820375443, 0.22356000542640686, 0.08441799879074097, 0.15647000074386597, -0.24355000257492065, 0.31470000743865967, 0.11246000230312347, 0.04543599858880043, 0.4281199872493744, -0.1495800018310547, -0.4829699993133545, 0.48416000604629517, -0.4300599992275238, -0.00018754000484477729, -0.4361700117588043, -0.4768899977207184, -0.49939998984336853, 0.14996999502182007, 0.43191999197006226, 0.3447299897670746, 0.40252000093460083, -0.3755300045013428, -0.38429000973701477, -0.00814330019056797, -0.5790200233459473, 0.07389800250530243, 0.4756700098514557, 0.16122999787330627, 0.4516200125217438, -0.5649200081825256, -0.35078999400138855, 0.11868999898433685, -0.04199900105595589, -0.48809999227523804, -0.24077999591827393, 0.1457500010728836, -0.2638300061225891, -0.26037999987602234, 0.2962700128555298, 0.15661999583244324, -0.40105998516082764, -0.4695500135421753, -0.37762001156806946, 0.020640000700950623, -0.43759000301361084, 0.08965100347995758, 0.5954399704933167, -0.0940219983458519, -0.2071399986743927, 0.1278200000524521, -0.44642001390457153, 0.23229999840259552, 0.06300300359725952, -0.23058000206947327, 0.0992560014128685, -0.24347999691963196, 0.22341999411582947, -0.12201999872922897, -0.09700100123882294, -0.2590799927711487, 0.3041599988937378, -0.4164699912071228, 0.06058799847960472, -0.33087000250816345, -0.11625999957323074, -0.18424999713897705, -0.5105199813842773, 0.278439998626709, -0.21616999804973602, -0.05030599981546402, -0.5468599796295166, 0.15711000561714172, -0.19323000311851501, 0.2827000021934509, -0.4751400053501129, 0.7715799808502197, -0.034981001168489456, -0.019998999312520027, 0.09727499634027481, 0.16816000640392303, 0.12563000619411469, -0.05047500133514404, 0.180759996175766, -0.11141999810934067, -0.21615999937057495, 0.291949987411499, -0.0577859990298748, -0.25049999356269836, 0.0780860036611557, -0.6585400104522705, -0.20336000621318817, 0.1071700006723404, -0.13603000342845917, 0.06172399967908859, -0.11114999651908875, 0.15556000173091888, 0.0717179998755455, -0.00957849994301796, -0.2758699953556061, 0.1451600044965744, 0.19027000665664673, 0.3908799886703491, -0.12570999562740326, -0.19306999444961548, 0.41315001249313354, 0.47940000891685486, 0.6619600057601929, -0.22622999548912048, -0.008937699720263481, 0.3495199978351593, 0.41721999645233154, -0.07267999649047852, -0.0006026800256222486, 0.7322400212287903, -0.537630021572113, -0.26017001271247864, 0.571590006351471, 0.26017001271247864, -0.1634799987077713, -0.02622300013899803, -0.12132000178098679, -0.2652300000190735, 0.25731998682022095, 0.10632000118494034, -0.46511000394821167, 0.1740099936723709, -0.08062999695539474, 0.040344998240470886, 0.14809000492095947, 0.07149700075387955, -0.4767000079154968, -0.04698000103235245, 0.3091700077056885, 0.5011399984359741, 0.4981200098991394, 0.18568000197410583, -0.23740999400615692, -0.08829999715089798, 0.31509000062942505, 0.2332800030708313, 0.10717999935150146, -0.025940999388694763, 0.010982999578118324, -0.5223600268363953, -0.36500999331474304, 1.1399999856948853, -0.07895500212907791, 0.4366399943828583, -0.018633000552654266, 0.12696999311447144, -0.4086099863052368, -0.0971359983086586, -0.7093799710273743, -0.27445000410079956, 0.18805000185966492, 0.2280299961566925, -0.06808000057935715, -0.3114300072193146, -0.13470999896526337, 0.33667001128196716, -0.44143998622894287, -0.07765600085258484, 0.2732900083065033, -0.011749999597668648, 0.14856000244617462, 0.5389999747276306, 0.34871000051498413, 0.1694599986076355, -0.19878000020980835, -0.05582800135016441, -0.03048500046133995, -0.585860013961792, 0.26805999875068665, 0.32036998867988586, -0.4881399869918823, 0.21673999726772308, -0.8939300179481506, -0.27943000197410583, 0.08278500288724899, 0.5437300205230713, 0.306410014629364, 0.07943200320005417, -0.34968000650405884, -0.37836000323295593, -0.022549999877810478, 0.3216100037097931, 0.23336000740528107, -0.2784000039100647, 0.3476000130176544, 0.05794300138950348, -0.5573999881744385, 0.08899799734354019, -0.15988999605178833, -0.3575200140476227, 0.3434099853038788, 0.08123599737882614, -0.1528400033712387, 0.11744000017642975, -0.32670000195503235, -0.06800100207328796, 0.10999000072479248, 0.19564999639987946, -0.217739999294281, -0.12536999583244324, 0.30410999059677124, 0.0379600003361702, -0.39800000190734863, 0.4740999937057495, 0.06100400164723396, -0.08345899730920792, -0.3312099874019623, 0.26754000782966614, -0.18182000517845154, -0.2561900019645691, -0.24812999367713928, -0.3098500072956085, -0.1155799999833107, -0.47258999943733215, -0.15830999612808228, -0.13526999950408936, -0.06032099947333336, -2.1414999961853027, 0.33702000975608826, -0.11063999682664871, 0.14541999995708466, -0.5482699871063232, -0.09346099942922592, -0.17058999836444855, -0.25297001004219055, -0.03297799825668335, 0.6347900032997131, 0.10971000045537949, -0.13702000677585602, 0.2224300056695938, -0.11710000038146973, -0.23064999282360077, -0.36059001088142395, 0.2451999932527542, 0.3643200099468231, -0.002282199915498495, 0.6430299878120422, 0.12070000171661377, 0.04955900087952614, 0.05159499868750572, 0.9793199896812439], u'gear': [0.5037400126457214, 0.17816999554634094, -0.22989000380039215, -0.4351400136947632, -0.05305600166320801, -0.35335999727249146, 0.06759999692440033, 0.5249000191688538, -0.3413499891757965, -0.9298099875450134, 0.2894099950790405, -0.3484399914741516, 0.6806300282478333, -0.08355700224637985, -0.008424599654972553, -0.42278000712394714, -0.08434099704027176, -0.5556399822235107, 0.28077998757362366, -0.23255999386310577, -0.14417000114917755, -0.014856000430881977, 0.47565001249313354, 0.09479200094938278, -0.04892300069332123, -0.13304999470710754, 0.3828299939632416, 0.02198600023984909, 0.34553998708724976, 0.9919999837875366, 0.13422000408172607, -0.5640000104904175, -0.022167999297380447, 0.23181000351905823, -0.2999500036239624, 0.12148000299930573, 0.008717799559235573, 0.13344000279903412, -0.09622199833393097, 0.36010000109672546, -0.3442699909210205, 0.005668300203979015, -0.2418700009584427, -0.08554500341415405, -0.16008000075817108, 0.455949991941452, 0.3622699975967407, 0.1326500028371811, 0.2967599928379059, 0.5727400183677673, -0.2618600130081177, -0.1144699975848198, 0.15028999745845795, -0.03812500089406967, -0.6593599915504456, 0.1294800043106079, 0.30663999915122986, -0.7105100154876709, -0.33827000856399536, -0.06368199735879898, -0.12060999870300293, 0.09521900117397308, 0.08301199972629547, 0.06569100171327591, -0.6656399965286255, -0.027271000668406487, -0.5217900276184082, 0.03249099850654602, -0.0613039992749691, -0.3672800064086914, 0.008583899587392807, 0.3457300066947937, 0.11883000284433365, 0.26506999135017395, 0.12891000509262085, 0.20880000293254852, -0.19241000711917877, -0.0945269986987114, 0.1897599995136261, -0.2660599946975708, 0.395689994096756, -0.02097800001502037, -0.05008599907159805, -0.2791900038719177, -0.38931000232696533, -0.371069997549057, 0.19803999364376068, 0.06004000082612038, -1.0480999946594238, -0.47547000646591187, 0.8921499848365784, 0.26159998774528503, -0.10655000060796738, 0.022676000371575356, 0.2185399979352951, 0.3314700126647949, -0.6916099786758423, 0.13744999468326569, 0.0859759971499443, -0.7552099823951721, -0.3192099928855896, 0.7473700046539307, -0.5734900236129761, 0.16086000204086304, 0.3785400092601776, -0.6962299942970276, 0.0886010006070137, 0.23717999458312988, -0.5604699850082397, -0.08429399877786636, -0.19030000269412994, -0.07454899698495865, -0.4400700032711029, 0.3137100040912628, -0.2051900029182434, 0.08582299947738647, 0.3757399916648865, 0.21525999903678894, -0.4424999952316284, -0.4391700029373169, 0.3341200053691864, -0.901669979095459, 0.26750999689102173, -0.6756399869918823, -0.873199999332428, 0.12835000455379486, 0.15257999300956726, -0.4788700044155121, 0.4015200138092041, 0.24404999613761902, -0.20457999408245087, 0.36399999260902405, -0.24469000101089478, 0.42089998722076416, 0.4878599941730499, 0.2516799867153168, 0.014156999997794628, -0.44530001282691956, 0.05601000040769577, 0.5206699967384338, -0.554639995098114, 0.07003699988126755, 0.25071999430656433, -0.2901099920272827, -0.3071500062942505, 0.20640000700950623, 0.23368999361991882, 0.10887999832630157, 0.44683998823165894, 0.0361969992518425, 0.2253500074148178, -0.04811900109052658, -0.6768800020217896, -0.5556100010871887, 0.9571499824523926, -0.7014099955558777, 0.18855999410152435, 0.18427999317646027, 0.48190000653266907, 0.3989900052547455, 0.4382300078868866, -0.8797000050544739, -0.5262500047683716, -0.2340099960565567, 0.3503299951553345, 0.2919900119304657, 0.6620500087738037, 0.9470099806785583, 0.3930099904537201, 0.5387399792671204, -0.33518001437187195, 0.5969899892807007, -0.19011999666690826, 0.30386999249458313, 0.10726000368595123, 0.007686700206249952, 0.25817999243736267, 0.5314800143241882, -0.07534900307655334, -0.2612299919128418, 0.530460000038147, 0.21351000666618347, 0.33939000964164734, -0.1358799934387207, 0.2782000005245209, -0.3872399926185608, 0.5137900114059448, 0.4191800057888031, 0.12585000693798065, -0.5016800165176392, -0.18723000586032867, 0.011249000206589699, -0.4060800075531006, 0.4041300117969513, 0.43428999185562134, 0.31848999857902527, -0.7519199848175049, 0.4789400100708008, 0.16922999918460846, 0.04463899880647659, 0.02801400050520897, 0.18738999962806702, 0.8450700044631958, 0.42427998781204224, -0.026684999465942383, -0.06197600066661835, 0.2878200113773346, -0.3184399902820587, -0.1139800027012825, 0.21536000072956085, 0.30219998955726624, 0.09382999688386917, -0.08387099951505661, 0.3561300039291382, -0.03266400098800659, -0.47707000374794006, 0.1336199939250946, -0.12922999262809753, 0.20215000212192535, -0.12195999920368195, 0.42142000794410706, 0.1992100030183792, 0.49948999285697937, -0.32422998547554016, 0.9316200017929077, 0.01684500090777874, -0.34415000677108765, -0.1463399976491928, 0.24469000101089478, 0.3739500045776367, 0.02340400032699108, 0.3551599979400635, 0.23837999999523163, -0.47672998905181885, 0.26774001121520996, -0.027938000857830048, -0.36322999000549316, 0.3299199938774109, -0.03602200001478195, 0.29607000946998596, 0.9502800107002258, 0.23863999545574188, -0.13065999746322632, 0.18458999693393707, -0.5104100108146667, -0.20266999304294586, -0.03061099909245968, 0.2281399965286255, -0.08732599765062332, 0.19152000546455383, -0.21504999697208405, -0.14327000081539154, -0.5074700117111206, 0.05117199942469597, 0.09243299812078476, 0.5594499707221985, -0.45816999673843384, -0.09347599744796753, -0.2412099987268448, -0.6516000032424927, -0.17116999626159668, -0.5552800297737122, 0.1552799940109253, 0.48767998814582825, -0.2326200008392334, 0.05776600167155266, -0.5248200297355652, -0.05420999974012375, 0.41804999113082886, 0.25971999764442444, -0.0401809997856617, 0.5737900137901306, 0.3870300054550171, -0.2367600053548813, -0.5200499892234802, -0.1075500026345253, -1.287600040435791, 0.577530026435852, 0.12651999294757843, -0.33842000365257263, 0.444599986076355, -0.23047000169754028, 0.09528700262308121, 0.16436000168323517, -0.09548299759626389, 0.060961998999118805, -0.5475999712944031, -0.13744999468326569, 0.08775400370359421, -0.024664999917149544, -0.6070200204849243, -0.3797999918460846, -0.21897999942302704, 0.5104699730873108, -0.3201799988746643, 0.5031899809837341, -0.6902599930763245, 0.6498600244522095, 0.3444800078868866, -0.4130299985408783], u'shorts': [0.015432000160217285, -0.7280899882316589, -0.23763999342918396, 0.05696899816393852, -0.20694999396800995, -0.25220000743865967, -0.5059000253677368, 0.04409300163388252, -0.15396000444889069, 0.0310210008174181, 0.09548500180244446, 0.033296000212430954, 0.14936000108718872, 0.40852001309394836, -0.012643000110983849, 0.12172999978065491, 0.47328999638557434, -0.17478999495506287, 0.29624998569488525, 0.12428999692201614, -0.10300999879837036, 0.04762199893593788, -0.1671600043773651, -0.04746700078248978, -0.37073999643325806, -0.06233000010251999, 0.2772899866104126, 0.04270000010728836, 0.0523420013487339, 0.6022300124168396, 0.27312999963760376, -0.482230007648468, -0.046007998287677765, -0.07303699851036072, -0.4320099949836731, 0.2666800022125244, -0.09061700105667114, 0.4434100091457367, 0.4088900089263916, 0.69132000207901, -0.10306999832391739, -0.6606500148773193, -0.06591299921274185, -0.18469999730587006, -0.042771000415086746, 0.26197999715805054, 0.6106799840927124, -0.7241700291633606, -0.22363999485969543, 0.18425999581813812, -0.48047998547554016, -0.40296000242233276, 0.18716000020503998, -0.4856100082397461, 0.30202001333236694, 0.2995400130748749, -0.10650999844074249, -0.2601099908351898, -0.3028300106525421, -0.5031599998474121, -0.5441499948501587, -0.2577199935913086, -0.6003199815750122, -0.3075999915599823, 0.1634099930524826, 0.17000000178813934, 0.13760000467300415, -0.2835400104522705, 0.3715299963951111, 0.30430999398231506, 0.6415299773216248, 0.9941999912261963, -0.06249399855732918, 0.03875900059938431, 0.4139299988746643, -0.08170899748802185, -0.019123999401926994, 0.14196999371051788, -0.20319999754428864, -0.7652400135993958, -0.6427800059318542, -0.04078200086951256, 0.04619000107049942, 0.45796000957489014, -0.17746999859809875, 0.6351400017738342, 0.6428300142288208, 0.2621299922466278, 0.3256799876689911, -0.259660005569458, 0.22092999517917633, 0.34637001156806946, 0.2665899991989136, 0.24052999913692474, 0.02114499919116497, 0.26622000336647034, 0.18692000210285187, 0.5162500143051147, 0.06325899809598923, -0.2802799940109253, 0.7401800155639648, 0.359360009431839, -0.5127300024032593, -0.05450399965047836, -0.664900004863739, 0.2785699963569641, -0.3453400135040283, -0.1598300039768219, -0.22707000374794006, -0.37843000888824463, -0.7477800250053406, 0.3260599970817566, -0.14182999730110168, 0.02770799957215786, -0.5494300127029419, 0.3440600037574768, 0.22809000313282013, 0.5003200173377991, -0.35113999247550964, -0.6421899795532227, 0.14643000066280365, 0.36055999994277954, 0.6615200042724609, 0.045104000717401505, -0.16705000400543213, 0.5267199873924255, 0.14003999531269073, 0.21996000409126282, 0.6947199702262878, 0.07667999714612961, -0.6713600158691406, -0.31790000200271606, 0.26333001255989075, -0.12052000313997269, -0.30667001008987427, 0.03531799837946892, -0.038412999361753464, 0.2536500096321106, -0.15285000205039978, -0.05508799850940704, -0.06255099922418594, -0.13975000381469727, 0.34911999106407166, -0.42579999566078186, 0.3479500114917755, 0.2307099997997284, -0.4620699882507324, -0.36555999517440796, 0.34349000453948975, -0.0028909998945891857, 0.3197000026702881, 0.0735820010304451, -0.020414000377058983, -0.4559899866580963, 0.38433000445365906, -0.8294100165367126, 0.4176099896430969, -0.07201900333166122, 0.14324000477790833, 0.4783799946308136, -0.05894500017166138, -0.7139899730682373, -0.37988001108169556, -0.422650009393692, 0.2785699963569641, -0.1527000069618225, -0.1751600056886673, 1.5377999544143677, 0.0064647002145648, 0.4796999990940094, 0.5131400227546692, 0.15785999596118927, -1.0734000205993652, 0.41554999351501465, -0.36708998680114746, 0.09938599914312363, 0.09573200345039368, 0.44223999977111816, 0.1234700009226799, -0.06322299689054489, -0.23559999465942383, -0.28268998861312866, 0.5363699793815613, 0.0303569994866848, 0.27588000893592834, -0.16832999885082245, 0.4429199993610382, 0.2917099893093109, 0.1608400046825409, -0.43432000279426575, 0.2303999960422516, 0.17291000485420227, 0.2050199955701828, 0.25202998518943787, -0.49441999197006226, -0.1085600033402443, -0.8403300046920776, 0.05236300081014633, -0.7744899988174438, -0.44617998600006104, 0.8787999749183655, 0.3535900115966797, 0.5292800068855286, 0.37602001428604126, 0.774370014667511, 0.5412399768829346, -0.14485999941825867, 0.7942100167274475, -0.8175299763679504, -0.4257799983024597, -0.03448899835348129, -0.5815100073814392, -0.4222399890422821, 0.5933200120925903, 0.4534299969673157, 0.1563500016927719, 0.07902699708938599, -0.7028499841690063, 0.3379400074481964, -0.7564700245857239, 0.46595001220703125, 0.14659999310970306, 0.40654999017715454, 0.048301998525857925, 0.6974899768829346, -0.23106999695301056, -0.2115200012922287, -0.3596299886703491, -0.44745001196861267, -0.2505199909210205, 0.5006099939346313, -0.1607300043106079, -0.47620999813079834, -0.694130003452301, 0.7523499727249146, -0.333950012922287, 0.2514300048351288, -0.07034099847078323, -0.09426199644804001, 0.4899500012397766, 0.2873699963092804, 0.33959001302719116, -0.5421299934387207, 0.21789999306201935, -0.33987000584602356, -0.17204000055789948, -0.40261000394821167, -0.6218100190162659, -0.24332000315189362, -0.43338000774383545, 0.32927000522613525, 0.04517899826169014, -0.4627400040626526, -0.22943000495433807, -0.10666000097990036, -0.4825100004673004, -0.17449000477790833, 0.30629000067710876, -0.3565399944782257, -0.2108599990606308, 0.7707200050354004, -0.10627000033855438, 0.45368000864982605, -0.18240000307559967, -0.44363999366760254, -0.42813000082969666, -0.46529000997543335, 0.2220200002193451, -0.6088899970054626, 0.5589699745178223, -0.03202600032091141, -0.16061000525951385, -0.16630999743938446, -0.047981999814510345, -0.49053001403808594, -0.030108999460935593, -0.7831400036811829, 0.0744049996137619, -0.797469973564148, 0.20813000202178955, 0.6066399812698364, -0.19550000131130219, 0.0781479999423027, -0.07482799887657166, -0.3425599932670593, 0.4978399872779846, -0.22374999523162842, 0.17549000680446625, -0.2818000018596649, -0.9086999893188477, -0.32179000973701477, -0.08576299995183945, -0.2867799997329712, 0.07502000033855438, -1.1608999967575073, -0.5452200174331665, -0.2582300007343292, 0.4085800051689148, 0.7886099815368652, -0.45513999462127686], u'fire': [0.19582000374794006, 0.044123001396656036, 0.3199999928474426, 0.11235000193119049, -0.3077299892902374, 0.2771799862384796, 0.6766999959945679, 0.42552000284194946, -0.07950399816036224, -1.589400053024292, 0.2184000015258789, 0.5495200157165527, -0.05954299867153168, -0.3319399952888489, 0.0968950018286705, 0.7819799780845642, -0.24434000253677368, 0.38005998730659485, -0.4644399881362915, 0.700219988822937, 0.2888700067996979, 0.14548000693321228, 0.4573099911212921, -0.4589900076389313, 0.2543199956417084, -0.029286999255418777, -0.22843000292778015, -0.4106299877166748, -0.25784000754356384, 0.13530999422073364, 0.6423100233078003, -0.1023000031709671, 0.03962700068950653, 0.01919499970972538, -0.05845699831843376, -0.06130300089716911, -0.12557999789714813, -0.10255999863147736, 0.40088000893592834, 0.26409000158309937, 0.6011800169944763, 0.20440000295639038, 0.17660999298095703, 0.18019999563694, -0.11473000049591064, 0.08802799880504608, 0.45502999424934387, -0.19952000677585602, -0.033282000571489334, 0.13856999576091766, 0.43472999334335327, -0.17106999456882477, -0.4177800118923187, 0.17147000133991241, -0.22724999487400055, 0.5130900144577026, -0.32850000262260437, -0.0694189965724945, 0.35078001022338867, -0.057509999722242355, -0.3905799984931946, -0.09374000132083893, 0.6085000038146973, 0.20753000676631927, -0.15070000290870667, -0.23312999308109283, 0.07855899631977081, -0.2214300036430359, 0.19193999469280243, -0.09115800261497498, 0.07882899791002274, -0.5463700294494629, 0.24675999581813812, 0.022050000727176666, -0.1998099982738495, 0.2510499954223633, -0.02962600067257881, 0.26969000697135925, -0.460889995098114, -0.009513500146567822, -0.022362999618053436, 0.09591300040483475, 0.05810299888253212, 0.21464000642299652, -0.12077999860048294, -0.23757000267505646, -0.2147500067949295, 0.23568999767303467, -0.06852400302886963, -0.2878899872303009, 0.1442199945449829, -0.10884000360965729, 0.10870999842882156, 0.25826001167297363, 0.3086700141429901, -0.12964999675750732, -0.33945000171661377, 0.223130002617836, 0.21985000371932983, -0.5353599786758423, -0.316540002822876, 0.540120005607605, -0.5216900110244751, 0.11450999975204468, 0.5080999732017517, -0.39127999544143677, 0.6360099911689758, 0.34784001111984253, 0.03150099888443947, -0.03030500002205372, -0.23656000196933746, -0.3326199948787689, 0.18569999933242798, 0.029776999726891518, 0.33392998576164246, -0.08699999749660492, -0.9186999797821045, 0.008331499993801117, 0.24571000039577484, 0.03903000056743622, 0.329120010137558, -0.4275600016117096, -0.18472999334335327, 0.3373599946498871, -0.8664299845695496, -0.39254000782966614, 0.024615999311208725, -0.003636399982497096, 0.18783000111579895, -0.009909600019454956, 0.2559800148010254, 0.7094600200653076, 0.3231399953365326, -0.0041010999120771885, 0.6024100184440613, 0.2934100031852722, 0.06513000279664993, 0.08791700005531311, 0.617169976234436, 0.3801000118255615, -0.2464500069618225, 0.05784599855542183, -0.4780200123786926, 0.03566800057888031, -0.5446799993515015, -0.23907999694347382, 0.5786299705505371, 0.3422499895095825, -0.2298399955034256, -0.7494099736213684, 0.4115000069141388, 0.1641799956560135, 0.20423999428749084, -0.05323699861764908, 0.5043100118637085, -0.13085000216960907, 0.6902999877929688, -0.1991499960422516, 0.20469999313354492, -0.07294599711894989, 0.368010014295578, -0.25459998846054077, 0.7071700096130371, -0.2888000011444092, -0.4875200092792511, 0.38126999139785767, 0.09882500022649765, 0.0045056999661028385, -0.5727099776268005, -0.34586000442504883, -0.06559299677610397, 0.7818400263786316, 0.46748998761177063, 0.46445000171661377, 0.2849299907684326, 0.4225800037384033, -0.08776699751615524, -0.018631000071763992, 0.1301800012588501, -0.239889994263649, 0.07333000004291534, -0.24438999593257904, -0.0710809975862503, -0.23103000223636627, -0.05460900068283081, 0.23895999789237976, -0.4064599871635437, -0.1917800009250641, 0.2329999953508377, -0.3011400103569031, 0.3776800036430359, -0.27911999821662903, -0.13652999699115753, -0.43946000933647156, 0.22958000004291534, -0.417279988527298, -0.11162000149488449, -0.14406999945640564, 0.3338100016117096, 0.385919988155365, 0.36897000670433044, 0.2815600037574768, 0.13492000102996826, 0.047605000436306, 0.4842199981212616, -0.20669999718666077, 0.2942200005054474, -0.05476300045847893, 0.1111999973654747, -0.16987000405788422, -0.17669999599456787, 0.005960599984973669, -0.8317599892616272, -0.5509600043296814, 0.7224000096321106, -0.19356000423431396, 0.38266998529434204, 0.2827799916267395, 0.22797000408172607, -0.2852199971675873, 0.6695899963378906, -0.23002000153064728, 0.19471000134944916, -0.27358999848365784, -0.1414799988269806, -0.1704999953508377, -0.20489999651908875, -0.32412999868392944, 0.004301200155168772, 0.37646999955177307, 0.10963000357151031, -0.18748000264167786, -0.2603999972343445, -0.27222999930381775, 0.40685999393463135, -0.02380100078880787, -0.0805480033159256, 0.12872999906539917, 0.04814000055193901, 0.44699999690055847, -0.17770999670028687, -0.4985800087451935, 0.02132299914956093, -0.12022999674081802, 0.01739099994301796, 0.1610500067472458, 0.08277200162410736, -0.4163599908351898, 0.026535000652074814, -0.05837099999189377, 0.07926999777555466, -0.50941002368927, -0.1721400022506714, -0.2565400004386902, 1.0713000297546387, -0.2868100106716156, -0.4212400019168854, -0.2008499950170517, 0.3749699890613556, -0.08289700001478195, -0.12272000312805176, 0.08332200348377228, -0.05850600078701973, -0.2579599916934967, -0.30748000741004944, -0.17190000414848328, -0.5405899882316589, 0.3787199854850769, -0.2198999971151352, -0.49660998582839966, 0.24573999643325806, -0.16627000272274017, 0.3060300052165985, 0.6383799910545349, 0.2339099943637848, -0.04031499847769737, -2.432300090789795, 0.43007999658584595, -0.14500999450683594, 0.356469988822937, 0.2189899981021881, 0.09717000275850296, 0.4553399980068207, 0.24326999485492706, 0.4470300078392029, 0.6090599894523621, -0.4339199960231781, 0.01743599958717823, 0.1917099952697754, -0.12984000146389008, -0.45372000336647034, -0.3435499966144562, -0.2101300060749054, -0.2600100040435791, 0.5523099899291992, 1.1252000331878662, -0.2558000087738037, -0.22035999596118927, 0.20100000500679016, 0.5666099786758423], u'bus': [0.1482200026512146, -0.6002200245857239, 0.22612999379634857, -0.21021999418735504, -0.1728300005197525, -0.1319500058889389, 0.24592000246047974, 0.17813999950885773, -0.06456699967384338, -0.8962000012397766, -0.6838799715042114, -0.03686799854040146, 0.19367000460624695, -0.23228999972343445, 0.6003599762916565, 0.38258999586105347, -0.03359900042414665, -0.2181600034236908, -0.1473499983549118, -0.4909000098705292, -0.2101600021123886, -0.15241000056266785, -0.018773000687360764, 0.018729999661445618, -0.1712999939918518, -0.007464500144124031, -0.5713300108909607, 0.5089300274848938, -0.20419999957084656, -0.3729900121688843, 0.6646699905395508, 0.3149600028991699, 0.35763001441955566, 0.21539999544620514, -0.16469000279903412, 0.07440300285816193, -0.5231900215148926, -0.42386001348495483, -0.398250013589859, 0.16471000015735626, -0.04564699903130531, -0.020085999742150307, -0.08313900232315063, -0.5741999745368958, 0.24684999883174896, 0.3428100049495697, 0.6904799938201904, -0.048246998339891434, -0.0972760021686554, -0.7268900275230408, -0.3149600028991699, -0.023692000657320023, -0.5289199948310852, 0.23968000710010529, 0.3557800054550171, -0.01594099961221218, -0.4499799907207489, -0.09512300044298172, -0.46226000785827637, 0.14422999322414398, -0.3226200044155121, 0.16818000376224518, 0.07906100153923035, -0.25940999388694763, -0.17118999361991882, 0.6908599734306335, -0.29273998737335205, -0.42699000239372253, -0.038065001368522644, 0.13750000298023224, -0.037255000323057175, 0.2659800052642822, 0.5030400156974792, -0.24122999608516693, 0.1693599969148636, -0.05823199823498726, 0.05143899843096733, -0.15973000228405, 0.06774400174617767, -0.32708999514579773, -0.3713200092315674, -0.5341699719429016, 0.4830000102519989, 0.07034599781036377, 0.04693400114774704, -0.11341000348329544, -0.035401999950408936, -0.2881700098514557, 0.1422400027513504, 1.023300051689148, 0.5706899762153625, 0.35778000950813293, 0.29186999797821045, -0.7150800228118896, 0.18074999749660492, 0.2327200025320053, 0.23468999564647675, -0.2820900082588196, 0.23938000202178955, -0.24330000579357147, -0.20732000470161438, 0.293830007314682, 0.638979971408844, -0.22473999857902527, 0.20249000191688538, 0.20292000472545624, 0.9820899963378906, 0.2955099940299988, -0.012420999817550182, 0.06504099816083908, -0.06424900144338608, -0.0824040025472641, 0.5985999703407288, -0.1544100046157837, 0.2854900062084198, -0.05963499844074249, -0.028891999274492264, 0.17044000327587128, -0.31801000237464905, 0.3718400001525879, -0.29469001293182373, -0.53125, 0.4115599989891052, -0.6255599856376648, -0.57396000623703, -0.22040000557899475, 0.19993999600410461, 0.31578999757766724, 0.16110000014305115, -0.5268099904060364, 0.3625499904155731, 0.29631999135017395, 0.6363599896430969, 0.3228200078010559, 0.1622299998998642, 0.22062000632286072, 0.16364000737667084, -0.26504001021385193, 0.34057000279426575, 0.16355000436306, -0.3888300061225891, -0.2836199998855591, 0.19593000411987305, 0.3121800124645233, -0.8065500259399414, 0.24607999622821808, 0.4458000063896179, 0.11585000157356262, -0.010622000321745872, -0.06277500092983246, 0.6466599702835083, 0.25095999240875244, 0.8477200269699097, -0.07299099862575531, 0.3646399974822998, -0.1974799931049347, 0.18973000347614288, -0.04085800051689148, 0.4444499909877777, -0.16096000373363495, 0.1759600043296814, -0.15271000564098358, -0.23337000608444214, -0.31707999110221863, 0.2093999981880188, 0.21400000154972076, -0.28242000937461853, 0.3690299987792969, -0.2601099908351898, -0.16664999723434448, -0.40132999420166016, -0.19458000361919403, 0.5794600248336792, 0.4914099872112274, -0.542680025100708, 0.23523999750614166, -0.3402999937534332, -0.2362699955701828, 0.20117999613285065, -0.10040999948978424, -0.2728399932384491, -0.33362001180648804, -0.093019999563694, 0.1053600013256073, 0.21212999522686005, 0.22773000597953796, -0.03810599818825722, 0.2654300034046173, 0.25856998562812805, -0.13101999461650848, 0.4159199893474579, -0.09757000207901001, 0.23422999680042267, -0.41572999954223633, -0.625249981880188, -0.30483999848365784, -0.10326000303030014, -0.08872299641370773, -0.09143199771642685, 0.1514499932527542, 0.675029993057251, -0.34323999285697937, 0.39034000039100647, -0.21943999826908112, 0.16630999743938446, -0.5166000127792358, -0.19707000255584717, -0.09364400058984756, 0.36410000920295715, -0.16447000205516815, -0.9655200242996216, -0.4097000062465668, -0.23090000450611115, 0.12408000230789185, 0.11189000308513641, -0.4563100039958954, -0.05199800059199333, -0.03790000081062317, -0.1253499984741211, 0.18604999780654907, 1.0235999822616577, 0.4915199875831604, -0.2169799953699112, -0.10576000064611435, 0.8502299785614014, -0.17333999276161194, 0.22324000298976898, -0.7858499884605408, -0.13819999992847443, -0.24875999987125397, -0.22311000525951385, -0.40432998538017273, -0.1443600058555603, -0.51801997423172, 0.9113199710845947, 0.5277000069618225, 0.7702900171279907, 0.815310001373291, -0.7968599796295166, -0.39351001381874084, 0.3823600113391876, 0.12030000239610672, -0.10270000249147415, -0.6318299770355225, 0.047325000166893005, -0.15296000242233276, 0.5892699956893921, -0.5507500171661377, 0.3118000030517578, 0.0904569998383522, -0.18564000725746155, 0.09830000251531601, -0.14422999322414398, 0.14475999772548676, 0.3799700140953064, -0.5055400133132935, -0.14841000735759735, 0.49737000465393066, 0.10332000255584717, -0.4192200005054474, -0.3087199926376343, 0.018225999549031258, 0.7158899903297424, 0.8956699967384338, 0.5944200158119202, -0.6866999864578247, 0.22015999257564545, -0.4855000078678131, -0.29460999369621277, 0.3866100013256073, -0.24539999663829803, -0.17201000452041626, -0.20475000143051147, 0.20648999512195587, 0.615090012550354, -0.277319997549057, -2.139400005340576, -0.11415000259876251, -0.12647999823093414, 0.5821200013160706, -0.1906999945640564, -0.25279000401496887, 0.523930013179779, -0.5123100280761719, -0.7567999958992004, 0.6759600043296814, 0.33118000626564026, 0.33684998750686646, 0.40599000453948975, -0.05669400095939636, 0.5083600282669067, -0.180649995803833, -0.7230700254440308, -0.08151599764823914, 0.3217799961566925, 0.7417200207710266, -0.46136999130249023, -0.2607499957084656, 0.2996399998664856, 0.39980000257492065], u'wax': [0.5949100255966187, -0.3763999938964844, -0.4560999870300293, -0.4163399934768677, 0.22643999755382538, 0.16373999416828156, -0.0965299978852272, 0.17911000549793243, 0.07719700038433075, -0.2179899960756302, -0.9150599837303162, 0.04559500142931938, -0.04813599959015846, -0.6922799944877625, -0.260019987821579, 0.4698300063610077, -0.24783000349998474, 0.13481000065803528, -0.2810699939727783, -0.03328099846839905, -0.14232000708580017, -0.13614000380039215, -0.2008100003004074, 0.7946000099182129, 0.4440799951553345, -0.2099599987268448, -0.7166900038719177, -0.19538000226020813, 0.09208499640226364, 0.3713499903678894, 0.4929400086402893, -0.13884000480175018, -1.191499948501587, -0.06700299680233002, -0.023581000044941902, 0.28464001417160034, -0.012875000014901161, 0.7493699789047241, 0.05411899834871292, 0.05996700003743172, -0.46086999773979187, -0.1676899939775467, -0.17092999815940857, 0.10744000226259232, 0.5429199934005737, -0.42111000418663025, 0.7713900208473206, 0.18219000101089478, 0.08082199841737747, 0.6192799806594849, 0.23669999837875366, -0.4832499921321869, -0.25766000151634216, -0.0694819986820221, 0.4263400137424469, 0.020360000431537628, -0.45357999205589294, -0.13853000104427338, 0.47898998856544495, 0.14180999994277954, -0.2255599945783615, 0.06950099766254425, 0.20422999560832977, 0.5279499888420105, 0.7773200273513794, -0.010861000046133995, -0.12343999743461609, -0.2294899970293045, 0.4760200083255768, 0.25953999161720276, 0.20959000289440155, -0.03341599926352501, 0.38034000992774963, 0.8950099945068359, -0.47005000710487366, 0.3463200032711029, 0.4383600056171417, -0.3946700096130371, -0.18252000212669373, -0.2920199930667877, -1.19159996509552, -0.5734800100326538, -0.13379999995231628, -0.6244800090789795, -0.4116800129413605, 0.32767999172210693, -0.08973900228738785, 0.5466899871826172, -0.17856000363826752, 0.1610500067472458, -0.6629999876022339, -0.4205999970436096, -0.326229989528656, -0.7616999745368958, 0.24192999303340912, -0.44064998626708984, -0.09561199694871902, 0.3985300064086914, 0.1689399927854538, -0.4120999872684479, 0.18160000443458557, -0.2328300029039383, 0.1490900069475174, -0.4133400022983551, -0.10503000020980835, -0.30889999866485596, -0.25756001472473145, -0.39500001072883606, -0.7933499813079834, 0.4105300009250641, 0.5109599828720093, 0.24533000588417053, -0.20587000250816345, -0.4714300036430359, 0.32357001304626465, 0.31182000041007996, -0.5853999853134155, 0.7824900150299072, 0.15458999574184418, 0.08290000259876251, 0.006947699934244156, 0.05380000174045563, 0.37011000514030457, 0.61558997631073, -0.053224001079797745, 0.5261200070381165, 0.1421699970960617, -0.4114300012588501, 0.32677000761032104, -0.3607900142669678, 0.1290300041437149, 0.6889899969100952, 0.24958999454975128, 0.47745001316070557, -0.25415000319480896, -0.12966999411582947, -0.5968599915504456, 0.09703999757766724, -0.04975700005888939, 0.07976800203323364, 0.286190003156662, -0.07510200142860413, -0.7844300270080566, -0.5797299742698669, 0.9472200274467468, 0.13073000311851501, -0.2838999927043915, 0.037546999752521515, 0.1428699940443039, -0.23191000521183014, -0.3105500042438507, 0.5750100016593933, -0.2176000028848648, -0.41089001297950745, -0.4499799907207489, -0.10416000336408615, -0.5501800179481506, -0.4879100024700165, 0.49922001361846924, -0.3202100098133087, 0.10367999970912933, -0.3159100115299225, 0.31018999218940735, -0.17440000176429749, 0.02943599969148636, 0.17670999467372894, 0.17434999346733093, 0.010115000419318676, 0.5404599905014038, -0.7209299802780151, -0.3181900084018707, 0.13666999340057373, -0.041439998894929886, -0.2863300144672394, 0.7755299806594849, -0.36726000905036926, 0.3540000021457672, -0.6198199987411499, -0.07685700058937073, -0.6140000224113464, 0.0851840004324913, 0.421779990196228, 0.5180699825286865, -0.09765300154685974, -0.40509000420570374, -0.40814000368118286, 0.7947499752044678, -0.1914999932050705, -0.021556999534368515, -0.10869000107049942, 0.8155800104141235, 0.3657500147819519, 0.2768000066280365, -0.055100999772548676, 0.041301000863313675, 0.1612900048494339, -0.5376399755477905, 0.30608999729156494, -0.8852599859237671, -0.44053998589515686, 0.3679800033569336, 0.11089000105857849, 0.7784799933433533, -0.17531000077724457, 0.14895999431610107, 0.2533400058746338, -0.1791599988937378, 0.10095000267028809, -0.6501100063323975, -0.40602999925613403, 0.48627999424934387, 0.24216000735759735, 0.25040000677108765, -0.06634200364351273, 0.4367699921131134, 0.43608999252319336, 0.8771700263023376, -0.17149999737739563, -0.2213599979877472, -0.6752300262451172, -0.05603199824690819, -0.06307999789714813, -0.27316001057624817, -0.30990999937057495, -0.273360013961792, 0.5423700213432312, -0.1383800059556961, 0.23323999345302582, -0.11221999675035477, -0.7904899716377258, -0.1450899988412857, -0.7527599930763245, 0.6073700189590454, -0.2204899936914444, 0.4818600118160248, -0.2979699969291687, -0.23176999390125275, -0.07580199837684631, -0.0017383999656885862, -0.2540700137615204, -0.3336600065231323, -0.22337999939918518, -0.9716699719429016, -0.06655000150203705, -0.5220000147819519, -0.1357100009918213, 0.0760200023651123, -0.5571399927139282, -0.31226998567581177, 0.24178999662399292, 0.09997200220823288, -0.5109999775886536, 0.312389999628067, 0.07819599658250809, 0.19301000237464905, -0.29096001386642456, -0.22189000248908997, -1.0163999795913696, -0.037335000932216644, -0.6345800161361694, -0.7246400117874146, -0.26462000608444214, -0.10546000301837921, 0.07402600347995758, 0.5024099946022034, 0.4255099892616272, -0.3317900002002716, -0.26684999465942383, -0.21492999792099, 0.13274000585079193, 0.6426200270652771, 0.09765300154685974, 0.05355700105428696, 0.17343999445438385, -0.07574500143527985, 0.24623000621795654, -0.14542999863624573, -0.4461199939250946, -0.6032400131225586, -0.923550009727478, -0.08748099952936172, -0.4410400092601776, -0.30706000328063965, 0.21098999679088593, -0.13364000618457794, 0.7376899719238281, 0.46942999958992004, 0.04465600103139877, -0.07852199673652649, 0.5768899917602539, -0.2876400053501129, -0.24071000516414642, 0.2349500060081482, 0.1978899985551834, -0.1374099999666214, -0.15477000176906586, 0.5702000260353088, -0.23222999274730682, -0.49740999937057495, 0.5438500046730042], u'envelope': [-0.18002000451087952, -0.010928000323474407, -0.6198099851608276, -0.20061999559402466, 0.17242999374866486, -0.008661800064146519, -0.6206899881362915, -0.6265299916267395, -0.2916699945926666, -0.9887099862098694, -0.2632000148296356, 0.13083000481128693, 0.677590012550354, -0.00620240019634366, -0.5958499908447266, 0.2206999957561493, -0.45076999068260193, -0.12246999889612198, -0.30550000071525574, -0.004538299981504679, 0.06985799968242645, -0.49538999795913696, -0.0982699990272522, -0.05690800026059151, -0.4229399859905243, 0.3644599914550781, -0.17298999428749084, -0.1765100061893463, 0.08115100115537643, -0.7707599997520447, -0.2641899883747101, -0.08666399866342545, -0.632390022277832, 0.2566399872303009, -0.05415099859237671, 0.6031799912452698, -0.22562000155448914, -0.20476999878883362, -0.5992500185966492, 0.2766599953174591, -0.5371699929237366, -0.35089999437332153, -0.016355000436306, 0.8516200184822083, 0.2220499962568283, 0.15489999949932098, 0.21493999660015106, -0.2527199983596802, -0.32697001099586487, 0.14219999313354492, 0.9460499882698059, 0.19856999814510345, 0.0783429965376854, -0.18163999915122986, -0.06096300110220909, -0.0466420017182827, -0.06247900053858757, -0.01153200026601553, 0.5722699761390686, -0.6618300080299377, 1.163599967956543, 0.42965999245643616, 0.34751999378204346, -0.48166000843048096, 0.27755001187324524, -0.06054700165987015, -0.330049991607666, -0.3465299904346466, -0.0768669992685318, 0.1716500073671341, 0.09001900255680084, -0.1673000007867813, 0.5264599919319153, 0.19487999379634857, 0.4909999966621399, 0.6763100028038025, -0.0388449989259243, -0.46362999081611633, 0.16946999728679657, 0.363970011472702, -0.16116000711917877, 0.4799099862575531, -0.026551000773906708, 0.3042699992656708, 0.11332999914884567, -0.17071999609470367, 0.31797999143600464, -0.08310899883508682, -0.24574999511241913, -0.12131000310182571, -0.3245899975299835, -0.0679130032658577, -0.13993999361991882, 0.002978699980303645, 0.1466600000858307, -0.09404999762773514, -0.2727699875831604, 0.5573700070381165, 0.20237000286579132, -0.6558899879455566, 0.36421999335289, -0.45489001274108887, -0.6825100183486938, 0.2328999936580658, -0.45302000641822815, -0.3379499912261963, -0.2129800021648407, 0.15783999860286713, 0.1387300044298172, 0.24638999998569489, 0.17461000382900238, 0.7336199879646301, -0.07648400217294693, 0.008359399624168873, -0.6186800003051758, 0.27483001351356506, -0.21918000280857086, 0.1113400012254715, 0.14831000566482544, -0.7398899793624878, 0.6933299899101257, 0.22597000002861023, -0.1339299976825714, 0.5441499948501587, 0.17818999290466309, -0.2596699893474579, 0.380950003862381, -1.04830002784729, 0.11650999635457993, -0.32552000880241394, 0.6439099907875061, -0.43314000964164734, 0.22327999770641327, 0.21344000101089478, -0.6291599869728088, 0.18400000035762787, 0.1311199963092804, 0.03821700066328049, 0.46952998638153076, 0.42653998732566833, -0.0022901000920683146, 0.23533999919891357, -0.3935199975967407, -0.29583001136779785, 0.1384900063276291, -0.46678999066352844, -0.7300199866294861, -0.4253999888896942, 0.06089499965310097, 0.19744999706745148, 0.17833000421524048, 0.6413999795913696, -0.041377998888492584, -0.2489600032567978, 0.7677900195121765, -0.002520600100979209, 0.03195599839091301, -0.31022000312805176, 0.004892100114375353, -0.08023200184106827, -0.704990029335022, -0.4668099880218506, 0.5691800117492676, -0.5367400050163269, 0.8357599973678589, 0.08587600290775299, -0.3366299867630005, 0.3424699902534485, -0.15277999639511108, -0.1737300008535385, 0.035895999521017075, 0.45774999260902405, -0.08453799784183502, -0.10976000130176544, -0.33465999364852905, -0.4724400043487549, -0.32034000754356384, 0.1759600043296814, 0.16551999747753143, -1.2489999532699585, 0.3358199894428253, -0.20777000486850739, 0.2579599916934967, 0.03512800112366676, -0.5929999947547913, -0.3000200092792511, 0.6855000257492065, 0.43838998675346375, -0.2215700000524521, 0.1015700027346611, 0.7925300002098083, 0.43255001306533813, -0.06650800257921219, 0.40397000312805176, 0.49052000045776367, -0.24124999344348907, -0.4637500047683716, 0.5299199819564819, -0.08610200136899948, 0.36754998564720154, -0.21817000210285187, -0.42511001229286194, 0.7585600018501282, 0.2300799936056137, 0.024876000359654427, -0.5295199751853943, 0.23896999657154083, -0.06504800170660019, -0.11806999891996384, 0.3728100061416626, -0.21960000693798065, 0.2890999913215637, -0.3246600031852722, -0.124549999833107, -0.21236999332904816, -0.34828001260757446, 0.01693199947476387, -0.3804300129413605, -0.25242000818252563, 0.04699699953198433, 0.23451000452041626, 0.45100998878479004, 0.03457200154662132, 0.06620799750089645, 0.038203999400138855, -0.6761900186538696, -0.5784000158309937, -0.04998999834060669, 0.06853800266981125, -0.4870400130748749, -0.3088200092315674, 0.16207000613212585, -0.6662499904632568, 0.215379998087883, -0.22914999723434448, -0.03155599907040596, -0.25418001413345337, -0.17765000462532043, 0.231330007314682, 0.2042900025844574, 0.11949999630451202, 0.1907999962568283, 0.1145000010728836, 0.4205699861049652, -0.26377999782562256, -0.7936999797821045, 0.6975499987602234, -0.6047099828720093, -0.003697100095450878, 0.2554900050163269, -0.004565299954265356, -0.19867999851703644, -0.4266200065612793, -0.3700999915599823, -0.1483599990606308, -0.01013999991118908, 0.11885999888181686, -0.638670027256012, -0.20615999400615692, -0.12064000219106674, -0.003855000017210841, -0.18570999801158905, 0.29458001255989075, 0.21785999834537506, 0.09910500049591064, 0.17901000380516052, 0.032683998346328735, 0.3864099979400635, 0.41319000720977783, 0.39695999026298523, 0.21336999535560608, 0.1716099977493286, -0.1425199955701828, -0.1109199970960617, -0.5425699949264526, -0.014290000312030315, -0.46709001064300537, -0.10993999987840652, -0.3046500086784363, -0.4569700062274933, -0.2985199987888336, 0.04441099986433983, -0.17603999376296997, 0.149849995970726, -0.7400799989700317, 0.0018028999911621213, 0.10698000341653824, -0.21041999757289886, -0.4256399869918823, 0.09386499971151352, 0.4744899868965149, -0.09317799657583237, 0.5672100186347961, 0.4542199969291687, 0.5010300278663635, -0.10361000150442123, -0.05074600130319595, -0.4993799924850464, 0.23728999495506287, -0.21243999898433685], u'oil': [0.48124998807907104, 0.5553799867630005, -0.043570999056100845, 0.23210999369621277, -0.3140000104904175, 0.21654999256134033, -0.43244001269340515, 0.3129900097846985, 0.3706800043582916, -1.9697999954223633, -0.15918999910354614, -0.0181489996612072, 0.33500000834465027, 0.6432200074195862, -0.3931199908256531, 0.12335000187158585, 0.05256500095129013, 0.3982900083065033, -0.4405499994754791, -0.4959399998188019, -0.5344300270080566, 0.24155999720096588, 0.8322299718856812, 0.07060500234365463, 0.2594299912452698, -0.2954399883747101, 0.45205000042915344, 0.40560999512672424, -0.6394000053405762, 0.3227599859237671, -0.060545001178979874, 0.9110599756240845, -0.2278199940919876, 0.16487999260425568, 0.08929000049829483, 0.03494799882173538, -0.21980999410152435, -0.06255099922418594, 0.5783100128173828, 1.0425000190734863, -0.978659987449646, -0.21594999730587006, 0.24808000028133392, -0.26350000500679016, 0.05289899930357933, -0.6155099868774414, 0.06252799928188324, 0.11326999962329865, 0.3093700110912323, 0.46772998571395874, 0.2574700117111206, 0.5333700180053711, -0.0016531000146642327, -0.38429000973701477, 0.1182200014591217, 0.42963001132011414, -0.21476000547409058, 0.8601300120353699, 0.23191000521183014, -0.4004499912261963, -0.2811700105667114, 0.9489399790763855, 0.8220499753952026, -0.8686599731445312, -0.05635000020265579, -0.18850000202655792, -0.4995099902153015, -0.20960000157356262, -0.0062200999818742275, 0.20492999255657196, -0.15434999763965607, -0.2793099880218506, -0.1114799976348877, -0.04156000167131424, -0.07238200306892395, 0.2596000134944916, 0.449429988861084, 0.20225000381469727, -0.0979280024766922, -0.08230099827051163, 0.07871600240468979, -0.9547100067138672, -0.7177799940109253, 0.6839500069618225, 0.9953600168228149, -0.33177000284194946, 0.24539999663829803, 0.42983001470565796, -0.26600000262260437, -0.2306399941444397, 0.26906999945640564, 0.4373300075531006, -0.10406000167131424, -0.17605000734329224, -0.4830299913883209, 0.6815800070762634, -0.265390008687973, 0.24574999511241913, 0.8312299847602844, 0.11722999811172485, -0.2471500039100647, 0.09515299648046494, -0.4203200042247772, -0.31845998764038086, -0.005252200178802013, 0.5649799704551697, -0.2091200053691864, -0.08006200194358826, -0.10837999731302261, 0.10743000358343124, 0.7613999843597412, -0.8095899820327759, -0.3483699858188629, 0.42796000838279724, 0.2389499992132187, 0.4989199936389923, 0.5612999796867371, 0.39792001247406006, 0.9854099750518799, 0.43720000982284546, -0.35697999596595764, -0.7131400108337402, -0.24860000610351562, 0.24842000007629395, 0.5636199712753296, 0.21886000037193298, -0.1354600042104721, -0.17382000386714935, 0.1965699940919876, 0.5974000096321106, 0.17297999560832977, 0.6415600180625916, -1.0906000137329102, 0.1714800000190735, 0.0429840013384819, 0.2347699999809265, -0.19612999260425568, 0.3931899964809418, -0.046039000153541565, -0.05071000009775162, 0.4815700054168701, -0.435589998960495, 0.2160400003194809, -0.2990800142288208, -0.5877199769020081, 0.2966499924659729, -0.2953000068664551, 0.4182499945163727, -0.0789709985256195, 0.31095001101493835, 0.38012000918388367, 0.94336998462677, 0.11672999709844589, 0.22330999374389648, 0.008383099921047688, 0.29787999391555786, 0.2933399975299835, -0.6197999715805054, -0.17367999255657196, -0.4369699954986572, 0.038052998483181, 0.07438699901103973, 0.24967999756336212, -0.015057999640703201, -0.31349000334739685, -0.3744699954986572, 0.500980019569397, -0.07908400148153305, -0.27059000730514526, 0.570580005645752, -0.01207400020211935, -0.32210999727249146, -0.27562999725341797, -0.4060400128364563, 0.4558500051498413, 0.39500999450683594, 0.5948699712753296, -0.10718999803066254, 0.12876999378204346, 0.8070899844169617, -0.40268000960350037, 0.6827600002288818, 0.2775300145149231, -0.3141399919986725, 0.49592000246047974, -0.513979971408844, 1.0184999704360962, -0.2296299934387207, -0.6586199998855591, -0.14303000271320343, 0.2880600094795227, 1.023900032043457, -0.012981999665498734, -0.2721000015735626, -0.07726799696683884, -0.4020400047302246, 0.1575399935245514, -0.25279998779296875, 0.010621000081300735, -0.22169999778270721, 0.6000800132751465, 0.24573999643325806, 0.25286000967025757, -0.518530011177063, 0.3705199956893921, 0.10471999645233154, 0.25200000405311584, 0.009399100206792355, 0.45350998640060425, -0.4747700095176697, -0.21059000492095947, -0.2666099965572357, 0.33359000086784363, -0.20418000221252441, 0.25898998975753784, 0.33487001061439514, 0.9676399827003479, 0.4406900107860565, -0.03754200041294098, 0.5324100255966187, 1.0441999435424805, -0.0328029990196228, -0.2904900014400482, 0.20573000609874725, 0.11781000345945358, -0.7202399969100952, -1.0537999868392944, 0.21473999321460724, -0.24212999641895294, -0.4099299907684326, 0.25543999671936035, 0.21728000044822693, 0.28134000301361084, 0.5659099817276001, 0.719789981842041, 0.31929001212120056, 0.3617100119590759, -0.1428699940443039, -0.41084998846054077, -0.7854800224304199, -0.3072899878025055, -0.0710970014333725, -0.1877799928188324, 0.6768100261688232, -0.7936199903488159, -0.4297899901866913, 0.3673799932003021, -0.40024998784065247, -0.047109998762607574, -1.0450999736785889, -0.047614000737667084, -0.833299994468689, 0.3786099851131439, 0.1122799962759018, 0.3197700083255768, -0.2979600131511688, -1.1509000062942505, 0.43654999136924744, -0.3355099856853485, 0.46792998909950256, -0.4916200041770935, 0.08567799627780914, -0.6905500292778015, -0.5594099760055542, 0.5017300248146057, 0.15415999293327332, -0.4488599896430969, -0.5140200257301331, -0.08537399768829346, -0.577530026435852, 0.3017899990081787, -0.3950600028038025, -0.2141599953174591, 0.17922000586986542, -0.3712100088596344, -0.21860000491142273, -1.6684999465942383, -0.6462500095367432, -0.04042699933052063, -0.4015200138092041, -0.33281001448631287, -0.4851599931716919, -0.010257000103592873, 0.07426899671554565, 0.4449000060558319, -0.32245001196861267, 0.5184199810028076, -0.5346400141716003, 0.23176999390125275, 0.48743999004364014, -0.5403800010681152, -0.4023500084877014, 0.6948300004005432, -0.12949000298976898, 0.49140000343322754, 1.010699987411499, -0.16986000537872314, -1.329200029373169, -0.6591299772262573, 0.6928799748420715], u'chocolate': [-0.2034199982881546, 0.49364998936653137, 0.025728000327944756, 0.10397999733686447, -0.807479977607727, 0.11922000348567963, -0.01694300025701523, -0.16985000669956207, 0.43963998556137085, -0.4302400052547455, 0.4549599885940552, -0.8282600045204163, -0.3798699975013733, 0.41850000619888306, -0.22588999569416046, -0.1063700020313263, 0.2950800061225891, -0.04152600094676018, -0.11439000070095062, 0.4255400002002716, 0.2628900110721588, 0.1984100043773651, 0.33441999554634094, 0.4837400019168854, -0.7359300255775452, -0.06871700286865234, -0.6509000062942505, -0.14433999359607697, -0.17584000527858734, -0.7833999991416931, -0.8658199906349182, 0.6245999932289124, -0.16021999716758728, -0.42024001479148865, -0.7132599949836731, 1.0514999628067017, -0.3244200050830841, 0.6176499724388123, 0.01992500014603138, -0.04179999977350235, -0.8561699986457825, -0.24988999962806702, 0.31066998839378357, 0.18585999310016632, 0.1358100026845932, -0.5079900026321411, 0.2791700065135956, -0.35620999336242676, -0.04310400038957596, 0.3488300144672394, 0.1271200031042099, -0.06124399974942207, 0.15151000022888184, 0.48392000794410706, -0.29069000482559204, -0.10311999917030334, -0.39441001415252686, 0.19216999411582947, 0.863319993019104, 0.3100399971008301, -0.0883760005235672, 0.0430929996073246, 0.32554998993873596, -0.40005001425743103, 0.0668649971485138, 0.03515600040555, 0.23337000608444214, 0.2513299882411957, -0.7488800287246704, -0.26701998710632324, 0.07140900194644928, 0.22222000360488892, -0.22301000356674194, 0.05670199915766716, -0.061820998787879944, 0.16965000331401825, 0.17423999309539795, -0.421640008687973, -0.3156599998474121, -0.14670999348163605, 0.3828499913215637, 0.15487000346183777, -0.3405500054359436, -0.40494999289512634, 0.3551799952983856, -0.4951399862766266, -0.10192999988794327, -0.03162200003862381, -0.412200003862381, -0.029819000512361526, -0.15162000060081482, -0.2368299961090088, -0.23241999745368958, 0.16457000374794006, -0.528980016708374, 0.4809100031852722, 0.3594599962234497, 0.03167499974370003, -0.1941000074148178, 0.11507000029087067, 0.10965000092983246, 0.21827000379562378, -0.09171699732542038, -0.7673900127410889, 0.0665849968791008, -0.7569100260734558, -0.02295999974012375, 0.3157300055027008, -0.6085799932479858, 0.6347799897193909, 0.6861600279808044, 0.504289984703064, -0.28876999020576477, -0.8105499744415283, 0.0703589990735054, -0.09156300127506256, -0.45107001066207886, 0.72461998462677, 0.1619900017976761, -0.0270409993827343, -0.04401899874210358, 0.12031999975442886, 0.24324999749660492, -0.12639999389648438, -0.3825399875640869, -0.4975599944591522, 0.4458400011062622, 0.7965400218963623, -0.3695099949836731, 0.31499001383781433, -0.543150007724762, 0.7598400115966797, -0.5330600142478943, 1.0403000116348267, -0.42441999912261963, -0.09440100193023682, -0.5499799847602844, 0.5047199726104736, -0.14723999798297882, -0.5098000168800354, 0.472790002822876, -0.32989999651908875, -0.5268200039863586, 0.0244159996509552, 0.313620001077652, -0.45339998602867126, -0.3070699870586395, -0.44707998633384705, -0.10034000128507614, -0.3293899893760681, -0.6664100289344788, 0.2596299946308136, 0.3764199912548065, 0.2678599953651428, 0.01558700017631054, -0.8495100140571594, -0.5645700097084045, -0.6566500067710876, 0.1189500018954277, -0.18098999559879303, 0.209089994430542, -0.2778399884700775, 0.27059999108314514, -0.29361000657081604, -0.08623199909925461, 0.14226999878883362, 0.43417999148368835, 0.1764799952507019, -0.12547999620437622, -0.24875999987125397, 0.08766499906778336, 0.12338999658823013, -0.05271900072693825, 0.3097899854183197, -0.035698000341653824, -0.15027999877929688, 0.07813899964094162, -0.2784300148487091, 0.17856000363826752, -0.6485999822616577, -0.3819099962711334, 0.26662999391555786, 0.3938699960708618, -0.4835500121116638, 0.273250013589859, -0.8076800107955933, 1.0924999713897705, -0.33292001485824585, 0.03549300134181976, -0.26166999340057373, 0.5958300232887268, 0.6200799942016602, -0.29027000069618225, -0.24884000420570374, -0.39414000511169434, -0.27358999848365784, -0.44095999002456665, 0.1785700023174286, 0.05140899866819382, 0.3110699951648712, 0.4728800058364868, -0.3004100024700165, 0.8201799988746643, 0.3484500050544739, -0.44332998991012573, -0.4150800108909607, 0.16556000709533691, 0.5353699922561646, -0.6037600040435791, -0.32133999466896057, 0.2404100000858307, -0.3684700131416321, -0.2611300051212311, -0.009384100325405598, -0.12125000357627869, 0.6661400198936462, 0.6332100033760071, -0.44826000928878784, 0.5346699953079224, -0.06803999841213226, 0.43514999747276306, 0.5111799836158752, -0.12916000187397003, -0.04016999900341034, -0.5457800030708313, -0.055456001311540604, 0.09634499996900558, 0.4426800012588501, 0.24255000054836273, -0.16062000393867493, -0.2719799876213074, -0.5753499865531921, -0.0014643999747931957, -0.008167900145053864, 0.6775100231170654, 0.17283999919891357, 0.002913400065153837, 0.2943499982357025, -0.4426499903202057, -0.6680499911308289, -0.3010700047016144, -0.15941999852657318, -0.08421099931001663, -0.5748000144958496, -1.0068999528884888, 0.4228900074958801, -0.4161800146102905, 0.19599999487400055, 0.486160010099411, -0.3731499910354614, 0.5903400182723999, -0.16805000603199005, 0.35804998874664307, 0.47244998812675476, 0.16689999401569366, 0.040775999426841736, 0.23348000645637512, -0.4231500029563904, 0.33948999643325806, 0.2637900114059448, -0.2291399985551834, -0.4944800138473511, 0.23579999804496765, -0.07208999991416931, 0.007266100030392408, 0.0630899965763092, -0.48903998732566833, 0.34251001477241516, 0.45840999484062195, 0.10095000267028809, -0.33133000135421753, -0.2885900139808655, -0.03657199814915657, 0.29464998841285706, 0.17595000565052032, 0.3484100103378296, -0.814300000667572, -0.5352299809455872, -1.4697999954223633, -0.0677580013871193, -0.14722000062465668, 0.5898699760437012, -0.6759499907493591, -0.6238399744033813, -0.006676199845969677, 0.7381700277328491, 0.3981100022792816, -0.3418700098991394, 0.09329000115394592, 0.6467900276184082, -0.4534299969673157, -0.26434001326560974, -0.00043541999184526503, 0.3581399917602539, 0.1745000034570694, -0.5629600286483765, -0.1001800000667572, -0.07162299752235413, -0.15243999660015106, -0.23454000055789948], u'tiger': [0.31804999709129333, 0.3861199915409088, 0.10724999755620956, 0.2826099991798401, -0.044964998960494995, 0.010611999779939651, 0.4342600107192993, 1.100600004196167, 0.1512400060892105, -0.751990020275116, 0.5425400137901306, -0.25543999671936035, -0.164000004529953, 0.16128000617027283, -0.01706000044941902, -0.2240999937057495, 0.12681999802589417, 0.8408700227737427, -0.276309996843338, 0.04430999979376793, 0.2612299919128418, -0.038947999477386475, -0.14925000071525574, -0.6048099994659424, -1.1059000492095947, -0.11134999990463257, -0.05940299853682518, -0.22909000515937805, 0.6788899898529053, 0.1828799992799759, 0.06960999965667725, -1.3831000328063965, 0.057360000908374786, -0.33441001176834106, -0.26576998829841614, -0.3406899869441986, 0.17086000740528107, 0.591480016708374, -0.8363100290298462, 0.48743000626564026, 0.2438800036907196, -0.42785000801086426, 0.39638999104499817, -0.18223999440670013, -0.3157399892807007, -0.4192900061607361, 0.4329400062561035, -0.3149999976158142, -0.23389999568462372, -0.009583299979567528, 0.9667099714279175, -0.18472999334335327, 0.15178999304771423, 0.3595600128173828, -0.054430000483989716, 0.24031999707221985, -0.017690999433398247, 1.034600019454956, -0.23621000349521637, -0.04628400132060051, -0.6318299770355225, -0.26131001114845276, 0.22495000064373016, 0.6593300104141235, 0.09763199836015701, -0.14428000152111053, -0.5109800100326538, -0.6434000134468079, 0.22279000282287598, 0.4701699912548065, 0.06844999641180038, 0.3401300013065338, 0.05033700168132782, 0.024793000891804695, -0.013725999742746353, 0.22474999725818634, 0.538320004940033, -0.6012300252914429, 0.24434000253677368, 0.35062000155448914, 0.14057999849319458, -0.24492999911308289, 0.10418999940156937, -0.49483999609947205, 0.3262900114059448, -0.6315799951553345, -0.8134499788284302, -0.035165999084711075, 0.2336599975824356, -0.26914000511169434, -0.015011999756097794, -0.09155099838972092, -0.35172998905181885, 0.032239001244306564, 0.4459199905395508, 0.326200008392334, 0.20521999895572662, -0.46459999680519104, -0.5688499808311462, -0.4661000072956085, 0.09769999980926514, 0.3709999918937683, 0.5591400265693665, 0.3366200029850006, 0.5595499873161316, -0.02667899988591671, 0.020627999678254128, 0.1621900051832199, -0.07919400185346603, 0.21178999543190002, -0.08166500180959702, 0.09616400301456451, -0.8260499835014343, -0.16286000609397888, 0.09883400052785873, 0.08930200338363647, 0.1823900043964386, 0.526639997959137, -0.6472300291061401, -0.2754899859428406, -1.0490000247955322, -0.5939000248908997, -0.20138999819755554, 0.58160001039505, -0.2954399883747101, -0.2300499975681305, 0.19732999801635742, 0.31992998719215393, 0.040029000490903854, -0.4256500005722046, -0.26076000928878784, 0.28575000166893005, -0.10008999705314636, -0.020920999348163605, -0.16854000091552734, 0.23218999803066254, 0.012138999998569489, -0.16395999491214752, -0.22856000065803528, 0.31306999921798706, 0.04444799944758415, 0.027773000299930573, 0.42594000697135925, -0.4287000000476837, -0.3947100043296814, -0.4054099917411804, 0.06397999823093414, 0.5548200011253357, 0.048680998384952545, -0.26030999422073364, -0.25606998801231384, -0.06851799786090851, -0.21720999479293823, -0.21251000463962555, 0.4876199960708618, -0.4803999960422516, -0.3929100036621094, -0.26541998982429504, 0.30684998631477356, 1.3878999948501587, 0.31551000475883484, 0.3790600001811981, 0.048222001641988754, -0.2688499987125397, -0.6744700074195862, -0.058844998478889465, 0.014894000254571438, 0.3190099895000458, -0.8532999753952026, -0.5399799942970276, -0.6579899787902832, -0.22533999383449554, -0.09932100027799606, 0.704289972782135, 0.11254999786615372, -0.2892099916934967, 0.14850999414920807, 0.2505199909210205, 0.5333200097084045, -0.013101000338792801, 0.060387998819351196, -0.15534000098705292, -0.1624400019645691, 0.1806199997663498, -0.002583499997854233, 0.10042999684810638, -0.1402599960565567, 0.29892000555992126, 0.263480007648468, -0.07395000010728836, 0.37323999404907227, 0.15981000661849976, 0.20407000184059143, 0.10287000238895416, 0.0660569965839386, 0.09644699841737747, 0.4999000132083893, -0.03250499814748764, 0.11403000354766846, -0.30171000957489014, 1.8904000520706177, -0.42511001229286194, -0.1415800005197525, -0.5488799810409546, -0.200080007314682, 0.37909001111984253, -0.6607000231742859, -0.20746999979019165, -0.36917999386787415, 0.06824299693107605, 0.05649299919605255, 0.06744500249624252, -0.2136099934577942, -0.9983000159263611, 0.32986000180244446, -0.55690997838974, 0.17576000094413757, 0.3542200028896332, -0.06519600003957748, -0.0164170004427433, 0.8304200172424316, 0.2642799913883209, 0.29993999004364014, -0.5163999795913696, 0.12353000044822693, -0.46542999148368835, 0.3827199935913086, -0.36423999071121216, -0.36278000473976135, -0.565850019454956, 0.2336599975824356, -0.7289599776268005, 0.3587400019168854, -0.006296299863606691, -0.08087799698114395, -0.19359999895095825, 0.2115900069475174, -0.09034200012683868, -0.7977100014686584, 0.30855000019073486, -0.4831799864768982, 0.13294999301433563, 0.040856000036001205, 0.9540600180625916, -0.7373700141906738, 0.46077001094818115, -0.08266200125217438, 0.22544999420642853, 0.25722000002861023, -0.5795599818229675, -1.110200047492981, -0.24181999266147614, -0.5353400111198425, -0.3999499976634979, 0.8978599905967712, -0.47029998898506165, 0.6889500021934509, -0.06440000236034393, -0.30524998903274536, -0.24538999795913696, 0.10649000108242035, 0.00011518999963300303, 0.05212299898266792, -0.2365099936723709, -0.27917999029159546, 0.12953999638557434, 0.13222000002861023, 0.45636001229286194, -0.16590000689029694, -0.16413000226020813, 0.2124200016260147, -0.09836699813604355, 0.27643001079559326, -0.3505899906158447, 0.4276700019836426, -0.3612299859523773, -0.5353800058364868, 0.1148499995470047, -0.2522599995136261, -0.17993000149726868, -0.1436299979686737, 0.12369000166654587, 0.23747000098228455, 0.2045300006866455, -0.6195799708366394, -0.23840999603271484, -0.5727400183677673, -0.22473999857902527, 0.21683000028133392, -0.28839001059532166, -0.3549500107765198, -0.4497799873352051, -0.7391999959945679, -0.1082800030708313, 0.0060952999629080296, 0.9468299746513367, 0.36774998903274536, 0.14239999651908875, 0.2597000002861023, 0.25982001423835754], u'phone': [-0.8367599844932556, 0.02263999916613102, -0.26627999544143677, 0.0669960007071495, -0.08080799877643585, -0.05901100113987923, -0.4032999873161316, -0.6476899981498718, 0.13826000690460205, -1.853600025177002, -0.05226299911737442, 0.39732998609542847, 0.310589998960495, -0.35486000776290894, 0.43674999475479126, -0.35666000843048096, -0.5878499746322632, -0.2364100068807602, -0.44242000579833984, -0.14855000376701355, 0.6067000031471252, -0.2074899971485138, 0.06123900040984154, -0.1261799931526184, -0.3539699912071228, -0.5379899740219116, 0.07612799853086472, 0.2698799967765808, 0.20476000010967255, -0.029955999925732613, -0.563260018825531, -0.018098000437021255, -0.6327999830245972, 0.08058299869298935, -1.4556000232696533, -0.16960999369621277, -0.39996999502182007, -0.5632200241088867, 0.17457999289035797, 0.0658859983086586, -0.3153199851512909, 0.3409000039100647, -0.399509996175766, 0.653689980506897, 0.15508000552654266, -0.21008999645709991, 0.4282200038433075, -0.35012000799179077, 0.08563800156116486, -0.11858999729156494, 0.4768899977207184, -0.0787070021033287, -0.22075000405311584, 0.1092899963259697, -0.09648299962282181, 0.05400199815630913, -0.14180999994277954, 0.1979600042104721, -0.18045000731945038, -0.3626500070095062, -0.014546999707818031, -0.2556900084018707, -0.22869999706745148, 0.4337100088596344, 0.11292999982833862, 0.013793000020086765, 0.06220399960875511, 0.5397300124168396, -0.04502800107002258, 0.06069700047373772, 0.03073900006711483, 0.09931699931621552, 0.23463000357151031, 0.382779985666275, 0.2333499938249588, 0.3050599992275238, -0.17691999673843384, -0.3200699985027313, -0.3072099983692169, -0.05357600003480911, 0.1537500023841858, 0.026482999324798584, 0.2028300017118454, 0.490229994058609, -0.05563800036907196, 0.13391000032424927, -0.8356599807739258, 0.22101999819278717, 0.6306099891662598, 0.07070200145244598, -0.2544200122356415, 0.19253000617027283, 0.03610699996352196, 0.13494999706745148, 0.5021600127220154, -0.1786399930715561, -0.4733699858188629, 0.07717200368642807, 0.5240100026130676, -1.030400037765503, -0.09764699637889862, 0.008646500296890736, -0.08516500145196915, -0.24211999773979187, -0.3318299949169159, -0.2722800076007843, 0.8259400129318237, 0.10418999940156937, -0.7611299753189087, 0.2701300084590912, -0.19450999796390533, 0.04864500090479851, -0.2831000089645386, -0.06955000013113022, 0.4997499883174896, -0.2602899968624115, -0.38416001200675964, -0.1001800000667572, 0.07793500274419785, -0.028750000521540642, 0.12682999670505524, -0.30656999349594116, 0.47648000717163086, -1.1655999422073364, -0.17340999841690063, -0.20735999941825867, 0.1590999960899353, -0.12060999870300293, -0.30169999599456787, -0.44249001145362854, 0.43661999702453613, 0.33364999294281006, -0.21498000621795654, 0.3095400035381317, 0.04143200069665909, -0.20484000444412231, 0.7840099930763245, 0.15368999540805817, 0.4301699995994568, -0.3055199980735779, -0.13096000254154205, -0.4007200002670288, 0.2715800106525421, 0.18100999295711517, -0.7508999705314636, 0.030758000910282135, -0.0705450028181076, -0.25635001063346863, 0.2657899856567383, -0.24257999658584595, 0.5993899703025818, -0.35005998611450195, 0.41523998975753784, -0.2703999876976013, -0.46393999457359314, 0.22123999893665314, 0.5622900128364563, 0.13928000628948212, -0.27605000138282776, -0.18184000253677368, -0.14082999527454376, 0.1416500061750412, 0.24389000236988068, -0.014700000174343586, 0.011784999631345272, 0.5071899890899658, -0.11574999988079071, -0.24605999886989594, -0.09788999706506729, 0.2846600115299225, -0.5948299765586853, 0.20952999591827393, -1.031000018119812, 0.5816299915313721, 0.01685200072824955, -0.23416000604629517, 0.0893390029668808, 0.04226899892091751, -0.2298399955034256, -0.10774999856948853, 0.0444130003452301, -0.23736000061035156, -0.13607999682426453, -0.11918000131845474, -0.6547999978065491, -0.19870999455451965, 0.28461000323295593, 0.3977400064468384, -0.18316000699996948, -0.635420024394989, 0.40964001417160034, -0.008467700332403183, -0.20510999858379364, -0.3487200140953064, 0.14817999303340912, 0.22179000079631805, -0.5550500154495239, -0.14312000572681427, -0.5384899973869324, -0.35587000846862793, 0.288100004196167, 0.1335200071334839, 0.4178299903869629, 0.09279800206422806, 0.31248000264167786, -0.5016800165176392, -0.32328999042510986, -0.004913500044494867, -0.23850999772548676, -0.35951000452041626, -0.1449500024318695, 0.07309500128030777, 0.27094000577926636, -0.4508900046348572, -0.31859999895095825, -0.06552500277757645, -0.004044199828058481, 0.3713900148868561, -0.3078500032424927, 0.9265300035476685, 0.3639400005340576, 0.18199999630451202, 0.31018000841140747, 0.24761000275611877, 0.7614499926567078, 0.4474000036716461, 0.023041000589728355, -0.738610029220581, 0.09220399707555771, -0.22434000670909882, -0.00921310018748045, 0.09540700167417526, -0.18230000138282776, 0.37275001406669617, 0.45473000407218933, -0.3326300084590912, -0.16519999504089355, 0.30943000316619873, 0.09995800256729126, -0.19943000376224518, 0.3712399899959564, 0.26365000009536743, 0.41525998711586, 0.17993000149726868, 0.539139986038208, -0.21789999306201935, 0.039027001708745956, -0.5062900185585022, 0.2830199897289276, 0.21265000104904175, 0.6627299785614014, 0.22864000499248505, -0.38161998987197876, -0.10261999815702438, 0.12738999724388123, 0.04390399903059006, 0.5060499906539917, 0.6923999786376953, -0.17854000627994537, -0.004672999959439039, 0.06254299730062485, -0.4639900028705597, -0.13503000140190125, 0.4296000003814697, 0.009167199954390526, 0.02389400079846382, 0.3045400083065033, -0.13091999292373657, -0.5503699779510498, -0.01659500040113926, -0.38787001371383667, 0.2627899944782257, -0.4611000120639801, -0.4811500012874603, 0.20404000580310822, 0.15354999899864197, -1.9747999906539917, 0.3171199858188629, -0.2315399944782257, -0.5981900095939636, -0.6898800134658813, 0.1707099974155426, -0.14022000133991241, -0.4371800124645233, -0.5512400269508362, -0.10042999684810638, 0.44218000769615173, 0.13765999674797058, -0.14821000397205353, 0.2989799976348877, 0.19833999872207642, -0.12392999976873398, -0.1003900021314621, -0.5176699757575989, 0.16130000352859497, -0.19433000683784485, 0.11298000067472458, 0.1811400055885315, -0.26826998591423035, -0.003828400047495961], u'nut': [0.16575999557971954, 0.8067700266838074, -0.23654000461101532, 0.35405999422073364, -0.20300999283790588, -0.22879000008106232, 0.3068299889564514, -0.06497299671173096, -0.0804700031876564, 0.09303300082683563, -0.3386099934577942, -0.5924800038337708, 0.372979998588562, 0.1709900051355362, -0.5046399831771851, 0.22371000051498413, -0.33928999304771423, -0.12770000100135803, -0.37599998712539673, 0.18657000362873077, 0.5759099721908569, 0.7605199813842773, 0.5874300003051758, 0.22682000696659088, -0.7627400159835815, 0.5445500016212463, -0.3600200116634369, -0.4697200059890747, -0.30184000730514526, 0.3421100080013275, 0.05687899887561798, 0.525439977645874, -0.3307099938392639, 0.053304001688957214, -0.4986500144004822, 0.8321200013160706, -0.14205999672412872, -0.049639999866485596, -0.17302000522613525, 0.4678199887275696, -0.32113999128341675, -0.09913700073957443, 0.3330700099468231, -0.7515400052070618, 0.1885800063610077, -0.3989199995994568, 0.19450999796390533, 0.126010000705719, 0.06644099950790405, -0.3113099932670593, 0.08058299869298935, 0.1969500035047531, 0.3814300000667572, -0.08855599910020828, -0.1868000030517578, 0.06384100019931793, -0.40237998962402344, 0.04825099930167198, 0.5586599707603455, -0.21825000643730164, 0.4939199984073639, 0.3606500029563904, -0.06540700048208237, 0.03467800095677376, -0.16519999504089355, 0.09487400203943253, -0.7098299860954285, 0.5904099941253662, 0.2758699953556061, 0.27788999676704407, -0.8165000081062317, 0.05823000147938728, -0.28033000230789185, 0.05439399927854538, -0.16790999472141266, 0.6028199791908264, -0.09506499767303467, -0.884909987449646, -0.3362500071525574, -0.17753000557422638, 0.2087000012397766, -0.14116999506950378, 0.28624001145362854, -0.8614699840545654, -0.242249995470047, -0.00884610041975975, 0.03728500008583069, 0.20972000062465668, -0.7519500255584717, 0.06735900044441223, -0.2872300148010254, -0.1304900050163269, -0.1563200056552887, -0.14441999793052673, 0.03855999931693077, 0.40720999240875244, -0.13642999529838562, 0.37060999870300293, -0.05142199993133545, -0.14879000186920166, -0.3086099922657013, 0.8531799912452698, 0.11225999891757965, -0.2757300138473511, 0.12268999963998795, -0.2074899971485138, -0.08192499727010727, 0.046160999685525894, -0.3783400058746338, 0.45903998613357544, 0.9554700255393982, 0.13194000720977783, -0.20541000366210938, -0.45576000213623047, 0.5099899768829346, -0.09183900058269501, -0.10426999628543854, 0.6596800088882446, -0.35453000664711, -0.014659999869763851, -0.49553000926971436, -0.4085099995136261, 0.5343499779701233, 0.24360999464988708, -0.13366000354290009, 0.5668299794197083, 0.4900200068950653, 0.3431299924850464, -0.19041000306606293, -0.02867100015282631, 0.20091000199317932, 0.6831899881362915, 0.027386000379920006, 0.5630599856376648, 0.14431999623775482, -0.07980799674987793, -0.590719997882843, 0.2972300052642822, -0.18622000515460968, -0.3957200050354004, 0.47238001227378845, 0.357230007648468, -0.22206999361515045, -0.21352000534534454, 0.47279998660087585, 0.5528299808502197, 0.4032000005245209, -0.5947800278663635, 0.9468700289726257, -0.26072999835014343, -0.5822299718856812, 0.3102099895477295, -0.1690800040960312, 0.17086000740528107, -0.6860299706459045, -0.8851000070571899, 0.6074900031089783, 0.10340999811887741, -0.20724999904632568, 0.8620700240135193, 0.10726000368595123, 0.17215000092983246, 0.11238999664783478, 0.01785000041127205, -0.46230000257492065, -0.4472599923610687, -0.14681999385356903, 0.20221999287605286, 0.38846999406814575, -0.47540000081062317, -0.5748999714851379, 0.1379300057888031, 0.2031800001859665, 0.230320006608963, 0.4292199909687042, 0.10490000247955322, 0.4449799954891205, -0.37571001052856445, 0.13776999711990356, -0.4773600101470947, 0.30169999599456787, 0.7721999883651733, 0.4097000062465668, -0.4878599941730499, 0.05045599862933159, -0.4303300082683563, 1.1404999494552612, -0.3283500075340271, 0.5982300043106079, 0.19968999922275543, -0.6023300290107727, 0.5826600193977356, 0.06695300340652466, -0.06067200005054474, 0.08358699828386307, 0.10480999946594238, -0.04624300077557564, -0.5857800245285034, 0.0044398000463843346, -0.034967001527547836, 0.14428000152111053, 0.47273001074790955, 0.45339998602867126, -0.22428999841213226, -0.1035500019788742, 0.5561500191688538, 0.4160099923610687, -0.15038999915122986, 0.28404000401496887, 0.306549996137619, 0.10232999920845032, -0.37786000967025757, -0.10565000027418137, 0.218189999461174, -0.3158400058746338, -0.15796999633312225, 0.0020826999098062515, 0.33177998661994934, 0.4191400110721588, 0.21448999643325806, -0.27312999963760376, 0.23252999782562256, 0.258760005235672, 0.2358199954032898, -0.731220006942749, 0.37852999567985535, 0.18095000088214874, 0.7760000228881836, 0.6754800081253052, 0.024013999849557877, 0.07583499699831009, -0.4135400056838989, 0.37463000416755676, -0.18815000355243683, 0.7140899896621704, 0.6026700139045715, -0.06208899989724159, 0.1702599972486496, -0.609529972076416, -0.2620199918746948, 0.293179988861084, -0.294950008392334, -0.5420899987220764, -0.6532300114631653, -0.3043699860572815, 0.07321000099182129, -0.05792500078678131, 0.6236100196838379, 0.1983799934387207, -0.5049600005149841, 0.10326000303030014, 0.17862999439239502, 0.002483299933373928, -0.10215000063180923, 0.1846799999475479, 0.27270999550819397, -0.20417000353336334, -0.13971999287605286, 0.11248999834060669, -0.35238999128341675, -0.4855799973011017, -0.3451699912548065, 0.2750299870967865, -0.123089998960495, 0.37692001461982727, -0.4190100133419037, -0.35885000228881836, 0.001167600043118, 0.39469000697135925, 0.6427099704742432, -0.20907999575138092, -0.3129599988460541, -0.23060999810695648, 0.3529700040817261, 0.15481999516487122, 0.19253000617027283, -0.43417999148368835, 0.06508799642324448, -0.5707499980926514, 0.1430799961090088, -0.3770099878311157, -0.5142999887466431, -0.4692800045013428, -0.03874899819493294, -0.20172999799251556, 0.1676200032234192, 0.4337399899959564, -0.2096100002527237, 0.1055700033903122, 0.014221999794244766, 0.08952300250530243, -0.5778200030326843, 0.37255001068115234, 0.20115000009536743, 0.027250999584794044, 0.291949987411499, -0.43970999121665955, -0.12575000524520874, -0.2036599963903427, 0.2242400050163269], u'potato': [-0.11359000205993652, 0.13548000156879425, 0.3699699938297272, 0.6524800062179565, -0.35152000188827515, 0.05736900120973587, -0.41179001331329346, -0.08928100019693375, 0.04204000160098076, -0.22622999548912048, -0.13404999673366547, -0.57573002576828, -0.5828099846839905, 0.6326599717140198, 0.10837999731302261, -0.27156001329421997, 0.07851699739694595, 0.5226699709892273, -0.4003100097179413, 0.2052299976348877, -0.3070800006389618, 0.42497000098228455, 6.927699723746628e-05, 0.011257000267505646, -0.3315899968147278, 0.08666899800300598, -0.27303001284599304, 0.02700600028038025, 0.02725999988615513, -0.25780999660491943, -0.10643000155687332, 0.2795099914073944, -0.34106001257896423, 0.0711669996380806, -0.2766999900341034, 0.8533899784088135, 0.07727699726819992, 0.7275000214576721, -0.3735100030899048, 0.16588999330997467, 0.1850000023841858, 0.38176000118255615, 0.3844200074672699, 0.18115000426769257, 0.2776699960231781, -0.16429999470710754, 0.6898400187492371, -0.6256399750709534, -0.3126299977302551, 0.19939999282360077, 0.3779299855232239, -0.06171099841594696, 0.2953999936580658, 0.00578910019248724, -0.16629000008106232, -0.2755799889564514, -0.1405400037765503, -0.03970000147819519, 0.3036699891090393, 0.04134200140833855, 0.415039986371994, -0.5346900224685669, -0.04887799918651581, 0.14101000130176544, -0.32638001441955566, 0.12419000267982483, -0.749239981174469, 0.6102799773216248, -0.46351999044418335, -0.18805000185966492, 0.04101800173521042, 0.10582999885082245, -0.27886998653411865, 0.13582000136375427, -0.680109977722168, 0.05610699951648712, 0.5167499780654907, 0.06725600361824036, -0.19672000408172607, 0.033562999218702316, 0.1096699982881546, 0.2716600000858307, -0.4749999940395355, 0.184129998087883, -0.24767999351024628, -0.3380799889564514, -0.5709800124168396, 0.12735000252723694, -0.20046000182628632, -0.8846399784088135, -0.15158000588417053, -0.3841699957847595, -0.416949987411499, -0.26015999913215637, -0.21920999884605408, -0.031248999759554863, -0.12070000171661377, 0.6083499789237976, -0.02982099913060665, 0.31970998644828796, -0.4792200028896332, -0.026419999077916145, 0.136570006608963, -0.6502500176429749, -0.7291799783706665, 0.05333400145173073, -0.2860200107097626, 0.2533400058746338, -0.7689700126647949, 0.4638400077819824, 0.3666299879550934, 0.8693900108337402, -0.24186000227928162, -0.48625001311302185, -0.37582001090049744, -0.21199999749660492, -0.29304999113082886, 0.6231600046157837, 0.11619000136852264, -0.2045300006866455, 0.1626800000667572, 0.19947999715805054, 0.24713000655174255, 0.6449000239372253, -0.48607999086380005, 0.3104499876499176, 0.3297100067138672, 1.1024999618530273, -0.2697199881076813, 0.5304399728775024, 0.2737500071525574, 1.273800015449524, -0.3837200105190277, 0.26050999760627747, 0.14729000627994537, -0.5042200088500977, 0.4449799954891205, 0.5326700210571289, -0.013214999809861183, 0.0031749000772833824, 0.03292199969291687, 0.28262999653816223, 0.11563999950885773, -0.5751399993896484, 0.17869000136852264, 0.6501500010490417, 0.30869999527931213, -0.3969399929046631, -0.28404998779296875, -0.5879499912261963, -0.8279399871826172, 0.6792600154876709, 0.08270899951457977, 0.08396600186824799, -0.2286600023508072, 0.4127199947834015, -0.4523099958896637, -0.08328700065612793, 0.4724299907684326, -0.03075299970805645, -0.1821800023317337, 0.217849999666214, -0.12670999765396118, -0.4507000148296356, 0.3821200132369995, 0.050627999007701874, 0.32078999280929565, -0.045556001365184784, -0.20634999871253967, -0.6987500190734863, -0.3096800148487091, 0.11719000339508057, -0.5246800184249878, -0.1470700055360794, -0.1856199949979782, 0.08570399880409241, 0.18978999555110931, -0.1708800047636032, 0.5250300168991089, -0.19979999959468842, 0.06235300004482269, 0.18177999556064606, -0.12279000133275986, -0.5835999846458435, -0.12644000351428986, -0.35993000864982605, 0.673799991607666, 0.22579999268054962, 0.07110799849033356, -0.6944900155067444, -0.3935999870300293, 0.7922300100326538, -0.21400000154972076, -0.1208299994468689, -0.5371900200843811, 0.32486000657081604, -0.46000999212265015, -0.44878000020980835, -0.28363001346588135, 0.44991999864578247, 0.07489299774169922, 0.3150300085544586, 0.4627400040626526, 0.5257899761199951, 0.3378399908542633, -0.23433999717235565, 0.26023998856544495, 0.19787000119686127, -0.07550200074911118, 0.18262000381946564, 0.147599995136261, -0.2688399851322174, -0.2635999917984009, 0.08025600016117096, -0.17000000178813934, 0.7005000114440918, 0.26175999641418457, -0.39965999126434326, 0.5320000052452087, -0.3210499882698059, 0.14515000581741333, -0.31442001461982727, -0.3512600064277649, -0.19981999695301056, -0.6114000082015991, -0.257999986410141, 0.28415998816490173, 0.18232999742031097, -0.28878000378608704, -0.15772999823093414, -0.16232000291347504, 0.530269980430603, -0.41429001092910767, 0.32690000534057617, 0.2765899896621704, 0.41339001059532166, 0.4361700117588043, 0.06232700124382973, -0.16835999488830566, -0.24083000421524048, -0.36847999691963196, 0.1282700002193451, -0.0698779970407486, -0.5325000286102295, -1.0537999868392944, -0.1813800036907196, 0.42357000708580017, -0.07315900176763535, 0.12759999930858612, -1.006500005722046, 0.05415000021457672, 0.4587100148200989, -0.4436500072479248, 0.03707899898290634, 0.8871700167655945, 0.017085999250411987, -0.2319599986076355, 0.008989100344479084, -0.5882999897003174, -0.030448999255895615, -0.30184000730514526, -0.2786700129508972, 0.674310028553009, 0.5259699821472168, 0.07215800136327744, -0.5135899782180786, -0.17384999990463257, -0.1279900074005127, 0.30105000734329224, 0.5559499859809875, -0.2563199996948242, -0.07418199628591537, -0.11906000226736069, 0.5144000053405762, 0.44922998547554016, -0.029095999896526337, -0.596019983291626, 0.11123999953269958, -0.7104200124740601, 0.17824000120162964, -0.8374699950218201, -0.5057299733161926, -0.04927999898791313, 0.007985400035977364, 0.09105399996042252, 0.0513480007648468, 0.49031001329421997, -0.22924000024795532, 0.21544000506401062, 0.19185000658035278, 0.3268499970436096, -0.47429999709129333, 0.306549996137619, -0.767989993095398, -0.2013700008392334, -0.7140600085258484, 0.23628999292850494, -0.06465499848127365, 0.3603900074958801, 0.6619099974632263], u'steel': [0.17050999402999878, 0.05915899947285652, -0.4838300049304962, -0.9666200280189514, -0.10575000196695328, -0.0961889997124672, 0.08910799771547318, 0.062401000410318375, -0.18052999675273895, -0.9935200214385986, -0.3626900017261505, -0.6169800162315369, 0.23214000463485718, 0.17483000457286835, -0.10401999950408936, -0.7139999866485596, -0.6335800290107727, -0.2399200052022934, -0.1082099974155426, -0.4286400079727173, 0.4204300045967102, -0.057714998722076416, 0.5902400016784668, 0.8261200189590454, -0.4591499865055084, 0.14601999521255493, -0.1754699945449829, 0.03404400125145912, 0.043584998697042465, 0.24181999266147614, -0.2008800059556961, 0.8475300073623657, 0.024984000250697136, -0.05049100145697594, -0.8025799989700317, 0.24866999685764313, -0.04127899929881096, 0.18205000460147858, 0.13631999492645264, 0.5841400027275085, -0.8101900219917297, -0.0859220027923584, -0.14580999314785004, -0.14249999821186066, -0.10377000272274017, -0.17178000509738922, -0.34876999258995056, -0.47231999039649963, 0.011957000009715557, 0.25714001059532166, 0.123819999396801, 0.8243799805641174, 0.222120001912117, 0.3707199990749359, 0.2820500135421753, 0.8108400106430054, 0.18435999751091003, 0.3337100148200989, 0.1128000020980835, -0.1439799964427948, 0.2538299858570099, 0.5901299715042114, 0.24954000115394592, -0.47777000069618225, 0.239329993724823, -0.024535000324249268, -0.4406700134277344, 0.5722699761390686, 0.09001900255680084, 0.025019999593496323, 0.0922510027885437, 0.09801100194454193, -0.08840999752283096, 0.018473999574780464, -0.13802999258041382, 0.35653001070022583, -0.7736999988555908, 0.0253090001642704, -0.37926000356674194, -0.3258199989795685, -0.16964000463485718, -0.42379000782966614, -0.2768299877643585, -0.47909000515937805, -0.0025990998838096857, 0.057135000824928284, 0.33886000514030457, 0.4996100068092346, -0.47655999660491943, 0.17015999555587769, 1.343500018119812, 0.4944700002670288, 0.7768599987030029, 0.44106999039649963, -0.6632199883460999, 0.0842830017209053, -0.42836999893188477, 0.1927099972963333, -0.25624001026153564, -0.26767000555992126, -0.5768300294876099, 0.20521999895572662, -0.021226000040769577, -0.6693500280380249, 0.36963000893592834, -0.01694200001657009, 0.03865699842572212, -0.00461059994995594, -0.6151999831199646, -0.48798999190330505, 0.08816500008106232, 0.05809599906206131, -0.2631399929523468, -0.8400700092315674, 0.04833399876952171, -0.4423699975013733, 0.35258999466896057, 0.30737999081611633, 0.04998200014233589, 0.0263069998472929, 0.0014872000319883227, -0.928380012512207, -0.31992998719215393, 0.07295499742031097, 0.3690800070762634, -0.15726999938488007, -0.1428000032901764, -0.09807799756526947, -0.5649200081825256, -0.36333999037742615, -0.13790999352931976, 1.503499984741211, 0.5205000042915344, 0.11059000343084335, 0.22542999684810638, 0.3331199884414673, -0.7023299932479858, -0.08819299936294556, 0.3502100110054016, -0.36250001192092896, -0.1891999989748001, 0.2549700140953064, 0.47749999165534973, -0.7196699976921082, 0.40077999234199524, 0.34452998638153076, 0.7380399703979492, -0.6906999945640564, -0.17931999266147614, -0.4685800075531006, 0.6258699893951416, -0.32541000843048096, 0.008304099552333355, -0.9570199847221375, 0.8212400078773499, -0.2417300045490265, -0.42195001244544983, -0.47053998708724976, -0.329010009765625, -0.13489000499248505, 0.43367999792099, 0.4690900146961212, -0.18895000219345093, -0.10684999823570251, 0.6028299927711487, -0.016812000423669815, 0.10700000077486038, 0.2363699972629547, 0.032676998525857925, 0.1967500001192093, -0.6228100061416626, 0.6192200183868408, -0.06334000080823898, 0.15818999707698822, 0.47699999809265137, -0.4252299964427948, -0.6726099848747253, 0.2442599982023239, 0.32607001066207886, -0.3973900079727173, 0.40237998962402344, -0.17003999650478363, 0.07735899835824966, 0.2267400026321411, -0.22070999443531036, -0.14020000398159027, 0.16954000294208527, 0.6454200148582458, 0.6688600182533264, 0.35969001054763794, 0.273140013217926, 0.33632001280784607, -0.19639000296592712, 0.19753000140190125, -0.09081000089645386, 0.2187899947166443, 0.020380999892950058, -0.8119000196456909, 0.14292000234127045, -0.15183000266551971, 0.46108001470565796, 0.37077999114990234, 0.15342000126838684, -0.3203999996185303, -0.2091200053691864, 0.8176500201225281, 0.3107900023460388, -0.3332599997520447, -0.44106999039649963, -0.47473999857902527, 0.4475100040435791, 0.27595001459121704, 0.3016600012779236, -0.20463000237941742, 0.05798099935054779, 0.017333999276161194, 0.24977000057697296, -0.05251700058579445, -0.23194000124931335, -0.10761000216007233, -0.025351999327540398, -0.09633900225162506, 0.7428699731826782, -0.5376099944114685, -0.14388999342918396, 0.4195300042629242, -0.40105000138282776, -0.25022000074386597, -0.17138999700546265, -0.7310400009155273, 0.018005000427365303, -0.4238300025463104, -0.21490000188350677, 0.48217999935150146, 0.2533699870109558, -0.0735969990491867, 0.5932499766349792, -0.4478200078010559, -0.7677099704742432, -0.16978000104427338, 0.1157900020480156, -0.6329799890518188, -0.2485000044107437, 0.34318000078201294, -0.4078800082206726, 0.24354000389575958, -0.08848299831151962, -0.7667700052261353, 0.044835999608039856, -0.40542998909950256, -0.18700000643730164, -0.09133800119161606, 0.5765799880027771, -0.1467600017786026, 0.6112499833106995, -0.2013999968767166, -0.14624999463558197, -0.41223999857902527, -0.016195999458432198, 0.08490099757909775, 0.11277999728918076, -0.20291000604629517, -0.36879000067710876, -0.2795099914073944, 0.5527200102806091, 0.7170600295066833, -0.2713499963283539, 0.10074000060558319, 0.033668000251054764, -0.24591000378131866, -0.18339000642299652, -0.47257000207901, -0.014127999544143677, -0.16413000226020813, -0.10610999912023544, 0.08431199938058853, -1.2825000286102295, -0.1765500009059906, -0.7361599802970886, 0.5198100209236145, 0.01566299982368946, -0.9108800292015076, -1.0413000583648682, 0.12436000257730484, 0.7915099859237671, 0.25558000802993774, -0.013685000129044056, 0.28036999702453613, 0.29829999804496765, -0.30720001459121704, 0.5525799989700317, 0.25773000717163086, 0.20492999255657196, 0.4621700048446655, 0.8587599992752075, 1.2311999797821045, 0.1827699989080429, -0.6470100283622742, -0.16865000128746033, 0.365449994802475], u'wood': [0.20473000407218933, 0.06044299900531769, -0.022324999794363976, -0.54475998878479, -0.09863100200891495, -0.1290699988603592, 0.1110600009560585, 0.25780999660491943, 0.13041000068187714, -0.9907299876213074, 0.043800000101327896, -0.18842999637126923, -0.5335699915885925, -0.06798200309276581, -0.33395999670028687, -0.019838999956846237, -0.4417800009250641, -0.03746600076556206, 0.27849000692367554, 0.007684300187975168, -0.16068999469280243, -0.12284000217914581, 0.2727600038051605, 0.10937999933958054, -0.05647699907422066, -0.1129399985074997, -0.10226999968290329, -0.2799000144004822, -0.4335399866104126, 0.8021199703216553, 0.054972000420093536, 0.6505600214004517, -0.3105500042438507, -0.2064799964427948, -0.663919985294342, 0.4864000082015991, -0.024215999990701675, -0.23529000580310822, 0.16444000601768494, -0.32475000619888306, -0.3043299913406372, -0.18419000506401062, 0.17642000317573547, -0.5603200197219849, 0.0992330014705658, 0.11048000305891037, -0.36844000220298767, -0.41877999901771545, 0.25277000665664673, -0.15199999511241913, -0.2621699869632721, 0.7472699880599976, -0.5492100119590759, 0.16192999482154846, 0.4070099890232086, 0.04297599941492081, -0.7007700204849243, 0.007965000346302986, -0.2856999933719635, -0.12529000639915466, 0.0022092999424785376, -0.20523999631404877, 0.5337799787521362, 0.2653000056743622, 0.38141998648643494, -0.9708200097084045, -0.0020242000464349985, -0.2708300054073334, 0.3623200058937073, -0.32708999514579773, -0.0605509988963604, -0.4450399875640869, -0.4947899878025055, 0.33371999859809875, -0.5537700057029724, 0.4646799862384796, 0.2436700016260147, 0.1147800013422966, -0.2014700025320053, -0.33774998784065247, -0.11858999729156494, 0.024614999070763588, -0.18950000405311584, -0.20326000452041626, -0.1430799961090088, 0.02622300013899803, -0.06931500136852264, 0.13797999918460846, 0.16277000308036804, 0.05818000063300133, 0.12928999960422516, 0.19112999737262726, 0.4440999925136566, -0.11897999793291092, 0.1889200061559677, -0.3607099950313568, -0.023012999445199966, -0.6148800253868103, -0.14568999409675598, -0.221110001206398, -0.5826699733734131, 0.5941299796104431, -0.23944999277591705, -0.32760000228881836, -0.07647500187158585, -0.002801199909299612, 0.0697460025548935, -0.01813500002026558, -0.1294099986553192, -0.07781100273132324, -0.4074999988079071, -0.3379400074481964, -0.15191000699996948, -0.32010000944137573, -0.44231000542640686, -0.46057000756263733, -0.10192999988794327, 0.826229989528656, -0.15098999440670013, -0.12482000142335892, -0.7246099710464478, -0.3940199911594391, -0.11969000101089478, 0.09431800246238708, -0.1672399938106537, 0.22168999910354614, 0.03207100182771683, -0.1787700057029724, 0.10617999732494354, 0.2669300138950348, -0.05816800147294998, 0.5578299760818481, 0.635699987411499, 0.11023999750614166, 0.3353100121021271, 0.16545000672340393, -0.691510021686554, 0.26813000440597534, -0.38148000836372375, -0.064239002764225, 0.9302600026130676, 0.6129500269889832, 0.4000200033187866, -0.6495800018310547, -0.05417900159955025, 0.263619989156723, 0.39956000447273254, -0.06419999897480011, -0.6466400027275085, -0.779229998588562, 0.21899999678134918, 0.43580999970436096, -0.7004500031471252, -0.533519983291626, -0.4016900062561035, 0.1045600026845932, -0.27250999212265015, -0.47925999760627747, -0.162090003490448, -0.1392499953508377, 0.36177000403404236, -0.24455000460147858, 0.47769999504089355, 0.08391900360584259, 0.1431400030851364, 0.6758999824523926, 0.12402000278234482, 0.02694600075483322, 0.2624500095844269, -0.4012199938297272, -0.3346500098705292, 0.15598000586032867, 0.136570006608963, 0.6127899885177612, -0.247529998421669, 0.3645800054073334, -0.3991900086402893, -0.31477999687194824, -0.1707800030708313, -0.8764299750328064, -0.18675999343395233, 0.04339899867773056, 0.295989990234375, -0.5233700275421143, -0.03418799862265587, -0.6025999784469604, -0.18039000034332275, 0.2789500057697296, 0.3673200011253357, 0.6238399744033813, 0.12138000130653381, 0.841480016708374, 0.3666499853134155, -0.020848000422120094, 0.28753000497817993, 0.41527000069618225, 0.39302998781204224, -0.00843650009483099, -0.26037999987602234, -0.386029988527298, 0.5557000041007996, -0.4655100107192993, -0.15455999970436096, -0.43678998947143555, 0.46963998675346375, 0.7524499893188477, 0.42423999309539795, 0.2155900001525879, -0.607990026473999, -0.25918999314308167, 0.4617699980735779, -0.20126000046730042, 0.16381999850273132, -0.7096099853515625, 0.5870699882507324, 0.3163999915122986, 0.14320999383926392, 0.07456400245428085, 0.06979300081729889, -0.5702900290489197, 0.13098999857902527, -0.5442000031471252, -0.019108999520540237, -0.47964999079704285, -0.42441999912261963, 0.4409100115299225, -0.3355900049209595, 0.22076000273227692, 0.3705599904060364, -0.08490400016307831, 0.03687499836087227, 0.0008391599985770881, 0.005611099768429995, -0.06320600211620331, 0.3416599929332733, 0.14576999843120575, 0.09830500185489655, -0.002535599982365966, -0.7542499899864197, 0.33223000168800354, 0.04597900062799454, -0.3978100121021271, -0.2188200056552887, 0.14396999776363373, -0.2845799922943115, 0.35199999809265137, -0.033270999789237976, 0.06028600037097931, -0.11881999671459198, -0.11552000045776367, 0.2512899935245514, -0.5042300224304199, -0.0766960009932518, -0.5546000003814697, 1.1509000062942505, 0.38231000304222107, -0.17077000439167023, -0.3685699999332428, 0.37918999791145325, 0.09876800328493118, 0.02868499979376793, 0.05012999847531319, -0.5514699816703796, -0.2880200147628784, 0.3246900141239166, 0.1440100073814392, 0.19881999492645264, 0.21137000620365143, -0.03271999955177307, 0.027014000341296196, -0.25501999258995056, -0.012861000373959541, 0.2757200002670288, -0.35655999183654785, -0.8167799711227417, 0.10497000068426132, -1.2563999891281128, 0.12471000105142593, -0.7672299742698669, -0.295199990272522, -0.3349300026893616, -0.34937000274658203, -0.5535600185394287, -0.07169400155544281, 0.19130000472068787, 0.6084499955177307, 0.41126999258995056, -0.11823999881744385, 0.2504599988460541, -0.22473999857902527, -0.06733900308609009, 0.13936999440193176, 0.18393999338150024, 0.2067600041627884, -0.19910000264644623, 0.2862299978733063, 0.162090003490448, -0.08420000225305557, -0.127020001411438, 0.8120399713516235], u'wool': [-0.14305000007152557, -0.1031700000166893, -0.00836700014770031, -0.45399001240730286, 0.19032999873161316, -0.6324099898338318, -0.26642000675201416, 0.16666999459266663, -0.04538799822330475, -0.7112399935722351, 0.30647000670433044, -1.0413999557495117, 0.2306700050830841, 0.6582499742507935, 0.06593199819326401, -0.2180899977684021, -0.08231700211763382, -0.3385399878025055, -0.5003499984741211, 0.39372000098228455, -0.3156999945640564, -0.8389599919319153, 0.3412899971008301, 0.6111299991607666, -0.32387998700141907, -0.3589499890804291, 0.2498999983072281, -0.24637000262737274, -0.16899000108242035, 0.4431999921798706, -0.3062700033187866, 0.17552000284194946, -0.7307800054550171, -0.29982998967170715, -0.47925999760627747, 0.4534600079059601, 0.4155299961566925, 0.1252399981021881, 0.052545998245477676, 0.17714999616146088, -0.6453400254249573, -0.3243499994277954, 0.30265000462532043, -0.6115800142288208, 0.6375200152397156, -0.010604999959468842, -0.2653299868106842, -0.18432000279426575, -0.2835400104522705, -0.2879599928855896, 0.05666700005531311, -0.02175999991595745, -0.3169099986553192, 0.0057760002091526985, -0.08931700140237808, 0.10044000297784805, -0.6008899807929993, -0.4053399860858917, -0.44648000597953796, -0.31327998638153076, -0.11131999641656876, -0.4922100007534027, 0.23704999685287476, 0.19068999588489532, 0.15926000475883484, 0.09582500159740448, -0.21727000176906586, -0.1363999992609024, -0.23684999346733093, 0.20062999427318573, 0.3718299865722656, 0.031877998262643814, -0.12951000034809113, -0.4064300060272217, 0.10891000181436539, 0.148499995470047, 0.048601001501083374, -0.10913000255823135, -0.24053999781608582, -0.07919599860906601, -0.25117000937461853, 0.04990699887275696, -0.4094099998474121, -0.3641299903392792, -0.0015807000454515219, 0.2292499989271164, 0.3968200087547302, 0.0001828700042096898, -0.2995699942111969, 0.0244120005518198, 0.38411998748779297, -0.0994350016117096, -0.18411000072956085, 0.22970999777317047, -0.4173400104045868, 0.3351399898529053, 0.157260000705719, 1.0091999769210815, -0.15750999748706818, 1.2148000001907349, 0.31150001287460327, 0.5750399827957153, -0.6193699836730957, 0.2587699890136719, -0.39136001467704773, -0.2950400114059448, -0.19740000367164612, 0.051552001386880875, -0.46105000376701355, 0.5947099924087524, 0.175369992852211, 0.23725999891757965, -0.8650500178337097, -0.03474799916148186, -0.0040616001933813095, 0.32892000675201416, -0.09969300031661987, 0.7408400177955627, 0.24073000252246857, -0.6715800166130066, 0.05670100077986717, 0.21086999773979187, 0.8250399827957153, 0.42671000957489014, 0.4331800043582916, 0.22753000259399414, 0.051639001816511154, 0.2767600119113922, -0.19660000503063202, -0.4520699977874756, -0.02708899974822998, -0.038297999650239944, -0.6512399911880493, -0.2126999944448471, -0.09266600012779236, 0.5627999901771545, -0.6859700083732605, 0.44387000799179077, 0.5389800071716309, 0.2670300006866455, 0.050106000155210495, 0.6374199986457825, 0.2594499886035919, -0.7214000225067139, 0.13036000728607178, 0.3398900032043457, 0.3370000123977661, -0.6962800025939941, -0.036215998232364655, -0.27237001061439514, -0.06401500105857849, 0.14270000159740448, -0.11620999872684479, -0.9869400262832642, -0.0021869998890906572, -0.14904999732971191, -0.6129800081253052, -0.5414900183677673, 0.6324599981307983, -0.0550680011510849, -0.009775600396096706, 0.056752000004053116, -0.37483999133110046, 0.019007999449968338, 0.28817999362945557, -0.4242100119590759, 0.3003300130367279, -0.06247600167989731, 0.7048900127410889, 0.47286999225616455, -0.43641000986099243, -0.1770399957895279, -0.16810999810695648, 0.46573999524116516, 0.20759999752044678, -0.09361399710178375, 0.12464000284671783, 0.457040011882782, -0.2999500036239624, -0.2073500007390976, 0.368149995803833, 0.09950599819421768, -0.29300999641418457, -0.3487299978733063, 0.6368100047111511, 0.08954799920320511, 0.8809000253677368, -0.10234999656677246, 0.12310999631881714, 0.5613800287246704, -0.15880000591278076, 0.718500018119812, 0.021624000743031502, -0.17169000208377838, -0.04642900079488754, 0.24404999613761902, -0.47822999954223633, -0.1735599935054779, 0.14024999737739563, -0.1837099939584732, 0.0020751000847667456, -0.2439499944448471, 0.7670999765396118, 0.21671999990940094, 1.1442999839782715, 0.44223999977111816, 0.5102499723434448, 0.5731199979782104, -0.5725100040435791, -0.42489001154899597, 0.07318899780511856, 0.154339998960495, -0.06763099879026413, 0.2852199971675873, 0.32161998748779297, 0.27904000878334045, -0.00907289981842041, -0.6517000198364258, 0.22152000665664673, -0.5297799706459045, 0.2744100093841553, -0.5460799932479858, -0.028550999239087105, -0.39193999767303467, 0.2463500052690506, 0.04070800170302391, -0.07644300162792206, -0.06331200152635574, -0.05159299820661545, 0.21713000535964966, 0.7168200016021729, -0.03386399894952774, -0.1444299966096878, 0.37448999285697937, 1.027899980545044, -0.3184199929237366, 0.8250799775123596, -0.21698999404907227, -0.5768300294876099, 0.21265999972820282, -0.4348500072956085, -0.11913999915122986, -1.024399995803833, 0.1763100028038025, -0.9293799996376038, 0.892009973526001, -0.08829399943351746, -0.31275999546051025, 0.07679399847984314, -0.6633999943733215, -0.3430899977684021, 0.1264200061559677, 0.4913400113582611, -0.5802199840545654, 0.48333999514579773, 0.35776999592781067, 0.030619999393820763, 0.36987999081611633, -0.1018500030040741, -0.02835099957883358, 0.18609000742435455, -0.06207900121808052, -0.03551600128412247, 0.509880006313324, -0.1149199977517128, 0.15730999410152435, 0.15514999628067017, -0.11040999740362167, -0.18769000470638275, -0.0158890001475811, -0.3264699876308441, -0.09814699739217758, 0.10791999846696854, -0.07166200131177902, -0.671750009059906, 0.14661000669002533, -0.21533000469207764, -0.017635999247431755, -0.6210500001907349, 0.41596999764442444, -0.31589001417160034, -0.08134199678897858, -0.03477700054645538, 0.5273699760437012, -0.032965999096632004, 0.2595599889755249, -0.0995120033621788, -0.17789000272750854, -0.014289000071585178, -0.29012998938560486, 0.0782570019364357, 0.5430200099945068, 0.14121000468730927, 0.4592899978160858, -0.2909800112247467, 0.2367199957370758, 0.27507999539375305, 0.12551000714302063, 0.7321299910545349, 0.5205399990081787], u'room': [-0.40577998757362366, 0.19103999435901642, -0.044477999210357666, -0.37595999240875244, -0.05220299959182739, 0.15817999839782715, -0.21863999962806702, -0.4975000023841858, 0.16392000019550323, -1.1629999876022339, -0.1303499937057495, 0.0014735000440850854, 0.20037999749183655, 0.08159500360488892, -0.18066999316215515, 0.32416999340057373, -0.1693200021982193, -0.12511999905109406, -0.18243999779224396, -0.027191000059247017, 0.04828000068664551, 0.24737000465393066, 0.0318479984998703, 0.0049044000916182995, 0.05538100004196167, -0.08629000186920166, 0.39594000577926636, -0.27219000458717346, 0.23002000153064728, -0.04913699999451637, 0.06025199964642525, 0.0061102998442947865, -0.30469000339508057, 0.23874999582767487, -0.983519971370697, 0.6596999764442444, -0.2638300061225891, -0.022272000089287758, -0.41187000274658203, -0.4643000066280365, -0.4826500117778778, -0.19175000488758087, -0.3019700050354004, 0.22804999351501465, 0.3104099929332733, 0.2082200050354004, 0.3735499978065491, -0.05658699944615364, -0.42423999309539795, -0.20329000055789948, 0.08173000067472458, -0.24427999556064606, -0.2605699896812439, -0.26238998770713806, 0.042559001594781876, -0.23757000267505646, -0.27584999799728394, 0.27059000730514526, 0.24546000361442566, -0.0019692000932991505, 0.16269999742507935, -0.2535400092601776, 0.36625000834465027, 0.4212400019168854, -0.019516000524163246, -0.7644100189208984, 0.31707999110221863, -0.48910999298095703, -0.219200000166893, -0.22186000645160675, -0.3040199875831604, -0.10048999637365341, 0.04446699842810631, -0.06138300150632858, -0.017727000638842583, 0.21276000142097473, 0.07168400287628174, -0.1995300054550171, 0.09187600016593933, -0.5662800073623657, 0.2708800137042999, 0.10559000074863434, -0.31080999970436096, 0.2368600070476532, 0.2621699869632721, -0.22548000514507294, -0.38457998633384705, -0.12598000466823578, -0.10547000169754028, -0.007067199796438217, 0.06650800257921219, 0.08886700123548508, -0.2049199938774109, 0.47064998745918274, 0.10902000218629837, -0.043425001204013824, 0.24017000198364258, -0.42267000675201416, 0.48151999711990356, -0.5970799922943115, -0.15310999751091003, 0.009181699715554714, -0.37090998888015747, -0.46007999777793884, -0.15524999797344208, -0.11145000159740448, 0.36267998814582825, 0.23366999626159668, -0.17910000681877136, 0.7394099831581116, -0.6866499781608582, 0.09576699882745743, 0.10535000264644623, 0.28499001264572144, -0.47826001048088074, 0.3111799955368042, -0.298799991607666, 0.15578000247478485, -0.48104000091552734, -0.06731099635362625, -0.003555099945515394, 0.08779700100421906, -0.18595999479293823, 0.15793000161647797, -0.0908140018582344, -0.2675899863243103, -0.32815998792648315, -0.42572999000549316, 0.37046998739242554, 0.12439999729394913, 0.2755900025367737, 0.08629900217056274, -0.1287499964237213, -0.22529000043869019, 0.39215001463890076, 0.1684899926185608, -0.11664000153541565, -0.21573999524116516, -0.46897000074386597, -0.08827900141477585, -0.032669998705387115, 0.008366400375962257, 0.03700599819421768, 0.5086699724197388, -0.6120700240135193, -0.3397800028324127, 0.3635599911212921, -0.09999000281095505, 0.04839500039815903, 0.05116900056600571, -0.24041999876499176, 0.5418300032615662, -0.06466600298881531, -0.14674000442028046, 0.10298000276088715, 0.3209399878978729, 0.09587900340557098, 0.3934899866580963, -0.3126800060272217, -0.09804599732160568, 0.5123000144958496, -0.06594900041818619, 0.39904001355171204, -0.22826999425888062, 0.508870005607605, 0.3683300018310547, -0.18533000349998474, 0.30744001269340515, 0.14329999685287476, 0.4828900098800659, -0.2825700044631958, 0.39570000767707825, -0.1017799973487854, -0.20598000288009644, -0.44644999504089355, 0.06224200129508972, -0.28466999530792236, 0.6539999842643738, 0.4133700132369995, -0.4800400137901306, 0.25547999143600464, -0.0022388999350368977, 0.06291700154542923, -0.08112700283527374, -0.28613001108169556, -0.1462700068950653, 0.6862900257110596, 0.6134899854660034, -0.023699000477790833, 0.3354699909687042, 0.6494200229644775, 0.20527000725269318, -0.20200000703334808, -0.34244000911712646, -0.01042100042104721, 0.021594999358057976, -0.5601500272750854, 0.7417299747467041, -0.7127299904823303, -0.05606599897146225, 1.0528000593185425, -0.31088998913764954, 0.034046001732349396, 0.032944001257419586, 0.40505000948905945, -0.43233001232147217, -0.04849499836564064, -0.07485999912023544, -0.27976998686790466, -0.39664000272750854, -0.051833998411893845, -0.016174999997019768, -0.19383999705314636, -0.359470009803772, 0.4510999917984009, -0.09709999710321426, -0.06397199630737305, -0.4106299877166748, -0.02995399944484234, 0.12421999871730804, 0.22824999690055847, 0.25224998593330383, -0.14249999821186066, 0.28600001335144043, -0.32194000482559204, 0.047658998519182205, -0.3534899950027466, -0.0759970024228096, 0.011567000299692154, -0.5386499762535095, 0.01620499975979328, -0.6837300062179565, 0.23601000010967255, -0.21040000021457672, 0.48058000206947327, -0.24201999604701996, -0.03928999975323677, 0.17812000215053558, -0.6167500019073486, -0.02782600000500679, 0.1642799973487854, 0.0826599970459938, -0.20948000252246857, 0.8801000118255615, -0.2484699934720993, -0.19362999498844147, 0.07501400262117386, 0.1543000042438507, -0.6323500275611877, -0.024469999596476555, 0.33901000022888184, -0.15857000648975372, 0.24643999338150024, -0.11607000231742859, 0.06772100180387497, 0.3760400116443634, 0.04660100117325783, -0.2970399856567383, 0.8518199920654297, 0.10860999673604965, -0.32120001316070557, -0.5496500134468079, 0.3246299922466278, -0.19648000597953796, -0.17513999342918396, -0.031282998621463776, -0.04176200181245804, 0.45938000082969666, -0.057401999831199646, -0.3728399872779846, -0.5277900099754333, -0.28393998742103577, -0.023428000509738922, -0.1724099963903427, 0.17685000598430634, 0.16875000298023224, -2.2720999717712402, 0.9146599769592285, -0.12009000033140182, -0.1205499991774559, -0.6441900134086609, 0.1938299983739853, -0.005151200108230114, -0.3253900110721588, 0.6905999779701233, 0.5983999967575073, -0.5943099856376648, 0.390749990940094, -0.41078001260757446, -0.30612999200820923, 0.1941400021314621, -0.09590599685907364, -0.424919992685318, 0.14192000031471252, -0.03543199971318245, -0.11980000138282776, 0.005836099851876497, -0.04307899996638298, -0.34068000316619873, 0.49445998668670654], u'salad': [-0.7224000096321106, -0.25589001178741455, 0.8113800287246704, 0.4369100034236908, 0.08902599662542343, -0.3762899935245514, -0.17702999711036682, -0.10194999724626541, 0.08892299979925156, -0.09556400030851364, -0.3154599964618683, 0.2258100062608719, -0.35760998725891113, 1.4259999990463257, -0.08298899978399277, -0.31373998522758484, 0.03311799839138985, 0.40125998854637146, -0.3597699999809265, 0.5601000189781189, -0.17956000566482544, 0.3668000102043152, -0.4321199953556061, 0.2935200035572052, 0.018581999465823174, -0.5865700244903564, -0.1196800023317337, -0.13970999419689178, -0.19322000443935394, -1.1536999940872192, -0.2977699935436249, -0.08500900119543076, -0.12245000153779984, 0.11495999991893768, -0.12846000492572784, 0.7139099836349487, -0.10388000309467316, 0.348690003156662, -0.7555999755859375, 0.08823099732398987, 0.33574000000953674, 0.08067300170660019, -0.04722899943590164, 0.10332000255584717, 0.09391599893569946, -0.23281000554561615, 0.6809700131416321, 0.3752500116825104, -0.5906500220298767, 0.27566999197006226, -0.2669599950313568, -0.5745800137519836, 0.5708000063896179, 0.4772300124168396, -0.5760800242424011, 0.07446400076150894, 0.061225999146699905, 0.04047999903559685, 0.5249099731445312, -0.02222900092601776, 0.6634799838066101, -0.25870999693870544, -0.23747000098228455, 0.29947999119758606, -0.48600998520851135, -0.1089399978518486, -0.8939999938011169, 0.2381799966096878, -0.13911999762058258, -0.0031753000803291798, 0.07965300232172012, -0.16007000207901, 0.09768100082874298, -0.2390899956226349, -0.6908699870109558, -0.1817599982023239, 1.18149995803833, -0.14949999749660492, -0.5439199805259705, 0.29155001044273376, 0.41067999601364136, 0.6071100234985352, -0.15277999639511108, 0.6151400208473206, 0.10254000127315521, -0.2970399856567383, -0.9823499917984009, 0.6295300126075745, -0.16729000210762024, -1.0898000001907349, -0.2730900049209595, -0.1731799989938736, -0.047171998769044876, -0.10007999837398529, -0.009697799570858479, 0.36059999465942383, -0.12494999915361404, 0.16315999627113342, 0.3342300057411194, 0.9980499744415283, -0.4228599965572357, -0.5538600087165833, 0.625469982624054, -0.3957499861717224, -0.3521600067615509, -0.41934001445770264, 0.08074399828910828, 0.30573999881744385, -0.6694300174713135, -0.4475499987602234, 0.8939599990844727, 0.8487300276756287, -0.5051900148391724, -0.6669300198554993, 0.37411001324653625, -0.07214400172233582, -0.9929699897766113, 0.19755999743938446, 0.4950999915599823, -0.21001000702381134, -0.23409000039100647, 0.36002999544143677, 0.9775599837303162, 0.7305899858474731, -0.2862800061702728, 0.22142000496387482, 0.13057999312877655, 0.22357000410556793, 0.05242599919438362, 1.1302000284194946, 0.25328001379966736, 0.8360199928283691, 0.0723470002412796, 0.7067199945449829, 0.08529999852180481, -0.4509600102901459, -0.46924999356269836, -0.06520699709653854, -0.6410499811172485, 0.07421199977397919, 0.0830639973282814, 0.5223100185394287, -0.08444999903440475, -0.0957920029759407, -0.03861499950289726, 0.5612800121307373, 0.24372999370098114, 0.11123999953269958, 0.36392998695373535, -0.39381998777389526, -0.3707199990749359, 0.08235800266265869, 0.6207600235939026, -0.0025265999138355255, -0.4868299961090088, -0.7813900113105774, -0.20201000571250916, -0.36542999744415283, 0.11896999925374985, -0.3226900100708008, 0.24004000425338745, -0.01245300006121397, -0.23898999392986298, 0.3348900079727173, -0.07612200081348419, 0.17570999264717102, -0.003097600070759654, -0.1738699972629547, -0.474480003118515, -1.1806999444961548, -0.3102000057697296, -0.2976999878883362, -0.6373900175094604, -0.4122900068759918, -0.17011000216007233, 0.24905000627040863, -0.2504099905490875, -0.0008810600265860558, 0.5473300218582153, -1.1274000406265259, 0.19839000701904297, 0.37222999334335327, 0.40244999527931213, -0.4593600034713745, -0.3481700122356415, 0.14302000403404236, 0.8007699847221375, 0.40615999698638916, -0.06579100340604782, -0.25699999928474426, -0.4520600140094757, 1.3027000427246094, -0.31095001101493835, -0.4045099914073944, 0.20017999410629272, 0.48278000950813293, -0.3147200047969818, -0.27803999185562134, -0.0514100007712841, 0.4326600134372711, 0.5199300050735474, -0.5315799713134766, 0.6587299704551697, 0.4207899868488312, 0.0727510005235672, 0.13124999403953552, 0.3600099980831146, -0.35879001021385193, 0.46097999811172485, -0.4528299868106842, 0.7547500133514404, 0.0355679988861084, 0.6093400120735168, -0.16151000559329987, 0.5051000118255615, 0.3185400068759918, 1.3289999961853027, -0.75941002368927, -0.023389000445604324, 0.18692000210285187, 0.45822998881340027, 0.10146000236272812, -0.9184799790382385, -0.05039599910378456, -0.4675300121307373, -0.6431000232696533, 0.4692699909210205, -0.23104000091552734, 0.0021732000168412924, 0.26243001222610474, -0.07631999999284744, 0.06700599938631058, -0.17653000354766846, 0.3035300076007843, 1.3287999629974365, 0.31685999035835266, -0.6515300273895264, -0.3852899968624115, -0.1926099956035614, -0.08438000082969666, -0.057534001767635345, -0.015304000116884708, -0.5209900140762329, 0.4248200058937073, -0.7811300158500671, -0.08550900220870972, -0.4769099950790405, 0.1887200027704239, -0.8924700021743774, -0.8856599926948547, 0.8788300156593323, -0.14834000170230865, 0.00863960012793541, 0.4300299882888794, 0.11218000203371048, -0.18505999445915222, -0.14490999281406403, 0.07955099642276764, 0.040483999997377396, 0.2117999941110611, 0.11229000240564346, -0.7865399718284607, 0.05451099947094917, -0.40762999653816223, 0.08624500036239624, -0.582859992980957, -0.2406499981880188, -0.0594870001077652, 0.3058600127696991, -0.0473489984869957, -0.5593799948692322, -0.055838000029325485, -0.46955999732017517, 0.16203999519348145, 0.1394300013780594, 0.1870100051164627, -0.34422001242637634, 0.5590800046920776, -1.0140999555587769, -0.5116699934005737, 0.1331699937582016, 0.10286000370979309, 0.11878000199794769, 0.07673099637031555, 0.4730899930000305, 0.33702000975608826, 0.5719199776649475, -0.05500499904155731, -0.17106999456882477, -0.18775999546051025, 0.6516900062561035, -0.5747699737548828, 0.6794899702072144, -0.4421299993991852, -0.4022800028324127, -0.9769099950790405, 0.42778998613357544, -1.0784000158309937, -0.019481999799609184, 0.05835999920964241], u'hat': [-0.1052900031208992, 0.2529299855232239, -0.282370001077652, -0.7393100261688232, -0.15889999270439148, -0.32291001081466675, -1.1823999881744385, -0.27974000573158264, -0.3887900114059448, -0.16147999465465546, 0.31022000312805176, 0.057041000574827194, 0.023659000173211098, 0.49889999628067017, -0.02979299984872341, 0.2043599933385849, 0.3151499927043915, 0.10465999692678452, 0.12915000319480896, 0.18971000611782074, 0.3215700089931488, -0.36987999081611633, 0.127470001578331, -0.08974699676036835, -0.7719299793243408, -0.1911199986934662, -0.011087000370025635, 0.27309998869895935, 0.23070000112056732, 0.26809999346733093, 0.15047000348567963, -0.34077000617980957, -0.10655999928712845, -0.29576998949050903, -0.9597200155258179, 0.29124000668525696, 0.017194999381899834, 0.0055010998621582985, -0.5932899713516235, 0.34466999769210815, -0.2576499879360199, -0.19156000018119812, -0.10114999860525131, 0.23966999351978302, -0.049956999719142914, 0.044449999928474426, 0.49948999285697937, -0.2667199969291687, -0.26440000534057617, -0.07066299766302109, -0.29958999156951904, 0.3468799889087677, 0.27639999985694885, 0.5266100168228149, -0.21994000673294067, 0.056616999208927155, -0.33838000893592834, -0.3683600127696991, -0.3070400059223175, -0.13669000566005707, -0.061935000121593475, -0.5914099812507629, -0.5632699728012085, 0.1905899941921234, -0.16526000201702118, -0.3245300054550171, -0.3149299919605255, 0.35850998759269714, 0.3450300097465515, -0.09475599974393845, 0.3625999987125397, 0.29493001103401184, 0.49386999011039734, 0.1619199961423874, 0.20000000298023224, -0.14414000511169434, 0.335099995136261, -0.24192999303340912, 0.14218999445438385, -0.16091999411582947, 0.20419000089168549, 0.4956800043582916, -0.556850016117096, -0.5880600214004517, 0.16158999502658844, 5.977500040899031e-05, -0.0032627000473439693, -0.03545600175857544, -0.33456000685691833, -0.23944999277591705, -0.20923000574111938, -0.3305700123310089, 0.054962001740932465, 0.2554599940776825, 0.3296999931335449, 0.15658999979496002, -0.015922000631690025, 0.13230000436306, -0.17205999791622162, -0.25536999106407166, 0.36636000871658325, 1.030500054359436, -0.1360200047492981, 0.012928999960422516, 0.08024200052022934, -0.5058000087738037, 0.06422899663448334, 0.2542800009250641, -0.2910099923610687, 0.48260998725891113, 0.009446999989449978, 0.4647800028324127, -0.3304600119590759, 0.03238299861550331, 0.5136100053787231, 0.0008178799762390554, -0.23152999579906464, 0.19227999448776245, 0.17283999919891357, -0.47574999928474426, 0.185589998960495, -0.1659500002861023, 0.5468299984931946, 0.4867999851703644, -0.01245999988168478, 0.08104699850082397, -0.03782900050282478, 0.4384300112724304, -0.12699000537395477, 0.0070420000702142715, 0.28633999824523926, -0.186599999666214, -0.5782700181007385, 0.03203799948096275, 0.12456999719142914, -0.1492999941110611, -0.24246999621391296, -0.23930999636650085, 0.2751399874687195, -0.11554999649524689, 0.30215999484062195, 0.399509996175766, 0.005708599928766489, -0.620930016040802, 0.023218000307679176, 0.4713500142097473, 0.01978899911046028, 0.24334999918937683, 0.17510999739170074, -0.09729400277137756, -0.06140400096774101, 0.5547599792480469, -0.6529600024223328, -0.44828999042510986, -0.10956999659538269, 0.15396000444889069, 0.026079000905156136, -0.6395999789237976, 0.3242200016975403, 0.22197000682353973, 0.40275999903678894, -0.759440004825592, -0.12425000220537186, 0.1634799987077713, 0.09538500010967255, -0.1573600023984909, 0.27476000785827637, 0.5923799872398376, 0.40836000442504883, -0.18543000519275665, -0.5035499930381775, -0.05142299830913544, -0.26054999232292175, 0.21252000331878662, 0.29565998911857605, -0.7831900119781494, 0.06711900234222412, 0.30302000045776367, -0.2893500030040741, -0.09095899760723114, 0.27658000588417053, 0.1736299991607666, 0.6244300007820129, -0.021466000005602837, 0.4539799988269806, 0.2367600053548813, 0.06596300005912781, -0.04572699964046478, -0.10487999767065048, 0.07196299731731415, 0.3722200095653534, 0.11727999895811081, 0.15625999867916107, 0.45263001322746277, -0.5143300294876099, 0.11845000088214874, -0.5463600158691406, -0.3198600113391876, -0.02954999916255474, -0.19544999301433563, 1.312999963760376, 0.4660100042819977, 0.09550700336694717, -0.41530001163482666, -0.15716999769210815, -0.4171299934387207, 0.20541000366210938, 0.11869999766349792, -0.37323999404907227, -0.49153000116348267, -0.11248999834060669, -0.06238900125026703, 0.22652000188827515, 0.22879000008106232, 0.9372900128364563, -0.29892998933792114, 0.17866000533103943, -0.3302299976348877, -0.11663000285625458, -0.2212499976158142, 0.04409800097346306, -0.14253999292850494, -0.042114999145269394, 0.2928900122642517, 0.4472399950027466, -0.6723700165748596, -0.18505999445915222, -0.1050800010561943, 0.09074900299310684, 0.12736999988555908, 0.4351600110530853, 0.9441499710083008, -0.4054799973964691, 0.15490999817848206, 0.08432500064373016, -0.36563000082969666, -0.0007444299990311265, -0.32471001148223877, -0.09598299860954285, 0.9153599739074707, 0.5250300168991089, 0.25685998797416687, -1.027400016784668, 0.19009999930858612, -0.15466000139713287, 0.2989799976348877, 0.052067000418901443, -0.11530999839305878, 0.2936300039291382, -0.4507000148296356, -0.24185000360012054, -0.007310799788683653, 0.2851099967956543, -0.4383000135421753, 0.47220999002456665, -0.30726000666618347, 0.3001199960708618, -0.09144899994134903, -0.5471500158309937, -0.726419985294342, -0.1774899959564209, -0.0639130026102066, 0.7382199764251709, 0.6183599829673767, -0.7680799961090088, -0.42513999342918396, -0.09081699699163437, -0.9233099818229675, 0.14868000149726868, 0.23743000626564026, 0.06539099663496017, -0.2350199967622757, 0.15737000107765198, -0.1850000023841858, -0.3892199993133545, -0.6275500059127808, -1.179800033569336, -0.46522000432014465, -0.7094399929046631, -0.3540300130844116, 0.2702000141143799, 0.21987999975681305, 0.1477299928665161, -0.0726189985871315, -0.023016000166535378, 0.6119800209999084, -0.18560999631881714, 0.37066999077796936, 0.1345899999141693, -0.23914000391960144, 0.03675699979066849, 0.18411000072956085, -0.6967399716377258, 0.5120499730110168, -0.02163200080394745, 0.07367099821567535, 0.31334999203681946, -0.4830099940299988, 0.6024600267410278, 0.24299000203609467], u'blade': [0.18366999924182892, 0.29580000042915344, -0.09348800033330917, -0.7945200204849243, 0.28929001092910767, 0.46873998641967773, 0.09809999912977219, 0.4543600082397461, -0.14695000648498535, -0.6094899773597717, -0.12168999761343002, 0.40939998626708984, 0.07287999987602234, 0.12953999638557434, -0.7973499894142151, 0.26337000727653503, -0.7953799962997437, 0.5475800037384033, -0.2481199949979782, 0.02543500065803528, -0.2045699954032898, 0.47940000891685486, 0.3612000048160553, 0.5066499710083008, 0.7892199754714966, 0.3537200093269348, -0.09932299703359604, -0.3774699866771698, 0.14985999464988708, 0.06541299819946289, -0.3795500099658966, 0.38280999660491943, 0.36618998646736145, 0.126910001039505, -0.6195899844169617, 0.27208998799324036, -0.3254300057888031, 0.3176499903202057, -0.2717300057411194, 0.6640700101852417, 0.13011999428272247, 0.30261000990867615, -0.3312000036239624, -0.7202699780464172, -0.07501299679279327, 0.5518199801445007, -0.03554299846291542, -0.05482799932360649, 0.08410800248384476, 0.43933001160621643, -0.20690999925136566, 0.1290999948978424, 0.3471899926662445, 0.030528999865055084, -0.23794999718666077, -0.4361099898815155, -0.21177999675273895, 0.5850899815559387, 0.8627899885177612, 0.37487998604774475, 0.20489999651908875, 0.08672100305557251, 0.12796999514102936, 0.4572100043296814, 0.46658000349998474, -0.4837599992752075, -0.4350700080394745, 0.35826998949050903, 0.6041399836540222, 0.007612000219523907, 0.74440997838974, 0.18939000368118286, -0.04752099886536598, 0.6708800196647644, -0.062286000698804855, 0.5826500058174133, -0.13196000456809998, -0.5605199933052063, -0.559220016002655, -0.1256600022315979, -0.27298998832702637, 0.3932499885559082, 0.25352001190185547, -0.5389599800109863, 0.015836000442504883, -0.21998000144958496, 0.06131400167942047, 0.19065000116825104, -0.5002300143241882, -0.28266000747680664, 0.7998999953269958, 0.2160699963569641, 0.6151900291442871, -0.30309000611305237, -0.1837500035762787, -0.4691399931907654, -0.20804999768733978, 0.05138299986720085, 0.709659993648529, -0.5618699789047241, -0.29124999046325684, -0.22381000220775604, -0.4325299859046936, -0.09405799955129623, -0.06845799833536148, -0.04349299892783165, 0.31268998980522156, -0.25380000472068787, -0.5563099980354309, 0.1198199987411499, -0.24546000361442566, 0.5662299990653992, 0.052622001618146896, -0.9033600091934204, -0.5521600246429443, -0.26673001050949097, -0.6436499953269958, 0.10245999693870544, -0.6602799892425537, -0.4467200040817261, -0.17816999554634094, -0.5823500156402588, -0.10018999874591827, -0.34915998578071594, 0.3245599865913391, 0.45691999793052673, 0.35242998600006104, -0.08070600032806396, -0.24956999719142914, 0.1412699967622757, -0.2198999971151352, 0.7298499941825867, 0.5852299928665161, 0.8436999917030334, 0.19582000374794006, -0.2621400058269501, -0.09652599692344666, -0.10916999727487564, 0.2520900070667267, 0.5087699890136719, 0.7311800122261047, 0.2531700134277344, -0.488429993391037, -0.860069990158081, 0.185479998588562, 0.28317999839782715, 0.26249000430107117, -0.5073000192642212, -0.31512001156806946, -0.7043499946594238, 0.04496400058269501, -0.026868000626564026, -0.32519999146461487, -0.3102700114250183, 0.6035000085830688, -0.3734300136566162, 0.8177199959754944, -0.44964998960494995, 0.4546799957752228, -0.11479000002145767, 0.2953299880027771, -0.3081299960613251, -0.3534199893474579, -0.3488599956035614, -0.045809000730514526, 0.6624400019645691, 0.4830400049686432, 0.01612200029194355, -0.1852799952030182, 0.09733700007200241, -0.32510000467300415, -0.14283999800682068, 0.10409999638795853, 0.0044685001485049725, -0.1175599992275238, -0.13625000417232513, 0.5202999711036682, 0.161640003323555, 0.2515299916267395, -0.5092200040817261, 0.12155000120401382, -0.30428001284599304, -0.05877000093460083, 0.5718799829483032, 0.14962999522686005, -0.557669997215271, 0.25496000051498413, 0.20699000358581543, 0.8366400003433228, 0.40206998586654663, -0.5872700214385986, 0.33098000288009644, 0.19594000279903412, 0.28742000460624695, 0.18852999806404114, 0.8851000070571899, -0.4729599952697754, -0.33410000801086426, 0.012663999572396278, 0.8610299825668335, 0.19415999948978424, -0.4010699987411499, 0.7149199843406677, 0.7504400014877319, -0.04143499955534935, 0.6050599813461304, -0.12624000012874603, -0.29135000705718994, -0.3080100119113922, 0.23770000040531158, 0.5487499833106995, -0.027754999697208405, 0.40220001339912415, 0.0009435800020582974, -0.22540000081062317, -0.6213300228118896, 0.06448200345039368, 0.17619000375270844, -0.41398000717163086, -0.05132799968123436, -0.7033799886703491, 0.5594000220298767, 0.2625400125980377, 0.26372000575065613, -0.3873699903488159, -0.3819800019264221, -0.06887099891901016, -0.37483999133110046, 0.07418700307607651, -0.20720000565052032, 0.4698300063610077, -0.27344000339508057, -0.3420799970626831, -0.20420999825000763, -0.15173999965190887, 0.055716000497341156, -0.21104000508785248, 0.20369000732898712, 0.03523999825119972, -0.15171000361442566, 0.5879799723625183, -0.3926199972629547, -0.20701000094413757, -0.49268001317977905, -0.4422599971294403, -0.08004400134086609, 0.0788320004940033, 0.24672000110149384, 0.38960000872612, -0.06881699711084366, -0.3809700012207031, 0.23202000558376312, -0.42083999514579773, -0.1319900006055832, 0.1864600032567978, -0.5099899768829346, 0.3298400044441223, -0.28251001238822937, -0.10384000092744827, -0.46143001317977905, 0.0863720029592514, -0.16595999896526337, -0.02708500064909458, 0.23882000148296356, -0.46254000067710876, 0.269459992647171, -0.1416500061750412, 0.8848699927330017, -0.6469299793243408, 0.18477000296115875, -0.30066001415252686, 0.05571199953556061, 0.5433899760246277, 0.4351400136947632, -0.20137999951839447, 0.0201370008289814, -0.4365699887275696, 0.03222399950027466, -0.41670000553131104, -0.07747600227594376, 0.19949999451637268, -0.0646430030465126, -0.27577000856399536, 0.42671999335289, -0.11829999834299088, -0.07814200222492218, -0.44979000091552734, -0.020251000300049782, -0.25727999210357666, 0.00252470001578331, 0.5281599760055542, 0.2881399989128113, -0.48697999119758606, 0.10214000195264816, -0.10120999813079834, 0.4200800061225891, -0.036695998162031174, 0.34161999821662903, 0.19978000223636627, 0.2107899934053421], u'bucket': [-0.590470016002655, 0.1788100004196167, 0.0852380022406578, -0.46386000514030457, -0.48083001375198364, 0.21639999747276306, 0.42763999104499817, -0.3192799985408783, -0.0024482000153511763, 0.24664999544620514, -0.3860499858856201, -0.25435999035835266, -0.43136000633239746, 0.04254699870944023, 0.24457000195980072, -0.38927000761032104, -0.0828619971871376, 0.2984299957752228, -0.09281899780035019, 0.21453000605106354, 0.2581399977207184, 0.1014999970793724, 0.5908300280570984, 0.04114900156855583, 0.1237500011920929, -0.15793000161647797, 0.1276800036430359, 0.3470200002193451, 0.43083998560905457, -0.013540999963879585, -0.598360002040863, -0.3378300070762634, -0.2358900010585785, -0.20125000178813934, -0.25088998675346375, 0.6523299813270569, 0.2520799934864044, 0.1882600039243698, -0.4850899875164032, 0.5887600183486938, -0.18526999652385712, -0.013093000277876854, 0.21278999745845795, -0.7082499861717224, 0.192440003156662, 0.08594799786806107, 0.6274899840354919, -0.21657000482082367, -0.1849599927663803, 0.13523000478744507, -0.41468000411987305, 0.31679001450538635, -0.28902000188827515, -0.4535300135612488, 0.12826000154018402, -0.08858399838209152, 0.32304999232292175, 0.219310000538826, 0.008115800097584724, 0.37321001291275024, -0.0075750998221337795, -0.11975999921560287, -0.14380000531673431, -0.16586999595165253, -0.5218899846076965, -0.5959699749946594, -0.43998000025749207, 0.021904999390244484, -0.24344000220298767, 0.4029499888420105, -0.08596599847078323, -0.16506999731063843, 0.3880400061607361, -0.09253700077533722, -0.02424200065433979, -0.38995999097824097, 0.23950999975204468, 0.16403000056743622, -0.3199400007724762, -0.8490200042724609, 0.021865999326109886, 0.4663800001144409, 0.4842199981212616, -0.7796000242233276, -0.26050999760627747, -0.05278199911117554, -0.157150000333786, 0.30425000190734863, -0.2834300100803375, -0.5996599793434143, 0.7511500120162964, 0.17924000322818756, 0.6645299792289734, -0.5815200209617615, -0.25505000352859497, -0.12103000283241272, 0.18193000555038452, 0.33406001329421997, 0.021664999425411224, -0.20830999314785004, 0.00859680026769638, 0.6259999871253967, -0.3593499958515167, -0.7695599794387817, 0.4129199981689453, -0.6165000200271606, 0.3761900067329407, 0.15575000643730164, -0.0006282100221142173, -0.3068299889564514, 0.11170999705791473, 0.2621699869632721, -0.625980019569397, -0.13161000609397888, -0.07908199727535248, -0.12927000224590302, -0.27331000566482544, -0.05949300155043602, -0.05269499868154526, -0.33799999952316284, 0.3930000066757202, -0.29556000232696533, 0.47091999650001526, 0.651170015335083, -0.3721800148487091, -0.40130001306533813, 0.18182000517845154, 0.23388999700546265, -0.07276500016450882, -0.06168299913406372, 0.10655000060796738, 0.32062000036239624, 0.017674999311566353, -0.008029400371015072, 0.25137001276016235, -0.05513700097799301, 0.2831000089645386, -0.015949999913573265, -0.3434000015258789, 0.1720300018787384, -0.07633800059556961, 0.531029999256134, -0.07621899992227554, -0.7343199849128723, 0.19146999716758728, -0.5292900204658508, -0.3492000102996826, 0.3007200062274933, 0.43904998898506165, 0.20579999685287476, -0.284060001373291, 0.11703000217676163, -0.2314399927854538, -0.5006800293922424, -0.16469000279903412, -0.15926000475883484, 0.5258499979972839, -0.6541500091552734, 0.6363499760627747, 0.32006001472473145, 0.09695500135421753, -0.22620999813079834, 0.23312999308109283, 0.28703999519348145, 0.4934000074863434, 0.1830900013446808, 0.2836199998855591, 0.8216500282287598, 0.5564699769020081, 0.058396000415086746, -0.4557799994945526, 0.3150799870491028, 0.1681700050830841, 0.1950799971818924, -0.4192099869251251, -0.7907099723815918, -0.3449999988079071, 0.29210999608039856, 0.35554999113082886, -0.6499099731445312, 0.5112599730491638, 0.6408200263977051, 0.7992200255393982, 0.3671500086784363, 0.33063000440597534, -0.38646000623703003, 1.2268999814987183, -0.057287998497486115, 0.5094299912452698, -0.29142001271247864, 0.33546000719070435, 0.021177999675273895, -0.23921999335289001, -0.0690160021185875, -0.6284499764442444, 0.04693499952554703, -0.40467000007629395, 0.792739987373352, -0.3853299915790558, -0.1967500001192093, 0.06278900057077408, 0.13147999346256256, 0.40321001410484314, -0.2027599960565567, -0.11672999709844589, -0.37637001276016235, -0.1724500060081482, -0.10700999945402145, 0.10960999876260757, -0.08732999861240387, -0.5080900192260742, -0.05490599945187569, -0.08552400022745132, 0.13704000413417816, 0.3886300027370453, -0.06436499953269958, 0.02479800023138523, 0.06105700135231018, -0.20597000420093536, -0.2455500066280365, -0.04609600082039833, 0.29629001021385193, -0.03982200101017952, 0.15523000061511993, 0.7316100001335144, -0.2672500014305115, -0.27597999572753906, 0.1828799992799759, 0.44043999910354614, -0.2227099984884262, 0.32923999428749084, -0.4183399975299835, -0.14169999957084656, -0.29229000210762024, 0.20527000725269318, 0.3834100067615509, -0.10029000043869019, 0.05558599904179573, 0.14041000604629517, 0.2603200078010559, -0.47494998574256897, -0.3521200120449066, -0.2650800049304962, -0.3731899857521057, -0.1839900016784668, -0.3719100058078766, 0.831279993057251, 0.21703000366687775, -0.3838199973106384, -0.11225999891757965, -0.24884000420570374, -0.8558700084686279, 0.35095998644828796, -0.7122499942779541, 0.18603000044822693, 0.2597000002861023, -0.2952199876308441, 0.38425999879837036, -0.07567200064659119, -0.20356999337673187, -0.4885700047016144, -0.21320000290870667, -0.11032000184059143, 0.6810299754142761, 0.034908998757600784, -0.4590499997138977, -0.2009200006723404, 0.0061511998064816, -0.35060998797416687, 0.09332100301980972, -0.2318899929523468, 0.012114999815821648, -0.38558000326156616, 0.10927999764680862, -0.14553000032901764, -0.3552800118923187, -0.9319700002670288, -0.11884000152349472, -0.771369993686676, -0.30908000469207764, -0.2795799970626831, 0.42441999912261963, 0.02721799910068512, -0.5119600296020508, 0.6640700101852417, 0.7381299734115601, 0.1200999990105629, -0.34125998616218567, -0.2368600070476532, 0.334989994764328, -0.36379000544548035, -0.07307299971580505, 0.11691000312566757, 0.4012199938297272, -0.05649600178003311, -0.11428999900817871, 0.05226600170135498, -0.022709999233484268, -0.29638001322746277, -0.05584299936890602], u'bed': [-0.20441000163555145, -0.08241699635982513, -0.056366000324487686, -0.17798000574111938, -0.33011001348495483, 0.22672000527381897, 0.2983799874782562, -0.19279000163078308, 0.3087500035762787, -0.8318799734115601, -0.23714999854564667, -0.01905599981546402, -0.05654999986290932, 0.4060100018978119, -0.08846200257539749, 0.13436000049114227, 0.17642000317573547, -0.26912999153137207, 0.26743000745773315, 0.001304500037804246, -0.17152999341487885, 0.14414000511169434, -0.45096999406814575, 0.23472000658512115, -0.011610000394284725, -0.21644000709056854, 0.29732000827789307, -0.1106100007891655, 0.3204599916934967, -0.04416099935770035, -0.20622999966144562, 0.4507000148296356, 0.030282000079751015, -0.24265000224113464, -0.3868899941444397, 0.4339500069618225, -0.5033199787139893, 0.012601999565958977, -0.2564699947834015, -0.12818999588489532, -0.2842400074005127, -0.3689599931240082, 0.19886000454425812, -0.20928999781608582, 0.2831999957561493, 0.14226000010967255, 0.8471900224685669, -0.0657230019569397, 0.1693599969148636, -0.06725399941205978, 0.3401300013065338, 0.14643000066280365, -0.10262999683618546, -0.06190799921751022, -0.31589001417160034, -0.1544400006532669, 0.3181299865245819, -0.30562999844551086, -0.04297599941492081, 0.3069300055503845, 1.0147000551223755, -0.05498800054192543, 0.3304100036621094, 0.4958899915218353, -0.32104000449180603, -0.6015200018882751, -0.16177000105381012, -0.20192000269889832, -0.7809500098228455, 0.5239999890327454, -0.17222000658512115, 0.062206000089645386, -0.6988499760627747, -0.13636000454425812, -0.03346500173211098, -0.20192000269889832, 0.2064400017261505, -0.3057900071144104, 0.08963000029325485, -0.2777700126171112, -0.1706400066614151, -0.22822999954223633, -0.0768980011343956, 0.1433500051498413, -0.0018081000307574868, 0.39695000648498535, -0.11851999908685684, -0.08784600347280502, -0.39645999670028687, 0.028137000277638435, 0.7153499722480774, 0.4503999948501587, -0.27695000171661377, 0.4922899901866913, -0.22586999833583832, 0.017500000074505806, 0.21299999952316284, 0.0024180999025702477, 0.5722900032997131, -0.37185999751091003, 0.11366000026464462, -0.023166000843048096, -0.21358999609947205, -0.006822700146585703, 0.08216399699449539, 0.5239599943161011, 0.7094799876213074, 0.14340999722480774, -0.2258799970149994, -0.2725200057029724, -0.22363999485969543, 0.04168099910020828, -0.414110004901886, -0.4479199945926666, -0.12249000370502472, 0.30970999598503113, -0.11553999781608582, -0.06580699980258942, 0.2431900054216385, -0.34266000986099243, -0.34077000617980957, -0.18612000346183777, 0.03189399838447571, 0.18240000307559967, -0.10614000260829926, 0.10779000073671341, -0.20197999477386475, 0.0039623999036848545, -0.3413800001144409, 0.18653999269008636, 0.9513999819755554, -0.08602099865674973, 0.18653999269008636, 0.20607000589370728, -0.26245999336242676, -0.28321000933647156, -0.2781200110912323, 0.11388999968767166, -0.6629199981689453, 0.04699699953198433, 0.1876000016927719, -0.2974199950695038, 0.20945000648498535, 0.21125000715255737, -0.9660599827766418, 0.07895799726247787, -0.04649699851870537, 0.17539000511169434, 0.026295000687241554, -0.19446000456809998, 0.07756700366735458, 0.7570800185203552, -0.15892000496387482, 0.3225499987602234, 0.24556000530719757, 0.10220000147819519, 0.15841999650001526, 0.10226999968290329, 0.4970000088214874, 0.21543000638484955, 0.4234600067138672, -0.47692999243736267, 0.08551300317049026, 0.23091000318527222, 0.4683299958705902, 0.49581998586654663, 0.21895000338554382, 0.1770700067281723, 0.00995550025254488, 0.2789900004863739, -0.5443000197410583, 0.7873499989509583, 0.65065997838974, -0.0005991400103084743, -0.6934099793434143, -0.2117599993944168, -0.2596000134944916, 0.47523000836372375, -0.1406800001859665, -0.8155099749565125, 0.058556001633405685, -0.2576200067996979, 0.40318000316619873, -0.15714000165462494, 0.10362999886274338, 0.12525999546051025, 0.3558200001716614, 0.6542800068855286, 0.6251000165939331, 0.2399500012397766, 0.5432000160217285, 0.9260500073432922, -0.3815999925136566, -0.5050699710845947, -0.3199000060558319, 0.35811999440193176, -0.2606399953365326, 0.032248999923467636, -0.2747800052165985, 0.03418999910354614, 0.6150299906730652, -0.2681100070476532, 0.01224599964916706, 0.0027715000323951244, 0.3922399878501892, -0.45583999156951904, -0.09354200214147568, -0.5964000225067139, -0.4143199920654297, -0.2958900034427643, -0.42945998907089233, -0.4905799925327301, 0.44672998785972595, -0.24122999608516693, 0.522599995136261, 0.26420000195503235, 0.053704001009464264, -0.4118799865245819, -0.11574000120162964, -0.059675998985767365, 0.4803299903869629, 0.20760999619960785, 0.20919999480247498, 0.4545300006866455, -0.1954900026321411, 0.23307999968528748, -0.26015999913215637, -0.5038400292396545, -0.06966400146484375, -0.16674000024795532, 0.5260099768638611, -0.38846999406814575, 0.04602300003170967, -0.5001000165939331, 1.0733000040054321, -0.47005999088287354, -0.42298999428749084, 0.27518999576568604, -0.4365899860858917, -0.4448300004005432, 0.036219000816345215, 0.08017300069332123, -0.50382000207901, 0.4691399931907654, -0.6720499992370605, -0.1863899976015091, 0.2191299945116043, 0.08595100045204163, -0.6323400139808655, -0.07743799686431885, -0.40700000524520874, 0.7196900248527527, 0.5609899759292603, -0.5418999791145325, 0.7229999899864197, 0.29343000054359436, 0.3855400085449219, 0.10164999961853027, 0.28321999311447144, 0.0064789000898599625, -0.11845999956130981, -0.31299999356269836, 0.09041000157594681, -0.05831199884414673, -0.4856700003147125, -0.30149000883102417, 0.7588599920272827, -0.27480998635292053, -0.23522000014781952, 0.383760005235672, -0.2188200056552887, -0.7511299848556519, -0.4250899851322174, -0.0796549990773201, 0.2566800117492676, 0.056251998990774155, -1.5539000034332275, 0.24890999495983124, -0.695930004119873, 0.010844999924302101, -0.376910001039505, -0.18423999845981598, -0.29840001463890076, -0.34224000573158264, -0.05004600062966347, 0.36632999777793884, 0.06451400369405746, 0.25400999188423157, -0.3190700113773346, -0.5883700251579285, -0.029519999399781227, -0.09234700351953506, -0.0509600006043911, -0.3463500142097473, -0.1029599979519844, -0.315310001373291, 0.7278800010681152, 0.21167999505996704, 0.04718099907040596, 1.0277999639511108], u'cat': [-0.2935299873352051, 0.33246999979019165, -0.0473719984292984, -0.12246999889612198, 0.07195600122213364, -0.2340800017118454, -0.062380000948905945, -0.003719199914485216, -0.39462000131607056, -0.6941099762916565, 0.3673099875450134, -0.12140999734401703, -0.044484999030828476, -0.15267999470233917, 0.34863999485969543, 0.22925999760627747, 0.5436099767684937, 0.2521499991416931, 0.09797199815511703, -0.08730500191450119, 0.8705800175666809, -0.12211000174283981, -0.07982499897480011, 0.2871200144290924, -0.6856300234794617, -0.27265000343322754, 0.2205599993467331, -0.7575200200080872, 0.5629299879074097, 0.09137699753046036, -0.7100399732589722, -0.3142000138759613, -0.5682600140571594, -0.26684001088142395, -0.6010199785232544, 0.26958999037742615, -0.1799200028181076, 0.10700999945402145, -0.5785800218582153, 0.3816100060939789, -0.6712700128555298, 0.10926999896764755, 0.07942599803209305, 0.02237199991941452, -0.08114700019359589, 0.011181999929249287, 0.6708899736404419, -0.1909399926662445, -0.336760014295578, -0.4847100079059601, -0.35405999422073364, -0.15208999812602997, 0.44503000378608704, 0.4638499915599823, 0.38409000635147095, 0.0450810007750988, -0.5907899737358093, 0.21762999892234802, 0.38576000928878784, -0.4456700086593628, 0.009332000277936459, 0.44200000166893005, 0.09706199914216995, 0.38005000352859497, -0.11880999803543091, -0.4271799921989441, -0.31005001068115234, -0.025057999417185783, 0.12689000368118286, -0.13468000292778015, 0.11975999921560287, 0.7625300288200378, 0.2524000108242035, -0.26934000849723816, 0.06862899661064148, -0.10070999711751938, 0.01106599997729063, -0.18532000482082367, 0.44982999563217163, -0.5750700235366821, 0.12278000265359879, -0.06487800180912018, 0.04445600137114525, -0.0209989994764328, -0.06983800232410431, -0.47328999638557434, -0.43073999881744385, 0.3915799856185913, -0.047814998775720596, -0.9365900158882141, -0.5512800216674805, -0.14219999313354492, -0.15828999876976013, 0.15623000264167786, 0.07046099752187729, 0.19891999661922455, 0.18941999971866608, -0.19338999688625336, -0.465939998626709, -0.028824999928474426, 0.005675199907273054, -0.005403799936175346, 0.43143999576568604, 0.12257000058889389, -0.26109999418258667, 0.04847000166773796, 0.3224399983882904, -0.31064000725746155, -0.10559000074863434, 0.9795399904251099, 0.06962600350379944, -0.023187000304460526, -0.8629299998283386, 0.4827300012111664, 0.23648999631404877, -0.0034704001154750586, -0.18931999802589417, 0.18588000535964966, 0.023211000487208366, -0.30643001198768616, -0.3571699857711792, 0.1960500031709671, -0.15839999914169312, -0.005862600170075893, 0.3524799942970276, 0.036052998155355453, -0.539330005645752, 0.49434998631477356, 0.4533199965953827, -0.18477000296115875, 0.040647998452186584, -0.09451700001955032, -0.07116000354290009, 0.7400500178337097, -0.11465000361204147, -0.2691600024700165, 0.08976499736309052, -0.2520500123500824, -0.21468999981880188, -0.38846999406814575, 0.3250899910926819, 0.25773000717163086, -0.5176399946212769, -0.38457000255584717, 0.02825400047004223, -0.2123199999332428, -0.2731100022792816, 0.6917799711227417, -0.3768100142478943, 0.14240999519824982, -0.24925999343395233, 0.40314000844955444, -0.05291600152850151, 0.07683999836444855, 0.2134999930858612, 0.10920999944210052, 0.049658000469207764, 0.02092999964952469, 0.11952999979257584, 0.28648000955581665, 0.8779100179672241, 0.08583799749612808, 0.3198300004005432, 0.518559992313385, -0.22628000378608704, 0.12402000278234482, 0.48805001378059387, 0.221110001206398, -0.5202100276947021, 0.0025106000248342752, -0.13304999470710754, -0.05256500095129013, 0.3274399936199188, 0.6498500108718872, 0.07242599874734879, -0.52742999792099, -0.20913000404834747, -0.27897000312805176, -0.10834000259637833, -0.10102999955415726, 0.15298999845981598, -0.36680999398231506, 0.08244500309228897, 0.17389999330043793, -0.28099000453948975, -0.06913600116968155, 0.7894999980926514, 0.06057099997997284, 0.386929988861084, -0.16494999825954437, -0.21800999343395233, 0.3328799903392792, -0.44567999243736267, -0.4989199936389923, -0.3443799912929535, -0.03560600057244301, -0.2423900067806244, -0.474700003862381, -0.17253999412059784, 0.07134900242090225, 1.40910005569458, 0.4616599977016449, 0.46546000242233276, -0.3097899854183197, 0.37202998995780945, 0.4789699912071228, -0.2887200117111206, -0.6551499962806702, -0.13628999888896942, -0.1428699940443039, -0.04842999950051308, -0.12785999476909637, 0.189410001039505, -0.0370509997010231, 0.5947099924087524, -0.0051617999561131, -0.008600899949669838, -0.33313000202178955, 0.2879999876022339, -0.05896500125527382, -0.6727499961853027, 0.15544000267982483, 0.07418700307607651, -0.36441001296043396, -0.021284999325871468, -0.06533700227737427, 0.13827000558376312, 0.008395000360906124, -0.041113000363111496, 0.2940100133419037, -0.10344000160694122, -0.05237099900841713, -0.630840003490448, 0.16311000287532806, 0.05282599851489067, -0.021796999499201775, -0.2811500132083893, -0.07836099714040756, -0.38124001026153564, 0.07808899879455566, 0.3841100037097931, -0.3462899923324585, -0.43220001459121704, 0.091730996966362, -0.6786699891090393, -0.041138000786304474, -0.5398100018501282, 0.10678000003099442, 0.03342999890446663, 0.8139600157737732, -0.19448000192642212, 0.02624800056219101, -0.14214999973773956, 0.2953999936580658, 0.6273800134658813, 0.2649900019168854, 0.6190999746322632, -0.04112999886274338, 0.12301000207662582, 0.3158000111579895, 0.10698000341653824, 0.023654000833630562, -0.4135499894618988, 0.03485200181603432, 0.2136099934577942, 0.045834001153707504, 0.053415000438690186, -0.36421000957489014, 0.19707000255584717, 0.5091599822044373, -0.1949000060558319, -0.1878799945116043, -0.24448999762535095, -0.6339700222015381, -0.23125000298023224, -0.1882299929857254, -1.0600999593734741, 0.47793999314308167, -1.010200023651123, 0.2460400015115738, -0.4875999987125397, 0.7914599776268005, -0.1104699969291687, -0.21762000024318695, -0.6177999973297119, 0.2781499922275543, -0.0981689989566803, -0.06320499628782272, 0.06606899946928024, -0.6930500268936157, -0.2592799961566925, 0.4459100067615509, -0.641979992389679, -0.33083999156951904, -0.30153998732566833, -0.5635899901390076, 0.6050099730491638, -0.09673000127077103, 0.44444000720977783, 0.2200700044631958], u'rope': [-0.0943169966340065, -0.2426300048828125, 0.2742699980735779, -0.7486699819564819, -0.35912999510765076, 0.028551999479532242, 0.18554000556468964, -0.19391000270843506, -0.3560599982738495, -0.40347999334335327, -0.1872200071811676, 0.2795700132846832, 0.26319000124931335, -0.4695799946784973, -0.14503000676631927, -0.040088001638650894, -0.6670699715614319, 0.18599000573158264, -0.24291999638080597, 0.0614980012178421, 0.021668000146746635, -0.8330100178718567, -0.19594000279903412, 0.34266000986099243, 0.44686999917030334, -0.15105000138282776, -0.19321000576019287, -0.1174200028181076, -0.5360000133514404, 1.2182999849319458, 0.09608999639749527, -0.21642999351024628, 0.21674999594688416, -0.19197000563144684, -0.19787999987602234, 0.45052000880241394, 0.04361899942159653, -0.06659399718046188, 0.6597700119018555, 0.40988001227378845, -0.35199999809265137, -0.3865300118923187, -0.13268999755382538, -0.6438000202178955, -0.12264999747276306, 0.5088300108909607, 0.6012200117111206, -0.6269000172615051, 0.1614599972963333, 0.06023100018501282, -0.15148000419139862, 0.10888999700546265, -0.1621900051832199, -0.5442600250244141, -0.38102999329566956, -0.20868000388145447, -0.754800021648407, -0.6194000244140625, -0.6729099750518799, 0.5089899897575378, 0.9332299828529358, 0.5684800148010254, 0.3211599886417389, 0.6805999875068665, 0.4037100076675415, -0.5570600032806396, -0.5030500292778015, 0.46198999881744385, 0.2575399875640869, 0.06407400220632553, -0.49994999170303345, 0.11547999829053879, -0.5806499719619751, 0.10123000293970108, 0.3411499857902527, 0.052427999675273895, 0.026820000261068344, 0.14122000336647034, -0.04787199944257736, -0.49625998735427856, 0.6945099830627441, -0.7625799775123596, 0.29526999592781067, -0.16087999939918518, -0.46713000535964966, -0.3280700147151947, 0.0545319989323616, -0.008987599983811378, -0.7785999774932861, 0.2588900029659271, 0.5420600175857544, 0.16708000004291534, 0.42337000370025635, -0.12931999564170837, 0.1440799981355667, -0.4071899950504303, -0.17399999499320984, 0.5814700126647949, 0.06638500094413757, -0.53329998254776, 0.13113999366760254, 0.5431699752807617, -0.16496999561786652, -0.22881999611854553, 0.3546200096607208, -0.004712900146842003, 0.3089599907398224, -0.11082000285387039, -0.6329399943351746, -0.2083200067281723, -0.40911999344825745, 0.3789600133895874, -0.3088900148868561, -0.25902000069618225, 0.3400999903678894, 0.12195999920368195, -0.1290300041437149, -0.3642899990081787, -0.1390800029039383, -0.3589699864387512, -0.1030300036072731, -0.6093199849128723, 0.9408199787139893, -0.1917400062084198, 0.07273200154304504, 0.0999009981751442, -0.003168300027027726, 0.22066999971866608, -0.02096400037407875, 0.07295499742031097, 0.41697001457214355, 0.36796998977661133, 0.42882001399993896, 0.37081998586654663, -0.5848699808120728, 0.14340999722480774, -0.14643000066280365, 0.22439000010490417, -0.417820006608963, -0.16467000544071198, -0.49955999851226807, 0.17942999303340912, 0.1281599998474121, -0.7712000012397766, -0.19433000683784485, 0.26614001393318176, 0.35837000608444214, -0.33981001377105713, 0.034873999655246735, -0.1531900018453598, -0.32471001148223877, 0.7478799819946289, 0.24693000316619873, -0.1969899982213974, 0.12681999802589417, -0.3294999897480011, 0.4483399987220764, -0.22696000337600708, 0.0741410031914711, 0.5535500049591064, 0.25949999690055847, -0.38231998682022095, -0.296999990940094, -0.07440099865198135, 0.1451999992132187, 0.16203999519348145, -0.12205000221729279, 0.02065199986100197, 0.23350000381469727, 0.1660500019788742, -0.4876900017261505, -0.15094999969005585, 0.04870299994945526, 0.07656899839639664, 0.23469999432563782, -0.032391998916864395, -0.25303998589515686, 0.7720199823379517, 0.15964999794960022, -0.7422999739646912, 0.7575600147247314, -0.06258600205183029, 0.06207599863409996, 0.10881000012159348, -0.019696999341249466, -0.12797999382019043, 0.322299987077713, 0.48860999941825867, 0.4690299928188324, 0.034189000725746155, -0.24453000724315643, 0.38144999742507935, 0.19614000618457794, -0.09182699769735336, -0.0894009992480278, -0.10523000359535217, -0.7825400233268738, -0.423009991645813, 0.6503999829292297, -0.34747999906539917, 0.7985600233078003, 0.8342400193214417, 0.7123299837112427, 0.3707599937915802, 0.2252500057220459, 0.4103499948978424, 0.2258400022983551, 0.2917900085449219, -0.11396999657154083, 0.17213000357151031, -0.40705999732017517, 0.3407000005245209, 0.1273300051689148, -0.12790000438690186, 0.053977999836206436, 0.08155400305986404, 0.08103100210428238, -0.5002099871635437, -0.2798900008201599, -0.36414000391960144, -0.18342000246047974, -0.07904700189828873, 0.2917799949645996, -0.5389000177383423, 0.24226999282836914, -0.15605999529361725, -0.05761399865150452, 0.08842699974775314, -0.518779993057251, -0.5829499959945679, 0.60794997215271, -0.35844001173973083, -0.034717001020908356, -0.05718399956822395, 0.8741199970245361, -0.1842000037431717, -0.43907999992370605, -0.41148999333381653, 0.3740200102329254, 0.06697600334882736, 0.32745999097824097, 0.1652200073003769, -0.2974100112915039, -0.23322999477386475, -0.31773000955581665, -0.09528499841690063, 0.12307000160217285, 0.5505599975585938, -0.021856000646948814, 0.280349999666214, -0.7208499908447266, -0.00233189994469285, 0.6764799952507019, -1.0499000549316406, 0.955299973487854, 0.48590001463890076, 0.06651300191879272, 0.0657849982380867, 0.6047999858856201, 0.05724100023508072, 0.19351999461650848, -0.4938499927520752, 0.14729000627994537, -0.3216499984264374, 0.03800300136208534, 0.25457000732421875, 0.1446399986743927, 0.07027299702167511, -0.5362300276756287, 0.24368999898433685, 0.23542000353336334, -0.1579200029373169, -0.2344300001859665, 0.3156299889087677, 0.04806600138545036, -0.2558000087738037, -0.6995999813079834, -0.6852499842643738, -0.8328700065612793, 0.1521099954843521, 0.188060000538826, -0.2169100046157837, 0.24115000665187836, -0.4504700005054474, -0.28395000100135803, -0.06615500152111053, 0.12596000730991364, -0.337909996509552, -0.3996700048446655, 0.5011699795722961, 0.2969200015068054, 0.22491000592708588, -0.4664500057697296, 0.02107599936425686, 0.18061000108718872, 0.16234999895095825, 0.23746000230312347, -0.04300199821591377, 0.22734999656677246, -0.06294599920511246], u'soup': [-0.24124999344348907, -0.07225000113248825, 0.5400800108909607, -0.11918999999761581, 0.167930006980896, 0.10588999837636948, 0.39642998576164246, 0.2334199994802475, -0.4023900032043457, -0.3947199881076813, -0.058132000267505646, -0.013670000247657299, -0.386680006980896, 0.3858799934387207, -0.35752999782562256, -0.4929400086402893, -0.17556999623775482, 0.50382000207901, -0.33351001143455505, 0.5926300287246704, 0.12160000205039978, -0.10948000103235245, -0.5301899909973145, 0.4242100119590759, 0.10565000027418137, -0.22018000483512878, 0.1144300028681755, 0.13714000582695007, 0.01924699917435646, -0.4927299916744232, -0.9297500252723694, 0.3755599856376648, -0.41394999623298645, 0.25411999225616455, -0.18649999797344208, 0.516979992389679, -0.12279000133275986, -0.11196000128984451, -0.5784299969673157, 0.16637000441551208, -0.047520000487565994, -0.08978600054979324, 0.09975200146436691, -0.14835000038146973, 0.0751269981265068, -0.12399999797344208, 0.754360020160675, 0.27612000703811646, -0.8261100053787231, 0.5112400054931641, 0.25953999161720276, 0.15782000124454498, 0.6270999908447266, 0.4255000054836273, -0.5620499849319458, 0.06621299684047699, 0.34556999802589417, 0.4873200058937073, 0.14278000593185425, -0.011436999775469303, 0.3805299997329712, -0.4340299963951111, 0.4280500113964081, -0.06575600057840347, -0.2987099885940552, 0.1511099934577942, -0.047775998711586, 0.308459997177124, -0.20127999782562256, 0.24755999445915222, 0.02374199964106083, -0.16357000172138214, -0.15561999380588531, -0.6469100117683411, -0.5625200271606445, -0.1397400051355362, 0.7210400104522705, 0.15932999551296234, 0.04042999818921089, -0.27967000007629395, -0.008451799862086773, 0.40342000126838684, -0.19325999915599823, -0.6717900037765503, 0.4504700005054474, -0.36800000071525574, -0.21020999550819397, 0.04252300038933754, 0.31363001465797424, -0.8996599912643433, -0.036281999200582504, -0.06612399965524673, -0.2912600040435791, -0.3885500133037567, -0.2923299968242645, -0.1452299952507019, 0.25165998935699463, 0.409960001707077, -0.2048099935054779, -0.06570199877023697, -0.14414000511169434, -0.5838099718093872, 0.2963300049304962, -0.1668899953365326, 0.022579999640583992, -0.5938199758529663, -0.17745999991893768, -0.1456100046634674, -0.21977999806404114, 0.8690599799156189, -0.03943299874663353, 0.21164999902248383, -0.1274300068616867, -0.9873999953269958, -0.5030800104141235, -0.28942999243736267, -1.0918999910354614, 0.05583199858665466, 0.04199599847197533, -0.1522500067949295, 0.06229899823665619, 0.20087000727653503, 0.6196699738502502, 0.35815998911857605, -0.05196300148963928, -0.15750999748706818, 0.47374001145362854, 0.5663999915122986, -0.34393998980522156, 0.5394099950790405, 0.38113000988960266, 0.9171199798583984, -0.4641300141811371, 0.4078400135040283, 0.23303000628948212, -0.4322200119495392, -0.062258001416921616, -0.08753299713134766, -0.47407999634742737, 0.5983800292015076, 0.11248999834060669, 0.7466899752616882, 0.06058900058269501, -0.5537800192832947, -0.44686999917030334, 0.9240000247955322, 0.16809000074863434, 0.5189599990844727, 0.47652000188827515, -0.488209992647171, -0.9747700095176697, 0.6143900156021118, -0.14124000072479248, 0.08754000067710876, -0.3705599904060364, -0.20520000159740448, -0.4298799932003021, -0.9411200284957886, 0.2784099876880646, 0.2334900051355362, 0.18579000234603882, 0.24650000035762787, 0.18655000627040863, 0.055270999670028687, -0.0685959979891777, 0.5149700045585632, -0.015869999304413795, -0.12466999888420105, -0.4095099866390228, -0.4975599944591522, 0.39035001397132874, -0.08011800050735474, -0.8344900012016296, 0.44297999143600464, -0.39120998978614807, 0.13853000104427338, 0.26980000734329224, 0.17868000268936157, 0.9211000204086304, -0.19505000114440918, -0.0841509997844696, 0.029569000005722046, 0.44773998856544495, -0.14746999740600586, -0.08306200057268143, 0.18151000142097473, 0.1444000005722046, 0.033984001725912094, -0.18368999660015106, -0.6966000199317932, 0.24753999710083008, 0.8009999990463257, -0.7877900004386902, -0.23923000693321228, 0.02773899957537651, 0.08102600276470184, -0.3383300006389618, 0.3422299921512604, -0.8171700239181519, 0.14600999653339386, 0.6963300108909607, 0.16214999556541443, 0.8031899929046631, 0.680180013179779, -0.13840000331401825, 0.6422600150108337, 0.25703001022338867, -0.20175999402999878, -0.7224000096321106, 0.05287199839949608, -0.26023998856544495, -0.19871999323368073, -0.006503600161522627, -0.09502299875020981, 0.01925400085747242, 0.2820099890232086, 0.5191699862480164, -0.2443300038576126, -0.061434999108314514, 0.6361700296401978, 0.857729971408844, 0.44391000270843506, -0.4436799883842468, -0.6616700291633606, -0.31891998648643494, -0.5375999808311462, 0.3258900046348572, -0.4632599949836731, -0.0001904700038721785, -0.212009996175766, -0.11412999778985977, -0.23196999728679657, -0.16211000084877014, 0.39236998558044434, 0.5067700147628784, 0.3600600063800812, 0.4900299906730652, 0.036389999091625214, -0.8295999765396118, 0.18110999464988708, -0.3228900134563446, -0.35822001099586487, -0.3645099997520447, -0.27138999104499817, -0.990369975566864, 0.019089000299572945, 0.44051000475883484, -0.4411199986934662, -0.09274400025606155, -0.7043799757957458, 0.3942199945449829, -0.22700999677181244, 0.36959999799728394, 0.14868000149726868, -0.06671199947595596, -0.049754999577999115, -0.22411000728607178, -0.14708000421524048, -0.20340000092983246, 0.048009999096393585, -0.42184001207351685, -0.07154499739408493, -0.3747499883174896, -0.4988900125026703, -0.2049500048160553, -0.21908999979496002, -0.17674000561237335, 0.003136300016194582, 0.06972800195217133, -0.032795000821352005, -0.8071200251579285, -0.3148399889469147, -0.06529299914836884, 0.4102199971675873, 0.3098900020122528, 0.12009000033140182, -0.41187000274658203, 0.5752999782562256, -0.7513399720191956, -0.5771700143814087, -0.2777400016784668, -0.31571999192237854, 0.31878000497817993, 0.07886099815368652, 0.20760999619960785, 0.2493399977684021, 0.3023900091648102, 0.45219001173973083, 0.5583400130271912, 0.570900022983551, -0.121799997985363, -0.31918999552726746, 0.2205899953842163, 0.04063300043344498, -0.30649998784065247, -1.333400011062622, 0.7605199813842773, -0.5418199896812439, 0.09248699992895126, 0.30757999420166016], u'street': [-0.09340299665927887, -0.3751699924468994, -0.07293500006198883, 0.09871699661016464, -0.10385999828577042, -0.03142400085926056, -0.0818990021944046, 0.1925400048494339, 0.05237799882888794, -1.1166000366210938, 0.057732999324798584, 0.030688999220728874, 0.5312899947166443, 0.7343400120735168, 0.6517800092697144, 0.07451099902391434, -0.4781799912452698, 0.5612900257110596, 0.4123600125312805, -0.1507200002670288, -0.3580099940299988, -0.059158001095056534, 0.5804700255393982, -0.15253999829292297, 0.11918000131845474, 0.22864000499248505, 0.20366999506950378, 0.035868000239133835, 0.32280001044273376, 0.5784199833869934, 0.43331998586654663, 0.264849990606308, 0.021720999851822853, 0.38051000237464905, -1.0134999752044678, -0.007625299971550703, -0.6291599869728088, -0.31022000312805176, 0.3050999939441681, -0.5843700170516968, -0.5089499950408936, 0.45006000995635986, -0.43244999647140503, 1.062399983406067, 0.35774001479148865, 0.6971700191497803, 0.4963400065898895, -0.06191299855709076, -0.5296000242233276, -0.01693600043654442, -0.32482001185417175, -0.10384999960660934, 0.5154899954795837, 0.32201001048088074, 1.0924999713897705, 0.007282999809831381, 0.0410039983689785, 0.44189000129699707, 0.02367899939417839, -0.6997399926185608, 0.6176300048828125, -0.5575399994850159, 0.6976100206375122, 0.24289000034332275, 0.2924099862575531, -0.2031400054693222, -0.024651000276207924, 0.05982299894094467, 0.5274400115013123, -0.5506100058555603, -0.744379997253418, -0.10087999701499939, -0.4115999937057495, -0.1345299929380417, 0.06098200008273125, -0.026722999289631844, -0.03638400137424469, 0.026151999831199646, 0.12219999730587006, -0.3629800081253052, 0.34244000911712646, -0.38447999954223633, 0.42153000831604004, 0.055757999420166016, 0.6331300139427185, -0.32006001472473145, 0.21567000448703766, 0.3677299916744232, 0.49790000915527344, 0.36570999026298523, 0.4107399880886078, -0.41363000869750977, 0.2842400074005127, -0.06956399977207184, -0.3991999924182892, 0.7069000005722046, -0.348580002784729, -0.2772800028324127, -0.10520000010728836, -0.5673499703407288, -0.2142699956893921, 0.4123699963092804, -0.3488300144672394, -0.274399995803833, 0.27246999740600586, 0.36041998863220215, 0.4012100100517273, -0.37606000900268555, 0.8827199935913086, 0.5166000127792358, -0.7599300146102905, -0.4565100073814392, 0.28365999460220337, -0.18393999338150024, 0.1745299994945526, 0.29058998823165894, 0.20866000652313232, -0.12138999998569489, -0.5905699729919434, -0.9176899790763855, 0.11474999785423279, -0.09734000265598297, 0.12886999547481537, -0.40393999218940735, 0.05816600099205971, 0.04464900121092796, -0.21568000316619873, -0.5340999960899353, 0.016290999948978424, 0.06921499967575073, -0.04368099942803383, 0.7878100275993347, -0.14388999342918396, -0.34676000475883484, 0.04280799999833107, 0.16571000218391418, -0.3120799958705902, -0.05790200084447861, -0.215829998254776, -0.08201800286769867, 0.3614700138568878, 0.7899100184440613, 0.19559000432491302, 0.5575699806213379, -0.45462000370025635, 0.4047999978065491, -0.087848000228405, -0.20295000076293945, -0.0996050015091896, -0.23586000502109528, -0.023814000189304352, 0.8494499921798706, -0.018542999401688576, 0.5113999843597412, 0.10001000016927719, 0.3342199921607971, 0.15584999322891235, 0.464709997177124, -0.03467100113630295, 0.0733880028128624, -0.03647900000214577, 0.18161000311374664, -0.2747800052165985, -0.5221800208091736, -0.9736899733543396, 0.0009524599881842732, 0.3664799928665161, 0.5465700030326843, 0.09746400266885757, 0.2995299994945526, 0.39570000767707825, -0.4799000024795532, 0.11484000086784363, -0.45440998673439026, 0.09460099786520004, -0.35269999504089355, -0.41034001111984253, -0.2278199940919876, -0.21780000627040863, -0.014624999836087227, -0.2830899953842163, 0.5631399750709534, 0.03543400019407272, 0.26785001158714294, 0.3087399899959564, 0.4593000113964081, 0.2743000090122223, -0.3646399974822998, 0.04908899962902069, 0.30695998668670654, -0.15222999453544617, -0.22247999906539917, -0.6270099878311157, -0.2219099998474121, -0.5466499924659729, 0.2509799897670746, -0.08652400225400925, -0.8220099806785583, -0.5600500106811523, -0.21258999407291412, 1.1225999593734741, -0.2358900010585785, 0.22184999287128448, -0.21164999902248383, -0.20552000403404236, -0.1141899973154068, -0.24654999375343323, 0.2160699963569641, 0.36684998869895935, -0.10419999808073044, -0.2956100106239319, -0.12283000349998474, -0.22091999650001526, -0.494049996137619, -0.07245200127363205, 0.5978800058364868, 0.6240599751472473, -0.04027299955487251, -0.23277999460697174, -0.6026399731636047, 0.6902999877929688, -0.15354999899864197, -0.3448599874973297, -0.30630001425743103, 0.15425999462604523, 0.03054800070822239, 0.04005200043320656, -0.26177000999450684, 0.3799799978733063, 0.3834899961948395, -0.7534499764442444, 0.37843000888824463, -0.11178000271320343, -0.2313700020313263, 0.3098199963569641, 0.4133000075817108, 0.19480000436306, 0.3582800030708313, -0.4389300048351288, 0.14390000700950623, 0.1998099982738495, -0.8293399810791016, 0.2299100011587143, -0.19268999993801117, -0.4958899915218353, -0.6133599877357483, 0.267300009727478, -0.2990500032901764, 0.6001099944114685, 0.2202800065279007, 0.8896099925041199, -0.18786999583244324, -0.21850000321865082, -0.0031234000343829393, 0.04384300112724304, -0.049084000289440155, -0.3482699990272522, 0.273389995098114, 0.39746999740600586, 0.1783899962902069, -0.22721999883651733, 0.1722699999809265, 0.17744000256061554, 0.13313999772071838, 0.031132999807596207, -0.1627800017595291, -0.06624499708414078, 0.0786530002951622, -0.015424000099301338, -0.1324699968099594, -0.32969000935554504, 0.26208001375198364, 0.29818999767303467, -0.11495000123977661, -0.022954000160098076, 0.4925599992275238, -1.6806999444961548, 0.05832900106906891, -0.02462800033390522, 0.5034300088882446, -0.040640998631715775, -0.044162001460790634, 0.549560010433197, -0.17510999739170074, 0.08901099860668182, 0.6776400208473206, 0.2777000069618225, -0.0226610004901886, 0.2459699958562851, 0.03847799822688103, -0.42601001262664795, -0.21453000605106354, -0.41106000542640686, 0.7630599737167358, 0.14282000064849854, 0.25826001167297363, 0.11136999726295471, 0.21788999438285828, -0.12212999910116196, 0.390390008687973], u'flame': [0.27011001110076904, -0.2535099983215332, 0.36340001225471497, -0.5694000124931335, 0.0033855000510811806, 0.11475999653339386, 0.18322999775409698, 0.47321000695228577, -0.05187100172042847, -0.6174700260162354, 0.0012115000281482935, 0.4253399968147278, 0.13610999286174774, -1.1543999910354614, -0.021957000717520714, 0.16899999976158142, -0.7338799834251404, 0.18497000634670258, -0.4199199974536896, 0.5313000082969666, -0.89274001121521, 0.25029000639915466, 0.37623000144958496, 0.02785399928689003, 1.142799973487854, 0.17443999648094177, -0.04780599847435951, -0.3728399872779846, -0.3275499939918518, 0.2984899878501892, 0.6694200038909912, -0.11038000136613846, -0.3918899893760681, 0.5105699896812439, -0.02429799921810627, 0.46487000584602356, -0.8052300214767456, -0.4709100127220154, 0.5394399762153625, 0.33114001154899597, 0.43540000915527344, -0.3508000075817108, -0.09773100167512894, -0.643090009689331, -0.03891199827194214, -0.22563999891281128, -0.22366000711917877, 0.2913300096988678, 0.199180006980896, 0.1296200007200241, 0.14910000562667847, 0.1397700011730194, -0.14291000366210938, -0.5293899774551392, -0.5165200233459473, 0.3712800145149231, -0.49202001094818115, -0.2939999997615814, 0.260560005903244, 0.05286699905991554, -0.3811100125312805, 0.18921999633312225, 0.25920000672340393, 0.2106499969959259, 0.14451999962329865, -0.21164999902248383, 0.21254999935626984, 0.3184199929237366, 0.07379200309515, 0.16200999915599823, 0.006760099902749062, -0.4670099914073944, 0.028547000139951706, -0.21570999920368195, -0.633679986000061, 0.6564800143241882, 0.5082299709320068, -0.600849986076355, 0.1551699936389923, 0.23193000257015228, -0.4491899907588959, 0.15323999524116516, 0.23833000659942627, -0.3491399884223938, 0.062070999294519424, 0.0279690008610487, 0.2571899890899658, 0.17233000695705414, 0.3818100094795227, -0.6114199757575989, 0.2799200117588043, -0.5372999906539917, 0.09821999818086624, -0.059160999953746796, 0.38201001286506653, -0.11450999975204468, 0.19160999357700348, 0.6204699873924255, 0.11403000354766846, -0.43852001428604126, -0.18973000347614288, 0.07768599689006805, -0.35740000009536743, 0.26368001103401184, 0.5073000192642212, 0.07698799669742584, 0.5743499994277954, -0.25418999791145325, -0.1069599986076355, 0.4017300009727478, 0.06955999881029129, 0.3785800039768219, 0.3822900056838989, 0.018871000036597252, -0.21850000321865082, -0.23455999791622162, -0.48153001070022583, 0.5626500248908997, 0.24754999577999115, -0.6499800086021423, -0.28501999378204346, -0.13979999721050262, -0.3789699971675873, 0.14030000567436218, -0.14869000017642975, -0.17328999936580658, 0.37257999181747437, 0.06770999729633331, -0.1252399981021881, 0.03299799934029579, 0.5090100169181824, 0.5204399824142456, 0.5740699768066406, 0.3184199929237366, 0.4328399896621704, 0.05736299976706505, -0.12058000266551971, -0.20699000358581543, 0.3361299932003021, 0.2410700023174286, 0.13043999671936035, -0.5504099726676941, -0.296099990606308, -0.49410000443458557, -0.14771999418735504, -0.039712999016046524, 0.09362199902534485, 0.27741000056266785, -0.258109986782074, -0.19514000415802002, 0.21171000599861145, 0.16147999465465546, 0.10200999677181244, -0.18252000212669373, 0.5888000130653381, -0.15981000661849976, 0.11495000123977661, -0.5630999803543091, -0.39395999908447266, -0.45974001288414, 0.05944700166583061, -0.5942100286483765, -0.3058600127696991, 0.087677001953125, -0.022021999582648277, 0.21241000294685364, -0.13224999606609344, 0.4260700047016144, 0.03659699857234955, -0.2743000090122223, 0.1222900003194809, 0.07012300193309784, 0.49862000346183777, 0.13874000310897827, -0.48851001262664795, -0.45274001359939575, 0.09143199771642685, -0.30272001028060913, 0.4657500088214874, -0.006570599973201752, -0.056644000113010406, -0.08306100219488144, 0.3218599855899811, -0.05067000165581703, 0.1684499979019165, 0.29739001393318176, 0.6333500146865845, 0.29482999444007874, -0.24067999422550201, -0.5794000029563904, 0.39904001355171204, -0.4044399857521057, -0.46876999735832214, -0.1899300068616867, -0.24232999980449677, -0.3577899932861328, -0.1144300028681755, 0.017805000767111778, 0.14174999296665192, 0.5341399908065796, 0.666159987449646, 0.6035100221633911, 0.7715700268745422, 0.2217400074005127, 0.31703999638557434, -0.5551699995994568, -0.15443000197410583, -0.002710100030526519, 0.24672000110149384, 0.3799099922180176, 0.567550003528595, 0.14271999895572662, -0.342960000038147, -0.23844000697135925, 0.10559000074863434, -0.18525999784469604, 0.41117000579833984, -0.4416700005531311, 0.1667499989271164, -0.416049987077713, 0.5124599933624268, 0.11542999744415283, 0.0903640016913414, -0.2916699945926666, -0.11744000017642975, -0.5202400088310242, -0.2581599950790405, 0.18458999693393707, -0.16851000487804413, -0.15665000677108765, 0.09670700132846832, -0.23194000124931335, 0.043473001569509506, -0.33643999695777893, -0.3186900019645691, 0.02384999953210354, -0.2961199879646301, -0.40814998745918274, -0.17228999733924866, -0.16874000430107117, 0.08258800208568573, -0.09052400290966034, -0.8542799949645996, -0.11838000267744064, 0.2590700089931488, 0.3429900109767914, 0.575689971446991, -0.05475800111889839, -0.09476900100708008, -0.2534100115299225, 0.12764999270439148, -0.7781000137329102, -0.5520200133323669, -0.47334998846054077, 0.20058999955654144, 0.10068999975919724, -0.23681999742984772, -0.746209979057312, -0.31314000487327576, -0.43296000361442566, -0.06463900208473206, -0.10496000200510025, 0.4212999939918518, 0.23319000005722046, -0.10478000342845917, 0.5248100161552429, -0.4550600051879883, 0.21150000393390656, 0.3536899983882904, -0.22628000378608704, 0.2257400006055832, -0.15744000673294067, 0.5693399906158447, 0.4948599934577942, -0.5419300198554993, 0.21886999905109406, -1.054800033569336, -0.27566999197006226, -0.593529999256134, -0.5763000249862671, -0.017100999131798744, 0.06599800288677216, 0.14386999607086182, 0.5343800187110901, 0.13882000744342804, 0.10548999905586243, -0.10819999873638153, -0.002472599968314171, -0.19884000718593597, 0.007629800122231245, 0.8526800274848938, 0.4972800016403198, 0.08968500047922134, -0.24956999719142914, -0.24428999423980713, -0.01448499970138073, 0.5171200037002563, 0.45897001028060913, -0.010463000275194645, 0.5952799916267395], u'cake': [0.05165499821305275, 0.30052000284194946, -0.042413998395204544, -0.29840999841690063, -0.3255299925804138, 0.11941999942064285, -0.016083000227808952, -0.3040899932384491, 0.1571200042963028, -0.3636699914932251, -0.01546700019389391, -0.8920400142669678, -0.10530000180006027, 0.382999986410141, -0.7236999869346619, -0.7616400122642517, -0.1623300015926361, -0.09935099631547928, -0.1403300017118454, -0.13595999777317047, 0.33792999386787415, 0.10614000260829926, -0.1712699979543686, 0.6398299932479858, -0.3504199981689453, -0.14674000442028046, -0.3121100068092346, 0.1729000061750412, -0.4112499952316284, -0.7890999913215637, -0.04059800133109093, 0.376800000667572, -0.46110999584198, -0.24160000681877136, -0.7782300114631653, 0.5484700202941895, -0.180649995803833, 0.4404900074005127, -0.42348000407218933, 0.06128599867224693, -0.31683000922203064, 0.14680999517440796, -0.0002530700003262609, 0.2996099889278412, 0.07157599925994873, -0.2604300081729889, 0.5842099785804749, -0.4302400052547455, 0.2962299883365631, 0.18432000279426575, 0.31057000160217285, 0.10113999992609024, 0.4884200096130371, 0.2939099967479706, -0.7626199722290039, -0.22393999993801117, -0.23321999609470367, 0.07040499895811081, 0.6204900145530701, -0.15335999429225922, 0.3961400091648102, -0.10040999948978424, 0.4216499924659729, 0.003799600061029196, -0.05796699970960617, -0.30990999937057495, 0.3520300090312958, 0.18690000474452972, -0.37860000133514404, 0.19654999673366547, 0.2635599970817566, 0.003854600014165044, -0.735230028629303, -0.040915001183748245, -0.12581999599933624, 0.3235599994659424, 0.4012500047683716, -0.010360999964177608, -0.30803999304771423, -0.2360599935054779, 0.22924000024795532, 0.49990999698638916, 0.1143999993801117, -0.13440999388694763, 0.4365299940109253, -0.6776999831199646, -0.49015000462532043, 0.403219997882843, 0.20566999912261963, -0.2903200089931488, -0.46209999918937683, -0.31512001156806946, -0.373879998922348, -0.5097100138664246, -0.16394999623298645, 0.038878001272678375, 0.0791660025715828, 0.58051997423172, -0.04074399918317795, -0.19256000220775604, -0.10216999799013138, -0.10687000304460526, 0.04738499969244003, -0.7221900224685669, 0.1740099936723709, -0.25812000036239624, 0.18156999349594116, 0.6662300229072571, -0.6748700141906738, 0.29771000146865845, 0.4307500123977661, 0.5814499855041504, 0.020022999495267868, -0.6154800057411194, -0.18818999826908112, -0.10430999845266342, -0.5593799948692322, 0.6235100030899048, 0.0568850003182888, -0.45789000391960144, 0.05938899889588356, 0.18540999293327332, 0.11231999844312668, -0.19101999700069427, -0.5771499872207642, -0.5975599884986877, 0.3200800120830536, 0.5944300293922424, -0.4917599856853485, 0.5487899780273438, -0.2434699982404709, 1.1450999975204468, -0.030267000198364258, 0.341839998960495, 0.12408000230789185, -0.3720000088214874, -0.8089900016784668, 0.27913999557495117, -0.26892998814582825, -0.3256100118160248, 0.7345100045204163, 0.08876299858093262, -0.9727299809455872, -0.33392998576164246, 0.37060999870300293, 0.36774998903274536, -0.07408100366592407, 0.34769999980926514, -0.09224399924278259, -0.28022000193595886, -0.4024899899959564, 0.3966900110244751, 0.24538999795913696, 0.5858799815177917, -0.11376000195741653, 0.27893000841140747, -0.2013300061225891, -0.3446199893951416, -0.44029998779296875, 0.12347999960184097, -0.1106799989938736, -0.31134000420570374, -0.1568399965763092, -0.010912000201642513, -0.36924999952316284, -0.02811400033533573, 0.10745000094175339, 0.07188999652862549, 0.31630000472068787, -0.34275999665260315, -0.38012999296188354, -0.18440000712871552, 0.026226000860333443, -0.8007100224494934, -0.394540011882782, 0.16575999557971954, -0.20273999869823456, -0.005646599922329187, 0.1699099987745285, -0.774399995803833, -0.06998199969530106, 0.22481000423431396, 1.01419997215271, -0.26840001344680786, -0.18935999274253845, -0.12444999814033508, 1.0525000095367432, -0.04968100041151047, 0.12233000248670578, -0.38885000348091125, 0.15306000411510468, 0.7675999999046326, -0.34718000888824463, 0.0909539982676506, -0.05830100178718567, -0.014790000393986702, -0.40529999136924744, 0.2942200005054474, -0.046227000653743744, -0.2610599994659424, 0.7628999948501587, -0.2994399964809418, 0.5188500285148621, 0.5685799717903137, 0.06530400365591049, -0.208079993724823, 0.6866099834442139, 0.159620001912117, 0.15008999407291412, -0.3240799903869629, -0.32058000564575195, -0.39212000370025635, -0.2328300029039383, -0.1360200047492981, 0.042660001665353775, 0.1146399974822998, 0.3006199896335602, -0.8049100041389465, 0.39649999141693115, 0.4156700074672699, 0.527400016784668, 0.790910005569458, -0.26218000054359436, 0.28466999530792236, -0.5550100207328796, -0.44086000323295593, 0.2097499966621399, 0.18761000037193298, 0.8589000105857849, -0.07069499790668488, -0.010161999613046646, -0.14710000157356262, -0.2328999936580658, 0.22127999365329742, 0.7968000173568726, 0.1185000017285347, -0.21332000195980072, -0.0023898999206721783, 0.05649799853563309, -0.2697399854660034, -0.10976000130176544, -0.17506000399589539, -0.03359600156545639, -0.37738001346588135, -0.9251000285148621, 0.4249800145626068, -0.014429000206291676, 0.5238400101661682, 0.6987900137901306, -0.7031700015068054, 0.6293900012969971, -0.4490000009536743, 0.18272000551223755, 0.2749499976634979, 0.6234999895095825, 0.5501700043678284, -0.019632000476121902, -0.23991000652313232, 0.3632600009441376, 0.4007999897003174, -0.5176100134849548, -0.20848000049591064, 0.3415299952030182, 0.09231700003147125, 0.1364399939775467, -0.04392699897289276, -0.3941099941730499, 0.16678999364376068, 0.8732699751853943, 0.07417000085115433, -0.17343999445438385, 0.0006527199875563383, 0.32471001148223877, 0.5379899740219116, -0.192890003323555, -0.3391900062561035, -0.4998300075531006, -0.3057200014591217, -1.4458999633789062, -0.7969300150871277, 0.1287499964237213, 0.4926599860191345, -0.6940699815750122, -0.6299899816513062, -0.06888899952173233, 0.608299970626831, 0.5944300293922424, -0.2410299926996231, 0.16859999299049377, 0.5113099813461304, 0.020448999479413033, -0.27373000979423523, -0.09400399774312973, 0.39094001054763794, 0.2915000021457672, -0.7745199799537659, 0.06734000146389008, 0.24913999438285828, -0.2928299903869629, -0.24523000419139862], u'bridge': [-0.028963999822735786, -0.7682099938392639, 0.014600999653339386, -0.8585799932479858, -0.08464200049638748, 0.23050999641418457, 0.2817400097846985, -0.19577999413013458, -0.19693000614643097, -1.0038000345230103, -0.18679000437259674, 0.06403400003910065, 0.058880001306533813, -0.22348999977111816, 0.47123000025749207, 0.03687499836087227, 0.16438999772071838, -0.01921899989247322, 0.0071701002307236195, -0.18643000721931458, 0.11789999902248383, -0.29398998618125916, 0.2016499936580658, -0.09070800244808197, -0.39316999912261963, 0.046278998255729675, -0.4514999985694885, -0.050887998193502426, 0.14318999648094177, 0.6433699727058411, 0.7815700173377991, 0.29082000255584717, 0.4349899888038635, 0.6314499974250793, -0.09473100304603577, 0.584630012512207, -0.09325399994850159, -0.3193199932575226, 0.7925000190734863, 0.18719999492168427, -0.23441000282764435, -0.03382499888539314, -0.863070011138916, 0.5428100228309631, -0.06108900159597397, 0.3599399924278259, 0.4016900062561035, 0.19957999885082245, -0.2484699934720993, 0.09409099817276001, -0.16380999982357025, 0.28022998571395874, -0.3201799988746643, -0.5060200095176697, 0.06139799952507019, 0.4602299928665161, 0.09547200053930283, -0.09888499975204468, -0.4156000018119812, 0.6577500104904175, 0.5956000089645386, -0.1276099979877472, 0.05279700085520744, -0.6479700207710266, 0.6184300184249878, 0.016536999493837357, -0.2300499975681305, 0.4034999907016754, -0.13109000027179718, -0.1507900059223175, -0.24977999925613403, 0.26058000326156616, -0.01796099916100502, -0.3397200107574463, -0.10819999873638153, 0.31084999442100525, 0.2446800023317337, 0.6037200093269348, -0.40064001083374023, -0.37872999906539917, 0.11693000048398972, -0.5261499881744385, 0.5442299842834473, -0.7388899922370911, -0.24110999703407288, -0.3032799959182739, 0.0878319963812828, 0.3756600022315979, -0.010517000220716, 0.32936999201774597, 0.8036900162696838, 0.38405001163482666, 0.6396999955177307, -0.046383000910282135, -0.11023999750614166, 0.29576998949050903, 0.14881999790668488, -0.8046299815177917, -0.01964299939572811, -0.035943999886512756, -0.3545700013637543, -0.03028300032019615, 0.38550999760627747, -0.16256999969482422, 0.5287600159645081, 0.587939977645874, 0.5998299717903137, -0.13088999688625336, 0.17475999891757965, -0.3307499885559082, -0.14289000630378723, -0.06173799932003021, 0.31516000628471375, -0.24265000224113464, -0.3719500005245209, -0.26754000782966614, -0.17625999450683594, 0.4436500072479248, -0.16412000358104706, -0.4501599967479706, -0.0772550031542778, -0.4683400094509125, 0.03674900159239769, -0.1574999988079071, 0.0870710015296936, -0.49171000719070435, 0.15196000039577484, 0.22224000096321106, 0.17271000146865845, -0.335099995136261, 0.24357999861240387, 0.7141299843788147, 0.5093700289726257, 0.3208799958229065, -0.1987999975681305, -0.44802001118659973, 0.06250400096178055, -0.3916400074958801, -0.2988699972629547, -0.4920800030231476, -0.4788999855518341, 0.09705899655818939, 0.14687000215053558, 0.2207300066947937, -0.18174000084400177, -0.016950000077486038, 0.7101799845695496, 0.2177799940109253, -0.8066400289535522, -0.493120014667511, 0.1835000067949295, 0.39660999178886414, 0.06095900014042854, -0.9773300290107727, 1.0575000047683716, -0.13269999623298645, 0.16399000585079193, -0.26673999428749084, -0.5587999820709229, 0.13432000577449799, 0.4981600046157837, 0.13787999749183655, 0.5805500149726868, -0.6549599766731262, -0.24660000205039978, 0.1607999950647354, -0.1440500020980835, -0.2855899930000305, -0.385919988155365, -0.17319999635219574, -0.07713200151920319, -0.0638049989938736, 0.4934700131416321, -0.3681800067424774, 0.5429099798202515, 0.018146000802516937, -0.9972400069236755, -0.687470018863678, -0.22120000422000885, -0.2942200005054474, 0.498879998922348, 0.24657000601291656, -0.03415299952030182, 0.0954039990901947, -0.14731000363826752, -0.32958999276161194, -0.5827900171279907, 0.0034489999525249004, 0.4940600097179413, 0.6382200121879578, -0.15439000725746155, 0.9283000230789185, 0.0605820007622242, 0.1944199949502945, -0.6106500029563904, 0.02851800061762333, 0.3858799934387207, -0.6121000051498413, 0.30518999695777893, 0.01616699993610382, 1.1319999694824219, 0.4366700053215027, -0.01902100071310997, -0.34101998805999756, -0.5129600167274475, 0.24666999280452728, 0.25999000668525696, 0.07899200171232224, 0.79339998960495, 0.560699999332428, 0.24345999956130981, 0.4280500113964081, 0.3142099976539612, -0.13686999678611755, 0.028658999130129814, -0.14883999526500702, -0.5206599831581116, -0.05064300075173378, 0.18764999508857727, 0.19731000065803528, 0.6359300017356873, -0.23308999836444855, 0.6692900061607361, -0.2150699943304062, 0.4823800027370453, 0.08182399719953537, 0.37869998812675476, -0.10251999646425247, -0.10135000199079514, 0.097120001912117, -0.49066999554634094, 0.15836000442504883, -0.7389100193977356, -0.08947999775409698, 0.7362200021743774, 0.19676999747753143, -0.16710999608039856, 0.23015999794006348, 0.09224399924278259, -0.21825000643730164, 0.05372200161218643, -0.07554399967193604, 0.46417999267578125, -0.6451699733734131, -0.34797999262809753, 0.019091999158263206, 0.17579999566078186, 0.3451099991798401, 0.2497200071811676, 0.10963000357151031, 0.2625899910926819, 0.07511399686336517, 0.4757100045681, -0.21137000620365143, -0.00230560009367764, -0.4876999855041504, -0.12726999819278717, 0.37950998544692993, 0.5870199799537659, -0.08640799671411514, -0.16558000445365906, 0.34112000465393066, -0.03467100113630295, -0.36340999603271484, -0.06837700307369232, 0.19623999297618866, 0.44343000650405884, -0.5561500191688538, -0.24478000402450562, -0.47457998991012573, 0.36796000599861145, -0.010267999954521656, 0.7336699962615967, -0.022120000794529915, -0.07127899676561356, -0.14215999841690063, -1.2687000036239624, -0.47600001096725464, 0.12972000241279602, 0.4158399999141693, -0.2325199991464615, -0.33371999859809875, 0.8378999829292297, -0.8720899820327759, -0.22920000553131104, 0.47075000405311584, -0.2903999984264374, -0.18574999272823334, -0.12447000294923782, -0.34839001297950745, -0.0012029999634250998, -0.25617000460624695, -0.3572399914264679, 0.713670015335083, 0.05368399992585182, 0.19735999405384064, 0.35155001282691956, 0.15432000160217285, 0.07666700333356857, 0.4769900143146515], u'stream': [-0.5605300068855286, -0.03855299949645996, 0.3884899914264679, -0.2689700126647949, -0.4534600079059601, -0.051114000380039215, 0.2267799973487854, 0.19411000609397888, 0.5222200155258179, -1.2773000001907349, -0.4081999957561493, -0.17874999344348907, 0.15689000487327576, -0.5267900228500366, -0.09446500241756439, -0.29433000087738037, -0.6101700067520142, 0.32833999395370483, 1.1527999639511108, 0.7024499773979187, -0.5852699875831604, 0.0006555099971592426, 0.11941000074148178, 0.45767998695373535, -0.2366899996995926, -0.0059238001704216, 0.49428001046180725, 0.27498000860214233, -0.02942500077188015, 0.23303000628948212, 0.20393000543117523, -0.05197399854660034, 0.39991000294685364, 0.4274500012397766, -0.08253999799489975, -0.11129999905824661, -0.34200000762939453, -0.11984000355005264, 0.32513999938964844, 0.08156800270080566, -0.3479599952697754, 0.455130010843277, -0.018050000071525574, 0.11858999729156494, 0.07482100278139114, 0.22605000436306, 0.3294200003147125, 0.07931400090456009, 0.6140199899673462, -0.02311200089752674, -0.15896999835968018, 0.27261999249458313, 0.22020000219345093, -0.7610800266265869, -0.1254200041294098, 0.08061599731445312, 0.0924379974603653, -0.3940599858760834, 0.4193100035190582, 0.9013800024986267, -0.09524500370025635, -0.14110000431537628, 0.9950299859046936, -0.03332599997520447, -0.09820999950170517, 0.23759999871253967, 0.0013683000579476357, 0.1961899995803833, -0.015754999592900276, 0.5192400217056274, 0.2942500114440918, 0.13524000346660614, -0.35576000809669495, 0.08534500002861023, -0.005106199998408556, 0.011114999651908875, 0.20048999786376953, -0.10520000010728836, 0.08270899951457977, -0.06406400352716446, -0.4220699965953827, -0.5355499982833862, -0.3878900110721588, -0.29962998628616333, 0.7181100249290466, 0.3094800114631653, -0.20754000544548035, -0.4388999938964844, 0.3099699914455414, -0.4556899964809418, 0.3942500054836273, 0.15727999806404114, 0.04503900185227394, -0.16929000616073608, 0.2785300016403198, 0.26802998781204224, 0.3386499881744385, -0.27243998646736145, 0.3529300093650818, 0.09421399980783463, 0.08945299685001373, 0.023643000051379204, 0.07203900068998337, -0.3667899966239929, 0.020681999623775482, 0.4683299958705902, 0.6855400204658508, -0.21491000056266785, -0.003924999851733446, -0.1734900027513504, -0.22985999286174774, -0.2517699897289276, -0.014178999699652195, 0.10270000249147415, -0.5442100167274475, 0.19514000415802002, 0.002555999904870987, -0.131740003824234, -0.1865299940109253, -0.26816999912261963, 0.07362399995326996, -0.03771800175309181, -0.1974399983882904, 0.4348500072956085, 0.2676999866962433, 0.10204999893903732, 0.16926999390125275, 0.2762700021266937, -0.06986299902200699, 0.08434999734163284, -0.50204998254776, 0.12494000047445297, 0.05428599938750267, -0.1951500028371811, 0.0703359991312027, -0.0291300006210804, 0.8208100199699402, 0.2805500030517578, -0.04708399996161461, -0.24247999489307404, 0.5475199818611145, -0.45028001070022583, -0.20940999686717987, -0.05659100040793419, -0.11292000114917755, 0.39131999015808105, 0.006696799769997597, 0.3685300052165985, 0.127020001411438, 0.25672000646591187, 0.24790999293327332, 0.09026800096035004, -0.30445998907089233, 0.02293499931693077, 0.7458299994468689, -0.29559001326560974, 0.6703199744224548, -0.6482700109481812, -0.2524699866771698, 0.0012874000240117311, -0.2338400036096573, -0.6284400224685669, 0.6971099972724915, -0.322409987449646, 0.029505999758839607, -0.015057000331580639, -0.13432000577449799, -0.09971100091934204, -0.3924199938774109, 0.18397000432014465, 0.12307000160217285, 0.3866899907588959, 0.009076399728655815, 0.3894599974155426, -0.41347000002861023, 0.10518000274896622, -0.13931000232696533, -0.07151299715042114, 0.32861000299453735, -0.1912900060415268, -0.11668000370264053, -0.2611500024795532, -0.26614999771118164, 0.2463800013065338, 0.2387399971485138, -0.4986000061035156, 0.09106700122356415, -0.06466999650001526, -0.21101999282836914, -0.17856000363826752, 0.03169799968600273, 0.8044300079345703, -0.3434999883174896, -0.13429999351501465, -0.03213300183415413, 0.14876000583171844, 0.15018999576568604, -0.8352599740028381, -0.2652899920940399, 0.24212999641895294, 0.2615399956703186, -0.176829993724823, 0.0683170035481453, -0.5370799899101257, 0.02790899947285652, -0.3368000090122223, -0.9563199877738953, 0.3292100131511688, -0.016110999509692192, 0.22307999432086945, -0.21886000037193298, -0.10938999801874161, 0.24884000420570374, -0.23814000189304352, -0.4886299967765808, 0.0306170005351305, -0.2445800006389618, 0.02648399956524372, 0.07889799773693085, 0.3494499921798706, 0.05829399824142456, 0.41319000720977783, 0.19990000128746033, -0.146139994263649, 0.2608799934387207, -0.19993999600410461, 0.048062000423669815, 0.1581999957561493, 0.5808699727058411, 0.18425999581813812, -0.28334999084472656, -0.28916001319885254, -0.17590999603271484, -0.7716799974441528, 0.6998299956321716, 0.1350799947977066, 0.027667999267578125, -0.5539600253105164, -0.28852999210357666, -0.6083400249481201, -0.14086000621318817, 0.5098099708557129, -0.10977999866008759, -0.3066900074481964, -0.8312399983406067, -0.3822000026702881, 0.6813499927520752, -0.18942999839782715, -0.3297500014305115, -0.2035199999809265, 0.098191998898983, -0.34380000829696655, 0.48541998863220215, -0.41923001408576965, 0.06131000071763992, -0.13104000687599182, 0.010394000448286533, 0.44534000754356384, -0.10491999983787537, 0.7337599992752075, 0.22939999401569366, -0.2354000061750412, -0.06226300075650215, 0.22754999995231628, -0.2503400146961212, -0.16306999325752258, 0.051642000675201416, -0.36333000659942627, 0.017449000850319862, 0.222120001912117, 0.21918000280857086, -0.3689500093460083, -0.2586100101470947, -0.1404000073671341, -0.07578299939632416, 0.30717000365257263, -1.1750999689102173, 0.23281000554561615, 0.517520010471344, 0.17565999925136566, -0.48774001002311707, 0.4843200147151947, -0.022307999432086945, -0.14962999522686005, -0.24368999898433685, -0.32690000534057617, 0.4369800090789795, -0.06211800128221512, 0.10552000254392624, 0.09494200348854065, -0.17295999825000763, 0.18626999855041504, 0.08025699853897095, -0.044220998883247375, 0.25828999280929565, -0.10980000346899033, 0.4389300048351288, 0.39465999603271484, 0.15834000706672668, 0.3891099989414215], u'well': [-0.13508999347686768, 0.3590700030326843, 0.1453000009059906, -0.12828999757766724, -0.05572500079870224, 0.40108001232147217, -0.09409800171852112, 0.23064999282360077, 0.06729499995708466, -1.9430999755859375, 0.28650999069213867, -0.003136599902063608, -0.04010000079870224, 0.28839001059532166, 0.03992899879813194, -0.008701699785888195, -0.5519800186157227, 0.1090800017118454, 0.15219999849796295, 0.01691799983382225, -0.03238600119948387, 0.21480000019073486, 0.2857699990272522, 0.1694200038909912, -0.36601999402046204, 0.056533001363277435, -0.0363910011947155, 0.05486200004816055, -0.18598000705242157, 0.23419000208377838, 0.18544000387191772, 0.3515700101852417, -0.2849699854850769, 0.12725000083446503, -0.7767800092697144, 0.046404000371694565, 0.22439999878406525, 0.2636600136756897, 0.006994999945163727, -0.18312999606132507, -0.1819700002670288, -0.3688099980354309, -0.043602000921964645, -0.1315699964761734, 0.13996000587940216, 0.34029000997543335, 0.33357998728752136, 0.4576599895954132, -0.022175999358296394, 0.4245299994945526, -0.0587569996714592, -0.17735999822616577, 0.18038000166416168, -0.17124000191688538, -0.20202000439167023, -0.004610800184309483, -0.04361800104379654, 0.23202000558376312, 0.3636400103569031, 0.12620000541210175, 0.25446000695228577, 0.12602999806404114, 0.34198999404907227, 0.04902099817991257, -0.02047000080347061, -0.022835999727249146, 0.316210001707077, 0.09193500131368637, 0.07880699634552002, 0.06074399873614311, 0.05615000054240227, -0.16083000600337982, 0.19192999601364136, 0.16940000653266907, -0.0008594599785283208, -0.2679300010204315, 0.27722999453544617, 0.3763599991798401, -0.002921199891716242, -0.14226999878883362, -0.13579000532627106, -0.05649099871516228, 0.2852100133895874, -0.161190003156662, 0.05624400079250336, 0.149959996342659, -0.01235199999064207, 0.17037999629974365, 0.0010185999562963843, -0.10470999777317047, 0.015496999956667423, 0.5724300146102905, -0.2365799993276596, -0.08958700299263, -0.01829499937593937, 0.12591999769210815, -0.05895699933171272, -0.037105001509189606, 0.006194000132381916, -0.005189999938011169, 0.0037424000911414623, -0.13741999864578247, -0.16106000542640686, -0.34779998660087585, -0.07382900267839432, 0.25780999660491943, 0.06234800070524216, 0.26497000455856323, -0.06848800182342529, -0.14069999754428864, 0.1019200012087822, -0.3961000144481659, -0.06864999979734421, -0.2096100002527237, 0.044151999056339264, 0.27584999799728394, -0.27004000544548035, -0.17976999282836914, -0.05359400063753128, -0.0949229970574379, -0.1262899935245514, -0.06983699649572372, 0.08475100249052048, 0.053001999855041504, -0.007942699827253819, 0.1582300066947937, -0.2779200077056885, 0.4728499948978424, 0.07816699892282486, 0.12296000123023987, 0.1691800057888031, 0.06995999813079834, 0.07889500260353088, -0.2052599936723709, -0.07922700047492981, -0.163100004196167, -0.07286199927330017, 0.018296999856829643, -0.07424499839544296, 0.5598400235176086, 0.1446399986743927, -0.024622000753879547, 0.09196999669075012, 0.10530000180006027, 0.00649659987539053, 0.06115100160241127, 0.1278800070285797, -0.07334999740123749, -0.29047998785972595, 0.08899399638175964, 0.20569999516010284, -0.08042699843645096, -0.03003999963402748, 0.0434579998254776, 0.19232000410556793, -0.003431200049817562, -0.13763000071048737, 0.0061897998675704, 0.5346699953079224, -0.18904000520706177, 0.03123999945819378, -0.12250000238418579, -0.13425999879837036, -0.15898999571800232, -0.21818000078201294, 0.06116199865937233, 0.06193700060248375, -0.022285999730229378, 0.26952001452445984, 0.39945000410079956, 0.32945001125335693, 0.16737000644207, -0.7559999823570251, 0.08848699927330017, 0.041255999356508255, 0.19878999888896942, -0.13572999835014343, -0.16098999977111816, -0.09004099667072296, 0.27524998784065247, 0.11711999773979187, 0.04546799883246422, 0.4345099925994873, -0.11035999655723572, 0.29603999853134155, -0.18870000541210175, -0.042642999440431595, 0.13248999416828156, -0.060175999999046326, 0.07629299908876419, -0.014825000427663326, 0.10010000318288803, -0.1324400007724762, 0.10413999855518341, -0.13305999338626862, -0.35565999150276184, 0.019883999601006508, -0.002648900030180812, -0.05190800130367279, -0.2585499882698059, 0.9628099799156189, 0.06612899899482727, 0.002629399998113513, 0.09554199874401093, 0.1292800009250641, 0.023806000128388405, 0.05456800013780594, 0.11450999975204468, -0.0015460000140592456, -0.4448600113391876, 0.28415998816490173, 0.06756500154733658, 0.13263000547885895, -0.27219000458717346, 0.249099999666214, -0.11021000146865845, -0.1343899965286255, 0.08101200312376022, 0.23074999451637268, -0.04936299845576286, 0.23496000468730927, -0.06776700168848038, -0.49022001028060913, -0.051649998873472214, -0.00029913001344539225, 0.1442900002002716, -0.15624000132083893, -0.07177700102329254, -0.2170799970626831, -0.23055000603199005, -0.15678000450134277, -0.03576600179076195, 0.06812000274658203, -0.008063700050115585, -0.04109000042080879, 0.3338100016117096, 0.19578999280929565, 0.036416999995708466, -0.45570001006126404, 0.26330000162124634, -0.11168999969959259, 0.3538399934768677, 0.26124000549316406, 0.25957000255584717, -0.718940019607544, 0.09662599861621857, 0.006437100004404783, 0.2173600047826767, 0.061778001487255096, 0.12582999467849731, 0.3488599956035614, -0.2850100100040436, -0.07272999733686447, 0.17845000326633453, 0.4495599865913391, -0.03617500141263008, 0.05040900036692619, -0.19929000735282898, 0.014173000119626522, 0.12809999287128448, -0.12745000422000885, -0.09446199983358383, 0.23976999521255493, 0.11376000195741653, -0.29271000623703003, -0.010955999605357647, -0.3495999872684479, -0.2847299873828888, 0.0688840001821518, 0.16047999262809753, 0.10939999669790268, -0.11225000023841858, -0.13835999369621277, 0.22139999270439148, 0.04048199951648712, 0.006709500215947628, -2.031599998474121, -0.031491998583078384, 0.001386999967508018, -0.12377999722957611, -0.1514499932527542, -0.04978200048208237, 0.08626600354909897, 0.24166999757289886, -0.034596998244524, 0.17589999735355377, -0.0013132999883964658, 0.11824999749660492, 0.04813800007104874, -0.20375999808311462, -0.011660999618470669, -0.06395799666643143, -0.10642000287771225, -0.23609000444412231, 0.188960000872612, 0.024149000644683838, -0.03993599861860275, -0.42100000381469727, -0.13339999318122864, 0.11190000176429749], u'penny': [0.15395000576972961, -0.3273000121116638, -0.45295000076293945, 0.6554399728775024, -0.09134799987077713, 0.3213199973106384, -0.20791999995708466, -0.22437000274658203, -0.14470000565052032, -0.3733699917793274, -0.28744998574256897, -0.34973999857902527, 0.1352500021457672, -0.15177999436855316, 0.059365998953580856, 0.48409000039100647, -0.06146800145506859, -0.2765499949455261, 0.03498600050806999, -0.16946999728679657, 0.20303000509738922, -0.0027385998982936144, 0.1033800020813942, 0.03196600079536438, 0.8603500127792358, 0.6114299893379211, -0.06970900297164917, 0.4322899878025055, 0.5381699800491333, -0.13649000227451324, 0.1911199986934662, 0.28426000475883484, 0.2182600051164627, -0.10162000358104706, -1.3203999996185303, 0.001958899898454547, -0.11836999654769897, 0.271340012550354, -0.5256999731063843, 0.5497000217437744, -0.009718700312077999, -0.06322299689054489, 0.009981599636375904, 0.46279001235961914, 0.1325799971818924, -0.00432930001989007, 0.16398000717163086, -0.061941999942064285, -0.2996399998664856, 0.23670999705791473, 0.18846000730991364, -0.003891000058501959, 0.040153998881578445, 0.29989001154899597, -0.7375699877738953, -0.16218000650405884, -0.03467300161719322, 0.011509999632835388, -0.3306800127029419, -0.8975899815559387, -0.48739001154899597, -0.03557499870657921, 0.19217999279499054, -0.12488999962806702, 0.9422399997711182, -0.4454900026321411, -0.03752899914979935, -0.5886099934577942, -0.13488000631332397, -0.25613999366760254, 0.03306499868631363, -0.37498998641967773, -0.21341000497341156, 0.02263999916613102, 0.07975099980831146, 0.5110200047492981, 0.5995200276374817, -0.20227999985218048, -0.023403000086545944, -0.402539998292923, -0.12467999756336212, 0.3512600064277649, 0.38054001331329346, -0.19960999488830566, 0.18264999985694885, 0.18885000050067902, 0.3866100013256073, 0.05896899849176407, 0.14669999480247498, -0.08013200014829636, 0.1966399997472763, 0.07712999731302261, -0.08191999793052673, -0.49882999062538147, -0.09757400304079056, 0.41481998562812805, 0.3992899954319, -0.08662799745798111, -0.10668999701738358, 0.14068999886512756, -0.3889999985694885, -0.43915000557899475, -0.800570011138916, -0.6255199909210205, 0.4137499928474426, 0.7156100273132324, -0.7139999866485596, -0.25661998987197876, 0.05824799835681915, 0.16290000081062317, -0.8641999959945679, -0.10854999721050262, 0.10503000020980835, 0.0324149988591671, 0.5901899933815002, 0.10847999900579453, 0.3714199960231781, -0.27083998918533325, 0.35266000032424927, 0.046153001487255096, -0.14789000153541565, 0.12019000202417374, -0.33706000447273254, 0.09592100232839584, -0.15150000154972076, -0.15803000330924988, 0.11670000106096268, -0.019020000472664833, 0.11021000146865845, 0.003265300067141652, -0.10777000337839127, 0.017495999112725258, -0.6300399899482727, 0.1472499966621399, 0.06679899990558624, 0.13977999985218048, -0.5807499885559082, -0.09972500056028366, 0.13738000392913818, 0.243259996175766, 0.5401800274848938, 0.3101300001144409, -0.3572399914264679, 0.01608099974691868, -0.6284700036048889, 0.4037800133228302, 0.03178900107741356, 0.4663099944591522, 0.31999000906944275, 0.18727000057697296, -0.09108900278806686, 0.5443300008773804, -0.3975200057029724, -0.9140999913215637, -0.7496299743652344, 0.2284500002861023, -0.7685499787330627, -0.2692300081253052, -0.48072001338005066, 0.09886199980974197, -0.06726399809122086, -0.37077000737190247, 0.2556999921798706, -0.6573299765586853, 0.06588199734687805, 0.7009299993515015, -0.23619000613689423, 0.8321999907493591, 0.49035000801086426, 0.1674399971961975, 0.15481999516487122, 0.3237699866294861, -0.5697399973869324, 0.1562899947166443, 0.1627800017595291, -0.5767899751663208, -0.4984399974346161, -0.21674999594688416, 0.08513999730348587, 0.17816999554634094, -0.1011200025677681, 1.0351999998092651, -0.17892000079154968, 0.135110005736351, -0.08730299770832062, -0.2556000053882599, 0.6733800172805786, -0.03971000015735626, 0.2387399971485138, -0.23116999864578247, 0.36329999566078186, -0.133310005068779, 0.19119000434875488, -0.26611998677253723, -0.6817200183868408, 0.2778399884700775, 0.3194600045681, -0.5672900080680847, 0.17976999282836914, -0.23309999704360962, 0.5238000154495239, -0.05553299933671951, 0.3242399990558624, -0.15321999788284302, 0.11663000285625458, -0.26284998655319214, -0.05944500118494034, -0.16797000169754028, 0.29607000946998596, -1.0038000345230103, 0.11011999845504761, -0.40602999925613403, -0.06929399818181992, 0.11489000171422958, -0.1546500027179718, 0.430620014667511, 0.18727999925613403, 0.2806600034236908, -0.30452999472618103, -0.13109999895095825, -0.29398998618125916, -0.04550100117921829, -0.7418599724769592, 0.4288400113582611, -0.44991999864578247, 0.3628300130367279, 0.06441300362348557, 0.08593200147151947, 0.2628999948501587, 0.17402000725269318, -0.2529500126838684, 0.4579299986362457, -0.18797999620437622, 0.2026900053024292, -0.6114500164985657, -0.07726500183343887, 0.10378000140190125, -0.12818999588489532, 0.030246999114751816, -0.503570020198822, -0.01874000020325184, -0.4665699899196625, -0.02552199922502041, 0.23739999532699585, -0.29197999835014343, -0.6138299703598022, -0.0375869981944561, -0.009797699749469757, 0.14050999283790588, 0.3887600004673004, -0.2064100056886673, 0.009380700066685677, 0.43105000257492065, -0.10617999732494354, 0.21593999862670898, 0.3139199912548065, -0.2049800008535385, 0.26019999384880066, 0.11118000000715256, -0.6375499963760376, -0.7273399829864502, 0.43345001339912415, -0.1603199988603592, 0.10631000250577927, -0.23568999767303467, -0.045740000903606415, -0.1001800000667572, -0.1634799987077713, 0.28984999656677246, 0.2823199927806854, 0.04022900015115738, -0.0620260015130043, 0.36421000957489014, -0.2611899971961975, -0.6132199764251709, 0.3133699893951416, -0.641260027885437, -0.11110000312328339, -0.5768100023269653, -0.2488200068473816, -0.057941000908613205, 0.4831100106239319, -0.6037799715995789, -0.06679800152778625, -0.23420999944210052, -0.16213999688625336, 0.8851799964904785, -0.8609099984169006, -0.6075800061225891, -0.4142700135707855, 0.3643600046634674, 0.14218999445438385, -0.3578599989414215, 0.9555699825286865, 0.2522299885749817, 0.07775600254535675, 0.008132199756801128, -0.16895000636577606, 0.12442000210285187, 0.07873199880123138], u'pie': [-0.148049995303154, 0.14914999902248383, 0.21039000153541565, 0.06516300141811371, -0.3467699885368347, 0.00523559981957078, -0.3610300123691559, -0.10628999769687653, -0.44795000553131104, 0.2111400067806244, -0.022009000182151794, -0.19062000513076782, -0.4308199882507324, 1.1855000257492065, -0.6019999980926514, -0.36381998658180237, -0.427590012550354, 0.335889995098114, 0.06157099828124046, 0.06068199872970581, 0.2488200068473816, 0.3763299882411957, -0.6371999979019165, 0.5014399886131287, -0.35585999488830566, 0.06222499907016754, -0.014429000206291676, -0.13113999366760254, 0.4402399957180023, -0.7292100191116333, -0.41023001074790955, 0.053932998329401016, -0.22904999554157257, -0.3673099875450134, -0.38670000433921814, 0.4318400025367737, -0.5451200008392334, 0.5280200242996216, -0.6906099915504456, 0.7576500177383423, 0.16901999711990356, 0.40252000093460083, 0.7374500036239624, 0.39677000045776367, 0.0895640030503273, 0.3325299918651581, 0.1126599982380867, 0.3732599914073944, 0.04315900057554245, 0.43351998925209045, 0.38589000701904297, -0.3130500018596649, 0.4032900035381317, 0.4734500050544739, -0.6595799922943115, -0.5842599868774414, -0.502560019493103, 0.020208999514579773, 0.0676560029387474, -0.12070000171661377, 0.2671999931335449, 0.09636499732732773, 0.0009215400204993784, -0.02662299945950508, -0.15849000215530396, -0.09299299865961075, -0.4423699975013733, 0.08310600370168686, -0.1090800017118454, 0.24908000230789185, -0.5905399918556213, 0.5230900049209595, 0.07183200120925903, 0.37814998626708984, 0.07321800291538239, -0.1495800018310547, 0.5135800242424011, -0.4040299952030182, -0.8361300230026245, -0.6397600173950195, 0.2517000138759613, 0.9338499903678894, 0.1131099984049797, -0.29203999042510986, -0.0678270012140274, -0.6457499861717224, -0.06851399689912796, 0.23510000109672546, -0.6620299816131592, -0.42645999789237976, -0.6269599795341492, -0.31147000193595886, -0.7578799724578857, -0.606440007686615, -0.39879998564720154, 0.2599000036716461, -0.3072800040245056, 0.18644000589847565, -0.6118699908256531, 0.10823000222444534, -0.34894001483917236, 0.19372999668121338, 0.13892999291419983, -0.8470500111579895, -0.06606400012969971, 0.17065000534057617, -0.6166499853134155, 0.37452998757362366, 0.11302000284194946, 0.6984999775886536, -0.06978999823331833, 0.13016000390052795, 0.23374000191688538, -0.43007999658584595, -0.1404699981212616, -0.1326799988746643, -0.8796200156211853, 0.6297100186347961, 0.03555100038647652, -0.3767800033092499, 0.24435000121593475, -0.03017999976873398, 0.37498998641967773, 0.10595999658107758, -0.5247200131416321, -0.45430999994277954, -0.180649995803833, 1.0465999841690063, -0.6731399893760681, 0.3505600094795227, -0.29982998967170715, 1.3135000467300415, 0.23082000017166138, 0.46241000294685364, 0.15408000349998474, -0.7623800039291382, -0.02575800009071827, 0.00045558001147583127, -0.5454400181770325, -0.31391000747680664, 0.5139399766921997, 0.21682000160217285, -0.4058299958705902, -0.769029974937439, 0.025909999385476112, 0.4107300043106079, -0.23128999769687653, 0.63850998878479, -0.012853000313043594, 0.042883001267910004, -0.5065500140190125, 0.3884199857711792, 0.33441999554634094, 0.16037000715732574, -0.41940000653266907, -0.055465999990701675, 0.02108299918472767, -0.20895999670028687, -0.06355900317430496, 0.14603999257087708, 0.15900999307632446, 0.4207099974155426, -0.012432999908924103, -0.08865000307559967, -0.09479200094938278, -0.14754000306129456, -0.17227999866008759, 0.072673000395298, 0.08217000216245651, -0.4068099856376648, -0.4353800117969513, -0.11715000122785568, -0.11343000084161758, -0.54653000831604, 0.31992998719215393, 0.032878998667001724, -0.06536299735307693, -0.23935000598430634, 0.18796999752521515, -0.37929001450538635, 0.027063999325037003, 0.2819899916648865, 0.3518199920654297, -0.4878599941730499, -0.20892000198364258, -0.7425699830055237, 0.676069974899292, -0.0734969973564148, -0.07033500075340271, -0.15793000161647797, 0.48173001408576965, 0.7790600061416626, 0.06847599893808365, -0.20559999346733093, -0.21704000234603882, 0.5806000232696533, -0.36517998576164246, 0.14451000094413757, -0.1530500054359436, -0.41359999775886536, 1.0382000207901, -0.22614000737667084, 0.6149100065231323, 0.7665299773216248, -0.29603999853134155, -0.18610000610351562, 0.6794400215148926, -0.1382099986076355, 0.22686000168323517, 0.15981000661849976, -0.3384000062942505, -0.3122499883174896, -0.2700200080871582, 0.09913600236177444, 0.01919100061058998, 0.5553500056266785, 0.12183000147342682, -0.17511999607086182, 0.31610000133514404, 0.3738600015640259, -0.0035262000747025013, 0.4031600058078766, -0.16934999823570251, -0.2771399915218353, -0.6315000057220459, -0.2533699870109558, 0.26638999581336975, 0.2530199885368347, 0.37863999605178833, -0.580269992351532, -0.06252200156450272, 0.3806000053882599, -0.21578000485897064, -0.2159000039100647, 0.24129000306129456, -0.27625998854637146, 0.49129000306129456, 0.30559998750686646, -0.49616000056266785, 0.3363099992275238, -0.6262800097465515, -0.5053300261497498, 0.08636800199747086, -0.16393999755382538, -0.8743799924850464, -0.06618499755859375, -0.34411001205444336, 0.16124999523162842, 0.5471600294113159, -0.40661999583244324, 0.2361000031232834, 0.39980000257492065, 0.13922999799251556, 0.5738300085067749, -0.1507599949836731, -0.22988000512123108, 0.2786000072956085, -0.015031999908387661, -0.5465199947357178, 0.6654199957847595, 0.2531700134277344, 0.07960300147533417, 0.03563699871301651, 0.4084100127220154, 0.5527200102806091, 0.06144699826836586, 0.06761900335550308, 0.05282700061798096, 0.6105499863624573, 0.31520000100135803, -0.48791998624801636, -0.16780999302864075, 0.4616599977016449, -0.24945999681949615, 0.60725998878479, -0.21435000002384186, -0.9169399738311768, 0.3519099950790405, -1.1267999410629272, -0.3359600007534027, -0.12099999934434891, 0.023313000798225403, -0.6509000062942505, -0.20677000284194946, 0.013385999947786331, 0.31141000986099243, 0.824970006942749, 0.014551999978721142, 0.5164700150489807, 0.651390016078949, 0.2289399951696396, -0.14601999521255493, 0.6341599822044373, -0.13605999946594238, 0.13471999764442444, -0.5945600271224976, -0.2640700042247772, -0.0785989984869957, -0.35352998971939087, 0.045219000428915024], u'glass': [0.04098999872803688, 0.1361899971961975, -0.8168900012969971, -0.991599977016449, 0.3789199888706207, 0.3908100128173828, -0.2294899970293045, -0.37876999378204346, 0.215829998254776, -1.1984000205993652, 0.16672000288963318, -0.30546998977661133, -0.08173400163650513, 0.12848000228405, 0.04082600027322769, -0.7486699819564819, -0.9859399795532227, 0.5317100286483765, -0.29291000962257385, 0.3454200029373169, 0.12791000306606293, 0.4305199980735779, 0.11428000032901764, 0.9555100202560425, -0.17666999995708466, -0.354420006275177, -0.9555799961090088, -0.2334900051355362, -0.5685799717903137, -0.479310005903244, -0.05863400176167488, 0.7222399711608887, -0.1141899973154068, 0.2729800045490265, -0.6381999850273132, 0.36302998661994934, -0.19401000440120697, 0.14701999723911285, 0.3339399993419647, 0.20550000667572021, -0.29433000087738037, -0.41881000995635986, -0.1462000012397766, 0.4406000077724457, -0.4586400091648102, -0.03636699914932251, -0.4117499887943268, -0.004552599973976612, -0.4593600034713745, -0.21855999529361725, 0.16106000542640686, 0.4594799876213074, 0.23680999875068665, 0.0014176999684423208, 0.24122999608516693, 0.27402999997138977, -0.13151000440120697, 0.24097999930381775, 0.02014699950814247, 0.2727000117301941, 0.03895200043916702, -0.14469000697135925, 0.30820000171661377, 0.5383099913597107, 0.3890799880027771, -0.13957999646663666, -0.45232000946998596, -0.10465999692678452, 0.24097999930381775, -0.2590700089931488, -0.17618000507354736, -1.0270999670028687, -0.12013000249862671, 0.22605000436306, -0.02506599947810173, 0.25773999094963074, -0.16809000074863434, -0.4230400025844574, -0.21491999924182892, -0.4321900010108948, -0.552079975605011, 0.1934400051832199, -0.6686599850654602, 0.35899001359939575, 0.1789100021123886, 0.07965400069952011, 0.3919300138950348, 0.0653270035982132, -0.22376999258995056, -0.030672000721096992, 0.7164400219917297, 0.03549399971961975, 0.2150299996137619, 0.49340999126434326, 0.08192899823188782, 0.18367999792099, 0.12042000144720078, -0.23405000567436218, 0.7529100179672241, -0.2513200044631958, -0.1530900001525879, 0.6805199980735779, 0.37950998544692993, -0.34665000438690186, -0.004418100230395794, -0.13718999922275543, 0.09533700346946716, 0.19070999324321747, -0.2797299921512604, 0.2708500027656555, -0.15654000639915466, 0.1964299976825714, -0.033284999430179596, -0.23972000181674957, -0.2820099890232086, 0.0009143499773927033, -0.5087800025939941, 0.21521000564098358, -0.5520200133323669, -0.30171999335289, -0.11405999958515167, 0.18887999653816223, 0.016186000779271126, 0.13360999524593353, -0.11401999741792679, -0.8937600255012512, 0.15344999730587006, 0.007472599856555462, -0.05534600093960762, 0.17190000414848328, -0.044606998562812805, 1.2513999938964844, 0.40957000851631165, 0.9481599926948547, -0.0044744000770151615, 0.4597800076007843, -0.3445200026035309, 0.10798999667167664, 0.21945999562740326, -0.7095299959182739, 0.3287000060081482, 0.7053400278091431, 0.19603000581264496, -0.07991600036621094, 0.20181000232696533, -0.05054299905896187, 0.0879409983754158, -0.2331400066614151, -0.15512999892234802, -0.2809300124645233, 0.44269001483917236, -0.47495999932289124, 0.026412999257445335, -0.6837599873542786, 0.2945899963378906, 0.3977400064468384, -0.6059100031852722, -0.47336000204086304, 0.09111200273036957, 0.19923999905586243, 0.06260599941015244, -0.24221999943256378, 0.34757000207901, 0.1475200057029724, 0.7319899797439575, 0.26030001044273376, 0.04490499943494797, 0.2835800051689148, 0.34891998767852783, 0.17285999655723572, -0.22495000064373016, 0.18869000673294067, 0.2504799962043762, -0.14058999717235565, -0.05687100067734718, -0.27500998973846436, -0.4138599932193756, 0.13130000233650208, 0.00712329987436533, -1.2204999923706055, 0.21367000043392181, -0.3973200023174286, -0.14392000436782837, 0.13502000272274017, 0.3518800139427185, -0.262690007686615, 0.773140013217926, 0.34915000200271606, 0.267659991979599, 0.6692299842834473, 0.918470025062561, 0.17944000661373138, -0.18934999406337738, 0.20206999778747559, -0.26603999733924866, 0.47769999504089355, -0.27845999598503113, 0.4040899872779846, -0.5610700249671936, -0.04570399969816208, 0.7985399961471558, 0.43237999081611633, 0.053950998932123184, -0.09262000024318695, 0.0836310014128685, 0.27713000774383545, 0.12455999851226807, -0.4141699969768524, -0.7804399728775024, 0.31690001487731934, 0.7554100155830383, 0.41729000210762024, -0.45473000407218933, 0.1043199971318245, 0.2253199964761734, 0.016906000673770905, 0.29436999559402466, -0.047791000455617905, -0.050519999116659164, 0.014802999794483185, 0.361270010471344, 0.24876999855041504, 0.3851799964904785, -0.16044999659061432, -0.3788999915122986, 0.21820999681949615, 0.043366000056266785, -0.22933000326156616, 0.6045699715614319, -0.4565599858760834, -0.27463001012802124, -0.23138000071048737, 0.2823599874973297, -0.04921000078320503, 0.4304499924182892, 0.16739000380039215, 0.17633000016212463, -0.23755000531673431, -0.9300299882888794, -0.24724000692367554, -0.7230799794197083, -0.4052799940109253, -0.7102599740028381, 0.04698599874973297, -0.5260400176048279, 0.20905999839305878, -0.6219499707221985, -0.7243199944496155, -0.021567000076174736, 0.015211000107228756, 0.7757800221443176, -0.8286299705505371, 0.3254599869251251, -0.48183000087738037, 0.4302600026130676, 0.21235999464988708, -0.1010499969124794, -0.6675400137901306, 0.30761000514030457, 0.3042699992656708, -0.08123800158500671, -0.2531700134277344, 0.3877899944782257, 0.2026199996471405, 0.38853999972343445, -0.5887100100517273, -0.08397000283002853, 0.26166000962257385, 0.18648000061511993, 0.015830999240279198, -0.3012000024318695, -0.24115000665187836, 0.18490999937057495, -0.1565600037574768, -0.5558599829673767, 0.5780799984931946, -1.7424999475479126, -0.004373299889266491, -1.174399971961975, -0.3520900011062622, -0.17437000572681427, 0.04056999832391739, -0.20630000531673431, -0.5309299826622009, 0.5815100073814392, 0.43276000022888184, -0.16143999993801117, 0.3646799921989441, 0.41297999024391174, 0.11671999841928482, 0.12620000541210175, 0.03280600160360336, 0.20640000700950623, 0.7106199860572815, 0.6267899870872498, -0.19033999741077423, 0.19389000535011292, -0.286080002784729, 0.13268999755382538, 0.2337999939918518], u'shell': [0.43737998604774475, 0.6556599736213684, -0.6562700271606445, -0.18977999687194824, -0.5519899725914001, 0.027698000892996788, 0.3306899964809418, 0.3021399974822998, -0.15094000101089478, -0.7985799908638, -0.2963100075721741, -0.11361999809741974, -0.5126000046730042, 0.06334800273180008, -0.6482200026512146, -0.1537099927663803, -0.5498999953269958, 1.038100004196167, -0.2821600139141083, -0.27649998664855957, 0.7829300165176392, 0.08859600126743317, -0.07273799926042557, 0.22673000395298004, -0.6361799836158752, -0.6072400212287903, 0.09466399997472763, 0.5006399750709534, 0.05582800135016441, 0.30779001116752625, -0.036122001707553864, 0.2162099927663803, -0.0251499991863966, 0.5211700201034546, 0.4832499921321869, -0.07594799995422363, 0.263619989156723, 0.14101000130176544, 0.5182999968528748, 1.3387999534606934, -0.19631999731063843, 0.5689399838447571, 0.30188998579978943, -0.09455599635839462, -0.19346000254154205, 0.003652299987152219, -0.0631600022315979, -0.048193998634815216, -0.0837400034070015, 0.2443699985742569, 0.1478700041770935, 0.013659000396728516, 0.08506099879741669, 0.371069997549057, -0.11045999825000763, 0.07722599804401398, -0.12796999514102936, 0.684689998626709, 0.20997999608516693, 0.07430499792098999, 0.09202700108289719, 0.5216900110244751, 0.3487899899482727, -0.6531699895858765, 0.5269799828529358, -0.014271999709308147, -0.4798099994659424, -0.5577399730682373, 0.45996999740600586, 0.31358999013900757, -0.12387000024318695, -0.22779999673366547, 0.4899100065231323, 0.7758499979972839, -0.13489000499248505, 0.9123700261116028, 0.6375700235366821, -0.013555999845266342, -0.011965000070631504, 0.12620000541210175, -0.510890007019043, 0.13420000672340393, -0.3855699896812439, 0.28139999508857727, 0.334199994802475, -0.35585999488830566, 0.5060200095176697, -0.5138599872589111, -0.2128400057554245, -0.17876000702381134, -0.0536159984767437, 0.3737100064754486, -0.6358699798583984, -0.035082001239061356, 0.3307400047779083, -0.058625999838113785, -0.456030011177063, 0.33709999918937683, 0.7987499833106995, -0.7346000075340271, -0.5306199789047241, 0.08364500105381012, -0.5432400107383728, -0.48763999342918396, 0.6347699761390686, -0.015134000219404697, 0.36750999093055725, 0.16641999781131744, 0.23385000228881836, 0.48190999031066895, 0.507390022277832, -0.4215399920940399, 0.07399100065231323, -0.09170699864625931, 0.15485000610351562, 0.2681500017642975, -0.15655000507831573, 0.011761000379920006, 0.35593000054359436, 0.5247200131416321, -0.08304300159215927, -0.8296999931335449, 0.16575999557971954, 0.49862998723983765, -0.15949000418186188, 0.05096299946308136, -0.2832599878311157, 0.4149799942970276, -0.21536999940872192, 0.24347999691963196, 0.00835500005632639, 0.43716999888420105, -0.6650599837303162, -0.1557299941778183, -0.08406399935483932, -0.05353999882936478, 0.17506000399589539, -0.10434000194072723, 0.4891600012779236, 0.2329999953508377, 0.2585499882698059, -0.3803200125694275, 0.23391999304294586, -0.09967400133609772, -0.28578999638557434, 0.24782000482082367, 0.45166000723838806, 0.4048599898815155, -0.11985000222921371, 0.5029100179672241, 0.22583000361919403, -0.03436499834060669, -0.17327000200748444, -0.2622799873352051, -0.04957199841737747, 0.06245899945497513, 0.16761000454425812, -0.7143700122833252, -0.0676570013165474, 0.2640799880027771, -0.155689999461174, -0.004717099945992231, 0.3328399956226349, -0.3363499939441681, -0.12444999814033508, 0.41130998730659485, -0.16899000108242035, 0.22645999491214752, -0.5010899901390076, -0.4953500032424927, -0.4350599944591522, 0.21338999271392822, 0.5585100054740906, -0.10623999685049057, 0.11077000200748444, 0.3932099938392639, -0.25699999928474426, -0.07421699911355972, 0.17986999452114105, 0.01268600020557642, -0.3713200092315674, 0.08084800094366074, 0.5345399975776672, -0.4846999943256378, 0.6049799919128418, -0.4016599953174591, 0.12155000120401382, 0.7211599946022034, 0.1269800066947937, 0.1487800031900406, 1.009600043296814, 0.2826099991798401, 0.15997999906539917, -0.3327699899673462, 0.2548600137233734, 0.2603699862957001, 0.43373000621795654, 0.15076999366283417, -0.002500399947166443, -0.2391200065612793, 0.9048399925231934, -0.4199399948120117, -0.2016499936580658, 0.05178600177168846, 0.4399999976158142, 0.15477000176906586, 0.17354999482631683, -0.8862699866294861, 0.2855600118637085, -0.35001999139785767, 0.045882001519203186, -0.06253500282764435, -0.01358999963849783, -0.5648300051689148, -0.09548699855804443, 0.20646999776363373, 0.4356499910354614, -0.24297000467777252, 0.16343000531196594, -0.23348000645637512, 0.4467499852180481, 0.007235200144350529, 0.07905499637126923, 0.3529599905014038, -0.8042700290679932, -0.17159000039100647, -0.41839998960494995, -0.4712199866771698, 0.31123000383377075, -0.6088200211524963, 0.3399899899959564, 0.0761760026216507, -0.29941999912261963, 0.1817999929189682, 0.3124299943447113, 0.24769000709056854, 0.34505999088287354, 0.048277001827955246, -1.0806000232696533, -0.4250200092792511, 0.365200012922287, -0.540120005607605, -0.06491199880838394, 0.011920000426471233, -0.8232300281524658, -0.027137000113725662, -0.174919992685318, -0.8533200025558472, -0.16175000369548798, -1.094099998474121, 0.07149200141429901, 0.19912000000476837, -0.14519000053405762, -0.14392000436782837, -0.23093000054359436, -0.397599995136261, -0.41791999340057373, 0.08411899954080582, -0.3667899966239929, 0.4757100045681, -0.2663399875164032, 0.09267300367355347, -0.4215399920940399, 0.197720006108284, 0.357340008020401, 0.1310500055551529, -0.13864000141620636, -0.10123000293970108, -0.22001999616622925, 0.39732998609542847, -0.07840300351381302, -0.6980999708175659, 0.18231000006198883, 0.0062027000822126865, -0.32047000527381897, -0.383760005235672, -1.3339999914169312, -0.43533000349998474, -0.7035099864006042, 0.3151499927043915, 0.1344199925661087, -0.10864000022411346, -0.3634699881076813, -0.5387600064277649, -0.5148599743843079, -0.14326000213623047, -0.022955000400543213, 0.28317999839782715, 0.39798998832702637, -0.23991000652313232, 0.090317003428936, -0.7907800078392029, 0.31995999813079834, 0.2683899998664856, 0.5627800226211548, 0.8342099785804749, -0.03200500085949898, 0.010850000195205212, 0.02798300050199032, -0.1288899928331375], u'pond': [-0.04329400137066841, -0.4818800091743469, -0.19259999692440033, -0.04244200140237808, 0.25242000818252563, -0.1654299944639206, 0.5768700242042542, 0.38655000925064087, -0.11868000030517578, 0.23285000026226044, -0.07667999714612961, 0.3598099946975708, 0.17538000643253326, -0.5799400210380554, -0.24342000484466553, 0.8067299723625183, -0.600380003452301, -0.023022999987006187, 0.2682799994945526, 0.6112599968910217, -0.6525400280952454, 0.24980999529361725, -0.09351199865341187, 0.433789998292923, -0.32534000277519226, -0.1252100020647049, -0.10425999760627747, -0.14778999984264374, -0.012941000051796436, 1.0224000215530396, 0.18222999572753906, -0.19561000168323517, -0.13313999772071838, 0.2553800046443939, 0.3725599944591522, 0.725350022315979, 0.2515699863433838, 0.0979819968342781, -0.03774699941277504, -0.19092999398708344, -0.2601499855518341, 0.4221700131893158, 0.29357001185417175, 0.6860399842262268, -0.2135400027036667, 0.28033000230789185, 0.6399199962615967, 0.5710800290107727, 0.07135099917650223, 0.6535099744796753, -0.16642999649047852, -0.062352001667022705, 0.37156999111175537, -0.5249500274658203, 0.23939000070095062, 0.10268999636173248, 0.21243999898433685, 0.3796299993991852, 0.45750999450683594, 0.4533500075340271, 0.11078999936580658, -0.026866000145673752, 0.496969997882843, -0.14803999662399292, 0.2136099934577942, -0.39607998728752136, -0.3576900064945221, -0.2634199857711792, -0.22814999520778656, -0.10433000326156616, 0.49191999435424805, 0.02253199927508831, -0.13670000433921814, 0.2604700028896332, -1.2213000059127808, 0.08475200086832047, 0.13377000391483307, -0.08416499942541122, 0.5325499773025513, -0.8440099954605103, 0.06819000095129013, 0.8979499936103821, 0.06943999975919724, -0.268449991941452, 0.8448500037193298, 0.2066899985074997, 0.2865999937057495, 0.3187299966812134, 0.1512800008058548, -0.7650700211524963, 0.19577999413013458, -0.13523000478744507, 0.28843000531196594, -0.3476699888706207, 0.12253999710083008, 0.2794100046157837, 0.38464000821113586, -0.6781899929046631, -0.3387799859046936, -0.10006000101566315, -0.37033000588417053, 0.028862999752163887, -0.432559996843338, -0.29201000928878784, -0.024410000070929527, 0.45910000801086426, 0.2118699997663498, -0.26416000723838806, -0.26012998819351196, -0.35558000206947327, -0.4722200036048889, -0.36403998732566833, -0.3007499873638153, -0.13083000481128693, 0.055100999772548676, -0.13606999814510345, 0.2707799971103668, 0.001156299957074225, -0.17700999975204468, 0.2107200026512146, -0.33636000752449036, -0.10301999747753143, -0.008686600252985954, 0.11761000007390976, 0.18019999563694, 0.06475500017404556, 0.02602200023829937, -0.025963999330997467, 0.04243699833750725, -0.4241600036621094, 0.055681001394987106, 0.33386000990867615, 0.5917800068855286, 0.05189900100231171, 0.047628000378608704, 0.009670699946582317, 0.5915600061416626, -0.4378499984741211, -0.4364500045776367, -0.10655000060796738, 0.6672899723052979, -0.32971999049186707, 0.2009499967098236, -0.9107699990272522, -0.4916900098323822, 0.3064799904823303, 0.2831900119781494, -0.340939998626709, -0.0010508999694138765, -0.15714000165462494, -0.24648000299930573, 0.6017199754714966, -0.6767399907112122, -0.6055499911308289, 0.7470300197601318, -0.047269999980926514, -0.08343899995088577, 0.06190599873661995, 0.22547000646591187, 0.16978000104427338, 0.32572999596595764, -0.5117899775505066, 0.665090024471283, -0.28009000420570374, -0.2756499946117401, 0.18380999565124512, 0.0534369982779026, 0.07159200310707092, -0.46035999059677124, -0.40362000465393066, 0.21313999593257904, 0.42572999000549316, 0.35526999831199646, 0.22156000137329102, -0.11875999718904495, 0.2401999980211258, -0.2668299973011017, 0.21321000158786774, 0.42949000000953674, -0.34891998767852783, 0.337660014629364, 0.41995999217033386, 0.5596500039100647, -0.2243500053882599, -0.020736999809741974, -0.3731499910354614, 0.8195400238037109, 0.08950699865818024, 0.48166000843048096, 0.45879000425338745, 0.24390999972820282, 0.5292500257492065, -0.27500998973846436, -0.13989999890327454, -0.3601900041103363, 0.8087800145149231, 0.3859899938106537, -0.9416900277137756, -0.20083999633789062, 0.05070500075817108, 0.9398300051689148, -0.36305999755859375, -0.5051800012588501, -0.417279988527298, 0.20663000643253326, 0.0004857800086028874, -0.06550399959087372, -0.41694000363349915, -0.5097399950027466, 0.2877799868583679, 0.10006000101566315, 0.4566099941730499, 0.2190999984741211, -0.6405100226402283, 0.1409199982881546, 0.04726399853825569, -0.30761000514030457, -0.001486400025896728, 0.08246400207281113, -0.2643899917602539, 0.3756600022315979, -0.18501000106334686, -0.16827000677585602, -0.3112100064754486, 0.37856999039649963, -0.005664799828082323, -0.45662999153137207, 0.048604000359773636, 0.5793799757957458, -0.18373000621795654, 0.176829993724823, -0.020243000239133835, 0.05721599981188774, -0.41214001178741455, -0.2035199999809265, 0.14294999837875366, 0.16777999699115753, -0.09564000368118286, 0.02716599963605404, -0.2905600070953369, 0.0472479984164238, 0.4130299985408783, -0.14890000224113464, -0.05889600142836571, -0.9464499950408936, -0.4318400025367737, 0.639240026473999, 0.6335300207138062, 0.23228000104427338, -0.38315001130104065, -0.10000000149011612, -0.18914000689983368, 0.2593800127506256, -0.14640000462532043, 0.3897800147533417, -0.12358999997377396, 0.22104999423027039, 0.06016699969768524, 0.14101000130176544, 0.28255999088287354, -0.26767998933792114, 0.34341999888420105, -0.31310999393463135, -0.6646400094032288, -0.2440200001001358, -0.2279299944639206, 0.24243000149726868, 0.16943000257015228, -0.32905998826026917, -0.1535400003194809, -0.09561099857091904, 0.02840300090610981, 0.04258299991488457, 0.18735000491142273, 0.5866000056266785, 0.5032600164413452, -0.8015699982643127, 0.2980000078678131, -0.4306100010871887, -0.19460999965667725, -0.620959997177124, 0.388619989156723, -0.10843999683856964, -0.8265600204467773, -0.4833100140094757, 0.006282600108534098, 0.2573699951171875, -0.20782999694347382, 0.07133600115776062, 0.5010899901390076, -0.31626999378204346, 0.1845400035381317, 0.11490000039339066, 0.41060999035835266, -0.31384000182151794, -0.7613499760627747, 0.9024800062179565, 0.29308998584747314, 0.10970000177621841, -0.13041000068187714], u'dress': [-0.6267399787902832, -0.10394000262022018, -0.3511900007724762, 0.21755999326705933, -0.28119999170303345, -0.041453998535871506, -0.20956000685691833, 0.008213900029659271, 0.014151999726891518, -0.9868299961090088, 0.29653000831604004, 0.23973000049591064, -0.16280999779701233, 0.6973199844360352, -0.2816599905490875, -0.5772200226783752, 0.6148899793624878, 0.18432000279426575, -0.5359799861907959, -0.026745999231934547, -0.09136299788951874, -1.0654999641701579e-05, 0.390500009059906, 0.2974100112915039, -0.6947600245475769, -0.5667399764060974, 0.04604800045490265, -0.044877998530864716, 0.2777799963951111, 0.11570999771356583, 0.28422999382019043, -0.24553999304771423, -0.12411999702453613, 0.1296900063753128, -0.9157900214195251, 0.758679986000061, 0.10090000182390213, 0.07507500052452087, 0.3759700059890747, -0.2884899973869324, -0.09150400012731552, -0.7200700044631958, -0.002617199905216694, -0.2264000028371811, -0.16840000450611115, -0.23273000121116638, 0.18468999862670898, -0.2655799984931946, 0.07132799923419952, -0.09945499897003174, 0.05770999938249588, -0.14205999672412872, 0.33873000741004944, -0.580489993095398, -0.44894999265670776, -0.6517400145530701, -0.6942600011825562, -0.9765999913215637, 0.2865299880504608, 0.014344999566674232, 0.5234400033950806, -0.39445000886917114, -0.1276399940252304, -0.03531799837946892, -0.36866000294685364, -0.7868800163269043, 0.29447999596595764, -0.05341799929738045, 0.2750700116157532, 0.20595000684261322, 0.11044999957084656, -0.1778700053691864, -0.24070000648498535, -0.26642999053001404, 0.181659996509552, 0.3361299932003021, 0.18842999637126923, 0.24558000266551971, -0.4330599904060364, -0.42820000648498535, -0.2866699993610382, 0.29036998748779297, -0.3906500041484833, -0.20201000571250916, 0.7304099798202515, 0.13968999683856964, 0.19304999709129333, 0.026545999571681023, -0.0750880017876625, 0.20488999783992767, -0.5372899770736694, 0.09565900266170502, 0.15826000273227692, 0.22856999933719635, -0.003734000027179718, -0.06157200038433075, 0.3113499879837036, 0.060074999928474426, 0.2504599988460541, 0.1078300029039383, 0.6907299757003784, 0.5675399899482727, -0.2279299944639206, -0.11157000064849854, -0.3607099950313568, 0.186939999461174, 0.4715699851512909, 0.3127000033855438, -0.005775399971753359, 0.04041599854826927, 0.17806999385356903, 0.7334499955177307, -0.05946800112724304, 0.39800000190734863, -0.11010000109672546, 0.20406000316143036, 0.11428999900817871, 0.4148699939250946, 0.15557999908924103, -0.9134200215339661, 0.15613000094890594, 0.3305700123310089, 0.8283299803733826, 0.16656999289989471, -0.011296999640762806, -0.14059999585151672, 0.02771499939262867, 0.1725499927997589, 0.10299000144004822, -0.03763899952173233, 0.1566299945116043, -0.3961400091648102, -0.14952999353408813, -0.006814999971538782, 0.026054000481963158, 0.30379998683929443, -0.3432199954986572, -0.23276999592781067, -0.17794999480247498, 0.26047998666763306, 0.05576999858021736, 0.16867999732494354, -0.024157999083399773, -0.42381998896598816, -0.09521199762821198, -0.044879000633955, -0.19380000233650208, -0.09920600056648254, 0.41231000423431396, 0.39928001165390015, 0.01037800032645464, 0.12135999649763107, 0.36941999197006226, -0.7182599902153015, 0.2720299959182739, -0.16864000260829926, -0.22168999910354614, -0.3129499852657318, 0.5545499920845032, 0.24566000699996948, 0.09353700280189514, -0.24790999293327332, -0.30417001247406006, -0.10839000344276428, -0.20590999722480774, -0.14259999990463257, -0.48405998945236206, 0.48611998558044434, 0.2855600118637085, 0.13601000607013702, -0.49919000267982483, 0.015521000139415264, -0.09881500154733658, 0.030340999364852905, 0.13729000091552734, -0.35767999291419983, 0.061840999871492386, 0.6809499859809875, -0.2530600130558014, 0.0733880028128624, -0.0414079986512661, 0.01929900050163269, 0.19628000259399414, -0.2635299861431122, 0.31297001242637634, 0.3584499955177307, 0.42478999495506287, 0.34665000438690186, 0.07853499799966812, -0.43309998512268066, 0.16496999561786652, -0.18931999802589417, -0.37463000416755676, 0.1685599982738495, 0.09549599885940552, 0.18139000236988068, -0.7956699728965759, -0.27233999967575073, -0.31022998690605164, -0.9007899761199951, 0.9777500033378601, 0.03966100141406059, 0.7141000032424927, 0.714959979057312, 1.0650999546051025, -0.050776999443769455, 0.49358001351356506, 0.5125100016593933, -0.5775099992752075, -0.16322000324726105, -0.07427199929952621, -0.18129999935626984, 0.02379399910569191, 0.6054099798202515, 0.04965899884700775, -0.31790000200271606, 1.1441999673843384, -0.9230999946594238, -0.05491900071501732, -0.28874000906944275, 0.2582699954509735, 0.13270999491214752, 0.3370699882507324, 0.5457900166511536, -0.06831300258636475, -0.15489999949932098, 0.15591000020503998, -0.008287999778985977, 0.3456000089645386, 0.043122999370098114, 0.5471100211143494, 0.08952700346708298, -0.4717000126838684, 0.22176000475883484, 0.563539981842041, 0.09335900098085403, 0.19981999695301056, -0.33910998702049255, -0.10226000100374222, 0.46814998984336853, 0.4014799892902374, -0.10854999721050262, -0.2751699984073639, 0.8004400134086609, -0.16395999491214752, 0.8662800192832947, -0.5315300226211548, -0.49584999680519104, 0.49226999282836914, -0.13488000631332397, 0.24166999757289886, 0.34727001190185547, -0.08280099928379059, -0.2126999944448471, 0.35837000608444214, -0.6322399973869324, 0.10822000354528427, 0.5249199867248535, 0.1152999997138977, -0.377810001373291, -0.1689399927854538, -0.045416999608278275, 0.4696800112724304, -0.3018699884414673, -0.826960027217865, -0.5113099813461304, -0.16794000566005707, 0.24929000437259674, -0.17730000615119934, -0.07244200259447098, 0.034033000469207764, -0.3352299928665161, 0.2860899865627289, 0.043063998222351074, -0.4736799895763397, -0.024810999631881714, -1.2770999670028687, 0.07215400040149689, -0.5401300191879272, -0.2588300108909607, 0.4088999927043915, 0.14222000539302826, 0.30463001132011414, -0.210099995136261, -0.2410999983549118, 0.42289999127388, -0.3111799955368042, 0.6118299961090088, -0.22643999755382538, -0.2736299932003021, 0.35295000672340393, -0.33465999364852905, -0.5633599758148193, 1.1848000288009644, -0.10470999777317047, -0.5864199995994568, 0.44058001041412354, 0.39987000823020935, 0.9988999962806702, -0.09659700095653534], u'car': [0.4644300043582916, 0.3772999942302704, -0.21458999812602997, -0.5076799988746643, -0.2457599937915802, 0.0813400000333786, 0.10145000368356705, 0.25154998898506165, -0.361519992351532, -1.6030000448226929, 0.2821899950504303, 0.36653000116348267, 0.4461100101470947, 0.27950000762939453, 0.04772200062870979, 0.30087000131607056, -0.1622599959373474, -0.026055000722408295, -0.2681500017642975, -0.46281999349594116, 0.25012001395225525, 0.6038900017738342, 0.1511099934577942, -0.06282299757003784, -0.0967549979686737, -0.3054800033569336, -0.11376000195741653, 0.539139986038208, 0.10965999960899353, -0.7061799764633179, -0.6631600260734558, 0.435589998960495, -0.04863100126385689, 0.27755001187324524, -0.48684999346733093, 0.11937999725341797, -0.5453799962997437, -0.29563000798225403, 0.03446999937295914, 0.5318700075149536, -0.0015879999846220016, 0.416920006275177, -0.2074200063943863, -0.03783300146460533, 0.4333299994468689, 0.04752099886536598, 0.835070013999939, -0.06508799642324448, -0.2997399866580963, 0.004713899921625853, 0.12338999658823013, -0.506600022315979, 0.25870001316070557, 0.21264000236988068, 0.19132000207901, 0.5420399904251099, -0.11384999752044678, -0.4238399863243103, -0.2780799865722656, -0.15105000138282776, -0.6210399866104126, 0.27678000926971436, -0.05497400090098381, 0.01847900077700615, -0.11744000017642975, 0.3302899897098541, -0.352510005235672, -0.21953000128269196, 0.05513999983668327, 0.16970999538898468, -0.36445000767707825, 0.36383000016212463, 0.20496000349521637, 0.665120005607605, -0.22540000081062317, -0.3034699857234955, -0.5278199911117554, -0.6611499786376953, 0.11773999780416489, -0.14438000321388245, 0.33886000514030457, 0.2296999990940094, 0.6307200193405151, 0.7692899703979492, 0.025359999388456345, -0.1368499994277954, 0.08425399661064148, 0.320360004901886, -0.10430999845266342, 0.7671999931335449, 1.0673999786376953, 0.428849995136261, 0.030319999903440475, -0.6337500214576721, 0.7070500254631042, -0.17670999467372894, -0.10769999772310257, -0.31876999139785767, 0.0637810006737709, -0.5750700235366821, -0.4065600037574768, 0.5583699941635132, 0.7237600088119507, 0.2644999921321869, 0.20313000679016113, -0.4394899904727936, 0.5309399962425232, 0.0754920020699501, -0.2695100009441376, -0.427700012922287, -0.1385899931192398, 0.2834100127220154, 0.1315300017595291, -0.32370999455451965, 0.22815999388694763, 0.4301599860191345, -0.015529000200331211, 0.13276000320911407, 0.048239000141620636, -0.03853600099682808, 0.013813000172376633, -0.24567000567913055, 0.4657999873161316, -0.619629979133606, -0.3956800103187561, -0.21261000633239746, 0.11121000349521637, -0.19518999755382538, 0.3277300000190735, -0.25275999307632446, 0.8751199841499329, 0.4986000061035156, 0.2574700117111206, 0.46459001302719116, -0.0972369983792305, 0.4250899851322174, 0.008081099949777126, -0.7966899871826172, 0.1979299932718277, -0.06015700101852417, 0.06047999858856201, 0.2009200006723404, 0.46373000741004944, 0.2961699962615967, -0.31812000274658203, 0.12547999620437622, -0.17666999995708466, -0.29346999526023865, -0.5918300151824951, 0.43081000447273254, 1.000599980354309, 0.4685800075531006, 0.11257000267505646, -0.5653300285339355, 0.547290027141571, -0.4342400133609772, 0.22737999260425568, 0.21526999771595, 0.08782400190830231, -0.07356200367212296, 0.5315999984741211, -0.36781999468803406, -0.4253099858760834, -0.06656099855899811, 0.34648001194000244, -0.13676999509334564, -0.266539990901947, 0.09905599802732468, -0.05212099850177765, -0.6140900254249573, -0.003617099951952696, 0.3263300061225891, 0.390500009059906, 0.029416000470519066, -0.11190000176429749, -0.2117999941110611, -0.15688000619411469, -0.29308000206947327, 0.23114000260829926, 0.1387300044298172, 0.6644499897956848, -0.2631799876689911, -0.2551800012588501, 0.29499000310897827, 0.7013199925422668, -0.3239000141620636, 0.4210900068283081, 0.27316001057624817, 0.15020999312400818, 0.05807400122284889, 0.2420099973678589, -0.621940016746521, -0.40832000970840454, 0.03827200084924698, -0.3537200093269348, 0.0139340003952384, -0.2501299977302551, 0.4291599988937378, -0.03946299850940704, -0.2979399859905243, 1.017799973487854, -0.4168500006198883, 0.15442000329494476, 0.1959799975156784, 0.44718000292778015, -0.25764000415802, 0.13437999784946442, -0.08422300219535828, -0.14142000675201416, -0.16000999510288239, -0.32541000843048096, -0.1958799958229065, 0.13933999836444855, -0.4492399990558624, 0.20826999843120575, -0.1574700027704239, 0.0355370007455349, 0.3709700107574463, -0.15335999429225922, 0.2040099948644638, 0.3598099946975708, -0.2631100118160248, -0.2743600010871887, -0.4122900068759918, 0.4553300142288208, 0.7752699851989746, 0.2933900058269501, -0.2739199995994568, 0.45037001371383667, 0.0600150004029274, 0.08135399967432022, -0.5396900177001953, 0.3187200129032135, -0.08283700048923492, 0.7791799902915955, 0.09467600286006927, 0.752560019493103, 0.3337700068950653, -0.5534899830818176, -0.15660999715328217, 0.20791000127792358, -0.1349799931049347, 0.475600004196167, 0.121799997985363, -0.16495999693870544, -0.6566900014877319, 0.5239400267601013, -0.4366599917411804, -0.008723500184714794, 0.5256500244140625, -0.12010999768972397, -0.2140599936246872, -0.1525299996137619, -0.2277500033378601, 0.5970100164413452, -0.6450899839401245, -0.4449999928474426, 0.4093700051307678, 0.11942999809980392, 0.034467000514268875, -0.32471001148223877, -0.4791499972343445, -0.2526400089263916, 0.2681800127029419, 0.05960100144147873, -0.5184199810028076, 0.3312399983406067, -0.2962299883365631, -0.2834300100803375, -0.41470998525619507, -0.045049998909235, -0.0017776000313460827, -0.37654000520706177, -0.023910999298095703, 0.5560200214385986, 0.20440000295639038, -2.2390999794006348, 0.14985999464988708, -0.09834499657154083, 0.18714000284671783, -0.19265000522136688, -0.006105700042098761, 0.39897000789642334, -0.22392000257968903, -0.4216800034046173, 1.072700023651123, 0.2934400141239166, -0.47383999824523926, 0.301690012216568, -0.15307000279426575, 0.19966000318527222, -0.4097900092601776, -0.10324999690055847, -0.04360999912023544, 0.17564000189304352, 0.6570900082588196, -0.09985999763011932, 0.4910700023174286, 0.282150000333786, 0.34553998708724976], u'mountain': [-0.4325900077819824, 0.4069199860095978, -0.12746000289916992, -0.25946998596191406, 0.06282100081443787, -0.1200300008058548, 0.3323900103569031, 0.7177900075912476, 0.04192600026726723, -0.5700500011444092, 0.3027400076389313, -0.37279999256134033, 0.1938599944114685, 0.6140599846839905, 0.19437000155448914, 0.1651799976825714, 0.24126000702381134, -0.15049000084400177, 0.8255699872970581, 0.25540998578071594, -0.12054000049829483, 0.03717400133609772, 0.1080700010061264, 0.23701000213623047, -0.518280029296875, -0.7551699876785278, 0.17464999854564667, -0.3696100115776062, 0.07433400303125381, 0.745989978313446, 0.740119993686676, -0.04455399885773659, -0.10746999830007553, -0.0753289982676506, -0.15497000515460968, 0.2491299957036972, -0.20347000658512115, -0.33577999472618103, -0.08206599950790405, -0.5176900029182434, -0.4599300026893616, 0.15199999511241913, 0.2367199957370758, 0.08711300045251846, 0.37408000230789185, -0.08137600123882294, 0.3388899862766266, 0.57600998878479, 0.8029199838638306, -0.5141299962997437, -0.1969899982213974, 0.012180999852716923, -0.0391790010035038, -0.006808800157159567, -0.6172699928283691, 0.5906999707221985, -0.23454000055789948, -0.10774999856948853, 0.23332999646663666, 0.5328400135040283, -0.041547998785972595, 0.12634000182151794, 0.8225600123405457, 0.3136399984359741, -0.49617999792099, -0.017860999330878258, -0.7069000005722046, 0.30807000398635864, -0.04761099815368652, -0.11022000014781952, -0.31512001156806946, 0.38277000188827515, -0.2402700036764145, 0.13812999427318573, -0.8324699997901917, -0.06031699851155281, 0.12473999708890915, -0.5964499711990356, 0.37501001358032227, -0.6286100149154663, -0.28227999806404114, -0.2045699954032898, 0.16800999641418457, -0.3800800144672394, 0.2992999851703644, -0.030578000470995903, 0.15338000655174255, 0.5571900010108948, -0.19689999520778656, -0.14642000198364258, 0.2819899916648865, -0.3860799968242645, 0.37470000982284546, 0.7294700145721436, -0.37307998538017273, 0.4190700054168701, 0.29315999150276184, 0.5028300285339355, -0.033764999359846115, 0.2879500091075897, -0.33910998702049255, 0.5722399950027466, 0.20948000252246857, 0.2307800054550171, -0.7796400189399719, -0.434689998626709, 0.34762001037597656, 0.3303300142288208, 0.38446998596191406, 0.29155999422073364, -0.1498900055885315, -0.4868200123310089, 0.24628999829292297, -0.3209399878978729, 0.4771899878978729, -0.0003945200005546212, -0.06251899898052216, -0.014419999904930592, 0.16561000049114227, 0.5321099758148193, 0.0829479992389679, -0.1836400032043457, -0.25352001190185547, -0.1588200032711029, -0.8052700161933899, 0.30331000685691833, -0.06644599884748459, 0.3340100049972534, -0.6063500046730042, -0.6934499740600586, -0.4333600103855133, 0.475600004196167, 0.3452500104904175, 0.30472999811172485, 0.5645999908447266, -0.13934999704360962, -0.6905199885368347, 0.5418599843978882, 0.12780000269412994, -0.648169994354248, -0.0027161999605596066, -0.18791000545024872, 0.07463300228118896, -0.2311599999666214, -0.6706100106239319, -0.155799999833107, 0.733460009098053, -0.11482000350952148, -0.44029998779296875, -0.04304099828004837, 0.3866400122642517, 0.19440999627113342, -0.29673001170158386, -0.39917001128196716, 1.176900029182434, 0.08898299932479858, 0.13739000260829926, -0.3560200035572052, -0.1449500024318695, 0.35756000876426697, 0.2187899947166443, -1.4290000200271606, 0.4948900043964386, 0.06744600087404251, -0.3794400095939636, 0.25655001401901245, 0.4043999910354614, -0.2809700071811676, 0.011707000434398651, -0.7154399752616882, -0.016341999173164368, 0.20840999484062195, 0.06521099805831909, 0.12263999879360199, -0.24496999382972717, 0.020748000591993332, 0.48824000358581543, -0.04994399845600128, 0.04038900136947632, 0.34376999735832214, 0.449290007352829, 0.08368399739265442, 0.3190099895000458, -0.1455399990081787, 0.20148999989032745, -0.19975000619888306, -0.14061999320983887, -0.18618999421596527, -0.4534800052642822, 0.07640799880027771, 0.47516998648643494, 0.7081699967384338, 0.20106999576091766, -0.19047999382019043, -0.19434000551700592, -0.4759199917316437, -0.5291299819946289, -0.5848199725151062, 0.08420199900865555, 0.891290009021759, 1.5953999757766724, -0.1402300000190735, -0.05324399843811989, -0.23657000064849854, -0.17509999871253967, 0.0668409988284111, -0.9138200283050537, 0.21514999866485596, -0.10886000096797943, 0.4830400049686432, -0.32128000259399414, -0.024136999621987343, -0.3057299852371216, -0.4421600103378296, -0.1526300013065338, -0.2598299980163574, -0.07222999632358551, -0.24121999740600586, 0.3787600100040436, 0.018685000017285347, 0.07887300103902817, 0.08126000314950943, 0.12901000678539276, -0.2636699974536896, 0.714900016784668, -0.057089000940322876, -0.12075000256299973, 0.00913809984922409, -0.5163099765777588, -0.3820199966430664, -0.3180600106716156, -0.34345999360084534, -0.4249599874019623, -0.6756299734115601, 0.5028799772262573, -0.20734000205993652, -0.2254199981689453, -0.2932800054550171, 0.3179999887943268, 0.11823000013828278, -0.44159001111984253, 0.35286998748779297, 0.36924999952316284, -0.796970009803772, -0.7480599880218506, 0.017673999071121216, -0.3468100130558014, 0.5448700189590454, -0.15932999551296234, 0.030926000326871872, -0.5558800101280212, 0.3835099935531616, 0.14555999636650085, -0.6270700097084045, 0.8557800054550171, 0.03418099880218506, 0.025926999747753143, -0.271479994058609, -0.3017300069332123, 0.24194000661373138, 0.23387999832630157, -0.3686800003051758, 0.23549999296665192, -0.39138999581336975, 0.09583400189876556, -0.6626600027084351, 0.3957799971103668, 0.33395999670028687, 0.7674099802970886, -0.09609100222587585, -0.4508500099182129, 0.040073998272418976, -0.22540999948978424, 0.2669599950313568, 0.22506999969482422, 0.01318500004708767, -1.361199975013733, 0.09342499822378159, -0.25560998916625977, 0.026986999437212944, -0.19836999475955963, -0.08812300115823746, 0.07966600358486176, -0.35041001439094543, -0.5754200220108032, -0.015957999974489212, 0.08118399977684021, 0.11710000038146973, 0.20048999786376953, -0.3944000005722046, 0.03386300057172775, -0.26267001032829285, -0.5519199967384338, -0.10005000233650208, -0.7116199731826782, 0.7220699787139893, 0.449970006942749, 0.6847299933433533, 0.07617700099945068, -0.12936000525951385], u'lemon': [-0.09937900304794312, -0.0127379996702075, -0.2144400030374527, -0.11965999752283096, -0.40226998925209045, -0.3795900046825409, -0.3540099859237671, -0.5306800007820129, 0.44760000705718994, 0.29506000876426697, 0.0017778000328689814, -0.45184001326560974, 0.20319999754428864, 0.7322099804878235, -0.27619001269340515, 0.22987000644207, -0.9309200048446655, 0.9347800016403198, -0.5615599751472473, 0.26469001173973083, -0.3325299918651581, 0.019094999879598618, -0.29339998960494995, 0.36513999104499817, 0.14512999355793, -0.1624000072479248, -0.41137000918388367, -0.04140999913215637, -1.1377999782562256, -0.6266599893569946, -1.107200026512146, 0.09696099907159805, -0.5274800062179565, 0.054377999156713486, -0.4167099893093109, 0.5287100076675415, -0.09205099940299988, 0.3228699862957001, -0.1627500057220459, -0.0806180015206337, 0.13022999465465546, -0.12563000619411469, 0.15092000365257263, 0.024751000106334686, 0.2728799879550934, -0.09857799857854843, -0.04406699910759926, 0.7069799900054932, -0.34261998534202576, 0.16730999946594238, 0.3678799867630005, 0.035725999623537064, 0.18796999752521515, 0.2581300139427185, -0.30399999022483826, -0.037957001477479935, -0.5221999883651733, -0.005499999970197678, 0.856220006942749, 0.01218200009316206, 0.5651199817657471, -0.08327800035476685, 0.17082999646663666, 0.388949990272522, 0.2790299952030182, -0.10175000131130219, -0.399619996547699, -0.02303900010883808, -0.13088999688625336, -0.3123300075531006, -0.40369999408721924, 0.4617699980735779, -0.6384199857711792, 0.17488999664783478, -0.006710799876600504, -0.02950800023972988, 0.6755599975585938, 0.25679001212120056, -0.21750999987125397, -0.3806000053882599, 0.2631799876689911, 0.6112200021743774, -0.1475600004196167, 0.004575499799102545, -0.08562999963760376, -0.549839973449707, -0.10146000236272812, 0.14564000070095062, -0.23611000180244446, -1.013100028038025, -0.08668699860572815, 0.0037815000396221876, 0.07170800119638443, 0.013558999635279179, 0.07942599803209305, 0.35701999068260193, 0.3918600082397461, -0.06325499713420868, 0.8106600046157837, 0.5273600220680237, -0.05736999958753586, -0.192330002784729, 0.40689000487327576, -0.7398300170898438, -0.24717000126838684, 0.03590000048279762, -0.4559600055217743, -0.43904998898506165, -0.21315999329090118, -0.026829000562429428, 0.6609200239181519, 0.19808000326156616, 0.382889986038208, 0.2230599969625473, -0.47756001353263855, 0.2522200047969818, -0.5900700092315674, 0.744189977645874, 0.19269999861717224, -0.017323000356554985, -0.17114999890327454, -0.15887999534606934, 0.4185500144958496, -0.32030001282691956, -0.7946299910545349, -0.4534899890422821, -0.12815000116825104, 0.2520099878311157, -0.08389700204133987, 0.9762300252914429, -0.5962299704551697, 1.1861000061035156, -0.15639999508857727, 0.8926900029182434, -0.4032599925994873, -0.040832001715898514, -0.41141998767852783, -1.0078999996185303, -0.936959981918335, 0.19539999961853027, 1.558500051498413, 0.3015199899673462, -0.5823299884796143, 0.0794449970126152, -0.1339000016450882, 0.3731200098991394, -0.8307200074195862, 0.025172999128699303, 0.8536099791526794, 0.03975899890065193, -0.38286998867988586, 0.5750200152397156, 0.20636999607086182, -0.009372400119900703, -0.1174900010228157, -0.4674000144004822, 0.3491300046443939, -0.30055001378059387, -0.07174500077962875, 0.5120499730110168, -0.02167000062763691, -0.0074824001640081406, 0.026900000870227814, 0.146029993891716, -0.35183998942375183, -0.6957799792289734, 0.03727500140666962, 0.42458999156951904, -0.33337000012397766, -0.4019399881362915, 0.6297600269317627, -0.22680999338626862, -0.15881000459194183, 0.4409100115299225, 0.2491600066423416, 0.09537000209093094, 0.3023500144481659, -0.47091999650001526, 0.599810004234314, -0.3913300037384033, 0.20191000401973724, 0.4558899998664856, 0.22759999334812164, -0.5150700211524963, 0.17163999378681183, -0.7377200126647949, 0.8157100081443787, -0.2957899868488312, 0.2795200049877167, -0.09699399769306183, 0.2750000059604645, 0.7845799922943115, -0.23071999847888947, 0.02505199983716011, 0.5210700035095215, -0.29872000217437744, -0.5097399950027466, -0.1979999989271164, -0.0414699986577034, 0.0995670035481453, 0.39684000611305237, 0.16019999980926514, 0.22750000655651093, -0.13101999461650848, 0.046581998467445374, 0.4206700026988983, 0.8518000245094299, 0.15546000003814697, 0.07219099998474121, 0.11631999909877777, 0.1567399948835373, -0.5094500184059143, -0.20615999400615692, -0.06877599656581879, 0.04496899992227554, -0.46474000811576843, 0.8648999929428101, -0.29846999049186707, -0.25227999687194824, -0.1767899990081787, 0.4479700028896332, 0.2889600098133087, -0.7171000242233276, 0.39983999729156494, -0.07664799690246582, 0.18490000069141388, -0.06889300048351288, -0.053759001195430756, 0.21794000267982483, -0.296860009431839, -0.7077400088310242, 0.3338100016117096, 0.19499999284744263, -0.3671000003814697, -0.012675999663770199, 0.34174999594688416, 0.27851998805999756, -0.12922999262809753, -0.6780800223350525, -0.6891300082206726, -0.5744900107383728, -0.4509499967098236, -0.363429993391037, 0.26712000370025635, -1.3029999732971191, 0.49535998702049255, 0.31216999888420105, 0.318230003118515, -0.05567700043320656, -0.9979400038719177, 0.7070000171661377, 0.005432900041341782, 0.5389699935913086, 0.1623000055551529, -0.012477999553084373, -0.33586999773979187, -0.10550999641418457, -0.07059500366449356, 0.539330005645752, -8.464099664706737e-05, -0.07084699720144272, 0.009911200031638145, 0.04226300120353699, -0.3861300051212311, -0.05979600176215172, -0.6952599883079529, -0.21130000054836273, 0.2193399965763092, 0.3953999876976013, 0.3820599913597107, -0.05611399933695793, -0.11953999847173691, -0.7673199772834778, 0.16046999394893646, -0.1643799990415573, 0.31869998574256897, -0.5643600225448608, -0.26976001262664795, -0.8551099896430969, 0.2504499852657318, -0.1377599984407425, 0.502810001373291, -0.2253500074148178, -0.32491999864578247, -0.03740600124001503, 0.08991099894046783, 0.23011000454425812, -0.6498799920082092, -0.17316000163555145, 0.04936100170016289, 0.30866000056266785, 0.21828000247478485, 0.5589100122451782, -0.5529500246047974, 0.23976999521255493, -0.8966799974441528, -0.3286600112915039, -0.13287000358104706, 0.05246200039982796, 0.6547499895095825], u'shirt': [-0.11726000159978867, -0.23411999642848969, -0.15573999285697937, -0.24411000311374664, -0.3494200110435486, -0.4267500042915344, -0.49022001028060913, -0.3456900119781494, 0.2650600075721741, -0.28703999519348145, -0.052267998456954956, -0.151419997215271, 0.004380300175398588, 0.5907599925994873, -0.3215700089931488, 0.3297500014305115, 0.04428499937057495, -0.05762600153684616, -0.18743999302387238, -0.3444899916648865, -0.15765999257564545, -0.3021300137042999, 0.025317000225186348, -0.4119099974632263, -1.154099941253662, -0.5797200202941895, -0.014967000111937523, 0.13655999302864075, 0.38971999287605286, -0.06565999984741211, 0.2707499861717224, -0.34455999732017517, -0.560230016708374, 0.2722499966621399, -1.0714999437332153, 0.316540002822876, 0.14860999584197998, -0.3359000086784363, -0.48857998847961426, 0.16132000088691711, -0.09255000203847885, -0.8048700094223022, -0.12308000028133392, -0.33535000681877136, 0.12011999636888504, -0.3989799916744232, 0.5091500282287598, -0.5633000135421753, -0.0951249971985817, -0.3049499988555908, -0.12955999374389648, -0.49963000416755676, 0.34929001331329346, -0.07118900120258331, -0.24445000290870667, 0.06633900105953217, -0.14611999690532684, -0.6614000201225281, -0.014492999762296677, -0.5990300178527832, 0.3577600121498108, -0.5680800080299377, -0.6734700202941895, -0.17634999752044678, -0.12176000326871872, -0.21845999360084534, 0.04370199888944626, -0.3157300055027008, -0.013313000090420246, -0.09582699835300446, 0.4855700135231018, 0.2796899974346161, 0.22373999655246735, 0.32412999868392944, 0.4205099940299988, 0.10708999633789062, 0.040394000709056854, -0.1149199977517128, -0.08870799839496613, -0.39590999484062195, 0.2955699861049652, 0.10839000344276428, -0.4275299906730652, 0.31053000688552856, -0.2054699957370758, 0.17463000118732452, -0.07581300288438797, -0.007572299800813198, -0.25808000564575195, 0.26166000962257385, 0.0744670033454895, -0.2622399926185608, -0.26556000113487244, 0.15246999263763428, 0.042371999472379684, 0.5319399833679199, 0.5910999774932861, 0.3760400116443634, 0.23643000423908234, -0.3079499900341034, 0.4416399896144867, 0.22624999284744263, -0.23109999299049377, 0.3683199882507324, -0.43887001276016235, 0.09816499799489975, 0.39430001378059387, 0.3972199857234955, 0.012287000194191933, -0.0004017599858343601, -0.38436999917030334, 0.46588000655174255, 0.011692999862134457, -0.02615799941122532, -0.12167000025510788, 0.05524099990725517, -0.02399599924683571, 0.26677000522613525, 0.43327999114990234, -1.4206000566482544, -0.09597399830818176, 0.15835000574588776, 0.9544299840927124, 0.2934199869632721, -0.22605000436306, 0.008270500227808952, -0.21660999953746796, 0.01651499979197979, -0.001040700008161366, -0.22213000059127808, 0.02576100081205368, -0.23047000169754028, -0.5141599774360657, -0.47036001086235046, -0.17524999380111694, 0.3656800091266632, -0.060756001621484756, 0.3272700011730194, 0.4405600130558014, -0.0903559997677803, -0.17688000202178955, -0.0063450997695326805, 0.14395999908447266, 0.13891999423503876, -0.08955900371074677, 0.7069200277328491, -0.5672399997711182, 0.2755100131034851, 0.5272799730300903, 0.07040499895811081, 0.019943000748753548, 0.49827998876571655, 0.17781999707221985, -0.8564599752426147, 0.32058998942375183, -0.8178300261497498, 0.07538700103759766, -0.31057000160217285, 0.1502400040626526, 0.7041800022125244, -0.048948001116514206, -0.6746500134468079, -0.5433300137519836, 0.13595999777317047, 0.18147000670433044, -0.7000600099563599, -0.44683000445365906, 0.9768800139427185, 0.24372999370098114, 0.03844999894499779, 0.08184400200843811, 0.04400099813938141, -0.6203500032424927, -0.20277999341487885, -0.2970600128173828, -0.5911399722099304, -0.04206499829888344, 0.4945800006389618, 0.3345400094985962, -0.07405699789524078, -0.32523998618125916, -0.18421000242233276, 0.3899799883365631, -0.32978999614715576, 0.33441001176834106, -0.5485299825668335, 0.6534600257873535, 0.8406199812889099, 0.32249000668525696, 0.22146999835968018, 0.6464200019836426, 0.17554999887943268, -0.06653500348329544, 0.43608999252319336, 0.18657000362873077, -0.24570000171661377, -0.7274699807167053, -0.4146000146865845, -0.7476199865341187, -0.15070000290870667, 1.1770999431610107, -0.14392000436782837, 0.758870005607605, 0.34174999594688416, 0.3926199972629547, -0.4370500147342682, 0.5667600035667419, 0.4563100039958954, -0.9429500102996826, -0.2141599953174591, 0.04517500102519989, -0.44312000274658203, -0.5216299891471863, 0.1618099957704544, 0.34757000207901, 0.5656899809837341, 0.29517999291419983, -0.5171399712562561, -0.1672700047492981, -0.05807900056242943, 0.6105999946594238, 0.2170799970626831, 0.3301900029182434, 0.1236800029873848, 0.13369999825954437, -0.2789100110530853, 0.0653420016169548, -0.43342000246047974, -0.3225499987602234, -0.37171998620033264, 0.6924700140953064, 0.1231599971652031, 0.024960000067949295, 0.005610200110822916, 0.5827500224113464, -0.3136399984359741, 0.1677899956703186, -0.28213998675346375, 0.05283999815583229, 0.6869900226593018, 0.5686600208282471, 0.07811100035905838, -0.9603099822998047, 0.2103399932384491, -0.028589000925421715, 0.47391000390052795, 0.13806000351905823, -0.674310028553009, 0.03142800182104111, -0.7898200154304504, 0.14482000470161438, -0.01178400032222271, -0.2830899953842163, -0.2981100082397461, 0.637499988079071, 0.19628000259399414, -0.10865999758243561, 0.334989994764328, -0.5264999866485596, -0.7192500233650208, 0.28327998518943787, 0.010514000430703163, 0.3960399925708771, 0.4316900074481964, -0.7488999962806702, 0.2145099937915802, -0.2912999987602234, 0.36410999298095703, -0.8466699719429016, 0.33215001225471497, -0.1285800039768219, 0.02625799924135208, -0.044077999889850616, -0.6762099862098694, -0.5133600234985352, -0.2953299880027771, -1.0089000463485718, -0.6935999989509583, -0.06862399727106094, 0.5847100019454956, 0.4698199927806854, -0.24917000532150269, 0.11381000280380249, 0.12919999659061432, -0.33386000990867615, 0.44091999530792236, -0.46724000573158264, -0.10884000360965729, -0.0374940000474453, -0.32910001277923584, -0.14775000512599945, -0.10126999765634537, -0.6255000233650208, 0.5851899981498718, -0.34999001026153564, -0.4412899911403656, 0.7086499929428101, 0.15971000492572784, 0.4401800036430359, -0.005329799838364124], u'concrete': [0.08548200130462646, -0.3613100051879883, -0.39215001463890076, -0.9258099794387817, -0.19812999665737152, 0.1677200049161911, -0.09894700348377228, -0.1960899978876114, -0.15735000371932983, -1.694200038909912, -0.24834999442100525, 0.11362999677658081, -0.025443999096751213, 0.19345000386238098, 0.29326000809669495, -0.14512999355793, -0.806439995765686, -0.022136999294161797, 0.08662699908018112, 0.06024099886417389, -0.036942001432180405, 0.010312999598681927, 0.29201000928878784, 0.5462200045585632, -0.8716599941253662, 0.09337200224399567, 0.3874799907207489, 0.19354000687599182, 0.023169999942183495, 0.38471001386642456, -0.13384999334812164, 0.5308200120925903, -0.11309000104665756, -0.1504400074481964, 0.17479999363422394, 0.8260400295257568, -0.05741199851036072, 0.324970006942749, 0.7266299724578857, 0.09787199646234512, -0.5958499908447266, 0.25064998865127563, -0.397489994764328, -0.15911999344825745, -0.3516800105571747, 0.3499400019645691, -0.15839000046253204, 0.29517999291419983, -0.14408999681472778, -0.15565000474452972, -0.014957999810576439, 0.6133900284767151, 0.08413399755954742, 0.05173100158572197, 0.21244999766349792, 1.246899962425232, -0.1967799961566925, -0.11745999753475189, -0.017527999356389046, 0.5714100003242493, 0.2196899950504303, 0.019814999774098396, -0.0332689993083477, -0.2775700092315674, 0.14053000509738922, 0.24007000029087067, 0.18357999622821808, 0.6114100217819214, -0.0814720019698143, 0.013415999710559845, -0.12456999719142914, 0.1287900060415268, -0.38398000597953796, 0.016092000529170036, -0.24023999273777008, 0.41007000207901, -0.3188900053501129, 0.043063998222351074, 0.3207800090312958, -0.35962000489234924, 0.3051300048828125, -0.12099000066518784, 0.6426299810409546, -0.034678999334573746, -0.5434200167655945, 0.2163199931383133, 0.2474299967288971, -0.14399999380111694, -0.07557199895381927, 0.006140499841421843, 0.49116000533103943, 0.14350999891757965, 0.18565000593662262, 0.2814899981021881, -0.10795000195503235, -0.1429699957370758, -0.023926999419927597, -0.5425000190734863, 0.3333500027656555, -0.4035300016403198, -0.13832999765872955, 0.07910899817943573, -0.07289600372314453, -0.2278899997472763, 0.06775400042533875, 0.4255000054836273, 0.10164999961853027, -0.18674999475479126, -0.23319999873638153, -1.0830999612808228, -0.5466200113296509, -0.724590003490448, -0.6216199994087219, -0.7242699861526489, -0.5524200201034546, -0.0662039965391159, 0.3102700114250183, 0.06212000176310539, -0.17906999588012695, -0.23645000159740448, 0.6868399977684021, 0.03913300111889839, 0.05596499890089035, 0.6544600129127502, -0.4688200056552887, -0.10321000218391418, -0.07742500305175781, -0.011020000092685223, -0.23695999383926392, 0.18129000067710876, -0.2198600023984909, 0.8760700225830078, 0.4322899878025055, 0.4148299992084503, -0.07203999906778336, -0.34014999866485596, -0.3907899856567383, 0.04018300026655197, -0.2959800064563751, -0.5568100214004517, 0.004270500037819147, 0.38019999861717224, 0.21852000057697296, -0.49748000502586365, -0.09860199689865112, 0.12964999675750732, 0.07632700353860855, 0.5181199908256531, -0.32622000575065613, -0.5255500078201294, -0.3579399883747101, 0.2903600037097931, -0.2932699918746948, -0.14566999673843384, 0.17680999636650085, 0.20539000630378723, 0.2218800038099289, -0.2499600052833557, -0.4122700095176697, 0.2424599975347519, 0.03506699949502945, 0.5168300271034241, 0.3543500006198883, -0.38995999097824097, 0.878030002117157, 0.3565100133419037, -0.07444100081920624, 0.4043999910354614, 0.26010000705718994, 0.07475399971008301, 0.43154001235961914, -0.10832999646663666, 0.47808000445365906, -0.7143499851226807, 0.3329299986362457, -0.27077001333236694, -0.2487799972295761, -0.26855000853538513, 0.14067000150680542, -1.2333999872207642, 0.12453000247478485, -0.5465499758720398, 0.7099400162696838, -0.13109000027179718, -0.610509991645813, 0.22935999929904938, 0.4562700092792511, 0.2666099965572357, 0.5899699926376343, 0.5559599995613098, 0.760200023651123, 0.11025000363588333, 0.4603700041770935, -0.363319993019104, 0.050411999225616455, -0.3627600073814392, -0.3838199973106384, 0.07320199906826019, 0.23886999487876892, -0.3201799988746643, 0.6368700265884399, -0.4418399930000305, -0.40501001477241516, -0.3503200113773346, -0.1891700029373169, 0.10527999699115753, 0.34095999598503113, -0.33250999450683594, -0.599560022354126, 0.34193000197410583, -0.018143000081181526, 0.35989001393318176, -0.37856999039649963, -0.05659500136971474, -0.3202199935913086, 0.1068200021982193, 0.06475000083446503, -0.42866000533103943, 0.16399000585079193, -0.13393999636173248, 0.8605999946594238, 0.1174200028181076, 0.8073899745941162, 0.19005000591278076, 0.0220979992300272, 0.08316099643707275, 0.025090999901294708, -0.10930000245571136, 0.33011001348495483, -0.710889995098114, 0.05627800151705742, -0.14364999532699585, -0.2455900013446808, 0.40766000747680664, 0.03589800000190735, 0.15836000442504883, 0.09180500358343124, -0.5496399998664856, -0.31520000100135803, 0.1507900059223175, -0.043480001389980316, -0.6193600296974182, -0.20754000544548035, -0.3815099895000458, -0.6233599781990051, -0.1932000070810318, 0.5626199841499329, 0.05114800110459328, -0.21550999581813812, 0.33809998631477356, 0.2624000012874603, -0.3421599864959717, 0.4300900101661682, -0.5706899762153625, 0.2434300035238266, -0.1370300054550171, -0.1370600014925003, -0.3104099929332733, -0.18758000433444977, 0.8493099808692932, -0.3922500014305115, 0.23284000158309937, 0.054788000881671906, -0.5561699867248535, 0.31652000546455383, 0.15602999925613403, -0.34411001205444336, 0.25450998544692993, 0.017316000536084175, -0.8212400078773499, -0.38705000281333923, -0.3447900116443634, -0.18336999416351318, 0.05376100167632103, -0.35833001136779785, -0.0859220027923584, -1.7773000001907349, 0.17428000271320343, 0.6527500152587891, -0.1841599941253662, 0.2301200032234192, -0.9841300249099731, -0.2547700107097626, -0.13183000683784485, 0.18932999670505524, 0.03765900060534477, 0.294950008392334, 0.550819993019104, 0.20896999537944794, -0.12961000204086304, -0.19001999497413635, 0.23725999891757965, 0.23702000081539154, 0.6917700171470642, 0.32225000858306885, 0.8716599941253662, -0.009744900278747082, -0.15898999571800232, -0.032186999917030334, 0.4274600148200989], u'balloon': [0.09854999929666519, -0.17083999514579773, -0.3286300003528595, -0.35258999466896057, -0.2448900043964386, 0.3311600089073181, 0.35888999700546265, -0.17455999553203583, -0.17732000350952148, -0.48475998640060425, 0.4094899892807007, -0.20819999277591705, 0.1410599946975708, -0.04390700161457062, 0.18066999316215515, 0.2858699858188629, -0.025644000619649887, 0.6800299882888794, 0.2905600070953369, 0.3950600028038025, 0.16952000558376312, -0.27213001251220703, 0.2434699982404709, 0.456279993057251, 0.08779899775981903, -0.4396199882030487, 0.02229199931025505, -0.07867699861526489, -0.15251000225543976, 0.22342999279499054, -0.18435999751091003, -0.17871999740600586, -0.053022000938653946, -0.21739999949932098, -0.1394300013780594, -0.3364599943161011, -0.4032300114631653, -0.5540500283241272, 0.44282999634742737, 0.8275899887084961, -0.9672399759292603, 0.151419997215271, 0.0348609983921051, 0.25303998589515686, -0.6289700269699097, 0.4625599980354309, -0.16374999284744263, -0.03386399894952774, 0.2556900084018707, -0.17500999569892883, 0.26510000228881836, -0.35416001081466675, -0.32183000445365906, 0.6345400214195251, -0.6086400151252747, -0.14322000741958618, -0.4771200120449066, -0.0899680033326149, 0.4383600056171417, 0.025692999362945557, 0.060072001069784164, -0.055114999413490295, 0.5392600297927856, -0.75559002161026, 0.3291899859905243, 0.24232999980449677, 0.2630400061607361, -0.022538000717759132, -0.3263700008392334, -0.16697999835014343, 0.45778998732566833, 0.6409599781036377, 0.23713000118732452, -0.0034783000592142344, 0.4720900058746338, 0.166920006275177, 0.5371699929237366, -0.05579499900341034, 0.29576998949050903, -0.635420024394989, -0.26822999119758606, 0.013527000322937965, 0.4811600148677826, 0.7243899703025818, -0.2810800075531006, 0.06377899646759033, 0.2652300000190735, -0.20329000055789948, -0.027073999866843224, -0.09871499985456467, 0.4432699978351593, -0.06578700244426727, 0.22192999720573425, -0.2625499963760376, 0.6562600135803223, 0.33757999539375305, -0.447380006313324, 0.8455899953842163, -0.7602699995040894, 0.21397000551223755, 0.4192799925804138, 0.3564000129699707, -0.16666999459266663, 0.11495999991893768, 0.7505199909210205, -0.4945499897003174, -0.5051599740982056, 0.3714199960231781, -0.004447500221431255, 0.4721300005912781, -0.3444499969482422, 0.837119996547699, 0.3519499897956848, 0.5188699960708618, 0.3091700077056885, -0.693120002746582, -0.5187199711799622, 0.7336699962615967, 0.16274000704288483, -0.08588899672031403, 0.66839998960495, -0.5208100080490112, 0.08698800206184387, -0.02047399990260601, 0.14065000414848328, -0.329010009765625, -0.7194700241088867, -0.06845299899578094, 0.7716400027275085, -0.15556000173091888, 0.12952999770641327, 0.69691002368927, 0.04138199985027313, 0.1059499979019165, 0.06185400113463402, 0.3142299950122833, 0.3764300048351288, -0.2041199952363968, -0.5556300282478333, -0.6845999956130981, -0.13902999460697174, -0.5718200206756592, -0.6228799819946289, 0.09809199720621109, -0.36438998579978943, 0.19243000447750092, 0.041165001690387726, 0.1661600023508072, 0.13288000226020813, 0.5344700217247009, -0.1090800017118454, 0.4000700116157532, 0.6775299906730652, -0.208979994058609, 0.8883799910545349, 0.6623799800872803, 0.04258599877357483, 0.06662599742412567, -0.6099799871444702, 0.7633399963378906, 0.11886999756097794, -0.8979899883270264, 0.4458099901676178, -0.1832199990749359, 0.5488399863243103, -0.8668500185012817, -0.09507499635219574, 0.2884100079536438, -0.01879500038921833, -0.02343199960887432, -0.4556399881839752, 0.22335000336170197, 0.1771100014448166, -0.20306000113487244, -0.008656900376081467, -0.30188000202178955, -0.0382549986243248, -0.18119999766349792, 0.05647699907422066, 0.1271200031042099, 0.28683000802993774, -0.3521200120449066, 0.27204999327659607, 0.4937500059604645, 0.2037300020456314, -0.8180599808692932, 0.3755899965763092, 0.11999999731779099, -0.5254499912261963, -0.8037199974060059, 0.22211000323295593, 0.7376599907875061, -0.35995998978614807, 0.22022999823093414, -0.5815799832344055, 0.06252399832010269, 0.2141599953174591, 0.6596900224685669, 0.08104600012302399, -0.4066399931907654, 0.46643000841140747, -0.06612300127744675, -0.21594999730587006, -0.16308000683784485, 0.5895400047302246, 0.2379399985074997, -0.03724199905991554, 0.32565000653266907, 0.0026891001034528017, 0.9505000114440918, -0.19006000459194183, -0.4204599857330322, -0.049908000975847244, -0.5411700010299683, 0.19550999999046326, -0.09181399643421173, -0.4529699981212616, -0.3405100107192993, -0.012811999768018723, -0.2503800094127655, 0.6223400235176086, -0.19442999362945557, 0.04409100115299225, -0.3712199926376343, -0.19453999400138855, -0.26589998602867126, -0.9260900020599365, -0.01810400001704693, 0.25672000646591187, -0.4557900130748749, -0.013577999547123909, 0.13955000042915344, -0.09140799939632416, -0.5659099817276001, 0.05525900050997734, -0.09835399687290192, -0.3027999997138977, -0.6807500123977661, 0.10006999969482422, -0.28957998752593994, 0.14970000088214874, -0.16370999813079834, -0.04802300035953522, 0.017622999846935272, -0.23064999282360077, -0.4478699862957001, 0.2242400050163269, -0.12691999971866608, 0.40810999274253845, 0.37240999937057495, -0.5593600273132324, 0.03378299996256828, -0.1090100035071373, -0.5548700094223022, 0.048041000962257385, 0.4775800108909607, 0.013698999769985676, -0.332940012216568, 0.022166000679135323, 0.18197999894618988, 0.7768200039863586, -0.3347199857234955, 0.04888100177049637, 0.3042199909687042, -0.1367499977350235, 0.5104900002479553, 0.022646000608801842, 0.0508279986679554, 0.008611599914729595, 0.6365799903869629, -0.020534999668598175, 0.5776399970054626, 0.6060000061988831, 0.5644099712371826, -0.011220999993383884, -0.4963200092315674, -1.100100040435791, -0.7223600149154663, -0.6348000168800354, 0.1589300036430359, -0.24252000451087952, 0.12946000695228577, -0.2939099967479706, 0.1871500015258789, -0.09801000356674194, -0.10857000201940536, -0.024903999641537666, 0.17720000445842743, -0.9440500140190125, 0.4867500066757202, 0.31567999720573425, 0.1843400001525879, -0.4359000027179718, -0.371969997882843, 0.12212000042200089, -0.43773001432418823, -0.252920001745224, 0.127470001578331, -0.021604999899864197, 0.3716900050640106], u'cave': [-0.5335299968719482, 0.3953799903392792, -0.6190900206565857, -0.12439999729394913, 0.3276199996471405, -0.08961699903011322, 0.40443000197410583, 0.23603999614715576, -0.055810000747442245, -0.31790998578071594, -0.18618999421596527, -0.33889999985694885, -0.12284000217914581, 0.3503899872303009, 0.16819000244140625, 0.006061300169676542, -0.2237199991941452, -0.08748099952936172, 0.2139900028705597, 0.6152499914169312, -0.16485999524593353, 0.3169899880886078, 0.6363499760627747, 0.2682400047779083, -0.22573000192642212, -0.2564300000667572, 0.2838599979877472, -0.4568699896335602, -0.4213300049304962, 1.3016999959945679, 0.5760999917984009, 0.44613000750541687, -0.5725600123405457, -0.1452600061893463, 0.6906499862670898, -0.09208299964666367, 0.33243000507354736, 0.026633000001311302, -0.19763000309467316, -0.37891000509262085, 0.05485000088810921, 0.4346599876880646, 0.5031700134277344, 0.5508300065994263, -0.4539799988269806, 0.14263999462127686, 0.42906999588012695, 0.29899001121520996, -0.12775999307632446, -0.1193000003695488, 0.10327000170946121, 0.011118999682366848, -0.36388999223709106, 0.46928998827934265, 0.36010000109672546, 0.6281999945640564, -0.32837000489234924, 0.04516100138425827, 0.09915000200271606, 0.3787600100040436, -0.443589985370636, -0.014360999688506126, 0.606939971446991, 0.3451800048351288, 0.14454999566078186, -0.3301199972629547, 0.16867999732494354, -0.2961699962615967, -0.28314998745918274, 0.02519799955189228, -0.14957000315189362, -0.25641000270843506, -0.3644999861717224, -0.4975999891757965, -1.0322999954223633, -0.18488000333309174, -0.08821199834346771, -0.30432000756263733, 0.3275200128555298, -0.4108799993991852, 0.29427000880241394, 0.052776999771595, -0.33191999793052673, -0.3121800124645233, -0.2692500054836273, 0.8627099990844727, 0.19257999956607819, 0.18479999899864197, -0.35054001212120056, -0.33463001251220703, -0.2051199972629547, 0.07444699853658676, -0.23907999694347382, 0.4095599949359894, 0.5648999810218811, 0.9209799766540527, 0.14170999825000763, 0.15803000330924988, 0.743910014629364, -0.08837399631738663, 0.09492599964141846, 0.6487399935722351, 0.3869900107383728, -0.1919800043106079, 0.23543000221252441, 0.15995000302791595, 0.483379989862442, 0.2730099856853485, 0.4449999928474426, -0.06980600208044052, -0.409060001373291, -0.6081600189208984, 0.15154999494552612, -0.027682000771164894, 0.19787999987602234, -0.038040000945329666, -0.31560999155044556, -0.22867999970912933, -0.03975199908018112, -0.08478099852800369, -0.26423999667167664, -0.37602001428604126, -0.675819993019104, -0.0857739970088005, -0.1634799987077713, -0.14147000014781952, -0.3180600106716156, 0.16026000678539276, 0.04141699895262718, -0.008233999833464622, -0.07121700048446655, 0.3866199851036072, -0.16439999639987946, 0.05613800138235092, -0.26715999841690063, 0.1530199944972992, -0.4221999943256378, -0.1979999989271164, -0.3169899880886078, -0.40727999806404114, -0.01017600018531084, -0.7992500066757202, -0.1999099999666214, -0.5950800180435181, -0.2987299859523773, -1.3544000387191772, 0.09706799685955048, 0.6063600182533264, -0.2501400113105774, -0.003122099908068776, -0.05805400013923645, 0.2574400007724762, -0.64205002784729, -0.573199987411499, 0.40077999234199524, 0.006764700170606375, -0.051398999989032745, 0.2071399986743927, -0.5836399793624878, 0.15169000625610352, 0.17188000679016113, 0.11830999702215195, 0.4683299958705902, 0.20272000133991241, 0.2559800148010254, 0.509909987449646, 0.5097799897193909, 0.0848039984703064, 0.05987999960780144, -0.6876800060272217, 0.08966600149869919, 0.3485099971294403, 1.3431999683380127, 0.21250000596046448, -0.340719997882843, 1.2723000049591064, -0.35962000489234924, 0.030254999175667763, 0.25442999601364136, 0.13011999428272247, 0.4433700144290924, 0.27265000343322754, 0.4457699954509735, -0.03079799935221672, 0.10480999946594238, -0.5113800168037415, 0.1404999941587448, 0.2897999882698059, 0.20221999287605286, -0.09950099885463715, 0.0888189971446991, 0.44477999210357666, 0.08122900128364563, -0.08717100322246552, -0.2549999952316284, -0.11427000164985657, -0.24854999780654907, -0.25501999258995056, 0.24560999870300293, 0.49818000197410583, 1.2253999710083008, 0.2520099878311157, -0.17159999907016754, 0.02936200052499771, 0.29693999886512756, -0.022281000390648842, -1.0469000339508057, -0.34891998767852783, -0.074925996363163, 0.3399200141429901, -0.3566800057888031, -0.007269499823451042, 0.02860499918460846, -0.11077000200748444, 0.13721999526023865, -0.31610000133514404, -0.44593000411987305, 0.3770599961280823, 0.22245000302791595, 0.5653700232505798, 0.33496999740600586, 0.368369996547699, -0.376800000667572, -0.6230599880218506, -0.04745600000023842, -0.5401600003242493, -0.44179001450538635, 0.12655000388622284, -0.12992000579833984, -0.3224300146102905, -0.25661998987197876, -0.33741000294685364, -0.046716999262571335, -0.13871000707149506, -0.12996000051498413, -0.09997399896383286, -0.47383999824523926, -0.3530299961566925, -0.14249999821186066, -0.40467000007629395, -0.08125399798154831, 0.23115000128746033, -0.18626999855041504, -0.10233999788761139, -0.5616000294685364, 0.14232000708580017, -0.3218199908733368, -0.3055500090122223, -0.1798900067806244, 0.21142999827861786, -0.295199990272522, -0.01195400021970272, 0.48276999592781067, -0.17983999848365784, 0.40073999762535095, 0.3299899995326996, 1.0374000072479248, 0.015409000217914581, -0.3280400037765503, 0.1914999932050705, -0.3198600113391876, -0.3736000061035156, 0.24232999980449677, -0.4537999927997589, -0.130840003490448, -0.19439999759197235, -0.12634000182151794, -0.20288999378681183, 0.07146400213241577, 0.4336700141429901, -0.7508800029754639, 0.013110999949276447, 0.19030000269412994, 0.4419800043106079, -0.13127000629901886, -0.07745400071144104, -0.8182799816131592, -0.5735899806022644, -0.28200000524520874, 0.2917200028896332, -0.32914999127388, 0.04944400116801262, 0.2688699960708618, -0.1619900017976761, 0.026410000398755074, 0.25029000639915466, -0.042413998395204544, 0.25854000449180603, 0.41982999444007874, -0.2773900032043457, -0.12426000088453293, -0.00860149972140789, 0.2282399982213974, 0.20305000245571136, -0.10661999881267548, -0.14569999277591705, 0.2841799855232239, 0.34426000714302063, -0.22303999960422516, 0.049199000000953674], u'bowl': [-0.18025000393390656, 1.2187999486923218, 0.4313200116157532, -0.5559200048446655, 0.06584600359201431, -0.12246999889612198, 0.5308200120925903, 0.09643200039863586, -0.007739400025457144, -0.17044000327587128, -0.3754099905490875, 0.12296999990940094, 0.01617100089788437, -0.3746199905872345, 0.15078000724315643, -0.16962000727653503, -0.2948000133037567, 0.02876099944114685, -0.5062900185585022, -0.8512099981307983, -0.44370999932289124, -0.06564400345087051, -0.20541000366210938, 0.15230999886989594, 0.016898000612854958, -0.6497099995613098, -0.45291998982429504, 0.03203599900007248, -0.3763599991798401, -1.2274999618530273, 0.28395000100135803, -0.08025600016117096, -0.01841600053012371, -0.473470002412796, -1.6784000396728516, 0.5074099898338318, -0.28001001477241516, 0.6706799864768982, -0.23197999596595764, -0.4867500066757202, 0.03702099993824959, -0.16031000018119812, -0.12820999324321747, 0.09071200340986252, -0.1947299987077713, 0.14937999844551086, 0.1802700012922287, 0.04250200092792511, 0.00658239983022213, 0.38304001092910767, 0.3236599862575531, 0.4086199998855591, -0.4085899889469147, 0.1437399983406067, -0.5069100260734558, -0.0728359967470169, 0.14621999859809875, 0.07649999856948853, 0.4874500036239624, -0.2415499985218048, -0.6507899761199951, -0.4885599911212921, -0.7434599995613098, 0.8161900043487549, 0.07714799791574478, -0.19431999325752258, 0.38398998975753784, 0.06899300217628479, 0.4905500113964081, 0.04693799838423729, 0.7721199989318848, -0.15448999404907227, 0.21032999455928802, 0.25113001465797424, -1.0321999788284302, 0.4171200096607208, 0.7777699828147888, 0.16526000201702118, 0.403329998254776, -0.1440100073814392, 0.21773000061511993, 0.46977001428604126, -0.9059600234031677, 0.10852999985218048, 0.27300000190734863, -0.09594900161027908, -0.9193800091743469, -0.2119700014591217, 0.3841499984264374, -0.5120999813079834, 0.3198400139808655, 0.5980799794197083, 0.23736999928951263, 0.043234001845121384, -1.2872999906539917, 0.28474000096321106, 0.5694500207901001, -0.16203999519348145, -0.11900000274181366, -0.01879199966788292, 0.37966999411582947, 0.06698500365018845, 0.2525799870491028, 0.006842100061476231, 0.38670000433921814, 0.29666998982429504, -0.09932799637317657, 0.07898099720478058, -0.4984799921512604, 0.2184399962425232, 0.2184399962425232, -0.07414399832487106, -0.08093900233507156, -0.06850100308656693, -0.7369999885559082, 0.19226999580860138, 0.022235000506043434, 0.4856500029563904, -0.033771999180316925, -0.368149995803833, 0.3178800046443939, 0.22228999435901642, 0.5730299949645996, 0.1773100048303604, -0.37762999534606934, -0.43893998861312866, -0.11039000004529953, 0.6404500007629395, -0.5204799771308899, 0.2769699990749359, -0.20235000550746918, 0.7275300025939941, -0.04125500097870827, 0.3713099956512451, -0.18153999745845795, -0.12884999811649323, 0.0803539976477623, 0.2575100064277649, -0.44132000207901, 0.5235099792480469, 0.3737100064754486, 0.8080000281333923, -0.09662699699401855, 0.2220900058746338, -0.11507999897003174, 0.8595100045204163, -0.3598000109195709, 0.053304001688957214, 0.586650013923645, 0.2978599965572357, 0.032749999314546585, -0.04536399990320206, -0.18006999790668488, -0.529449999332428, 0.548039972782135, -0.2679699957370758, -0.30046001076698303, -0.44227999448776245, -0.5120900273323059, 0.3113200068473816, 0.05477700009942055, 0.11163999885320663, -0.5525500178337097, -0.2962000072002411, 0.38269999623298645, 0.42302000522613525, 0.4636099934577942, 0.4674699902534485, -0.257860004901886, -0.5882800221443176, 0.33024999499320984, -0.12785999476909637, -1.1598999500274658, -0.16856999695301056, 0.0692719966173172, 0.2942099869251251, 0.25196000933647156, 0.06645199656486511, 1.100600004196167, -0.2072100043296814, 0.5696700215339661, -0.048294998705387115, 0.2922399938106537, -0.2505300045013428, -0.3094399869441986, -0.7736499905586243, 0.2898299992084503, 0.1467999964952469, -0.4555799961090088, -0.04267600178718567, 0.5471000075340271, 1.1412999629974365, -0.31290000677108765, 0.628059983253479, -0.40250998735427856, -0.548770010471344, 0.15699000656604767, 0.5175700187683105, 0.3945100009441376, 0.5166900157928467, 1.9617999792099, -0.07099699974060059, 0.5524200201034546, -0.3341299891471863, 0.04203199967741966, -0.4258100092411041, 0.5598999857902527, -0.14997999370098114, 0.44133999943733215, -0.0783109962940216, 0.3409999907016754, 0.9475899934768677, -0.19864000380039215, 0.4699400067329407, -1.1958999633789062, -0.5592100024223328, -0.5985100269317627, -0.6438000202178955, 0.20689000189304352, -0.3819800019264221, 0.8713399767875671, -0.06437800079584122, -0.3784799873828888, 0.07691799849271774, -0.3842400014400482, -0.5391600131988525, 0.5927199721336365, -0.4846299886703491, 0.2768299877643585, 0.04951300099492073, -0.04136300086975098, -0.3128499984741211, 0.2500799894332886, -0.5736799836158752, 0.19718000292778015, -0.5720000267028809, 0.4485900104045868, -0.7296500205993652, -0.21427999436855316, -0.828540027141571, -0.23883000016212463, -0.05116400122642517, 0.49399998784065247, 0.09742800146341324, -1.219499945640564, -0.3384400010108948, -0.0012721000239253044, -0.20866000652313232, -0.5800999999046326, -0.11130999773740768, 0.0781330019235611, -0.5368300080299377, -0.16872000694274902, -0.10730999708175659, -0.31852999329566956, 0.1601399928331375, 0.3602299988269806, -0.14278000593185425, 0.10345999896526337, 0.1055700033903122, -0.4044800102710724, -1.34660005569458, 0.4810500144958496, 0.05017700046300888, 0.07222799956798553, -0.37525999546051025, -0.22673000395298004, -0.28314998745918274, 0.33149001002311707, 0.23277999460697174, -0.5394799709320068, -0.32714998722076416, 0.46342000365257263, 0.652999997138977, 0.216839998960495, -0.7004500031471252, -0.98198002576828, 0.07991500198841095, -0.519540011882782, 0.12080000340938568, -0.3033199906349182, 0.008907600305974483, 0.4986099898815155, 0.34185999631881714, -0.13289999961853027, 0.1145000010728836, -0.5907700061798096, -0.7939000129699707, 0.0313429981470108, -0.0835380032658577, 0.02485400065779686, -0.17023000121116638, 0.06460800021886826, 0.14943000674247742, 0.5669699907302856, -0.3406200110912323, -0.18313999474048615, -0.37226998805999756, -0.623740017414093, 0.19429999589920044], u'snow': [-0.6960999965667725, -0.33390000462532043, -0.6654199957847595, -0.1645900011062622, -0.7028300166130066, 0.05326399952173233, 0.5750799775123596, 1.1246000528335571, -0.4114300012588501, -0.9333500266075134, -0.3970000147819519, -0.13948999345302582, -0.2172500044107437, 0.49382999539375305, -0.16481000185012817, -0.4367299973964691, -0.39998000860214233, -0.14701999723911285, 0.5827999711036682, 0.7312300205230713, -0.16808000206947327, 0.05009299889206886, 0.20340999960899353, 0.09328299760818481, -0.18943999707698822, -0.009279600344598293, 0.006421300116926432, -0.5586000084877014, 0.07970800250768661, 0.03417700156569481, 0.503000020980835, -0.08412300050258636, -0.15241000056266785, 0.04239799827337265, -0.9586499929428101, 0.13481999933719635, 0.10694999992847443, 0.222120001912117, 0.1638299971818924, 0.08141600340604782, -0.6143699884414673, 0.6029899716377258, 0.5384299755096436, 0.33915001153945923, -0.0600459985435009, -0.12329000234603882, 0.30417001247406006, 0.06783799827098846, -0.05832900106906891, -0.24790999293327332, -0.2817699909210205, 0.32273000478744507, -0.1263899952173233, -0.4066399931907654, -0.4257799983024597, 0.7136600017547607, 0.18675999343395233, -0.4957599937915802, 0.566349983215332, 0.3941099941730499, -0.11875999718904495, 0.6279799938201904, 0.5019299983978271, -0.38534000515937805, -0.32332998514175415, -0.2961300015449524, -0.19840000569820404, 0.08204200118780136, -0.6366599798202515, -0.2517699897289276, 0.07022500038146973, 0.23885999619960785, -0.353410005569458, -0.30614998936653137, -0.7897999882698059, -0.014515000395476818, -0.0966619998216629, 0.27063998579978943, 0.37095001339912415, -0.39160001277923584, 0.15589000284671783, 0.4017600119113922, -0.1231599971652031, -0.00693110004067421, -0.17538000643253326, 0.2931700050830841, -0.03566199913620949, -0.06250300258398056, -0.11821000277996063, -0.26708000898361206, 0.3343299925327301, -0.4103899896144867, -0.44940999150276184, -0.058538999408483505, -0.5972999930381775, -0.060832999646663666, 0.014623000286519527, 0.031390998512506485, 0.041092999279499054, 0.21222999691963196, 0.5430399775505066, 0.5144400000572205, -0.24469999969005585, -0.03493700176477432, -0.6158300042152405, 0.24116000533103943, 0.9361199736595154, 0.29662999510765076, -0.017330000177025795, 0.3986400067806244, -0.39899998903274536, -0.6992700099945068, 0.010898999869823456, 0.04480399936437607, 0.09644400328397751, 0.20555000007152557, 0.37108999490737915, 0.13219000399112701, 0.29941999912261963, -0.2849400043487549, -0.07110299915075302, -0.4533799886703491, -0.22125999629497528, -0.31672999262809753, -0.10643000155687332, 0.040453001856803894, -0.15323999524116516, 0.33191001415252686, 0.2780100107192993, -0.2514300048351288, -0.41784000396728516, 1.135200023651123, 0.18708999454975128, 0.5793200135231018, 0.1491200029850006, 0.4273099899291992, -0.8135300278663635, 0.355459988117218, 0.10287000238895416, -0.10858000069856644, 0.1369200050830841, 0.11450999975204468, -0.6860700249671936, -0.17114999890327454, -0.5270799994468689, 0.2895300090312958, 0.5146999955177307, 0.2554900050163269, -0.23138999938964844, -0.4427500069141388, 0.4267899990081787, -0.41475000977516174, 0.04118200019001961, -0.266400009393692, 0.6096699833869934, 0.03782999888062477, 0.2737100124359131, -0.5267000198364258, 0.12029000371694565, 0.520799994468689, 0.5951899886131287, -1.131500005722046, 0.19505000114440918, -0.25279998779296875, 0.3463599979877472, 0.8206499814987183, 0.6327099800109863, 0.09168200194835663, 0.38433000445365906, -0.8110799789428711, 0.1823199987411499, 0.19067999720573425, -0.13030999898910522, 0.213359996676445, 0.07445400208234787, -0.09449800103902817, 0.4759399890899658, -0.31025999784469604, -0.1171799972653389, 0.09289100021123886, 0.22066999971866608, -0.16720999777317047, 0.7170299887657166, 0.30142998695373535, -0.40608999133110046, -0.16231000423431396, 0.31314998865127563, -0.5932499766349792, -0.5340399742126465, -0.10869999974966049, -0.2302599996328354, 0.3650699853897095, 0.3064799904823303, -0.7557600140571594, -0.20767000317573547, -0.4696600139141083, -0.21035000681877136, 0.009192399680614471, 0.5056999921798706, 0.4556399881839752, 0.8414499759674072, -0.19412000477313995, 0.2396399974822998, 0.858519971370697, 0.05229000002145767, -0.0011898999800905585, -0.2938700020313263, 0.044186998158693314, -0.23885999619960785, 0.19207000732421875, -0.007945899851620197, -0.25773000717163086, 0.3114500045776367, -0.4761500060558319, -0.0005643100012093782, -0.89410001039505, -0.38666999340057373, -0.3790700137615204, 0.5282099843025208, -0.455130010843277, 0.5356699824333191, 0.1321599930524826, 0.39741000533103943, -0.4903999865055084, 0.24118000268936157, -0.11714000254869461, 0.27006998658180237, 0.1518400013446808, 0.42315998673439026, -0.3970800042152405, 0.13827000558376312, -0.2763800024986267, 0.2990800142288208, -0.7600799798965454, 0.06175199896097183, -0.44519999623298645, -0.5131999850273132, 0.12123999744653702, 0.1579200029373169, -0.5706700086593628, -0.6879299879074097, -0.33873000741004944, -0.4329099953174591, -0.4681699872016907, -0.8466699719429016, -0.658519983291626, -0.591159999370575, -0.04340599849820137, -0.013031000271439552, 0.11246000230312347, -0.35374000668525696, 0.392300009727478, 0.11720000207424164, -0.5626800060272217, 0.8347700238227844, -0.3467499911785126, 0.05456800013780594, -0.4849399924278259, 0.12108000367879868, -0.15503999590873718, -0.04700800031423569, -0.26649999618530273, 0.02459299936890602, 0.701229989528656, 0.2128400057554245, -0.07779599726200104, 0.05083499848842621, 0.3865000009536743, 0.3753400146961212, -0.4874899983406067, -0.01373900007456541, 0.5785199999809265, -0.9042500257492065, -0.006280600093305111, -0.2867400050163269, -0.01774900034070015, -1.0189000368118286, -0.7137100100517273, -0.3655700087547302, -0.7341200113296509, -0.02737100049853325, -0.07139600068330765, 0.6479200124740601, -0.057280998677015305, -0.25119999051094055, 0.0395670011639595, 0.0769760012626648, 0.34571999311447144, 0.34606000781059265, -0.3832300007343292, -0.07401099801063538, -0.14153000712394714, -0.03109000064432621, 0.5313699841499329, -0.35708001255989075, -0.28262999653816223, 0.09866300225257874, 0.1769299954175949, -0.3929699957370758, 0.2770799994468689], u'rubber': [0.2986299991607666, 0.06507299840450287, -0.11800999939441681, -0.013868999667465687, -0.33441999554634094, -0.6196799874305725, 0.0966470018029213, 0.688510000705719, -0.012130999937653542, -0.5205399990081787, -0.0633540004491806, -0.284280002117157, -0.3378799855709076, -0.5685399770736694, 0.2430499941110611, -0.3166300058364868, -0.19812999665737152, 0.7768800258636475, 0.06390400230884552, 0.38328999280929565, -0.3698500096797943, 0.002942899940535426, 0.2739099860191345, 0.4095200002193451, -0.7394000291824341, 0.13287000358104706, -0.2543799877166748, 0.1751600056886673, -0.34529998898506165, 0.7320299744606018, 0.35207998752593994, -0.40283000469207764, -0.22826999425888062, 0.33076998591423035, 0.03148899972438812, 0.4479300081729889, 0.14959000051021576, -0.34338998794555664, 0.5040799975395203, 0.6566600203514099, -0.13862000405788422, -0.3896700143814087, -0.10209999978542328, -0.003396800020709634, -0.3211899995803833, -0.21886000037193298, -0.29502999782562256, -0.4569700062274933, 0.014921000227332115, 1.4467999935150146, 0.192780002951622, 0.43167999386787415, -0.11180999875068665, 0.4858799874782562, 0.455159991979599, 0.1584099978208542, -0.07071900367736816, 0.1256999969482422, 0.02778399921953678, -0.7682499885559082, 0.13549000024795532, -0.3788999915122986, -0.8564000129699707, -0.48135998845100403, 0.7329999804496765, -0.05452600121498108, -0.5305899977684021, -0.20156000554561615, -0.4888800084590912, 0.4542999863624573, -0.330020010471344, 0.30017998814582825, -0.24556000530719757, 0.6433699727058411, 0.05084700137376785, 0.31984999775886536, 0.3308899998664856, -0.11275999993085861, 0.1404999941587448, -0.5774099826812744, 0.2191700041294098, 0.3236300051212311, 0.001630699960514903, 0.38207998871803284, -0.4682599902153015, -0.03551200032234192, 0.04054199904203415, -0.1838800013065338, -0.5474900007247925, 0.06058499962091446, 0.2213200032711029, -0.39937999844551086, -0.2192399948835373, -0.31856000423431396, 0.43827998638153076, 0.20409999787807465, -0.6905800104141235, 0.12713000178337097, -0.3513199985027313, -0.7056099772453308, 0.05018499866127968, 0.9441800117492676, -0.46459999680519104, -0.8096699714660645, 0.2837499976158142, 0.31582000851631165, -0.45987001061439514, -0.22417999804019928, -0.3726600110530853, -0.046720001846551895, 0.6299300193786621, -0.0013876999728381634, -0.19347000122070312, -0.2539600133895874, 0.51146000623703, 0.19089999794960022, 0.28334999084472656, 0.6500300168991089, 0.1527000069618225, -0.24301999807357788, -0.29218998551368713, -0.20714999735355377, 0.07373400032520294, -0.3077999949455261, -0.5839499831199646, 0.5425500273704529, 0.3295600116252899, -0.18283000588417053, 0.5159100294113159, 0.052848998457193375, 0.10576999932527542, 1.0450999736785889, 0.08685000240802765, 0.7823299765586853, -0.41321998834609985, -0.27790001034736633, 0.09461499750614166, 0.16659000515937805, 0.7350800037384033, 0.5509099960327148, 0.29973000288009644, 0.47947001457214355, 0.15665000677108765, -0.31314000487327576, -0.02555599994957447, 0.7722399830818176, -0.14316000044345856, -0.2017199993133545, -0.01362099964171648, -0.3018600046634674, -0.12732000648975372, 0.14295999705791473, 0.17744000256061554, -0.27441999316215515, 0.6162099838256836, -0.20860999822616577, 0.0681539997458458, -0.6604499816894531, 0.36476001143455505, -0.2655400037765503, -0.14114999771118164, -0.1935800015926361, 0.015495999716222286, -0.07668200135231018, 0.6678000092506409, -0.3740699887275696, 0.03956000134348869, 1.0391000509262085, 0.24718999862670898, 0.03426099941134453, -0.5722299814224243, 0.4587399959564209, 0.37490999698638916, 0.32493001222610474, 0.1035899966955185, -0.4659099876880646, 0.0006781899719499052, 0.5013999938964844, 0.039684999734163284, -0.09893699735403061, 0.26076000928878784, 0.07077699899673462, -0.029262999072670937, -0.10665000230073929, -0.09894700348377228, -0.3204900026321411, 0.751010000705719, 0.7310400009155273, 0.15775999426841736, -0.03548799827694893, 0.43623000383377075, 0.8976899981498718, -0.3375000059604645, -0.041127998381853104, 0.18987999856472015, 0.6549800038337708, 0.3146199882030487, -0.17563000321388245, 0.3952699899673462, 0.30741000175476074, 0.16116000711917877, 0.5968599915504456, 0.1319900006055832, 0.010394999757409096, -0.25290998816490173, 0.35238000750541687, 0.6152399778366089, -0.25044000148773193, -1.347499966621399, -0.526960015296936, -0.13305999338626862, 0.3326599895954132, 0.11784999817609787, -0.46347999572753906, 0.6791800260543823, -0.10200999677181244, 0.510699987411499, -0.25613000988960266, 0.03677799925208092, -0.5928999781608582, 0.4637100100517273, -0.6692600250244141, 0.4978500008583069, 0.20206999778747559, -0.1068200021982193, 0.3999499976634979, -0.5158600211143494, 0.08559499680995941, -0.32339999079704285, 0.2120400071144104, 0.39921000599861145, -0.14725999534130096, -0.2765200138092041, -0.06712699681520462, 0.8468300104141235, 0.3279399871826172, 0.05340899899601936, -0.656470000743866, -0.265749990940094, 0.36757999658584595, 0.23101000487804413, -0.08473599702119827, -0.7307900190353394, 0.2536099851131439, -0.2222599983215332, 0.16269999742507935, 0.1887200027704239, -0.0710889995098114, 0.04977300018072128, -0.47350001335144043, 0.38672998547554016, -0.9177500009536743, 0.609000027179718, -0.694890022277832, 0.5725600123405457, -0.048909999430179596, -0.7856900095939636, 0.28022998571395874, 0.22181999683380127, -0.33755001425743103, -0.40898001194000244, -0.17364999651908875, -0.15484000742435455, -0.3169499933719635, 0.14271999895572662, 0.9213399887084961, -0.9323400259017944, -0.17607000470161438, -0.06615299731492996, 0.1668899953365326, 0.07637500017881393, -0.18207000195980072, 0.7608100175857544, -0.36103999614715576, -1.0786999464035034, -0.13590000569820404, -1.2842999696731567, -0.12902000546455383, -0.7518600225448608, 0.7635599970817566, -0.23419000208377838, -1.184000015258789, -0.6232399940490723, 0.43474000692367554, -0.12745000422000885, 0.11439000070095062, 0.5758500099182129, 0.17409999668598175, -0.46950000524520874, -0.085037000477314, -0.4584600031375885, -0.3844900131225586, 0.43893998861312866, 0.5967900156974792, 0.3405100107192993, 0.911620020866394, -0.430620014667511, -0.46198999881744385, -0.1901800036430359, 0.3259100019931793], u'field': [-0.061406999826431274, 0.8113499879837036, -0.3444800078868866, 0.012179000303149223, -0.42010000348091125, -0.3826200067996979, -0.3380100131034851, 0.03444800153374672, 0.08486200124025345, -1.1705000400543213, 0.4835900068283081, 0.1919800043106079, 0.10066000372171402, -0.3658500015735626, -0.22750000655651093, 0.44995999336242676, -0.6097699999809265, 0.4548099935054779, -0.09268900007009506, -0.032719001173973083, -0.2374899983406067, -0.23265999555587769, -0.020376000553369522, -0.10805000364780426, 0.12275999784469604, -0.12861000001430511, -0.21507999300956726, 0.243149995803833, 0.5108000040054321, 0.166360005736351, 0.4152500033378601, -0.4619300067424774, 0.055257998406887054, 0.0824190005660057, -1.1270999908447266, 0.15453000366687775, 0.8820899724960327, 0.5530499815940857, 0.0829479992389679, 0.21703000366687775, 0.13032999634742737, 0.08916500210762024, 0.1488099992275238, -0.1695600003004074, 0.3852899968624115, 0.08438099920749664, 0.09793700277805328, 0.2893500030040741, -0.12529000639915466, -0.1669600009918213, -0.13670000433921814, -0.4176200032234192, -0.38374000787734985, 0.08410300314426422, -0.3728500008583069, -0.28988000750541687, 0.022122999653220177, 0.00963549967855215, -0.04306099936366081, 0.1006999984383583, 0.0935320034623146, 0.23000000417232513, 0.5463299751281738, -0.17354999482631683, -0.542739987373352, -0.2516700029373169, 0.13003000617027283, -0.1565999984741211, 0.0423399992287159, -0.23593999445438385, -0.04647599905729294, 0.25971999764442444, 0.09581699967384338, -0.029601000249385834, -0.6776300072669983, -0.1512099951505661, 0.3594299852848053, -0.06719499826431274, 0.15127000212669373, -0.07429300248622894, 0.2504799962043762, -0.4974699914455414, -0.1171799972653389, -0.030990000814199448, -0.20111000537872314, 0.01695300079882145, 0.18941999971866608, -0.3083699941635132, 0.702750027179718, -0.332720011472702, 0.38036999106407166, 0.7501699924468994, 0.07282800227403641, -0.020130999386310577, -0.1149199977517128, -0.1311500072479248, -0.7482200264930725, -0.474700003862381, -0.16464999318122864, -0.40435999631881714, -0.1106100007891655, 0.32975998520851135, -0.0256120003759861, 0.1242000013589859, -0.34981000423431396, 0.46998000144958496, 0.38332000374794006, 0.387470006942749, -0.6282899975776672, 0.5948799848556519, 0.11378999799489975, -0.6088100075721741, 0.16469000279903412, 0.2824699878692627, -0.2855300009250641, 0.431769996881485, 0.04568599909543991, 0.10518000274896622, 0.39361000061035156, 0.4465999901294708, 0.19784000515937805, 0.18156999349594116, 0.5763900279998779, -0.0047332001850008965, 0.11302000284194946, 0.3533500134944916, 0.4905500113964081, -0.46327999234199524, -0.4779199957847595, 0.1404999941587448, 0.09761299937963486, 0.2230599969625473, -0.390529990196228, 0.09979599714279175, 0.1488499939441681, 0.11817000061273575, 0.4496600031852722, 0.25900998711586, -0.3422299921512604, -0.06939200311899185, -0.24922999739646912, -0.318450003862381, 0.24714000523090363, -0.029732000082731247, 0.18209999799728394, 0.06750299781560898, 0.04010400176048279, 0.35892999172210693, 0.2265699952840805, 0.07471299916505814, 0.4026600122451782, -0.1146399974822998, -0.020865999162197113, -0.5087599754333496, 0.35677000880241394, 0.026360999792814255, 0.2780500054359436, -0.10739000141620636, 0.357450008392334, -0.18343999981880188, -0.31540998816490173, -0.2886599898338318, 0.22266000509262085, -0.3608199954032898, 0.28022998571395874, -0.2690500020980835, -0.20816999673843384, 0.7192500233650208, -0.2807900011539459, 0.06561899930238724, 0.5054200291633606, -0.023993000388145447, 0.025856999680399895, -0.6273000240325928, 0.15936000645160675, 0.04439299926161766, 0.6028900146484375, -0.058876000344753265, -0.5834699869155884, 0.13192999362945557, -0.02994300052523613, 0.7610999941825867, 0.1432500034570694, 0.43641000986099243, -0.19095000624656677, -0.28251999616622925, -0.21091000735759735, -0.06511499732732773, -0.63823002576828, 0.09100800007581711, -0.20243999361991882, 0.5629799962043762, 0.09887900203466415, -0.0426190011203289, -0.4925200045108795, 0.33518001437187195, 0.3081600069999695, 0.4332500100135803, 0.015955999493598938, -0.18276000022888184, 0.9791300296783447, 0.22793999314308167, -0.45155999064445496, -0.6323599815368652, 0.505649983882904, -0.11806000024080276, 0.37237000465393066, 0.18649999797344208, 0.43132999539375305, 0.1575399935245514, 0.24085000157356262, 0.18782000243663788, -0.5006700158119202, -0.3201499879360199, -0.4542199969291687, 0.1463100016117096, -0.4248799979686737, -0.1457200050354004, 0.2694399952888489, -0.3357900083065033, 0.41381001472473145, -0.16944999992847443, -0.06112400069832802, 0.019040999934077263, 0.06546200066804886, -0.5783200263977051, -0.032218001782894135, 0.1300099939107895, -0.1440500020980835, -0.2364100068807602, 0.45201998949050903, 0.30764999985694885, 0.511430025100708, 0.1645900011062622, -0.4985699951648712, 0.45267000794410706, 0.08387000113725662, -0.09980200231075287, -0.6741499900817871, 0.12794999778270721, 0.20916999876499176, -0.123989999294281, 0.20307999849319458, 0.14564000070095062, -0.8216599822044373, -0.6837999820709229, -0.4498400092124939, 0.6438900232315063, -0.2509700059890747, 0.25376999378204346, 0.1024399995803833, 0.21859000623226166, -0.5861799716949463, -0.9214800000190735, 0.9865900278091431, -0.1233299970626831, -0.06552600115537643, -0.3598400056362152, -0.1704999953508377, -0.007354999892413616, 0.22894999384880066, -0.5842499732971191, 0.5024799704551697, -0.38141000270843506, -0.31457000970840454, -0.5232700109481812, -0.697629988193512, -0.11604999750852585, 0.6168799996376038, 0.02544800005853176, 0.13319000601768494, -0.6249300241470337, -0.14690999686717987, -0.15919999778270721, -0.46000000834465027, 0.06009500101208687, -1.9464000463485718, 0.3186900019645691, 0.14740000665187836, 0.4817799925804138, -0.8748800158500671, -0.2878200113773346, 0.30281999707221985, -0.013024999760091305, 0.2805800139904022, -0.34237998723983765, -0.06404999643564224, 0.10233999788761139, 0.2633399963378906, -0.07237699627876282, -0.1907300055027008, -0.244609996676445, -0.5953699946403503, 0.07592800259590149, 0.2828100025653839, 0.4627699851989746, 0.45576000213623047, -0.5138900279998779, 0.1250399947166443, 0.29368001222610474], u'sword': [0.07666999846696854, -0.11688999831676483, 0.39563000202178955, -0.5665900111198425, 0.16203999519348145, 0.7889800071716309, -0.006830200087279081, 0.7134900093078613, -0.0739549994468689, -0.5066099762916565, 0.32054001092910767, -0.013856000266969204, -0.4099099934101105, -0.0009621800272725523, -0.354310005903244, 0.34898000955581665, -0.13729000091552734, 0.6599500179290771, 0.16315999627113342, -0.10567999631166458, -0.1236800029873848, -0.12953999638557434, 0.21727000176906586, 0.21383999288082123, 0.8621000051498413, -0.1542699933052063, -0.1506199985742569, -0.43441998958587646, 0.12565000355243683, 0.555899977684021, 0.7495099902153015, 0.11501000076532364, 0.024744000285863876, -0.1220100000500679, -0.12140999734401703, -0.3611699938774109, 0.2881700098514557, 0.18470999598503113, -0.08506599813699722, 0.3754900097846985, 0.27285999059677124, -0.01800600066781044, -0.26166999340057373, -0.31659001111984253, 0.12117999792098999, -0.059783998876810074, 0.09412799775600433, -0.4507800042629242, 0.3974300026893616, 0.11253000050783157, -0.8394200205802917, -0.11249999701976776, 0.3630000054836273, 0.1255899965763092, -0.7459099888801575, -0.5253700017929077, -0.4276599884033203, 0.7964000105857849, 0.5190200209617615, 0.23075999319553375, 0.3870700001716614, 0.6206600069999695, 0.49702000617980957, 0.7643600106239319, -0.1279900074005127, -0.6298199892044067, -0.7659199833869934, 0.027566999197006226, 0.6222400069236755, 0.18964000046253204, 0.06543400138616562, 0.2609800100326538, -0.04850799962878227, 0.04970400035381317, 0.11343000084161758, 0.49935999512672424, 0.03454200178384781, -0.3218199908733368, -0.44179001450538635, -0.19518999755382538, 0.02573399990797043, 0.688040018081665, 0.48921999335289, 0.14916999638080597, -0.19990000128746033, -0.025529999285936356, -0.07955899834632874, 0.20096999406814575, -0.2683199942111969, 0.3049199879169464, 0.21979999542236328, -0.014713999815285206, 0.6851699948310852, -0.1678999960422516, -0.003047599922865629, -0.42305999994277954, 0.12190999835729599, 0.0600150004029274, 0.7619400024414062, 0.23339000344276428, -0.031686000525951385, 0.22362999618053436, -0.700190007686615, 0.3642599880695343, 0.7129600048065186, -0.12636999785900116, 0.11482000350952148, -0.05618499964475632, -0.2287999987602234, -0.4003799855709076, 0.4021500051021576, 0.6374800205230713, -0.15086999535560608, -0.31657999753952026, 0.3953999876976013, -0.00019159000657964498, -0.4250600039958954, 0.06533800065517426, 0.06228400021791458, -0.6771100163459778, -0.18758000433444977, -0.1684899926185608, -0.8660699725151062, -0.1132500022649765, -0.1799599975347519, 0.2047799974679947, -0.42785000801086426, -0.2826699912548065, -0.1944900006055832, -0.39914000034332275, 0.19708000123500824, 0.2333800047636032, 0.6750100255012512, 0.17925000190734863, -0.29124000668525696, -0.510860025882721, 0.22684000432491302, -0.17990000545978546, 0.5665599703788757, 0.20796999335289001, 0.3754099905490875, 0.12952999770641327, -0.387800008058548, -0.2992999851703644, 0.2874299883842468, 0.18756000697612762, -0.17228999733924866, -0.19222000241279602, -0.2815600037574768, -0.2372400015592575, 0.16283999383449554, 0.48723000288009644, -0.36256998777389526, -0.4303100109100342, 0.11941000074148178, -0.3292100131511688, 0.18609000742435455, -0.4478299915790558, -0.04190700128674507, -0.19810999929904938, 0.6362699866294861, 0.28790000081062317, 0.384880006313324, 0.6343700289726257, -0.19122999906539917, -0.0025696000084280968, 0.1671999990940094, 0.03349899873137474, -0.6250699758529663, 0.019896000623703003, -0.31887999176979065, -0.017836999148130417, -0.013794000260531902, 0.25266000628471375, 0.028946999460458755, -0.6083599925041199, -0.02837499976158142, 0.10074000060558319, 0.36169999837875366, -0.3591099977493286, 0.05906499922275543, 0.2468699961900711, 0.11879999935626984, 0.30465999245643616, 0.5799499750137329, -0.1244100034236908, -0.08124800026416779, 0.4625599980354309, -0.16931000351905823, -0.07104499638080597, -0.23401999473571777, -0.026427000761032104, 0.6953499913215637, 0.38245999813079834, 0.09155700355768204, 0.2662999927997589, -0.6012099981307983, -0.7508800029754639, 0.12071000039577484, -0.3053100109100342, 1.0339000225067139, 0.4977400004863739, -0.006051300093531609, 0.3640199899673462, 0.25920000672340393, 0.08138100057840347, 0.05954800173640251, 0.06489299982786179, -0.4673199951648712, -0.1613599956035614, -0.21529999375343323, 0.22359000146389008, 0.1094600036740303, -0.0653349980711937, 0.5081899762153625, -0.15209999680519104, 0.1183599978685379, -0.176269993185997, -0.8135600090026855, 0.11642000079154968, -0.7399600148200989, 0.2430800050497055, 0.09023900330066681, 0.07541900128126144, -0.8668500185012817, -0.8370500206947327, -0.4331200122833252, -0.11330000311136246, 0.11255999654531479, -0.47040998935699463, 0.13162000477313995, -0.21279999613761902, -0.43213000893592834, -0.11440999805927277, -0.3075900077819824, 0.4066999852657318, -0.8103200197219849, -0.3734000027179718, 0.15764999389648438, 0.43136999011039734, 0.3415899872779846, -0.32444000244140625, -0.30654001235961914, -0.19267000257968903, 0.16660000383853912, 0.47516998648643494, -0.7835299968719482, 0.3694100081920624, -0.3214299976825714, -0.24834999442100525, -0.7568299770355225, 0.35168999433517456, 0.09386900067329407, -0.46998000144958496, 0.45423999428749084, -0.1436000019311905, -0.1666100025177002, -0.05446700006723404, 0.09312699735164642, -0.1529799997806549, 0.16169999539852142, -0.09358800202608109, 0.27039000391960144, 0.02868800051510334, -0.5258899927139282, 0.03209799900650978, -0.717490017414093, 0.0042213997803628445, -0.7178000211715698, 0.3968000113964081, 0.008993299677968025, -0.6252400279045105, 0.43970999121665955, 0.6108400225639343, -0.7174199819564819, -0.15949000418186188, -1.111799955368042, -0.5652599930763245, -0.6171299815177917, -0.1292800009250641, 0.37279000878334045, 0.32166001200675964, -0.3732900023460388, -0.15442000329494476, 0.27110999822616577, -0.30614998936653137, -0.6612200140953064, 0.006881400011479855, -0.34595000743865967, 0.01002500019967556, 0.08417200297117233, 0.09989400207996368, -0.27105000615119934, 0.07768899947404861, 0.13753999769687653, 0.33754000067710876, 0.46939000487327576, 0.4787200093269348, -0.12190999835729599, -0.11784999817609787], u'forest': [-0.4553300142288208, 0.14614999294281006, -0.028433000668883324, 0.4449000060558319, 0.2285899966955185, -0.15681999921798706, 0.37571001052856445, 0.7640500068664551, 0.05597500130534172, -0.6198700070381165, 0.0308190006762743, 0.27226999402046204, -0.7272599935531616, -0.3653999865055084, -0.06481800228357315, 0.028324000537395477, -0.16965000331401825, -0.33952000737190247, -0.0022130999714136124, 0.6386100053787231, -0.027898000553250313, 0.16787000000476837, 0.36421000957489014, 0.3041499853134155, -0.5038700103759766, -0.19586999714374542, -0.18714000284671783, -0.7062699794769287, -0.7008100152015686, 0.6091700196266174, 1.118299961090088, -0.2337300032377243, -0.186489999294281, -0.532800018787384, -0.3072499930858612, -0.2736299932003021, 0.22200000286102295, -0.33090999722480774, 0.0373230017721653, -0.5599499940872192, -0.11685000360012054, -0.23660999536514282, 0.1239200010895729, 0.25042998790740967, -0.13211999833583832, -0.7863600254058838, 0.3677999973297119, -0.08190499991178513, 0.2209099978208542, -0.15232999622821808, -0.28883999586105347, -0.08431000262498856, -0.31373998522758484, -0.027212999761104584, -0.34068000316619873, -0.004175299778580666, 0.45120999217033386, -0.6420199871063232, 0.4110899865627289, -0.3860200047492981, -0.5005999803543091, -0.16268999874591827, 0.3902199864387512, 0.39820998907089233, -0.06618300080299377, -0.3976300060749054, -0.04666300117969513, -0.025479000061750412, 0.17369000613689423, -0.4007900059223175, -0.1694899946451187, 0.0035663999151438475, -0.19540999829769135, 0.0956140011548996, -0.7635200023651123, 0.6553699970245361, 0.314300000667572, -0.09836799651384354, -0.16574999690055847, -0.25516998767852783, -0.13888999819755554, -0.19228999316692352, 0.043122999370098114, -0.5199199914932251, 0.06196900084614754, -0.1434199959039688, 0.07853200286626816, 0.4482100009918213, 0.31909000873565674, 0.1433500051498413, -0.05810900032520294, -0.6963800191879272, 1.070199966430664, 0.6493099927902222, -0.08873999863862991, -0.2679300010204315, 0.8350200057029724, 0.14541999995708466, -0.12591999769210815, -0.338019996881485, 0.26030001044273376, 0.7916399836540222, -0.3965199887752533, 0.1432500034570694, -0.5196200013160706, 0.011504000052809715, 0.7020000219345093, 0.3754799962043762, 0.07944600284099579, -0.14177000522613525, -0.09503400325775146, -1.180899977684021, 0.007367799989879131, 0.23003000020980835, -0.008278599940240383, -0.4730300009250641, 0.3493799865245819, 0.5358800292015076, 0.1505499929189682, 0.7030500173568726, -0.5055500268936157, -0.07188999652862549, -0.32444998621940613, 0.28999999165534973, -0.7345700263977051, -0.08603999763727188, 0.14427000284194946, -0.10975000262260437, -0.047182999551296234, -0.21708999574184418, 0.3119100034236908, 0.8053500056266785, 0.20618000626564026, 0.43595001101493835, 0.3619900047779083, 0.31613999605178833, -0.06443999707698822, 0.534280002117157, -0.17955000698566437, -0.08309999853372574, 0.9397799968719482, -0.2620899975299835, -0.4823099970817566, -0.38506001234054565, -0.5208600163459778, 0.1724500060081482, 0.358489990234375, -0.011175000108778477, -0.46772000193595886, -1.0341999530792236, 0.5318499803543091, 0.062052998691797256, -0.5852500200271606, 0.056696999818086624, 0.14509999752044678, -0.10209999978542328, 0.17246000468730927, 0.16620999574661255, -0.022647999227046967, 0.42379000782966614, 0.1846799999475479, -0.5909000039100647, 1.1274000406265259, 0.20784999430179596, -0.34793001413345337, -0.5600799918174744, 0.37942999601364136, -0.10337000340223312, -0.7009299993515015, -0.23818999528884888, 0.07017499953508377, -0.19878000020980835, 0.25356000661849976, 0.7009099721908569, -0.16054999828338623, 0.18550999462604523, 0.4791699945926666, 0.24014000594615936, -0.32120999693870544, -0.46852999925613403, -0.07366199791431427, -0.00921849999576807, -0.217849999666214, -0.7259299755096436, 0.08939900249242783, -0.6579300165176392, -0.5604699850082397, 0.05898800119757652, -0.10224000364542007, 0.21549999713897705, 0.1710900068283081, 0.6637899875640869, -0.22721999883651733, -0.3616900146007538, 0.23124000430107117, 0.03875900059938431, 0.30776000022888184, -0.6998100280761719, 0.03141399845480919, 0.3068299889564514, 0.7733200192451477, -0.044029999524354935, -0.34839001297950745, -0.40202000737190247, 0.26883000135421753, -0.0619329996407032, -0.48627999424934387, -0.11219000071287155, -0.30441999435424805, -1.0264999866485596, -0.2310599982738495, -0.3088200092315674, -0.38929998874664307, -0.9232800006866455, 0.25797000527381897, -0.09213099628686905, 0.044996000826358795, 0.3875199854373932, 0.7087399959564209, -0.1343899965286255, 0.23704999685287476, -0.8527200222015381, -0.25018998980522156, -0.4983600080013275, 0.13038000464439392, -0.047123998403549194, -0.40334999561309814, 0.3156200051307678, -0.25439000129699707, 0.5812000036239624, 0.3692600131034851, 0.43483999371528625, 0.08927299827337265, -0.3935000002384186, 0.42899999022483826, -0.33612000942230225, -0.14174999296665192, 0.19393999874591827, 0.27660998702049255, 0.17994999885559082, 0.2510800063610077, 0.4675700068473816, 0.49500998854637146, -0.013867000117897987, -0.7776200175285339, 0.25115999579429626, 0.48517999053001404, -0.15771999955177307, 0.10424000024795532, -0.20434999465942383, 0.22687000036239624, -0.40483999252319336, 0.23757000267505646, -0.2589600086212158, 0.9761099815368652, 0.2214599996805191, -0.037477001547813416, 0.38273000717163086, 0.05754299834370613, -0.32328000664711, 0.19115999341011047, 0.03038799948990345, 0.23113000392913818, -0.0014016999630257487, -0.4591600000858307, 0.3042599856853485, -0.5610600113868713, 0.4709300100803375, 0.5023699998855591, -0.0022698999382555485, 0.275519996881485, -0.007533799856901169, -0.3501800000667572, -0.14698000252246857, 0.2326200008392334, -0.06268099695444107, -1.4399000406265259, 0.20734000205993652, 0.18873000144958496, -0.33006998896598816, -0.4044699966907501, -0.15041999518871307, -0.12377999722957611, -0.3385300040245056, -0.6320000290870667, -0.3138900101184845, 0.25014999508857727, -0.5543100237846375, 0.35221999883651733, -0.30357998609542847, 0.07054299861192703, -0.11794000118970871, -0.5719199776649475, 0.02833300083875656, 0.2984200119972229, 0.7641199827194214, 0.09679900109767914, 0.13560999929904938, 0.16078999638557434, 0.18308000266551971], u'animal': [0.2565299868583679, 0.6659200191497803, -0.5313000082969666, 0.2034199982881546, 0.4004899859428406, -0.23473000526428223, 0.09909000247716904, 0.05783399939537048, -0.12076999992132187, -1.1297999620437622, 0.351639986038208, -0.3264999985694885, -0.6683300137519836, 0.1878799945116043, 0.22281000018119812, 0.054691001772880554, 0.02574400044977665, 0.31266000866889954, -0.28723999857902527, 0.23792999982833862, -0.040330998599529266, 0.32853999733924866, 0.22044000029563904, 0.4564700126647949, -0.3756299912929535, 0.4340200126171112, 0.3815400004386902, -0.3524799942970276, 0.19494999945163727, 0.4075999855995178, -0.3786500096321106, 0.23547999560832977, -0.8429099917411804, -0.49410998821258545, 0.052115000784397125, -0.16011999547481537, 0.6431400179862976, 0.3040499985218048, -0.4385499954223633, -0.24153999984264374, -0.2404399961233139, -0.23006999492645264, 0.14079999923706055, -0.5330700278282166, -0.5171999931335449, -0.06473399698734283, -0.12547999620437622, 0.07800299674272537, 0.36785000562667847, 0.24616000056266785, -0.1687600016593933, 0.509440004825592, -0.05587499961256981, 0.11483000218868256, 0.29214999079704285, -0.02961600013077259, 0.09481099992990494, 0.02406900003552437, -0.632610023021698, -0.40382999181747437, -0.20840999484062195, 0.039753999561071396, 0.5818899869918823, 0.11466000229120255, -0.33500000834465027, -0.2722499966621399, -0.2824000120162964, -0.5117999911308289, 0.22428999841213226, 0.4560000002384186, -0.15357999503612518, 0.7042800188064575, 0.3029400110244751, -0.20954999327659607, -0.011788999661803246, 0.2949199974536896, 0.189520001411438, 0.03159099817276001, 0.12140999734401703, 0.6594799757003784, 0.14449000358581543, -0.17718000710010529, -0.3830699920654297, 0.1444700062274933, -0.10626000165939331, -0.43810999393463135, 0.04372499883174896, 0.20719000697135925, -0.527649998664856, -0.16038000583648682, -0.2649799883365631, -0.24921999871730804, 0.27570998668670654, 0.1018500030040741, -0.0028409999795258045, 0.44866999983787537, 0.14924000203609467, 0.0026418000925332308, -0.5196599960327148, -0.30382001399993896, 0.44991999864578247, 0.14053000509738922, -0.04528899863362312, 0.15192000567913055, -0.03029000014066696, 0.2046400010585785, -0.09852500259876251, 0.11546999961137772, 0.29337000846862793, 0.8753799796104431, 0.033805001527071, -0.023912999778985977, -1.073699951171875, 0.14057999849319458, 0.23330000042915344, 0.4397900104522705, 0.015073000453412533, 0.48339998722076416, -0.04738900065422058, 0.26837000250816345, -1.0795999765396118, 0.3658899962902069, -0.0595179982483387, 0.4625000059604645, -0.4977700114250183, 0.14284999668598175, -0.4919799864292145, 0.5266299843788147, -0.10239999741315842, -0.2236199975013733, 0.684499979019165, -0.2836399972438812, 0.20221999287605286, 0.4528000056743622, -0.371289998292923, -0.30313000082969666, 0.43129000067710876, -0.167820006608963, -0.1497199982404709, 0.7798699736595154, -0.052025001496076584, 0.1359899938106537, -0.02482300065457821, -0.6685600280761719, 0.15082000195980072, 0.12764999270439148, -0.02181600034236908, 0.03223999962210655, -0.22332000732421875, 0.021629000082612038, 0.06932500004768372, 0.5422000288963318, -0.19016000628471375, -0.30066999793052673, 0.17117999494075775, 0.23500999808311462, -0.2186799943447113, 0.053247999399900436, -0.2387399971485138, 0.0728830024600029, 0.41495001316070557, 0.4085800051689148, 0.27456000447273254, -0.16155999898910522, 0.2637999951839447, 0.014453000389039516, 0.2439199984073639, -0.5014500021934509, -0.31703001260757446, 0.21059000492095947, -0.04576199874281883, -0.039115000516176224, 0.19433000683784485, 0.5992000102996826, 0.042562998831272125, -0.12241999804973602, 0.32646000385284424, -0.40514999628067017, 0.013263000175356865, -0.5655800104141235, 0.1998399943113327, -0.1989700049161911, -0.4957900047302246, -0.36991000175476074, -0.1800999939441681, -0.22556999325752258, 0.0028444998897612095, -0.2533400058746338, 0.5590900182723999, -0.5683500170707703, -0.46966999769210815, 0.06097399815917015, -0.41321998834609985, -0.2499600052833557, -0.28459998965263367, 0.19744999706745148, -0.09938699752092361, -0.24677999317646027, -0.5394600033760071, 0.3160899877548218, 0.771049976348877, -0.32183000445365906, 0.36138999462127686, -0.0870250016450882, 0.5662599802017212, 0.7648599743843079, -0.14511999487876892, -0.11134999990463257, -0.14413000643253326, 0.5301600098609924, 0.133760005235672, -0.2758199870586395, -0.1320600062608719, -0.6573299765586853, 0.058187998831272125, 0.38300999999046326, 0.056685999035835266, 0.16166000068187714, 0.2745800018310547, 0.1724500060081482, -0.2945899963378906, 0.0962970033288002, -0.5051299929618835, -0.5278599858283997, -0.1012599989771843, 0.16703000664710999, -0.0690540000796318, -0.09359599649906158, -0.038444001227617264, 0.4320800006389618, 0.5994600057601929, 0.07432900369167328, 0.11862999945878983, -0.355320006608963, 0.20506000518798828, 0.20252999663352966, -0.029247000813484192, -0.27250000834465027, -0.5608400106430054, 0.13691000640392303, -0.3948900103569031, -0.07884600013494492, -0.2933799922466278, -0.193790003657341, -1.5217000246047974, 0.19235999882221222, 0.13663999736309052, -0.21657000482082367, 0.02522999979555607, 0.6789699792861938, -0.33232998847961426, -0.3061099946498871, 0.09135899692773819, -0.012469000183045864, 0.9517999887466431, 0.7577199935913086, 0.2700499892234802, -0.4959399998188019, -0.44736000895500183, 0.03477900102734566, -0.21820999681949615, -0.44495001435279846, -0.04699299857020378, -0.21626000106334686, -0.05405300110578537, 0.49917998909950256, -0.33855000138282776, 0.42897000908851624, -0.5569900274276733, 0.4239799976348877, -0.06568100303411484, 0.24517999589443207, 0.006638399790972471, -0.22098000347614288, -0.2653200030326843, 0.4981299936771393, -1.9490000009536743, 0.2665799856185913, 0.11726000159978867, 0.03715899959206581, -0.5181800127029419, -0.14343999326229095, 0.005057500209659338, 0.32357001304626465, -0.7579299807548523, 0.12188000231981277, 0.3437800109386444, 0.015168000012636185, 0.20837999880313873, -0.0841199979186058, 0.0203079991042614, -0.5185800194740295, -0.23014000058174133, -0.532729983329773, -0.17937999963760376, -0.14921000599861145, 0.24040000140666962, 0.22181999683380127, 0.6888300180435181, -0.018990999087691307], u'elephant': [0.21552999317646027, 0.17279000580310822, -0.1679600030183792, 0.37042999267578125, 0.322519987821579, 0.337909996509552, 0.4079799950122833, 0.2532599866390228, -0.5283700227737427, -0.17699000239372253, -0.1487800031900406, -0.06152600049972534, -0.5151000022888184, 0.09721899777650833, 0.15772999823093414, -0.05737899988889694, 0.37674999237060547, -0.018866000697016716, -0.6496899724006653, -0.20750999450683594, -0.2642599940299988, 0.37092000246047974, 0.19485999643802643, 0.21626000106334686, -0.5140100121498108, 0.024080000817775726, 0.023307999595999718, -0.24848000705242157, 0.03832000121474266, 0.8095600008964539, 0.11740999668836594, -0.18875999748706818, -0.6737099885940552, -0.20262999832630157, 0.35005998611450195, 0.41065001487731934, 0.13683000206947327, 0.3804599940776825, -0.5178599953651428, -0.09970799833536148, -0.017020000144839287, -0.20879000425338745, -0.18681000173091888, -0.6404399871826172, -0.41538000106811523, -0.2214599996805191, 0.4196000099182129, -0.25001999735832214, 0.21875, -0.174919992685318, 0.5755299925804138, -0.17824000120162964, -0.46709001064300537, 0.2672100067138672, 0.34064000844955444, 0.13872000575065613, -0.008340500295162201, 0.6792799830436707, -0.6369699835777283, 0.027341999113559723, -0.38947001099586487, -0.42949000000953674, 0.4889099895954132, 0.21014000475406647, 0.5685799717903137, 0.44429001212120056, -0.5168399810791016, -0.3212299942970276, 0.4338099956512451, -0.11834999918937683, -0.3405100107192993, 0.5361499786376953, -0.18709999322891235, -0.2051900029182434, 0.43377000093460083, 0.08907099813222885, 1.080399990081787, -0.18560999631881714, -0.011586000211536884, -0.016495000571012497, 0.3427700102329254, 0.11123000085353851, -0.01979999989271164, -0.4001699984073639, -0.21428999304771423, -0.4786800146102905, -0.3737800121307373, 0.03560100123286247, -0.49206000566482544, -0.6378399729728699, 0.02162100002169609, -0.3672400116920471, -0.1472499966621399, 0.3010199964046478, -0.11917000263929367, 0.17238999903202057, 0.40389999747276306, 0.0138349998742342, -0.27035000920295715, 0.21749000251293182, 0.11377999931573868, 0.5786600112915039, 0.6745499968528748, -0.6456599831581116, -0.11213000118732452, -0.4332599937915802, -0.07657899707555771, -0.14372999966144562, 0.2677200138568878, 0.643779993057251, 0.03299200162291527, 0.38988998532295227, -1.0908000469207764, -0.11351999640464783, 0.3078500032424927, -0.13473999500274658, 0.1955299973487854, 0.5431200265884399, -0.23792999982833862, -0.4691300094127655, -0.4127900004386902, -0.11948999762535095, -0.4653399884700775, -0.21020999550819397, -0.2372100055217743, 0.14337000250816345, -0.04265499860048294, 0.3118300139904022, -0.3639200031757355, -0.8952500224113464, 0.43397998809814453, -0.4758000075817108, 0.06043199822306633, 0.28001999855041504, 0.6369799971580505, -0.027512000873684883, 0.4928300082683563, -0.43160998821258545, -0.05243799835443497, 0.2473600059747696, 0.1393599957227707, -0.04625599831342697, -0.5672399997711182, -0.06536000221967697, -0.013964000158011913, -0.09832099825143814, 0.5993899703025818, -0.13343000411987305, -0.1698099970817566, -0.04595800116658211, -0.5268200039863586, 0.761650025844574, 0.08529800176620483, 0.11107999831438065, -0.013930000364780426, 0.13439999520778656, -0.0014236000133678317, -0.16745999455451965, -0.11965999752283096, 0.49226999282836914, 0.49059998989105225, 0.21020999550819397, 0.8982300162315369, -0.2561900019645691, -0.048149000853300095, -0.2500799894332886, 0.31488001346588135, -0.018610000610351562, -0.15380999445915222, -0.4606899917125702, 0.28189998865127563, -0.015572000294923782, 0.7160599827766418, -0.06634599715471268, -0.1766500025987625, -0.27893999218940735, 0.707260012626648, 0.1498900055885315, 0.10491999983787537, -0.2029699981212616, -0.0018992000259459019, 0.09890399873256683, -0.3056100010871887, -0.16651999950408936, 0.20035000145435333, -0.6391699910163879, 0.18286000192165375, 0.5062000155448914, 0.5785300135612488, 0.21062999963760376, 0.38624998927116394, 0.20771999657154083, -0.034758999943733215, -0.10518000274896622, -0.35192999243736267, 0.27382999658584595, 0.15986000001430511, -0.03789300099015236, -0.25352999567985535, 0.16399000585079193, 1.573199987411499, -0.19678999483585358, 0.05821999907493591, -0.45618999004364014, 0.5029000043869019, 0.7412800192832947, -0.197720006108284, 0.16896000504493713, -0.13964000344276428, -0.17723999917507172, 0.013616999611258507, -0.12544000148773193, 0.04627000167965889, -0.6227899789810181, 0.3919000029563904, -0.7015399932861328, -0.23221999406814575, -0.3003700077533722, 0.020476000383496284, 0.34073999524116516, 0.02336600050330162, -0.10034000128507614, -0.03201499953866005, -0.3714900016784668, -0.42142999172210693, -0.38885998725891113, -0.16684000194072723, -0.09022299945354462, -0.12665000557899475, 0.02461099997162819, 0.1858299970626831, -0.34303000569343567, -0.28161999583244324, -0.02316500060260296, 0.2960500121116638, 0.3580299913883209, -0.6390900015830994, -0.4004499912261963, 0.1022299975156784, -0.2969299852848053, -0.4341900050640106, 0.30849000811576843, -0.22214999794960022, 0.19107000529766083, -1.2367000579833984, -0.1557299941778183, 0.028380999341607094, 0.20699000358581543, 0.25308001041412354, -0.012864000163972378, -0.23680999875068665, -0.3848400115966797, 0.0017180000431835651, -0.3661699891090393, 0.8171600103378296, -0.09626699984073639, -0.004539899993687868, 0.052250999957323074, -0.010517000220716, -0.15539999306201935, 0.06466100364923477, 0.3440699875354767, 0.18065999448299408, -0.10014999657869339, -0.3695099949836731, 0.11388999968767166, 0.3522000014781952, 0.4823499917984009, -0.5789099931716919, 0.4420900046825409, 0.11558999866247177, 0.06906700134277344, -0.1590300053358078, -0.5489599704742432, -0.2881999909877777, -0.24075999855995178, -1.0322999954223633, -0.049747999757528305, -0.3921700119972229, 0.22363999485969543, -0.6814799904823303, -0.4582900106906891, 0.3792699873447418, 0.24295000731945038, -0.9356300234794617, -0.22238999605178833, -0.36730000376701355, 0.1188800036907196, -0.30726000666618347, -0.6433299779891968, 0.015829000622034073, 0.0722069963812828, -0.4367299973964691, -0.31227999925613403, -0.12380000203847885, -0.08451999723911285, 0.14024999737739563, 0.16912999749183655, 0.490229994058609, 0.3298499882221222], u'tile': [0.6001999974250793, 0.17053000628948212, -0.16619999706745148, -0.6670799851417542, -0.4564499855041504, -0.4809199869632721, -0.5285300016403198, -0.32128000259399414, 0.08400300145149231, -0.29280000925064087, -0.1693899929523468, 0.29447001218795776, 0.17547999322414398, 0.20679999887943268, 0.3488599956035614, 0.12204000353813171, -0.23649999499320984, 0.13978999853134155, -0.13165000081062317, -0.24174000322818756, -0.17463000118732452, -0.015099000185728073, 0.24705000221729279, -0.051927000284194946, -0.24437999725341797, -1.0663000345230103, -0.2468400001525879, 0.43922001123428345, -0.5976600050926208, 0.4798699915409088, 0.33292001485824585, 0.9048900008201599, -0.4510500133037567, -0.18002000451087952, -0.073123998939991, 0.8874199986457825, 0.02958899922668934, -0.5759599804878235, 0.20047999918460846, 0.6314799785614014, 0.2536599934101105, 0.22859999537467957, 0.10248000174760818, 0.3689799904823303, -0.34975001215934753, 0.43257999420166016, 1.1075999736785889, 0.18688000738620758, -0.5537099838256836, -0.6680200099945068, -0.04153500124812126, 0.14016999304294586, 0.5905600190162659, 0.24280999600887299, 0.15063999593257904, 0.08496899902820587, -0.14530999958515167, 0.0730310007929802, 0.22258000075817108, 0.049515001475811005, 0.14278000593185425, -0.5780500173568726, 0.07090699672698975, 0.01050500012934208, 0.44040998816490173, -0.047449998557567596, 0.2761000096797943, -0.1885399967432022, 0.11807999759912491, -0.09035299718379974, 0.1738699972629547, -0.4203000068664551, 0.02973099984228611, -0.33776000142097473, -0.04159000143408775, 0.11740999668836594, -0.3521600067615509, -0.17794999480247498, -0.25731000304222107, -0.7303400039672852, -0.4615100026130676, -0.3135499954223633, -0.00828550010919571, -0.7390499711036682, -0.04143200069665909, 0.7415800094604492, -0.2100200057029724, -0.1832199990749359, 0.15985000133514404, 0.30753999948501587, 0.3444400131702423, 0.27941998839378357, 0.6055300235748291, 0.019756000488996506, 0.09118600189685822, -0.119159996509552, 0.01999399997293949, -0.37646999955177307, 0.19603000581264496, -0.5243099927902222, -0.23319000005722046, 0.5036900043487549, -0.33371999859809875, -0.36142998933792114, 0.2931100130081177, -0.157260000705719, -0.18756000697612762, -0.32030999660491943, -0.4327400028705597, 0.3194800019264221, 0.14959000051021576, -0.30647000670433044, -0.37672001123428345, -0.5545600056648254, -0.9908599853515625, -0.047912001609802246, -0.42135000228881836, 0.3009200096130371, -0.5954300165176392, 0.08677399903535843, 0.6757100224494934, 0.3372899889945984, 0.18347999453544617, 0.8644199967384338, 0.25067999958992004, -0.19193999469280243, 0.01312199980020523, 0.8333100080490112, 0.3314400017261505, 0.20038999617099762, 0.08136700093746185, 0.5044699907302856, 0.2585200071334839, 0.2905600070953369, 0.04566499963402748, -0.17871999740600586, -0.5347200036048889, 0.15921999514102936, 0.41624000668525696, -0.2746399939060211, 0.39866000413894653, -0.37404999136924744, -0.10498999804258347, -0.31283000111579895, 0.18244999647140503, 0.4928700029850006, -0.013718999922275543, 0.40529999136924744, -0.23266999423503876, -0.5177599787712097, -0.7662699818611145, -0.19701999425888062, 0.006811399944126606, -0.2224999964237213, -0.5084400177001953, 0.3776400089263916, -0.25321999192237854, -0.0020763000939041376, -0.09177599847316742, 0.32826998829841614, 0.056526001542806625, 0.18674999475479126, -0.11903999745845795, 0.774649977684021, 0.9607999920845032, 0.4987800121307373, 0.2811500132083893, 0.4399999976158142, 0.23976999521255493, 0.4075799882411957, -0.21318000555038452, 0.35666000843048096, 0.7394400238990784, 0.049529001116752625, 0.03681100159883499, 0.6115999817848206, -0.43171998858451843, 0.06000100076198578, -0.08939500153064728, -0.8176500201225281, -0.624239981174469, -0.4671899974346161, 0.4357199966907501, -0.032246001064777374, -0.7968800067901611, -0.8754500150680542, 0.9257400035858154, 0.013426000252366066, 0.322270005941391, 0.5725299715995789, 0.6836000084877014, 0.18601000308990479, -0.21028999984264374, -0.12816999852657318, 0.3546000123023987, 0.2416599988937378, -0.3279300034046173, 0.5623800158500671, -0.06316699832677841, -0.295960009098053, 0.2142699956893921, -0.029589999467134476, -0.16372999548912048, -0.04167500138282776, 0.6640999913215637, 0.10713999718427658, -0.2926599979400635, 0.4047499895095825, -0.6233900189399719, -0.13369999825954437, 0.29798001050949097, 0.06898699700832367, 0.03891000151634216, -0.02519500069320202, 0.6908299922943115, 0.13451999425888062, 0.24771000444889069, -0.48666998744010925, 0.0791110023856163, 0.21830999851226807, 0.4131999909877777, -0.03229200094938278, -0.07437600195407867, 0.2610200047492981, -0.025728000327944756, -0.42563000321388245, -0.17302000522613525, -0.027981000021100044, -0.056905001401901245, -0.04629499837756157, 0.19517000019550323, -0.2950100004673004, 0.2778399884700775, 0.4072900116443634, 0.144679993391037, -0.11986999958753586, 0.029916999861598015, -0.30048999190330505, 0.4122700095176697, -0.21995000541210175, 0.1981000006198883, -0.41343000531196594, -0.17583000659942627, -0.2349099963903427, -0.18619999289512634, 0.28001999855041504, -0.5840100049972534, -0.539330005645752, 0.20353999733924866, 0.4130299985408783, 0.7886499762535095, 0.10321000218391418, -0.3903200030326843, -0.6843000054359436, 0.7575299739837646, 0.32923001050949097, 0.12058000266551971, 0.15727999806404114, 0.2073799967765808, 0.47821998596191406, -0.10453999787569046, 0.005017200019210577, 0.33741000294685364, -0.18922999501228333, 0.2985300123691559, 0.02958899922668934, 0.18564000725746155, 0.5630699992179871, 0.30138999223709106, -0.5945199728012085, -0.3698599934577942, -0.47523999214172363, 0.3995400071144104, 0.003450399963185191, -0.6183900237083435, 0.381630003452301, -0.4850899875164032, 0.09867099672555923, -0.9874200224876404, 0.2839699983596802, 0.1130400002002716, -0.04036799818277359, -0.43981000781059265, 0.09119600057601929, 0.25488999485969543, 0.534280002117157, 0.26941999793052673, -0.24494999647140503, -0.10426999628543854, -0.5880799889564514, -0.1011900007724762, 0.4345700144767761, -0.013872000388801098, 1.1588000059127808, -0.093190997838974, 0.021796999499201775, 0.17124000191688538, -0.5399600267410278, 0.26197001338005066, 0.4557799994945526], u'gate': [0.3996799886226654, -0.5955299735069275, 0.22569000720977783, -0.29271000623703003, 0.5082299709320068, -0.45785000920295715, 0.2545900046825409, 0.876579999923706, -0.28988000750541687, -0.3119400143623352, -0.30226999521255493, 0.09816499799489975, 0.5979400277137756, -0.2483700066804886, -0.042121000587940216, -0.1698399931192398, -0.19107000529766083, -0.2056799978017807, -0.062015000730752945, 0.25586000084877014, 0.15997999906539917, -0.24055999517440796, 0.09464199841022491, -0.0841120034456253, -0.1428299993276596, 0.20114000141620636, -0.08004400134086609, -0.245169997215271, -0.4846700131893158, 0.3268199861049652, 0.5025500059127808, -0.3037700057029724, -0.18825000524520874, 0.5335699915885925, -0.2138800024986267, -0.05458600074052811, -0.704770028591156, -0.6595500111579895, -0.27720001339912415, 0.09921000152826309, -0.2148900032043457, 0.1599700003862381, -0.8911100029945374, 0.3718299865722656, -0.5793300271034241, -0.03818700090050697, 0.4235599935054779, 0.23214000463485718, 0.10480000078678131, 0.054795000702142715, 0.15511000156402588, -0.2307399958372116, 0.17329999804496765, -0.3439899981021881, 0.22487999498844147, -0.21872000396251678, 0.3643600046634674, 0.1370600014925003, -0.23017999529838562, 0.046553999185562134, 0.19791999459266663, -0.02616400085389614, 0.8801299929618835, 0.07353299856185913, 0.37724000215530396, -0.19089999794960022, -0.3423900008201599, -0.24562999606132507, -0.08086500316858292, -0.28327998518943787, 0.11795999854803085, 0.28971999883651733, -0.24083000421524048, -0.08575599640607834, -0.40132999420166016, 0.22296999394893646, 0.29962998628616333, -1.0490000247955322, 0.13987000286579132, -0.06527400016784668, -0.050085000693798065, 0.23725999891757965, 0.30733999609947205, -0.17472000420093536, -0.16992999613285065, -0.13158999383449554, -0.13952000439167023, 0.13389000296592712, -0.2331800013780594, -0.08512800186872482, 0.4364300072193146, -0.38067999482154846, 0.2581300139427185, 0.20779000222682953, -0.2654399871826172, 0.5976700186729431, 0.059661999344825745, -0.5661900043487549, 0.08889699727296829, -0.2126999944448471, -0.1594099998474121, 0.06695099920034409, -0.2847900092601776, -0.20985999703407288, 0.3952600061893463, -0.16258999705314636, 0.2554900050163269, 0.12225999683141708, 0.03291799873113632, -0.49351999163627625, -0.2707099914550781, 0.04324600100517273, 0.15272000432014465, -0.17465999722480774, 0.13300999999046326, 0.44189000129699707, -0.20430999994277954, -0.3608900010585785, -0.38778001070022583, -0.17357000708580017, 0.03385400027036667, -0.011292999610304832, 0.49053001403808594, -0.1958799958229065, 0.21900999546051025, -0.5515900254249573, 0.1028200015425682, -0.2235099971294403, -0.20677000284194946, -0.5308899879455566, 0.2903600037097931, 0.5557399988174438, 0.3983500003814697, 0.44258999824523926, -0.1109900027513504, 0.23660999536514282, 0.8073800206184387, -0.5673099756240845, -0.5155199766159058, -0.1496800035238266, -0.48723000288009644, -0.06276199966669083, -0.6146399974822998, -0.21884000301361084, 0.21039000153541565, -0.44868001341819763, 0.4016300141811371, -0.21613000333309174, -0.15990999341011047, -0.1423500031232834, 0.3220300078392029, 0.2990500032901764, -0.08293599635362625, -0.9413400292396545, 0.7079499959945679, 0.05948900058865547, 0.09956800192594528, 0.04857499897480011, 0.2801699936389923, -0.48489999771118164, 0.816789984703064, 0.011823000386357307, 0.24782000482082367, -1.0678000450134277, 0.15227000415325165, 0.5574399828910828, -0.1718900054693222, 0.24309000372886658, 0.08038099855184555, -0.08611799776554108, 0.5055099725723267, 0.0850439965724945, 0.8797699809074402, -0.7624599933624268, 0.0466420017182827, -0.005086500197649002, -0.3942599892616272, -0.08094199746847153, 0.22746999561786652, -0.460640013217926, -0.009284400381147861, 0.16357000172138214, -0.4682599902153015, -0.11045999825000763, 0.2972399890422821, -0.1286199986934662, -0.43650999665260315, 0.07404600083827972, 0.4215199947357178, 0.5122399926185608, -0.0709569975733757, 0.3013699948787689, 0.5116000175476074, 0.08206500113010406, -0.33803001046180725, -0.23274999856948853, -0.20350000262260437, -0.12571999430656433, 0.0276699997484684, 0.10825999826192856, 1.2724000215530396, -0.41659000515937805, -0.004300999920815229, -0.25356000661849976, 0.18063999712467194, 0.2453099936246872, 0.27188000082969666, -0.32041001319885254, 0.16007000207901, -0.10735999792814255, 0.18581999838352203, 0.2401999980211258, -0.2432200014591217, -0.8283299803733826, -0.5375900268554688, -0.2171200066804886, -0.376800000667572, -0.26284998655319214, 0.6333799958229065, 0.43011000752449036, 0.7036399841308594, 0.4083400070667267, 0.3441700041294098, -0.19672000408172607, 0.08408399671316147, -0.8067299723625183, -0.8641600012779236, -0.06028800085186958, -0.5115799903869629, -0.6539599895477295, -0.6121600270271301, -0.8045799732208252, -0.3306899964809418, 0.31376999616622925, 0.45778000354766846, 0.5031700134277344, 0.24706000089645386, -0.23632000386714935, 0.15001000463962555, 0.05731699988245964, 0.12275999784469604, 0.24169999361038208, 0.123259998857975, -0.19125999510288239, -0.07759799808263779, -0.07353799790143967, 0.24021999537944794, 0.15102000534534454, 0.16526000201702118, -0.05602800101041794, -0.4875499904155731, 0.05228099972009659, 0.18012000620365143, -0.42796000838279724, -0.08601599931716919, 0.09433099627494812, 0.11851000040769577, -0.6880800127983093, 0.13444000482559204, 0.07052399963140488, -0.05891399830579758, -0.557640016078949, 0.774869978427887, -0.25742998719215393, -0.08215499669313431, -0.033806998282670975, 0.08020500093698502, -0.3290799856185913, -0.2553499937057495, -0.12922999262809753, 0.5054200291633606, -0.09712599962949753, 0.24062000215053558, -0.07909899950027466, -0.7465299963951111, -0.3760800063610077, -1.5347000360488892, 0.2808000147342682, -0.2810400128364563, 0.22874000668525696, -0.16721999645233154, -0.45489001274108887, 0.13050000369548798, -0.3679499924182892, -0.389490008354187, 0.33309999108314514, 0.2302599996328354, -0.41089001297950745, -0.14247000217437744, -0.14182999730110168, 0.4557400047779083, 0.05293799936771393, -0.32857999205589294, 0.4469299912452698, 0.43615999817848206, 0.2380799949169159, -0.009477199986577034, -0.16147999465465546, -0.24262000620365143, 0.4896099865436554], u'cotton': [-0.4855400025844574, -0.11411000043153763, 0.045823998749256134, -0.32666000723838806, -0.18908999860286713, -0.21142999827861786, 0.17017999291419983, -0.26513001322746277, 0.1303199976682663, -0.5010499954223633, -0.24133999645709991, -0.7208700180053711, 0.14618000388145447, 0.08438900113105774, 0.09275899827480316, -0.006888499949127436, -0.15324999392032623, -0.3196200132369995, -0.4148699939250946, -0.26739001274108887, -0.5365300178527832, -0.5952500104904175, 0.15410999953746796, 0.32923001050949097, 0.0034668000880628824, 0.15602000057697296, -0.3842799961566925, -0.5342400074005127, -0.7240300178527832, 0.13455000519752502, -0.37338998913764954, 0.35613998770713806, -0.7850599884986877, 0.030786000192165375, -0.7758299708366394, 0.7107499837875366, 0.5915200114250183, -0.2745800018310547, 0.22495999932289124, -0.07376500219106674, -0.48627999424934387, -0.6427900195121765, -0.14503000676631927, 0.20397000014781952, 0.23124000430107117, -0.28937000036239624, -0.10552000254392624, -0.23397000133991241, 0.07769100368022919, -0.17403000593185425, 0.8070099949836731, 0.5702999830245972, -0.3167699873447418, -0.30235999822616577, -0.30469000339508057, -0.34318000078201294, -0.33410000801086426, -0.43689998984336853, 0.3951199948787689, -0.8269000053405762, -0.4124799966812134, -0.8205699920654297, -0.49733999371528625, 0.1007699966430664, 0.21347999572753906, 0.12196999788284302, 0.06375200301408768, -0.5659800171852112, -0.4268999993801117, 0.0028291998896747828, 0.6122400164604187, 0.22891999781131744, -0.2737799882888794, -0.13967999815940857, -0.17177000641822815, 0.04463899880647659, 0.035057999193668365, -0.42930999398231506, -0.22032999992370605, 0.2334199994802475, 0.2787199914455414, -0.09884999692440033, -0.7591800093650818, 0.023218000307679176, 0.1363700032234192, 0.17847999930381775, -0.19894999265670776, 0.11539000272750854, 0.4516800045967102, -0.3623400032520294, 0.48315998911857605, -0.10379000008106232, 0.2775700092315674, 0.12947000563144684, -0.2814500033855438, 0.4572800099849701, 0.30994001030921936, 0.36462000012397766, -0.2651199996471405, 0.3347100019454956, 0.10780999809503555, 0.8299099802970886, -0.5795400142669678, -0.1703599989414215, -0.6583700180053711, 0.2259799987077713, -0.06634899973869324, 0.16624000668525696, -0.6624400019645691, 0.23859000205993652, -0.15967999398708344, -0.09475299715995789, -0.26686999201774597, 0.1301099956035614, 0.19442999362945557, 0.22536000609397888, 0.6286399960517883, 1.0521999597549438, 0.44765999913215637, -0.12161999940872192, -0.40128999948501587, 0.12320999801158905, 0.7168400287628174, -0.0148930000141263, 0.10965999960899353, 0.5205600261688232, 0.03360699862241745, 0.4652000069618225, 0.5386599898338318, 0.2632800042629242, -0.03514999896287918, 0.7741100192070007, -0.43303999304771423, -0.3841499984264374, -0.5683900117874146, 0.022863000631332397, -0.20923000574111938, 0.6434999704360962, -0.4309700131416321, -0.23236000537872314, -0.20410999655723572, 0.012570999562740326, 0.2374899983406067, -0.7210400104522705, -0.31431999802589417, 1.0090999603271484, -0.07662300020456314, -0.8828799724578857, 0.3297800123691559, -0.3161900043487549, -0.46502000093460083, -0.06824900209903717, -0.00914829969406128, -0.9161400198936462, 0.075764000415802, 0.10509999841451645, -0.4009999930858612, -0.15745000541210175, 0.728879988193512, 0.2402999997138977, 0.05519099906086922, -0.11202000081539154, -0.4175899922847748, -0.12303999811410904, -0.11715000122785568, -0.6187999844551086, 0.006577900145202875, -0.11455000191926956, 0.07845199853181839, 0.3882899880409241, -0.46428999304771423, 0.34360000491142273, -0.7879199981689453, 0.23592999577522278, 0.8235999941825867, -0.032896000891923904, 0.2930299937725067, 0.5084199905395508, -0.36539000272750854, -0.03266099840402603, 0.021655000746250153, 0.49292999505996704, -0.4200200140476227, -0.2716499865055084, 0.016815999522805214, -0.43529000878334045, 0.08568400144577026, 0.28240999579429626, 0.021177999675273895, 0.35137999057769775, -0.22491000592708588, 1.1813000440597534, -0.16779999434947968, -0.14451999962329865, -0.3361000120639801, -0.012010999955236912, 0.22123999893665314, -0.4632500112056732, -0.1005999967455864, -0.37081000208854675, 0.06120600178837776, -0.13173000514507294, 1.0228999853134155, 0.08201699703931808, 0.7480400204658508, -0.3377000093460083, 0.5619099736213684, 0.5848699808120728, -0.29785001277923584, -0.18203000724315643, -0.11230000108480453, -0.29725998640060425, -0.45824000239372253, 0.41157999634742737, 0.22112999856472015, 0.024855000898241997, -0.03136000037193298, -0.13488000631332397, 0.12303999811410904, -0.6951299905776978, 0.1538199931383133, -0.8869900107383728, -0.20995000004768372, 0.001999499974772334, -0.10659000277519226, 0.0900299996137619, 0.1970600038766861, 0.539650022983551, -0.006381500046700239, 0.16357000172138214, 0.668470025062561, 0.19258999824523926, -0.22033999860286713, 0.5473999977111816, 0.5388100147247314, -0.07762199640274048, 0.6043699979782104, -0.539929986000061, -0.4928399920463562, 0.04162700101733208, -0.41266000270843506, 0.0008732699789106846, -0.4851199984550476, 0.5968400239944458, -0.7574999928474426, 0.026757000014185905, -0.12982000410556793, -0.6014900207519531, -0.16142000257968903, -0.38106998801231384, -0.10547000169754028, 0.25148001313209534, -0.08052700012922287, -0.345770001411438, 1.1341999769210815, 0.12383999675512314, -0.20691999793052673, 0.2670600116252899, 0.1441899985074997, -0.1682399958372116, -0.031022999435663223, -0.0888649970293045, 0.07929600030183792, -0.08092299848794937, -0.22544999420642853, -0.051600001752376556, -0.22554999589920044, -0.20680999755859375, -0.5492100119590759, 0.7500799894332886, -0.04782399907708168, 0.17794999480247498, -0.08101499825716019, 0.2015099972486496, -0.6751599907875061, -0.22316999733448029, -0.560259997844696, -0.5600299835205078, -0.39875999093055725, 0.5852699875831604, -0.7232800126075745, -0.5482500195503235, 0.15508000552654266, -0.05444199964404106, 0.20017999410629272, 0.06644300371408463, 0.45837000012397766, -0.456169992685318, -0.4622400104999542, -0.4316500127315521, -0.04379900172352791, -0.11607000231742859, -0.009190299548208714, 0.3391599953174591, -0.1487099975347519, 0.7196800112724304, -0.03236699849367142, -0.8023899793624878, 0.16742999851703644, 0.7063199877738953], u'beach': [-0.4320099949836731, -0.2933399975299835, -0.48465999960899353, 0.060446999967098236, -0.04103799909353256, -0.41811999678611755, 0.4274500012397766, -0.0069090998731553555, 0.5849499702453613, 0.015306999906897545, 0.15109999477863312, -0.25380000472068787, 0.22428999841213226, 0.08945100009441376, 0.21660999953746796, -0.263949990272522, 0.13710999488830566, -0.10920000076293945, -0.0519540011882782, 0.45311999320983887, -0.10172999650239944, 0.11129999905824661, -0.6325100064277649, -0.08830200135707855, -0.6087999939918518, 0.28492000699043274, -0.08144400268793106, 0.7396399974822998, 0.02466600015759468, 0.3647499978542328, 0.4773299992084503, 0.47595998644828796, -0.5397099852561951, 0.5702400207519531, -0.7512099742889404, 0.15308000147342682, -0.19144999980926514, 0.03715499863028526, 0.26752999424934387, -0.16556000709533691, -0.09781699627637863, 0.012021999806165695, -0.2955799996852875, 0.2582300007343292, 0.3024500012397766, -0.07694599777460098, 1.651900053024292, -0.0736910030245781, 0.6893699765205383, 0.5112800002098083, -0.4029099941253662, -0.2632899880409241, 0.29607999324798584, 0.006649199873209, 0.18619999289512634, 0.7170000076293945, -0.30483999848365784, 0.05480999872088432, 0.4508399963378906, -0.4000000059604645, 0.2762799859046936, 0.10085999965667725, 0.5221800208091736, 0.5269500017166138, 0.11255999654531479, -0.604390025138855, -0.1390099972486496, 0.4124999940395355, -0.23343999683856964, -0.8361700177192688, -0.46525999903678894, 0.03348600119352341, 0.056720998138189316, 0.6028199791908264, -0.8146700263023376, 0.03896699845790863, 0.2949199974536896, 0.2979300022125244, 0.10671000182628632, -0.22262999415397644, -0.21278999745845795, 0.3163299858570099, -0.28711000084877014, 0.39680999517440796, 0.06382600218057632, 0.010235000401735306, 0.15848000347614288, 0.6916999816894531, 0.37470000982284546, -0.2079399973154068, -0.030262000858783722, -0.16917000710964203, -0.15689000487327576, -0.6185100078582764, 0.645579993724823, 0.3735499978065491, 0.10414999723434448, -0.4878999888896942, 0.07742299884557724, -0.21313999593257904, -0.1748799979686737, 0.23321999609470367, 0.34011998772621155, 0.09249299764633179, -0.019791999831795692, 0.17646999657154083, 0.08387099951505661, -0.5645700097084045, 0.04395199939608574, -0.6807199716567993, -0.19068999588489532, -0.2963399887084961, 0.32444998621940613, -0.26916998624801636, 0.3121899962425232, -0.0465410016477108, 0.1377599984407425, 0.27469998598098755, -1.0018999576568604, 0.21193000674247742, 0.2685999870300293, -0.03359999880194664, -0.07972200214862823, -0.1890600025653839, -0.20900000631809235, 0.3901900053024292, 0.0027022999711334705, -0.6487699747085571, 0.060228001326322556, -0.2026900053024292, 0.24323999881744385, 0.1521500051021576, -0.13381999731063843, 0.04261799901723862, -0.1891999989748001, -0.43114998936653137, 0.049038998782634735, -0.338809996843338, 0.5961099863052368, -0.049890998750925064, -0.0016232000198215246, -0.22680999338626862, 0.09941700100898743, 0.4470599889755249, -0.2772899866104126, -0.003742600092664361, 0.3906700015068054, 0.25892001390457153, -0.2991200089454651, 0.359279990196228, 0.9423800110816956, 0.20146000385284424, 0.16744999587535858, -0.36327001452445984, 0.38238999247550964, -0.6306599974632263, -0.1640699952840805, -0.0504629984498024, 0.17001000046730042, 0.82396000623703, 0.41703000664711, -0.5101600289344788, -0.011384000070393085, 0.07276800274848938, -0.23003999888896942, -0.09393200278282166, 0.6202300190925598, 0.4890100061893463, -0.02712400071322918, 0.515529990196228, -0.36204999685287476, 0.05561700090765953, -0.4457699954509735, 0.39511001110076904, -0.2547000050544739, -0.3721100091934204, 0.1747100055217743, 0.32460999488830566, -0.08579400181770325, -0.16609999537467957, 0.258760005235672, 0.3343299925327301, 0.08599700033664703, 0.4854699969291687, 0.22964000701904297, -0.05057799816131592, 0.06785999983549118, -0.6738399863243103, 0.2017199993133545, 0.39476001262664795, 0.04609899967908859, 0.8388400077819824, -0.5151299834251404, -0.4153499901294708, 0.03421200066804886, 0.4604800045490265, 0.8984900116920471, -0.3680500090122223, -0.49526000022888184, -0.27368998527526855, 1.2204999923706055, -0.03280000016093254, -0.490090012550354, -0.16898000240325928, -0.0035810000263154507, -0.20217999815940857, 1.079699993133545, 0.04023199900984764, 0.31272000074386597, -0.013697000220417976, -0.41780999302864075, 0.5163400173187256, -0.35982999205589294, 0.1544799953699112, 0.07246699929237366, 0.36827999353408813, -0.030090000480413437, -0.4812999963760376, -0.11006999760866165, -0.2189600020647049, 1.0987999439239502, -0.5626099705696106, 0.3695000112056732, -0.15896999835968018, -0.10290999710559845, -0.21150000393390656, -0.16057999432086945, -0.9566699862480164, -0.18880000710487366, -0.302619993686676, 0.7893700003623962, 0.0967240035533905, 0.20473000407218933, -0.14744000136852264, 0.48482000827789307, 0.01408699993044138, 0.03617300093173981, -0.17806999385356903, 8.60880027175881e-05, -0.1566299945116043, -0.3499999940395355, -0.020353000611066818, 0.3046500086784363, 0.054850999265909195, -0.7703999876976013, 0.12133999913930893, -0.297650009393692, -0.2593899965286255, -0.8634200096130371, -0.07730899751186371, 0.22423000633716583, 0.10516999661922455, 0.0985490009188652, 0.040196001529693604, -0.015992000699043274, -0.6761199831962585, 0.4442000091075897, -0.11573000252246857, 0.13741999864578247, -0.36337000131607056, -0.07703600078821182, 0.11898999661207199, -0.6297699809074402, -1.0720000267028809, -0.5944300293922424, -0.5244200229644775, 0.2601099908351898, -0.1494700014591217, 0.23684999346733093, 0.017371999099850655, -0.23494000732898712, -0.6330400109291077, 0.002254999941214919, 0.15509000420570374, 0.10461000353097916, -0.5629199743270874, -1.743299961090088, 0.7585099935531616, -0.6096199750900269, 0.31025999784469604, -0.03555300086736679, 0.0047785998322069645, -0.8283900022506714, -0.09606000036001205, -0.47832998633384705, -0.174919992685318, 0.20597000420093536, -0.41130000352859497, -0.14500999450683594, -0.18467000126838684, -0.6093500256538391, 0.1155799999833107, -0.46347999572753906, 0.1698800027370453, -0.3138599991798401, -0.09368299692869186, 0.08566500246524811, 0.30702999234199524, 0.3274500072002411, -0.6273000240325928], u'pizza': [0.2573400139808655, 0.48339998722076416, 0.3989500105381012, -0.021903999149799347, -0.23251000046730042, 0.19120000302791595, -0.06044600158929825, -0.2576099932193756, -0.4521099925041199, 0.04151400178670883, -0.26910001039505005, -0.7065899968147278, -0.19061000645160675, 0.6170300245285034, -0.3178200125694275, 0.02794099971652031, -0.16662000119686127, -0.10881000012159348, -0.34463998675346375, 0.42024001479148865, 0.36226001381874084, 0.724590003490448, -0.03792399913072586, -0.13018999993801117, 0.4104599952697754, -0.053523000329732895, 0.2442300021648407, 0.018025999888777733, 0.43281999230384827, -1.2633999586105347, -0.5408599972724915, 0.47268998622894287, 0.35892999172210693, -0.2677899897098541, -0.573710024356842, 0.35585999488830566, -0.3968999981880188, -0.35332000255584717, -0.48881998658180237, 0.24764999747276306, 0.15627999603748322, 0.03886000066995621, 0.007922300137579441, 0.5410500168800354, -0.13862000405788422, 0.3245899975299835, 1.0425000190734863, 0.12856000661849976, 0.036834001541137695, -0.22976000607013702, -0.08797299861907959, -0.6903899908065796, 0.35074999928474426, 0.568340003490448, -0.1960200071334839, -0.2433999925851822, -0.0757019966840744, 0.3730199933052063, 0.14014999568462372, -0.2434300035238266, 0.7911199927330017, -0.25911998748779297, -0.017420999705791473, -0.46355998516082764, -0.12606999278068542, -0.37097999453544617, -0.2365099936723709, 0.5047500133514404, -0.30573999881744385, 0.2805500030517578, 0.5291799902915955, 0.15871000289916992, -0.09864799678325653, -0.4066300094127655, 0.135220006108284, -0.23015999794006348, -0.1546500027179718, -0.10036999732255936, -0.06646999716758728, -0.3589499890804291, -0.1241300031542778, 0.4432699978351593, 0.08242399990558624, -0.44133999943733215, -0.1444700062274933, -0.4839499890804291, 0.29214999079704285, 0.24426999688148499, -0.3284499943256378, 0.05443299934267998, 0.25119999051094055, 0.13314999639987946, -0.162650004029274, -0.12270999699831009, -0.004196200054138899, 0.04838600009679794, -0.2868100106716156, 0.20424999296665192, -0.4036400020122528, 0.09727499634027481, 0.3317500054836273, -0.08769100159406662, 0.010023999959230423, -0.5127900242805481, -0.08306899666786194, -0.3919900059700012, 0.15068000555038452, 0.759190022945404, -0.21369999647140503, 0.1502400040626526, 0.36298999190330505, 0.031101999804377556, 0.28150999546051025, -0.5997999906539917, 0.44464001059532166, -0.6328200101852417, -0.612030029296875, 0.24945999681949615, -0.3671000003814697, -0.056995999068021774, -0.17517000436782837, 0.1625099927186966, 0.8041499853134155, -0.10598000138998032, -0.3004800081253052, 0.18238000571727753, 0.04848499968647957, 0.13027000427246094, -0.3310900032520294, -0.13229000568389893, 0.04734300076961517, 0.43838000297546387, -0.18592999875545502, -0.018343999981880188, 0.19720999896526337, -0.23306000232696533, 0.0301510002464056, 0.19395999610424042, -0.14499999582767487, 0.38100001215934753, 0.15014000236988068, 0.05243200063705444, -0.27917999029159546, -0.39125001430511475, -0.29462000727653503, 0.15047000348567963, -0.08170600235462189, 0.4011000096797943, -0.057500001043081284, -0.5065500140190125, -0.47707000374794006, 1.0189000368118286, 0.31264999508857727, -0.04170700162649155, -0.471670001745224, -0.2994900047779083, -0.11953999847173691, 0.27206000685691833, -0.3297800123691559, -0.5152400135993958, 0.5026000142097473, 0.4451799988746643, -0.4128200113773346, 0.33215001225471497, -0.03264300152659416, 0.23382000625133514, 0.06802800297737122, -0.07913699746131897, 0.4782100021839142, -0.17513999342918396, 0.07776299864053726, 0.21427999436855316, -0.4674699902534485, 0.3134399950504303, -0.5692499876022339, 0.5978400111198425, 0.06689900159835815, 0.20826999843120575, 0.5441100001335144, -0.7247800230979919, -0.0035687999334186316, 0.2248699963092804, 0.350490003824234, -0.04080500081181526, 0.1125200018286705, -0.16416999697685242, 0.28461000323295593, 0.4342400133609772, 0.34097999334335327, -0.27204999327659607, 0.6425099968910217, 0.7712900042533875, -0.24036000669002533, -0.12202999740839005, -0.18943999707698822, 0.12602999806404114, -0.8521100282669067, -0.22276000678539276, -0.43415001034736633, 0.2337000072002411, 0.416049987077713, -0.6657299995422363, 1.1912000179290771, 0.2775999903678894, -0.8071500062942505, -0.23507000505924225, 0.7476900219917297, -0.006661499850451946, 0.2277500033378601, -0.007005400024354458, -0.3985599875450134, 0.2220200002193451, 0.43487000465393066, -0.5541099905967712, -0.6639000177383423, 0.13468000292778015, 0.20789000391960144, -0.17927999794483185, -0.20625999569892883, 0.7346699833869934, 0.5489400029182434, 0.40077000856399536, 0.06321600079536438, -0.02654300071299076, -0.7243499755859375, -0.6112899780273438, -0.07966499775648117, -0.6388599872589111, -0.273140013217926, -0.28610000014305115, 0.2628900110721588, 0.48561999201774597, -0.13763999938964844, -0.07879800349473953, 0.3697499930858612, -0.0556269995868206, 1.1484999656677246, 0.03950599953532219, -0.8982899785041809, 0.23681999742984772, -0.3614799976348877, -0.11355999857187271, -0.07284100353717804, -0.797569990158081, -0.4997600018978119, -0.2144699990749359, -0.04903699830174446, 0.39695999026298523, -0.17423999309539795, -0.4120500087738037, 1.1871000528335571, 0.516700029373169, -0.059790998697280884, 0.7142099738121033, 0.1655000001192093, 0.33952999114990234, -0.10357999801635742, 0.2929700016975403, -0.268310010433197, 0.17679999768733978, 0.32690000534057617, -0.42350998520851135, -0.11839000135660172, 0.16728000342845917, 0.06569000333547592, -0.431769996881485, 0.28575000166893005, 0.3914699852466583, 0.49807000160217285, -0.13639000058174133, -0.602400004863739, -0.507889986038208, 0.05228300020098686, 0.3962000012397766, 0.8692499995231628, -0.09685400128364563, -1.1965999603271484, 0.042479000985622406, -1.2523000240325928, -0.122359998524189, -0.1243399977684021, 0.31723999977111816, -0.2824299931526184, 0.18327000737190247, -0.08085700124502182, 0.14132000505924225, 0.5522099733352661, -0.27663999795913696, 0.3112199902534485, 0.0756089985370636, 0.22901000082492828, -0.007023199927061796, -0.19508999586105347, 0.26923999190330505, -0.48833999037742615, -0.3415899872779846, 0.34529000520706177, 0.03223099932074547, -0.3895699977874756, 0.050930000841617584], u'wheel': [0.2759299874305725, -0.14595000445842743, 0.2587699890136719, -0.7950800061225891, 0.07151799649000168, 0.23479999601840973, 0.3342300057411194, 0.10639999806880951, -0.0656609982252121, -0.7878299951553345, -0.0540350005030632, 0.026962999254465103, 0.13971999287605286, -0.11311999708414078, 0.36157000064849854, -0.011106999590992928, 0.18998000025749207, -0.08000099658966064, 0.12563000619411469, -0.3603900074958801, -0.07567500323057175, 0.7827900052070618, 0.31668001413345337, 0.17714999616146088, 0.18328000605106354, 0.23759999871253967, 0.4562999904155731, 0.23859000205993652, 0.2563000023365021, -0.0867369994521141, -0.041756000369787216, 0.2868900001049042, -0.06046999990940094, 0.278329998254776, -0.4923099875450134, 0.8466100096702576, -0.164450004696846, -0.5235599875450134, -0.4563100039958954, 0.7394099831581116, -0.5522099733352661, 0.06695199757814407, -0.57669997215271, -0.3629400134086609, 0.2809999883174896, 0.3633599877357483, 0.6704300045967102, -0.015852000564336777, -0.15604999661445618, 0.09413699805736542, 0.14016999304294586, 0.19995999336242676, 0.5587700009346008, -0.35798999667167664, 0.38940998911857605, 0.45291000604629517, 0.24153000116348267, -0.44203001260757446, -0.04218899831175804, 0.09017899632453918, 0.2556000053882599, 0.2652300000190735, 0.4681600034236908, -0.16030000150203705, -0.04883899912238121, 0.680679976940155, -0.5597900152206421, -0.27031999826431274, -0.11563000082969666, 0.5357199907302856, 0.24856999516487122, 0.10944999754428864, 0.5856800079345703, 0.330130010843277, 0.22070999443531036, 0.3361000120639801, -0.054347001016139984, -0.5460000038146973, -0.09393399953842163, -0.25492000579833984, 0.12479999661445618, 0.7410699725151062, -0.07918699830770493, 0.06223500147461891, -0.8714699745178223, -0.004662900231778622, 0.3948799967765808, 0.5266199707984924, -0.7446399927139282, 0.15633000433444977, 0.899869978427887, 0.2100600004196167, 0.014228999614715576, -0.24354000389575958, 0.3836599886417389, -0.3976399898529053, -0.3397600054740906, 0.2747200131416321, 0.13134999573230743, -0.4411500096321106, -0.29712000489234924, 0.893339991569519, -0.14778000116348267, 0.03788800165057182, 0.07701700180768967, -0.11896000057458878, -0.059025999158620834, 0.46338000893592834, -0.35986000299453735, -0.5819000005722046, -0.20446999371051788, 0.15033000707626343, 0.008111599832773209, -0.3310999870300293, -0.19596000015735626, 0.25387001037597656, -0.48443999886512756, 0.23115000128746033, -0.30768001079559326, 0.24944999814033508, -0.01306500006467104, -0.6860100030899048, 0.5038099884986877, -0.6721400022506714, -0.4609600007534027, -0.2940700054168701, 0.002195199951529503, 0.26412999629974365, 0.181209996342659, -0.042559001594781876, 0.3808499872684479, 0.6202800273895264, 0.36226001381874084, 0.30371999740600586, -0.5758299827575684, 0.6316499710083008, -0.183569997549057, -0.6938499808311462, -0.2619999945163727, 0.32910001277923584, -0.060458000749349594, 0.937690019607544, -0.05741000175476074, -0.2247599959373474, -0.004006700124591589, 0.1606599986553192, -0.25968998670578003, -0.6528300046920776, 0.41545000672340393, 0.8128600120544434, 0.3071199953556061, 0.36406001448631287, -0.5825099945068359, -0.2515200078487396, 0.7283599972724915, -0.3874399960041046, 0.7048400044441223, -0.10768000036478043, -0.07333599776029587, 0.3342199921607971, 0.5435299873352051, -0.7444900274276733, -0.8700799942016602, 0.030141999945044518, 0.624459981918335, 0.40911999344825745, -0.3272800147533417, 0.7402899861335754, 0.6413800120353699, 0.08283200114965439, -1.0264999866485596, 0.27024999260902405, 0.4914399981498718, 0.5270699858665466, 0.26333001255989075, -0.29973000288009644, 0.224140003323555, 0.28584998846054077, -0.1354600042104721, -0.14270000159740448, 0.04947900027036667, 0.6960800290107727, 0.2581399977207184, 0.14757999777793884, 0.6477800011634827, -0.8575199842453003, 0.4005900025367737, -0.31793999671936035, 0.8876199722290039, -0.19543999433517456, 0.11873000115156174, -0.29993999004364014, -0.12950000166893005, 0.49226000905036926, 0.4603300094604492, 0.30702000856399536, -0.17813999950885773, -0.1711300015449524, 0.1780800074338913, 0.23436999320983887, 0.8830900192260742, 0.0812389999628067, 0.6271899938583374, 0.12168999761343002, 0.31099000573158264, -0.0077379001304507256, 0.21317000687122345, -0.6759399771690369, -0.2779900133609772, 0.16720999777317047, 0.46713998913764954, -0.43459999561309814, 0.4075700044631958, -0.11011999845504761, 0.5960500240325928, -0.48611998558044434, -0.1880899965763092, 0.5128999948501587, -0.31233999133110046, 0.003328500082716346, -0.0784510001540184, 0.23858000338077545, 0.051426000893116, -0.06432700157165527, 0.3215000033378601, 0.34095999598503113, 0.16946999728679657, 0.30465999245643616, -0.07160600274801254, 0.04430500045418739, -0.04865799844264984, -0.6667199730873108, 0.15484000742435455, -0.3364099860191345, 0.4032599925994873, 0.10266999900341034, -0.015453999862074852, 0.5509399771690369, -0.28595998883247375, -0.45188000798225403, 0.060940999537706375, 0.03178500011563301, -0.19762000441551208, -0.13431000709533691, -0.8467000126838684, -0.2853100001811981, -0.2804799973964691, 0.1796099990606308, 0.5372700095176697, 0.5415899753570557, -0.5266799926757812, -0.668969988822937, 0.016852999106049538, -0.4075700044631958, 0.2309200018644333, 0.2710300087928772, -0.5441700220108032, -0.39430001378059387, -0.35565000772476196, -0.6022599935531616, -0.27897998690605164, -0.8560799956321716, 0.40619000792503357, 0.6959699988365173, -0.20844000577926636, -0.6921799778938293, 0.44920000433921814, -0.03720499947667122, 0.18351000547409058, -0.01726200059056282, -0.5813599824905396, -0.08135800063610077, 0.07683499902486801, 0.09344200044870377, 0.31942999362945557, -0.197160005569458, -1.195199966430664, 0.10333999991416931, -0.25126999616622925, 0.2561199963092804, 0.14351999759674072, -0.27368998527526855, -0.02487899921834469, -0.19754000008106232, 0.16619999706745148, 0.17330999672412872, -0.5470700263977051, -0.9500899910926819, -0.17964999377727509, -0.10146000236272812, 0.2604599893093109, -0.014190999791026115, 0.08944199979305267, -0.10130000114440918, 0.24714000523090363, 0.1365399956703186, -0.34529000520706177, 0.3126699924468994, 0.3097499907016754, 0.050259001553058624], u'wave': [0.5001199841499329, -0.42381998896598816, 0.2573400139808655, -0.5990399718284607, -0.05979999899864197, -0.11302000284194946, 0.293179988861084, 0.0642940029501915, 0.1157199963927269, -1.187000036239624, 0.667110025882721, 0.46316999197006226, 0.4270699918270111, -0.08921799808740616, 0.8587200045585632, 0.14007000625133514, -0.13673000037670135, 0.3040100038051605, 0.29061999917030334, 0.6625099778175354, 0.09299399703741074, -0.3091700077056885, 0.22314999997615814, -0.3900099992752075, -0.048521000891923904, 0.3238700032234192, 0.5078999996185303, 0.4805600047111511, 0.04185999929904938, -0.06443600356578827, -0.40459999442100525, -0.065481998026371, -0.692110002040863, 0.19806000590324402, -0.35135000944137573, 0.009594200178980827, -0.5069299936294556, -0.4900299906730652, 0.40097999572753906, 1.1581000089645386, 0.5234500169754028, 0.31832998991012573, 0.18027999997138977, 0.07230199873447418, -0.05121900141239166, -0.2351599931716919, 0.18366000056266785, -0.4948999881744385, 0.44209998846054077, 0.0692870020866394, -0.11984000355005264, -0.10851000249385834, 0.4180600047111511, -0.02568499930202961, 0.2807300090789795, -0.03892600163817406, -0.27004000544548035, 0.3466799855232239, 0.14383000135421753, 0.17027999460697174, -0.0885550007224083, 0.34711000323295593, 0.31415000557899475, 0.03242500126361847, -0.3068599998950958, 0.1805800050497055, -0.027482999488711357, -0.006241300143301487, 0.26949000358581543, 0.6316199898719788, 0.40731000900268555, 0.4143800139427185, -0.3472999930381775, -0.09607700258493423, -0.33959001302719116, -0.273140013217926, 0.05945200100541115, -0.5659599900245667, -0.07731200009584427, 0.4212400019168854, -0.6234599947929382, -0.18967999517917633, -0.22125999629497528, 0.13941000401973724, 0.3765200078487396, 0.2746700048446655, -0.19413000345230103, 0.15967999398708344, 0.20917999744415283, -0.4884899854660034, 0.4794900119304657, 0.16832000017166138, -0.2231999933719635, -0.5413699746131897, -0.19300000369548798, -0.3585900068283081, -0.15378999710083008, -0.2445099949836731, 0.7935799956321716, -0.0861319974064827, 0.021649999544024467, 0.3564800024032593, 0.302949994802475, -0.09188400208950043, -0.5082899928092957, 0.28240999579429626, -0.22891999781131744, 0.020641999319195747, 0.20461000502109528, 0.23749999701976776, -0.22777999937534332, -0.2293500006198883, -0.02213199995458126, -0.023429999127984047, 0.4108699858188629, 0.14034999907016754, 0.144679993391037, 0.05591300129890442, -0.5018600225448608, -0.9708300232887268, 0.5797299742698669, -0.47519999742507935, -0.3410399854183197, 0.2924000024795532, 0.6122400164604187, 0.04058599844574928, 0.35710999369621277, 0.28095000982284546, -0.052949998527765274, -0.016953999176621437, -0.24355000257492065, 0.8039000034332275, 0.5230299830436707, -0.13030999898910522, -0.2865700125694275, -0.24570000171661377, 0.20983000099658966, 0.3509399890899658, 0.11221999675035477, 0.009866399690508842, -0.381879985332489, 0.06155899912118912, -0.333869993686676, 0.6818699836730957, -0.2966899871826172, 0.004291300196200609, 0.10041999816894531, -0.3588100075721741, 0.29065001010894775, 0.517549991607666, 0.35743001103401184, 0.17027999460697174, -0.18045000731945038, 0.5854799747467041, 0.24900999665260315, 0.08962699770927429, 0.009221700020134449, -0.45072001218795776, -0.37457001209259033, -0.37386998534202576, -0.3095000088214874, -0.3872300088405609, -0.3088200092315674, -0.2117599993944168, -0.04984600096940994, -0.04993300139904022, 0.3815799951553345, 0.6490899920463562, -0.11862999945878983, 0.2274399995803833, 0.2783699929714203, 0.4365200102329254, 0.1713400036096573, -0.22134000062942505, -0.06638400256633759, -0.5854700207710266, -0.3296400010585785, -0.13061000406742096, -0.258650004863739, 0.27796998620033264, -0.28088000416755676, -0.7021399736404419, 0.5374699831008911, 0.2379699945449829, 0.2681399881839752, 0.2773900032043457, -0.0032238001003861427, 0.3416900038719177, -0.16579000651836395, -0.03590499982237816, 0.14090000092983246, -0.012141999788582325, -0.22099000215530396, -0.0013469000114127994, 0.0204050000756979, -0.011861000210046768, 0.40507999062538147, -0.6504899859428406, -0.1427299976348877, 0.042725998908281326, 0.4505699872970581, 0.2729800045490265, -0.18087999522686005, 0.08686500042676926, 0.02433300018310547, -0.11858999729156494, -0.5384299755096436, 0.7267699837684631, -0.03382999822497368, 0.17649999260902405, 0.0498879998922348, 0.2563599944114685, 0.3742400109767914, 0.3648099899291992, -0.26872000098228455, 0.3270300030708313, 0.35572999715805054, -0.6718999743461609, 0.20761999487876892, -0.026823999360203743, 0.5041400194168091, 0.2296999990940094, -0.31891998648643494, -0.6070700287818909, 0.2826499938964844, -0.4781399965286255, 0.3629400134086609, -0.5569599866867065, 0.08066499978303909, -0.0225210003554821, 0.3683199882507324, 0.14354999363422394, -0.389739990234375, -0.1028899997472763, -0.31349998712539673, -0.15500999987125397, 0.36629000306129456, -0.3159100115299225, -0.04208200052380562, 0.058775000274181366, 0.4432399868965149, 0.3184100091457367, -0.2565000057220459, -0.3405900001525879, -0.3898699879646301, -0.583079993724823, 0.3019599914550781, 0.05978500097990036, -0.04086799919605255, 0.11694999784231186, -0.3362799882888794, 0.32791000604629517, 0.16324999928474426, 0.4349699914455414, 0.1159299984574318, -0.0794370025396347, 0.2965399920940399, -0.09745699912309647, -0.6246399879455566, 0.416810005903244, 0.16050000488758087, -0.483379989862442, 0.49911001324653625, 0.11993999779224396, -0.6136699914932251, -0.4256199896335602, -0.9376599788665771, 0.03558799996972084, 0.09043599665164948, -0.1449899971485138, -0.22164000570774078, -0.26291999220848083, -0.23939000070095062, -0.42833998799324036, 0.38787999749183655, 0.3599799871444702, -1.7719999551773071, 0.29923000931739807, 0.18494999408721924, 0.10591000318527222, -0.2593899965286255, -0.17035000026226044, -0.16475999355316162, 0.2889400124549866, -0.032722000032663345, -0.033959999680519104, -0.31619998812675476, 0.047263000160455704, 0.36577001214027405, -0.028714999556541443, 0.22401000559329987, -0.4629800021648407, -0.009511199779808521, -0.07730299979448318, 0.6854900121688843, 0.7343599796295166, -0.0906440019607544, 0.49803000688552856, 0.32892999053001404, -0.26135000586509705], u'plant': [0.09741000086069107, 1.0256999731063843, -0.2631100118160248, -0.6152099967002869, -0.29061999917030334, -0.2470400035381317, 0.04382000118494034, 0.09625600278377533, 0.6405199766159058, -1.079200029373169, 0.3714599907398224, -0.36142000555992126, 0.06916999816894531, 0.186489999294281, 0.4149700105190277, 0.10337000340223312, -0.20716999471187592, 0.23982000350952148, -0.10786999762058258, 0.13523000478744507, -0.451449990272522, -0.10633999854326248, 0.13139000535011292, 0.2851499915122986, -0.25440001487731934, 0.07759500294923782, -0.2671000063419342, 0.05597800016403198, -0.38100001215934753, 0.3443799912929535, 0.0929419994354248, 0.4361500144004822, -0.428710013628006, 0.21920999884605408, 0.4806399941444397, 0.45708999037742615, -0.07073599845170975, -0.0937110036611557, -0.40895000100135803, -0.1525000035762787, -0.5963699817657471, 0.5424799919128418, 0.22222000360488892, 0.5243600010871887, -0.4418799877166748, -0.3113200068473816, 0.38659998774528503, 0.3288100063800812, -0.057941000908613205, 0.42500999569892883, 0.1512800008058548, 0.2515600025653839, -0.2511799931526184, -0.3626900017261505, -0.23331999778747559, 0.46917998790740967, 0.8968799710273743, -0.026947999373078346, 0.4347899854183197, 0.13053999841213226, -0.2090499997138977, 0.043411001563072205, 0.584089994430542, -0.42092999815940857, -0.47828999161720276, -0.1535000056028366, 0.032653000205755234, 0.6963099837303162, -0.02829200029373169, 0.2923299968242645, -0.00691419979557395, 0.17935000360012054, 0.5007200241088867, 0.35058000683784485, -1.048699975013733, 0.2955299913883209, -1.1484999656677246, 0.13223999738693237, 0.36531001329421997, 0.346560001373291, -0.5180100202560425, -0.3747200071811676, -0.270689994096756, 0.09378299862146378, 0.32425999641418457, 0.3871000111103058, 0.36862999200820923, 0.01001300010830164, -0.17549000680446625, 0.17430999875068665, 0.25409001111984253, -0.3120900094509125, 0.4437299966812134, -0.1953199952840805, 0.10012000054121017, -0.3790000081062317, -0.10507000237703323, -0.6776900291442871, -0.1463100016117096, -0.6322299838066101, 0.05104700103402138, -0.15660999715328217, -0.23427000641822815, -0.378030002117157, 0.0027286000549793243, -0.2826499938964844, 0.39792999625205994, 0.3315199911594391, -0.5515199899673462, 0.6333400011062622, 0.9311299920082092, -0.2302200049161911, -0.19889000058174133, -0.6101400256156921, -0.23885999619960785, 0.6295400261878967, 0.29686999320983887, 0.7850099802017212, 0.4743199944496155, 0.6421599984169006, -0.6006799936294556, -0.48458001017570496, -0.2687999904155731, 0.07134199887514114, -0.23815999925136566, 0.3315899968147278, 0.4843499958515167, 0.45306000113487244, 0.42285001277923584, 0.15037000179290771, 1.117400050163269, 0.8786799907684326, 0.24445000290870667, 0.012347999960184097, -0.3763599991798401, -0.0953420028090477, -0.376010000705719, -0.7095999717712402, 0.6432600021362305, -0.14549000561237335, 0.20220999419689178, -0.49202001094818115, 0.6283699870109558, -0.8160799741744995, -0.08655399829149246, 0.3788599967956543, -0.22396999597549438, -0.721019983291626, 0.14313000440597534, 0.16819000244140625, 0.6593800187110901, -0.26089999079704285, -0.29179999232292175, -0.0806410014629364, 0.5364999771118164, 0.1231599971652031, -0.42089998722076416, -0.3343600034713745, -0.0518839992582798, 0.21964000165462494, -0.27274999022483826, -0.16954000294208527, 0.07787899672985077, 0.25734999775886536, -0.21706999838352203, -0.015860000625252724, -0.164000004529953, -0.11460000276565552, -0.07812900096178055, -0.21044999361038208, -0.4615199863910675, -0.093129001557827, 0.3083899915218353, -0.21153999865055084, 0.039333000779151917, 0.9534599781036377, 0.2593500018119812, 0.1477999985218048, 0.7738800048828125, -0.33456000685691833, -0.3283100128173828, -0.26774001121520996, -0.3431900143623352, -0.29170000553131104, 0.16843000054359436, 0.014205999672412872, 0.4023599922657013, 0.010219999589025974, 0.8045099973678589, -0.547789990901947, -0.4849900007247925, 0.6059399843215942, -0.30913999676704407, -0.06023800000548363, -0.29003000259399414, -0.04467500001192093, 0.286190003156662, -0.5440599918365479, -0.29482001066207886, 0.4436199963092804, 0.09249000251293182, 0.14063000679016113, 0.014295999892055988, -0.19009999930858612, -0.05278699845075607, -0.0455860011279583, 0.028527000918984413, -0.33254000544548035, 0.05485299974679947, -0.22803999483585358, 0.0008837599889375269, -0.2319899946451187, -0.08042900264263153, -0.9146599769592285, 0.6604599952697754, 0.46474000811576843, -0.11330000311136246, 0.47262001037597656, -0.040536001324653625, -0.022381000220775604, 0.36577001214027405, 0.014072000049054623, -0.39079999923706055, 0.014832999557256699, -0.13534000515937805, 0.1488800048828125, -0.024824000895023346, 0.3228699862957001, -0.33583998680114746, -0.032079000025987625, 0.4336099922657013, -0.2972800135612488, -0.017573000863194466, 0.5407500267028809, 0.28786998987197876, -0.21199999749660492, 0.3048900067806244, -0.2959499955177307, -0.2380799949169159, -0.06528200209140778, 0.25758999586105347, -0.5817499756813049, -0.04279499873518944, -0.6432600021362305, -0.8366400003433228, 0.13906000554561615, 0.7696999907493591, -0.5336400270462036, -0.008922499604523182, -0.337119996547699, 0.06817399710416794, 0.07225599884986877, -0.9782199859619141, 0.2107200026512146, 1.2705999612808228, -0.1907700002193451, 0.08536499738693237, 0.521619975566864, 0.27922001481056213, -0.4338200092315674, 0.5112599730491638, 0.31007999181747437, -0.0494219996035099, -0.35012999176979065, 0.0947749987244606, -0.0860079973936081, 0.1562899947166443, 0.38098999857902527, 0.5083600282669067, -0.1340699940919876, 0.019394999369978905, -0.07390599697828293, -0.4065999984741211, -0.15118999779224396, 0.03155599907040596, 0.40619999170303345, -1.7999999523162842, -0.4755299985408783, 0.10846000164747238, 0.2585799992084503, -0.8305500149726868, 0.01881900057196617, -0.16565999388694763, 0.060649000108242035, -0.05901399999856949, 0.45037001371383667, 0.46428000926971436, -0.29036998748779297, 0.08383700251579285, 0.2397100031375885, 0.41218000650405884, -0.3998199999332428, 0.5155100226402283, -0.38767001032829285, 0.6120700240135193, 0.7857000231742859, -0.09763800352811813, -0.670740008354187, 0.49882999062538147, 0.4616900086402893], u'sandwich': [0.3548800051212311, 0.003486400004476309, 0.46492999792099, -0.11963000148534775, -0.10588999837636948, -0.41804999113082886, 0.32155999541282654, -0.22725999355316162, 0.07297100126743317, -0.22272999584674835, -0.5388200283050537, -0.33243000507354736, -0.34964001178741455, 0.668179988861084, -0.02610200084745884, 0.11928000301122665, 0.19497999548912048, -0.015622000209987164, -0.4050000011920929, 0.15995000302791595, 0.14316000044345856, 0.4791199862957001, -0.5535699725151062, 0.07223699986934662, -0.19621999561786652, -0.34657999873161316, -0.051837000995874405, 0.10560999810695648, 0.12391000241041183, -0.5220199823379517, -0.3232100009918213, -0.03635900095105171, 0.3161099851131439, -0.02564300037920475, -0.15748000144958496, 0.5523200035095215, -0.41339001059532166, 0.06350299715995789, -0.44765999913215637, 0.4510200023651123, -0.2934100031852722, -0.42002999782562256, -0.04171299934387207, 0.5645700097084045, -0.5797399878501892, 0.21744999289512634, 0.7960799932479858, -0.7031300067901611, -0.38986000418663025, 0.2307099997997284, -0.3426800072193146, -0.4882499873638153, 0.5868899822235107, 0.7178900241851807, -0.016944000497460365, 0.057645998895168304, -0.17881999909877777, 0.5100700259208679, -0.09931699931621552, 0.1503800004720688, 0.34595000743865967, -0.04181100055575371, -0.05079000070691109, 0.16637000441551208, 0.23783999681472778, 0.197610005736351, -0.1697400063276291, 0.288100004196167, -0.492110013961792, 0.028519000858068466, 0.2296299934387207, -0.26058998703956604, -0.033500999212265015, -0.5253999829292297, -0.8575500249862671, -0.46202000975608826, 0.3197599947452545, 0.10248000174760818, -0.08442000299692154, 0.46149998903274536, -0.05385899916291237, 0.3531399965286255, 0.3012700080871582, -0.1621599942445755, -0.3534500002861023, -0.5343599915504456, 0.12860000133514404, -0.038040999323129654, -0.44144999980926514, -0.22834999859333038, -0.06407800316810608, -0.43323999643325806, 0.17452000081539154, -0.5506600141525269, -0.3209500014781952, -0.3122999966144562, -0.07531899958848953, 0.4161899983882904, -0.0017219999572262168, -0.27496999502182007, 0.016297999769449234, -0.00968869961798191, 0.44064000248908997, -0.7886300086975098, -0.1834300011396408, -0.2835899889469147, -0.03962799906730652, 0.41168999671936035, -0.5049200057983398, -0.13044999539852142, 0.7813599705696106, 0.5017200112342834, -0.3520900011062622, -0.7665799856185913, 0.21223999559879303, -0.275409996509552, -0.3068700134754181, 0.061128001660108566, 0.22603000700473785, 0.11448000371456146, 0.13861000537872314, -0.42188000679016113, 0.38944000005722046, -0.2816700041294098, -0.3166100084781647, -0.4205699861049652, 0.15035000443458557, -0.33469998836517334, 0.7515100240707397, 0.6812700033187866, -0.0937110036611557, 0.6333600282669067, -0.06463100016117096, 0.4992299973964691, 0.4772700071334839, -0.0659869983792305, -0.433789998292923, 0.4147599935531616, -0.3009699881076813, 0.3597699999809265, 0.15162000060081482, 0.06260199844837189, -0.031874001026153564, -0.08770199865102768, -0.31154000759124756, 0.001408900017850101, -0.14642000198364258, 0.04933999851346016, -0.33059999346733093, -0.8367999792098999, -0.6904299855232239, 0.1724099963903427, 0.6636800169944763, 0.08037099987268448, -0.46540001034736633, -0.2301200032234192, -0.8971999883651733, -0.6543400287628174, 0.11969000101089478, 0.05713199824094772, 0.10286000370979309, 0.14103999733924866, -0.7105000019073486, 0.33094000816345215, 0.0272659994661808, -0.2681500017642975, 0.42326000332832336, 0.06468000262975693, 0.4998700022697449, -0.793749988079071, -0.4390200078487396, -0.20324000716209412, -0.19154000282287598, 0.2566100060939789, -0.5926200151443481, 0.16216999292373657, -1.0069999694824219, 0.2581399977207184, 0.7570000290870667, -1.1818000078201294, 0.22746999561786652, 0.32273998856544495, -0.04674699902534485, -0.8636900186538696, 0.4233100116252899, -0.24643999338150024, 0.292059987783432, 0.5162699818611145, -0.21536999940872192, 0.2617200016975403, -0.007294099777936935, 1.0714999437332153, 0.2640100121498108, -0.26405999064445496, 0.046828001737594604, 0.07593599706888199, -0.3776099979877472, -0.45796999335289, 0.06155100092291832, -0.11642999947071075, 0.18799999356269836, -0.3350600004196167, 0.9335500001907349, 0.4312700033187866, 0.2524699866771698, -0.16498999297618866, -0.14875000715255737, -0.4215100109577179, 0.29569000005722046, 0.08646299690008163, -0.060940999537706375, 0.10260999947786331, 0.19088000059127808, -0.0017534999642521143, -0.24265000224113464, 0.28073999285697937, 0.30726999044418335, -0.5913199782371521, 0.007857900112867355, -0.12375999987125397, 0.4064599871635437, 1.1576999425888062, 0.03827900066971779, -0.16753999888896942, -0.1367499977350235, -0.5512300133705139, -0.2687099874019623, -0.33254000544548035, -0.4327000081539154, 0.47784000635147095, 0.11483000218868256, -0.010885999538004398, -0.34630998969078064, -0.021030999720096588, 0.9603999853134155, -0.2184700071811676, 0.31442999839782715, 0.23138000071048737, -0.3853200078010559, 0.5682799816131592, 0.0537169985473156, -0.10916999727487564, -0.14007000625133514, -0.3950200080871582, -0.8505399823188782, 0.056460000574588776, -0.14381000399589539, -0.2521499991416931, -0.2757900059223175, -0.6859700083732605, 0.7611100077629089, 0.30476999282836914, 0.27362000942230225, 0.6389099955558777, 0.22062000632286072, 0.581849992275238, 0.2228199988603592, 0.10392999649047852, 0.35409998893737793, -0.1081399992108345, 0.4932299852371216, -0.09683600068092346, 0.15067000687122345, 0.08052399754524231, 0.13987000286579132, -0.33009999990463257, 0.2072100043296814, -0.1878799945116043, 0.43966999650001526, -0.0943249985575676, -0.4506700038909912, -0.08480899780988693, 0.5097299814224243, 0.35547998547554016, -0.1956000030040741, 0.1638599932193756, -0.6731200218200684, 0.2399500012397766, -0.7892699837684631, 0.055716000497341156, -0.15532000362873077, 0.029252000153064728, -0.15487000346183777, -0.4427500069141388, 0.1374099999666214, 0.5573899745941162, 0.38618001341819763, -0.5750100016593933, 0.5557699799537659, -0.03477099910378456, -0.1459600031375885, -0.10950999706983566, -0.08009599894285202, 0.03567900136113167, -0.7380300164222717, -0.6485000252723694, 0.37731999158859253, -0.16937999427318573, 0.08927799761295319, 0.14252999424934387], u'mat': [0.155239999294281, -0.4860000014305115, -0.18129999935626984, -0.9030399918556213, -0.11396999657154083, -0.7607499957084656, -0.35839998722076416, -0.14061999320983887, -0.15584999322891235, -0.14473000168800354, -0.08105400204658508, -0.11655999720096588, -0.48653000593185425, 0.521589994430542, 0.7912300229072571, -0.14177000522613525, -0.3487600088119507, 0.9420499801635742, 0.15109999477863312, -0.12872999906539917, 0.13007000088691711, -0.23321999609470367, -0.1426199972629547, -0.0956289991736412, 0.22381000220775604, 0.1393900066614151, 0.2791300117969513, -0.03719300031661987, 0.8545200228691101, 0.11477000266313553, 0.07310699671506882, -0.10152000188827515, 0.4264200031757355, -0.3592199981212616, -1.0098999738693237, -0.062453001737594604, 0.6758999824523926, -0.08302100002765656, 0.09800899773836136, -0.09683000296354294, 0.19638000428676605, -0.37485000491142273, -0.3352400064468384, -0.2088800072669983, 0.4607299864292145, 0.3513000011444092, 0.4884899854660034, -0.24695999920368195, -0.321370005607605, -0.10426999628543854, -0.22915999591350555, 0.180759996175766, -0.3194600045681, -0.12529000639915466, -0.3096199929714203, 0.909850001335144, -0.22669999301433563, -0.3218599855899811, 0.5602499842643738, 0.31349000334739685, 0.47067999839782715, -0.025131000205874443, -0.3609200119972229, 0.34880998730659485, -0.34303000569343567, -0.23010000586509705, -0.15440000593662262, 0.11435999721288681, -0.16015000641345978, 0.36719998717308044, -0.08932799845933914, -0.40064001083374023, -0.6164799928665161, 0.46988001465797424, -0.575219988822937, 0.25536999106407166, 0.6398900151252747, -0.300570011138916, 0.3097899854183197, -0.3567099869251251, 0.7058500051498413, 0.06301400065422058, 0.19729000329971313, -0.15365999937057495, -0.607230007648468, -0.3205299973487854, 0.40123000741004944, -0.2289399951696396, -0.21096999943256378, -0.32844001054763794, -0.21403999626636505, -0.24296000599861145, 0.6474400162696838, 0.018623000010848045, -0.33254000544548035, -0.5284900069236755, 0.1524599939584732, 0.5245400071144104, 0.6116499900817871, 0.47617000341415405, 0.45205000042915344, 0.19791999459266663, -0.19589999318122864, 0.18764999508857727, -0.4388900101184845, -0.21038000285625458, 0.08809500187635422, 0.3608799874782562, -0.05716099962592125, -0.582859992980957, -0.07034599781036377, -0.012994999997317791, 0.030966000631451607, -0.0036943000741302967, -0.001816999982111156, 0.40095001459121704, -0.3635199964046478, 0.30338001251220703, -0.4750699996948242, -0.07031700015068054, -0.1555200070142746, -0.19787999987602234, 0.18914000689983368, 0.6169700026512146, -0.12036000192165375, -0.03240299969911575, -0.14258000254631042, -1.0361000299453735, 0.22731000185012817, 0.09427499771118164, 0.5007399916648865, 0.2845099866390228, -0.008825600147247314, 0.4955799877643585, 0.047410998493433, -0.6842399835586548, -0.06452900171279907, -0.16312000155448914, -0.272350013256073, -0.46230000257492065, 0.4411099851131439, 0.5512300133705139, 0.2541300058364868, -0.5860499739646912, -0.4542199969291687, 0.02281000092625618, -0.6213300228118896, 0.003945699892938137, -0.16606000065803528, -0.5636199712753296, 0.14760999381542206, 0.07189299911260605, -0.005492500029504299, -0.3440299928188324, -0.3578299880027771, 0.2175700068473816, 0.445279985666275, -0.41446998715400696, 0.16572999954223633, 0.29186001420021057, 0.033048998564481735, -0.4320499897003174, -0.5220800042152405, 0.4805299937725067, 0.6166899800300598, -0.0838249996304512, -0.3074600100517273, 0.8657299876213074, 0.14410999417304993, 0.006243899930268526, -0.3980500102043152, -0.07772699743509293, 0.5359200239181519, -0.3826799988746643, -0.19470000267028809, 0.4821600019931793, 0.2785800099372864, -0.0021214999724179506, 0.31435999274253845, -0.14225000143051147, 0.3600899875164032, -0.04593300074338913, 0.28181999921798706, 0.6786800026893616, 0.0010376999853178859, 0.1662999987602234, 0.672819972038269, 0.09982199966907501, 0.5934799909591675, 0.3210799992084503, 0.08648999780416489, 0.35686999559402466, -0.17205999791622162, 0.4217199981212616, -0.4378800094127655, 0.5153700113296509, 0.28022000193595886, 0.4860199987888336, 0.42166000604629517, 0.2223300039768219, 0.12713000178337097, 0.18459999561309814, 0.05683499947190285, -0.12532000243663788, 0.37922999262809753, 0.322270005941391, 0.08299099653959274, -0.329800009727478, -0.6144999861717224, -0.4144800007343292, -0.2558499872684479, -0.0751200020313263, 0.7007799744606018, 0.27059000730514526, 0.48429998755455017, -0.15237000584602356, -0.25169000029563904, 0.024267999455332756, -0.6741300225257874, -0.1379700005054474, 0.06377600133419037, 0.38541001081466675, -0.13533000648021698, -0.24289999902248383, 0.6267300248146057, -0.2169400006532669, 0.21513999998569489, 0.20393000543117523, -0.10341999679803848, 0.39006999135017395, 0.8990200161933899, 0.2985000014305115, -0.1540900021791458, 0.4511300027370453, 0.7291399836540222, -0.3371399939060211, -0.3964900076389313, -0.39941999316215515, 0.031031999737024307, 0.48069000244140625, 0.40105998516082764, 0.36597999930381775, -0.39243000745773315, 0.15070000290870667, -0.31929001212120056, 0.09934200346469879, 0.2425599992275238, 0.19616000354290009, -0.16269999742507935, 0.2386000007390976, 0.33469998836517334, -0.18832999467849731, -0.06264399737119675, -0.40209001302719116, 0.4597899913787842, 0.0828000009059906, 0.35097000002861023, -0.337009996175766, 0.3402499854564667, 0.09957200288772583, -0.3478800058364868, -0.3740299940109253, 0.511210024356842, 0.28130999207496643, 0.2256300002336502, -0.4694400131702423, -0.2735399901866913, -0.31286001205444336, -0.11658000200986862, 0.2448599934577942, -0.029867000877857208, 0.09556099772453308, -0.4453299939632416, -0.03622300177812576, -0.510640025138855, -0.26058000326156616, -0.20794999599456787, 0.18126000463962555, -0.6441299915313721, 0.5199400186538696, 0.024543000385165215, -0.28360000252723694, -0.4315299987792969, 0.5210999846458435, -0.0011349000269547105, -0.14214999973773956, -0.07404299825429916, 0.2533800005912781, -0.566100001335144, 0.16301999986171722, 0.7503200173377991, 0.9272699952125549, 0.35067999362945557, -0.46358001232147217, 0.3755500018596649, -0.02619899995625019, 0.7538099884986877, 0.26875001192092896, -0.0915760025382042, 0.14865000545978546], u'screw': [-0.08532100170850754, -0.17313000559806824, 0.13208000361919403, -0.40865999460220337, 0.17045000195503235, 0.21453000605106354, -0.11963000148534775, -0.21055999398231506, 0.22134999930858612, -0.7712299823760986, -0.3912000060081482, -0.043880999088287354, 0.655239999294281, -0.1740799993276596, -0.0323759987950325, 0.3990600109100342, 0.027619000524282455, -0.8083999752998352, 0.02536199986934662, 0.20949000120162964, -0.16192999482154846, 0.45493000745773315, 0.3366900086402893, 0.3649899959564209, 0.05402199923992157, 0.28547000885009766, -0.25492000579833984, 0.2488500028848648, 0.07158099859952927, -0.17308999598026276, -0.08537399768829346, 0.5732399821281433, 0.31396999955177307, 0.026341000571846962, -0.17955000698566437, 0.6135500073432922, -0.005823099985718727, 0.3763200044631958, 0.07024499773979187, 0.6201800107955933, -0.9006400108337402, -0.047805000096559525, 0.21154999732971191, -0.4960800111293793, -0.248539999127388, -0.16332000494003296, -0.16031000018119812, 0.03048500046133995, 0.17835000157356262, 0.13176999986171722, -0.2034199982881546, 0.5041599869728088, -0.19812999665737152, 0.07475200295448303, 0.12313999980688095, 0.3903299868106842, -0.13966000080108643, 0.03428800031542778, 0.30274999141693115, -0.033962998539209366, 0.3064199984073639, -0.20624999701976776, 0.17443999648094177, 0.47262999415397644, -0.00991430040448904, 0.6152600049972534, -0.13919000327587128, 0.48890000581741333, 0.4606800079345703, -0.09281200170516968, 0.09937699884176254, 0.0044952998869121075, 0.18446999788284302, 0.39188000559806824, -0.022526999935507774, 0.4991700053215027, -0.034028999507427216, -0.46678999066352844, -0.28780999779701233, -0.35554999113082886, -0.5616199970245361, 0.0686890035867691, 0.3593499958515167, -0.27046000957489014, 0.27480000257492065, 0.21141000092029572, 0.33755001425743103, 0.16641999781131744, -0.3184700012207031, -0.07735099643468857, 0.7769500017166138, 0.262470006942749, -0.020762000232934952, -0.009602700360119343, 0.0044502997770905495, 0.28870001435279846, -0.18498000502586365, 0.3993400037288666, -0.14077000319957733, -0.4333299994468689, 0.08098000288009644, 0.7751100063323975, -0.20420999825000763, -0.2648699879646301, -0.02367500029504299, -0.013505999930202961, -0.07551900297403336, -0.14568999409675598, -0.8630599975585938, 0.11191000044345856, -0.12621000409126282, 0.2792600095272064, 0.038061998784542084, -0.5074800252914429, -0.2764900028705597, 0.41978999972343445, -0.45210000872612, 0.424780011177063, -0.001080599962733686, 0.13968999683856964, 0.10852999985218048, -0.7115700244903564, 0.9259600043296814, -0.28648000955581665, 0.6923499703407288, 0.09286899864673615, -0.33340001106262207, 0.21368999779224396, 0.25398001074790955, 0.29469001293182373, 0.969290018081665, 0.4770300090312958, 0.3558399975299835, -0.06453700363636017, 0.16234000027179718, 0.6447299718856812, -0.4370500147342682, -0.06723900139331818, -0.352539986371994, -0.5302600264549255, -0.13367000222206116, -0.05380000174045563, -0.38468998670578003, 0.24327999353408813, 0.09773799777030945, 0.22443999350070953, 0.025527000427246094, -0.4278300106525421, 0.6360599994659424, 0.9454299807548523, -0.10875000059604645, -0.3968000113964081, 0.6834099888801575, -0.2037999927997589, 0.16843000054359436, 0.048186998814344406, 0.7140799760818481, -0.6337900161743164, 0.4330799877643585, 0.45965999364852905, -0.2953299880027771, 0.48572999238967896, -0.3881300091743469, -0.4926399886608124, 0.26881998777389526, -0.27772000432014465, -0.0874290019273758, 0.37125998735427856, 1.0872000455856323, 0.26475998759269714, -0.5177599787712097, 0.13681000471115112, 0.26723000407218933, -0.06384199857711792, 1.1562000513076782, -0.07908900082111359, -0.6523000001907349, 0.29267001152038574, -0.11275000125169754, -0.09577800333499908, 0.32168999314308167, 0.20100000500679016, 0.8861600160598755, -0.10079000145196915, -0.09026499837636948, -0.4625700116157532, 0.6815999746322632, 0.37003999948501587, 0.7557299733161926, 0.04760099947452545, -0.17966000735759735, 0.28591999411582947, 0.8453500270843506, 0.7414000034332275, 0.18734000623226166, 0.1730400025844574, -0.18959000706672668, -0.681190013885498, -0.015003999695181847, -0.08903300017118454, 0.23861999809741974, 0.09966699779033661, 1.1833000183105469, 0.31540000438690186, 0.7159299850463867, 0.14983999729156494, 0.3861300051212311, -0.0869859978556633, -0.36441999673843384, 0.11412999778985977, -0.05692800134420395, -0.2186499983072281, 0.4680599868297577, 0.38098999857902527, -0.24098999798297882, -0.5024499893188477, -0.2965500056743622, 0.33270999789237976, -0.30952998995780945, 0.059748001396656036, -0.9336900115013123, 0.4592599868774414, 0.3592900037765503, 0.40970999002456665, -0.4444600045681, -0.09991499781608582, 0.2420700043439865, -0.242249995470047, 0.507669985294342, 0.19735999405384064, 0.0862559974193573, 0.26875999569892883, -0.07133899629116058, -0.8178899884223938, 0.3208400011062622, -0.21525999903678894, -0.6124100089073181, -0.058736998587846756, 0.16142000257968903, -0.18380999565124512, -0.21602000296115875, -0.40553998947143555, -0.4500400125980377, 0.07718999683856964, -0.123539999127388, -0.6784800291061401, 0.10655000060796738, 0.8092799782752991, 0.22542999684810638, -0.6362699866294861, 0.10898000001907349, -0.294050008058548, 0.3878900110721588, -0.2826800048351288, 0.5380799770355225, -0.22460000216960907, -0.36882999539375305, 0.05384200066328049, -0.4382399916648865, -0.7999799847602844, 0.3880400061607361, -0.2694399952888489, -0.4027799963951111, 0.19080999493598938, 0.07033900171518326, -0.4865800142288208, -0.5644199848175049, 0.295960009098053, -0.13652999699115753, -0.000999080017209053, 0.5491499900817871, 0.32806000113487244, 0.1888899952173233, -0.012160000391304493, -0.1671299934387207, -0.11484000086784363, 0.22970999777317047, -0.27226001024246216, -0.18071000277996063, -0.11496999859809875, -0.217739999294281, 0.063789002597332, -0.3916899859905243, 0.4243200123310089, 0.22332000732421875, 0.010733000002801418, -0.4105899930000305, -0.6502500176429749, -0.0814879983663559, -0.2868100106716156, 0.08235400170087814, -0.7053999900817871, 0.18435999751091003, -0.11489000171422958, -0.5930899977684021, -0.0809980034828186, -0.20804999768733978, -0.47633999586105347, 0.02500700019299984, 0.4410800039768219], u'farm': [-0.4576199948787689, 0.5241600275039673, -0.5845999717712402, 0.05648300051689148, -0.030037999153137207, -0.05389299988746643, 0.034297000616788864, -0.13247999548912048, -0.4952099919319153, -0.5430799722671509, -0.5392500162124634, -0.3605400025844574, -0.0054039000533521175, 0.2623099982738495, -0.09107799828052521, 0.6911900043487549, -0.10141000151634216, -0.35842999815940857, 0.3569299876689911, 0.132750004529953, 0.2791900038719177, 0.4315899908542633, 0.15918000042438507, 0.3355399966239929, -0.22887000441551208, 0.226500004529953, -0.30838000774383545, -0.18643000721931458, -0.5339599847793579, 0.7016299962997437, -0.4939199984073639, 0.2147199958562851, -0.47332999110221863, 0.2721799910068512, 0.033472999930381775, 0.5497999787330627, 0.3468100130558014, -0.33730998635292053, -0.030880000442266464, -0.5413900017738342, 0.15063999593257904, -0.037470001727342606, 0.5265700221061707, 0.1640699952840805, -0.47777000069618225, -0.19211000204086304, -0.44508999586105347, 0.08123999834060669, 0.052618999034166336, -0.08512499928474426, -0.15230000019073486, 0.641219973564148, 0.38499000668525696, -0.023409999907016754, 0.03279000148177147, -0.5331100225448608, -0.1929900050163269, 0.05622100085020065, -0.3646000027656555, -0.487309992313385, 0.06436099857091904, -0.4817500114440918, 0.11004000157117844, -0.10208000242710114, -0.31711000204086304, -0.031449999660253525, -0.2925400137901306, -0.25356999039649963, -0.25192001461982727, -0.2276100069284439, 0.13130000233650208, 0.6401100158691406, -0.19523000717163086, -0.08381299674510956, -0.6721400022506714, -0.4219900071620941, -0.247529998421669, -0.6663399934768677, -0.18490999937057495, 0.044217001646757126, 0.1563899964094162, 0.11153999716043472, 0.05044800043106079, -0.19618000090122223, 0.28411000967025757, -0.3179199993610382, 0.11208000034093857, 0.02839599922299385, -0.3819099962711334, -0.5015599727630615, 0.7849400043487549, -0.4191400110721588, 0.2648099958896637, 0.17149999737739563, -0.31000998616218567, -0.4532800018787384, 0.3421199917793274, -0.2908399999141693, -0.6209400296211243, -0.09137099981307983, -0.30449000000953674, 0.24698999524116516, -0.2032500058412552, -0.036201998591423035, -0.38874000310897827, 0.16579000651836395, 0.12272000312805176, -0.32016998529434204, 0.0378590002655983, 0.150859996676445, -0.353520005941391, -0.6419900059700012, -0.5676599740982056, 0.546999990940094, 0.011222000233829021, -0.024399999529123306, 0.2552199959754944, 0.41405999660491943, 0.40314000844955444, 0.0833820030093193, 0.032930001616477966, 0.239329993724823, -0.0556350015103817, 0.06184900179505348, 0.4089199900627136, 0.4809400141239166, 0.06277599930763245, 0.38218000531196594, -0.055052999407052994, -0.049341000616550446, 0.2902899980545044, 0.7841200232505798, 0.2039099931716919, 0.1361899971961975, -0.4239499866962433, -0.25523000955581665, 0.38760998845100403, 0.13822999596595764, -0.26109999418258667, -0.3095499873161316, 0.18422000110149384, -0.5124599933624268, 0.06518399715423584, -0.5126000046730042, -0.32771000266075134, 0.26282998919487, 0.2816700041294098, -0.08879899978637695, -0.20250999927520752, -0.2621900141239166, -0.11958000063896179, 0.15328000485897064, -0.16638000309467316, -0.17122000455856323, 0.2111700028181076, 0.1552100032567978, -0.32534998655319214, 0.16301000118255615, 0.04535900056362152, -0.3996100127696991, 0.5005599856376648, 0.12681999802589417, -0.20587000250816345, -0.12997999787330627, 0.14246000349521637, -0.3395000100135803, 0.27469000220298767, -0.6989499926567078, -0.059960998594760895, 0.1813499927520752, -0.3766399919986725, -0.15602000057697296, -0.08989100158214569, 0.3101600110530853, -0.1058799996972084, -0.06435400247573853, 0.19705000519752502, -0.35370999574661255, 0.13097000122070312, 0.4556100070476532, 0.1480100005865097, 0.09228599816560745, -0.005650700069963932, -0.3372099995613098, 0.2453799992799759, -0.21770000457763672, -0.27285999059677124, -0.2813799977302551, 0.6596800088882446, 0.03743499889969826, -0.8409199714660645, 0.7973600029945374, -0.278219997882843, -0.35569998621940613, -0.21097999811172485, 0.2702000141143799, 0.048193998634815216, -0.5581200122833252, -0.10867000371217728, -0.20095999538898468, 0.7439699769020081, -0.0986350029706955, -0.292059987783432, 0.1352500021457672, 0.5256100296974182, 0.014506000094115734, 0.5473799705505371, -0.18268999457359314, 0.29892000555992126, 0.251010000705719, -0.026940999552607536, -0.447270005941391, -0.2362000048160553, -0.40042999386787415, -0.24270999431610107, 0.14438000321388245, -0.13787999749183655, 0.5333899855613708, 0.4875600039958954, -0.09165400266647339, 0.1760600060224533, -0.6560400128364563, -0.18573999404907227, -0.40817001461982727, 0.2125599980354309, 0.1387999951839447, -0.23015999794006348, 0.34154999256134033, 0.14077000319957733, 0.13451999425888062, 0.11134999990463257, -0.24856999516487122, -0.023194000124931335, -0.10824999958276749, 0.6130800247192383, 0.29326000809669495, 0.1859000027179718, -0.007612199988216162, -0.5680199861526489, 0.3911899924278259, 0.0021742000244557858, 0.42219001054763794, 0.031932998448610306, -0.10694999992847443, -0.6982799768447876, -0.21877999603748322, 0.41190001368522644, 0.058299001306295395, 0.344760000705719, -0.7797899842262268, -0.30761998891830444, 0.3547399938106537, 0.1801699995994568, 0.40575000643730164, 1.2996000051498413, -0.24492000043392181, -0.13458000123500824, 0.09746699780225754, -0.14636999368667603, 0.004844000097364187, 0.08382900059223175, 0.1962900012731552, -0.08543899655342102, -0.4631800055503845, -0.30845001339912415, 0.17260000109672546, 0.06456399708986282, 0.19169999659061432, -0.21435999870300293, -0.23850999772548676, -0.5491600036621094, 0.5210899710655212, 0.4399699866771698, -0.13018999993801117, 0.35809001326560974, 0.11468999832868576, -2.109999895095825, 0.7894200086593628, 0.216389998793602, 0.11444000154733658, -0.8810999989509583, -0.12358999997377396, 0.08832799643278122, -0.2739199995994568, -0.12625999748706818, 0.7215099930763245, 0.6696299910545349, -0.4840799868106842, 0.06131099909543991, -0.31450000405311584, 0.0015796000370755792, -0.19562000036239624, 0.49312999844551086, -0.3431600034236908, -0.24924999475479126, 0.30052998661994934, -0.027921000495553017, -0.367900013923645, 0.3598000109195709, 0.622189998626709], u'eggs': [0.05490599945187569, 0.9803000092506409, -0.15599000453948975, 0.31665000319480896, -0.2812100052833557, -0.27535000443458557, 0.10318999737501144, 0.38350000977516174, 0.20046000182628632, -0.7509999871253967, -0.4731900095939636, -1.080399990081787, -0.385019987821579, -0.17712000012397766, -0.2197200059890747, -0.7276600003242493, -0.28832998871803284, 0.07782799750566483, -0.5377900004386902, 0.29264000058174133, -0.08819799870252609, -0.06273200362920761, 0.0456710010766983, -0.037859998643398285, -0.11377999931573868, -0.5727800130844116, -0.2563300132751465, 0.12185999751091003, -0.17847000062465668, -0.14767999947071075, -0.7020699977874756, 0.5396000146865845, -0.6222000122070312, -0.1320600062608719, 0.4040299952030182, 0.7212600111961365, -0.40356001257896423, 0.8909599781036377, -0.26282998919487, -0.13169999420642853, 0.259880006313324, 0.05407100170850754, -0.01653899997472763, -0.06410200148820877, -0.28018999099731445, 0.21521000564098358, 0.43536001443862915, 0.467960000038147, -0.3135800063610077, 0.6303899884223938, -0.21211999654769897, 0.12490999698638916, 0.032329000532627106, 0.2089499980211258, -0.8693199753761292, 0.5735099911689758, 0.224140003323555, 0.14088000357151031, -1.0264999866485596, 0.058956000953912735, -0.1168999969959259, -0.16791999340057373, 0.34112998843193054, -0.1856600046157837, 5.488700116984546e-05, -0.7149699926376343, 0.1695600003004074, 0.20148000121116638, -0.5309399962425232, -0.2116200029850006, 0.03826100006699562, 0.260560005903244, -0.47321999073028564, 0.23788000643253326, -0.8923500180244446, 1.0013999938964844, 0.10385999828577042, -0.06342799961566925, 0.606689989566803, 0.18827000260353088, -0.765250027179718, -0.007399599999189377, -0.5501700043678284, 0.1837099939584732, 0.3096500039100647, 0.020468000322580338, 0.35738998651504517, -0.10794000327587128, -0.2813299894332886, -0.3071799874305725, 0.4105300009250641, -0.07949700206518173, -0.7421600222587585, 0.5143300294876099, 0.33730998635292053, -0.11640000343322754, -0.38475000858306885, 0.7217100262641907, -0.1517300009727478, 0.0026551000773906708, 0.5192300081253052, -0.5909900069236755, 0.1280899941921234, -0.32071998715400696, 0.2777499854564667, -0.45243000984191895, 0.011471999809145927, -0.008081899955868721, -0.46592000126838684, 0.14313000440597534, 0.11057999730110168, 0.34303998947143555, -0.296889990568161, 0.5156499743461609, -0.2669300138950348, 0.040323998779058456, 0.014248000457882881, 0.23157000541687012, 0.46807000041007996, -0.6093400120735168, -0.4392099976539612, -0.2780199944972992, -0.04664500057697296, 0.9466599822044373, -0.31005001068115234, 0.22890999913215637, -0.14148999750614166, 0.44203999638557434, 0.20835000276565552, 0.34000998735427856, 0.12685999274253845, 0.3722899854183197, -0.2589400112628937, 1.0949000120162964, -0.22497999668121338, -0.4490399956703186, 0.6211000084877014, 0.2418700009584427, -0.1814499944448471, 0.4776099920272827, 0.3564099967479706, -0.2517299950122833, -1.2613999843597412, -0.4748600125312805, -0.35514000058174133, 0.01144499983638525, 0.17952999472618103, -0.37408000230789185, 0.04288399964570999, 0.22404000163078308, -0.9976900219917297, 0.5519999861717224, 0.05790700018405914, 0.31762999296188354, -0.02096400037407875, -0.23149000108242035, -0.35861000418663025, 0.17870000004768372, -0.16728000342845917, -0.39792001247406006, -0.41130000352859497, 0.23675000667572021, -0.2807199954986572, -0.0029810001142323017, 0.23319000005722046, 0.2722100019454956, -0.22742000222206116, -0.22070999443531036, 0.19304999709129333, -0.17940999567508698, 0.7892600297927856, 0.22176000475883484, 0.09730999916791916, -0.04658700153231621, 0.09852799773216248, -0.22251999378204346, 0.4322099983692169, -0.04169199988245964, 0.22059999406337738, -0.8378199934959412, 0.2872999906539917, -0.4668999910354614, -0.037262000143527985, -0.6506800055503845, -0.3073599934577942, -0.17764000594615936, 0.9971699714660645, -0.04721999913454056, 0.4648599922657013, -0.26190000772476196, 0.6996399760246277, 0.9332500100135803, -0.2136400043964386, -0.5242900252342224, 0.05423500016331673, 0.5254600048065186, 0.11836999654769897, -0.8357399702072144, 0.1291400045156479, -0.14630000293254852, 0.29583999514579773, -0.4089899957180023, -0.16791999340057373, 0.37070998549461365, -0.038013000041246414, -0.14957000315189362, 0.2615799903869629, -0.15839999914169312, 0.06519799679517746, 0.21410000324249268, 0.5774400234222412, -0.5637199878692627, 0.3791700005531311, -0.4679799973964691, -0.1796099990606308, 0.07817099988460541, 0.46184998750686646, -0.20453999936580658, 0.07829800248146057, -0.12409999966621399, 0.6456400156021118, 0.43810001015663147, -0.3111700117588043, -0.9365599751472473, -0.8392999768257141, -0.07588700205087662, 0.5149199962615967, 0.18352000415325165, 0.504360020160675, 0.34973999857902527, 0.123259998857975, -0.2298399955034256, 0.37022000551223755, 0.022776000201702118, 0.23697000741958618, 0.54694002866745, 0.009570799767971039, 0.5690000057220459, -0.6888499855995178, -0.6002699732780457, -0.5376999974250793, -0.3971099853515625, -0.15717999637126923, 0.29205000400543213, -1.3043999671936035, 0.1088000014424324, 0.6392199993133545, -0.23091000318527222, -0.5036799907684326, -1.1064000129699707, 0.01219400018453598, 0.03888799995183945, 0.5124800205230713, -0.2412700057029724, 0.6893900036811829, 0.12596000730991364, 0.2606399953365326, -0.11963000148534775, 0.38218000531196594, 0.14124000072479248, 0.13230000436306, -0.7109299898147583, -0.21528999507427216, -0.5879200100898743, 0.2797499895095825, 0.11146999895572662, -0.38332998752593994, -0.5685799717903137, 0.05305999889969826, 0.5043399930000305, -0.47172001004219055, 0.10694000124931335, 0.07782500237226486, 0.2194799929857254, -0.1933099925518036, 0.25892001390457153, -1.5009000301361084, -0.31068000197410583, -1.0773999691009521, -0.586929976940155, 0.15644000470638275, -0.21562999486923218, 0.09426599740982056, -0.00504940003156662, -1.2476999759674072, 0.8039199709892273, -0.031599998474121094, 0.11759000271558762, 0.4555000066757202, 0.0938280001282692, -0.21828000247478485, -0.4075999855995178, 0.8262100219726562, 0.044075001031160355, 0.09326200187206268, -0.5057899951934814, 0.14323000609874725, -0.48403000831604004, -0.1689700037240982, -0.1302500069141388], u'foam': [0.7214199900627136, -0.2443999946117401, 0.04974199831485748, -0.5932999849319458, -0.22668999433517456, -0.704990029335022, 0.21831999719142914, 0.09726899862289429, 0.29646000266075134, -0.6076899766921997, -0.021852999925613403, -0.10344000160694122, -0.35016000270843506, -0.4760499894618988, 0.5972200036048889, 0.9087700247764587, 0.39574000239372253, 0.5377500057220459, -0.26368001103401184, 0.6750100255012512, 0.05596499890089035, 0.15547999739646912, 0.416130006313324, -0.039733000099658966, -0.21674999594688416, 0.1652200073003769, -0.22607000172138214, 0.2728100121021271, -0.9508000016212463, -0.18501000106334686, 0.47536998987197876, -0.1098100021481514, 0.34231001138687134, -0.22742000222206116, 0.18052999675273895, 0.5798799991607666, -0.25468000769615173, 0.25922998785972595, 0.6082000136375427, 1.1759999990463257, -0.05896500125527382, -0.17524999380111694, 0.1604900062084198, -0.1739100068807602, -0.4879299998283386, 0.29262998700141907, 0.42054998874664307, -0.031248999759554863, 0.3413900136947632, 0.04391299933195114, 0.42572999000549316, 0.09741900116205215, -0.6074900031089783, -0.0982000008225441, -0.0027958001010119915, 0.2345300018787384, -0.5448200106620789, 0.11630000174045563, 0.46415001153945923, -0.2128099948167801, -0.09590300172567368, -0.08301900327205658, -0.3755800127983093, 0.04539300128817558, 0.3235900104045868, -0.4318599998950958, -0.41499000787734985, -0.09483200311660767, -0.1282300055027008, 0.6365799903869629, 0.4207000136375427, -0.4927299916744232, 0.31911998987197876, 0.3458999991416931, -0.10242000222206116, 0.32705000042915344, 0.884850025177002, -0.5110200047492981, -0.7739700078964233, -0.270440012216568, -0.6050999760627747, -0.10186000168323517, -0.3416599929332733, -0.2682099938392639, -0.47609999775886536, 0.26614001393318176, 0.4506399929523468, 0.3634899854660034, -0.2329300045967102, 0.033383000642061234, 0.3665199875831604, 0.2462099939584732, -0.1470700055360794, -0.610759973526001, 0.3241199851036072, 0.12319999933242798, -0.6886000037193298, -0.0018535000272095203, 0.17778000235557556, -0.3007499873638153, 0.31244000792503357, 0.7497199773788452, -0.30590999126434326, -0.4066599905490875, 0.18907999992370605, 0.4778900146484375, -0.27125000953674316, 0.1816300004720688, -0.5772200226783752, -0.21573999524116516, 0.06967899948358536, 0.4798800051212311, -0.4530700147151947, -0.5758900046348572, -0.34624001383781433, 0.13905000686645508, 0.009238200262188911, 0.4594300091266632, -0.43748998641967773, -0.6170899868011475, 0.40689000487327576, -0.19419999420642853, 0.48871999979019165, 1.1512000560760498, -0.6563900113105774, 0.1154400035738945, 0.22368000447750092, 0.0863339975476265, 0.49292999505996704, 0.18161000311374664, 0.31672999262809753, 0.5425099730491638, 0.4263400137424469, 0.004296300001442432, 0.2646099925041199, -0.3305700123310089, -0.36809998750686646, 0.6451399922370911, 0.24702000617980957, 0.05126599967479706, 0.24944999814033508, -0.24573999643325806, 0.371069997549057, -0.8220800161361694, 0.36959001421928406, -0.17964999377727509, 0.3633100092411041, -0.25262001156806946, 0.08801999688148499, -0.28404998779296875, -0.2055400013923645, 0.5285999774932861, -0.2836099863052368, 0.3595699965953827, -0.1870799958705902, -0.5676100254058838, -0.14803999662399292, 0.26135000586509705, 0.2861799895763397, 0.1335500031709671, 0.058125998824834824, -0.22975000739097595, -0.4455699920654297, 0.06190500035881996, 0.9240099787712097, 0.030066000297665596, 0.0374240018427372, 0.8982899785041809, 0.43123000860214233, 0.24167999625205994, 0.18154999613761902, 0.30539000034332275, 0.6760900020599365, 0.39871999621391296, -0.8858699798583984, -0.9533399939537048, 0.22147999703884125, 0.2300100028514862, 0.6120399832725525, -0.9870100021362305, 0.38752999901771545, -0.6333900094032288, 0.48736000061035156, -0.4419099986553192, -0.29941999912261963, 0.05558300018310547, 1.2467999458312988, -0.1436000019311905, 0.5179499983787537, -0.03166399896144867, 0.5724300146102905, 0.7250400185585022, -0.5217900276184082, -0.1956299990415573, -0.15369999408721924, 0.16060000658035278, -0.29043999314308167, 0.5040000081062317, 0.4533799886703491, 0.027233999222517014, -0.2293200045824051, 0.3324100077152252, 0.02767300046980381, -0.03241100162267685, -0.02049499936401844, 0.41894999146461487, 0.2519800066947937, -0.2752000093460083, -1.0088000297546387, 0.43472999334335327, 0.26993000507354736, 0.5935800075531006, 0.07892400026321411, -0.3103199899196625, 0.6013100147247314, 0.3076399862766266, 0.22157999873161316, -0.1954600065946579, 0.147039994597435, -0.6533899903297424, 0.8890799880027771, 0.5343700051307678, 0.44293999671936035, 0.47694000601768494, 0.21289999783039093, -0.3172599971294403, -0.22755999863147736, -0.14571000635623932, -0.31516000628471375, -0.00026376001187600195, 0.3502900004386902, -0.04956600069999695, -0.025026999413967133, -0.2025199979543686, 0.20565000176429749, -0.21332000195980072, 0.21345999836921692, -0.40733999013900757, 0.08128999918699265, -0.1727599948644638, 0.607509970664978, -0.20518000423908234, -0.21144999563694, -0.5220199823379517, -0.7948600053787231, -0.1775200068950653, 0.45677000284194946, -0.21337999403476715, -0.06544700264930725, -0.29583999514579773, 0.3528299927711487, -0.2182299941778183, -0.21250000596046448, -0.9131399989128113, -0.13109000027179718, 0.509190022945404, -0.38881999254226685, -1.0810999870300293, 0.362529993057251, 0.6542099714279175, -0.5199699997901917, -0.21806000173091888, 0.04143400117754936, 0.20868000388145447, 0.41839998960494995, -0.03438999876379967, -0.5654199719429016, -0.456169992685318, 0.18848000466823578, 0.3486199975013733, 0.6294699907302856, 0.16368000209331512, -0.27129998803138733, 0.0658470019698143, -0.4302400052547455, 0.16516999900341034, -0.4478299915790558, -0.177729994058609, -1.1527999639511108, -0.2415499985218048, -0.3317900002002716, 0.3616600036621094, 0.07733099907636642, -0.1369200050830841, 0.14656999707221985, 0.2955000102519989, 0.20068000257015228, 0.19458000361919403, 0.2797999978065491, -0.015413999557495117, 0.0319180004298687, -0.5241699814796448, 0.4293999969959259, -0.12178000062704086, 0.3810499906539917, 0.3145500123500824, -0.06985100358724594, -0.3880699872970581, -0.022092999890446663, 0.3308599889278412], u'pear': [-0.4942300021648407, -0.18297000229358673, 0.44304001331329346, -0.4510299861431122, 0.056237999349832535, -0.27480000257492065, -0.2837899923324585, 0.37160998582839966, 0.3116599917411804, 0.2960900068283081, -0.3200500011444092, 0.07034599781036377, -0.1393900066614151, -0.18363000452518463, -0.11114999651908875, -0.23207999765872955, -0.2144699990749359, 0.31869998574256897, -0.12370000034570694, 0.2599700093269348, -0.023281000554561615, 0.3957599997520447, -0.015328999608755112, 0.3753499984741211, -0.41398999094963074, -0.5057700276374817, -0.3608799874782562, 0.23246000707149506, -0.3813999891281128, 0.0246799997985363, 0.22246000170707703, 0.06509800255298615, -0.3228900134563446, -0.005961600225418806, -0.014344999566674232, 0.6074699759483337, 0.6171500086784363, -0.3642300069332123, 0.10711999982595444, -0.3361299932003021, 0.2760699987411499, -0.04283199831843376, 0.37676000595092773, -0.02633100003004074, -0.39563998579978943, 0.16057999432086945, -0.12605999410152435, 0.4430299997329712, -0.5186899900436401, 0.41034001111984253, 0.1168999969959259, -0.40268999338150024, 0.7676500082015991, 0.28824999928474426, -0.23601000010967255, -0.9970300197601318, -0.41690000891685486, 0.2502099871635437, 0.46309998631477356, -0.3010700047016144, 0.6288300156593323, -0.4002099931240082, 0.3524099886417389, 0.36522001028060913, -0.0682860016822815, 0.061765000224113464, -0.3737899959087372, 0.6853500008583069, -0.06708899885416031, -0.612309992313385, -0.22901999950408936, 0.2697499990463257, -0.813040018081665, 0.017696000635623932, -0.9120200276374817, 0.38062000274658203, 0.7420200109481812, 0.060068000108003616, 0.30441001057624817, -0.17007000744342804, -0.1330299973487854, 0.4163599908351898, 0.9521899819374084, -0.4190399944782257, 0.07509300112724304, -0.4743100106716156, -0.5066900253295898, 0.4134199917316437, 0.45427998900413513, -0.6422100067138672, 0.029270999133586884, -0.3160499930381775, -0.524590015411377, -0.06267999857664108, -0.14365999400615692, 0.1805499941110611, 0.6010599732398987, -0.0149940000846982, -0.5056099891662598, 0.6816800236701965, 0.16746999323368073, 0.33594000339508057, 0.20750999450683594, -0.32194000482559204, -0.43794000148773193, 0.06920299679040909, -0.30542999505996704, 0.34040001034736633, -0.12319999933242798, 0.07418400049209595, 0.3598800003528595, 0.16394999623298645, 0.002821400063112378, -0.342739999294281, 0.2134000062942505, 0.1935500055551529, -0.5444300174713135, 0.2270900011062622, 0.49893999099731445, -0.21753999590873718, -0.42346999049186707, -0.8436999917030334, -0.05343199893832207, -0.16949999332427979, -0.2757599949836731, -0.4557499885559082, -0.57669997215271, 0.5781000256538391, -0.22497999668121338, 0.07276400178670883, -0.1596899926662445, 0.9448599815368652, 0.3358300030231476, 0.8906099796295166, 0.15390999615192413, 0.027379000559449196, -0.49917998909950256, -0.7196800112724304, -0.5129600167274475, -0.4399999976158142, 0.8108400106430054, 0.29177001118659973, -0.2499600052833557, -0.6150400042533875, -0.017573999240994453, 0.5605800151824951, 0.035100001841783524, -0.9208199977874756, 0.2001499980688095, 0.18154999613761902, -0.405349999666214, 0.41356998682022095, 0.33664000034332275, -0.13304999470710754, -0.6256399750709534, -0.13099999725818634, -0.3070000112056732, -0.35392001271247864, -0.47113001346588135, 0.42785000801086426, -0.2912600040435791, -0.15307000279426575, -0.182669997215271, 0.256850004196167, 0.04069799929857254, -0.49028998613357544, -0.1422799974679947, -0.10673999786376953, -0.16944000124931335, -0.3394100069999695, -0.39083001017570496, -0.476859986782074, -0.23522000014781952, -0.27553999423980713, 0.3284600079059601, 0.15981000661849976, 0.029387999325990677, 0.09920799732208252, -0.15389999747276306, -0.2089499980211258, -0.7142599821090698, -0.1765500009059906, 0.22119000554084778, -0.7136899828910828, -0.09018299728631973, -0.8030499815940857, 1.003100037574768, 0.04788700118660927, -0.04679400101304054, 0.020620999857783318, 0.04366699978709221, 0.8116000294685364, -0.1456799954175949, 0.01956300064921379, -0.080935999751091, 0.30469998717308044, 0.282370001077652, -0.15830999612808228, -0.42052000761032104, 0.5417500138282776, -0.1729699969291687, 0.20972999930381775, 0.2105800062417984, -0.4338800013065338, 0.046160001307725906, 1.080299973487854, -0.437389999628067, 0.2216300070285797, 0.1932699978351593, -0.21622000634670258, 0.2364799976348877, 0.050533000379800797, 0.08240299671888351, -0.10343000292778015, 0.16676999628543854, -0.15565000474452972, 0.4871099889278412, -0.15150000154972076, -0.3480600118637085, -0.12886999547481537, -0.058393001556396484, -0.1254899948835373, -0.3539400100708008, 0.5329499840736389, -1.26010000705719, 0.6527699828147888, 0.12967999279499054, 0.7590699791908264, -0.1661199927330017, -0.19734999537467957, -0.05967999994754791, 0.17542000114917755, 0.1047699972987175, -0.15745000541210175, 0.3541100025177002, 0.5691800117492676, 0.31894001364707947, -0.08565899729728699, -0.09971799701452255, -0.24369999766349792, 0.061482999473810196, 0.014658999629318714, -0.38324999809265137, -0.23794999718666077, -0.5333499908447266, 0.549310028553009, -0.1639699935913086, 0.5316200256347656, 0.5259000062942505, -0.5981199741363525, 0.7096700072288513, 0.5006399750709534, -0.08432400226593018, -0.29137998819351196, 0.17848999798297882, 0.15078000724315643, 0.3136900067329407, -0.0470150001347065, -0.05013500154018402, 0.5945500135421753, 0.06796900182962418, 0.6450899839401245, 0.076323002576828, 0.7082399725914001, 0.21030999720096588, -0.6288999915122986, 0.24111999571323395, -0.34994998574256897, 0.07104600220918655, 0.823199987411499, -0.1815900057554245, 0.4913899898529053, -0.07929900288581848, -0.2577899992465973, 0.2641499936580658, 0.31317999958992004, 0.25738999247550964, 0.3786199986934662, -0.8823000192642212, -0.4498099982738495, -0.4977000057697296, 0.17985999584197998, -0.46661999821662903, -0.4349299967288971, -0.13800999522209167, -0.06873500347137451, 0.5160800218582153, -0.4700700044631958, -0.13654999434947968, -0.1158600002527237, 0.5974900126457214, -0.44828000664711, 1.12090003490448, -0.04410700127482414, 0.40064001083374023, -0.6359300017356873, -0.0021726000122725964, -0.007809900213032961, 0.48822999000549316, 0.10563000291585922], u'ball': [-0.22694000601768494, 0.47336000204086304, -0.11235000193119049, 0.29225000739097595, 0.23659999668598175, -0.149509996175766, -0.03090899996459484, -0.22472000122070312, -0.31172001361846924, -1.0547000169754028, -0.04713499918580055, 0.12985000014305115, -0.1479099988937378, -0.4679200053215027, -0.415800005197525, 0.3707900047302246, -0.6682900190353394, 0.014515000395476818, 0.24865999817848206, 0.5795400142669678, -0.0358240008354187, 0.29967001080513, -0.19175000488758087, -0.3318299949169159, 0.3621799945831299, -0.06555099785327911, -0.1975499987602234, 0.2396399974822998, 0.0010936999460682273, -0.013113000430166721, 1.0534000396728516, -0.03325200080871582, 0.37136998772621155, 0.40116000175476074, -1.6887999773025513, -0.14000000059604645, 0.40547001361846924, 0.30469000339508057, -0.54093998670578, 0.7211899757385254, -0.1894800066947937, -0.1465200036764145, -0.11462000012397766, -0.27823999524116516, 0.6705600023269653, 0.14906999468803406, 0.5081200003623962, -0.24398000538349152, 0.06781099736690521, 0.34784001111984253, -0.31314998865127563, -0.2504099905490875, -0.004103799816220999, -0.18942999839782715, -0.2728700041770935, -0.2240999937057495, -0.09808900207281113, 0.08944399654865265, 0.22169999778270721, -0.3169400095939636, 0.3335700035095215, 0.04289200156927109, -0.26728999614715576, -0.17506000399589539, -0.19156000018119812, -0.41124001145362854, 0.27788999676704407, -0.6042900085449219, 0.3136500120162964, -0.30689001083374023, 0.46007001399993896, 0.157260000705719, 0.18640999495983124, 0.2034599930047989, 0.2777099907398224, -0.045604001730680466, 0.7141600251197815, 0.34362998604774475, 0.37643998861312866, -0.3420799970626831, 0.33869001269340515, 0.1643799990415573, 0.41165998578071594, 0.07741200178861618, -0.16064999997615814, -0.10733000189065933, 0.16722999513149261, 0.018414000049233437, -0.05323199927806854, 0.030685000121593475, 1.0247999429702759, 0.42917001247406006, -0.5799800157546997, -0.2632499933242798, -0.2748900055885315, -0.4460799992084503, -0.2625400125980377, -0.15289999544620514, -0.07303199917078018, -0.6278799772262573, -0.020806999877095222, 0.03218099847435951, -0.10769999772310257, 0.011633999645709991, 0.15271000564098358, 0.2761499881744385, 0.7236499786376953, 0.1344899982213974, -0.29407998919487, 0.3362100124359131, 0.28369998931884766, 0.13504000008106232, -0.020772000774741173, -0.014592999592423439, 0.017537999898195267, 0.011862999759614468, -0.37380000948905945, 0.27379998564720154, -0.28672000765800476, -0.5355100035667419, -0.022957999259233475, -0.24303999543190002, 0.4429900050163269, -0.33149001002311707, -0.2528400123119354, 0.186599999666214, 0.36675000190734863, 0.2168000042438507, 0.16162000596523285, 0.05544599890708923, 0.20750999450683594, 0.3902899920940399, -0.34007999300956726, 0.08540699630975723, -0.10809999704360962, 0.032937001436948776, 0.23583999276161194, -0.40101000666618347, -0.46571001410484314, 0.028749000281095505, 0.18594999611377716, -0.26677998900413513, -0.35514000058174133, -0.319489985704422, -0.5093700289726257, 0.41631001234054565, -0.4754300117492676, -0.4712100028991699, 0.2603699862957001, -0.35752999782562256, 0.2430099993944168, 0.20629000663757324, -0.25722000002861023, -0.6624900102615356, 0.5052300095558167, -0.30757999420166016, 0.22881999611854553, -0.8461899757385254, 0.6144199967384338, -0.18172000348567963, 0.12021999806165695, -0.9714199900627136, -0.2582699954509735, -0.802839994430542, 0.3231000006198883, -0.29646000266075134, -0.324970006942749, 0.35420000553131104, 0.3064599931240082, 0.2376900017261505, -0.2680499851703644, -0.22266000509262085, -0.40748000144958496, 0.11900000274181366, 0.36173999309539795, 0.3320100009441376, -0.2350499927997589, 0.7038099765777588, 0.04772299900650978, -0.4294700026512146, 0.4907200038433075, -0.322050005197525, 0.7640600204467773, 0.32631000876426697, -0.21776999533176422, -0.09609699994325638, 0.012614999897778034, -0.31876999139785767, 0.02342200092971325, 0.5128600001335144, 0.7004500031471252, 0.16214999556541443, 0.3309299945831299, -0.35242998600006104, 0.012403000146150589, -0.33055999875068665, 0.17845000326633453, -0.11743000149726868, 0.34373998641967773, -0.11055999994277954, 1.972000002861023, 0.452210009098053, 0.14377999305725098, -0.519760012626648, -0.02863599918782711, 0.20068000257015228, 0.2739500105381012, 0.016858000308275223, -0.5586699843406677, 0.20468999445438385, -0.22250999510288239, 0.602370023727417, -0.12678000330924988, -0.09579800069332123, 0.009269299916923046, -0.32319000363349915, 0.10096000134944916, -0.574150025844574, -0.08373899757862091, -0.28231000900268555, -0.008444299921393394, -0.04980099946260452, -0.2291799932718277, 0.033998001366853714, -0.49476000666618347, -0.15589000284671783, 0.7593100070953369, -0.14125999808311462, 0.2501699924468994, 0.12796999514102936, 0.14458000659942627, 0.08350399881601334, -0.23465999960899353, 0.39458999037742615, -0.523639976978302, 0.32978999614715576, -0.6041399836540222, 0.34244999289512634, 0.012726999819278717, 0.15222999453544617, 0.383760005235672, -0.18940000236034393, -0.4876999855041504, -0.19505999982357025, -0.5588700175285339, 0.10849999636411667, -0.10513000190258026, 0.5346800088882446, -0.050540000200271606, 0.2496899962425232, 0.23009000718593597, -0.3861199915409088, -0.4878300130367279, -0.7579799890518188, 0.7218700051307678, -0.14985999464988708, -0.2139499932527542, -1.2375999689102173, -0.4500100016593933, -0.38047000765800476, -0.15577000379562378, -0.5535899996757507, 0.04698500037193298, 0.02075199969112873, -0.4448300004005432, 0.22603000700473785, -0.6266899704933167, -0.09151700139045715, -0.08572299778461456, 0.3404099941253662, -0.01209999993443489, -0.15389999747276306, -0.10232999920845032, 0.15639999508857727, -0.003985600080341101, -0.649869978427887, -1.1216000318527222, 0.16380999982357025, -1.2101999521255493, 0.04356599971652031, -0.8860999941825867, 0.1885800063610077, 0.6552199721336365, 0.49022001028060913, -0.027480000630021095, -0.4846400022506714, 0.13868999481201172, -0.46636998653411865, -0.12024000287055969, 0.13718000054359436, 0.6313899755477905, -0.05383799970149994, 0.6296399831771851, 0.3690299987792969, 0.4050000011920929, -0.2569099962711334, 0.4270800054073334, -0.5936499834060669, 0.2768700122833252, -0.5273900032043457], u'town': [-0.5115799903869629, -0.2906799912452698, -0.09758699685335159, -0.1718900054693222, 0.19697999954223633, -0.008538099937140942, 0.07091200351715088, 0.010708999820053577, 0.15263999998569489, -0.7230499982833862, -0.5908499956130981, -0.3072499930858612, 0.01457200013101101, 0.8177199959754944, 0.446399986743927, 0.4260300099849701, 0.0422540009021759, -0.45596998929977417, 0.4872100055217743, -0.18836000561714172, 0.07263900339603424, 0.28532999753952026, 0.1582300066947937, 0.30434998869895935, -0.26840001344680786, -0.6444500088691711, -0.19012999534606934, 0.1243399977684021, -0.1734199970960617, 0.27379998564720154, 0.30838000774383545, -0.061177000403404236, -0.6400399804115295, 0.6166800260543823, -0.13424000144004822, -0.10903999954462051, 0.014208000153303146, 0.46136999130249023, -0.3600899875164032, -0.9478800296783447, 0.4529300034046173, -0.14531999826431274, 0.20297999680042267, 0.35951998829841614, 0.38398000597953796, 0.19452999532222748, 0.501039981842041, 0.020194999873638153, 0.38969001173973083, 0.5049099922180176, 0.349700003862381, 0.10430999845266342, 0.34081000089645386, 0.409280002117157, 0.16854000091552734, 0.36048999428749084, -0.18161000311374664, 0.06279999762773514, 0.29826000332832336, 0.16210000216960907, -0.09097599983215332, -0.7797999978065491, -0.03670499846339226, -0.51214998960495, 0.6532899737358093, -0.21499000489711761, -0.0705069974064827, 0.13524000346660614, -0.035009000450372696, -0.26431000232696533, 0.3591200113296509, -0.6216899752616882, 0.00578150013461709, -0.35089999437332153, -0.41440001130104065, -0.17872999608516693, 0.36024001240730286, 0.2973800003528595, -0.18206000328063965, -0.2870199978351593, -0.02423899993300438, -0.3234499990940094, 0.11905000358819962, 0.29592999815940857, 0.1043500006198883, -0.30820000171661377, -0.42535001039505005, -0.2640100121498108, 0.5809500217437744, 0.4693000018596649, 0.06699399650096893, 0.006512000225484371, 0.5156400203704834, -0.1511400043964386, 0.06721899658441544, 0.23744000494480133, 0.29846999049186707, 0.20100000500679016, -0.1155799999833107, 0.23639999330043793, 0.0420369990170002, 0.44301000237464905, 0.0486299991607666, -0.14720000326633453, 0.14032000303268433, -0.04438500106334686, 0.9248800277709961, 0.3786900043487549, 0.052910998463630676, 0.10492999851703644, 0.19652999937534332, -0.5361800193786621, -0.3411499857902527, -0.4070099890232086, 0.5415899753570557, 0.42983999848365784, 0.4160600006580353, -0.11065000295639038, 0.1387999951839447, 0.033486999571323395, 0.00575320003554225, 0.04962199926376343, -0.03014500066637993, 0.25154000520706177, 0.11590000241994858, 0.28659000992774963, 0.21778999269008636, -0.01384699996560812, 0.15172000229358673, 0.06836000084877014, 0.2663399875164032, 0.08898500353097916, -0.1858700066804886, -0.12450999766588211, 0.4039500057697296, 0.1487399935722351, -0.16060000658035278, -0.126460000872612, 0.21053999662399292, -0.7915199995040894, -0.2870999872684479, -0.5124800205230713, -0.54653000831604, 0.47815999388694763, -0.6260700225830078, -0.011748000048100948, 0.3815400004386902, -0.09825299680233002, -0.7746700048446655, 0.11005999892950058, 0.5242699980735779, 0.0071137999184429646, -0.07517600059509277, 0.18825000524520874, 0.7540599703788757, 0.032092999666929245, -0.11387000232934952, 0.13278000056743622, 0.42181000113487244, 0.3855299949645996, 0.5717200040817261, -0.37189000844955444, -0.06653100252151489, -0.7781999707221985, -0.35427001118659973, -0.30546998977661133, -0.07822900265455246, -0.2668299973011017, 0.2067900002002716, -0.6684899926185608, -0.514769971370697, 0.017633000388741493, 0.15414999425411224, 0.4438300132751465, 0.14959000051021576, 0.8075699806213379, -0.3668999969959259, -0.4395900070667267, -0.016600999981164932, -0.031077999621629715, -0.45124998688697815, 0.4854399859905243, -0.021431000903248787, 0.3316799998283386, 1.288699984550476, -0.2736400067806244, -0.6982499957084656, -0.15373000502586365, 0.12291999906301498, 0.43900999426841736, 0.40856999158859253, 0.5166900157928467, -0.14639000594615936, 0.05272800102829933, 0.0789479985833168, 0.23622000217437744, -0.4024200141429901, -0.6523399949073792, -0.22491000592708588, 0.07651299983263016, 0.7652400135993958, -0.45120999217033386, -0.20510999858379364, 0.25676000118255615, 0.00036899998667649925, -0.6495100259780884, 0.04875300079584122, -0.2670300006866455, 0.4589099884033203, 0.19853000342845917, -0.5338699817657471, -0.07753700017929077, 0.08266299962997437, -0.4955799877643585, 0.5911700129508972, 0.157150000333786, 0.22657999396324158, -0.1718900054693222, -0.28161999583244324, 0.09941499680280685, 0.15734000504016876, -0.6344500184059143, 0.25986000895500183, -0.212459996342659, 0.03831399977207184, -0.5189599990844727, 0.336899995803833, -0.5344399809837341, 0.21030999720096588, -0.08621799945831299, 0.2935500144958496, 0.12088000029325485, -0.44578999280929565, -0.422109991312027, 0.9976900219917297, 0.05242500081658363, 0.17754000425338745, 0.05001499876379967, 0.06941799819469452, 0.37494000792503357, 0.22572000324726105, 0.247639998793602, 0.6995800137519836, 0.2457199990749359, -0.5183899998664856, 0.3007600009441376, -0.07727400213479996, -0.0095186997205019, 0.18251000344753265, -0.2235099971294403, 0.1062999963760376, -0.18190999329090118, 0.05587000027298927, 0.03135199844837189, 0.3036699891090393, 0.10067000240087509, 0.188510000705719, -0.4125800132751465, -0.1583700031042099, -0.247079998254776, 0.29249998927116394, 0.48006001114845276, 0.21987999975681305, 0.08473499864339828, -0.20258000493049622, -0.24410000443458557, 0.1401599943637848, -0.3324899971485138, 0.1551000028848648, -0.028358999639749527, -0.46219998598098755, -0.4673599898815155, -0.0482960008084774, -0.2769399881362915, -0.08476100116968155, 0.04896499961614609, -2.2223000526428223, -0.05324200168251991, 0.2739799916744232, 0.533240020275116, -0.6202700138092041, 0.41923999786376953, -0.3374199867248535, -0.3484399914741516, -0.41310998797416687, 0.8433300256729126, 0.21751999855041504, 0.06747200340032578, 0.31139999628067017, 0.3883500099182129, 0.1077599972486496, -0.08612299710512161, 0.027665000408887863, -0.25630998611450195, 0.05111899971961975, 0.8225299715995789, 0.1808999925851822, -0.16861000657081604, -0.08903399854898453, 0.8544999957084656], u'fruit': [0.16405999660491943, 0.36713001132011414, 0.07867199927568436, -0.2714900076389313, 0.1551000028848648, -0.04672899842262268, -0.32179999351501465, 0.6062700152397156, 0.6570000052452087, -0.7318400144577026, -0.12365999817848206, -0.5851100087165833, -0.7316399812698364, -0.1277099996805191, 0.19645999372005463, -0.3279300034046173, -0.2525399923324585, -0.5825499892234802, -0.38558998703956604, 0.2784099876880646, -0.40290001034736633, 0.3400300145149231, 0.08451300114393234, 0.285970002412796, -0.43101999163627625, 0.06333500146865845, -0.6871200203895569, -0.6372699737548828, -0.5897600054740906, 0.16761000454425812, -0.4077799916267395, 0.7024700045585632, -0.7773000001907349, -0.4758000075817108, -0.4433099925518036, 0.6542900204658508, 0.10802999883890152, -0.32229000329971313, -0.6540899872779846, -0.3893199861049652, -0.2182299941778183, 0.17868000268936157, 0.17704999446868896, -0.19966000318527222, -0.5047600269317627, -0.12627999484539032, -0.12590999901294708, 0.1847900003194809, 0.07705099880695343, 0.17885999381542206, -0.03378999978303909, 0.08905299752950668, 0.19916999340057373, -0.2812199890613556, -0.7895699739456177, 0.021606000140309334, -0.30820000171661377, -0.12535999715328217, 0.43213000893592834, -0.3300800025463104, 0.4326300024986267, -0.7554900050163269, 0.031055999919772148, 0.14196999371051788, -0.5579900145530701, -0.11799000203609467, -0.36625000834465027, -0.12116999924182892, -0.6381800174713135, 0.1578799933195114, 0.0689070001244545, 0.28951001167297363, 0.021896999329328537, -0.08917800337076187, -0.5329800248146057, 0.04472000151872635, 0.5724899768829346, -0.9434900283813477, 0.1042499989271164, 0.3094500005245209, -0.03232799842953682, 0.3149299919605255, -0.07264100015163422, 0.2524699866771698, 0.04372600093483925, -0.13885000348091125, -0.06179499998688698, -0.2028300017118454, 0.11867000162601471, -0.20690999925136566, 0.18477000296115875, -0.711929976940155, -0.33557000756263733, -0.29434001445770264, -0.19520999491214752, 0.15668000280857086, 0.1911800056695938, -0.4183799922466278, -0.08088299632072449, 0.2978000044822693, 0.008482299745082855, 0.3517799973487854, -0.08327600359916687, -0.19373999536037445, -0.2603699862957001, -0.06785299628973007, -0.16832999885082245, -0.09009300172328949, 0.01362099964171648, -0.1602499932050705, 0.15532000362873077, 0.44435998797416687, -0.001001400058157742, -0.35361000895500183, 0.4689500033855438, -0.11084999889135361, -0.89860999584198, 0.7298799753189087, 0.16836999356746674, 0.0283610001206398, -0.5502600073814392, -0.5378900170326233, 0.3646099865436554, 0.0738930031657219, -0.6675000190734863, 0.2565700113773346, 0.11710000038146973, 0.6432999968528748, 0.4017699956893921, 0.3999199867248535, -0.539900004863739, 0.7104099988937378, 0.4193899929523468, 0.5689399838447571, -0.6277599930763245, 0.027462000027298927, -0.3258399963378906, 0.08753000199794769, -0.33030998706817627, -0.23638999462127686, 0.4583199918270111, 0.31547001004219055, -0.14328999817371368, -0.45882999897003174, 0.002229300094768405, 0.26996999979019165, -0.04930200055241585, -0.49375998973846436, 0.3332499861717224, -0.4680800139904022, -0.7574999928474426, 0.3070000112056732, 0.10653000324964523, -0.4389300048351288, -0.06625600159168243, -0.4982199966907501, -0.28174999356269836, -0.5033800005912781, 0.007218900136649609, 0.2814599871635437, 0.1376499980688095, 0.18622000515460968, 0.004520299844443798, 0.1418599933385849, -0.06634899973869324, -0.6644300222396851, 0.16008999943733215, 0.1695600003004074, -0.04140999913215637, -0.024010999128222466, -0.29019999504089355, -0.389739990234375, -0.5104699730873108, 0.20050999522209167, 0.37116000056266785, 0.21889999508857727, 0.24435999989509583, -0.46358999609947205, 0.162540003657341, -0.758840024471283, -0.1296900063753128, -0.20532000064849854, -0.3197300136089325, -0.5595099925994873, 0.2107200026512146, -0.4583300054073334, 1.1483999490737915, 0.019953999668359756, -0.10170000046491623, -0.450219988822937, -0.29971998929977417, 0.848800003528595, 0.04554300010204315, -0.25887998938560486, -0.3163900077342987, -0.01661200076341629, 0.0647059977054596, 0.1156499981880188, -0.5217900276184082, 0.5768100023269653, 0.24571000039577484, -0.3228999972343445, 0.3512899875640869, 0.08592800050973892, 0.04811900109052658, 0.258650004863739, -0.058194998651742935, 0.28881001472473145, 0.4203700125217438, 0.025631999596953392, 0.1280200034379959, -0.6667400002479553, -0.28433001041412354, -0.025373000651597977, 0.3237900137901306, -0.3110699951648712, 0.8488799929618835, 0.1770399957895279, 0.13144999742507935, 0.16514000296592712, 0.8612499833106995, -0.1726599931716919, -0.6744800209999084, -0.4090900123119354, -1.07260000705719, 0.2983599901199341, 0.27983999252319336, 0.5184199810028076, 0.3769800066947937, 0.3175399899482727, 0.15625999867916107, 0.2018200010061264, 0.16311000287532806, 0.15595999360084534, 0.3181000053882599, 0.9851499795913696, -0.328139990568161, -0.5559099912643433, -0.8914399743080139, 0.007133699953556061, -0.008643499575555325, -0.2165900021791458, -0.4976600110530853, -0.49125999212265015, -1.0083999633789062, 0.1382399946451187, 0.5593100190162659, 0.2764500081539154, -0.4136900007724762, -0.3843199908733368, 0.7037000060081482, 0.217849999666214, -0.05464800074696541, 0.31610000133514404, 0.2903499901294708, 0.14817999303340912, -0.3287700116634369, -0.08952300250530243, 0.44822999835014343, 0.16694000363349915, 0.28995999693870544, -0.08125700056552887, 0.24532000720500946, -0.12145999819040298, 0.19573000073432922, -0.46507999300956726, -0.20262999832630157, -0.2019300013780594, 0.3688899874687195, 0.5639500021934509, -0.6385999917984009, 0.6638299822807312, -0.17012999951839447, 0.22936999797821045, 0.023886999115347862, -0.17905999720096588, -1.4332000017166138, -0.4009299874305725, -0.6236199736595154, -0.4292199909687042, -0.2919299900531769, -0.022158000618219376, -0.16543999314308167, -0.3332200050354004, -0.48221999406814575, 0.6424499750137329, 0.5257599949836731, -0.11576999723911285, 0.5207499861717224, 0.0785129964351654, 0.24637000262737274, 0.027494000270962715, 0.6203600168228149, -0.16374999284744263, 0.16324999928474426, 0.22627000510692596, -0.20959000289440155, -0.6285899877548218, 0.12426000088453293, -0.4361000061035156], u'ground': [-0.19115999341011047, 0.45017001032829285, 0.36970001459121704, 0.0046165999956429005, -0.1648399978876114, -0.40514999628067017, 0.11912000179290771, 0.34220999479293823, 0.14990000426769257, -1.8885999917984009, 0.4752900004386902, 0.21807000041007996, 0.353410005569458, 0.039243001490831375, 0.1515599936246872, 0.41815000772476196, -0.5483999848365784, 0.2573300004005432, -0.21368999779224396, -0.07564499974250793, -0.6828500032424927, -0.06618999689817429, 0.7429100275039673, -0.4046800136566162, -0.13454000651836395, -0.27803999185562134, 0.053975000977516174, 0.33465999364852905, -0.6696699857711792, 0.5310400128364563, 0.27913999557495117, -0.29249000549316406, -0.25369998812675476, 0.2975600063800812, -0.42028000950813293, 0.3968600034713745, 0.058051999658346176, 0.3302299976348877, -0.018939999863505363, 0.18061000108718872, 0.08946699649095535, 0.04135600104928017, 0.5446699857711792, 0.07272899895906448, 0.6474400162696838, 0.004512900020927191, 0.2360599935054779, 0.37060999870300293, 0.20695999264717102, -0.054262999445199966, -0.039271000772714615, -0.19461999833583832, -0.37742000818252563, 0.033555999398231506, 0.048367999494075775, 0.22779999673366547, 0.08355499804019928, 0.033406998962163925, 0.29423999786376953, 0.19122999906539917, -0.1278499960899353, -0.20430000126361847, 0.45197999477386475, 0.10034999996423721, -0.20000000298023224, -0.1307400017976761, 0.26524001359939575, -0.4907799959182739, 0.2835499942302704, 0.18609000742435455, 0.08836500346660614, 0.13373999297618866, -0.6195200085639954, -0.06819699704647064, -0.2326499968767166, 0.23388999700546265, 0.04564100131392479, 0.6410199999809265, -0.08277399837970734, 0.0038950000889599323, -0.05189000070095062, 0.11279000341892242, -0.0988370031118393, -0.1356399953365326, -0.39792999625205994, -0.10452999919652939, -0.12174999713897705, -0.21130000054836273, -0.5674499869346619, -0.0003886700142174959, 0.6446499824523926, 0.05254200100898743, 0.14184999465942383, 0.2267400026321411, -0.3604300022125244, -0.3434000015258789, -0.734279990196228, 0.12421999871730804, 0.32791000604629517, 0.453000009059906, -0.14788000285625458, -0.0014675999991595745, -0.4002699851989746, -0.2651599943637848, -0.3016600012779236, -0.0716399997472763, 0.38343000411987305, 0.13017000257968903, 0.0649150013923645, -0.31832998991012573, -0.12818999588489532, -0.3544999957084656, -0.04979600012302399, 0.20689000189304352, -0.2474299967288971, -0.019096000120043755, -0.2287299931049347, 0.14778999984264374, -0.41117000579833984, -0.7099999785423279, 0.06207000091671944, -0.7070199847221375, 0.13952000439167023, 0.28870999813079834, -0.430869996547699, 0.1332699954509735, 0.04936600103974342, 0.014662000350654125, 0.36364999413490295, 0.07610200345516205, -0.46860000491142273, 1.142199993133545, -0.32491999864578247, 0.46083998680114746, 0.019920000806450844, 0.09644799679517746, 0.5010300278663635, 0.12307000160217285, -0.14159999787807465, 0.12256000190973282, 0.3054499924182892, 0.20422999560832977, -0.13179999589920044, 0.38927000761032104, -1.0823999643325806, -0.17994000017642975, 0.13151000440120697, -0.006710600107908249, -0.5242599844932556, -0.45511001348495483, -0.12318000197410583, 0.2685199975967407, -0.30562999844551086, 0.030420999974012375, 0.5920299887657166, -0.2775599956512451, 0.21505999565124512, -0.21994000673294067, 0.29201000928878784, 0.44148001074790955, 0.03419499844312668, -0.20013000071048737, -0.10440000146627426, 0.02197599969804287, 0.36869001388549805, -0.029881000518798828, -0.2617799937725067, 0.2146500051021576, -0.012621000409126282, 0.212909996509552, 0.23649999499320984, -0.17402000725269318, 0.5457299947738647, -0.1117200031876564, 0.052345000207424164, 0.5786899924278259, 0.16785000264644623, -0.05405300110578537, 0.1128700003027916, -0.228860005736351, 0.4194500148296356, 0.16628000140190125, 0.2660500109195709, 0.13401000201702118, -0.2639400064945221, 0.03671199828386307, 0.5415899753570557, 0.03330500051379204, 0.3374499976634979, -0.03053000010550022, 0.37380000948905945, 0.27911999821662903, 0.5270699858665466, -0.606249988079071, -0.1179800033569336, 0.3284600079059601, 0.23804999887943268, 0.35238000750541687, -0.012424999848008156, 0.06695500016212463, 0.7917900085449219, -0.1663299947977066, -0.17890000343322754, 0.1308099925518036, -0.04874400049448013, 0.4774700105190277, 0.5149400234222412, -0.5669900178909302, 0.04267499968409538, 0.2454800009727478, -0.07158300280570984, -0.2795499861240387, -0.26930999755859375, 0.2553600072860718, 0.22479000687599182, -0.32458001375198364, 0.2386700063943863, 0.08193899691104889, 0.2666099965572357, 0.12077999860048294, 0.5521900057792664, -0.035930000245571136, -0.05676399916410446, -0.21645000576972961, -0.4514699876308441, 0.10117000341415405, 0.020246999338269234, 0.21849000453948975, -0.41025999188423157, 0.24800999462604523, 0.19910000264644623, 0.06311599910259247, 0.13575999438762665, 0.3949100077152252, 0.1879899948835373, 0.320279985666275, -0.14205999672412872, 0.47641998529434204, -0.46055999398231506, 0.1586499959230423, -0.07634100317955017, 0.00500820018351078, 0.2888700067996979, -0.7573500275611877, -0.4823099970817566, -0.024343999102711678, -0.3987799882888794, -0.01685900054872036, 0.07350099831819534, -0.41686001420021057, 0.4571399986743927, 0.25328999757766724, -0.1153699979186058, -0.5708100199699402, 0.3887600004673004, 0.5635799765586853, 0.14119000732898712, -0.57778000831604, -0.02607000060379505, 0.18407000601291656, 0.17077000439167023, -0.12896999716758728, 0.39840999245643616, -0.15063999593257904, -0.058306001126766205, 0.03680900111794472, -0.9596499800682068, 0.032214999198913574, 0.39386001229286194, 0.021900000050663948, -0.33597999811172485, 0.2443999946117401, -0.33417001366615295, 0.08765599876642227, -0.09311500191688538, 0.13628000020980835, -2.047800064086914, -0.05931999906897545, 0.3284200131893158, 0.0022444999776780605, -0.6829500198364258, -0.16603000462055206, 0.48217999935150146, -0.15926000475883484, -0.05276099964976311, -0.14348000288009644, -0.29409000277519226, -0.35071998834609985, 0.09354300051927567, -0.05462000146508217, -0.055160000920295715, 0.012547999620437622, -0.07252100110054016, -0.1747100055217743, 0.1844799965620041, 0.19519999623298645, 0.045779999345541, -0.43007001280784607, 0.05516500025987625, 0.1984499990940094], u'log': [-0.35054001212120056, 0.030473999679088593, -0.14699000120162964, -0.17880000174045563, -0.4968000054359436, -0.30281999707221985, 0.2663800120353699, -0.07545100152492523, -0.30594000220298767, -0.4224900007247925, -0.7383700013160706, 0.2628999948501587, 0.1965399980545044, -0.29655998945236206, -0.24688999354839325, 0.32155999541282654, -0.022628000006079674, -0.04459499940276146, 0.1790499985218048, -0.06353799998760223, 0.638949990272522, -0.1155100017786026, 0.4199399948120117, 0.5199699997901917, -0.31591999530792236, -0.17091000080108643, 0.11595000326633453, -0.11819999665021896, 0.08025400340557098, 0.5454099774360657, 0.27489998936653137, 0.6505100131034851, -0.5155100226402283, -0.08388499915599823, -0.2725900113582611, 0.7322900295257568, -0.2928600013256073, -0.8154500126838684, -0.018021000549197197, -0.11682000011205673, -0.10527999699115753, 0.5510600209236145, -0.21446000039577484, 0.709309995174408, -0.20821000635623932, -0.13779999315738678, 0.3245300054550171, -0.2688100039958954, 0.20321999490261078, -0.17484000325202942, 0.6173700094223022, 0.34981998801231384, -0.15724000334739685, -0.39111000299453735, 0.2169400006532669, 0.1406800001859665, -0.676360011100769, -0.08813100308179855, -0.7843499779701233, 0.3449400067329407, 0.4566499888896942, 0.08973400294780731, 0.3453899919986725, 0.2853200137615204, -0.10802000015974045, -0.5637800097465515, -0.11495999991893768, 0.10916999727487564, 0.15264999866485596, -0.13766999542713165, -0.2878600060939789, 0.1859000027179718, -0.6782699823379517, 0.6376299858093262, -0.4194200038909912, 0.36654001474380493, 0.4517199993133545, -0.027607999742031097, -0.4586000144481659, -0.4779900014400482, -0.17590999603271484, 0.27233999967575073, 0.46303001046180725, -0.5884100198745728, 0.06582199782133102, -0.278219997882843, -0.7910199761390686, -0.006065600086003542, -0.20638999342918396, -0.4265899956226349, -0.03105499967932701, -0.22609999775886536, -0.055952999740839005, -0.047012001276016235, 0.45285001397132874, -0.4045700132846832, 0.05741100013256073, 0.1392199993133545, -0.0701730027794838, -0.4636099934577942, -0.515500009059906, 0.9738500118255615, 0.5202199816703796, -0.387580007314682, 0.13641999661922455, -0.06963200122117996, 0.018053000792860985, 0.12221000343561172, -0.33145999908447266, -0.44516998529434204, -0.4012199938297272, -0.23631000518798828, -0.18731999397277832, -0.013535999692976475, -0.622439980506897, -0.12933999300003052, 0.16258999705314636, 0.6708199977874756, -0.41005998849868774, 0.050234999507665634, 0.09965000301599503, -0.27772998809814453, 0.5425000190734863, 0.10910999774932861, 0.315310001373291, 0.7256399989128113, -0.4096499979496002, -0.6073899865150452, 0.06839500367641449, -0.3963499963283539, -0.15953999757766724, 1.1612000465393066, -0.31918999552726746, -0.1287900060415268, 1.0401999950408936, -0.0765800029039383, 0.09391500055789948, 0.07599999755620956, -0.49702998995780945, -0.05939900130033493, 0.26798000931739807, -0.26381000876426697, -0.4369199872016907, 0.24042999744415283, -0.015831999480724335, -0.1714800000190735, 0.1776600033044815, 0.08804900199174881, 0.13404999673366547, 0.08482500165700912, -0.039698000997304916, 0.3476400077342987, -0.10706999897956848, -0.20237000286579132, -0.11595000326633453, 0.25224000215530396, 0.2651900053024292, 0.18770000338554382, -0.17985999584197998, -0.3850800096988678, -0.23898999392986298, -0.12732000648975372, -0.2731800079345703, -0.31185001134872437, 0.0030759000219404697, 0.6895899772644043, 0.1538199931383133, -0.038231998682022095, 0.11378999799489975, 0.012861999683082104, -0.2229200005531311, -0.13459999859333038, 0.026412999257445335, 0.40408000349998474, 0.4006099998950958, 0.13830000162124634, 0.027281999588012695, 0.039322998374700546, 0.3135800063610077, -0.48173001408576965, -0.12093999981880188, 0.13407999277114868, 0.2803199887275696, -0.3561300039291382, -0.4262999892234802, -0.8173800110816956, 0.1133200004696846, 0.2269199937582016, 0.6426100134849548, 0.7249000072479248, 0.38804998993873596, 0.6223400235176086, -0.01538699958473444, -0.3166100084781647, 0.32425999641418457, 0.007034999784082174, 0.03407900035381317, -0.24695000052452087, -0.15711000561714172, -0.12268999963998795, -0.12838000059127808, -0.33557000756263733, 0.012688999995589256, 0.4393100142478943, 0.5628399848937988, -0.36761999130249023, -0.3284299969673157, 0.3307499885559082, -0.36792999505996704, 0.04063500091433525, -0.47078999876976013, -0.6744300127029419, -0.15167999267578125, -0.04599599912762642, -0.6343200206756592, -0.17301000654697418, -0.3704400062561035, 0.4617899954319, -0.0030181999318301678, 0.49059000611305237, -0.5366899967193604, 0.07670199871063232, 0.3382300138473511, 0.058389000594615936, 0.13872000575065613, 0.03946699947118759, -0.16403000056743622, 0.1413699984550476, 0.042357999831438065, -0.019457999616861343, -0.49445998668670654, -0.0647680014371872, -0.3265500068664551, -0.34442999958992004, 0.435699999332428, -0.24925999343395233, -0.6348400115966797, -0.3393999934196472, -0.4677099883556366, 0.30375000834465027, 0.4238399863243103, 0.16774000227451324, -0.13999000191688538, -0.2067600041627884, -0.11118000000715256, -0.21839000284671783, 0.42991000413894653, 0.7929199934005737, -0.19900000095367432, 0.1231900006532669, -0.35324999690055847, 0.134660005569458, 0.068511001765728, -0.3340499997138977, 0.34014999866485596, 0.017650000751018524, 0.2389499992132187, -0.18352000415325165, 0.08856900036334991, 0.26805999875068665, 0.18720999360084534, -0.07743699848651886, -0.27327001094818115, -0.17333999276161194, 0.23295000195503235, -0.447299987077713, 0.33610999584198, -0.4400300085544586, 0.2901400029659271, 0.23330999910831451, -0.24511000514030457, -0.14594000577926636, 0.5781099796295166, -0.1181500032544136, 0.20253999531269073, -0.20566999912261963, -1.1888999938964844, 0.25540000200271606, -0.3355799913406372, -0.25999000668525696, -0.6014900207519531, -0.4341300129890442, -0.29750001430511475, 0.19133000075817108, 0.15369999408721924, -0.5070599913597107, 0.1636199951171875, 0.024429000914096832, -0.10512000322341919, 0.05390800163149834, 0.21323999762535095, 0.2844400107860565, -0.6095499992370605, -0.337909996509552, -0.15812000632286072, -0.2359199970960617, -0.05211599916219711, 0.17211000621318817, -0.05826300010085106, 0.2571299970149994], u'moss': [-0.525950014591217, 0.2858799993991852, 0.24693000316619873, 0.511139988899231, 0.7442499995231628, 0.08371300250291824, 0.13117000460624695, -0.44244998693466187, 0.17726999521255493, -0.041613999754190445, 0.07547999918460846, 0.09212099760770798, -0.16971999406814575, -0.20785999298095703, -0.016610000282526016, 0.04374400153756142, -0.44484999775886536, 0.09724000096321106, -0.09119199961423874, 0.3343600034713745, -0.20834000408649445, 0.11817999929189682, -0.19292999804019928, 0.29600000381469727, -0.21753999590873718, -0.2712000012397766, -0.5455999970436096, -0.03466400131583214, -0.10853999853134155, -0.42723000049591064, 0.5207700133323669, -0.3462100028991699, -0.4151799976825714, -0.1621900051832199, -0.7271199822425842, -0.3892099857330322, -0.3959200084209442, 0.12925000488758087, 0.1372700035572052, -0.3822900056838989, -0.9676100015640259, 0.24922999739646912, 0.2663800120353699, -0.1910499930381775, 0.6576399803161621, 0.11486999690532684, 0.17151999473571777, 0.43459999561309814, -0.038780998438596725, 0.10261999815702438, -0.7405999898910522, -0.006571699865162373, -0.5835300087928772, 0.219310000538826, -0.2954399883747101, 0.3025299906730652, 0.0742650032043457, -1.0880999565124512, -0.27017998695373535, -0.5520099997520447, -0.04572900012135506, -1.0986000299453735, 0.05155299976468086, 0.35141000151634216, -0.009512100368738174, -0.2671099901199341, -0.009468300268054008, 0.04075099900364876, 0.6493399739265442, -0.42524999380111694, -0.1508300006389618, 0.2147900015115738, -0.43595001101493835, 0.25321999192237854, -1.0300999879837036, -0.10034999996423721, 0.25892001390457153, 0.04454199969768524, 0.24558000266551971, 0.27660998702049255, -0.4735499918460846, -0.3512299954891205, 0.03651700168848038, -0.013663000427186489, 0.12939000129699707, 0.6152899861335754, -0.039090000092983246, 0.3145599961280823, -0.4962100088596344, -0.3267500102519989, -0.1531900018453598, -0.14975999295711517, 0.23529000580310822, 0.06581699848175049, -0.06668999791145325, -0.3563700020313263, 0.48758000135421753, -0.41795000433921814, 0.1832199990749359, -0.4796600043773651, -0.1653899997472763, -0.4450699985027313, -0.4653800129890442, 0.17041000723838806, -0.28560999035835266, 0.27507999539375305, 0.724590003490448, 0.05752300098538399, -0.03414100036025047, -0.09761600196361542, -0.4671599864959717, -0.11647000163793564, 0.07222999632358551, -0.020785000175237656, 0.1327899992465973, -0.2974500060081482, -0.26875999569892883, 0.6788100004196167, -0.3414500057697296, -0.40046998858451843, -0.4160799980163574, -0.3384400010108948, 0.6343799829483032, 0.13957999646663666, -0.17188000679016113, -0.5758799910545349, 0.39614999294281006, -0.01913299970328808, 0.4889500141143799, -0.016036000102758408, 0.01106099970638752, 0.5743299722671509, -0.23427000641822815, -0.10633999854326248, 0.19746999442577362, 0.20332999527454376, 0.13850000500679016, -0.23475000262260437, -0.5697000026702881, -0.12377999722957611, 0.6324700117111206, 0.2198600023984909, 0.6901900172233582, -0.8081600069999695, -0.4499100148677826, 0.43661001324653625, 0.30180999636650085, -0.1751600056886673, 0.007674400229007006, -0.2744799852371216, -0.09363000094890594, -0.3759700059890747, -0.6867899894714355, -0.5226200222969055, -0.38391000032424927, -0.08288600295782089, 0.0881040021777153, -0.1790200024843216, 0.36146000027656555, 0.22304999828338623, -0.16902999579906464, -0.37856999039649963, 0.22750000655651093, 0.2996399998664856, -0.38561999797821045, 0.22887000441551208, -0.4414600133895874, 0.7746400237083435, -0.0011932000052183867, -0.27761000394821167, 0.33983999490737915, 0.07602400332689285, -0.04833900183439255, 0.032924000173807144, -0.2692599892616272, 0.4124999940395355, -0.16604000329971313, 0.052021000534296036, 0.4489400088787079, -0.5181499719619751, 0.20092999935150146, -0.07054000347852707, -0.34022998809814453, -0.11174999922513962, -0.23321999609470367, -0.6262099742889404, -0.6141499876976013, -0.5502300262451172, 0.2513299882411957, 0.15636999905109406, -0.07694400101900101, 0.020526999607682228, -0.3124299943447113, 0.07002799957990646, 0.4021799862384796, 0.3951199948787689, 0.3078800141811371, 0.31244999170303345, 0.27869999408721924, -0.13585999608039856, 0.6404100060462952, -0.18689000606536865, -0.1538199931383133, 0.5954200029373169, 0.45267000794410706, -0.268779993057251, 0.34505000710487366, 0.07141400128602982, -0.2537499964237213, -0.27742999792099, -0.1421000063419342, 0.26554998755455017, 0.47398000955581665, -0.027212999761104584, -0.2495799958705902, -0.04486199840903282, 0.16861000657081604, 0.05127599835395813, -0.4651300013065338, -0.4998599886894226, 0.1281599998474121, -0.33438000082969666, 0.0524899996817112, 0.32245999574661255, 0.17855000495910645, 0.8756300210952759, -0.0660260021686554, 0.09832999855279922, 0.30487000942230225, 0.70660001039505, 0.40939998626708984, 0.029089000076055527, 0.1669600009918213, -0.09781999886035919, -0.3360399901866913, -0.009839500300586224, 0.0247150007635355, 0.14696000516414642, -0.41124001145362854, -0.3081899881362915, -0.30557000637054443, -0.1936500072479248, 0.3157300055027008, -0.1652500033378601, -0.27232998609542847, 0.41672998666763306, 0.10350999981164932, 0.07419200241565704, -0.1370300054550171, 0.38137999176979065, -0.23819999396800995, -0.26657000184059143, -0.13402000069618225, -0.6896899938583374, 0.6873599886894226, 0.16347000002861023, 0.43821999430656433, 0.11110000312328339, 0.2058899998664856, -0.5908600091934204, 0.23948000371456146, -0.4554699957370758, -0.07270199805498123, -0.018842000514268875, -0.2741999924182892, 0.052675001323223114, 0.19505999982357025, 0.040123000741004944, 0.056398000568151474, -0.5389800071716309, 0.3528999984264374, -0.35412999987602234, -0.2662299871444702, 0.17156000435352325, -0.1463800072669983, 0.2889699935913086, -0.1440500020980835, -0.12520000338554382, -0.22121000289916992, 0.03844600170850754, -0.8358200192451477, 0.5471000075340271, 0.26603999733924866, 0.048705000430345535, -0.3198699951171875, -0.18806999921798706, 0.2073500007390976, 0.2202499955892563, 0.32684001326560974, -0.2430099993944168, 0.23468999564647675, 0.5195900201797485, -0.06545600295066833, 0.10698000341653824, 0.05096700042486191, 0.17628000676631927, -0.06644699722528458, 0.25123000144958496, -0.18055999279022217, 0.32905998826026917], u'dust': [-0.18177999556064606, 0.24175000190734863, -0.21145999431610107, -0.5236600041389465, -0.11461000144481659, -0.3428899943828583, -0.022167999297380447, 0.4259899854660034, 0.248539999127388, -0.8963299989700317, 0.34248000383377075, -0.5414699912071228, 0.23097999393939972, -0.2721399962902069, -0.2641899883747101, -0.37022000551223755, -0.4842599928379059, -0.13053999841213226, 0.10181000083684921, 0.7721199989318848, -0.45361998677253723, 0.09587600082159042, 0.47189000248908997, 0.5791500210762024, 0.00891919992864132, -0.2775900065898895, -0.034129999577999115, -0.098301000893116, -0.03568999841809273, -0.11379999667406082, 0.43132999539375305, 0.4182400107383728, -0.6451699733734131, -0.18019999563694, -0.3193899989128113, -0.05162699893116951, -0.7574599981307983, 0.5971300005912781, 0.5433700084686279, 0.7500600218772888, -0.08249899744987488, 0.22294999659061432, 0.5242900252342224, -0.06465300172567368, 0.6276599764823914, -0.01043500006198883, -0.08337000012397766, -0.04145200178027153, -0.35690000653266907, -0.802299976348877, 0.66007000207901, 0.31821998953819275, -0.4171200096607208, 0.3575800061225891, -0.0836779996752739, 0.09880899637937546, -0.15583999454975128, -0.7871299982070923, 0.7629899978637695, -0.12779000401496887, -0.21645000576972961, 0.2353300005197525, 1.0591000318527222, -0.32701998949050903, 0.04791399836540222, -0.21976999938488007, -0.08176299929618835, 0.18770000338554382, -0.4271399974822998, -0.11285000294446945, 0.9386799931526184, -0.199180006980896, 0.0007437799940817058, -0.1958400011062622, -0.638450026512146, -0.11304999887943268, -0.5808799862861633, -0.6893100142478943, 0.7547799944877625, -0.13323000073432922, 0.04191099852323532, -0.26396000385284424, 0.054090000689029694, -0.02349199913442135, -0.32346999645233154, -0.12269999831914902, 0.36847999691963196, 0.2859100103378296, -0.12357000261545181, -0.1640399992465973, -0.012734999880194664, -0.05000799894332886, 0.08876000344753265, 0.21644000709056854, -0.7229499816894531, 0.165460005402565, 0.004600000102072954, 0.21517999470233917, 0.3355399966239929, 0.23040999472141266, 0.304749995470047, 0.3736000061035156, -0.28057000041007996, 0.22436000406742096, -0.37762001156806946, 0.2677899897098541, 0.40156999230384827, -0.1408900022506714, 0.004863800015300512, -0.20688000321388245, -0.1896899938583374, -0.35460999608039856, -0.26655998826026917, -0.070762999355793, -0.43700000643730164, 0.3037799894809723, -0.07516200095415115, 0.3278000056743622, 0.2731100022792816, -0.7725300192832947, 0.12483999878168106, -0.2602100074291229, -0.23512999713420868, 0.5702499747276306, -0.46160000562667847, 0.26879000663757324, -0.4405899941921234, 0.838450014591217, -0.30052000284194946, 0.17967000603675842, 0.5271599888801575, 0.005655100103467703, 0.2824400067329407, -0.041909001767635345, 0.6297600269317627, -0.2542400062084198, -0.5748400092124939, 0.35346001386642456, -0.026186000555753708, -0.2732900083065033, 0.3056600093841553, 0.3307400047779083, -0.4115999937057495, 0.30480000376701355, 0.0484049990773201, 0.12551000714302063, 0.4914799928665161, 0.6145300269126892, 0.5571699738502502, 0.01460999995470047, -0.09915400296449661, -0.23853999376296997, -0.5684900283813477, 0.16728000342845917, 0.5499399900436401, 0.1305599957704544, 0.35078999400138855, -0.3461099863052368, 0.7432000041007996, 0.18244999647140503, -0.13447000086307526, -0.46299999952316284, 0.32986000180244446, 0.18548999726772308, 0.9086700081825256, 0.0015249999705702066, 0.48666998744010925, 0.4631899893283844, 0.36114001274108887, 0.222120001912117, -0.14173999428749084, 0.3213900029659271, 0.5503600239753723, -0.34209999442100525, 0.12443999946117401, -0.41113001108169556, 0.01500099990516901, -0.07194600254297256, -0.23055000603199005, -0.6612200140953064, -0.3368000090122223, -0.44310998916625977, -0.07016599923372269, 0.4404900074005127, -0.5422499775886536, -0.558489978313446, 1.1038000583648682, -0.9845200181007385, -0.3029699921607971, -0.006089699920266867, 0.5500699877738953, 0.4054900109767914, -0.7218199968338013, 0.08728300034999847, 0.10266999900341034, -0.6489999890327454, 0.3637300133705139, 0.5249599814414978, -0.12266000360250473, 0.07921600341796875, 0.4554100036621094, 0.5435400009155273, 0.8916599750518799, 0.2525700032711029, -0.10103999823331833, 0.1730400025844574, 0.6115700006484985, -0.7153900265693665, -0.4122300148010254, 0.2814599871635437, -0.3911600112915039, -0.030559999868273735, 0.1770700067281723, -0.11727999895811081, -0.13297000527381897, -0.5235599875450134, 0.3118000030517578, -0.4685400128364563, -0.028846999630331993, -0.3995699882507324, 0.13354000449180603, 0.020099999383091927, -0.13830000162124634, -0.23173999786376953, -0.12771999835968018, -0.32973000407218933, 0.16683000326156616, 0.3140200078487396, 0.11009000241756439, -0.12963999807834625, 0.21358999609947205, 0.057107001543045044, -0.49246999621391296, -0.3284299969673157, 0.025479000061750412, -0.15331000089645386, 0.6207699775695801, -0.22333000600337982, -0.2837800085544586, -0.5969499945640564, -0.10209000110626221, 0.12297999858856201, -0.6297900080680847, -0.3076600134372711, -0.8072900176048279, -0.16165000200271606, -0.24132999777793884, -0.06941699981689453, 0.13882000744342804, -0.19393999874591827, -0.15167999267578125, -0.8905699849128723, -0.3882400095462799, -0.538320004940033, 0.7725399732589722, 0.4175899922847748, -0.12326999753713608, -0.47056999802589417, -0.10074000060558319, 0.16561000049114227, 0.23625999689102173, -0.5073800086975098, 0.09101399779319763, 0.1573300063610077, 0.2968200147151947, -0.2878299951553345, 0.056825000792741776, -0.45726001262664795, -0.24928000569343567, -0.051309000700712204, -0.17299999296665192, 0.4522800147533417, -0.3042899966239929, 0.3613699972629547, -0.6921600103378296, -0.1722699999809265, -1.6146999597549438, -0.09869199991226196, -0.43233001232147217, -0.3065800070762634, -0.5416499972343445, 0.4830400049686432, -0.3561199903488159, -0.09474900364875793, 0.44780999422073364, 0.7172099947929382, 0.18615999817848206, 0.24250000715255737, -0.652400016784668, -0.6804400086402893, 0.08386100083589554, 0.7835299968719482, -0.04864000156521797, 0.308789998292923, 0.36746999621391296, -0.5294899940490723, 0.3953700065612793, 0.05963499844074249, 0.06657999753952026, 0.0339989997446537], u'velvet': [0.31233999133110046, 0.1009799987077713, 0.8325999975204468, 0.18105000257492065, 0.1676200032234192, -0.3221299946308136, -0.33862000703811646, -0.29447999596595764, 0.5387899875640869, 0.09625300019979477, 0.031244000419974327, 0.13041000068187714, -0.0849120020866394, 0.1560100018978119, 0.23326000571250916, -0.34257999062538147, -0.34902000427246094, 0.3462800085544586, -0.5817400217056274, 0.5473099946975708, 0.3243600130081177, 0.18504999577999115, 0.24044999480247498, 0.3393000066280365, -0.03764199838042259, -0.5703799724578857, 0.2893500030040741, 0.18376000225543976, -0.41850000619888306, 0.44655999541282654, 0.0012517999857664108, 0.07146800309419632, -0.26537999510765076, -0.05130400136113167, 0.12488000094890594, 0.33212000131607056, 0.011721000075340271, -0.19474999606609344, 0.13941000401973724, -0.0359949991106987, -0.48949000239372253, -0.30395999550819397, -0.11759000271558762, -0.07952400296926498, 0.26166999340057373, 0.18273000419139862, -0.07529299706220627, -0.2795400023460388, -0.6342899799346924, -0.0787699967622757, 0.41690000891685486, -0.2358199954032898, -0.0976099967956543, -0.6392300128936768, -0.037703000009059906, -0.16756999492645264, -0.24432000517845154, -0.6169000267982483, 0.12280000001192093, -0.14858999848365784, -0.13354000449180603, 0.10038000345230103, -0.3174999952316284, 0.14883999526500702, 0.27542001008987427, -0.5545600056648254, 0.5475599765777588, 0.36671000719070435, 0.19731999933719635, 0.07196199893951416, 0.11795999854803085, 0.3209199905395508, -0.3609600067138672, -0.0216279998421669, -0.1826000064611435, 0.2524400055408478, -0.361299991607666, 0.11739999800920486, 0.2799600064754486, -0.7076600193977356, -0.04467000067234039, 0.3205200135707855, 0.021900000050663948, -0.39566999673843384, 0.2210099995136261, 0.11229000240564346, 0.5931400060653687, 0.6030700206756592, -0.8299599885940552, -0.31446000933647156, 0.5097200274467468, -0.019226999953389168, 0.02321000024676323, 0.05343100056052208, -0.05704300105571747, 0.29109999537467957, 0.6930999755859375, 0.12974999845027924, 0.07953599840402603, 0.3968000113964081, 0.19797000288963318, 0.34891998767852783, -0.060933999717235565, -0.28560999035835266, -0.10920000076293945, -0.33313000202178955, 0.10926999896764755, 0.3067600131034851, 0.009083899669349194, -0.3828299939632416, -0.1734900027513504, 0.5903199911117554, 0.6669999957084656, -0.08120299875736237, 0.6208900213241577, -0.2244199961423874, 0.027904000133275986, 0.4592899978160858, -0.10379000008106232, -0.7619400024414062, -0.6499199867248535, -0.19177000224590302, 0.39353999495506287, -0.3190099895000458, -0.03344999998807907, -0.4308600127696991, 0.09007800370454788, 1.1232000589370728, -0.8030999898910522, 0.4456300139427185, -0.006844299845397472, -0.07470600306987762, -0.4111500084400177, -0.40577998757362366, 0.08028099685907364, -0.3160099983215332, -0.8629400134086609, 0.6262699961662292, -0.36309000849723816, 0.05903699994087219, 0.10916999727487564, 0.34046998620033264, -0.6128900051116943, -0.42607998847961426, 0.5340999960899353, 0.10853999853134155, -0.1102600023150444, -0.24851000308990479, -0.13594000041484833, 0.32335999608039856, -0.1334799975156784, 0.31007999181747437, -0.4182099997997284, -0.02837900072336197, -0.04830799996852875, 0.6060900092124939, 0.7289299964904785, -0.24944999814033508, -0.004336699843406677, 0.21987999975681305, 0.0101539995521307, 0.07211799919605255, -0.3631500005722046, 0.38690000772476196, 0.14591999351978302, 0.15065999329090118, 0.03314900025725365, 0.3093000054359436, 0.6012799739837646, 0.19280000030994415, -0.6145300269126892, 0.5357699990272522, 0.3039900064468384, 0.013012000359594822, -0.3536899983882904, -0.913070023059845, 0.12894000113010406, 0.9831799864768982, -0.713890016078949, -0.4975999891757965, 0.8119300007820129, 0.1376200020313263, 0.7049800157546997, 0.17396999895572662, -0.03535899892449379, 0.007410800084471703, 0.42763999104499817, 0.30265000462532043, 0.399509996175766, -0.5060300230979919, 0.12559999525547028, 0.12689000368118286, -0.3422999978065491, -0.2672399878501892, -0.06600899994373322, -0.005778899881988764, -0.7215800285339355, 0.20024999976158142, -0.10664000362157822, 0.18996000289916992, 1.0976999998092651, -0.29082998633384705, 0.5604000091552734, 0.3854900002479553, 0.08657799661159515, -0.29168999195098877, 0.6341099739074707, 0.8571299910545349, -1.1292999982833862, -0.42326998710632324, 0.08048000186681747, -0.16513000428676605, -0.08578299731016159, 0.7190300226211548, 0.43533000349998474, 0.079134002327919, 0.7444999814033508, -0.582360029220581, -0.08389999717473984, -0.33472999930381775, -0.09669800102710724, 0.04587100073695183, -0.25562000274658203, -0.5600100159645081, -0.6388800144195557, -0.04848499968647957, -0.10136000066995621, -0.0963210016489029, -0.15431000292301178, -1.4567999839782715, 0.6636800169944763, -0.44554999470710754, -0.20884999632835388, 0.5569800138473511, 0.5542100071907043, -0.1985500007867813, 0.4276899993419647, -0.6704400181770325, 0.01218899991363287, -0.2615300118923187, -0.4410499930381775, 0.028088999912142754, -0.518339991569519, 0.5988100171089172, -0.4069800078868866, 0.5484700202941895, 0.3245700001716614, 0.2357099950313568, 0.3020400106906891, -0.2875699996948242, -0.4182499945163727, 0.07486599683761597, 0.32600998878479004, -0.42497000098228455, 0.7271699905395508, 0.04467400163412094, 0.41912999749183655, 0.05539799854159355, 0.48743000626564026, -0.18108999729156494, -0.5672100186347961, 0.028307000175118446, 0.9892200231552124, -0.030869999900460243, -0.8264300227165222, 0.27987998723983765, -0.06316100060939789, 0.238429993391037, -0.07916700094938278, 0.3299799859523773, 0.21171000599861145, -0.7609000205993652, -0.36597999930381775, -0.43435001373291016, -0.445250004529953, -0.13720999658107758, -0.3573800027370453, -0.2928999960422516, -0.566789984703064, -0.16304999589920044, 0.08248800039291382, -0.2938700020313263, -0.3047800064086914, -0.5481200218200684, 0.03642600029706955, 0.004634699784219265, -0.5079900026321411, 0.1367499977350235, -0.6822599768638611, 0.1057400032877922, 0.4156799912452698, 0.053599998354911804, -0.02572299912571907, 0.9822499752044678, -0.3365499973297119, 0.44036999344825745, 0.5451899766921997, 0.5668200254440308, 0.6377999782562256, -0.02656099945306778], u'basement': [-0.15731999278068542, 0.4438300132751465, -0.563539981842041, 0.04054399952292442, 0.0650629997253418, 0.45559999346733093, 0.44144999980926514, -0.08718899637460709, 0.19707000255584717, -0.6233299970626831, -0.3542900085449219, -0.22213999927043915, 0.4560199975967407, 0.05326699838042259, -0.21971000730991364, -0.3698199987411499, -0.36695998907089233, -0.13359999656677246, 0.12145999819040298, 0.503030002117157, 0.001676499960012734, 0.12703000009059906, 0.17741000652313232, -0.2782599925994873, -0.06486500054597855, -0.07175900042057037, 0.4855700135231018, 0.16565999388694763, -0.27671998739242554, -0.18669000267982483, 0.054506998509168625, 0.11215999722480774, -0.19189999997615814, -0.002832300029695034, 0.14629000425338745, 0.5980799794197083, -0.46230998635292053, -0.014832000248134136, 0.30803999304771423, -0.15419000387191772, 0.012492000125348568, 0.3223400115966797, -0.5859799981117249, 0.5992699861526489, 0.2796599864959717, 0.5850600004196167, 0.5522000193595886, -0.22269999980926514, -0.21081000566482544, -0.6064900159835815, -0.05753299966454506, 0.12099999934434891, -0.43108999729156494, 0.12110999971628189, 0.44690999388694763, 0.17660999298095703, 0.07184600085020065, 0.2326200008392334, -0.15526999533176422, 0.068851999938488, 0.009138699620962143, 0.3951300084590912, 0.7429699897766113, 0.795960009098053, -0.4090000092983246, -0.5092099905014038, 0.3672400116920471, -0.1367799937725067, -0.3140299916267395, -0.1309799998998642, -0.26229000091552734, -0.2906799912452698, -0.3066999912261963, 0.0873280018568039, -0.5976200103759766, -0.003594599897041917, -0.45295000076293945, -0.24231000244617462, 0.1531600058078766, -0.38600000739097595, 0.0021440000273287296, 0.37272998690605164, 0.2506900131702423, -0.011381999589502811, -0.35776999592781067, -0.05232299864292145, -0.0066789002157747746, 0.5205000042915344, -0.0241480004042387, 0.04816799983382225, 0.535040020942688, 0.44071999192237854, 0.27970001101493835, 0.7767800092697144, 0.13200999796390533, 0.2316800057888031, -0.026892000809311867, -0.19979000091552734, 0.8008900284767151, -0.8350899815559387, -0.12501999735832214, -0.06213200092315674, -0.2914699912071228, -0.21452000737190247, -0.05993400141596794, -0.3860900104045868, 0.17983999848365784, 0.30910998582839966, 0.19191999733448029, 0.22718000411987305, -0.4874500036239624, 0.05564099922776222, -0.12616999447345734, 0.16841000318527222, -0.4966599941253662, -0.10920000076293945, 0.1200999990105629, -0.4721199870109558, -0.12759999930858612, -0.39671000838279724, 0.2819499969482422, -0.0012762000551447272, 0.24243000149726868, 0.24457000195980072, -0.05709100142121315, -0.25134000182151794, -0.14997999370098114, -0.5738999843597412, 0.5098999738693237, 0.023555999621748924, 0.15489999949932098, 0.39236998558044434, 0.29172998666763306, -0.18895000219345093, 0.6109399795532227, -0.08742400258779526, -0.0560309998691082, 0.5193799734115601, -0.714900016784668, 0.2720800042152405, 0.02883400022983551, -0.2235500067472458, -0.15363000333309174, 0.2759700119495392, -0.018567999824881554, -0.09723799675703049, 0.03566800057888031, -0.04070800170302391, 0.30261000990867615, -0.21866999566555023, -0.3970800042152405, 0.5793099999427795, -0.19662000238895416, -0.4149399995803833, 0.12180999666452408, 0.6040400266647339, -0.3243499994277954, 0.29071998596191406, -0.11650999635457993, 0.38093000650405884, -0.13616999983787537, 0.03651700168848038, 0.29752999544143677, 0.10653000324964523, 0.3714900016784668, 0.4584600031375885, 0.14037999510765076, -0.3125999867916107, 0.33629000186920166, 0.17684000730514526, -0.18498000502586365, 0.23419000208377838, -0.06530299782752991, -0.0023753999266773462, -0.2961600124835968, 0.7463899850845337, -0.5733100175857544, 0.06298000365495682, -0.04596799984574318, -0.4727500081062317, 0.2904999852180481, -0.13942000269889832, -0.26399001479148865, -0.18805000185966492, -0.0538799986243248, 0.33430999517440796, 1.110200047492981, 0.455949991941452, 0.33204999566078186, 0.5350599884986877, 0.6809099912643433, -0.0032691999804228544, -0.27423998713493347, 0.15916000306606293, -0.06363999843597412, 0.06994199752807617, -0.6970400214195251, 0.2371699959039688, -0.652999997138977, 0.2954599857330322, 0.5508700013160706, -0.07173299789428711, -0.03967899829149246, -0.059436000883579254, 0.3015899956226349, -0.47534000873565674, -0.20633000135421753, -0.8526700139045715, -0.399399995803833, -0.3603900074958801, -0.27118000388145447, 0.6060000061988831, -0.4537599980831146, 0.14076000452041626, 0.010123999789357185, 0.3517000079154968, -0.17430000007152557, -0.3130899965763092, 0.2669599950313568, 0.15567000210285187, 0.6836000084877014, -0.3340800106525421, -0.40024998784065247, -0.15960000455379486, -0.07187599688768387, 0.0523810014128685, -0.6644899845123291, -0.10935000330209732, -0.35910001397132874, -0.2455500066280365, 0.3410100042819977, -0.3959699869155884, -0.29778000712394714, -0.29545000195503235, 0.48058000206947327, -0.22919000685214996, 0.300819993019104, 0.2636699974536896, -0.2620899975299835, 0.5101699829101562, 0.41376999020576477, -0.3972899913787842, 0.08642599731683731, 0.13550999760627747, -0.09301000088453293, -0.41753000020980835, 0.5750799775123596, 0.21119999885559082, -0.5599799752235413, 0.0718030035495758, 0.331930011510849, 0.2405800074338913, 0.010293000377714634, -0.11051999777555466, 0.06896200031042099, 0.621720016002655, 0.1733199954032898, -0.060079000890254974, 0.3073599934577942, 0.3063099980354309, -0.310479998588562, 0.02290000021457672, 0.12709000706672668, -0.34261998534202576, -0.01792600005865097, 0.14883999526500702, -0.14517000317573547, 0.2761099934577942, 0.011601000092923641, -0.3628399968147278, -0.5460699796676636, -0.06754399836063385, -0.26118001341819763, -0.29117000102996826, -0.34071001410484314, -0.1723800003528595, -1.0937000513076782, 0.15740999579429626, -0.4239499866962433, 0.20332999527454376, -0.654229998588562, 0.2647800147533417, -0.047533001750707626, -0.48660001158714294, 0.017084000632166862, 0.7955999970436096, -0.2184000015258789, 0.48993998765945435, 0.3036099970340729, -0.37608999013900757, -0.2632099986076355, -0.004202499985694885, -0.3295699954032898, 0.3471600115299225, 0.3434300124645233, -0.042426999658346176, 0.6971700191497803, -0.030119000002741814, -0.13784000277519226, 0.6459199786186218], u'coin': [0.05233500152826309, 0.2930299937725067, -0.4190100133419037, 0.1756100058555603, 0.0684949979186058, 0.7074000239372253, -0.09541399776935577, -0.02634900063276291, -0.019208999350667, -0.861739993095398, -0.027970999479293823, -0.06959400326013565, 0.016961000859737396, -0.2553099989891052, -0.25898000597953796, -0.2038699984550476, 0.41001999378204346, -0.3039200007915497, -0.37975001335144043, -0.3996500074863434, -0.30199000239372253, -0.07551500201225281, 0.3031499981880188, 0.01614600047469139, 0.9232000112533569, -0.3240100145339966, -0.24950000643730164, -0.03495800122618675, -0.03611600026488304, -0.5618500113487244, 0.8690199851989746, -0.04714300110936165, -0.05087599903345108, 0.36489999294281006, -0.8018800020217896, 0.4802600145339966, -0.24771000444889069, 0.3014200031757355, -1.0369000434875488, 0.21104000508785248, -0.22429999709129333, -0.25137001276016235, -0.020177999511361122, 0.41007000207901, 0.46887001395225525, -0.208979994058609, 0.9400200247764587, -0.6684799790382385, -0.49597999453544617, 0.7849799990653992, 0.06562600284814835, -0.2609800100326538, 0.09476400166749954, 0.18535000085830688, -0.043845001608133316, -0.22860999405384064, -0.5433599948883057, 0.8171799778938293, 0.51146000623703, -0.4864799976348877, 0.20452000200748444, 0.3108699917793274, -0.4955199956893921, -0.938979983329773, 0.22301000356674194, -0.19197000563144684, -0.30237001180648804, -0.03618999943137169, -0.43375998735427856, 0.1466899961233139, -0.11580999940633774, -0.08632099628448486, -0.10089000314474106, 0.3811799883842468, 0.03580600023269653, 0.5785199999809265, 0.019380999729037285, 0.06926299631595612, -0.11066000163555145, -0.922469973564148, -0.13790999352931976, -0.06128799915313721, 0.5506899952888489, 0.23984000086784363, 0.44027000665664673, -0.7619100213050842, -0.39980998635292053, 0.0801360011100769, -0.4970000088214874, 0.3874399960041046, 0.49116000533103943, -0.4557400047779083, -0.32291001081466675, -0.5441399812698364, 0.09813600033521652, 0.02202799916267395, -0.02194399945437908, -0.1515199989080429, -0.28450000286102295, -0.01370800007134676, 0.5547000169754028, 0.22175000607967377, 0.41422000527381897, -0.2787800133228302, 0.3775100111961365, 0.09510199725627899, -0.5479199886322021, -0.39160001277923584, 0.04139399901032448, 0.48848000168800354, -0.2680000066757202, 0.4714899957180023, -0.26701998710632324, -0.025279000401496887, 0.1039699986577034, 0.7849400043487549, -0.4805999994277954, -0.20187999308109283, 0.188060000538826, -0.1376499980688095, -0.11748000234365463, 0.4698199927806854, -0.4036099910736084, 0.022408999502658844, -0.6160500049591064, 0.34703001379966736, 0.6997100114822388, 0.6711999773979187, -0.149399995803833, 0.33041998744010925, -0.11826000362634659, -0.0975790023803711, 0.2316800057888031, 0.02112700045108795, -0.29297998547554016, 0.014543999917805195, 0.46768999099731445, -0.34415000677108765, 0.32361000776290894, -0.19039000570774078, 0.080485999584198, 0.09459000080823898, -0.14579999446868896, 0.20917999744415283, 0.2381100058555603, -0.46039000153541565, -0.40018001198768616, -0.07423199713230133, 0.6930999755859375, -0.2469100058078766, -0.05261800065636635, -0.13391000032424927, -0.40845000743865967, -1.0433000326156616, -0.44499000906944275, 0.022801000624895096, -0.2433300018310547, -0.49750998616218567, -0.07366199791431427, -0.34619998931884766, -0.3068400025367737, 0.17826999723911285, 0.6167399883270264, 0.7164199948310852, 1.061900019645691, 0.7118600010871887, 0.2729499936103821, 0.1124500036239624, 0.195250004529953, -0.33406001329421997, 0.2214999943971634, 0.5614100098609924, 0.06881300359964371, -0.19378000497817993, 0.2146500051021576, -0.14776000380516052, -0.20268000662326813, 0.15449999272823334, 0.30063000321388245, -0.12144999951124191, 0.11258000135421753, 0.37196001410484314, -0.18602000176906586, 0.0961500033736229, 0.13732999563217163, -0.6758599877357483, 0.7010599970817566, 0.5879799723625183, 0.5564200282096863, -0.27358999848365784, 0.8998000025749207, 0.5359399914741516, 0.4803299903869629, 0.7102599740028381, -0.3486599922180176, 0.048225998878479004, -0.1875700056552887, 0.16500000655651093, -0.16617000102996826, 0.5400099754333496, 0.5497099757194519, 0.6321799755096436, -0.1517699956893921, -0.49202001094818115, 0.9592199921607971, -0.5360900163650513, 0.10373000055551529, 0.04831499978899956, -0.059466999024152756, 0.16719000041484833, 0.5658100247383118, 0.03369300067424774, 0.14566999673843384, 0.13278000056743622, 0.11113999783992767, -0.9581599831581116, -0.44231998920440674, -0.38047999143600464, -0.9267899990081787, 0.24913999438285828, -0.7183200120925903, 0.3118099868297577, -0.27028998732566833, 0.28624001145362854, -0.10270000249147415, 0.3435400128364563, 0.17521999776363373, -0.12258999794721603, 0.41519999504089355, 0.4901599884033203, -0.27366000413894653, 0.0999239981174469, -0.34575000405311584, 0.2700499892234802, 0.2016499936580658, 0.5307300090789795, -0.06046700105071068, -0.4804899990558624, 0.30476999282836914, -0.20319999754428864, -0.15485000610351562, 0.24940000474452972, 0.6559699773788452, -0.2778800129890442, -0.5947700142860413, -0.0606359988451004, -0.8130800127983093, -0.46222999691963196, 0.026763999834656715, 0.5425400137901306, 0.18063999712467194, 0.22205999493598938, 0.12623000144958496, -0.228970006108284, 0.3453800082206726, 0.2972399890422821, -0.06862200051546097, 0.10694000124931335, -0.1878100037574768, -0.4966599941253662, -0.701229989528656, 0.07943999767303467, 0.36267000436782837, 0.6860100030899048, 0.32892999053001404, 0.016891999170184135, -0.32576000690460205, 0.7916399836540222, 0.22258999943733215, 0.14395999908447266, 0.182559996843338, 0.024630000814795494, -0.025374000892043114, -0.1577499955892563, -0.7561699748039246, -0.17601999640464783, -0.3720400035381317, -0.47284001111984253, -0.06503699719905853, 0.2975099980831146, 0.04652399942278862, -0.003127099946141243, -0.8256700038909912, -0.2889699935913086, -0.3435800075531006, -0.3371799886226654, 0.26693999767303467, -0.5002999901771545, -0.17077000439167023, -0.006144700106233358, -0.1179099977016449, -0.07685299962759018, -0.5228300094604492, 0.8996099829673767, 0.6225900053977966, -0.40345999598503113, -0.028968999162316322, 0.0904259979724884, 0.4238699972629547, -0.47530999779701233], u'desert': [-0.5281699895858765, -0.17468999326229095, -0.5605499744415283, -0.18786999583244324, -0.011012000031769276, 0.1225999966263771, -0.32280999422073364, 0.7381799817085266, 0.5379199981689453, -0.5874500274658203, 0.4613899886608124, -0.6213099956512451, -0.13697999715805054, 0.25203999876976013, 0.302949994802475, -0.2770799994468689, 0.37692001461982727, -0.25916001200675964, 0.46178001165390015, 0.571690022945404, -0.30272001028060913, -0.041377000510692596, 0.4454900026321411, -0.09662999957799911, 0.12249000370502472, -0.8777999877929688, 0.8109800219535828, 0.10846000164747238, -0.1639000028371811, 0.21794000267982483, 0.23792000114917755, 0.15752999484539032, -1.0391000509262085, -0.47391998767852783, 0.24331000447273254, -0.598609983921051, 0.06224299967288971, -0.19878999888896942, 0.09467799961566925, -0.32971999049186707, 0.4316900074481964, -0.44159001111984253, 0.3785499930381775, -0.5251100063323975, 0.6622999906539917, -0.10153000056743622, -0.09706400334835052, 0.2937600016593933, 0.29846999049186707, -0.6099399924278259, -0.23286999762058258, -0.11337000131607056, -0.026978999376296997, 0.30257999897003174, 0.29120999574661255, 3.516300057526678e-05, -0.30184000730514526, -0.3550400137901306, 1.2059999704360962, 0.37196001410484314, -0.19283999502658844, -0.06129400059580803, 1.2803000211715698, -0.6204299926757812, -0.33368998765945435, 0.2065799981355667, 0.4750100076198578, 0.6792100071907043, 0.0515189990401268, -0.06273400038480759, 0.1278200000524521, 0.1898999959230423, 0.04076499864459038, 0.4156799912452698, -0.5856000185012817, 0.021152999252080917, -0.06923499703407288, -0.5913299918174744, 0.2545500099658966, 0.04533499851822853, -0.04218199849128723, 0.27265000343322754, -0.7005699872970581, 0.0016685000155121088, -0.23152999579906464, -0.0729300007224083, -0.1391099989414215, 0.4798800051212311, 0.5565400123596191, -0.15351000428199768, -0.2608399987220764, 0.42197999358177185, 0.6572499871253967, 0.44185999035835266, -0.06785299628973007, 0.24759000539779663, 0.4646199941635132, 0.2319599986076355, -0.11214999854564667, 0.21081000566482544, 0.5297200083732605, 0.9177600145339966, -0.16404999792575836, 0.5870500206947327, -0.6682500243186951, -0.36559000611305237, 0.09254399687051773, 0.7450600266456604, 0.3050999939441681, -0.15477000176906586, 0.24782000482082367, -0.34134000539779663, 0.3600800037384033, -0.3747499883174896, -0.26175999641418457, 0.13428999483585358, 0.3398500084877014, 0.37803998589515686, 0.4920800030231476, 0.6692399978637695, -0.1865299940109253, -0.10107000172138214, -0.9375, -0.13675999641418457, -0.04866800084710121, 0.1402300000190735, -0.24511000514030457, 0.33232998847961426, -0.4339599907398224, -0.3414199948310852, 0.20769000053405762, 0.008464000187814236, 0.20231999456882477, 0.4829599857330322, -0.5185800194740295, -0.5449000000953674, -0.06523700058460236, -0.1174900010228157, -0.15971000492572784, -0.31490999460220337, 0.4391700029373169, 0.2815600037574768, -0.8144000172615051, -0.061560001224279404, -1.0355000495910645, -0.1591300070285797, 0.18098999559879303, 0.016388000920414925, -0.25731998682022095, 0.39190998673439026, 0.4020099937915802, 0.11388000100851059, -0.4428899884223938, -0.04433999955654144, 0.6324700117111206, -0.4231500029563904, 0.2543700039386749, 0.36177000403404236, 0.6848300099372864, 0.7156800031661987, 0.11569000035524368, -0.8078799843788147, 0.12937000393867493, 0.508109986782074, 0.29280999302864075, -0.8622900247573853, 0.32844001054763794, -0.24985000491142273, -0.35995998978614807, 0.22945000231266022, 0.02305999957025051, -0.06582300364971161, 0.4545400142669678, -0.33390000462532043, -0.3846000134944916, 0.7711300253868103, 0.07890500128269196, 0.24636000394821167, 0.21373000741004944, 0.1263599991798401, -0.29708001017570496, 0.09574999660253525, 0.22442999482154846, 0.9467700123786926, 0.361519992351532, -0.06258100271224976, 0.7890400290489197, -0.1404300034046173, -0.3302899897098541, -0.5448700189590454, -0.349590003490448, 0.5453600287437439, 0.041627999395132065, -0.19160999357700348, 0.15174999833106995, -0.013395999558269978, 0.2698200047016144, -0.013716000132262707, 0.03695400059223175, 0.6690099835395813, 1.1806000471115112, 0.0361969992518425, 0.029062999412417412, -0.07536099851131439, 0.41234999895095825, 0.2928900122642517, -0.02533400058746338, -0.40755000710487366, 0.39724001288414, -0.01643200032413006, -0.14767000079154968, -0.09751000255346298, -0.13068999350070953, -0.7134100198745728, 0.5640299916267395, -0.12524999678134918, 0.07993000000715256, 0.23986999690532684, 0.1403300017118454, -0.011641999706625938, 0.8376399874687195, 0.15776999294757843, 0.084648996591568, -0.09912800043821335, -0.19682000577449799, -0.33733001351356506, -0.09196999669075012, -0.2414100021123886, 0.1465200036764145, -0.3914699852466583, 0.43860000371932983, -0.07298800349235535, -0.34389999508857727, -0.3056800067424774, 0.22111999988555908, 0.4091300070285797, -0.6689199805259705, 0.12892000377178192, 0.3902199864387512, -0.34064000844955444, -0.1390800029039383, 0.6042500138282776, -0.10491999983787537, 0.2657400071620941, -0.2135699987411499, -0.3098300099372864, -0.5004199743270874, -0.2526099979877472, 0.1288899928331375, -0.36924999952316284, -0.36768999695777893, 0.2150699943304062, -0.044158000499010086, -0.36675000190734863, 0.49696001410484314, 0.22502000629901886, 0.1482899934053421, 0.15800000727176666, -0.2169100046157837, -0.159170001745224, 0.1305599957704544, -0.2897000014781952, 0.07875099778175354, -0.49994000792503357, -0.24873000383377075, -0.3123700022697449, 0.12857000529766083, -0.192890003323555, 0.4270299971103668, 0.07751300185918808, -0.28418999910354614, -0.12737999856472015, -0.06880900263786316, -0.022763999179005623, 0.030143000185489655, -0.6271799802780151, -1.783400058746338, 0.7424399852752686, -0.24366000294685364, 0.15460999310016632, 0.35697001218795776, -0.3941099941730499, -0.2200399935245514, 0.2781899869441986, -0.30803000926971436, 0.0469140000641346, 0.1308099925518036, 0.0451119989156723, 0.041919998824596405, 0.023778999224305153, 0.38220998644828796, 0.1453000009059906, -0.41054999828338623, 0.48614999651908875, 0.0341779999434948, 0.7187399864196777, 0.24913999438285828, 0.30410000681877136, 0.025572000071406364, -0.09706799685955048], u'pool': [0.18640999495983124, 0.6172900199890137, -0.2114199995994568, -0.32521000504493713, -0.10882999747991562, 1.0437999963760376, 0.7096899747848511, -0.09058299660682678, 0.3986000120639801, -0.6566399931907654, 0.3149600028991699, 0.06094000115990639, 0.04753600060939789, -0.14610999822616577, -0.24935999512672424, -0.3746100068092346, -0.17603999376296997, 0.2617799937725067, -0.09629800170660019, 0.2625499963760376, -0.4147300124168396, 0.35030999779701233, -0.41266000270843506, 0.06145099923014641, 0.5203999876976013, -0.2541300058364868, 0.35978999733924866, 0.663569986820221, -0.40891000628471375, 0.3589000105857849, -0.5511000156402588, -0.05497699975967407, 0.038731999695301056, 0.0885939970612526, -0.8573399782180786, 0.8044899702072144, 0.42142999172210693, 0.08293399959802628, -0.40540000796318054, 0.3318600058555603, 0.38960000872612, 0.2088800072669983, -0.04521799832582474, 0.58610999584198, 0.27059000730514526, -0.19312000274658203, 1.1367000341415405, 0.39239001274108887, 0.6819499731063843, -0.3709299862384796, -0.3365600109100342, 0.22877000272274017, -0.2269899994134903, -0.42309999465942383, 0.31126001477241516, 0.1870799958705902, -0.0030412001069635153, -0.0912339985370636, 0.3489600121974945, 0.44475001096725464, 0.37968000769615173, 0.2793000042438507, -0.5989199876785278, 0.2805599868297577, 0.016853999346494675, -0.13249999284744263, -0.2217700034379959, -0.31185999512672424, -0.7660599946975708, -0.13513000309467316, 0.019412999972701073, 0.4309599995613098, 0.21507999300956726, 0.07804299890995026, -0.8866900205612183, -0.32429999113082886, -0.3729099929332733, -0.1923999935388565, 0.026704000309109688, -0.8661199808120728, 0.2926900088787079, 0.20640000700950623, -0.5352299809455872, -0.514240026473999, -0.008585300296545029, -0.38842999935150146, -0.12738999724388123, -0.2519400119781494, 0.014158999547362328, -0.4354200065135956, 0.31564000248908997, 0.3358500003814697, 0.08365099877119064, -0.37422001361846924, 0.305869996547699, 0.4720599949359894, 0.23345999419689178, -0.0872189998626709, 0.26370999217033386, -0.33913999795913696, -0.17881999909877777, 0.06359700113534927, -0.2723900079727173, -0.6827999949455261, 0.5769400000572205, 0.6863700151443481, 0.04939499869942665, -0.21818000078201294, -0.2877199947834015, 0.4108999967575073, -0.1422400027513504, 0.10592000186443329, -0.05585800111293793, -0.09203699976205826, -0.36035001277923584, 0.0644489973783493, -0.1538199931383133, 0.19102999567985535, -0.5938199758529663, 0.07199899852275848, 0.4331800043582916, 0.03805600106716156, -0.22928999364376068, 0.5050100088119507, 0.9085999727249146, 0.09711699932813644, 0.09747599810361862, -0.23026999831199646, -0.2948800027370453, -0.5386999845504761, -0.3828299939632416, -0.04616200178861618, 0.3974300026893616, 0.2128400057554245, 0.1678999960422516, -0.24527999758720398, 0.060947999358177185, -0.23628999292850494, -0.17509999871253967, -0.2985199987888336, 0.002187799895182252, -0.223580002784729, 0.47922998666763306, -0.20802000164985657, -0.3709700107574463, 0.02622699923813343, 0.07672099769115448, -0.1886499971151352, 0.4780299961566925, 0.152319997549057, -0.06351999938488007, -0.002901999978348613, 0.12872999906539917, -0.4284999966621399, 0.43004998564720154, 0.016512999311089516, -0.4353399872779846, 0.5358999967575073, -0.10659000277519226, 0.36399000883102417, 0.28415000438690186, -0.2102299928665161, 0.4065600037574768, 0.20725999772548676, 0.5242800116539001, -0.2580299973487854, -0.1031700000166893, -0.02191299945116043, 0.24186000227928162, -0.13467000424861908, 0.11973000317811966, 0.41047000885009766, 0.03403199836611748, -0.22439000010490417, -0.5804399847984314, -0.2136099934577942, -0.0901079997420311, 0.6874099969863892, 0.23917999863624573, 0.3110800087451935, -0.00015423000149894506, 0.24954000115394592, -0.146139994263649, -0.2288299947977066, -0.09023399651050568, 0.004531499929726124, 0.45100998878479004, 0.0019226999720558524, 0.6152799725532532, -0.16978000104427338, 0.8804200291633606, 0.6815800070762634, -0.35653001070022583, -0.5067200064659119, -0.15897999703884125, 0.27496999502182007, 0.3752700090408325, -0.16142000257968903, -0.46202999353408813, -0.08107099682092667, 0.7681599855422974, -0.5820299983024597, -0.45603999495506287, -0.6330500245094299, -0.08535300195217133, 0.06748799979686737, -0.5669000148773193, -0.4405199885368347, -0.16630999743938446, 0.12268999963998795, 0.029543999582529068, 0.2643899917602539, -0.8337200284004211, -0.2790200114250183, 0.25874999165534973, 0.5540000200271606, -0.11885000020265579, -0.36333999037742615, 0.1141899973154068, -0.4655100107192993, 0.3806400001049042, 0.08949899673461914, -0.19994999468326569, -0.21593999862670898, -0.1479800045490265, -0.39195001125335693, -0.26085999608039856, -0.0011180000146850944, -0.10458000004291534, 0.32486000657081604, 0.10451000183820724, -0.39122000336647034, 0.2855600118637085, 0.15154999494552612, 0.22080999612808228, 0.540910005569458, 0.01171599980443716, 0.0330829992890358, 0.11663000285625458, 0.14899000525474548, 0.7984799742698669, 0.17971999943256378, 0.4588499963283539, 0.39239999651908875, -0.6104300022125244, -0.21552999317646027, 0.014487000182271004, -0.3420400023460388, -0.2834300100803375, 0.12370000034570694, 0.4414199888706207, -0.6638299822807312, 0.5583000183105469, -0.44457000494003296, 0.10493999719619751, -0.30469000339508057, 0.1173200011253357, 0.36941999197006226, 0.3199799954891205, 0.6676700115203857, 0.01903199963271618, -0.3987500071525574, 0.21187999844551086, -0.327239990234375, -0.07943200320005417, -0.22684000432491302, -0.11674000322818756, 0.12964999675750732, -0.4657900035381317, -0.402319997549057, -0.15178999304771423, -0.2942799925804138, 0.07088600099086761, -0.1326099932193756, 0.3241400122642517, 0.28753000497817993, -1.878000020980835, 0.6799799799919128, 0.004697899799793959, 0.21772000193595886, -0.2287999987602234, -0.05337600037455559, -0.4242199957370758, -0.46924999356269836, 0.2889299988746643, -0.13676999509334564, 0.082955002784729, 0.1375499963760376, -0.3191800117492676, 0.04478999972343445, -0.32444000244140625, 0.06964600086212158, -0.16518999636173248, 0.030933000147342682, 0.5291200280189514, -0.13008999824523926, 0.7054600119590759, 0.11206000298261642, -0.31957998871803284, -0.24300000071525574], u'cliff': [0.25944000482559204, 0.04687099903821945, -0.20096999406814575, 0.16719000041484833, -0.094309002161026, 0.4450500011444092, -0.021330000832676888, -0.5227699875831604, 0.40439000725746155, 0.08143399655818939, 0.16614000499248505, -0.6023600101470947, -0.14077000319957733, -0.06444200128316879, -0.02195500023663044, 0.33454999327659607, -0.03149599954485893, -0.27272000908851624, 0.3619000017642975, 0.16491000354290009, -0.0568929985165596, 0.1253499984741211, -0.02894200012087822, 0.30309000611305237, 0.26315000653266907, 0.12955999374389648, 0.06898599863052368, 0.018609000369906425, -0.34586000442504883, 0.6148300170898438, 0.09829100221395493, 0.15428000688552856, -0.43647998571395874, -0.7000499963760376, -0.4514000117778778, -0.008296700194478035, 0.11981000006198883, -0.5630900263786316, 0.09179099649190903, -0.4060400128364563, 0.07811199873685837, 0.047231998294591904, 0.22450999915599823, 0.45565998554229736, -0.06338399648666382, 0.5622400045394897, 0.35740000009536743, -0.034384001046419144, 0.19172999262809753, -0.5030400156974792, -0.5719799995422363, -0.2416599988937378, -0.5898000001907349, -0.036931999027729034, -0.0672919973731041, 0.4292699992656708, -0.5907800197601318, -0.16819000244140625, -0.304639995098114, 0.10732000321149826, 0.10853999853134155, 0.10531000047922134, 0.9686499834060669, 0.555109977722168, 0.5483400225639343, -0.5564000010490417, -0.2390899956226349, 0.6215900182723999, 0.3549099862575531, -0.40887999534606934, -0.24365000426769257, 0.4403400123119354, -0.6070299744606018, 0.4330500066280365, -0.16216999292373657, -0.1123799979686737, 0.06964199990034103, -0.04822099953889847, 0.3792400062084198, -0.5478699803352356, 0.1236800029873848, -0.002204699907451868, 0.002099399920552969, 0.31547001004219055, 0.010582000017166138, 0.4653100073337555, 0.5885400176048279, 0.5574899911880493, -0.1578799933195114, 0.1399800032377243, 0.31518998742103577, 0.6658300161361694, -0.14114999771118164, -0.26732999086380005, 0.41857001185417175, 0.6178399920463562, 0.6630600094795227, -0.4872399866580963, 0.22064000368118286, -0.03280699998140335, -0.3353999853134155, 0.46511998772621155, -0.11435999721288681, 0.03014500066637993, -0.15033000707626343, -0.11232999712228775, 0.23332999646663666, -0.12238000333309174, 0.21457000076770782, -0.5379700064659119, -0.35089001059532166, -0.6172900199890137, 0.24779999256134033, 0.02022700011730194, 0.9021499752998352, 0.379830002784729, -0.37770000100135803, 0.19780999422073364, -0.19296999275684357, 0.23747999966144562, -0.27331000566482544, -0.30674999952316284, -0.4736500084400177, -0.11148999631404877, -0.30090999603271484, -0.7871699929237366, 0.1731400042772293, 0.046241000294685364, -0.005057299975305796, -0.459989994764328, -0.31411001086235046, 0.7174500226974487, -0.14448000490665436, -0.1890600025653839, -0.04614799842238426, 0.08124999701976776, -0.6754699945449829, 0.17023000121116638, 0.10948000103235245, -0.40887001156806946, 0.0581820011138916, -0.21094000339508057, -0.2619900107383728, -0.1379700005054474, -0.6711199879646301, -0.2602599859237671, 0.1301400065422058, -0.11568000167608261, -0.23579999804496765, -0.3948499858379364, 0.5488899946212769, -0.19952000677585602, -0.1449200063943863, -0.8683500289916992, 0.2910099923610687, 0.37470000982284546, 0.37290000915527344, 0.017297999933362007, -0.15192000567913055, 0.7276800274848938, 0.1010499969124794, -0.5246400237083435, -0.044468000531196594, -0.1003900021314621, -0.008392499759793282, 0.31147998571395874, -0.24943000078201294, 0.22787000238895416, -0.063059002161026, -0.10496000200510025, -0.21854999661445618, 0.16245000064373016, 0.6708199977874756, -0.47953000664711, -0.4088999927043915, 0.694320023059845, 0.044266000390052795, 0.5248100161552429, -0.06368900090456009, -0.35978999733924866, 0.01736699976027012, 0.30796000361442566, 0.2291100025177002, -0.18625999987125397, 0.055750999599695206, -0.5228400230407715, -0.49334999918937683, -0.011815999634563923, 0.016529999673366547, 0.7457299828529358, 0.0933689996600151, 0.10283999890089035, 0.2305999994277954, -0.3972199857234955, 0.25481998920440674, 0.20813000202178955, -0.09723500162363052, -0.4525499939918518, 0.7286499738693237, -0.030866000801324844, 1.09660005569458, -0.022515999153256416, 0.04947200044989586, 0.03651599958539009, 0.058368999511003494, 0.4500100016593933, 0.242249995470047, -0.03584799915552139, -0.3699299991130829, 0.31264999508857727, -0.22495999932289124, 0.07174500077962875, -0.17594000697135925, -0.3161799907684326, 0.3923799991607666, 0.6691200137138367, -0.07127399742603302, -0.03897299990057945, -0.067051000893116, -0.28376999497413635, 0.09142599999904633, 0.523360013961792, -0.1252399981021881, -0.44822999835014343, 0.17743000388145447, -0.06847699731588364, -0.19600999355316162, 0.42173999547958374, -0.06203500181436539, -0.034175001084804535, -0.05392000079154968, 0.09062200039625168, -0.2471799999475479, 0.09549500048160553, -0.06188200041651726, -0.011455999687314034, -0.014336000196635723, -0.2055400013923645, -0.03796200081706047, -0.3421199917793274, -0.07462000101804733, 0.228970006108284, 0.07642299681901932, 0.17312000691890717, -0.6195700168609619, 0.4055100083351135, -0.05753900110721588, -0.12274999916553497, 0.1312199980020523, 0.6519299745559692, -0.032533999532461166, 0.39730000495910645, 0.43244999647140503, -0.7477700114250183, 0.49606001377105713, 0.17629000544548035, 0.21052999794483185, 0.14837999641895294, -0.2967100143432617, 0.3598400056362152, -0.7614700198173523, 0.29673999547958374, 0.044325001537799835, -0.3763299882411957, -0.11314000189304352, -0.38857001066207886, 0.7611299753189087, 0.4206399917602539, -0.18659000098705292, -0.06413400173187256, -0.06275799870491028, -0.11956000328063965, -0.05178900063037872, -0.013768999837338924, -0.11151000112295151, 0.10758999735116959, -0.10420999675989151, -0.22033999860286713, -0.34911999106407166, 0.2126699984073639, -0.5107200145721436, 0.13059000670909882, -0.21121999621391296, -0.4149700105190277, -0.46136999130249023, -0.09348700195550919, 0.38944000005722046, 0.046626001596450806, 0.006577800028026104, -0.13565999269485474, -0.03243099898099899, 0.24211999773979187, -0.2960900068283081, -0.3712800145149231, -0.05021499842405319, 0.396699994802475, -0.019447000697255135, 0.7682099938392639, 0.4889200031757355, -0.1959500014781952], u'butter': [0.35740000009536743, 0.46897000074386597, -0.02180200070142746, 0.02373100072145462, -0.1675100028514862, -0.21252000331878662, -0.07389000058174133, -0.030308999121189117, 0.05408100038766861, -0.7501400113105774, 0.16482000052928925, -0.6409599781036377, -0.1956000030040741, 0.7117199897766113, -0.4731000065803528, 0.24522000551223755, -0.31832000613212585, 0.22025999426841736, -0.46698999404907227, 0.13127000629901886, -0.09982000291347504, 0.1588200032711029, 0.321370005607605, 0.7029899954795837, -0.1691100001335144, 0.1810300052165985, -0.21629999577999115, 0.024159999564290047, -0.416049987077713, -0.31852999329566956, -0.5285699963569641, 0.6372600197792053, 0.0061471001245081425, -0.3175100088119507, -0.48541998863220215, 0.8788300156593323, 0.11224000155925751, 0.7156000137329102, -0.06352800130844116, 0.09145499765872955, 0.2427700012922287, -0.3180299997329712, 0.3973599970340729, 0.04231499880552292, 0.20201000571250916, -0.18296000361442566, 0.18637999892234802, 0.2814199924468994, 0.1025800034403801, 0.5708400011062622, 0.34975001215934753, 0.19384999573230743, 0.14357000589370728, 0.06458000093698502, -0.17570999264717102, 0.009340699762105942, -0.5128999948501587, 0.43198999762535095, 0.5767099857330322, 0.306769996881485, 0.35047999024391174, 0.7135099768638611, -0.2195899933576584, 0.18314999341964722, 0.18901999294757843, -0.14925000071525574, 0.22412000596523285, 0.2796800136566162, -0.6507999897003174, -0.3127399981021881, 0.10141000151634216, -0.09000299870967865, -0.07212900370359421, 0.3130199909210205, -0.7253400087356567, 0.2934499979019165, 0.3774999976158142, -0.11840000003576279, -0.2931399941444397, -0.2669999897480011, -0.13597999513149261, 0.3796199858188629, -0.2980499863624573, -0.18963000178337097, 0.1311500072479248, -0.4946900010108948, -0.13926999270915985, -0.21144999563694, -0.7411400079727173, -0.61940997838974, -0.08010199666023254, -0.3505899906158447, -0.2510499954223633, -0.09322699904441833, -0.5129899978637695, -0.3139899969100952, 0.33055999875068665, 0.5395299792289734, -0.3281700015068054, 0.6172800064086914, -0.25095999240875244, 0.09546300023794174, 0.3918299973011017, -0.9353799819946289, -0.6474400162696838, -0.3268199861049652, -0.13433000445365906, 0.14000000059604645, -0.38304001092910767, 0.9352800250053406, 0.5453199744224548, -0.1055700033903122, -0.11540000140666962, 0.32214999198913574, -0.001052499981597066, -0.024337999522686005, -0.5584800243377686, 0.985230028629303, 0.4214800000190735, -0.10260000079870224, -0.6287599802017212, -0.6678299903869629, 0.47356000542640686, 0.03270699828863144, -0.41363999247550964, -0.2711400091648102, 0.08825100213289261, 0.23327000439167023, -0.7441400289535522, 0.8938900232315063, -0.2659600079059601, 0.7995399832725525, 0.17870000004768372, 1.1258000135421753, -0.04033900052309036, -0.17760999500751495, -0.17499999701976776, 0.5170199871063232, -0.17361000180244446, 0.5390899777412415, 0.6204500198364258, 0.4358200132846832, -0.6741200089454651, -0.15871000289916992, -0.5170599818229675, 0.7493100166320801, -0.16410000622272491, -0.026355000212788582, 0.3677400052547455, -0.04604800045490265, -0.7644500136375427, 0.7526999711990356, 0.2496500015258789, 0.2943899929523468, -0.7751500010490417, -0.32857999205589294, -0.12256000190973282, -0.2770799994468689, -0.3753100037574768, -0.19242000579833984, 0.2977199852466583, 0.13327999413013458, 0.03483600169420242, -0.505079984664917, -0.05377500131726265, -0.04992099851369858, 0.27849000692367554, 0.23128999769687653, 0.13123999536037445, -0.5974500179290771, -0.2689099907875061, 0.32771000266075134, -0.3806999921798706, 0.07156399637460709, -0.3647400140762329, -0.5590500235557556, 0.6252099871635437, -0.9282199740409851, 0.4889799952507019, -0.5830299854278564, 0.2993299961090088, 0.43140000104904175, 0.1745299994945526, -0.8165900111198425, 0.050951000303030014, -0.6066799759864807, 1.3375999927520752, 0.3037000000476837, -0.13895000517368317, -0.16655999422073364, 0.3660599887371063, 1.1930999755859375, 0.1418599933385849, -0.037285998463630676, 0.3140299916267395, -0.46226999163627625, -0.4143100082874298, -0.30640000104904175, 0.425790011882782, -0.34255000948905945, 0.13875000178813934, -0.6711699962615967, 1.2869999408721924, 0.49970000982284546, 0.45138001441955566, -0.40165001153945923, 0.30149999260902405, 0.07049500197172165, -0.6126700043678284, 0.024829000234603882, 0.7330800294876099, -0.02307800017297268, -0.2862800061702728, 0.3506700098514557, -0.7284200191497803, 0.1590300053358078, 0.2803800106048584, -0.22710999846458435, 0.2635999917984009, 0.03542200103402138, 0.013605000451207161, 0.7978500127792358, -0.13266000151634216, -0.7555599808692932, -0.4848400056362152, -0.29673001170158386, 0.15865999460220337, 0.39056000113487244, 0.23955999314785004, -0.034717001020908356, 0.0824740007519722, -0.008359000086784363, 0.05174199864268303, -0.19241000711917877, 0.959559977054596, 0.07506600022315979, -0.08175300061702728, 0.5238100290298462, -1.0707000494003296, -0.7510600090026855, -0.44955000281333923, -0.2687000036239624, -0.4653699994087219, 0.013110999949276447, -1.0154999494552612, -0.17833000421524048, 0.2640799880027771, 0.42250001430511475, -0.2068600058555603, -0.8311200141906738, 0.12116000056266785, -0.36807000637054443, 0.5824400186538696, 0.5626099705696106, -0.23446999490261078, -0.08911799639463425, -0.08409799635410309, -0.06563899666070938, -0.05166799947619438, 0.4371899962425232, -0.23016999661922455, -0.5986999869346619, 0.14774000644683838, 0.0438309982419014, 0.35352998971939087, 0.047283999621868134, -0.507610023021698, -0.11313000321388245, 0.3269200026988983, 0.011033999733626842, -0.28200000524520874, -0.004097300115972757, -0.2708599865436554, 1.1622999906539917, 0.06730800122022629, 0.9239199757575989, -0.6824100017547607, -0.45340999960899353, -0.8950099945068359, -0.08192399889230728, 0.1657000035047531, 0.5961999893188477, -0.5571100115776062, -0.6196799874305725, 0.6453800201416016, 1.1044000387191772, 0.19634999334812164, -0.608299970626831, 0.05332399904727936, 0.7442100048065186, -0.2904700040817261, 0.047919001430273056, 0.5046600103378296, -0.10334999859333038, -0.041891999542713165, -0.5962399840354919, 0.06558900326490402, -0.18799999356269836, -0.05260000005364418, 0.5153399705886841], u'trail': [-0.3418999910354614, -0.2646999955177307, 0.3264800012111664, 0.06005999818444252, -0.3948400020599365, 0.1531199961900711, -0.20945000648498535, 0.2455199956893921, 0.5456299781799316, 0.11061999946832657, -0.10406000167131424, 0.05450500175356865, -0.62704998254776, -0.07137200236320496, 0.4486500024795532, 0.3208700120449066, -0.320389986038208, 0.1470700055360794, 0.5647100210189819, 0.19678999483585358, -0.3820599913597107, -0.30188998579978943, 0.23352999985218048, 0.018338000401854515, 0.12086000293493271, -0.5157600045204163, 0.05538100004196167, 0.010966000147163868, -0.1712999939918518, 0.2984899878501892, 0.8929399847984314, 0.17133000493049622, -0.30820998549461365, 0.21863999962806702, -0.52920001745224, 0.4879100024700165, -0.473470002412796, 0.05956299975514412, 0.6571400165557861, -0.37077999114990234, -0.7883899807929993, 0.13862000405788422, 0.08782999962568283, -0.03851599991321564, 0.03341199830174446, 0.08253200352191925, 0.9928699731826782, 0.39956000447273254, -0.009004100225865841, -0.5591099858283997, -0.5972999930381775, 0.016334999352693558, -0.08935800194740295, -0.020005999132990837, 0.28457000851631165, 0.2007099986076355, -0.22362999618053436, -0.7044900059700012, -0.06094300001859665, 0.6574000120162964, 0.35589998960494995, 0.1937599927186966, 0.7612500190734863, -0.26194000244140625, 0.47380000352859497, -0.3694300055503845, -0.3227800130844116, -0.5525799989700317, -0.02560500055551529, -0.3243899941444397, 0.08922699838876724, 0.22537000477313995, 0.29054000973701477, 0.6877400279045105, -0.15129999816417694, -0.07783100008964539, 0.5409700274467468, 0.21501000225543976, -0.36256998777389526, -0.26096001267433167, -0.8073099851608276, 0.18945999443531036, 0.7846599817276001, -0.267659991979599, -0.3649600148200989, -0.8002300262451172, -0.08641599863767624, 0.5898200273513794, 0.2857300043106079, 0.4724999964237213, -0.11806999891996384, -0.175369992852211, 0.4750800132751465, -0.39844000339508057, -0.0950549989938736, -0.20422999560832977, 0.40092000365257263, 0.31178998947143555, 0.503030002117157, -0.21323999762535095, -0.5206199884414673, 0.5077499747276306, -0.14645999670028687, 0.46518999338150024, 0.017842000350356102, -0.3163299858570099, 0.2579500079154968, 0.1020599976181984, 0.02578200027346611, 0.090038001537323, 0.11558999866247177, -0.8945800065994263, -0.021463999524712563, -0.624809980392456, 0.21264000236988068, 0.1123099997639656, 0.23931999504566193, 0.5250399708747864, 0.3867200016975403, 0.4267300069332123, -0.03622400015592575, -0.19499999284744263, -0.2665199935436249, -0.22160999476909637, -0.2959100008010864, 0.18797999620437622, -0.763949990272522, 0.01905299909412861, -0.3767000138759613, 0.21446000039577484, -0.17093999683856964, -0.03375000134110451, -0.051274001598358154, 0.017069000750780106, -0.03128400072455406, -0.07577099651098251, 0.36357998847961426, 0.5729299783706665, 0.65802001953125, -0.2874999940395355, 0.5707200169563293, -0.7242799997329712, -0.1307000070810318, 0.4691300094127655, -0.5791299939155579, 0.05071699991822243, 0.4708999991416931, 0.02878499962389469, -0.039055999368429184, 0.09854300320148468, 0.26243001222610474, 0.7679299712181091, -0.6400700211524963, -0.0708250030875206, 0.551289975643158, -0.3626199960708618, 0.44530999660491943, -0.0792820006608963, -0.19568000733852386, 0.6527699828147888, 0.24132999777793884, -0.2712399959564209, 0.4868299961090088, -0.1932400017976761, 0.010707000270485878, -0.13964000344276428, 0.44881001114845276, -0.6265100240707397, -0.3996100127696991, 0.30278998613357544, -0.2070000022649765, -0.334850013256073, -0.1043500006198883, 0.42866000533103943, -0.0824199989438057, -0.3158800005912781, 0.1633400022983551, -0.11747000366449356, 0.04811599850654602, -0.08820199966430664, 0.40132999420166016, 0.6401299834251404, 0.052372001111507416, 0.008061000145971775, -0.6818600296974182, -0.3370699882507324, -0.03752100095152855, 0.2170500010251999, -0.1458200067281723, 0.2090499997138977, -0.08005700260400772, 0.6924200057983398, -0.09491699934005737, -0.38523000478744507, -0.5958099961280823, -0.20216000080108643, 0.08428700268268585, -0.5273200273513794, 0.2490299940109253, 0.4426499903202057, 1.1233999729156494, 0.04354200139641762, 0.40933001041412354, -0.08285299688577652, -0.3758699893951416, -0.02575499936938286, -0.48416998982429504, 0.11485999822616577, -0.04367300122976303, 0.38892999291419983, -0.027403999119997025, -0.185479998588562, 0.3834800124168396, 0.023125000298023224, -0.3223100006580353, -0.011014999821782112, -0.345550000667572, 0.22387999296188354, -0.25863999128341675, -0.3881700038909912, 0.5174599885940552, -0.22811000049114227, -0.22995999455451965, -0.760640025138855, 0.43112999200820923, 0.12008000165224075, -0.05008599907159805, 0.10016000270843506, -0.7971199750900269, 0.23987999558448792, -0.452349990606308, -0.24657000601291656, -0.13085000216960907, -0.20555000007152557, -0.11817000061273575, 0.28095000982284546, -0.3013800084590912, -0.4018999934196472, 0.05500800162553787, -0.1526000052690506, 0.08674199879169464, 0.32561999559402466, -0.01459100004285574, -0.7882800102233887, -0.270550012588501, -0.5509399771690369, 0.5373299717903137, 0.48984000086784363, 0.5337499976158142, 0.03916399925947189, -0.1810699999332428, -0.19144999980926514, -0.15809999406337738, -0.4020099937915802, 0.35387998819351196, -0.40411999821662903, 0.14480000734329224, -0.04033299908041954, -0.552299976348877, 0.3535799980163574, -0.324180006980896, -0.20685000717639923, 0.06492699682712555, 0.2913599908351898, -0.30643999576568604, -0.15172000229358673, 0.1359100043773651, -0.17847999930381775, -0.014135999605059624, -0.24315999448299408, 0.05890899896621704, -0.07424700260162354, 0.0005774900200776756, 0.02453400008380413, 0.31755000352859497, 0.35767999291419983, -1.2640999555587769, -0.27109000086784363, 0.49390000104904175, 0.013621999882161617, 0.6866400241851807, -0.3796600103378296, 0.29635000228881836, -0.22758999466896057, -0.666920006275177, 0.2667199969291687, 0.28110000491142273, -0.14688999950885773, 0.05291999876499176, -0.33087000250816345, 0.15616999566555023, 0.16830000281333923, -1.1256999969482422, 1.0640000104904175, -0.6947000026702881, -0.2106499969959259, -0.25863999128341675, 0.5571200251579285, 0.3604600131511688, 0.22429999709129333], u'coat': [0.033257998526096344, -0.4309599995613098, -0.05786899849772453, -0.4050999879837036, -0.004820900037884712, -0.352620005607605, -0.3757599890232086, -0.024196000769734383, 0.271340012550354, -1.0440000295639038, 0.041620999574661255, -0.0805009976029396, -0.17118999361991882, 0.33866000175476074, 0.06759800016880035, 0.2361000031232834, 0.20720000565052032, 0.1174200028181076, 0.0279300007969141, -0.6486899852752686, -0.6463800072669983, -0.40874001383781433, 0.6183599829673767, 0.6526299715042114, 0.09168700128793716, -0.6506199836730957, 0.5062699913978577, 0.5832599997520447, -0.22703999280929565, -0.4445199966430664, 0.43415001034736633, -0.07450900226831436, -0.3217499852180481, 0.3469099998474121, 0.05670500174164772, 0.5999000072479248, 0.18929000198841095, 0.09392800182104111, -0.668940007686615, 0.5004799962043762, -0.28554001450538635, -0.9274799823760986, 0.07879400253295898, -0.042132001370191574, 0.7348899841308594, -0.20795999467372894, 0.12732000648975372, -0.14063000679016113, -0.1738000065088272, -0.0940679982304573, -0.4862099885940552, -0.11344999819993973, 0.5636000037193298, -0.05898100137710571, -0.21907000243663788, 0.17523999512195587, 0.004479699768126011, -0.4429900050163269, 0.3677600026130676, 0.14264999330043793, 0.3501499891281128, 0.1882999986410141, 0.002128100022673607, -0.008247699588537216, 0.3242200016975403, -0.5782999992370605, -0.39750999212265015, 0.21793000400066376, 0.27421998977661133, 0.02993999980390072, 0.3841499984264374, -0.14993000030517578, 0.18223999440670013, -0.43456000089645386, -0.3970299959182739, 0.2650800049304962, -0.024196000769734383, 0.23746000230312347, -0.1545500010251999, -0.4425800144672394, -0.02422500029206276, 0.35267001390457153, 0.07205499708652496, -0.3278000056743622, 0.3608500063419342, -0.10343000292778015, -0.13367000222206116, -0.1857299953699112, -0.6292700171470642, 0.05017999932169914, 0.06853900104761124, -0.24573999643325806, 0.13681000471115112, 0.07716500014066696, -0.6251400113105774, -0.000677440024446696, 0.13088999688625336, 0.7808399796485901, 0.22333000600337982, 0.6030300259590149, 0.3400900065898895, 0.2444400042295456, -0.1437000036239624, 0.10514000058174133, 0.09691599756479263, -0.10391999781131744, 0.1882600039243698, -0.0004733600071631372, -0.19232000410556793, 0.9813600182533264, 0.5807999968528748, 0.7936699986457825, -0.1430100053548813, -0.0755779966711998, -0.30110999941825867, 0.41787999868392944, -0.6520299911499023, 0.4701499938964844, 0.25540998578071594, -0.5964000225067139, -0.3902899920940399, 0.1063700020313263, 0.8771600127220154, 0.2708899974822998, -0.061702001839876175, -0.21243000030517578, 0.27584001421928406, 0.6590399742126465, 0.18556000292301178, 0.40602999925613403, 0.30904000997543335, 0.07037799805402756, -0.7021099925041199, 0.9166100025177002, 0.0737840011715889, -0.08189599961042404, -0.2619900107383728, 0.2898100018501282, 0.3153899908065796, 0.484250009059906, -0.043838001787662506, 0.18091000616550446, -0.39833998680114746, -0.05704699829220772, 0.20235000550746918, 0.3947800099849701, -0.06951499730348587, 0.11421000212430954, 0.3851499855518341, 0.27382001280784607, -0.07072500139474869, 0.602649986743927, -0.8229299783706665, -0.760860025882721, -0.051093000918626785, 0.08159100264310837, -0.2612900137901306, -0.33739998936653137, 0.1625799983739853, 0.5730100274085999, 0.18702000379562378, 0.049139998853206635, -0.48927998542785645, -0.12184999883174896, 0.11753000319004059, -0.19664999842643738, 0.15841999650001526, 0.42114999890327454, 0.522379994392395, -0.37150999903678894, -0.1143300011754036, -0.2755900025367737, -0.12233000248670578, 0.37310999631881714, 0.30515000224113464, 0.01919800043106079, 0.35389000177383423, -0.2431900054216385, -0.6099799871444702, -1.2091000080108643, 0.2665500044822693, 0.2721000015735626, 0.3849799931049347, -0.11009000241756439, 0.3780899941921234, -0.02607000060379505, 0.8576899766921997, 0.10324999690055847, -0.5167999863624573, -0.09375900030136108, 0.05406000092625618, 0.45770999789237976, -0.22436000406742096, -0.11529000103473663, -0.030690999701619148, -0.4290800094604492, -0.23431000113487244, 0.29291999340057373, -0.3290799856185913, -0.09949100017547607, 0.7940400242805481, -0.28185001015663147, 0.30518001317977905, 0.20050999522209167, 0.4802600145339966, -0.21886999905109406, 0.30483999848365784, 0.19990000128746033, -0.3294700086116791, -0.20558999478816986, 0.5339300036430359, -0.24368999898433685, -0.1861400008201599, 0.11889000236988068, 0.3778400123119354, -0.45443999767303467, 0.7459400296211243, -0.4756599962711334, 0.22109000384807587, -0.5848299860954285, -0.048875998705625534, 0.08240099996328354, 0.28835999965667725, -0.23330999910831451, 0.14142000675201416, -0.21154999732971191, 0.18242000043392181, -0.31929999589920044, 0.27110999822616577, -0.2483700066804886, 0.6312299966812134, 0.1947699934244156, -0.4366300106048584, 0.43435999751091003, 0.1260399967432022, 0.08642499893903732, 0.4121899902820587, -0.4038600027561188, -0.38646000623703003, 0.6350799798965454, 0.5013700127601624, -0.150859996676445, -0.3377699851989746, 0.1501699984073639, -0.8496099710464478, 0.4941900074481964, -0.07898499816656113, -0.42761000990867615, 0.047857001423835754, -1.1916999816894531, -0.33149999380111694, 0.241689994931221, 0.2955799996852875, -0.6757599711418152, 0.7788900136947632, 0.1917800009250641, 0.04907499998807907, 0.22618000209331512, -0.22224999964237213, -0.1647000014781952, -0.260560005903244, -0.11767999827861786, 0.45974001288414, 0.3388200104236603, -0.3517000079154968, 0.22335000336170197, -0.27577000856399536, -0.17744000256061554, -0.3792499899864197, -0.25758999586105347, 0.04614400118589401, -0.5023099780082703, 0.17795999348163605, -0.3744199872016907, -0.4878999888896942, -0.05866200104355812, -0.7780399918556213, -0.43129000067710876, -0.6892499923706055, 0.004015100188553333, 0.4713200032711029, 0.4316900074481964, 0.07351700216531754, -0.1522900015115738, -0.8124300241470337, 0.7383999824523926, 0.14448000490665436, 0.3885200023651123, 0.3379000127315521, -0.20303000509738922, 0.28356000781059265, -0.13235999643802643, -0.25251999497413635, 0.5453500151634216, 0.19643999636173248, -0.3777500092983246, 0.3608500063419342, 0.46415001153945923, 0.7041900157928467, 0.5920199751853943], u'seafood': [0.26409000158309937, 0.5856800079345703, 0.2948800027370453, -0.03710399940609932, 0.022732000797986984, -0.047697000205516815, 0.23305000364780426, 0.4109100103378296, -0.27147001028060913, 0.13957999646663666, 0.46682998538017273, -0.5885699987411499, -0.39059001207351685, 0.37362000346183777, -0.24120000004768372, -0.617609977722168, -0.3024199903011322, 0.46465998888015747, -0.4075799882411957, 0.49366000294685364, -0.3262600004673004, 0.6464300155639648, 0.13211999833583832, -0.1025800034403801, -0.5072699785232544, 0.3215300142765045, -0.33636000752449036, -0.03396400064229965, -0.296999990940094, -0.40178999304771423, 0.14967000484466553, 0.4998300075531006, -0.49334999918937683, 0.20938999950885773, -0.22123000025749207, 0.4847800135612488, -0.15674999356269836, -0.599560022354126, -0.24775999784469604, -0.22673000395298004, -0.443230003118515, 0.36100998520851135, 0.32207998633384705, 0.4322899878025055, -0.6561999917030334, 0.07894600182771683, 0.6250100135803223, -0.2851000130176544, -0.35131001472473145, 0.8483999967575073, -0.505370020866394, -0.1645900011062622, 0.42882001399993896, -0.22142000496387482, -0.0027441000565886497, 0.20757000148296356, 0.2770000100135803, 0.444489985704422, -0.4585300087928772, -0.015745000913739204, 0.43887999653816223, -0.61735999584198, 0.6187400221824646, -0.3109099864959717, 0.03340600058436394, 0.09955199807882309, -0.6118299961090088, -0.5154200196266174, -0.3763200044631958, 0.5327000021934509, 0.17180000245571136, 0.0897269994020462, 0.4473400115966797, -0.6677200198173523, -0.3619999885559082, 0.15550999343395233, 0.7942000031471252, 0.2603900134563446, -0.49046000838279724, -0.2082200050354004, -0.28600001335144043, 0.22432999312877655, -0.07886499911546707, 0.1109199970960617, 0.5890200138092041, -0.5648400187492371, -0.04706500098109245, 0.08641599863767624, -0.29701998829841614, -0.7547000050544739, 0.10495000332593918, -0.2500399947166443, -0.027823999524116516, -0.0520780012011528, -0.06538300216197968, 0.5126699805259705, -0.093129001557827, -0.023746000602841377, -0.003072800114750862, 0.08685000240802765, 0.03925999999046326, 0.2918800115585327, 0.5734400153160095, -0.5186100006103516, -0.057705000042915344, -0.24626000225543976, 0.2528800070285797, 0.3441300094127655, -0.0509909987449646, 0.1698099970817566, 0.6293500065803528, -0.321289986371994, -0.5460699796676636, -0.41391000151634216, 0.5382500290870667, -0.5631899833679199, 0.19262999296188354, 0.027000999078154564, -0.2707200050354004, 0.6279100179672241, -0.41585999727249146, 0.09056399762630463, 0.18082000315189362, 0.4529699981212616, 0.4343400001525879, 0.22222000360488892, -0.21363000571727753, 0.20011000335216522, 0.20442000031471252, 0.7223899960517883, -0.005064200144261122, 0.10936000198125839, -0.002544600050896406, -0.5395600199699402, -0.022268999367952347, -0.10405000299215317, 0.3877600133419037, 0.0912420004606247, 0.03009900078177452, 0.6924499869346619, 0.283160001039505, 0.38569000363349915, 0.9010499715805054, -0.322270005941391, -0.0650079995393753, 0.20110000669956207, -0.2994900047779083, -0.20216000080108643, -0.23172999918460846, -0.26589998602867126, -0.5813599824905396, 0.040876999497413635, 0.4465799927711487, -0.32521000504493713, -0.5605999827384949, -0.5083799958229065, -0.35717999935150146, -0.1666799932718277, -0.24122999608516693, -0.4309999942779541, 0.7152000069618225, 0.6528400182723999, 0.0065612997859716415, 0.15518000721931458, 0.17792999744415283, -0.5145999789237976, 0.8118699789047241, -0.7874500155448914, -0.20204000174999237, 0.43939998745918274, -0.4571300148963928, -0.156700000166893, -0.3427099883556366, 0.23952999711036682, 0.12231999635696411, 0.05755599960684776, 0.3567099869251251, 0.011932999826967716, 0.18569999933242798, -0.7831400036811829, 0.009127099998295307, -0.31894999742507935, -0.10859999805688858, 0.10936000198125839, 0.08544400334358215, -0.2639000117778778, 0.7173399925231934, 0.43004000186920166, 0.25659000873565674, -0.06895100325345993, -0.575760006904602, 0.6182900071144104, -0.9414399862289429, -0.047210000455379486, 0.6252300143241882, -0.0017088999738916755, 0.03374199941754341, -0.42767998576164246, -0.4894599914550781, -0.10769999772310257, -0.02896299958229065, -0.46303001046180725, 0.06034599989652634, 0.1574700027704239, 0.07988200336694717, 1.1270999908447266, 0.6959800124168396, -0.25383999943733215, 0.17533999681472778, -0.038100000470876694, 0.002357000019401312, -0.47442999482154846, -0.1015700027346611, 0.4464600086212158, 0.09087599813938141, 0.19208000600337982, 0.6029099822044373, -0.4117699861526489, -0.2166299968957901, 0.042454998940229416, 1.0694999694824219, -0.20774999260902405, -0.5250899791717529, -0.4159899950027466, 0.20303000509738922, 0.11692000180482864, 0.1739100068807602, -0.26111000776290894, 0.022877000272274017, 0.5033699870109558, 0.034651998430490494, 0.2655999958515167, 0.13075000047683716, 0.06352800130844116, 0.8255100250244141, 0.3031800091266632, 0.3974500000476837, -0.3274399936199188, -0.2055100053548813, -0.09925699979066849, -0.7507500052452087, 0.16574999690055847, -0.24924999475479126, -0.04562700167298317, -0.6189299821853638, 0.2531200051307678, 0.17754000425338745, -0.0443900004029274, -0.661870002746582, -0.3958599865436554, 0.6389899849891663, -0.12732000648975372, 0.263839989900589, 0.5766500234603882, 0.0887259989976883, 0.06765399873256683, -0.4159199893474579, 0.724049985408783, -0.2760300040245056, 0.3051300048828125, -0.1231599971652031, -0.4645499885082245, -0.2110300064086914, -0.6620100140571594, 0.25843000411987305, -0.26579999923706055, -0.11151000112295151, -0.053467001765966415, 0.4409799873828888, -0.5055800080299377, -0.4550800025463104, -0.021699000149965286, -0.1311500072479248, 0.4532099962234497, 0.1848900020122528, 0.10830999910831451, -0.9085999727249146, 0.23948000371456146, -1.1369999647140503, -0.12065000087022781, -0.1993200033903122, 0.20015999674797058, -0.10922999680042267, 0.21936999261379242, 0.08078700304031372, 0.25839000940322876, -0.033466000109910965, -0.15863999724388123, 0.48778998851776123, -0.0447239987552166, -0.0056687998585402966, 0.25527000427246094, 0.4964999854564667, -0.23943999409675598, -0.23197999596595764, -0.6543999910354614, 0.14709000289440155, -0.24120000004768372, -0.15755000710487366, -0.3597399890422821], u'clock': [0.08165399730205536, 0.14842000603675842, -0.05922599881887436, 0.13867999613285065, 0.0003969100071117282, -0.10129000246524811, 0.24782000482082367, -0.5255399942398071, 0.6901199817657471, -0.8259000182151794, 0.1460999995470047, -0.15440000593662262, 0.5631399750709534, -0.3790600001811981, 0.6994400024414062, 0.13213999569416046, 0.23107999563217163, -0.4994100034236908, -0.8679199814796448, -0.015327000059187412, 0.22867999970912933, -0.287200003862381, -0.04801899939775467, -0.144679993391037, 0.7656400203704834, 0.1993499994277954, -0.16506999731063843, -0.44951000809669495, -0.45006000995635986, -0.001766399946063757, 0.5909600257873535, 0.38618001341819763, -0.291810005903244, 0.5502200126647949, -0.7234200239181519, 0.11554999649524689, -0.6076599955558777, -0.3613399863243103, -0.47115999460220337, 0.41822001338005066, -0.1990099996328354, 0.49421998858451843, -0.3191100060939789, -0.195810005068779, -0.1688700020313263, 0.17317000031471252, 0.3047800064086914, -0.131850004196167, 0.07450100034475327, -0.3618600070476532, 0.09673400223255157, 0.27195000648498535, 0.06851399689912796, 0.05279399827122688, -0.41106000542640686, -0.18091000616550446, -0.1146399974822998, 0.21046000719070435, 0.06938300281763077, 0.4465000033378601, 0.2783200144767761, -0.19853000342845917, 0.35319000482559204, -0.024163000285625458, -0.4496999979019165, 0.11479000002145767, 0.3725599944591522, 0.21755999326705933, 0.33438000082969666, -0.5769500136375427, 0.37595999240875244, 0.5586599707603455, -0.08815199881792068, 0.05776600167155266, 0.2923800051212311, 0.8400800228118896, 0.06207599863409996, -0.5133799910545349, 0.27118000388145447, -0.15877999365329742, 0.11841999739408493, -0.28797999024391174, -0.21198999881744385, 0.5508000254631042, 0.11606000363826752, 0.04831099882721901, -0.16957999765872955, -0.09432999789714813, -0.12999999523162842, 0.263700008392334, 0.8748800158500671, -0.31255000829696655, -0.20558999478816986, -0.1430799961090088, -0.386570006608963, -0.11794000118970871, -0.23952999711036682, -0.5196899771690369, 0.447299987077713, -0.45412999391555786, 0.08691100031137466, 0.5075700283050537, 0.11423999816179276, -0.05184699967503548, 0.4692299962043762, -0.5387600064277649, 0.2467699944972992, -0.17372000217437744, -0.08164799958467484, 0.40981000661849976, -0.41725999116897583, 0.1143300011754036, -0.6557300090789795, 0.4583199918270111, -0.34099000692367554, -0.21397000551223755, -0.4089199900627136, 0.2729499936103821, -0.43922001123428345, -0.03754099830985069, -0.1442600041627884, -0.2782000005245209, 0.34321001172065735, -0.25679001212120056, -0.1368200033903122, -0.4577699899673462, 0.652459979057312, 0.6768900156021118, -0.4298500120639801, 0.07785899937152863, 0.2508600056171417, 0.29238998889923096, -0.09313700348138809, -0.1466899961233139, -0.33261001110076904, 0.12789000570774078, 0.489439994096756, -0.2559399902820587, 0.18164999783039093, 0.21664999425411224, -0.45548000931739807, 0.08848100155591965, -0.1290300041437149, 0.30577999353408813, -0.07122799754142761, 0.2559800148010254, -0.4763199985027313, -0.14112000167369843, 0.45625001192092896, -0.11270999908447266, -0.15805000066757202, 0.2828499972820282, 0.026009999215602875, -0.3222000002861023, 0.0768669992685318, -0.3001599907875061, -0.10341999679803848, -0.149849995970726, -0.026528000831604004, -0.17531999945640564, -0.08696500211954117, 0.028697000816464424, 0.07060699909925461, -1.0176000595092773, 0.21212999522686005, 0.6475600004196167, 0.023700999096035957, -0.19269999861717224, 0.35394999384880066, 0.3103399872779846, -0.2524600028991699, 0.5519000291824341, 0.2565000057220459, 0.16395999491214752, 0.3281700015068054, 0.1618099957704544, -0.628250002861023, 0.8094300031661987, -0.36302998661994934, -0.3320100009441376, -0.12684999406337738, -0.20232999324798584, -0.22134000062942505, -0.36021000146865845, -0.09336099773645401, -0.4661400020122528, 0.18445000052452087, -0.7567600011825562, 0.055112000554800034, -0.08090099692344666, 0.8075299859046936, 0.12685999274253845, -0.3427700102329254, 0.24413999915122986, 0.045605000108480453, -0.43751001358032227, -0.4554400146007538, 0.18129000067710876, 0.17739999294281006, -0.4378800094127655, 0.6987199783325195, 0.37821999192237854, 0.7755500078201294, 0.296999990940094, 0.34828001260757446, 0.045090001076459885, -0.8250600099563599, -0.9594100117683411, 0.12473999708890915, 0.3857699930667877, 0.41159000992774963, 0.44179999828338623, 0.04058599844574928, -0.7969099879264832, -0.268310010433197, 0.2631100118160248, -0.5670400261878967, -0.22811000049114227, 0.207179993391037, 0.22262999415397644, -0.5375400185585022, 0.0328189991414547, 0.13007999956607819, -0.3478499948978424, 0.24642999470233917, 0.31066998839378357, 0.13162000477313995, -0.09801100194454193, 0.1446399986743927, -0.23393000662326813, 0.12852999567985535, 0.06113100051879883, 0.4428899884223938, -0.2920899987220764, -0.7085199952125549, 0.40084001421928406, -0.15049000084400177, 0.12639999389648438, 0.4215799868106842, -0.02630000002682209, 0.23023000359535217, 0.2957499921321869, 0.1681399941444397, 0.01946300081908703, -0.09022799879312515, -0.060061998665332794, -0.05474400147795677, 0.1678600013256073, -0.328900009393692, -0.17332999408245087, -0.2908500134944916, -0.19865000247955322, -0.05100199952721596, 0.0331449992954731, 0.34968000650405884, 0.3080100119113922, -0.2595300078392029, 0.3218500018119812, -0.38905999064445496, -0.15491999685764313, -0.03514000028371811, -0.11635000258684158, 0.3546999990940094, 0.28387001156806946, -0.28325000405311584, 0.17177000641822815, 0.2381799966096878, -0.18685999512672424, 0.8946499824523926, -0.6076599955558777, 0.0522180013358593, 0.49441999197006226, 0.2594200074672699, -0.052678998559713364, 0.071602001786232, 0.42013001441955566, -2.0903000831604004, 0.44192999601364136, -0.3730500042438507, -0.13007999956607819, 0.1523900032043457, 0.15821999311447144, 0.30355000495910645, -0.33796000480651855, 0.3064500093460083, -0.08728200197219849, -0.2211499959230423, -0.5796599984169006, -0.3425000011920929, -0.31553998589515686, 0.14178000390529633, 0.16224999725818634, 0.07208500057458878, -0.46665000915527344, -0.1695300042629242, 0.06808499991893768, 0.4510500133037567, 0.06957300007343292, -0.11319000273942947, -0.07120399922132492], u'metal': [0.03929999843239784, 0.10657999664545059, -0.4749999940395355, -0.5335000157356262, 0.380950003862381, -0.4939799904823303, 0.3809700012207031, 0.13610999286174774, 0.048666998744010925, -1.1676000356674194, -0.6628999710083008, -0.32416000962257385, -0.07510299980640411, 0.14057999849319458, -0.07235399633646011, -0.7610999941825867, -0.9849500060081482, -0.007310300134122372, 0.06397700309753418, -0.43783000111579895, 0.27469998598098755, 0.18649999797344208, 0.13877999782562256, 0.581250011920929, 0.05127200111746788, -0.42535001039505005, 0.23382000625133514, 0.3990800082683563, -0.28751999139785767, 0.00817359983921051, 0.16753999888896942, 0.06505399942398071, -0.3374199867248535, 0.3002699911594391, -0.32738998532295227, -0.1635199934244156, -0.4068799912929535, -0.05522599816322327, 0.2368299961090088, 0.7452200055122375, -0.7515599727630615, -0.15148000419139862, -0.006415700074285269, -0.19878999888896942, -0.008562400005757809, 0.41356998682022095, -0.31657999753952026, -0.7115899920463562, -0.06972800195217133, 0.3523100018501282, 0.016527000814676285, 0.3511500060558319, 0.02843100018799305, 0.35662999749183655, 0.19165000319480896, 0.20529000461101532, -0.577049970626831, -0.15012000501155853, 0.7472000122070312, -0.37942999601364136, 0.4090000092983246, 0.6991299986839294, 0.49028000235557556, -0.10770999640226364, 0.5232999920845032, -0.04824100062251091, 0.12772999703884125, 0.4719800055027008, 0.05013599991798401, 0.7209600210189819, 0.24108000099658966, -0.39315998554229736, -0.1368899941444397, 0.31213998794555664, -0.4378100037574768, 0.3706499934196472, -0.21664999425411224, -0.2088800072669983, 0.02428700029850006, -0.6289299726486206, 0.10673999786376953, -0.23652000725269318, -0.002644999884068966, 0.025169000029563904, 0.3391900062561035, -0.1593800038099289, 0.1324400007724762, 0.4454599916934967, -0.6801999807357788, 0.006860199850052595, 0.7764999866485596, 0.06189500167965889, 0.09136000275611877, -0.6911600232124329, -0.5418999791145325, -0.2757599949836731, -0.35016998648643494, -0.3937099874019623, 0.2983100116252899, -0.4414199888706207, -0.45879998803138733, 0.38475000858306885, 0.15494999289512634, -0.7012500166893005, 0.5493900179862976, -0.5745700001716614, 0.2693899869918823, 0.14264999330043793, -0.5541200041770935, -0.6231899857521057, -0.3190000057220459, 0.16223999857902527, -0.4039199948310852, -0.719730019569397, 0.23789000511169434, 0.08004099875688553, 0.007889499887824059, 0.2029999941587448, 0.03205399960279465, -0.520609974861145, -0.06557399779558182, -0.8009999990463257, -0.26467999815940857, -0.21494999527931213, 0.13021999597549438, -0.11342000216245651, -0.16685999929904938, -0.1686599999666214, -0.08708000183105469, -0.0375249981880188, 0.12620000541210175, 0.8902300000190735, 0.42537999153137207, -0.0876929983496666, 0.22144000232219696, 0.04876000061631203, -0.19405999779701233, 0.4635300040245056, 0.1818699985742569, 0.24616999924182892, 0.01697699911892414, 0.13207000494003296, -0.03186500072479248, -0.593779981136322, 0.6589499711990356, 0.3734300136566162, 0.569350004196167, 0.08313100039958954, 0.04345399886369705, -0.8852800130844116, 0.45664000511169434, -0.36302000284194946, -0.5273500084877014, -0.7056599855422974, 0.6830499768257141, -0.1369599997997284, -0.22394999861717224, -0.14760999381542206, 0.19464999437332153, -0.2683500051498413, 0.3429499864578247, -0.36188000440597534, 0.08045300096273422, -0.16955000162124634, 0.6149500012397766, 0.564740002155304, 0.42838001251220703, 0.08579500019550323, 0.6259899735450745, -0.3341299891471863, 0.26381999254226685, 0.6202600002288818, 0.415120005607605, 0.03458800166845322, 0.49957001209259033, -0.708329975605011, -0.3636699914932251, 0.214819997549057, -0.007896100170910358, -0.7910900115966797, 0.3332599997520447, -0.25824999809265137, 0.2621999979019165, 0.184129998087883, -0.06174999848008156, -0.5399500131607056, 0.5993800163269043, 0.2094999998807907, 0.6355599761009216, 0.19479000568389893, 0.008060799911618233, 0.07853399962186813, 0.38888001441955566, 0.5147299766540527, -0.3526400029659271, -0.29618000984191895, -0.3904300034046173, 0.16836999356746674, -0.0891600027680397, 0.378710001707077, 0.6226699948310852, -0.10147000104188919, 0.1646299958229065, 0.03427400067448616, 0.1026500016450882, 0.651889979839325, 0.6255999803543091, -0.4518499970436096, -0.39340999722480774, 0.11225999891757965, 0.38975000381469727, 0.26815998554229736, 0.4417699873447418, 0.3202100098133087, 0.2662999927997589, 0.29802998900413513, 0.6851599812507629, -0.04345199838280678, -0.02397499978542328, 0.13595999777317047, -0.08873599767684937, -0.36048999428749084, 0.3628300130367279, -0.6686099767684937, -0.4606899917125702, 0.33807000517845154, -0.8481799960136414, -0.5418300032615662, -0.02141300030052662, 0.017791999503970146, -0.045747000724077225, -0.22434000670909882, -0.45524999499320984, 0.19719000160694122, 0.5910699963569641, 0.11303000152111053, 0.05845699831843376, -0.16041000187397003, -0.7378600239753723, 0.17951999604701996, 0.07756999880075455, -0.44609999656677246, -0.41304999589920044, -0.1514900028705597, -0.35295000672340393, -0.06640300154685974, 0.2697699964046478, -0.8554400205612183, -0.4611400067806244, 0.5976700186729431, -0.35183000564575195, 0.34505000710487366, -0.18271000683307648, -0.12615999579429626, 0.273140013217926, 0.5097500085830688, 0.09077499806880951, -0.5130599737167358, -0.2154099941253662, -0.04595800116658211, 0.14597000181674957, -0.20089000463485718, 0.017250999808311462, -0.16064999997615814, 0.22109000384807587, 0.5737400054931641, -0.8084400296211243, 0.4115599989891052, 0.04736199975013733, -0.30206000804901123, -0.31314998865127563, -0.04224200174212456, 0.5509600043296814, -0.45548000931739807, -1.0230000019073486, -0.1212799996137619, -1.6990000009536743, -0.32806000113487244, -0.7352200150489807, 0.15358999371528625, -0.306549996137619, -0.6009100079536438, -1.1157000064849854, 0.6564300060272217, 0.5379300117492676, 0.3469400107860565, -0.6991000175476074, 0.06864099949598312, 0.14591999351978302, -0.10491999983787537, 0.12201999872922897, -0.035422999411821365, -0.9118499755859375, 0.7920500040054321, 0.6507999897003174, 0.7191200256347656, -0.13841000199317932, -0.18648000061511993, -0.08376400172710419, 0.3715200126171112], u'dog': [-0.11043000221252441, 0.8121700286865234, 0.07366800308227539, 0.19022999703884125, -0.05288799852132797, 0.06146800145506859, 0.16076000034809113, 0.4130200147628784, -0.30199000239372253, -0.908270001411438, 0.27504000067710876, -0.03189000114798546, -0.2884199917316437, 0.23446999490261078, 0.47679001092910767, 0.5012400150299072, 0.29370999336242676, 0.27028998732566833, 0.05474499985575676, 0.09803800284862518, 0.5711600184440613, 0.36754998564720154, 0.040734000504016876, 0.3434700071811676, -0.182559996843338, -0.2893500030040741, 0.023825999349355698, -0.19401000440120697, 0.2444400042295456, 0.1340699940919876, -0.1649399995803833, -0.26982998847961426, -0.2623400092124939, -0.21778999269008636, -0.8752800226211548, 0.7382199764251709, -0.08793099969625473, -0.010875999927520752, -0.2653999924659729, 0.3466799855232239, -0.558139979839325, 0.17590999603271484, 0.16925999522209167, -0.15725000202655792, -0.5042999982833862, -0.20100000500679016, 0.6670100092887878, -0.03251799941062927, 0.04501200094819069, 0.06567499786615372, -0.16061000525951385, -0.7336300015449524, 0.2464199960231781, 0.34325000643730164, 0.2189899981021881, 0.048645999282598495, -0.5998700261116028, -0.058152999728918076, -0.05169399827718735, -0.5784599781036377, 0.30000001192092896, 0.35078001022338867, 0.4664599895477295, -0.0075309001840651035, 0.10454999655485153, -0.5101600289344788, -0.055987000465393066, -0.10294999927282333, -0.26475998759269714, -0.04123000055551529, -0.028371000662446022, 0.51978999376297, -0.34848999977111816, -0.47216999530792236, -0.3722899854183197, -0.03279000148177147, 0.13989000022411346, 0.3571600019931793, 0.19304999709129333, -0.2198600023984909, 0.24135999381542206, 0.4097599983215332, 0.37516000866889954, 0.1425500065088272, -0.03414300084114075, -0.7265300154685974, -0.10831999778747559, 0.6861600279808044, -0.2633500099182129, -0.4234499931335449, -0.2425300031900406, 0.1577800065279007, 0.14258000254631042, -0.3274900019168854, -0.3469899892807007, 0.16147999465465546, 0.19603000581264496, 0.41639000177383423, -0.2337000072002411, 0.07581599801778793, 0.15898999571800232, 0.00166229996830225, -0.04830100014805794, -0.10610999912023544, -0.19325999915599823, 0.14494000375270844, 0.015406000427901745, 0.10628999769687653, -0.036699000746011734, 0.6323000192642212, 0.12985999882221222, 0.4990200102329254, -1.1323000192642212, -0.1263599991798401, 0.06471800059080124, 0.12374000251293182, -0.4971199929714203, -0.01483600027859211, 0.10487999767065048, -0.49818000197410583, -0.28856000304222107, 0.389490008354187, -0.03182800114154816, -0.2862499952316284, -0.09875799715518951, -0.07699000090360641, -0.24233999848365784, 0.7579299807548523, 0.34834998846054077, -0.7103000283241272, 0.4531799852848053, -0.34417998790740967, -0.1945900022983551, 0.6147800087928772, -0.029009999707341194, -0.2786400020122528, 0.385560005903244, 0.10072000324726105, 0.12894999980926514, 0.01799199916422367, 0.3366999924182892, 0.20698000490665436, -0.3804900050163269, -0.006666100118309259, 0.11540000140666962, -0.08526799827814102, -0.14608000218868256, 0.44514000415802, -0.09367399662733078, 0.23638999462127686, -0.1144699975848198, 1.0947999954223633, -0.057822998613119125, -0.16294999420642853, 0.5587999820709229, -0.018988000229001045, -0.07137399911880493, 0.2131900042295456, 0.06127699837088585, 0.727590024471283, 0.6274700164794922, -0.19280000030994415, 0.13056999444961548, 0.1742600053548813, -0.10228999704122543, 0.152319997549057, 0.5249999761581421, -0.21919000148773193, -0.27184998989105225, -0.5418599843978882, 0.31751999258995056, 0.16374999284744263, -0.2903900146484375, 0.17073999345302582, -0.3181400001049042, -0.9642099738121033, -0.1160999983549118, -0.29951000213623047, 0.18685999512672424, -0.4598599970340729, 0.4163300096988678, -0.17583000659942627, -0.3458299934864044, -0.27243998646736145, -0.5021600127220154, 0.012852000072598457, 0.5983800292015076, -0.11236999928951263, 0.24696999788284302, -0.4904800057411194, -0.4418799877166748, -0.16255000233650208, -0.7331299781799316, -0.3767699897289276, -0.6892499923706055, 0.061174001544713974, -0.42100998759269714, -0.1315300017595291, -0.008359000086784363, -0.018360000103712082, 1.3686000108718872, 0.04616900160908699, 0.9462199807167053, -0.01512600015848875, -0.12477000057697296, 0.48754000663757324, 0.22383999824523926, -0.21819999814033508, -0.23388999700546265, 0.15207000076770782, -0.28718000650405884, -0.6390799880027771, -0.22382999956607819, -0.18014000356197357, -0.3354800045490265, 0.5358700156211853, -0.29366999864578247, 0.10865999758243561, 0.06341099739074707, -0.00934240035712719, -0.1588599979877472, 0.2260199934244156, 0.11924999952316284, -0.4144200086593628, -0.07806199789047241, -0.09785699844360352, 0.2793799936771393, -0.18347999453544617, -0.3458400070667267, 0.1848900020122528, 0.17402000725269318, -0.5219799876213074, -0.4330599904060364, 0.16256000101566315, 0.14032000303268433, 0.35124000906944275, -0.18279999494552612, -0.3598400056362152, -0.13008999824523926, 0.16303999722003937, 0.3173399865627289, 0.003771600080654025, -0.04549799859523773, -0.42065998911857605, -0.44418999552726746, -0.6898499727249146, -0.49358999729156494, 0.0702809989452362, -0.1437699943780899, 0.6250799894332886, -0.056311000138521194, 0.18850000202655792, -0.05678499862551689, 0.14052000641822815, 1.1972999572753906, 0.718940019607544, 0.5433200001716614, -0.12460999935865402, -0.11977999657392502, 0.3016299903392792, -0.16272999346256256, -0.04673999920487404, -0.25249001383781433, -0.03065899945795536, -0.3227100074291229, 0.32361000776290894, 0.33243998885154724, -0.02781900018453598, -0.3336699903011322, -0.023444000631570816, -0.5039399862289429, -0.20587000250816345, -0.13012999296188354, -0.3588399887084961, 0.0453840009868145, -0.11862999945878983, -1.7257000207901, 0.39441001415252686, -0.531790018081665, 0.5820900201797485, -0.6577100157737732, 0.3684900104999542, 0.23518000543117523, 0.10802000015974045, -0.8315899968147278, 0.6148599982261658, 0.25547000765800476, -0.452890008687973, 0.514460027217865, -0.17911000549793243, -0.1238899976015091, 0.18688000738620758, -0.4110200107097626, -0.7087699770927429, -0.37501001358032227, -0.6615200042724609, 0.677299976348877, 0.33935999870300293, 0.5799400210380554, 0.06814900040626526], u'ocean': [0.12654000520706177, -0.6427800059318542, -0.45298001170158386, -0.014820000156760216, -0.14441999793052673, 0.16745999455451965, -0.08539199829101562, -0.20653000473976135, 0.588670015335083, -1.455199956893921, 0.5084900259971619, 0.11858999729156494, 0.09472700208425522, -0.3571600019931793, 0.0023544998839497566, 0.24716000258922577, -0.0996439978480339, 0.18470999598503113, -0.2706499993801117, 0.9155700206756592, -0.537909984588623, 0.49689000844955444, -0.39528998732566833, 0.091109998524189, -0.3292199969291687, 0.06792700290679932, 0.3638400137424469, 0.6876000165939331, -0.4681600034236908, -0.41416001319885254, 0.7116199731826782, 0.3476499915122986, -0.81836998462677, -0.673520028591156, 0.44032999873161316, -0.053426001220941544, 0.27713000774383545, 0.022645000368356705, -0.03650299832224846, 0.45221999287605286, -0.5312600135803223, 0.07674799859523773, 0.21449999511241913, 0.15700000524520874, 0.061416998505592346, 0.304639995098114, 0.808430016040802, 0.13985000550746918, 0.38982000946998596, -0.1820099949836731, -0.0324070006608963, 0.10730999708175659, 0.5602800250053406, -0.6675900220870972, 0.018634000793099403, 0.4265500009059906, 0.25387999415397644, 0.15546999871730804, 0.01179600041359663, 0.28299999237060547, -0.2632499933242798, 0.3656899929046631, 0.9569500088691711, -0.08969700336456299, 0.43428000807762146, -0.263700008392334, -0.5257499814033508, 0.3726100027561188, -0.7939500212669373, 0.24417999386787415, 0.15395000576972961, 0.2728100121021271, -0.2651500105857849, 0.06441400200128555, -0.4291200041770935, -0.01501299999654293, 0.04826800152659416, -0.5198400020599365, -0.3018600046634674, -0.0025080000050365925, 0.13847999274730682, 0.23533999919891357, -0.6021599769592285, 0.3805299997329712, -0.40375998616218567, 0.021909000352025032, 0.3456900119781494, 0.32638999819755554, -0.054131001234054565, -1.0046000480651855, -0.1278499960899353, -0.3174799978733063, 0.042490001767873764, -0.44550999999046326, -0.5416200160980225, 0.4727399945259094, 0.2496899962425232, -0.09488499909639359, -0.10792999714612961, 0.06451699882745743, 0.13905000686645508, 0.6409000158309937, 0.36691999435424805, -0.032632000744342804, 0.08355999737977982, 0.36834999918937683, 0.4383400082588196, -0.2811500132083893, 0.6329500079154968, -0.00020828000560868531, -0.17643000185489655, -0.776199996471405, 0.2009900063276291, 0.22940999269485474, 0.08919200301170349, 0.04352099820971489, 0.2947399914264679, 0.17100000381469727, -0.1639000028371811, -0.05114499852061272, -0.1540600061416626, -0.48798999190330505, -0.48511001467704773, 0.41051000356674194, 0.1307699978351593, 0.1631300002336502, 0.35168999433517456, -0.04875199869275093, 0.04478999972343445, -0.02075600065290928, -0.37748000025749207, 0.4407599866390228, 0.4628300070762634, -0.04529999941587448, 0.08427400141954422, 0.0732560008764267, -0.008033299818634987, 0.024746999144554138, -0.35315001010894775, 0.21003000438213348, 0.2339099943637848, -0.016808999702334404, -0.09867200255393982, -0.11367999762296677, -0.6612399816513062, 0.09304100275039673, 0.2556599974632263, 0.3771199882030487, 0.05912400037050247, -0.030083000659942627, 0.5082499980926514, 0.0094352001324296, 0.4018799960613251, -0.6677899956703186, 0.9150099754333496, -0.08252999931573868, -0.23312999308109283, -0.09046000242233276, -0.12217999994754791, -0.0016804999904707074, -0.07913299649953842, -0.7178199887275696, 0.34775999188423157, -0.045976001769304276, -0.008702999912202358, -0.5279499888420105, 0.5168499946594238, 0.2872900068759918, -0.0336339995265007, 1.1660000085830688, 0.0867220014333725, -0.16253000497817993, 0.03250100091099739, -0.010359999723732471, -0.22213999927043915, 0.0008179500000551343, -0.06085899844765663, 0.20062999427318573, -0.1965000033378601, -0.5821200013160706, -0.382779985666275, -0.022348999977111816, 0.4361500144004822, 0.4979400038719177, 0.5651199817657471, -0.83788001537323, 0.5024999976158142, 0.5317000150680542, -0.5008800029754639, -0.3248099982738495, 0.1875, 0.3520599901676178, 0.04674199968576431, -0.5987399816513062, 0.24626000225543976, 0.3931800127029419, 0.1611499935388565, -0.6369100213050842, -0.5322499871253967, 0.006361499894410372, 1.0814000368118286, -0.2942500114440918, -0.2672500014305115, -0.38580000400543213, 0.2964499890804291, 0.15522000193595886, 0.20024000108242035, 0.08181600272655487, 0.2884100079536438, 0.038256000727415085, 0.01133699994534254, 0.18523000180721283, 0.04163699969649315, -0.2879199981689453, -0.029788000509142876, -0.004181200172752142, 0.09420599788427353, -0.2794800102710724, 0.14653000235557556, -0.31512001156806946, 0.9657400250434875, 0.1123799979686737, 0.10090000182390213, -0.2408899962902069, -0.030712999403476715, -0.01771700009703636, -0.17702999711036682, -0.7877699732780457, -0.4310399889945984, 0.08333200216293335, 0.6578699946403503, -0.031237000599503517, -0.3350600004196167, 0.018314000219106674, 0.488970011472702, -0.24356000125408173, -0.03322000056505203, 0.024560999125242233, 0.25753000378608704, -0.11743000149726868, -0.7709100246429443, 0.3412399888038635, 0.03381500020623207, 0.22195999324321747, -0.5238400101661682, 0.2884100079536438, 0.10313999652862549, -0.05518599972128868, 0.14131000638008118, 0.2423200011253357, 0.039170000702142715, 0.009897599928081036, 0.23929999768733978, 0.28714001178741455, -0.38286998867988586, 0.018883999437093735, 0.3157599866390228, -0.025748999789357185, 0.1273999959230423, 0.34132999181747437, -0.03135399892926216, -0.3979800045490265, -0.618340015411377, -0.2168000042438507, 0.24065999686717987, 0.00036378001095727086, 0.11813999712467194, 0.04818100109696388, 0.22829000651836395, 0.012994999997317791, 0.5010200142860413, 0.047874998301267624, -0.11015000194311142, 0.16911999881267548, 0.7429199814796448, 0.3601999878883362, -1.423200011253357, 0.7088199853897095, 0.13767999410629272, -0.05976099893450737, -0.3101300001144409, 0.7022899985313416, -0.301829993724823, -0.4130600094795227, -0.3098500072956085, -0.396340012550354, -0.26930001378059387, -0.3761399984359741, 0.2767600119113922, -0.3553900122642517, -0.39280998706817627, 0.32589998841285706, -0.4641599953174591, -0.029652999714016914, 0.03869299963116646, 0.3600200116634369, 0.0997219979763031, 0.0037376999389380217, 0.34064000844955444, -0.18738999962806702], u'jacket': [-0.41640999913215637, -0.11527000367641449, -0.14388999342918396, -0.0057080998085439205, -0.34505999088287354, -0.043296001851558685, -0.5354800224304199, -0.27595001459121704, 0.2583500146865845, -0.4122599959373474, 0.41835999488830566, 0.06921800225973129, 0.02575800009071827, 0.389849990606308, -0.6327499747276306, 0.13826000690460205, -0.36083999276161194, 0.14417000114917755, -0.43296998739242554, 0.2382200062274933, -0.046539001166820526, -0.11857999861240387, 0.25839000940322876, 0.0437919981777668, -0.6357100009918213, -0.8392199873924255, 0.5652899742126465, 0.2772200107574463, 0.18801000714302063, -0.026624999940395355, 0.16690999269485474, -0.46531999111175537, -0.07015199959278107, 0.0071875001303851604, -0.47110000252723694, 0.30000001192092896, -0.41885000467300415, -0.43105000257492065, 0.05114800110459328, 0.7229700088500977, -0.32260000705718994, -0.3630000054836273, 0.06979300081729889, -0.2691099941730499, 0.3147599995136261, 0.16006000339984894, 0.5001999735832214, -0.3080799877643585, -0.6634699702262878, -0.1366100013256073, -0.4074400067329407, -0.4339900016784668, 0.16731999814510345, 0.01589200086891651, -0.16037000715732574, 0.0921119973063469, -0.17001000046730042, -0.787060022354126, 0.6532400250434875, -0.07504899799823761, -0.07744999974966049, -0.08987800031900406, -0.017909999936819077, -0.016179999336600304, 0.04344499856233597, -0.23904000222682953, -0.4575999975204468, -0.010478000156581402, 0.1925099939107895, -0.055337000638246536, 0.5933499932289124, -0.24776999652385712, 0.4123300015926361, -0.017121000215411186, -0.14413000643253326, 0.15533000230789185, -0.4816400110721588, 0.0667250007390976, -0.09908399730920792, -0.46700000762939453, 0.13315999507904053, 0.7555699944496155, -0.23851999640464783, 0.03482099995017052, -0.05125200003385544, -0.06274200230836868, -0.01433899998664856, 0.31005001068115234, -0.5140299797058105, -0.32719001173973083, 0.09058599919080734, 0.15358999371528625, -0.530489981174469, 0.062001001089811325, 0.1234700009226799, 0.4000900089740753, 0.289110004901886, 0.19283999502658844, 0.06271299719810486, 0.09934700280427933, -0.029458999633789062, 0.8936399817466736, -0.00555279990658164, 0.7673400044441223, -0.011423000134527683, -0.08625800162553787, 0.5141299962997437, 0.39831000566482544, -0.33945998549461365, -0.21899999678134918, -0.5083199739456177, 0.9390400052070618, -0.18005000054836273, -0.2842699885368347, -0.40806999802589417, 0.21552999317646027, 0.10488999634981155, 0.49046000838279724, 0.5720999836921692, -1.2028000354766846, -0.21536000072956085, 0.30493998527526855, 0.5613899827003479, 0.02674099989235401, -0.07436800003051758, -0.05475199967622757, 0.16574999690055847, 0.14386999607086182, -0.05087500065565109, -0.09249400347471237, -0.0026533000636845827, -0.04913200065493584, -0.2190299928188324, -0.40665000677108765, -0.22672000527381897, -0.08876500278711319, -0.34536001086235046, 0.20757000148296356, 0.25249001383781433, 0.38659000396728516, 0.03874899819493294, 0.01828099973499775, 0.246629998087883, -0.28723999857902527, -0.0953890010714531, 0.21894000470638275, -0.08050200343132019, 0.1904900074005127, 0.7200499773025513, 0.28707000613212585, 0.046512000262737274, 0.006919899955391884, -0.06542400270700455, -0.8470399975776672, 0.32989001274108887, -0.44231998920440674, -0.06570500135421753, -0.22302000224590302, 0.5057899951934814, 0.8565599918365479, 0.0764010027050972, -0.4107399880886078, -0.2837600111961365, -0.014835000038146973, 0.208639994263649, -0.4320400059223175, -0.056060999631881714, 0.6276400089263916, -0.13401000201702118, -0.16471000015735626, 0.0018318999791517854, -0.1103999987244606, -0.4789699912071228, -0.23201000690460205, -0.1706400066614151, -0.8842599987983704, 0.30594000220298767, 0.5965099930763245, -0.06009500101208687, -0.4643999934196472, 0.28095000982284546, 0.31560999155044556, -0.046751998364925385, -0.1064700037240982, 0.09245099872350693, -0.20280000567436218, 0.6684200167655945, 0.4161500036716461, -0.07772199809551239, 0.3517799973487854, 0.040084000676870346, 0.3943699896335602, -0.2752099931240082, 0.03143699839711189, -0.26475000381469727, -0.13416999578475952, -0.8635200262069702, 0.2838999927043915, -0.23070000112056732, -0.02397800050675869, 0.8505399823188782, -0.20503999292850494, 0.6572499871253967, 0.27327999472618103, 0.6736199855804443, -0.22084000706672668, 0.44826000928878784, 0.21190999448299408, -0.5833699703216553, -0.12049999833106995, 0.2645699977874756, -0.44387000799179077, -0.1925099939107895, 0.26895999908447266, 0.5837000012397766, -0.32548999786376953, 0.5604599714279175, -0.5748299956321716, 0.2910900115966797, -0.5371699929237366, 0.6232200264930725, 0.42712000012397766, 0.22405999898910522, 0.5233700275421143, 0.028829999268054962, -0.3068400025367737, -0.12230999767780304, -0.18348999321460724, 0.08045700192451477, -0.7476999759674072, 0.5559300184249878, -0.3294700086116791, -0.3570399880409241, 0.4125100076198578, 0.40448999404907227, -0.5592899918556213, 0.7547699809074402, -0.3999600112438202, -0.5319499969482422, 0.8367599844932556, 0.810699999332428, -0.02933100052177906, -0.6965699791908264, 0.45407000184059143, -0.20645999908447266, 0.44284000992774963, -0.3416599929332733, -0.7918599843978882, -0.02957100048661232, -0.7885900139808655, -0.44859999418258667, -0.006865500006824732, 0.11406999826431274, -0.708549976348877, 0.3451699912548065, 0.08451099693775177, 0.1993200033903122, 0.45208001136779785, -0.021974999457597733, -0.6841199994087219, 0.04133699834346771, -0.128930002450943, 0.4888499975204468, 0.4694899916648865, -0.8944600224494934, 0.4573200047016144, -0.2933900058269501, -0.025803999975323677, -0.6167799830436707, -0.049157001078128815, -0.11606000363826752, -0.23794999718666077, 0.2434699982404709, -0.04278700053691864, -0.6696799993515015, -0.12605999410152435, -0.6177200078964233, 0.06189600005745888, -0.3716999888420105, 0.18357999622821808, 0.19960999488830566, -0.1445000022649765, 0.195360004901886, -0.3116399943828583, -0.5309399962425232, 0.36924999952316284, -0.5327000021934509, 0.3809199929237366, -0.25558000802993774, -0.5059400200843811, 0.10813000053167343, 0.0005023899720981717, -0.24958999454975128, 0.5939099788665771, -0.5466099977493286, -0.24998000264167786, 0.0800200030207634, 0.7117499709129333, 0.7100099921226501, -0.02318199910223484], u'coal': [-0.3382599949836731, 0.24300000071525574, 0.4116100072860718, -0.4868200123310089, -0.3840300142765045, -0.7438300251960754, 0.36917999386787415, 0.2561199963092804, -0.19760000705718994, -0.7095100283622742, -0.7595099806785583, -0.31367000937461853, 0.12298999726772308, 0.3853600025177002, 0.021981000900268555, -0.39164999127388, -0.3365499973297119, -0.20943999290466309, -0.4373599886894226, 0.5863699913024902, -0.13415999710559845, -0.1524599939584732, 0.5235000252723694, 0.6919800043106079, -0.2706800103187561, -0.08800199627876282, -0.058371998369693756, 0.6901599764823914, -0.3737100064754486, 0.5214800238609314, 0.8986200094223022, 0.9759699702262878, 0.1871899962425232, 0.05462700128555298, 0.06647799909114838, 0.06841400265693665, 0.14711999893188477, 0.10758999735116959, 0.5515300035476685, 0.04520900174975395, -0.44749999046325684, 0.25016000866889954, 0.6897799968719482, -0.18522000312805176, 0.13502000272274017, -0.38901999592781067, 0.07982700318098068, -0.36844000220298767, 0.045329999178647995, -0.20959000289440155, 0.3978999853134155, 0.6311399936676025, -0.7910000085830688, 0.049837999045848846, 0.4047499895095825, 0.5917999744415283, 0.3039799928665161, -0.44179001450538635, -0.5138199925422668, -0.6342599987983704, -0.16148999333381653, -0.1634799987077713, 0.3889999985694885, -0.9025200009346008, -0.29892998933792114, 0.012037999927997589, -0.6084399819374084, 0.18233999609947205, -0.9065700173377991, 0.7356699705123901, 0.3813300132751465, -0.37553998827934265, -0.13266000151634216, -0.5566800236701965, -0.14687000215053558, -0.11569000035524368, -0.5588099956512451, 0.07096800208091736, 0.009596100077033043, 0.20695999264717102, -0.1248600035905838, -1.0616999864578247, 0.3847399950027466, -0.014891000464558601, 0.87117999792099, -0.17081999778747559, 0.14970000088214874, 0.08819399774074554, -0.010591999627649784, 0.18546999990940094, 0.6865100264549255, 0.5532900094985962, -0.07605200260877609, 0.3754900097846985, -0.5777199864387512, -0.2114199995994568, -0.3695499897003174, 0.46897000074386597, 0.3268299996852875, -0.09420499950647354, -0.14983999729156494, 0.05593299865722656, -0.44857001304626465, 0.2097799926996231, -0.17618000507354736, 1.128100037574768, 0.17342999577522278, 0.3308500051498413, 0.015269000083208084, 0.24714000523090363, 0.03476500138640404, -0.9177600145339966, -0.33765000104904175, -0.19801999628543854, -0.07688300311565399, -0.16047999262809753, 0.8420799970626831, -0.005625800229609013, 0.8528100252151489, 0.1369599997997284, -0.517300009727478, 0.4417800009250641, -0.5154600143432617, -0.19156000018119812, -0.3150100111961365, 0.4892500042915344, -0.5033400058746338, 0.21433000266551971, -0.229980006814003, -0.1531900018453598, 0.5551999807357788, 0.912630021572113, -0.33129000663757324, -0.4629899859428406, -0.17562000453472137, 0.7339699864387512, -1.301800012588501, 0.10022000223398209, 0.25398001074790955, 0.24998000264167786, 0.37049001455307007, -0.1487099975347519, 0.5485000014305115, -0.479310005903244, -0.2612000107765198, 0.08470500260591507, 0.5277799963951111, 0.45232000946998596, 0.4023300111293793, -0.14997999370098114, 0.32774001359939575, -0.10886000096797943, -0.3917500078678131, -0.8991100192070007, 0.6806600093841553, 0.1278800070285797, 0.13610999286174774, -0.10614000260829926, -0.07801999896764755, -0.9248899817466736, -0.18407000601291656, -0.011114999651908875, 0.4843299984931946, 0.25819000601768494, 0.3782700002193451, -0.36177000403404236, -0.08279400318861008, -0.3823400139808655, -0.09643600136041641, -0.5613899827003479, -0.3257099986076355, 1.187999963760376, 0.10113999992609024, -0.06490500271320343, -0.018804000690579414, 0.2939299941062927, -0.8329899907112122, -0.25275999307632446, -0.20151999592781067, -0.09931199997663498, -0.14535999298095703, 0.07302600145339966, 0.4893600046634674, -0.49417001008987427, 0.18431000411510468, 0.3650999963283539, 0.6821600198745728, 0.36002999544143677, 0.19966000318527222, -0.18624000251293182, -0.04157799854874611, 0.6642500162124634, -0.10864999890327454, -0.18073999881744385, 0.2027300000190735, -0.6127099990844727, -0.6036999821662903, -1.0211999416351318, 0.04251600056886673, 0.4138700067996979, 0.10819999873638153, 0.631060004234314, -0.15017999708652496, -0.8779299855232239, 0.32528001070022583, 0.34064000844955444, 0.11236000061035156, -0.34575000405311584, 0.12504999339580536, -0.6148399710655212, -0.42941999435424805, -0.6198099851608276, -0.07238899916410446, -0.05818299949169159, 0.3900600075721741, 0.4681699872016907, 0.05122600123286247, 0.4070900082588196, -0.23612000048160553, -0.49004000425338745, 0.38161998987197876, 0.08207400143146515, 0.2179500013589859, -0.45941999554634094, 0.1076899990439415, -0.012091999873518944, -0.5877900123596191, -0.24421000480651855, -0.24355000257492065, 0.42412999272346497, -0.25525999069213867, -0.1428699940443039, -0.5258899927139282, 0.555429995059967, 0.2636600136756897, -0.3440000116825104, 0.4860900044441223, 0.07481800019741058, -0.5402899980545044, -0.40174999833106995, -0.2798599898815155, 0.14892999827861786, -0.06474599987268448, -0.1320900022983551, -0.2994700074195862, 0.0873349979519844, 0.37024998664855957, -0.35019999742507935, 0.011092999950051308, -0.2644999921321869, -0.43775999546051025, -0.5005499720573425, -0.20155000686645508, -0.4345499873161316, 0.8119999766349792, -0.194350004196167, -0.6199300289154053, 0.1254200041294098, -0.3242200016975403, -0.030628999695181847, -0.14659999310970306, 0.3899199962615967, 0.03228599950671196, 0.1146399974822998, 0.8673999905586243, 0.30063000321388245, 0.678629994392395, -0.4410499930381775, 0.4508199989795685, -0.005881300196051598, -0.2778100073337555, -0.46549999713897705, -0.080594003200531, 0.1588599979877472, -0.3020699918270111, -0.44936999678611755, -1.3532999753952026, -0.2594499886035919, 0.16986000537872314, 0.5988500118255615, -1.157099962234497, 0.20930999517440796, -0.7812600135803223, 0.12695999443531036, 0.4693099856376648, 0.15644000470638275, 0.27215999364852905, -0.47881001234054565, 0.5059000253677368, -0.15563000738620758, -0.5765299797058105, 0.30114999413490295, 0.5033699870109558, -0.10577999800443649, 0.09130699932575226, 1.2151999473571777, 0.32491999864578247, -1.0648000240325928, -0.0425879992544651, 0.8526999950408936], u'shore': [-0.05873600021004677, -0.23064999282360077, -0.5665599703788757, 0.12752999365329742, -0.3499000072479248, 0.00012145000073360279, 0.34477999806404114, -0.07562199980020523, 0.2987099885940552, -0.8599900007247925, -0.09949400275945663, 0.30535000562667847, 0.520550012588501, -0.2146800011396408, 0.10247000306844711, 0.28060999512672424, -0.2562499940395355, -0.1310500055551529, -0.20545999705791473, -0.10209999978542328, -0.2492399960756302, -0.21692000329494476, -0.4233900010585785, -0.03277700021862984, 7.050400017760694e-05, 0.10216999799013138, 0.1400499939918518, 0.1581999957561493, -0.3571600019931793, 0.4880400002002716, 0.17213000357151031, -0.4983600080013275, 0.3458299934864044, 0.26434001326560974, -0.18449999392032623, 0.24675999581813812, 0.13311000168323517, 0.3530600070953369, 0.43015000224113464, -0.05961399897933006, -0.5261800289154053, 0.1602800041437149, 0.27717000246047974, 0.1505800038576126, 0.1378999948501587, 0.8479999899864197, 0.7968299984931946, -0.0253090001642704, 0.10136000066995621, 0.49265000224113464, -0.34518998861312866, -0.08382800221443176, 0.5490800142288208, -0.35238000750541687, 0.191880002617836, -0.05883200094103813, 0.08626899868249893, 0.4825400114059448, -0.3894599974155426, 0.2365799993276596, 0.48041999340057373, 0.14309999346733093, 0.7807700037956238, 0.11569999903440475, 0.516759991645813, 0.3557800054550171, -0.7202699780464172, -0.07194799929857254, 0.15573999285697937, 0.23976999521255493, -0.039055000990629196, 0.05336499959230423, 0.18925000727176666, -0.04907200112938881, -0.07866500318050385, -0.36333999037742615, 0.30726999044418335, 0.286980003118515, 0.5867699980735779, -0.38203999400138855, -0.10774999856948853, 0.1515199989080429, -0.11006999760866165, 0.24049000442028046, 0.1041100025177002, 0.011621000245213509, -0.3856000006198883, 0.05889900028705597, -0.2808600068092346, -0.2996000051498413, 0.5457900166511536, 0.38644999265670776, 0.08273699879646301, -0.42871999740600586, -0.07580699771642685, -0.06569399684667587, 0.07307899743318558, -0.3001500070095062, -0.1130400002002716, -0.26010000705718994, -0.1417199969291687, 0.4233599901199341, -0.02595599927008152, 0.12601999938488007, 0.026499999687075615, 0.18557000160217285, 0.1001800000667572, -0.22495999932289124, 0.5236700177192688, -0.144679993391037, -0.19523000717163086, -0.8107399940490723, -0.1729000061750412, -0.27922001481056213, 0.11123000085353851, -0.10807999968528748, 0.45473000407218933, -0.09006199985742569, 0.18925000727176666, 0.2252800017595291, 0.07742299884557724, -0.4471299946308136, -0.8047599792480469, 0.14722000062465668, 0.5309100151062012, 0.5741000175476074, 0.3426400125026703, -0.12967999279499054, 0.2556299865245819, -0.156810000538826, -0.14624999463558197, 0.07040700316429138, 0.6132400035858154, -0.219310000538826, 0.4020099937915802, 0.09229300171136856, 0.5158100128173828, 0.03800100088119507, -0.06763800233602524, 0.25582998991012573, 0.10129000246524811, -0.10716000199317932, 0.05173400044441223, 0.4405600130558014, -0.6279199719429016, -0.14930999279022217, 0.16473999619483948, -0.2922399938106537, -0.45306000113487244, 0.03649400174617767, 0.6126499772071838, 0.10614000260829926, 0.3972499966621399, -0.36000001430511475, 0.8220499753952026, -0.015657000243663788, 0.38752999901771545, -0.23965999484062195, -0.10232999920845032, 0.45925000309944153, 0.21593999862670898, -0.3960599899291992, 0.2762199938297272, 0.12545999884605408, -0.36792999505996704, -0.02637000009417534, 0.056074999272823334, -0.2647300064563751, -0.03797199949622154, 0.4910700023174286, -0.19325999915599823, 0.01465499959886074, -0.0014406000263988972, 0.24958999454975128, 0.2747099995613098, 0.02181199938058853, 0.03826199844479561, 0.041071001440286636, -0.2305299937725067, -0.09392199665307999, 0.3959200084209442, -0.10429999977350235, 0.21702000498771667, -0.051197998225688934, 0.06991899758577347, 0.34033000469207764, 0.03688500076532364, -0.4058000147342682, 0.15275999903678894, -0.29139000177383423, 0.17295999825000763, 0.6168500185012817, -0.02891799993813038, -0.8063799738883972, 0.22538000345230103, 0.20273999869823456, 0.3072200119495392, -0.8626700043678284, 0.3060399889945984, -0.07914900034666061, 0.9899600148200989, 0.3072899878025055, -0.5299800038337708, 0.05049100145697594, -0.23263999819755554, 0.08747799694538116, 0.4291499853134155, -0.13437999784946442, 0.274260014295578, -0.010673999786376953, -0.19964000582695007, 0.4037899971008301, -0.008108199574053288, -0.3483099937438965, 0.19213999807834625, 0.1666100025177002, 0.2909899950027466, -0.1046999990940094, -0.13099999725818634, -0.24592000246047974, 1.3177000284194946, 0.17362000048160553, 0.14256000518798828, -0.3374199867248535, 0.37832000851631165, 0.2347099930047989, 0.01899999938905239, -0.7170100212097168, -0.03739200159907341, -0.46963000297546387, 0.42800000309944153, 0.32100000977516174, -0.15226000547409058, 0.2862200140953064, 0.17396000027656555, -0.1944500058889389, -0.33939000964164734, 0.19625000655651093, -0.053435999900102615, -0.24045999348163605, -0.4127500057220459, 0.0740090012550354, 0.5749099850654602, 0.1965000033378601, -0.8340799808502197, -0.08469700068235397, 0.032990001142024994, 0.14350000023841858, -0.3420400023460388, -0.1820099949836731, 0.0736669972538948, 0.31867000460624695, 0.7638499736785889, 0.36730000376701355, 0.5972399711608887, -0.399399995803833, -0.0317469984292984, 0.4146000146865845, -0.2067900002002716, 0.37178999185562134, 0.1820099949836731, 0.1958799958229065, -0.4639900028705597, -0.4108799993991852, -0.04815800115466118, -0.4660100042819977, 0.3178899884223938, -0.10924000293016434, -0.10169000178575516, -0.3442800045013428, -0.2546199858188629, -0.22190000116825104, -0.07013999670743942, 0.2615799903869629, 0.16975000500679016, -0.1089399978518486, -0.9269899725914001, 0.6779900193214417, 0.39340999722480774, -0.06478899717330933, 0.14386999607086182, 0.26298999786376953, -0.361160010099411, -0.6725299954414368, -0.1766500025987625, -0.17993000149726868, 0.0795620009303093, 0.16529999673366547, 0.5976399779319763, -0.08242099732160568, -0.6226500272750854, -0.28477001190185547, -0.03023800067603588, -0.4518299996852875, -0.5125899910926819, -0.06400299817323685, 0.05340699851512909, 0.21003000438213348, -0.031252000480890274, -0.15162000060081482], u'truck': [0.08016200363636017, 0.16016000509262085, -0.015111000277101994, -0.2904900014400482, -0.537339985370636, 0.25310999155044556, -0.15410999953746796, 0.36730000376701355, -0.5319200158119202, -0.6336399912834167, -0.16292999684810638, -0.26666998863220215, -0.08169800043106079, 0.40369001030921936, -0.1124500036239624, 0.07016400247812271, 0.08252599835395813, -0.3675299882888794, -0.2535800039768219, -0.7337999939918518, 0.2611500024795532, -0.13550999760627747, 0.5461400151252747, 0.19516000151634216, -0.4179399907588959, -0.2860899865627289, 0.0512549988925457, 0.2839300036430359, 0.15775999426841736, -0.30340999364852905, -0.5521600246429443, 0.5750799775123596, 0.22575999796390533, 0.05397599935531616, 0.2930299937725067, 0.42357999086380005, -0.467629998922348, -0.48824000358581543, -0.06089799851179123, 0.3347199857234955, 0.027543000876903534, 0.27529001235961914, 0.29249998927116394, -0.34314000606536865, -0.018314000219106674, 0.06931199878454208, 0.32537999749183655, -0.29455000162124634, 0.08484099805355072, -0.06963799893856049, 0.1050100028514862, 0.3352400064468384, -0.28505998849868774, -0.08513200283050537, 0.15723000466823578, 0.35569998621940613, -0.028212999925017357, -0.1902099996805191, -0.24053999781608582, 0.23226000368595123, -0.3980399966239929, 0.3584499955177307, 0.2925199866294861, -0.18198999762535095, -0.6972299814224243, 0.1506499946117401, -0.8162599802017212, -0.07285100221633911, 0.07393199950456619, 0.05346300080418587, -0.1526300013065338, 0.2526699900627136, 0.12775999307632446, 0.6078199744224548, -0.2763899862766266, 0.018811000511050224, 0.1298699975013733, -0.48214998841285706, 0.1129399985074997, -0.2816399931907654, 0.41912001371383667, 0.07552599906921387, 0.2725900113582611, 0.4209800064563751, -0.23127000033855438, -0.494049996137619, 0.20200000703334808, 0.1138399988412857, 0.05796299874782562, 0.4492500126361847, 1.042099952697754, 0.152879998087883, 0.04455700144171715, -0.5401099920272827, 0.21190999448299408, 0.0016892000567167997, -0.2717199921607971, -0.4917199909687042, -0.21873000264167786, -0.4047900140285492, 0.14815999567508698, 0.8606200218200684, 0.5746999979019165, -0.37419000267982483, -0.28108999133110046, -0.3995699882507324, 0.8719599843025208, 0.3967599868774414, -0.04114700108766556, -0.14733000099658966, -0.3264999985694885, 0.21321000158786774, 0.012098999693989754, -0.3893899917602539, 0.03039800003170967, 0.6804100275039673, 0.15039999783039093, 0.34163999557495117, 0.15001000463962555, 0.20196999609470367, -0.031120000407099724, -0.28325000405311584, 0.48824000358581543, -0.29440999031066895, -0.47161999344825745, 0.08711399883031845, 0.14648999273777008, 0.023800000548362732, 0.4848000109195709, -0.17848999798297882, 0.6604200005531311, 0.6238499879837036, 0.27744001150131226, 0.5306800007820129, 0.18483999371528625, 0.0737370029091835, -0.16196000576019287, -0.37376001477241516, 0.36162999272346497, 0.4850499927997589, 0.0212009996175766, 0.031057000160217285, 0.35558998584747314, -0.3044399917125702, -0.5790200233459473, 0.23568999767303467, 0.008905299939215183, -0.24334000051021576, -0.4247100055217743, 0.09717699885368347, 0.7503700256347656, 0.6003000140190125, 0.3397800028324127, -0.22573000192642212, 0.758430004119873, -0.22683000564575195, 0.25099000334739685, 0.05473100021481514, 0.4146600067615509, -0.06730800122022629, 0.44999000430107117, -0.37303000688552856, -0.23006999492645264, 0.18369999527931213, 0.012485000304877758, -0.06898900121450424, -0.09187199920415878, 0.15865999460220337, -0.03652799874544144, -0.16163000464439392, 0.14372999966144562, 0.12308000028133392, 0.5264999866485596, -0.03652099892497063, -0.15153999626636505, 0.017351999878883362, -0.06842699646949768, -0.38201001286506653, 0.4981200098991394, -0.16564999520778656, 0.5586000084877014, -0.3160400092601776, 0.2842499911785126, 0.12303999811410904, 0.20928999781608582, -0.39430001378059387, 0.25626999139785767, 0.5080599784851074, 0.703220009803772, -0.19360999763011932, 0.11395999789237976, -0.31442999839782715, -0.3196899890899658, 0.06319600343704224, -0.028754999861121178, -0.36959001421928406, -0.30577000975608826, 0.26513999700546265, -0.012159000150859356, 0.053307998925447464, 0.8064500093460083, -0.5933099985122681, 0.45739999413490295, -0.0919020026922226, 0.1722099930047989, -0.30309000611305237, 0.29903000593185425, -0.22269999980926514, 0.17574000358581543, -0.12561999261379242, -0.8839200139045715, 0.23771999776363373, -0.10665000230073929, -0.16469000279903412, -0.006241300143301487, 0.0634709969162941, -0.00583630008623004, 0.47821998596191406, -0.1443600058555603, 0.21021999418735504, 0.8071600198745728, 0.08687900006771088, 0.24594999849796295, -0.20572000741958618, 0.6102399826049805, 0.1307699978351593, 0.2381100058555603, -0.478630006313324, 0.41578999161720276, -0.39772000908851624, -0.052969999611377716, -0.28165000677108765, 0.08907599747180939, -0.3307200074195862, 1.0200999975204468, 0.5743299722671509, 0.4064199924468994, 0.24503999948501587, -0.7931299805641174, -0.5261499881744385, 0.44464001059532166, 0.09538500010967255, 0.06503699719905853, -0.509190022945404, -0.16801999509334564, -0.7484599947929382, 0.6328099966049194, -0.3864400088787079, 0.15049999952316284, 0.5539799928665161, -0.14744000136852264, -0.14601999521255493, -0.46417000889778137, 0.20038999617099762, 0.8418999910354614, -0.5874999761581421, -0.6757599711418152, 0.3796499967575073, -0.006280899979174137, 0.06451500207185745, 0.13856999576091766, -0.004196700174361467, 0.07932800054550171, 0.44887998700141907, 0.1623300015926361, -0.3393000066280365, 0.5852100253105164, -0.33204999566078186, -0.8856300115585327, -0.6817700266838074, -0.24484999477863312, 0.09282699972391129, -0.5020999908447266, 0.5272300243377686, 0.5960000157356262, -0.30737000703811646, -1.5394999980926514, 0.07428699731826782, -0.1263599991798401, 0.2029999941587448, -0.4886299967765808, -0.06815999746322632, 0.7914599776268005, 0.03485700115561485, 0.0982849970459938, 0.8664299845695496, 0.1949000060558319, -0.4800100028514862, 0.23473000526428223, 0.2867499887943268, 0.6470500230789185, -0.42506998777389526, -0.10395999997854233, -0.4636699855327606, 0.5103899836540222, 1.0218000411987305, 0.10865999758243561, -0.0028737999964505434, 0.08037599921226501, 0.6467700004577637], u'jungle': [-0.5042999982833862, -0.016039999201893806, -0.12424000352621078, 0.4694499969482422, -0.3919700086116791, 0.11166000366210938, 0.1540900021791458, 0.7483900189399719, 0.35010001063346863, -0.2956799864768982, -0.3179599940776825, -0.4201900064945221, -0.597760021686554, 0.08559300005435944, -0.03942599892616272, 0.01728300005197525, -0.12161000072956085, 0.04075299948453903, 0.3556100130081177, 0.5560100078582764, 0.1230200007557869, 0.20242999494075775, -0.006008800119161606, 0.0811149999499321, -0.4789600074291229, -0.5612199902534485, 0.9652199745178223, -0.6204100251197815, 0.1911199986934662, 0.8530399799346924, 0.1715099960565567, -0.41971999406814575, -0.31084999442100525, -0.7933300137519836, 0.6936200261116028, 0.055810000747442245, -0.12101999670267105, -0.1383100003004074, -0.10272999852895737, 0.006768300198018551, 0.20035000145435333, -0.7402200102806091, -0.42260000109672546, -0.01592399924993515, -0.10860999673604965, 0.021185999736189842, 0.5366899967193604, 0.2712000012397766, 0.1760299950838089, -0.5145999789237976, -0.03384200111031532, 0.019744999706745148, 0.21649999916553497, 0.20247000455856323, 0.2633199989795685, -0.13460999727249146, -0.2363000065088272, -0.44374001026153564, 0.4511600136756897, 0.06347700208425522, -0.43393000960350037, -0.07038599997758865, -0.001715000020340085, 0.18807999789714813, -0.14518000185489655, 0.27055999636650085, 0.5827699899673462, -0.19965000450611115, 0.3672100007534027, -0.13258999586105347, -0.358379989862442, 0.6972200274467468, -0.09467100352048874, -0.05028200149536133, -0.31130000948905945, -0.1836100071668625, 0.7418000102043152, -0.3930099904537201, 0.5791199803352356, -0.7811999917030334, 0.6351799964904785, -0.19391000270843506, 0.12150999903678894, -0.222120001912117, -0.4289799928665161, -0.6792700290679932, 0.5343800187110901, -0.2814599871635437, 0.1995999962091446, -0.5685700178146362, -0.3143100142478943, -0.27024999260902405, 0.7001699805259705, -0.035280000418424606, 0.11939000338315964, 0.12372999638319016, -0.013741999864578247, 0.07346300035715103, 0.08292800188064575, -0.20397000014781952, 0.5512499809265137, 0.5720099806785583, -0.005556399933993816, 0.10503999888896942, -0.4535500109195709, -0.2664400041103363, 0.1165900006890297, 0.24320000410079956, 0.34106001257896423, 0.23670999705791473, 0.04908199980854988, -0.6962800025939941, -0.10322999954223633, 0.17351000010967255, 0.36858999729156494, -0.15041999518871307, 0.3366599977016449, 0.2672399878501892, -0.18750999867916107, 0.1147100031375885, -0.6721699833869934, -0.670490026473999, -0.5337700247764587, -0.11929000169038773, -0.2420700043439865, 0.06953100115060806, -0.03222399950027466, 0.27790001034736633, -0.5587800145149231, -0.2051900029182434, -0.10896000266075134, 0.8418499827384949, 0.030347000807523727, 0.04533199965953827, 0.2390899956226349, -0.4652499854564667, -0.29774999618530273, 0.39587000012397766, -0.2049800008535385, -0.1268399953842163, 0.15605999529361725, -0.3347899913787842, -0.9106600284576416, 0.011269000358879566, -0.8267899751663208, 0.08541200309991837, 0.4661099910736084, 0.41258999705314636, -0.590149998664856, -0.2052599936723709, -0.24626000225543976, 0.2469799965620041, -0.050880998373031616, 0.4277600049972534, 0.8996599912643433, -0.3389900028705597, 0.004690499976277351, -0.40573999285697937, 0.4507899880409241, 0.6657999753952026, 0.8137099742889404, -0.2373500019311905, 0.6369500160217285, 0.021577000617980957, -0.534089982509613, -0.5707600116729736, 0.6393899917602539, 0.5013599991798401, -0.46566998958587646, -0.23868000507354736, -0.5681399703025818, -0.297650009393692, -0.07003200054168701, 0.48767000436782837, -0.2592200040817261, 0.13131999969482422, 0.635200023651123, 0.53302001953125, -0.11185000091791153, -0.08792299777269363, -0.08503600209951401, 0.47165000438690186, 0.20044000446796417, 0.3741700053215027, -0.20773999392986298, 0.23619000613689423, 0.3655099868774414, 0.8651000261306763, 0.4573099911212921, -0.2713199853897095, -0.10272999852895737, 0.5057500004768372, -0.008782699704170227, -0.2818700075149536, 0.23157000541687012, -0.10475999861955643, -0.2680099904537201, 0.7440999746322632, -0.4274600148200989, 0.5989199876785278, 0.8200899958610535, 0.1968899965286255, -0.28725001215934753, -0.020927000790834427, 0.14504000544548035, -0.03790299966931343, -0.39983999729156494, 0.22032999992370605, -0.2142699956893921, -0.394540011882782, -0.7062600255012512, -0.4321100115776062, -0.5634400248527527, -0.4461599886417389, 0.31033000349998474, -0.04093499854207039, -0.18055999279022217, -0.1281999945640564, 0.20702999830245972, 0.2745400071144104, 0.6463000178337097, -0.6485999822616577, 0.2747899889945984, 0.0703129991889, -0.07844799757003784, 0.0747470036149025, 0.16562999784946442, 0.2468000054359436, -0.12081000208854675, -0.8858799934387207, 0.3513700067996979, 0.32120001316070557, -0.5452100038528442, 0.3731899857521057, 0.18434999883174896, -0.043584998697042465, 0.39013999700546265, -0.152319997549057, -0.49660998582839966, 0.04231100156903267, 0.38117000460624695, -0.030886000022292137, 0.009642800316214561, 0.15004000067710876, -0.47569000720977783, -0.13235999643802643, 0.3401699960231781, -0.013508999720215797, -0.13383999466896057, 0.3738600015640259, -0.6905199885368347, 0.12434999644756317, -0.2962700128555298, -0.16761000454425812, 0.7302200198173523, 0.9589599967002869, 0.462119996547699, -0.11139000207185745, 0.01496300008147955, 0.08605899661779404, 0.07128199934959412, -0.3170599937438965, -0.01996999979019165, -0.4153200089931488, 0.06014600023627281, 0.8296200037002563, -0.838450014591217, -0.0690699964761734, 0.15125000476837158, 0.18051999807357788, -0.16410000622272491, -0.5219699740409851, -0.021762000396847725, 0.0507659986615181, -0.012378999963402748, 0.5449100136756897, -0.813040018081665, 0.24255000054836273, -0.5999000072479248, -0.322050005197525, -0.10266000032424927, -0.594980001449585, -0.6003100275993347, 0.021654000505805016, -1.0382000207901, -0.5500100255012512, -0.21842999756336212, 0.47235000133514404, -0.2155900001525879, -0.046241000294685364, 0.07404500246047974, 0.215829998254776, -0.5065600275993347, -0.04536300152540207, -0.5028700232505798, 1.1744999885559082, -0.30300000309944153, 0.5092800259590149, -0.2436700016260147, 0.39941999316215515], u'bottle': [-0.3610300123691559, 0.5361199975013733, -0.31926000118255615, -0.49465999007225037, 0.22530999779701233, 0.6828399896621704, -0.15399999916553497, -0.4189000129699707, 0.6448699831962585, -0.6434500217437744, -0.1040399968624115, -0.46821001172065735, -0.22308999300003052, -0.245169997215271, 0.052643001079559326, 0.25325000286102295, -0.4700799882411957, 0.33952999114990234, -0.2798300087451935, 0.07064700126647949, 0.2141299992799759, 0.2398499995470047, -0.19890999794006348, 0.3767299950122833, -0.24772000312805176, -0.6148999929428101, -0.630050003528595, 0.2541300058364868, 0.005111100152134895, -0.7643700242042542, -0.4929800033569336, -0.15191000699996948, -0.01027199998497963, 0.282370001077652, -0.6285099983215332, 0.5401800274848938, -0.1590999960899353, 0.29896000027656555, -0.08327200263738632, 0.0804930031299591, -0.25582000613212585, -0.3812899887561798, 0.1528100073337555, -0.12251000106334686, -0.6812599897384644, -0.09692200273275375, 0.12655000388622284, 0.07866799831390381, -0.15645000338554382, 0.28224998712539673, -0.011874999850988388, -0.49900001287460327, -0.32754001021385193, 0.18251000344753265, -0.29954999685287476, 0.5733199715614319, 0.07651499658823013, 0.32552000880241394, 0.6518800258636475, -0.2333800047636032, 0.009960499592125416, -0.33375000953674316, 0.30219000577926636, 0.2185799926519394, -0.4243600070476532, -0.7569500207901001, -1.0580999851226807, -0.363429993391037, 0.18339000642299652, -0.13694000244140625, -0.07669100165367126, -0.46601998805999756, -0.0460829995572567, 0.5620999932289124, 0.19505000114440918, -0.6432899832725525, 0.18193000555038452, -0.7480900287628174, -0.41207998991012573, 0.05658800154924393, -0.5677499771118164, 0.29276999831199646, 0.24487000703811646, 0.4462999999523163, 0.5470600128173828, -0.2506600022315979, 0.3105100095272064, -0.0016616999637335539, 0.15568000078201294, -0.6166399717330933, 0.8137699961662292, 0.3442400097846985, 0.04034800082445145, 0.11687000095844269, 0.5377799868583679, 0.31926000118255615, 0.4082599878311157, -0.08444999903440475, 0.030563000589609146, -0.24794000387191772, 0.12943999469280243, 0.353520005941391, 0.14090000092983246, -0.16102999448776245, 0.21254000067710876, -0.2803100049495697, 0.2063799947500229, -0.02776000089943409, -0.624750018119812, 0.23151999711990356, -0.16342000663280487, 0.37353000044822693, 0.33647000789642334, -0.35100001096725464, -0.03700299933552742, -0.07862400263547897, -0.6939200162887573, 0.576259970664978, 0.20521000027656555, -0.8165599703788757, -0.1391499936580658, 0.22415000200271606, 0.03572700172662735, 0.2235500067472458, -0.38352999091148376, -0.1808300018310547, -0.016795000061392784, 0.02686999924480915, 0.016743000596761703, 0.17337000370025635, 0.7710800170898438, 0.08291099965572357, 0.122529998421669, 0.24823999404907227, -0.2275799959897995, 0.3121599853038788, -0.007053100038319826, 0.2564600110054016, -0.1552799940109253, -0.3457599878311157, 0.35679998993873596, -0.22773000597953796, -0.47185999155044556, -0.5204799771308899, -0.4726000130176544, -0.4108400046825409, -0.09059000015258789, -0.04865799844264984, 0.49494999647140503, 0.6461799740791321, -0.05571199953556061, 0.4508500099182129, 0.17494000494480133, -0.8577799797058105, -0.20826999843120575, -0.034276001155376434, -0.006099900230765343, -0.8529199957847595, 0.06827399879693985, 0.31349998712539673, 0.23274999856948853, -0.2910099923610687, -0.2057799994945526, 0.30344000458717346, 0.3846299946308136, -0.1647700071334839, -0.34158000349998474, 0.4260300099849701, -0.18794000148773193, -0.3469499945640564, -0.10248000174760818, 0.22346000373363495, 0.31126001477241516, 0.07427600026130676, 0.10322000086307526, -0.8667299747467041, 0.0038447000551968813, 0.42541998624801636, 0.21067999303340912, -0.7235400080680847, -0.3295600116252899, -0.2882100045681, -0.0014915999490767717, -0.06720399856567383, 0.8095999956130981, -0.009765800088644028, 1.2654000520706177, 0.4182099997997284, 0.31213998794555664, -0.06938199698925018, 0.9092000126838684, 0.480540007352829, -0.36434999108314514, 0.16344000399112701, -0.48363998532295227, -0.17746999859809875, -0.6950299739837646, 0.23340000212192535, -0.5917900204658508, 0.47012001276016235, 0.5045999884605408, 0.7274600267410278, 0.5925400257110596, 0.185139998793602, 0.045497000217437744, -0.23048999905586243, -0.36410999298095703, 0.05691299960017204, -0.42528998851776123, 0.15928000211715698, -0.09476400166749954, 0.09433600306510925, 0.08147300034761429, 0.017620999366044998, 0.22744999825954437, -0.4907799959182739, 0.18233999609947205, -0.34619998931884766, -0.5069400072097778, 0.11336000263690948, -0.062240999191999435, 0.6964100003242493, -0.026528000831604004, 0.419979989528656, -0.3759399950504303, 0.15158000588417053, 0.04094000160694122, -0.6161400079727173, 0.5885900259017944, -0.36030998826026917, 0.15358999371528625, 0.19518999755382538, -0.42326998710632324, -0.13940000534057617, 0.5550500154495239, 0.28485000133514404, -0.22988000512123108, -0.1697700023651123, -0.3424299955368042, 0.21107999980449677, -0.6600000262260437, -0.1849599927663803, -0.29023000597953796, 0.023806000128388405, -0.22833000123500824, 0.20572000741958618, 0.5539399981498718, -0.03620700165629387, -0.5250300168991089, -0.3732999861240387, 0.7691400051116943, 0.07639999687671661, 0.3423199951648712, -0.1779399961233139, 0.024664999917149544, 0.26069000363349915, -0.7438799738883972, -0.6499599814414978, 0.39719998836517334, -0.24654999375343323, 0.056453999131917953, 0.15282000601291656, -0.33524999022483826, 0.06697399914264679, -0.2347699999809265, -0.26910001039505005, -0.06579600274562836, 0.05023999884724617, 0.05291000008583069, 0.7733399868011475, 0.25033000111579895, -0.5011799931526184, 0.16788999736309052, -0.37762999534606934, 0.09507600218057632, 0.028567999601364136, -1.304900050163269, -0.009620199911296368, -0.7328000068664551, -0.5750300288200378, -0.32822999358177185, 0.5611299872398376, 0.11687000095844269, 0.02760699950158596, 0.05102099850773811, 0.5229300260543823, -0.11607000231742859, -0.9536799788475037, 0.26826998591423035, 0.491129994392395, -0.2543700039386749, -0.05342099815607071, 0.42440998554229736, 0.3891200125217438, 0.13725000619888306, -0.35359999537467957, 0.14524999260902405, -0.25297999382019043, 0.14108000695705414, 0.21762000024318695], u'basket': [-0.23319000005722046, 0.3644999861717224, 0.06190500035881996, -0.1956299990415573, 0.31233999133110046, 0.1678999960422516, -0.17741000652313232, -0.23033000528812408, 0.49928000569343567, -0.4961499869823456, -0.29409998655319214, -0.016207000240683556, -0.06786800175905228, -0.059866998344659805, 0.367000013589859, -0.7615900039672852, -0.3012300133705139, -0.15068000555038452, 0.2019599974155426, -0.15310999751091003, 0.21287000179290771, -0.23914000391960144, 0.591759979724884, -0.2443300038576126, 0.4134399890899658, -0.21762000024318695, -0.7989299893379211, -0.15836000442504883, 0.35100001096725464, -0.41907998919487, -0.050783999264240265, 0.34821999073028564, 0.3318899869918823, 0.42594999074935913, -1.174299955368042, 0.1970600038766861, 0.1415500044822693, 0.29912999272346497, -0.23386000096797943, 0.2756099998950958, -0.24619999527931213, -0.6729599833488464, 0.34790998697280884, -0.4418100118637085, 0.03860199823975563, 0.457179993391037, 0.45509999990463257, 0.15900999307632446, -0.4473100006580353, 0.617330014705658, 0.21412000060081482, 0.48982998728752136, -0.2930000126361847, -0.3971799910068512, -0.5355799794197083, -0.27553999423980713, -0.893280029296875, 0.32058000564575195, 0.30722999572753906, -0.1046300008893013, 0.09073200076818466, 0.08556199818849564, -0.22801999747753143, -0.1467600017786026, -0.2913300096988678, -0.0321430005133152, -0.3449999988079071, -0.3614400029182434, -0.10899999737739563, -0.3020299971103668, 0.13923999667167664, 0.48146000504493713, 0.04334700107574463, -0.0826139971613884, 0.18196000158786774, 0.5728899836540222, 1.0715999603271484, -0.4819500148296356, 0.36520999670028687, -0.8697299957275391, 0.14566999673843384, -0.39114999771118164, 0.30441999435424805, 0.2722199857234955, 0.2615000009536743, -0.005306399893015623, 0.2161400020122528, 0.31575000286102295, -0.4233100116252899, -0.12261000275611877, 1.1224000453948975, -0.37380000948905945, -0.02472599968314171, -0.706570029258728, -0.12387999892234802, -0.29256999492645264, -0.0021005000453442335, 0.09638500213623047, -0.1979600042104721, 0.16927999258041382, 0.23538999259471893, 0.4662199914455414, 0.10819999873638153, 0.3396100103855133, 0.19147999584674835, -0.4738500118255615, 0.23431000113487244, -0.01507600024342537, 0.04025999829173088, 0.350600004196167, -0.09946800023317337, 0.1271599978208542, -0.2955299913883209, 0.13649000227451324, 0.5385299921035767, 0.1072700023651123, 0.3518899977207184, 0.45357000827789307, 0.4943999946117401, 0.5199300050735474, -0.06485600024461746, -0.6038900017738342, 0.6903799772262573, -0.1149199977517128, -0.09346000105142593, -0.3083600103855133, -0.2145400047302246, 0.09750600159168243, 0.4288899898529053, 0.784089982509613, 0.24741999804973602, 0.09503000229597092, -0.39041998982429504, 0.2694999873638153, -0.3124600052833557, 0.4714199900627136, 0.3644999861717224, 0.13907000422477722, -0.4954499900341034, -0.023490000516176224, 0.03596299886703491, 0.49114999175071716, -0.05567000061273575, -0.5500500202178955, -0.6826000213623047, 0.08677399903535843, -0.6152899861335754, -0.5116900205612183, -0.3790299892425537, -0.2599000036716461, -0.4977400004863739, 0.209989994764328, -0.035930998623371124, -0.4588800072669983, -0.17364999651908875, -0.07766000181436539, -0.1275700032711029, -0.24647000432014465, -0.015131999738514423, -0.10705000162124634, -0.37029001116752625, -0.11409000307321548, -0.11806000024080276, -0.030553000047802925, 0.19442999362945557, -0.5227599740028381, -0.4516099989414215, 0.3196899890899658, 0.2417600005865097, 0.3333300054073334, -0.5102300047874451, -0.13794000446796417, -0.19439999759197235, 0.5670599937438965, 0.0850519984960556, 0.11963000148534775, -0.1911199986934662, 0.5056800246238708, -0.07801499962806702, -0.4321399927139282, 0.6886600255966187, -0.664870023727417, 0.09422799944877625, 0.10931000113487244, -0.6047999858856201, -0.16202999651432037, 0.3872700035572052, 0.05380000174045563, -0.28512001037597656, 0.18344999849796295, 0.3347199857234955, 0.6818900108337402, -0.3015100061893463, -0.532800018787384, -0.46665000915527344, -0.3615399897098541, -0.36065998673439026, -0.3575499951839447, -0.07362200319766998, 0.31744998693466187, 0.4533799886703491, -0.6144300103187561, 0.12519000470638275, 0.24981999397277832, 0.5254999995231628, -0.04369499906897545, -0.41315001249313354, -0.038040000945329666, -0.43518000841140747, 0.8578299880027771, -0.38273999094963074, 0.06279800087213516, 0.14194999635219574, 0.016426999121904373, 0.38089999556541443, 0.22663000226020813, 0.1722400039434433, 0.009104900062084198, -0.6221500039100647, -0.182109996676445, 0.16266000270843506, 0.4703100025653839, -0.2962999939918518, -0.3771499991416931, -0.05748400092124939, -0.0311450008302927, -0.11246000230312347, 0.39261001348495483, 0.39858999848365784, 0.022655000910162926, 0.23574000597000122, 0.08651500195264816, 0.0015937000280246139, 0.21428999304771423, -0.30309998989105225, 0.6685100197792053, -0.323529988527298, 0.046108998358249664, 0.25440001487731934, 0.5531700253486633, 0.04922199994325638, -0.06660600006580353, -0.27737998962402344, 0.29243001341819763, -0.29756999015808105, -0.0791890025138855, -0.1520099937915802, 0.8580300211906433, -0.10909000039100647, 0.04276200011372566, -0.2342199981212616, 0.050579000264406204, 0.4431400001049042, -0.5211300253868103, 0.6438000202178955, -0.08339700102806091, -0.4917199909687042, 0.2969000041484833, -0.24278999865055084, 0.38565000891685486, -0.4128600060939789, -0.45781001448631287, 0.01921200007200241, -0.28718000650405884, -0.06148099899291992, -0.210889995098114, -0.0847729966044426, 0.2059600055217743, -0.13278000056743622, -0.7864199876785278, 0.0656059980392456, -0.1902800053358078, -0.04347899928689003, 0.13784000277519226, 0.18515999615192413, -0.6658599972724915, -0.8191499710083008, -0.331030011177063, -1.254699945449829, 0.20362000167369843, 0.10986000299453735, -0.0258799996227026, -0.4790700078010559, -0.1419599950313568, 0.1096699982881546, -0.10638999938964844, 0.5659599900245667, -0.6207399964332581, 0.09126000106334686, 0.12122999876737595, 0.5218600034713745, -0.14199000597000122, 0.30695998668670654, 0.4975700080394745, 0.5276299715042114, 0.18151000142097473, 0.1554100066423416, -0.825689971446991, -0.5333099961280823, 0.057461999356746674], u'meat': [0.6860899925231934, 0.8784099817276001, 0.21856999397277832, -0.24244999885559082, 0.02304299920797348, -0.278219997882843, -0.021206000819802284, 0.509119987487793, -0.06491000205278397, -1.1539000272750854, -0.31053000688552856, -0.9087799787521362, -0.11744000017642975, 0.6361299753189087, -0.45587998628616333, -0.48228999972343445, -0.1555899977684021, 0.22688999772071838, -0.5585899949073792, 0.2199299931526184, -0.23543000221252441, 0.4142099916934967, 0.54093998670578, 0.4537000060081482, -0.1752299964427948, 0.5097799897193909, -0.11253000050783157, -0.47067999839782715, -0.33035001158714294, -0.3001500070095062, -0.6845200061798096, 0.5115100145339966, -0.6940299868583679, -0.23077000677585602, -0.3295400142669678, 0.25249001383781433, 0.5362799763679504, 0.0934320017695427, -0.727429986000061, -0.04456400126218796, -0.28881001472473145, -0.3491800129413605, -0.046824000775814056, -0.49911001324653625, -0.23442000150680542, -0.054625000804662704, -0.17145000398159027, -0.5008999705314636, 0.03360600024461746, 0.24814000725746155, -0.08959099650382996, 0.5189099907875061, 0.05889600142836571, 0.044753000140190125, 0.07438399642705917, -0.15682999789714813, -0.24945999681949615, 0.10371000319719315, -0.8604400157928467, -0.17050999402999878, -0.02834700047969818, 0.14395000040531158, 0.4688200056552887, -0.37907999753952026, -0.06812900304794312, -0.5115600228309631, -0.4355599880218506, -0.19964000582695007, 0.15577000379562378, 0.4408400058746338, 0.3860599994659424, 0.35572001338005066, 0.14970999956130981, -0.32082000374794006, -0.5089100003242493, 0.08866400271654129, 0.5770400166511536, 0.9609100222587585, -0.5152300000190735, -0.027936000376939774, 0.19776000082492828, 0.12483999878168106, -0.05680600181221962, -0.07978899776935577, 0.0949459969997406, -0.7791299819946289, -0.22694000601768494, 0.1882999986410141, -0.7169700264930725, -0.20670999586582184, -0.21751999855041504, -0.42489999532699585, -0.04628700017929077, 0.19631999731063843, -0.2542099952697754, 0.04829400032758713, -0.6030799746513367, 0.3686699867248535, -0.6325899958610535, 0.20311999320983887, 0.02374899946153164, -0.13163000345230103, 0.19945000112056732, -1.117900013923645, -0.5007100105285645, -0.1089399978518486, -0.00011511000047903508, 0.4818600118160248, -0.44161999225616455, 0.785539984703064, 0.3764899969100952, 0.5692600011825562, -0.7693300247192383, -0.15520000457763672, 0.021733999252319336, -0.1969199925661087, -0.482340008020401, 0.17505000531673431, 0.24681000411510468, -0.43088001012802124, -0.7469800114631653, -0.10869999974966049, 0.21155999600887299, 0.5220999717712402, -0.16593000292778015, 0.4955900013446808, -0.024656999856233597, 0.09052799642086029, -0.010738000273704529, 0.1522500067949295, 0.23409999907016754, 0.4275999963283539, 0.6043300032615662, 0.15588000416755676, -0.10068999975919724, 0.07334399968385696, -0.01607700064778328, 0.03280799835920334, 0.5216400027275085, 0.6400399804115295, 0.4108000099658966, 0.30445000529289246, 0.08586599677801132, -0.7769799828529358, -0.3247799873352051, 0.08576299995183945, -0.027249999344348907, -0.2846600115299225, -0.057760000228881836, -0.6127200126647949, -0.9843500256538391, 0.5213000178337097, 0.025318000465631485, -0.007254200056195259, 0.1408499926328659, -0.21041999757289886, -0.45688000321388245, -0.3562299907207489, -0.2962599992752075, -0.1513500064611435, 0.3886600136756897, 0.8494600057601929, -0.037119001150131226, -0.24307000637054443, 0.35596001148223877, -0.06206100061535835, 0.4564000070095062, -0.646619975566864, 0.35934001207351685, -0.4111100137233734, -0.302480012178421, -0.09369499981403351, -0.21809999644756317, 0.5496900081634521, -0.0738689973950386, 0.18585999310016632, 0.35447999835014343, -0.3743399977684021, 0.41385000944137573, -0.5539299845695496, 0.7452600002288818, 0.2853800058364868, -0.5266000032424927, -0.7012100219726562, -0.1404699981212616, -0.15373000502586365, 0.6902499794960022, -0.0500670000910759, 0.20948000252246857, -0.2964800000190735, -0.7303000092506409, 0.9150599837303162, -0.3732700049877167, -0.009397399611771107, 0.027664000168442726, 0.07503499835729599, -0.42212000489234924, -0.19439999759197235, -0.31567999720573425, 0.4657500088214874, 0.5788999795913696, -0.48201000690460205, 0.4226199984550476, 0.37803998589515686, -0.18626999855041504, 0.6388300061225891, 0.30441001057624817, -0.18437999486923218, -0.10227999836206436, -0.3062700033187866, 0.021869000047445297, -0.331030011177063, -0.610539972782135, 0.7650499939918518, -0.07931499928236008, -0.15764999389648438, 0.7704499959945679, -0.561240017414093, -0.3568100035190582, 0.03931700065732002, 0.229420006275177, 0.09109299629926682, -0.4038600027561188, -1.2968000173568726, 0.1012599989771843, -0.09756799787282944, -0.09299600124359131, 0.01637299917638302, 0.1802300065755844, 0.4465799927711487, 0.6050400137901306, -0.011320999823510647, -0.18118999898433685, 0.11625000089406967, 0.7036899924278259, 0.21112999320030212, 0.4863699972629547, -0.05805300176143646, -0.6853600144386292, -0.2525399923324585, -0.563979983329773, -0.16718000173568726, -0.12892000377178192, -0.9205399751663208, -0.9547299742698669, 0.2258400022983551, 0.6581100225448608, -0.22431999444961548, -0.14630000293254852, -0.7128900289535522, 0.041099999099969864, -0.21499000489711761, 0.21028000116348267, 0.6729300022125244, 0.4965200126171112, 0.5016599893569946, -0.2814199924468994, 0.0004822300106752664, -0.2742300033569336, 0.14146000146865845, -0.021176999434828758, -0.5199999809265137, -0.04952000081539154, -0.5696799755096436, 0.360370010137558, 0.2655999958515167, -0.1887200027704239, 0.07529500126838684, 0.026360999792814255, -0.32747000455856323, -0.9068400263786316, 0.006909800227731466, 0.505370020866394, 0.30625998973846436, 0.09980099648237228, 0.16235999763011932, -1.542799949645996, 0.08118700236082077, -0.6461399793624878, -0.5009599924087524, -0.21182000637054443, -0.18367999792099, -0.006750000175088644, 0.4024899899959564, -0.4086900055408478, 0.6792600154876709, 0.16904999315738678, -0.4995400011539459, 0.6108400225639343, 0.2944900095462799, 0.040004000067710876, 0.12358000129461288, 0.2290399968624115, -0.010297000408172607, -0.3762499988079071, -0.7408499717712402, 0.14955000579357147, -0.3991999924182892, 0.25964000821113586, -0.4620800018310547], u'tube': [0.35514000058174133, 0.11073999851942062, -0.03684600070118904, -0.7962499856948853, 0.27702000737190247, 0.1748799979686737, -0.09302400052547455, -0.4146899878978729, -0.008322600275278091, -1.056399941444397, -0.4170899987220764, -0.5529000163078308, 0.28255999088287354, -0.009892200119793415, 0.16523000597953796, 0.14657999575138092, -0.666450023651123, -0.6463900208473206, 0.40443000197410583, -0.21821999549865723, -0.06445199996232986, -0.773360013961792, 0.216729998588562, 0.6217300295829773, -0.44457000494003296, -0.20909999310970306, -0.1422400027513504, 0.6057699918746948, 0.5343000292778015, 0.6948800086975098, 0.13795000314712524, 0.5172600150108337, 0.2830899953842163, 0.2396399974822998, 0.051451001316308975, 0.5484399795532227, -0.02989399991929531, 0.05385600030422211, -0.22603000700473785, 0.9330499768257141, -0.4263800084590912, 0.4284699857234955, 0.1764499992132187, 0.29131999611854553, -0.7235100269317627, -0.06479699909687042, -0.29982998967170715, -0.09823799878358841, 0.25275999307632446, 0.3930499851703644, 0.09419099986553192, 0.4430600106716156, -0.26256999373435974, 0.12032999843358994, 0.07671400159597397, -0.10683999955654144, 0.6233100295066833, -0.1766899973154068, 0.425819993019104, 0.3328799903392792, 0.19282999634742737, -0.1898300051689148, 0.7360600233078003, 0.0724480003118515, 0.5954599976539612, 0.03253199905157089, 0.006850500125437975, -0.03177100047469139, -0.13291999697685242, 0.6633399724960327, 0.5410500168800354, -0.008778300136327744, -0.17542000114917755, 0.1853799968957901, 0.7453399896621704, 0.1913899928331375, -0.11765000224113464, -0.13447000086307526, -0.7384300231933594, -0.44975998997688293, -0.2561900019645691, -0.10507000237703323, -0.004997699987143278, 0.07489000260829926, -0.36994001269340515, 0.27360999584198, 0.9546200037002563, -0.5663300156593323, 0.072782002389431, 0.14855000376701355, 0.5157099962234497, -0.057930998504161835, -0.614109992980957, -0.04989999905228615, -0.11699000000953674, 0.23152999579906464, -0.25892001390457153, 0.44839999079704285, 0.6635400056838989, -0.7609000205993652, 0.21428999304771423, 0.6410700082778931, 0.07731799781322479, -0.5258499979972839, 0.5209699869155884, 0.37874001264572144, 0.42642998695373535, -0.19978000223636627, -0.2523899972438812, 0.5577999949455261, -0.3680900037288666, 0.7149500250816345, 0.8692600131034851, 0.06910300254821777, -0.3913399875164032, -0.3327299952507019, -0.606939971446991, 0.8718500137329102, -0.23749999701976776, -0.07628700137138367, -0.10340999811887741, -0.8738800287246704, 0.48458001017570496, -1.0565999746322632, -0.18419000506401062, -0.39546999335289, -0.5028300285339355, -0.2504799962043762, -0.4287700057029724, 0.5242800116539001, -0.022842999547719955, -0.0031471000984311104, 0.2578999996185303, 0.47308000922203064, 0.054715000092983246, 0.44784998893737793, 0.010010000318288803, -0.18764999508857727, 0.16810999810695648, 0.34880998730659485, 0.39114999771118164, -0.1512400060892105, -0.33904001116752625, -0.35054999589920044, -0.33649998903274536, 0.0092351995408535, 0.04425499960780144, -0.3900499939918518, 0.11078000068664551, -0.2677200138568878, -0.03903200104832649, 0.20442000031471252, 0.4085899889469147, 0.25369998812675476, 0.6281300187110901, 0.12122999876737595, -0.10632000118494034, -0.6107900142669678, -0.007347399834543467, 0.8986200094223022, -0.2387000024318695, -0.323529988527298, 0.029969999566674232, -0.30098000168800354, 0.4633199870586395, 0.0048190997913479805, 0.22366000711917877, -0.04053699970245361, 0.4098399877548218, -0.010773000307381153, 0.37501001358032227, 0.8230100274085999, 0.673259973526001, 0.03198400139808655, -0.38517001271247864, 0.146139994263649, -0.46988001465797424, 0.8216500282287598, 0.04424599930644035, -1.1863000392913818, 0.009719699621200562, 0.20909999310970306, 0.28584998846054077, 0.9666799902915955, -0.046167001128196716, -0.17215999960899353, 1.0073000192642212, 0.4359399974346161, 0.5698099732398987, -0.930869996547699, 0.22387999296188354, 0.7450900077819824, 0.209539994597435, 0.5748400092124939, -0.3471300005912781, 0.2466599941253662, 0.014201000332832336, -0.6352300047874451, -0.15884000062942505, -0.08506199717521667, 0.383650004863739, 0.4320099949836731, 0.27046000957489014, 0.24963000416755676, 0.16878999769687653, 0.4888100028038025, -0.4621799886226654, -0.33939000964164734, -0.2965799868106842, 0.10552000254392624, -0.1861799955368042, -0.7034000158309937, 0.03844999894499779, -0.23163999617099762, 0.27487000823020935, -0.01579900085926056, 0.09022500365972519, -0.6993200182914734, -0.013814999721944332, -0.33858999609947205, -0.040449000895023346, -0.026978999376296997, -0.05474599823355675, -0.5011100172996521, 0.5317100286483765, 0.07237400114536285, -0.24194000661373138, -0.5819299817085266, 0.6878700256347656, 0.2951500117778778, 0.20427000522613525, 0.21188999712467194, 0.15613999962806702, -0.4989500045776367, 0.2411700040102005, -0.4129300117492676, 0.48447999358177185, 0.018164999783039093, -0.1638599932193756, -0.4822100102901459, 0.3158099949359894, -0.6360499858856201, 0.060245998203754425, 0.7367100119590759, -1.1217000484466553, -0.6613699793815613, 0.43042001128196716, -0.3269999921321869, 0.034898001700639725, -0.32117000222206116, -0.19115999341011047, -0.03013800084590912, 0.2391200065612793, -0.24097999930381775, 0.039069000631570816, 0.3261300027370453, -0.022799000144004822, -0.1182899996638298, 0.5251799821853638, 0.026576999574899673, -0.1745000034570694, -0.28325000405311584, 0.026466000825166702, 0.3618699908256531, -0.07221599668264389, 0.29100000858306885, -0.23799000680446625, 0.3743700087070465, 0.5636100172996521, 0.17249999940395355, 0.17896999418735504, -0.33643999695777893, 0.09761899709701538, -0.0730689987540245, -0.3316200077533722, -0.25971999764442444, -0.9501500129699707, -0.22708000242710114, -0.8911499977111816, 0.4354200065135956, -0.07168100029230118, -0.4808200001716614, -0.5611100196838379, -0.10277000069618225, -0.19081999361515045, 0.00829629972577095, -0.00530839990824461, 0.10457000136375427, -0.3653799891471863, -0.24254000186920166, -0.04173799976706505, -0.30584999918937683, 0.4124400019645691, -0.15383000671863556, 0.799560010433197, -0.25220999121665955, 0.07129199802875519, -0.24270999431610107, 0.23030999302864075, 0.25617000460624695]} diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_UT.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_UT.py new file mode 100644 index 0000000000000000000000000000000000000000..dd0deb7f5e6be2f836a7d69dbb2af99f7285ae3b --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/aux_data/glove_UT.py @@ -0,0 +1,29 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +attrs_dict = {u'Synthetic': [-0.04577599838376045, 0.3800700008869171, 0.06601399928331375, 0.30629000067710876, -0.3903000056743622, -0.4559600055217743, -0.24815000593662262, -0.15424999594688416, 0.251910001039505, -1.542199969291687, 0.296889990568161, 0.04115299880504608, -0.10824000090360641, -0.5511000156402588, 0.15072999894618988, -0.6427199840545654, -0.6002699732780457, 0.6632300019264221, 0.01593099907040596, 0.25126999616622925, -0.7840200066566467, -0.06940600275993347, -0.7046599984169006, 1.0583000183105469, -0.7482500076293945, -0.047265999019145966, 0.12145999819040298, -0.19754000008106232, -0.39076000452041626, 0.8264899849891663, -0.23531000316143036, 0.12178999930620193, -0.4373599886894226, -0.03483700007200241, 0.1463399976491928, 0.8266000151634216, 0.1419299989938736, -0.015936000272631645, 0.47641000151634216, 0.5698800086975098, -0.6881800293922424, 0.3273400068283081, 0.11575999855995178, -0.3928599953651428, 0.859969973564148, -0.17398999631404877, -0.13364000618457794, 0.36761000752449036, 0.40156999230384827, 0.18532000482082367, -0.7027999758720398, 0.3431699872016907, -0.20604999363422394, 0.25824999809265137, -0.1853400021791458, 0.05159199982881546, 0.4432399868965149, -0.8833500146865845, -0.15508000552654266, 0.03284300118684769, 0.03600899875164032, 0.010456999763846397, 0.12272000312805176, -0.3211599886417389, 0.22999000549316406, 0.22707000374794006, -0.4835200011730194, 0.5113099813461304, 0.19235999882221222, 0.20065000653266907, -0.05050100013613701, 0.8626999855041504, 0.3550199866294861, 0.239779993891716, 0.20059999823570251, 0.01259199995547533, 0.18863999843597412, -0.6061000227928162, 0.4338200092315674, 0.37742000818252563, -0.012063000351190567, -0.21557000279426575, 0.13241000473499298, -0.038047000765800476, -0.4945000112056732, -0.06906399875879288, 0.5912600159645081, 0.5262799859046936, -0.07176300138235092, 0.29857000708580017, 0.11816000193357468, 0.12838999927043915, 0.3648200035095215, -0.14882999658584595, -0.12362000346183777, 0.018970999866724014, -0.47512000799179077, -0.28130999207496643, 0.3004699945449829, -0.4404599964618683, 0.02690899930894375, 0.46779000759124756, -0.2299399971961975, 0.11753000319004059, -0.24092000722885132, 0.33908000588417053, -0.028602000325918198, -0.1736699938774109, -0.6475899815559387, 0.3613699972629547, -0.3054400086402893, -0.08866699784994125, 0.4997299909591675, 0.005345200188457966, 0.19354000687599182, 0.683899998664856, 0.611519992351532, 0.7105500102043152, 0.06873200088739395, -0.08810999989509583, 0.06660199910402298, -0.15602000057697296, 0.17026999592781067, 0.42340999841690063, -0.03636600077152252, -0.077333003282547, 0.1926400065422058, 0.2630699872970581, 0.017246000468730927, 0.6931399703025818, -0.13223999738693237, 0.09873899817466736, -0.31341999769210815, 0.8980799913406372, -0.6257399916648865, -0.23291000723838806, -0.04795699939131737, 0.1792600005865097, -0.2240000069141388, -0.2957000136375427, 0.11181999742984772, -0.027431000024080276, 0.5121300220489502, -0.8829900026321411, 1.2210999727249146, 0.33972999453544617, -0.008983800187706947, -0.4056299924850464, -0.04244299978017807, 0.32635000348091125, -0.3197700083255768, -0.46476998925209045, -0.03531600162386894, -0.20038999617099762, -0.26475000381469727, -0.255950003862381, -0.549239993095398, 0.21930000185966492, 0.48537999391555786, -0.5171599984169006, 0.3018999993801117, -0.4078100025653839, -0.5220999717712402, 0.3406600058078766, 0.10730999708175659, 0.20045000314712524, 0.3650200068950653, 0.1910800039768219, 0.24275000393390656, -0.01835400052368641, 0.16229000687599182, -0.6160100102424622, 0.3590500056743622, 0.398499995470047, -0.22748999297618866, -0.19943000376224518, 0.4292699992656708, 0.11563999950885773, -0.7495499849319458, -0.7363700270652771, 0.30741000175476074, -0.10733000189065933, -0.11004000157117844, 0.07846099883317947, 0.003531999886035919, -0.11417999863624573, 0.7155299782752991, 0.5024799704551697, 0.13433000445365906, -0.3752099871635437, -0.059477001428604126, 0.6579700112342834, 0.3008899986743927, -0.8413400053977966, -0.2658799886703491, -0.08957000076770782, -0.23789000511169434, -0.27052998542785645, 0.12833000719547272, -0.10885000228881836, -0.6639400124549866, -0.13018999993801117, 0.14413000643253326, -0.5527499914169312, 0.4489800035953522, 0.832260012626648, 0.07375799864530563, 0.34272998571395874, -1.1331000328063965, 0.44043999910354614, 0.3302299976348877, 0.3827599883079529, -0.16054999828338623, -0.08064600080251694, -0.42458999156951904, 0.2711299955844879, 0.03840000182390213, -0.079694002866745, 0.18782000243663788, -0.4207499921321869, -0.029160000383853912, 0.16200000047683716, -0.32196998596191406, -0.018453000113368034, 0.16693000495433807, -0.0026314000133424997, -0.07119999825954437, 0.6017299890518188, -0.5726500153541565, 0.14930999279022217, 0.9554700255393982, 0.537060022354126, -0.20654000341892242, 0.4418799877166748, 0.349839985370636, 0.35016000270843506, 0.3416300117969513, 0.09083600342273712, -0.17700999975204468, 0.39215001463890076, 0.1829800009727478, -0.3836899995803833, -0.5289999842643738, -0.0954509973526001, -0.4580099880695343, 0.1346299946308136, 0.16503000259399414, -0.2955099940299988, -0.16820000112056732, -0.35262998938560486, 0.17072999477386475, -0.39601001143455505, -0.03160100057721138, -0.1031700000166893, -0.30037999153137207, -0.057117998600006104, 0.19399000704288483, -0.18832999467849731, 0.04792400076985359, -0.30101001262664795, -0.19999000430107117, -0.3028999865055084, -0.0185759998857975, -0.4203599989414215, 0.5943999886512756, 0.2754899859428406, -0.3252300024032593, 0.10197000205516815, 0.2249400019645691, 0.2983900010585785, 0.8947399854660034, 0.1452600061893463, -0.305400013923645, -0.38666000962257385, -0.8218700289726257, 0.030956000089645386, -0.6825100183486938, -0.05696500092744827, -0.3364599943161011, 0.08358299732208252, -0.0675320029258728, -0.8689500093460083, -0.3306800127029419, 1.2415000200271606, 0.3635900020599365, -0.09112299978733063, -0.3589499890804291, 0.09703599661588669, 0.22290000319480896, -0.06057000160217285, -0.3908900022506714, -0.16450999677181244, 0.039538998156785965, 0.3409000039100647, 0.06477600336074829, -0.1576399952173233, 1.0355000495910645, -0.5768899917602539, 0.12389999628067017, 0.782289981842041], u'Canvas': [0.11776000261306763, -0.25749000906944275, -0.30239999294281006, -0.5817800164222717, -0.06854899972677231, 0.3100300133228302, -0.642989993095398, -0.6093299984931946, -0.43342000246047974, -0.4262099862098694, -0.02540300041437149, 0.3224300146102905, -0.17177000641822815, -0.043133001774549484, -0.2373500019311905, -0.11386000365018845, -0.09922300279140472, -0.03717400133609772, 0.1990099996328354, -0.20895999670028687, -0.009801800362765789, -0.06243100017309189, 0.009280400350689888, -0.12469000369310379, 0.3485200107097626, -0.07759299874305725, 0.017927000299096107, -0.019030999392271042, 0.04417100176215172, 0.7634699940681458, 0.3228999972343445, 0.19257999956607819, -0.2895500063896179, -0.000591500021982938, -0.016530999913811684, 0.38651999831199646, -0.36820998787879944, -0.8469399809837341, 0.0815730020403862, 0.6695700287818909, 0.032986000180244446, -0.2884399890899658, 0.0663990005850792, -0.2928299903869629, 0.14805999398231506, 0.5450199842453003, 0.4271700084209442, -0.25095999240875244, -0.21952000260353088, 0.18694999814033508, 0.04422299936413765, 0.3316799998283386, 0.6321600079536438, -0.33445000648498535, 0.07240799814462662, -0.06504499912261963, -0.17684000730514526, -0.0449879989027977, 0.3676399886608124, -0.05189799889922142, -0.42243000864982605, -0.2804499864578247, -0.19923000037670135, -0.250789999961853, 0.4525099992752075, -0.24196000397205353, -0.42034000158309937, -1.1134999990463257, 0.10976999998092651, -0.3188000023365021, 0.06318099796772003, -0.20806999504566193, -0.45719999074935913, -0.18796999752521515, 0.2138800024986267, -0.0381230004131794, 0.04224200174212456, 0.03913699835538864, 0.3130800127983093, -0.4183500111103058, -0.11474999785423279, -0.0947749987244606, -0.8221799731254578, -0.40553998947143555, -0.43636998534202576, 0.30774998664855957, 0.5503699779510498, 0.15410999953746796, -0.30733001232147217, 0.28119999170303345, 0.16054999828338623, -0.3449000120162964, 0.31376999616622925, -0.23950999975204468, -0.12928999960422516, -0.5474500060081482, -0.25543999671936035, -0.06344100087881088, 0.027545999735593796, -0.6276599764823914, 0.1116499975323677, 0.34123000502586365, -0.33528000116348267, -0.3143100142478943, -0.30028998851776123, -0.1010499969124794, -0.0004915000172331929, 0.012880999594926834, -0.38718000054359436, -0.5114099979400635, -0.34068000316619873, 0.07612399756908417, -0.016567999497056007, 0.2955799996852875, -0.3841499984264374, 0.22146999835968018, 0.19300000369548798, 0.7715299725532532, 0.0022952998988330364, -0.3125300109386444, -0.03221900016069412, -0.20573000609874725, 0.1723800003528595, 0.8471800088882446, 0.46404001116752625, -0.02310599945485592, -0.21786999702453613, 0.33739998936653137, -0.15835000574588776, 0.2512800097465515, 0.13154000043869019, 0.06436800211668015, -0.19404999911785126, 0.5265499949455261, -0.4429599940776825, -0.7163800001144409, -0.28134000301361084, 0.622730016708374, -0.18230000138282776, 0.25328999757766724, 0.1538199931383133, 0.7798699736595154, -0.3813300132751465, -0.19426999986171722, -0.07922899723052979, 0.3818100094795227, 0.07904499769210815, 0.23547999560832977, -0.6780200004577637, 0.10694999992847443, -0.2649100124835968, 0.46751999855041504, -0.16223999857902527, -0.7611100077629089, -0.41705000400543213, 0.32840999960899353, 0.27952998876571655, -0.2235500067472458, 0.27695000171661377, 0.24327999353408813, -0.2825999855995178, -0.5859699845314026, 0.03816699981689453, 0.32297998666763306, 0.4759399890899658, -0.18929000198841095, 0.14735999703407288, 0.7404199838638306, 0.15734000504016876, 0.3575499951839447, 0.12690000236034393, -0.16362999379634857, -0.23765000700950623, -0.49559998512268066, 0.20613999664783478, -0.2484000027179718, 0.040773000568151474, 0.573140025138855, -0.15222999453544617, -0.9987199902534485, 0.3710300028324127, 0.3084000051021576, 0.36309000849723816, -0.011490999720990658, -0.6328499913215637, -0.4516099989414215, 0.12325000017881393, 0.4568699896335602, 0.45032998919487, 0.3812899887561798, 0.6545100212097168, 0.7950599789619446, 0.38065001368522644, -0.2796199917793274, 0.06893300265073776, 0.1373099982738495, -0.5483599901199341, 0.8762000203132629, 0.046755000948905945, -0.03585600107908249, 0.300680011510849, -0.5569999814033508, 0.3929100036621094, -0.0010371999815106392, 0.38666999340057373, -0.26041001081466675, 0.09444200247526169, 0.5407800078392029, -0.6853700280189514, -0.1417900025844574, -0.07552400231361389, 0.001829099957831204, -0.1435299962759018, 0.3785899877548218, 0.12942999601364136, 0.39809998869895935, 0.1427299976348877, -0.35420000553131104, -0.2549999952316284, 0.16561000049114227, 0.49184998869895935, 0.2903900146484375, 0.1287200003862381, -0.4709300100803375, 0.32346999645233154, -0.14449000358581543, 0.05095599964261055, -0.10757999867200851, -0.09872300177812576, -0.6980599761009216, 0.3866199851036072, 0.20272000133991241, -0.3596700131893158, 0.24196000397205353, 0.7747200131416321, 0.24935999512672424, -0.47418999671936035, -0.0646120011806488, -0.4107300043106079, 0.02492300048470497, -0.1951099932193756, 0.09061700105667114, -0.516290009021759, 0.15539999306201935, -0.6659700274467468, -0.4631899893283844, -0.366890013217926, -0.2941800057888031, -0.1591300070285797, -0.02559800073504448, -0.4878599941730499, 0.2529900074005127, 0.610260009765625, -0.5174000263214111, 0.5217999815940857, 0.378930002450943, -0.3196699917316437, -0.06980200111865997, -0.04400400072336197, 0.23667000234127045, 0.13467000424861908, -0.13804000616073608, 0.2660900056362152, -0.0903640016913414, -0.3041900098323822, -0.2410299926996231, -0.3864000141620636, 0.028049999848008156, -0.37310001254081726, 0.05808800086379051, -0.04430200159549713, 0.06411699950695038, 0.6045500040054321, -0.12318000197410583, -0.7910400032997131, 0.040950000286102295, -0.512910008430481, -0.20782999694347382, -0.5692999958992004, 0.2870999872684479, 0.34586000442504883, -0.3864000141620636, -0.03888599947094917, 0.09629099816083908, -0.03134100139141083, 0.0400019995868206, -0.14797000586986542, 0.2633799910545349, -0.3892599940299988, 0.06704100221395493, -0.17337000370025635, -0.00737369991838932, -0.018343999981880188, -0.21529999375343323, 0.41238999366760254, 0.2899700105190277, 0.5396999716758728, -0.008594200015068054, 0.1139800027012825, -0.2518500089645386], u'Nylon': [0.11185000091791153, 0.07597299665212631, 0.0334319993853569, -0.553629994392395, -0.19370999932289124, -0.14632999897003174, -0.12931999564170837, -0.35137999057769775, 0.017340999096632004, -0.35521000623703003, 0.20934000611305237, 0.1306300014257431, 0.4045499861240387, -0.2553600072860718, -0.3493900001049042, 0.08583199977874756, -0.91007000207901, 0.24146999418735504, -0.1688999980688095, 0.10040000081062317, -0.06762699782848358, -0.695169985294342, -0.3354400098323822, 0.4762600064277649, -0.3094399869441986, 0.07708299905061722, 0.03751400113105774, -0.2983799874782562, 0.06275299936532974, 0.518310010433197, -0.19212999939918518, -0.19693000614643097, -0.04613399878144264, 0.04805000126361847, 0.10497000068426132, 0.0552389994263649, -0.43963998556137085, -0.2215300053358078, 0.796280026435852, 0.9047099947929382, -0.24350999295711517, -0.3179599940776825, -0.10233999788761139, -0.27889999747276306, 0.16075000166893005, 0.4916999936103821, 0.5916000008583069, -0.10057999938726425, -0.20826999843120575, 0.43459999561309814, -0.1123099997639656, 0.2292100042104721, -0.22951999306678772, -0.1282700002193451, 0.17722000181674957, 0.11722999811172485, -0.04680199921131134, -0.8517699837684631, -0.023684000596404076, 0.04681200161576271, -0.09302599728107452, 0.2140900045633316, 0.11023999750614166, -0.06899700313806534, 0.7007099986076355, -0.030577000230550766, -0.3765900135040283, 0.19298000633716583, -0.23872999846935272, 0.20469999313354492, -0.23030999302864075, -0.006815900094807148, -0.2473600059747696, 0.278219997882843, 0.18756000697612762, 0.3222599923610687, -0.17193999886512756, -0.08721199631690979, -0.0252470001578331, -0.42754998803138733, -0.2667100131511688, -0.5668500065803528, -0.05734499916434288, -0.3485499918460846, -0.4683299958705902, 0.4192200005054474, 0.08441600203514099, 0.3806999921798706, -0.44523000717163086, -0.3521200120449066, 0.15988999605178833, -0.40483999252319336, 0.5400099754333496, 0.20589999854564667, -0.22201000154018402, 0.2746399939060211, -0.2768299877643585, 0.8968799710273743, 0.0027819001115858555, -0.2516300082206726, 0.25262001156806946, 0.8426499962806702, -0.04746700078248978, -0.3431200087070465, 0.03420000150799751, -0.6859099864959717, 0.5352200269699097, 0.17367999255657196, -0.6289600133895874, -0.14201000332832336, -0.32280001044273376, 0.5119699835777283, 0.022648999467492104, -0.18362000584602356, 0.2614699900150299, 0.02338399924337864, 0.3296099901199341, 0.4769600033760071, 0.3546200096607208, -0.12014000117778778, 0.318450003862381, -0.6374599933624268, 1.055899977684021, 0.2526000142097473, 0.4629800021648407, 0.2390899956226349, -0.02097800001502037, 0.5501899719238281, -0.13207000494003296, 0.4731599986553192, -0.14496000111103058, 0.1823900043964386, -0.2922399938106537, -0.16283999383449554, -0.5876500010490417, -0.27781999111175537, -0.6289700269699097, 0.34033000469207764, -0.2083600014448166, -0.1418199986219406, -0.26864001154899597, 0.02301499992609024, 0.24703000485897064, -0.8041399717330933, 0.6745399832725525, 0.6245999932289124, -0.2800599932670593, -0.8553400039672852, 0.06310500204563141, 0.33476999402046204, -0.504289984703064, -0.07733500003814697, 0.08305700123310089, -0.7077000141143799, 0.02244899980723858, -0.5616199970245361, 0.01268799975514412, -0.24467000365257263, 0.2752099931240082, 0.36757001280784607, 0.23628999292850494, -0.6511399745941162, -0.14036999642848969, 0.2668200135231018, -0.0854249969124794, -0.4431900084018707, -0.3380500078201294, 0.5380399823188782, -0.16687999665737152, -0.21431000530719757, 0.04020199924707413, 0.3752700090408325, -0.15523000061511993, 0.3809100091457367, -0.4061700105667114, -0.5024200081825256, -0.10542000085115433, 0.6520299911499023, 0.0917539969086647, -0.5285199880599976, 0.791450023651123, -0.2831000089645386, 0.20483000576496124, 0.15769000351428986, -0.1545100063085556, 0.0020568999461829662, 0.2532300055027008, 0.7230600118637085, -0.05225599929690361, -0.09195099771022797, 0.10193999856710434, 0.5239400267601013, 0.09703399986028671, -0.6240400075912476, -0.05181900039315224, -0.04481099918484688, -0.5406100153923035, -0.07397399842739105, 0.5082799792289734, -0.010582000017166138, -0.6354100108146667, 0.2179500013589859, 0.7803999781608582, 0.10554999858140945, 0.20600000023841858, 0.6419199705123901, 0.384660005569458, 0.5880399942398071, -0.8062999844551086, -0.08561400324106216, 0.07718099653720856, 0.34984999895095825, -0.02546899951994419, 0.2978000044822693, 0.11529000103473663, -0.1095300018787384, 0.0419670008122921, -0.737779974937439, -0.2789900004863739, -0.518310010433197, 0.44940000772476196, -0.08599600195884705, 0.1265300065279007, -0.40509000420570374, 0.3979699909687042, 0.06059600040316582, -0.15384000539779663, 0.11869999766349792, -0.5024399757385254, -0.6779699921607971, 0.49487999081611633, -0.2006700038909912, 0.002907400019466877, 0.48069000244140625, 0.7811899781227112, 0.09555800259113312, 0.24741999804973602, -0.19599999487400055, -0.4437499940395355, 0.5778800249099731, 0.2955999970436096, -0.2619900107383728, -0.36917999386787415, 0.07397100329399109, -0.4016900062561035, 0.3529999852180481, 0.5410799980163574, -0.6986799836158752, -0.19729000329971313, -0.5341299772262573, -0.21533000469207764, -0.058504000306129456, 0.5822399854660034, -0.38515999913215637, 0.35238999128341675, 0.39285001158714294, 0.10468000173568726, 0.16423000395298004, 0.13644999265670776, -0.6394299864768982, 0.4702700078487396, -0.32662999629974365, -0.3316600024700165, 0.0013141999952495098, 0.5202500224113464, 0.27619001269340515, -0.4040600061416626, -0.006999200209975243, -0.2252800017595291, 0.6585800051689148, 0.5225899815559387, 0.008446499705314636, -0.04720199853181839, 0.24337999522686005, -0.2659800052642822, 0.3933599889278412, 0.276529997587204, 0.046066999435424805, -0.9360299706459045, 0.6937100291252136, 0.34150001406669617, -0.030573999509215355, -0.1682800054550171, 0.26510000228881836, 0.1204100027680397, 0.4214000105857849, -0.12286999821662903, 0.27272000908851624, -0.399509996175766, -0.005057699978351593, 0.004785500001162291, -0.3501499891281128, 0.10459999740123749, 0.419050008058548, -0.3171899914741516, 0.15647999942302704, 0.4870299994945526, -0.13741999864578247, 0.5196899771690369, 0.03798900172114372], u'Patent.Leather': [0.320279985666275, 0.1373399943113327, 0.20201000571250916, 0.023415999487042427, -0.23228999972343445, -0.06644000113010406, 0.05316900089383125, 0.07862400263547897, -0.013139000162482262, -0.9607700109481812, -0.21727000176906586, -0.08145499974489212, 0.10281000286340714, 0.24017000198364258, 0.03472499921917915, -0.20090000331401825, -0.2791999876499176, 0.6718500256538391, -0.18369999527931213, 0.11964999884366989, -0.3772299885749817, 0.17750999331474304, 0.2807300090789795, 0.14963999390602112, -0.9964900016784668, -0.024354999884963036, 0.31227999925613403, -0.14323000609874725, -0.2888700067996979, 0.7826200127601624, -0.14722999930381775, 0.11243999749422073, -0.814300000667572, -0.027765000239014626, -0.6208299994468689, 0.5914599895477295, -0.08576899766921997, -0.1636199951171875, 0.28033000230789185, 0.37178999185562134, -0.69718998670578, -0.6338499784469604, -0.07243800163269043, -0.6990299820899963, 0.5445200204849243, -0.3038800060749054, 0.15636000037193298, -0.2471799999475479, -0.4692400097846985, 0.29109999537467957, -0.3986800014972687, 0.01960100047290325, 0.15570999681949615, 0.02155900001525879, 0.27219000458717346, -0.16113999485969543, -0.05614500120282173, -0.6595600247383118, 0.07558900117874146, 0.09509199857711792, -0.009356300346553326, -0.05873600021004677, -0.40542998909950256, -0.4925200045108795, 0.16739000380039215, -0.3635300099849701, -0.6791800260543823, -0.20646999776363373, 0.19829000532627106, 0.19067999720573425, 0.2824299931526184, -0.055215999484062195, 0.4657599925994873, -0.5020899772644043, 0.2580200135707855, -0.23984000086784363, -0.16124999523162842, -0.16965000331401825, -0.3687100112438202, -0.5354999899864197, 0.2418700009584427, 0.36816999316215515, -0.30820000171661377, -0.48938998579978943, -0.10033000260591507, -0.4301599860191345, -0.24375000596046448, 0.3955399990081787, -0.8563200235366821, 0.08522699773311615, 0.12536999583244324, 0.24233999848365784, -0.055006999522447586, -0.08333499729633331, 0.04233599826693535, 0.5936400294303894, -0.11635000258684158, -0.0815730020403862, -0.33258000016212463, -0.1943099945783615, -0.31000998616218567, 0.8799999952316284, -0.6165099740028381, -0.714139997959137, -0.2503400146961212, -0.5200899839401245, 0.6614599823951721, 0.6125100255012512, -0.17357000708580017, -0.7688699960708618, -0.12917999923229218, 0.03411199897527695, -0.19575999677181244, -0.5171499848365784, -0.024707000702619553, -0.23646000027656555, 0.15014000236988068, 0.6591299772262573, 0.31084999442100525, -0.6385300159454346, -0.22391000390052795, -0.11964000016450882, 0.37900999188423157, -0.12244000285863876, -0.1665000021457672, 0.18322999775409698, 0.167820006608963, 0.5069699883460999, 0.21445000171661377, -0.1690399944782257, -0.008311999961733818, -0.08574599772691727, -0.16388000547885895, 0.34650999307632446, -0.6297500133514404, -0.4809400141239166, -0.4261400103569031, 0.2230599969625473, -0.22889000177383423, 0.36719998717308044, 0.5606499910354614, 0.4404599964618683, 0.9167500138282776, -0.6277099847793579, 0.7337700128555298, 0.05577800050377846, -0.07277899980545044, -0.3273699879646301, 0.2655400037765503, 0.13027000427246094, 0.09305299818515778, 0.23232999444007874, -0.4279400110244751, -0.8535400032997131, -0.1460600048303604, -0.372189998626709, -0.4641599953174591, -0.4708400070667267, 0.2945699989795685, 0.19336000084877014, 0.7178099751472473, 0.10603000223636627, -0.16719000041484833, 0.23145000636577606, 0.7326499819755554, -0.4119200110435486, 0.5793899893760681, 0.4956600069999695, 0.22970999777317047, 0.2870999872684479, -0.7600399851799011, 0.3722200095653534, -0.47773000597953796, 0.5303699970245361, -0.7299699783325195, -0.8354600071907043, -0.2558799982070923, 0.49994999170303345, -0.240789994597435, -0.6984599828720093, 0.5922600030899048, 0.26368001103401184, 0.05631599947810173, 0.14757999777793884, 0.8230299949645996, -0.7596399784088135, 0.9071900248527527, 0.5719900131225586, 0.49101001024246216, -0.4599800109863281, -0.028178999200463295, 0.4863100051879883, -0.11738000065088272, 0.1105400025844574, 0.37571999430656433, -0.10271000117063522, -0.4672600030899048, 0.23286999762058258, -0.3844299912452698, 0.3286300003528595, 0.6381400227546692, -0.34033000469207764, 0.5185800194740295, 0.13745999336242676, 0.8479400277137756, -0.04707400128245354, 0.6611400246620178, 0.4970400035381317, -1.0228999853134155, -0.263480007648468, 0.6801699995994568, -0.0806960016489029, -0.2588199973106384, 0.5239400267601013, 0.38166001439094543, -0.47262001037597656, 0.6296799778938293, -0.42080000042915344, -0.5334699749946594, -0.6371999979019165, 0.1580599993467331, -0.0010679999832063913, 0.2142699956893921, -0.12668000161647797, -0.07343199849128723, 0.6901900172233582, -0.2778399884700775, 0.4765999913215637, -0.21198000013828278, -0.4487299919128418, 0.35850000381469727, -0.6176400184631348, -0.26298999786376953, 0.4318999946117401, 0.9145200252532959, 0.10837999731302261, 0.6436700224876404, -0.23469999432563782, -0.7064700126647949, 0.4562300145626068, 0.4773400127887726, 0.20976999402046204, -0.8035799860954285, 0.5206900238990784, 0.015116999857127666, 0.9608299732208252, -0.03911399841308594, -0.34738001227378845, 0.12470000237226486, -0.24270999431610107, -0.7930300235748291, -0.19282999634742737, 0.5221199989318848, -0.20204000174999237, 0.4980199933052063, 0.3032900094985962, -0.2975800037384033, 0.26172998547554016, -0.16524000465869904, -0.5250399708747864, -0.4694899916648865, -0.8069300055503845, 0.8540999889373779, 0.44475001096725464, -0.4258500039577484, -0.0385189987719059, -0.17191000282764435, -0.03782200068235397, -0.28393998742103577, 0.08512900024652481, -0.3799099922180176, -0.35912999510765076, -0.002711700042709708, -0.09387800097465515, -0.7360799908638, 0.0026227999478578568, -0.5934200286865234, 0.9315699934959412, -0.9944999814033508, 0.185029998421669, -0.010018999688327312, -0.4411199986934662, -0.10202000290155411, -0.3109000027179718, -0.08896899968385696, 0.9317799806594849, -0.18008999526500702, 0.2724199891090393, -0.23865999281406403, -0.49386999011039734, 0.23709000647068024, 0.003082399955019355, -0.251800000667572, 0.4736500084400177, -0.5670199990272522, 0.49171000719070435, -0.11277999728918076, 0.2933500111103058, -0.11552999913692474, 0.24938000738620758], u'Leather': [0.320279985666275, 0.1373399943113327, 0.20201000571250916, 0.023415999487042427, -0.23228999972343445, -0.06644000113010406, 0.05316900089383125, 0.07862400263547897, -0.013139000162482262, -0.9607700109481812, -0.21727000176906586, -0.08145499974489212, 0.10281000286340714, 0.24017000198364258, 0.03472499921917915, -0.20090000331401825, -0.2791999876499176, 0.6718500256538391, -0.18369999527931213, 0.11964999884366989, -0.3772299885749817, 0.17750999331474304, 0.2807300090789795, 0.14963999390602112, -0.9964900016784668, -0.024354999884963036, 0.31227999925613403, -0.14323000609874725, -0.2888700067996979, 0.7826200127601624, -0.14722999930381775, 0.11243999749422073, -0.814300000667572, -0.027765000239014626, -0.6208299994468689, 0.5914599895477295, -0.08576899766921997, -0.1636199951171875, 0.28033000230789185, 0.37178999185562134, -0.69718998670578, -0.6338499784469604, -0.07243800163269043, -0.6990299820899963, 0.5445200204849243, -0.3038800060749054, 0.15636000037193298, -0.2471799999475479, -0.4692400097846985, 0.29109999537467957, -0.3986800014972687, 0.01960100047290325, 0.15570999681949615, 0.02155900001525879, 0.27219000458717346, -0.16113999485969543, -0.05614500120282173, -0.6595600247383118, 0.07558900117874146, 0.09509199857711792, -0.009356300346553326, -0.05873600021004677, -0.40542998909950256, -0.4925200045108795, 0.16739000380039215, -0.3635300099849701, -0.6791800260543823, -0.20646999776363373, 0.19829000532627106, 0.19067999720573425, 0.2824299931526184, -0.055215999484062195, 0.4657599925994873, -0.5020899772644043, 0.2580200135707855, -0.23984000086784363, -0.16124999523162842, -0.16965000331401825, -0.3687100112438202, -0.5354999899864197, 0.2418700009584427, 0.36816999316215515, -0.30820000171661377, -0.48938998579978943, -0.10033000260591507, -0.4301599860191345, -0.24375000596046448, 0.3955399990081787, -0.8563200235366821, 0.08522699773311615, 0.12536999583244324, 0.24233999848365784, -0.055006999522447586, -0.08333499729633331, 0.04233599826693535, 0.5936400294303894, -0.11635000258684158, -0.0815730020403862, -0.33258000016212463, -0.1943099945783615, -0.31000998616218567, 0.8799999952316284, -0.6165099740028381, -0.714139997959137, -0.2503400146961212, -0.5200899839401245, 0.6614599823951721, 0.6125100255012512, -0.17357000708580017, -0.7688699960708618, -0.12917999923229218, 0.03411199897527695, -0.19575999677181244, -0.5171499848365784, -0.024707000702619553, -0.23646000027656555, 0.15014000236988068, 0.6591299772262573, 0.31084999442100525, -0.6385300159454346, -0.22391000390052795, -0.11964000016450882, 0.37900999188423157, -0.12244000285863876, -0.1665000021457672, 0.18322999775409698, 0.167820006608963, 0.5069699883460999, 0.21445000171661377, -0.1690399944782257, -0.008311999961733818, -0.08574599772691727, -0.16388000547885895, 0.34650999307632446, -0.6297500133514404, -0.4809400141239166, -0.4261400103569031, 0.2230599969625473, -0.22889000177383423, 0.36719998717308044, 0.5606499910354614, 0.4404599964618683, 0.9167500138282776, -0.6277099847793579, 0.7337700128555298, 0.05577800050377846, -0.07277899980545044, -0.3273699879646301, 0.2655400037765503, 0.13027000427246094, 0.09305299818515778, 0.23232999444007874, -0.4279400110244751, -0.8535400032997131, -0.1460600048303604, -0.372189998626709, -0.4641599953174591, -0.4708400070667267, 0.2945699989795685, 0.19336000084877014, 0.7178099751472473, 0.10603000223636627, -0.16719000041484833, 0.23145000636577606, 0.7326499819755554, -0.4119200110435486, 0.5793899893760681, 0.4956600069999695, 0.22970999777317047, 0.2870999872684479, -0.7600399851799011, 0.3722200095653534, -0.47773000597953796, 0.5303699970245361, -0.7299699783325195, -0.8354600071907043, -0.2558799982070923, 0.49994999170303345, -0.240789994597435, -0.6984599828720093, 0.5922600030899048, 0.26368001103401184, 0.05631599947810173, 0.14757999777793884, 0.8230299949645996, -0.7596399784088135, 0.9071900248527527, 0.5719900131225586, 0.49101001024246216, -0.4599800109863281, -0.028178999200463295, 0.4863100051879883, -0.11738000065088272, 0.1105400025844574, 0.37571999430656433, -0.10271000117063522, -0.4672600030899048, 0.23286999762058258, -0.3844299912452698, 0.3286300003528595, 0.6381400227546692, -0.34033000469207764, 0.5185800194740295, 0.13745999336242676, 0.8479400277137756, -0.04707400128245354, 0.6611400246620178, 0.4970400035381317, -1.0228999853134155, -0.263480007648468, 0.6801699995994568, -0.0806960016489029, -0.2588199973106384, 0.5239400267601013, 0.38166001439094543, -0.47262001037597656, 0.6296799778938293, -0.42080000042915344, -0.5334699749946594, -0.6371999979019165, 0.1580599993467331, -0.0010679999832063913, 0.2142699956893921, -0.12668000161647797, -0.07343199849128723, 0.6901900172233582, -0.2778399884700775, 0.4765999913215637, -0.21198000013828278, -0.4487299919128418, 0.35850000381469727, -0.6176400184631348, -0.26298999786376953, 0.4318999946117401, 0.9145200252532959, 0.10837999731302261, 0.6436700224876404, -0.23469999432563782, -0.7064700126647949, 0.4562300145626068, 0.4773400127887726, 0.20976999402046204, -0.8035799860954285, 0.5206900238990784, 0.015116999857127666, 0.9608299732208252, -0.03911399841308594, -0.34738001227378845, 0.12470000237226486, -0.24270999431610107, -0.7930300235748291, -0.19282999634742737, 0.5221199989318848, -0.20204000174999237, 0.4980199933052063, 0.3032900094985962, -0.2975800037384033, 0.26172998547554016, -0.16524000465869904, -0.5250399708747864, -0.4694899916648865, -0.8069300055503845, 0.8540999889373779, 0.44475001096725464, -0.4258500039577484, -0.0385189987719059, -0.17191000282764435, -0.03782200068235397, -0.28393998742103577, 0.08512900024652481, -0.3799099922180176, -0.35912999510765076, -0.002711700042709708, -0.09387800097465515, -0.7360799908638, 0.0026227999478578568, -0.5934200286865234, 0.9315699934959412, -0.9944999814033508, 0.185029998421669, -0.010018999688327312, -0.4411199986934662, -0.10202000290155411, -0.3109000027179718, -0.08896899968385696, 0.9317799806594849, -0.18008999526500702, 0.2724199891090393, -0.23865999281406403, -0.49386999011039734, 0.23709000647068024, 0.003082399955019355, -0.251800000667572, 0.4736500084400177, -0.5670199990272522, 0.49171000719070435, -0.11277999728918076, 0.2933500111103058, -0.11552999913692474, 0.24938000738620758], u'Satin': [-0.197610005736351, -0.24403999745845795, -0.12399999797344208, 0.3229599893093109, -0.5281999707221985, -0.05816800147294998, 0.012153999879956245, -0.7126700282096863, 0.17282000184059143, 0.13332000374794006, -0.23106999695301056, 0.24980999529361725, -0.4471299946308136, 0.6337599754333496, -0.08679600059986115, -0.044321998953819275, -0.11328999698162079, 0.44339999556541443, -0.12442000210285187, -0.08335600048303604, -0.1703300029039383, -0.028098000213503838, 0.036657001823186874, 0.37762999534606934, 0.014769000001251698, -0.3226499855518341, 0.7011100053787231, -0.023057999089360237, -0.0865359976887703, -0.1767899990081787, 0.11827000230550766, -0.4357599914073944, -0.03354300186038017, 0.22397999465465546, -0.3085300028324127, 0.384550005197525, -0.016913000494241714, -0.26952001452445984, 0.16827000677585602, 0.09297099709510803, -0.6539099812507629, -0.28937000036239624, -0.13777999579906464, -0.4848499894142151, 0.058285001665353775, -0.09163100272417068, 0.22812999784946442, 0.030388999730348587, -0.4112600088119507, 0.3778499960899353, -0.05515100061893463, -0.025067999958992004, 0.5290200114250183, -0.7571200132369995, -0.5366899967193604, -0.34755000472068787, -0.28707998991012573, -0.3547300100326538, 0.4560900032520294, -0.09517200291156769, 0.1964700073003769, -0.18556000292301178, 0.0051115998066961765, 0.043535999953746796, 0.6535199880599976, -0.12398000061511993, 0.4344100058078766, 0.08564899861812592, 0.27465999126434326, 0.025188999250531197, 0.1779100000858307, -0.10730999708175659, -0.3391200006008148, -0.8235599994659424, 0.1965699940919876, 0.5229799747467041, -0.05955599993467331, 0.20110000669956207, -0.2262600064277649, -0.6744199991226196, 0.025350000709295273, 0.34678998589515686, -0.15059000253677368, -0.3381600081920624, 0.3563700020313263, 0.4930900037288666, 0.5108100175857544, -0.06915199756622314, 0.09475599974393845, 0.23905999958515167, 0.12489999830722809, 0.04644700139760971, 0.11738000065088272, -0.3598400056362152, -0.34790000319480896, 0.29357999563217163, 0.0993029996752739, -0.03524800017476082, 0.24800999462604523, 0.3912299871444702, 0.34391000866889954, 0.2565299868583679, 0.1817300021648407, -0.006895000115036964, 0.20996999740600586, -0.23598000407218933, 0.4146600067615509, 0.11247000098228455, -0.27206000685691833, -0.06303700059652328, -0.4022499918937683, 0.5847600102424622, 0.09646400064229965, -0.4366599917411804, 0.12234000116586685, 0.05423099920153618, 0.22798000276088715, 1.1568000316619873, 0.2908099889755249, -0.5517699718475342, 0.17236000299453735, -0.19083000719547272, 0.22317999601364136, -0.360289990901947, 0.08518800139427185, -0.26903998851776123, 0.1149199977517128, 0.6331200003623962, -0.24751999974250793, 0.15749000012874603, -0.21910999715328217, -0.07188600301742554, -0.6615800261497498, 0.5601500272750854, -0.44753000140190125, -0.2837899923324585, -0.8572800159454346, 0.5834400057792664, -0.07319100201129913, 0.28202998638153076, 0.17655999958515167, 0.06477200239896774, 0.0008790100109763443, -0.6726599931716919, 0.2936199903488159, -0.029172999784350395, -0.2574700117111206, -0.8428099751472473, 0.15211999416351318, 0.30020999908447266, -0.25986000895500183, 0.2671700119972229, -0.046525999903678894, -0.5841799974441528, -0.09004300087690353, -0.08682499825954437, 0.1219400018453598, -0.4825499951839447, -0.19029000401496887, 0.4986500144004822, -0.22735999524593353, -0.579230010509491, -0.05925999954342842, 0.016189999878406525, -0.058511000126600266, -0.1385899931192398, -0.47551000118255615, 0.6205999851226807, 0.3500100076198578, 0.06688400357961655, -0.6089000105857849, -0.08866599947214127, 0.1685899943113327, 0.040316998958587646, -0.23601000010967255, -0.8530200123786926, -0.3666900098323822, 1.0396000146865845, -0.8686599731445312, -0.5602800250053406, 0.1062999963760376, 0.1920499950647354, 0.7289299964904785, 0.3058199882507324, 0.7003399729728699, -0.2940399944782257, 0.7104799747467041, 0.3876599967479706, 0.11206000298261642, -0.03545999899506569, 0.4897400140762329, 0.4223499894142151, -0.22891999781131744, -0.04611000046133995, 0.18535000085830688, 0.15327000617980957, -0.4197700023651123, 0.58228999376297, -0.11287999898195267, -0.35324999690055847, 0.08799199759960175, -0.36899998784065247, 0.6673600077629089, 0.23902000486850739, 0.4507000148296356, 0.3032799959182739, -0.05208300054073334, 0.3372200131416321, -0.820110023021698, -0.12935000658035278, -0.019298000261187553, 0.06604799628257751, 0.15904000401496887, 0.6204699873924255, 0.35600998997688293, -0.0002059700054815039, 0.8068100214004517, -1.0723999738693237, -0.06260699778795242, -0.5611699819564819, 0.298880010843277, -0.05324200168251991, 0.4420900046825409, -0.14730000495910645, -0.32910001277923584, -0.15102000534534454, -0.07690799981355667, -0.08342500030994415, -0.4773299992084503, -1.0120999813079834, 0.3291899859905243, -0.4510999917984009, -0.27904999256134033, 0.13846999406814575, 0.6043000221252441, 0.014561999589204788, 0.3755500018596649, -0.5783699750900269, -0.14821000397205353, -0.10496000200510025, 0.11332999914884567, -0.017938999459147453, -0.3692600131034851, 0.8411499857902527, -0.5013599991798401, 0.6949800252914429, 0.11816000193357468, -0.32280999422073364, 0.4478699862957001, -0.3470599949359894, -0.5090000033378601, 0.38019001483917236, 0.009673500433564186, 0.00078444997780025, 0.3802500069141388, -0.5419999957084656, 0.04602799937129021, 0.43856000900268555, -0.11371999979019165, -0.2016499936580658, -0.11698000133037567, 0.23050999641418457, 0.22442999482154846, 0.31863999366760254, -0.7429500222206116, 0.38853999972343445, -0.24251000583171844, -0.09753300249576569, -0.10197000205516815, 0.4185999929904938, 0.2387399971485138, -0.4792500138282776, -0.0633459985256195, -0.38429999351501465, -0.6972699761390686, 0.2828800082206726, 0.23142999410629272, -0.27605000138282776, -1.0936000347137451, 0.07041200250387192, 0.3959200084209442, 0.36256998777389526, -0.1029599979519844, 0.02188899926841259, -0.08692800253629684, -0.01598300039768219, -0.24682000279426575, 0.7046999931335449, -0.5762699842453003, -0.6213300228118896, -0.4783799946308136, -0.1461700052022934, 0.0011355000315234065, 0.8987299799919128, -0.33340999484062195, -0.40964001417160034, 0.6242700219154358, 0.11153999716043472, 0.39177000522613525, -0.03908900171518326], u'Hair.Calf': [-0.17782999575138092, -0.12342999875545502, -0.2675899863243103, -0.11969000101089478, -0.1327199935913086, -0.06735599786043167, -0.3056899905204773, 0.1921599954366684, 0.7000899910926819, -1.4428000450134277, 0.014871999621391296, 0.3147200047969818, -0.03840100020170212, 0.4485799968242645, 0.049525000154972076, -0.12518000602722168, 0.6982300281524658, 0.016652999445796013, -0.6890100240707397, -0.1205499991774559, -0.7501099705696106, 0.24653999507427216, -0.11738000065088272, 0.7127000093460083, -0.3893899917602539, 0.14329999685287476, 0.03225899860262871, -0.6736999750137329, 0.14575999975204468, 0.48416998982429504, -0.0262449998408556, 0.023087000474333763, -0.5595399737358093, -0.05503999814391136, -0.8291400074958801, 0.3745099902153015, -0.047784000635147095, -0.22519999742507935, -0.3313100039958954, -0.04357200115919113, -0.28676000237464905, -0.5304399728775024, -0.13200999796390533, -0.7903800010681152, 0.49406999349594116, -0.4215799868106842, -0.3527199923992157, -0.37116000056266785, 0.3951599895954132, -0.5865799784660339, -0.3316900134086609, -0.17931999266147614, 0.08724100142717361, 0.0878250002861023, 0.03681999817490578, -0.11270999908447266, -0.5851899981498718, -0.336870014667511, -0.05160500109195709, -0.5704799890518188, 0.32350000739097595, -0.1788800060749054, 0.5801699757575989, 0.2698099911212921, 0.24785999953746796, -0.752810001373291, -0.41923001408576965, 0.4724699854850769, 0.651889979839325, -0.08144500106573105, 0.24108999967575073, -0.5160099864006042, 0.4155600070953369, 0.17288999259471893, 0.292959988117218, -0.3279699981212616, -0.02672399953007698, -0.3174299895763397, -0.15324999392032623, -0.2391200065612793, -0.5508599877357483, 0.6527000069618225, 0.27241000533103943, 0.19846999645233154, 0.0015228999545797706, 0.5952699780464172, 0.34516000747680664, 0.029062999412417412, -0.22859999537467957, 0.16856999695301056, -0.3674600124359131, 0.023799000307917595, -0.09345799684524536, 0.14294999837875366, -0.23903000354766846, 0.11072000116109848, -0.31633999943733215, -0.22206999361515045, 1.0628999471664429, -0.17598000168800354, 0.6144099831581116, -0.659030020236969, -0.07663899660110474, -0.3370800018310547, 0.01077600009739399, 0.1916700005531311, 0.5451499819755554, 0.2896699905395508, -0.9051399827003479, 0.049633998423814774, -0.011307000182569027, 0.6455900073051453, 0.0732479989528656, -0.21077999472618103, 0.3359000086784363, 0.2718299925327301, -0.5671200156211853, 0.7849599719047546, -0.3176000118255615, -0.4463599920272827, -0.3017599880695343, 0.06731300055980682, 0.1394300013780594, 0.2772899866104126, 0.043845001608133316, 0.15068000555038452, -0.6125100255012512, 0.39761999249458313, 0.07394500076770782, -0.5436300039291382, 0.5733399987220764, -0.010963000357151031, -0.39923998713493347, -0.014976000413298607, -0.2892000079154968, 0.2285500019788742, -0.24974000453948975, -0.12495999783277512, 0.06300699710845947, 0.025986000895500183, 0.3969300091266632, 0.04687200114130974, 0.10211999714374542, -0.35260000824928284, 0.2113099992275238, 0.3607400059700012, 0.1545799970626831, 0.4747300148010254, 0.19922000169754028, -0.20462000370025635, 0.24379999935626984, 0.3608100116252899, -0.5717800259590149, -0.6045500040054321, -0.01536799967288971, -0.7539399862289429, 0.37637001276016235, -0.8854399919509888, 0.5166699886322021, 0.9347500205039978, 0.23959000408649445, -0.27028998732566833, -0.5587499737739563, 0.11913999915122986, -0.3502900004386902, 0.2997399866580963, 0.06508299708366394, 0.5756499767303467, 0.39535999298095703, -0.2939800024032593, 0.24834999442100525, 0.5941399931907654, -0.12336999922990799, -0.4292199909687042, 0.2739199995994568, -0.20352999866008759, 0.06909599900245667, 0.38863998651504517, 0.20816999673843384, -0.6449699997901917, 0.010711999610066414, -0.4095900058746338, 0.18975000083446503, 0.21127000451087952, -0.372979998588562, 0.3053700029850006, 1.0959999561309814, -0.4526500105857849, 0.0054652998223900795, 0.01907699927687645, -0.31042999029159546, 0.2431199997663498, -0.41523998975753784, 0.5000500082969666, -0.10569000244140625, -0.3886600136756897, -0.3539400100708008, -0.30386000871658325, -0.11682000011205673, 0.1567399948835373, 1.2711999416351318, 0.0013837999431416392, 1.037500023841858, 0.5199900269508362, -0.06636600196361542, 0.35293999314308167, -0.016858000308275223, 0.5503299832344055, -0.6370199918746948, -0.3161900043487549, 0.298550009727478, 0.11217000335454941, -0.2571600079536438, 0.35798999667167664, -0.03947800025343895, 0.414110004901886, 0.7214999794960022, -0.6320300102233887, 0.24267999827861786, -0.6170399785041809, -0.055890001356601715, -0.32471001148223877, 0.2700299918651581, -0.14246000349521637, 0.2721500098705292, -0.11535000056028366, -0.18201999366283417, 0.21040000021457672, -0.3197999894618988, 0.3721199929714203, 0.9535700082778931, 0.05803399905562401, 0.2707599997520447, -0.13123999536037445, 0.008258800022304058, -0.5071499943733215, 0.08798299729824066, 0.18313999474048615, -0.5934900045394897, -0.14482000470161438, 0.8331500291824341, 0.018438000231981277, -0.23951999843120575, 0.6507200002670288, -0.8234000205993652, 0.08004400134086609, -0.03560600057244301, -0.19704000651836395, 0.06499899923801422, -0.07267700135707855, 0.19603000581264496, -0.028963999822735786, 0.6169700026512146, -0.9715399742126465, 0.5585899949073792, 0.1774899959564209, 0.2588300108909607, 0.573140025138855, -0.35390999913215637, -0.14013999700546265, 0.45860999822616577, -0.7767300009727478, -0.010076000355184078, 0.08136399835348129, -0.2616100013256073, 0.06291799992322922, -0.20689000189304352, 0.320499986410141, -0.5160800218582153, 0.5317599773406982, -0.2517699897289276, -0.34088999032974243, -0.5313599705696106, -0.2775300145149231, -0.4233199954032898, 0.34529998898506165, -1.0324000120162964, -0.23690000176429749, -0.7773399949073792, -0.17887000739574432, -0.3516699969768524, 0.7312800288200378, 0.35583001375198364, 0.4602699875831604, -0.37749001383781433, 0.856249988079071, 0.15181000530719757, 0.055528998374938965, -0.350600004196167, 0.8498799800872803, 0.17199000716209412, -0.09520400315523148, -0.6055600047111511, 0.41600000858306885, -0.012474999763071537, -0.4451099932193756, 0.5662800073623657, 0.24911999702453613, 0.29613998532295227, 0.3441399931907654], u'Full.grain.leather': [0.320279985666275, 0.1373399943113327, 0.20201000571250916, 0.023415999487042427, -0.23228999972343445, -0.06644000113010406, 0.05316900089383125, 0.07862400263547897, -0.013139000162482262, -0.9607700109481812, -0.21727000176906586, -0.08145499974489212, 0.10281000286340714, 0.24017000198364258, 0.03472499921917915, -0.20090000331401825, -0.2791999876499176, 0.6718500256538391, -0.18369999527931213, 0.11964999884366989, -0.3772299885749817, 0.17750999331474304, 0.2807300090789795, 0.14963999390602112, -0.9964900016784668, -0.024354999884963036, 0.31227999925613403, -0.14323000609874725, -0.2888700067996979, 0.7826200127601624, -0.14722999930381775, 0.11243999749422073, -0.814300000667572, -0.027765000239014626, -0.6208299994468689, 0.5914599895477295, -0.08576899766921997, -0.1636199951171875, 0.28033000230789185, 0.37178999185562134, -0.69718998670578, -0.6338499784469604, -0.07243800163269043, -0.6990299820899963, 0.5445200204849243, -0.3038800060749054, 0.15636000037193298, -0.2471799999475479, -0.4692400097846985, 0.29109999537467957, -0.3986800014972687, 0.01960100047290325, 0.15570999681949615, 0.02155900001525879, 0.27219000458717346, -0.16113999485969543, -0.05614500120282173, -0.6595600247383118, 0.07558900117874146, 0.09509199857711792, -0.009356300346553326, -0.05873600021004677, -0.40542998909950256, -0.4925200045108795, 0.16739000380039215, -0.3635300099849701, -0.6791800260543823, -0.20646999776363373, 0.19829000532627106, 0.19067999720573425, 0.2824299931526184, -0.055215999484062195, 0.4657599925994873, -0.5020899772644043, 0.2580200135707855, -0.23984000086784363, -0.16124999523162842, -0.16965000331401825, -0.3687100112438202, -0.5354999899864197, 0.2418700009584427, 0.36816999316215515, -0.30820000171661377, -0.48938998579978943, -0.10033000260591507, -0.4301599860191345, -0.24375000596046448, 0.3955399990081787, -0.8563200235366821, 0.08522699773311615, 0.12536999583244324, 0.24233999848365784, -0.055006999522447586, -0.08333499729633331, 0.04233599826693535, 0.5936400294303894, -0.11635000258684158, -0.0815730020403862, -0.33258000016212463, -0.1943099945783615, -0.31000998616218567, 0.8799999952316284, -0.6165099740028381, -0.714139997959137, -0.2503400146961212, -0.5200899839401245, 0.6614599823951721, 0.6125100255012512, -0.17357000708580017, -0.7688699960708618, -0.12917999923229218, 0.03411199897527695, -0.19575999677181244, -0.5171499848365784, -0.024707000702619553, -0.23646000027656555, 0.15014000236988068, 0.6591299772262573, 0.31084999442100525, -0.6385300159454346, -0.22391000390052795, -0.11964000016450882, 0.37900999188423157, -0.12244000285863876, -0.1665000021457672, 0.18322999775409698, 0.167820006608963, 0.5069699883460999, 0.21445000171661377, -0.1690399944782257, -0.008311999961733818, -0.08574599772691727, -0.16388000547885895, 0.34650999307632446, -0.6297500133514404, -0.4809400141239166, -0.4261400103569031, 0.2230599969625473, -0.22889000177383423, 0.36719998717308044, 0.5606499910354614, 0.4404599964618683, 0.9167500138282776, -0.6277099847793579, 0.7337700128555298, 0.05577800050377846, -0.07277899980545044, -0.3273699879646301, 0.2655400037765503, 0.13027000427246094, 0.09305299818515778, 0.23232999444007874, -0.4279400110244751, -0.8535400032997131, -0.1460600048303604, -0.372189998626709, -0.4641599953174591, -0.4708400070667267, 0.2945699989795685, 0.19336000084877014, 0.7178099751472473, 0.10603000223636627, -0.16719000041484833, 0.23145000636577606, 0.7326499819755554, -0.4119200110435486, 0.5793899893760681, 0.4956600069999695, 0.22970999777317047, 0.2870999872684479, -0.7600399851799011, 0.3722200095653534, -0.47773000597953796, 0.5303699970245361, -0.7299699783325195, -0.8354600071907043, -0.2558799982070923, 0.49994999170303345, -0.240789994597435, -0.6984599828720093, 0.5922600030899048, 0.26368001103401184, 0.05631599947810173, 0.14757999777793884, 0.8230299949645996, -0.7596399784088135, 0.9071900248527527, 0.5719900131225586, 0.49101001024246216, -0.4599800109863281, -0.028178999200463295, 0.4863100051879883, -0.11738000065088272, 0.1105400025844574, 0.37571999430656433, -0.10271000117063522, -0.4672600030899048, 0.23286999762058258, -0.3844299912452698, 0.3286300003528595, 0.6381400227546692, -0.34033000469207764, 0.5185800194740295, 0.13745999336242676, 0.8479400277137756, -0.04707400128245354, 0.6611400246620178, 0.4970400035381317, -1.0228999853134155, -0.263480007648468, 0.6801699995994568, -0.0806960016489029, -0.2588199973106384, 0.5239400267601013, 0.38166001439094543, -0.47262001037597656, 0.6296799778938293, -0.42080000042915344, -0.5334699749946594, -0.6371999979019165, 0.1580599993467331, -0.0010679999832063913, 0.2142699956893921, -0.12668000161647797, -0.07343199849128723, 0.6901900172233582, -0.2778399884700775, 0.4765999913215637, -0.21198000013828278, -0.4487299919128418, 0.35850000381469727, -0.6176400184631348, -0.26298999786376953, 0.4318999946117401, 0.9145200252532959, 0.10837999731302261, 0.6436700224876404, -0.23469999432563782, -0.7064700126647949, 0.4562300145626068, 0.4773400127887726, 0.20976999402046204, -0.8035799860954285, 0.5206900238990784, 0.015116999857127666, 0.9608299732208252, -0.03911399841308594, -0.34738001227378845, 0.12470000237226486, -0.24270999431610107, -0.7930300235748291, -0.19282999634742737, 0.5221199989318848, -0.20204000174999237, 0.4980199933052063, 0.3032900094985962, -0.2975800037384033, 0.26172998547554016, -0.16524000465869904, -0.5250399708747864, -0.4694899916648865, -0.8069300055503845, 0.8540999889373779, 0.44475001096725464, -0.4258500039577484, -0.0385189987719059, -0.17191000282764435, -0.03782200068235397, -0.28393998742103577, 0.08512900024652481, -0.3799099922180176, -0.35912999510765076, -0.002711700042709708, -0.09387800097465515, -0.7360799908638, 0.0026227999478578568, -0.5934200286865234, 0.9315699934959412, -0.9944999814033508, 0.185029998421669, -0.010018999688327312, -0.4411199986934662, -0.10202000290155411, -0.3109000027179718, -0.08896899968385696, 0.9317799806594849, -0.18008999526500702, 0.2724199891090393, -0.23865999281406403, -0.49386999011039734, 0.23709000647068024, 0.003082399955019355, -0.251800000667572, 0.4736500084400177, -0.5670199990272522, 0.49171000719070435, -0.11277999728918076, 0.2933500111103058, -0.11552999913692474, 0.24938000738620758], u'Rubber': [0.2986299991607666, 0.06507299840450287, -0.11800999939441681, -0.013868999667465687, -0.33441999554634094, -0.6196799874305725, 0.0966470018029213, 0.688510000705719, -0.012130999937653542, -0.5205399990081787, -0.0633540004491806, -0.284280002117157, -0.3378799855709076, -0.5685399770736694, 0.2430499941110611, -0.3166300058364868, -0.19812999665737152, 0.7768800258636475, 0.06390400230884552, 0.38328999280929565, -0.3698500096797943, 0.002942899940535426, 0.2739099860191345, 0.4095200002193451, -0.7394000291824341, 0.13287000358104706, -0.2543799877166748, 0.1751600056886673, -0.34529998898506165, 0.7320299744606018, 0.35207998752593994, -0.40283000469207764, -0.22826999425888062, 0.33076998591423035, 0.03148899972438812, 0.4479300081729889, 0.14959000051021576, -0.34338998794555664, 0.5040799975395203, 0.6566600203514099, -0.13862000405788422, -0.3896700143814087, -0.10209999978542328, -0.003396800020709634, -0.3211899995803833, -0.21886000037193298, -0.29502999782562256, -0.4569700062274933, 0.014921000227332115, 1.4467999935150146, 0.192780002951622, 0.43167999386787415, -0.11180999875068665, 0.4858799874782562, 0.455159991979599, 0.1584099978208542, -0.07071900367736816, 0.1256999969482422, 0.02778399921953678, -0.7682499885559082, 0.13549000024795532, -0.3788999915122986, -0.8564000129699707, -0.48135998845100403, 0.7329999804496765, -0.05452600121498108, -0.5305899977684021, -0.20156000554561615, -0.4888800084590912, 0.4542999863624573, -0.330020010471344, 0.30017998814582825, -0.24556000530719757, 0.6433699727058411, 0.05084700137376785, 0.31984999775886536, 0.3308899998664856, -0.11275999993085861, 0.1404999941587448, -0.5774099826812744, 0.2191700041294098, 0.3236300051212311, 0.001630699960514903, 0.38207998871803284, -0.4682599902153015, -0.03551200032234192, 0.04054199904203415, -0.1838800013065338, -0.5474900007247925, 0.06058499962091446, 0.2213200032711029, -0.39937999844551086, -0.2192399948835373, -0.31856000423431396, 0.43827998638153076, 0.20409999787807465, -0.6905800104141235, 0.12713000178337097, -0.3513199985027313, -0.7056099772453308, 0.05018499866127968, 0.9441800117492676, -0.46459999680519104, -0.8096699714660645, 0.2837499976158142, 0.31582000851631165, -0.45987001061439514, -0.22417999804019928, -0.3726600110530853, -0.046720001846551895, 0.6299300193786621, -0.0013876999728381634, -0.19347000122070312, -0.2539600133895874, 0.51146000623703, 0.19089999794960022, 0.28334999084472656, 0.6500300168991089, 0.1527000069618225, -0.24301999807357788, -0.29218998551368713, -0.20714999735355377, 0.07373400032520294, -0.3077999949455261, -0.5839499831199646, 0.5425500273704529, 0.3295600116252899, -0.18283000588417053, 0.5159100294113159, 0.052848998457193375, 0.10576999932527542, 1.0450999736785889, 0.08685000240802765, 0.7823299765586853, -0.41321998834609985, -0.27790001034736633, 0.09461499750614166, 0.16659000515937805, 0.7350800037384033, 0.5509099960327148, 0.29973000288009644, 0.47947001457214355, 0.15665000677108765, -0.31314000487327576, -0.02555599994957447, 0.7722399830818176, -0.14316000044345856, -0.2017199993133545, -0.01362099964171648, -0.3018600046634674, -0.12732000648975372, 0.14295999705791473, 0.17744000256061554, -0.27441999316215515, 0.6162099838256836, -0.20860999822616577, 0.0681539997458458, -0.6604499816894531, 0.36476001143455505, -0.2655400037765503, -0.14114999771118164, -0.1935800015926361, 0.015495999716222286, -0.07668200135231018, 0.6678000092506409, -0.3740699887275696, 0.03956000134348869, 1.0391000509262085, 0.24718999862670898, 0.03426099941134453, -0.5722299814224243, 0.4587399959564209, 0.37490999698638916, 0.32493001222610474, 0.1035899966955185, -0.4659099876880646, 0.0006781899719499052, 0.5013999938964844, 0.039684999734163284, -0.09893699735403061, 0.26076000928878784, 0.07077699899673462, -0.029262999072670937, -0.10665000230073929, -0.09894700348377228, -0.3204900026321411, 0.751010000705719, 0.7310400009155273, 0.15775999426841736, -0.03548799827694893, 0.43623000383377075, 0.8976899981498718, -0.3375000059604645, -0.041127998381853104, 0.18987999856472015, 0.6549800038337708, 0.3146199882030487, -0.17563000321388245, 0.3952699899673462, 0.30741000175476074, 0.16116000711917877, 0.5968599915504456, 0.1319900006055832, 0.010394999757409096, -0.25290998816490173, 0.35238000750541687, 0.6152399778366089, -0.25044000148773193, -1.347499966621399, -0.526960015296936, -0.13305999338626862, 0.3326599895954132, 0.11784999817609787, -0.46347999572753906, 0.6791800260543823, -0.10200999677181244, 0.510699987411499, -0.25613000988960266, 0.03677799925208092, -0.5928999781608582, 0.4637100100517273, -0.6692600250244141, 0.4978500008583069, 0.20206999778747559, -0.1068200021982193, 0.3999499976634979, -0.5158600211143494, 0.08559499680995941, -0.32339999079704285, 0.2120400071144104, 0.39921000599861145, -0.14725999534130096, -0.2765200138092041, -0.06712699681520462, 0.8468300104141235, 0.3279399871826172, 0.05340899899601936, -0.656470000743866, -0.265749990940094, 0.36757999658584595, 0.23101000487804413, -0.08473599702119827, -0.7307900190353394, 0.2536099851131439, -0.2222599983215332, 0.16269999742507935, 0.1887200027704239, -0.0710889995098114, 0.04977300018072128, -0.47350001335144043, 0.38672998547554016, -0.9177500009536743, 0.609000027179718, -0.694890022277832, 0.5725600123405457, -0.048909999430179596, -0.7856900095939636, 0.28022998571395874, 0.22181999683380127, -0.33755001425743103, -0.40898001194000244, -0.17364999651908875, -0.15484000742435455, -0.3169499933719635, 0.14271999895572662, 0.9213399887084961, -0.9323400259017944, -0.17607000470161438, -0.06615299731492996, 0.1668899953365326, 0.07637500017881393, -0.18207000195980072, 0.7608100175857544, -0.36103999614715576, -1.0786999464035034, -0.13590000569820404, -1.2842999696731567, -0.12902000546455383, -0.7518600225448608, 0.7635599970817566, -0.23419000208377838, -1.184000015258789, -0.6232399940490723, 0.43474000692367554, -0.12745000422000885, 0.11439000070095062, 0.5758500099182129, 0.17409999668598175, -0.46950000524520874, -0.085037000477314, -0.4584600031375885, -0.3844900131225586, 0.43893998861312866, 0.5967900156974792, 0.3405100107192993, 0.911620020866394, -0.430620014667511, -0.46198999881744385, -0.1901800036430359, 0.3259100019931793], u'Cotton': [-0.4855400025844574, -0.11411000043153763, 0.045823998749256134, -0.32666000723838806, -0.18908999860286713, -0.21142999827861786, 0.17017999291419983, -0.26513001322746277, 0.1303199976682663, -0.5010499954223633, -0.24133999645709991, -0.7208700180053711, 0.14618000388145447, 0.08438900113105774, 0.09275899827480316, -0.006888499949127436, -0.15324999392032623, -0.3196200132369995, -0.4148699939250946, -0.26739001274108887, -0.5365300178527832, -0.5952500104904175, 0.15410999953746796, 0.32923001050949097, 0.0034668000880628824, 0.15602000057697296, -0.3842799961566925, -0.5342400074005127, -0.7240300178527832, 0.13455000519752502, -0.37338998913764954, 0.35613998770713806, -0.7850599884986877, 0.030786000192165375, -0.7758299708366394, 0.7107499837875366, 0.5915200114250183, -0.2745800018310547, 0.22495999932289124, -0.07376500219106674, -0.48627999424934387, -0.6427900195121765, -0.14503000676631927, 0.20397000014781952, 0.23124000430107117, -0.28937000036239624, -0.10552000254392624, -0.23397000133991241, 0.07769100368022919, -0.17403000593185425, 0.8070099949836731, 0.5702999830245972, -0.3167699873447418, -0.30235999822616577, -0.30469000339508057, -0.34318000078201294, -0.33410000801086426, -0.43689998984336853, 0.3951199948787689, -0.8269000053405762, -0.4124799966812134, -0.8205699920654297, -0.49733999371528625, 0.1007699966430664, 0.21347999572753906, 0.12196999788284302, 0.06375200301408768, -0.5659800171852112, -0.4268999993801117, 0.0028291998896747828, 0.6122400164604187, 0.22891999781131744, -0.2737799882888794, -0.13967999815940857, -0.17177000641822815, 0.04463899880647659, 0.035057999193668365, -0.42930999398231506, -0.22032999992370605, 0.2334199994802475, 0.2787199914455414, -0.09884999692440033, -0.7591800093650818, 0.023218000307679176, 0.1363700032234192, 0.17847999930381775, -0.19894999265670776, 0.11539000272750854, 0.4516800045967102, -0.3623400032520294, 0.48315998911857605, -0.10379000008106232, 0.2775700092315674, 0.12947000563144684, -0.2814500033855438, 0.4572800099849701, 0.30994001030921936, 0.36462000012397766, -0.2651199996471405, 0.3347100019454956, 0.10780999809503555, 0.8299099802970886, -0.5795400142669678, -0.1703599989414215, -0.6583700180053711, 0.2259799987077713, -0.06634899973869324, 0.16624000668525696, -0.6624400019645691, 0.23859000205993652, -0.15967999398708344, -0.09475299715995789, -0.26686999201774597, 0.1301099956035614, 0.19442999362945557, 0.22536000609397888, 0.6286399960517883, 1.0521999597549438, 0.44765999913215637, -0.12161999940872192, -0.40128999948501587, 0.12320999801158905, 0.7168400287628174, -0.0148930000141263, 0.10965999960899353, 0.5205600261688232, 0.03360699862241745, 0.4652000069618225, 0.5386599898338318, 0.2632800042629242, -0.03514999896287918, 0.7741100192070007, -0.43303999304771423, -0.3841499984264374, -0.5683900117874146, 0.022863000631332397, -0.20923000574111938, 0.6434999704360962, -0.4309700131416321, -0.23236000537872314, -0.20410999655723572, 0.012570999562740326, 0.2374899983406067, -0.7210400104522705, -0.31431999802589417, 1.0090999603271484, -0.07662300020456314, -0.8828799724578857, 0.3297800123691559, -0.3161900043487549, -0.46502000093460083, -0.06824900209903717, -0.00914829969406128, -0.9161400198936462, 0.075764000415802, 0.10509999841451645, -0.4009999930858612, -0.15745000541210175, 0.728879988193512, 0.2402999997138977, 0.05519099906086922, -0.11202000081539154, -0.4175899922847748, -0.12303999811410904, -0.11715000122785568, -0.6187999844551086, 0.006577900145202875, -0.11455000191926956, 0.07845199853181839, 0.3882899880409241, -0.46428999304771423, 0.34360000491142273, -0.7879199981689453, 0.23592999577522278, 0.8235999941825867, -0.032896000891923904, 0.2930299937725067, 0.5084199905395508, -0.36539000272750854, -0.03266099840402603, 0.021655000746250153, 0.49292999505996704, -0.4200200140476227, -0.2716499865055084, 0.016815999522805214, -0.43529000878334045, 0.08568400144577026, 0.28240999579429626, 0.021177999675273895, 0.35137999057769775, -0.22491000592708588, 1.1813000440597534, -0.16779999434947968, -0.14451999962329865, -0.3361000120639801, -0.012010999955236912, 0.22123999893665314, -0.4632500112056732, -0.1005999967455864, -0.37081000208854675, 0.06120600178837776, -0.13173000514507294, 1.0228999853134155, 0.08201699703931808, 0.7480400204658508, -0.3377000093460083, 0.5619099736213684, 0.5848699808120728, -0.29785001277923584, -0.18203000724315643, -0.11230000108480453, -0.29725998640060425, -0.45824000239372253, 0.41157999634742737, 0.22112999856472015, 0.024855000898241997, -0.03136000037193298, -0.13488000631332397, 0.12303999811410904, -0.6951299905776978, 0.1538199931383133, -0.8869900107383728, -0.20995000004768372, 0.001999499974772334, -0.10659000277519226, 0.0900299996137619, 0.1970600038766861, 0.539650022983551, -0.006381500046700239, 0.16357000172138214, 0.668470025062561, 0.19258999824523926, -0.22033999860286713, 0.5473999977111816, 0.5388100147247314, -0.07762199640274048, 0.6043699979782104, -0.539929986000061, -0.4928399920463562, 0.04162700101733208, -0.41266000270843506, 0.0008732699789106846, -0.4851199984550476, 0.5968400239944458, -0.7574999928474426, 0.026757000014185905, -0.12982000410556793, -0.6014900207519531, -0.16142000257968903, -0.38106998801231384, -0.10547000169754028, 0.25148001313209534, -0.08052700012922287, -0.345770001411438, 1.1341999769210815, 0.12383999675512314, -0.20691999793052673, 0.2670600116252899, 0.1441899985074997, -0.1682399958372116, -0.031022999435663223, -0.0888649970293045, 0.07929600030183792, -0.08092299848794937, -0.22544999420642853, -0.051600001752376556, -0.22554999589920044, -0.20680999755859375, -0.5492100119590759, 0.7500799894332886, -0.04782399907708168, 0.17794999480247498, -0.08101499825716019, 0.2015099972486496, -0.6751599907875061, -0.22316999733448029, -0.560259997844696, -0.5600299835205078, -0.39875999093055725, 0.5852699875831604, -0.7232800126075745, -0.5482500195503235, 0.15508000552654266, -0.05444199964404106, 0.20017999410629272, 0.06644300371408463, 0.45837000012397766, -0.456169992685318, -0.4622400104999542, -0.4316500127315521, -0.04379900172352791, -0.11607000231742859, -0.009190299548208714, 0.3391599953174591, -0.1487099975347519, 0.7196800112724304, -0.03236699849367142, -0.8023899793624878, 0.16742999851703644, 0.7063199877738953], u'Suede': [0.166020005941391, -0.32677000761032104, 0.3769899904727936, 0.7254199981689453, -0.27678999304771423, 0.044270001351833344, 0.3000200092792511, -0.5001599788665771, 0.42166998982429504, 0.5700299739837646, 0.15365999937057495, -0.03306499868631363, -0.2580299973487854, 0.3367300033569336, 0.10322999954223633, -0.2599300146102905, -0.005070100072771311, 0.3408600091934204, 0.02050900086760521, 0.08401600271463394, -0.21376000344753265, 0.4914900064468384, -0.016506999731063843, 0.013526000082492828, -0.27682000398635864, -0.3670099973678589, 0.43733999133110046, 0.40667998790740967, -0.1813800036907196, 0.716189980506897, -0.25099998712539673, -0.06078999862074852, -0.3277199864387512, -0.0009612700087018311, 0.07983999699354172, 0.5428699851036072, -0.22563999891281128, 0.2598400115966797, 0.28922000527381897, 0.7115499973297119, -0.6244800090789795, -0.29624998569488525, 0.11016000062227249, -0.2491600066423416, 0.7373499870300293, 0.13957999646663666, 0.34915998578071594, -0.04178199917078018, -0.43876001238822937, 0.25846999883651733, -0.5821499824523926, -0.36691999435424805, -0.15296000242233276, -0.023933999240398407, -0.12005999684333801, 0.06443499773740768, -0.22648000717163086, -0.25516000390052795, 0.11719000339508057, 0.4630900025367737, -0.41909000277519226, -0.16599999368190765, -0.7708399891853333, 0.019411999732255936, 0.512220025062561, 0.05300600081682205, 0.5902299880981445, -0.26809000968933105, 0.09786500036716461, 0.44554001092910767, 0.8129199743270874, 0.053011998534202576, 0.11114999651908875, -0.17183999717235565, 0.40977001190185547, 0.00040995999006554484, -0.07085800170898438, 0.11400999873876572, -0.2556999921798706, -0.387580007314682, 0.5270199775695801, 0.750220000743866, -0.16800999641418457, -0.40874001383781433, 0.19088000059127808, -0.02814299985766411, 0.5556300282478333, 0.015186999924480915, -0.4707300066947937, -0.22098000347614288, 0.09800499677658081, 0.746999979019165, 0.30243000388145447, -0.2892000079154968, -0.21907000243663788, 0.4413500130176544, 0.485289990901947, 0.3165600001811981, -0.33138999342918396, 0.4167799949645996, -0.0911789983510971, 0.3595300018787384, -0.5338500142097473, -0.1709199994802475, -0.8583300113677979, -0.3415699899196625, 0.5355700254440308, 0.1320600062608719, -0.015567000024020672, -0.786050021648407, 0.01312199980020523, 0.011207000352442265, 0.2274399995803833, -0.4022899866104126, 0.1712300032377243, -0.5273299813270569, 0.10802999883890152, 0.2697699964046478, 0.5715799927711487, -0.966480016708374, 0.04529400169849396, -0.12841999530792236, 0.5288699865341187, 0.06982900202274323, 0.07669500261545181, -0.44663000106811523, -0.09431599825620651, 0.9212300181388855, -0.12268999963998795, -0.12997999787330627, -0.445389986038208, -0.28898999094963074, -0.35266000032424927, 0.17542999982833862, -0.28883999586105347, -0.9993600249290466, -0.4388200044631958, 0.24618999660015106, 0.13699999451637268, 0.3082900047302246, 0.6485999822616577, 0.3031400144100189, 0.40261998772621155, -0.4514400064945221, 0.20151999592781067, -0.022019999101758003, -0.35822999477386475, 0.0037855999544262886, 0.27487999200820923, 0.42162999510765076, -0.06888099759817123, -0.07999599725008011, -0.7178699970245361, -0.7225099802017212, -0.5008900165557861, -0.3650200068950653, 0.21358999609947205, 0.005239299964159727, 0.49129000306129456, 0.55690997838974, -0.4188399910926819, -0.7163500189781189, -0.4571099877357483, 0.12851999700069427, 0.13710999488830566, 0.15296000242233276, 0.126910001039505, 0.5693100094795227, 0.9750000238418579, 0.09419000148773193, 0.036058999598026276, 0.33320000767707825, -0.13476000726222992, 0.017993999645113945, -0.13898000121116638, -0.7620199918746948, 0.3695699870586395, 0.27663999795913696, -0.6767699718475342, -0.7266600131988525, 0.24851000308990479, 0.5972899794578552, 0.05000999942421913, -0.16588999330997467, -0.06672599911689758, -0.37240999937057495, 0.7573300004005432, 0.12985999882221222, 0.21541999280452728, -0.18118999898433685, -0.3545700013637543, -0.03829199820756912, -0.05188300088047981, -0.08797299861907959, -0.1090800017118454, 0.5716300010681152, -0.29857999086380005, 0.4719499945640564, -0.23668000102043152, -0.16912999749183655, 0.3928000032901764, -0.3991299867630005, 0.4306600093841553, 0.03750700131058693, -0.014991000294685364, -0.049389999359846115, 0.22922000288963318, 0.42375001311302185, -1.0182000398635864, -0.2669200003147125, 0.34665000438690186, 0.03431500121951103, 0.27285999059677124, 1.0681999921798706, 0.10498999804258347, 0.5091500282287598, 0.6499500274658203, -0.4050700068473816, 0.07415799796581268, -0.7428600192070007, 0.36434000730514526, 0.0235190000385046, 0.1703599989414215, 0.31644999980926514, 0.08727400004863739, 0.010478000156581402, -0.6438300013542175, 0.3233500123023987, -0.07667499780654907, -0.6068199872970581, 0.35879001021385193, -0.06579600274562836, -0.08348099887371063, -0.09742999821901321, 0.47800999879837036, -0.020885000005364418, 0.5357099771499634, 0.09191299974918365, -0.5396900177001953, -0.15591999888420105, 0.28240999579429626, -0.43435001373291016, -0.6450799703598022, 0.4888400137424469, 0.14580999314785004, 0.26568999886512756, 0.020718000829219818, -0.8827800154685974, 0.13800999522209167, -0.19812999665737152, -0.34077998995780945, 0.21809999644756317, 0.08566399663686752, -0.23697000741958618, -0.2984899878501892, 0.11715999990701675, 0.06770899891853333, 0.44944998621940613, 0.43740999698638916, -0.5017600059509277, 0.07991299778223038, -0.15542000532150269, 0.5068699717521667, -0.0068280999548733234, -0.4185299873352051, 0.0813170000910759, -0.4345400035381317, -0.03292899951338768, -0.27147001028060913, 0.06848400086164474, 0.19732999801635742, -0.3453899919986725, -0.08543500304222107, -0.5040000081062317, -0.9288700222969055, 0.2053299993276596, 0.4140700101852417, 0.05811300128698349, -0.6167200207710266, 0.6600900292396545, 0.4182499945163727, 0.08973199874162674, 0.022797999903559685, 0.012761999852955341, -0.32141000032424927, 0.4393500089645386, -0.0829169973731041, 0.33313000202178955, -0.5004000067710876, -0.9474300146102905, 0.1359100043773651, -0.04068100079894066, 0.030559999868273735, 0.3903299868106842, -0.4298500120639801, -0.10865999758243561, -0.039058998227119446, 0.5217900276184082, 0.13747000694274902, 0.17486000061035156], u'Wool': [-0.14305000007152557, -0.1031700000166893, -0.00836700014770031, -0.45399001240730286, 0.19032999873161316, -0.6324099898338318, -0.26642000675201416, 0.16666999459266663, -0.04538799822330475, -0.7112399935722351, 0.30647000670433044, -1.0413999557495117, 0.2306700050830841, 0.6582499742507935, 0.06593199819326401, -0.2180899977684021, -0.08231700211763382, -0.3385399878025055, -0.5003499984741211, 0.39372000098228455, -0.3156999945640564, -0.8389599919319153, 0.3412899971008301, 0.6111299991607666, -0.32387998700141907, -0.3589499890804291, 0.2498999983072281, -0.24637000262737274, -0.16899000108242035, 0.4431999921798706, -0.3062700033187866, 0.17552000284194946, -0.7307800054550171, -0.29982998967170715, -0.47925999760627747, 0.4534600079059601, 0.4155299961566925, 0.1252399981021881, 0.052545998245477676, 0.17714999616146088, -0.6453400254249573, -0.3243499994277954, 0.30265000462532043, -0.6115800142288208, 0.6375200152397156, -0.010604999959468842, -0.2653299868106842, -0.18432000279426575, -0.2835400104522705, -0.2879599928855896, 0.05666700005531311, -0.02175999991595745, -0.3169099986553192, 0.0057760002091526985, -0.08931700140237808, 0.10044000297784805, -0.6008899807929993, -0.4053399860858917, -0.44648000597953796, -0.31327998638153076, -0.11131999641656876, -0.4922100007534027, 0.23704999685287476, 0.19068999588489532, 0.15926000475883484, 0.09582500159740448, -0.21727000176906586, -0.1363999992609024, -0.23684999346733093, 0.20062999427318573, 0.3718299865722656, 0.031877998262643814, -0.12951000034809113, -0.4064300060272217, 0.10891000181436539, 0.148499995470047, 0.048601001501083374, -0.10913000255823135, -0.24053999781608582, -0.07919599860906601, -0.25117000937461853, 0.04990699887275696, -0.4094099998474121, -0.3641299903392792, -0.0015807000454515219, 0.2292499989271164, 0.3968200087547302, 0.0001828700042096898, -0.2995699942111969, 0.0244120005518198, 0.38411998748779297, -0.0994350016117096, -0.18411000072956085, 0.22970999777317047, -0.4173400104045868, 0.3351399898529053, 0.157260000705719, 1.0091999769210815, -0.15750999748706818, 1.2148000001907349, 0.31150001287460327, 0.5750399827957153, -0.6193699836730957, 0.2587699890136719, -0.39136001467704773, -0.2950400114059448, -0.19740000367164612, 0.051552001386880875, -0.46105000376701355, 0.5947099924087524, 0.175369992852211, 0.23725999891757965, -0.8650500178337097, -0.03474799916148186, -0.0040616001933813095, 0.32892000675201416, -0.09969300031661987, 0.7408400177955627, 0.24073000252246857, -0.6715800166130066, 0.05670100077986717, 0.21086999773979187, 0.8250399827957153, 0.42671000957489014, 0.4331800043582916, 0.22753000259399414, 0.051639001816511154, 0.2767600119113922, -0.19660000503063202, -0.4520699977874756, -0.02708899974822998, -0.038297999650239944, -0.6512399911880493, -0.2126999944448471, -0.09266600012779236, 0.5627999901771545, -0.6859700083732605, 0.44387000799179077, 0.5389800071716309, 0.2670300006866455, 0.050106000155210495, 0.6374199986457825, 0.2594499886035919, -0.7214000225067139, 0.13036000728607178, 0.3398900032043457, 0.3370000123977661, -0.6962800025939941, -0.036215998232364655, -0.27237001061439514, -0.06401500105857849, 0.14270000159740448, -0.11620999872684479, -0.9869400262832642, -0.0021869998890906572, -0.14904999732971191, -0.6129800081253052, -0.5414900183677673, 0.6324599981307983, -0.0550680011510849, -0.009775600396096706, 0.056752000004053116, -0.37483999133110046, 0.019007999449968338, 0.28817999362945557, -0.4242100119590759, 0.3003300130367279, -0.06247600167989731, 0.7048900127410889, 0.47286999225616455, -0.43641000986099243, -0.1770399957895279, -0.16810999810695648, 0.46573999524116516, 0.20759999752044678, -0.09361399710178375, 0.12464000284671783, 0.457040011882782, -0.2999500036239624, -0.2073500007390976, 0.368149995803833, 0.09950599819421768, -0.29300999641418457, -0.3487299978733063, 0.6368100047111511, 0.08954799920320511, 0.8809000253677368, -0.10234999656677246, 0.12310999631881714, 0.5613800287246704, -0.15880000591278076, 0.718500018119812, 0.021624000743031502, -0.17169000208377838, -0.04642900079488754, 0.24404999613761902, -0.47822999954223633, -0.1735599935054779, 0.14024999737739563, -0.1837099939584732, 0.0020751000847667456, -0.2439499944448471, 0.7670999765396118, 0.21671999990940094, 1.1442999839782715, 0.44223999977111816, 0.5102499723434448, 0.5731199979782104, -0.5725100040435791, -0.42489001154899597, 0.07318899780511856, 0.154339998960495, -0.06763099879026413, 0.2852199971675873, 0.32161998748779297, 0.27904000878334045, -0.00907289981842041, -0.6517000198364258, 0.22152000665664673, -0.5297799706459045, 0.2744100093841553, -0.5460799932479858, -0.028550999239087105, -0.39193999767303467, 0.2463500052690506, 0.04070800170302391, -0.07644300162792206, -0.06331200152635574, -0.05159299820661545, 0.21713000535964966, 0.7168200016021729, -0.03386399894952774, -0.1444299966096878, 0.37448999285697937, 1.027899980545044, -0.3184199929237366, 0.8250799775123596, -0.21698999404907227, -0.5768300294876099, 0.21265999972820282, -0.4348500072956085, -0.11913999915122986, -1.024399995803833, 0.1763100028038025, -0.9293799996376038, 0.892009973526001, -0.08829399943351746, -0.31275999546051025, 0.07679399847984314, -0.6633999943733215, -0.3430899977684021, 0.1264200061559677, 0.4913400113582611, -0.5802199840545654, 0.48333999514579773, 0.35776999592781067, 0.030619999393820763, 0.36987999081611633, -0.1018500030040741, -0.02835099957883358, 0.18609000742435455, -0.06207900121808052, -0.03551600128412247, 0.509880006313324, -0.1149199977517128, 0.15730999410152435, 0.15514999628067017, -0.11040999740362167, -0.18769000470638275, -0.0158890001475811, -0.3264699876308441, -0.09814699739217758, 0.10791999846696854, -0.07166200131177902, -0.671750009059906, 0.14661000669002533, -0.21533000469207764, -0.017635999247431755, -0.6210500001907349, 0.41596999764442444, -0.31589001417160034, -0.08134199678897858, -0.03477700054645538, 0.5273699760437012, -0.032965999096632004, 0.2595599889755249, -0.0995120033621788, -0.17789000272750854, -0.014289000071585178, -0.29012998938560486, 0.0782570019364357, 0.5430200099945068, 0.14121000468730927, 0.4592899978160858, -0.2909800112247467, 0.2367199957370758, 0.27507999539375305, 0.12551000714302063, 0.7321299910545349, 0.5205399990081787], u'Nubuck': [0.320279985666275, 0.1373399943113327, 0.20201000571250916, 0.023415999487042427, -0.23228999972343445, -0.06644000113010406, 0.05316900089383125, 0.07862400263547897, -0.013139000162482262, -0.9607700109481812, -0.21727000176906586, -0.08145499974489212, 0.10281000286340714, 0.24017000198364258, 0.03472499921917915, -0.20090000331401825, -0.2791999876499176, 0.6718500256538391, -0.18369999527931213, 0.11964999884366989, -0.3772299885749817, 0.17750999331474304, 0.2807300090789795, 0.14963999390602112, -0.9964900016784668, -0.024354999884963036, 0.31227999925613403, -0.14323000609874725, -0.2888700067996979, 0.7826200127601624, -0.14722999930381775, 0.11243999749422073, -0.814300000667572, -0.027765000239014626, -0.6208299994468689, 0.5914599895477295, -0.08576899766921997, -0.1636199951171875, 0.28033000230789185, 0.37178999185562134, -0.69718998670578, -0.6338499784469604, -0.07243800163269043, -0.6990299820899963, 0.5445200204849243, -0.3038800060749054, 0.15636000037193298, -0.2471799999475479, -0.4692400097846985, 0.29109999537467957, -0.3986800014972687, 0.01960100047290325, 0.15570999681949615, 0.02155900001525879, 0.27219000458717346, -0.16113999485969543, -0.05614500120282173, -0.6595600247383118, 0.07558900117874146, 0.09509199857711792, -0.009356300346553326, -0.05873600021004677, -0.40542998909950256, -0.4925200045108795, 0.16739000380039215, -0.3635300099849701, -0.6791800260543823, -0.20646999776363373, 0.19829000532627106, 0.19067999720573425, 0.2824299931526184, -0.055215999484062195, 0.4657599925994873, -0.5020899772644043, 0.2580200135707855, -0.23984000086784363, -0.16124999523162842, -0.16965000331401825, -0.3687100112438202, -0.5354999899864197, 0.2418700009584427, 0.36816999316215515, -0.30820000171661377, -0.48938998579978943, -0.10033000260591507, -0.4301599860191345, -0.24375000596046448, 0.3955399990081787, -0.8563200235366821, 0.08522699773311615, 0.12536999583244324, 0.24233999848365784, -0.055006999522447586, -0.08333499729633331, 0.04233599826693535, 0.5936400294303894, -0.11635000258684158, -0.0815730020403862, -0.33258000016212463, -0.1943099945783615, -0.31000998616218567, 0.8799999952316284, -0.6165099740028381, -0.714139997959137, -0.2503400146961212, -0.5200899839401245, 0.6614599823951721, 0.6125100255012512, -0.17357000708580017, -0.7688699960708618, -0.12917999923229218, 0.03411199897527695, -0.19575999677181244, -0.5171499848365784, -0.024707000702619553, -0.23646000027656555, 0.15014000236988068, 0.6591299772262573, 0.31084999442100525, -0.6385300159454346, -0.22391000390052795, -0.11964000016450882, 0.37900999188423157, -0.12244000285863876, -0.1665000021457672, 0.18322999775409698, 0.167820006608963, 0.5069699883460999, 0.21445000171661377, -0.1690399944782257, -0.008311999961733818, -0.08574599772691727, -0.16388000547885895, 0.34650999307632446, -0.6297500133514404, -0.4809400141239166, -0.4261400103569031, 0.2230599969625473, -0.22889000177383423, 0.36719998717308044, 0.5606499910354614, 0.4404599964618683, 0.9167500138282776, -0.6277099847793579, 0.7337700128555298, 0.05577800050377846, -0.07277899980545044, -0.3273699879646301, 0.2655400037765503, 0.13027000427246094, 0.09305299818515778, 0.23232999444007874, -0.4279400110244751, -0.8535400032997131, -0.1460600048303604, -0.372189998626709, -0.4641599953174591, -0.4708400070667267, 0.2945699989795685, 0.19336000084877014, 0.7178099751472473, 0.10603000223636627, -0.16719000041484833, 0.23145000636577606, 0.7326499819755554, -0.4119200110435486, 0.5793899893760681, 0.4956600069999695, 0.22970999777317047, 0.2870999872684479, -0.7600399851799011, 0.3722200095653534, -0.47773000597953796, 0.5303699970245361, -0.7299699783325195, -0.8354600071907043, -0.2558799982070923, 0.49994999170303345, -0.240789994597435, -0.6984599828720093, 0.5922600030899048, 0.26368001103401184, 0.05631599947810173, 0.14757999777793884, 0.8230299949645996, -0.7596399784088135, 0.9071900248527527, 0.5719900131225586, 0.49101001024246216, -0.4599800109863281, -0.028178999200463295, 0.4863100051879883, -0.11738000065088272, 0.1105400025844574, 0.37571999430656433, -0.10271000117063522, -0.4672600030899048, 0.23286999762058258, -0.3844299912452698, 0.3286300003528595, 0.6381400227546692, -0.34033000469207764, 0.5185800194740295, 0.13745999336242676, 0.8479400277137756, -0.04707400128245354, 0.6611400246620178, 0.4970400035381317, -1.0228999853134155, -0.263480007648468, 0.6801699995994568, -0.0806960016489029, -0.2588199973106384, 0.5239400267601013, 0.38166001439094543, -0.47262001037597656, 0.6296799778938293, -0.42080000042915344, -0.5334699749946594, -0.6371999979019165, 0.1580599993467331, -0.0010679999832063913, 0.2142699956893921, -0.12668000161647797, -0.07343199849128723, 0.6901900172233582, -0.2778399884700775, 0.4765999913215637, -0.21198000013828278, -0.4487299919128418, 0.35850000381469727, -0.6176400184631348, -0.26298999786376953, 0.4318999946117401, 0.9145200252532959, 0.10837999731302261, 0.6436700224876404, -0.23469999432563782, -0.7064700126647949, 0.4562300145626068, 0.4773400127887726, 0.20976999402046204, -0.8035799860954285, 0.5206900238990784, 0.015116999857127666, 0.9608299732208252, -0.03911399841308594, -0.34738001227378845, 0.12470000237226486, -0.24270999431610107, -0.7930300235748291, -0.19282999634742737, 0.5221199989318848, -0.20204000174999237, 0.4980199933052063, 0.3032900094985962, -0.2975800037384033, 0.26172998547554016, -0.16524000465869904, -0.5250399708747864, -0.4694899916648865, -0.8069300055503845, 0.8540999889373779, 0.44475001096725464, -0.4258500039577484, -0.0385189987719059, -0.17191000282764435, -0.03782200068235397, -0.28393998742103577, 0.08512900024652481, -0.3799099922180176, -0.35912999510765076, -0.002711700042709708, -0.09387800097465515, -0.7360799908638, 0.0026227999478578568, -0.5934200286865234, 0.9315699934959412, -0.9944999814033508, 0.185029998421669, -0.010018999688327312, -0.4411199986934662, -0.10202000290155411, -0.3109000027179718, -0.08896899968385696, 0.9317799806594849, -0.18008999526500702, 0.2724199891090393, -0.23865999281406403, -0.49386999011039734, 0.23709000647068024, 0.003082399955019355, -0.251800000667572, 0.4736500084400177, -0.5670199990272522, 0.49171000719070435, -0.11277999728918076, 0.2933500111103058, -0.11552999913692474, 0.24938000738620758], u'Faux.Leather': [0.320279985666275, 0.1373399943113327, 0.20201000571250916, 0.023415999487042427, -0.23228999972343445, -0.06644000113010406, 0.05316900089383125, 0.07862400263547897, -0.013139000162482262, -0.9607700109481812, -0.21727000176906586, -0.08145499974489212, 0.10281000286340714, 0.24017000198364258, 0.03472499921917915, -0.20090000331401825, -0.2791999876499176, 0.6718500256538391, -0.18369999527931213, 0.11964999884366989, -0.3772299885749817, 0.17750999331474304, 0.2807300090789795, 0.14963999390602112, -0.9964900016784668, -0.024354999884963036, 0.31227999925613403, -0.14323000609874725, -0.2888700067996979, 0.7826200127601624, -0.14722999930381775, 0.11243999749422073, -0.814300000667572, -0.027765000239014626, -0.6208299994468689, 0.5914599895477295, -0.08576899766921997, -0.1636199951171875, 0.28033000230789185, 0.37178999185562134, -0.69718998670578, -0.6338499784469604, -0.07243800163269043, -0.6990299820899963, 0.5445200204849243, -0.3038800060749054, 0.15636000037193298, -0.2471799999475479, -0.4692400097846985, 0.29109999537467957, -0.3986800014972687, 0.01960100047290325, 0.15570999681949615, 0.02155900001525879, 0.27219000458717346, -0.16113999485969543, -0.05614500120282173, -0.6595600247383118, 0.07558900117874146, 0.09509199857711792, -0.009356300346553326, -0.05873600021004677, -0.40542998909950256, -0.4925200045108795, 0.16739000380039215, -0.3635300099849701, -0.6791800260543823, -0.20646999776363373, 0.19829000532627106, 0.19067999720573425, 0.2824299931526184, -0.055215999484062195, 0.4657599925994873, -0.5020899772644043, 0.2580200135707855, -0.23984000086784363, -0.16124999523162842, -0.16965000331401825, -0.3687100112438202, -0.5354999899864197, 0.2418700009584427, 0.36816999316215515, -0.30820000171661377, -0.48938998579978943, -0.10033000260591507, -0.4301599860191345, -0.24375000596046448, 0.3955399990081787, -0.8563200235366821, 0.08522699773311615, 0.12536999583244324, 0.24233999848365784, -0.055006999522447586, -0.08333499729633331, 0.04233599826693535, 0.5936400294303894, -0.11635000258684158, -0.0815730020403862, -0.33258000016212463, -0.1943099945783615, -0.31000998616218567, 0.8799999952316284, -0.6165099740028381, -0.714139997959137, -0.2503400146961212, -0.5200899839401245, 0.6614599823951721, 0.6125100255012512, -0.17357000708580017, -0.7688699960708618, -0.12917999923229218, 0.03411199897527695, -0.19575999677181244, -0.5171499848365784, -0.024707000702619553, -0.23646000027656555, 0.15014000236988068, 0.6591299772262573, 0.31084999442100525, -0.6385300159454346, -0.22391000390052795, -0.11964000016450882, 0.37900999188423157, -0.12244000285863876, -0.1665000021457672, 0.18322999775409698, 0.167820006608963, 0.5069699883460999, 0.21445000171661377, -0.1690399944782257, -0.008311999961733818, -0.08574599772691727, -0.16388000547885895, 0.34650999307632446, -0.6297500133514404, -0.4809400141239166, -0.4261400103569031, 0.2230599969625473, -0.22889000177383423, 0.36719998717308044, 0.5606499910354614, 0.4404599964618683, 0.9167500138282776, -0.6277099847793579, 0.7337700128555298, 0.05577800050377846, -0.07277899980545044, -0.3273699879646301, 0.2655400037765503, 0.13027000427246094, 0.09305299818515778, 0.23232999444007874, -0.4279400110244751, -0.8535400032997131, -0.1460600048303604, -0.372189998626709, -0.4641599953174591, -0.4708400070667267, 0.2945699989795685, 0.19336000084877014, 0.7178099751472473, 0.10603000223636627, -0.16719000041484833, 0.23145000636577606, 0.7326499819755554, -0.4119200110435486, 0.5793899893760681, 0.4956600069999695, 0.22970999777317047, 0.2870999872684479, -0.7600399851799011, 0.3722200095653534, -0.47773000597953796, 0.5303699970245361, -0.7299699783325195, -0.8354600071907043, -0.2558799982070923, 0.49994999170303345, -0.240789994597435, -0.6984599828720093, 0.5922600030899048, 0.26368001103401184, 0.05631599947810173, 0.14757999777793884, 0.8230299949645996, -0.7596399784088135, 0.9071900248527527, 0.5719900131225586, 0.49101001024246216, -0.4599800109863281, -0.028178999200463295, 0.4863100051879883, -0.11738000065088272, 0.1105400025844574, 0.37571999430656433, -0.10271000117063522, -0.4672600030899048, 0.23286999762058258, -0.3844299912452698, 0.3286300003528595, 0.6381400227546692, -0.34033000469207764, 0.5185800194740295, 0.13745999336242676, 0.8479400277137756, -0.04707400128245354, 0.6611400246620178, 0.4970400035381317, -1.0228999853134155, -0.263480007648468, 0.6801699995994568, -0.0806960016489029, -0.2588199973106384, 0.5239400267601013, 0.38166001439094543, -0.47262001037597656, 0.6296799778938293, -0.42080000042915344, -0.5334699749946594, -0.6371999979019165, 0.1580599993467331, -0.0010679999832063913, 0.2142699956893921, -0.12668000161647797, -0.07343199849128723, 0.6901900172233582, -0.2778399884700775, 0.4765999913215637, -0.21198000013828278, -0.4487299919128418, 0.35850000381469727, -0.6176400184631348, -0.26298999786376953, 0.4318999946117401, 0.9145200252532959, 0.10837999731302261, 0.6436700224876404, -0.23469999432563782, -0.7064700126647949, 0.4562300145626068, 0.4773400127887726, 0.20976999402046204, -0.8035799860954285, 0.5206900238990784, 0.015116999857127666, 0.9608299732208252, -0.03911399841308594, -0.34738001227378845, 0.12470000237226486, -0.24270999431610107, -0.7930300235748291, -0.19282999634742737, 0.5221199989318848, -0.20204000174999237, 0.4980199933052063, 0.3032900094985962, -0.2975800037384033, 0.26172998547554016, -0.16524000465869904, -0.5250399708747864, -0.4694899916648865, -0.8069300055503845, 0.8540999889373779, 0.44475001096725464, -0.4258500039577484, -0.0385189987719059, -0.17191000282764435, -0.03782200068235397, -0.28393998742103577, 0.08512900024652481, -0.3799099922180176, -0.35912999510765076, -0.002711700042709708, -0.09387800097465515, -0.7360799908638, 0.0026227999478578568, -0.5934200286865234, 0.9315699934959412, -0.9944999814033508, 0.185029998421669, -0.010018999688327312, -0.4411199986934662, -0.10202000290155411, -0.3109000027179718, -0.08896899968385696, 0.9317799806594849, -0.18008999526500702, 0.2724199891090393, -0.23865999281406403, -0.49386999011039734, 0.23709000647068024, 0.003082399955019355, -0.251800000667572, 0.4736500084400177, -0.5670199990272522, 0.49171000719070435, -0.11277999728918076, 0.2933500111103058, -0.11552999913692474, 0.24938000738620758], u'Faux.Fur': [0.15368999540805817, 0.03651399910449982, -0.3862699866294861, -0.29183998703956604, -0.14330999553203583, -0.24120000004768372, -0.4438599944114685, 0.6119999885559082, -0.2903499901294708, -0.7015799880027771, 0.08596699684858322, -0.20850999653339386, -0.03649099916219711, 0.46865999698638916, -0.0012923999456688762, -0.10017000138759613, 0.40185999870300293, 0.6122199892997742, -0.19506999850273132, 0.6898800134658813, -0.3505899906158447, -0.4056999981403351, 0.6861799955368042, 0.23691000044345856, -0.5981199741363525, -0.5986199975013733, 1.131100058555603, -0.4171000123023987, 0.06561499834060669, 0.8596100211143494, 0.3426100015640259, -0.04284299910068512, -0.7576900124549866, -0.2772800028324127, 0.2634600102901459, -0.07900600135326385, 0.7805399894714355, 0.15796999633312225, 0.20305000245571136, -0.17496000230312347, -1.2480000257492065, -0.2059600055217743, 0.38339999318122864, -0.4189999997615814, 0.08767099678516388, 0.10390999913215637, -0.018496999517083168, -0.3912700116634369, 0.04193799942731857, 0.3031199872493744, 0.02206300012767315, -0.053419001400470734, 0.4654099941253662, -0.05860399827361107, 0.2365500032901764, 0.016217000782489777, -0.22481000423431396, -0.8526300191879272, -0.3924899995326996, -0.1453000009059906, 0.19520999491214752, -0.5100100040435791, 0.14564000070095062, -1.1619999408721924, 0.0790800005197525, -0.29387998580932617, -0.04225099831819534, -0.28648999333381653, 0.5206300020217896, 0.1901399940252304, 0.24338999390602112, -0.30847999453544617, -0.17835000157356262, 0.120169997215271, -0.13716000318527222, -0.5896300077438354, 0.08578000217676163, 0.21998000144958496, -0.25665000081062317, -0.15992000699043274, 0.002155299996957183, 0.7206199765205383, 0.19473999738693237, -0.23411999642848969, 0.0018173999851569533, -0.1171099990606308, 0.2931700050830841, -0.4577600061893463, -0.5559599995613098, -0.1937599927186966, -0.4709799885749817, -0.8032199740409851, 0.31953999400138855, 0.7156999707221985, -0.551609992980957, 0.5989099740982056, -0.8667399883270264, 0.38326001167297363, -0.5611100196838379, 0.31341999769210815, 0.48805001378059387, 0.4932900071144104, 0.09980499744415283, 0.40064001083374023, -0.2324099987745285, 0.216839998960495, 0.33594000339508057, 0.16495999693870544, 0.32864001393318176, 0.6502900123596191, -0.21119000017642975, 0.15727999806404114, -0.598829984664917, -0.04361400008201599, 0.26921001076698303, 0.21965999901294708, 0.12092000246047974, 1.1380000114440918, 0.37560999393463135, -0.522819995880127, -0.07638700306415558, -0.15025000274181366, 0.6977499723434448, 0.22066999971866608, -0.2300100028514862, 0.22620999813079834, -0.14970000088214874, 0.7495099902153015, 0.40623000264167786, -0.5443900227546692, -0.16967999935150146, -0.3116399943828583, -0.692359983921051, -0.6058700084686279, -0.3438499867916107, 0.0028880999889224768, 0.28499001264572144, 0.26625001430511475, 0.22314999997615814, -0.09827599674463272, 0.27035999298095703, 0.13840000331401825, 0.35872000455856323, -0.48124000430107117, 0.3793100118637085, 0.1836100071668625, -0.08990299701690674, 0.4156799912452698, -0.36733001470565796, 0.06409899890422821, 0.2659200131893158, 0.4630100131034851, -0.6077899932861328, -0.6329600214958191, 0.06759099662303925, -0.4940299987792969, -0.3679099977016449, -0.32552000880241394, 0.32809001207351685, 0.29951998591423035, 0.3281799852848053, 0.3156999945640564, 0.16558000445365906, 0.3723199963569641, -0.06031600013375282, -0.29416000843048096, 0.5344799757003784, -0.04083700105547905, 0.46136000752449036, 0.2039099931716919, -0.7131699919700623, -0.5747500061988831, -0.007786999922245741, 0.3156000077724457, 0.6858400106430054, -0.5205699801445007, 0.07801400125026703, -0.15660999715328217, -0.8816900253295898, 0.011756000109016895, 0.6903700232505798, 0.19578999280929565, -0.3009899854660034, -0.08127299696207047, 0.6843799948692322, -0.23524999618530273, 0.7016800045967102, -0.20472000539302826, -0.12758000195026398, -0.21671999990940094, 0.57805997133255, 0.20430999994277954, -0.3364099860191345, -0.350629985332489, 0.01331000030040741, -0.016165999695658684, -0.0028458999004215, 0.3418099880218506, 0.15474000573158264, -0.17547999322414398, 0.6614699959754944, -0.15884000062942505, 0.16134999692440033, 0.3001999855041504, 0.5223900079727173, 0.31558001041412354, -0.26488998532295227, 0.5242300033569336, -0.5243399739265442, -0.2565999925136566, 0.6205999851226807, -0.5370799899101257, 0.4722999930381775, 0.7242299914360046, 0.13324999809265137, -0.19017000496387482, 1.035599946975708, 0.3169200122356415, -0.10025999695062637, -0.5618600249290466, 0.3755899965763092, -0.5095900297164917, 0.12746000289916992, -0.02768700011074543, 0.24278999865055084, 0.6538699865341187, 0.21379999816417694, 0.294979989528656, 0.146589994430542, -0.17211000621318817, 1.0276000499725342, 0.24467000365257263, -0.04176799952983856, 0.4462999999523163, 0.30487000942230225, -0.38135001063346863, -0.20149999856948853, -0.4785600006580353, -0.33851000666618347, 0.16165000200271606, -0.0010287000332027674, 0.0611799992620945, -0.617929995059967, 0.34237000346183777, -1.3385000228881836, 0.32475000619888306, -0.012639000080525875, 0.0745529979467392, 0.7570499777793884, -0.4094499945640564, -0.1910099983215332, 0.2687000036239624, 0.2478400021791458, 0.2503800094127655, 1.1455999612808228, 0.5687500238418579, -0.1495800018310547, -0.1242000013589859, -0.5608100295066833, -0.4661499857902527, 0.26488998532295227, -0.12159000337123871, 0.08044400066137314, 0.5627400279045105, -0.3425000011920929, 0.4735099971294403, -0.07466799765825272, -0.656059980392456, 0.02264999970793724, 0.00973649974912405, 0.022074000909924507, -0.06576099991798401, 0.018288999795913696, -0.19641999900341034, -0.521049976348877, -0.1695300042629242, -0.40178999304771423, 0.4461199939250946, -1.1550999879837036, 0.08447200059890747, -0.2640100121498108, 0.13325999677181244, -0.10986000299453735, -0.06195300072431564, -0.8210099935531616, 0.4606899917125702, 0.609250009059906, 0.03255699947476387, 0.5089899897575378, 0.27810999751091003, 0.15998999774456024, -0.48864999413490295, -0.4666000008583069, -0.12952999770641327, -0.5705000162124634, -0.5006499886512756, 0.24997000396251678, 0.9506700038909912, 0.44273999333381653, 0.649150013923645], u'Sheepskin': [0.36041000485420227, 0.19268999993801117, 0.058559998869895935, -0.7066299915313721, -0.09381400048732758, -0.0528549998998642, -0.024111999198794365, -0.02098100073635578, -0.24714000523090363, 0.4708099961280823, 0.27856001257896423, 0.1399800032377243, 0.2564699947834015, -0.04771599918603897, -0.16056999564170837, -0.6208099722862244, 0.36559998989105225, 0.3806999921798706, 0.07505299896001816, 0.6007999777793884, -0.3216699957847595, -0.6354600191116333, 0.3519600033760071, 0.4719099998474121, -0.4133099913597107, -0.007081400137394667, 0.08201400190591812, 0.10874000191688538, 0.40867000818252563, 0.533519983291626, 0.029378000646829605, -0.5830199718475342, -0.47183001041412354, -0.5044100284576416, 0.3273699879646301, -0.04618300125002861, 0.013704000040888786, -0.1873600035905838, 0.07115299999713898, 0.002532700076699257, -0.35811999440193176, -0.09082700312137604, 0.20521999895572662, -0.38600999116897583, 0.5237200260162354, 0.21270999312400818, 0.286980003118515, -0.39706000685691833, -0.15546000003814697, 0.36294999718666077, -0.30893000960350037, -0.26989999413490295, -0.0017722999909892678, 0.27360999584198, -0.021537000313401222, 0.13954000174999237, 0.10151000320911407, -0.44150999188423157, -0.3503499925136566, 0.08188100159168243, 0.3835099935531616, -0.11035999655723572, -0.42225998640060425, -0.33583998680114746, 0.5377500057220459, 0.06535399705171585, -0.4088200032711029, 0.1718199998140335, 0.02741999924182892, 0.8992599844932556, 0.06227799877524376, 0.5628499984741211, 0.058538999408483505, -0.005794099997729063, -0.1661199927330017, -0.14229999482631683, -0.3444499969482422, 0.3176400065422058, 0.06847000122070312, -0.5749899744987488, 0.3490599989891052, 0.1307000070810318, 0.592710018157959, -0.6612200140953064, -0.08981200307607651, 0.11448000371456146, 0.06651800125837326, -0.13819999992847443, -0.12570999562740326, -0.21096999943256378, -0.15376000106334686, 0.05226000025868416, -0.20915000140666962, 0.2708599865436554, 0.0785600021481514, 0.17045000195503235, -0.1823199987411499, 1.0234999656677246, -0.5710700154304504, 0.943809986114502, 0.6242799758911133, 1.1806000471115112, 0.2618600130081177, 0.25929999351501465, 0.053665000945329666, -0.2162500023841858, 0.05632900074124336, -0.15509000420570374, 0.30757999420166016, -0.07434900104999542, 0.4631800055503845, 0.6461300253868103, -0.6225900053977966, -0.21879999339580536, -0.2234400063753128, -0.4045499861240387, -0.44718998670578003, -0.09804300218820572, 0.07405299693346024, -0.13545000553131104, 0.04438500106334686, -0.007046999875456095, 0.3868800103664398, 0.20719000697135925, 0.6084499955177307, 0.43636998534202576, 0.24714000523090363, 0.11716999858617783, -0.5014500021934509, -0.2652899920940399, 0.020688999444246292, -0.22789999842643738, -0.5358200073242188, -0.008115200325846672, -0.44356000423431396, -0.3323799967765808, -0.5297300219535828, 0.07210899889469147, 0.04704799875617027, -0.4022200107574463, -0.1535400003194809, 0.37494999170303345, 0.013269999995827675, -0.14719000458717346, 0.16067999601364136, 0.5463200211524963, -0.11844000220298767, -0.3327299952507019, 0.7205299735069275, -0.3996100127696991, -0.31439998745918274, 0.45267000794410706, -1.0362000465393066, -1.1366000175476074, -0.40101000666618347, 0.009547400288283825, -0.265390008687973, -0.4198499917984009, 0.6840900182723999, -0.3149699866771698, 0.37849000096321106, -0.3317900002002716, 0.4722500145435333, -0.24568000435829163, 0.17409999668598175, -0.6273000240325928, 0.37887999415397644, 0.0031103999353945255, 0.1984899938106537, -0.7129999995231628, -0.5983499884605408, -0.10305999964475632, 0.08227500319480896, -0.050491999834775925, -0.4287700057029724, -0.2240000069141388, 0.6816499829292297, -0.12399999797344208, -0.47262001037597656, -0.5525400042533875, 0.16875000298023224, 0.15304000675678253, 0.5808600187301636, 0.2918500006198883, 0.507420003414154, -0.11524000018835068, 0.9572299718856812, 0.38082998991012573, 0.08080799877643585, -0.23829999566078186, -0.04421599954366684, 0.33528000116348267, -0.014336000196635723, -0.7021899819374084, 0.2007800042629242, 0.16173000633716583, -0.19820000231266022, 0.804390013217926, 0.16130000352859497, -0.1481499969959259, -0.6145700216293335, -0.006801399867981672, -0.5115600228309631, 0.08893100172281265, 0.15504999458789825, -0.3168500065803528, -0.2567700147628784, 0.20993000268936157, -0.6725299954414368, -0.04281599819660187, 0.22527000308036804, 0.4749099910259247, -0.5073599815368652, 0.46977999806404114, 0.14065000414848328, -0.1034500002861023, -0.3220599889755249, -0.18366999924182892, -0.7693600058555603, 0.10550999641418457, 0.05981000140309334, 0.29927000403404236, 0.6418399810791016, -0.28874000906944275, 0.8745499849319458, 0.07754600048065186, -0.571120023727417, 0.14508000016212463, 0.3442099988460541, 0.29089000821113586, 0.32062000036239624, -0.06890899688005447, 0.24483999609947205, 0.7895100116729736, 0.18682000041007996, -0.03146800026297569, 0.14045000076293945, -0.1696999967098236, -0.31150001287460327, 0.3452700078487396, 0.8848299980163574, -0.20633000135421753, -0.8305799961090088, 0.12077999860048294, -0.2939999997615814, 0.5918099880218506, 0.05962099879980087, 0.09275499731302261, 0.3214699923992157, -0.5097100138664246, -0.5356299877166748, -0.2977299988269806, 0.6915799975395203, -0.629610002040863, 0.1452600061893463, 0.214369997382164, -0.4402799904346466, 0.9263200163841248, -0.041057001799345016, -0.47554999589920044, -0.3703700006008148, 0.3710800111293793, 0.4012700021266937, -0.06276600062847137, -0.376010000705719, 0.17732000350952148, 0.320609986782074, -1.292799949645996, -0.0956370010972023, -0.28543999791145325, 0.1619199961423874, -0.19064000248908997, -0.17509999871253967, -0.32684001326560974, -0.5794100165367126, -0.3289400041103363, 0.06562300026416779, -0.01832200028002262, -0.6093999743461609, 0.28446999192237854, -0.10018999874591827, -0.9327999949455261, -0.03415200114250183, 0.5499399900436401, -0.11890999972820282, 0.23921999335289001, -0.4974200129508972, 1.1176999807357788, 0.05611500144004822, 0.1358799934387207, 0.22464999556541443, -0.2593100070953369, 0.9101200103759766, -0.2562299966812134, 0.20096999406814575, -0.9978500008583069, 0.4080600142478943, 0.08402899652719498, -0.017829999327659607, 0.7226099967956543]} +objs_dict = {u'Shoes.Clogs.and.Mules': [0.06574799865484238, -0.5269299745559692, -0.09666399657726288, 0.10811000317335129, 0.21544000506401062, -0.14688000082969666, 0.6641700267791748, 0.38040998578071594, 0.08992700278759003, -0.07052300125360489, -0.6724799871444702, 0.4205299913883209, -0.46309998631477356, -0.0592229999601841, 0.007628200110048056, -0.14106999337673187, 0.10766000300645828, -0.26273998618125916, 0.34953999519348145, 0.23962999880313873, -0.18929000198841095, -0.03394699841737747, 0.11874999850988388, -0.2917900085449219, -0.4701499938964844, -0.018845999613404274, 0.038155000656843185, -0.06934600323438644, 0.0577160008251667, 0.6264600157737732, -0.13642999529838562, 0.21155999600887299, -0.2788499891757965, 0.5247600078582764, 0.33792001008987427, 0.18786999583244324, -0.243709996342659, -0.2578299939632416, 0.30489999055862427, 0.29273998737335205, -0.3669799864292145, -0.1372399926185608, -0.09233599901199341, -0.13749000430107117, -0.46832001209259033, -0.2613700032234192, 0.4553999900817871, 0.3691299855709076, -0.04078900068998337, 0.032003000378608704, -0.6733400225639343, 0.057326000183820724, 0.4188399910926819, -0.6457399725914001, -0.03884800150990486, -0.12887999415397644, 0.12514999508857727, -0.20574000477790833, -0.4312700033187866, 0.3626900017261505, -0.0633149966597557, -0.017750000581145287, -0.48364999890327454, 0.5211399793624878, -0.182559996843338, 0.648140013217926, -0.14180999994277954, 0.6367599964141846, -0.47360000014305115, 0.09185100346803665, 0.27546000480651855, 0.27783000469207764, -0.32798999547958374, 0.24390000104904175, -0.157260000705719, -0.29813000559806824, 0.21404999494552612, -0.19943000376224518, -0.004251199774444103, -0.8014900088310242, -0.03658000007271767, 0.14441999793052673, 0.7035099864006042, -0.05623200163245201, 0.21505999565124512, -0.18150000274181366, 0.14292000234127045, -0.3386400043964386, -0.07907400280237198, 0.2940399944782257, 0.05626700073480606, 0.15399999916553497, 0.20915000140666962, -0.4653100073337555, -0.2156900018453598, -0.15106000006198883, 0.4584299921989441, -0.019473999738693237, -0.020653000101447105, 0.23136000335216522, 0.2896899878978729, 0.35888999700546265, -0.1814199984073639, -0.6267399787902832, -0.0983780026435852, 0.14428000152111053, -0.34150999784469604, -0.04022299870848656, 0.026165999472141266, -0.7295299768447876, -0.5232999920845032, -0.03386100009083748, -0.1724099963903427, -0.32451000809669495, -0.21353000402450562, 0.10704000294208527, 0.15324999392032623, 0.3656400144100189, -0.13009999692440033, -0.7033600211143494, 0.09413900226354599, -0.7925000190734863, 0.25971001386642456, -0.2905600070953369, -0.03201200067996979, -0.015073999762535095, -0.4954400062561035, 0.08019600063562393, -0.20032000541687012, 0.2165600061416626, 0.4309000074863434, -0.2172199934720993, -0.1359100043773651, -0.3036699891090393, -0.08710899949073792, -0.8338299989700317, 0.38370001316070557, 0.336870014667511, 0.3325499892234802, 0.18258999288082123, 0.06161699816584587, 0.22425000369548798, 0.2112399935722351, -0.06541500240564346, 0.19163000583648682, 0.056821998208761215, -0.20252999663352966, 0.1539900004863739, 0.2424200028181076, 0.17520000040531158, -0.49428001046180725, -0.22283999621868134, 0.10864000022411346, -0.3294300138950348, -0.2183299958705902, 0.5613499879837036, 0.06099100038409233, 0.14256000518798828, 0.11394000053405762, 0.10591000318527222, -0.045524999499320984, 0.3985399901866913, 0.4660800099372864, -0.31738999485969543, 0.33386000990867615, 0.2204499989748001, 0.2159299999475479, -0.04788700118660927, 0.5064399838447571, -0.5151600241661072, -0.5395500063896179, 0.7009099721908569, -0.03455200046300888, 0.275409996509552, -0.14226000010967255, -0.8464400172233582, -0.13106000423431396, -0.6036199927330017, 0.0757410004734993, -0.6320099830627441, -0.3922500014305115, -0.26495999097824097, 0.7036899924278259, 0.14921000599861145, -0.007014099974185228, -0.40893998742103577, 0.417279988527298, 0.4306899905204773, -0.28641000390052795, -0.7629799842834473, -0.15925000607967377, 0.12154000252485275, 0.048670001327991486, 0.3715899884700775, 0.290120005607605, -0.21527999639511108, -0.390529990196228, 0.5062100291252136, -0.4466400146484375, -0.3246900141239166, -0.5084599852561951, 0.1710900068283081, 0.45146000385284424, 0.5174000263214111, 0.23387999832630157, -0.06580500304698944, 0.1443600058555603, -0.3510499894618988, -0.483240008354187, 0.48774001002311707, -0.28922000527381897, 0.41343000531196594, 0.18982000648975372, -0.12358999997377396, 0.1310500055551529, -0.016899000853300095, 0.14090000092983246, -0.2395000010728836, -0.31499001383781433, -0.26837998628616333, 0.32938000559806824, -0.16804000735282898, -0.036368001252412796, 0.14225000143051147, 0.14271999895572662, -0.43004998564720154, -1.1833000183105469, -0.18565000593662262, 0.30072999000549316, 0.22543999552726746, 0.15741999447345734, 0.23853999376296997, -0.04706700146198273, 0.0191079992800951, -0.2960500121116638, 0.042075999081134796, 0.07653500139713287, -0.08614200353622437, 0.1468600034713745, -0.3324500024318695, 0.3126299977302551, -0.11364000290632248, -0.5540300011634827, -0.08410099893808365, -0.2063400000333786, 0.05023900046944618, 0.35133999586105347, 0.28565001487731934, -0.04802799969911575, -0.6585400104522705, 0.46931999921798706, -0.4128899872303009, 0.17448000609874725, -0.29218000173568726, 0.17077000439167023, -0.6325399875640869, 0.09711900353431702, 0.3661699891090393, 0.5886899828910828, -0.300570011138916, 0.0460360012948513, -0.3334200084209442, -0.11452999711036682, -0.4544999897480011, 0.6152200102806091, 0.007750099990516901, -0.03386100009083748, -0.5902100205421448, -0.5202800035476685, 0.06624200195074081, 0.23770000040531158, 0.6643499732017517, -0.07084900140762329, -0.6079099774360657, -0.6549299955368042, -0.5168799757957458, 0.6690700054168701, -0.7844200134277344, -1.1165000200271606, 0.5631200075149536, 0.4414699971675873, -0.3013800084590912, -0.19512000679969788, 0.030455999076366425, -0.1525699943304062, 0.29704999923706055, 0.17182999849319458, 0.2869099974632263, -0.16666999459266663, -0.546720027923584, 0.008154500275850296, -0.12159000337123871, 0.1103999987244606, 0.4053199887275696, -0.58992999792099, -0.9019799828529358, -0.5094900131225586, -0.10732000321149826, 0.025460999459028244, -0.46525999903678894], u'Shoes.Heels': [0.219650000333786, 0.07948999851942062, 0.015030999667942524, 0.15986000001430511, -0.22746999561786652, -0.04331300035119057, -0.08965999633073807, -0.44488000869750977, 0.3429900109767914, -0.3225899934768677, -0.2826800048351288, 0.153779998421669, 0.04661000147461891, 0.14395999908447266, -0.16495999693870544, 0.09883899986743927, 0.22699999809265137, -0.2552500069141388, 0.0998769998550415, 0.051382001489400864, -0.11751999706029892, -0.0035757001023739576, 0.5185400247573853, -0.06651599705219269, 0.06932900100946426, 0.05786500126123428, 0.34815001487731934, -0.4721600115299225, 0.32559001445770264, 0.21971000730991364, -0.23346999287605286, -0.2226099967956543, -0.4161500036716461, -0.11049000173807144, -0.9663199782371521, 0.3610900044441223, -0.48739999532699585, 0.5645300149917603, 0.6009600162506104, 0.3288699984550476, -0.08153499662876129, -0.3250199854373932, -0.2400200068950653, 0.1969199925661087, -0.28999000787734985, 0.04651099815964699, 0.1930599957704544, -0.16347000002861023, -0.22336000204086304, 0.2795799970626831, -0.4006899893283844, 0.07509800046682358, -0.16009999811649323, -0.5303800106048584, -0.006113800220191479, 0.08971700072288513, -0.22982999682426453, -0.17181000113487244, -0.008038599975407124, 0.24104000627994537, -0.11415000259876251, -0.3141300082206726, 0.32686999440193176, 0.45072999596595764, 0.11226999759674072, -0.4300299882888794, 0.5717800259590149, 0.023375999182462692, 0.40400999784469604, -0.23413999378681183, -0.1149199977517128, 0.4088200032711029, -0.34797999262809753, -0.3856799900531769, 0.22224999964237213, -0.21887999773025513, 0.28696000576019287, -0.19835999608039856, -0.11714000254869461, -0.3246999979019165, -0.31292998790740967, -0.14815999567508698, 0.05299200117588043, -0.15131999552249908, 0.21554000675678253, 0.03888799995183945, -0.29462000727653503, -0.0506879985332489, 0.3025699853897095, -0.033771999180316925, 0.11627999693155289, 0.5623199939727783, -0.14030000567436218, 0.1036200001835823, -0.2107899934053421, -0.2853100001811981, -0.5933099985122681, 0.19518999755382538, 0.14539000391960144, -0.3981499969959259, -0.11072000116109848, 0.4479700028896332, -0.20348000526428223, -0.24400000274181366, -0.24247999489307404, -1.0113999843597412, 0.1697400063276291, 0.07141199707984924, 0.1365099996328354, -0.6870700120925903, 0.3138200044631958, 0.11153999716043472, -0.40696001052856445, -0.42403000593185425, 0.049265000969171524, -0.04419099912047386, 0.28334999084472656, -0.07404299825429916, 0.46053001284599304, -0.7308499813079834, -0.17609000205993652, -0.4245299994945526, 0.44672998785972595, -0.19212999939918518, -0.5629100203514099, 0.405239999294281, -0.05854799970984459, 0.42949000000953674, -0.1738699972629547, -0.02217100001871586, 0.015848999843001366, 0.36399000883102417, -0.7437499761581421, -0.14952999353408813, -0.300029993057251, -0.021240999922156334, -0.5087599754333496, 0.3066200017929077, -0.14661000669002533, 0.24714000523090363, 0.23648999631404877, -0.16202999651432037, 0.04464900121092796, 0.17151999473571777, -0.2845900058746338, 0.2562899887561798, -0.40450000762939453, 0.258899986743927, 0.15352000296115875, -0.05618000030517578, 0.33689001202583313, 0.17937999963760376, -0.46518999338150024, 0.1430799961090088, 0.15467000007629395, -0.03985600173473358, 0.30792999267578125, -0.34035998582839966, 0.09083099663257599, 0.5265799760818481, -0.11562000215053558, 0.029388999566435814, -0.26475998759269714, -0.10328000038862228, 0.3757599890232086, 0.0354279987514019, 0.3566800057888031, 0.4225800037384033, 0.09006699919700623, -0.27292999625205994, -0.31911998987197876, 0.5286700129508972, -0.6569899916648865, -0.3863399922847748, -0.20472000539302826, -0.10245999693870544, -0.4050399959087372, 0.3815299868583679, 0.18967999517917633, 0.0045727998949587345, 0.44648998975753784, -0.4134500026702881, 0.6801699995994568, 0.10922999680042267, 0.06825599819421768, -0.39969000220298767, 0.22582000494003296, 0.07699800282716751, 0.06102599948644638, -0.446370005607605, -0.12728999555110931, -1.0543999671936035, -0.4207099974155426, -0.14244000613689423, -0.31018999218940735, 0.33083000779151917, -0.09524299949407578, -0.4303799867630005, 0.692330002784729, 0.06453599780797958, 0.9007200002670288, -0.0541130006313324, 0.10639999806880951, 0.6057900190353394, -0.23329000174999237, 0.05968200042843819, -0.10576000064611435, -0.018223000690340996, -0.6658899784088135, 0.30188000202178955, -0.10390999913215637, 0.911620020866394, 0.06057300046086311, 0.27226001024246216, 0.2729800045490265, -0.24496999382972717, 0.33726000785827637, -0.5259400010108948, 0.00024717001360841095, -0.9076700210571289, 0.5846199989318848, 0.1810699999332428, 0.35343000292778015, 0.7089200019836426, 0.026228999719023705, 0.09261400252580643, -0.3439599871635437, 0.1277099996805191, -0.2867400050163269, 0.1982100009918213, 0.33406999707221985, -0.001749600050970912, 0.34446999430656433, -0.08833900094032288, -0.07843700051307678, -0.613070011138916, -0.020968999713659286, 0.04188600182533264, 0.33441999554634094, 0.2072799950838089, 0.27900999784469604, -0.024901000782847404, -0.6086199879646301, -0.13300999999046326, -0.3081499934196472, 0.16463999450206757, 0.052232999354600906, 0.00615020003169775, 0.34147000312805176, -0.6908400058746338, -0.06774699687957764, 0.15012000501155853, 0.2294899970293045, -0.10010000318288803, -0.2515299916267395, -0.495059996843338, 0.05534699931740761, 0.7286400198936462, -0.7355300188064575, -0.06754600256681442, -0.6669300198554993, 0.07938399910926819, 0.22822000086307526, -0.20204000174999237, -0.15379999577999115, -0.1302099972963333, -0.749459981918335, -0.16547000408172607, -0.3032299876213074, -0.31334999203681946, -0.016189999878406525, -0.30006998777389526, -0.6694200038909912, -0.2405499964952469, -0.7322999835014343, -0.1333799958229065, -0.6287800073623657, 0.07925599813461304, -0.3816800117492676, 0.722790002822876, 0.22925999760627747, 0.162990003824234, 0.21724000573158264, -0.08160000294446945, -0.5528600215911865, -0.03137499839067459, -0.0901150032877922, 0.03868899866938591, -0.027279000729322433, -0.5084199905395508, 0.21889999508857727, -0.00023015000624582171, 0.2795400023460388, 0.3716199994087219, -0.09158699959516525, 0.12726999819278717, 0.1662999987602234, -0.1618500053882599, 0.4067299962043762, 0.05266299843788147], u'Boots.Mid-Calf': [-0.15091000497341156, 0.1041100025177002, -1.0577000379562378, 0.5563899874687195, -0.0029670000076293945, 0.11469999700784683, 0.09877300262451172, -0.29368001222610474, -0.028706999495625496, 0.7798600196838379, -0.4042699933052063, 1.076200008392334, 0.6060500144958496, 0.8275799751281738, -0.6356099843978882, -0.5946699976921082, 0.014066999778151512, 0.5651199817657471, -0.3120099902153015, 0.44701001048088074, -0.6526399850845337, -0.645039975643158, 0.26565998792648315, -0.29829999804496765, -0.5902299880981445, -0.25183001160621643, -0.19022999703884125, 0.1245800033211708, 0.19957000017166138, 0.6190099716186523, 0.31011998653411865, -0.2732200026512146, 0.5270100235939026, -0.8452600240707397, 0.828000009059906, 0.5938000082969666, -0.1259399950504303, 0.7526999711990356, -0.26447001099586487, -0.7587800025939941, -0.5090699791908264, 0.5793499946594238, -0.07673700153827667, -0.5339000225067139, 0.34779998660087585, 0.06233900040388107, -0.33035001158714294, -0.14932000637054443, -0.4392000138759613, -0.2662299871444702, 0.07704299688339233, -0.48739999532699585, 0.5917400121688843, -0.3346099853515625, 0.28876999020576477, -0.26041001081466675, -0.24503999948501587, -0.003819999983534217, -0.04586099833250046, 0.3893600106239319, 0.2192399948835373, -0.09421899914741516, -0.3543199896812439, 0.0034384001046419144, 0.04207000136375427, -0.22310000658035278, 0.06123699992895126, 0.24231000244617462, 0.23017999529838562, 0.4792200028896332, 0.5904399752616882, 0.28749001026153564, -0.664139986038208, 0.4914500117301941, 0.6396399736404419, -0.6467700004577637, 0.09189199656248093, 0.21191999316215515, -0.43474000692367554, -0.25053998827934265, 0.22316999733448029, 0.2337300032377243, 0.579010009765625, -0.5306800007820129, -0.05079200118780136, 0.5776900053024292, 0.37136998772621155, -0.4067099988460541, -0.16051000356674194, -0.2079000025987625, 0.9269599914550781, 0.5050699710845947, -0.10097000002861023, 0.28979000449180603, 0.2923699915409088, 0.06273899972438812, 0.057774998247623444, -0.13892999291419983, -0.21694999933242798, 0.2338699996471405, 0.06513699889183044, 0.32427000999450684, 0.7290400266647339, 0.4440999925136566, -0.8859900236129761, -0.15591000020503998, -0.745989978313446, 0.18894000351428986, 0.21458999812602997, -0.11686000227928162, 0.09226799756288528, -0.15448999404907227, -0.33726999163627625, -0.2400899976491928, 0.027574999257922173, -0.4582799971103668, 0.19415000081062317, 0.3716599941253662, 0.9386399984359741, 0.40738001465797424, 0.3562999963760376, -0.18692000210285187, 0.22909000515937805, 0.16527999937534332, 0.01675499975681305, 0.14666999876499176, 0.048555001616477966, -0.1406400054693222, 0.1644199937582016, 0.12118999660015106, -0.25892001390457153, -0.6444000005722046, -0.4402100145816803, 0.03374600037932396, 0.2341099977493286, -0.02705400064587593, -0.005032800137996674, -0.3025299906730652, 0.6392300128936768, 0.4041599929332733, -0.23104000091552734, -0.28022998571395874, -0.6957600116729736, -0.8560699820518494, 0.4010300040245056, -0.3135499954223633, -0.4470599889755249, 0.29853999614715576, 0.6404399871826172, 0.20782999694347382, -0.43202999234199524, -0.7000399827957153, -0.3558099865913391, 0.010843000374734402, -0.021855000406503677, -0.08210600167512894, 0.12585000693798065, -0.05709400027990341, -0.10798999667167664, 0.2846899926662445, 0.4211300015449524, -0.5254200100898743, -0.7664700150489807, -0.006008299998939037, 0.15940000116825104, -0.026910999789834023, -0.24445000290870667, 0.129940003156662, 0.02689100056886673, 0.4575900137424469, -0.06364999711513519, 0.15214000642299652, 0.4568899869918823, -0.10814999788999557, 0.1179800033569336, -0.47023001313209534, -0.2271299958229065, 0.1369200050830841, 0.5059300065040588, -0.43494999408721924, 0.4014100134372711, 0.28321999311447144, -0.0032740000169724226, -0.4474300146102905, 0.5781099796295166, 0.0815809965133667, 0.4601399898529053, 0.3865399956703186, 0.3000200092792511, -0.32150998711586, -0.25051000714302063, -0.4665299952030182, -0.11072999984025955, -0.06614399701356888, 0.3256399929523468, 0.25949999690055847, -0.1056400015950203, 0.19596999883651733, -0.23937000334262848, 0.021240999922156334, -0.3758000135421753, -0.16937999427318573, -0.3039099872112274, 0.1287900060415268, -0.5653499960899353, 0.3874000012874603, -0.6866400241851807, 0.5703200101852417, -0.5923200249671936, -0.43509000539779663, -0.20486000180244446, -0.6616100072860718, 0.21061000227928162, 1.1857999563217163, -0.47663000226020813, -0.8400999903678894, -0.2958599925041199, -0.2985900044441223, 0.0650549978017807, -0.15866999328136444, -0.1378600001335144, 0.3503200113773346, 0.8845900297164917, 0.2983199954032898, -0.32736000418663025, -0.028862999752163887, -0.8470199704170227, 0.48781999945640564, -0.5895900130271912, -0.20613999664783478, 0.2000499963760376, -0.11243999749422073, -0.4210500121116638, 0.06162799894809723, 0.2112800031900406, -0.3974800109863281, -0.19726000726222992, 0.3082599937915802, 0.262800008058548, -0.08939400315284729, 0.2813900113105774, -0.024203000590205193, -0.297109991312027, 0.04312799870967865, 0.5784599781036377, -0.22577999532222748, 0.04958700016140938, 0.08567000180482864, -0.47367000579833984, 0.3401600122451782, -0.35201001167297363, 0.10110999643802643, 0.338019996881485, -1.0252000093460083, -0.9286699891090393, -0.520359992980957, -0.4027499854564667, 0.7970399856567383, -0.18374000489711761, -0.23194000124931335, 0.14862999320030212, 0.08475899696350098, -0.39563998579978943, -0.05711499974131584, -0.17515000700950623, 0.20573000609874725, 0.2428700029850006, 0.6331700086593628, 0.009373899549245834, -0.04499699920415878, -0.16224999725818634, -0.788569986820221, -0.8942700028419495, 0.0743900015950203, -0.24371999502182007, -0.3416000008583069, 0.6010100245475769, -0.5028200149536133, -0.5857899785041809, -0.5220100283622742, 0.2559100091457367, 0.4483500123023987, 0.5286300182342529, -0.21112999320030212, -0.410290002822876, -0.30270999670028687, 0.4726499915122986, -0.11808999627828598, 0.09046199917793274, -0.6214200258255005, 0.6830199956893921, 0.47889000177383423, -0.6695799827575684, 0.1385200023651123, -0.39902999997138977, -1.11899995803833, 0.2026599943637848, -0.28881001472473145, 0.2994300127029419, -0.19812999665737152], u'Shoes.Flats': [-0.20374999940395355, 0.3542500138282776, -0.5919100046157837, 0.03648199886083603, 0.12483000010251999, 0.1103300005197525, 0.4150699973106384, -0.12443000078201294, 0.16572000086307526, -0.21337999403476715, -0.15049000084400177, -0.6731299757957458, 0.04386499896645546, 0.7317100167274475, 0.2585499882698059, -0.05827600136399269, 0.568340003490448, 0.07803399860858917, 0.701770007610321, -0.08540800213813782, -0.5639700293540955, 0.1720699965953827, 0.2926900088787079, 0.25154000520706177, -0.013891000300645828, 0.40195000171661377, 0.018631000071763992, 0.4059099853038788, -0.1646600067615509, 0.4990899860858917, 0.17173999547958374, 0.01042999979108572, -0.765749990940094, 0.31589001417160034, 0.8075699806213379, 0.4856700003147125, -0.21073000133037567, 0.10864999890327454, 0.368910014629364, -0.005092099774628878, -0.4969800114631653, 0.06385599821805954, -0.12670999765396118, 0.7390300035476685, 0.621429979801178, 0.22047999501228333, 0.1538500040769577, 0.32137998938560486, -0.08169600367546082, 0.001856100047007203, -0.6115700006484985, -0.04486300051212311, 0.027437999844551086, -0.15604999661445618, 0.30952998995780945, 0.07775899767875671, 0.013050000183284283, -0.053502000868320465, -0.282150000333786, 0.6051099896430969, 0.04901599884033203, 0.02716599963605404, -0.10429999977350235, -0.20397000014781952, 0.4099099934101105, -0.1974799931049347, 0.4717999994754791, 0.22812999784946442, -0.3149699866771698, -0.1541299968957901, 0.18049000203609467, 0.399509996175766, -0.9211099743843079, 0.1722699999809265, -0.517769992351532, 0.19739000499248505, 0.20372000336647034, 0.2700299918651581, 0.5132499933242798, -0.013384000398218632, -0.005723400041460991, 0.10214000195264816, 0.043602000921964645, 0.09233000129461288, 0.29745998978614807, -0.15961000323295593, -0.01581300050020218, -0.46059998869895935, -0.3429900109767914, -0.2599799931049347, 0.2091200053691864, 0.3149400055408478, 0.9327200055122375, 0.5180400013923645, 0.006593000143766403, -0.08728200197219849, 0.5365300178527832, 0.4648999869823456, 0.8944900035858154, 0.1726599931716919, -0.23929999768733978, -0.0889040008187294, -0.922469973564148, -0.29493001103401184, -0.6224899888038635, -0.35725000500679016, 0.22481000423431396, -0.10226999968290329, -0.15886999666690826, -0.36796998977661133, 0.23517000675201416, -0.5226899981498718, 0.032079000025987625, -0.22965000569820404, -0.4388200044631958, 0.24935999512672424, 0.6451200246810913, 0.7340199947357178, -0.23287999629974365, 0.48194000124931335, 0.33487001061439514, -0.3586600124835968, 0.32455000281333923, 0.3682200014591217, -0.003144599962979555, -0.3811900019645691, -0.07605700194835663, -0.08156300336122513, -0.10279999673366547, -0.3504199981689453, -0.07782500237226486, 0.23113000392913818, -0.40766000747680664, -0.012942999601364136, 0.14651000499725342, -0.16177000105381012, -0.333950012922287, -0.5636199712753296, 0.3828299939632416, -0.3052999973297119, 0.6996200084686279, -0.12991000711917877, -0.032207001000642776, 0.3317900002002716, -0.38089001178741455, -0.31630000472068787, -0.14090999960899353, 0.0614130012691021, -0.12764999270439148, 0.12249000370502472, 0.07254599779844284, 0.10547000169754028, -1.0125000476837158, -0.368120014667511, -0.11238999664783478, 0.6206499934196472, 0.4221799969673157, 0.2543100118637085, 0.16332000494003296, 0.2706800103187561, 0.13203999400138855, -0.47822999954223633, -0.35238000750541687, 0.43911999464035034, -0.24345999956130981, -0.32133999466896057, 0.34452998638153076, 0.13585999608039856, -0.028210999444127083, 0.0774729996919632, -0.4890500009059906, 0.4185999929904938, 0.25494998693466187, -0.08006999641656876, -0.721530020236969, 0.25547000765800476, -0.5357400178909302, -0.05269100144505501, 0.2656700015068054, -0.18140999972820282, 0.057307999581098557, 0.003998899832367897, 0.0475349985063076, -0.06408300250768661, 0.02411000058054924, -0.1294499933719635, 0.5228300094604492, 0.13958999514579773, 0.08707500249147415, 0.7508500218391418, 0.48177000880241394, 0.08293599635362625, 0.04318000003695488, -0.08963099867105484, 0.26085999608039856, 0.05147000029683113, -0.5923399925231934, -0.19154000282287598, 0.7361800074577332, -0.5470799803733826, -0.09102299809455872, -0.01430600043386221, -0.35989001393318176, 0.005388699937611818, 0.3617599904537201, 0.20850999653339386, -0.24221999943256378, -0.23125000298023224, -0.09845399856567383, -0.14935000240802765, -0.17991000413894653, 0.37648001313209534, 0.05813800171017647, 0.43966999650001526, 0.08455999940633774, 0.634850025177002, -0.12761999666690826, -0.5348700284957886, 0.8145700097084045, -0.5087699890136719, 0.7486100196838379, -0.32214000821113586, -0.17107999324798584, 0.03487500175833702, 0.3201799988746643, -0.08179499953985214, -0.12148000299930573, 0.06547199934720993, -0.036396000534296036, 0.583329975605011, 0.5042799711227417, -0.057544998824596405, -0.5234400033950806, -0.051263000816106796, 0.4408099949359894, 0.8270000219345093, -0.1453700065612793, 0.350849986076355, 0.004543299786746502, 0.10075999796390533, -0.2892000079154968, 0.6127300262451172, -0.1596899926662445, 0.37915000319480896, -0.7341399788856506, 0.052264999598264694, 0.5247399806976318, -0.23646999895572662, -0.07887899875640869, -0.5824099779129028, 0.14571000635623932, 0.43406999111175537, -0.3590700030326843, 0.030448999255895615, -0.34191998839378357, -0.5179799795150757, 0.041113998740911484, 0.7238500118255615, -0.07748900353908539, -0.17459000647068024, -0.6070899963378906, 0.4159800112247467, 0.16930000483989716, -0.09758400171995163, 0.08365499973297119, -0.6472799777984619, 0.27410998940467834, 0.23327000439167023, -0.1035199984908104, 0.3835600018501282, -0.057287998497486115, -0.2430499941110611, -0.23656000196933746, 0.06295400112867355, -0.032489001750946045, -0.07571899890899658, -0.8056600093841553, 0.47786998748779297, -0.4751099944114685, 0.2125999927520752, -0.016582999378442764, 0.393669992685318, -0.014708000235259533, -0.06123200058937073, -0.49487999081611633, 0.5999500155448914, 0.12346000224351883, 0.1992799937725067, 0.09995599836111069, -0.38238999247550964, -0.6141899824142456, 0.0022324000019580126, 0.33963000774383545, 0.13481999933719635, 0.208529993891716, -0.18401999771595, 0.3868899941444397, 0.4650300145149231, 0.5759099721908569, 0.14044000208377838], u'Boots.Knee.High': [0.13481999933719635, 0.06180800125002861, 0.0332069993019104, -0.14851999282836914, -0.1845099925994873, 0.45642000436782837, -0.2784999907016754, -0.3435100018978119, -0.7072299718856812, 0.9877499938011169, 0.1864600032567978, 0.10005000233650208, 1.0371999740600586, -0.056814998388290405, 0.29058000445365906, -0.6417199969291687, 0.22187000513076782, 0.21087999641895294, -0.07796499878168106, 0.30417001247406006, -0.604610025882721, -0.20678000152111053, -0.2637600004673004, -0.2604700028896332, 0.4990699887275696, -0.2634899914264679, 0.4533799886703491, 0.6245399713516235, 0.3500500023365021, 0.1834000051021576, 0.0981689989566803, -0.07018499821424484, -0.294730007648468, -0.4743399918079376, 0.451119989156723, 0.007008600048720837, -0.2489199936389923, -0.2595300078392029, 0.2963399887084961, 0.25422999262809753, -0.1747799962759018, 0.22686000168323517, 0.6608399748802185, -0.3568499982357025, 0.2885900139808655, -0.0746690034866333, 0.14792999625205994, -0.26065000891685486, -0.8256300091743469, 0.09438200294971466, -0.5938400030136108, 0.6593000292778015, -0.19136999547481537, -0.12014999985694885, 0.13857999444007874, -0.11324000358581543, 0.7782800197601318, -0.47727999091148376, -0.27160999178886414, 0.5808600187301636, 0.21527999639511108, -0.4222100079059601, -0.5845100283622742, -0.11606000363826752, -0.36711999773979187, -0.27138999104499817, 0.40463998913764954, -0.13816000521183014, 0.45504000782966614, 0.021656999364495277, 0.38078999519348145, 0.0521249994635582, -0.8345400094985962, -0.7039300203323364, 0.7649999856948853, -0.038405001163482666, -0.6519200205802917, 0.5437099933624268, -0.17810000479221344, 0.044162001460790634, -0.013012000359594822, 0.2130099982023239, 0.6682199835777283, -0.3304300010204315, -0.45465999841690063, -0.1321299970149994, 0.3493900001049042, 0.5265700221061707, 0.11129000037908554, -0.05620799958705902, 0.5031499862670898, -0.13101999461650848, 0.25512999296188354, 0.4073899984359741, -0.17573000490665436, -0.10391999781131744, 0.8008900284767151, 0.2892799973487854, 0.565310001373291, 0.02822200022637844, 0.5202299952507019, 0.206169992685318, -0.5213099718093872, -0.12304999679327011, -0.8004400134086609, 0.09955500066280365, 0.13604000210762024, -0.8839700222015381, 0.6117100119590759, -0.9912199974060059, 0.2126300036907196, 0.42072001099586487, -0.265639990568161, -0.13095000386238098, 0.19166000187397003, -0.5490300059318542, 0.3622100055217743, -0.06268499791622162, 0.5232300162315369, 0.4781700074672699, -0.19101999700069427, 0.23340000212192535, -0.3505899906158447, -0.6902999877929688, 0.0823419988155365, 0.21155999600887299, 0.08305700123310089, -0.030260000377893448, 0.23074999451637268, -0.2714900076389313, -0.6485700011253357, -0.16198000311851501, 0.0648370012640953, 0.4243299961090088, -0.7021700143814087, 0.11518999934196472, -0.2058899998664856, 0.13383999466896057, 0.4249100089073181, 0.05352199822664261, 0.749210000038147, 0.3865100145339966, 0.16133999824523926, -0.22457000613212585, 0.258870005607605, 0.1379700005054474, 0.2161100059747696, -0.3757599890232086, 0.4959000051021576, 0.017587000504136086, -0.8549299836158752, 0.02145799994468689, -0.749239981174469, -0.056019000709056854, -0.16126999258995056, -0.39844000339508057, 0.4522800147533417, -0.8480799794197083, -0.37127000093460083, -0.3651300072669983, -0.23860999941825867, -0.5801200270652771, 0.07644599676132202, 0.05819699913263321, -0.07338699698448181, -0.25852999091148376, -0.18711000680923462, 0.1751900017261505, 0.04282199963927269, -0.019773000851273537, 0.06367599964141846, 0.2223699986934662, 0.5757899880409241, 0.5169299840927124, -0.7513499855995178, -0.5389699935913086, -0.4611800014972687, 0.285290002822876, -0.010437999852001667, -0.4001699984073639, 0.1910499930381775, 0.12878000736236572, 0.1749500036239624, 0.5148599743843079, 0.13451999425888062, 0.24833999574184418, 0.7979099750518799, 0.5387200117111206, 0.1761700063943863, -0.2842699885368347, -0.2092999964952469, -0.14901000261306763, 0.776889979839325, -0.5900099873542786, 0.25303998589515686, 0.3562299907207489, 0.10416000336408615, -0.2269199937582016, -0.21844999492168427, -0.4286400079727173, -1.1220999956130981, 0.21126000583171844, 0.3604699969291687, -0.1713400036096573, -0.581279993057251, 0.09073100239038467, 0.30347999930381775, 0.24484999477863312, -0.42353999614715576, 0.3386000096797943, -0.12692999839782715, 0.02287900075316429, -0.30643001198768616, -0.5360100269317627, -0.15331999957561493, -0.6172400116920471, 0.3631899952888489, -0.059581998735666275, -0.11140000075101852, 0.17449000477790833, -0.3091900050640106, -0.354449987411499, 0.7605299949645996, -0.2732999920845032, 0.02338000014424324, 0.2755500078201294, -0.6182100176811218, -0.10080999881029129, -0.12353000044822693, -0.05713000148534775, -0.15740999579429626, -0.19904999434947968, -0.39399999380111694, -0.1003199964761734, -0.20247000455856323, -0.29346001148223877, -0.045896001160144806, 0.038217999041080475, 0.33941999077796936, 0.09079299867153168, 0.0013182000257074833, 0.03874799981713295, -0.6254100203514099, -0.39625999331474304, 0.5229099988937378, 0.32183998823165894, 0.09308899939060211, 0.1635800004005432, 0.4143100082874298, -0.10790000110864639, 0.22396999597549438, 0.7756800055503845, 0.08003299683332443, -0.49775999784469604, -0.4946900010108948, 0.43296000361442566, -0.44356998801231384, 0.2780199944972992, 0.39621999859809875, -0.09465400129556656, -0.07067400217056274, 0.3460499942302704, 0.26003000140190125, -0.21636000275611877, -0.8137999773025513, -0.06496799737215042, 0.17723000049591064, -0.220210000872612, -0.450219988822937, 0.5349400043487549, -0.46299999952316284, 0.24913999438285828, -1.0525000095367432, -0.8823800086975098, -0.4630900025367737, 0.5121999979019165, 0.12274999916553497, 0.13965000212192535, -0.2213599979877472, -0.3403399884700775, 0.11095000058412552, -0.12078999727964401, 0.47714000940322876, 0.26166999340057373, -0.2870100140571594, -0.029292000457644463, 0.13932999968528748, -0.3335399925708771, -0.04171000048518181, -0.5347399711608887, -0.0700099989771843, 0.06413300335407257, -0.45497000217437744, 0.05893699824810028, -0.323060005903244, -0.6448299884796143, -0.15873000025749207, 0.0065079000778496265, 0.6321600079536438, -0.34428998827934265], u'Shoes.Sneakers.and.Athletic.Shoes': [0.08028200268745422, -0.14322000741958618, -0.14704999327659607, -0.1123799979686737, -0.3999600112438202, 0.3549500107765198, -0.20107999444007874, -0.07432500272989273, 0.20698000490665436, -0.3431299924850464, -0.0075738998129963875, 0.0010248000035062432, -0.024692000821232796, -0.19744999706745148, -0.11444000154733658, 0.1310500055551529, 0.35951000452041626, -0.3451800048351288, 0.1400900036096573, -0.21512000262737274, 0.1664399951696396, 0.04547400027513504, 0.002072500064969063, -0.32291001081466675, -0.4050399959087372, -0.21729999780654907, 0.11215999722480774, 0.3932200074195862, 0.2649100124835968, 0.30037999153137207, 0.06964100152254105, -0.563730001449585, -0.5146300196647644, 0.14786000549793243, -0.2089100033044815, 0.5804399847984314, -0.46456000208854675, -0.5322700142860413, 0.26462000608444214, 0.17878000438213348, 0.08421099931001663, -0.49904999136924744, -0.21714000403881073, -0.1088000014424324, -0.0821710005402565, -0.08148600161075592, 0.614870011806488, -0.23749999701976776, -0.16753999888896942, 0.16614000499248505, 0.03978100046515465, -0.44703999161720276, 0.1799899935722351, -0.6659200191497803, 0.14297999441623688, 0.1160300001502037, -0.30709001421928406, 0.12280000001192093, -0.46636998653411865, 0.06563299894332886, 0.022370999678969383, -0.3838300108909607, -0.3764300048351288, -0.27847999334335327, -0.22599999606609344, 0.1301400065422058, -0.3064900040626526, -0.21121999621391296, -0.10005000233650208, 0.08011899888515472, 0.750190019607544, 0.47846001386642456, 0.25617000460624695, -0.2534500062465668, 0.19960999488830566, -0.462660014629364, 0.2784700095653534, -0.09402599930763245, 0.38210999965667725, -0.36649999022483826, 0.3395799994468689, 0.11731000244617462, -0.01030299998819828, 0.006069099996238947, 0.1521500051021576, -0.13582000136375427, 0.35844001173973083, -0.11113999783992767, -0.13541999459266663, 0.5230100154876709, -0.3371500074863434, 0.20347000658512115, 0.030601000413298607, 0.3413099944591522, -0.1997700035572052, -0.12605999410152435, -0.022052999585866928, -0.42987000942230225, -0.15140999853610992, -0.03425699844956398, 0.2087700068950653, 0.6393899917602539, 0.012985000386834145, 0.12483999878168106, -0.27180999517440796, -0.5971699953079224, 0.04375600069761276, -0.17876000702381134, 0.10711999982595444, -0.6855900287628174, -0.364190012216568, 0.39353999495506287, -0.14369000494480133, -0.11360999941825867, -0.1491599977016449, 0.42361000180244446, 0.4014100134372711, 0.17938999831676483, 0.10063999891281128, -0.37786000967025757, -0.11116000264883041, -0.35067999362945557, 0.5108500123023987, -0.1667799949645996, -0.5884799957275391, 0.26657000184059143, 0.1808300018310547, 0.3827599883079529, 0.5073800086975098, -0.15940000116825104, -0.21602000296115875, -0.19923999905586243, -0.12244000285863876, 0.04995099827647209, -0.11678999662399292, -0.17818999290466309, -0.11219000071287155, 0.5115799903869629, -0.017201999202370644, -0.1708499938249588, -0.0491660013794899, -0.15320999920368195, 0.45848000049591064, -0.16911999881267548, 0.096560999751091, 0.39103999733924866, -0.30910998582839966, -0.27480000257492065, 0.2967599928379059, -0.21171000599861145, -0.21538999676704407, 0.015118000097572803, -0.4344800114631653, -0.7368299961090088, -0.547819972038269, -0.3740200102329254, -0.03546600043773651, -0.15663999319076538, 0.5805500149726868, 0.3196699917316437, 0.21714000403881073, -0.647130012512207, -0.4642300009727478, 0.07544700056314468, 0.5934200286865234, -0.520829975605011, 0.09504199773073196, 1.1445000171661377, -0.08490300178527832, 0.18935999274253845, 0.15678000450134277, 0.17013999819755554, -0.7598599791526794, 0.17387999594211578, -0.3985300064086914, -0.1611199975013733, 0.48868000507354736, 0.31619998812675476, -0.1694899946451187, -0.3856799900531769, 0.6467099785804749, -0.137580007314682, -0.07568799704313278, -0.14635999500751495, 0.1309099942445755, -0.3063899874687195, 0.9062899947166443, 0.9315400123596191, 0.28911998867988586, 0.06135899946093559, 0.49636000394821167, -0.23354999721050262, 0.4650000035762787, 0.09407799690961838, -0.17917999625205994, -0.15443000197410583, -0.8608599901199341, 0.14869999885559082, -0.05988200008869171, 0.27059999108314514, 0.5359699726104736, -0.03580600023269653, 0.6479799747467041, 0.7166799902915955, 0.21433000266551971, -0.03909499943256378, 0.023872999474406242, 0.3498300015926361, -0.9323700070381165, -0.21850000321865082, -0.18694999814033508, 0.4114699959754944, -0.6055099964141846, 0.5346500277519226, 0.20111000537872314, 0.2692199945449829, 0.3305099904537201, -0.5652499794960022, -0.23124000430107117, -0.538320004940033, 0.8046000003814697, 0.5126299858093262, 0.3673500120639801, 0.005558200180530548, 0.43070998787879944, 0.19187000393867493, -0.2829799950122833, 0.2657099962234497, -0.34209001064300537, 0.14125999808311462, 0.620389997959137, 0.23718999326229095, 0.08354900032281876, 0.009837299585342407, 0.06559699773788452, 0.5420399904251099, 0.04820999875664711, 0.6901999711990356, -0.10100000351667404, 0.1675100028514862, 0.31665000319480896, 0.38637998700141907, -0.7127000093460083, 0.291020005941391, 0.2738499939441681, -0.4960100054740906, 0.22195999324321747, -0.6657199859619141, 0.09516599774360657, -0.5450299978256226, -0.3465299904346466, 0.046091001480817795, -0.12689000368118286, -0.022975999861955643, -0.5098299980163574, -0.2729699909687042, 0.019874000921845436, 0.42214998602867126, -0.014305000193417072, -0.4404299855232239, 0.5767599940299988, -0.20860999822616577, 0.15478000044822693, -0.47512000799179077, 0.16272999346256256, -0.14359000325202942, -0.25690001249313354, 0.08951299637556076, -0.5230699777603149, -0.031348999589681625, -0.14894999563694, 0.15097999572753906, -0.11612000316381454, -0.8933200240135193, -0.4690299928188324, -0.2574999928474426, -0.15518000721931458, -0.49674999713897705, -0.8342800140380859, 0.060516998171806335, 0.6486300230026245, 0.02035599946975708, 0.1897599995136261, 0.5621100068092346, -0.45513999462127686, 0.6208800077438354, -0.2586100101470947, 0.5347899794578552, -0.3855299949645996, -0.5345500111579895, -0.1867000013589859, 0.08327700197696686, -0.22811000049114227, 1.0896999835968018, -0.43283000588417053, -1.0562000274658203, 0.4487299919128418, -0.15896999835968018, 0.3762499988079071, -0.06176700070500374], u'Shoes.Boat.Shoes': [0.046521998941898346, -0.27535000443458557, -0.1372399926185608, -0.08483199775218964, -0.5181000232696533, -0.1770700067281723, 0.10560999810695648, 0.21041999757289886, 0.371069997549057, -1.121399998664856, -0.31126001477241516, -0.028116999194025993, -0.15352000296115875, 0.04626300185918808, 0.0881119966506958, -0.30849000811576843, 0.2911199927330017, 0.26403000950813293, 0.42719000577926636, -0.34049999713897705, 0.1041800007224083, 0.062320999801158905, 0.3102000057697296, -0.1408499926328659, -0.6470400094985962, -0.11184000223875046, -0.3789699971675873, 0.19210000336170197, 0.7177799940109253, 0.5410400032997131, -0.06356599926948547, -0.07503599673509598, -0.42344000935554504, 0.030515000224113464, -1.092900037765503, 0.449290007352829, -0.30285999178886414, -0.05439300090074539, 0.30504000186920166, 0.37779998779296875, -0.15199999511241913, -0.6460199952125549, 0.0035019998904317617, -0.3173699975013733, -0.21862000226974487, -0.15986000001430511, 0.7918099761009216, 0.05972500145435333, -0.1509000062942505, 0.46226999163627625, -0.18327000737190247, -0.28367000818252563, 0.18201999366283417, 0.12201999872922897, -0.005777500104159117, 0.5082899928092957, -0.12477999925613403, -0.1820099949836731, -0.12711000442504883, 0.02223999984562397, -0.043411001563072205, -0.2563900053501129, -0.3502100110054016, -0.11584000289440155, 0.1497800052165985, -0.2808699905872345, -0.6232699751853943, 0.041839998215436935, -0.37849000096321106, 0.13702000677585602, 0.4625000059604645, 0.31520000100135803, -0.3492699861526489, -0.5148699879646301, 0.47793999314308167, -0.47211000323295593, 0.06896500289440155, 0.04206300154328346, 0.20796999335289001, -0.46062999963760376, -0.07726799696683884, 0.2194100022315979, 0.10565000027418137, 0.008249400183558464, 0.2724500000476837, -0.37880000472068787, 0.18285000324249268, -0.23850999772548676, -0.23803000152111053, 0.5057399868965149, 0.12291999906301498, 0.3009200096130371, 0.04097500070929527, 0.16286000609397888, 0.0921889990568161, 0.10074000060558319, -0.12800000607967377, -0.28922998905181885, 0.030912000685930252, -0.4964599907398224, 0.1638299971818924, 0.5025299787521362, -0.7382400035858154, -0.13186000287532806, -0.35128000378608704, -0.8575000166893005, 0.780269980430603, -0.18528999388217926, 0.2434300035238266, -0.9970300197601318, 0.04215500131249428, 0.2493000030517578, 0.025662999600172043, -0.2630000114440918, -0.06221200153231621, -0.16773000359535217, 0.6916599869728088, 0.011309999972581863, 0.3172900080680847, -0.6394699811935425, -0.10209999978542328, -0.20327000319957733, 0.47415998578071594, -0.1436299979686737, -0.3637300133705139, 0.24241000413894653, -0.05324700102210045, 0.5356199741363525, 0.2931300103664398, -0.11685000360012054, -0.14448000490665436, -0.026388999074697495, 0.19352999329566956, 0.61080002784729, -0.4250600039958954, -0.5867800116539001, -0.1386300027370453, 0.15971000492572784, -0.11920999735593796, 0.17622999846935272, -0.008022700436413288, -0.3856300115585327, 0.4962399899959564, -0.28029999136924744, 0.046500999480485916, 0.19912000000476837, -0.238429993391037, 0.11766999959945679, -0.010824000462889671, 0.013438999652862549, 0.14736999571323395, 0.39594998955726624, -0.3389599919319153, -1.0918999910354614, -0.24478000402450562, -0.3876799941062927, -0.07248000055551529, -0.5232700109481812, 0.6285399794578552, 0.18720999360084534, 0.7936699986457825, -0.5734900236129761, -0.1639000028371811, -0.1250700056552887, 0.47115999460220337, -0.4240100085735321, 0.22926999628543854, 0.7875199913978577, 0.29151999950408936, 0.4116100072860718, 0.004468199796974659, 0.3899799883365631, -0.27469000220298767, 0.17663000524044037, -0.06794200092554092, -0.3611299991607666, 0.17212000489234924, 0.4335100054740906, -0.21216000616550446, -0.5775600075721741, 0.4483500123023987, -0.11044000089168549, 0.2762199938297272, -0.08030200004577637, 0.022432999685406685, -0.1305599957704544, 0.9050700068473816, 0.7572399973869324, 0.44690999388694763, -0.049949001520872116, 0.03932100161910057, -0.2561799883842468, -0.015061999671161175, 0.24647000432014465, -0.12950000166893005, 0.31459999084472656, -0.7015399932861328, -0.3108200132846832, -0.09731300175189972, -0.08591300249099731, 0.7679200172424316, 0.2945899963378906, 0.5856500267982483, 0.5761200189590454, 0.359279990196228, 0.18246999382972717, 0.49358001351356506, 0.3626999855041504, -1.4315999746322632, -0.46276000142097473, -0.032113999128341675, 0.04262800142168999, -0.13220000267028809, 0.5428299903869629, 0.24456000328063965, -0.1214900016784668, 0.3379800021648407, -0.6558399796485901, -0.2924099862575531, -0.6022499799728394, 0.6264500021934509, 0.16839000582695007, 0.1530199944972992, 0.050641000270843506, 0.6398599743843079, 0.25516000390052795, -0.25940001010894775, 0.5928000211715698, -0.17903999984264374, 0.028286000713706017, 0.492000013589859, -0.15595999360084534, -0.15252000093460083, 0.1951099932193756, -0.05823900178074837, 0.14026999473571777, 0.015316000208258629, 0.43463999032974243, -0.38975998759269714, 0.0024409000761806965, -0.033796001225709915, 0.07804200053215027, -0.7078800201416016, 0.4417400062084198, 0.11490000039339066, -0.014995000325143337, 0.062279000878334045, -0.5150399804115295, 0.3796199858188629, -0.4562000036239624, 0.015585999935865402, 0.03340499848127365, -0.27535998821258545, -0.3035700023174286, 0.3631199896335602, -0.22878000140190125, -0.12161999940872192, 0.133310005068779, -0.015417000278830528, -0.42552000284194946, -0.09953100234270096, -0.7592700123786926, 0.08535800129175186, -0.42236000299453735, 0.12310999631881714, -0.07830899953842163, -0.6050599813461304, 0.22946999967098236, -0.60930997133255, 0.07077299803495407, -0.17032000422477722, 0.14959999918937683, -0.02638299949467182, -0.704990029335022, -0.7353900074958801, -0.11537999659776688, -1.2410999536514282, 0.029536999762058258, -0.7642499804496765, 0.4077099859714508, 0.5358999967575073, -0.12793999910354614, 0.2875800132751465, -0.15876999497413635, -0.45684000849723816, 1.0506000518798828, -0.11748000234365463, 0.5167499780654907, -0.34022000432014465, -0.5885800123214722, 0.23378999531269073, 0.3157399892807007, 0.1094600036740303, 1.0147000551223755, -0.8254799842834473, -0.6924700140953064, 0.21558000147342682, 0.003895200090482831, 0.2953599989414215, 0.10051999986171722], u'Shoes.Oxfords': [0.030156999826431274, -0.33298999071121216, -0.23469999432563782, 0.19726000726222992, -0.48429998755455017, 0.05855000019073486, -0.2472199946641922, -0.45824000239372253, -0.07959599792957306, 0.2895900011062622, 0.037973999977111816, 0.2224999964237213, 1.2035000324249268, -0.26603999733924866, -0.15185999870300293, -0.0683090016245842, 0.6776900291442871, 0.05535599961876869, -0.0018503000028431416, 0.8462499976158142, 0.10327000170946121, 0.1272200047969818, 0.14979000389575958, -0.14603999257087708, -0.12229999899864197, 0.05446799844503403, 0.1212100014090538, -0.2649500072002411, 0.43961000442504883, 0.2032500058412552, -0.5294600129127502, -0.45010000467300415, -0.13978999853134155, -0.08100900053977966, -0.03321399912238121, 0.21671999990940094, -0.48228999972343445, 0.28047001361846924, 0.48796001076698303, 0.7916899919509888, -0.23907999694347382, -0.2712700068950653, -0.1306699961423874, 0.04879499971866608, -0.09155700355768204, 0.04003499820828438, -0.16349999606609344, 0.24132999777793884, -0.07126899808645248, -0.24350999295711517, 0.1160300001502037, -0.1839199960231781, 0.25960999727249146, -0.01231900043785572, -0.09389500319957733, -0.08807200193405151, 0.0067587001249194145, 0.3070400059223175, 0.28602999448776245, 0.6416599750518799, -0.23463000357151031, -0.5416300296783447, -0.22542999684810638, -0.24744999408721924, 0.2065100073814392, 0.19681000709533691, -0.059957001358270645, -0.3060399889945984, -0.49347999691963196, -0.15498000383377075, 0.20291000604629517, 0.40296000242233276, -0.3945100009441376, -0.8799499869346619, 0.8942099809646606, 0.06557700037956238, 0.22290000319480896, -0.037004001438617706, 0.5147799849510193, -0.10849999636411667, 0.00047657001414336264, -0.16419999301433563, -0.5874800086021423, -0.6429100036621094, 0.30562999844551086, -0.697160005569458, 0.6601700186729431, -0.32343000173568726, -0.23657000064849854, -0.11948999762535095, 0.210549995303154, 0.28341999650001526, 0.8059700131416321, 0.017703000456094742, 0.2789100110530853, -0.15031999349594116, -0.0901229977607727, -0.19168999791145325, -0.6622300148010254, 0.4502600133419037, -0.31775999069213867, -0.06451699882745743, -0.4593299925327301, 0.26822999119758606, -0.3161199986934662, -0.2598299980163574, 0.09519000351428986, 0.24845999479293823, -0.13702000677585602, -0.46887001395225525, -0.11755000054836273, -0.7613400220870972, -0.05621200054883957, -0.1555899977684021, -0.24131999909877777, -0.21171000599861145, -0.2147500067949295, 0.13428999483585358, -0.16543999314308167, 0.13086000084877014, 0.31161001324653625, -0.30136001110076904, -0.1912499964237213, -0.22843000292778015, 0.32670000195503235, 0.7496600151062012, 0.16282999515533447, 0.20940999686717987, 0.3192499876022339, 0.4041700065135956, -0.5133900046348572, 0.2443300038576126, -0.05984799936413765, 0.06686899811029434, -0.31134000420570374, -0.513700008392334, 0.21108999848365784, 0.6000300049781799, -0.029896000400185585, -0.4086500108242035, 0.42006999254226685, -0.09796100109815598, 0.016200000420212746, -0.29420000314712524, 0.1048400029540062, 0.3993299901485443, -0.32328000664711, 0.04005200043320656, 0.4319100081920624, 0.3843599855899811, -0.11168999969959259, 0.3861500024795532, -0.683709979057312, -0.7720400094985962, -0.6265599727630615, 0.14076000452041626, 0.4375700056552887, -0.7511000037193298, 0.7407799959182739, 0.10869000107049942, -0.4079200029373169, -0.2855600118637085, 0.10666000097990036, -0.5204600095748901, 0.06696800142526627, -0.387470006942749, -0.22448000311851501, 0.7591699957847595, 0.40393999218940735, 0.14538000524044037, 0.5871300101280212, 0.7989299893379211, 0.21527999639511108, 0.15663999319076538, -0.014262000098824501, -1.201200008392334, -0.4511300027370453, -0.09778899699449539, -0.30094000697135925, -0.757860004901886, 0.2325199991464615, 0.8872799873352051, 0.544700026512146, 0.49952998757362366, 0.5535399913787842, -0.4636799991130829, 0.33333998918533325, 0.829800009727478, 0.16899999976158142, -0.7167099714279175, -0.05568400025367737, -0.17023999989032745, 0.32374998927116394, 0.1453700065612793, 0.4940600097179413, 0.35787999629974365, -0.29690998792648315, 0.4182800054550171, 0.07367599755525589, -0.37244001030921936, -0.6650999784469604, 0.03262300044298172, 0.12957000732421875, -0.31564000248908997, -0.24533000588417053, 0.09141500294208527, -0.3078399896621704, 0.2553200125694275, -0.9821000099182129, -0.2113499939441681, -0.1600400060415268, 0.29721999168395996, -0.4923900067806244, 0.24413999915122986, -0.2474299967288971, -0.2189600020647049, 0.08763399720191956, -0.1826300024986267, 0.2789100110530853, -0.4174799919128418, 0.012641999870538712, 0.3924500048160553, 0.3485400080680847, -0.2944200038909912, -0.3802199959754944, -0.16031000018119812, 0.2551499903202057, 0.8635600209236145, 0.30730000138282776, 0.18921999633312225, -0.4934200048446655, -0.19031000137329102, -0.15415999293327332, 0.1538500040769577, -0.36375001072883606, -0.2779799997806549, -0.136570006608963, 0.735759973526001, 0.32440000772476196, 0.5161399841308594, -0.4045700132846832, -0.25644999742507935, -0.8393300175666809, -0.23438000679016113, 0.612779974937439, -0.06184599921107292, 0.17412999272346497, 0.220210000872612, 0.37654000520706177, -0.4294300079345703, -0.5992699861526489, -0.07301700115203857, 0.1312599927186966, -0.3877499997615814, -0.4371100068092346, -0.17497999966144562, -0.4620699882507324, 0.3488999903202057, -0.3606500029563904, -0.16888999938964844, 0.44670000672340393, -0.2248300015926361, 0.02033100090920925, -0.33702000975608826, -0.3844600021839142, -0.023439999669790268, -0.09938099980354309, -0.3995800018310547, -0.8777499794960022, -0.024435000494122505, -0.5170599818229675, 0.17183999717235565, 0.4979499876499176, -0.44670000672340393, -0.4209800064563751, 0.42245998978614807, 0.6321499943733215, 0.3430500030517578, -0.6964200139045715, -0.18453000485897064, 0.5521900057792664, 0.39678001403808594, 0.3210099935531616, -0.20545999705791473, 0.2514300048351288, 0.3352400064468384, -0.46748000383377075, 0.1407500058412552, -0.29078999161720276, -0.5673199892044067, -0.05127599835395813, 0.41286998987197876, -0.18032999336719513, 0.43867000937461853, -0.9315699934959412, -0.7288399934768677, -0.22992999851703644, 0.18217000365257263, 0.05112700164318085, 0.35826998949050903], u'Boots.Ankle': [-0.1994200050830841, 0.24886000156402588, -0.09966699779033661, -0.12238000333309174, -0.7138299942016602, -0.09532199800014496, -0.4792400002479553, 0.2553499937057495, -0.14488999545574188, -0.4563399851322174, 0.09589800238609314, -0.1969199925661087, 0.303849995136261, 0.4573099911212921, -0.29697999358177185, -0.2668200135231018, 0.45903998613357544, 0.2943199872970581, 0.16292999684810638, 0.04786999896168709, 0.1278800070285797, 0.05766899883747101, 0.7560099959373474, 0.023135000839829445, -0.3289799988269806, -0.4219000041484833, 0.38670000433921814, 0.548740029335022, 0.24150000512599945, 0.7293999791145325, 0.0857359990477562, -0.20893999934196472, -0.15730999410152435, -0.06288199871778488, -0.4809199869632721, 0.28519999980926514, 0.06705400347709656, -0.14219999313354492, 0.3689500093460083, 0.2685999870300293, -0.7888799905776978, -0.6845300197601318, 0.3942500054836273, -0.29719001054763794, 0.34365999698638916, -0.3204900026321411, 0.7562800049781799, -0.35141000151634216, 0.23526999354362488, 0.21747000515460968, -0.6972600221633911, -0.2002200037240982, -0.27880001068115234, 0.3775300085544586, 0.23940999805927277, 0.5446400046348572, 0.021893000230193138, -0.270440012216568, -0.20880000293254852, 0.6423400044441223, 0.3745099902153015, -0.20648999512195587, -0.31790998578071594, -0.08876500278711319, -0.10170000046491623, -0.5272300243377686, -0.19992999732494354, 0.21567000448703766, -0.011261999607086182, -0.19106000661849976, 0.4634700119495392, 0.7560300230979919, -0.4665600061416626, 0.15520000457763672, 0.34828999638557434, -0.3779299855232239, 0.20695999264717102, 0.34029000997543335, -0.1662299931049347, -0.7983800172805786, 0.14247000217437744, 0.562690019607544, 0.06710600107908249, -0.2671999931335449, -0.10961999744176865, -0.1627800017595291, 0.29495999217033386, 0.04880199953913689, -0.5621399879455566, 0.16651000082492828, 0.21768000721931458, 0.4906199872493744, 0.27191999554634094, 0.5788900256156921, -0.090829998254776, 0.01682399958372116, -0.0805869996547699, 0.11691000312566757, -0.29128000140190125, -0.30796000361442566, 0.21101999282836914, 1.0161999464035034, -1.0226999521255493, -0.18996000289916992, -0.7275699973106384, -0.608739972114563, 0.3862900137901306, 0.26763999462127686, 0.022797999903559685, -0.43222999572753906, 0.21040000021457672, -0.10050000250339508, -0.14774000644683838, -0.07554200291633606, 0.09657499939203262, -0.17649999260902405, 0.3967899978160858, 0.3688400089740753, 0.7805899977684021, -0.6608399748802185, 0.057700999081134796, -0.043372999876737595, 0.46926000714302063, -0.27048999071121216, -0.3881100118160248, 0.1560399979352951, -0.07664500176906586, 0.4156300127506256, -0.2861199975013733, -0.0035729999653995037, -0.3450700044631958, -0.17443999648094177, -0.40095001459121704, 0.5260000228881836, -0.5372499823570251, -0.5909299850463867, -0.3572799861431122, 0.2252199947834015, 0.5141199827194214, 0.1184300035238266, 0.24903999269008636, 0.07163900136947632, 0.07007499784231186, -0.20044000446796417, -0.30327001214027405, 0.41359999775886536, -0.1234000027179718, 0.384799987077713, 0.09183000028133392, -0.08418899774551392, -0.0876230001449585, 0.08875799924135208, -0.516979992389679, -0.41833001375198364, 0.24320000410079956, -0.2874799966812134, 0.14609000086784363, -0.925059974193573, 0.4291900098323822, 0.4535199999809265, 0.65625, -0.9336199760437012, -0.06386200338602066, -0.05043400079011917, 0.504800021648407, -0.1348399966955185, 0.6353499889373779, 0.9242200255393982, 0.5330899953842163, -0.1712999939918518, -0.05836600065231323, 0.7191399931907654, -0.16006000339984894, 0.3095700144767761, -0.29899999499320984, -0.2183299958705902, 0.03351400047540665, 0.33006998896598816, 0.08547099679708481, -0.4582799971103668, 0.26085999608039856, 0.2809799909591675, 0.7422500252723694, 0.3224300146102905, 0.2862200140953064, -0.35260000824928284, 0.269320011138916, 0.5582500100135803, -0.003434200072661042, -0.4585599899291992, -0.11032000184059143, -0.26537999510765076, -0.02019600011408329, -0.11441999673843384, -0.45010998845100403, 0.1494700014591217, -0.70319002866745, 0.34189000725746155, 0.22642000019550323, 0.161640003323555, 0.693149983882904, 0.1860000044107437, 0.23970000445842743, 0.5559200048446655, -0.3856399953365326, 0.4814999997615814, 0.4372999966144562, 0.39566001296043396, -0.9940699934959412, -0.265639990568161, -0.039771001785993576, 0.22885000705718994, -0.18501999974250793, 0.2553800046443939, 0.3603000044822693, -0.01708799973130226, 0.44802001118659973, -0.418069988489151, -0.22434000670909882, -0.7767300009727478, 0.23705999553203583, -0.10835999995470047, 0.41495001316070557, 0.32701998949050903, 0.2809000015258789, 0.24052999913692474, -0.529990017414093, 0.07846400141716003, -8.061600237851962e-05, 0.12591999769210815, 0.5208399891853333, 0.25995001196861267, -0.4443199932575226, -0.03623899817466736, 0.3531099855899811, -0.07275599986314774, 0.17317000031471252, -0.28435999155044556, -0.32541000843048096, 0.5348600149154663, 0.4865100085735321, -0.23837999999523163, -0.5590999722480774, 0.12785999476909637, -0.16806000471115112, 0.08810099959373474, -0.02703000046312809, -0.5797399878501892, 0.41040998697280884, -0.470770001411438, -0.08131500333547592, 0.12018000334501266, 0.1666100025177002, -0.7521100044250488, 0.12055999785661697, 0.1280599981546402, -0.35604000091552734, 0.21754999458789825, 0.10559999942779541, -0.40432000160217285, -0.16509999334812164, -0.41530999541282654, 0.27983999252319336, -0.05717800185084343, -0.7026299834251404, 0.33917999267578125, -0.603879988193512, 0.048923999071121216, -0.6085000038146973, 0.18050000071525574, 0.12190999835729599, 0.18254999816417694, -0.34310001134872437, -1.007599949836731, -0.9302200078964233, -0.01800600066781044, -0.7606800198554993, -0.16787999868392944, -0.5964999794960022, 0.05050700157880783, 0.42282000184059143, -0.4657000005245209, 0.005661000031977892, 0.28115999698638916, -0.633080005645752, 0.7017199993133545, -0.0840499997138977, 0.5352799892425537, -0.19808000326156616, -0.829039990901947, 0.38833001255989075, 0.06481000036001205, -0.02618500031530857, 0.5285699963569641, -0.7521700263023376, -0.25874000787734985, -0.02033199928700924, 0.1046999990940094, 0.1051499992609024, 0.12847000360488892], u'Sandals': [0.3744400143623352, -0.29023000597953796, -0.3387500047683716, 0.1049100011587143, -0.10446000099182129, -0.1815900057554245, -0.43459999561309814, 0.0293589998036623, -0.1379300057888031, 0.013415999710559845, -0.0653809979557991, 0.30188998579978943, -0.28898000717163086, 0.22333000600337982, 0.12518000602722168, 0.008930100128054619, 0.15106000006198883, 0.3622699975967407, 0.7321299910545349, -0.1766899973154068, -0.5433200001716614, 0.019936000928282738, 0.2572399973869324, -0.3097899854183197, -0.5849300026893616, 0.09368100017309189, 0.25242000818252563, 0.10347999632358551, 0.06642699986696243, 0.8076599836349487, 0.2501400113105774, 0.1224299967288971, -0.5674099922180176, -0.19867999851703644, -0.012044000439345837, 0.424699991941452, -0.3086700141429901, -0.00032302000909112394, 0.1974100023508072, 0.21411000192165375, -0.05254799872636795, -0.7418400049209595, 0.21522000432014465, -0.03163899853825569, -0.2785100042819977, -0.5709400177001953, 0.45113998651504517, -0.3314499855041504, 0.00788129959255457, 0.8536499738693237, -0.5549700260162354, -0.5199199914932251, 0.21142999827861786, -0.9597200155258179, -0.2242099940776825, 0.12741999328136444, -0.52538001537323, 0.2246199995279312, -0.40105998516082764, 0.47301000356674194, 0.2991499900817871, 0.031125999987125397, -0.46792998909950256, 0.31345999240875244, 0.19474999606609344, -0.1942799985408783, -0.06298799812793732, -0.04715999960899353, 0.001975300023332238, -0.19665999710559845, -0.05045900121331215, 0.3952000141143799, -0.2791000008583069, 0.19298000633716583, 0.7558299899101257, -0.10028000175952911, 0.3607800006866455, -0.5802599787712097, -0.2967199981212616, -0.27496999502182007, -0.16335000097751617, 0.20870999991893768, -0.2870999872684479, 0.5266299843788147, -0.17009000480175018, 0.1524599939584732, 0.045917000621557236, -0.3550499975681305, 0.02011900022625923, 0.10457000136375427, -0.3261300027370453, 0.37217000126838684, 0.5924999713897705, 0.14785000681877136, 0.43059998750686646, 0.13059000670909882, 0.50177001953125, 0.06424999982118607, -0.11957000195980072, 0.3787600100040436, 0.4516200125217438, 0.5607600212097168, -0.7354000210762024, -0.35839998722076416, -0.5722200274467468, -0.1721699982881546, 0.03916100040078163, 0.099932000041008, -0.26759999990463257, -1.4191999435424805, 0.08342000097036362, 0.08045600354671478, 0.041085001081228256, 0.0032979000825434923, 0.2447900027036667, -0.12202999740839005, 0.09700199961662292, -0.05958700180053711, -0.07160600274801254, -0.20654000341892242, -0.11166000366210938, -0.214369997382164, 0.14196999371051788, 0.16033999621868134, -0.36599001288414, 0.37334001064300537, 0.21175000071525574, 0.5794399976730347, -0.043522998690605164, -0.21217000484466553, 0.10662999749183655, 0.11723999679088593, -0.12297999858856201, -0.046532001346349716, -0.47422999143600464, -0.5019500255584717, 0.053909000009298325, 0.08040700107812881, -0.12043000012636185, -0.3104400038719177, -0.048888999968767166, -0.4563499987125397, 0.0793439969420433, 0.11913000047206879, 0.18216000497341156, 0.27928999066352844, -0.1231900006532669, 0.5293999910354614, -0.16042999923229218, -0.17666999995708466, 0.07465899735689163, 0.24584999680519104, -0.3709999918937683, -0.5481500029563904, -0.39427000284194946, -0.45337000489234924, 0.25429001450538635, -0.394679993391037, 0.6636899709701538, 0.16303999722003937, 0.21091000735759735, -0.49994000792503357, 0.0365930013358593, 0.28306999802589417, 0.2533699870109558, 0.017090000212192535, 0.09081699699163437, 1.3932000398635864, 0.1562100052833557, -0.23667000234127045, -0.2570599913597107, 0.6043599843978882, -0.3174299895763397, 0.20931999385356903, -0.31863999366760254, -0.24176999926567078, 0.19929000735282898, 0.8152999877929688, 0.16469000279903412, -0.7673199772834778, 0.05812099948525429, 0.2709900140762329, 0.8121299743652344, 0.30382999777793884, 0.6969500184059143, -0.3723300099372864, 0.4424999952316284, 1.2165000438690186, 0.5107300281524658, -0.027408000081777573, -0.16660000383853912, -0.2840999960899353, 0.34393998980522156, 0.2854599952697754, 0.12032999843358994, 0.5221800208091736, -0.6688699722290039, -0.2895300090312958, -0.1448100060224533, -0.0450889989733696, -0.0522879995405674, -0.11394000053405762, 0.0836929976940155, 0.6001899838447571, 0.3779299855232239, 0.14338000118732452, 0.6781600117683411, 0.09629999846220016, -0.8398100137710571, -0.24970999360084534, -0.4243699908256531, 0.24400000274181366, -0.18230000138282776, 0.355679988861084, 0.21687999367713928, 0.0032015000469982624, -0.08549799770116806, -0.8268200159072876, -0.2662400007247925, -0.6392300128936768, 0.6218500137329102, 0.08235900104045868, 0.7076500058174133, 0.6636000275611877, -0.20796999335289001, -0.3813900053501129, -0.5324699878692627, 0.1224299967288971, -0.07043000310659409, -0.1057400032877922, 0.6034899950027466, 0.22954000532627106, -0.2123199999332428, -0.3706800043582916, 0.26987001299858093, 0.22397999465465546, 0.3589800000190735, -0.028031000867486, -0.31387999653816223, 0.3452700078487396, -0.12519000470638275, 0.2154500037431717, -1.09089994430542, 0.3425599932670593, -0.11740999668836594, 0.19874000549316406, -0.10999000072479248, -0.8276500105857849, -0.2274799942970276, -0.3365100026130676, -0.047821998596191406, 0.6553500294685364, 0.3519800007343292, -0.8649299740791321, -0.5060200095176697, -0.27619001269340515, 0.07758600264787674, 0.6244099736213684, -0.060826998203992844, -0.29556000232696533, -0.2610900104045868, -0.5605000257492065, 0.1312599927186966, -0.2595899999141693, -0.05944399908185005, -0.3264699876308441, -0.19156000018119812, -0.14940999448299408, -0.56454998254776, 0.8209099769592285, -0.706529974937439, -0.11022000014781952, -0.2384600043296814, -0.22954000532627106, -0.9613000154495239, -0.254040002822876, -0.35451000928878784, -0.2821199893951416, -0.8879299759864807, 0.4973599910736084, 0.6823099851608276, -0.32170000672340393, -0.03008599951863289, -0.1151600033044815, -0.72434002161026, 0.17931999266147614, -0.17041000723838806, 0.2169100046157837, -0.35857999324798584, -0.29739001393318176, -0.380840003490448, 0.2598699927330017, 0.02807600051164627, 0.9790199995040894, -0.5327399969100952, -0.940500020980835, 0.10651999711990356, 0.3603000044822693, 0.4354499876499176, 0.11283999681472778], u'Slippers': [-0.32280999422073364, -0.14837999641895294, -0.5921000242233276, -0.5441799759864807, 0.13964000344276428, -0.7008900046348572, -0.4031299948692322, 0.2747800052165985, 0.2757599949836731, 0.2327200025320053, -0.149959996342659, 0.05963899940252304, -0.2361699938774109, 0.1330299973487854, 0.18688000738620758, -0.29721999168395996, 0.03452799841761589, 0.1577800065279007, 0.6172299981117249, 0.14067000150680542, -0.13043999671936035, -0.3365199863910675, -0.35521000623703003, -0.0010584000265225768, -0.44672998785972595, -0.1816300004720688, -0.22505000233650208, 0.09547500312328339, 0.5155100226402283, 0.16996000707149506, -0.05335899814963341, -0.4303100109100342, -0.8122900128364563, 0.11508999764919281, 0.11107999831438065, 0.1254200041294098, 0.0169840008020401, 0.21526999771595, 0.1193699985742569, 0.10147999972105026, 0.09330199658870697, -0.4793199896812439, -0.07451099902391434, -0.11062999814748764, -0.3546999990940094, -0.5939499735832214, 0.16464999318122864, -0.010726000182330608, -0.2894499897956848, 0.5130500197410583, 0.07378599792718887, -0.6152799725532532, -0.24901999533176422, -0.22686000168323517, 0.15807999670505524, -0.15115000307559967, 0.027658000588417053, 0.18828000128269196, -0.5978500247001648, 0.24913999438285828, 0.12008000165224075, 0.022440999746322632, 0.026503000408411026, 0.5831400156021118, 0.20266999304294586, -0.07193499803543091, -0.2937699854373932, -0.48243001103401184, -0.26381999254226685, 0.16344000399112701, 0.36329999566078186, 0.5646799802780151, -0.513949990272522, -0.17538000643253326, 0.4411900043487549, 0.23980000615119934, 0.07510600239038467, -0.016373999416828156, 0.0775739997625351, 0.025793999433517456, -0.35798001289367676, 0.21477000415325165, 0.04727799817919731, -0.3501499891281128, 0.6854199767112732, -0.24137000739574432, 0.16673000156879425, -0.1546899974346161, 0.27913999557495117, 0.2330700010061264, -0.10648000240325928, 0.5756099820137024, 0.2513499855995178, 1.1450999975204468, -0.126910001039505, 0.4980199933052063, 0.11467000097036362, 0.18393999338150024, -0.0320420004427433, 0.5115699768066406, 0.8647500276565552, 0.7844300270080566, -0.6806300282478333, 0.038686998188495636, -0.31018000841140747, -0.14622999727725983, -0.03495199978351593, 0.3649100065231323, -0.2709299921989441, -0.5845500230789185, 0.03401799872517586, 0.48805001378059387, -0.12454000115394592, 0.07971300184726715, -0.06571699678897858, 0.5462499856948853, 0.22713999450206757, 0.24740999937057495, -0.026352999731898308, 0.2616899907588959, 0.11751999706029892, 0.08970600366592407, 0.5293800234794617, -0.328110009431839, -0.07664799690246582, -0.24729999899864197, -0.08209399878978729, 0.43408000469207764, -0.2270199954509735, -0.3749699890613556, -0.12230999767780304, 0.06182499974966049, -0.21645000576972961, 0.3836100101470947, -0.12675000727176666, -0.5863400101661682, -0.5208600163459778, 0.06765499711036682, -0.20303000509738922, -0.3413600027561188, -0.06103299930691719, -0.06147199869155884, -0.2077600061893463, 0.03460700064897537, 0.34946998953819275, -0.41084998846054077, -0.40424999594688416, 0.20789000391960144, -0.0546410009264946, -0.27423998713493347, -0.15490999817848206, 0.1839199960231781, -0.3179500102996826, -0.7419099807739258, -0.38903000950813293, 0.2542000114917755, 0.4779300093650818, -0.765529990196228, 0.16137999296188354, 0.2893199920654297, 0.12472999840974808, 0.03145600110292435, 0.06039699912071228, -0.4933899939060211, 0.6909899711608887, 0.17148999869823456, -0.00754750007763505, 0.4405899941921234, 0.20528000593185425, -0.019562000408768654, -0.5724200010299683, 0.12188000231981277, 0.24793000519275665, 0.08915500342845917, -0.4195399880409241, -0.770829975605011, 0.34404999017715454, 0.5398200154304504, -0.048333000391721725, -0.36212000250816345, 0.15480999648571014, 0.020160000771284103, 0.35857000946998596, 0.18650999665260315, 0.3871400058269501, 0.36309000849723816, 0.9006500244140625, 0.6788600087165833, 0.09737800061702728, -0.020509999245405197, 0.20327000319957733, -0.4149099886417389, -0.16080999374389648, -0.15163999795913696, -0.15571999549865723, 0.09828899800777435, -0.7902100086212158, 0.22484999895095825, -0.5539699792861938, -0.9654300212860107, 0.13210000097751617, 0.514959990978241, 0.4359000027179718, 0.5169500112533569, 0.43039000034332275, -0.23034000396728516, -0.02234799973666668, -0.641290009021759, -0.9835600256919861, -0.3746599853038788, -0.32910001277923584, 0.19600999355316162, -0.544439971446991, 0.5577999949455261, 0.8002700209617615, 0.23297999799251556, 0.29447999596595764, -1.0758999586105347, -0.04731699824333191, -0.428629994392395, 0.36024999618530273, 0.07397899776697159, -0.12156999856233597, 0.6512699723243713, 0.16167999804019928, -0.010753000155091286, 0.010022000409662724, -0.21175000071525574, -0.4439300000667572, -0.8659600019454956, 0.35491999983787537, -0.3667899966239929, -0.08228799700737, -0.13297000527381897, 0.21270999312400818, 0.3520500063896179, 0.08247700333595276, -0.11128000169992447, -0.49823999404907227, -0.2325199991464615, -0.30928999185562134, -0.16494999825954437, -1.1970000267028809, 0.711430013179779, -0.496289998292923, 0.3147599995136261, -0.862030029296875, -0.5464199781417847, -0.13774000108242035, -0.2462099939584732, -0.6022199988365173, 0.06106799840927124, 0.38214999437332153, -0.6811599731445312, 0.2257699966430664, -0.1051499992609024, 0.16872000694274902, 0.1791599988937378, 0.6019999980926514, -0.23013000190258026, -0.510420024394989, -0.41997000575065613, 0.2619200050830841, -0.9297900199890137, -0.11330000311136246, -0.14139999449253082, 0.25885000824928284, -0.2973800003528595, -0.21658000349998474, 0.2942900061607361, 0.0007278900011442602, -0.3495599925518036, -0.3457599878311157, -0.5393499732017517, -1.1028000116348267, -0.49467000365257263, -0.3954299986362457, -0.1746399998664856, -1.1129000186920166, 0.2586100101470947, 0.5900400280952454, 0.36076998710632324, -0.06911800056695938, -0.2676900029182434, -0.13436000049114227, 0.7307999730110168, 0.10301999747753143, 0.9168999791145325, -0.24075999855995178, -0.8256300091743469, -0.13230000436306, 0.16850000619888306, 0.7561100125312805, 0.8303400278091431, -0.21845999360084534, -0.9769499897956848, 0.40623000264167786, 0.17135000228881836, 0.2392600029706955, 0.6333900094032288], u'Shoes.Loafers': [-0.0023169999476522207, -0.6132500171661377, -0.18389999866485596, 0.6307799816131592, -0.6868100166320801, -0.0657230019569397, 0.02100900001823902, -0.7105399966239929, 0.08677499741315842, 0.28621000051498413, -0.21281999349594116, 0.4470199942588806, 0.44885000586509705, 0.24323999881744385, 0.06035599857568741, 0.5474100112915039, 0.6207600235939026, 0.1127299964427948, 0.15578000247478485, 0.5189800262451172, 0.009690900333225727, 0.29596999287605286, -0.0863339975476265, -0.5506700277328491, -0.10296999663114548, 0.16790999472141266, 0.2930000126361847, 0.6450999975204468, 0.30768001079559326, 0.3715200126171112, -0.2994399964809418, 0.025868000462651253, -0.1987600028514862, -0.08304399996995926, 0.0762379989027977, 0.3806000053882599, 0.1327199935913086, -0.20565000176429749, 0.11715000122785568, 0.7367100119590759, 0.2053000032901764, 0.014426000416278839, 0.02876099944114685, -0.21735000610351562, -0.06471999734640121, -0.04679400101304054, 0.563260018825531, -0.20746000111103058, -0.6407999992370605, 0.3574199974536896, -0.2788200080394745, -0.3190099895000458, 0.4289099872112274, 0.22019000351428986, 0.14597000181674957, 0.44235000014305115, 0.048941999673843384, -0.259550005197525, -0.418969988822937, 0.34665998816490173, -0.18605999648571014, -0.3239699900150299, -0.06774099916219711, -0.3116700053215027, 0.6290299892425537, 0.15241999924182892, 0.010684999637305737, -0.341729998588562, 0.16878999769687653, -0.5260400176048279, 0.7187600135803223, 0.0997759997844696, -0.21118000149726868, -0.3522700071334839, 0.5978599786758423, 0.12955999374389648, 0.2603699862957001, 0.12352000176906586, 0.39259999990463257, -0.2650499939918518, 0.05839499831199646, 0.23601999878883362, -0.21285000443458557, -0.22877000272274017, 0.32875001430511475, 0.057930998504161835, 0.22809000313282013, -0.09848500043153763, -0.3882400095462799, 0.6670299768447876, -0.1975799947977066, 0.3590700030326843, 0.06497800350189209, 0.32030999660491943, 0.24451999366283417, -0.022159000858664513, -0.24390000104904175, 0.3195500075817108, -0.3838199973106384, 0.6099900007247925, 0.1397700011730194, -0.14350999891757965, -0.9288399815559387, -0.33952000737190247, -0.10023999959230423, -0.20006999373435974, 0.005575499963015318, -0.12155000120401382, -0.12290000170469284, -0.6060000061988831, -0.17892999947071075, 0.13989000022411346, -0.06841900199651718, -0.1657000035047531, 0.3545700013637543, -0.2642599940299988, 0.6612300276756287, -0.2919299900531769, 0.2509300112724304, -0.14240999519824982, -0.35269999504089355, -0.1137399971485138, 0.3060699999332428, 0.14188000559806824, -0.04400600120425224, 0.36553001403808594, 0.14764000475406647, 0.8839399814605713, 0.3528299927711487, 0.14970000088214874, -0.24282999336719513, -0.8259599804878235, -0.5581200122833252, -0.01551000028848648, -0.28885000944137573, -0.2966800034046173, 0.03292499855160713, 0.38218000531196594, -0.19732999801635742, -0.6714100241661072, 0.8912299871444702, 0.49803999066352844, -0.19800999760627747, -0.02297299914062023, 0.4869999885559082, 0.09281200170516968, -0.5854600071907043, -0.07080599665641785, 0.43786001205444336, 0.5423300266265869, -0.7673100233078003, 0.8610000014305115, -0.5241699814796448, -0.5048900246620178, -0.6126000285148621, -0.06761299818754196, 0.010030999779701233, -0.12445999681949615, -0.050367001444101334, 0.4919300079345703, 0.013793000020086765, -0.9798499941825867, -0.0850130021572113, -0.16008999943733215, 0.20197999477386475, 0.07388299703598022, -0.20396000146865845, 0.7886800169944763, 0.680679976940155, 0.021887000650167465, 0.29172998666763306, 0.8504700064659119, -0.6440899968147278, 0.12133999913930893, -0.1985200047492981, -0.7932900190353394, -0.2502500116825104, 0.26642000675201416, -0.17365999519824982, -0.4683699905872345, 0.4300000071525574, 0.6205599904060364, 0.018559999763965607, 0.11235000193119049, 0.35451000928878784, -0.47387000918388367, 0.8208699822425842, 0.5596100091934204, 0.23844000697135925, -0.39506998658180237, 0.4446299970149994, -0.42816001176834106, 0.19599999487400055, 0.0495310015976429, 0.5677899718284607, 0.14233000576496124, -0.4617699980735779, -0.9429000020027161, 0.07080599665641785, -0.34790998697280884, -0.09812299907207489, -0.282370001077652, 0.4574199914932251, 0.17057999968528748, 0.04095499962568283, -0.070592001080513, 0.5759000182151794, 0.12099000066518784, -0.7917699813842773, -0.3780600130558014, 0.7891700267791748, 0.10634999722242355, -0.7536799907684326, 0.6097599864006042, -0.31512001156806946, 0.6491900086402893, 0.32047998905181885, -0.319489985704422, -0.17858000099658966, -0.6309400200843811, 0.06140099838376045, 0.5350599884986877, 0.4978500008583069, 0.05657900124788284, -0.09100800007581711, -0.15006999671459198, -0.05691999942064285, 0.3152500092983246, -0.2103700041770935, -0.1829099953174591, 0.2732599973678589, 0.17438000440597534, -0.021807000041007996, 0.3134300112724304, 0.08630499988794327, -0.11321999877691269, 0.42083001136779785, 0.15851999819278717, -0.22311000525951385, 0.1793300062417984, 0.4270099997520447, 0.20826999843120575, -0.6078400015830994, 0.3181599974632263, 0.4308899939060211, 0.0795539990067482, 0.20361000299453735, -0.3312700092792511, 0.5224599838256836, -0.7408000230789185, -0.1463100016117096, 0.1228799968957901, 0.4980500042438507, -0.050342999398708344, -0.22472000122070312, -0.005983099807053804, 0.05860299989581108, 0.7727500200271606, 0.33006998896598816, -0.8527100086212158, 0.10614000260829926, -0.3515799939632416, 0.34314000606536865, -0.05614899843931198, -0.11695999652147293, 0.21491000056266785, 0.05978500097990036, -0.29513999819755554, -0.5079299807548523, 0.016788000240921974, 0.023837000131607056, 0.24122999608516693, 0.18877999484539032, -0.5256100296974182, -1.0266000032424927, 0.2897599935531616, 0.45181000232696533, 0.009402399882674217, -0.7113699913024902, -0.13592000305652618, 0.6775000095367432, 0.5088899731636047, 0.2178799957036972, -0.08953599631786346, -0.4771699905395508, 0.20774999260902405, 0.4093799889087677, -0.10367000102996826, -0.33474001288414, -0.8932700157165527, -0.18310999870300293, 0.6604300141334534, -0.2998200058937073, 0.9802299737930298, -0.6742600202560425, -0.4010699987411499, -0.046254999935626984, -0.12870000302791595, 0.3562000095844269, 0.13203999400138855]} diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/config.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/config.py new file mode 100644 index 0000000000000000000000000000000000000000..d3211f4d14fe71cac8397081692f5b8d4a685bc3 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/config.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import logging, os + +logging.basicConfig(format='[%(asctime)s] %(name)s: %(message)s', level=logging.INFO) + + +RANDOM_SEED = None + +SUMMARY_INTERVAL = 'auto' # int(of iter) or 'auto' +IMAGE_SUMMARY_INTERVAL = 'auto' # int(of iter) or 'auto' + + +ROOT_DIR = "." # change this to the project folder + + +WEIGHT_ROOT_DIR = ROOT_DIR+"/SymNet_NPU/weights/" +LOG_ROOT_DIR = ROOT_DIR+"/SymNet_NPU/output_log/" +DATA_ROOT_DIR = ROOT_DIR+"/data" + + +CZSL_DS_ROOT = { + 'MIT': DATA_ROOT_DIR+'/mit-states-original', + 'UT': 'ut-zap50k-original', +} + +GCZSL_DS_ROOT = { + 'MIT': DATA_ROOT_DIR+'/mit-states-natural', + 'UT': DATA_ROOT_DIR+'/ut-zap50k-natural', +} + +GRADIENT_CLIPPING = 5 + + +# if not os.path.exists(WEIGHT_ROOT_DIR): +# os.makedirs(WEIGHT_ROOT_DIR) +# if not os.path.exists(LOG_ROOT_DIR): +# os.makedirs(LOG_ROOT_DIR) \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/CZSL_dataset.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/CZSL_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..904ac1fd0e071f46d0374f44ba5b53f900620839 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/CZSL_dataset.py @@ -0,0 +1,248 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Modified from attributes-as-operators""" +import numpy as np +import torch, torchvision +import os, pickle, json +import tqdm + + +try: + from . import data_utils + from .. import config as cfg +except (ValueError, ImportError): + import data_utils + + +class CompositionDatasetActivations(torch.utils.data.Dataset): + + def __init__(self, train_url, name, root, phase, feat_file, split='compositional-split', with_image=False, obj_pred=None, transform_type='normal'): + # root: /home/ma-user/modelarts/inputs/data_url_0/ut-zap50k-original + self.train_url = train_url + self.root = root + self.phase = phase + self.split = split + self.with_image = with_image + + self.feat_dim = None + self.transform = data_utils.imagenet_transform(phase, transform_type) + self.loader = data_utils.ImageLoader(self.root+'/images/') + + feat_file = os.path.join(self.root, feat_file) + activation_data = torch.load(feat_file) + + self.activation_dict = dict(zip(activation_data['files'], activation_data['features'])) + self.feat_dim = activation_data['features'].size(1) + # pair = (attr, obj) + self.attrs, self.objs, self.pairs, self.train_pairs, self.test_pairs = self.parse_split() + self.attr2idx = {attr: idx for idx, attr in enumerate(self.attrs)} + self.obj2idx = {obj: idx for idx, obj in enumerate(self.objs)} + self.pair2idx = {pair: idx for idx, pair in enumerate(self.pairs)} + + + self.train_data, self.test_data = self.get_split_info() + + self.data = self.train_data if self.phase=='train' else self.test_data # list of [img_name, attr, obj, attr_id, obj_id, feat] + + # return {object: all attrs that occur with obj} + self.obj_affordance_mask = [] + for _obj in self.objs: + candidates = [attr for (_,attr,obj,_,_,_) in self.train_data+self.test_data if obj==_obj] + affordance = set(candidates) + mask = [1 if x in affordance else 0 for x in self.attrs] + self.obj_affordance_mask.append(mask) + + + # negative image pool + samples_grouped_by_obj = [[] for _ in range(len(self.objs))] + for i,x in enumerate(self.train_data): + samples_grouped_by_obj[x[4]].append(i) + + self.neg_pool = [] # [obj_id][attr_id] => list of sample id + for obj_id in range(len(self.objs)): + self.neg_pool.append([]) + for attr_id in range(len(self.attrs)): + self.neg_pool[obj_id].append( + [i for i in samples_grouped_by_obj[obj_id] if + self.train_data[i][3] != attr_id ] + ) + aux_data_root = './utils/aux_data' + print("aux_data_root",aux_data_root) + gamma = json.load(open(aux_data_root + "/%s_gamma.json"%name)) + gamma = {k:np.array(v, dtype=np.float32) for k,v in gamma.items()} + self.comp_gamma = {'a':gamma['comp_a'], 'b':gamma['comp_b']} + self.attr_gamma = {'a':gamma['attr_a'], 'b':gamma['attr_b']} + + + if obj_pred is None: + self.obj_pred = None + else: + obj_pred_path = os.path.join(self.train_url, 'obj_scores', obj_pred) + print("Loading object prediction from %s"%obj_pred_path) + with open(obj_pred_path, 'rb') as fp: + self.obj_pred = np.array(pickle.load(fp), dtype=np.float32) + + + def get_split_info(self): + data = torch.load(self.root+'/metadata.t7') + train_pair_set = set(self.train_pairs) + test_pair_set = set(self.test_pairs) + train_data, test_data = [], [] + + for instance in data: + + image, attr, obj = instance['image'], instance['attr'], instance['obj'] + + if attr=='NA' or (attr, obj) not in self.pairs: + # ignore instances with unlabeled attributes + # ignore instances that are not in current split + continue + + data_i = [image, attr, obj, self.attr2idx[attr], self.obj2idx[obj], self.activation_dict[image]] + if (attr, obj) in train_pair_set: + train_data.append(data_i) + else: + test_data.append(data_i) + + return train_data, test_data + + def parse_split(self): + + def parse_pairs(pair_list): + with open(pair_list,'r') as f: + pairs = f.read().strip().split('\n') + pairs = [t.split() for t in pairs] + pairs = list(map(tuple, pairs)) + attrs, objs = zip(*pairs) + return attrs, objs, pairs + + tr_attrs, tr_objs, tr_pairs = parse_pairs('%s/%s/train_pairs.txt'%(self.root, self.split)) + ts_attrs, ts_objs, ts_pairs = parse_pairs('%s/%s/test_pairs.txt'%(self.root, self.split)) + + all_attrs, all_objs = sorted(list(set(tr_attrs+ts_attrs))), sorted(list(set(tr_objs+ts_objs))) + all_pairs = sorted(list(set(tr_pairs + ts_pairs))) + + return all_attrs, all_objs, all_pairs, tr_pairs, ts_pairs + + + def sample_negative(self, attr_id, obj_id): + return np.random.choice(self.neg_pool[obj_id][attr_id]) + + + def __getitem__(self, index): + def get_sample(i): + image, attr, obj, attr_id, obj_id, feat = self.data[i] + if self.with_image: + img = self.loader(image) + img = self.transform(img) + else: + img = None + + return [img, attr_id, obj_id, self.pair2idx[(attr, obj)], feat] + + pos = get_sample(index) + + mask = np.array(self.obj_affordance_mask[pos[2]], dtype=np.float32) + + + if self.phase=='train': + negid = self.sample_negative(pos[1], pos[2]) # negative example + neg = get_sample(negid) + + data = pos + neg + [mask] + else: + data = pos + [mask] + + # train [img, attr_id, obj_id, pair_id, img_feature, img, attr_id, obj_id, pair_id, img_feature, aff_mask] + # test [img, attr_id, obj_id, pair_id, img_feature, aff_mask] + + if self.obj_pred is not None: + data.append(self.obj_pred[index,:]) + + return data + + def __len__(self): + return len(self.data) + + + + + + + +class CompositionDatasetActivationsGenerator(CompositionDatasetActivations): + + def __init__(self, root, feat_file, split='compositional-split', feat_extractor=None, transform_type='normal'): + super(CompositionDatasetActivationsGenerator, self).__init__(root, 'train', feat_file, split, transform_type=transform_type) + + assert os.path.exists(root) + with torch.no_grad(): + self.generate_features(feat_file, feat_extractor, transform_type) + print('Features generated.') + + + def generate_features(self, out_file, feat_extractor, transform_type): + + data = self.train_data+self.test_data + transform = data_utils.imagenet_transform('test', transform_type) + + if feat_extractor is None: + feat_extractor = torchvision.models.resnet18(pretrained=True) + feat_extractor.fc = torch.nn.Sequential() + feat_extractor.eval().cuda() + + image_feats = [] + image_files = [] + for chunk in tqdm.tqdm(data_utils.chunks(data, 512), total=len(data)//512): + files, attrs, objs = zip(*chunk) + imgs = list(map(self.loader, files)) + imgs = list(map(transform, imgs)) + feats = feat_extractor(torch.stack(imgs, 0).cuda()) + image_feats.append(feats.data.cpu()) + image_files += files + image_feats = torch.cat(image_feats, 0) + print ('features for %d images generated'%(len(image_files))) + + torch.save({'features': image_feats, 'files': image_files}, out_file) + + + + + +if __name__=='__main__': + """example code for generating new features for MIT states and UT Zappos + CompositionDatasetActivationsGenerator( + root = 'data-dir', + feat_file = 'filename-to-save', + feat_extractor = torchvision.models.resnet18(pretrained=True), + ) + """ + CompositionDatasetActivationsGenerator( + root = 'data/attributes-as-operators/data/mit-states', + feat_file = 'data/attributes-as-operators/data/mit-states/features.t7', + ) \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/__init__.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..82c27872446334b07185cbf8795dc194f085d915 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/__init__.py @@ -0,0 +1,57 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .. import config as cfg +from utils.dataset import CZSL_dataset +from torch.utils.data import DataLoader +import numpy as np +import os.path as osp +import os +cwd = os.getcwd() +def get_dataloader(train_url, dataset_name, phase, feature_file="features.t7", batchsize=1, num_workers=1, shuffle=None, **kwargs): + dt_path = osp.join(train_url, cfg.CZSL_DS_ROOT[dataset_name]) + + dataset = CZSL_dataset.CompositionDatasetActivations( + train_url = train_url, + name = dataset_name, + root = dt_path, #data/mit-states-original/features.t7 + phase = phase, + feat_file = feature_file, + **kwargs) + + + if shuffle is None: + shuffle = (phase=='train') + print(shuffle) + + return DataLoader(dataset, batchsize, shuffle, num_workers=num_workers, + collate_fn = lambda data: [np.stack(d, axis=0) for d in zip(*data)] + ) + + + + diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/data_utils.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/data_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..bdd29df853e288b4eedadda71c82907ad20e7115 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/dataset/data_utils.py @@ -0,0 +1,90 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torchvision.transforms as transforms +from PIL import Image + + + +class ImageLoader: + def __init__(self, root): + self.img_dir = root + + def __call__(self, img): + str_types = [str] + try: + str_types.append(unicode) + except NameError: + pass + + if type(img) in str_types: + f = '%s/%s'%(self.img_dir, img) + img = Image.open(f).convert('RGB') + elif type(img) in [list, tuple]: + f = '%s/%s'%(self.img_dir, img[0]) + x,y,w,h = img[1:] # bbox + img = Image.open(f).convert('RGB') + img = img.crop((x, y, x+w, y+h)) + else: + raise NotImplementedError(str(type(img))) + return img + + +def imagenet_transform(phase, transform_type): + mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] + + if transform_type == 'normal': + if phase=='train': + transform = transforms.Compose([ + transforms.RandomResizedCrop(224), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean, std) + ]) + elif phase in ['test', 'val']: + transform = transforms.Compose([ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize(mean, std) + ]) + elif transform_type == 'fixed': + transform = transforms.Compose([ + transforms.Resize(224), + transforms.ToTensor(), + transforms.Normalize(mean, std) + ]) + else: + raise NotImplementedError("transform_type %s"%transform_type) + + return transform + + +def chunks(l, n): + """Yield successive n-sized chunks from l.""" + for i in range(0, len(l), n): + yield l[i:i + n] \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/evaluator.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/evaluator.py new file mode 100644 index 0000000000000000000000000000000000000000..eff09727b55ae5b4bc6f248dd47cc3019af2e01a --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/evaluator.py @@ -0,0 +1,307 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision.models as tmodels +import numpy as np +from . import utils +import itertools +import math +import collections +import logging + + +class CZSL_Evaluator: + """modified from AttrOperator""" + + def __init__(self, dset, model): + + self.dset = dset + + # convert text pairs to idx tensors: [('sliced', 'apple'), ('ripe', 'apple'), ...] --> torch.LongTensor([[0,1],[1,1], ...]) + pairs = [(dset.attr2idx[attr], dset.obj2idx[obj]) + for attr, obj in dset.pairs] + self.pairs = torch.LongTensor(pairs) + + # mask over pairs that occur in closed world + test_pair_set = set(dset.test_pairs) + mask = [1 if pair in test_pair_set else 0 for pair in dset.pairs] + self.closed_mask = torch.ByteTensor(mask) + + # object specific mask over which pairs occur in the object oracle setting + oracle_obj_mask = [] + for _obj in dset.objs: + mask = [1 if _obj==obj else 0 for attr, obj in dset.pairs] + oracle_obj_mask.append(torch.ByteTensor(mask)) + self.oracle_obj_mask = torch.stack(oracle_obj_mask, 0) + + + # generate masks for each setting, mask scores, and get prediction labels + def generate_predictions(self, scores, obj_truth): # (B, #pairs) + + def get_pred_from_scores(_scores): + _, pair_pred = _scores.max(1) + attr_pred, obj_pred = self.pairs[pair_pred][:,0], self.pairs[pair_pred][:,1] + return (attr_pred, obj_pred) # attr/obj word id (not name) + + def get_pred_from_scores_and_mask_best(_scores): + _, pair_pred = _scores.max(1) + attr_pred, obj_pred = self.pairs[pair_pred][:,0], self.pairs[pair_pred][:,1] + _scores[range(pair_pred.shape[0]),pair_pred] = -1e10 + return _scores, (attr_pred, obj_pred) # attr/obj word id (not name) + + results = {} + + # open world setting -- no mask + results.update({'open': get_pred_from_scores(scores)}) + + + # closed world setting - set the score for all NON test-pairs to -1e10 + mask = self.closed_mask.repeat(scores.shape[0], 1) + closed_scores = scores.clone() + if hasattr(mask, 'bool'): + closed_scores[(1-mask).bool()] = -1e10 + else: + closed_scores[(1-mask).byte()] = -1e10 + closed_scores, closed1 = get_pred_from_scores_and_mask_best(closed_scores) + results.update({'closed1': closed1}) + closed_scores, closed2 = get_pred_from_scores_and_mask_best(closed_scores) + results.update({'closed2': closed2}) + closed_scores, closed3 = get_pred_from_scores_and_mask_best(closed_scores) + results.update({'closed3': closed3}) + + + # object_oracle setting - set the score to -1e10 for all pairs where the true object does NOT participate + mask = self.oracle_obj_mask[obj_truth] + oracle_obj_scores = scores.clone() + if hasattr(mask, 'bool'): + oracle_obj_scores[(1-mask).bool()] = -1e10 + else: + oracle_obj_scores[(1-mask).byte()] = -1e10 + + results.update({'object_oracle': get_pred_from_scores(oracle_obj_scores)}) + + return results + + def score_model(self, scores, obj_truth): + + # put everything on CPU + #scores = {k:v.cpu() for k,v in scores.items()} + #obj_truth = obj_truth.cpu() + + # gather scores for all relevant (a,o) pairs + scores = torch.stack([ + scores[(self.dset.attr2idx[attr], self.dset.obj2idx[obj])] + for attr, obj in self.dset.pairs + ], 1) # (B, #pairs) + results = self.generate_predictions(scores, obj_truth) + return results + + def evaluate_predictions(self, predictions, attr_truth, obj_truth, histogram=False, synonym_mode=False): + assert not histogram + + # put everything on cpu + #attr_truth, obj_truth = attr_truth.cpu(), obj_truth.cpu() + + # top 1 pair accuracy + # open world: attribute, object and pair + attr_match = (attr_truth==predictions['open'][0]).float() + obj_match = (obj_truth==predictions['open'][1]).float() + open_match = attr_match*obj_match + + # closed world, obj_oracle: pair + closed_1_match = (attr_truth==predictions['closed1'][0]).float() * (obj_truth==predictions['closed1'][1]).float() + closed_2_match = (attr_truth==predictions['closed2'][0]).float() * (obj_truth==predictions['closed2'][1]).float() + closed_1_match + closed_3_match = (attr_truth==predictions['closed3'][0]).float() * (obj_truth==predictions['closed3'][1]).float() + closed_2_match + + if synonym_mode: + closed_2_match[closed_2_match>1] = 1 + closed_3_match[closed_3_match>1] = 1 + + assert torch.max(closed_1_match).item()<=1, torch.max(closed_1_match).item() + assert torch.max(closed_2_match).item()<=1, torch.max(closed_2_match).item() + assert torch.max(closed_3_match).item()<=1, torch.max(closed_3_match).item() + + + obj_oracle_match = (attr_truth==predictions['object_oracle'][0]).float() * (obj_truth==predictions['object_oracle'][1]).float() + + return attr_match, obj_match, closed_1_match, closed_2_match, closed_3_match, open_match, obj_oracle_match + + + def evaluate_only_attr_obj(self, prob_a, gt_a, prob_o, gt_o): + prob_a, prob_o = torch.from_numpy(prob_a), torch.from_numpy(prob_o) + _, pred_a = prob_a.max(1) + _, pred_o = prob_o.max(1) + + attr_match = (pred_a == gt_a).float() + obj_match = (pred_o == gt_o).float() + + return attr_match, obj_match + + + + + + + +class GCZSL_Evaluator: + """modified from TMN""" + + def __init__(self, dset): + + self.dset = dset + + # convert text pairs to idx tensors: [('sliced', 'apple'), ('ripe', 'apple'), ...] --> torch.LongTensor([[0,1],[1,1], ...]) + pairs = [(dset.attr2idx[attr], dset.obj2idx[obj]) + for attr, obj in dset.pairs] + self.train_pairs = [(dset.attr2idx[attr], dset.obj2idx[obj]) + for attr, obj in dset.train_pairs] + self.pairs = torch.LongTensor(pairs) + + # mask over pairs that occur in closed world + if dset.phase == 'train': + print('Evaluating with train pairs') + test_pair_set = set(dset.train_pairs) + elif dset.phase == 'val': + print('Evaluating with val pairs') + test_pair_set = set(dset.val_pairs + dset.train_pairs) + else: + print('Evaluating with test pairs') + test_pair_set = set(dset.test_pairs + dset.train_pairs) + self.test_pairs = [(dset.attr2idx[attr], dset.obj2idx[obj]) + for attr, obj in list(test_pair_set)] + mask = [1 if pair in test_pair_set else 0 for pair in dset.pairs] + self.closed_mask = torch.ByteTensor(mask) + + seen_pair_set = set(dset.train_pairs) + mask = [1 if pair in seen_pair_set else 0 for pair in dset.pairs] + self.seen_mask = torch.ByteTensor(mask) + + # object specific mask over which pairs occur in the object oracle setting + oracle_obj_mask = [] + for _obj in dset.objs: + mask = [1 if _obj == obj else 0 for attr, obj in dset.pairs] + oracle_obj_mask.append(torch.ByteTensor(mask)) + self.oracle_obj_mask = torch.stack(oracle_obj_mask, 0) + + + # generate masks for each setting, mask scores, and get prediction labels + def generate_predictions(self, scores, obj_truth): # (B, #pairs) + def get_pred_from_scores(_scores): + _, pair_pred = _scores.topk(10, dim=1) #sort(1, descending=True) + pair_pred = pair_pred[:, :10].contiguous().view(-1) + attr_pred, obj_pred = self.pairs[pair_pred][:, 0].view( + -1, 10), self.pairs[pair_pred][:, 1].view(-1, 10) + return (attr_pred, obj_pred) + + results = {} + + # open world setting -- no mask + mask = self.closed_mask.repeat(scores.shape[0], 1) + mask = 1 - mask + if hasattr(mask, "bool"): + mask = mask.bool() + closed_scores = scores.clone() + closed_scores[mask] = -1e10 + results.update({'open': get_pred_from_scores(closed_scores)}) + + # closed world setting - set the score for all NON test-pairs to -1e10 + #results.update({'closed': get_pred_from_scores(closed_scores)}) + results.update({'closed': results['open']}) + + # object_oracle setting - set the score to -1e10 for all pairs where the true object does NOT participate + mask = self.oracle_obj_mask[obj_truth] + oracle_obj_scores = scores.clone() + + mask = 1 - mask + if hasattr(mask, "bool"): + mask = mask.bool() + oracle_obj_scores[mask] = -1e10 + + results.update({ + 'object_oracle': get_pred_from_scores(oracle_obj_scores) + }) + + return results + + + def score_model(self, scores, obj_truth, bias=0.0): + # put everything on CPU + scores = {k: v.cpu() for k, v in scores.items()} + obj_truth = obj_truth.cpu() + # gather scores for all relevant (a,o) pairs + scores = torch.stack( + [scores[(self.dset.attr2idx[attr], self.dset.obj2idx[obj])] for attr, obj in self.dset.pairs], + 1) # (B, #pairs) + orig_scores = scores.clone() + mask = self.seen_mask.repeat(scores.shape[0], 1) + mask = 1 - mask + if hasattr(mask, "bool"): + mask = mask.bool() + scores[mask] += bias + results = self.generate_predictions(scores, obj_truth) + results['biased_scores'] = scores + results['scores'] = orig_scores + return results + + def evaluate_predictions(self, predictions, attr_truth, obj_truth, topk=1): + + # put everything on cpu + attr_truth, obj_truth = attr_truth.cpu(), obj_truth.cpu() + pairs = list( + zip(list(attr_truth.cpu().numpy()), list(obj_truth.cpu().numpy()))) + seen_ind = torch.LongTensor([ + i for i in range(len(attr_truth)) if pairs[i] in self.train_pairs + ]) + unseen_ind = torch.LongTensor([ + i for i in range(len(attr_truth)) + if pairs[i] not in self.train_pairs + ]) + + # top 1 pair accuracy + # open world: attribute, object and pair + attr_match = (attr_truth.unsqueeze(1).repeat( + 1, topk) == predictions['open'][0][:, :topk]) + obj_match = (obj_truth.unsqueeze(1).repeat( + 1, topk) == predictions['open'][1][:, :topk]) + open_match = (attr_match * obj_match).any(1).float() + attr_match = attr_match.any(1).float() + obj_match = obj_match.any(1).float() + open_seen_match = open_match[seen_ind] + open_unseen_match = open_match[unseen_ind] + + # closed world, obj_oracle: pair + closed_match = (attr_truth == predictions['closed'][0][:, 0]).float( + ) * (obj_truth == predictions['closed'][1][:, 0]).float() + + obj_oracle_match = ( + attr_truth == predictions['object_oracle'][0][:, 0]).float() * ( + obj_truth == predictions['object_oracle'][1][:, 0]).float() + + return attr_match, obj_match, closed_match, open_match, obj_oracle_match, open_seen_match, open_unseen_match \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/utils.py b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..ea680f47be437c91e9514127ffe4bbf1527e3e09 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/SYMNET_ID1292_for_ACL/utils/utils.py @@ -0,0 +1,193 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +import os.path as osp +import numpy as np + +from . import config as cfg +from . import aux_data +from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig + +################################################################################ +# tools for solvers # +################################################################################ + +def create_session(): + """create tensorflow session""" + ####################### add ######################## + configs = tf.ConfigProto() + custom_op = configs.graph_options.rewrite_options.custom_optimizers.add() + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["use_off_line"].b = True + + custom_op.parameter_map["dynamic_input"].b = True + custom_op.parameter_map["dynamic_graph_execute_mode"].s = tf.compat.as_bytes("lazy_recompile") + + # mix add white + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") + # custom_op.parameter_map["modify_mixlist"].s = tf.compat.as_bytes("/home/test/ops_info.json") + + custom_op.parameter_map["profiling_mode"].b = True + custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + '{"output":"/cache/profiling","task_trace":"on", "aicpu":"on"}') + # custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA") + + # close + configs.graph_options.rewrite_options.remapping = RewriterConfig.OFF + # close + configs.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF + ####################### add ######################## + return tf.Session(config=configs) + + + +def display_args(args, logger, verbose=False): + """print some essential arguments""" + if verbose: + ignore = [] + for k,v in args.__dict__.items(): + if not callable(v) and not k.startswith('__') and k not in ignore: + logger.info("{:30s}{}".format(k,v)) + else: + logger.info('Name: %s'%args.name) + logger.info('Network: %s'%args.network) + logger.info('Data: %s'%args.data) + logger.info('FC layers: At {fc_att}, Cm {fc_compress}, Cls {fc_cls}'.format( + **args.__dict__)) + + + +def duplication_check(args): + if args.force: + return + elif args.trained_weight is None or args.trained_weight.split('/')[0] != args.name: + assert not osp.exists(osp.join(cfg.WEIGHT_ROOT_DIR, args.name)), \ + "weight dir with same name exists (%s)"%(args.name) + assert not osp.exists(osp.join(cfg.LOG_ROOT_DIR, args.name)), \ + "log dir with same name exists (%s)"%(args.name) + + +def formated_czsl_result(report): + fstr = '[{name}/{epoch}] rA:{real_attr_acc:.4f}|rO:{real_obj_acc:.4f}|Cl/T1:{top1_acc:.4f}|T2:{top2_acc:.4f}|T3:{top3_acc:.4f}' + + return fstr.format(**report) + + +################################################################################ +# glove embedder # +################################################################################ + +class Embedder: + """word embedder (for various vector type) + __init__(self) + """ + + def __init__(self, vec_type, vocab, data): + self.vec_type = vec_type + + if vec_type != 'onehot': + self.embeds = self.load_word_embeddings(vec_type, vocab, data) + self.emb_dim = self.embeds.shape[1] + else: + self.emb_dim = len(vocab) + + def get_embedding(self, i): + """actually implements __getitem__() function""" + if self.vec_type == 'onehot': + return tf.one_hot(i, depth=self.emb_dim, axis=1) + else: + i_onehot = tf.one_hot(i, depth=self.embeds.shape[0], axis=1) + return tf.matmul(i_onehot, self.embeds) + + + def load_word_embeddings(self, vec_type, vocab, data): + tmp = aux_data.load_wordvec_dict(data, vec_type) + if type(tmp) == tuple: + attr_dict, obj_dict = tmp + attr_dict.update(obj_dict) + embeds = attr_dict + else: + embeds = tmp + + embeds_list = [] + for k in vocab: + if k in embeds: + embeds_list.append(embeds[k]) + else: + raise NotImplementedError('some vocabs are not in dictionary: %s'%k) + + embeds = np.array(embeds_list, dtype=np.float32) + + print ('Embeddings shape = %s'%str(embeds.shape)) + return embeds + + + + + +################################################################################ +# network utils # +################################################################################ + + +def repeat_tensor(tensor, axis, multiple): + """e.g. (1,2,3)x3 = (1,1,1,2,2,2,3,3,3)""" + + result_shape = tensor.shape.as_list() + for i,v in enumerate(result_shape): + if v is None: + result_shape[i] = tf.shape(tensor)[i] + result_shape[axis] *= multiple + + tensor = tf.expand_dims(tensor, axis+1) + mul = [1]*len(tensor.shape) + mul[axis+1] = multiple + tensor = tf.tile(tensor, mul) + tensor = tf.reshape(tensor, result_shape) + + return tensor + + +def tile_tensor(tensor, axis, multiple): + """e.g. (1,2,3)x3 = (1,2,3,1,2,3,1,2,3)""" + mul = [1]*len(tensor.shape) + mul[axis] = multiple + + return tf.tile(tensor, mul) + + +def activation_func(name): + if name == "none": + return (lambda x:x) + elif name == "sigmoid": + return tf.sigmoid + elif name == "relu": + return tf.nn.relu + else: + raise NotImplementedError("activation function %s not implemented"%name) + diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/.keep b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/.keep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/README.md b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e00e198bb23fda3eea7b1dd48f8f8d5001a69368 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/README.md @@ -0,0 +1,97 @@ +## 模型功能 + +行人重识别(REID) + +## 原始模型 + +参考: + +https://github.com/ultralytics/yolov5 + +原实现模型: + +https://gitee.com/dw8023/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow + +pb文件下载地址 : + +链接:https://pan.baidu.com/s/1lgZmbp8SlZGSkLluzyM5mg +提取码:ofwm + +## om模型 + +om模型下载地址: + +链接:https://pan.baidu.com/s/1SXq5KX8qZEEQi_JTDji-XQ +提取码:214y + +使用ATC模型转换工具进行模型转换时可以参考如下指令: + +``` +atc --model=/root/yolov5/model/yolov5.pb --framework=3 --output=/root/yolov5/yolov5 --soc_version=Ascend310 --input_shape="input:1,640,640,3" +``` + +## 数据集准备 + +VOC原始验证集中的图像数据转换为bin文件参见img2bin.py文件: + + +bin格式数据集地址:(bin.zip) + +obs://yolov5-id0378/dataset/ + + + +## 使用msame工具推理 + +参考 https://gitee.com/ascend/tools/tree/master/msame, 获取msame推理工具及使用方法。 + +获取到msame可执行文件之后,进行性能测试。 + + + +## 性能测试 + +使用msame推理工具,参考如下命令,发起推理性能测试: + +``` +msame --model /root/yolov5/yolov5.om --input /root/yolov5/bin --output /root/yolov5/output/ --outfmt TXT +``` + +``` +... +[INFO] get max dynamic batch size success +[INFO] output data success +[INFO] destroy model input success +Inference average time : 89.70 ms +Inference average time without first time: 89.70 ms +[INFO] unload model success, model Id is 1 +[INFO] Execute sample success +[INFO] end to destroy stream +[INFO] end to destroy context +[INFO] end to reset device is 0 +[INFO] end to finalize acl +... +``` + +平均推理性能为 89.70ms + +## 精度测试 + +执行精度对比文件: + +``` +python3 compare.py +``` + +最终精度:(暂未达标) + +``` +Ascend310推理结果: + gpu结果: + npu结果: +``` + + + + + diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/eval.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/eval.py new file mode 100644 index 0000000000000000000000000000000000000000..4d660469168e09375f279c330a208689d2d61ba9 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/eval.py @@ -0,0 +1,333 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tensorflow as tf +import numpy as np +from tensorflow.keras import backend as K +from tqdm import tqdm +from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input, + resize_image) +import xml.etree.ElementTree as ET +from utils.utils_bbox import DecodeBox +from utils.utils_map import get_map +from PIL import Image + +MINOVERLAP = 0.5 +classes_path = 'model_data/voc_classes.txt' +output_path = 'out/2022410_0_32_31_672278' +VOCdevkit_path = 'VOCdevkit' +map_out_path = 'map_out_om' +anchors_path = 'model_data/yolo_anchors.txt' +anchors, num_anchors = get_anchors(anchors_path) +class_names, num_classes = get_classes(classes_path) + + +def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image): + #-----------------------------------------------------------------# + # 把y轴放前面是因为方便预测框和图像的宽高进行相乘 + #-----------------------------------------------------------------# + box_yx = box_xy[..., ::-1] + box_hw = box_wh[..., ::-1] + input_shape = K.cast(input_shape, K.dtype(box_yx)) + image_shape = K.cast(image_shape, K.dtype(box_yx)) + + if letterbox_image: + #-----------------------------------------------------------------# + # 这里求出来的offset是图像有效区域相对于图像左上角的偏移情况 + # new_shape指的是宽高缩放情况 + #-----------------------------------------------------------------# + new_shape = K.round(image_shape * K.min(input_shape/image_shape)) + offset = (input_shape - new_shape)/2./input_shape + scale = input_shape/new_shape + + box_yx = (box_yx - offset) * scale + box_hw *= scale + + box_mins = box_yx - (box_hw / 2.) + box_maxes = box_yx + (box_hw / 2.) + boxes = K.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]]) + boxes *= K.concatenate([image_shape, image_shape]) + return boxes + + +def get_anchors_and_decode(feats, anchors, num_classes, input_shape, calc_loss=False): + num_anchors = len(anchors) + # ------------------------------------------# + # grid_shape指的是特征层的高和宽 + # ------------------------------------------# + grid_shape = K.shape(feats)[1:3] + # --------------------------------------------------------------------# + # 获得各个特征点的坐标信息。生成的shape为(20, 20, num_anchors, 2) + # --------------------------------------------------------------------# + grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, num_anchors, 1]) + grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], num_anchors, 1]) + grid = K.cast(K.concatenate([grid_x, grid_y]), K.dtype(feats)) + # ---------------------------------------------------------------# + # 将先验框进行拓展,生成的shape为(20, 20, num_anchors, 2) + # ---------------------------------------------------------------# + anchors_tensor = K.reshape(K.constant(anchors), [1, 1, num_anchors, 2]) + anchors_tensor = K.tile(anchors_tensor, [grid_shape[0], grid_shape[1], 1, 1]) + + # ---------------------------------------------------# + # 将预测结果调整成(batch_size, 20, 20, 3, 85) + # 85可拆分成4 + 1 + 80 + # 4代表的是中心宽高的调整参数 + # 1代表的是框的置信度 + # 80代表的是种类的置信度 + # ---------------------------------------------------# + feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) + # ------------------------------------------# + # 对先验框进行解码,并进行归一化 + # ------------------------------------------# + box_xy = (K.sigmoid(feats[..., :2]) * 2 - 0.5 + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) + box_wh = (K.sigmoid(feats[..., 2:4]) * 2) ** 2 * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) + # ------------------------------------------# + # 获得预测框的置信度 + # ------------------------------------------# + box_confidence = K.sigmoid(feats[..., 4:5]) + box_class_probs = K.sigmoid(feats[..., 5:]) + + # ---------------------------------------------------------------------# + # 在计算loss的时候返回grid, feats, box_xy, box_wh + # 在预测的时候返回box_xy, box_wh, box_confidence, box_class_probs + # ---------------------------------------------------------------------# + if calc_loss == True: + return grid, feats, box_xy, box_wh + return box_xy, box_wh, box_confidence, box_class_probs + + +def Decodebox(outputs, + anchors, + num_classes, + image_shape, + input_shape, + #-----------------------------------------------------------# + # 13x13的特征层对应的anchor是[116,90],[156,198],[373,326] + # 26x26的特征层对应的anchor是[30,61],[62,45],[59,119] + # 52x52的特征层对应的anchor是[10,13],[16,30],[33,23] + #-----------------------------------------------------------# + anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]], + max_boxes = 100, + confidence = 0.5, + nms_iou = 0.3, + letterbox_image = True): + + box_xy = [] + box_wh = [] + box_confidence = [] + box_class_probs = [] + for i in range(len(outputs)): + sub_box_xy, sub_box_wh, sub_box_confidence, sub_box_class_probs = \ + get_anchors_and_decode(outputs[i], anchors[anchor_mask[i]], num_classes, input_shape) + box_xy.append(K.reshape(sub_box_xy, [-1, 2])) + box_wh.append(K.reshape(sub_box_wh, [-1, 2])) + box_confidence.append(K.reshape(sub_box_confidence, [-1, 1])) + box_class_probs.append(K.reshape(sub_box_class_probs, [-1, num_classes])) + box_xy = K.concatenate(box_xy, axis = 0) + box_wh = K.concatenate(box_wh, axis = 0) + box_confidence = K.concatenate(box_confidence, axis = 0) + box_class_probs = K.concatenate(box_class_probs, axis = 0) + + #------------------------------------------------------------------------------------------------------------# + # 在图像传入网络预测前会进行letterbox_image给图像周围添加灰条,因此生成的box_xy, box_wh是相对于有灰条的图像的 + # 我们需要对其进行修改,去除灰条的部分。 将box_xy、和box_wh调节成y_min,y_max,xmin,xmax + # 如果没有使用letterbox_image也需要将归一化后的box_xy, box_wh调整成相对于原图大小的 + #------------------------------------------------------------------------------------------------------------# + boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image) + box_scores = box_confidence * box_class_probs + + #-----------------------------------------------------------# + # 判断得分是否大于score_threshold + #-----------------------------------------------------------# + mask = box_scores >= confidence + max_boxes_tensor = K.constant(max_boxes, dtype='int32') + boxes_out = [] + scores_out = [] + classes_out = [] + + for c in range(num_classes): + #-----------------------------------------------------------# + # 取出所有box_scores >= score_threshold的框,和成绩 + #-----------------------------------------------------------# + class_boxes = tf.boolean_mask(boxes, mask[:, c]) + class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c]) + + #-----------------------------------------------------------# + # 非极大抑制 + # 保留一定区域内得分最大的框 + #-----------------------------------------------------------# + nms_index = tf.image.non_max_suppression(class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=nms_iou) + + #-----------------------------------------------------------# + # 获取非极大抑制后的结果 + # 下列三个分别是:框的位置,得分与种类 + #-----------------------------------------------------------# + class_boxes = K.gather(class_boxes, nms_index) + class_box_scores = K.gather(class_box_scores, nms_index) + classes = K.ones_like(class_box_scores, 'int32') * c + + boxes_out.append(class_boxes) + scores_out.append(class_box_scores) + classes_out.append(classes) + boxes_out = K.concatenate(boxes_out, axis=0) + scores_out = K.concatenate(scores_out, axis=0) + classes_out = K.concatenate(classes_out, axis=0) + + return boxes_out, scores_out, classes_out + + +# def generate(model_path, anchors_mask, num_classes, phi, output): +# model_path = os.path.expanduser(model_path) +# assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' +# # +# # yolo_model = yolo_body([None, None, 3], anchors_mask, num_classes, phi) +# # yolo_model.load_weights(model_path) +# # print('{} model, anchors, and classes loaded.'.format(model_path)) +# # +# # # anchors, num_anchors = get_anchors(anchors_path) +# # # class_names, num_classes = get_classes(classes_path) +# # # ---------------------------------------------------------# +# # # 在yolo_eval函数中,我们会对预测结果进行后处理 +# # # 后处理的内容包括,解码、非极大抑制、门限筛选等 +# # # ---------------------------------------------------------# +# boxes, scores, classes = Decodebox( +# outputs=output, +# anchors=anchors, +# num_classes=num_classes, +# image_shape=K.placeholder(shape=(2, )), +# input_shape=[640, 640], +# anchor_mask=anchors_mask, +# max_boxes=100, +# confidence=0.5, +# nms_iou=0.3, +# letterbox_image=True +# ) +# return boxes, scores, classes + +def main(): + if not os.path.exists(map_out_path): + os.makedirs(map_out_path) + if not os.path.exists(os.path.join(map_out_path, 'ground-truth')): + os.makedirs(os.path.join(map_out_path, 'ground-truth')) + if not os.path.exists(os.path.join(map_out_path, 'detection-results')): + os.makedirs(os.path.join(map_out_path, 'detection-results')) + if not os.path.exists(os.path.join(map_out_path, 'images-optional')): + os.makedirs(os.path.join(map_out_path, 'images-optional')) + + + + image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split() + for image_id in tqdm(image_ids): + image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/" + image_id + ".jpg") + image = Image.open(image_path) + image = cvtColor(image) + f = open(os.path.join(map_out_path, "detection-results/" + image_id + ".txt"), "w", encoding='utf-8') + feats = [] + feats_path0 = os.path.join(output_path, "image_" + image_id + "_output_0.txt") + feats_path1 = os.path.join(output_path, "image_" + image_id + "_output_1.txt") + feats_path2 = os.path.join(output_path, "image_" + image_id + "_output_2.txt") + feats0 = np.loadtxt(feats_path0) + feats0 = np.reshape(feats0, newshape=(1, 80, 80, 75)) + feats0 = feats0.astype("float32") + feats0 = tf.convert_to_tensor(feats0) + feats.append(feats0) + + feats1 = np.loadtxt(feats_path1) + feats1 = np.reshape(feats1, newshape=(1, 40, 40, 75)) + feats1 = feats1.astype("float32") + feats1 = tf.convert_to_tensor(feats1) + feats.append(feats1) + + feats2 = np.loadtxt(feats_path2) + feats2 = np.reshape(feats2, newshape=(1, 20, 20, 75)) + feats2 = feats2.astype("float32") + feats2 = tf.convert_to_tensor(feats2) + feats.append(feats2) + + out_boxes, out_scores, out_classes = Decodebox(outputs=feats, + anchors=anchors, + num_classes=num_classes, + image_shape=[image.size[1], image.size[0]], + input_shape=[640, 640], + # anchor_mask=anchors_mask, + # max_boxes=100, + # confidence=0.5, + # nms_iou=0.3, + # letterbox_image=True + ) + out_boxes = K.eval(out_boxes) + out_scores = K.eval(out_scores) + out_classes = K.eval(out_classes) + + # with tf.Session() as sess: + # out_boxes = out_boxes.eval(session=sess, feed_dict={out_boxes: zero_array1}) + # out_scores = out_scores.eval(session=sess, feed_dict={out_scores: zero_array2}) + # out_classes = out_classes.eval(session=sess, feed_dict={out_classes: zero_array3}) + + for i, c in enumerate(out_classes): + predicted_class = class_names[int(c)] + score = str(out_scores[i]) + top, left, bottom, right = out_boxes[i] + if predicted_class not in class_names: + continue + f.write("%s %s %s %s %s %s\n" % ( + predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)), str(int(bottom)))) + f.close() + print("Get ground truth result.") + + for image_id in tqdm(image_ids): + with open(os.path.join(map_out_path, "ground-truth/" + image_id + ".txt"), "w") as new_f: + root = ET.parse(os.path.join(VOCdevkit_path, "VOC2007/Annotations/" + image_id + ".xml")).getroot() + for obj in root.findall('object'): + difficult_flag = False + if obj.find('difficult') != None: + difficult = obj.find('difficult').text + if int(difficult) == 1: + difficult_flag = True + obj_name = obj.find('name').text + if obj_name not in class_names: + continue + bndbox = obj.find('bndbox') + left = bndbox.find('xmin').text + top = bndbox.find('ymin').text + right = bndbox.find('xmax').text + bottom = bndbox.find('ymax').text + + if difficult_flag: + new_f.write("%s %s %s %s %s difficult\n" % (obj_name, left, top, right, bottom)) + else: + new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom)) + print("Get ground truth result done.") + + print("Get map.") + get_map(MINOVERLAP, True, path=map_out_path) + print("Get map done.") + +if __name__=="__main__": + main() \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/img2bin.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/img2bin.py new file mode 100644 index 0000000000000000000000000000000000000000..df12663c2f4ae8909b189b98ee61a33a7ac1cd49 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/img2bin.py @@ -0,0 +1,44 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +import os +from tqdm import tqdm +from PIL import Image +from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input, resize_image) +from utils.utils_bbox import DecodeBox + +VOCdevkit_path = 'VOCdevkit' +image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split() + +# for image_id in tqdm(image_ids): +image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+"000001"+".jpg") +image = Image.open(image_path) +image = cvtColor(image) +image_data = resize_image(image, (640, 640), True) +image_data = np.expand_dims(preprocess_input(np.array(image_data, dtype='float32')), 0) +image_data.tofile('bin/image.bin') \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/.keep b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/.keep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/__init__.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9ef5ce451c77930159fb61d7447db731e4bbcc47 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/__init__.py @@ -0,0 +1,28 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# \ No newline at end of file diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..690d8505fa63395ac4db9ff3f4f36e025d709da8 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils.py @@ -0,0 +1,91 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from functools import reduce + +import numpy as np +from PIL import Image + + +def compose(*funcs): + if funcs: + return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) + else: + raise ValueError('Composition of empty sequence not supported.') + +#---------------------------------------------------------# +# 将图像转换成RGB图像,防止灰度图在预测时报错。 +# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB +#---------------------------------------------------------# +def cvtColor(image): + if len(np.shape(image)) == 3 and np.shape(image)[2] == 3: + return image + else: + image = image.convert('RGB') + return image + +#---------------------------------------------------# +# 对输入图像进行resize +#---------------------------------------------------# +def resize_image(image, size, letterbox_image): + iw, ih = image.size + w, h = size + if letterbox_image: + scale = min(w/iw, h/ih) + nw = int(iw*scale) + nh = int(ih*scale) + + image = image.resize((nw,nh), Image.BICUBIC) + new_image = Image.new('RGB', size, (128,128,128)) + new_image.paste(image, ((w-nw)//2, (h-nh)//2)) + else: + new_image = image.resize((w, h), Image.BICUBIC) + return new_image + +#---------------------------------------------------# +# 获得类 +#---------------------------------------------------# +def get_classes(classes_path): + with open(classes_path, encoding='utf-8') as f: + class_names = f.readlines() + class_names = [c.strip() for c in class_names] + return class_names, len(class_names) + +#---------------------------------------------------# +# 获得先验框 +#---------------------------------------------------# +def get_anchors(anchors_path): + '''loads the anchors from a file''' + with open(anchors_path, encoding='utf-8') as f: + anchors = f.readline() + anchors = [float(x) for x in anchors.split(',')] + anchors = np.array(anchors).reshape(-1, 2) + return anchors, len(anchors) + +def preprocess_input(image): + image /= 255.0 + return image diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_bbox.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_bbox.py new file mode 100644 index 0000000000000000000000000000000000000000..16cfadcb1db8a42e16290bb6ab134a10a22bbe51 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_bbox.py @@ -0,0 +1,298 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from tensorflow.keras import backend as K + + +#---------------------------------------------------# +# 对box进行调整,使其符合真实图片的样子 +#---------------------------------------------------# +def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image): + #-----------------------------------------------------------------# + # 把y轴放前面是因为方便预测框和图像的宽高进行相乘 + #-----------------------------------------------------------------# + box_yx = box_xy[..., ::-1] + box_hw = box_wh[..., ::-1] + input_shape = K.cast(input_shape, K.dtype(box_yx)) + image_shape = K.cast(image_shape, K.dtype(box_yx)) + + if letterbox_image: + #-----------------------------------------------------------------# + # 这里求出来的offset是图像有效区域相对于图像左上角的偏移情况 + # new_shape指的是宽高缩放情况 + #-----------------------------------------------------------------# + new_shape = K.round(image_shape * K.min(input_shape/image_shape)) + offset = (input_shape - new_shape)/2./input_shape + scale = input_shape/new_shape + + box_yx = (box_yx - offset) * scale + box_hw *= scale + + box_mins = box_yx - (box_hw / 2.) + box_maxes = box_yx + (box_hw / 2.) + boxes = K.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]]) + boxes *= K.concatenate([image_shape, image_shape]) + return boxes + +#---------------------------------------------------# +# 将预测值的每个特征层调成真实值 +#---------------------------------------------------# +def get_anchors_and_decode(feats, anchors, num_classes, input_shape, calc_loss=False): + num_anchors = len(anchors) + #------------------------------------------# + # grid_shape指的是特征层的高和宽 + #------------------------------------------# + grid_shape = K.shape(feats)[1:3] + #--------------------------------------------------------------------# + # 获得各个特征点的坐标信息。生成的shape为(20, 20, num_anchors, 2) + #--------------------------------------------------------------------# + grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, num_anchors, 1]) + grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], num_anchors, 1]) + grid = K.cast(K.concatenate([grid_x, grid_y]), K.dtype(feats)) + #---------------------------------------------------------------# + # 将先验框进行拓展,生成的shape为(20, 20, num_anchors, 2) + #---------------------------------------------------------------# + anchors_tensor = K.reshape(K.constant(anchors), [1, 1, num_anchors, 2]) + anchors_tensor = K.tile(anchors_tensor, [grid_shape[0], grid_shape[1], 1, 1]) + + #---------------------------------------------------# + # 将预测结果调整成(batch_size, 20, 20, 3, 85) + # 85可拆分成4 + 1 + 80 + # 4代表的是中心宽高的调整参数 + # 1代表的是框的置信度 + # 80代表的是种类的置信度 + #---------------------------------------------------# + feats = K.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) + #------------------------------------------# + # 对先验框进行解码,并进行归一化 + #------------------------------------------# + box_xy = (K.sigmoid(feats[..., :2]) * 2 - 0.5 + grid) / K.cast(grid_shape[::-1], K.dtype(feats)) + box_wh = (K.sigmoid(feats[..., 2:4]) * 2) ** 2 * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats)) + #------------------------------------------# + # 获得预测框的置信度 + #------------------------------------------# + box_confidence = K.sigmoid(feats[..., 4:5]) + box_class_probs = K.sigmoid(feats[..., 5:]) + + #---------------------------------------------------------------------# + # 在计算loss的时候返回grid, feats, box_xy, box_wh + # 在预测的时候返回box_xy, box_wh, box_confidence, box_class_probs + #---------------------------------------------------------------------# + if calc_loss == True: + return grid, feats, box_xy, box_wh + return box_xy, box_wh, box_confidence, box_class_probs + +#---------------------------------------------------# +# 图片预测 +#---------------------------------------------------# +def DecodeBox(outputs, + anchors, + num_classes, + image_shape, + input_shape, + #-----------------------------------------------------------# + # 13x13的特征层对应的anchor是[116,90],[156,198],[373,326] + # 26x26的特征层对应的anchor是[30,61],[62,45],[59,119] + # 52x52的特征层对应的anchor是[10,13],[16,30],[33,23] + #-----------------------------------------------------------# + anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]], + max_boxes = 100, + confidence = 0.5, + nms_iou = 0.3, + letterbox_image = True): + + box_xy = [] + box_wh = [] + box_confidence = [] + box_class_probs = [] + for i in range(len(outputs)): + # test = K.eval(outputs[i]) + sub_box_xy, sub_box_wh, sub_box_confidence, sub_box_class_probs = \ + get_anchors_and_decode(outputs[i], anchors[anchor_mask[i]], num_classes, input_shape) + box_xy.append(K.reshape(sub_box_xy, [-1, 2])) + box_wh.append(K.reshape(sub_box_wh, [-1, 2])) + box_confidence.append(K.reshape(sub_box_confidence, [-1, 1])) + box_class_probs.append(K.reshape(sub_box_class_probs, [-1, num_classes])) + box_xy = K.concatenate(box_xy, axis = 0) + box_wh = K.concatenate(box_wh, axis = 0) + box_confidence = K.concatenate(box_confidence, axis = 0) + box_class_probs = K.concatenate(box_class_probs, axis = 0) + + #------------------------------------------------------------------------------------------------------------# + # 在图像传入网络预测前会进行letterbox_image给图像周围添加灰条,因此生成的box_xy, box_wh是相对于有灰条的图像的 + # 我们需要对其进行修改,去除灰条的部分。 将box_xy、和box_wh调节成y_min,y_max,xmin,xmax + # 如果没有使用letterbox_image也需要将归一化后的box_xy, box_wh调整成相对于原图大小的 + #------------------------------------------------------------------------------------------------------------# + boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image) + box_scores = box_confidence * box_class_probs + + #-----------------------------------------------------------# + # 判断得分是否大于score_threshold + #-----------------------------------------------------------# + mask = box_scores >= confidence + max_boxes_tensor = K.constant(max_boxes, dtype='int32') + boxes_out = [] + scores_out = [] + classes_out = [] + for c in range(num_classes): + #-----------------------------------------------------------# + # 取出所有box_scores >= score_threshold的框,和成绩 + #-----------------------------------------------------------# + class_boxes = tf.boolean_mask(boxes, mask[:, c]) + class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c]) + + #-----------------------------------------------------------# + # 非极大抑制 + # 保留一定区域内得分最大的框 + #-----------------------------------------------------------# + nms_index = tf.image.non_max_suppression(class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=nms_iou) + + #-----------------------------------------------------------# + # 获取非极大抑制后的结果 + # 下列三个分别是:框的位置,得分与种类 + #-----------------------------------------------------------# + class_boxes = K.gather(class_boxes, nms_index) + class_box_scores = K.gather(class_box_scores, nms_index) + classes = K.ones_like(class_box_scores, 'int32') * c + + boxes_out.append(class_boxes) + scores_out.append(class_box_scores) + classes_out.append(classes) + boxes_out = K.concatenate(boxes_out, axis=0) + scores_out = K.concatenate(scores_out, axis=0) + classes_out = K.concatenate(classes_out, axis=0) + + return boxes_out, scores_out, classes_out + + +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + + def sigmoid(x): + s = 1 / (1 + np.exp(-x)) + return s + #---------------------------------------------------# + # 将预测值的每个特征层调成真实值 + #---------------------------------------------------# + def get_anchors_and_decode(feats, anchors, num_classes): + # feats [batch_size, 20, 20, 3 * (5 + num_classes)] + # anchors [3, 2] + # num_classes + # 3 + num_anchors = len(anchors) + #------------------------------------------# + # grid_shape指的是特征层的高和宽 + # grid_shape [20, 20] + #------------------------------------------# + grid_shape = np.shape(feats)[1:3] + #--------------------------------------------------------------------# + # 获得各个特征点的坐标信息。生成的shape为(20, 20, num_anchors, 2) + # grid_x [20, 20, 3, 1] + # grid_y [20, 20, 3, 1] + # grid [20, 20, 3, 2] + #--------------------------------------------------------------------# + grid_x = np.tile(np.reshape(np.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, num_anchors, 1]) + grid_y = np.tile(np.reshape(np.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], num_anchors, 1]) + grid = np.concatenate([grid_x, grid_y], -1) + #---------------------------------------------------------------# + # 将先验框进行拓展,生成的shape为(20, 20, num_anchors, 2) + # [1, 1, 3, 2] + # [20, 20, 3, 2] + #---------------------------------------------------------------# + anchors_tensor = np.reshape(anchors, [1, 1, num_anchors, 2]) + anchors_tensor = np.tile(anchors_tensor, [grid_shape[0], grid_shape[1], 1, 1]) + + #---------------------------------------------------# + # 将预测结果调整成(batch_size, 20, 20, 3, 85) + # 85可拆分成4 + 1 + 80 + # 4代表的是中心宽高的调整参数 + # 1代表的是框的置信度 + # 80代表的是种类的置信度 + # [batch_size, 20, 20, 3 * (5 + num_classes)] + # [batch_size, 20, 20, 3, 5 + num_classes] + #---------------------------------------------------# + feats = np.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) + + #------------------------------------------# + # 对先验框进行解码,并进行归一化 + #------------------------------------------# + box_xy = (sigmoid(feats[..., :2]) * 2 - 0.5 + grid) + box_wh = (sigmoid(feats[..., 2:4]) * 2) ** 2 * anchors_tensor + #------------------------------------------# + # 获得预测框的置信度 + #------------------------------------------# + box_confidence = sigmoid(feats[..., 4:5]) + box_class_probs = sigmoid(feats[..., 5:]) + + box_wh = box_wh / 32 + anchors_tensor = anchors_tensor / 32 + fig = plt.figure() + ax = fig.add_subplot(121) + plt.ylim(-2, 22) + plt.xlim(-2, 22) + plt.scatter(grid_x,grid_y) + plt.scatter(5, 5, c='black') + plt.gca().invert_yaxis() + + anchor_left = grid_x - anchors_tensor/2 + anchor_top = grid_y - anchors_tensor/2 + print(np.shape(anchors_tensor)) + print(np.shape(box_xy)) + rect1 = plt.Rectangle([anchor_left[5,5,0,0],anchor_top[5,5,0,1]],anchors_tensor[0,0,0,0],anchors_tensor[0,0,0,1],color="r",fill=False) + rect2 = plt.Rectangle([anchor_left[5,5,1,0],anchor_top[5,5,1,1]],anchors_tensor[0,0,1,0],anchors_tensor[0,0,1,1],color="r",fill=False) + rect3 = plt.Rectangle([anchor_left[5,5,2,0],anchor_top[5,5,2,1]],anchors_tensor[0,0,2,0],anchors_tensor[0,0,2,1],color="r",fill=False) + + ax.add_patch(rect1) + ax.add_patch(rect2) + ax.add_patch(rect3) + + ax = fig.add_subplot(122) + plt.ylim(-2, 22) + plt.xlim(-2, 22) + plt.scatter(grid_x,grid_y) + plt.scatter(5, 5, c='black') + plt.scatter(box_xy[0, 5, 5, :, 0],box_xy[0, 5, 5, :, 1],c='r') + plt.gca().invert_yaxis() + + pre_left = box_xy[...,0] - box_wh[...,0] / 2 + pre_top = box_xy[...,1] - box_wh[...,1] / 2 + + rect1 = plt.Rectangle([pre_left[0,5,5,0],pre_top[0,5,5,0]],box_wh[0,5,5,0,0],box_wh[0,5,5,0,1],color="r",fill=False) + rect2 = plt.Rectangle([pre_left[0,5,5,1],pre_top[0,5,5,1]],box_wh[0,5,5,1,0],box_wh[0,5,5,1,1],color="r",fill=False) + rect3 = plt.Rectangle([pre_left[0,5,5,2],pre_top[0,5,5,2]],box_wh[0,5,5,2,0],box_wh[0,5,5,2,1],color="r",fill=False) + + ax.add_patch(rect1) + ax.add_patch(rect2) + ax.add_patch(rect3) + + plt.show() + # + feat = np.random.normal(-0.5,0.5, [4, 20, 20, 75]) + anchors = [[116, 90], [156, 198], [373, 326]] + get_anchors_and_decode(feat, anchors, 20) diff --git a/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_map.py b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_map.py new file mode 100644 index 0000000000000000000000000000000000000000..24dc903c86787c89f065b5e84bf2e74ae0688a64 --- /dev/null +++ b/ACL_TensorFlow/contrib/cv/YOLOV5_ID0378_for_ACL/utils/utils_map.py @@ -0,0 +1,928 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import glob +import json +import math +import operator +import os +import shutil +import sys + +import cv2 +import matplotlib.pyplot as plt +import numpy as np + +''' + 0,0 ------> x (width) + | + | (Left,Top) + | *_________ + | | | + | | + y |_________| + (height) * + (Right,Bottom) +''' + +def log_average_miss_rate(precision, fp_cumsum, num_images): + """ + log-average miss rate: + Calculated by averaging miss rates at 9 evenly spaced FPPI points + between 10e-2 and 10e0, in log-space. + + output: + lamr | log-average miss rate + mr | miss rate + fppi | false positives per image + + references: + [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the + State of the Art." Pattern Analysis and Machine Intelligence, IEEE + Transactions on 34.4 (2012): 743 - 761. + """ + + if precision.size == 0: + lamr = 0 + mr = 1 + fppi = 0 + return lamr, mr, fppi + + fppi = fp_cumsum / float(num_images) + mr = (1 - precision) + + fppi_tmp = np.insert(fppi, 0, -1.0) + mr_tmp = np.insert(mr, 0, 1.0) + + ref = np.logspace(-2.0, 0.0, num = 9) + for i, ref_i in enumerate(ref): + j = np.where(fppi_tmp <= ref_i)[-1][-1] + ref[i] = mr_tmp[j] + + lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref)))) + + return lamr, mr, fppi + +""" + throw error and exit +""" +def error(msg): + print(msg) + sys.exit(0) + +""" + check if the number is a float between 0.0 and 1.0 +""" +def is_float_between_0_and_1(value): + try: + val = float(value) + if val > 0.0 and val < 1.0: + return True + else: + return False + except ValueError: + return False + +""" + Calculate the AP given the recall and precision array + 1st) We compute a version of the measured precision/recall curve with + precision monotonically decreasing + 2nd) We compute the AP as the area under this curve by numerical integration. +""" +def voc_ap(rec, prec): + """ + --- Official matlab code VOC2012--- + mrec=[0 ; rec ; 1]; + mpre=[0 ; prec ; 0]; + for i=numel(mpre)-1:-1:1 + mpre(i)=max(mpre(i),mpre(i+1)); + end + i=find(mrec(2:end)~=mrec(1:end-1))+1; + ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); + """ + rec.insert(0, 0.0) # insert 0.0 at begining of list + rec.append(1.0) # insert 1.0 at end of list + mrec = rec[:] + prec.insert(0, 0.0) # insert 0.0 at begining of list + prec.append(0.0) # insert 0.0 at end of list + mpre = prec[:] + """ + This part makes the precision monotonically decreasing + (goes from the end to the beginning) + matlab: for i=numel(mpre)-1:-1:1 + mpre(i)=max(mpre(i),mpre(i+1)); + """ + for i in range(len(mpre)-2, -1, -1): + mpre[i] = max(mpre[i], mpre[i+1]) + """ + This part creates a list of indexes where the recall changes + matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1; + """ + i_list = [] + for i in range(1, len(mrec)): + if mrec[i] != mrec[i-1]: + i_list.append(i) # if it was matlab would be i + 1 + """ + The Average Precision (AP) is the area under the curve + (numerical integration) + matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i)); + """ + ap = 0.0 + for i in i_list: + ap += ((mrec[i]-mrec[i-1])*mpre[i]) + return ap, mrec, mpre + + +""" + Convert the lines of a file to a list +""" +def file_lines_to_list(path): + # open txt file lines to a list + with open(path) as f: + content = f.readlines() + # remove whitespace characters like `\n` at the end of each line + content = [x.strip() for x in content] + return content + +""" + Draws text in image +""" +def draw_text_in_image(img, text, pos, color, line_width): + font = cv2.FONT_HERSHEY_PLAIN + fontScale = 1 + lineType = 1 + bottomLeftCornerOfText = pos + cv2.putText(img, text, + bottomLeftCornerOfText, + font, + fontScale, + color, + lineType) + text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0] + return img, (line_width + text_width) + +""" + Plot - adjust axes +""" +def adjust_axes(r, t, fig, axes): + # get text width for re-scaling + bb = t.get_window_extent(renderer=r) + text_width_inches = bb.width / fig.dpi + # get axis width in inches + current_fig_width = fig.get_figwidth() + new_fig_width = current_fig_width + text_width_inches + propotion = new_fig_width / current_fig_width + # get axis limit + x_lim = axes.get_xlim() + axes.set_xlim([x_lim[0], x_lim[1]*propotion]) + +""" + Draw plot using Matplotlib +""" +def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar): + # sort the dictionary by decreasing value, into a list of tuples + sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1)) + # unpacking the list of tuples into two lists + sorted_keys, sorted_values = zip(*sorted_dic_by_value) + # + if true_p_bar != "": + """ + Special case to draw in: + - green -> TP: True Positives (object detected and matches ground-truth) + - red -> FP: False Positives (object detected but does not match ground-truth) + - orange -> FN: False Negatives (object not detected but present in the ground-truth) + """ + fp_sorted = [] + tp_sorted = [] + for key in sorted_keys: + fp_sorted.append(dictionary[key] - true_p_bar[key]) + tp_sorted.append(true_p_bar[key]) + plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive') + plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted) + # add legend + plt.legend(loc='lower right') + """ + Write number on side of bar + """ + fig = plt.gcf() # gcf - get current figure + axes = plt.gca() + r = fig.canvas.get_renderer() + for i, val in enumerate(sorted_values): + fp_val = fp_sorted[i] + tp_val = tp_sorted[i] + fp_str_val = " " + str(fp_val) + tp_str_val = fp_str_val + " " + str(tp_val) + # trick to paint multicolor with offset: + # first paint everything and then repaint the first number + t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold') + plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold') + if i == (len(sorted_values)-1): # largest bar + adjust_axes(r, t, fig, axes) + else: + plt.barh(range(n_classes), sorted_values, color=plot_color) + """ + Write number on side of bar + """ + fig = plt.gcf() # gcf - get current figure + axes = plt.gca() + r = fig.canvas.get_renderer() + for i, val in enumerate(sorted_values): + str_val = " " + str(val) # add a space before + if val < 1.0: + str_val = " {0:.2f}".format(val) + t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold') + # re-set axes to show number inside the figure + if i == (len(sorted_values)-1): # largest bar + adjust_axes(r, t, fig, axes) + # set window title + fig.canvas.set_window_title(window_title) + # write classes in y axis + tick_font_size = 12 + plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size) + """ + Re-scale height accordingly + """ + init_height = fig.get_figheight() + # comput the matrix height in points and inches + dpi = fig.dpi + height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing) + height_in = height_pt / dpi + # compute the required figure height + top_margin = 0.15 # in percentage of the figure height + bottom_margin = 0.05 # in percentage of the figure height + figure_height = height_in / (1 - top_margin - bottom_margin) + # set new height + if figure_height > init_height: + fig.set_figheight(figure_height) + + # set plot title + plt.title(plot_title, fontsize=14) + # set axis titles + # plt.xlabel('classes') + plt.xlabel(x_label, fontsize='large') + # adjust size of window + fig.tight_layout() + # save the plot + fig.savefig(output_path) + # show image + if to_show: + plt.show() + # close the plot + plt.close() + +def get_map(MINOVERLAP, draw_plot, path = './map_out'): + GT_PATH = os.path.join(path, 'ground-truth') + DR_PATH = os.path.join(path, 'detection-results') + IMG_PATH = os.path.join(path, 'images-optional') + TEMP_FILES_PATH = os.path.join(path, '.temp_files') + RESULTS_FILES_PATH = os.path.join(path, 'results') + + show_animation = True + if os.path.exists(IMG_PATH): + for dirpath, dirnames, files in os.walk(IMG_PATH): + if not files: + show_animation = False + else: + show_animation = False + + if not os.path.exists(TEMP_FILES_PATH): + os.makedirs(TEMP_FILES_PATH) + + if os.path.exists(RESULTS_FILES_PATH): + shutil.rmtree(RESULTS_FILES_PATH) + if draw_plot: + os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP")) + os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1")) + os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall")) + os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision")) + if show_animation: + os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one")) + + ground_truth_files_list = glob.glob(GT_PATH + '/*.txt') + if len(ground_truth_files_list) == 0: + error("Error: No ground-truth files found!") + ground_truth_files_list.sort() + gt_counter_per_class = {} + counter_images_per_class = {} + + for txt_file in ground_truth_files_list: + file_id = txt_file.split(".txt", 1)[0] + file_id = os.path.basename(os.path.normpath(file_id)) + temp_path = os.path.join(DR_PATH, (file_id + ".txt")) + if not os.path.exists(temp_path): + error_msg = "Error. File not found: {}\n".format(temp_path) + error(error_msg) + lines_list = file_lines_to_list(txt_file) + bounding_boxes = [] + is_difficult = False + already_seen_classes = [] + for line in lines_list: + try: + if "difficult" in line: + class_name, left, top, right, bottom, _difficult = line.split() + is_difficult = True + else: + class_name, left, top, right, bottom = line.split() + except: + if "difficult" in line: + line_split = line.split() + _difficult = line_split[-1] + bottom = line_split[-2] + right = line_split[-3] + top = line_split[-4] + left = line_split[-5] + class_name = "" + for name in line_split[:-5]: + class_name += name + " " + class_name = class_name[:-1] + is_difficult = True + else: + line_split = line.split() + bottom = line_split[-1] + right = line_split[-2] + top = line_split[-3] + left = line_split[-4] + class_name = "" + for name in line_split[:-4]: + class_name += name + " " + class_name = class_name[:-1] + + bbox = left + " " + top + " " + right + " " + bottom + if is_difficult: + bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True}) + is_difficult = False + else: + bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False}) + if class_name in gt_counter_per_class: + gt_counter_per_class[class_name] += 1 + else: + gt_counter_per_class[class_name] = 1 + + if class_name not in already_seen_classes: + if class_name in counter_images_per_class: + counter_images_per_class[class_name] += 1 + else: + counter_images_per_class[class_name] = 1 + already_seen_classes.append(class_name) + + with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile: + json.dump(bounding_boxes, outfile) + + gt_classes = list(gt_counter_per_class.keys()) + gt_classes = sorted(gt_classes) + n_classes = len(gt_classes) + + dr_files_list = glob.glob(DR_PATH + '/*.txt') + dr_files_list.sort() + for class_index, class_name in enumerate(gt_classes): + bounding_boxes = [] + for txt_file in dr_files_list: + file_id = txt_file.split(".txt",1)[0] + file_id = os.path.basename(os.path.normpath(file_id)) + temp_path = os.path.join(GT_PATH, (file_id + ".txt")) + if class_index == 0: + if not os.path.exists(temp_path): + error_msg = "Error. File not found: {}\n".format(temp_path) + error(error_msg) + lines = file_lines_to_list(txt_file) + for line in lines: + try: + tmp_class_name, confidence, left, top, right, bottom = line.split() + except: + line_split = line.split() + bottom = line_split[-1] + right = line_split[-2] + top = line_split[-3] + left = line_split[-4] + confidence = line_split[-5] + tmp_class_name = "" + for name in line_split[:-5]: + tmp_class_name += name + " " + tmp_class_name = tmp_class_name[:-1] + + if tmp_class_name == class_name: + bbox = left + " " + top + " " + right + " " +bottom + bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox}) + + bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True) + with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile: + json.dump(bounding_boxes, outfile) + + sum_AP = 0.0 + ap_dictionary = {} + lamr_dictionary = {} + with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file: + results_file.write("# AP and precision/recall per class\n") + count_true_positives = {} + + for class_index, class_name in enumerate(gt_classes): + count_true_positives[class_name] = 0 + dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json" + dr_data = json.load(open(dr_file)) + + nd = len(dr_data) + tp = [0] * nd + fp = [0] * nd + score = [0] * nd + score05_idx = 0 + for idx, detection in enumerate(dr_data): + file_id = detection["file_id"] + score[idx] = float(detection["confidence"]) + if score[idx] > 0.5: + score05_idx = idx + + if show_animation: + ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*") + if len(ground_truth_img) == 0: + error("Error. Image not found with id: " + file_id) + elif len(ground_truth_img) > 1: + error("Error. Multiple image with id: " + file_id) + else: + img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0]) + img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0] + if os.path.isfile(img_cumulative_path): + img_cumulative = cv2.imread(img_cumulative_path) + else: + img_cumulative = img.copy() + bottom_border = 60 + BLACK = [0, 0, 0] + img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK) + + gt_file = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json" + ground_truth_data = json.load(open(gt_file)) + ovmax = -1 + gt_match = -1 + bb = [float(x) for x in detection["bbox"].split()] + for obj in ground_truth_data: + if obj["class_name"] == class_name: + bbgt = [ float(x) for x in obj["bbox"].split() ] + bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])] + iw = bi[2] - bi[0] + 1 + ih = bi[3] - bi[1] + 1 + if iw > 0 and ih > 0: + ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0] + + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih + ov = iw * ih / ua + if ov > ovmax: + ovmax = ov + gt_match = obj + + if show_animation: + status = "NO MATCH FOUND!" + + min_overlap = MINOVERLAP + if ovmax >= min_overlap: + if "difficult" not in gt_match: + if not bool(gt_match["used"]): + tp[idx] = 1 + gt_match["used"] = True + count_true_positives[class_name] += 1 + with open(gt_file, 'w') as f: + f.write(json.dumps(ground_truth_data)) + if show_animation: + status = "MATCH!" + else: + fp[idx] = 1 + if show_animation: + status = "REPEATED MATCH!" + else: + fp[idx] = 1 + if ovmax > 0: + status = "INSUFFICIENT OVERLAP" + + """ + Draw image to show animation + """ + if show_animation: + height, widht = img.shape[:2] + white = (255,255,255) + light_blue = (255,200,100) + green = (0,255,0) + light_red = (30,30,255) + margin = 10 + # 1nd line + v_pos = int(height - margin - (bottom_border / 2.0)) + text = "Image: " + ground_truth_img[0] + " " + img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) + text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " " + img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width) + if ovmax != -1: + color = light_red + if status == "INSUFFICIENT OVERLAP": + text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100) + else: + text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100) + color = green + img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) + # 2nd line + v_pos += int(bottom_border / 2.0) + rank_pos = str(idx+1) + text = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100) + img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0) + color = light_red + if status == "MATCH!": + color = green + text = "Result: " + status + " " + img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width) + + font = cv2.FONT_HERSHEY_SIMPLEX + if ovmax > 0: + bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ] + cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) + cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2) + cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA) + bb = [int(i) for i in bb] + cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2) + cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2) + cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA) + + cv2.imshow("Animation", img) + cv2.waitKey(20) + output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg" + cv2.imwrite(output_img_path, img) + cv2.imwrite(img_cumulative_path, img_cumulative) + + cumsum = 0 + for idx, val in enumerate(fp): + fp[idx] += cumsum + cumsum += val + + cumsum = 0 + for idx, val in enumerate(tp): + tp[idx] += cumsum + cumsum += val + + rec = tp[:] + for idx, val in enumerate(tp): + rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1) + + prec = tp[:] + for idx, val in enumerate(tp): + prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1) + + ap, mrec, mprec = voc_ap(rec[:], prec[:]) + F1 = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec))) + + sum_AP += ap + text = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100) + + if len(prec)>0: + F1_text = "{0:.2f}".format(F1[score05_idx]) + " = " + class_name + " F1 " + Recall_text = "{0:.2f}%".format(rec[score05_idx]*100) + " = " + class_name + " Recall " + Precision_text = "{0:.2f}%".format(prec[score05_idx]*100) + " = " + class_name + " Precision " + else: + F1_text = "0.00" + " = " + class_name + " F1 " + Recall_text = "0.00%" + " = " + class_name + " Recall " + Precision_text = "0.00%" + " = " + class_name + " Precision " + + rounded_prec = [ '%.2f' % elem for elem in prec ] + rounded_rec = [ '%.2f' % elem for elem in rec ] + results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n") + if len(prec)>0: + print(text + "\t||\tscore_threhold=0.5 : " + "F1=" + "{0:.2f}".format(F1[score05_idx])\ + + " ; Recall=" + "{0:.2f}%".format(rec[score05_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score05_idx]*100)) + else: + print(text + "\t||\tscore_threhold=0.5 : F1=0.00% ; Recall=0.00% ; Precision=0.00%") + ap_dictionary[class_name] = ap + + n_images = counter_images_per_class[class_name] + lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images) + lamr_dictionary[class_name] = lamr + + if draw_plot: + plt.plot(rec, prec, '-o') + area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]] + area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]] + plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r') + + fig = plt.gcf() + fig.canvas.set_window_title('AP ' + class_name) + + plt.title('class: ' + text) + plt.xlabel('Recall') + plt.ylabel('Precision') + axes = plt.gca() + axes.set_xlim([0.0,1.0]) + axes.set_ylim([0.0,1.05]) + fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png") + plt.cla() + + plt.plot(score, F1, "-", color='orangered') + plt.title('class: ' + F1_text + "\nscore_threhold=0.5") + plt.xlabel('Score_Threhold') + plt.ylabel('F1') + axes = plt.gca() + axes.set_xlim([0.0,1.0]) + axes.set_ylim([0.0,1.05]) + fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png") + plt.cla() + + plt.plot(score, rec, "-H", color='gold') + plt.title('class: ' + Recall_text + "\nscore_threhold=0.5") + plt.xlabel('Score_Threhold') + plt.ylabel('Recall') + axes = plt.gca() + axes.set_xlim([0.0,1.0]) + axes.set_ylim([0.0,1.05]) + fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png") + plt.cla() + + plt.plot(score, prec, "-s", color='palevioletred') + plt.title('class: ' + Precision_text + "\nscore_threhold=0.5") + plt.xlabel('Score_Threhold') + plt.ylabel('Precision') + axes = plt.gca() + axes.set_xlim([0.0,1.0]) + axes.set_ylim([0.0,1.05]) + fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png") + plt.cla() + + if show_animation: + cv2.destroyAllWindows() + + results_file.write("\n# mAP of all classes\n") + mAP = sum_AP / n_classes + text = "mAP = {0:.2f}%".format(mAP*100) + results_file.write(text + "\n") + print(text) + + shutil.rmtree(TEMP_FILES_PATH) + + """ + Count total of detection-results + """ + det_counter_per_class = {} + for txt_file in dr_files_list: + lines_list = file_lines_to_list(txt_file) + for line in lines_list: + class_name = line.split()[0] + if class_name in det_counter_per_class: + det_counter_per_class[class_name] += 1 + else: + det_counter_per_class[class_name] = 1 + dr_classes = list(det_counter_per_class.keys()) + + """ + Write number of ground-truth objects per class to results.txt + """ + with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file: + results_file.write("\n# Number of ground-truth objects per class\n") + for class_name in sorted(gt_counter_per_class): + results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n") + + """ + Finish counting true positives + """ + for class_name in dr_classes: + if class_name not in gt_classes: + count_true_positives[class_name] = 0 + + """ + Write number of detected objects per class to results.txt + """ + with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file: + results_file.write("\n# Number of detected objects per class\n") + for class_name in sorted(dr_classes): + n_det = det_counter_per_class[class_name] + text = class_name + ": " + str(n_det) + text += " (tp:" + str(count_true_positives[class_name]) + "" + text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n" + results_file.write(text) + + """ + Plot the total number of occurences of each class in the ground-truth + """ + if draw_plot: + window_title = "ground-truth-info" + plot_title = "ground-truth\n" + plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)" + x_label = "Number of objects per class" + output_path = RESULTS_FILES_PATH + "/ground-truth-info.png" + to_show = False + plot_color = 'forestgreen' + draw_plot_func( + gt_counter_per_class, + n_classes, + window_title, + plot_title, + x_label, + output_path, + to_show, + plot_color, + '', + ) + + # """ + # Plot the total number of occurences of each class in the "detection-results" folder + # """ + # if draw_plot: + # window_title = "detection-results-info" + # # Plot title + # plot_title = "detection-results\n" + # plot_title += "(" + str(len(dr_files_list)) + " files and " + # count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values())) + # plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)" + # # end Plot title + # x_label = "Number of objects per class" + # output_path = RESULTS_FILES_PATH + "/detection-results-info.png" + # to_show = False + # plot_color = 'forestgreen' + # true_p_bar = count_true_positives + # draw_plot_func( + # det_counter_per_class, + # len(det_counter_per_class), + # window_title, + # plot_title, + # x_label, + # output_path, + # to_show, + # plot_color, + # true_p_bar + # ) + + """ + Draw log-average miss rate plot (Show lamr of all classes in decreasing order) + """ + if draw_plot: + window_title = "lamr" + plot_title = "log-average miss rate" + x_label = "log-average miss rate" + output_path = RESULTS_FILES_PATH + "/lamr.png" + to_show = False + plot_color = 'royalblue' + draw_plot_func( + lamr_dictionary, + n_classes, + window_title, + plot_title, + x_label, + output_path, + to_show, + plot_color, + "" + ) + + """ + Draw mAP plot (Show AP's of all classes in decreasing order) + """ + if draw_plot: + window_title = "mAP" + plot_title = "mAP = {0:.2f}%".format(mAP*100) + x_label = "Average Precision" + output_path = RESULTS_FILES_PATH + "/mAP.png" + to_show = True + plot_color = 'royalblue' + draw_plot_func( + ap_dictionary, + n_classes, + window_title, + plot_title, + x_label, + output_path, + to_show, + plot_color, + "" + ) + +def preprocess_gt(gt_path, class_names): + image_ids = os.listdir(gt_path) + results = {} + + images = [] + bboxes = [] + for i, image_id in enumerate(image_ids): + lines_list = file_lines_to_list(os.path.join(gt_path, image_id)) + boxes_per_image = [] + image = {} + image_id = os.path.splitext(image_id)[0] + image['file_name'] = image_id + '.jpg' + image['width'] = 1 + image['height'] = 1 + #-----------------------------------------------------------------# + # 感谢 多学学英语吧 的提醒 + # 解决了'Results do not correspond to current coco set'问题 + #-----------------------------------------------------------------# + image['id'] = str(image_id) + + for line in lines_list: + difficult = 0 + if "difficult" in line: + line_split = line.split() + left, top, right, bottom, _difficult = line_split[-5:] + class_name = "" + for name in line_split[:-5]: + class_name += name + " " + class_name = class_name[:-1] + difficult = 1 + else: + line_split = line.split() + left, top, right, bottom = line_split[-4:] + class_name = "" + for name in line_split[:-4]: + class_name += name + " " + class_name = class_name[:-1] + + left, top, right, bottom = float(left), float(top), float(right), float(bottom) + cls_id = class_names.index(class_name) + 1 + bbox = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0] + boxes_per_image.append(bbox) + images.append(image) + bboxes.extend(boxes_per_image) + results['images'] = images + + categories = [] + for i, cls in enumerate(class_names): + category = {} + category['supercategory'] = cls + category['name'] = cls + category['id'] = i + 1 + categories.append(category) + results['categories'] = categories + + annotations = [] + for i, box in enumerate(bboxes): + annotation = {} + annotation['area'] = box[-1] + annotation['category_id'] = box[-2] + annotation['image_id'] = box[-3] + annotation['iscrowd'] = box[-4] + annotation['bbox'] = box[:4] + annotation['id'] = i + annotations.append(annotation) + results['annotations'] = annotations + return results + +def preprocess_dr(dr_path, class_names): + image_ids = os.listdir(dr_path) + results = [] + for image_id in image_ids: + lines_list = file_lines_to_list(os.path.join(dr_path, image_id)) + image_id = os.path.splitext(image_id)[0] + for line in lines_list: + line_split = line.split() + confidence, left, top, right, bottom = line_split[-5:] + class_name = "" + for name in line_split[:-5]: + class_name += name + " " + class_name = class_name[:-1] + left, top, right, bottom = float(left), float(top), float(right), float(bottom) + result = {} + result["image_id"] = str(image_id) + result["category_id"] = class_names.index(class_name) + 1 + result["bbox"] = [left, top, right - left, bottom - top] + result["score"] = float(confidence) + results.append(result) + return results + +def get_coco_map(class_names, path): + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + GT_PATH = os.path.join(path, 'ground-truth') + DR_PATH = os.path.join(path, 'detection-results') + COCO_PATH = os.path.join(path, 'coco_eval') + + if not os.path.exists(COCO_PATH): + os.makedirs(COCO_PATH) + + GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json') + DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json') + + with open(GT_JSON_PATH, "w") as f: + results_gt = preprocess_gt(GT_PATH, class_names) + json.dump(results_gt, f, indent=4) + + with open(DR_JSON_PATH, "w") as f: + results_dr = preprocess_dr(DR_PATH, class_names) + json.dump(results_dr, f, indent=4) + + cocoGt = COCO(GT_JSON_PATH) + cocoDt = cocoGt.loadRes(DR_JSON_PATH) + cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') + cocoEval.evaluate() + cocoEval.accumulate() + cocoEval.summarize() diff --git a/TensorFlow/built-in/audio/Jasper_ID0020_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/audio/Jasper_ID0020_for_TensorFlow/test/train_full_1p.sh index 1fb76bae696dfa940a78123186bc64a353f23e7e..a6dc4fa174b275c6f703b9f4e9dce34118f76425 100644 --- a/TensorFlow/built-in/audio/Jasper_ID0020_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/audio/Jasper_ID0020_for_TensorFlow/test/train_full_1p.sh @@ -151,7 +151,7 @@ echo "E2E Training Duration sec : $e2e_time" #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' #获取性能数据,不需要修改 #吞吐量 diff --git a/TensorFlow/built-in/audio/WaveGlow_ID0024_for_TensorFlow/train.py b/TensorFlow/built-in/audio/WaveGlow_ID0024_for_TensorFlow/train.py index 376775a78a1684da948cf7ad75f1e8749fee488b..a502fe1c4cba23e809f9d09c0b543b07c0a2a6eb 100644 --- a/TensorFlow/built-in/audio/WaveGlow_ID0024_for_TensorFlow/train.py +++ b/TensorFlow/built-in/audio/WaveGlow_ID0024_for_TensorFlow/train.py @@ -223,7 +223,7 @@ def main(): print("#########gpu number:",args.ngpu) args.logdir = os.path.join(hparams.logdir_root, args.run_name) - if not os.path.exists(args.logdir): + if not os.path.exists(args.logdir) and deviceid == 0: os.makedirs(args.logdir) args.gen_wave_dir = os.path.join(args.logdir, 'wave') diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/LICENSE b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..12d255f8e0f049d3c3127e71788e219b86cdf55b --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/LICENSE @@ -0,0 +1,251 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +## Some of TensorFlow's code is derived from Caffe, which is subject to the following copyright notice: + +COPYRIGHT + +All contributions by the University of California: + +Copyright (c) 2014, The Regents of the University of California (Regents) +All rights reserved. + +All other contributions: + +Copyright (c) 2014, the respective contributors +All rights reserved. + +Caffe uses a shared copyright model: each contributor holds copyright over +their contributions to Caffe. The project versioning records all such +contribution and copyright details. If a contributor wants to further mark +their specific copyright on a particular contribution, they should indicate +their copyright solely in the commit message of the change when it is +committed. + +LICENSE + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +CONTRIBUTION AGREEMENT + +By contributing to the BVLC/caffe repository through pull-request, comment, +or otherwise, the contributor releases their content to the +license and copyright terms herein. \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README.md b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b11a84220a7356fca01e775d20f2ceaa9f0a10cb --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README.md @@ -0,0 +1,84 @@ +English | [中文](README_zh-cn.md) + +# Ascend Video Processing + +This repository implements a Video Processing & Enhancement Framework on Ascend Platform, aiming to lower the barrier of implementing and deploying video restoraton and enhancement models, help users to build their own processing pipelines. + +We also provide some open-source enhancement models, as samples about how to use this framework for efficient training, online inference, and offline inference on Ascend platform. One can see the [src/networks/edvr.py](src/networks/edvr.py) file contains the classic video super-resolution model [EDVR](http://arxiv.org/abs/1905.02716) that can be trained and evaluated in tensorflow on Ascend NPU platform, which includes a ``deformable convolution`` operator implenmented exclusively on NPU. As well, we'll provide an example on how to inference with EDVR OM (offline models) on Ascend, and how to build a naive processing pipeline with video in and video out. + +## Environment + +- python3.7 +- training & online inference (with checkpoint file or PB file) + - Ascend 910 or Ascend 710 +- offline inference (with OM) + - Ascend 310 or Ascend 710 +## Requirements + +- tensorflow==1.15 +- opencv-python +- yacs +- tqdm + +## Customize Model +To construct your own model and fit the framework, you should define the model with base class ``src.networks.base_model.Base``, put it in ``src/networks`` folder, and that's it: + +```python +from src.networks.base_model import Base + +class YOUR_MODEL(Base): + pass +``` + +You can use your customized model by setting ``cfg.model.name=YOUR_MODEL`` in ``configs/models/YOUR_MODEL.py``. All the model details, training and inference details can as well be configured in this file, which will overide the default config terms in [src/utils/defaults.py](src/utils/defaults.py). + +## Training + +Enter the repository folder: + +```sh +cd AscendVideo +``` + +Modify the [scripts/env.sh](scripts/env.sh) to make sure you can import ``npu_bridge`` python package: +```sh +source scripts/env.sh +python3 -c "import npu_bridge" +``` + +Run training on a single device 0 with the configuration ``configs/models/YOUR_MODEL.py``: + +```sh +# On a single device 0 +bash scripts/run_train.sh 0 configs/models/YOUR_MODEL.py +``` + +Run training on two devices 1,2 with the configuration ``configs/models/YOUR_MODEL.py``: + +```sh +# On multiple devices, e.g., 1,2 +bash scripts/run_train.sh 1,2 configs/models/YOUR_MODEL.py +``` + +## Inference +Once you have trained the model, the checkpoint files will be saved in the output directory (specified by ``cfg.train.output_dir``). Each checkpoint consists of three files: +- ``YOUR_MODEL-10000.data****`` +- ``YOUR_MODEL-10000.meta`` +- ``YOUR_MODEL-10000.index`` + +Suppose the video frames lies in ``/path/to/frames``, where each frame is indexed following some pattern like: ``0001.png``, ``0002.png``, etc. It is easy to do inference with: + +```bash +bash scripts/run_inference.sh 0 configs/models/YOUR_MODEL.py /path/to/YOUR_MODEL-10000 /path/to/frames +``` + +The inference result will be saved in ``/path/to/frames_YOUR_MODEL``. + +### Freeze ckpt to PB +Checkpoint to PB file. +```shell +bash scripts/run_freeze.sh ckpt config.yaml +``` + + + diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README_zh-cn.md b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README_zh-cn.md new file mode 100644 index 0000000000000000000000000000000000000000..ec29bf1b5bae3fb5587d158e1cd4ff39b0711e3c --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/README_zh-cn.md @@ -0,0 +1,109 @@ +[English](README.md) | 中文 + +# 昇腾视频增强 +本仓库为基于昇腾平台的视频处理、修复和增强框架,目的是降低相关领域的开发者在昇腾平台上进行算法和模型研究、实现和部署模型的门槛,提升算法迭代的效率,帮助开发者建立自己的视频修复和增强流程。 + +本仓库会提供若干开源增强模型的样例,来引导开发者如何使用本框架和昇腾平台进行高效的训练、在线推理和离线推理等。本仓库支持多种不同的视频处理任务,如去噪、超分、插帧、HDR、人脸增强以及其他可以用模型或者非模型来完成的视频处理任务。开发者可参考[src/networks/edvr.py](src/networks/edvr.py)文件,来了解一个经典的视频超分模型[EDVR](http://arxiv.org/abs/1905.02716)是如何在昇腾平台上进行搭建、训练和评估的。 + +EDVR模型包含了一个特殊的算子``deformable_convolution``(可变卷积),昇腾平台有一个独占性的实现,对tensorflow上可变卷积的计算进行了一定优化。同时,我们会提供EDVR离线模型(Offline Model)以供开发者参考,如何在昇腾平台上进行离线推理,以及如何建立自己的视频增强端到端流程。 + +## 环境 +- Python版本:python3.7 +- 训练和在线推理硬件:Ascend 910 + +## 依赖项 +- tensorflow==1.15 +- opencv-python +- yacs +- tqdm + +## 自定义模型 +添加自定义模型比较简单,只需要继承``src.networks.base_model.Base``类创建一个新的模型类,将其放在``src/networks``下即可: + +```python +from src.networks.base_model import Base + +class YOUR_MODEL(Base): + # Define your own structure. + pass +``` + +然后通过``configs/models/YOUR_MODEL.py``作为配置文件来来调用自定义模型即可: +```yaml +model: + name: YOUR_MODEL +# other configurations +``` +该文件也可以配置模型结构或是训练、推理策略,程序将在[src/utils/defaults.py](src/utils/defaults.py)的基础上进行覆盖该配置文件。 + +## 训练 +进入目录: + +```sh +cd AscendVideo +``` + +根据硬件需要对环境变量文件[scripts/env.sh](scripts/env.sh)进行修改: +```sh +vim scripts/env.sh + +# 修改对应的环境变量,确保能import npu_bridge +``` + +在0号NPU设备上使用``configs/models/YOUR_MODEL.py``配置文件进行训练: + +```sh +# On a single device 0 +bash scripts/run_train.sh 0 configs/models/YOUR_MODEL.py +``` + +在1,2两个NPU设备上使用``configs/models/YOUR_MODEL.py``进行多卡训练: + +```sh +# On multiple devices, e.g., 1,2 +bash scripts/run_train.sh 1,2 configs/models/YOUR_MODEL.py +``` + +## 推理 +训练完成之后,输出目录(由``cfg.train.output_dir``指定)下会生成定间隔保存的checkpoint文件,例如: +- ``YOUR_MODEL-10000.data****`` +- ``YOUR_MODEL-10000.meta`` +- ``YOUR_MODEL-10000.index`` + +给定任意输入视频帧路径``/path/to/frames``,每一帧按顺序编号为``0001.png``,``0002.png``以此类推,则只需要使用如下命令即可进行在线推理: + +```bash +bash scripts/run_inference.sh 0 configs/models/YOUR_MODEL.py /path/to/YOUR_MODEL-10000 /path/to/frames +``` +推理结果会保存在``/path/to/frames_YOUR_MODEL``路径下。 + +### 模型固化 +将checkpoint固化为PB文件: +```shell +bash scripts/run_freeze.sh configs/models/YOUR_MODEL.py /path/to/YOUR_MODEL-10000 +``` +其中固化的输入placeholder的size可以通过修改``configs/models/YOUR_MODEL.py``来进行配置。 + +## 测试样片效果 +我们提供了若干用于测试增强效果的视频片段,并且给出了昇腾视频增强对于这些片段的处理效果,包括单一的去噪、插帧、人脸增强、HDR色彩增强和超分辨率等算法。 + +| 片段 | 分辨率 | 帧率 | 链接 | 备注 | +| ------------- | --- | --- | ------------------------------------------------------------ | --- | +| 超分原片 | 1080P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/City-1080p.mp4 | | +| 2倍超分 | 2160P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/City-1080p-2x_vsr.mp4 | | +| 4倍超分 | 4320P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/City-1080p-4x_vsr.mp4 | | +| 去噪原片 | 1080P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/City-Noisy-1080p.mp4 | | +| 去噪效果 | 1080P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/City-Noisy-1080p_Denoised.mp4 | | +| 人脸原片 | 1080P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Face.mp4 | | +| 人脸增强效果 | 1080P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Face-Enhancement.mp4 | | +| 插帧原片 | 1080P | 23.976 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Waterdrop-24FPS-1080p.mp4 | | +| 2倍插帧 | 1080P | 47.952 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Waterdrop-48FPS-1080p.mp4 | | +| 4倍插帧 | 1080P | 95.904 |https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Waterdrop-96FPS-1080p.mp4 | | +| SDR原片 | 2160P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Color-SDR-1080p.mp4 | | +| HDR无色彩增强 | 2160P | 25 | https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Color_HLG-1080p.mp4 | 需要播放器或者屏幕支持HLG | +| HDR昇腾色彩增强 | 2160P | 25 |https://obs-ascend-test.obs.cn-east-2.myhuaweicloud.com/vsr/Color-Enhanced-HLG-1080p.mp4 | 需要播放器或者屏幕支持HLG | + +## 离线推理参考 + +昇腾[Sample仓库](https://gitee.com/ascend/samples)提供了超分模型EDVR的[离线推理案例](https://gitee.com/ascend/samples/tree/master/python/level2_simple_inference/6_other/video_super_resolution)以供参考 + diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/codecs/default_sdr_x264.json b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/codecs/default_sdr_x264.json new file mode 100644 index 0000000000000000000000000000000000000000..e084257ba1211725a4ec82a2da782679397c752d --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/codecs/default_sdr_x264.json @@ -0,0 +1,9 @@ +{ + "codec": { + "-crf": "10", + "-c:v": "libx264", + "-pix_fmt": "yuv420p", + "-vf": "zscale=rangein=full:range=limited:transferin=709:matrixin=709:primariesin=709:matrix=709:transfer=709:primaries=709:agamma=0" + }, + "format": "mp4" +} \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/models/edvr_config.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/models/edvr_config.py new file mode 100644 index 0000000000000000000000000000000000000000..d38fe2627f78abe3737f2ec7a39acc96c4df96ae --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/configs/models/edvr_config.py @@ -0,0 +1,60 @@ +cfg = dict( + data=dict( + data_dir='/data2/vsr_datasets/reds', + train=dict( + batch_size=16, + input_size=[64, 64], + augmentation=dict( + apply=True, + interval_list=[1,2,3], + options=""" + RandomCrop: + input_dim: 4 + RandomTemporalReverse: + input_dim: 4 + RandomFlipLeftRight: + input_dim: 4 + RandomFlipUpDown: + input_dim: 4 + """, + ), + ), + ), + edvr=dict( + with_tsa=True, + mid_channels=64, + use_dcn=False, + num_groups=1, + num_deform_groups=1, + num_blocks_extraction=5, + num_blocks_reconstruction=10, + upsampling='bilinear', + align_corners=False + ), + model=dict( + content_loss_reduction='mean', + content_loss_type='l1', + factor_for_adapt_input=4, + name='EDVR', + num_net_input_frames=5, + num_net_output_frames=1, + scale=4, + scope='G' + ), + loss=dict( + content=dict( + loss_type='L1Loss', + loss_reduction='mean' + ), + ), + train=dict( + print_interval=100, + output_dir='output/edvr', + generator=dict( + lr_schedule=dict( + total_steps=[10000] + ) + ) + ), + log_file='edvr_train.log', +) \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/requirements.txt b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..a0cff5f86ffff8ad9465fc71c20b9c28d85c89d2 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/requirements.txt @@ -0,0 +1,4 @@ +tensorflow==1.15 +opencv-python +yacs +tqdm \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/8p.json b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/8p.json new file mode 100644 index 0000000000000000000000000000000000000000..4532a33910ee4aff2ccde7779255c5373f34ad88 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/8p.json @@ -0,0 +1,109 @@ +{ + "board_id": "0x002f", + "chip_info": "910", + "deploy_mode": "lab", + "group_count": "1", + "group_list": [ + { + "device_num": "8", + "server_num": "1", + "group_name": "", + "instance_count": "8", + "instance_list": [ + { + "devices": [ + { + "device_id": "0", + "device_ip": "192.168.100.101" + } + ], + "rank_id": "0", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "1", + "device_ip": "192.168.101.101" + } + ], + "rank_id": "1", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "2", + "device_ip": "192.168.102.101" + } + ], + "rank_id": "2", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "3", + "device_ip": "192.168.103.101" + } + ], + "rank_id": "3", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "4", + "device_ip": "192.168.100.100" + } + ], + "rank_id": "4", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "5", + "device_ip": "192.168.101.100" + } + ], + "rank_id": "5", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "6", + "device_ip": "192.168.102.100" + } + ], + "rank_id": "6", + "server_id": "172.17.1.120" + }, + { + "devices": [ + { + "device_id": "7", + "device_ip": "192.168.103.100" + } + ], + "rank_id": "7", + "server_id": "172.17.1.120" + } + ] + } + ], + "para_plane_nic_location": "device", + "para_plane_nic_name": [ + "eth0", + "eth1", + "eth2", + "eth3", + "eth4", + "eth5", + "eth6", + "eth7" + ], + "para_plane_nic_num": "8", + "status": "completed" +} diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/create_new_experiment.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/create_new_experiment.sh new file mode 100644 index 0000000000000000000000000000000000000000..dfef0967bd4b2f59c87b08eb28dd66f010b31464 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/create_new_experiment.sh @@ -0,0 +1,12 @@ +#!/bin/bash +new_env=$1 +cur_dir=`pwd` +root_dir=${cur_dir} + +if [ ! -d ${new_env} ];then + mkdir ${root_dir}/${new_env} + cd ${root_dir}/${new_env} + ln -s ../src src + ln -s ../configs configs + ln -s ../scripts scripts +fi diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/env.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/env.sh new file mode 100644 index 0000000000000000000000000000000000000000..789fb1a92be5248f26184f20edf2dcced7b3d5cd --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/env.sh @@ -0,0 +1,11 @@ +# !/bin/bash + +export CUSTOM_OP_LIB_PATH=/usr/local/Ascend/fwkacllib/ops/framework/built-in/tensorflow/ +export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/:/usr/lib/:/usr/local/Ascend/fwkacllib/lib64/:/usr/local/Ascend/driver/lib64/common/:/usr/local/Ascend/driver/lib64/driver/:/usr/local/Ascend/add-ons/:/usr/local/Ascend/fwkacllib/lib64/plugin/opskernel:/usr/local/Ascend/fwkacllib/lib64/plugin/nnengine:/usr/local/Ascend/atc/lib64/plugin/opskernel:/usr/local/Ascend/atc/lib64/plugin/nnengine:/usr/local/Ascend/atc/lib64/stub:/usr/local/Ascend/acllib/lib64:/usr/local/python3.7/lib/:/usr/local/python3.7/lib/python3.7/site-packages/torch/lib/ +export PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/atc/python/site-packages:/usr/local/Ascend/python/site-packages:/usr/local/Ascend/fwkacllib/python/site-packages:/usr/local/Ascend/fwkacllib/python/site-packages/auto_tune.egg/auto_tune:/usr/local/Ascend/fwkacllib/python/site-packages/schedule_search.egg:/usr/local/Ascend/opp/op_impl/built-in/ai_core/tbe:usr/local/Ascend/tfplugin/latest/tfplugin/python/site-packages:${PYTHONPATH} +export TOOLCHAIN_HOME=/usr/local/Ascend/toolkit +export PATH=$PATH:/usr/local/Ascend/fwkacllib/ccec_compiler/bin:/usr/local/Ascend/toolkit/bin:/usr/local/Ascend/fwkacllib/bin:/usr/local/Ascend/atc/bin:/usr/local/python3.7/bin/ +export ASCEND_OPP_PATH=/usr/local/Ascend/opp +export ASCEND_AICPU_PATH=/usr/local/Ascend +export SOC_VERSION=Ascend910 +export HCCL_CONNECT_TIMEOUT=600 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_8p.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..82bea58482c10cbcbb0a6a517eafe1a3fdedafcb --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_8p.sh @@ -0,0 +1,11 @@ +#!/bin/bash +cur_dir=`pwd` +root_dir=${cur_dir} + +mkdir data +for i in $(seq 0 7) +do + if [ ! -d "D$i" ];then + bash scripts/create_new_experiment.sh D${i} + fi +done diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_hccl_json.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_hccl_json.py new file mode 100644 index 0000000000000000000000000000000000000000..e0a6c2efdb659a8a2fad2e0420a9b563b7fc938b --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/prepare_hccl_json.py @@ -0,0 +1,41 @@ +import os +import sys +import copy +from collections import OrderedDict +import json + + +def parse_json(json_file): + with open(json_file, 'r') as f: + config = json.load(f, object_pairs_hook=OrderedDict) + return config + + +def generate_json(device_list, config, target_file): + new_config = copy.deepcopy(config) + device_insts = [] + insta_list = new_config["group_list"][0]["instance_list"] + rank = 0 + for inst in insta_list: + if inst["devices"][0]["device_id"] in device_list: + inst["rank_id"] = str(rank) + device_insts.append(inst) + rank += 1 + new_config["group_list"][0]["device_num"] = str(rank) + new_config["group_list"][0]["instance_count"] = str(rank) + new_config["group_list"][0]["instance_list"] = device_insts + + print(f'[INFO] Writing out hccl config json file to {target_file}') + with open(target_file, 'w') as f: + json.dump(new_config, f) + + +if __name__ == '__main__': + device_lists = sys.argv[1] + source_json_file = sys.argv[2] + target_file = sys.argv[3] + + device_lists = device_lists.strip().split(',') + config = parse_json(source_json_file) + + generate_json(device_lists, config, target_file) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_freeze.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_freeze.sh new file mode 100644 index 0000000000000000000000000000000000000000..d3bb74eb94bc7df02af04548d0382c4375cacee3 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_freeze.sh @@ -0,0 +1,38 @@ +#!/bin/bash +CKPT=$1 +CONFIG_FILE=$2 +DEVICE_ID=0 +DEVICE_RANK=1 + +source scripts/env.sh + +#export PRINT_MODEL=1 +export MOX_USE_NPU=1 +export FUSION_TENSOR_SIZE=2000000000 +export MOX_USE_TF_ESTIMATOR=0 +export MOX_USE_TDT=1 + +export HEARTBEAT=1 +export CONITNUE_TRAIN=true +export LOG_DIR=./log + +export ASCEND_GLOBAL_EVENT_ENABLE=0 +export ASCEND_GLOBAL_LOG_LEVEL=3 +export TF_CPP_MIN_LOG_LEVEL=3 + +# Turn profiling on +export JOB_ID=123456789 +export DEVICE_ID=${DEVICE_ID} +export DEVICE_INDEX=${DEVICE_ID} +export RANK_ID=${DEVICE_ID} +export RANK_SIZE=${DEVICE_RANK} +if [ ${DEVICE_RANK} -gt 1 ]; then + export RANK_TABLE_FILE=scripts/${DEVICE_RANK}p.json +fi + +rm -rf kernel_meta + +python3 src/main.py \ + --config-file ${CONFIG_FILE} \ + mode freeze \ + checkpoint ${CKPT} diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_inference.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_inference.sh new file mode 100644 index 0000000000000000000000000000000000000000..a20db0742dd92b32b49d37e69fd5f08f281bb5bb --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_inference.sh @@ -0,0 +1,179 @@ +#!/bin/bash + +devices=$1 +models=$2 +dir=$3 +codec_file=$4 + +resource_file='resource.json' +if [ -z "$4" ]; then + codec_file=configs/codecs/default_sdr_x264.json +fi +video_file_ext=$(cat ${codec_file} | python3 -c "import sys, json; print(json.load(sys.stdin)['format'])") + +# Set models +declare -A edvr=( +["config"]="configs/models/edvr_config.py" +["ckpt"]="outputs/edvr/TempoEDVR-280000" +) + +readarray -d , -t models <<< "${models}," +unset 'models[$((${#models[@]}-1))]' + +# Remove the last / if it exists +echo "$dir" | grep '/$' +if [ $? -eq 0 ] +then + dir=${dir%/} +fi + +# Set FPS +FPS=$(echo $dir | grep -Eo '[0-9]+[\.]?[0-9]+FPS' | grep -Eo '[0-9]+[\.]?[0-9]+') +FPS=$(awk -vp=$FPS -vq=1 'BEGIN{printf "%.3f" ,p * q}') + +# Check whether has been vfi +if test "${dir#*vfi}" != "${dir}" +then + FPS=$(awk -vp=${FPS} -vq=2 'BEGIN{printf "%0.3f" ,p * q}') +fi + +# Create temp txt file to record subvideo names +cur_dir=`pwd` +txt_file="temp.txt" +if [ -e "${dir_out}_videos/${txt_file}" ] +then + rm -f ${dir_out}_videos/${txt_file} +fi + +source scripts/env.sh + +function cmd() { + device_id=$1 + device_rank=$2 + rank_id=$3 + model_name=$4 + dir_in=$5 + dir_out=$6 + io_backend=$7 + + # Turn profiling on + export JOB_ID=123456789 + export DEVICE_ID=${device_id} + export DEVICE_INDEX=${device_id} + export RANK_ID=${rank_id} + export RANK_SIZE=${device_rank} + + export MOX_USE_NPU=1 + export FUSION_TENSOR_SIZE=2000000000 + export MOX_USE_TF_ESTIMATOR=0 + export MOX_USE_TDT=1 + + export HEARTBEAT=1 + export CONITNUE_TRAIN=true + export LOG_DIR=./log + + export ASCEND_GLOBAL_EVENT_LEVEL=0 + export ASCEND_GLOBAL_EVENT_ENABLE=0 + export ASCEND_GLOBAL_LOG_LEVEL=3 + export TF_CPP_MIN_LOG_LEVEL=3 + + rm -rf kernel_meta + rm -rf ~/ascend/log/plog + + declare -n model="$model_name" # model is a reference + python3 src/main.py \ + --config-file ${model["config"]} \ + mode inference \ + data.data_dir ${dir_in} \ + data.inference.auto_adapt_input True\ + inference.result_dir ${dir_out} \ + inference.io_backend ${io_backend} \ + inference.ffmpeg.video_filename ${rank_id}.${video_file_ext} \ + inference.ffmpeg.codec_file ${codec_file} \ + inference.ffmpeg.fps ${FPS} \ + env.rank_size ${RANK_SIZE} \ + checkpoint ${model["ckpt"]} \ + env.device 'npu' +} + +# read device id to list +function mfcb { local val="$4"; "$1"; eval "$2[$3]=\$val;"; }; +function val_ltrim { if [[ "$val" =~ ^[[:space:]]+ ]]; then val="${val:${#BASH_REMATH[0]}}"; fi; }; +function val_rtrim { if [[ "$val" =~ [[:space:]]+$ ]]; then val="${val:0:${#val}-${#BASH_REMATH[0]}}"; fi; }; +function val_trim { val_ltrim; val_rtrim; } + +if [[ -z "$1" ]]; then + echo "[INFO] device_id not set. Input argument could be like '1' or '0,1,2'." + echo "[INFO] Set device_id=0 by default." + device_list=0 + device_rank=1 +else + readarray -c1 -C 'mfcb val_trim device_list' -td, <<<"$devices,"; unset 'device_list[-1]'; declare -a device_list; + device_rank=${#device_list[@]} +fi +echo "[INFO] device_list: ${device_list[@]}" +echo "[INFO] device_rank: ${device_rank}" + + +cnt=0 +io_backend="disk" +for model_name in "${models[@]}"; do + if [[ "$model_name" =~ "vfi" ]]; then + # if model_name contains "vfi", multiply the fps + # bash does not support floating point + FPS=$(awk -vp=$FPS -vq=2 'BEGIN{printf "%.3f" ,p * q}') + fi + + if [[ "$var" =~ "hdr" && "$1" = "" ]]; then + codec_file=configs/codecs/exr2020_to_hlg_hdr_x264.json + video_file_ext=$(cat ${codec_file} | python3 -c "import sys, json; print(json.load(sys.stdin)['format'])") + fi + + cnt=$(( $cnt + 1 )) + + dir_out="${dir}_${model_name}" + if [ ! -d ${dir_out} ]; then + mkdir ${dir_out} + fi + + # set video output for the last model + if [ $cnt -eq ${#models[@]} ]; then + io_backend="disk:ffmpeg" + if [ ! -d "${dir_out}_videos" ]; then + mkdir ${dir_out}_videos + fi + fi + + if [ $device_rank -gt 1 ]; then + max_device_rank=`expr ${device_rank} - 1` + for d_id in ${!device_list[@]}; do + cd ${cur_dir} + bash scripts/create_new_experiment.sh D_${d_id} + cd D_${d_id} + # set video output for the last model + if [ $cnt -eq ${#models[@]} ]; then + # write video name to text file + echo "file ${dir_out}_videos/${d_id}.${video_file_ext}" >> ${dir_out}_videos/${txt_file} + fi + # inference + if [ $d_id -ne ${max_device_rank} ]; then + cmd ${device_list[$d_id]} ${device_rank} ${d_id} ${model_name} ${dir} ${dir_out} ${io_backend} & + else + cmd ${device_list[$d_id]} ${device_rank} ${d_id} ${model_name} ${dir} ${dir_out} ${io_backend} || exit 1 + fi + + done + # wait untill all jobs done + wait < <(jobs -p) + # concat all subvideos after the last model inference + if [ $cnt -eq ${#models[@]} ]; then + ffmpeg -y -f concat -safe 0 -i ${dir_out}_videos/${txt_file} -c copy ${dir_out}.${video_file_ext} + fi + else + cmd ${device_list[$d_id]} ${device_rank} ${device_list[$d_id]} ${model_name} ${dir} ${dir_out} ${io_backend} || exit 1 + mv ${dir_out}_videos/${device_list[$d_id]}.${video_file_ext} ${dir_out}.${video_file_ext} + fi + # update path + dir="${dir_out}" +done + diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_train.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_train.sh new file mode 100644 index 0000000000000000000000000000000000000000..583f8443828b5ef73923cb1f989defe569e8b360 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/run_train.sh @@ -0,0 +1,89 @@ +#!/bin/bash + +devices=$1 +config_file=$2 + +source scripts/env.sh + +function cmd() { + device_id=$1 + device_rank=$2 + rank_id=$3 + config_file=$4 + rank_table_file=$5 + + # Turn profiling on + export JOB_ID=123456789 + export DEVICE_ID=${device_id} + export DEVICE_INDEX=${device_id} + export RANK_ID=${rank_id} + export RANK_SIZE=${device_rank} + if [ -n "$rank_table_file" ]; then + export RANK_TABLE_FILE=${rank_table_file} + fi + + export MOX_USE_NPU=1 + export FUSION_TENSOR_SIZE=2000000000 + export MOX_USE_TF_ESTIMATOR=0 + export MOX_USE_TDT=1 + + export HEARTBEAT=1 + export CONITNUE_TRAIN=true + export LOG_DIR=./log + + export ASCEND_GLOBAL_EVENT_LEVEL=0 + export ASCEND_GLOBAL_EVENT_ENABLE=0 + export ASCEND_GLOBAL_LOG_LEVEL=3 + export TF_CPP_MIN_LOG_LEVEL=3 + + python3 src/main.py \ + --config-file ${config_file} \ + env.rank_size ${device_rank} \ + env.device 'npu' +} + +# read device id to list +function mfcb { local val="$4"; "$1"; eval "$2[$3]=\$val;"; }; +function val_ltrim { if [[ "$val" =~ ^[[:space:]]+ ]]; then val="${val:${#BASH_REMATH[0]}}"; fi; }; +function val_rtrim { if [[ "$val" =~ [[:space:]]+$ ]]; then val="${val:0:${#val}-${#BASH_REMATH[0]}}"; fi; }; +function val_trim { val_ltrim; val_rtrim; } + +if [[ -z "$1" ]]; then + echo "[INFO] device_id not set. Input argument could be like '1' or '0,1,2'." + echo "[INFO] Set device_id=0 by default." + device_list=0 + device_rank=1 +else + readarray -c1 -C 'mfcb val_trim device_list' -td, <<<"$devices,"; unset 'device_list[-1]'; declare -a device_list; + device_rank=${#device_list[@]} +fi +echo "[INFO] device_list: ${device_list[@]}" +echo "[INFO] device_rank: ${device_rank}" + +cur_dir=`pwd` +if [ $device_rank -gt 1 ]; then + source_json=scripts/8p.json + trimmed_dev_list=`echo ${device_list[@]} | tr -d ' '` + if [ ${device_rank} -eq 8 ]; then + target_json=$source_json + echo "[INFO] 8p using source hccl config file: ${target_json} ..." + else + target_json=scripts/${device_rank}p_${trimmed_dev_list}.json + echo "[INFO] (Re)Generating hccl config file: ${target_json} ..." + python3 scripts/prepare_hccl_json.py ${devices} ${source_json} ${target_json} + fi + + max_device_rank=`expr ${device_rank} - 1` + for d_id in ${!device_list[@]}; do + cd ${cur_dir} + bash scripts/create_new_experiment.sh D_${device_list[$d_id]} + cd D_${device_list[$d_id]} + if [ $d_id -ne ${max_device_rank} ]; then + cmd ${device_list[$d_id]} ${device_rank} ${d_id} ${config_file} ${target_json} & + else + cmd ${device_list[$d_id]} ${device_rank} ${d_id} ${config_file} ${target_json} && echo "[INFO] Train done." + fi + done +else + cmd ${device_list[$d_id]} ${device_rank} 0 ${config_file} +fi diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/video2frames.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/video2frames.sh new file mode 100644 index 0000000000000000000000000000000000000000..edec343ca80fa558e29b273c5dd1b129e5d51cf9 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/scripts/video2frames.sh @@ -0,0 +1,170 @@ +#!/bin/bash + +helpFunction() +{ + echo "" + echo "Usage: $0 [-h] [-i VIDEO_PATH] [-o OUTPUT_PATH] [-f FILTERS] [-l LOG_DIR] [-q]" + echo -e "\t-i: Input source video file." + echo -e "\t-o: Output frames directory." + echo -e "\t-f: Filters for deinterlacing the video when it's interlaced. Default 'bobweaver'." + echo -e "\t-r: Frame rate if interlaced. Default '1' " + echo -e "\t-l: Log directory." + echo -q "\t-q: Quiet mode. Will not print any information." + exit 1 # Exit script after printing help +} + +while getopts "i:o:f:l:r:hq" opt +do + case "$opt" in + i ) video_path="$OPTARG" ;; + o ) frames_dir="$OPTARG" ;; + f ) filter="$OPTARG" ;; + l ) log_dir="$OPTARG" ;; + r ) rate="$OPTARG" ;; + q ) quiet=true ;; + h ) helpFunction ;; # Print helpFunction in case parameter is non-existent + esac +done + +if [ x"$video_path" = x"" -o ! -f "$video_path" ]; then + echo "[ERROR] Invalid video path: $video_path" + helpFunction +fi + +if [ x"$quiet" = x"" ]; then + quiet=false +fi + +if [ x"$rate" = x"" ]; then + rate='1' +fi + +timestamp=$(date '+%Y%m%dR%H%M%S') +if [ x"$log_dir" = x"" ]; then + log_dir=/tmp/.mindvideo +fi + +if [ ! -d "$log_dir" ]; then + mkdir -p $log_dir +fi +report_log=${log_dir}/${timestamp}_probe.log +extract_log=${log_dir}/${timestamp}_video.log + +# ======================================================================================= +# check which type of videos: +# progressive, pseudo-interlaced (will be treated as progressive), truly interlaced +# ======================================================================================= +test_nframes=400 +export FFREPORT=file=$extract_log +if [ -e $report_log ]; then + rm $report_log +fi + +ffmpeg -report -i ${video_path} -vframes $test_nframes -vf idet -f null - 2> $report_log +wait < <(jobs -p) + +nframes=( $(cat $report_log | grep 'Multi frame detection: ' | grep -woP '(\d+)') ) +# nframes: [tff, bff, progressive, undetermined] + +n_frame_interlaced=$(awk -vp=${nframes[0]} -vq=${nframes[1]} 'BEGIN{printf "%d" ,p + q}') +# echo $n_frame_interlaced + +if [ $n_frame_interlaced -gt ${nframes[2]} ]; then + type=interlaced +else + type=progressive +fi + +# if it's progressive, use none filter regardless of the previous settings +if [ $type = "progressive" ]; then + filter_name=none +elif [ x"$filter" = x"" ]; then + # else if it's interlaced, used bobweaver as the default deintelacing filter + filter_name=bobweaver +else + filter_name=$filter +fi + +if [ $quiet = "false" ]; then + echo "[INFO] Video type: $type; Filter: ${filter_name}" +fi + +# ====================================================================================== +# extract frames from video with the given deinterlacing filter. +# record the fps first. +# ====================================================================================== +fps=$(ffprobe -v error -select_streams v -of default=noprint_wrappers=1:nokey=1 -show_entries stream=r_frame_rate $video_path) +fps=$(echo "print(f'{$fps:.3f}')" | python3) +frames_fps=$fps +#n_total_frames=$(ffprobe -v error -select_streams v:0 -count_packets -of default=noprint_wrappers=1:nokey=1 -show_entries stream=nb_read_packets $video_path) + +# determine the filter +if [ "$filter_name" = "bobweaver" ]; then + if [ $type = "interlaced" ] && [ $rate = '2' ] ; then + # deinterlace with 2x fps + filter_cmd="-vf bwdif=1:0:0" + frames_fps=$(echo "print(f'{2*$frames_fps:.3f}')" | python3) + else + filter_cmd="-vf bwdif=0:0:0" + fi +elif [ "$filter_name" = "yadif" ]; then + if [ $type = "interlaced" ] && [ $rate = '2' ] ; then + # deinterlace with 2x fps + filter_cmd="-vf yadif=1:0:0" + frames_fps=$(echo "print(f'{2*$frames_fps:.3f}')" | python3) + else + filter_cmd="-vf yadif=0:0:0" + fi +elif [ "$filter_name" = "QTGMC" ]; then + if [ $type = "interlaced" ] && [ $rate = '2' ] ; then + filter_cmd="50fps.vpy" + frames_fps=$(echo "print(f'{2*$frames_fps:.3f}')" | python3) + else + filter_cmd="25fps.vpy" + fi +elif [ "$filter_name" = "none" ]; then + filter_cmd="" +fi + +frames_dir=$frames_dir/${frames_fps}FPS_frames + +if [ ! -d "$frames_dir" ]; then + mkdir -p $frames_dir +fi + +# ============================================================================== +# check whether is HDR +# ============================================================================== +COLORS=$(ffprobe -show_streams -v error "${video_path}" |egrep "^color_transfer|^color_space=|^color_primaries=" |head -3) +for C in $COLORS; do + if [[ "$C" = "color_space="* ]]; then + COLORSPACE=${C##*=} + elif [[ "$C" = "color_transfer="* ]]; then + COLORTRANSFER=${C##*=} + elif [[ "$C" = "color_primaries="* ]]; then + COLORPRIMARIES=${C##*=} + fi +done + +if [ "${COLORSPACE}" = "bt2020nc" ] && [ "${COLORTRANSFER}" = "smpte2084" ] && [ "${COLORPRIMARIES}" = "bt2020" ]; then + ext='exr' +elif [ "${COLORSPACE}" = "bt2020nc" ] && [ "${COLORTRANSFER}" = "arib-std-b67" ] && [ "${COLORPRIMARIES}" = "bt2020" ]; then + ext='exr' +else + ext='png' +fi + +if [ $quiet = "false" ]; then + echo "[INFO] Extracting frames from ${video_path}. This may take a while." + echo "[INFO] Cmd: ffmpeg -i ${video_path} $filter_cmd $frames_dir/%08d.${ext}" +fi + +if [ "$filter_name" = "QTGMC" ]; then + # This is only valid when in x86 + vspipe --y4m $filter_cmd -a "video_path=${video_path}" - | ffmpeg -i pipe: $frames_dir/%08d.${ext} +else + ffmpeg -i ${video_path} $filter_cmd $frames_dir/%08d.${ext} +fi +wait < <(jobs -p) + +echo "$type, ${fps}, ${frames_fps}" \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ed995e3d4b86bc4ed44ac806dca7afe1598bd5ce --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/__init__.py @@ -0,0 +1,160 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os + +from src.dataloaders.dataloader import TfDataloader +from src.utils.exceptions import * +from src.utils.logger import logger +from src.utils.world import world + + +def build_train_dataloader(config, _world=None): + """ + Build train dataloader given config. + + Args: + config: yacs node, configuration. + + Returns: + generator of list[tensor]. + """ + + # Import the dataset classes only when needed to avoid import error + from src.dataloaders.train_dataset import ( + OfflineTrainDataset, + OnlineTrainDataset, + DummyTrainDataset, + MixtureDatasets, + ) + + # Support multi-dataset whose path are concated with ':' + # in cfg.data.data_dir + data_dir_list = config.data.data_dir.split(':') + task = config.task + online_degradation_mode = config.data.train.degradation.online + distributed = config.env.rank_size > 1 + device = config.env.device + batchsize = config.data.train.batch_size + + world_inst = _world or world + # _world should be initialized + if not world_inst.is_initialized: + raise WorldUninitializedError('World not initialized.') + + if config.debug_mode: + dataset_cls = DummyTrainDataset + elif online_degradation_mode: + dataset_cls = OnlineTrainDataset + else: + dataset_cls = OfflineTrainDataset + + if len(data_dir_list) > 1: + dataset = MixtureDatasets.from_datadir( + dataset_cls, data_dir_list, cfg=config) + else: + dataset = dataset_cls(data_dir=data_dir_list[0], cfg=config) + + dataloader = TfDataloader(dataset, batchsize, + distributed=distributed, + device=device) + return dataloader.batch_list + + +def build_test_dataloader(config, _world=None): + """ + Build inference dataloader given config. + + Args: + config: yacs node, configuration. + + Returns: + dict, contains the data term. + """ + from src.dataloaders.test_dataset import ( + VSRTestDataset, + DenoiseTestDataset, + VFITestDataset, + HDRTestDataset, + DummyTestDataset, + MixtureTestDataset, + ComposedTestDataset + ) + + TASK_MAP_TO_DATASET = { + 'vsr': VSRTestDataset, + 'denoise': DenoiseTestDataset, + 'vfi': VFITestDataset, + 'hdr': HDRTestDataset, + 'face': DenoiseTestDataset, + } + + data_dir_list = config.data.data_dir.split(':') + distributed = config.env.rank_size > 1 + task = config.task + world_inst = _world or world + # _world should be initialized + if not world_inst.is_initialized: + raise WorldUninitializedError('World not initialized.') + + assert task in TASK_MAP_TO_DATASET + + if config.debug_mode: + dataset_cls = DummyTestDataset + else: + dataset_cls = TASK_MAP_TO_DATASET[task] + + if config.debug_mode: + dataset = dataset_cls(data_dir=data_dir_list[0], cfg=config) + elif len(data_dir_list) > 1: + # For multi-dataset + dataset = MixtureTestDataset.from_datadir( + dataset_cls, data_dir_list, cfg=config) + else: + files = os.listdir(data_dir_list[0]) + if os.path.isdir(os.path.join(data_dir_list[0], files[0])): + # For dataset with multiple clips + dataset = ComposedTestDataset.from_datadir( + dataset_cls, data_dir_list[0], files, cfg=config + ) + else: + # Foe a single dataset with frames + dataset = dataset_cls(data_dir=data_dir_list[0], cfg=config) + + # Manually shard the dataset to inference on multiple devices. + if distributed: + dataset.shard(world_inst.rank_size, world_inst.rank_id) + return dataset + + +def build_dataloader(cfg, **kwargs): + """ + Build dataloader given scenario and configurations. + + Args: + cfg: yacs node, global configuration. + **kwargs: argument dicts. + """ + if cfg.mode in ['train', 'eval']: + dataloader = build_train_dataloader(cfg) + elif cfg.mode in 'inference': + dataloader = build_test_dataloader(cfg, **kwargs) + elif cfg.mode == 'freeze': + dataloader = None + else: + raise KeyError + return dataloader + + +__all__ = ['build_train_dataloader', 'build_test_dataloader', 'build_dataloader'] diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/dataloader.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/dataloader.py new file mode 100644 index 0000000000000000000000000000000000000000..c66399343856674c0b4192adbae1b5be6c4fe5c9 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/dataloader.py @@ -0,0 +1,114 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + + +class TfDataloader: + """A wrapper of the tensorflow Dataset class. + + This class aims to make the dataset construction more convenient. Users + are only required to implement the dataset class and return the specific + information, then TfDataloader will wrap the dataset class and load the + data, similar to Pytorch dataset and dataloader. + + Args: + dataset: Dataset class. See `src.dataloaders.train_dataset` + batch_size: int + drop_remainder: boolean, whether drop the last remainder terms. + Necessary on Ascend NPU. Default is True. + distributed: boolean, whether to use distribute dataloader. + shuffle: boolean, whether to shuffle the dataset. + repeat: boolean, whether to repeat the dataset (usually in training). + device: str, hardware used for accelerating. Optional in ['npu', 'cpu'] + """ + def __init__(self, dataset, batch_size=2, drop_remainder=True, + distributed=False, shuffle=True, repeat=True, device='npu', + _world=None): + self.batch_size = batch_size + self.drop_remainder = drop_remainder + self.distributed = distributed + self.device = device + self.dataset = dataset + self.shuffle = shuffle + self.repeat = repeat + self.world = _world + self.sample_indices = list(range(len(self.dataset))) + + self.build_iterator() + + def get_item(self, index): + """ Tensorflow wrapper of the _get_item method of Dataset class + + Args: + index: int, called by tensorflow.data.Dataset.map function. + """ + # The dtype and shape are defined by the dataset. Otherwise, + # tf does not know the shape. + data = tf.numpy_function(lambda x: self.dataset[x], + [index], + self.dataset.data_dtype) + + for d, shape in zip(data, self.dataset.data_shape): + d.set_shape(tuple(shape)) + return data + + def build_iterator(self): + """ Build dataloader iterator """ + video_dataset = tf.data.Dataset.from_tensor_slices(self.sample_indices) + + if self.shuffle: + video_dataset = video_dataset.shuffle(len(self.dataset)) + + video_dataset = video_dataset.map(self.get_item, + num_parallel_calls=tf.data.experimental.AUTOTUNE) + video_dataset = video_dataset.batch(self.batch_size, + drop_remainder=self.drop_remainder) + + if self.repeat: + video_dataset = video_dataset.repeat() + + if self.distributed: + video_dataset = video_dataset.shard(self.world.rank_size, + self.world.rank_id) + + video_dataset = video_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) + + iterator = video_dataset.make_one_shot_iterator() + + # tensorflow will wrap all the numpy.ndarray as tensors + self.batch_list = iterator.get_next() + + +def build_dataloader(dataset, batch_size=2, drop_remainder=True, distributed=False, + shuffle=True, repeat=True, device='npu'): + """ + Build dataloader given the dataset. + + Args: + dataset: Dataset class. See `src.dataloaders.train_dataset` + batch_size: int + drop_remainder: boolean, whether drop the last remainder terms. + Necessary on Ascend NPU. Default is True. + distributed: boolean, whether to use distribute dataloader. + shuffle: boolean, whether to shuffle the dataset. + repeat: boolean, whether to repeat the dataset (usually in training). + device: str, hardware used for accelerating. Optional in ['npu', 'cpu'] + + Returns: + list[tensorlfow tensor] + """ + dataloader = TfDataloader(dataset, batch_size, drop_remainder, + distributed, shuffle, repeat, device) + return dataloader.batch_list diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/test_dataset.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/test_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..a6c1a148eb43b7924b04e9c25509336b3ca9fd7a --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/test_dataset.py @@ -0,0 +1,668 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os + +import numpy as np +from src.dataloaders.utils import ( + get_consecutive_frame_indices, + load_batch_image, + supported_file_format +) +from src.utils.file_io import imread +from src.utils.logger import logger + + +class _TestDataset: + """ The base class for training dataset. + + The derived classes should implement these functions: + _get_item: an indexing like item fetching method. + data_shape: returns the shape of each item produced by _get_item. + Shapes are like (t, h_lq, w_lq, c), (t, h_gt, w_gt, c). + data_dtype: returns the tensorflow dtype of each item produced + by _get_item. + + Args: + data_dir: str, top data directory of the test data. + Contains frames. + cfg: yacs node, global configuration. + """ + def __init__(self, data_dir, cfg): + """ Initialization of train dataset + + """ + self.cfg = cfg + self.scale = cfg.model.scale + + # Record the frame rate value, which will be used when determining + # the output filename. + self.frame_rate = 1 + self.num_lq_frames = cfg.model.num_net_input_frames + self.color_space = cfg.data.color_space + + # By default, all the frames will be infered. + if len(cfg.data.inference.subset_range) == 2: + # If given the frame index range to infer + min_index = cfg.data.inference.subset_range[0] + max_index = cfg.data.inference.subset_range[1] + + # Frame indices between [min_index, max_index] will be infered + logger.info(f'Inference range {min_index}, {max_index} in {data_dir}.') + is_subset = lambda x: min_index <= x <= max_index + elif cfg.data.inference.subset_list: + # If given the list of indices to infer + logger.info(f'Inference list {cfg.data.inference.subset_list} in {data_dir}.') + is_subset = lambda x: x in cfg.data.inference.subset_list + elif len(cfg.data.inference.subset_range) > 0: + # This is an invalid setting + logger.error(f'cfg.data.inference.subset_range should of length 2, ' + f'[min_index, max_index], ' + f'but is given {cfg.data.inference.subset_range}. ' + f'All the images will be inferred.') + is_subset = lambda x: True + else: + # This comp_fn will not be used, since `always_infer` is True + is_subset = lambda x: True + logger.info(f'Inference all images in {data_dir}.') + + def traverse_folder(dir): + file_list = list( + sorted( + filter( + lambda x: supported_file_format(x), + os.listdir(dir) + ) + ) + ) + num_frames = len(file_list) + base_index = int(file_list[0].split('.')[0]) + ext = file_list[0].split('.')[1] + file_meta = [dict(source_folder=dir, + filename=f, + num_frames=num_frames, + base_index=base_index, + ext=ext) + for f in file_list + if is_subset(int(f.split('.')[0]))] + return file_meta + + # Reseved value for nested fold structure. + # Will be used when save the results. + self._clipname = '' + + self.sample_list = traverse_folder(data_dir) + self.num_clips = 1 + + if len(self.sample_list) == 0: + raise FileNotFoundError(f'Found no files in {data_dir}') + + # Preload one lq sample to obtain the input shape + if self.sample_list: + # Record the ext. For VSR\Denoise\VFI tasks, the output will follow + # the input ext. For HDR, the input ext could be 'png', the output + # ext will be 'exr'. + self.ext = self.sample_list[0]['ext'] + self.output_ext = self.ext + + center_frame_meta = self.sample_list[0] + filename = center_frame_meta['filename'] + center_frame_index = int(filename[:-4]) + num_digits = len(filename[:-4]) + lq_path = center_frame_meta['source_folder'] + lq_file = os.path.join( + lq_path, + f'{center_frame_index:0{num_digits}d}.{self.ext}') + im = imread(lq_file) + self.lq_size = im.shape[:2] + + self.base_index = center_frame_meta['base_index'] + + @property + def raw_image_size(self): + """ + Returns the raw input image size (h, w). + + Returns: + tuple, the size of the input image + """ + return self.lq_size + + @property + def expect_output_file_ext(self): + """ + Returns the expected output file ext. For tasks other than HDR, + the output ext is the same with the input ext. For HDR, the output + will be 'exr'. + + Returns: + str, file extension. + """ + return self.output_ext + + @property + def expect_output_resolution(self): + """ Returns the expected output size (h, w). + + Returns: + tuple, the size of the output image + """ + return (self.scale * self.lq_size[0], self.scale * self.lq_size[1]) + + def __len__(self): + """ + Returns the number of samples to infer. When used in multi-device + inference. + + Returns: + int, the number of samples to infer. + """ + return len(self.sample_list) + + def __getitem__(self, item): + # No clue on the real input size, and thus does not require + # shape checking. + return self._get_item(item) + + def set_clip_name(self, clipname): + """ + Set the clip name for this dataset. + + Args: + clipname: str + """ + self._clipname = clipname + + def _shard_segment(self, rank_size, rank_id): + """ + Shard the data into ${rank_size} segments. For example, + case 1: + num_samples = 10, + rank_size = 3, + shard: [[0, 1, 2, 3], [4, 5, 6], [7, 8, 9]], + shard len: [4, 3, 3] + case 2: + num_samples = 10, + rank_size = 2, + shard: [[0, 1, 2, 3, 4]. [5, 6, 7, 8, 9]], + shard len: [5, 5] + Args: + rank_size: int + rank_id: int, [0, rank_size) + """ + num_samples = len(self.sample_list) + res = num_samples % rank_size + shard_size_base = int(num_samples // rank_size) + + if rank_id < res: + start_idx = (shard_size_base + 1) * rank_id + end_idx = start_idx + shard_size_base + 1 + else: + start_idx = (shard_size_base + 1) * res + \ + shard_size_base * (rank_id - res) + end_idx = start_idx + shard_size_base + + if rank_size == rank_id + 1: + end_idx = num_samples + logger.info(f'Data shard {start_idx} - {end_idx - 1} (total {num_samples})', + force=True) + + self.sample_list = list(self.sample_list[start_idx:end_idx]) + + def _shard_interleave(self, rank_size, rank_id): + """ + Shard the data into ${rank_size} interlaced segments. For example, + case 1: + num_samples = 10, + rank_size = 3, + shard: [[0, 3, 6, 9], [1, 4, 7], [2, 5, 8]], + shard len: [4, 3, 3] + case 2: + num_samples = 10, + rank_size = 2, + shard: [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]], + shard len: [5, 5] + Args: + rank_size: int + rank_id: int, [0, rank_size) + """ + start_idx = rank_id + self.sample_list = list(self.sample_list[start_idx::rank_size]) + + def shard(self, rank_size, rank_id, segment=True): + """ + Shard the sample list according to the rank_size and rank_id + + Args: + rank_size: int + rank_id: int, [0, rank_size) + segment: boolean, whether to shard into consecutive segments + or interlaced segments. Default 'True' + """ + if segment: + self._shard_segment(rank_size, rank_id) + else: + self._shard_interleave(rank_size, rank_id) + + def _get_item(self, item): + raise NotImplementedError + + +class VSRTestDataset(_TestDataset): + """ + Test dataset for VSR task. + """ + def _get_item(self, index): + center_frame_meta = self.sample_list[index] + folder = center_frame_meta['source_folder'] + filename = center_frame_meta['filename'] + num_frames = center_frame_meta['num_frames'] + base_index = center_frame_meta['base_index'] + center_frame_index = int(filename.split('.')[0]) + num_digits = len(filename.split('.')[0]) + + lq_indices = get_consecutive_frame_indices( + center_frame_index, + self.num_lq_frames, + num_frames, + base_index, interval=1, + pad_mode='reflect' + ) + lq_files = [os.path.join(folder, f'{ind:0{num_digits}d}.{self.ext}') + for ind in lq_indices] + lq = load_batch_image(lq_files, target_color_space=self.color_space) + + if self.cfg.data.normalized and not (self.ext == 'exr'): + lq = np.clip(lq / 255., 0., 1.) + + # Record the center frame id, which will be used when outputing the results. + center_frame_name = \ + f'{lq_indices[self.num_lq_frames//2]:0{num_digits}d}.{self.output_ext}' + + # If self._clipname is not empty, i.e., there exist several folders + # in the source lq folder + if self._clipname != '': + center_frame_name = os.path.join(self._clipname, center_frame_name) + + return dict(output_file=center_frame_name, lq=lq) + + +class DenoiseTestDataset(VSRTestDataset): + """ + Test dataset for Denoise task. + """ + def __init__(self, data_dir, cfg): + super().__init__(data_dir, cfg) + # Note that the output is the same size as the input in denoise. + self.scale = 1 + self.frame_rate = 1 + + +# DummyTestDataset for debug +class DummyTestDataset(_TestDataset): + """ + Dummy test daset for debugging. + """ + def __init__(self, data_dir, cfg): # pylint: disable=super-init-not-called + h = cfg.data.inference.input_size[0] + \ + (cfg.data.inference.patch_pad_size*2 + if cfg.data.inference.eval_using_patch else 0) + + w = cfg.data.inference.input_size[1] + \ + (cfg.data.inference.patch_pad_size*2 + if cfg.data.inference.eval_using_patch else 0) + + c = 1 if (cfg.data.color_space=='gray') else 3 + shape_lq = (cfg.model.num_net_input_frames, h, w, c) + self.sample_list = [np.zeros(shape_lq).astype(np.float32)] * 100 + logger.info(f'Using dummy test dataset with {len(self.sample_list)} ' + f'element (for debug only). with sizeof {shape_lq}') + self.lq_size = (h, w) + + def _get_item(self, index): + lq = self.sample_list[index] + return dict(output_file='dummy.png', lq=lq) + + +class VFITestDataset(VSRTestDataset): + """ + Test dataset for VFI task. + + The total number of output frames will be: + `self.num_sample_list * self.frame_rate` + where `self.num_sample_list + self.frame_rate - 1` frames are directly + copied from the input, and `(self.num_sample_list - 1) * (self.frame_rate - 1)` + frames are interpolated. + + Generally, if a model requires `M` input frames, and output `N*(self.frame_rate-1)` + frames each batch, then we set `self.num_lq_frames=M`, `self.num_interp_frames=N`, + and the num of key frames equals to `N+1`. + + We must be aware that not all input frames will be inserted with interpolated + frames. A model may require 4 input source frames [A, B, C, D], and interpolate + only 1 frame between B and C. The number of required input frames is indicated + by the `num_lq_frames`. Meanwhile in this case, only the center frames B and C + are `key frames` while A and D are just auxiliary information frames. The number + of `key frames` are given by `self.num_interp_frames + 1` with the assumption + that the key frames only lie in the center of the input frames. + """ + def __init__(self, data_dir, cfg): + super().__init__(data_dir, cfg) + # The frame rate is given by the model configuration. + self.frame_rate = cfg.model.frame_rate + # The number of the output frames in each batch, + # **not multiplying the frame_rate**. + self.num_interp_frames = cfg.model.num_net_output_frames + + self.num_final_digits = int( + np.ceil( + np.log10(self.frame_rate * len(self.sample_list)))) + self.scale = 1 + + def __len__(self): + return len(self.sample_list) - self.num_interp_frames + + def _get_item(self, index): + # Get the initial key frame metadata + key_frame_ids = [] + frame_meta = self.sample_list[index] + lq_path = frame_meta['source_folder'] + filename = frame_meta['filename'] + num_total_frames = frame_meta['num_frames'] + base_index = frame_meta['base_index'] + num_digits = len(filename.split('.')[0]) + start_frame_index = int(filename.split('.')[0]) + + # The next self.num_interp_frames+1 frames are key frames + key_frame_ids.append(start_frame_index) + for i in range(start_frame_index+1, start_frame_index+self.num_interp_frames+1): + key_frame_ids.append(i) + num_final_digits = max(self.num_final_digits, num_digits) + + # Assuming the key frames are in the center of input frames, + # get the auxiliary frames + lq_indices = get_consecutive_frame_indices( + key_frame_ids, + self.num_lq_frames, + num_total_frames, base_index, + interval=1, + pad_mode='replicate' + ) + + lq_files = [os.path.join(lq_path, f'{ind:0{num_digits}d}.{self.ext}') + for ind in lq_indices] + lq = load_batch_image(lq_files, target_color_space=self.color_space) + if self.cfg.data.normalized: + lq = np.clip(lq / 255., 0., 1.) + + def _format_output_filename(frame_id, _num_digits, ext): + output_file = f'{frame_id:0{_num_digits}d}.{ext}' + if self._clipname != '': + # Format the output file with `${clip}/00000.png` like pattern + output_file = os.path.join(self._clipname, output_file) + return output_file + + # Prepare input copies for VFI output. + # Record both the source-target filename, as well as the key frames data, + # in the dict `input_file_copy`: + # key: target_output_file + # value: [source_input_file, target_output_data] + # One can use the copy the source_input_file or write out the data to + # target_file. + input_file_copy = dict() + output_files = [] + for i, k_id in enumerate(key_frame_ids[:-1]): # leave the last key frame + source_file = os.path.join(lq_path, f'{k_id:0{num_digits}d}.{self.ext}') + + index_in_indices = lq_indices.index(k_id) + data = lq[index_in_indices] + + new_frame_id = base_index + (k_id - base_index) * self.frame_rate + target_file = _format_output_filename(new_frame_id, + num_final_digits, + self.output_ext) + + input_file_copy[target_file] = [source_file, data] + output_files.extend([_format_output_filename(new_frame_id+j+1, + num_final_digits, + self.output_ext) + for j in range(self.frame_rate-1)]) + + if index == len(self) - 1: # copy the last key frame only when reaching the end + source_file = os.path.join(lq_path, + f'{key_frame_ids[-1]:0{num_digits}d}.{self.ext}') + + index_in_indices = lq_indices.index(key_frame_ids[-1]) + data = lq[index_in_indices] + + new_frame_id = base_index + (key_frame_ids[-1] - base_index) * self.frame_rate + target_file = _format_output_filename( + new_frame_id, + num_final_digits, + self.output_ext) + input_file_copy[target_file] = [source_file, data] + + # copy the final frame + for i in range(self.frame_rate-1): + new_frame_id = new_frame_id + 1 + target_file = _format_output_filename( + new_frame_id, + num_final_digits, + self.output_ext) + input_file_copy[target_file] = [source_file, data] + + if len(output_files) == 1: + output_files = output_files[0] + + return dict(output_file=output_files, + lq=lq, + input_copies=input_file_copy) + + def _shard_segment(self, rank_size, rank_id): + num_samples = len(self.sample_list) + res = (num_samples - 1) % rank_size + shard_size_base = int((num_samples - 1) // rank_size) + + if rank_id < res: + start_idx = (shard_size_base + 1) * rank_id + # enclose the last as the key frame + end_idx = start_idx + (shard_size_base + 1) + 1 + else: + start_idx = (shard_size_base + 1) * res + shard_size_base * (rank_id - res) + # enclose the last as the key frame + end_idx = start_idx + shard_size_base + 1 + + if rank_size == rank_id + 1: + end_idx = num_samples + logger.info(f'Data shard {start_idx} - {end_idx - 1} (total {num_samples})', force=True) + self.sample_list = list(self.sample_list[start_idx:end_idx]) + self.num_samples_shard = len(self.sample_list) + self.shard_flag = True + + +class HDRTestDataset(VSRTestDataset): + """ + Test dataset for HDR task. The output ext should be set in + 'cfg.data.extension'. + """ + def __init__(self, data_dir, cfg): + super().__init__(data_dir, cfg) + self.output_ext = cfg.data.extension # regardless of the input ext + self.frame_rate = 1 + self.scale = 1 + + +class ComposedTestDataset(_TestDataset): + """ Test dataset for a test directory with multiple clips. + """ + def __init__(self): # pylint: disable=super-init-not-called + self._datasets = None + self.num_samples_list = [] + + @staticmethod + def from_datasets(*datasets): + """ + Construct composed dataset from a collection of sub dataset class. + + Args: + *datasets: list of test datasets. + """ + cls = ComposedTestDataset() + cls._datasets = list(datasets) + cls.num_samples_list = [len(d) for d in cls._datasets] + return + + @staticmethod + def from_datadir(subcls, data_dir, clip_list, cfg): + """ + Construct composed dataset from a collection of dataset folder. + + Args: + subcls: class type, task class + data_dir: str, top data folder + clip_list: list of str, clips in the data_dir + cfg: yacs node + """ + cls = ComposedTestDataset() + datasets = [] + for clip_name in clip_list: + data_clip = os.path.join(data_dir, clip_name) + sub_datasets = subcls(data_clip, cfg) + sub_datasets.set_clip_name(clip_name) + datasets.append(sub_datasets) + cls._datasets = datasets + cls.num_samples_list = [len(d) for d in cls._datasets] + return cls + + def get_datasets(self, index): + # Iterate over the datasets to locate the queried sample + dataset_id = 0 + for dataset_id, num in enumerate(self.num_samples_list): + if index - num < 0: + break + index -= num + return dataset_id, index + + def _get_item(self, item): + dataset_id, index = self.get_datasets(item) + data = self._datasets[dataset_id][index] + return data + + @property + def expect_task_output_meta_info(self): + return self._datasets[0].expect_task_output_meta_info + + @property + def raw_image_size(self): + return self._datasets[0].raw_image_size + + @property + def expect_output_file_ext(self): + return self._datasets[0].expect_output_file_ext + + def __len__(self): + return np.sum(self.num_samples_list) + + def shard(self, rank_size, rank_id): + # Shard not supported for now. + raise NotImplementedError('Composed dataset not support data shard.') + + +class MixtureTestDataset(_TestDataset): + """ + Test dataset for a test directory with multiple dataset folder. + """ + def __init__(self): # pylint: disable=super-init-not-called + self._datasets = None + self.num_samples_list = [0] + + @staticmethod + def from_datasets(*datasets): + """ + Construct mixture dataset from a list of test datasets. + + Args: + *datasets: list of test datasets instances. Should be return data + terms with the same dtype and shape. + + Returns: + a MixtureDatasets instance + """ + cls = MixtureTestDataset() + cls._datasets = list(datasets) + cls.num_samples_list = [len(d) for d in cls._datasets] + return + + @staticmethod + def from_datadir(subcls, data_dir_list, cfg): + """ + Construct mixture dataset from a list of data directories. + + Args: + subcls: test dataset class type + data_dir_list: list(str), each is a top directory of a dataset. + Should be return data terms with the same dtype and shape. + cfg: yacs Node, global configuration + + Returns: + a MixtureDatasets instance + """ + cls = MixtureTestDataset() + datasets = [] + for data_dir in data_dir_list: + files = os.listdir(data_dir) + if os.path.isdir(os.path.join(data_dir, files[0])): + sub_datasets = ComposedTestDataset.from_datadir( + subcls, + data_dir, + files, + cfg + ) + else: + sub_datasets = subcls(data_dir, cfg) + datasets.append(sub_datasets) + cls._datasets = list(datasets) + cls.num_samples_list = [len(d) for d in cls._datasets] + return cls + + @property + def data_dtype(self): + return self._datasets[0].data_dtype + + @property + def data_shape(self): + return self._datasets[0].data_shape + + def get_datasets(self, index): + dataset_id = 0 + for dataset_id, num in enumerate(self.num_samples_list): + if index - num < 0: + break + index -= num + return dataset_id, index + + def _get_item(self, item): + dataset_id, index = self.get_datasets(item) + return self._datasets[dataset_id][index] + + @property + def output_meta_info(self): + return self._datasets[0].output_meta_info + + @property + def raw_image_size(self): + return self._datasets[0].raw_image_size + + def __len__(self): + return np.sum(self.num_samples_list) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/train_dataset.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/train_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..d7f2355103a2c72a3854e749a031eeb01d89df0f --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/train_dataset.py @@ -0,0 +1,553 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +import random + +import cv2 +import numpy as np + +import tensorflow as tf +import yaml +from tqdm import tqdm + +from src.dataloaders.utils import ( + gen_pattern, + pad_list, + get_consecutive_frame_indices, + batch_dim_squeeze, + load_batch_image, + supported_file_format +) + +from src.utils.degradation import Degradation +from src.utils.transform import Compose +from src.utils.file_io import imread +from src.utils.logger import logger + + +class _TrainDataset: + """The base class for training dataset. + + The derived classes should implement these functions: + _get_item: an indexing like item fetching method. + data_shape: returns the shape of each item produced by _get_item. + Shapes are like (t, h_lq, w_lq, c), (t, h_gt, w_gt, c). + data_dtype: returns the tensorflow dtype of each item produced + by _get_item. + + Supported data folder structure: + 1. All train datasets class support this structure + data + `-- reds + |-- images + | |-- lq + | | |-- 000 + | | | |-- 00000000.png + | | | |-- 00000001.png + | | | |-- 00000002.png + | | | |-- ... + | | | `-- 00000099.png + | | `-- 001 + | | |-- 00000000.png + | | |-- 00000001.png + | | |-- 00000002.png + | | |-- ... + | | `-- 00000099.png + | `-- gt + | |-- 000 + | | |-- 00000000.png + | | |-- 00000001.png + | | |-- 00000002.png + | | |-- ... + | | `-- 00000099.png + | `-- 001 + | |-- 00000000.png + | |-- 00000001.png + | |-- 00000002.png + | |-- ... + | `-- 00000099.png + `-- sets + |-- train.json + `-- val.json + 2. Online datasets class support this: + reds_gt + |-- 000 + | |-- 00000000.png + | |-- 00000001.png + | |-- 00000002.png + | |-- ... + | `-- 00000099.png + `-- 001 + |-- 00000000.png + |-- 00000001.png + |-- 00000002.png + |-- ... + `-- 00000099.png + + Args: + data_dir: str, top data directory of the train dataset. + Should include the `images` and `sets` sub-folders. + cfg: yacs node, global configuration. + """ + def __init__(self, data_dir, cfg): + """ + Initialization of train dataset. + + """ + self.cfg = cfg + self.num_lq_frames = cfg.data.num_data_lq_frames + self.num_gt_frames = cfg.data.num_data_gt_frames + self.interval_list = cfg.data.train.augmentation.interval_list + self.augment = cfg.data.train.augmentation.apply + self.scale = cfg.model.scale + self.set_file = os.path.join(data_dir, cfg.data.train.set_file) + self.crop_size = cfg.data.train.input_size + self.color_space = cfg.data.color_space + + # TODO: change the data structure + clip_list = self.parse_datafolder_structure(data_dir, self.set_file) + self.sample_list = [] + + # Store all the frame metadata of all the clips in the folder + for vid in clip_list: + in_path = self.gt_path_pattern.format(vid) + file_list = list( + sorted( + filter( + lambda x: supported_file_format(x), + os.listdir(in_path) + ) + ) + ) + num_frames = len(file_list) + base_index = int(file_list[0].split('.')[0]) + ext = file_list[0].split('.')[1] + + # File metadata includes `clip` name, file name itself, total number + # of frames in the clip, the starting id of the frames, and file + # extension (png, exr, .etc). + file_meta = [dict(clip=vid, + filename=f, + num_frames=num_frames, + base_index=base_index, + ext=ext) + for f in file_list] + + self.sample_list.extend(file_meta) + + if len(self.sample_list) == 0: + raise FileNotFoundError(f'Found no files in {data_dir}') + else: + logger.info(f'Found {len(self.sample_list)} files in {data_dir}') + + def parse_datafolder_structure(self, data_dir, set_file): + """ + Parse the default dataset structure. + + Args: + data_dir: str, the top folder of the dataset. + set_file: str, the json indicating the clips (both lq and gt) + + Returns: + list of str, the names of the clips (in lq and corresponding gt) + """ + if not self.cfg.data.train.degradation.online: + self.lq_path_pattern = os.path.join(data_dir, 'lq', '{}') + self.gt_path_pattern = os.path.join(data_dir, 'gt', '{}') + + if os.path.exists(set_file): + clip_list = [] + with open(set_file, 'r') as f: + for line in f.readlines(): + clip_list.append(line.strip()) + else: + clip_list = sorted(os.listdir(os.path.join(data_dir, 'gt'))) + + return clip_list + + def __len__(self): + """ + Total number of samples for training. + + Returns: + int, the number of training samples + """ + return len(self.sample_list) + + def check_shape(self, data): + """ + Called after '_get_item' to check whether the real shapes are the + same with the expected in 'data_shape'. + + Args: + data: + + Returns: + + """ + for index, d, shape in zip(range(len(data)), data, self.data_shape): + assert tuple(d.shape) == tuple(shape), \ + f'Expect return data at pos {index} to have shape {shape}, ' \ + f'but got {d.shape}' + + @property + def data_shape(self): + """ + Returns the shape of each item produced by _get_item. Shapes + are like (t, h_lq, w_lq, c), (t, h_gt, w_gt, c). + + Returns: + tuple of shapes, each can be like (t, h, w, c) + """ + raise NotImplementedError + + @property + def data_dtype(self): + """ + Returns the tensorflow dtype of each item produced by _get_item. + + Returns: + tuple of data types, each can be like tf.float32 + """ + raise NotImplementedError + + def __getitem__(self, index): + data = self._get_item(index) + + self.check_shape(data) + + return data + + def _get_item(self, index): + """ An indexing-like item fetching method + + Args: + index: int + + Returns: + tuple of data terms (as numpy.ndarray) + """ + raise NotImplementedError + + +# DummyTrainDataset for debug +class DummyTrainDataset(_TrainDataset): + """ A dummy train dataset for debugging. + """ + def __init__(self, data_dir, cfg): # pylint: disable=super-init-not-called + b = cfg.data.train.batch_size + h = cfg.data.train.input_size[0] + w = cfg.data.train.input_size[1] + c = 1 if (cfg.data.color_space=='gray') else 3 + shape_lq = (cfg.data.num_data_lq_frames, h, w, c) + self.lq_shape = shape_lq + self.gt_shape = (cfg.data.num_data_gt_frames, h, w, 3) + + num_samples = 100 + self.sample_list = [np.zeros(self.lq_shape).astype(np.float32) + for _ in range(num_samples)] + self.sample_list_gt = [np.zeros(self.gt_shape).astype(np.float32) + for _ in range(num_samples)] + + def _get_item(self, index): + lq = self.sample_list[index] + gt = self.sample_list_gt[index] + return lq, gt + + @property + def data_dtype(self): + return tf.float32, tf.float32 + + @property + def data_shape(self): + return self.lq_shape, self.gt_shape + + +class OfflineTrainDataset(_TrainDataset): + """ + Offline degradation task training dataset. + Augmentation is always online. + """ + def __init__(self, data_dir, cfg): + super().__init__(data_dir, cfg) + self.num_channels = 3 if self.color_space != 'gray' else 1 + + # Load augmentation options from cfg + options = yaml.safe_load(cfg.data.train.augmentation.options) + self.augment_pipeline = Compose.from_cfgs( + options, + crop_size=self.crop_size, # source crop size + scales=(1, self.scale) # scale of each crop, corresponds to + # returned data terms. + ) + + @property + def data_shape(self): + h, w = self.crop_size # this is the input (lq) crop size + + lq_shape = (self.num_lq_frames, + h, + w, + self.num_channels) + + # Squeeze the batch dim if possible. Single image case + lq_shape = batch_dim_squeeze(lq_shape) + + gt_shape = (self.num_gt_frames, + h*self.scale, + w*self.scale, + self.num_channels) + gt_shape = batch_dim_squeeze(gt_shape) + + return lq_shape, gt_shape + + @property + def data_dtype(self): + return tf.float32, tf.float32 + + def _get_item(self, index): + # Get meta data. We take the `index` frame as the center frame + center_frame_meta = self.sample_list[index] + vid = center_frame_meta['clip'] + filename = center_frame_meta['filename'] + num_frames = center_frame_meta['num_frames'] + base_index = center_frame_meta['base_index'] + ext = center_frame_meta['ext'] + center_frame_index = int(filename[:-4]) + num_digits = len(filename[:-4]) + + # Frames interval augmentation + if self.augment: + interval = random.choice(self.interval_list) + else: + interval = 1 + + # Get the consecutive frame indices + lq_indices = get_consecutive_frame_indices( + center_frame_index, + self.num_lq_frames, + num_frames, # total number of frames in the clip + base_index, + interval=interval, + pad_mode='reflect') + + lq_files = [os.path.join(self.lq_path_pattern.format(vid), + f'{ind:0{num_digits}d}.{ext}') + for ind in lq_indices] + + gt_indices = get_consecutive_frame_indices( + center_frame_index, + self.num_gt_frames, + num_frames, + base_index, + interval=interval, + pad_mode='reflect') + + gt_files = [os.path.join(self.gt_path_pattern.format(vid), + f'{ind:0{num_digits}d}.{ext}') + for ind in gt_indices] + + lq = load_batch_image(lq_files, self.color_space) + gt = load_batch_image(gt_files, self.color_space) + + if self.augment: + lq, gt = self.augment_pipeline(lq, gt) + + if self.num_lq_frames == 1 and lq.shape[0] == 1: + lq = lq[0] + if self.num_gt_frames == 1 and gt.shape[0] == 1: + gt = gt[0] + + if self.cfg.data.normalized: + lq = np.clip(lq / 255., 0, 1) + gt = np.clip(gt / 255., 0, 1) + + return lq, gt + + +class OnlineTrainDataset(OfflineTrainDataset): + """ Online degradation task training dataset. + """ + def __init__(self, data_dir, cfg): + super().__init__(data_dir, cfg) + # Loading degradation from cfg: + # add noise, down-sampling, blur, etc. + options = yaml.safe_load(cfg.data.train.degradation.options) + assert isinstance(options, dict) + + # TODO: remove preset degradation + self.degradation_pipeline = get_degradation_model( + scale=self.scale, + version=cfg.data.train.degradation.online_version) + + options = yaml.safe_load(cfg.data.train.augmentation.options) + assert isinstance(options, dict) + + # Loading augmentation from cfg: + # random crop, random flip, random interval, etc. + self.augment_pipeline = transforms.Compose.from_cfgs( + options, + crop_size=self.crop_size, + scales=(self.scale, ) + ) + + # Loading gt enhancement from cfg: + # usm, etc. + self.gt_enhancement = cfg.data.train.gt_enhancement + if cfg.data.gt_enhancement: + self.gt_enhancement_module = get_degradation_model( + version='gt_enhancement' + ) + + def load_gt(self, im_files): + gt_list = [] + for i, _im in enumerate(im_files): + gt = imread(_im, self.color_space) + gt_list.append(gt) + return np.array(gt_list) + + def _get_item(self, index): + center_frame_meta = self.sample_list[index] + vid = center_frame_meta['clip'] + filename = center_frame_meta['filename'] + num_frames = center_frame_meta['num_frames'] + base_index = center_frame_meta['base_index'] + ext = center_frame_meta['ext'] + center_frame_index = int(filename[:-4]) + num_digits = len(filename[:-4]) + + if self.augment: + interval = random.choice(self.interval_list) + else: + interval = 1 + + # Should load num_lq_frames gt images + gt_indices = get_consecutive_frame_indices( + center_frame_index, + self.num_lq_frames, + num_frames, base_index, + interval=interval, + pad_mode='reflect' + ) + gt_files = [os.path.join(self.gt_path_pattern.format(vid), + f'{ind:0{num_digits}d}.{ext}') + for ind in gt_indices] + + gt = self.load_gt(gt_files) + if self.augment: + gt = self.augment_pipeline(gt)[0] + + # Do degradation after augmentation to reduce computation. + lq_list = self.degradation_pipeline.apply_batch( + np.array(gt), + allow_quantization=ext != 'exr' + ) + + lq = np.array(lq_list).astype(np.float32) + gt = gt.astype(np.float32) + + # Select the center num_gt_frames out + gt = gt[(self.num_lq_frames//2-self.num_gt_frames//2): + (self.num_lq_frames//2+self.num_gt_frames//2)+1] + + if self.gt_enhancement: + gt = [self.gt_enhancement_module.apply(_gt) for _gt in gt] + gt = np.array(gt) + + if self.num_lq_frames == 1: + lq = lq[0] + if self.num_gt_frames == 1: + gt = gt[0] + + if self.cfg.data.normalized: + lq = np.clip(lq / 255., 0, 1) + gt = np.clip(gt / 255., 0, 1) + return lq, gt + + +class MixtureDatasets(_TrainDataset): + """ + Mixture dataset containing multiple train datasets. + Could be constructed from a list of folders. + """ + def __init__(self): # pylint: disable=super-init-not-called + self._datasets = None + self.num_samples_list = [] + + @staticmethod + def from_datasets(*datasets): + """ + Construct mixture dataset from a list of train datasets. + + Args: + *datasets: list of OfflineTrainDataset or OnlineTrainDataset + instances. Should be return data terms with the same dtype and + shape. + + Returns: + a MixtureDatasets instance + """ + cls = MixtureDatasets() + cls._datasets = list(datasets) + cls.num_samples_list = [len(d) for d in cls._datasets] + return + + @staticmethod + def from_datadir(subcls, data_dir_list, cfg): + """ + Construct mixture dataset from a list of data directories. + + Args: + subcls: OfflineTrainDataset or OnlineTrainDataset type + data_dir_list: list(str), each is a top directory of a dataset. + Should be return data terms with the same dtype and shape. + cfg: yacs Node, global configuration + + Returns: + a MixtureDatasets instance + """ + cls = MixtureDatasets() + datasets = [] + for data_dir in data_dir_list: + sub_datasets = subcls(data_dir, cfg) + datasets.append(sub_datasets) + cls._datasets = list(datasets) + cls.num_samples_list = [len(d) for d in cls._datasets] + return cls + + @property + def data_dtype(self): + return self._datasets[0].data_dtype + + @property + def data_shape(self): + return self._datasets[0].data_shape + + def get_datasets(self, index): + # Iterate over the datasets to locate the queried sample + dataset_id = 0 + for dataset_id, num in enumerate(self.num_samples_list): + if index - num < 0: + break + index -= num + return dataset_id, index + + def _get_item(self, item): + dataset_id, index = self.get_datasets(item) + return self._datasets[dataset_id][index] + + def __len__(self): + return np.sum(self.num_samples_list) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/utils.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4724330eea7bec757e2f38bf6023f4139bcb29db --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/dataloaders/utils.py @@ -0,0 +1,205 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os + +import numpy as np +from src.utils.file_io import imread +from src.utils.constant import VALID_FILE_EXT + + +def supported_file_format(filename): + """ + Check whether the image file is supported. + + Args: + filename: str + + Returns: + boolean + """ + ext = filename.split('.')[-1] + return ext in VALID_FILE_EXT + + +def gen_pattern(data_dir, meta, split='lq'): + """ + Generate image pattern given metadata and folder structure. + + Args: + data_dir: str, top dataset folder + meta: dict, loaded metadata from set file + split: str, name of data split + + Returns: + str, file pattern of the images + """ + if meta is None: + return os.path.join(data_dir, '{}') + else: + if meta['prefix']: + return os.path.join(data_dir, + 'images', + meta['{}_folder'.format(split)], + '{}') + else: + return os.path.join(data_dir, + 'images', + '{}', + meta['{}_folder'.format(split)]) + + +def pad_list(src, head_pad_size, tail_pad_size, mode): + """ + Pad the given list to target length. + + Args: + src: list[int], indicies of the frames + head_pad_size: int, length of pad at the head (before `src`) + tail_pad_size: int, length of pad at the tail (after `src`) + mode: str, pad mode. Optional in ['reflect', 'replicate'] + + Returns: + list[int], padded indices list which has target size + """ + num_src = len(src) + if mode == 'reflect': + head_pad_value = list(reversed(src[1:])) + tail_pad_value = list(reversed(src[:-1])) + elif mode == 'replicate': + head_pad_value = [src[0]] * head_pad_size + tail_pad_value = [src[-1]] * tail_pad_size + else: + raise NotImplementedError + src = head_pad_value + src + src = src[-(num_src + head_pad_size):] + tail_pad_value + src = src[:num_src+head_pad_size+tail_pad_size] + return src + + +def get_consecutive_frame_indices(given_frame_ids, num_frames_required, + max_frames, base_index=0, interval=1, + pad_mode='reflect'): + """ + Get consecutive indices given the center frame index/indices. + + There will be padding at the border of the list. Two typical cases + used in VSR and VFI model: + Case 1: + If given ids are like: + given_frame_ids=[1,2], + num_frames_required=4, + pad_mode='replicate' + should return [1,1,2,3]. [1, 2] are at the center. + Case 2: + If given ids are like: + given_frame_ids=3, + num_frames_required=5, + interval=2, + pad_mode='reflect' + should return [3,1,3,5,7]. [3] lies at the center. + + Args: + given_frame_ids: int or list[int], the center frame indices. + num_frames_required: int, number of the frames required. + max_frames: int, the total number of the frames in the dataset. + base_index: int, the base index of the frame. Default is 0. + iterval: int, the frame iterval. Default is 1. + pad_mode: str, the pad method if on the border. + Optional in ['reflect', 'replicate'] + + Returns: + list[int], length equals to num_frames_required + """ + + # Find the cosecutive frame indices + if isinstance(given_frame_ids, (list, tuple)): + # Currently only supported in vfi + assert num_frames_required % 2 == 0, \ + f'{len(given_frame_ids)} frame ids are given. ' \ + f'The required number of frames should be even.' + num_extra_frames = num_frames_required - len(given_frame_ids) + min_id = min(given_frame_ids) + max_id = max(given_frame_ids) + + else: + # Supported in other tasks + assert num_frames_required % 2 == 1, \ + f'Only the center frame id is given. ' \ + f'The required number of frames should be odd.' + min_id = max_id = given_frame_ids + num_extra_frames = num_frames_required + + assert min_id >= base_index and max_id < max_frames + base_index + + # Obtain the indices within the range [base_index, base_index + max_frames] + index = [] + left_pad = False + right_pad = False + for k in range(min_id - interval*(num_extra_frames//2), + max_id+interval*(num_extra_frames//2)+1, + interval): + if base_index > k: + left_pad = True + continue + elif k >= (base_index + max_frames): + right_pad = True + continue + else: + index.append(k) + + index_len = len(index) + # When the given frames are on the edge, perform padding, + if left_pad: + index = pad_list(index, num_frames_required-index_len, 0, pad_mode) + + if right_pad: + index = pad_list(index, 0, num_frames_required-index_len, pad_mode) + + return index + + +def batch_dim_squeeze(dim): + """ + Squeeze the batch dimension when possible. + + Args: + dim: list[int], shape of the tensor. + + Returns: + list[int], reduced dimension. + """ + return dim[1:] if dim[0] == 1 else dim + + +def load_batch_image(files, target_color_space, as_array=True): + """ + Load batch images, may return as np.ndarray or just a list. + + Args: + files: list[str], file paths to read. + target_color_space: str, color space to which the images are converted. + as_array: boolean, return as list or np.ndarray. + + Returns: + If as_array is True, return the images are np.ndarray. Else, return + as the list. + """ + + im = [] + for f in files: + assert os.path.exists(f), f"{f} not exists." + _im = imread(f, target_color_space).astype(np.float32) + im.append(_im) + return np.array(im) if as_array else im diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..98f6c71a50281f91278ec5234aa56c286dc333cf --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/__init__.py @@ -0,0 +1,43 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +def build_engine(cfg): + """Returns the engine class given the mode in cfg. + + Args: + cfg: yacs node, global configuration. + + Returns: + engine class. + """ + mode = cfg.mode + ckpt = cfg.checkpoint + if mode == 'train': + from .trainer import SessionTrainer + return SessionTrainer + elif mode == 'inference': + from .inferencer import SessionInferencer, ModelFreeInferencer + if ckpt.endswith(".pb"): + return ModelFreeInferencer + else: + return SessionInferencer + elif mode == 'freeze': + from .freezer import SessionFreezer + return SessionFreezer + else: + raise NotImplementedError + + +__all__ = ['build_engine'] diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/freezer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/freezer.py new file mode 100644 index 0000000000000000000000000000000000000000..e675f4b460ad162ef3fe434719f37cf131e8c9a4 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/freezer.py @@ -0,0 +1,111 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os + +import numpy as np +import tensorflow as tf +from src.runner.saver import loose_loading +from src.runner.sess_config import get_sess_config +from src.utils.adapter import NetworkIOAdapter +from src.utils.logger import logger +from tensorflow.python.framework import graph_util + + +class _Freezer: + """Freezer engine to freeze ckpt to pb file. + + Args: + dataloader: None, will never be used. The input size will be determined + by configure. + network: network instance, will not be used in this mode. + cfg: yacs node, global configuration. + """ + def __init__(self, dataloader, network, cfg, **kwargs): + self.cfg = cfg + self.network = network + self.adapter = NetworkIOAdapter(cfg) # do not register_raw_size. Use the setting value + + # Different from the inference, we'll fix the input size. + # The fixed input size is given by: + # cfg.data.inference.best_patch_size[0] + pads_h + cfg.data.inference.patch_pad_size[0] + # cfg.data.inference.best_patch_size[1] + pads_w + cfg.data.inference.patch_pad_size[1] + pads_h, pads_w = self.adapter.cal_adapted_size(self.adapter.best_in_size) + self.adapter.limited_in_size = [self.adapter.best_in_size[0] + pads_h + self.adapter.eval_pad_size*2, + self.adapter.best_in_size[1] + pads_w + self.adapter.eval_pad_size*2] + self.adapter.register_raw_size(self.adapter.limited_in_size) + + self.network.build_graph((cfg.data.eval_batch_size, self.adapter.input_size)) + + def restore(self): + """ + Restore the graph from ckpt. + """ + raise NotImplementedError + + def run(self): + """ + Execute function to freeze the graph to pb. + """ + raise NotImplementedError + + +class SessionFreezer(_Freezer): + """ + A tf.Session based freezer engine. + """ + def __init__(self, dataloader, network, cfg): + super().__init__(dataloader, network, cfg) + sess_cfg = get_sess_config(cfg.device, + cfg.solver.xla, + cfg.solver.mix_precision, + False) + self.session = tf.Session(config=sess_cfg) + + def restore(self): + """ + Restore the requireed part of the graph given the ckpt. + """ + loose_loading(self.session, self.cfg.model.scope, self.cfg.output_dir, self.cfg.checkpoint) + + def run(self): + """ + Execute function to freeze the graph to pb. + """ + with self.session as sess: + tf.io.write_graph(sess.graph_def, self.cfg.checkpoint.rsplit('/', 1)[0], 'freeze_graph.pbtxt') + + logger.info('Loading trained model ...') + self.restore() + logger.info('Model loaded success.') + logger.info('Freeze model to pb files') + + pb_path = os.path.join(self.cfg.checkpoint + '.pb') + try: + if hasattr(self.network, 'inference_func'): + constant_graph = graph_util.convert_variables_to_constants( + sess, sess.graph_def, + self.network.output_node_name + ) + else: + constant_graph = graph_util.convert_variables_to_constants( + sess, sess.graph_def, + [self.network.output_node.name.split(':')[0]] + ) + with tf.gfile.FastGFile(pb_path, mode='wb') as f: + f.write(constant_graph.SerializeToString()) + logger.info('Model frozen success.') + except Exception as e: + logger.error('Failed to freeze model.') + logger.info(e) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/inferencer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/inferencer.py new file mode 100644 index 0000000000000000000000000000000000000000..cd96cf4b061e180af2eb82038f10aabb71e19017 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/inferencer.py @@ -0,0 +1,312 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import datetime +import os +import shutil +import time +from functools import partial +from multiprocessing import Manager + +import numpy as np +import tensorflow as tf +from src.runner.saver import loose_loading +from src.runner.sess_config import get_sess_config +from src.utils.adapter import NetworkIOAdapter +from src.utils.exceptions import * +from src.utils.file_io import ImageWriter, image_deprocess +from src.utils.logger import logger +from src.utils.moving_avg import MovingAvg +from src.utils.constant import FILE_EXT_TO_PIX_FMT +from src.utils.world import world +from tqdm import trange + + +class _Inferencer: + """Base inference engine. + + Args: + dataloader: dict, inference data dict produced by test dataset instance. + network: network instance, whose class should derive from + src.networks.base_model.Base . + cfg: yacs node, global configuration. + _world: world instance, could be given from the caller function, + or by default, the global world instance (see src.utils.world). + """ + def __init__(self, dataloader, network, cfg, _world=None): + self.device = cfg.env.device + self.is_distributed = cfg.env.rank_size > 1 + self.cfg = cfg + self.dataloader = dataloader + self.network = network + self.step_time = MovingAvg(smooth=0.9) + self.adapter = NetworkIOAdapter(cfg) + # _world should be initialized + self.world = _world or world + if not self.world.is_initialized: + raise WorldUninitializedError('World not initialized.') + + self._total = 0 + + def restore(self, *args, **kwargs): + """ + Restore parameters from ckpt. + """ + raise NotImplementedError + + def run(self): + """ + Execute inference steps. + """ + raise NotImplementedError + + +# Note: we use numpy dataloader instead of tf dataloader in inference +class SessionInferencer(_Inferencer): + """Session based inference engine. + + Args: + dataloader: dict, inference data dict produced by test dataset instance. + network: network instance, whose class should derive from + src.networks.base_model.Base . + cfg: yacs node, global configuration. + _world: world instance, could be given from the caller function, + or by default, the global world instance (see src.utils.world). + """ + def __init__(self, dataloader, network, cfg, _world=None): + super().__init__(dataloader, network, cfg, _world) + self.scale = cfg.model.scale + self.session = None + self.graph = None + + # Get expected output data information. Both are used for ffmpeg io-backend. + output_size = self.dataloader.expect_output_resolution + output_ext = self.dataloader.expect_output_file_ext + + pix_fmt = FILE_EXT_TO_PIX_FMT[output_ext] + + # Prepare image writer if is set. + if not self.cfg.inference.write_out: + logger.warn(f'You have set "write_out" to False, ' + f'hence there will be no outputs to {self.cfg.inference.io_backend}.') + else: + output_dir = self.cfg.inference.result_dir + output_dir = os.path.realpath(output_dir) + # By default, we write results to hard disk + self.image_deprocess_fn = partial( + image_deprocess, + source_color_space=self.cfg.data.color_space, + benormalized=self.cfg.data.normalized) + self.result_writer = ImageWriter( + output_dir, cfg, + benormalized=self.cfg.data.normalized, + source_color_space=self.cfg.data.color_space, + output_resolution=output_size, + pix_fmt=pix_fmt) + + def restore(self): + """Restore parameters from ckpt. + """ + if self.cfg.checkpoint == 'none': + # Reserved for tasks that are not performed using networks. + pass + elif (self.cfg.checkpoint == '' + and len(self.cfg.train.pretrained_scope_list) > 0): + # For models that consists of several sub-networks, e.g., vfi model + # with pretrained optical flow network. + assert len(self.cfg.train.pretrained_scope_list) == \ + len(self.cfg.train.pretrained_scope_ckpt) + for scope, ckpt in zip(self.cfg.train.pretrained_scope_list, + self.cfg.train.pretrained_scope_ckpt): + loose_loading(self.session, scope, '', ckpt) + return 0 + else: + # Commonly used branch. + return loose_loading(self.session, self.cfg.model.scope, + '', self.cfg.checkpoint) + + def network_preparation(self): + """Build network forward graph, and restor from ckpt. + """ + sess_cfg = get_sess_config(self.cfg.env.device, + self.cfg.session.xla, + self.cfg.session.mix_precision, + False) + self.session = tf.Session(config=sess_cfg) + + # Register the image raw size when inference to let the adapter decide + # whether to inference using patchwise strategy or as a whole. + self.adapter.register_raw_size(self.dataloader.raw_image_size) + + # Get the real adapted input size from adapter to build the graph. + self.network.build_graph(input_size=(self.cfg.data.inference.batch_size, + self.adapter.input_size)) + init_op = tf.group(tf.global_variables_initializer(), + tf.local_variables_initializer()) + self.session.run(init_op) + if self.cfg.debug_mode != 'zeroin': + self.restore() + + def run(self): + """Execute inference steps. + """ + self.network_preparation() + + # Dataset shard is done in building dataset, see dataloaders.__init__.py + self._total = len(self.dataloader) + + range_fn = partial(trange, position=self.world.rank_id, desc=f'On DeviceID {self.world.device_id}') + + if self.session is None: + raise SessionUndefinedError(f'{type(self).__name__}.session is not defined.') + + logger.info(f'Start inference.') + + if self.cfg.inference.write_out: + self.result_writer.initialize() + + for i in range_fn(self._total): + data_dict = self.dataloader[i] + st_time = time.time() + hq = self._inf_engine(data_dict) + once_time = time.time() - st_time + # Skip the first step since the elapse time is abnormal due to compilation. + if i > 0: + self.step_time.update(once_time) + + if self.cfg.inference.write_out: + self.write_out(data_dict['output_file'], hq, data_dict.get('input_copies', None)) + + if self.cfg.inference.write_out: + self.result_writer.finalize() + logger.info(f'\tInference time: {self.step_time.avg * 1000:.2f} ms/image') + + def _inf_engine(self, data_dict): + """Determine inference strategy. + """ + # TODO: support multiple feed dict. + lq = data_dict['lq'] + if hasattr(self.network, 'inference_func'): + # Reserved API if the processing of the network is not end-to-end. + # Pass through all the inputs, in case the model requires multiple-inputs. + data_dict['lq'] = self.adapter.adapt_input(data_dict['lq']) + hq = self.network.inference_func(self.session, data_dict, self.graph, self.adapter.mode) + hq = self.adapter.reverse_adapt(hq.squeeze()) + elif self.adapter.patch_mode: + patch_per_step = self.cfg.data.inference.batch_size + img_patches = self.adapter.extract_image_patches(lq, patch_per_step) + num_step = img_patches.shape[0] // patch_per_step + patch_hq = [] + for i in range(num_step): + batch_data = img_patches[i * patch_per_step:(i + 1) * patch_per_step] + if patch_per_step == 1 and batch_data.shape[0] != 1 and self.cfg.model.input_format_dimension == 5: + batch_data = batch_data[None, ...] + elif self.cfg.model.input_format_dimension == 4: + batch_data = np.reshape(batch_data, [-1, *batch_data.shape[2:]]) + _patch_hq = self._inf_func(batch_data) + patch_hq.extend(_patch_hq) + hq = self.adapter.stitching_patches_to_image(patch_hq) + else: + lq = self.adapter.adapt_input(lq) + hq = self._inf_func(lq[None]) + hq = self.adapter.reverse_adapt(hq.squeeze()) + return hq.squeeze() + + def _inf_func(self, lq): + """Real calling inference function. + + Args: + lq: numpy array, input array. + + Returns: + hq: numpy array, processd output array. + """ + # TODO: support multiple feed dict. + hq = self.session.run(self.network.output_node, feed_dict={self.network.input_node: lq}) + return hq + + def write_out(self, output_files, network_outputs, input_copies): + """Write out function. + """ + output_dict = dict() + + if isinstance(output_files, (list, tuple)): + assert len(output_files) == len(network_outputs) + network_outputs_ = [self.image_deprocess_fn(n, hdr=output_files[0].endswith('.exr')) + for n in network_outputs] + output_dict.update(dict(zip(output_files, network_outputs_))) + elif isinstance(output_files, str): + network_outputs_ = self.image_deprocess_fn(network_outputs, hdr=output_files.endswith('.exr')) + output_dict[output_files] = network_outputs_ + else: + raise NotImplementedError + + if input_copies is not None: + # deprocess the copied data + input_copies_deprocess = dict() + for k, v in input_copies.items(): + input_copies_deprocess[k] = [v[0], self.image_deprocess_fn(v[1], hdr=k.endswith('.exr'))] + output_dict.update(input_copies_deprocess) + + self.result_writer.write_out(output_dict) + + +class ModelFreeInferencer(SessionInferencer): + """ + Inferencer using pb file, without model python file. + """ + def restore(self): + """Restore from pb file. + + Returns: + graph: tf.graph, the forward tensorflow graph. + """ + with tf.gfile.GFile(self.cfg.checkpoint, "rb") as gf: + graph_def = tf.GraphDef() + graph_def.ParseFromString(gf.read()) + with tf.Graph().as_default() as graph: + tf.import_graph_def(graph_def, name="") + return graph + + def network_preparation(self): + """Build network forward graph, and restor from pb. Prepare adapter. + """ + sess_cfg = get_sess_config(self.cfg.env.device, + self.cfg.solver.xla, + self.cfg.solver.mix_precision, + False) + + # Load from PB + self.graph = self.restore() + self.session = tf.Session(config=sess_cfg, graph=self.graph) + + # Fix the real eval in size before register image raw size. + # This function will use the + # model.best_in_size + data.eval_padsize * 2 + # as the fixed eval in size + self.adapter.fix_eval_in_size() + self.adapter.register_raw_size(self.dataloader.raw_image_size) + + def _inf_func(self, lq): + """Real calling inference function. + + Args: + lq: numpy array, input array. + + Returns: + hq: numpy array, processd output array. + """ + hq = self.session.run(self.graph.get_tensor_by_name("SR_output:0"), + feed_dict={self.graph.get_tensor_by_name("L_input:0"): lq}) + return hq diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/trainer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/trainer.py new file mode 100644 index 0000000000000000000000000000000000000000..89b36c47e8a6dbe054bb96306ce026ee96040bfb --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/engine/trainer.py @@ -0,0 +1,499 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import datetime +import os +import time + +import numpy as np +import tensorflow as tf +from src.losses.modules.perceptual import load_perceptual_module +from src.runner.common import name_space +from src.runner.distributed_variables_broadcast import \ + broadcast_global_variables, allreduce_avg +from src.runner.helper import build_adversarial_train_helper +from src.runner.saver import strict_loading, loose_loading +from src.runner.sess_config import get_sess_config +from src.runner.solver import build_solver +from src.utils.exceptions import * +from src.utils.logger import logger +from src.utils.moving_avg import MovingAvg +from src.utils.world import world + + +class _Trainer: + """Base trainer class. + This class is for tensorflow for now. + + Args: + dataloader: list[tensor] generated from tf dataloader. See `src.dataloaders.dataloder` + for more information. + network: network instance whose class derives from Base network class. + cfg: yacs node, global configuration. + _world: World instance, option reserved for extension. By default, the trainer uses a + preset global `world` instance. + """ + def __init__(self, dataloader, network, cfg, _world=None): + self.device = cfg.env.device + self.is_distributed = cfg.env.rank_size > 1 + self.cfg = cfg + + self.dataloader = dataloader + self.network = network + self.g_train_op = None + self.d_train_op = None + self.g_solver = None + self.d_solver = None + + self.step_time = MovingAvg(smooth=0.9) + self.step_loss = MovingAvg(smooth=0.99) + + self.world = _world or world + if not self.world.is_initialized: + raise WorldUninitializedError('World not initialized.') + + # Call network.build_graph to construct the basic graph. + # Including dataloader, forward graph, and loss + self.network.build_graph(dataloader=self.dataloader) + + # Helper is to coordinate the adversarial training, i.e., + # whether to update the generator or the discriminator according to + # certain strategy. + self.helper = build_adversarial_train_helper(cfg) + + # Build the optimizers + self.build() + + def build(self): + """ + Top building function to prepare optimizers. + """ + self.build_g_optimizer() + + # Prepare discriminator optimizer if required + if self.cfg.loss.adversarial.loss_weight > 0.: + self.build_d_optimizer() + + # Use GLOBAL_VARIABLES to get both the weights and buffers. + # Do not use tf.GraphKeys.TRAINABLE_VARIABLES here, which will miss the + # bn buffers. + generator_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, + scope=self.cfg.model.scope) + self.saver = tf.train.Saver(var_list=generator_vars, + max_to_keep=10, + keep_checkpoint_every_n_hours=1) + + def build_g_optimizer(self): + """ + Build generator optimizer. + """ + # Build generator solver + self.g_solver = build_solver(self.cfg.train.generator.lr_schedule, + self.cfg.train.optimizer, + self.cfg.session.mix_precision, + self.cfg.train.loss_scale, + self.device, + self.is_distributed) + + # All generator losses are collected in name_space.GeneratorLoss scope. + # Add them to get the final generator loss. + losses_dict = name_space.get_collection(name_space.GeneratorLoss) + losses = tf.add_n(list(losses_dict.values())) + + name_space.add_to_collection(name_space.GeneratorLoss, 'loss_total', losses) + # TODO: encapsulate the learning rate + name_space.add_to_collection(name_space.GeneratorRunOp, 'g_lr', self.g_solver.lr) + + generator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, + scope=self.cfg.model.scope) + + g_train_op = self.g_solver.opt.minimize(losses, var_list=generator_vars) + + # bn buffer update after the optimization + update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, + scope=self.cfg.model.scope) + if list(update_ops): + with tf.control_dependencies([g_train_op]): + g_train_op = tf.group(*update_ops) + + self.g_train_op = g_train_op + + # Add to name_space for later query + name_space.add_to_collection(name_space.GeneratorRunOp, 'g_train', self.g_train_op) + + def build_d_optimizer(self): + """ + Build discriminator optimizer. + """ + self.d_solver = build_solver(self.cfg.train.discriminator.lr_schedule, + self.cfg.train.optimizer, + self.cfg.session.mix_precision, + self.cfg.train.loss_scale, + self.device, + self.is_distributed) + # All discriminator losses are collected in name_space.DiscriminatorLoss scope. + # Add them to get the final discriminator loss. + losses_dict = name_space.get_collection(name_space.DiscriminatorLoss) + + self.d_loss = tf.add_n(list(losses_dict.values())) + name_space.add_to_collection(name_space.DiscriminatorRunOp, 'd_lr', self.d_solver.lr) + + discriminator_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, + scope=name_space.DiscriminatorVarScope) + d_train_op = self.d_solver.opt.minimize(self.d_loss, var_list=discriminator_vars) + + # If parameter clip is applied, do it after optimization. + if self.cfg.loss.adversarial.parameter_clip: + amin, amax = self.cfg.loss.adversarial.parameter_clip_range + with tf.control_dependencies([d_train_op]): + d_train_op = tf.group([var.assign(tf.clip_by_value(var, amin, amax)) + for var in discriminator_vars]) + + # bn buffer update + update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=name_space.DiscriminatorVarScope) + if list(update_ops): + with tf.control_dependencies([d_train_op]): + d_train_op = tf.group(*update_ops) + + self.d_train_op = d_train_op + name_space.add_to_collection(name_space.DiscriminatorRunOp, 'd_train', self.d_train_op) + + def save(self, *args, **kwargs): + """ + Save ckpt during training every certain steps. + """ + raise NotImplementedError + + def print(self, *args, **kwargs): + """ + Print function to dump train information. + """ + raise NotImplementedError + + def restore(self): + """ + Restore from a ckpt for continual training. + """ + raise NotImplementedError + + def load_pretrained(self, *args, **kwargs): + """ + Load pretrained sub-networks for overall training and fine-tune. + """ + raise NotImplementedError + + def run(self): + """ + Execute function to run the train steps. + """ + raise NotImplementedError + + +class SessionTrainer(_Trainer): + """ + Tensorflow trainer using tf.Session. + """ + def __init__(self, dataloader, network, cfg): + super().__init__(dataloader, network, cfg) + sess_cfg = get_sess_config(cfg.env.device, + cfg.session.xla, + cfg.session.mix_precision, + cfg.env.rank_size>1) + self.session = tf.Session(config=sess_cfg) + + # TODO: refactor summary + if cfg.train.use_tensorboard: # for visualization when training drm + self.writer = tf.summary.FileWriter( + os.path.join(self.cfg.train.output_dir, 'summary'), + self.session.graph + ) + else: + self.writer = None + + def save(self, step): + """ + Save checkpoint on the step + + Args: + step: int + """ + if not os.path.exists(self.cfg.train.output_dir): + os.makedirs(self.cfg.train.output_dir) + + self.saver.save(self.session, + os.path.join(self.cfg.train.output_dir, + self.cfg.model.name), + global_step=step) + + def print(self, step, ops_result, loss_ops_result): + """ + Print train step information on the screen + + Args: + step: int, current train step. + ops_result: dict, data obtained by session.run. + loss_ops_result: dict, loss information + """ + loss_str = [f'{k}: {f"{v:3.3f}":>7}' for k, v in loss_ops_result.items()] + + fps = (self.cfg.data.train.batch_size + / (self.step_time.cur_val + 1e-6) + * self.cfg.env.rank_size) + eta = (self.g_solver.total_step - step) * self.step_time.avg + eta = str(datetime.timedelta(seconds=int(eta))) + + solver_info = [f'Step: [{step:>7d} / {self.g_solver.total_step}]'] + # If adversarial, print whether generator or discriminator is updated + if self.cfg.loss.adversarial.loss_weight > 0.: + adv_info = self.helper.info + g_update = adv_info['g_update'] + d_update = adv_info['d_update'] + + solver_info.append(f'g update: {f"{g_update}":>5}') + g_lr = ops_result['g_lr'] + solver_info.append(f'g lr: {f"{g_lr:.7f}":>6}') + + solver_info.append(f'd update: {f"{d_update}":>5}') + d_lr = ops_result['d_lr'] + solver_info.append(f'd lr: {f"{d_lr:.7f}":>6}') + else: + g_lr = ops_result['g_lr'] + solver_info.append(f'g lr: {f"{g_lr:.7f}":>6}') + + misc_info = [f'smooth_total: {f"{self.step_loss.smooth_avg:3.3f}":>7}', + f'step time: {f"{self.step_time.cur_val*1000:5.1f}":>7} ms', + f'fps: {f"{fps:3.2f}":>6}', + f'eta: {eta:>8}', + f'on device: {self.world.device_id:1d}'] + + print_info = ', '.join([*solver_info, *loss_str, *misc_info]) + logger.info(print_info) + + def load_pretrained(self, scope): + """ + Load part of the graph. + + This function is typically used in fine-tune, multi-stage training + scenarios. + + Args: + scope: str, top scope name for pretrained sub-graph. + """ + if self.cfg.checkpoint == '' and ( + len(self.cfg.train.pretrained_scope_list) > 0 + ): + assert len(self.cfg.train.pretrained_scope_list) == \ + len(self.cfg.model.pretrained_scope_ckpt) + for scope, ckpt in zip(self.cfg.train.pretrained_scope_list, + self.cfg.model.pretrained_scope_ckpt): + loose_loading(self.session, scope, + self.cfg.train.output_dir, ckpt) + else: + loose_loading(self.session, self.cfg.model.scope, + self.cfg.train.output_dir, self.cfg.checkpoint) + + def restore(self): + """ + Restore ckpt. + + This function is for continue training scenario. Thus every thing in + the generator will be loaded. + + Returns: + int, recover iteration to continue training. + """ + return strict_loading(self.session, + self.cfg.model.scope, + self.cfg.train.output_dir, + self.cfg.checkpoint) + + def run(self): + """ + Core function for the trainer to execute. + """ + # Initialization parameters. + init_op = tf.group(tf.global_variables_initializer(), + tf.local_variables_initializer()) + self.session.run(init_op) + + # Restore from ckpt if needed. + recover_step = 0 + if self.cfg.train.continue_training: + # For continue training. + recover_step = self.restore() + elif self.cfg.checkpoint != '' or ( + len(self.cfg.train.pretrained_scope_list) > 0): + # For multi-stage training, load pretrained model. + # Each trained with given scope. + self.load_pretrained(self.cfg.model.scope) + + # Load vgg-19 perceptual if needed. + if self.cfg.loss.perceptual.loss_weight > 0: + load_perceptual_module(self.session, self.cfg.loss.perceptual) + + # Synch all the nodes for initialization in distributed training. + if self.is_distributed: + logger.info(f'Broadcast variables from root rank') + broadcast_global_variables(self.session, + self.cfg.env.device, + self.cfg.env.root_rank) + + # Dump the train graph on the root node. + if self.world.is_root_rank: + tf.io.write_graph(self.session.graph_def, + self.cfg.train.output_dir, + 'train_graph.pbtxt') + logger.info(f'Start training.') + + # Train (may continue from recover step) + self._train(recover_step) + + def prepare_adv_adapt_op(self, d_loss_ops): + """ + Prepare auxiliary ops when adversarial training. + + Due to the insufficiency of Ascend platform in dynamic graph which is + common in adversarial training, we do the adaptive balance on session + run level instead of tf graph. To do this, we define a helper class to + determine whether to update generator and discriminator each step. + + On adaptive strategy which adjust the training step according to the + discriminator loss, we we must collect all the decision, aggregate and + sychronize the decision across the nodes. + + """ + + if self.cfg.loss.adversarial.loss_weight > 0. and ( + self.cfg.loss.adversarial.adaptive_strategy): + logger.info('Using adversarial training with adaptive strategy.') + logger.info('There will be some warm-start iterations for ' + 'discriminator, while the generator won\'t update.') + if self.is_distributed: + # In adaptive strategy, we should manually synchronize the + # discriminator losses across the devices. + logger.info('Distributed adversarial adaptive training. Generating ' + 'synchronize nodes.') + adv_helper_criteria = allreduce_avg( + d_loss_ops['discriminator'], + self.cfg.env.device, + self.world.rank_size + ) + else: + adv_helper_criteria = d_loss_ops['discriminator'] + else: + # To unify the interface, define a tf.no_op + adv_helper_criteria = tf.no_op() + return adv_helper_criteria + + def prepare_fetches(self): + """ + Prepare watched tensors. In each step, we want to know the + generator total loss, each part of generator losses, discriminator + total loss (if used), and some summary ops. + + Returns: + g_ops: dict, {op_name: op_tensor} of the generator. + d_ops: dict, {op_name: op_tensor} of the discriminator. + losses: dict, {loss_name: loss_tensor} for printing. + summary_ops: dict, {summary_name: summary_op} for visualization. + adv_helper_criteria: tensor, the criteria to tell whether update + generator or discriminator. May be a hccl operator. + """ + # prepare train ops, loss ops, summary ops + g_ops = name_space.get_collection(name_space.GeneratorRunOp) + g_loss_ops = name_space.get_collection(name_space.GeneratorLoss) + + d_ops = name_space.get_collection(name_space.DiscriminatorRunOp) + d_loss_ops = name_space.get_collection(name_space.DiscriminatorLoss) + + summary_ops = name_space.get_collection(name_space.Summary) + + adv_helper_criteria = self.prepare_adv_adapt_op(d_loss_ops) + + return g_ops, d_ops, {**g_loss_ops, **d_loss_ops}, summary_ops, adv_helper_criteria + + def prepare_feeds(self): + """ + Prepare feed dict for session run. + + Returns: + dict, will be fed to session run. + """ + # TODO: remove learning rate feed dict. + feed_dict = {self.g_solver.lr: self.g_solver.update_lr()} + if self.cfg.loss.adversarial.loss_weight > 0: + feed_dict[self.d_solver.lr] = self.d_solver.update_lr() + return feed_dict + + def _train(self, init_step=0): + """ + Train steps. + + Args: + init_step: int, the starting step of training. + """ + _g_ops, _d_ops, loss_ops, summary_ops, adv_helper_criteria = \ + self.prepare_fetches() + train_st = time.time() + for it in range(init_step, self.g_solver.total_step): + feed_dict = self.prepare_feeds() + + # In adversarial scenario, we use a helper instance to filter + # the truly evaluated ops. + real_g_ops, real_d_ops = self.helper.filter(_g_ops, _d_ops) + + st_time = time.time() + ops_result, loss_ops_result, adv_helper_criteria_result = \ + self.session.run([{**real_g_ops, **real_d_ops}, + loss_ops, + adv_helper_criteria], + feed_dict=feed_dict) + once_time = time.time() - st_time + + if self.world.is_root_rank: + if it > init_step: + # Skip the first print_interval steps, whose values + # might be abnormal + self.step_time.update(once_time) + total_loss = loss_ops_result['loss_total'] + self.step_loss.update(total_loss) + + if (it + 1) % self.cfg.train.print_interval == 0: + self.print(it + 1, ops_result, loss_ops_result) + + if (it + 1) % self.cfg.train.checkpoint_interval == 0: + self.save(it + 1) + + # Update adversarial helper function + self.helper.update_status(adv_helper_criteria_result, it+1) + + # TODO: support tensorboard, summary and evaluation. + # For tensorboard visualization + # if self.writer is not None and (it + 1) % 100 == 0: + # summary_merge = tf.summary.merge_all() + # summary_loss_result = self.session.run(summary_merge, feed_dict=feed_dict) + # self.writer.add_summary(summary_loss_result, it + 1) + + if (self.cfg.train.dump_intermediate == 'intermediate' + and (it + 1) % self.cfg.train.dump_intermediate == 0): + summary_ops_result = self.session.run(summary_ops) + # In distributed training, we should run summary ops on all the devices in + # order to synchronize. But only the root node will dump the data. + if self.world.is_root_rank: + self.network.dump_summary(it + 1, summary_ops_result) + + train_time = time.time() - train_st + time_mi = train_time / 60 + logger.info('Training finished. Average step time:{:.2f} ms, total elapse time: {:.1f} min.' + .format(np.mean(self.step_time.avg) * 1000, time_mi)) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ed055f65e62da02cccdf6a4c4380c8a14e557770 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/__init__.py @@ -0,0 +1,20 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .act import * +from .norm import * +from .conv import * +from .dcn import * +from .linear import * +from .dropout import * diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/act.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/act.py new file mode 100644 index 0000000000000000000000000000000000000000..9bc380396e504ebd51f7d02657bdfc79bebd4483 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/act.py @@ -0,0 +1,74 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf +from .base_layer import BaseLayer + + +__all__ = ['ActLayer'] + +class ActLayer(BaseLayer): + """Activation layer class. + + Args: + cfg: dict, should specify the activation `type` and other parameters. + name: str, scope name. + """ + def __init__(self, cfg, name=None): + super(ActLayer, self).__init__() + self.type = cfg.get('type').lower() + if self.type == 'leakyrelu': + self.alpha = cfg.get('alpha', 0.2) + elif self.type == 'prelu': + # see https://pytorch.org/docs/stable/generated/torch.nn.PReLU.html + # for explanation + self.channelwise = cfg.get('channelwise', True) + self.name = name + + def forward(self, x): + if self.type == 'relu': + return tf.nn.relu(x, name=self.name) + elif self.type == 'elu': + return tf.nn.elu(x, name=self.name) + elif self.type == 'prelu': + ndim = len(x.get_shape().as_list()) + if self.channelwise: + num_parameters = x.get_shape().as_list()[-1] + else: + num_parameters = 1 + + a = tf.get_variable( + name=self.name+'_prelu_a', + shape=(num_parameters, ), + dtype=x.dtype, + trainable=True, + initializer=tf.constant_initializer(0.25)) + + if self.channelwise: + a = tf.reshape(a, shape=tuple([1]*(ndim-1) + [num_parameters])) + neg_mask = tf.cast(tf.less(x, 0.), dtype=x.dtype) + neg_x = a * x # apply parameter `a` channel-wise + return x * (1. - neg_mask) + neg_x * neg_mask + else: + return tf.nn.leaky_relu(x, alpha=a, name=self.name) + elif self.type == 'tanh': + return tf.nn.tanh(x, name=self.name) + elif self.type == 'leakyrelu': + return tf.nn.leaky_relu(x, alpha=self.alpha, name=self.name) + elif self.type == 'softplus': + return tf.nn.softplus(x, name=self.name) + elif self.type == 'sigmoid': + return tf.nn.sigmoid(x, name=self.name) + else: + raise NotImplementedError diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/base_layer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/base_layer.py new file mode 100644 index 0000000000000000000000000000000000000000..11e79581a651cafad04ab3b7f9a429a7ce842947 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/base_layer.py @@ -0,0 +1,33 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +class BaseLayer(object): + """Base layer class for all other common layers. + We'll use `Layer(args)(feat)` to call the layer. + """ + def __call__(self, *args, **kwargs): + return self.forward(*args, **kwargs) + + def forward(self, *args, **kwargs): + raise NotImplementedError + + def get_kernel(self): + raise NotImplementedError + + def get_bias(self): + raise NotImplementedError + + def get_buffer(self): + raise NotImplementedError diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/conv.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/conv.py new file mode 100644 index 0000000000000000000000000000000000000000..4916bee0a42e0f57e05f02f8009b70bd678b9522 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/conv.py @@ -0,0 +1,420 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import tensorflow as tf +import numpy as np + +from .base_layer import BaseLayer + +from src.runner.initializer import get_initializer, calculate_fan +from src.utils.utils import to_pair +from src.ops.weight_regularzation import spectral_norm + +__all__ = ["Conv2D", "Conv3D", "Conv2DTranspose", "Conv3DTranspose"] + +class _ConvBaseLayer(BaseLayer): + """A base class of convolution layer. + + y = conv(x, weights) + bias + + Properties: + kernel: tensor, conv kernel. + bias: tensor, bias tensor. + """ + def __init__(self, + num_filters, + kernel_size=3, + strides=1, + dilations=1, + use_bias=True, + use_spectral_norm=False, + padding='same', + padding_mode='CONSTANT', + name='_conv_base'): + """ + Initialization function of convolution base class. + + Args: + num_filters: int, number of filters. + kernel_size: int or list[int], the kernel size. + strides: int or list[int], the stride size. + dilations: int or list[int], the kernel dilations. + use_bias: boolean, whether to use bias. Default True. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + padding: str or list[int]. If is given list of padding size, the + padding will be 'valid'. One can also pass in str such as + ('same', 'valid'). + padding_mode: str, indicating how to pad, i.e., REFLECT or CONSTANT. + name: str, variable scope name. + """ + self.num_filters = num_filters + self.kernel_size = to_pair(kernel_size, 2) + self.strides = to_pair(strides, 2) + self.dilation = to_pair(dilations, 2) + + self.name = name + self.use_bias = use_bias + self.use_spectral_norm = use_spectral_norm + self.padding = padding + self.padding_mode = padding_mode + + def __call__(self, x): + """ + Execute function of forward. + + Args: + x: tensor, input feature. + + Returns: + tensor, convolved feature. + """ + + # Get the data type of the input. + self.dtype = x.dtype + self.in_channels = x.get_shape().as_list()[-1] + + # Get the weight and bias initializers. + self.kernel_initializer = self.get_kernel_init(x) + self.bias_initializer = self.get_bias_init(x) + + # Apply forward. + with tf.variable_scope(self.name): + x = self.apply_padding(x) + x = self.forward(x) + + return x + + def apply_padding(self, x): + """ + Do padding_mode before convolution. In 'same' padding_mode, the padding_mode will be + conducted by convolution operator itself. + + Args: + x: tensor, input feature map. + + Returns: + tensor, padded feature map or the original one. + """ + # padding_mode for conv2d + if isinstance(self.padding, (list, tuple)): + if len(padding_mode) != 2: + raise ValueError('Invalid padding_mode') + padding_h, padding_w = padding_mode + padding_new = ((0,0), + (padding_h, padding_h), + (padding_w, padding_w), + (0,0)) + x = tf.pad(x, padding_new, mode=self.padding_mode.upper()) + self.padding = 'Valid' + elif self.padding_mode.upper() == 'REFLECT': + padding_h = (self.kernel_size[0]//2, self.kernel_size[0]//2) + padding_w = (self.kernel_size[1]//2, self.kernel_size[1]//2) + padding_new = ((0,0), padding_h, padding_w, (0,0)) + x = tf.pad(x, padding_new, mode=self.padding_mode.upper()) + self.padding = 'Valid' + return x + + def get_kernel_init(self, x): + """ + Get kernel initializer. This function is called after passing through + the input feature. We use 'kaiming_uniform' initializer. + + Args: + x: tensor, input feature map. + + Returns: + tensorflow initializer. + """ + kernel_initializer = get_initializer( + dict(type='kaiming_uniform', a=math.sqrt(5)), + self.in_channels, + self.num_filters, + self.kernel_size, + dtype=self.dtype) + return kernel_initializer + + def get_bias_init(self, x): + """ + Get bias initializer. This function is called after passing through + the input feature. + + Args: + x: tensor, input feature map. + + Returns: + tensorflow initializer. + """ + fan = calculate_fan(self.kernel_size, self.in_channels) + bound = 1 / math.sqrt(fan) + bias_initializer = tf.random_uniform_initializer( + -bound, + bound, + dtype=self.dtype) + return bias_initializer + + @property + def kernel(self): + w = tf.get_variable( + "kernel", + shape=[*self.kernel_size, self.in_channels, self.num_filters], + initializer=self.kernel_initializer, + regularizer=None, + dtype=self.dtype) + if self.use_spectral_norm: + w = spectral_norm(w) + return w + + @property + def bias(self): + bias = tf.get_variable( + "bias", + [self.num_filters], + initializer=self.bias_initializer, + dtype=self.dtype) + return bias + +class Conv2D(_ConvBaseLayer): + """A convolution2D class. + """ + def __init__(self, + num_filters, + kernel_size=(3, 3), + strides=(1, 1), + dilations=(1, 1), + use_bias=True, + use_spectral_norm=False, + padding='same', + padding_mode='CONSTANT', + name='Conv2D'): + super().__init__(num_filters, + kernel_size, + strides, + dilations, + use_bias, + use_spectral_norm, + padding, + padding_mode, + name) + + def forward(self, x): + """ + Forward computation of the convolution 2d. + + Args: + x: tensor, input feature map. + + Returns: + tensor + """ + x = tf.nn.conv2d( + input=x, + filter=self.kernel, + strides=[1, *self.strides, 1], + padding=self.padding.upper()) + if self.use_bias: + x = tf.nn.bias_add(x, self.bias) + return x + + +class Conv2DTranspose(Conv2D): + """A convolution transpose 2D class. + """ + def __init__(self, + num_filters, + kernel_size=(3, 3), + strides=(1, 1), + dilations=(1, 1), + use_bias=True, + use_spectral_norm=False, + padding='same', + padding_mode='CONSTANT', + name='Conv2DTranspose'): + super().__init__(num_filters, + kernel_size, + strides, + dilations, + use_bias, + use_spectral_norm, + padding, + padding_mode, + name) + + @property + def kernel(self): + # The kernel shape is (H_ksize, W_ksize, out_channels, in_channels), + # different from Conv2D. + w = tf.get_variable( + "kernel", + shape=[*self.kernel_size, self.num_filters, self.in_channels], + initializer=self.kernel_initializer, + regularizer=None, + dtype=self.dtype) + if self.use_spectral_norm: + w = spectral_norm(w) + return w + + def forward(self, x): + """Forward computation of the convolution transpose 2d. + + Args: + x: tensor, input feature map. + """ + n, h, w, c = x.shape.as_list() + output_shape = [n, + h * self.strides[0], + w * self.strides[1], + self.num_filters] + x = tf.nn.conv2d_transpose( + input=x, + filter=self.kernel, + output_shape=output_shape, + strides=[1, *self.strides, 1], + padding=self.padding.upper()) + if self.use_bias: + x = tf.nn.bias_add(x, self.bias) + return x + + +class Conv3D(_ConvBaseLayer): + """A convolution 3D class. + """ + def __init__(self, + num_filters, + kernel_size=(3, 3, 3), + strides=(1, 1, 1), + dilations=(1, 1, 1), + use_bias=True, + use_spectral_norm=False, + padding='same', + padding_mode='CONSTANT', + name='Conv3D'): + super().__init__(num_filters, + kernel_size, + strides, + dilations, + use_bias, + use_spectral_norm, + padding, + padding_mode, + name) + self.kernel_size = to_pair(kernel_size, 3) + self.strides = to_pair(strides, 3) + self.dilation = to_pair(dilations, 3) + + def apply_padding(self, x): + """Do padding_mode before convolution. + In 'same' padding_mode, the padding_mode will be conducted by + convolution operator itself. + + Args: + x: tensor, input feature map. + + Returns: + tensor, padded feature map or the original one. + """ + # padding_mode for conv3d + if type(self.padding) in [list, tuple]: + if len(self.padding) != 3: + raise ValueError('Invalid padding_mode') + padding_d, padding_h, padding_w = self.padding + padding_new = ((0,0), + (padding_d, padding_d), + (padding_h, padding_h), + (padding_w, padding_w), (0,0)) + self.padding = 'Valid' + x = tf.pad(x, padding_new, mode=self.padding_mode.upper()) + elif self.padding_mode.lower() == 'reflect': + padding_d = (self.kernel_size[0]//2, self.kernel_size[0]//2) + padding_h = (self.kernel_size[1]//2, self.kernel_size[1]//2) + padding_w = (self.kernel_size[2]//2, self.kernel_size[2]//2) + padding_new = ((0,0), padding_d, padding_h, padding_w, (0,0)) + x = tf.pad(x, padding_new, self.padding_mode.upper()) + self.padding = 'Valid' + return x + + def forward(self, x): + """Forward computation of the convolution 3d. + + Args: + x: tensor, input feature map. + """ + x = tf.nn.conv3d( + input=x, + filter=self.kernel, + strides=[1, *self.strides, 1], + padding=self.padding.upper()) + if self.use_bias: + x = tf.nn.bias_add(x, self.bias) + return x + + +class Conv3DTranspose(Conv3D): + """A convolution transpose 3D class. + """ + def __init__(self, + num_filters, + kernel_size=(3, 3, 3), + strides=(1, 1, 1), + dilations=(1, 1, 1), + use_bias=True, + use_spectral_norm=False, + padding='same', + padding_mode='CONSTANT', + name='Conv3DTranspose'): + super().__init__(num_filters, + kernel_size, + strides, + dilations, + use_bias, + use_spectral_norm, + padding, + padding_mode, + name) + + @property + def kernel(self): + # The kernel shape is (H_ksize, W_ksize, out_channels, in_channels), + # different from Conv3D. + w = tf.get_variable( + "kernel", + shape=[*self.kernel_size, self.num_filters, self.in_channels], + initializer=self.kernel_initializer, + regularizer=None, + dtype=self.dtype) + if self.use_spectral_norm: + w = spectral_norm(w) + return w + + def forward(self, x): + """Forward computation of the convolution transpose 3d. + + Args: + x: tensor, input feature map. + """ + n, h, w, c = x.shape.as_list() + output_shape = [n, + h * self.strides[0], + w * self.strides[1], + self.num_filters] + x = tf.nn.conv3d_transpose( + input=x, + filter=self.kernel, + output_shape=output_shape, + strides=[1, *self.strides, 1], + padding=self.padding.upper()) + if self.use_bias: + x = tf.nn.bias_add(x, self.bias) + return x diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dcn.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dcn.py new file mode 100644 index 0000000000000000000000000000000000000000..548dced8e5289994c0e19b81e55263ad6139de41 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dcn.py @@ -0,0 +1,376 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math + +import tensorflow as tf +import numpy as np + +from .conv import Conv2D +from .base_layer import BaseLayer + +from src.utils.utils import to_pair +from src.utils.logger import logger + + +try: + from npu_bridge.tbe.npu_cube_ops import deformable_conv2d + OP_IMPL = 'npu' +except Exception: + logger.error('Failed to import NPU deformable_conv2d. ' + 'Please use the composed tf operator instead.' + '(This is NOT an actual error)') + OP_IMPL = 'tf' + + + +__all__ = ["DCNPack"] + +class DeformableConvLayer(BaseLayer): + """Deformable convolution layer. + + Args: + in_channels: int, number of channels of the input feature. + out_channels: int, number of channels of the output feature. + kernel_size: int or list[int] or tuple[int], kernel size of the conv + operation. + strides: int or list[int] or tuple[int], strides of the conv. + padding: str, options in ['same', 'valid']. Case insensitive. + dilations: int or list[int] or tuple[int], dilations of the conv. + use_bias: boolean, whether to add bias or not. Default True. + num_groups: int, number of convolution groups. + num_deform_groups: int, number of the groups of the offsets. + trainable: boolean, whether to train the parameters. + impl: str, which operator to use. Options in ['tf', 'npu']. If using + 'tf' version, the DCN will be composed of the tensorflow operators, + which may be memory and runtime inefficient. For Ascned platform, + we recommend to use npu deformable_conv2d instead. + """ + def __init__(self, + in_channels, + out_channels, + kernel_size, + strides=1, + padding='valid', + dilations=1, + use_bias=True, + num_groups=1, + num_deform_groups=1, + trainable=True, + impl='tf'): + self.in_channels = in_channels + self.out_channels = out_channels + self.kernel_size = to_pair(kernel_size, 2) + self.strides = to_pair(strides, 2) + self.padding = padding.lower() + self.dilations = to_pair(dilations, 2) + self.use_bias = use_bias + self.num_groups = num_groups + self.num_deform_groups = num_deform_groups + self.trainable = trainable + self.kernel_intermediate_shape = [] + self.build() + self.impl = impl + + def build(self): + """Prepare the weights and bias. + """ + n = self.in_channels + for k in self.kernel_size: + n *= k + stdv = 1. / math.sqrt(n) + initializer = tf.random_uniform_initializer(-stdv, stdv) + + self.kernel_intermediate_shape = [*self.kernel_size, self.in_channels//self.num_groups, self.out_channels//self.num_groups, self.num_groups] + + self.kernel = tf.get_variable( + "W", + [*self.kernel_size, self.in_channels//self.num_groups, self.out_channels], + initializer=initializer, + trainable=self.trainable) + if self.use_bias: + self.bias = tf.get_variable( + "b", + (self.out_channels,), + initializer=tf.constant_initializer(value=0.0), + trainable=self.trainable) + + def _cal_pads(self, ih, iw): + """Calculation padding given the input. + """ + if self.padding == 'same': + strh, strw = self.strides + kh, kw = self.kernel_size + dilh, dilw = self.dilations + tails_h = ih % strh + tails_w = iw % strw + dkh = dilh * (kh - 1) + 1 + dkw = dilw * (kw - 1) + 1 + pad_h = dkh - tails_h if tails_h > 0 else dkh - strh + pad_w = dkw - tails_w if tails_w > 0 else dkw - strw + pads = [pad_h // 2, pad_h // 2 + pad_h % 2, pad_w // 2, pad_w // 2 + pad_w % 2] + else: + pads = [0, 0, 0, 0] + return pads + + def forward(self, inputs, offset): + """Deformable Conv2d forward function. + """ + if self.impl == 'npu' and OP_IMPL == 'npu': + return self._forward_npu(inputs, offset) + else: + return self._forward_tf(inputs, offset) + + def _forward_npu(self, inputs, offset): + """Forward function of NPU deformable operator. + """ + _, ih, iw, _ = inputs.get_shape().as_list() + c = offset.get_shape().as_list()[3] + assert c == self.num_deform_groups*self.kernel_size[0]*self.kernel_size[1]*3 + offset_all = offset + + pads = self._cal_pads(ih, iw) + out = deformable_conv2d( + inputs, + self.kernel, + offset_all, + strides=[1] + list(self.strides) + [1], + pads=pads, + data_format='NHWC', + dilations=[1] + list(self.dilations) + [1], + groups=self.num_groups, + deformable_groups=self.num_deform_groups) + + if self.use_bias: + out = tf.nn.bias_add(out, self.bias) + return out + + def _forward_tf(self, inputs, offset): + """Forward function of tf composed deformable operator. + """ + def _get_in_bound_mask(x_, y_): + out_of_bound_x = tf.logical_or(tf.greater(x_, in_w-1), tf.less(x_, 0)) + out_of_bound_y = tf.logical_or(tf.greater(y_, in_h-1), tf.less(y_, 0)) + out_of_bound_mask = tf.logical_or(out_of_bound_x, out_of_bound_y) + return 1. - tf.to_float(out_of_bound_mask) + + inputs = self._pad_input(inputs) + bs, in_h, in_w, _ = inputs.get_shape().as_list() + bs, out_h, out_w, c = offset.get_shape().as_list() + + assert c == self.num_deform_groups*self.kernel_size[0]*self.kernel_size[1]*3 + c3 = c // 3 + + # get x, y axis offset. Swap the order to 'x,y' instead of 'y,x', align with npu dcn op + x_off = offset[:, :, :, :c3] + y_off = offset[:, :, :, c3:c3*2] + mask = offset[:, :, :, c3*2:] + + # input feature map gird coordinates + y, x = self._get_conv_indices(in_h, in_w) + y, x = [tf.to_float(i) for i in [y, x]] + y, x = [tf.tile(i, [1, 1, 1, self.num_deform_groups]) for i in [y, x]] + + # current deformable offsets + y, x = y + y_off, x + x_off + + # get four coordinates of points around (x, y) + y0, x0 = [tf.to_int32(tf.floor(i)) for i in [y, x]] + y1, x1 = y0 + 1, x0 + 1 + + # according to the strategy, prepare in_bound mask if use zero. + # In fact, gathernd NPU will take 0 if the index is out-of-bound, + # while CPU will throw an error. Therefore, do an explicit masking + m0 = _get_in_bound_mask(x0, y0) + m1 = _get_in_bound_mask(x1, y0) + m2 = _get_in_bound_mask(x0, y1) + m3 = _get_in_bound_mask(x1, y1) + + y_res = y - tf.to_float(y0) + x_res = x - tf.to_float(x0) + + w0_ori = (1. - y_res) * (1. - x_res) + w1_ori = (1. - y_res) * x_res + w2_ori = y_res * (1. - x_res) + w3_ori = y_res * x_res + + # clip the indices + y0_clip, y_clip, y1_clip = [tf.clip_by_value(i, 0, in_h - 1) for i in [y0, y, y1]] + x0_clip, x_clip, x1_clip = [tf.clip_by_value(i, 0, in_w - 1) for i in [x0, x, x1]] + + # get pixel values + indices = [[y0_clip, x0_clip], [y0_clip, x1_clip], [y1_clip, x0_clip], [y1_clip, x1_clip]] + p0, p1, p2, p3 = [self._get_pixel_values_at_point(inputs, i) for i in indices] + + # cast to float + x0_clip, x_clip, x1_clip, y0_clip, y_clip, y1_clip = [tf.to_float(i) for i in + [x0_clip, x_clip, x1_clip, y0_clip, y_clip, y1_clip]] + + # weights + w0 = m0 * w0_ori + w1 = m1 * w1_ori + w2 = m2 * w2_ori + w3 = m3 * w3_ori + + w0, w1, w2, w3 = [tf.reshape(i, [*i.get_shape()[:3], self.num_deform_groups, *self.kernel_size, 1]) + for i in [w0, w1, w2, w3]] + + # bilinear interpolation + pixels = tf.add_n([w0 * p0, w1 * p1, w2 * p2, w3 * p3]) + + if mask is not None: + pixels = tf.reshape(mask, [*mask.get_shape()[:3], self.num_deform_groups, *self.kernel_size, 1]) * pixels + + # reshape the "big" feature map + pixels = tf.transpose(pixels, [0,1,4,2,5,3,6]) + pixels = tf.reshape(pixels, [bs, out_h*self.kernel_size[0], out_w*self.kernel_size[1], -1]) + + # conv + kernel_reshaped = tf.reshape(self.kernel, self.kernel_intermediate_shape) + ich = pixels.shape[-1] // self.num_groups + out = tf.concat([tf.nn.conv2d( + pixels[:, :, :, i*ich:(i+1)*ich], + kernel_reshaped[:, :, :, :, i], + strides=self.kernel_size, + padding='VALID', + ) + for i in range(self.num_groups)], axis=-1) + + if self.use_bias: + out = tf.nn.bias_add(out, self.bias) + + return out + + def _pad_input(self, x): + """Pad the input before calculating the offsets. + """ + if self.padding == 'same': + ih, iw = x.get_shape().as_list()[1:3] + pads = self._cal_pads(ih, iw) + + if pads[0] + pads[1] + pads[2] + pads[3] != 0: + x = tf.pad(x, [[0, 0]] + [pads[:2]] + [pads[2:]] + [[0, 0]]) + + return x + + def _get_conv_indices(self, feat_h, feat_w): + """Get the x, y coordinates in the window when a filter sliding on the + feature map + """ + + x, y = tf.meshgrid(tf.range(feat_w), tf.range(feat_h)) + x, y = [tf.reshape(i, [1, *i.get_shape(), 1]) for i in [x, y]] # shape [1, h, w, 1] + x, y = [tf.image.extract_image_patches(i, + [1, *self.kernel_size, 1], + [1, *self.strides, 1], + [1, *self.dilations, 1], + 'VALID') + for i in [x, y]] # shape [1, out_h, out_w, filter_h * filter_w] + return y, x + + def _get_pixel_values_at_point(self, inputs, indices): + """Get pixel values at the given point. + """ + y, x = indices + bs, h, w, c = y.get_shape().as_list()[0: 4] + + if c % self.num_deform_groups != 0 or inputs.shape[-1] % self.num_deform_groups != 0: + raise ValueError + + per_group_offset_ch = c // self.num_deform_groups # kh*kw + per_group_input_ch = inputs.shape[-1] // self.num_deform_groups + batch_idx = tf.reshape(tf.range(0, bs), (bs, 1, 1, 1)) + b = tf.tile(batch_idx, (1, h, w, per_group_offset_ch)) + + outs = [] + for j in range(self.num_deform_groups): + pixel_idx = tf.stack([b, y[:, :, :, j*per_group_offset_ch:(j+1)*per_group_offset_ch], + x[:, :, :, j*per_group_offset_ch:(j+1)*per_group_offset_ch]], axis=-1) # [bs, h, w, per_group_offset_ch, 3] + outs.append(tf.gather_nd(inputs[:, :, :, j*per_group_input_ch:(j+1)*per_group_input_ch], pixel_idx)) + outs = tf.concat(outs, axis=-1) # [bs, h, w, per_group_offset_ch, cin] + + # reshape and transpose the outputs in order to align with the outer axis order + outs = tf.reshape(outs, [*outs.shape[:3], *self.kernel_size, self.num_deform_groups, -1]) + return tf.transpose(outs, [0,1,2,5,3,4,6]) + + +class DCNPack: + def __init__(self, + out_channels, + kernel_size=(3, 3), + strides=(1, 1), + padding='same', + dilations=(1, 1), + use_bias=True, + num_groups=1, + num_deform_groups=1, + name='DCN', + impl='npu'): + self.out_channels = out_channels + self.kernel_size = kernel_size + self.strides = strides + self.padding = padding + self.dilations = dilations + self.use_bias = use_bias + self.num_groups = num_groups + self.num_deform_groups = num_deform_groups + self.name = name + self.impl = impl + + def __call__(self, x, extra_feat): + with tf.variable_scope(self.name): + x = tf.cast(x, tf.float32) + + n_elem = (self.num_deform_groups + * self.kernel_size[0] + * self.kernel_size[1]) + + num_offset_channels = n_elem * 3 + + conv_offset = Conv2D(num_offset_channels, + kernel_size=self.kernel_size, + strides=self.strides, + padding=self.padding, + dilations=self.dilations, + use_bias=self.use_bias, + name='conv_offset')(extra_feat) + + conv_offset = tf.cast(conv_offset, tf.float32) + + # Get the modulation + modulation = tf.nn.sigmoid(conv_offset) + offset = conv_offset + + # Prepare a masking + weight = np.ones((1, 1, 1, num_offset_channels)).astype(np.float32) + weight[..., n_elem*2:] = 0. + weight = tf.convert_to_tensor(weight) + + # Make the n_elem*2 channels the offsets, the last n_elem channels + # the modulation. + input_offset_mask = weight * offset + (1. - weight) * modulation + + out = DeformableConvLayer( + in_channels=int(x.shape[-1]), + out_channels=self.out_channels, + kernel_size=self.kernel_size, + strides=self.strides, + padding=self.padding, + dilations=self.dilations, + use_bias=self.use_bias, + num_groups=self.num_groups, + num_deform_groups=self.num_deform_groups, + impl=self.impl)(x, input_offset_mask) + + return out diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dropout.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dropout.py new file mode 100644 index 0000000000000000000000000000000000000000..4dd5c9f65866828e2ed4791d2d8624411762b47b --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/dropout.py @@ -0,0 +1,60 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + +from src.layers.base_layer import BaseLayer +from src.utils.logger import logger + +try: + from npu_bridge.estimator import npu_ops + OP_IMPL = 'npu' +except Exception: + logger.error('Failed to import NPU dropout. Please use the composed tf operator instead.') + OP_IMPL = tf + + +__all__ = ["Dropout"] + +class Dropout(BaseLayer): + """Dropout layer. + + Use NPU high performance operator if possible. + + Args: + keep_prob: float, ranged in [0, 1], specifying the keeping probability + of the feature point. + """ + def __init__(self, keep_prob=0.1, name=None): + self.name = name + self.keep_prob = keep_prob + + def forward(self, input_tensor, training=False): + """Perform dropout. + """ + if not training: + return input_tensor + + with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): + if OP_IMPL == tf: + output = tf.nn.dropout(input_tensor, self.keep_prob) + else: + if self.keep_prob is None or self.keep_prob == 1.0: + return input_tensor + + ##################modify for npu###################### + # Modify dropout for high performance + output = npu_ops.dropout(input_tensor, self.keep_prob) + ##################npu modify end###################### + return output diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/linear.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/linear.py new file mode 100644 index 0000000000000000000000000000000000000000..e02a2ce47655be7897a2845eae571e7b8a7f5ad8 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/linear.py @@ -0,0 +1,135 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import math +import tensorflow as tf + +from .base_layer import BaseLayer + +from src.ops.weight_regularzation import spectral_norm +from src.runner.initializer import get_initializer, calculate_fan + + +__all__ = ["Linear"] + +class Linear(BaseLayer): + """A linear layer. + + y = x*weigths + bias + + Args: + num_filters: int, number of filters in linear layer. + use_bias: boolean, whether to apply bias. Default True. + name: str, layer scope name. + use_spectral_norm: boolean, whether to use spectral normalization + on the weights. Default False. + trainable: boolean, whether weights and bias are trainable. + + Attributes: + kernel: tensor, linear kernel. + bias: tensor, bias tensor. + """ + def __init__(self, num_filters, use_bias=True, + name='Linear', use_spectral_norm=False, + trainable=True): + self.num_filters = num_filters + self.use_bias = use_bias + self.name = name + self.use_spectral_norm = use_spectral_norm + self.trainable = trainable + + def get_kernel_init(self, x): + """Get kernel initializer. + This function is called after passing through the input feature. + We use 'kaiming_uniform' initializer. + """ + kernel_initializer = get_initializer( + dict(type='kaiming_uniform', a=math.sqrt(5)), + self.in_channels, + self.num_filters, + (1, ), + dtype=self.dtype) + return kernel_initializer + + def get_bias_init(self, x): + """Get bias initializer. + This function is called after passing through the input feature. + """ + fan = calculate_fan((1, ), self.in_channels) + bound = 1 / math.sqrt(fan) + bias_initializer = tf.random_uniform_initializer( + -bound, + bound, + dtype=self.dtype) + return bias_initializer + + @property + def kernel(self): + w = tf.get_variable( + "kernel", + shape=[*self.kernel_size, self.in_channels, self.num_filters], + initializer=self.kernel_initializer, + regularizer=None, + dtype=self.dtype) + if self.use_spectral_norm: + w = spectral_norm(w) + return w + + @property + def bias(self): + bias = tf.get_variable( + "bias", + [self.num_filters], + initializer=self.bias_initializer, + dtype=self.dtype) + return bias + + def __call__(self, x): + """Execute function of forward. + + Args: + x: tensor, input feature. + + Returns: + tensor, feature. + """ + + # Get the data type of the input. + self.dtype = x.dtype + self.in_channels = x.get_shape().as_list()[-1] + + # Get the weight and bias initializers. + self.kernel_initializer = self.get_kernel_init(x) + self.bias_initializer = self.get_bias_init(x) + + # Apply forward. + with tf.variable_scope(self.name): + x = self.forward(x) + + return x + + def forward(self, x): + """Forward computation of the linear layer. + """ + x = tf.layers.dense( + x, + units=self.num_filters, + use_bias=self.use_bias, + kernel_initializer=self.kernel_initializer, + bias_initializer=self.bias_initializer, + trainable=self.trainable, + name=self.name, + ) + if self.use_bias: + x = tf.nn.bias_add(x, self.bias) + return x diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/norm.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/norm.py new file mode 100644 index 0000000000000000000000000000000000000000..cc33db42e42dfeb2248cfe0f9b331878108485c5 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/layers/norm.py @@ -0,0 +1,112 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf +import tensorflow.contrib.slim as slim + +from .base_layer import BaseLayer + + +__all__ = ['NormLayer'] + +EPSILON = 1e-5 +DECAY = 0.99 + +def batch_norm(x, center=True, scale=True, is_train=True): + """Batch normalization function. + + y = (x - \mu) / \sigma * \gamma + \beta + + Args: + x: tensor, input feature map. + center: boolean, whether to use bias, i.e. beta. + scale: bollean, whether to use affine parameters, i.e. \gamma. + is_train: boolean, whether to update the buffers (moving average and var). + + Returns: + tensor, normalized feature map whose shape is the same with input. + """ + output = slim.batch_norm(x, decay=DECAY, center=center, scale=scale, + epsilon=EPSILON, updates_collections=tf.GraphKeys.UPDATE_OPS, + fused=False, is_training=is_train) + + return output + + +def instance_norm(x, center=True, scale=True, is_train=True): + """Apply instance normalization. + + Args: + x: tensor, input feature map. + center: boolean, whether to use bias, i.e. beta. + scale: bollean, whether to use affine parameters, i.e. \gamma. + is_train: boolean, whether to update the buffers (moving average and var). + + Returns: + tensor, normalized feature map whose shape is the same with input. + """ + return slim.instance_norm(x, center=center, scale=scale, epsilon=EPSILON, + trainable=is_train) + + +def layer_norm(x, center=True, scale=True, is_train=True): + """Apply layer normalization. + + Args: + x: tensor, input feature map. + center: boolean, whether to use bias, i.e. beta. + scale: bollean, whether to use affine parameters, i.e. \gamma. + is_train: boolean, whether to update the buffers (moving average and var). + + Returns: + tensor, normalized feature map whose shape is the same with input. + """ + return slim.layer_norm(x, center=True, scale=True, trainable=is_train) + + +NORM_FUNC = { + "bn": batch_norm, + "in": instance_norm, + "ln": layer_norm, +} + +class NormLayer(BaseLayer): + """ + Normalization layer class. + + Args: + norm_type: str, specifying the type of the norm layer. Possible choices: + ('bn', 'ln', 'in'). + center: boolean, whether to use bias, i.e. beta. + scale: bollean, whether to use affine parameters, i.e. \gamma. + is_train: boolean, whether to update the buffers (moving average and var). + + Raises: + ValueError, if the norm_type not in ('bn', 'ln', 'in') + """ + def __init__(self, norm_type, center=True, scale=True, is_train=True): + super(NormLayer, self).__init__() + if norm_type not in NORM_FUNC: + raise ValueError(f"Supported normalization layer type: {NORM_FUNC.keys()}, " + f"but is given {norm_type}") + self.fn = NORM_FUNC[norm_type] + self.is_train = is_train + self.center = center + self.scale = scale + + def forward(self, x): + return self.fn(x, + center=self.center, + scale=self.scale, + is_train=self.is_train) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/losses.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..8d8dd229167a6912927c4a59909f023e1f3abf23 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/losses.py @@ -0,0 +1,218 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tensorflow as tf + +from src.utils.logger import logger +from src.utils.klass import get_subclass_given_name + + +def get_loss(loss_type, pred, groundtruth, weight_map=None, **kwargs): + """Get the corresponding loss tensor given the loss type and the data pair. + + Args: + loss_type: str, type of loss class. + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + try: + klass = get_subclass_given_name(BaseLoss, loss_type) + except IndexError: + raise ValueError(f'Cannot find loss type {loss_type}.') + return klass()(pred, groundtruth, weight_map=None, **kwargs) + + +class BaseLoss(object): + def __call__(self, pred, grountruth, **kwargs): + raise NotImplementedError + + +class L1Loss(BaseLoss): + """Pixelwise L1-loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, weight_map=None, **kwargs): + loss = tf.abs(pred - groundtruth) + if weight_map is not None: + loss = loss * weight_map + return loss + + +class MarginalL1Loss(BaseLoss): + """Pixelwise L1-loss with margins. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + eps: scalar, a small scalar to margin out the values that are too small. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, eps=1e-6, weight_map=None, **kwargs): + + loss = tf.maximum(tf.abs(pred - groundtruth), eps) + if weight_map is not None: + loss = loss * weight_map + return loss + + +class L2Loss(BaseLoss): + """Pixelwise L2-loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, weight_map=None, **kwargs): + loss = tf.square(pred - groundtruth) + if weight_map is not None: + loss = loss * weight_map + return loss + + +class HuberLoss(BaseLoss): + """Pixelwise Huber loss, a.k.a. the smooth-l1 loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + delta: scalar, threshold to indicate where to change between l1 and l2. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, delta=1., weight_map=None, **kwargs): + res = pred - groundtruth + mask = tf.cast(tf.less(tf.abs(res), 1.), tf.float32) + lesser_region = 0.5 * l2_loss(pred, groundtruth) + greater_region = l1_loss(pred, groundtruth) - 0.5*delta**2 + loss = mask * lesser_region + (1. - mask) * greater_region + if weight_map is not None: + loss = loss * weight_map + return loss + + +# Alias smooth l1 loss. +SmoothL1Loss = HuberLoss + + +class CharbonnierLoss(BaseLoss): + """Pixelwise Charbonnier loss. A variant of L1-loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + eps: scalar, a small value to avoid inf or nan during sqrt. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, eps=1e-6, weight_map=None, **kwargs): + + loss = tf.sqrt((pred - groundtruth) ** 2 + eps) + if weight_map is not None: + loss = loss * weight_map + return loss + + +class MSELoss(BaseLoss): + """ + Pixelwise mse loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, weight_map=None, **kwargs): + + loss = tf.square(groundtruth - pred) + if weight_map is not None: + loss = loss * weight_map + + return loss + + +class FocalLoss(BaseLoss): + """Pixelwise FocalLoss. See https://arxiv.org/pdf/1708.02002.pdf + + Args:s + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + alpha: scalar, a small balance value. Default 0.25 as in the paper. + gamma: scalar, focusing parameter which is greater than 0. Default 2. + eps: scalar, a small value to avoid nan when tf.log. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, alpha=0.25, gamma=2, eps=1e-6, + weight_map=None, **kwargs): + + pt = tf.where(groundtruth, pred, 1.-pred) + loss = - alpha * tf.pow(1. - pt, gamma) * tf.log(tf.maximum(pt, eps)) + if weight_map is not None: + loss = loss * weight_map + return loss + + +class CosineDistanceLoss(BaseLoss): + """Pixelwise cosine distance loss. + + Args: + pred: tensor, the predictions. + groundtruth: tensor, the target tensor. + axis: int, which axis to do the normalization. + eps: scalar, a small value to avoid nan when tf.log. + weight_map: tensor or None. If given, the loss will be weighted. + + Returns: + tensor, whose shape is the same with the pred and groundtruth. + """ + def __call__(self, pred, groundtruth, axis=-1, eps=1e-6, weight_map=None, + **kwargs): + + prod = pred * groundtruth + prod = tf.reduce_sum(prod, axis=axis, keepdims=True) + pred_norm = tf.reduce_sum(tf.square(pred), axis=axis, keepdims=True) + gt_norm = tf.reduce_sum(tf.square(groundtruth), axis=axis, keepdims=True) + norm_scale = tf.sqrt(pred_norm * gt_norm + eps) + loss = 1. - prod / norm_scale + if weight_map is not None: + loss = loss * weight_map + return loss diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/adversarial.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/adversarial.py new file mode 100644 index 0000000000000000000000000000000000000000..4e5b60ffcf05d34070bdb8389a4a58da3b0c3306 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/adversarial.py @@ -0,0 +1,303 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import numpy as np +import tensorflow as tf + +from src.losses.modules.gan import get_gan +from src.utils.klass import get_subclass_given_name +from src.runner.common import name_space + + +def build_adversarial_loss(hq, gt, cfg): + """hq and gt both in shape [b*num_out_frames, h, w, c] + """ + num_out_frames = cfg.data.num_data_gt_frames + adv_loss_type = cfg.loss.adversarial.loss_type + try: + loss_model = get_subclass_given_name(_BaseAdvLoss, + adv_loss_type)(cfg) + except IndexError: + logger.error(f'Cannot find adversarial loss type {adv_loss_type}.') + raise ValueError() + + hr_shape = gt.get_shape().as_list() + + # Check whether 3D network is used and reshape the tensor to 4D or 5D. + if '3D' in cfg.loss.adversarial.gan_type and len(hr_shape) == 4: + gt = tf.reshape(gt, [-1, num_out_frames, *hr_shape[1:]]) + hq = tf.reshape(hq, [-1, num_out_frames, *hr_shape[1:]]) + elif (not '3D' in cfg.loss.adversarial.gan_type) and len(hr_shape) != 4: + gt = tf.reshape(gt, [-1, *hr_shape[2:]]) + hq = tf.reshape(hq, [-1, *hr_shape[2:]]) + + return loss_model(real=gt, fake=hq) + + +class _BaseAdvLoss: + """Base adversarial loss class. + All the adv losses will be derived from the base class. + + After real data point and fake one forward through the discriminator, + the logits will be used to calculate the losses. + """ + def __init__(self, cfg): + reduction = cfg.loss.adversarial.loss_reduction + self.discriminator = get_gan(cfg) + self.reduction = reduction + self.cfg = cfg + + def __call__(self, real, fake): + """ + Forward the real and fake sample through the discriminator and + calculate the losses. + + Args: + real: tensor, 4D or 5D tensor for real samples. + fake: tensor, the same as real. Fake generated samples. + + Returns: + real_loss: scalar tensor, loss for the real sample. + fake_loss: scalar tensor, loss for the fake sample. + """ + + # Forward through the discriminators to get the logits. + fake_logit = self.discriminator(fake) + real_logit = self.discriminator(real) + + # Calculate the losses. + real_loss, fake_loss = self.forward(real_logit, fake_logit) + + # Cast to fp32 before reduction in case of precision loss on Ascend. + real_loss = tf.cast(real_loss, tf.float32) + fake_loss = tf.cast(fake_loss, tf.float32) + + if self.reduction == 'mean': + reduction_fn = tf.reduce_mean + elif self.reduction == 'sum': + reduction_fn = tf.reduce_sum + else: + raise NotImplementedError + + # Apply weights before output. + real_loss = reduction_fn(real_loss) * self.cfg.loss.adversarial.loss_weight + fake_loss = reduction_fn(fake_loss) * self.cfg.loss.adversarial.loss_weight + + name_space.add_to_collection(name_space.DiscriminatorLoss, + 'discriminator', real_loss) + name_space.add_to_collection(name_space.GeneratorLoss, + 'adversarial', fake_loss) + + return real_loss, fake_loss + + def forward(self, real_logit, fake_logit): + raise NotImplementedError + + +class VanillaAdvLoss(_BaseAdvLoss): + """ + Vanialla adversarial loss, i.e. + loss_d = E(log D) + E(log (1 - D(G))) + loss_g = - E(log D(G)) + """ + def forward(self, real_logit, fake_logit): + fake_loss = tf.nn.sigmoid_cross_entropy_with_logits( + logits=fake_logit, + labels=tf.ones_like(fake_logit)) + real_loss = tf.nn.sigmoid_cross_entropy_with_logits( + logits=real_logit, + labels=tf.ones_like(real_logit)) \ + + tf.nn.sigmoid_cross_entropy_with_logits( + logits=fake_logit, + labels=tf.zeros_like(fake_logit)) + + return real_loss, fake_loss + + +class HingeAdvLoss(_BaseAdvLoss): + """ + Hinge adversarial loss, i.e. + loss_d = E(max(0, 1 - D)) + E(max(0, 1 + D(G))) + loss_g = - E(D(G)) + """ + def forward(self, real_logit, fake_logit): + fake_loss = - fake_logit + real_loss = tf.nn.relu(1.0 - real_logit) + tf.nn.relu(1.0 + fake_logit) + return real_loss, fake_loss + + +class RSAdvLoss(VanillaAdvLoss): + """ + Relativistic adversarial loss, i.e. + loss_d = - E(log sigmoid(D - D(G))) + loss_g = - E(log sigmoid(D(G) - D)) + """ + # Relativistic Standard GAN + def forward(self, real_logit, fake_logit): + fake_loss = tf.nn.sigmoid_cross_entropy_with_logits( + logits=fake_logit, + labels=tf.ones_like(fake_logit)) + real_loss = tf.nn.sigmoid_cross_entropy_with_logits( + logits=real_logit, + labels=tf.ones_like(real_logit)) + + return real_loss, fake_loss + + def __call__(self, real, fake): + fake_logit = self.discriminator(fake) + real_logit = self.discriminator(real) + real_loss, fake_loss = self.forward(real_logit - fake_logit, + fake_logit - real_logit) + + real_loss = tf.cast(real_loss, tf.float32) + fake_loss = tf.cast(fake_loss, tf.float32) + + if self.reduction == 'mean': + reduction_fn = tf.reduce_mean + elif self.reduction == 'sum': + reduction_fn = tf.reduce_sum + else: + raise NotImplementedError + + real_loss = reduction_fn(real_loss) + fake_loss = reduction_fn(fake_loss) * self.cfg.loss.adversarial.loss_weight + + name_space.add_to_collection(name_space.DiscriminatorLoss, + 'discriminator', real_loss) + name_space.add_to_collection(name_space.GeneratorLoss, + 'adversarial', fake_loss) + + return real_loss, fake_loss + + +class RaSAdvLoss(VanillaAdvLoss): + """ + Relativistic adversarial loss, i.e. + loss_d = - E(log sigmoid(D - E(D(G)))) + E(log sigmoid(D(G) - E(D))) + loss_g = - E(log sigmoid(D(G) - E(D))) + E(log sigmoid(D - E(D(G)))) + """ + # Relativistic Average GAN + def forward(self, real_logit, fake_logit): + fake_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logit, + labels=tf.ones_like(fake_logit)) \ + + tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logit, + labels=tf.zeros_like(fake_logit)) + real_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=real_logit, + labels=tf.ones_like(real_logit)) \ + + tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_logit, + labels=tf.zeros_like(fake_logit)) + + return real_loss, fake_loss + + def __call__(self, real, fake): + fake_logit = self.discriminator(fake) + real_logit = self.discriminator(real) + real_loss, fake_loss = self.forward(real_logit - tf.reduce_mean(fake_logit, axis=0, keepdims=True), + fake_logit - tf.reduce_mean(real_logit, axis=0, keepdims=True)) + + real_loss = tf.cast(real_loss, tf.float32) + fake_loss = tf.cast(fake_loss, tf.float32) + + if self.reduction == 'mean': + reduction_fn = tf.reduce_mean + elif self.reduction == 'sum': + reduction_fn = tf.reduce_sum + else: + raise NotImplementedError + + real_loss = reduction_fn(real_loss) + fake_loss = reduction_fn(fake_loss) * self.cfg.loss.adversarial.loss_weight + + name_space.add_to_collection(name_space.DiscriminatorLoss, + 'discriminator', real_loss) + name_space.add_to_collection(name_space.GeneratorLoss, + 'adversarial', fake_loss) + + return real_loss, fake_loss + + +class LSAdvLoss(_BaseAdvLoss): + """ + Least-square adversarial loss, i.e. + loss_d = 0.5 * E((D - 1)**2) + 0.5 * E(D(G)**2) + loss_g = E((D(G) - 1)**2) + """ + def forward(self, real_logit, fake_logit): + fake_loss = tf.square(fake_logit - 1) + real_loss = 0.5 * tf.square(real_logit - 1) + 0.5 * tf.square(fake_logit) + + return real_loss, fake_loss + + +class WGANLoss(_BaseAdvLoss): + """ + Wesserstein adversarial loss, i.e. + loss_d = E(D) + E(1 - D(G)) + loss_g = - E(D(G)) + """ + def forward(self, real_logit, fake_logit): + fake_loss = - fake_logit + real_loss = fake_logit - real_logit + return real_loss, fake_loss + + +class WGAN_GP_Loss(WGANLoss): + """ + Wesserstein adversarial loss with gradient panelty, i.e. + loss_d = E(D) + E(1 - D(G)) + GP(D, D(G)) + loss_g = - E(D(G)) + """ + def gradient_penalty(self, real, fake): + b = real.get_shape().as_list()[0] + ndim = len(real.get_shape().as_list()) + shape = (b, ) + (1, ) * (ndim - 1) + alpha = tf.random.uniform(shape=shape) + interpolates = alpha * real + (1. - alpha) * fake + + interp_logit = self.discriminator(interpolates) + grads = tf.gradients( + interp_logit, + xs=interpolates + ) + gradient_penalty = tf.reduce_mean((grads-1.)**2) + return gradient_penalty + + def __call__(self, real, fake): + fake_logit = self.discriminator(fake) + real_logit = self.discriminator(real) + real_loss, fake_loss = self.forward(real_logit, fake_logit) + grad_penalty = self.gradient_penalty(real, fake) + + real_loss = tf.cast(real_loss, tf.float32) + fake_loss = tf.cast(fake_loss, tf.float32) + grad_penalty = tf.cast(grad_penalty, tf.float32) + + if self.reduction == 'mean': + reduction_fn = tf.reduce_mean + elif self.reduction == 'sum': + reduction_fn = tf.reduce_sum + else: + raise NotImplementedError + + real_loss = reduction_fn(real_loss) \ + + grad_penalty * self.cfg.loss.adversarial.grad_penalty_weight + fake_loss = reduction_fn(fake_loss) * self.cfg.loss.adversarial.loss_weight + + name_space.add_to_collection(name_space.DiscriminatorLoss, + 'discriminator', real_loss) + name_space.add_to_collection(name_space.GeneratorLoss, + 'adversarial', fake_loss) + + return real_loss, fake_loss diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/gan.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/gan.py new file mode 100644 index 0000000000000000000000000000000000000000..1045cde727a69a2b3f22bc3631c38d801b05d48b --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/gan.py @@ -0,0 +1,520 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import numpy as np +import tensorflow as tf + +from src.runner.common import name_space +from src.layers import Conv2D, Conv3D, NormLayer, ActLayer, Linear +from src.utils.klass import get_subclass_given_name + + +def get_gan(cfg): + """Get GAN instance given the configuration. + + Args: + cfg: yacs node, config for the GAN. + + Returns: + GAN instance. + """ + + try: + klass = get_subclass_given_name(BaseGAN, cfg.loss.adversarial.gan_type) + except IndexError: + logger.error(f'Cannot find GAN type {cfg.loss.adversarial.gan_type}.') + raise ValueError() + + return klass(cfg.loss.adversarial.mid_channels, cfg.loss.adversarial.norm_type) + + +class BaseGAN: + """Base GAN class. + """ + def __init__(self, scope=name_space.DiscriminatorVarScope): + self.scope = scope + + def __call__(self, input): + with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE): + return self.forward(input) + + def forward(self, input): + raise NotImplementedError + + +class VanillaGAN(BaseGAN): + """A vanilla discriminator for 4D feature map. + + Args: + mid_channels: int, multiplier of the channels in the middle layers. + norm_type: str, type of the normalization layer. + scope: str, discriminator scope name. + """ + def __init__(self, mid_channels=64, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.norm_type = norm_type + self.mid_channels = mid_channels + self.kernel_size = (3, 3) + + def conv_norm_act(self, inputs, output_channel, kernel_size, stride, norm_type, is_train, scope): + """A conv-norm-activation sequence. + """ + with tf.variable_scope(scope): + net = Conv2D(output_channel, kernel_size, stride, + use_bias=norm_type=='in', + name='conv', + use_spectral_norm=norm_type=='sn')(inputs) + net = NormLayer(norm_type, is_train=is_train)(net) + net = ActLayer(dict(type='leakyrelu', alpha=0.2), name='lrelu')(net) + return net + + def forward(self, input): + """Forward pass through the discriminator. + """ + # no batchnorm for the first layer, output size [in_h/2, in_w/2] + net = Conv2D(self.mid_channels, + kernel_size=self.kernel_size, + strides=(1, 1), + name='conv_first')(input) + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + + # The discriminator block part + # block 1, output size [in_h/4, in_w/4] + net = self.conv_norm_act(net, self.mid_channels, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_1') + # block 2, output size [in_h/8, in_w/8] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_2') + # block 3, output size [in_h/16, in_w/16] + net = self.conv_norm_act(net, self.mid_channels*3, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_3') + # block_4, output size [in_h/32, in_w/32] + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_4') + + # The dense layer 1 + b, h, w, c = net.get_shape().as_list() + net = tf.reshape(net, [b, h * w * c]) + net = Linear(256, name='linear1')(net) # channel-wise dense layer + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + net = Linear(1, name='linear_final')(net) # channel-wise dense layer + return net + + +class VanillaGAN3D(BaseGAN): + """A vanilla discriminator for 5D feature map. + + Args: + mid_channels: int, multiplier of the channels in the middle layers. + norm_type: str, type of the normalization layer. + scope: str, discriminator scope name. + """ + def __init__(self, mid_channels=32, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.norm_type = norm_type + self.mid_channels = mid_channels + self.kernel_size = (3, 5, 5) + + def conv_norm_act(self, inputs, output_channel, kernel_size, stride, norm_type, is_train, scope): + """A conv-norm-activation sequence. + """ + with tf.variable_scope(scope): + net = Conv3D(output_channel, kernel_size, stride, use_bias=norm_type=='in', name='conv', + use_spectral_norm=norm_type=='sn')(inputs) + net = NormLayer(norm_type, is_train=is_train)(net) + net = ActLayer(dict(type='leakyrelu', alpha=0.2), name='lrelu')(net) + return net + + def forward(self, input): + """Forward pass through the discriminator. + """ + + # no batchnorm for the first layer, output size [in_h/2, in_w/2] + net = Conv3D(self.mid_channels, kernel_size=self.kernel_size, strides=(1, 1, 1), + name='conv_first')(input) + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + + # The discriminator block part + # block 1, output size [in_h/4, in_w/4] + net = self.conv_norm_act(net, self.mid_channels, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_1') + # block 2, output size [in_h/8, in_w/8] + net = self.conv_norm_act(net, self.mid_channels, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_2') + # block 3, output size [in_h/16, in_w/16] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_3') + # block_4, output size [in_h/32, in_w/32] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_4') + # block_5, output size [in_h/64, in_w/64] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_5') + + # The dense layer 1 + b, t, h, w, c = net.get_shape().as_list() + net = tf.reshape(net, [b, t * h * w * c]) + net = Linear(256, name='linear1')(net) # channel-wise dense layer + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + net = Linear(1, name='linear_final')(net) # channel-wise dense layer + return net + + +class PatchGAN(BaseGAN): + """A PatchGAN discriminator for 4D feature map. + + Args: + mid_channels: int, multiplier of the channels in the middle layers. + norm_type: str, type of the normalization layer. + scope: str, discriminator scope name. + """ + def __init__(self, mid_channels=64, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.norm_type = norm_type + self.mid_channels = mid_channels + self.kernel_size = (3, 3) + + def conv_norm_act(self, inputs, output_channel, kernel_size, stride, norm_type, is_train, scope): + """A conv-norm-activation sequence. + """ + with tf.variable_scope(scope): + net = Conv2D(output_channel, kernel_size, stride, use_bias=norm_type=='in', name='conv', + use_spectral_norm=norm_type=='sn')(inputs) + net = NormLayer(norm_type, is_train=is_train)(net) + net = ActLayer(dict(type='leakyrelu', alpha=0.2), name='lrelu')(net) + return net + + def forward(self, input): + """Forward pass through the discriminator. + """ + + # no batchnorm for the first layer, output size [in_h/2, in_w/2] + net = Conv2D(self.mid_channels, kernel_size=self.kernel_size, + strides=(1, 1), name='conv_first')(input) + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + + # The discriminator block part + # block 1, output size [in_h/4, in_w/4] + net = self.conv_norm_act(net, self.mid_channels, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_1') + # block 2, output size [in_h/8, in_w/8] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_2') + # block 3, output size [in_h/16, in_w/16] + net = self.conv_norm_act(net, self.mid_channels*3, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_3') + # block_4, output size [in_h/32, in_w/32] + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (2, 2), self.norm_type, + True, 'disblock_4') + + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (1, 1), self.norm_type, + True, 'disblock_5') + net = Conv2D(self.mid_channels, kernel_size=(3, 3), strides=(1, 1), name='conv_last')(net) + return net + + +class PatchGAN3D(BaseGAN): + """A PatchGAN discriminator for 5D feature map. + + Args: + mid_channels: int, multiplier of the channels in the middle layers. + norm_type: str, type of the normalization layer. + scope: str, discriminator scope name. + """ + def __init__(self, mid_channels=64, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.norm_type = norm_type + self.mid_channels = mid_channels + self.kernel_size = (3, 5, 5) + + def conv_norm_act(self, inputs, output_channel, kernel_size, stride, norm_type, is_train, scope): + """ + A conv-norm-activation sequence. + """ + with tf.variable_scope(scope): + net = Conv3D(output_channel, kernel_size, stride, use_bias=norm_type=='in', name='conv', + use_spectral_norm=norm_type=='sn')(inputs) + net = NormLayer(norm_type, is_train=is_train)(net) + net = ActLayer(dict(type='leakyrelu', alpha=0.2), name='lrelu')(net) + return net + + def forward(self, input): + """ + Forward pass through the discriminator. + """ + # no batchnorm for the first layer, output size [in_h/2, in_w/2] + net = Conv3D(self.mid_channels, kernel_size=self.kernel_size, + strides=(1, 1, 1), name='conv_first')(input) + net = ActLayer(dict(type='leakyrelu', alpha=0.2))(net) + + # The discriminator block part + # block 1, output size [in_h/4, in_w/4] + net = self.conv_norm_act(net, self.mid_channels*2, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_1') + # block 2, output size [in_h/8, in_w/8] + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_3') + # block 3, output size [in_h/16, in_w/16] + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_5') + # block_4, output size [in_h/32, in_w/32] + net = self.conv_norm_act(net, self.mid_channels*4, + self.kernel_size, (1, 2, 2), self.norm_type, + True, 'disblock_7') + + net = Conv3D(self.mid_channels, kernel_size=self.kernel_size, + strides=(1, 1, 1), name='conv_last')(net) + # net = tf.reduce_mean(net, axis=1, keepdims=True) + return net + + +class BigGAN(BaseGAN): + """A BigGAN discriminator for 4D feature map. + + Args: + mid_channels: int, multiplier of the channels in the middle layers. + norm_type: str, type of the normalization layer. + scope: str, discriminator scope name. + """ + def __init__(self, mid_channels=64, norm_type='none', scope=name_space.DiscriminatorVarScope): + """ + Initialization function of the discriminator. + + + """ + super().__init__(scope) + self.ch = mid_channels + self.sn = False + self.layer_num = 4 + + def hw_flatten(self, x): + return tf.reshape(x, shape=[x.shape[0], -1, x.shape[-1]]) + + def down_sample(self, x): + return tf.layers.average_pooling2d(x, pool_size=2, strides=2, padding='SAME') + + def init_down_resblock(self, x_init, channels, use_bias=True, sn=False, scope='resblock'): + with tf.variable_scope(scope): + with tf.variable_scope('res1'): + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x_init) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + + with tf.variable_scope('res2'): + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + x = self.down_sample(x) + + with tf.variable_scope('shortcut'): + x_init = self.down_sample(x_init) + x_init = Conv2D(channels, kernel_size=(1, 1), use_bias=use_bias, use_spectral_norm=sn)(x_init) + + return x + x_init + + def down_resblock(self, x_init, channels, to_down=True, use_bias=True, sn=False, scope='resblock'): + with tf.variable_scope(scope): + init_channel = x_init.shape.as_list()[-1] + with tf.variable_scope('res1'): + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x_init) + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + + with tf.variable_scope('res2'): + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + if to_down: + x = self.down_sample(x) + + if to_down or init_channel != channels: + with tf.variable_scope('shortcut'): + x_init = Conv2D(channels, kernel_size=(1, 1), use_bias=use_bias, use_spectral_norm=sn)(x_init) + if to_down: + x_init = self.down_sample(x_init) + + return x + x_init + + def google_attention(self, x, channels, scope='attention'): + with tf.variable_scope(scope): + batch_size, height, width, num_channels = x.get_shape().as_list() + f = Conv2D(channels // 8, kernel_size=(1, 1), use_spectral_norm=self.sn, name='f')(x) # [bs, h, w, c'] + f = tf.layers.max_pooling2d(f, pool_size=2, strides=2, padding='SAME') + g = Conv2D(channels // 8, kernel_size=(1, 1), use_spectral_norm=self.sn, name='g')(x) # [bs, h, w, c'] + h = Conv2D(channels // 2, kernel_size=(1, 1), use_spectral_norm=self.sn, name='h')(x) # [bs, h, w, c] + h = tf.layers.max_pooling2d(h, pool_size=2, strides=2, padding='SAME') + + # N = h * w + s = tf.matmul(self.hw_flatten(g), self.hw_flatten(f), transpose_b=True) # # [bs, N, N] + + beta = tf.nn.softmax(s) # attention map + + o = tf.matmul(beta, self.hw_flatten(h)) # [bs, N, C] + gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0)) + + o = tf.reshape(o, shape=[batch_size, height, width, num_channels // 2]) # [bs, h, w, C] + o = Conv2D(channels, kernel_size=(1, 1), use_spectral_norm=self.sn, name='c')(o) # [bs, h, w, c] + x = gamma * o + x + + return x + + def forward(self, x): + """Forward pass through the discriminator. + """ + ch = self.ch + x = self.init_down_resblock(x, channels=ch, sn=self.sn, scope='resblock_0') + x = self.down_resblock(x, channels=ch * 2, sn=self.sn, scope='resblock_1') + + x = self.google_attention(x, channels=ch * 2, scope='self_attention') + + ch = ch * 2 + for i in range(self.layer_num): + if i == self.layer_num - 1: + x = self.down_resblock(x, channels=ch, sn=self.sn, to_down=False, scope='resblock_' + str(i+2)) + else: + x = self.down_resblock(x, channels=ch * 2, sn=self.sn, scope='resblock_' + str(i+2)) + ch = ch * 2 + + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + x = tf.reduce_sum(x, axis=[1, 2]) + x = Linear(1, name='linear')(x) + return x + +class MSPatchGAN(BaseGAN): + """ + A multi-scale PatchGAN discriminator for 4D feature map. + """ + def __init__(self, nf=64, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.nf = nf + + def patchGAN(self, x, n_layers, d_layers): + x = Conv2D(self.nf, kernel_size=(4, 4), strides=(2, 2), name='conv_first')(x) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + + for n in range(1, n_layers): + x = Conv2D(self.nf * min(2 ** n, 8), kernel_size=(4, 4), strides=(1, 1), name='conv' + str(n))(x) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + if n < d_layers: + x = Conv2D(self.nf * min(2 ** n, 8), kernel_size=(4, 4), strides=(2, 2), name='conv' + str(n) + '_down')(x) + x = Conv2D(1, kernel_size=(4, 4), strides=(1, 1), name='conv_last')(x) + return x + + def forward(self, x): + n, h, w, c = x.get_shape().as_list() + x_big = tf.image.resize_bilinear(x, size=(int(2*h), int(2*w)), align_corners=False, half_pixel_centers=False) + x_mid = x + x_sml = tf.image.resize_bilinear(x, size=(int(0.5*h), int(0.5*w)), align_corners=False, half_pixel_centers=False) + with tf.variable_scope('big', reuse=tf.AUTO_REUSE): + out_big = self.patchGAN(x_big, n_layers=3, d_layers=3) + with tf.variable_scope('mid', reuse=tf.AUTO_REUSE): + out_mid = self.patchGAN(x_mid, n_layers=3, d_layers=2) + with tf.variable_scope('sml', reuse=tf.AUTO_REUSE): + out_sml = self.patchGAN(x_sml, n_layers=3, d_layers=1) + x = tf.concat([out_big, out_mid, out_sml], axis=-1) + return x + + +class MSPatchBigGAN(BaseGAN): + """ + A multi-scale PatchBigGAN discriminator for 4D feature map. + """ + def __init__(self, nf=16, norm_type='in', scope=name_space.DiscriminatorVarScope): + super().__init__(scope) + self.nf = nf + self.sn = False + + def hw_flatten(self, x): + return tf.reshape(x, shape=[x.shape[0], -1, x.shape[-1]]) + + def down_sample(self, x): + return tf.layers.average_pooling2d(x, pool_size=2, strides=2, padding='SAME') + + def init_down_resblock(self, x_init, channels, use_bias=True, sn=False, scope='resblock'): + with tf.variable_scope(scope): + with tf.variable_scope('res1'): + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x_init) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + + with tf.variable_scope('res2'): + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + x = self.down_sample(x) + + with tf.variable_scope('shortcut'): + x_init = self.down_sample(x_init) + x_init = Conv2D(channels, kernel_size=(1, 1), use_bias=use_bias, use_spectral_norm=sn)(x_init) + + return x + x_init + + def down_resblock(self, x_init, channels, to_down=True, use_bias=True, sn=False, scope='resblock'): + with tf.variable_scope(scope): + init_channel = x_init.shape.as_list()[-1] + with tf.variable_scope('res1'): + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x_init) + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + + with tf.variable_scope('res2'): + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + x = Conv2D(channels, kernel_size=(3, 3), use_bias=use_bias, use_spectral_norm=sn)(x) + if to_down: + x = self.down_sample(x) + + if to_down or init_channel != channels: + with tf.variable_scope('shortcut'): + x_init = Conv2D(channels, kernel_size=(1, 1), use_bias=use_bias, use_spectral_norm=sn)(x_init) + if to_down: + x_init = self.down_sample(x_init) + + return x + x_init + + def patchGAN(self, x, n_layers, d_layers): + x = self.init_down_resblock(x, channels=self.nf, sn=self.sn, scope='resblock_0') + x = self.down_resblock(x, channels=self.nf * 2, sn=self.sn, scope='resblock_1') + for n in range(n_layers): + if n < d_layers: + x = self.down_resblock(x, channels=self.nf * min(2 ** n, 8), sn=self.sn, scope='resblock_' + str(n + 2)) + else: + x = self.down_resblock(x, channels=self.nf * min(2 ** n, 8), sn=self.sn, to_down=False, scope='resblock_' + str(n + 2)) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + x = Conv2D(self.nf * 8, kernel_size=(3, 3), strides=(1, 1), use_spectral_norm=self.sn, name='conv')(x) + x = ActLayer(dict(type='leakyrelu', alpha=0.2))(x) + x = Conv2D(1, strides=(1, 1), name='conv_last')(x) + return x + + def forward(self, x): + n, h, w, c = x.get_shape().as_list() + x_big = tf.image.resize_bilinear(x, size=(int(2*h), int(2*w)), align_corners=False, half_pixel_centers=False) + x_mid = x + x_sml = tf.image.resize_bilinear(x, size=(int(0.5*h), int(0.5*w)), align_corners=False, half_pixel_centers=False) + with tf.variable_scope('big', reuse=tf.AUTO_REUSE): + out_big = self.patchGAN(x_big, n_layers=3, d_layers=3) + with tf.variable_scope('mid', reuse=tf.AUTO_REUSE): + out_mid = self.patchGAN(x_mid, n_layers=3, d_layers=2) + with tf.variable_scope('sml', reuse=tf.AUTO_REUSE): + out_sml = self.patchGAN(x_sml, n_layers=3, d_layers=1) + x = tf.concat([out_big, out_mid, out_sml], axis=-1) + return x diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/perceptual.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/perceptual.py new file mode 100644 index 0000000000000000000000000000000000000000..4e8f4a27bac33d526d307afa81f0d33faefe8738 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/perceptual.py @@ -0,0 +1,181 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import numpy as np +import tensorflow as tf + +from src.runner.common import name_space +from src.utils.logger import logger + +from .vgg import VGG19_slim + + +def auto_download_pretrained(module='vgg', ckpt_path='./pretrained_modules'): + """Automatically download pretrained models. + + Args: + module: str, perceptual model name. + ckpt_path: str, where to save the downloaded ckpt file. + """ + import subprocess + if module in ['vgg', 'vgg_19']: + cmd0 = "wget http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz -O " + \ + os.path.join(ckpt_path, "vgg19.tar.gz") + cmd0 += ";tar -xvf " + os.path.join(ckpt_path, "vgg19.tar.gz") + " -C " + ckpt_path + \ + "; rm " + os.path.join(ckpt_path, "vgg19.tar.gz") + else: + raise NotImplementedError + + subprocess.call(cmd0, shell=True) + + +def load_perceptual_module(sess, module_cfg): + """Load perceptual module to the corresponding scope. + + Args: + sess: tf.Session instance. + module_cfg: yacs node, perceptual configuration. + """ + ckpt_dir = module_cfg.get('ckpt_dir', './pretrained_modules') + module = module_cfg.get('module', 'vgg_19') + if not os.path.exists(ckpt_dir): + os.makedirs(ckpt_dir, exist_ok=True) + + ckpt_file = os.path.join(ckpt_dir, f'{module}.ckpt') + if not os.path.exists(ckpt_file): + logger.info('No pretrained module. Downloading ...') + auto_download_pretrained(module, ckpt_dir) + + try: + logger.info('Loading pretrained perceptual module ...') + var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=module) + restore = tf.train.Saver(var_list) + restore.restore(sess, ckpt_file) + logger.info('Load pretrained perceptual module success.') + except Exception as e: + logger.error('Failed to load pretrained perceptual model.') + logger.info(e) + + +def build_perceptual_loss(generated, targets, module_cfg): + """Calculate the perceptual loss given the configuration. + + Args: + generated: tensor, the generated results. + targets: tensor, the groundtruth. + module_cfg: yacs node, perceptual configuration. + + Returns: + scalar tensor, the perceptual loss. + """ + module = module_cfg.get('module', 'vgg_19') + + # Convert to 4D shape. + gen_shape = generated.get_shape().as_list() + if len(gen_shape) == 5: + generated = tf.reshape(generated, shape=(-1, *gen_shape[2:])) + + tar_shape = targets.get_shape().as_list() + if len(tar_shape) == 5: + targets = tf.reshape(targets, shape=(-1, *tar_shape[2:])) + + # Get the intermediate resuls given the layer names. + if module == 'vgg_19': + with tf.name_scope('vgg_19'): + default_layer_labels = ['vgg_19/conv2/conv2_2', + 'vgg_19/conv3/conv3_4', + 'vgg_19/conv4/conv4_4', + 'vgg_19/conv5/conv5_4'] + default_layer_weights = [1., 1., 1., 1.] + layer_labels = module_cfg.get('layers', default_layer_labels) + layer_weights = module_cfg.get('layer_weights', default_layer_weights) + gen_fm = VGG19_slim(generated, reuse=tf.AUTO_REUSE, deep_list=layer_labels) + target_fm = VGG19_slim(targets, reuse=tf.AUTO_REUSE, deep_list=layer_labels) + else: + raise NotImplementedError + + # Compute the distance between the generated and groundtruth features. + with tf.variable_scope('perceptual_loss'): + loss = 0 + layer_n = len(layer_labels) + + for layer_i in range(layer_n): + cur_diff = tf.reduce_sum(gen_fm[layer_labels[layer_i]] * target_fm[layer_labels[layer_i]], axis=[3]) + # cosine similarity, -1~1, 1 best + cur_diff = 1.0 - tf.reduce_mean(cur_diff) # 0 ~ 2, 0 best + scaled_layer_loss = layer_weights[layer_i] * cur_diff + loss += scaled_layer_loss + + return loss + + +def build_content_style_loss(generated, targets, module_cfg): + """Calculate the perceptual style loss given the configuration. + + Args: + generated: tensor, the generated results. + targets: tensor, the groundtruth. + module_cfg: yacs node, perceptual configuration. + + Returns: + scalar tensor, the style loss. + """ + module = module_cfg.get('module', 'vgg_19') + + gen_shape = generated.get_shape().as_list() + if len(gen_shape) == 5: + generated = tf.reshape(generated, shape=(-1, *gen_shape[2:])) + + tar_shape = targets.get_shape().as_list() + if len(tar_shape) == 5: + targets = tf.reshape(targets, shape=(-1, *tar_shape[2:])) + + if module == 'vgg_19': + with tf.name_scope('vgg_19'): + default_layer_labels = ['vgg_19/conv2/conv2_2', + 'vgg_19/conv3/conv3_4', + 'vgg_19/conv4/conv4_4', + 'vgg_19/conv5/conv5_4'] + default_layer_weights = [1., 1., 1., 1.] + layer_labels = module_cfg.get('layers', default_layer_labels) + layer_weights = module_cfg.get('layers_weights', default_layer_weights) + print(layer_weights) + gen_fm = VGG19_slim(generated, reuse=tf.AUTO_REUSE, deep_list=layer_labels, norm_flag=False) + target_fm = VGG19_slim(targets, reuse=tf.AUTO_REUSE, deep_list=layer_labels, norm_flag=False) + else: + raise NotImplementedError + + with tf.variable_scope('perceptual_loss'): + loss = 0 + layer_n = len(layer_labels) + content_loss = 0 + style_loss = 0 + layers_content_weights = [0.008, 0.001, 0.03125, 40.0] + layer_style_weights = [0.002, 0.000008, 0.03125, 10000.0] + for layer_i in range(layer_n): + f1 = gen_fm[layer_labels[layer_i]] + f2 = target_fm[layer_labels[layer_i]] + content_loss += layers_content_weights[layer_i] * tf.reduce_mean(tf.square(f1 / 10.0 - f2 / 10.0)) + if layer_i > 2: + b,h,w,c = f1.shape + f1T = tf.reshape(f1, (b, h*w, c)) + f2T = tf.reshape(f2, (b, h*w, c)) + f1G = tf.matmul(f1T, f1T, transpose_a=True) + f2G = tf.matmul(f2T, f2T, transpose_a=True) + norm = tf.cast(100.0 * h * w, tf.float32) + style_loss += layer_style_weights[layer_i] * tf.reduce_mean(tf.square(f1G / norm - f2G / norm)) + loss = content_loss * 0.2 + style_loss * 0.08 + + return loss \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/vgg.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/vgg.py new file mode 100644 index 0000000000000000000000000000000000000000..536500a7a978c4dada5445a00590148bad5c2d44 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/losses/modules/vgg.py @@ -0,0 +1,88 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tensorflow as tf +import tensorflow.contrib.slim as slim + +VGG_MEAN = [123.68, 116.78, 103.94] + + +def vgg_19(inputs, + scope='vgg_19', + reuse=False): + """VGG19 model. + Borrowed from https://github.com/thunil/TecoGAN/blob/master/lib/ops.py#L287 + Changed from the Oxford Net VGG 19-Layers version E Example. + Note: Only offer features from conv1 until relu54, classification part is removed + + Args: + inputs: a tensor of size [batch_size, height, width, channels]. + scope: Optional scope for the variables. + + Returns: + the last op containing the log predictions and end_points dict. + """ + with tf.variable_scope(scope, 'vgg_19', [inputs], reuse=reuse) as sc: + end_points_collection = sc.name + '_end_points' + # Collect outputs for conv2d, fully_connected and max_pool2d. + with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], + outputs_collections=end_points_collection): + net = slim.repeat(inputs, 2, slim.conv2d, 64, 3, scope='conv1', reuse=reuse) + net = slim.max_pool2d(net, [2, 2], scope='pool1') + + net = slim.repeat(net, 2, slim.conv2d, 128, 3, scope='conv2',reuse=reuse) + net = slim.max_pool2d(net, [2, 2], scope='pool2') + + net = slim.repeat(net, 4, slim.conv2d, 256, 3, scope='conv3', reuse=reuse) + net = slim.max_pool2d(net, [2, 2], scope='pool3') + + net = slim.repeat(net, 4, slim.conv2d, 512, 3, scope='conv4',reuse=reuse) + net = slim.max_pool2d(net, [2, 2], scope='pool4') + + net = slim.repeat(net, 4, slim.conv2d, 512, 3, scope='conv5',reuse=reuse) + net = slim.max_pool2d(net, [2, 2], scope='pool5') + + # Convert end_points_collection into a end_point dict. + end_points = slim.utils.convert_collection_to_dict(end_points_collection) + + return net, end_points + + +def VGG19_slim(input_fm, reuse, deep_list=None, norm_flag=True): + """Get the VGG19 features given the fm name. + Borrowed from https://github.com/thunil/TecoGAN/blob/master/lib/Teco.py#L5 + + Args: + input_fm: tensor, input feature map. + reuse: boolean, whether to reuse the scope variables. + deep_list: list[str], which features are to extract and used for calculation. + norm_flag: boolean, whether to normalize the feature map with Frobenius-norm. + """ + # deep_list, define the feature to extract + input_img_ab = input_fm * 255.0 - tf.constant(VGG_MEAN) + # model: + _, output = vgg_19(input_img_ab, reuse=reuse) + # feature maps: + results = {} + with tf.name_scope('vgg_norm'): + for key in output: + if (deep_list is None) or (key in deep_list): + orig_deep_feature = tf.cast(output[key], tf.float32) + if norm_flag: + orig_len = tf.sqrt(tf.reduce_sum(tf.square(orig_deep_feature), axis=[3], keepdims=True)+1e-12) + results[key] = orig_deep_feature / orig_len + else: + results[key] = orig_deep_feature + return results diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/main.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/main.py new file mode 100644 index 0000000000000000000000000000000000000000..96bb0fc6d3b4d1fb271abbaa69e9494fd3ce8af6 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/main.py @@ -0,0 +1,134 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import os +import sys +import inspect +import importlib +from yacs.config import CfgNode + +import src.runner.npu_pkgs + +from src.utils.logger import logger as logger +from src.utils.defaults import cfg +from src.utils.world import world +from src.utils.utils import convert_dict_to_list +from src.networks import build_network +from src.engine import build_engine +from src.dataloaders import build_dataloader +from src.utils.constant import VALID_MODE + + +def get_args(): + """Get external arguments. + + Returns: + Namespace: the arguements to the whole program. + """ + parser = argparse.ArgumentParser(description="HiSi Ascend Video Processing Toolkit") + parser.add_argument( + "--config-file", + default="", + metavar="FILE", + help="path to config file", + type=str, + ) + parser.add_argument( + "opts", + help="Modify config options using the command-line", + default=None, + nargs=argparse.REMAINDER, + ) + + args = parser.parse_args() + + return args + + +def dump_cfg(_cfg): + """Dump config info to log file and stdout. + + Args: + _cfg: yacs node, the configuration. + """ + cfg_str = _cfg.dump() + if not os.path.exists(_cfg.train.output_dir): + os.makedirs(_cfg.train.output_dir, exist_ok=True) + dump_file = os.path.join(_cfg.train.output_dir, f"configure_{_cfg.mode}.yaml") + with open(dump_file, 'w') as f: + f.write(cfg_str) + logger.info(_cfg) + + +def processing(cfg): + """Processing function. + + This function supports training, inference and freeze engine. + + Args: + cfg: yacs node, global configuraton. + """ + world.initialize(device_type=cfg.env.device) + + if not cfg.log_file.startswith('/'): + log_file = os.path.join(cfg.train.output_dir, cfg.log_file) + else: + log_file = cfg.log_file + + # Silence all nodes other than the root node. + if world.is_root_rank: + logger.add_log_file(log_file) + else: + logger.silence = True + + if world.is_root_rank: + dump_cfg(cfg) + + # build networks + network = build_network(cfg) + + # build dataloader + dataloader = build_dataloader(cfg) + + # get engine + engine_type = build_engine(cfg) + engine = engine_type(dataloader, network, cfg) + engine.run() + + +def main(): + """Main entry function. + """ + args = get_args() + # Support either python config file with a dict, or a yaml file. + if args.config_file.endswith('.py'): + vars = {} + exec(open(args.config_file).read(), vars) + cfg.merge_from_other_cfg(CfgNode(vars['cfg'])) + elif config_module_name[-1] == 'yaml': + cfg.merge_from_file(args.config_file) + else: + raise ValueError() + + cfg.merge_from_list(args.opts) + cfg.freeze() + + assert cfg.mode in VALID_MODE + + processing(cfg) + + +if __name__ == '__main__': + main() diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/metrics/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/metrics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/metrics/image_similarity.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/metrics/image_similarity.py new file mode 100644 index 0000000000000000000000000000000000000000..fcb2608916c2bae58fd2e53dbdc628a69858de44 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/metrics/image_similarity.py @@ -0,0 +1,54 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + + +def ssim(a, b, max_val): + """Calculate SSIM of two images. + + Args: + a: tensor, 4D image tensor. + b: tensor, has the same shape with a. + max_val: scalar, the max value of tensor a and b. + """ + return tf.image.ssim(a, b, max_val, filter_size=11, + filter_sigma=1.5, k1=0.01, k2=0.03) + + +def ssim_multiscale(a, b, max_val): + """Calculate multi-scale SSIM of two images. + + Args: + a: tensor, 4D image tensor. + b: tensor, has the same shape with a. + max_val: scalar, the max value of tensor a and b. + """ + return tf.image.ssim_multiscale( + a, b, max_val, filter_size=11, + filter_sigma=1.5, k1=0.01, k2=0.03 + ) + + +def psnr(a, b, max_val): + """Calculate PSNR of two images. + + Args: + a: tensor, 4D image tensor. + b: tensor, has the same shape with a. + max_val: scalar, the max value of tensor a and b. + """ + return tf.image.psnr(a, b, max_val) + + diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b3aa40061e345225b58a78fd7aedd85388405485 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/__init__.py @@ -0,0 +1,18 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .conv_module import * +from .edvr_submodules import * +from .res_block import * +from .spade import * diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/conv_module.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/conv_module.py new file mode 100644 index 0000000000000000000000000000000000000000..3f33d3f53c02f54a39e95e530c8efe2a4017987f --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/conv_module.py @@ -0,0 +1,210 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf + +from src.layers import Conv2D, Conv3D, ActLayer, NormLayer, Conv2DTranspose + + +__all__ = ['Conv2DNormAct', 'Conv3DNormAct', 'Conv2DTransposeNormAct'] + + +class Conv2DNormAct: + """A base module consists of conv2d followed by norm and activation. + + Both normalization and activation layers are optional. + + Args: + num_filters: int, number of filters. + kernel_size: int or list[int], the kernel size. + strides: int or list[int], the stride size. + dilations: int or list[int], the kernel dilations. + padding: str or list[int]. If is given list of padding size, the + padding will be 'valid'. One can also pass in str such as + ('same', 'valid'). + padding_mode: str, indicating how to pad, i.e., REFLECT or CONSTANT. + + use_bias: boolean, whether to use bias. Default True. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + trainable: boolean, whether in training phase. If True, the buffers will + be add to UPDATE_OPS and update. + act_cfg: dict, specify the activation `type` and other parameters. + norm_cfg: dict, specify the normalization `type` and other parameters. + name: str, variable scope name. + """ + def __init__(self, num_filters, kernel_size=(3, 3), strides=(1, 1), + dilations=(1, 1), padding='same', padding_mode='CONSTANT', + use_bias=True, use_spectral_norm=False, trainable=True, + act_cfg=None, norm_cfg=None, + name='Conv2DModule'): + self.num_filters = num_filters + self.kernel_size = kernel_size + self.strides = strides + self.dilations = dilations + + self.padding = padding + self.padding_mode = padding_mode + + self.use_bias = use_bias + self.use_spectral_norm = use_spectral_norm + self.trainable = trainable + + self.act_cfg = act_cfg + self.norm_cfg = norm_cfg + + self.name = name + + def __call__(self, x): + with tf.variable_scope(self.name): + use_bias = self.use_bias if self.norm_cfg is None else False + x = Conv2D( + self.num_filters, kernel_size=self.kernel_size, strides=self.strides, + dilations=self.dilations, use_bias=self.use_bias, + use_spectral_norm=self.use_spectral_norm, + padding=self.padding, padding_mode=self.padding_mode, + name='Conv2D')(x) + + if self.norm_cfg is not None: + x = NormLayer(self.norm_cfg, is_train=self.trainable, name='Norm')(x) + + if self.act_cfg is not None: + x = ActLayer(self.act_cfg)(x) + return x + + +class Conv3DNormAct: + """A base module consists of conv3d followed by norm and activation. + + Both normalization and activation layers are optional. + + Args: + num_filters: int, number of filters. + kernel_size: int or list[int], the kernel size. + strides: int or list[int], the stride size. + dilations: int or list[int], the kernel dilations. + padding: str or list[int]. If is given list of padding size, the + padding will be 'valid'. One can also pass in str such as + ('same', 'valid'). + padding_mode: str, indicating how to pad, i.e., REFLECT or CONSTANT. + + use_bias: boolean, whether to use bias. Default True. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + trainable: boolean, whether in training phase. If True, the buffers will + be add to UPDATE_OPS and update. + act_cfg: dict, specify the activation `type` and other parameters. + norm_cfg: dict, specify the normalization `type` and other parameters. + name: str, variable scope name. + """ + def __init__(self, num_filters, kernel_size=(3, 3, 3), strides=(1, 1, 1), + dilations=(1, 1, 1), padding='same', padding_mode='CONSTANT', + use_bias=True, use_spectral_norm=False, trainable=True, + act_cfg=None, norm_cfg=None, + name='Conv3DModule'): + self.num_filters = num_filters + self.kernel_size = kernel_size + self.strides = strides + self.dilations = dilations + + self.padding = padding + self.padding_mode = padding_mode + + self.use_bias = use_bias + self.use_spectral_norm = use_spectral_norm + self.trainable = trainable + + self.act_cfg = act_cfg + self.norm_cfg = norm_cfg + + self.name = name + + def __call__(self, x): + with tf.variable_scope(self.name): + use_bias = self.use_bias if self.norm_cfg is None else False + x = Conv3D(self.num_filters, kernel_size=self.kernel_size, + strides=self.strides, dilations=self.dilations, + padding=self.padding, padding_mode=self.padding_mode, + use_bias=self.use_bias, use_spectral_norm=self.use_spectral_nor, + name='Conv3D')(x) + + if self.norm_cfg is not None: + x = NormLayer(self.norm_cfg, is_train=self.trainable, name='Norm')(x) + + if self.act_cfg is not None: + x = ActLayer(self.act_cfg)(x) + return x + + +class Conv2DTransposeNormAct: + """A base module consists of conv2d transpose followed by norm and activation. + + Both normalization and activation layers are optional. + + Args: + num_filters: int, number of filters. + kernel_size: int or list[int], the kernel size. + strides: int or list[int], the stride size. + dilations: int or list[int], the kernel dilations. + padding: str or list[int]. If is given list of padding size, the + padding will be 'valid'. One can also pass in str such as + ('same', 'valid'). + padding_mode: str, indicating how to pad, i.e., REFLECT or CONSTANT. + + use_bias: boolean, whether to use bias. Default True. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + trainable: boolean, whether in training phase. If True, the buffers will + be add to UPDATE_OPS and update. + act_cfg: dict, specify the activation `type` and other parameters. + norm_cfg: dict, specify the normalization `type` and other parameters. + name: str, variable scope name. + """ + def __init__(self, num_filters, kernel_size=(3, 3), strides=(1, 1), + dilations=(1, 1), padding='same', padding_mode='CONSTANT', + use_bias=True, use_spectral_norm=False, trainable=True, + act_cfg=None, norm_cfg=None, + name='Conv2DTransposeModule'): + self.num_filters = num_filters + self.kernel_size = kernel_size + self.strides = strides + self.dilations = dilations + + self.padding = padding + self.padding_mode = padding_mode + + self.use_bias = use_bias + self.use_spectral_norm = use_spectral_norm + self.trainable = trainable + + self.act_cfg = act_cfg + self.norm_cfg = norm_cfg + + self.name = name + + def __call__(self, x): + with tf.variable_scope(self.name): + use_bias = self.use_bias if self.norm_cfg is None else False + x = Conv2DTranspose( + self.num_filters, kernel_size=self.kernel_size, strides=self.strides, + dilations=self.dilations, use_bias=self.use_bias, + use_spectral_norm=self.use_spectral_norm, + padding=self.padding, padding_mode=self.padding_mode, + name='Conv2DTranspose')(x) + + if self.norm_cfg is not None: + x = NormLayer(self.norm_cfg, is_train=self.trainable, name='Norm')(x) + + if self.act_cfg is not None: + x = ActLayer(self.act_cfg)(x) + return x diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/edvr_submodules.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/edvr_submodules.py new file mode 100644 index 0000000000000000000000000000000000000000..df8c0e6eb3cee9fc1f7e2b6f56323dd0f023dd50 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/edvr_submodules.py @@ -0,0 +1,267 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import numpy as np +import tensorflow as tf + +from src.layers import Conv2D, Conv3D, ActLayer, DCNPack +from src.ops import resize + +from .conv_module import Conv2DNormAct + + +class PCDAlign(object): + """ + Pyramid, cascade and deformable alignment module in EDVR. + + Args: + num_feat: int, number of channels multiplier in the intermediate layers. + num_conv_groups: int, number of groups in convolution in dcn. + deformable_groups: int, number of groups in offsets in dcn. + dcn_impl: str, version of dcn operator. Possible choice in ('tf', 'npu'). + upsample_method: str, method of resize operator. Possible choice in + ('bilinear', 'bicubic'). + align_corners: boolean, used in resize. Whether to align corners during + resize. + """ + def __init__(self, num_feat=64, num_conv_groups=1, deformable_groups=1, + dcn_impl='npu', upsample_method='bilinear', align_corners=True): + self.mid_channels = num_feat + self.num_deform_groups = deformable_groups + self.num_groups = num_conv_groups + self.upsample_method = upsample_method + self.dcn_impl = dcn_impl + self.align_corners = align_corners + + def __call__(self, neighbor_feats, ref_feats, + act_cfg=dict(type='LeakyRelu', alpha=0.1), + name='pcd_align'): + """Forward pass of PCD module. + + Args: + neighbor_feats: list[tensor], the multi-scale feature maps of a + single neighbor frame. + ref_feats: list[tensor], the multi-scale feature maps of the center + frame. + act_cfg: dict, specify the activation `type` and other parameters. + name: str, variable scope name. + + Returns: + tensor, aligned multi-frame features. + """ + with tf.variable_scope(name, reuse=tf.AUTO_REUSE): + # The number of pyramid levels is 3. + assert len(neighbor_feats) == 3 and len(ref_feats) == 3, ( + 'The length of neighbor_feats and ref_feats must be both 3, ' + 'but got {} and {}'.format(len(neighbor_feats), len(ref_feats))) + + # Pyramids + upsampled_offset, upsampled_feat = None, None + for i in range(3, 0, -1): + with tf.variable_scope('level{}'.format(i)): + offset = tf.concat([neighbor_feats[i - 1], ref_feats[i - 1]], axis=-1) + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='offset_conv1')(offset) + if i == 3: + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='offset_conv2')(offset) + else: + offset = tf.concat([offset, upsampled_offset], axis=-1) + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='offset_conv2')(offset) + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='offset_conv3')(offset) + + feat = DCNPack(self.mid_channels, kernel_size=[3, 3], padding='same', + num_deform_groups=self.num_deform_groups, num_groups=self.num_groups, + name='dcn_l{}'.format(i), impl=self.dcn_impl, + )(neighbor_feats[i - 1], offset) + if i == 3: + feat = ActLayer(act_cfg)(feat) + else: + feat = tf.concat([feat, upsampled_feat], axis=-1) + feat = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg if i == 2 else None, + name='feat_conv')(feat) + + if i > 1: + # upsample offset and features + upsampled_offset = resize( + offset, size=[offset.shape[1] * 2, offset.shape[2] * 2], align_corners=self.align_corners, + name='upsample_offset{}'.format(i), method=self.upsample_method) + upsampled_offset = upsampled_offset * 2 + upsampled_feat = resize( + feat, size=[feat.shape[1] * 2, feat.shape[2] * 2], align_corners=self.align_corners, + name='upsample_feat{}'.format(i), method=self.upsample_method) + + # Cascading + offset = tf.concat([feat, ref_feats[0]], axis=-1) + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='cas_offset_conv1')(offset) + offset = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='cas_offset_conv2')(offset) + feat = DCNPack(self.mid_channels, kernel_size=[3, 3], padding='same', + num_deform_groups=self.num_deform_groups, name='dcn_cas', + impl=self.dcn_impl)(feat, offset) + feat = ActLayer(act_cfg)(feat) + + return feat + + +class PCWoDCN(object): + """ + A verbose pyramid and cascade module. + + Args: + num_feat: int, number of channels multiplier in the intermediate layers. + upsample_method: str, method of resize operator. Possible choice in + ('bilinear', 'bicubic'). + align_corners: boolean, used in resize. Whether to align corners during + resize. + """ + + def __init__(self, num_feat=64, upsample_method='bilinear', + align_corners=True): + self.mid_channels = num_feat + self.upsample_method = upsample_method + self.align_corners = align_corners + + def __call__(self, neighbor_feats, ref_feats, + act_cfg=dict(type='LeakyRelu', alpha=0.1), + name='pcd_align'): + """Forward pass of PCD module. + + Args: + neighbor_feats: list[tensor], the multi-scale feature maps of a + single neighbor frame. + ref_feats: list[tensor], the multi-scale feature maps of the center + frame. + act_cfg: dict, specify the activation `type` and other parameters. + name: str, variable scope name. + + Returns: + tensor, aligned multi-frame features. + """ + with tf.variable_scope(name, reuse=tf.AUTO_REUSE): + # The number of pyramid levels is 3. + assert len(neighbor_feats) == 3 and len(ref_feats) == 3, ( + 'The length of neighbor_feats and ref_feats must be both 3, ' + 'but got {} and {}'.format(len(neighbor_feats), len(ref_feats))) + + # Pyramids + upsampled_offset, upsampled_feat = None, None + for i in range(3, 0, -1): + with tf.variable_scope('level{}'.format(i)): + feat = Conv2DNormAct(self.mid_channels, kernel_size=[3, 3], + padding='same', name='pc_conv{}'.format(i))(neighbor_feats[i - 1]) + if i == 3: + feat = ActLayer(act_cfg)(feat) + else: + feat = tf.concat([feat, upsampled_feat], axis=-1) + feat = Conv2DNormAct(self.mid_channels, + act_cfg=act_cfg if i == 2 else None, + name='feat_conv')(feat) + + if i > 1: + upsampled_feat = resize( + feat, size=[feat.shape[1] * 2, feat.shape[2] * 2], + align_corners=self.align_corners, + name='upsample_feat{}'.format(i), + method=self.upsample_method) + + # Cascading + feat = Conv2DNormAct(self.mid_channels, kernel_size=[3, 3], + padding='same', name='dcn_cas')(feat) + feat = ActLayer(act_cfg)(feat) + + return feat + + +class TSAFusion(object): + """Fusiong of temporal and spatial attention. + + Args: + num_frames: int, number of input frames. + num_feat: int, multiplier of the filters number in the middle layers. + upsample_method: str, resize method. Possible choices in + ('bilinear', 'bicubic'). + align_corners: boolean, whether to align with corners when resize. + """ + def __init__(self, num_frames, num_feat, upsample_method='bilinear', + align_corners=True): + self.num_frames = num_frames + self.num_feat = num_feat + self.upsample_method = upsample_method + self.align_corners = align_corners + + def __call__(self, aligned_feat, act_cfg=dict(type='LeakyRelu', alpha=0.1)): + """Forward pass. + + Args: + aligned_feat: tensor + act_cfg: dict, specify the activation `type` and other parameters. + + Returns: + tensor, aggregated multi-frame features. + """ + with tf.variable_scope('tsa_fusion', reuse=tf.AUTO_REUSE): + # temporal attention + embedding_ref = Conv2D(self.num_feat, name='temporal_attn1')(aligned_feat[self.num_frames//2]) + + # corr_l = [] # correlation list + aligned_feat_list = [] + for i in range(self.num_frames): + emb = Conv2D(self.num_feat, name='temporal_attn2')(aligned_feat[i]) + emb = tf.cast(emb, tf.float32) + corr = tf.reduce_sum(emb * embedding_ref, axis=-1, keep_dims=True) # (n, h, w, 1) + # corr_l.append(corr) + + corr_prob = tf.nn.sigmoid(corr) + aligned_feat_list.append(corr_prob * aligned_feat[i]) + aligned_feat = tf.concat(aligned_feat_list, axis=-1) # (n, h, w, t*c) + feat = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), act_cfg=act_cfg, name='feat_fusion')(aligned_feat) + + # spatial attention + attn = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), act_cfg=act_cfg, name='spatial_attn1')(aligned_feat) + attn_max = tf.nn.max_pool2d(attn, 3, 2, 'SAME') + attn_avg = tf.nn.avg_pool(attn, 3, 2, 'SAME') + attn = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), + act_cfg=act_cfg, name='spatial_attn2')(tf.concat([attn_max, attn_avg], axis=-1)) + # pyramid levels + attn_level = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), act_cfg=act_cfg, name='spatial_attn_l1')(attn) + attn_max = tf.nn.max_pool2d(attn_level, 3, 2, 'SAME') + attn_avg = tf.nn.avg_pool(attn_level, 3, 2, 'SAME') + attn_level = Conv2DNormAct(self.num_feat, act_cfg=act_cfg, name='spatial_attn_l2')\ + (tf.concat([attn_max, attn_avg], axis=-1)) + attn_level = Conv2DNormAct(self.num_feat, act_cfg=act_cfg, name='spatial_attn_l3')(attn_level) + + attn_level = resize( + attn_level, size=[attn_level.shape[1] * 2, attn_level.shape[2] * 2], + align_corners=self.align_corners, + name='upsample1', method=self.upsample_method) + + attn = Conv2DNormAct(self.num_feat, act_cfg=act_cfg, name='spatial_attn3')(attn) + attn_level + attn = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), act_cfg=act_cfg, name='spatial_attn4')(attn) + + attn = resize( + attn, size=[attn.shape[1] * 2, attn.shape[2] * 2], + align_corners=self.align_corners, + name='upsample2', method=self.upsample_method) + attn = Conv2D(self.num_feat, name='spatial_attn5')(attn) + attn = Conv2DNormAct(self.num_feat, kernel_size=(1, 1), act_cfg=act_cfg, name='spatial_attn_add1')(attn) + attn_add = Conv2D(self.num_feat, kernel_size=(1, 1), name='spatial_attn_add2')(attn) + + attn = tf.cast(attn, tf.float32) + attn = tf.nn.sigmoid(attn) + + feat = tf.cast(feat, tf.float32) + attn_add = tf.cast(attn_add, tf.float32) + + # after initialization, * 2 makes (attn * 2) to be close to 1. + feat = feat * attn * 2 + attn_add + return feat diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/res_block.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/res_block.py new file mode 100644 index 0000000000000000000000000000000000000000..7d4870f6dc9aaf3122373bda031545f1f4ba64c6 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/res_block.py @@ -0,0 +1,145 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import tensorflow as tf +from src.layers import Conv2D, Conv3D, ActLayer, NormLayer +from src.utils.utils import to_pair + +from .conv_module import Conv2DNormAct, Conv3DNormAct + + +class ResBlock(object): + """A ResBlock class, consists of several conv blocks with bn. + + Args: + num_blocks: int, number of conv blocks. + mid_channels: int, number of the channels in the conv layers. + res_scale: float, a scalar that scale the residual. + act_cfg: dict, specify the activation `type` and other parameters. + norm_cfg: dict, specify the normalization `type` and other parameters. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + trainable: boolean, whether in training phase. If True, the buffers will + be add to UPDATE_OPS and update. + name: str, variable scope name. + """ + def __init__(self, num_blocks, mid_channels, res_scale=1.0, + act_cfg=dict(type='ReLU'), + norm_cfg=dict(type='bn'), + use_spectral_norm=False, + trainable=True, name='ResBlock'): + self.num_blocks = num_blocks + self.output_channel = mid_channels + self.res_scale = res_scale + self.name = name + self.trainable = trainable + self.act_cfg = act_cfg + self.norm_cfg = norm_cfg + self.use_spectral_norm = use_spectral_norm + + def shortcut_func(self, x): + """Shortcut path. + + May use a conv layer to change the number of channels. + """ + c_in = x.get_shape().as_list() + if c_in[-1] == self.output_channel: + return x + else: + return Conv2D(self.output_channel, + scale=self.scale, + name='conv_shortcut', + use_spectral_norm=self.use_spectral_norm)(x) + + def build_block(self, x, index): + """Build a basic conv block. + """ + identity = self.shortcut_func(x) + + out = Conv2DNormAct(self.output_channel, scale=scales[0], + act_cfg=self.act_cfg, norm_cfg=self.norm_cfg, + use_spectral_norm=self.use_spectral_norm, + name='conv{}a'.format(idx))(x) + out = Conv2DNormAct(self.output_channel, scale=scales[1], + norm_cfg=self.norm_cfg, + use_spectral_norm=self.use_spectral_norm, + name='conv{}b'.format(idx))(out) + + return identity + out * self.res_scale + + def __call__(self, x): + with tf.variable_scope(self.name) as scope: + for i in range(self.num_blocks): + x = self.build_block(x, i + 1) + return x + + +class ResBlockNoBN(object): + """A ResBlock class, consists of several conv blocks without bn. + + Args: + num_blocks: int, number of conv blocks. + mid_channels: int, number of the channels in the conv layers. + res_scale: float, a scalar that scale the residual. + act_cfg: dict, specify the activation `type` and other parameters. + norm_cfg: dict, specify the normalization `type` and other parameters. + use_spectral_norm: boolean, whether to use specatral normalization. + Default False. + trainable: boolean, whether in training phase. If True, the buffers will + be add to UPDATE_OPS and update. + name: str, variable scope name. + """ + def __init__(self, num_blocks, mid_channels, res_scale=1.0, + act_cfg=dict(type='ReLU'), dilation=1, + use_spectral_norm=False, trainable=True, + name='ResBlockNoBN'): + self.num_blocks = num_blocks + self.mid_channels = mid_channels + self.res_scale = res_scale + self.name = name + self.trainable = trainable + self.act_cfg = act_cfg + self.dilation = (dilation, dilation) + self.use_spectral_norm = use_spectral_norm + + def shortcut_func(self, x): + """Shortcut path. May use a conv layer to change the number of channels. + """ + c_in = x.get_shape().as_list() + if c_in[-1] == self.output_channel: + return x + else: + return Conv2D(self.output_channel, + scale=self.scale, + name='conv_shortcut', + use_spectral_norm=self.use_spectral_norm)(x) + + def build_block(self, x, idx): + """Build a basic conv block. + """ + out = Conv2D(self.mid_channels, + use_spectral_norm=self.use_spectral_norm, + name='conv{}a'.format(idx))(x) + out = ActLayer(self.act_cfg)(out) + out = Conv2D(self.mid_channels, + use_spectral_norm=self.use_spectral_norm, + name='conv{}b'.format(idx))(out) + return x + out * self.res_scale + + def __call__(self, x): + with tf.variable_scope(self.name) as scope: + for i in range(self.num_blocks): + x = self.build_block(x, i + 1) + return x diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/spade.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/spade.py new file mode 100644 index 0000000000000000000000000000000000000000..6a8d90be5193954a2d339c6353523993e2f8a929 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/modules/spade.py @@ -0,0 +1,150 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tensorflow as tf + +from src.layers import Conv2D, NormLayer, ActLayer + + +class SPADE(object): + """SPatially-Adaptive (DE)normalization. + + See https://arxiv.org/pdf/1903.07291.pdf. The forward pass is borrowed from + https://github.com/NVlabs/SPADE/blob/master/models/networks/normalization.py. + + Given the input input map \mathbf{h}, and a reference feature map \mathbf{m}, + the output activation value is : + ```math + \mathbf{y} = \gamma(\mathbf{m}) * \frac{\mathbf{h} - \mu}{\sigma} + \beta(\mathbf{m}) + ``` + where \gamma and \beta are both functions of \mathbf{m}. + + Args: + num_filters: int, number of filters of the output tensor. + kernel_size: int or list[int], kernel size of the conv layers. + num_hidden: int, number of filters in the middle layers which compute the + gamma and beta for normalization. + training: boolean, indicating whether in training phase or not. + norm_type: str, the type of normalization. + """ + def __init__(self, num_filters, kernel_size=(3,3), + num_hidden = 128, training=False, norm_type='in', + return_all=False, name='spade', + ver='v2'): + self.num_filters = num_filters + self.kernel_size = kernel_size + self.training = training + self.norm_type = norm_type + + + def spade(x, ref_feat, norm_nc, kernel_size=(3,3), name='spade', + nhidden = 128, training=False, norm_type='in', vis=False, + ver='v2'): + with tf.variable_scope(name): + # Part 1. generate parameter-free normalized activations + normalized = NormLayer(norm_type=self.norm_type, center=False, + scale=False, is_train=training)(x) + + # Part 2. produce scaling and bias conditioned on reference map + shape_x = x.get_shape().as_list() + shape_label = ref_feat.get_shape().as_list() + ref_feat = tf.image.resize_images(ref_feat, (shape_x[1], shape_x[2]), + method=tf.image.ResizeMethod.BILINEAR, + align_corners=True) + + if ver == 'v1': + actv = Conv2D(nhidden, kernel_size=kernel_size, padding='SAME', + strides=(1, 1), use_bias=True, trainable=True, + name='mlp_shared')(ref_feat) + actv = tf.nn.relu(actv) + else: + x_trans = Conv2D(shape_label[-1], kernel_size=kernel_size, + padding='SAME', strides=(1, 1), use_bias=True, + trainable=True, name='mlp_trans')(x) + actv = tf.nn.relu(ref_feat * x_trans) + actv = Conv2D(nhidden, kernel_size=kernel_size, padding='SAME', + strides=(1, 1), use_bias=True, trainable=True, + name='mlp_shared')(actv) + actv = tf.nn.relu(actv) + + gamma = Conv2D(norm_nc, kernel_size=kernel_size, padding='SAME', + strides=(1, 1), use_bias=True, trainable=True, + name='mlp_gamma')(actv) + beta = Conv2D(norm_nc, kernel_size=kernel_size, padding='SAME', + strides=(1, 1), use_bias=True, trainable=True, + name='mlp_beta')(actv) + + # apply scale and bias + out = normalized * (1 + gamma) + beta + if vis: + return out, gamma, beta + return out + + +class SPADEResBlock: + """ResBlock based on SPatially-Adaptive (DE)normalization. + + See https://arxiv.org/pdf/1903.07291.pdf. The forward pass is borrowed from + https://github.com/NVlabs/SPADE/blob/master/models/networks/normalization.py. + + Given the input input map \mathbf{h}, and a reference feature map \mathbf{m}, + the output activation value is : + ```math + \mathbf{y} = \gamma(\mathbf{m}) * \frac{\mathbf{h} - \mu}{\sigma} + \beta(\mathbf{m}) + ``` + where \gamma and \beta are both functions of \mathbf{m}. + + Args: + num_filters: int, number of filters of the output tensor. + kernel_size: int or list[int], kernel size of the conv layers. + nhidden: int, number of filters in the middle layers which compute the + gamma and beta for normalization. + training: boolean, indicating whether in training phase or not. + norm_type: str, the type of normalization. + """ + def __init__(self, fin, fout, trainable=True, spectral_norm=False, with_spade=True, name='spade_res_block'): + self.learned_short = fin != fout + self.fmiddle = min(fin, fout) + self.trainable = trainable + self.fin = fin + self.fout = fout + self.with_spade = with_spade + self.scope = name + + def __call__(self, x, ref): + # TODO: extend to[NTHWC] 5D input + with tf.variable_scope(self.scope, reuse=tf.AUTO_REUSE): + feat = x + if self.with_spade: + feat = spade(feat, ref, self.fin, kernel_size=(3, 3), name='spade1', training=self.trainable) + feat = Conv2D(self.fmiddle, kernel_size=(3, 3), strides=(1, 1), + padding='SAME', trainable=self.trainable, name='conv1')(feat) + feat = ActLayer(dict(type='leakyrelu', alpha=0.2))(feat) + + if self.with_spade: + feat = spade(feat, ref, self.fmiddle, kernel_size=(3, 3), name='spade2', training=self.trainable) + feat = Conv2D(self.fout, kernel_size=(3, 3), strides=(1, 1), + padding='SAME', trainable=self.trainable, name='conv2')(feat) + feat = ActLayer(dict(type='leakyrelu', alpha=0.2))(feat) + + short_cut = x + if self.learned_short: + if self.with_spade: + short_cut = spade(short_cut, ref, self.fin, kernel_size=(3, 3), + name='spade_shortcut', training=self.trainable) + short_cut = Conv2D(self.fout, kernel_size=(3, 3), strides=(1, 1), + padding='SAME', trainable=self.trainable, name='conv3')(short_cut) + + return short_cut + feat diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9543d0650499b3d49f5b743a3200dfcda3fd7a56 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/__init__.py @@ -0,0 +1,42 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import inspect +import importlib + +from .base_model import Base +from .register import registry + +model_dir = os.path.dirname(os.path.realpath(__file__)) +model_file = os.listdir(model_dir) + +# Automatically import all the defined class in the files under src.networks +__all__ = ['registry'] +for model in model_file: + module_name = model.split('.')[0] + if module_name in ['register', 'base_model', '__init__', 'VSR']: + continue + mod = importlib.import_module(f'.{module_name}', 'src.networks') + for name, obj in inspect.getmembers(mod, inspect.isclass): + if issubclass(obj, Base) and module_name not in __all__ and obj.__module__ == module_name: + __all__.append(name) + + +def build_network(cfg): + network = registry[cfg.model.name](cfg=cfg) + return network + + +__all__.append('build_network') diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/base_model.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/base_model.py new file mode 100644 index 0000000000000000000000000000000000000000..521eefbaa7301bd34376a3ef1eca8d73836fefbf --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/base_model.py @@ -0,0 +1,416 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import glob +import os + +import numpy as np +import tensorflow as tf +from src.losses.losses import get_loss +from src.losses.modules.adversarial import build_adversarial_loss +from src.losses.modules.perceptual import build_content_style_loss +from src.losses.modules.perceptual import build_perceptual_loss +from src.ops.edge import get_edges +from src.networks.register import RegisteredModel +from src.runner.common import name_space +from src.utils.logger import logger +from src.utils.utils import convert_to_dict + + +class Base(object, metaclass=RegisteredModel): + """Base class for all the video processing models. + + Attributes: + cfg: yacs CfgNode. Global configuration. + model_name: str, model name. + scale: int, output scale w.r.t input, e.g. EDVR output is 4x the scale + of the input. + num_net_input_frames: int, the total number of input frames to the + network. For EDVR, the default is 5. See src.utils.default. + num_net_output_frames: int, the number of output result frames by the + network. Default is 1. Also see src.utils.default. + num_data_lq_frames: int, the total number of lq frames in each case + generated by the datasets. Typically it can be the same with + ``num_net_input_frames``. But if one is to use temporal supervision + and there will be multiple output frames. In this case, see the + example below. + num_data_gt_frames: int, the total number of the hq frames in each case + produced by the dataset. Typically it is the same with + ``num_net_output_frames``. + input_color_space: int, the color space of the input frames. Default to + ``rgb``. + num_in_channels: int, number of the channels of the input frames. + Corresponds to ``input_color_space``. + is_train: boolean, whether the model is in training phase. Determined by + the ``cfg.mode``. + generative_model_scope: str, top scope name for the tensorflow graph. + Default value is 'G'. + output_dir: str, path to dump the summary. + + Example: + The most confusion configuration may be the ``num_**_frames``. Here is + an example of the basic scenario (multi-input frames and single center + output frame): + + Frame 1 -----> |---------| + Frame 2 -----> | | + Frame 3 -----> | network | -----> Frame 3' -----> Loss + Frame 4 -----> | | + Frame 5 -----> |---------| + + In this case, we have ``num_net_input_frames=5`` and + ``num_net_output_frames=1``. Also, since there is no temporal + supervision for the outputs, ``num_data_lq_frames=num_net_input_frames=5`` + and ``num_data_gt_frames=num_net_output_frames=1``, which is the EDVR + case. + + A second case is multi-input frames and multi-output frames: + + Frame 1 -----> |---------| -----> Frame 1' -----> |------| + Frame 2 -----> | | -----> Frame 2' -----> | | + Frame 3 -----> | network | -----> Frame 3' -----> | loss | -----> Loss + Frame 4 -----> | | -----> Frame 4' -----> | | + Frame 5 -----> |---------| -----> Frame 5' -----> |------| + + In this case, `num_data_lq_frames=num_net_input_frames=5`` and + ``num_data_gt_frames=num_net_output_frames=5``. + + Third case, multi-input frames, single center output frame and with + temporal supervision: + + Frame 1 -----> |---------| + Frame 2 -----> | | + Frame 3 -----> | | -----> Frame 3' -----> |------| + Frame 4 -----> | | -----> Frame 4' -----> | | + Frame 5 -----> | network | -----> Frame 5' -----> | loss | -----> Loss + Frame 6 -----> | | -----> Frame 6' -----> | | + Frame 7 -----> | | -----> Frame 7' -----> |------| + Frame 8 -----> | | + Frame 9 -----> |---------| + + In the 3rd case, ``num_data_lq_frames=9``, ``num_net_input_frames=5``, + ``num_data_gt_frames=5``, ``num_net_output_frames=1``, which satisfies: + + ``num_data_lq_frames = num_data_gt_frames + num_net_input_frames - num_net_output_frames`` + + During inference, the network is still multi-input frames and + single center output frame (same with the 1st case), while temporal + loss can be applied to the network during training. + + Args: + cfg: Configuration loaded from the *.yaml file. + """ + def __init__(self, cfg): + self.model_name = cfg.model.name + self.scale = cfg.model.scale + self.num_net_input_frames = cfg.model.num_net_input_frames + self.num_net_output_frames = cfg.model.num_net_output_frames + self.num_data_lq_frames = cfg.data.num_data_lq_frames + self.num_data_gt_frames = cfg.data.num_data_gt_frames + + self.input_color_space = cfg.data.color_space + self.num_in_channels = 3 + self.is_train = cfg.mode == 'train' + + self.cfg = cfg + self.lq = None # input low-quality + self.gt = None # groundtruth + self.hq = None # output high-quality + self.generative_model_scope = cfg.model.scope + self.output_dir = cfg.train.output_dir + + @property + def output_node(self): + """Obtain the default output result of the network + + Return: + A 4D [N, H, W, C] or 5D [N, T, H, W, C] tensorflow tensor. + """ + return self.hq + + @property + def input_node(self): + """Obtain the default input node of the network. + + Return: + A 4D [N, H, W, C] or 5D [N, T, H, W, C] tensor. + """ + return self.lq + + def parameters(self, scope=''): + """Obtain the trainable parameters given the scope. + + Args: + scope: str, the parameter scope. If is empty, return all the + parameters in the top scope ``self.generative_model_scope``. + + Return: + A list of parameter tensor in the given scope. + """ + if scope == '': + return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, + self.generative_model_scope) + else: + return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, + scope=scope) + + def calculate_content_loss(self, gt, hq): + """Compute the pixel-wise content loss. The loss will be added to + ``name_space.GeneratorLoss``. + + Args: + gt: tensor, predictions of the network. + hq: tensor, ground-truth of the training. + + """ + eps = self.cfg.loss.content.loss_margin + reduction = self.cfg.loss.content.loss_reduction + + loss = get_loss(self.cfg.loss.content.loss_type, gt, hq, eps=eps) + # reduction strategy is adjusted to ascend platform, to keep the + # gradient neither too large (in case of overflow) nor too small + # (in case gradient vanishing because of the CUBE operator). + if reduction == 'mean': + loss = tf.reduce_sum(tf.reduce_mean(loss, axis=[1, 2])) + elif reduction == 'sum': + loss = tf.reduce_mean(tf.reduce_sum(loss, axis=[1, 2, 3])) + else: + raise NotImplementedError + name_space.add_to_collection( + name_space.GeneratorLoss, + f'content {self.cfg.loss.content.loss_type}', + loss) + return loss + + def calculate_perceptual_loss(self, gt, hq): + """Compute perceptual loss. The loss will be added to + ``name_space.GeneratorLoss``. + + Args: + gt: tensor, predictions of the network. + hq: tensor, ground-truth of the training. + """ + # perceptual loss will be weighted in build_perceptual_loss + perceptual_config = convert_to_dict(self.cfg.loss.perceptual, []) + perceptual_loss = build_perceptual_loss(gt, hq, perceptual_config) + perceptual_loss = perceptual_loss * self.cfg.loss.perceptual.loss_weight + + name_space.add_to_collection( + name_space.GeneratorLoss, + 'perceptual', + perceptual_loss) + return perceptual_loss + + def calculate_border_loss(self, gt, hq): + """Compute edge loss. The loss will be added to ``name_space.GeneratorLoss``. + + Args: + gt: tensor, predictions of the network. + hq: tensor, ground-truth of the training. + """ + + hq_edge = get_edges(gt, method=self.cfg.loss.edge.method) + gt_edge = get_edges(hq, method=self.cfg.loss.edge.method) + edge_loss = get_loss(self.cfg.loss.content.loss_type, hq_edge, gt_edge) + edge_loss = tf.reduce_sum(tf.reduce_mean(edge_loss, axis=[1, 2])) + edge_loss = edge_loss * self.cfg.loss.edge.loss_weight + + name_space.add_to_collection( + name_space.GeneratorLoss, + 'edge', + edge_loss) + + return edge_loss + + def calculate_content_style_loss(self, gt, hq): + """Compute style loss. The loss will be added to + ``name_space.GeneratorLoss``. + + Args: + gt: tensor, predictions of the network. + hq: tensor, ground-truth of the training. + """ + # perceptual loss will be weighted in build_perceptual_loss + perceptual_config = convert_to_dict(self.cfg.loss.perceptual, []) + perceptual_loss = build_content_style_loss(gt, hq, perceptual_config) + perceptual_loss = perceptual_loss * self.cfg.loss.perceptual.loss_weight + + name_space.add_to_collection( + name_space.GeneratorLoss, + 'style', + perceptual_loss) + return perceptual_loss + + def calculate_adversarial_loss(self, gt, hq): + """Compute adversarial loss. The loss will be added to + ``name_space.GeneratorLoss``. + + Args: + gt: tensor, predictions of the network. + hq: tensor, ground-truth of the training. + """ + + # discriminator loss will be weighted and added to name_space in build_ + # adversarial_loss + _ = build_adversarial_loss(gt, hq, self.cfg) + + def build_losses(self, *args, **kwargs): + """Compute all the losses, including pixel-wise content loss (required), + perceptual and perceptual style loss (if loss_weight > 0), edge loss ( + if loss_weight > 0), and adversarial loss (if loss_weight > 0). + """ + # all losses should be added to name_space collections + gt = tf.cast(self.gt, tf.float32) + hq = tf.cast(self.hq, tf.float32) + + hq = tf.reshape(hq, gt.shape) + + _ = self.calculate_content_loss(gt, hq) + if self.cfg.loss.edge.loss_weight > 0: + _ = self.calculate_border_loss(gt, hq) + + if self.cfg.loss.perceptual.loss_weight > 0: + _ = self.calculate_perceptual_loss(gt, hq) + + if self.cfg.loss.adversarial.loss_weight > 0: + self.calculate_adversarial_loss(gt, hq) + + def build_metrics(self, *args, **kwargs): + # Reserved for evaluation. + pass + + def prepare_placeholder(self, size): + """Prepare placeholder for **inference** phase, given the input size. + + Args: + size: tuple/list, including [batchsize, (h, w)] + + Returns: + None + """ + # Note: this function is only for non-train mode + if self.lq is not None: + pass + b, spatial = size + + if self.cfg.model.input_format_dimension == 5: + if b is None or b < 0: + b = None + self.lq = tf.placeholder( + tf.float32, + shape=[b, + self.num_net_input_frames, + *spatial, + self.num_in_channels], + name='L_input') + elif self.cfg.model.input_format_dimension == 4: + # Mainly used for offline model inference for speeding up in the + # AIPP on Ascend 310 + if b is None or b < 0: + self.lq = tf.placeholder( + tf.float32, + shape=[None, + *spatial, + self.num_in_channels], + name='L_input') + else: + self.lq = tf.placeholder( + tf.float32, + shape=[b*self.num_net_input_frames, + *spatial, + self.num_in_channels], + name='L_input') + else: + raise ValueError(f'Input format dimension only support 4 or 5, ' + f'but got {self.cfg.model.input_format_dimension}') + + def build_graph(self, dataloader=None, input_size=None, *args, **kwargs): + """Build tensorflow graph, network building, loss calculation, metrics + calculation, etc. + + Args: + dataloader: tf.Datasets, in training or evaluation phase. + input_size: tuple or list, [b, (h, w)], for inference and freeze + phase. + + Returns: + None + """ + if self.cfg.mode in ['freeze', 'inference']: + assert input_size is not None + self.prepare_placeholder(input_size) + elif self.cfg.mode in ['train', 'eval']: + assert dataloader is not None + self.lq, self.gt = dataloader + else: + raise NotImplementedError + + # Forward propagation + self.hq = self.build_generator(self.lq) + + if self.cfg.mode == 'train': + name_space.add_to_collection(name_space.Summary, 'hq', self.gt) + self.build_losses() + elif self.cfg.mode == 'eval': + name_space.add_to_collection(name_space.Summary, 'hq', self.gt) + self.build_metrics() + + if self.cfg.mode in ['eval', 'inference', 'freeze'] and \ + self.cfg.model.convert_output_to_uint8: + self.hq = tf.cast( + tf.round( + tf.clip_by_value( + self.hq * 255., + 0., + 255.)), + tf.uint8 + ) + + # Setup the output node for inference without network file. + self.hq = tf.identity(self.hq, name='HQ_output') + + name_space.add_to_collections((name_space.Summary, + name_space.InputField), + 'lq', + self.lq) + name_space.add_to_collections((name_space.Summary, + name_space.OutputField), + 'gt', + self.hq) + + def build_generator(self, lq, *args, **kwargs): + """Building the forward network. This is the interface every derived + network class should implement. + + Args: + lq: tensor, input frames. 4D or 5D tensor. + + Returns: + None + """ + raise NotImplementedError + + def dump_summary(self, step, summary_dict): + """Function to visualize the intermediate training status. + In case, tensorboard is not available, one can use this function to + check the intermediate training or evaluation results. + + Args: + step: int, training step + summary_dict: dict, contains all the results. + + Returns: + None + """ + pass diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/edvr.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/edvr.py new file mode 100644 index 0000000000000000000000000000000000000000..135d7f14ca7d1b7ee51f8c85a526a719dc128965 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/edvr.py @@ -0,0 +1,170 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +import os + +import numpy as np +import tensorflow as tf + +from src.layers import Conv2D, ActLayer +from src.modules import Conv2DNormAct, ResBlockNoBN +from src.ops import depth_to_space, resize, split +from src.modules.edvr_submodules import PCDAlign, TSAFusion, PCWoDCN +from src.networks.base_model import Base +from src.runner.common import name_space +from src.utils.file_io import imwrite + + +class EDVR(Base): + """EDVR video super-resolution network. + + Args: + cfg: yacs node. EDVR configures configured in edvr_config.py. + """ + def __init__(self, cfg): + super().__init__(cfg) + self.with_tsa = cfg.edvr.with_tsa + self.mid_channels = cfg.edvr.mid_channels + self.num_groups = cfg.edvr.num_groups + self.num_deform_groups = cfg.edvr.num_deform_groups + self.num_blocks_extraction = cfg.edvr.num_blocks_extraction + self.num_blocks_reconstruction = cfg.edvr.num_blocks_reconstruction + + if cfg.edvr.use_dcn: + self.align_module = PCDAlign(self.mid_channels, 1, self.num_deform_groups, + dcn_impl='npu', + upsample_method=self.cfg.edvr.upsampling, + align_corners=self.cfg.edvr.align_corners) + else: + self.align_module = PCWoDCN(self.mid_channels, + upsample_method=self.cfg.edvr.upsampling, + align_corners=self.cfg.edvr.align_corners) + + self.tsa_fusion_module = TSAFusion(self.num_net_input_frames, + self.mid_channels, + self.cfg.edvr.upsampling, + align_corners=self.cfg.edvr.align_corners) + + def feature_extraction(self, x, act_cfg=dict(type='LeakyRelu', alpha=0.1)): + # extract LR features + with tf.variable_scope('extraction', reuse=tf.AUTO_REUSE): + # L1 + # l1_feat = tf.reshape(x, [-1, x.shape[2], x.shape[3], x.shape[4]]) + l1_feat = Conv2D(self.mid_channels, name='conv_first')(x) + l1_feat = ActLayer(act_cfg)(l1_feat) + l1_feat = ResBlockNoBN(num_blocks=self.num_blocks_extraction, mid_channels=self.mid_channels)(l1_feat) + # L2 + l2_feat = Conv2DNormAct(self.mid_channels, strides=[2, 2], act_cfg=act_cfg, name='feat_l2_conv1')(l1_feat) + l2_feat = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='feat_l2_conv2')(l2_feat) + # L3 + l3_feat = Conv2DNormAct(self.mid_channels, strides=[2, 2], act_cfg=act_cfg, name='feat_l3_conv1')(l2_feat) + l3_feat = Conv2DNormAct(self.mid_channels, act_cfg=act_cfg, name='feat_l3_conv2')(l3_feat) + + return l1_feat, l2_feat, l3_feat + + def reconstruction(self, feat, x_center, act_cfg=dict(type='LeakyRelu', alpha=0.1)): + # reconstruction + out_channel = x_center.get_shape().as_list()[-1] + with tf.variable_scope('reconstruction', reuse=tf.AUTO_REUSE): + out = ResBlockNoBN(num_blocks=self.num_blocks_reconstruction, mid_channels=self.mid_channels)(feat) + level_upsample = int(math.log2(self.scale)) + for i in range(level_upsample): + out = Conv2D(self.mid_channels * 2 ** 2, name=f'upsample{i+1}')(out) + out = depth_to_space(out, 2) + out = Conv2D(self.mid_channels, name='conv_hr')(out) + out = ActLayer(act_cfg)(out) + out = Conv2D(out_channel, name='conv_last')(out) + + base = resize( + x_center, + size=[x_center.shape[1] * self.scale, x_center.shape[2] * self.scale], + align_corners=self.cfg.edvr.align_corners, + name='img_upsample', method=self.cfg.edvr.upsampling) + base = tf.cast(base, tf.float32) + out = tf.cast(out, tf.float32) + self.residual = out + out += base + + return out + + def build_generator(self, x): + # shape of x: [B,T_in,H,W,C] + with tf.variable_scope(self.generative_model_scope, reuse=tf.AUTO_REUSE): + if self.cfg.model.input_format_dimension == 4: + x_shape = x.get_shape().as_list() + x = tf.reshape(x, [-1, self.num_net_input_frames, *x_shape[1:]]) + + x_list = split(x, self.num_net_input_frames, axis=1, keep_dims=False) + x_center = x_list[self.num_net_input_frames//2] + + l1_feat_list = [] + l2_feat_list = [] + l3_feat_list = [] + for f in range(self.num_net_input_frames): + l1_feat, l2_feat, l3_feat = self.feature_extraction(x_list[f]) + l1_feat_list.append(l1_feat) + l2_feat_list.append(l2_feat) + l3_feat_list.append(l3_feat) + + ref_feats = [ + l1_feat_list[self.num_net_input_frames//2], + l2_feat_list[self.num_net_input_frames//2], + l3_feat_list[self.num_net_input_frames//2] + ] + aligned_feat = [] + + for i in range(self.num_net_input_frames): + neighbor_feats = [ + l1_feat_list[i], + l2_feat_list[i], + l3_feat_list[i] + ] + # aligned_feat.append(self.pcd_align(neighbor_feats, ref_feats)) + aligned_feat.append(self.align_module(neighbor_feats, ref_feats)) + + if self.with_tsa: + # feat = self.tsa_fusion(aligned_feat) + feat = self.tsa_fusion_module(aligned_feat) + else: + aligned_feat = tf.stack(aligned_feat, axis=1) # (n, t, h, w, c) + aligned_feat_shape = aligned_feat.get_shape().as_list() + last_dim = aligned_feat_shape[-1] * aligned_feat_shape[1] + aligned_feat = tf.transpose(aligned_feat, [0, 2, 3, 1, 4]) + aligned_feat = tf.reshape(aligned_feat, + [-1, aligned_feat.shape[1], aligned_feat.shape[2], last_dim]) + feat = Conv2D(self.mid_channels, kernel_size=[1, 1], name='fusion')(aligned_feat) + + # reconstruction + out = self.reconstruction(feat, x_center) + + return out + + def dump_summary(self, step, summary_dict): + # Keys of the summary dict correspond to the keys defined base_model "build_generator" + lr = summary_dict['lr'] + sr = summary_dict['sr'] + hr = summary_dict['hr'] + + os.makedirs(os.path.join(self.output_dir, 'intermediate'), exist_ok=True) + + output_file = os.path.join(self.output_dir, 'intermediate', f'step{step:06d}_lr.png') + imwrite(output_file, np.squeeze(lr[0, self.num_net_input_frames//2]), + source_color_space=self.cfg.data.color_space) + + output_file = os.path.join(self.output_dir, 'intermediate', f'step{step:06d}_hr.png') + imwrite(output_file, np.squeeze(hr[0]), source_color_space=self.cfg.data.color_space) + + output_file = os.path.join(self.output_dir, 'intermediate', f'step{step:06d}_sr.png') + imwrite(output_file, sr[0], source_color_space=self.cfg.data.color_space) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/register.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/register.py new file mode 100644 index 0000000000000000000000000000000000000000..530a60a9c75679a07b5936b1b8a3f98e05f36f21 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/networks/register.py @@ -0,0 +1,29 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +registry = {} + + +def register(cls): + registry[cls.__name__] = cls + return cls + + +class RegisteredModel(type): + """A class for model registration. + """ + def __new__(cls, clsname, bases, attrs): + newclass = super(RegisteredModel, cls).__new__(cls, clsname, bases, attrs) + register(newclass) # here is your register function + return newclass diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2d63ba3e71b68bd9b0d11278abdb5eb0808b3a8a --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/__init__.py @@ -0,0 +1,17 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .upsample import * +from .edge import * +from .slicing import * \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/edge.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/edge.py new file mode 100644 index 0000000000000000000000000000000000000000..d3af3b02c5d8b9acceb04ef0ec0cb9d0a16baf01 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/edge.py @@ -0,0 +1,110 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import tensorflow as tf +from scipy import signal +import random + + +__all__ = ['tf_gaussian_blur', 'get_edges'] + + +def gaussian_kernel(kernel_size, standard_dev): + """Returns a 2D Gaussian kernel array with side length size and a sigma of + signal. + + Args: + kernel_size: int. + standard_dev: float, scalar of the kernel width. + + Returns: + ndarray, a normalized np.ndarray of shape [kernel_size, kernel_size]. + """ + gkern1d = signal.gaussian(kernel_size, std=standard_dev).reshape(kernel_size, 1) + gkern2d = np.outer(gkern1d, gkern1d) + return (gkern2d/gkern2d.sum()) + + +def tf_gaussian_blur(x, kernel_size, standard_dev): + """Apply gaussian blur to tensor using tf interface. Only works for RGB or 3-channel + tensors. + + Args: + x: tensor, 4D. + kernel_size: int, blur kernel size. + standard_dev: float. + + Returns: + tensor, blured version of the input. + """ + gau_k = gaussian_kernel(kernel_size, standard_dev) + gau_0 = np.zeros_like(gau_k) + gau_list = np.float32( [ + [gau_k, gau_0, gau_0], + [gau_0, gau_k, gau_0], + [gau_0, gau_0, gau_k]] ) # only works for RGB images! + gau_wei = np.transpose(gau_list, [2,3,0,1]) + + fix_gkern = tf.constant(gau_wei, dtype=tf.float32, shape=[kernel_size, kernel_size, 3, 3], name='gauss_blurWeights' ) + # shape [batch_size, crop_h, crop_w, 3] + cur_data = tf.nn.conv2d(x, fix_gkern, strides=[1,1,1,1], padding="SAME", name='gauss_blur') + return cur_data + + +def get_edges(x, method='sobel', use_default=False): + """Get the edge map of a tensor x. + + Args: + x: tensor, input feature map, whose number of channels can be larger than 3. + method: str, which edge detector is used. + use_default: boolean, whether to use tensorflow default sobel edge detector. + + Returns: + tensor, the edge map of the input tensor. + """ + if method == 'sobel' and use_default: + edge = tf.image.sobel_edges(x) + output_h, output_w = tf.split(edge, 2, axis=-1) + output_h = tf.squeeze(output_h, axis=-1) + output_w = tf.squeeze(output_w, axis=-1) + edge_norm = tf.abs(output_h) * 0.5 + tf.abs(output_w) * 0.5 + elif method == 'sobel': + # Blur before apply sobel operator. + x = tf_gaussian_blur(x, 3, 1.2) + x = tf.reduce_mean(x, axis=-1, keep_dims=True) + kernel_h = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]] + kernel_w = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] + x_pad = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], 'REFLECT') + c = x.get_shape().as_list()[-1] + conv_k_h = tf.constant(kernel_h, dtype=tf.float32, shape=(3, 3, 1, 1)) + conv_k_h = tf.tile(conv_k_h, (1, 1, c, 1)) + conv_k_w = tf.constant(kernel_w, dtype=tf.float32, shape=(3, 3, 1, 1)) + conv_k_w = tf.tile(conv_k_w, (1, 1, c, 1)) + output_h = tf.nn.depthwise_conv2d(x_pad, conv_k_h, strides=[1, 1, 1, 1], padding='VALID') + output_w = tf.nn.depthwise_conv2d(x_pad, conv_k_w, strides=[1, 1, 1, 1], padding='VALID') + edge_norm = tf.abs(output_h) * 0.5 + tf.abs(output_w) * 0.5 + elif method == 'laplacian': + # Blur before apply edge operator. + x = tf_gaussian_blur(x, 3, 1.2) + x = tf.reduce_mean(x, axis=-1, keep_dims=True) + kernel = [[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]] + conv_k = tf.constant(kernel, dtype=tf.float32, shape=(3, 3, 1, 1)) + x_pad = tf.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], 'REFLECT') + output = tf.nn.depthwise_conv2d(x_pad, conv_k, strides=[1, 1, 1, 1], padding='VALID') + edge_norm = tf.abs(output) + else: + raise NotImplementedError + + return edge_norm \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/slicing.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/slicing.py new file mode 100644 index 0000000000000000000000000000000000000000..096f9e4c585697c1981fd2c78e6367ecf239ecff --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/slicing.py @@ -0,0 +1,42 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + +__all__ = ['split'] + + +def split(x, num_or_size_splits, axis=0, keep_dims=False): + """Split the tensor with possibly reduced dimension. + + Args: + x: tensor, the source tensor to split. + num_or_size_splits: int or list[int]. If is given `int`, specifying + the number of the splits; if given list[int], then the summation + of the sizes should equal to the length of the `axis` of x. + axis: int, which axis to split. + keep_dims: boolean, whether to reduce the `axis` dimension after split. + Dafault to False. + + Returns: + list[tensor] + """ + x_list = tf.split(x, num_or_size_splits, axis) + + if not keep_dims: + x_list2 = [tf.squeeze(x_, axis) for x_ in x_list] + return x_list2 + + return x_list + diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/upsample.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/upsample.py new file mode 100644 index 0000000000000000000000000000000000000000..c3b32150360cd07d20e48ad1030ba5ec5fa76a6b --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/upsample.py @@ -0,0 +1,216 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + +from src.utils.utils import to_pair + +__all__ = [ + 'resize', 'depth_to_space', 'space_to_depth', + 'decimation_up', 'decimation_down' +] + + +def depth_to_space(x, scale, use_default=False, data_format='NHWC'): + """Rearrange data from depths to blocks of spatial data. + + Given a tensor of size [N, H, W, C], this operator converts the tensor + to size [N, H*scale, W*scale, C/(scale*scale)]. + + Args: + x: tensor, which has the shape [N, H, W, C] or [N, C, H, W]. + scale: int, specifying how many blocks the depths is rearrageed. Both + h and w dimension will be scaled up by this value. + use_default: boolean, use tensorflow default implementation. If False, + use a composed operator instead. Default False. + data_format: str, possible choices in ['NHWC', 'NCHW']. + + Returns: + tensor, which has the shape [N, H*scale, W*scale, C/(scale*scale)]. + """ + if use_default: + out = tf.nn.depth_to_space(x, scale, data_format=data_format) + elif data_format == 'NHWC': + b, h, w, c = x.get_shape().as_list() + c_scaled = c // (scale**2) + out = tf.reshape(x, [-1, h, w, scale, scale, c_scaled]) + out = tf.transpose(out, [0, 1, 3, 2, 4, 5]) + out = tf.reshape(out, [-1, h * scale, w * scale, c_scaled]) + elif data_format == 'NCHW': + b, c, h, w = x.get_shape().as_list() + c_scaled = c // (scale**2) + out = tf.reshape(x, [-1, scale, scale, c_scaled, h, w]) + out = tf.transpose(out, [0, 3, 4, 1, 5, 2]) + out = tf.reshape(out, [-1, c_scaled, h * scale, w * scale]) + else: + raise ValueError(f'Unknown data format `{data_format}`') + return out + + +def space_to_depth(x, scale, use_default=False, data_format='NHWC'): + """Rearrange data from blocks of spatial data to depths. + + Given a tensor of size [N, H, W, C], this operator converts the tensor + to size [N, H/scale, W/scale, C*(scale*scale)]. + + Args: + x: tensor, which has the shape [N, H, W, C] or [N, C, H, W]. + scale: int, specifying how many blocks the depths is rearrageed. Both + h and w dimension will be scaled down by this value. + use_default: boolean, use tensorflow default implementation. If False, + use a composed operator instead. Default False. + data_format: str, possible choices in ['NHWC', 'NCHW']. + + Returns: + tensor, which has the shape [N, H/scale, W/scale, C*(scale*scale)]. + """ + if use_default: + out = tf.nn.space_to_depth(x, scale, data_format=data_format) + elif data_format == 'NHWC': + b, h, w, c = x.get_shape().as_list() + c_scaled = c * (scale**2) + out = tf.reshape(x, [-1, h//scale, scale, w//scale, scale, c]) + out = tf.transpose(out, [0, 1, 3, 2, 4, 5]) + out = tf.reshape(out, [-1, h//scale, w//scale, c_scaled]) + elif data_format == 'NCHW': + b, c, h, w = x.get_shape().as_list() + c_scaled = c * (scale**2) + out = tf.reshape(x, [-1, c, h//scale, scale, w//scale, scale]) + out = tf.transpose(out, [0, 3, 5, 1, 2, 4]) + out = tf.reshape(out, [-1, c_scaled, h//scale, w//scale]) + else: + raise ValueError(f'Unknown data format `{data_format}`') + return out + + +def resize(x, size, align_corners=False, name=None, half_pixel_centers=False, method='bicubic'): + """Wrap of tensorflow resize function. + + Args: + x: tensor, which has the shape [N, H, W, C] or [N, C, H, W]. + size: list[int] of length 2, indicating the target size [H_target, W_target]. + align_corners: boolean, whether to align corners when resizing. + name: str, the name of the resize operation. + half_pixel_centers: boolean, whether use the half pixel as the center. + method: str, resize method. Possible choices in ('bicubic', 'bilinear', 'area') + + Return: + tensor, the resized version fo x which is of shape [N, H_target, W_target, C]. + """ + if method == 'bicubic': + upsampling = tf.image.resize_bicubic + elif method == 'bilinear': + upsampling = tf.image.resize_bilinear + elif method == 'area': + upsampling = tf.image.resize_area + return upsampling(x, size=size, align_corners=align_corners, name=name) + else: + raise ValueError + return upsampling(x, size=size, align_corners=align_corners, name=name, half_pixel_centers=half_pixel_centers) + + +def decimation_up(x, scale, data_format='NHWC'): + """Interpolate the tensor to target scale. + + Given a tensor of size [N, H, W, C], this operator converts the tensor + to size [N, H*scale, W*scale, C]. The interpolateed pixels will be filled + with zeros. + + For example, the entries of 2D tensor x is: + [[1, 2], + [3, 4]] + + When scale=3, the output will be: + [[1, 0, 0, 2, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [3, 0, 0, 4, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]] + + Args: + x: tensor, which has the shape [N, H, W, C] or [N, C, H, W]. + scale: int, specifying the magnification the h and w. + data_format: str, possible choices in ['NHWC', 'NCHW']. + + Returns: + tensor, which has the shape [N, H*scale, W*scale, C]. + """ + x_shape = x.get_shape().as_list() + + scale = to_pair(scale, 2) + sh, sw = scale + + zeros = tf.zeros([*x_shape, sh*sw-1], dtype=x.dtype) + x_expand = tf.expand_dims(x, -1) + x_up = tf.concat([x_expand, zeros], axis=-1) + x_up = tf.reshape(x_up, shape=[*x_shape, sh, sw]) + if data_format == 'NCHW': + n, c, h, w = x_shape + x_up = tf.transpose(x_up, (0, 1, 2, 4, 3, 5)) + x_up = tf.reshape(x_up, [n, c, h*sh, w*sw]) + elif data_format == 'NHWC': + n, h, w, c = x_shape + x_up = tf.transpose(x_up, (0, 1, 4, 2, 5, 3)) + x_up = tf.reshape(x_up, [n, h*sh, w*sw, c]) + else: + raise ValueError + + return x_up + + +def decimation_down(x, scale, data_format='NCHW'): + """Decimation the tensor with target scale. + + Given a tensor of size [N, H, W, C], this operator converts the tensor + to size [N, H/scale, W/scale, C]. The values remained are the upper-left + corner value within each block. + + For example, the entries of 2D tensor x is: + [[ 1, 2, 3, 4], + [ 5, 6, 7, 8], + [ 9, 10, 11, 12], + [13, 14, 15, 16]] + + When scale=2, the output will be: + [[1, 3], + [9, 11]] + + Args: + x: tensor, which has the shape [N, H, W, C] or [N, C, H, W]. + scale: int, specifying the down magnification the h and w. + data_format: str, possible choices in ['NHWC', 'NCHW']. + + Returns: + tensor, which has the shape [N, H/scale, W/scale, C] + """ + x_shape = x.get_shape().as_list() + + scale = to_pair(scale, 2) + sh, sw = scale + + if data_format == 'NCHW': + b, c, h, w = x_shape + x_down = tf.reshape(x, [b, c, h//sh, sh, w//sw, sw]) + x_down = tf.slicing(x_down, (0, 0, 0, 0, 0, 0), (-1, -1, -1, 1, -1, 1)) + x_down = tf.squeeze(x_down, axis=(3, 5)) + elif data_format == 'NHWC': + b, h, w, c = x_shape + x_down = tf.reshape(x, [b, h//sh, sh, w//sw, sw, c]) + x_down = tf.slicing(x_down, (0, 0, 0, 0, 0, 0), (-1, -1, 1, -1, 1, -1)) + x_down = tf.squeeze(x_down, axis=(2, 4)) + else: + raise ValueError + + return x_down diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/weight_regularzation.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/weight_regularzation.py new file mode 100644 index 0000000000000000000000000000000000000000..cb902ba60c5a6fd2561298cb98993e3c6ecf9a8a --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/ops/weight_regularzation.py @@ -0,0 +1,53 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import tensorflow as tf + +def spectral_norm(w, iteration=1): + """Spectral normalization of kernels. + + Borrowed from https://github.com/taki0112/Spectral_Normalization-Tensorflow/blob/master/spectral_norm.py + + Args: + w: tensor, conv/linear layer kernel. + iteration: int, number of power iteration. + + Returns: + A normalized kernel tensor. + """ + w_shape = w.shape.as_list() + w = tf.reshape(w, [-1, w_shape[-1]]) + + u = tf.get_variable("spectral_norm_u", [1, w_shape[-1]], + initializer=tf.truncated_normal_initializer(), + trainable=False) + + u_hat = u + v_hat = None + for i in range(iteration): + # power iteration + # Usually iteration = 1 will be enough + v_ = tf.matmul(u_hat, tf.transpose(w)) + v_hat = tf.nn.l2_normalize(v_) + + u_ = tf.matmul(v_hat, w) + u_hat = tf.nn.l2_normalize(u_) + + sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat)) + w_norm = w / sigma + + with tf.control_dependencies([u.assign(u_hat)]): + w_norm = tf.reshape(w_norm, w_shape) + + return w_norm \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..909661ab8a78390bd13b6c47bf89cfe47fac00c0 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/__init__.py @@ -0,0 +1,13 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/common.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/common.py new file mode 100644 index 0000000000000000000000000000000000000000..fd65820230913346c1a20b41bc09a4b3ee61c51d --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/common.py @@ -0,0 +1,87 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from collections import OrderedDict + +from src.utils.klass import Singleton +from src.utils.logger import logger + + +class _NameSpace(metaclass=Singleton): + """A common name-space class to record, sort and retrieve the tensorflow ops. + + Attributes: + GeneratorLoss: the scope of the loss ops of the generator. + DiscriminatorLoss: the scope of the loss ops of the discriminator. + GeneratorVarScope: the scope of the variables in the generator. + DiscriminatorVarScope: the scope of the variables in the discriminator. + PerceptualVarScope: the scope of the variables in the perceptual module. + Summary: the scope of the summary ops. + GeneratorRunOp: the scope of the running ops, i.e. train_op, lr_update_op, + of the generator. + DiscriminatorRunOp: the scope of the running ops, i.e. train_op, lr_update_op, + of the discriminator. + InputField: the scope of the input tensor and ops. + OutputField: the scope of the output tensor and ops. + + Example: record the losses in the GeneratorLoss scope, retrieve and add them to get + the final total loss for training. + + >>> from src.runner.common import name_space + >>> l1_loss = compute_loss1(pred, gt) + >>> name_space.add_to_collection(name_space.GeneratorLoss, 'l1_loss', l1_loss) + >>> l2_loss = compute_loss2(pred, gt) + >>> name_space.add_to_collection(name_space.GeneratorLoss, 'l2_loss', l2_loss) + >>> ... + >>> losses_dict = name_space.get_collection(name_space.GeneratorLoss) + >>> total_loss = tf.add_n(list(losses_dict.values())) # l1_loss + l2_loss + """ + __scopes = dict( + GeneratorLoss='gen_loss', + DiscriminatorLoss='dis_loss', + GeneratorVarScope='gen_var', + DiscriminatorVarScope='dis_var', + PerceptualVarScope='percep_var', + Summary='summary', + GeneratorRunOp='gen_op', + DiscriminatorRunOp='dis_op', + InputField='input', + OutputField='output', + ) + + __collections = dict() + + def __init__(self): + for key, value in self.__scopes.items(): + setattr(self, key, value) + self.__collections[value] = OrderedDict() + + def add_to_collection(self, namespace, key, value): + assert namespace in self.__scopes.values() + if key in self.__collections[namespace]: + logger.warn(f'Key "{key}" has already exists in scope "{namespace}".') + self.__collections[namespace][key] = value + + def add_to_collections(self, namespaces, key, value): + assert isinstance(namespaces, (list, tuple)) + for name in namespaces: + self.add_to_collection(name, key, value) + + def get_collection(self, namespace): + return self.__collections[namespace] + + def get_op(self, namespace, opname): + return self.__collections[namespace][opname] + + +name_space = _NameSpace() diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/distributed_variables_broadcast.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/distributed_variables_broadcast.py new file mode 100644 index 0000000000000000000000000000000000000000..c8670c143b4fabd488168397d2a9fd1c523060a4 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/distributed_variables_broadcast.py @@ -0,0 +1,90 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from src.utils.logger import logger + + +def broadcast_global_variables(sess, device, root_rank=0): + """A helper function to broadcast the variables across the devices in + distributed training. + + Args: + sess: tf.Session instance. + device: str, possible choices in ('npu'). + root_rank: int, the root node rank of the cluster. Default 0. + + Raises: + ValueError, when device is not in ('npu'). + """ + if device == 'npu': + npu_broadcast(sess, root_rank) + else: + raise ValueError + + +def npu_broadcast(sess, root_rank=0): + """Broadcast the variables in NPU environment. + + We use hccl interface to do the broadcast. + + Args: + sess: tf.Session instance. + root_rank: int, the root node rank of the cluster. Default 0. + """ + from npu_bridge.hccl import hccl_ops + logger.info(f'Broadcast variables from root_rank {root_rank} ...') + op_list = [] + for var in tf.global_variables(): + if "float" in var.dtype.name: + outputs = hccl_ops.broadcast(tensor=[var], root_rank=root_rank) + if outputs is not None: + op_list.append(outputs[0].op) + op_list.append(tf.assign(var, outputs[0])) + bcast = tf.group(op_list) + sess.run(bcast) + + +def allreduce_avg(tensor, device, ranksize): + """A helper function to perform the reduce mean across the devices in + distributed engine. + + Args: + tensor: tensor to reduce average. + device: str, possible choices in ('npu'). + ranksize: int, the number of the nodes in the cluster. + + Raises: + ValueError, when device is not in ('npu'). + """ + if device == 'npu': + return npu_allreduce_avg(tensor, ranksize) + else: + raise NotImplementedError + + +def npu_allreduce_avg(tensor, ranksize): + """Reduce mean across the devices in NPU environment. + + Args: + tensor: tensor to reduce average. + ranksize: int, the number of the nodes in the cluster. + + Returns: + tensor, reduced average tensor. + """ + from npu_bridge.hccl import hccl_ops + # There is no 'mean' reduction in allreduce ops. Use 'sum' instead. + # See https://support.huaweicloud.com/mprtg-A800_9000_9010/atlasprtg_13_0024.html + tensor_reduced = hccl_ops.allreduce(tensor / ranksize, "sum") + return tensor_reduced diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/helper.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/helper.py new file mode 100644 index 0000000000000000000000000000000000000000..1677934b9e8fb3b711fd93db8e8a5f3faeddcf24 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/helper.py @@ -0,0 +1,213 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import os + +import tensorflow as tf +from src.utils.world import world + + +class _AdversarialTrainHelper: + """A helper for adversarial training. + + In each step, the generator and discriminator will produce losses. + The helper determines whether to update the G and D in the next + iteration. For example, in step `i`, if the D loss (already evaluated) + is found very small, which means that D might be too strong and should + halt for some steps, the helper will filter out the discriminator ops in + step `i+1` to keep the discriminator, then evaluate again in step `i+1` + to determine whether to update G and D in step `i+2`. + + Example: + >>> # Define the tf ops + >>> helper = _AdversarialTrainHelper() + >>> g_train_op, d_train_op = define_train() + >>> d_train_op_dict = {'d_op': d_train_op} + >>> g_train_op_dict = {'g_op': g_train_op} + >>> d_loss = compute_d_loss(fake, real) + >>> ... + >>> # in step i=0 + >>> i = 0 + >>> g_train_op_dict_real, d_train_op_dict_real = helper.filter(g_train_op_dict, d_train_op_dict) + >>> _, _, d_loss_eval = sess.run([g_train_op_dict_real, d_train_op_dict_real, d_loss]) + >>> helper.update_status(d_loss_eval, i+1) + >>> ... + >>> # in step i=1 + >>> i = 1 + >>> # decide whether to update G and D in step 1 according to the result in step 0. + >>> g_train_op_dict_real, d_train_op_dict_real = helper.filter(g_train_op_dict, d_train_op_dict) + >>> _, _, d_loss_eval = sess.run([g_train_op_dict, d_train_op_dict, d_loss]) + >>> # update status with the d_loss and step index. + >>> helper.update_status(d_loss_eval, i+1) + """ + def __init__(self): + self._called_once = False + self._info = dict() + + @property + def info(self): + return self._info + + def filter(self, g_ops_in, d_ops_in, *args, **kwargs): + if not self._called_once: + # For the first time, we must run all the operations on NPU + # to construct the whole graph. It is regardless of the update + # strategy. + g_update, d_update = True, True + self._called_once = True + else: + # Once called and initialized, use the configured strategy to + # check whether to update G and D. + g_update, d_update = self.check_state() + + # Post validation to make sure that at least one of G and D should + # update. + g_update, d_update = self.post_validation(g_update, d_update) + + # Save the decision + self._info = dict( + g_update=g_update, + d_update=d_update + ) + + g_ops = dict(**g_ops_in) + if not g_update: + g_ops.pop('g_train') + + d_ops = dict(**d_ops_in) + if not d_update and 'd_train' in d_ops_in: + d_ops.pop('d_train') + + return g_ops, d_ops + + def post_validation(self, g_update, d_update): + # Abnormal states when both g_update and d_update are false + if (not g_update) and (not d_update): + g_update = True + d_update = False + return g_update, d_update + + def check_state(self): + # This is where specific strategy should implement how to make decisions + # on the whether to update G and D. + raise NotImplementedError + + def update_status(self, *args, **kwargs): + # Record the step and the criteria value. + raise NotImplementedError + + def not_initialized(self): + raise ValueError(f'Helper has not been initialized.') + + +class ByPassTrainHelper(_AdversarialTrainHelper): + """A bypass train helper. + + The ops will not be filtered at all. + """ + def __init__(self, use_adv=False): + super().__init__() + self.use_adv = use_adv + + def check_state(self): + # g_update always True + # d_update according to self.use_adv + return True, self.use_adv + + def update_status(self, *args, **kwargs): + pass + + +class AdaptiveTrainHelper(_AdversarialTrainHelper): + """An adaptive train helper given the loss values. + """ + def __init__(self, d_threshold, g_threshold=None): + super().__init__() + self.d_threshold = d_threshold + self.g_threshold = g_threshold + self.previous_d_loss = None + self.previous_step = None + self.d_warmstarted = False + + def update_status(self, loss=None, step=None): + self.previous_d_loss = loss + self.previous_step = step + + def check_state(self): + if self.previous_d_loss is None: + self.not_initialized() + + d_update = self.previous_d_loss > self.d_threshold + if not self.d_warmstarted: + # Don't ever update generator when discriminator is not yet that strong. + # Once the discriminator is at first time strong enough, apply the dynamic update. + g_update = False + if not d_update: + self.d_warmstarted = True + elif self.g_threshold is None: + g_update = True + else: + g_update = self.previous_d_loss < self.g_threshold + + return g_update, d_update + + +class FixedStepTrainHelper(_AdversarialTrainHelper): + """A train helper with fixed interval. + """ + def __init__(self, g_update_interval=-1, d_update_interval=-1): + super().__init__() + self.g_update_interval = g_update_interval + self.d_update_interval = d_update_interval + self.previous_step = None + + def update_status(self, loss=None, step=None): + self.previous_step = step + + def check_state(self): + if self.previous_step is None: + self.not_initialized() + + g_update = (self.previous_step + 1) % self.g_update_interval == 0 + d_update = (self.previous_step + 1) % self.d_update_interval == 0 + + return g_update, d_update + + +def build_adversarial_train_helper(cfg): + """Build corresponding train helper given the configuration. + + Args: + cfg: yacs node, global configuration. + + Returns: + helper instance. + """ + if cfg.loss.adversarial.loss_weight > 0.: + if cfg.loss.adversarial.adaptive_strategy: + helper = AdaptiveTrainHelper(cfg.loss.adversarial.d_balance) + elif cfg.loss.adversarial.g_update_interval > 1 or cfg.loss.adversarial.d_update_interval > 1: + if cfg.loss.adversarial.g_update_interval > 1 and cfg.loss.adversarial.d_update_interval > 1: + raise ValueError('Either g update interval or d update interval should be 1.') + helper = FixedStepTrainHelper(cfg.loss.adversarial.g_update_interval, + cfg.loss.adversarial.d_update_interval) + else: + # no helper + helper = ByPassTrainHelper(use_adv=True) + else: + # no helper + helper = ByPassTrainHelper(use_adv=False) + + return helper diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/initializer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/initializer.py new file mode 100644 index 0000000000000000000000000000000000000000..1fd24bc4825998a1df1f3283d012cd9417db2e13 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/initializer.py @@ -0,0 +1,106 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math + +import tensorflow as tf + + +def calculate_gain(nonlinearity, param=None): + """Calculate gain when initialization. + """ + if nonlinearity == 'sigmoid': + return 1 + elif nonlinearity == 'tanh': + return 5.0 / 3 + elif nonlinearity == 'relu': + return math.sqrt(2.0) + elif nonlinearity == 'elu': + return math.sqrt(1.55) + elif nonlinearity == 'leakyrelu': + if param is None: + negative_slope = 0.01 + elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): + # True/False are instances of int, hence check above + negative_slope = param + else: + raise ValueError("negative_slope {} not a valid number".format(param)) + return math.sqrt(2.0 / (1 + negative_slope ** 2)) + else: + raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) + + +def calculate_fan(kernel_size, in_channels, out_channels=None, mode='fan_in'): + """Calculate fan when initialization. + """ + if mode == 'fan_in': + fan = in_channels + elif mode == 'fan_out': + fan = out_channels + else: + raise KeyError + for k in kernel_size: + fan *= k + return fan + + +def get_initializer(init_cfg, in_channels, out_channels, kernel_size, dtype=tf.dtypes.float32): + """Get initializer given the input/output channels and kernel_size. + + Args: + init_cfg: dict, specifying the initialization type and mode. + in_channels: int, specifying the number of the input channels. + out_channels: int, specifying the number of the ouput channels. + kernel_size: list[int], containing the kernel size of each dimension. + dtype: enum, specifying the data type of the initializer. + + Returns: + initializer instance. + """ + type = init_cfg.pop('type') + + if type == 'kaiming_uniform': + a = init_cfg.pop('a', 0) + mode = init_cfg.pop('mode', 'fan_in') + nonlinearity = init_cfg.pop('nonlinearity', 'leakyrelu') + fan = calculate_fan(kernel_size, in_channels, out_channels, mode) + gain = calculate_gain(nonlinearity, a) + std = gain / math.sqrt(fan) + bound = math.sqrt(3.0) * std + initializer = tf.random_uniform_initializer(-bound, bound, dtype=dtype) + elif type == 'kaiming_normal': + a = init_cfg.pop('a', 0) + mode = init_cfg.pop('mode', 'fan_in') + nonlinearity = init_cfg.pop('nonlinearity', 'leakyrelu') + fan = calculate_fan(kernel_size, in_channels, out_channels, mode) + gain = calculate_gain(nonlinearity, a) + std = gain / math.sqrt(fan) + initializer = tf.random_normal_initializer(0.0, std, dtype=dtype) + elif type == 'xavier_uniform': + gain = init_cfg.pop('gain', 1.) + fan_in = calculate_fan(kernel_size, in_channels, out_channels, 'fan_in') + fan_out = calculate_fan(kernel_size, in_channels, out_channels, 'fan_out') + std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) + a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation + initializer = tf.random_uniform_initializer(-a, a, dtype=dtype) + elif type == 'xavier_normal': + gain = init_cfg.pop('gain', 1.) + fan_in = calculate_fan(kernel_size, in_channels, out_channels, 'fan_in') + fan_out = calculate_fan(kernel_size, in_channels, out_channels, 'fan_out') + std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) + initializer = tf.random_normal_initializer(0.0, std, dtype=dtype) + else: + raise NotImplementedError + + return initializer diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/loss_scaling.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/loss_scaling.py new file mode 100644 index 0000000000000000000000000000000000000000..1ae2fd5a1ef10314624867a63acfaaffc55a32a1 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/loss_scaling.py @@ -0,0 +1,50 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf + + + +def npu_loss_scale_optimizer(opt, loss_scale, is_distributed=False): + """A wrap function of loss scaling optimizer for NPU tensorflow. + + Args: + opt: optimizer instance. + loss_scale: str, specifying the strategy to apply loss scaling. + Possible choices could be `off`: do not use loss scaling. + `d`: dynamic loss scaling, and `f*`: fixed loss scaling, + where `*` can be converted to an integer that specifies the + scale factor, `2^(int(*))`. + is_distributed: boolean, whether in distributed training. + + Returns: + a wrapped optimizer with loss scaling. + """ + from npu_bridge.estimator.npu.npu_loss_scale_optimizer import NPULossScaleOptimizer + from npu_bridge.estimator.npu.npu_loss_scale_manager import FixedLossScaleManager + from npu_bridge.estimator.npu.npu_loss_scale_manager import ExponentialUpdateLossScaleManager + if loss_scale == 'off': + pass + else: + if loss_scale.startswith('d'): + loss_scale_manager = \ + ExponentialUpdateLossScaleManager(init_loss_scale=2 ** 32, incr_every_n_steps=1000, + decr_every_n_nan_or_inf=2, decr_ratio=0.5) + elif loss_scale.startswith('f'): + scale_factor = int(loss_scale[2:]) + loss_scale_manager = FixedLossScaleManager(loss_scale=2 ** scale_factor) + else: + raise ValueError + opt = NPULossScaleOptimizer(opt, loss_scale_manager, is_distributed=is_distributed) + + return opt diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/lr_schedule.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/lr_schedule.py new file mode 100644 index 0000000000000000000000000000000000000000..57960ee012b623bddf3abfc598d00bf2c5279789 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/lr_schedule.py @@ -0,0 +1,117 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import math + +import tensorflow as tf + + +class BaseSchedule(object): + """Base class of learning rate schedule. + + Args: + base_lr: float, base learning rate at the beginning. + recover_step: int, recover step to continue training. + """ + def __init__(self, base_lr, recover_step=0): + self.lr = tf.placeholder(tf.float32, shape=[], name='learning_rate') + self.cur_step = recover_step + self.base_lr = base_lr + self.cur_lr = base_lr + + def __call__(self): + self.cur_step += 1 + return self.cur_lr + + +class CosineSchedule(BaseSchedule): + """A cosine learning rate schedule. + + Args: + base_lr: float, base learning rate at the beginning. + total_steps: list[int], the phased steps where the learning will be adjusted. + min_lr: float, minimum learning rate. + recover_step: int, recover step to contine training. + """ + def __init__(self, base_lr, total_steps, min_lr, recover_step=0): + super().__init__(base_lr, recover_step) + self.total_steps = total_steps[0] + self.min_lr = min_lr + self.alpha = min_lr / base_lr + + def __call__(self): + cosine_decay = 0.5 * (1 + math.cos(math.pi * self.cur_step / self.total_steps)) + decayed = (1 - self.alpha) * cosine_decay + self.alpha + self.cur_lr = self.base_lr * decayed + return super(CosineSchedule, self).__call__() + + +class RestartCosineSchedule(BaseSchedule): + """A cosine restart learning rate schedule. + + Args: + base_lr: float, base learning rate at the beginning. + total_steps: list[int], the phased steps where the learning will be adjusted. + restart_weights: list[float], the phased weigths which the learning will be adjusted to. + min_lr: float, minimum learning rate. + recover_step: int, recover step to contine training. + """ + def __init__(self, base_lr, total_steps, restart_weights, min_lr, recover_step=0): + super(RestartCosineSchedule, self).__init__(base_lr, recover_step) + self.total_steps = total_steps + self.restart_weights = restart_weights + self.min_lr = min_lr + self.alpha = min_lr / base_lr + + def _match_stage(self): + cur_step = self.cur_step + for total_steps, restart_weight in zip(self.total_steps, self.restart_weights): + if cur_step < total_steps: + return cur_step, total_steps, self.base_lr * restart_weight + else: + cur_step -= total_steps + raise ValueError('Should have stopped') + + def __call__(self): + cur_step, total_steps, base_lr = self._match_stage() + cosine_decay = 0.5 * (1 + math.cos(math.pi * cur_step / total_steps)) + decayed = (1 - self.alpha) * cosine_decay + self.alpha + self.cur_lr = base_lr * decayed + return super(RestartCosineSchedule, self).__call__() + + +def build_schedule(lr_cfg, recover_step=0): + """Build learning rate schedule. + + Args: + lr_cfg: dict, specifying the learning rate schedule type and its configuration. + recover_step: int, recover step to contine training. + + Returns: + A learning rate schedule instance. + """ + lr_type = lr_cfg.type.lower() + base_lr = lr_cfg.base_lr + total_steps = lr_cfg.total_steps + + if lr_type == 'cosine': + min_lr = lr_cfg.min_lr + return CosineSchedule(base_lr, total_steps, min_lr, recover_step) + elif lr_type == 'cosinerestart': + min_lr = lr_cfg.min_lr + restart_weights = lr_cfg.restart_weights + return RestartCosineSchedule(base_lr, total_steps, restart_weights, min_lr, recover_step) + elif lr_type == 'step': + raise NotImplementedError + else: + raise KeyError('Unkown type {}'.format(lr_type)) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/npu_pkgs.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/npu_pkgs.py new file mode 100644 index 0000000000000000000000000000000000000000..b9f54ad3cfe03efc0fe2d9d38ebe997cde355866 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/npu_pkgs.py @@ -0,0 +1,19 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from npu_bridge.estimator import npu_ops +from npu_bridge.estimator.npu.npu_config import NPURunConfig +from npu_bridge.estimator.npu.npu_estimator import NPUEstimator +from npu_bridge.estimator.npu.npu_optimizer import NPUDistributedOptimizer +from npu_bridge.estimator.npu.npu_optimizer import allreduce +from npu_bridge.hccl import hccl_ops diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/optimizer.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/optimizer.py new file mode 100644 index 0000000000000000000000000000000000000000..584ec0c8f6098a1e666ca5a9e89401ee11938a6a --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/optimizer.py @@ -0,0 +1,76 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf + + +def build_optimizer(lr, opt_cfg, device, is_distributed, mix_precision, loss_scale): + """Build optimizer + + Args: + lr: learning rate schedule instance. + opt_cfg: dict, specifying the optimizer configuration. + device: str, specifying the device type. Possible choices in ('npu', 'cpu'). + is_distributed: boolean, whether in distributed learning. + mix_precision: boolean, whether to use mix precisioin. + loss_scale: str, specifying the strategy to apply loss scaling. + Possible choices could be `off`: do not use loss scaling. + `d`: dynamic loss scaling, and `f*`: fixed loss scaling, + where `*` can be converted to an integer that specifies the + scale factor, `2^(int(*))`. + + Returns: + An optimizer instance. + """ + opt_type = opt_cfg.type.lower() + + if opt_type == 'adam': + beta1 = opt_cfg.get('beta1', 0.9) + beta2 = opt_cfg.get('beta2', 0.999) + epsilon = opt_cfg.get('epsilon', 1e-08) + opt = tf.train.AdamOptimizer(lr, beta1=beta1, beta2=beta2, epsilon=epsilon) + elif opt_type == 'momentum': + momentum = opt_cfg.get('momentum', 0.9) + opt = tf.train.MomentumOptimizer(lr, momentum=momentum) + else: + raise KeyError('Unkown type {}'.format(opt_type)) + + if device == 'npu': + return npu_optimizer_wrapper(opt, mix_precision, loss_scale, is_distributed) + else: + return opt + + +def npu_optimizer_wrapper(opt, mix_precision, loss_scale, is_distributed=False): + """A wrapper function of optimizer on NPU. + + Args: + opt: optimizer instance. + is_distributed: boolean, whether in distributed learning. + mix_precision: boolean, whether to use mix precisioin. + loss_scale: str, specifying the strategy to apply loss scaling. + Possible choices could be `off`: do not use loss scaling. + `d`: dynamic loss scaling, and `f*`: fixed loss scaling, + where `*` can be converted to an integer that specifies the + scale factor, `2^(int(*))`. + + Returns: + An optimizer instance. + """ + from npu_bridge.estimator.npu.npu_optimizer import NPUDistributedOptimizer + from .loss_scaling import npu_loss_scale_optimizer + if is_distributed: + opt = NPUDistributedOptimizer(opt) + if mix_precision: + opt = npu_loss_scale_optimizer(opt, loss_scale, is_distributed) + return opt \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/saver.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/saver.py new file mode 100644 index 0000000000000000000000000000000000000000..f75eb0e18fe74a839c13361097ece36c0b4accd5 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/saver.py @@ -0,0 +1,137 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import re + +import tensorflow as tf +from tensorflow.python import pywrap_tensorflow + +from src.utils.logger import logger + + +def get_variables_in_checkpoint_file(file_name): + """Get all the variables given the checkpoint file + + Args: + file_name: str, ckpt file. + + Returns: + Dict of tensor name to tensor. + """ + try: + reader = pywrap_tensorflow.NewCheckpointReader(file_name) + var_to_shape_map = reader.get_variable_to_shape_map() + return var_to_shape_map + except Exception as e: # pylint: disable=broad-except + logger.error(str(e)) + if "corrupted compressed block contents" in str(e): + logger.error("It's likely that your checkpoint file has been compressed " + "with SNAPPY.") + + +def loading_variables(sess, variables, checkpoint, strict=False): + """Loading specific variables given session and checkpoint. + """ + if not strict: + var_dic = get_variables_in_checkpoint_file(checkpoint) + var_missing = [] + var_restore = [] + + for v in variables: + if v.name.split(':')[0] in var_dic: + var_restore.append(v) + logger.info('Match: {} {} {}/{}'.format( + v.name, + v.dtype, + v.shape, + var_dic[v.name.split(':')[0]])) + else: + logger.info('Miss: {} {}'.format(v.name, v.shape)) + var_missing.append(v.name) + assert len(variables) == len(var_restore) + len(var_missing) + + saver = tf.train.Saver(var_list=var_restore) + saver.restore(sess, checkpoint) + else: + saver = tf.train.Saver(var_list=variables) + saver.restore(sess, checkpoint) + logger.info("Loading checkpoints...{} Success".format(checkpoint)) + + # Get the step information in ckpt file, may be used for continual training. + recover_step = 0 + regex = re.compile('[A-Za-z.]*-([0-9]*).?[A-Za-z0-9]*$') + try: + b, = regex.search(checkpoint).groups() + if b is not None and b != '': + recover_step = int(b) + 1 + except: + pass + return recover_step + + +def restore(sess, var_list, directory, checkpoint, strict=False): + """Restore variables from ckpt. + """ + if os.path.exists(checkpoint + '.meta'): + logger.info(f'Found checkpoint {checkpoint}.') + ckpt_name = checkpoint + else: + logger.info(f'Cannot find checkpoint {checkpoint}. Searching in {directory} ...') + ckpt = tf.train.get_checkpoint_state(directory) + if ckpt and ckpt.model_checkpoint_path: + ckpt_name = os.path.basename(ckpt.model_checkpoint_path) + ckpt_name = os.path.join(directory, ckpt_name) + logger.info(f'Found checkpoint {ckpt_name}.') + else: + logger.error("Reading checkpoints... ERROR") + raise ValueError(f'Cannot find checkpoint in {directory}') + return loading_variables(sess, var_list, ckpt_name, strict=strict) + + +def strict_loading(sess, scope, directory, checkpoint): + """Strict loading **every single variable** in the scope. + """ + if scope == '': + logger.info(f"Reading checkpoints (no given scope) ...") + variables = tf.get_collection(tf.GraphKeys.VARIABLES) + else: + logger.info(f"Reading checkpoints for scope '{scope}' ...") + variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope) + return restore(sess, variables, directory, checkpoint, strict=True) + + +def loose_loading(sess, scope, directory, checkpoint): + """Loading variables in the scope, but allow missing keys or variables. + """ + if scope == '': + logger.info(f"Reading checkpoints (no given scope) ...") + variables = tf.get_collection(tf.GraphKeys.VARIABLES) + else: + logger.info(f"Reading checkpoints for scope '{scope}' ...") + variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope=scope) + var_dic = get_variables_in_checkpoint_file(checkpoint) + var_missing = [] + var_restore = [] + + for v in variables: + loading_cond = v.name.split(':')[0] in var_dic and (scope in v.name.split(':')[0]) + if loading_cond: + var_restore.append(v) + logger.info('Match: {} {} {}/{}'.format(v.name, v.dtype, v.shape, var_dic[v.name.split(':')[0]])) + else: + logger.info('Miss: {} {}'.format(v.name, v.shape)) + var_missing.append(v.name) + assert len(variables) == len(var_restore) + len(var_missing) + return restore(sess, var_restore, directory, checkpoint, strict=True) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/sess_config.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/sess_config.py new file mode 100644 index 0000000000000000000000000000000000000000..7eeb1da8f6a0783303317374ecbb9a8c98b2659c --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/sess_config.py @@ -0,0 +1,87 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os + +import tensorflow as tf + + +def _npu_config(mix_precision, is_distributed): + """Prepare NPU tf.Session config + + Args: + mix_precision: boolean, whether to use mix precision. + is_distributed: boolean, whether in distributed scenario. + + Returns: + A tf.ConfigProto instance. + """ + config = tf.ConfigProto() + custom_op = config.graph_options.rewrite_options.custom_optimizers.add() + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["enable_data_pre_proc"].b = False + custom_op.parameter_map["mix_compile_mode"].b = False + custom_op.parameter_map["use_off_line"].b = True + custom_op.parameter_map["graph_memory_max_size"].s = \ + tf.compat.as_bytes(str(28*1024 * 1024 * 1024)) + custom_op.parameter_map["variable_memory_max_size"].s = \ + tf.compat.as_bytes(str(3*1024 * 1024 * 1024)) + + if mix_precision: + custom_op.parameter_map["precision_mode"].s = \ + tf.compat.as_bytes("allow_mix_precision") + if is_distributed: + config.graph_options.rewrite_options.optimizers.extend( + ["pruning", + "function", + "constfold", + "shape", + "arithmetic", + "loop", + "dependency", + "layout", + "memory", + "GradFusionOptimizer"]) + + from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig + config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + return config + + +def _cpu_config(): + """Prepare CPU tf.Session config + + Returns: + A tf.ConfigProto instance. + """ + return tf.ConfigProto() + + +def get_sess_config(device='npu', xla=False, mix_precision=True, is_distributed=False): + """Build session config. + + Args: + device: str, what type of hardware to use. + xla: boolean, whether to use xla. + mix_precision: boolean, whether to use mix precision. + is_distributed: boolean, whether in distributed scenario. + + Returns: + A tf.ConfigProto instance. + """ + if device == 'npu': + return _npu_config(mix_precision, is_distributed) + elif device == 'cpu': + return _cpu_config() + else: + raise KeyError('Unsupported device: {}'.format(device)) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/solver.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/solver.py new file mode 100644 index 0000000000000000000000000000000000000000..1ea18c091c6514424522dffdf52b8b61eb5ca9a7 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/runner/solver.py @@ -0,0 +1,86 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# Copyright (c) 2022 Huawei Technologies Co., Ltd +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from .lr_schedule import build_schedule +from .optimizer import build_optimizer + + +class Solver(object): + """Solver class including optimizer and learning-rate schedule. + + Args: + lr_cfg: yacs node, learning-rate schedule. + opt_cfg: yacs node, optimizer config. + device: str, valid options: ['npu', 'cpu'] + is_distributed: boolean, whether used in distributed training. + mix_precision: boolean, whether used mix precision during training. + loss_scale: boolean, whether use loss scaling to compensate the + precision loss during dtype conversion. + """ + def __init__(self, lr_cfg, opt_cfg, device, is_distributed, mix_precision, + loss_scale): + self.lr_schedule = build_schedule(lr_cfg) + self.opt = build_optimizer(self.lr_schedule.lr, opt_cfg, + device, + is_distributed, + mix_precision, + loss_scale) + self.total_step = sum(lr_cfg.total_steps) + + def update_lr(self): + """Update learning rate based on schedule and step. + """ + return self.lr_schedule() + + @property + def lr(self): + """Returns learning rate placeholder. + """ + return self.lr_schedule.lr + + @property + def cur_lr(self): + """Returns current learning rate. + """ + return self.lr_schedule.cur_lr + + +def build_solver(lr_cfg, optimizer_cfg, mix_precision, loss_scale, device, + is_distributed): + """Build solver for training. + + Args: + lr_cfg: yacs node, learning-rate schedule. + optimizer_cfg: yacs node, optimizer config. + device: str, valid options: ['npu', 'cpu'] + is_distributed: boolean, whether used in distributed training. + mix_precision: boolean, whether used mix precision during training. + loss_scale: boolean, whether use loss scaling to compensate the + precision loss during dtype conversion. + + Return: + A solver instance. + """ + assert device in ['npu', 'cpu'] + + return Solver(lr_cfg, + optimizer_cfg, + device, + is_distributed, + mix_precision, + loss_scale) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1b6d1d7edd8e369641588e8a7721b78f402a0b63 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/__init__.py @@ -0,0 +1,14 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from src.utils.constant import * \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/adapter.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/adapter.py new file mode 100644 index 0000000000000000000000000000000000000000..22f24d40471465ef1378cbf8a3c037e43cbe35fa --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/adapter.py @@ -0,0 +1,393 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from itertools import product + +import numpy as np + +from .exceptions import * +from .logger import logger + + +def factor_ceiling(x, factor): + """Get the ceiling that is divisible by the factor. + """ + remain = x % factor + pad = 0 + if remain: + pad = factor - remain + x = x + pad + return x, pad + + +class NetworkIOAdapter: + """A network io adapter to process the input images when inference. + + Because of the memory limitation, we may not be able to process the whole + frame into a model in a single session.run. In this scenario, we use a + dispatch-process-stitching strategy to process the input frames. The + NetworkIOAdapter class is used to automatically make patches from the source + input frames, and stitching them together to get the whole result, during + which each patches can be overlapped. + + There are two basic modes in this adapter when using ckpt to inference: + 1. Inferece as a whole, where the model is able to process the whole image. + In this scenario, the only thing the adapter will do is to pad the input + frames to satisfy the network smallest feature map. If the smallest + feature map of the model is 1/N proportion to the original input, then + the size of the input frames should be divisible by N. Therefore, if + we find the original frame size does not satisfy this condition, the + adpater will pad the frames. After inference, the result will be trimmed + to the expected size. + + Example: + >>> adapter = NetworkIOAdapter(cfg) + >>> input_frames = get_data() # [N, T, H, W, C] + >>> adapter.register_raw_size(input_frames.shape[2:4]) + >>> print(adapter.patch_mode) + False + >>> padded_input = adapter.adapt_input(input_frames) + >>> result = sess.run(output_tensor, feed_dict={input_node: padded_input}) + >>> final_result = adapter.reverse_adapt(result) + + 2. Inference using patches. In this mode, we have to inference the original + input frames using split-and-conquer and then stitch them to the expected + result. The patch size can be configured by the cfg.data.inference.best_patch_size + for the efficient inference. We first pad the input frames to the factor + ceiling of the best_patch_size, thus the padded original image can be split + into several pieces. Then each patch is additionally padded with the + overlap size to avoid the discontinuity between two patch results. The + pad size of each patch should cover the size of the receptive field of the + network. The session will inference each padded patch, followed by stitching + method to aggregate the patch results to a complete one. The padded size + of the patch will be first trimmed off, and the patches will be concatenated + together. Finally, the corrsponding padded size of the whole image will be + trimmed to get the final result. + + Example: + >>> adapter = NetworkIOAdapter(cfg) + >>> input_frames = get_data() # [N, T, H, W, C] + >>> adapter.register_raw_size(input_frames.shape[2:4]) + >>> print(adapter.patch_mode) + True + >>> patches = adapter.extract_image_patches(input_frames) + >>> num_patches = len(patches) + >>> patch_per_step = cfg.data.inference.batch_size + >>> result_patches = [] + >>> for i in range(num_patches//patch_per_step): + ... _patch = sess.run(output_tensor, feed_dict={input_node: patches[i:i+patch_per_step]}) + ... result_patches.extend(_patch) + >>> final_result = adapter.stitching_patches_to_image(result_patches) + + **A special scenario is to infer with pb file**, where the graph is already + freezed. In this scenario, the input size is also fixed, and we use the + adapter to automatically determine how to inference. **One must aware that + the actual size of the input patch is**: + cfg.data.inference.input_size + cfg.data.inference.patch_pad_size * 2 + Therefore, one must ensure that the value above can be divisble by the network + feature map scale factor. + + Args: + cfg: yacs node, global configuration. + """ + def __init__(self, cfg): + self.cfg = cfg + + # network input settings + self.limited_in_size = cfg.data.inference.max_input_size + self.best_in_size = cfg.data.inference.best_patch_size + self.scale = cfg.model.scale + self.factor_for_adapt_input = cfg.model.factor_for_adapt_input + self.auto_mode = cfg.data.inference.auto_adapt_input + + if self.auto_mode and not self.limited_in_size: + raise ValueError('Max input size is required when in auto mode.') + if self.auto_mode == True: + self.mode = 'auto' + else: + self.mode = None + + if not self.best_in_size: + self.best_in_size = self.limited_in_size + + self.num_output_frames = cfg.model.num_net_output_frames + + # patch evaluation settings + self.eval_in_patch = cfg.data.inference.eval_using_patch + self.eval_pad_size = cfg.data.inference.patch_pad_size + # size of the input image, before adapted + self.eval_raw_size = [100000, 100000] + # size of the input patch when in patch mode, or the image size when in + # whole mode, before adapted + self.eval_in_size = cfg.data.inference.input_size + + self.fixed_in_size_flag = False + + # saved data for output, w.r.t. eval in patches strategy + self._network_direct_outsize = [] + self._stitching_mode_padsize = [] + self._patch_batch_pad = 0 + self._vtip_stitching_method = False + self._num_split = (0, 0) + + # saved data for reverse adapt, w.r.t. network input constrains + self._input_adapt_padsize = [0, 0] + + @property + def input_size(self): + # In patch mode, it should be padded size + if self.eval_in_patch: + pads_h, pads_w = self.eval_pad_size[0]*2, self.eval_pad_size[1]*2 + else: + # to keep inline with the original code, we should set + # eval_in_patch = eval_raw_size = raw image size + # when inference the whole image + pads_h, pads_w = self._input_adapt_padsize + + h = self.eval_in_size[0] + pads_h + w = self.eval_in_size[1] + pads_w + + return (h, w) + + @property + def patch_mode(self): + return self.eval_in_patch + + def adapt_input(self, lr): + #Used in whole image mode. + pads_h, pads_w = self._input_adapt_padsize + + if len(lr.shape) == 4: + pads = [[0, 0], + [pads_h//2, pads_h-pads_h//2], + [pads_w//2, pads_w-pads_w//2], + [0,0]] + else: + pads = [[0, 0], + [0, 0], + [pads_h//2, pads_h-pads_h//2], + [pads_w//2, pads_w-pads_w//2], + [0,0]] + + lr_pads = np.pad(lr, pads, mode='symmetric') + return lr_pads + + def reverse_adapt(self, data): + # Used in whole image mode + pads_h, pads_w = self._input_adapt_padsize + if data.ndim == 3: + h, w, c = data.shape + pads_t, pads_b = pads_h//2, pads_h-pads_h//2 + pads_l, pads_r = pads_w//2, pads_w-pads_w//2 + return data[pads_t*self.scale:h-pads_b*self.scale, + pads_l*self.scale:w-pads_r*self.scale] + elif data.ndim == 4: + _, h, w, c = data.shape + pads_t, pads_b = pads_h//2, pads_h-pads_h//2 + pads_l, pads_r = pads_w//2, pads_w-pads_w//2 + return data[:, + pads_t*self.scale:h-pads_b*self.scale, + pads_l*self.scale:w-pads_r*self.scale] + else: + raise ArrayDimensionError(f'Expect input data to have 3 or 4 ' + f'dimensions, but got {data.ndim}.') + + def fix_eval_in_size(self): + # Used for inference with PB file and the input size is fixed. + fixed_input_size = [self.best_in_size[0] + self.eval_pad_size[0] * 2, + self.best_in_size[1] + self.eval_pad_size[1] * 2] + pad_h, pad_w = self.cal_adapted_size(fixed_input_size) + assert pad_h == 0 and pad_w == 0, \ + f"Expect to have an input size that is divisible " \ + f"by {self.factor_for_adapt_input} when using a fixed input size, " \ + f"but got {fixed_input_size}. Must ensure that " \ + f"`model.best_in_size + data.eval_padsize*2` divisible by the factor." + self.eval_in_size = self.best_in_size + self.limited_in_size = fixed_input_size # Real input size + self.fixed_in_size_flag = True + + def register_raw_size(self, raw_size): + # Override the configured raw_size + self.eval_raw_size = raw_size + + logger.info(f'Automatically determine inference mode (whether patch or not).') + if self.mode == 'auto': + self.eval_in_size = raw_size + logger.info(f'auto inference mode.') + # In auto mode, the adapter will automatically define the input size + h, w = raw_size + limited_h, limited_w = self.limited_in_size + + if self.fixed_in_size_flag: + # Remember that in this case: + # self.limited_in_size = self.best_in_size + self.eval_padsize * 2 + # **We have also make sure that self.limited_in_size is divisible + # by the factor**. See self.fix_eval_in_size() + # Shall use a different logic to determine whether to eval in + # patch or not. + if h <= limited_h and w <= limited_w: + # If the raw input size equals to the fixed size + # (self.limited_in_size), eval in whole. + # self.limited_in_size = self.best_in_size + self.eval_padsize * 2 + # automatically ensures that self._input_adapt_padsize will be zero. + self.eval_in_patch = False + else: + # Else, use a patch mode no matter if the raw size is larger + # or smaller. To use the self.input_size interface consistent, + # set self.eval_in_size to best_in_size hence ensuring: + # self.limited_in_size = self.best_in_size + self.eval_padsize * 2 + # = self.eval_in_size + self.eval_padsize * 2 + self.eval_in_patch = True + self.eval_in_size = self.best_in_size + else: + if h * w > limited_w * limited_h: + self.eval_in_patch = True + self.eval_in_size = ( + factor_ceiling(min(h, self.best_in_size[0]), self.factor_for_adapt_input)[0], + factor_ceiling(min(w, self.best_in_size[1]), self.factor_for_adapt_input)[0], + ) + else: + self.eval_in_patch = False + + if self.eval_in_patch: + # Follow the config or the automatic setting + pass + else: + # Adapt the image input to fit the network requirements + if self.fixed_in_size_flag: + self._input_adapt_padsize = ( + (self.limited_in_size[0] - raw_size[0]), + (self.limited_in_size[1] - raw_size[1]), + ) + else: + # For whole image inference + self._input_adapt_padsize = self.cal_adapted_size(raw_size) + + if self._input_adapt_padsize[0]: + logger.info(f'Input height {raw_size[0]} is not a divisible by {self.factor_for_adapt_input}' + f', will be padded to {raw_size[0]+self._input_adapt_padsize[0]}') + + if self._input_adapt_padsize[1]: + logger.info(f'Input width {raw_size[1]} is not a divisible by {self.factor_for_adapt_input}' + f', will be padded to {raw_size[1]+self._input_adapt_padsize[1]}') + + logger.info(f'Inference adapter: ') + logger.info(f'\t Use patch: {f"{self.eval_in_patch}":>5}') + logger.info(f'\t Image Raw size: {self.eval_raw_size}') + logger.info(f'\tOriginal patch size: {self.eval_in_size}') + logger.info(f'\t Adapted input size: {self.input_size}') + + def cal_adapted_size(self, raw_size): + h, w = raw_size + # In case the input is not divisible by the factor + _, pad_h = factor_ceiling(h, self.factor_for_adapt_input) + _, pad_w = factor_ceiling(w, self.factor_for_adapt_input) + + return pad_h, pad_w + + def extract_image_patches(self, data, num_patches_per_step=1): + # This function is used in patch mode + return self._extract_image_patches_canonical(data, num_patches_per_step) + + def stitching_patches_to_image(self, data): + # This function is used in patch mode + return self._merge_patches_to_images_canonical(data) + + def _extract_image_patches_canonical(self, data, num_patches_per_step=1): + if data.ndim != 4: + raise ArrayDimensionError(f'Expect input data to have 4 dimensions, but got {data.ndim}.') + + _, h, w, _ = data.shape + ph, pw = self.eval_in_size + # image padding size + image_pad_right = int(float(w)/pw + 1) * pw - w + image_pad_bottom = int(float(h)/ph + 1) * ph - h + image_pad_right = 0 if image_pad_right == pw else image_pad_right + image_pad_bottom = 0 if image_pad_bottom == ph else image_pad_bottom + # patch padding size + patch_pad_top = patch_pad_bottom = self.eval_pad_size[0] + patch_pad_left = patch_pad_right = self.eval_pad_size[1] + + # pad image + pad_t = patch_pad_top + pad_b = patch_pad_bottom + image_pad_bottom + pad_l = patch_pad_left + pad_r = patch_pad_right + image_pad_right + img_paded = np.pad(data, ((0, 0), + (pad_t, pad_b), + (pad_l, pad_r), + (0, 0)), mode='symmetric') + + new_h, new_w = img_paded.shape[1:3] + self._network_direct_outsize = (self.num_output_frames, new_h*self.scale, new_w*self.scale, 3) + + # number of patches + num_split_y = (h + image_pad_bottom) // ph + num_split_x = (w + image_pad_right) // pw + self._num_split = (num_split_y, num_split_x) + + img_patches = [] + for split_j, split_i in product(range(num_split_y), range(num_split_x)): + # extract patches with extra pad size + patch_start_y = split_j * ph + patch_end_y = patch_start_y + ph + patch_pad_top + patch_pad_bottom + patch_start_x = split_i * pw + patch_end_x = patch_start_x + pw + patch_pad_left + patch_pad_right + img_patches.append(img_paded[:, patch_start_y:patch_end_y, patch_start_x:patch_end_x, :]) + + img_patches = np.array(img_patches) + num_patches = img_patches.shape[0] + batch_pad = (num_patches // num_patches_per_step + 1) * num_patches_per_step - num_patches + batch_pad = 0 if batch_pad == num_patches_per_step else batch_pad + self._patch_batch_pad = batch_pad + + # Concatenate all the patches in order. + if batch_pad > 0: + img_patches_padded = np.concatenate([ + img_patches, + np.zeros([batch_pad, *img_patches.shape[1:]], dtype=np.float32), + ], axis=0) + else: + img_patches_padded = img_patches + return img_patches_padded + + def _merge_patches_to_images_canonical(self, data): + # This is the reverse processing of the dispatching. + ph, pw = self.eval_in_size + num_split_y, num_split_x = self._num_split + sr_all = np.zeros(self._network_direct_outsize, dtype=np.float32) # [num_output_frames, h, w, c] + + h, w = self.eval_raw_size + patch_pad_top, patch_pad_left = self.eval_pad_size + patch_sr = np.array(data) # should be [num_patches, num_output_frames, h, w, c] + if patch_sr.ndim == 4 and self.num_output_frames == 1 and patch_sr.shape[1] != 1: + patch_sr = np.expand_dims(patch_sr, axis=1) + + patch_s_y = patch_pad_top * self.scale + patch_e_y = (patch_pad_top + ph) * self.scale + patch_s_x = patch_pad_left * self.scale + patch_e_x = (patch_pad_left + pw) * self.scale + patch_id = 0 + for split_j, split_i in product(range(num_split_y), range(num_split_x)): + im_s_y = split_j * ph * self.scale + im_e_y = im_s_y + ph * self.scale + im_s_x = split_i * pw * self.scale + im_e_x = im_s_x + pw * self.scale + sr_all[:, im_s_y:im_e_y, im_s_x:im_e_x] = patch_sr[patch_id, :, patch_s_y:patch_e_y, patch_s_x:patch_e_x] + patch_id += 1 + + # Trim the output to expected size. + sr_all = sr_all[:, :h*self.scale, :w*self.scale] + return sr_all.squeeze() diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/constant.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/constant.py new file mode 100644 index 0000000000000000000000000000000000000000..9156812f7c59e08658a735e6161eaaf8dc8ce34e --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/constant.py @@ -0,0 +1,47 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from enum import Enum + +VALID_COLORSPACE = {'rgb', 'bgr', 'lab', 'yuv', 'ycrcb', 'gray3d', 'gray', 'yuv', 'y'} +VALID_MODE = {'train', 'eval', 'inference', 'freeze'} +VALID_PARADIGM = {'dni'} +VALID_DEBUG_MODE = {'zeroin', 'intermediate'} +VALID_TASK = {'vsr', 'denoise', 'face', 'hdr', 'vfi'} + +# HDR +HDR_CODEC_PIX_FMT = 'gbrpf32le' +HDR_FILE_SUPPORTED_EXT = 'exr' + +SDR_CODEC_PIX_FMT = 'bgr24' +SDR_FILE_SUPPORTED_EXT = 'png' + +RESOURCE_FILE = r'src/resource.json' + +FILE_EXT_TO_PIX_FMT = { + HDR_FILE_SUPPORTED_EXT: HDR_CODEC_PIX_FMT, + SDR_FILE_SUPPORTED_EXT: SDR_CODEC_PIX_FMT, +} +VALID_FILE_EXT = FILE_EXT_TO_PIX_FMT.keys() + + +# io backend +class IO_BACKEND: + DISK = 'disk' + FFMPEG = 'ffmpeg' + + @classmethod + def CHECK_VALID(cls, io_backend): + assert io_backend in {cls.DISK, cls.FFMPEG}, \ + f'Invalid io backend {io_backend}' diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/defaults.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/defaults.py new file mode 100644 index 0000000000000000000000000000000000000000..30d51d8892845ca19a4aa9719c43e40820341423 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/defaults.py @@ -0,0 +1,269 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from yacs.config import CfgNode as CN + + +cfg = CN(new_allowed=True) + +cfg.mode = 'train' +cfg.task = 'vsr' # 'denoise', 'vsr' + +# ---------------------------------------------------------------------------- # +# Model (common) +# ---------------------------------------------------------------------------- # +cfg.model = CN(new_allowed=True) +cfg.model.name = 'EDVR' # Key for model +cfg.model.scope = 'G' # Scope key for parameters + +# for vfi +cfg.model.frame_rate = 2 + +# for vsr +cfg.model.scale = 4 + +# The input size as well as the placeholder will be adapted automatically. +# See base_model.py `_cal_input_size` function, and inferencer.py `adapt_input` function. +# The output will be reversed-adapted by the inferencer. +cfg.model.factor_for_adapt_input = 4 + +# The following num of frames are standalone defined to generalize to model configuration, +# e.g., extend to temporal, or extend to cascading of models: +# num_net_input_frames: the num frames of input LQ when model inference +# num_net_output_frames: the num frames of output SR when model inference +# num_data_lq_frames: the num frames of input LQ when dataloader in training +# num_data_gt_frames: the num frames of target GT when dataloader in training for supervision +cfg.model.num_net_input_frames = 5 +cfg.model.num_net_output_frames = 1 + +# Options for the input dimension +# 4: 4D tensor, with shape [b*frames, h, w, c], used when model frozen +# 5: 5D tensor, with shape [b, frames, h, w, c] +cfg.model.input_format_dimension = 5 +cfg.model.convert_output_to_uint8 = False + +# ---------------------------------------------------------------------------- # +# Loss (common) +# ---------------------------------------------------------------------------- # +cfg.loss = CN(new_allowed=True) +cfg.loss.content = CN(new_allowed=True) +cfg.loss.content.loss_type = 'L1Loss' +cfg.loss.content.loss_reduction = 'mean' +cfg.loss.content.loss_margin = 1e-6 + +# Loss (edge) +cfg.loss.edge = CN(new_allowed=True) +cfg.loss.edge.loss_weight = 0. +cfg.loss.edge.method = 'sobel' # ['sobel', 'laplacian'] + +# Loss (perceptual) +# perceptual module +cfg.loss.perceptual = CN(new_allowed=True) +cfg.loss.perceptual.loss_weight = 0. +cfg.loss.perceptual.module = 'vgg_19' +cfg.loss.perceptual.layers = ['vgg_19/conv2/conv2_2', + 'vgg_19/conv3/conv3_4', + 'vgg_19/conv4/conv4_4', + 'vgg_19/conv5/conv5_4'] +cfg.loss.perceptual.layers_weights = [1.0, 1.0, 1.0, 1.0] +# full ckpt file should be '${ckpt_dir}/${module}.ckpt' +cfg.loss.perceptual.ckpt_dir = './pretrained_modules' + +# Loss (adv) +cfg.loss.adversarial = CN(new_allowed=True) +cfg.loss.adversarial.loss_weight = 0. +cfg.loss.adversarial.adaptive_strategy = False +cfg.loss.adversarial.d_balance = 0.4 +cfg.loss.adversarial.gan_type = 'VanillaGAN' +cfg.loss.adversarial.grad_penalty_weight = 0.1 +cfg.loss.adversarial.g_update_interval = 1 +cfg.loss.adversarial.d_update_interval = 1 +cfg.loss.adversarial.loss_type = 'VanillaAdvLoss' +cfg.loss.adversarial.loss_reduction = 'mean' +cfg.loss.adversarial.norm_type = 'in' +cfg.loss.adversarial.mid_channels = 64 +cfg.loss.adversarial.parameter_clip = False +cfg.loss.adversarial.parameter_clip_range = [-0.01, 0.01] + +# ---------------------------------------------------------------------------- # +# Data (common) +# ---------------------------------------------------------------------------- # +cfg.data = CN(new_allowed=True) +# For mixture datasets, each should be separated with ':' +cfg.data.data_dir = 'data/reds' + +cfg.data.num_data_lq_frames = 5 +cfg.data.num_data_gt_frames = 1 +# File extension. For HDR, it should be 'exr'. For others, it would be 'png' +# Note: it's only used in inference dataset for now. +cfg.data.extension = 'png' +# ['bgr', 'rgb', 'lab'], default to `rgb` +cfg.data.color_space = 'rgb' +cfg.data.normalized = True + +# training +cfg.data.train = CN(new_allowed=True) +cfg.data.train.degradation = CN(new_allowed=True) +cfg.data.train.degradation.online = False +cfg.data.train.degradation.options = \ +""" +GaussianNoise: + input_dim: 4 + noise_level: 20 +IsotropicGaussianBlur2D: + input_dim: 4 + kernel_size: 15 + sigma: 10 +BicubicDownsampling: + input_dim: 4 + scale: 4 +batch_apply: False +""" +cfg.data.train.gt_enhancement = False +cfg.data.train.set_file = 'train.json' +cfg.data.train.batch_size = 4 +cfg.data.train.input_size = [64, 64] + +cfg.data.train.augmentation = CN(new_allowed=True) +cfg.data.train.augmentation.apply = True +cfg.data.train.augmentation.interval_list = [1, 2] +# Augmentation options, should be a doc-string (yml formatted), +# for example, the following. Note that in 'RandomCrop', the +# 'crop_size' and 'scale' will be further provided by the +# _TrainDataset class based on other configurations. Therefore, +# there is no need for users to explicitly provide these two +# parameters. The reason of such design is to avoid duplicate +# configure of the two parameters. +cfg.data.train.augmentation.options = \ +""" +RandomCrop: + input_dim: 4 +RandomTemporalReverse: + input_dim: 4 +RandomFlipLeftRight: + input_dim: 4 +RandomFlipUpDown: + input_dim: 4 +shuffle_transformers_order: False +""" + +# inference +cfg.data.inference = CN() +cfg.data.inference.auto_adapt_input = True +cfg.data.inference.batch_size = 1 +cfg.data.inference.input_size = [180, 320] +cfg.data.inference.eval_using_patch = False +cfg.data.inference.patch_pad_size = [32, 32] + +# Specify the max size of the input supported by the network. +# When releasing, the program will adaptively use different strategies on whether do +# inference with the whole image input or stitching. +cfg.data.inference.max_input_size = [540, 960] +cfg.data.inference.best_patch_size = [540, 640] + +# A subset of the given dataset for inference, (min_index, max_index). +# One should set the index **in** the file name, instead of the actual index of the +# file order. For example, the files are: +# - samples +# |- 0001.png (file list index 0) +# |- 0002.png (file list index 1) +# |- 0003.png (file list index 2) +# |- 0004.png (file list index 3) +# `- 0005.png (file list index 4) +# and the frames 0002.png - 0004.png are about to be inferred. Then the value of +# the following key should be [2, 4] (indices **in** the file name), rather than +# [1, 3] (indices of the file list). +cfg.data.inference.subset_range = [] +cfg.data.inference.subset_list = [] + +# ---------------------------------------------------------------------------- # +# Training (common) +# ---------------------------------------------------------------------------- # +cfg.train = CN(new_allowed=True) +cfg.train.training_scope = '' +cfg.train.pretrained_scope_list = [] +cfg.train.pretrained_scope_ckpt = [] + +cfg.train.optimizer = CN(new_allowed=True) +cfg.train.optimizer.type = 'Adam' + +# TODO: add options for optimizer +cfg.train.generator = CN(new_allowed=True) +cfg.train.generator.lr_schedule = CN(new_allowed=True) +cfg.train.generator.lr_schedule.type = 'CosineRestart' +cfg.train.generator.lr_schedule.base_lr = 4e-4 +cfg.train.generator.lr_schedule.total_steps = [10000] +cfg.train.generator.lr_schedule.restart_weights = [1, 0.5, 0.5, 0.5] +cfg.train.generator.lr_schedule.min_lr = 1e-7 + +# Discriminator lr schedule +cfg.train.discriminator = CN(new_allowed=True) +cfg.train.discriminator.lr_schedule = CN(new_allowed=True) +cfg.train.discriminator.lr_schedule.type = 'CosineRestart' +cfg.train.discriminator.lr_schedule.base_lr = 4e-4 +cfg.train.discriminator.lr_schedule.total_steps = [150000, 150000, 150000, 150000] +cfg.train.discriminator.lr_schedule.restart_weights = [1, 0.5, 0.5, 0.5] +cfg.train.discriminator.lr_schedule.min_lr = 1e-7 + +cfg.train.checkpoint_interval = 5000 +cfg.train.print_interval = 20 +cfg.train.loss_scale = 'off' + +cfg.train.use_tensorboard = False +cfg.train.dump_intermediate = False +cfg.train.dump_intermediate_interval = 2000 +cfg.train.continue_training = False + +cfg.train.output_dir = 'outputs/edvr' + +# ---------------------------------------------------------------------------- # +# Session +# ---------------------------------------------------------------------------- # +cfg.session = CN() +cfg.session.mix_precision = False +cfg.session.xla = False + +# ---------------------------------------------------------------------------- # +# Env +# ---------------------------------------------------------------------------- # +cfg.env = CN(new_allowed=True) +cfg.env.device = 'npu' +cfg.env.device_ids = [0] +cfg.env.rank_size = 1 +cfg.env.root_rank = 0 + +# ---------------------------------------------------------------------------- # +# Misc +# ---------------------------------------------------------------------------- # +cfg.debug_mode = False +cfg.log_file = '' +cfg.checkpoint = '' + +# ---------------------------------------------------------------------------- # +# Inference +# ---------------------------------------------------------------------------- # +cfg.inference = CN(new_allowed=True) +cfg.inference.write_out = True +cfg.inference.io_backend = 'disk' + +# disk scenario +cfg.inference.result_dir = '' +cfg.inference.writer_num_threads = 8 +cfg.inference.writer_queue_size = 64 # used in both disk and ffmpeg scenario + +# ffmpeg stream scenario +cfg.inference.ffmpeg = CN(new_allowed=True) +cfg.inference.ffmpeg.video_filename = 'test' +cfg.inference.ffmpeg.fps = 25. +cfg.inference.ffmpeg.codec_file = './config/codecs/default_x264.json' diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..493b218edcdb3f046f2416ffbee16b6694939ade --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .noise import * +from .scaling import * +from .blur import * + +from src.utils.klass import get_subclass_given_name + + +class Degradation(object): + """Composes several degradations together. + + Args: + transforms: list[Transform], list of joint transforms to compose. + """ + def __init__(self, degradations=None): + self.degradations = degradations + + @classmethod + def from_cfgs(cls, options, **kwargs): + """Construct augmentation pipeline from cfg dict. + + Args: + options: dict, pairs of {Transform_class_type: kwargs}. + kwargs: dict, additional kwargs. + + Returns: + A composed transform instance. + """ + + t = [] + for k, v in options.items(): + if k == 'RandomCrop': + # crop_size and scales are required terms + v['crop_size'] = kwargs['crop_size'] + v['scales'] = kwargs['scales'] + elif k == 'Scaling': + v['scales'] = kwargs['scales'] + _filter = get_subclass_given_name(Base, k) + t.append(_filter(**v)) + return cls(t) + + def __call__(self, *img): + for t in self.transforms: + img = t(*img) + return img + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += ' {0}'.format(t) + format_string += '\n)' + return format_string diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/base.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/base.py new file mode 100644 index 0000000000000000000000000000000000000000..c0886c68c2b5858c7355e0d8bb75b474678d9f10 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/base.py @@ -0,0 +1,45 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +import random +import time + + +class Base: + """Base class for degradation. + """ + def set_numpy_random_seed(self): + # Numpy random states are the same across all the mutli-processing. + # In order to maintain the randomness, use the system timestamp to + # manually set numpy seed every time this function is called. + np.random.seed(int(time.time() + random.random() * 1000000)) + + def check_input(self, x): + return isinstance(x, np.ndarray) and x.ndim == 3 + + def __call__(self, im): + self.set_numpy_random_seed() + if self.check_input(im): + return self.apply(im) + else: + raise ValueError(f'Expect input image to be 3D-array (HWC), but got {im.ndim}D-array.') + + def apply(self, im): + raise NotImplementedError + + def __repr__(self): + return f'{self.__class__.__name__}@{id(self)}' + + def __str__(self): + return self.__repr__() \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/blur.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/blur.py new file mode 100644 index 0000000000000000000000000000000000000000..b2328b29e3a82374b30640310e64c3c2f162dddf --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/blur.py @@ -0,0 +1,163 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import numpy as np +import cv2 +import time +import random +from scipy import special + +from src.utils.degradation.base import Base + + +class BlurKernel2D(Base): + """A common base class for blurness. + """ + def check_kernel(self): + if self.ksize[0] % 2 == 0 or self.ksize[1] % 2 == 0: + raise ValueError(f'Expect kernel size to be odd (1, 3, 5, etc.), but got {self.ksize}') + + +class AvgBlur2D(BlurKernel2D): + """A 2D average blur operator. + + Args: + k_size: int, blur kernel size, expected to be odd. + """ + def __init__(self, k_size): + assert k_size % 2 == 1 + k_size = (k_size, k_size) + self.k_size = k_size + + def apply(self, im): + return cv2.blur(im, self.k_size, borderType=cv2.BORDER_REFLECT_101) + + +class IsotropicGaussianBlur2D(BlurKernel2D): + """An isotropic Gaussian blur operator. + + Args: + kernel_size: int, blur kernel size, expected to be odd. + std: float, width of the kernel. + """ + def __init__(self, kernel_size, std): + assert kernel_size % 2 == 1 + self.kernel_size = (kernel_size, kernel_size) + self.std = std + + def apply(self, im): + if self.check_input(im): + return cv2.GaussianBlur(im, self.kernel_size, self.std, self.std, borderType=cv2.BORDER_REFLECT_101) + else: + raise ValueError + + +def gaussian(x, k, s): + return np.exp(-(x-(k-1)/2)**2/(2*s**2)) + + + +class AnisotropicGaussianBlur2D(BlurKernel2D): + """An anisotropic Gaussian blur operator. + + Reference to + https://github.com/cszn/USRNet/blob/4fb56deb80d655abb722ff83750ad3df163ef833/utils/utils_sisr.py#L129 + + Args: + kernel_size: int, blur kernel size, expected to be odd. + var: float, width of the kernel. + + """ + def __init__(self, kernel_size, var, angle, scale=1, noise_level=0): + """" + # modified version of https://github.com/assafshocher/BlindSR_dataset_generator + # Kai Zhang + # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var + # max_var = 2.5 * sf + """ + assert kernel_size % 2 == 1 + k_size = np.array([kernel_size, kernel_size]) + + # Set random eigen-vals (lambdas) and angle (theta) for COV matrix + lambda_1, lambda_2 = var + # noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 + + # Set COV matrix using Lambdas and Theta + LAMBDA = np.diag([lambda_1, lambda_2]) + Q = np.array([[np.cos(angle), -np.sin(angle)], + [np.sin(angle), np.cos(angle)]]) + SIGMA = Q @ LAMBDA @ Q.T + INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] + + # Set expectation position (shifting kernel for aligned image) + MU = k_size // 2 - 0.5*(scale - 1) + MU = MU[None, None, :, None] + + # Create meshgrid for Gaussian + [X,Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) + Z = np.stack([X, Y], 2)[:, :, :, None] + + # Calcualte Gaussian for every pixel of the kernel + ZZ = Z-MU + ZZ_t = ZZ.transpose(0,1,3,2) + raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) + + # Normalize the kernel and return + self.kernel = raw_kernel / np.sum(raw_kernel) + + def apply(self, im): + return cv2.filter2D(im, -1, self.kernel) + + +def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0): + """2D sinc filter. + + Borrowed from https://github.com/xinntao/BasicSR/blob/master/basicsr/data/degradations.py#L392 + Ref: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter + + Args: + cutoff: float, cutoff frequency in radians (pi is max) + kernel_size: int, horizontal and vertical size, must be odd. + pad_to: int, pad kernel size to desired size, must be odd or zero. + + Returns: + ndarray of [kernel_size, kernel_size], the sinc kernel. + """ + assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' + kernel = np.fromfunction( + lambda x, y: cutoff * special.j1(cutoff * np.sqrt( + (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt( + (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size]) + kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi) + kernel = kernel / np.sum(kernel) + if pad_to > kernel_size: + pad_size = (pad_to - kernel_size) // 2 + kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) + return kernel + + +class SincFilter(BlurKernel2D): + """A sinc filter. + + Args: + kernel_size: int, blur kernel size, expected to be odd. + omega_c: float, cutoff frequency in radians (pi is max) + """ + def __init__(self, kernel_size, omega_c): + self.kernel_size = kernel_size + self.omega_c = omega_c + self.kernel = circular_lowpass_kernel(self.omega_c, self.kernel_size, pad_to=False) + + def apply(self, im): + return cv2.filter2D(im, -1, self.kernel) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/noise.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/noise.py new file mode 100644 index 0000000000000000000000000000000000000000..ef24f2c6debb036496d052cfa7a6bde23a25d60d --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/noise.py @@ -0,0 +1,195 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import numpy as np +import cv2 +import random +import time + +from src.utils.degradation.base import Base + + +class NoiseAugmentation(Base): + """Noise addition class. + """ + def __init__(self, **kwargs): + self.max_value = 255. + self.min_value = 0. # input data should be in range [min_value, max_value] + self._data_format = 'hwc' # ['hwc', 'thwc'] + + def get_height(self, im): + return im.shape[self._data_format.index['h']] + + def get_width(self, im): + return im.shape[self._data_format.index['w']] + + def get_temp(self, im): + return im.shape[self._data_format.index['t']] + + @property + def data_format(self): + return self._data_format + + @data_format.setter + def data_format(self, target_format): + self._data_format = target_format.lower() + + def __call__(self, im, **kwargs): + # Input im should be in range [0, 255], either with np.uint8 or np.float32 dtype. + if self.check_input(im): + # Numpy random states are the same across all the mutli-processing. + # In order to maintain the randomness, use the system timestamp to + # manually set numpy seed every time this function is called. + self.set_numpy_random_seed() + im = self.apply(im) + im = np.clip(im.astype(np.float32), a_min=self.min_value, a_max=self.max_value) + return im + else: + raise ValueError(f'Expect input image to be [3D, 4D]-array, but got {im.ndim}D-array.') + + +class MultivarGaussianNoise(NoiseAugmentation): + """Multi-variate Gaussian noise. + + The noise in the channels is dependent. + + Args: + mean: float, the mean of the noise in each channel. + cor_var: ndarray, a 3x3 matrix of covariance. + """ + def __init__(self, mean=0., covar=None): + super().__init__() + assert covar is not None + self.mean = np.array([mean, mean, mean]) + self.cor_var = np.array(covar) + + def apply(self, clean_data, **kwargs): + shape = clean_data.shape + noise = np.random.multivariate_normal(self.mean, self.cor_var, size=shape[:-1]) + return clean_data + noise + + +class ChannelIndependentGaussianNoise(NoiseAugmentation): + """Channel indenpent Gaussian noise. + + The noise in the channels is independent. + + Args: + mean: float, the mean of the noise in each channel. + std: float, standard deviation of the noise. + """ + def __init__(self, mean=0., std=0.01): + super(ChannelIndependentGaussianNoise, self).__init__() + self.mean = mean + self.std = std + + def apply(self, clean_data, **kwargs): + shape = clean_data.shape + noise = self.std * np.random.randn(*shape) + self.mean + return clean_data + noise + + +class GrayscaleGaussianNoise(NoiseAugmentation): + """Single channel Gaussian noise. + + The noise in the channels is broadcast to all the channels. + + Args: + mean: float, the mean of the noise in each channel. + std: float, standard deviation of the noise. + """ + def __init__(self, mean=0., std=0.01): + super(GrayscaleGaussianNoise, self).__init__() + self.mean = mean + self.std = std + + def apply(self, clean_data, **kwargs): + shape = list(clean_data.shape) + shape[-1] = 1 + noise = self.std * np.random.randn(*shape) + self.mean + return clean_data + noise + + +class SaltPepperNoise(NoiseAugmentation): + """Salt and pepper noise. + + Args: + amount: float, total proportion of the noise pixels in the image. + salt_ratio: float, the proportion of the salt (white) in the noisy pixels. + """ + def __init__(self, amount=0.005, salt_ratio=0.5): + super().__init__() + self.amount = amount + self.salt_noise_ratio = salt_ratio + + def apply(self, clean_data, **kwargs): + h, w = clean_data.shape[:2] + # make a copy + noisy = np.array(clean_data) + + num_salt = np.ceil(self.amount * h * w * self.salt_noise_ratio) + coord = [np.random.randint(0, i - 1, int(num_salt)) for i in [h, w]] + noisy[tuple(coord)] = self.max_value + + num_pepper = np.ceil(self.amount * h * w * (1. - self.salt_noise_ratio)) + coord = [np.random.randint(0, i - 1, int(num_pepper)) for i in [h, w]] + noisy[tuple(coord)] = self.min_value + return noisy + + +class SpeckleNoise(NoiseAugmentation): + """Spekle noise. + """ + def apply(self, clean_data, **kwargs): + shape = clean_data.shape + gauss = np.random.randn(*shape) + noisy = clean_data + clean_data * gauss + return noisy + + +class JPEGCompressionNoise(NoiseAugmentation): + """JPEG compression noise. + + Args: + quality: int, ranged in [0, 100], controls the quality of the compressed + image. The lower the quality is, the worse the image looks like. + """ + def __init__(self, quality): + super(JPEGCompressionNoise, self).__init__() + self.quality = int(quality) + + def apply(self, clean_data, **kwargs): + clean_data = np.clip(clean_data, self.min_value, self.max_value).astype(np.uint8) + encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), self.quality] + result, encimg = cv2.imencode('.jpg', clean_data, encode_param) + noisy = cv2.imdecode(encimg, cv2.IMREAD_COLOR) + return noisy.astype(np.float32) + + +class PoissonNoise(NoiseAugmentation): + """Poisson noise. + + Reference https://stackoverflow.com/questions/19289470/adding-poisson-noise-to-an-image + https://github.com/xinntao/BasicSR/blob/master/basicsr/data/degradations.py#L587 + """ + def apply(self, clean_data, **kwargs): + # round and clip image for counting vals correctly + vals = len(np.unique(clean_data.astype(np.uint8))) + vals = 2**np.ceil(np.log2(vals)) + + img = np.clip(clean_data, self.min_value, self.max_value) / self.max_value + out = np.float32(np.random.poisson(img * vals) / float(vals)) + noise = (out - img) * self.max_value + + return clean_data + noise diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/scaling.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/scaling.py new file mode 100644 index 0000000000000000000000000000000000000000..febce3002eab445f9807c0ad7e058168bc6e04af --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/degradation/scaling.py @@ -0,0 +1,96 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os +import numpy as np +import cv2 +import time +import random +from scipy.interpolate import interp2d + +from src.utils.degradation.base import Base + + +class SpatialScaling(Base): + """Up- and down-sampling degradation. + + Args: + target_size: list[int], [W, H] specifying the size after resize. + scales: list[float], [Sw, Sh] specifying the scales of each dimension. + """ + def __init__(self, target_size, scales=None): + # Note: target_size and scales should be in [x, y] or [w, h] order + self.scales = scales + self.target_size = target_size + assert isinstance(self.target_size, tuple) + + +class NearestScaling(SpatialScaling): + """Nearest scaling up and down. + + Args: + kernel_width: int, kernel width to remedy the misalignment of nearest + sampling. + """ + def __init__(self, target_size, scales, kernel_width): + super(NearestScaling, self).__init__(target_size, scales) + kernel = cv2.getGaussianKernel(21, kernel_width) + self.kernel = kernel @ np.transpose(kernel) + self.kernel = self.shift_pixels(self.kernel, scales) + + def shift_pixels(self, x, scales, upper_left=False): + """shift pixel for super-resolution with different scale factors + + Args: + x: WxHxC or WxH, image or kernel + sf: scale factor + upper_left: shift direction + """ + h, w = x.shape[:2] + shift = (scales-1)*0.5 + xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) + if upper_left: + x1 = xv + shift[0] + y1 = yv + shift[1] + else: + x1 = xv - shift[0] + y1 = yv - shift[1] + + x1 = np.clip(x1, 0, w-1) + y1 = np.clip(y1, 0, h-1) + + if x.ndim == 2: + x = interp2d(xv, yv, x)(x1, y1) + if x.ndim == 3: + for i in range(x.shape[-1]): + x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) + + return x + + def apply(self, im): + im = cv2.filter2D(im, -1, self.kernel) + return cv2.resize(im, dsize=self.target_size, fx=0., fy=0., interpolation=cv2.INTER_NEAREST) + + +class BicubicScaling(SpatialScaling): + """Bicubic sampling. + """ + def apply(self, im): + return cv2.resize(im, dsize=self.target_size, fx=0., fy=0., interpolation=cv2.INTER_LINEAR) + + +class BilinearScaling(SpatialScaling): + """Bilinear sampling. + """ + def apply(self, im): + return cv2.resize(im, dsize=self.target_size, fx=0., fy=0., interpolation=cv2.INTER_CUBIC) diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/exceptions.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/exceptions.py new file mode 100644 index 0000000000000000000000000000000000000000..b0e3c0404ca0e94b5cdec8267ba1d3bf47df5a54 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/exceptions.py @@ -0,0 +1,34 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +class Error(Exception): + """Customize Exception class. + """ + pass + + +class WorldUninitializedError(Error): + pass + + +class SessionUndefinedError(Error): + pass + + +class ArrayDimensionError(Error): + pass + + +class DirectoryNotFoundError(Error): + pass diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/file_io.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/file_io.py new file mode 100644 index 0000000000000000000000000000000000000000..a9b8af3b5f04aa3b12c7ac850c249364ef2c0b6f --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/file_io.py @@ -0,0 +1,557 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import multiprocessing as mp +import os +import queue +import random +import shutil +import threading +import time +from functools import partial +from subprocess import Popen, PIPE + +import cv2 +import imageio +import numpy as np +from PIL import Image +from src.utils.klass import Singleton +from src.utils.logger import logger +from src.utils.constant import VALID_COLORSPACE, IO_BACKEND +from src.utils.utils import convert_to_dict + + +def imread(x, target_color_space='rgb'): + """Wrapped image read function. + + Support normal SDR png image, as well as HDR exr image. + + Args: + x: str, image file name. + target_color_space: str, what color space should the output image is in. + + Returns: + ndarray, an image of the target_color_space. + """ + target_color_space = target_color_space.lower() + assert target_color_space in VALID_COLORSPACE + + if x.endswith('.exr'): + # read hdr + im = cv2.imread(x, cv2.IMREAD_UNCHANGED) + else: + im = cv2.imread(x) + + # convert to grayscale if required. + if target_color_space == 'gray3d': + im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) + im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) + elif target_color_space == 'gray': + im = im[:,:,0:1] + + # data_format convert + if target_color_space in ['bgr', 'gray', 'gray3d']: + out = im + elif target_color_space == 'rgb': + out = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) + elif target_color_space == 'lab': + out = cv2.cvtColor(im, cv2.COLOR_BGR2LAB) + elif target_color_space == 'ycrcb': + out = cv2.cvtColor(im, cv2.COLOR_BGR2YCrCb) + elif target_color_space == 'yuv': + out = cv2.cvtColor(im, cv2.COLOR_BGR2YUV) + elif target_color_space == 'y': + out = cv2.cvtColor(im, cv2.COLOR_BGR2YUV) + out = out[:,:,0:1] + else: + raise ValueError("Unknown data_format as {}, or maybe just mismatched!".format(target_color_space)) + + return out + + +def imwrite(name, x, source_color_space='rgb', benormalized=True): + """Wrapped image write function. + + Support normal SDR png image, as well as HDR exr image. + + Args: + name: str, output image file name. + x: ndarray, with shape [H, W, C]. + source_color_space: str, in what color space the source image is. + benormalized: boolean, whether the image is normalized. + """ + source_color_space = source_color_space.lower() + assert source_color_space in VALID_COLORSPACE + + hdr = name.endswith('.exr') + out = image_deprocess(x, source_color_space, benormalized, hdr) + if hdr: + hdr_image_write(name, out) + else: + sdr_image_write(name, out) + + +def image_deprocess(x, source_color_space='rgb', benormalized=True, hdr=False): + """Image deprocess function. + + Converts the normalized ndarray to a writable image by opencv. + """ + if hdr: + return hdr_image_deprocess(x, source_color_space) + else: + return sdr_image_deprocess(x, source_color_space, benormalized) + + +def hdr_image_deprocess(x, source_color_space='rgb'): + """Image deprocess function of HDR image. + + HDR image is always normalized. The only thing to do is to convert to another + color space. + """ + if source_color_space == 'rgb': + x = x[..., ::-1] + elif source_color_space == 'bgr': + pass + else: + raise NotImplementedError(f'HDR output does not support color-spaces other than RGB and BGR.') + return x + + +def sdr_image_deprocess(x, source_color_space='rgb', benormalized=True): + """Image deprocess function of SDR image. + + Converts the color space to 'bgr' for opencv to write out; denormalizes the + data to uint8. + """ + source_color_space = source_color_space.lower() + assert source_color_space in VALID_COLORSPACE + + if benormalized and source_color_space not in ['ycrcb', 'yuv', 'y']: + x[...] = x[...] * 255 + x = np.clip(x, 0., 255.) + + if source_color_space in ['bgr', 'gray']: + out = x + elif source_color_space == 'rgb': + out = cv2.cvtColor(x, cv2.COLOR_RGB2BGR, cv2.CV_32F) + elif source_color_space in ['lab', 'gray3d']: + x[:, :, 0:1] = x[:, :, 0:1] / 2.55 + x[:, :, 1:3] = x[:, :, 1:3] - 128. + out = cv2.cvtColor(x, cv2.COLOR_LAB2BGR, cv2.CV_32F) + out[...] = out[...] * 255. + elif source_color_space == 'ycrcb': + out = cv2.cvtColor(x, cv2.COLOR_YCrCb2BGR, cv2.CV_32F) + if benormalized: + out = np.clip(out * 255., 0., 255.) + elif source_color_space == 'yuv': + out = cv2.cvtColor(x, cv2.COLOR_YUV2BGR, cv2.CV_32F) + out = np.clip(out * 255, 0., 255.) + elif source_color_space == 'y': + out = np.clip(x * 255, 0., 255.) + else: + raise ValueError + + out = out.astype(np.uint8) + return out + + +def sdr_image_write(name, out): + # Just a wrapper. + cv2.imwrite(name, out) + + +def hdr_image_write(name, out): + # Save as half precision to for smaller file. + out = np.maximum(out, 0.) + cv2.imwrite(name, out, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) + +class HardDiskImageWriter: + """An image writer which saves the image data in a file on the hard disk. + + We use a queue and multi-thread to write the images to hard disk in the + background. + + Args: + max_num_threads: int, maximum number of the threads to use. + max_queue_size: int, maximum size of the queue to save the data in memory. + """ + def __init__(self, max_num_threads=1, max_queue_size=64): + self.queue = queue.Queue(max_queue_size) + self.threads_pool = [] + self.sentinel = (None, None) + self.max_num_threads = max_num_threads + self.notified = False + + def worker(self): + # Thread work to write out the images. + while True: + try: + elem = self.queue.get(True) + if id(elem) == id(self.sentinel): + self.end() + break + target_path, im_data = elem + hdr = target_path.endswith('.exr') + if hdr: + hdr_image_write(target_path, im_data) + else: + sdr_image_write(target_path, im_data) + except Exception as e: + if not self.notified: + self.notified = True + logger.error(f'Error when writing out images, {e}.') + pass + + def __del__(self): + # Wait until all the threads to join. + for t in self.threads_pool: + try: + t.join() + except: + pass + logger.info('Processing remaining elements') + + # Post check whether there are un-written. + while True: + try: + elem = self.queue.get(False) + assert id(elem) == id(self.sentinel), '[Warning] Remain elements in writing queue' + except queue.Empty: + break + + def put_to_queue(self, target_path, im_data): + # Put the target file name and the image data in the queue. + self.queue.put((target_path, im_data)) + if len(self.threads_pool) <= self.max_num_threads: + t = threading.Thread(target=self.worker, args=()) + t.start() + self.threads_pool.append(t) + + def end(self): + # Put sentinel in the queue to call exit. + self.queue.put(self.sentinel) + + +# https://github.com/imageio/imageio-ffmpeg/blob/f27b6cb31d4ed3fd436f3a22871b2b63d2384c80/imageio_ffmpeg/_utils.py#L55 +def _popen_kwargs(prevent_sigint=False): + startupinfo = None + preexec_fn = None + creationflags = 0 + if prevent_sigint: + # Prevent propagation of sigint (see #4) + # https://stackoverflow.com/questions/5045771 + preexec_fn = os.setpgrp # the _pre_exec does not seem to work + + falsy = ("", "0", "false", "no") + if os.getenv("IMAGEIO_FFMPEG_NO_PREVENT_SIGINT", "").lower() not in falsy: + # Unset preexec_fn to work around a strange hang on fork() (see #58) + preexec_fn = None + + return { + "startupinfo": startupinfo, + "creationflags": creationflags, + "preexec_fn": preexec_fn, + } + + +class FFMPEGStreamWriter: + """An image writer which saves the image data through ffmpeg stream to a video + file. + + Args: + video_filename: str, output target video file. + fps: str, vidoe fps for encoding. + output_param_file: str, codec config file for encoding. + output_resolution: list[int], the resolution [H, W] of the output video. + source_pix_fmt: str, the pixel format of the input to ffmpeg. When encoding + SDR vidoe, it should be `bgr24`. Or it should be 'gbrpf32le' for HDR. + ffmpeg_timeout: int, time limitation to prevent ffmpeg dies. + """ + def __init__(self, video_filename, fps='25', + output_param_file='./configs/codecs/default_x264.json', + output_resolution=None, + source_pix_fmt='bgr24', + ffmpeg_timeout=60): + + if output_resolution is None: + raise ValueError('Expect the output resolution, but got None.') + else: + assert len(output_resolution) == 2 + # W x H + s = f"{output_resolution[1]}x{output_resolution[0]}" + + with open(output_param_file, 'r') as fid: + output_params_dict = json.load(fid) + + # Input information. + vinput_opts = [ + '-r', str(fps), + '-f', 'rawvideo', + '-s', s, + '-pix_fmt', source_pix_fmt, + '-analyzeduration', str(2147483647), + '-probesize', str(2147483647), + ] + vinput_src = ['-i', '-'] + + # Output encoding information. + output_params = [] + vcodec = None + bitrate = None + pix_fmt = "yuv420p" + for k, v in output_params_dict["codec"].items(): + if k in ["-c:v", "-vcodec"]: + vcodec = v + elif k == '-bitrate': + bitrate = v + elif k == '-pix_fmt': + pix_fmt = v + else: + output_params += [k, v] + ext = output_params_dict.get("format", 'mp4') + + if bitrate is not None: + output_params += ['-bitrate', bitrate] + if vcodec is not None: + output_params += ['-c:v', vcodec] + output_params += ['-pix_fmt', pix_fmt] + + if not video_filename.endswith(ext): + video_filename = f'{video_filename}.{ext}' + + self.ffmpeg_timeout = ffmpeg_timeout + + self._basic_cmd = ['ffmpeg', '-y', + *vinput_opts, + *vinput_src, + *output_params, + video_filename, + ] + + def initialize(self): + # Use a generator to accept the image data without blocking the main + # processing. + self.write_gen = self._initialize_gen() + assert self.write_gen is not None + self.write_gen.send(None) + logger.info("Codec command:") + logger.info(self._basic_cmd) + + def _initialize_gen(self): + # Borrowed from imageio-ffmpeg + # https://github.com/imageio/imageio-ffmpeg/blob/master/imageio_ffmpeg/_io.py#L478 + stop_policy = 'timeout' + p = Popen( + self._basic_cmd, + stdin=PIPE, + stdout=None, + stderr=None, + **_popen_kwargs(prevent_sigint=True) + ) + + try: + while True: + frame = yield + try: + p.stdin.write(frame) + except Exception as err: + msg = ( + "{0:}\n\nFFMPEG COMMAND:\n{1:}\n\nFFMPEG STDERR " + "OUTPUT:\n".format(err, self._basic_cmd) + ) + stop_policy = "kill" + raise IOError(msg) + except GeneratorExit: + # Note that GeneratorExit does not inherit from Exception but BaseException + # Detect premature closing + raise + except Exception: + # Normal exceptions fall through + raise + except BaseException: + # Detect KeyboardInterrupt / SystemExit: don't wait for ffmpeg to quit + stop_policy = "kill" + raise + finally: + if p.poll() is None: + try: + p.stdin.close() + except Exception as err: # pragma: no cover + logger.warning("Error while attempting stop ffmpeg (w): " + str(err)) + + if stop_policy == "timeout": + # Wait until timeout, produce a warning and kill if it still exists + try: + etime = time.time() + self.ffmpeg_timeout + while (time.time() < etime) and p.poll() is None: + time.sleep(0.01) + finally: + if p.poll() is None: # pragma: no cover + logger.warn( + "We had to kill ffmpeg to stop it. " + + "Consider increasing ffmpeg_timeout, " + + "or setting it to zero (no timeout)." + ) + p.kill() + + elif stop_policy == "wait": + # Wait forever, kill if it if we're interrupted + try: + while p.poll() is None: + time.sleep(0.01) + finally: # the above can raise e.g. by ctrl-c or systemexit + if p.poll() is None: # pragma: no cover + p.kill() + + else: # stop_policy == "kill": + # Just kill it + p.kill() + # Just to be safe, wrap in try/except + try: + p.stdout.close() + except Exception: + pass + + def put_to_queue(self, target_path, im_data): + # target_path won't matter here + if im_data.dtype == np.float32: + # Notice that after the deprocess, everything is in bgr color space. + # HDR data, will use gbrpf32le pix_fmt. + # Make it [C, H, W] data format, and shift channels to [g, b, r]. + im_data = np.transpose(im_data[..., [1,0,2]], [2,0,1]) + # else is normal uint8 data. Use bgr24le pix_fmt and don't do anything + img_str = im_data.tobytes() + self.write_gen.send(img_str) + + def end(self): + self.write_gen.close() + + +class ImageWriter: + """A top class to handle the image writing. + + Multi-imagewriter is supported when writing out. This class contains all the + concrete writing instances, and deprocess the results passed by the engine and + feed to the writers. Multi-imagewriter can be configured using the + cfg.inference.io_backend where the backends are concatenated with ':'. For + example, setting: + + cfg.inference.io_backend = 'disk:ffmpeg' + + will use two image writer instance, one HardDiskImageWriter and the other + FFMPEGStreamWriter. + + Args: + output_dir: str, output top folder. + cfg: yacs node, global configuration. + source_color_space: str, in what color space the source image is. + benormalized: boolean, whether the image is normalized. + output_resolution: list[int], the resolution [H, W] of the output video. + pix_fmt: str, the pixel format of the input to ffmpeg. When encoding + SDR vidoe, it should be `bgr24`. Or it should be 'gbrpf32le' for HDR. + """ + def __init__(self, output_dir, cfg, benormalized=True, + source_color_space='bgr', output_resolution=None, + pix_fmt='bgr24' + ): + io_backends = cfg.inference.io_backend.split(':') + for ib in io_backends: + IO_BACKEND.CHECK_VALID(ib) + + self.io_backend = io_backends + self.cfg = cfg + + self.image_deprocess = partial(image_deprocess, + source_color_space=source_color_space, + benormalized=benormalized) + self.pix_fmt = pix_fmt + self.output_resolution = output_resolution + self.root_output_dir = output_dir + self.writers = [] + + for ib in io_backends: + self.add_writers(ib, self.root_output_dir) + + def add_writers(self, io_backend, root_dir=None): + # Add specific writers. + if root_dir is None: + root_dir = self.root_output_dir + + if io_backend == IO_BACKEND.DISK: + writer = HardDiskImageWriter(max_num_threads=self.cfg.inference.writer_num_threads, + max_queue_size=self.cfg.inference.writer_queue_size) + output_folder = root_dir + elif io_backend == IO_BACKEND.FFMPEG: + video_filename = os.path.join(f'{root_dir}_videos', self.cfg.inference.ffmpeg.video_filename) + writer = FFMPEGStreamWriter(video_filename=video_filename, + fps=self.cfg.inference.ffmpeg.fps, + output_param_file=self.cfg.inference.ffmpeg.codec_file, + source_pix_fmt=self.pix_fmt, + output_resolution=self.output_resolution, + ) + output_folder = f'{root_dir}_videos' + else: + raise NotImplementedError(f'{io_backend}') + + # Record both the writer instance and the output folder. + self.writers.append([writer, output_folder]) + + def initialize(self): + # Initialization and create folders if necessary. + logger.info(f'Using {self.io_backend} as the io backend.') + for writer_id, ib in enumerate(self.io_backend): + if ib in [IO_BACKEND.DISK, IO_BACKEND.FFMPEG]: + output_folder = self.writers[writer_id][1] + logger.info(f'For {ib} backend, the results will be written to {output_folder}') + os.makedirs(output_folder, exist_ok=True) + + if ib == IO_BACKEND.FFMPEG: + self.writers[writer_id][0].initialize() + + def finalize(self): + # Close the writers. + for writer, output_folder in self.writers: + writer.end() + + def write_out(self, output_data_dict): + output_data_dict = dict(sorted(output_data_dict.items(), key=lambda item: item[0])) + # Append image date to the writers after inference. + for target_file, data in output_data_dict.items(): + # without file copy: {output_file_name: ndarray} + # with file copy: {output_file_name: [source_file_name, ndarray]} + for backend_id, ib in enumerate(self.io_backend): + writer, output_folder = self.writers[backend_id] + target_file = os.path.join(output_folder, target_file) + if isinstance(data, np.ndarray): + # This scenario is only for multi-in single-out model, not include vfi + writer.put_to_queue(target_file, data) + elif isinstance(data, (list, tuple)): + # Mainly used in vfi scenario, or pipeline scenario. + if ib == IO_BACKEND.DISK: + # In the single vfi processing, we use shutil to copy the + # the original data instead of writing out from memory to disk. + # Yet we have not tested the performance of `writing out` strategy. + assert isinstance(data[0], str) + shutil.copy(data[0], target_file) + elif ib == IO_BACKEND.FFMPEG: + # This is used in ffmpeg stream, the first the target file to output + # while the second the output data. + assert isinstance(data[1], np.ndarray) + writer.put_to_queue(target_file, data[1]) + else: + raise NotImplementedError + else: + raise TypeError(f'Expect value `data` to be np.ndarray, or a list of [str, np.ndarray].' + f'But given {type(data)}') diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/klass.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/klass.py new file mode 100644 index 0000000000000000000000000000000000000000..dd15f29284d818583f3d18d2f6ab5a9d7b47396d --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/klass.py @@ -0,0 +1,45 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +def get_subclass_given_name(proto_type, sub_type_name): + """Get the subclass type given the name + + Look through all subclasses and select by type name. + + Args: + proto_type: base class. + sub_type_name: str, derived class name. + + Returns: + derived class type. + """ + subtype = [ + stp for stp in proto_type.__subclasses__() + if stp.__name__ == sub_type_name + ] + return subtype[0] + + +class Singleton(type): + """Singleton class type. + + A singleton class will only have one instance. + """ + _instances = {} + + def __call__(cls, *args, **kwargs): + if cls not in cls._instances: + cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) + return cls._instances[cls] diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/logger.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/logger.py new file mode 100644 index 0000000000000000000000000000000000000000..c8cfd4bdb709cb34fbb40ba20a3bd6812ce729ae --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/logger.py @@ -0,0 +1,91 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import logging +from src.utils.klass import Singleton + + +class Logger(metaclass=Singleton): + """A wrapper class of logging. + + Args: + level: enum, logging level. Default to logging.INFO + + Property: + silence: boolean, whether to mute the logger. Typically used in distributed + training and inference to silence the duplicated messages. + """ + def __init__(self, level=logging.INFO): + self.log_formatter = logging.Formatter( + "%(asctime)s [%(levelname)-5.5s] %(message)s" + ) + self._logger = logging.getLogger() + self._logger.setLevel(level) + self._logger.handlers.clear() + console_handler = logging.StreamHandler() + console_handler.setFormatter(self.log_formatter) + self._logger.addHandler(console_handler) + # A flag to control whether to output to stdout. + # Mainly used for distributed training, where only the root node will + # record the message. + self._silence = False + + def add_log_file(self, log_file): + """Add file handler. + + Args: + log_file: str, external log file to write out. + """ + if log_file is not None and log_file != '': + real_path = os.path.split(os.path.realpath(log_file))[0] + os.makedirs(real_path, exist_ok=True) + file_handler = logging.FileHandler(log_file) + file_handler.setFormatter(self.log_formatter) + self._logger.addHandler(file_handler) + self._logger.info(f'Log file: {log_file}') + + @property + def silence(self): + return self._silence + + @silence.setter + def silence(self, switch): + self._silence = switch + + def info(self, message, force=False): + if not self._silence or force: + self._logger.info(message) + + def warn(self, message, force=False): + if not self._silence or force: + self._logger.warning(message) + + def error(self, message, force=False): + if not self._silence or force: + self._logger.error(message) + + def fatal(self, message, force=False): + if not self._silence or force: + self._logger.fatal(message) + + def debug(self, message, force=False): + if not self._silence or force: + self._logger.debug(message) + + def warning(self, message, force=False): + self.warn(message, force) + + +logger = Logger() diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/moving_avg.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/moving_avg.py new file mode 100644 index 0000000000000000000000000000000000000000..0884c7f7a972369a2c9ef5615fe0f340df27c5c4 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/moving_avg.py @@ -0,0 +1,57 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +class MovingAvg: + """Class to record the buffering running statistics. + + Args: + smooth: float, a scalar in [0, 1] to smooth the statistics. + + Attributes: + sum: summation of historical data. + avg: average of historical data. + smooth_avg: smoothed average of historical data. + count: total number of historical data record. + cur_val: current data. + + Raises: + ValueError, when smooth is not between [0, 1]. + """ + def __init__(self, smooth=0.9): + if not (0. <= smooth <= 1.): + raise ValueError(f'Smooth value should be between [0, 1], ' + f'but is given {smooth}.') + self.smooth = smooth + self.clear() + + def update(self, val): + """Update statistics. + """ + self.cur_val = val + self.count += 1 + self.sum += val + self.avg = self.sum / self.count + if self.count == 1: + self.smooth_avg = val + else: + self.smooth_avg = self.smooth * self.smooth_avg + (1. - self.smooth) * val + + def clear(self): + """Clear all historical data. + """ + self.sum = 0. + self.avg = 0. + self.smooth_avg = 0. + self.count = 0 + self.cur_val = 0 diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/__init__.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..66f09226024d6b39187234c1231a83d1dc8a427e --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/__init__.py @@ -0,0 +1,69 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from .joint_transforms import * +from src.utils.klass import get_subclass_given_name + + +class Compose(object): + """Composes several joint transforms together. + + Args: + transforms: list[Transform], list of joint transforms to compose. + """ + def __init__(self, transforms=None): + self.transforms = transforms + + @classmethod + def from_cfgs(cls, options, **kwargs): + """Construct augmentation pipeline from cfg dict. + + Args: + options: dict, pairs of {Transform_class_type: kwargs}. + kwargs: dict, additional kwargs. + + Returns: + A composed transform instance. + """ + + t = [] + for k, v in options.items(): + if k == 'RandomCrop': + # crop_size and scales are required terms + v['crop_size'] = kwargs['crop_size'] + v['scales'] = kwargs['scales'] + elif k == 'Scaling': + v['scales'] = kwargs['scales'] + + try: + _filter = get_subclass_given_name(_Transform, k) + except IndexError: + logger.error(f'Cannot find transform type {k}.') + raise ValueError() + + t.append(_filter(**v)) + return cls(t) + + def __call__(self, *img): + for t in self.transforms: + img = t(*img) + return img + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += ' {0}'.format(t) + format_string += '\n)' + return format_string \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/joint_transforms.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/joint_transforms.py new file mode 100644 index 0000000000000000000000000000000000000000..4589a01316ca80c42f28ddd23c17c4d2785410ad --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/transform/joint_transforms.py @@ -0,0 +1,362 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import cv2 +import numpy as np +import random +import collections + + +__all__ = ['_Transform', 'RandomTemporalReverse', 'RandomFlipUpDown', + 'RandomFlipLeftRight', 'Scale', 'Resize', 'RandomCrop', + 'RandomDropChrominanceChannel', 'TempDistCrop', 'RandomSized', + 'RandomReverseColorChannel' +] + + +class _Transform(object): + """Base transform class. + """ + def __init__(self, input_dim=4): + self.input_dim = input_dim + + +class RandomTemporalReverse(_Transform): + """Random temporal reverse transform. + + This transform will reverse the multi-frame order. + """ + def __call__(self, *imgs): + if random.random() < 0.5: + imgs = [item[::-1] for item in imgs] + return imgs + + +class RandomFlipUpDown(_Transform): + """Random up-down flip transform. + + This transform will randomly flip the frames upside-down. + """ + def __init__(self, input_dim=3): + super().__init__(input_dim) + if input_dim == 3: + # HWC + self.fn = lambda x: x[::-1] + elif input_dim == 4: + # BHWC or DHWC + self.fn = lambda x: x[:, ::-1] + elif input_dim == 5: + # BDHWC + self.fn = lambda x: x[:, :, ::-1] + else: + raise NotImplementedError + + def __call__(self, *imgs): + if random.random() < 0.5: + imgs = [self.fn(item) for item in imgs] + return imgs + + +class RandomFlipLeftRight(_Transform): + """Random up-down flip transform. + + This transform will randomly flip the frames left-right. + """ + def __init__(self, input_dim=3): + super().__init__(input_dim) + if input_dim == 3: + # HWC + self.fn = lambda x: x[:, ::-1] + elif input_dim == 4: + # BHWC or DHWC + self.fn = lambda x: x[:, :, ::-1] + elif input_dim == 5: + # BDHWC + self.fn = lambda x: x[:, :, :, ::-1] + else: + raise NotImplementedError + + def __call__(self, *imgs): + if random.random() < 0.5: + imgs = [self.fn(item) for item in imgs] + return imgs + + +def _resize(img, new_size, input_dim, interpolation=cv2.INTER_LINEAR): + """Basic resize function. + """ + if img.shape[-1] == 1: + expand = True + else: + expand = False + if input_dim == 3: + img = cv2.resize(img, new_size, interpolation=interpolation) + elif input_dim == 4: + img = [cv2.resize(item, new_size, interpolation=interpolation) for item in img] + img = np.stack(img, axis=0) + else: + raise ValueError('Resize: image dimension must be in [3, 4]') + + if expand: + img = np.expand_dims(img, -1) + + return img + + +class Scale(_Transform): + """Resize the inputs given the scale. + """ + def __init__(self, input_dim, scales, interpolations=None): + super().__init__(input_dim) + self.scale = scales + self.interpolations = interpolations + + def __call__(self, *imgs): + h, w = imgs[0].shape[-3:-1] + ow = int(self.scale * w) + oh = int(self.scale * h) + if self.interpolations is None: + imgs = [_resize(item, (ow, oh), self.input_dim) + for item in imgs] + else: + imgs = [_resize(item, (ow, oh), self.input_dim, interpolation=interpolation) + for item, interpolation in zip(imgs, self.interpolations)] + return imgs + + +class Resize(_Transform): + """Resize the inputs given the target size. + """ + def __init__(self, input_dim, size, interpolations=None): + super().__init__(input_dim) + self.size = size + self.interpolations = interpolations + + def __call__(self, *imgs): + new_size = tuple([self.size, self.size]) + if self.interpolations is None: + imgs = [_resize(item, new_size, self.input_dim) + for item in imgs] + else: + imgs = [_resize(item, new_size, self.input_dim, interpolation=interpolation) + for item, interpolation in zip(imgs, self.interpolations)] + return imgs + + +class RandomCrop(_Transform): + """Random crop the images into patches. + + This function is for multiple input array, i.e. [lr_array, lr2_array, ..., hd_array]. + We want the corresponding crops of these inputs. Therefore, the function accepts + a base crop_size and the scales of the base crop_size that correspond to the + expected output patch size of each input array. + + For example, in 4x super resolution we want the training input has the size + [64, 64], and the output thus [256, 256] size. Therefore when cropping the paired + lr and gt data, the corresponding regions of lr and gt are to be cropped. We + can use a RandomCrop transform with: + + Example: + >>> lr, gt = get_data() # suppose 4D tensors of data format DHWC + >>> tr = RandomCrop(input_dim=4, crop_size=(64, 64), scales=(1, 4)) + >>> lr_crop, gt_crop = tr([lr, gt]) + + Args: + input_dim: int, dimension of each input. + crop_size: list[int], the base size [H, W] of the patch. + scales: list[int], the scales of the crop for each input. + bbox: list[int], the bounding box of the crop, [H_ul, W_ul, H_br, W_br], + where H_ul and W_ul are the height and width of upper-left pixel, + H_br and W_br are the height and width of the bottom-right pixel. + """ + def __init__(self, input_dim, crop_size, scales, bbox=None): + super().__init__(input_dim) + # Notice, this transformation always based on the first element of the images + self._h = crop_size[0] + self._w = crop_size[1] + self.scales = scales + self.bbox = bbox + + def crop(self, im, ymin, xmin, ymax, xmax): + if self.input_dim == 3: + # HWC + return im[ymin:ymax, xmin:xmax] + elif self.input_dim == 4: + # DHWC or BHWC + return im[:, ymin:ymax, xmin:xmax] + elif self.input_dim == 5: + # BDHWC + return im[:, :, ymin:ymax, xmin:xmax] + + def __call__(self, *imgs): + assert len(self.scales) == len(imgs) + h, w = imgs[0].shape[-3:-1] + if self.bbox is None: + h_st, h_ed, w_st, w_ed = 0, h, 0, w + else: + h_st, h_ed, w_st, w_ed = self.bbox + xmin = random.randint(w_st, w_ed - self._w * self.scales[0]) + ymin = random.randint(h_st, h_ed - self._h * self.scales[0]) + + augs = [] + for scale, im in zip(self.scales, imgs): + y_st = ymin * scale // self.scales[0] + y_ed = y_st + self._h * scale + x_st = xmin * scale // self.scales[0] + x_ed = x_st + self._w * scale + + patch = self.crop(im, y_st, x_st, y_ed, x_ed) + assert patch.shape[-3:-1] == (self._h * scale, self._w * scale), \ + f'Expect cropped patch to have size {(self._h * scale, self._w * scale)},' \ + f' but got {patch.shape[-3:-1]} (might be out of range). ' \ + f'For information, im has shape {im.shape}, crop range y: {y_st}-{y_ed}, x: {x_st}-{x_ed}.' + augs.append(patch) + return augs + + +class RandomDropChrominanceChannel(_Transform): + """Randomly drop chrominance channels. The luminance channel will be replicated. + """ + def _to_grayscale_3channel(self, x): + single_x = x[..., 0:1] + return np.concatenate([single_x, single_x, single_x], axis=-1) + + def __call__(self, *imgs): + if random.random() < 0.5: + imgs = [self._to_grayscale_3channel(item) for item in imgs] + return imgs + + +class TempDistCrop(_Transform): + '''Crop video frames with disturbed bboxes along temporal dimension + ''' + def __init__(self, input_dim, crop_size, scales, dist=0.01, no_padding=True, crop_range=None): + super(TempDistCrop, self).__init__(input_dim) + self._h = crop_size[0] + self._w = crop_size[1] + self.dist = dist + self.scales = scales + self.no_padding = no_padding + self.crop_range = crop_range + + def crop(self, imgs, T, ymins, xmins, ymaxs, xmaxs): + assert self.input_dim == 4 + if imgs.shape[0] == 1: + c_idx = T//2 + return imgs[:, ymins[c_idx]:ymaxs[c_idx], xmins[c_idx]:xmaxs[c_idx]] + else: + res = [] + for i in range(T): + res.append(imgs[i, ymins[i]:ymaxs[i], xmins[i]:xmaxs[i]]) + + return np.stack(res, axis=0) + + def pos_disturbe(self, T, ymin, xmin, H, W): + xmins, ymins = [], [] + x_bias, y_bias = np.random.random(size=T), np.random.random(size=T) + x_bias = ((x_bias*2-1)*self.dist * self._w).astype(np.int) + y_bias = ((y_bias*2-1)*self.dist * self._h).astype(np.int) + for i in range(T): + xmins.append(np.clip(xmin+x_bias[i], 0, W - self._w)) + ymins.append(np.clip(ymin+y_bias[i], 0, H - self._h)) + + return np.array(xmins), np.array(ymins) + + def _pad(self, imgs): + h, w = imgs.shape[-3:-1] + if self.no_padding: + if w < self._w or h < self._h: + if w < h: + ow = self._w + oh = int(self._w * h / w) + else: + oh = self._h + ow = int(self._h * w / h) + if self.input_dim == 3: + imgs = cv2.resize(imgs, (ow, oh)) + elif self.input_dim == 4: + imgs = [cv2.resize(item, (ow, oh)) for item in imgs] + else: + raise ValueError('TempDistCrop: image dimension must be in [3, 4]') + else: + pad_h = max(self._h - h, 0) + pad_w = max(self._w - w, 0) + imgs = [np.pad(item, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') + for item in imgs] + if self.input_dim == 3: + imgs = np.pad(imgs, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') + elif self.input_dim == 4: + imgs = [np.pad(item, ((0, pad_h), (0, pad_w), (0, 0)), 'constant') + for item in imgs] + else: + raise ValueError('TempDistCrop: image dimension must be in [3, 4]') + return imgs + + def __call__(self, *imgs): + assert len(self.scales) == len(imgs) + # imgs = [self._pad(item) for item in imgs] + h, w = imgs[0].shape[-3:-1] + bedge = 140 + if self.crop_range is None: + # h_st, h_ed, w_st, w_ed = 0, h, 0, w + h_st, h_ed, w_st, w_ed = bedge, h-bedge, 0, w + else: + h_st, h_ed, w_st, w_ed = self.crop_range + xmin = random.randint(w_st, w_ed - self._w * self.scales[0]) + ymin = random.randint(h_st, h_ed - self._h * self.scales[0]) + T = imgs[0].shape[0] + xmins, ymins = self.pos_disturbe(T, ymin, xmin, h, w) + + augs = [] + for scale, im in zip(self.scales, imgs): + y_st = ymins * scale + y_ed = (ymins + self._h) * scale + x_st = xmins * scale + x_ed = (xmins + self._w) * scale + + augs.append(self.crop(im, T, y_st, x_st, y_ed, x_ed)) + return augs + + +class RandomSized(_Transform): + """Random resize the input with a ranged scale. + """ + def __init__(self, input_dim=3, scale=(0.8, 1.2), interpolations=None): + super().__init__(input_dim) + self.scale = scale + self.interpolations = interpolations + + def __call__(self, *imgs): + org_h, org_w = imgs[0].shape[-3:-1] + r = random.uniform(self.scale[0], self.scale[1]) + w = int(r * org_w) + h = int(r * org_h) + + new_size = tuple([w, h]) + if self.interpolations is None: + imgs = [_resize(item, new_size, self.input_dim, interpolation=cv2.INTER_LINEAR) + for item in imgs] + else: + imgs = [_resize(item, new_size, self.input_dim, interpolation=interpolation) + for item, interpolation in zip(imgs, self.interpolations)] + return imgs + + +class RandomReverseColorChannel(_Transform): + """Randomly shift the color channel. + """ + def __call__(self, *imgs): + if random.random() < 0.5: + imgs = [item[..., ::-1] for item in imgs] + return imgs diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/utils.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..d96e6be70424cbcfdc8ff812f41f6abe95779202 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/utils.py @@ -0,0 +1,90 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from itertools import chain +import numpy as np +from yacs.config import CfgNode, _VALID_TYPES, _assert_with_logging, _valid_type + + +def to_pair(x, num_reps): + """Make paired of the int. + + Args: + x: int + num_reps: int, number of replicate of the input x. + + Return: + list[int], where each value is a copy of the input x. + """ + if isinstance(x, list) or isinstance(x, tuple): + assert len(x) == num_reps + elif isinstance(x, int): + x = [x] * num_reps + else: + raise ValueError + return x + + +def convert_to_dict(cfg_node, key_list): + """Convert yacs node to dict. + + Usage: + # a is a yacs node + a_as_dict = convert_to_dict(a, []) + + Args: + cfg_node: a yacs node. + key_list: list[str], the key name in the dict. + + Return: + dict, a dict version of the config node. + """ + if not isinstance(cfg_node, CfgNode): + _assert_with_logging( + _valid_type(cfg_node), + "Key {} with value {} is not a valid type; valid types: {}".format( + ".".join(key_list), type(cfg_node), _VALID_TYPES + ), + ) + return cfg_node + else: + cfg_dict = dict(cfg_node) + for k, v in cfg_dict.items(): + cfg_dict[k] = convert_to_dict(v, key_list + [k]) + return cfg_dict + + +def convert_dict_to_list(cfg_dict, prefix_key=None): + """Convert a dict to list + """ + if prefix_key and prefix_key == '': + prefix_key = None + + cfg_list = [] + + for k, v in cfg_dict.items(): + cur_key = f'{prefix_key}.{k}' if prefix_key is not None else k + if isinstance(v, dict): + cfg_list_sub = convert_dict_to_list(v, prefix_key=cur_key) + cfg_list.extend(cfg_list_sub) + # new_keys = [f'{k}.{sub_k}' for sub_k in cfg_list_sub[::2]] + # values = cfg_list_sub[1::2] + # cfg_list.extend(list(chain(*zip(new_keys, values)))) + elif isinstance(v, (list, tuple)): + cfg_list.extend([cur_key, f'{v}']) + else: + cfg_list.extend([cur_key, v]) + # cfg_list.extend([cur_key, f'{v}']) + return cfg_list diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/world.py b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/world.py new file mode 100644 index 0000000000000000000000000000000000000000..73b92950595022dc24273752f1f83c0a7b5ce502 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/src/utils/world.py @@ -0,0 +1,174 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +import os +import shutil + +from .exceptions import WorldUninitializedError +from .logger import logger + + + +def _setup_npu_env(remove_kernel_meta=True, device_id=None, rank_id=None, rank_size=None): + """Setup NPU environment variables. + """ + os.environ['FUSION_TENSOR_SIZE'] = '20000000' + os.environ['JOB_ID'] = '12345678' + os.environ['MOX_USE_NPU'] = '1' + os.environ['MOX_USE_TDT'] = '1' + os.environ['MOX_USE_TF_ESTIMATOR'] = '0' + os.environ['HEARTBEAT'] = '1' + os.environ['CONTINUE_TRAIN'] = 'true' + os.environ['LOG_DIR'] = './log' + os.environ['ASCEND_GLOBAL_EVENT_LEVEL'] = '0' + os.environ['ASCEND_GLOBAL_EVENT_ENABLE'] = '0' + os.environ['ASCEND_GLOBAL_LOG_LEVEL'] = '3' + os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' + + if device_id is not None: + os.environ['DEVICE_ID'] = str(device_id) + os.environ['ASCEND_DEVICE_ID'] = str(device_id) + if rank_id is not None: + os.environ['RANK_ID'] = str(rank_id) + if rank_size is not None: + os.environ['RANK_SIZE'] = str(rank_size) + + +class World: + """A class to keep all the cluster information. + + This class controls how the distributed training and inference is organized, + when running on multi-device. + + Args: + root_rank_id: int, the root node of the cluster. + + Properties: + is_initialized: a boolean flag to indicate whether the cluster information + is intialized. + device_type: the type of the devices in the cluster. + device_id: the physical index of the device used. + rank_size: the number of the devices used in the cluster. + rank_id: the index of the device used in the cluster, ranged in [0, rank_size). + is_root_rank: a boolean value to indicate that the device is regarded as the + root node. Only root node will print messages and save ckpt during training. + """ + def __init__(self, root_rank_id=0): + self.root_rank_id = root_rank_id + self._device_id = None + self._rank_id = None + self._rank_size = None + self._device_type = None + + self._initialized = False + + def initialize(self, device_type, device_id=None, + rank_id=None, rank_size=None, setup_npu_env=True): + """Initialize cluster information by environment variables or the input. + """ + if device_id is None or rank_id is None or rank_size is None: + self.init_by_environ() + else: + self._device_id = int(device_id) + self._rank_id = int(rank_id) + self._rank_size = int(rank_size) + + # initialize some other env + if setup_npu_env: + _setup_npu_env(remove_kernel_meta=True, + device_id=device_id, + rank_id=rank_id, + rank_size=rank_size) + + self._device_type = device_type + + if self._rank_size == 1: + # Force the single device as root_rank + self._rank_id = 0 + + self._initialized = True + + @property + def is_initialized(self): + return self._initialized + + def init_by_environ(self): + """Initialize cluster using environment variables. + """ + try: + self._device_id = int(os.environ['DEVICE_ID']) + except KeyError: + logger.error("Environ 'DEVICE_ID' not defined. Use default value DEVICE_ID=0.") + self._device_id = 0 + except ValueError: + logger.error(f"Environ 'DEVICE_ID' {os.environ['DEVICE_ID']} cannot converted to int. " + "Use default value DEVICE_ID=0.") + self._device_id = 0 + + try: + self._rank_id = int(os.environ['RANK_ID']) + except KeyError: + logger.error("Environ 'RANK_ID' not defined. Use default value RANK_ID=0.") + self._rank_id = 0 + except ValueError: + logger.error(f"Environ 'RANK_ID' {os.environ['RANK_ID']} cannot converted to int. " + "Use default value RANK_ID=0.") + self._rank_id = 0 + + try: + self._rank_size = int(os.environ['RANK_SIZE']) + except KeyError: + logger.error("Environ 'RANK_SIZE' not defined. Use default value RANK_SIZE=1.") + self._rank_size = 1 + except ValueError: + logger.error(f"Environ 'RANK_SIZE' {os.environ['RANK_SIZE']} cannot converted to int. " + "Use default value RANK_SIZE=1.") + self._rank_size = 1 + + self._initialized = True + + @property + def device_type(self): + if self._device_type is None: + raise WorldUninitializedError('World not initialized.') + return self._device_type + + @property + def device_id(self): + if self._device_id is None: + raise WorldUninitializedError('World not initialized.') + return self._device_id + + @property + def rank_id(self): + if self._rank_id is None: + raise WorldUninitializedError('World not initialized.') + return self._rank_id + + @property + def rank_size(self): + if self._rank_size is None: + raise WorldUninitializedError('World not initialized.') + return self._rank_size + + @property + def is_root_rank(self): + if self._rank_id is None: + raise WorldUninitializedError('World not initialized.') + return self._rank_id == self.root_rank_id + + +# Global instance. +world = World() diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_full_1p.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_full_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..39f41a129d5b4d5e1a6a69b99fe67714ad7639d9 --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_full_1p.sh @@ -0,0 +1,129 @@ +#!/bin/bash +# source env.sh +#当前路径,不需要修改 +cur_path=`pwd` +export ASCEND_SLOG_PRINT_TO_STDOUT=1 +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +export DEVICE_ID=$ASCEND_DEVICE_ID +RANK_ID_START=0 + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 +# export ASCEND_GLOBAL_LOG_LEVEL=3 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="AscendVideo_EDVR_ID3085_for_Tensorflow" +#训练batch_size +batch_size=16 +#训练step +output_dir='test/output' + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1p.sh " + echo " " + echo "parameter explain: + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) +cd $cur_path/../ +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup python3.7 $cur_path/../src/main.py \ + --config-file $cur_path/../configs/models/edvr_config.py \ + train.checkpoint_interval 5000 \ + train.print_interval 100 \ + data.data_dir ${data_path} \ + env.rank_size 1 \ + train.output_dir ${output_dir} \ + train.generator.lr_schedule.total_steps 150000,150000,150000,150000 > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +FPS=`grep 'fps:' $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log| awk -F "fps:" '{print $2}' | awk -F "," '{print $1}' | tail -n +2| awk '{sum+=$1} END {print sum/NR}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#稳定性精度看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`echo "scale=2;${batch_size} * ${RANK_SIZE} * 1000 / ${FPS}"|bc` + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep 'Step:' $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk -F "loss_total:" '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_performance_1p.sh b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..915c060786af2837b076225062858beaeaf16b6f --- /dev/null +++ b/TensorFlow/built-in/cv/Video_enhancement/AscendVideo_EDVR_ID3085_for_Tensorflow/test/train_performance_1p.sh @@ -0,0 +1,128 @@ +#!/bin/bash +# source env.sh +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +export DEVICE_ID=$ASCEND_DEVICE_ID +RANK_ID_START=0 + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 +export ASCEND_GLOBAL_LOG_LEVEL=3 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="AscendVideo_EDVR_ID3085_for_Tensorflow" +#训练batch_size +batch_size=16 +#训练step +output_dir='test/output' + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1p.sh " + echo " " + echo "parameter explain: + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) +cd $cur_path/../ +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup python3.7 $cur_path/../src/main.py \ + --config-file $cur_path/../configs/models/edvr_config.py \ + train.checkpoint_interval 5000 \ + train.print_interval 10 \ + data.data_dir ${data_path} \ + env.rank_size 1 \ + train.output_dir ${output_dir} \ + train.generator.lr_schedule.total_steps 10000, > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +FPS=`grep 'fps:' $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log| awk -F "fps:" '{print $2}' | awk -F "," '{print $1}' | tail -n +2| awk '{sum+=$1} END {print sum/NR}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#稳定性精度看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`echo "scale=2;${batch_size} * ${RANK_SIZE} * 1000 / ${FPS}"|bc` + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep 'Step:' $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk -F "loss_total:" '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendcv/runner/sess_config.py b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendcv/runner/sess_config.py index 9325b851d35389a0c9c4eccd3ab7f4f37654d60c..ed8c1fbc0eb7a7093194560e613745eda79846fd 100644 --- a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendcv/runner/sess_config.py +++ b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendcv/runner/sess_config.py @@ -12,18 +12,21 @@ # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf +from npu_bridge.npu_init import * def _npu_config(mix_precision, is_distributed): config = tf.ConfigProto() custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" - custom_op.parameter_map["enable_data_pre_proc"].b = False custom_op.parameter_map["mix_compile_mode"].b = False custom_op.parameter_map["use_off_line"].b = True custom_op.parameter_map["graph_memory_max_size"].s = tf.compat.as_bytes(str(28*1024 * 1024 * 1024)) custom_op.parameter_map["variable_memory_max_size"].s = tf.compat.as_bytes(str(3*1024 * 1024 * 1024)) custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") + custom_op.parameter_map["enable_data_pre_proc"].b = True + custom_op.parameter_map["iterations_per_loop"].i = 10 + config = npu_config_proto(config_proto=config) #if mix_precision: # custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") if is_distributed: diff --git a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendvsr/models/base_model.py b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendvsr/models/base_model.py index bff76f3153038f634f833b187d4ff3daefb885a2..cef442af6b656f53fd1e067ec65fd5b8399f4cec 100644 --- a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendvsr/models/base_model.py +++ b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/ascendvsr/models/base_model.py @@ -7,6 +7,7 @@ import json import re import tensorflow as tf from tqdm import trange +from npu_bridge.npu_init import * from ascendcv.runner.solver import build_solver from ascendcv.utils.writer import ImageWriter @@ -168,6 +169,7 @@ class VSR(object): self.saver = tf.train.Saver(max_to_keep=100, keep_checkpoint_every_n_hours=1) ave_loss = None + train_op = util.set_iteration_per_loop(sess, train_op, 10) st_time = time.time() for it in range(recover_step, solver.total_step): if self.read_mode == 'python': @@ -188,7 +190,7 @@ class VSR(object): if (it + 1) % self.solver.print_interval == 0 and \ not (npu_distributed and int(os.environ['DEVICE_ID']) != self.cfg.root_rank): - ave_time = once_time / self.solver.print_interval + ave_time = once_time / self.solver.print_interval / 10 fps = self.batch_size / ave_time * self.cfg.rank_size print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), 'Step:{}, lr:{:.8f}, loss:{:.08f}, session time:{:.2f}ms, session fps:{:.2f}, device_id: {}'.format( diff --git a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/test/train_performance_1p.sh index 7a1e537fc34eb6f1b7a817b42623cd2db0f2ec53..c64f63e125329b1d51d0779527eb6f5d62210114 100644 --- a/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/built-in/cv/Video_enhancement/EDVR_ID0056_for_TensorFlow/test/train_performance_1p.sh @@ -2,7 +2,7 @@ # source env.sh #当前路径,不需要修改 cur_path=`pwd` -export ASCEND_SLOG_PRINT_TO_STDOUT=1 +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 #集合通信参数,不需要修改 export RANK_SIZE=1 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/README.txt b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/README.txt deleted file mode 100644 index 5f176019472ffe937b0110dd6b6bd15886a05021..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/README.txt +++ /dev/null @@ -1,97 +0,0 @@ -************************************************************************** -AVA Dataset - June 2012 Release - -For detailed information, please refer to: - -“AVA: A Large-Scale Database for Aesthetic Visual Analysis”. Naila Murray, - Luca Marchesotti, Florent Perronnin, CVPR 2012. - -Contacts: -Naila Murray (nmurray [at] cvc [dot] uab [dot] es) -Luca Marchesotti (Luca [dot] Marchesotti [at] xrce [dot] xerox [dot] com) -************************************************************************** - -This package contains: - -1. AVA.txt -2. tags.txt -3. challenges.txt -4. aesthetic image lists: lists of train and test images used for aesthetics -experiments. -5. style image lists: lists of train and test images used for style -experiments. - -************************************************************************** -Content of AVA.txt -************************************************************************** - -Column 1: Index - -Column 2: Image ID - -Columns 3 - 12: Counts of aesthetics ratings on a scale of 1-10. Column 3 -has counts of ratings of 1 and column 12 has counts of ratings of 10. - -Columns 13 - 14: Semantic tag IDs. There are 66 IDs ranging from 1 to 66. -The file tags.txt contains the textual tag corresponding to the numerical -id. Each image has between 0 and 2 tags. Images with less than 2 tags have -a "0" in place of the missing tag(s). - -Column 15: Challenge ID. The file challenges.txt contains the name of -the challenge corresponding to each ID. - -************************************************************************** -Aesthetics image Lists -************************************************************************** - -The aesthetics_image_lists directory contains files with the IDs of images -used for training and testing generic aesthetics classifiers. There were: - -1. small scale (ss) experiments with few training images. -2. large scale (ls) experiments with many training images. - -The directory also contains lists of training and testing images used for -content (or category)-dependent classifiers. The categories are: animal, -architecture, cityscape, floral, food/drink, landscape, portrait, and -still-life. - -************************************************************************** -Style image Lists -************************************************************************** - -The style_image_lists directory contains files with the IDs of images -used for training and testing photographic style classifiers. The files are: - -1. train.jpgl - list of IDs of training images -2. test.jpgl - list of IDs of testing images -3. styles.txt - numeric style IDs and their associated photographic styles. -4. train.lab - annotations for images in train.jpgl consisting of numeric -style IDs. -5. test.multilab - binary annotations for images in test.jpgl. There are 14 -columns corresponding to the 14 possible styles so that, for example, a 1 -in column 3 means that the image has been labeled with the 3rd style listed -in styles.txt - -Note that the training images are single-labeled, but the test images are -multilabeled. - -************************************************************************** -How to obtain the images? -************************************************************************** - -The URLs for the images are constructed as: - - http://www.dpchallenge.com/image.php?IMAGE_ID= - -e.g., - - http://www.dpchallenge.com/image.php?IMAGE_ID=359334 - - -************************************************************************** -Copyright Considerations -************************************************************************** - -Rights to all images are retained by the photographers/dpchallenge. This -is why the image files are not included in the database. Please respect -the copyright and refrain from redistributing images or data. diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_test.jpgl deleted file mode 100644 index d6e67437be7b6b5fd394f3667cf0a7a385e6ffb2..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -629797 -902498 -588000 -448695 -237907 -314147 -306944 -486521 -545526 -126116 -28784 -415178 -713715 -234538 -53043 -497944 -722101 -843320 -334499 -156437 -185173 -413104 -639709 -384014 -438926 -758327 -349734 -722028 -822511 -731886 -534103 -538205 -715540 -120710 -598172 -555465 -427476 -864374 -40090 -200880 -926003 -232781 -596783 -778425 -605838 -645466 -323224 -743468 -799937 -445875 -649970 -941842 -810654 -764043 -405168 -862398 -836686 -347442 -185816 -505443 -310126 -38438 -67623 -80262 -935264 -85677 -579418 -72404 -761062 -432913 -223792 -389200 -518425 -756104 -172870 -204567 -638076 -133732 -72258 -597421 -85307 -303329 -635274 -429957 -723452 -95588 -669016 -317214 -79248 -747440 -25645 -119338 -425795 -463587 -637259 -595614 -234344 -206123 -640600 -846701 -118107 -922662 -162495 -545603 -857235 -477300 -26104 -683854 -434023 -879540 -500240 -748030 -662727 -365779 -709765 -472435 -792286 -288937 -537735 -764910 -475190 -786890 -954237 -43796 -155610 -857567 -938559 -338256 -13187 -812351 -453967 -203847 -1725 -359641 -35130 -763123 -778244 -637105 -81547 -168295 -577571 -893860 -82934 -157450 -620561 -31123 -698884 -650874 -245914 -119748 -71291 -11784 -942310 -405031 -948865 -256253 -518267 -285412 -60763 -276529 -906838 -327870 -174717 -38879 -160330 -946335 -859209 -679529 -118569 -526400 -614649 -901650 -652065 -310975 -109518 -580946 -751287 -11714 -365894 -172684 -611758 -12690 -449659 -437896 -669473 -817520 -284718 -525715 -120583 -376709 -354089 -638876 -36760 -251242 -505607 -919989 -917285 -560360 -671299 -437423 -526769 -684288 -317686 -430415 -430271 -773755 -902731 -456598 -284011 -302435 -482793 -204016 -77645 -196207 -90419 -951490 -366004 -281124 -880040 -546220 -578645 -938255 -810816 -759106 -527102 -785764 -887370 -93710 -277239 -386679 -852700 -581586 -595105 -809425 -913724 -456610 -569993 -863873 -486446 -291593 -809781 -225302 -728157 -422321 -287162 -840176 -597278 -577515 -905240 -263806 -506026 -884169 -676135 -512490 -864271 -576563 -244555 -845011 -676734 -48265 -141159 -557450 -763200 -926128 -511441 -706313 -340487 -434635 -783853 -524469 -433438 -561425 -349710 -300913 -650641 -759948 -140491 -954726 -637535 -626729 -693402 -234053 -725983 -476889 -854555 -514524 -367474 -263282 -243152 -94941 -437831 -425811 -220949 -843295 -231032 -908713 -442852 -187400 -425684 -278334 -445194 -570689 -182755 -706768 -494200 -505288 -257612 -626174 -639331 -848380 -298152 -413963 -577423 -248043 -206242 -425744 -752789 -133776 -189281 -339468 -907683 -287540 -824599 -759709 -122088 -665824 -426457 -816662 -343092 -894518 -321810 -261307 -847461 -30639 -24455 -102737 -241742 -855903 -258105 -405872 -737940 -310602 -597036 -627049 -203767 -82333 -546201 -894777 -613033 -18801 -458443 -227016 -160230 -713028 -255603 -796157 -778350 -184594 -778282 -373190 -579792 -95277 -853907 -136863 -382668 -254354 -719442 -19105 -305495 -477226 -134918 -120284 -475673 -875881 -899459 -384881 -640779 -866304 -162883 -481000 -864267 -879002 -638777 -935131 -285455 -265613 -247522 -305975 -723200 -852474 -894371 -836053 -579073 -186312 -263452 -21972 -595351 -897115 -936283 -402652 -910184 -637603 -233352 -650443 -204141 -204953 -186619 -163051 -637844 -637019 -818695 -321301 -495930 -611456 -916812 -283828 -124606 -650705 -318398 -3726 -309879 -55737 -456061 -287187 -627883 -826202 -110369 -181253 -21070 -757238 -886834 -520125 -880110 -884778 -286400 -776003 -916944 -847425 -67372 -161679 -771629 -879774 -204904 -794961 -34005 -540005 -716724 -429412 -848132 -517887 -338321 -608292 -784901 -263569 -735485 -755373 -939940 -189068 -340121 -350936 -329186 -463872 -62708 -443850 -344499 -168275 -677828 -851088 -286554 -770231 -578715 -245940 -106921 -32034 -251267 -357305 -11832 -757370 -343478 -84869 -285123 -23077 -716867 -357022 -908876 -283301 -405234 -458988 -307940 -881627 -163019 -944228 -516271 -67745 -693817 -582495 -909646 -650756 -937529 -19141 -339448 -446921 -176593 -189462 -778541 -847751 -416262 -39001 -756635 -521783 -402356 -759926 -738337 -713771 -305742 -163109 -68622 -46603 -679826 -376530 -109751 -189410 -477484 -764555 -737978 -902389 -589578 -714589 -751966 -120248 -650544 -777630 -681609 -78701 -140763 -49715 -689836 -517009 -427422 -417659 -767008 -536775 -743446 -75636 -751286 -574243 -614495 -948269 -672156 -187217 -638916 -829423 -649900 -738903 -129580 -615219 -420011 -337929 -78845 -293662 -802833 -577437 -36032 -714326 -81143 -578559 -342293 -487750 -577637 -18528 -372471 -138841 -201807 -38975 -331433 -756688 -564438 -716944 -455972 -586207 -25324 -480441 -388868 -284413 -185807 -78700 -287694 -9132 -188651 -601727 -764119 -570597 -628481 -430838 -580878 -595697 -135275 -847200 -43955 -938409 -459087 -40934 -11589 -656131 -188756 -771258 -467709 -851005 -416306 -455358 -489215 -36802 -741358 -376715 -756483 -70411 -356500 -388030 -170473 -476580 -598189 -911439 -106309 -831296 -25956 -456725 -67339 -698631 -577945 -790097 -437963 -795109 -830273 -155567 -878989 -84456 -546128 -81826 -949949 -625015 -287838 -505358 -732140 -898794 -772231 -303080 -136160 -738603 -772297 -188585 -865530 -288957 -492664 -278700 -564021 -11791 -49133 -802065 -840177 -122030 -65648 -611561 -795545 -589160 -956261 -117931 -369246 -55696 -612613 -263938 -287886 -36535 -830001 -545435 -468780 -188740 -198143 -433521 -828732 -189052 -455833 -513385 -526508 -257172 -121259 -785480 -75181 -71265 -857549 -395422 -632806 -774340 -96558 -504544 -19193 -504561 -316853 -499136 -570100 -712356 -581183 -573058 -649901 -894316 -577770 -825020 -772044 -578633 -159412 -408648 -40045 -615725 -804837 -763108 -526683 -581714 -747877 -763437 -427372 -78816 -429141 -149960 -497744 -933842 -637389 -56752 -254972 -154072 -355896 -599265 -818383 -251456 -648640 -655787 -661765 -55121 -814456 -358235 -923140 -737772 -383721 -614691 -502196 -638769 -205109 -405438 -109951 -674551 -315788 -718865 -831438 -585469 -273074 -85328 -742601 -342529 -446168 -464987 -651439 -124491 -598038 -241900 -776490 -552802 -55209 -454137 -464790 -732113 -755310 -333757 -40080 -391135 -120158 -781615 -277183 -707435 -851111 -691274 -237879 -163514 -30999 -735246 -927162 -480720 -622827 -296345 -272463 -500132 -934123 -936539 -109462 -123341 -383113 -458544 -204976 -638964 -390831 -421992 -409830 -893480 -720022 -230799 -188801 -569795 -748336 -116887 -343190 -485165 -66913 -67545 -263384 -835354 -188789 -427460 -662792 -903920 -603973 -158916 -127052 -368952 -656272 -187043 -369653 -666403 -917187 -535079 -532059 -391083 -731126 -925800 -784602 -287863 -453777 -870740 -658562 -917470 -767865 -55078 -306554 -383932 -641341 -924186 -222004 -729260 -786848 -79829 -26065 -577021 -575582 -235435 -190175 -653110 -330259 -505094 -643185 -452572 -906005 -53753 -253340 -527388 -243071 -441109 -720152 -796739 -782400 -188680 -775583 -18982 -667369 -370563 -716482 -759090 -204559 -902462 -772507 -781548 -371896 -802744 -24258 -63879 -345707 -115735 -19164 -667335 -596037 -53737 -578634 -161617 -22653 -593572 -862373 -484004 -56495 -151318 -637594 -765938 -192478 -429489 -168063 -885073 -597006 -109380 -841272 -455539 -279774 -232789 -551587 -650659 -204948 -894111 -769212 -152605 -704652 -712283 -90250 -629339 -772021 -419349 -637086 -854722 -595928 -727870 -394701 -522686 -828820 -488982 -163412 -255879 -678582 -932831 -69523 -5143 -1779 -188467 -61034 -664511 -337530 -530230 -898552 -71906 -764349 -776901 -650580 -638904 -26013 -161407 -409610 -451780 -650238 -797411 -5282 -332737 -436014 -27683 -134560 -757247 -782263 -63400 -651497 -661016 -574125 -155369 -706641 -772291 -727039 -544275 -158903 -625533 -395812 -625601 -369832 -779268 -362505 -436367 -945549 -264167 -732248 -630157 -686685 -569936 -763856 -656029 -754228 -625008 -386438 -109643 -680598 -579734 -947137 -560222 -445337 -385250 -761463 -693741 -502356 -284696 -514729 -830511 -705390 -592949 -638903 -676771 -780481 -770007 -37747 -902443 -331349 -617846 -564192 -902348 -595743 -483124 -133728 -777907 -519101 -154725 -143762 -802501 -69234 -797073 -710077 -486608 -276118 -754773 -155415 -168250 -19206 -116779 -828638 -441813 -756611 -564832 -40032 -528900 -158812 -665110 -816584 -391085 -121383 -477474 -893827 -197846 -437723 -943953 -358767 -927408 -205098 -748899 -393683 -268979 -894314 -177967 -136602 -770679 -896076 -790764 -600184 -593523 -230928 -319006 -45265 -150307 -448632 -637838 -40069 -629941 -455391 -842613 -284898 -924739 -402990 -756213 -665557 -827213 -671387 -733903 -759353 -777307 -160643 -562175 -296421 -67418 -563986 -210946 -708928 -638862 -690863 -436098 -342022 -753595 -387696 -246339 -148762 -44856 -362537 -666887 -33975 -40885 -292957 -121021 -538870 -598839 -287798 -911404 -712539 -761939 -617487 -38955 -324984 -638661 -227590 -577329 -451799 -256738 -497834 -950627 -344498 -726334 -278199 -464811 -902411 -328127 -957645 -43275 -939952 -66787 -607110 -541567 -106060 -445421 -777685 -403737 -71860 -182756 -370910 -611437 -898926 -954045 -400195 -609317 -300664 -160815 -436915 -300627 -412613 -78114 -38120 -449191 -289088 -63379 -162165 -86519 -109384 -894516 -948760 -269956 -778489 -816537 -83274 -731619 -305094 -249393 -60320 -158790 -829138 -912066 -508119 -342779 -947175 -657474 -754392 -27688 -15856 -124930 -361603 -831378 -756743 -24780 -150674 -204476 -838574 -782296 -943949 -713583 -162564 -524819 -109621 -687316 -515559 -233242 -723429 -799936 -643045 -211550 -493940 -136657 -626660 -225774 -523688 -713700 -289241 -437674 -81731 -278566 -106331 -917447 -948467 -609788 -135165 -608659 -460249 -129640 -42821 -434556 -259730 -79889 -686574 -730894 -768403 -326336 -914298 -12784 -808832 -654755 -299460 -247384 -411313 -318992 -461667 -667793 -13445 -667802 -30676 -132193 -578468 -515914 -204513 -545948 -287440 -457108 -802903 -646356 -223206 -694086 -483875 -642904 -359298 -771792 -771569 -946856 -796464 -228203 -175662 -455467 -294727 -3136 -842990 -281854 -366067 -56493 -911363 -477254 -19098 -69783 -118105 -343675 -106293 -75176 -842309 -10848 -948797 -654206 -764485 -797394 -185184 -598412 -24174 -475360 -328667 -599653 -855308 -344878 -384956 -763486 -24997 -504551 -120129 -907881 -666607 -902495 -727146 -532987 -756485 -908135 -162807 -9730 -839881 -27614 -458150 -403684 -514249 -271317 -11772 -181522 -552679 -751952 -287167 -917417 -317276 -728813 -318856 -85452 -174270 -512521 -272061 -456728 -646418 -875985 -899091 -315434 -82177 -661745 -74361 -438030 -734654 -140536 -22934 -498421 -19199 -772353 -234368 -791997 -189067 -460865 -185733 -37722 -282785 -938299 -609613 -607156 -117218 -4370 -60760 -444654 -734388 -899646 -356443 -571397 -109955 -395713 -742119 -437969 -754483 -668155 -762796 -232685 -386580 -373524 -867805 -327370 -538807 -451593 -159016 -943874 -755927 -129286 -300166 -633811 -26015 -734716 -665341 -34983 -534799 -893961 -462224 -274694 -395639 -948284 -117359 -241418 -564553 -730681 -183947 -200238 -587991 -105836 -625672 -782935 -502970 -129033 -388750 -75449 -729931 -384714 -247866 -764580 -579151 -18365 -656231 -907966 -837011 -717008 -528822 -327796 -796012 -813212 -284371 -109640 -63224 -786843 -841524 -831411 -445735 -349499 -710228 -724499 -828731 -46165 -593994 -396045 -54338 -63535 -764400 -608174 -635048 -7301 -582430 -765153 -129926 -369657 -292552 -388681 -95447 -205253 -201925 -858118 -505658 -15611 -607272 -732121 -598311 -777466 -770221 -590542 -816742 -518732 -930396 -18804 -188737 -919860 -289314 -456432 -274835 -664779 -367973 -43038 -810910 -17579 -919916 -779992 -543637 -283673 -954535 -390619 -638850 -432150 -451722 -285121 -764635 -784491 -259979 -715527 -669553 -72015 -639023 -61107 -30518 -86634 -498218 -18347 -156853 -300725 -284675 -567871 -573040 -851296 -661493 -227143 -7112 -495356 -10575 -808609 -456306 -391395 -591976 -284238 -284598 -164687 -516651 -713649 -500494 -253792 -317890 -487593 -118098 -917395 -436828 -84185 -572622 -730271 -324624 -786499 -661899 -437502 -203884 -595502 -821824 -550401 -300791 -295808 -787928 -336891 -656218 -764266 -358662 -162232 -764550 -359936 -771892 -65856 -327399 -851471 -391611 -713655 -375068 -778333 -230358 -611213 -920036 -239279 -39223 -204875 -911250 -85061 -850786 -109308 -293849 -617746 -468302 -466815 -459303 -45995 -18127 -579753 -221985 -906881 -802790 -226905 -553849 -118031 -570094 -196353 -300753 -731153 -745890 -188240 -474159 -350229 -803511 -17108 -38072 -588278 -163087 -188356 -446653 -756421 -345888 -405780 -284771 -404626 -555762 -240242 -272528 -117136 -468598 -315736 -614055 -403075 -44052 -714573 -514788 -859673 -115137 -327964 -650283 -161565 -607358 -101847 -719452 -674517 -828771 -156520 -344338 -421037 -836616 -324645 -58736 -649079 -596091 -666715 -39378 -227918 -777309 -930047 -511450 -43257 -768433 -884366 -256655 -640887 -56737 -644255 -672132 -528570 -279948 -436430 -650808 -731935 -648453 -456115 -314785 -712649 -134012 -328412 -684456 -601252 -593760 -382465 -679377 -36745 -698279 -317413 -81110 -303113 -675046 -650373 -342600 -320858 -134704 -501162 -456926 -496794 -606875 -907785 -18219 -484230 -38343 -116756 -818369 -188140 -786931 -501400 -948667 -105108 -504713 -596650 -643017 -795604 -503434 -361973 -248956 -343735 -799417 -704615 -848234 -564482 -119702 -483668 -588064 -547060 -768127 -900920 -26374 -449072 -303574 -77158 -369415 -878419 -546194 -688596 -391531 -713569 -592400 -109591 -716939 -285391 -902291 -302986 -655835 -116806 -202661 -810690 -591682 -830725 -633124 -898547 -709117 -423048 -115490 -853234 -540674 -617548 -593468 -899650 -743309 -732276 -786908 -950102 -253651 -665529 -276218 -251824 -842853 -827596 -660059 -9436 -170824 -590433 -13050 -167862 -132368 -163074 -433484 -282968 -803215 -87033 -803559 -153260 -866017 -551124 -523504 -39989 -790743 -536632 -375205 -802523 -477390 -502662 -769050 -934274 -748628 -514171 -19063 -909879 -726946 -132847 -597329 -477562 -897139 -592985 -791505 -106307 -947508 -284926 -566002 -223452 -640957 -733917 -543698 -412028 -788854 -544646 -603498 -708606 -84365 -938596 -529325 -446734 -716934 -527403 -264597 -65455 -734663 -884982 -638722 -420004 -132245 -18800 -342083 -640531 -45247 -705104 -377536 -246249 -199354 -331538 -40916 -648566 -457900 -477225 -842273 -30592 -24092 -854304 -552480 -244325 -880447 -679288 -457866 -524494 -692743 -205052 -597631 -171235 -848021 -823849 -91044 -19159 -154024 -953289 -276453 -398202 -505656 -78782 -206580 -84124 -573748 -140116 -942248 -597371 -204139 -349219 -868642 -284884 -263562 -119997 -26850 -554578 -66835 -524104 -220455 -16516 -121226 -140784 -265870 -676194 -136591 -360176 -109778 -22659 -357629 -894221 -797405 -640528 -942004 -632803 -109356 -455226 -888106 -222973 -792580 -610560 -237290 -365975 -699744 -237531 -456767 -662691 -77494 -204786 -437245 -459509 -186841 -733616 -13274 -456748 -601148 -802404 -704345 -364504 -233901 -516167 -455661 -510990 -102281 -18503 -67548 -405423 -616761 -825068 -601942 -118951 -857532 -790204 -182727 -435006 -451719 -916647 -570234 -235310 -9488 -716176 -117437 -287969 -684189 -437648 -260331 -817523 -162981 -938523 -393412 -944829 -775691 -760788 -456311 -899255 -256836 -189008 -162610 -205257 -86572 -367848 -387266 -446504 -517033 -577711 -510475 -456487 -61744 -45667 -955317 -189069 -487476 -938289 -199447 -84169 -770037 -188474 -913802 -425971 -8118 -106350 -388533 -215210 -564388 -183533 -36235 -348393 -285746 -162977 -248009 -857121 -386623 -18384 -109439 -902464 -683298 -519824 -278065 -12061 -297638 -682125 -109547 -69607 -796222 -456720 -133887 -559408 -525139 -36446 -500828 -600895 -19022 -865008 -639014 -598321 -204176 -431354 -755204 -188233 -462023 -733554 -504362 -778439 -129795 -69943 -650768 -309538 -716586 -698183 -881685 -437775 -698541 -522675 -879729 -292367 -283216 -421094 -186022 -233817 -686710 -50909 -538130 -684760 -18455 -730308 -162609 -825585 -923251 -80395 -693758 -238996 -543100 -796937 -360859 -669454 -67268 -123119 -342449 -75601 -661504 -18969 -385452 -885355 -516298 -333677 -59217 -42532 -867498 -491037 -731987 -21089 -755362 -284646 -764467 -461313 -444966 -661561 -932838 -795140 -398163 -65105 -680501 -525765 -271319 -522062 -64270 -26271 -257775 -328700 -226506 -161747 -656223 -533198 -223380 -513430 -86955 -12880 -303403 -449299 -938541 -444911 -734564 -285666 -684291 -631255 -367682 -37733 -626466 -471154 -151130 -776920 -312801 -593947 -803632 -300377 -587184 -615595 -598417 -205423 -724115 -671692 -456383 -902297 -651420 -187682 -439173 -651440 -202298 -157282 -176452 -941432 -809930 -297494 -438043 -670787 -697254 -94655 -258053 -129309 -781390 -51387 -453816 -435986 -57222 -327533 -94734 -102872 -830563 -670047 -638038 -790724 -284905 -135697 -792836 -894478 -284349 -539707 -156133 -625536 -518597 -698471 -109454 -660045 -395730 -429266 -762206 -530933 -480626 -456702 -26651 -637542 -639034 -536288 -525215 -148738 -413278 -61974 -19111 -83686 -952935 -776642 -281435 -638998 -405331 -549644 -25522 -285333 -409204 -333909 -504163 -53039 -650895 -947084 -447682 -189056 -455890 -157028 -693775 -576704 -122086 -44041 -390017 -597258 -109484 -716203 -324429 -362195 -457512 -316772 -680962 -330196 -479058 -778556 -154717 -773818 -597538 -323550 -763809 -454254 -323321 -825252 -67317 -686401 -602492 -204072 -216952 -106232 -475125 -446424 -778321 -705340 -86958 -434805 -458705 -456264 -638097 -705410 -72326 -750597 -598044 -570299 -568283 -825267 -56536 -491039 -652676 -721334 -785519 -344508 -411154 -941507 -777408 -449964 -284762 -74297 -663488 -290739 -97934 -777905 -908404 -529132 -229088 -298815 -651552 -796258 -800038 -67412 -14885 -433090 -56136 -690768 -18623 -804727 -614465 -279060 -463581 -719485 -312551 -515549 -638666 -582906 -586008 -563708 -564491 -463939 -158006 -157499 -571297 -476287 -21294 -634899 -60182 -763113 -712677 -109421 -373883 -748861 -462027 -769540 -285380 -438108 -57306 -524262 -94681 -356151 -124086 -18824 -777507 -158495 -577110 -778308 -67527 -785557 -577181 -328189 -864918 -723952 -350221 -712536 -440450 -905100 -723605 -763490 -338250 -457127 -756893 -453758 -902409 -917073 -19018 -754772 -39114 -311194 -777488 -102166 -883474 -516545 -882385 -600254 -320512 -57257 -109478 -148519 -935551 -434945 -626695 -234564 -44286 -114687 -56561 -648056 -132134 -948217 -434742 -403961 -397555 -66953 -271322 -227663 -258166 -150658 -716898 -419947 -18937 -674005 -80185 -848030 -181521 -129031 -656676 -539248 -511782 -574063 -846521 -54333 -893972 -354340 -751706 -188772 -230154 -297481 -901296 -652064 -931460 -638826 -667113 -761853 -598150 -784678 -750615 -638225 -48283 -249022 -760859 -317618 -30143 -36364 -85910 -846664 -121032 -755382 -653912 -178044 -18677 -472331 -168070 -504280 -808071 -271803 -704032 -282536 -736704 -723392 -761542 -438134 -357041 -94386 -716666 -69342 -292240 -754983 -846651 -755377 -329839 -603836 -236157 -538035 -44309 -388836 -797153 -109748 -406600 -158720 -883094 -13236 -416829 -713678 -667298 -116876 -57284 -881515 -850723 -518410 -77162 -182357 -916959 -812567 -456437 -618452 -785579 -287473 -940152 -419155 -943231 -418201 -76969 -420975 -775544 -561014 -598320 -445149 -122600 -599136 -456145 -455882 -600721 -450741 -614710 -224053 -893692 -649573 -473888 -261926 -743489 -653591 -951260 -286586 -288320 -74669 -18962 -831289 -79953 -614059 -604106 -516059 -56738 -426039 -172618 -767006 -505618 -851084 -863652 -799289 -55757 -57275 -120887 -438083 -291037 -93106 -518448 -644776 -144357 -638327 -266867 -664823 -566172 -596219 -698380 -693109 -325080 -772765 -864216 -754277 -189062 -189047 -387327 -599438 -675491 -713065 -327999 -339576 -536110 -623371 -800164 -574113 -614054 -222038 -296772 -534397 -582194 -857519 -221147 -481913 -453991 -59935 -13057 -771404 -427423 -357324 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_train.jpgl deleted file mode 100644 index 9c9c09eb2d2ad8decdf2773c13e5caef36f5e594..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/animal_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -753815 -285698 -730630 -886571 -599878 -909513 -129561 -756712 -742959 -129903 -901890 -250396 -865543 -736531 -601119 -279264 -94478 -923121 -262909 -276055 -777090 -805495 -343483 -464021 -675056 -496817 -751921 -905033 -173000 -18490 -827638 -551820 -713250 -638943 -777682 -336332 -261274 -696856 -163052 -303246 -736686 -171182 -257230 -440346 -434524 -894798 -199536 -118069 -54860 -161810 -651159 -525112 -12515 -36843 -402617 -685748 -427529 -518802 -767829 -830735 -579285 -328674 -32236 -336198 -584710 -767454 -436869 -525523 -432945 -183798 -383250 -329163 -188432 -314927 -667390 -281053 -733118 -213869 -119332 -677907 -512675 -451520 -814925 -187924 -354610 -650048 -523212 -732150 -754661 -257902 -472232 -604059 -377347 -560372 -51333 -30408 -141353 -498124 -201754 -369862 -176385 -638816 -432924 -650634 -327272 -303153 -285292 -347240 -771253 -314938 -38664 -11733 -455963 -776624 -638881 -65588 -649647 -350928 -818403 -303242 -86474 -249180 -73259 -128540 -792928 -292627 -732277 -527641 -8253 -43926 -591515 -56564 -9958 -638234 -280860 -435760 -382874 -257184 -156271 -598225 -168059 -256311 -368260 -767881 -75827 -455658 -744066 -313713 -132858 -284831 -534640 -460996 -276978 -129021 -432559 -890325 -289381 -134342 -311888 -440115 -117838 -328809 -937407 -403725 -803233 -573880 -206561 -206534 -690025 -375568 -215020 -603712 -893369 -29453 -527474 -612929 -460569 -205675 -182177 -786233 -402163 -935523 -759859 -817903 -395935 -117967 -911371 -147463 -703122 -62065 -328877 -915645 -818731 -710122 -680406 -375249 -205085 -358411 -704207 -809774 -838407 -154817 -778068 -431895 -668652 -250046 -294595 -109191 -733553 -627984 -69518 -648276 -24166 -596106 -686554 -82300 -154105 -939231 -61714 -645724 -56621 -818329 -527864 -134559 -663802 -437848 -117830 -252402 -30710 -387452 -70320 -436976 -516231 -446335 -423420 -158129 -148446 -109438 -163114 -368944 -488841 -132388 -298255 -579812 -340019 -575543 -298762 -574207 -921919 -448514 -67314 -618251 -274605 -566983 -188901 -278283 -70087 -527595 -85448 -351674 -437356 -773800 -923011 -838201 -437416 -389737 -13052 -750933 -541242 -224839 -48177 -886196 -830266 -14838 -86531 -590816 -751720 -84826 -809764 -713705 -65209 -717001 -105489 -814863 -74115 -436874 -161663 -67766 -92179 -827592 -401135 -39563 -894528 -30625 -162112 -223125 -597763 -191282 -678212 -935121 -463701 -372540 -293910 -109477 -576532 -158465 -12029 -429224 -753547 -372827 -650353 -945215 -205363 -272452 -703174 -771674 -850951 -720931 -926574 -796127 -698783 -673165 -370286 -176220 -654788 -94935 -743346 -797451 -139201 -676090 -838096 -283805 -18865 -795796 -533095 -55640 -455930 -82348 -534778 -940396 -224248 -729361 -163094 -235684 -257380 -795573 -75857 -729143 -886159 -161503 -90108 -567939 -809532 -538175 -39959 -77169 -314680 -298416 -732134 -187357 -435810 -589702 -932570 -101524 -539638 -87024 -75403 -310784 -752979 -440491 -574463 -648902 -61183 -442911 -278584 -162909 -413776 -364301 -162614 -764586 -371465 -575336 -270723 -834036 -592536 -598201 -232664 -158814 -713174 -472138 -904498 -679460 -255443 -162929 -356238 -830119 -133855 -365957 -401872 -505733 -913065 -84766 -506550 -650413 -158666 -627531 -818505 -843273 -448002 -590559 -845020 -815023 -21095 -84651 -163090 -685774 -937120 -802407 -171277 -86554 -913811 -552081 -162835 -415606 -46576 -437813 -435582 -68316 -24511 -284362 -314286 -1327 -108946 -619808 -673953 -795080 -930280 -623816 -271104 -32833 -587566 -456436 -461371 -795582 -339944 -563646 -593489 -880430 -186625 -163413 -901887 -397090 -593904 -18442 -954750 -230640 -652267 -720814 -485562 -848001 -847620 -824987 -686617 -19404 -847784 -919701 -23988 -681577 -638648 -824703 -832828 -516378 -859697 -640857 -579344 -931055 -902115 -594079 -744388 -92065 -650625 -636282 -337375 -289390 -430159 -777521 -809739 -44713 -46325 -61864 -26731 -205108 -770514 -937186 -406605 -592299 -505566 -821386 -836427 -26714 -785559 -227850 -119959 -342295 -56608 -264132 -163078 -857512 -650738 -356793 -927204 -174367 -467274 -754283 -829811 -468404 -337996 -778341 -743297 -456552 -333485 -75894 -954466 -602688 -784871 -38721 -461447 -285442 -587976 -375837 -81691 -18946 -59085 -452588 -35078 -596493 -9527 -52589 -270123 -712877 -432379 -674909 -848859 -158976 -110152 -385663 -419965 -767295 -688032 -161971 -925871 -311661 -917348 -838337 -95010 -251856 -270915 -470328 -388661 -482294 -741400 -426703 -274290 -390995 -71317 -886696 -647562 -274810 -350071 -39090 -573829 -68155 -446438 -617991 -553297 -764466 -765585 -399541 -75603 -764244 -554885 -957055 -904179 -638673 -362115 -902480 -161746 -75437 -763180 -866957 -472421 -776816 -790750 -485329 -345408 -279406 -932278 -161614 -63409 -189526 -716469 -786193 -82270 -373303 -636821 -575978 -488775 -658838 -289359 -716705 -588179 -924475 -38483 -489625 -518690 -445002 -434818 -157327 -930145 -664599 -203438 -238968 -271072 -247649 -444997 -156235 -644380 -129645 -691450 -206257 -223958 -374011 -55715 -205373 -383257 -803485 -634196 -7411 -579788 -500280 -350603 -372911 -284136 -271282 -664889 -347928 -136759 -376396 -95074 -396072 -658679 -764258 -69141 -95570 -457961 -476969 -707386 -941980 -118304 -851219 -396825 -161438 -598147 -518593 -13275 -657634 -955605 -284873 -74721 -182675 -938292 -654756 -51642 -82167 -364838 -284981 -650888 -844565 -444761 -36407 -260333 -172891 -290158 -802290 -439741 -157381 -866944 -723297 -763495 -205450 -202536 -285603 -284507 -670978 -287050 -430423 -274791 -756749 -664268 -199466 -22849 -522872 -536006 -156135 -703659 -636020 -403347 -767949 -55128 -461963 -630798 -833789 -285316 -685066 -880733 -524644 -741854 -415105 -901139 -48234 -249577 -17434 -228039 -689648 -109043 -420993 -933342 -287932 -598276 -752239 -57221 -902620 -482781 -778093 -561433 -525201 -375851 -441732 -371991 -894509 -533398 -297938 -693762 -914156 -225640 -898517 -721775 -125077 -642471 -741209 -327530 -9371 -790345 -705280 -932828 -19866 -132066 -72499 -288001 -919935 -782257 -617898 -265027 -863866 -755252 -706965 -188990 -737832 -204949 -579859 -623616 -284806 -71114 -252329 -606762 -134476 -244401 -686898 -163086 -552834 -319227 -356126 -735270 -778390 -18942 -654056 -763918 -594029 -490649 -141564 -46449 -428089 -375891 -944246 -880483 -338419 -417014 -576400 -191454 -11774 -162415 -162920 -431346 -461826 -19131 -698527 -764423 -506292 -32757 -31805 -384089 -800737 -926666 -517883 -519225 -489725 -40017 -713012 -188371 -635854 -916016 -37540 -919962 -12154 -419954 -204537 -42617 -770038 -109870 -826140 -30815 -653762 -596632 -443238 -542062 -710771 -803091 -908240 -638312 -540593 -288705 -646485 -438089 -772088 -691200 -345815 -720298 -85330 -9833 -696311 -348382 -637397 -74399 -698267 -129344 -885543 -897626 -809601 -593798 -805325 -920020 -281270 -340697 -868928 -653116 -600464 -86866 -327386 -390103 -390470 -639027 -822546 -11699 -368926 -117207 -26213 -686340 -768747 -277303 -763014 -557045 -539121 -55779 -648355 -608446 -810448 -409834 -901860 -839254 -280448 -219536 -21389 -545859 -435920 -528432 -501721 -536559 -579942 -916455 -926558 -37798 -25013 -120000 -655778 -18368 -716968 -589743 -318577 -883532 -600550 -412676 -786555 -900461 -602911 -374632 -109163 -591692 -53152 -772367 -772523 -357020 -127625 -438049 -912238 -451793 -571722 -787000 -937642 -796217 -875575 -245008 -276601 -50839 -775433 -713637 -766047 -851142 -180258 -375504 -388364 -403477 -256734 -771049 -598008 -87083 -726744 -292218 -677724 -328932 -942850 -289089 -338983 -426723 -109369 -676299 -157351 -303263 -677174 -294560 -456473 -638610 -38167 -574260 -646340 -437472 -35856 -820343 -36635 -263572 -316682 -897048 -33311 -637042 -696688 -546661 -609179 -489726 -335392 -461559 -545833 -140274 -411137 -245380 -878567 -494210 -535243 -563397 -280577 -719132 -731838 -451157 -173616 -204073 -520615 -851135 -588320 -749525 -353569 -71275 -511055 -349367 -770435 -949209 -456553 -285413 -949055 -337945 -773937 -622638 -416413 -831102 -298043 -172475 -230917 -796095 -38866 -598753 -346535 -795114 -817774 -278744 -784383 -203753 -869701 -22313 -625785 -501388 -188615 -543132 -649870 -456314 -627063 -916683 -879659 -591453 -646704 -732117 -716540 -897767 -840088 -625267 -792851 -328187 -749485 -119060 -864256 -904625 -770288 -203787 -454143 -198429 -941837 -262396 -269326 -550710 -910721 -118189 -517631 -725902 -566674 -894350 -438788 -415697 -775442 -412877 -913827 -407899 -942219 -927197 -553486 -824654 -564589 -436587 -855825 -843281 -864823 -81548 -17027 -689606 -833994 -186035 -149302 -743765 -167602 -820642 -274693 -511211 -761495 -56699 -522876 -896158 -425816 -558870 -462534 -834209 -306790 -66950 -437019 -426659 -946407 -597407 -343999 -56602 -364270 -527674 -902517 -277515 -650584 -280786 -436485 -883380 -317053 -348572 -598023 -635578 -343980 -75704 -59237 -52998 -924251 -174695 -442499 -551281 -285522 -201717 -414844 -902697 -575320 -437976 -577597 -311192 -229514 -78618 -287751 -863366 -674726 -821124 -784825 -391089 -327761 -813175 -424279 -309699 -826658 -235208 -680657 -461298 -110506 -732273 -704328 -830974 -913787 -531261 -404023 -39245 -554833 -828795 -593940 -83773 -440244 -260214 -678447 -295676 -66882 -157500 -654244 -883402 -2547 -445335 -841319 -526817 -636081 -716729 -812879 -571814 -902192 -938096 -564369 -596735 -836755 -793667 -614589 -132684 -545273 -13460 -300803 -284857 -574049 -473212 -942006 -731309 -236273 -9790 -536868 -911185 -19276 -597042 -910057 -797429 -46666 -437954 -821686 -724440 -634462 -906014 -581008 -810170 -63630 -476455 -693560 -187039 -884458 -635159 -258003 -892491 -597364 -284703 -771884 -440510 -825726 -109002 -379289 -909656 -188659 -257191 -763032 -902911 -161361 -327584 -55005 -779137 -497894 -660042 -906607 -783120 -256819 -570429 -13780 -183242 -162862 -775358 -770412 -55098 -763166 -451442 -764506 -114678 -785457 -914303 -518603 -667183 -721925 -764035 -187879 -204491 -627375 -703697 -437809 -14995 -650099 -370997 -797342 -926509 -384054 -763931 -302676 -39197 -811902 -106724 -735782 -330466 -638979 -797510 -652041 -913908 -581579 -294753 -292877 -18684 -342250 -398674 -19067 -61929 -859735 -596680 -106334 -416760 -785586 -495749 -158585 -504714 -340665 -712815 -451609 -291370 -34185 -249450 -151303 -249511 -78611 -438019 -478303 -850933 -366011 -529025 -533883 -55771 -504565 -556876 -580488 -597929 -762757 -830790 -562364 -852716 -424073 -382742 -373912 -465561 -639044 -677213 -106253 -63672 -24325 -77515 -364913 -371022 -202481 -163553 -788596 -208961 -652568 -523470 -578753 -136226 -765595 -575451 -116726 -162907 -258195 -274476 -371038 -656136 -777901 -579856 -109469 -99334 -649621 -75486 -272324 -940441 -236269 -732268 -346166 -526331 -916456 -629425 -324573 -124458 -269526 -626257 -936247 -136787 -770987 -902212 -950094 -663319 -18833 -24175 -911078 -204469 -436099 -83723 -535043 -78037 -325964 -43717 -778055 -192917 -764257 -222119 -785466 -90460 -708937 -835235 -791835 -883717 -898078 -684200 -716746 -162145 -514725 -288199 -949088 -380913 -300304 -108890 -144643 -673189 -411266 -356164 -542293 -902164 -11762 -464899 -764599 -693818 -855755 -946963 -784770 -189077 -80147 -913693 -346283 -52625 -259360 -834025 -188532 -635699 -944381 -434141 -605686 -7403 -778297 -55705 -56722 -454647 -303903 -831311 -204688 -315561 -596744 -593715 -796113 -838169 -330613 -169355 -369803 -501263 -48641 -735985 -927084 -788726 -626091 -528412 -777301 -582325 -767695 -746907 -136593 -86607 -569917 -651795 -236185 -13102 -482198 -22993 -69673 -78712 -635923 -260270 -388541 -494615 -474078 -946594 -640482 -432008 -437696 -483795 -474859 -592754 -106187 -206390 -617015 -605678 -284113 -514673 -662399 -619113 -204093 -830372 -491873 -771484 -956611 -431886 -762843 -374970 -499106 -600022 -651547 -529020 -133969 -30671 -133176 -650713 -181372 -73933 -98458 -517896 -850563 -205352 -221516 -570571 -55818 -647962 -596741 -836064 -632900 -527154 -2101 -836060 -635319 -941523 -81534 -18765 -366149 -618097 -937831 -604126 -763441 -321997 -908012 -618212 -568189 -437348 -383994 -9757 -148502 -326780 -375882 -953933 -483964 -491068 -297774 -666975 -121228 -443597 -452335 -588040 -841997 -188372 -70897 -491403 -236027 -416662 -470716 -716513 -248373 -204827 -694372 -570369 -105996 -770824 -205756 -446433 -517708 -798880 -839080 -521973 -585400 -56557 -782186 -504833 -911846 -18607 -28063 -428565 -650640 -779793 -55772 -637385 -340538 -287203 -455817 -594004 -659689 -36223 -865474 -943608 -18950 -117968 -857449 -426775 -913668 -599962 -456309 -735272 -685328 -886827 -105729 -804842 -388309 -534471 -550873 -599326 -461503 -261364 -680723 -785534 -836661 -726407 -810070 -268883 -348103 -462098 -205343 -285070 -31755 -505697 -876576 -59016 -462499 -706364 -800886 -317361 -309677 -763415 -200517 -633933 -773900 -163935 -390253 -855455 -433432 -713650 -656148 -538347 -205254 -69677 -411407 -341669 -833932 -436944 -106359 -790638 -693719 -170544 -65122 -875738 -205456 -596203 -142334 -927494 -904134 -288637 -256368 -117202 -598013 -641055 -474288 -901255 -650475 -864100 -755126 -942339 -768001 -385257 -135393 -285642 -920010 -698933 -803280 -905324 -821883 -456499 -204502 -348584 -445327 -606804 -65881 -579487 -924090 -579432 -234302 -362375 -777290 -763185 -252178 -837979 -578758 -641408 -528292 -382039 -750261 -670682 -74635 -314631 -35003 -162939 -391800 -472074 -304338 -261015 -778054 -377306 -506723 -850820 -911542 -828698 -552705 -10324 -810801 -158000 -428183 -184008 -658264 -140239 -540265 -642779 -538964 -725442 -226898 -151070 -105569 -289120 -188792 -418818 -405064 -108985 -734326 -25561 -340284 -110327 -82352 -156471 -917404 -941519 -272857 -278897 -349962 -570470 -638756 -772470 -707699 -44450 -732013 -684104 -23968 -32498 -598415 -109294 -438065 -78335 -8242 -759789 -452480 -887286 -205446 -885541 -616493 -650225 -537074 -411291 -686329 -788603 -598317 -905395 -545839 -600366 -943737 -76854 -852140 -362208 -395592 -454930 -84513 -658767 -203388 -797430 -162459 -723719 -12433 -390521 -770687 -783888 -858032 -47296 -772414 -551859 -715255 -402043 -483412 -779773 -769833 -581883 -516584 -167310 -66555 -865892 -161791 -870468 -792619 -681204 -667307 -183314 -116056 -369234 -777525 -765527 -497308 -811826 -486804 -285065 -243113 -698913 -546068 -189011 -902119 -642994 -693536 -18565 -831462 -353240 -822656 -778195 -174643 -564583 -297708 -327942 -260509 -472333 -447981 -285464 -600188 -472574 -516187 -938221 -259803 -52037 -456435 -686211 -805392 -761275 -739550 -343996 -215969 -444623 -415221 -682301 -199537 -906721 -243728 -537975 -950754 -173913 -437547 -956701 -20525 -275640 -70583 -573516 -16223 -936887 -850261 -10507 -446241 -856187 -344292 -763199 -117986 -652618 -476514 -313303 -164674 -60418 -611646 -247033 -775654 -67407 -59086 -308035 -188104 -245453 -503298 -900135 -901440 -8456 -116713 -800789 -340215 -832589 -10276 -426056 -755171 -558797 -280908 -275288 -633107 -722314 -754058 -864253 -235895 -5217 -1384 -284945 -423588 -17650 -528363 -726995 -671342 -133991 -415227 -564487 -369856 -771476 -344333 -572254 -415826 -204084 -511755 -476672 -496561 -275330 -314808 -465021 -817721 -809676 -731714 -851037 -136409 -713657 -208304 -927072 -674964 -464339 -822468 -834248 -810337 -597429 -909922 -917335 -12844 -38878 -205458 -437570 -49322 -901857 -372479 -624243 -756407 -640435 -258461 -129112 -356749 -386053 -769154 -723771 -16403 -809652 -588677 -36529 -626674 -728501 -432457 -822182 -453603 -563154 -109386 -916004 -684269 -429152 -650661 -571678 -632461 -117190 -581674 -748335 -368286 -142436 -293985 -785313 -331561 -88876 -422741 -162801 -462131 -659212 -635872 -874747 -763012 -110350 -257423 -498259 -132307 -52215 -284849 -667301 -249440 -80174 -906632 -878491 -651083 -256083 -797452 -879270 -663932 -778017 -874937 -435236 -523653 -186937 -287744 -850332 -19175 -929046 -678010 -258174 -579693 -922708 -136718 -204799 -899053 -343109 -894306 -271787 -673988 -598177 -639814 -315723 -188441 -109333 -606107 -227200 -625828 -369261 -204443 -70495 -678000 -129709 -313350 -419104 -124553 -564218 -665890 -636118 -638142 -894175 -294720 -342902 -875994 -82145 -910142 -188547 -271116 -244318 -745175 -637538 -856930 -465041 -885285 -436323 -19212 -188114 -221989 -830350 -84752 -810926 -574314 -432214 -327821 -850066 -404375 -109589 -786994 -831429 -409591 -39113 -32775 -369339 -454522 -703714 -715430 -745932 -800028 -14520 -206041 -828158 -198798 -306700 -755508 -726578 -635617 -428448 -934787 -640611 -285430 -841044 -536747 -626141 -265622 -664902 -446420 -941773 -182772 -322951 -43164 -425635 -396474 -900963 -72514 -469232 -637114 -701188 -19214 -75115 -638587 -444239 -920464 -54165 -328847 -470565 -387902 -345202 -155073 -312762 -278748 -848533 -285449 -524061 -256772 -329244 -640911 -517707 -215244 -766475 -785498 -950998 -72123 -344314 -929215 -420731 -39512 -187953 -794600 -462540 -574217 -750323 -241683 -857502 -790554 -306200 -650470 -129398 -763885 -247595 -843160 -271752 -158988 -66223 -796713 -537862 -19747 -901681 -78709 -567346 -658548 -75398 -200017 -69054 -38690 -809485 -204942 -23059 -185827 -480166 -285187 -650572 -648724 -596881 -230701 -425706 -255871 -487472 -677619 -923094 -705385 -436355 -901299 -646699 -562980 -815860 -458422 -310380 -580211 -923147 -777366 -516756 -605792 -445067 -815814 -468358 -699639 -435878 -733322 -276359 -678848 -577712 -386272 -285232 -803276 -232775 -663912 -887179 -684721 -11996 -803054 -477179 -436444 -433199 -336985 -498017 -78785 -56502 -956419 -387126 -110468 -643015 -391764 -268882 -538259 -881670 -588251 -894201 -43636 -21490 -764196 -564469 -828987 -364135 -950964 -109142 -916627 -571843 -38481 -499352 -461323 -485517 -272529 -799297 -110128 -725159 -109641 -806024 -769136 -128849 -278562 -436564 -527333 -412403 -18840 -62493 -552925 -843209 -329173 -902194 -769033 -763248 -150933 -756343 -412386 -650613 -25848 -367622 -426949 -754672 -51567 -785499 -189045 -585359 -784078 -571731 -162570 -833794 -455371 -116793 -256710 -43176 -403938 -507577 -38268 -38172 -25936 -76932 -70783 -864791 -90245 -754575 -794623 -456290 -879090 -170270 -599684 -204843 -885521 -694100 -18940 -165173 -206167 -129662 -180093 -56654 -244925 -931425 -593990 -432528 -673048 -204146 -550651 -803366 -56683 -680600 -391551 -642935 -887427 -730872 -42692 -544418 -452525 -257142 -471588 -246052 -927229 -436788 -406384 -84800 -155482 -390140 -292724 -886789 -186068 -322336 -640974 -656039 -865317 -795729 -743643 -533983 -810263 -666937 -564991 -101315 -298851 -165745 -777984 -99931 -618196 -416992 -688155 -243078 -232302 -236115 -595052 -931358 -887334 -577443 -795391 -369126 -797402 -390887 -205082 -473004 -481394 -148341 -668986 -883322 -59573 -354158 -927332 -123223 -612931 -623383 -273140 -822323 -948665 -438111 -649284 -50198 -573878 -204432 -522312 -464274 -732039 -205173 -650803 -281904 -492655 -327692 -224276 -807316 -375809 -546719 -755304 -171197 -569374 -731880 -382198 -95147 -897570 -945803 -342756 -8161 -406761 -588788 -504594 -570403 -713255 -858057 -72402 -827967 -245775 -275248 -188574 -597482 -658651 -698854 -698746 -901318 -371990 -559139 -793666 -902500 -39956 -889463 -848915 -534631 -245858 -814145 -129432 -731020 -938557 -689349 -199170 -384252 -714106 -719529 -322579 -447808 -501987 -771295 -96485 -423256 -161827 -188929 -765606 -701720 -456099 -810608 -933073 -817285 -828407 -339886 -898681 -501435 -109309 -757312 -784938 -9913 -139845 -630153 -20446 -461013 -403344 -935858 -563449 -57181 -783914 -671341 -404834 -912662 -455077 -343036 -598142 -633697 -459414 -294159 -17383 -530736 -693497 -790387 -897539 -301767 -227939 -305852 -740334 -221610 -67319 -454561 -518649 -165775 -18803 -561159 -783865 -822136 -954004 -433309 -178245 -170322 -323172 -875485 -893684 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_test.jpgl deleted file mode 100644 index bed7092f418a772f8e4794fc90dde2341e211e59..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -690013 -903246 -211486 -258940 -35368 -526797 -98257 -151795 -929140 -440632 -11485 -306325 -896929 -147556 -46652 -428881 -542874 -303602 -256814 -43949 -338393 -376385 -749070 -113588 -853238 -928489 -904166 -855801 -167030 -935352 -263513 -849509 -230850 -175625 -631294 -738487 -231003 -879864 -879161 -831424 -593920 -889597 -838006 -257328 -191582 -894565 -638408 -482713 -159172 -622649 -68648 -938056 -472389 -121222 -856884 -626544 -226999 -603448 -68217 -674118 -606536 -721353 -566662 -34916 -331031 -541676 -324647 -824551 -868062 -804988 -34336 -819748 -735712 -749509 -102123 -32682 -660403 -795134 -147140 -883607 -422398 -272428 -652691 -151251 -808509 -853103 -85262 -226503 -291190 -132337 -174771 -916809 -32050 -730556 -634165 -176323 -30616 -489791 -278819 -112927 -212665 -546055 -934387 -186392 -208494 -64597 -337287 -631750 -361159 -43733 -772726 -443396 -393421 -338205 -137120 -236921 -424352 -849899 -757476 -32054 -533644 -812751 -430349 -798036 -137089 -278573 -338463 -930695 -904069 -863857 -848457 -368417 -639376 -130812 -771825 -44355 -767830 -375854 -136460 -809215 -472452 -211697 -230973 -186448 -215565 -34881 -743207 -803991 -717002 -765810 -20540 -27926 -75947 -263603 -903885 -147472 -808494 -105054 -735723 -849499 -163686 -738115 -248274 -812579 -701772 -176556 -255596 -892753 -297038 -913783 -17957 -779466 -275508 -606351 -517019 -263503 -526513 -137251 -878477 -921151 -230882 -903220 -91703 -482011 -9787 -231165 -356382 -342150 -505881 -276169 -482638 -778253 -684060 -282874 -926547 -494465 -368633 -12227 -355421 -64510 -927651 -75595 -170168 -13529 -574011 -139213 -847492 -803596 -770650 -16657 -930648 -177956 -501447 -723554 -280732 -771470 -192635 -173217 -230459 -35900 -423724 -71479 -502526 -34127 -627887 -92760 -341499 -339568 -247491 -623705 -802896 -113191 -360169 -238483 -339725 -744179 -12632 -64865 -136949 -696396 -664297 -229913 -904334 -903906 -453689 -169365 -137186 -203436 -663923 -331412 -260112 -485880 -928037 -96190 -347474 -210910 -192748 -638798 -666885 -661991 -857098 -749339 -10113 -448308 -90198 -933069 -377446 -96881 -64047 -309848 -449502 -34869 -210606 -165352 -248062 -393234 -196330 -246141 -166080 -365913 -828604 -131154 -64982 -263484 -166010 -11723 -865066 -86415 -244226 -257179 -842203 -217970 -387468 -64572 -126715 -155284 -164583 -801397 -769324 -897134 -898244 -857160 -817490 -693935 -893768 -406002 -623487 -85558 -41412 -814746 -863909 -317524 -147402 -315088 -186666 -638066 -760598 -893461 -324793 -78046 -773265 -196453 -206135 -821563 -388180 -639382 -49110 -165683 -613445 -926963 -451796 -6220 -126185 -106818 -236656 -798011 -137127 -420172 -462034 -751505 -677609 -911545 -45268 -903449 -141753 -104815 -136838 -74287 -926504 -54703 -137237 -698878 -320620 -848018 -791582 -339253 -289373 -362080 -924072 -388327 -743794 -227594 -502211 -506001 -930194 -563818 -43903 -208518 -345384 -786788 -192557 -606400 -343056 -132400 -90861 -850127 -690695 -653920 -396708 -935297 -669408 -228900 -779128 -230793 -676740 -164902 -394938 -339387 -639891 -210703 -500073 -71500 -429251 -171190 -680679 -154319 -43822 -260511 -879233 -177623 -438343 -667513 -65951 -40676 -56459 -244521 -435040 -802535 -167445 -926973 -163829 -616030 -376067 -224911 -836157 -930021 -695016 -96802 -899742 -72642 -231336 -11488 -639652 -146317 -329013 -602541 -9804 -11659 -824606 -151567 -210559 -821564 -706553 -325132 -648820 -705260 -342718 -303595 -303619 -403626 -157453 -447676 -805320 -185310 -338554 -521302 -314415 -235082 -173737 -289033 -3353 -20238 -237078 -332488 -350884 -639996 -627419 -12988 -558477 -54553 -113433 -634897 -778298 -631448 -781206 -283450 -33739 -797145 -171945 -770240 -797829 -383934 -102892 -177510 -439202 -233909 -486950 -70719 -179921 -677864 -824704 -606548 -391513 -794070 -931203 -801712 -246251 -544016 -34861 -429413 -856622 -409283 -303585 -863361 -933852 -413083 -331858 -895816 -229777 -413199 -453882 -917342 -137204 -24833 -852507 -794539 -260611 -464143 -230792 -164236 -122205 -484972 -360620 -880229 -732430 -490926 -280885 -424154 -502184 -105135 -741970 -298424 -429426 -797744 -65838 -339847 -11502 -276278 -888090 -660461 -174668 -538025 -912146 -592149 -153914 -173894 -196379 -2141 -431175 -165358 -454521 -710830 -13217 -20437 -719470 -88828 -13804 -47468 -470991 -684166 -272920 -230789 -305714 -233096 -234410 -697059 -31548 -11496 -326284 -939859 -889225 -680621 -332015 -624316 -639969 -924638 -375876 -770166 -286487 -72758 -363211 -524868 -16656 -945572 -237340 -888313 -339370 -157356 -514094 -20337 -230950 -165667 -653003 -770684 -116021 -769987 -683938 -645422 -930497 -771552 -575392 -914026 -774043 -174646 -422979 -903595 -146587 -164010 -33550 -881889 -323190 -495999 -245928 -74283 -653968 -772188 -771867 -273071 -458811 -772024 -349930 -43223 -918768 -21323 -281552 -139475 -428708 -32033 -193920 -59054 -298839 -365232 -49514 -136697 -215132 -661907 -426558 -163821 -563555 -518641 -820410 -185256 -244998 -944823 -811221 -166047 -244170 -768400 -155354 -735836 -859492 -881111 -463989 -328865 -339624 -857521 -535026 -819566 -230470 -456700 -55685 -135696 -802715 -304115 -10137 -593946 -431164 -193937 -475833 -94766 -66174 -13763 -262543 -64431 -712198 -147251 -693597 -13549 -176573 -248246 -276206 -763945 -175147 -899072 -80188 -394207 -761037 -860247 -449142 -455009 -210752 -524084 -32144 -114875 -639790 -882299 -518430 -118778 -657235 -238257 -929684 -901886 -560054 -322366 -921902 -127664 -561740 -324926 -897149 -693432 -677674 -861099 -233100 -245862 -288135 -914321 -738074 -858212 -398334 -84217 -837362 -432709 -86835 -236644 -397700 -362523 -837349 -230980 -542652 -798161 -40976 -175373 -899433 -489250 -349564 -522712 -819444 -443073 -55501 -215640 -246290 -571465 -208447 -164820 -63655 -28441 -926652 -888081 -68688 -847863 -165859 -165285 -346048 -811847 -331911 -234684 -283455 -654594 -164851 -847726 -900901 -136324 -71097 -11642 -332453 -180997 -456847 -186856 -943031 -296628 -22365 -388825 -817472 -252016 -770538 -917354 -159924 -799260 -317134 -457312 -926812 -785463 -934580 -328972 -34875 -78120 -838402 -639458 -137238 -339841 -147560 -256131 -897266 -787006 -187419 -146412 -19712 -899379 -943951 -59290 -12139 -119333 -827143 -63599 -339581 -236094 -659579 -923127 -888932 -308644 -12206 -798058 -799217 -254741 -416445 -573547 -662359 -174901 -49948 -671331 -817257 -625540 -361671 -824495 -805190 -356247 -617849 -818824 -799984 -421505 -137150 -160887 -457302 -95608 -828517 -772500 -339737 -11580 -339391 -65857 -31945 -6671 -539639 -604736 -192708 -694430 -188470 -147585 -360994 -661774 -424466 -615755 -676452 -517348 -903560 -419282 -495932 -3962 -503866 -657342 -68137 -339843 -116629 -20389 -924606 -227103 -405410 -185135 -853219 -635558 -475881 -827297 -164854 -314682 -227931 -136678 -45665 -934140 -4164 -291528 -660681 -136821 -693016 -602920 -840369 -951589 -625103 -384717 -517368 -15536 -19887 -136957 -338297 -416492 -42383 -933580 -840929 -744376 -60960 -78135 -842319 -509212 -758051 -78771 -84656 -34111 -905001 -232055 -799082 -308117 -155770 -902597 -190550 -829854 -224944 -81711 -711754 -943714 -101268 -617732 -559214 -347784 -416435 -794195 -633776 -633645 -165378 -132270 -732806 -731105 -657390 -523061 -748478 -579689 -27830 -154093 -215869 -339006 -296515 -889554 -908191 -949624 -308852 -488211 -321760 -771466 -412791 -15609 -258607 -481413 -913599 -75744 -432514 -113581 -50223 -185656 -37138 -40983 -477128 -240229 -803207 -732879 -331186 -286093 -33446 -854536 -602441 -137116 -801421 -505593 -475109 -534352 -13695 -130571 -456255 -606267 -195769 -164174 -40861 -924777 -545770 -121303 -445498 -132758 -32211 -263621 -433535 -506675 -347531 -593389 -339545 -663208 -818815 -165973 -430295 -101746 -498009 -267576 -46910 -429996 -32321 -574059 -101851 -176180 -124924 -576359 -276053 -939552 -277382 -197057 -824302 -924610 -442615 -819953 -820844 -166024 -432638 -11631 -132264 -621600 -276303 -364840 -330440 -628961 -153084 -818199 -816637 -491273 -924219 -426371 -31628 -832444 -67482 -33685 -633876 -47443 -831444 -660547 -63530 -124932 -339583 -165780 -662234 -165386 -812280 -669365 -930757 -631980 -85258 -165575 -64265 -20573 -663581 -315801 -698842 -799369 -136700 -638880 -173922 -512638 -694024 -853081 -46008 -395212 -191347 -828386 -860453 -41143 -954190 -338794 -338493 -788348 -65028 -860920 -473811 -13841 -176029 -263277 -80847 -929051 -946106 -502646 -294517 -903089 -742984 -230822 -13716 -779790 -28562 -131208 -324712 -136778 -244691 -196231 -350177 -6111 -49959 -166051 -741033 -339633 -848253 -637021 -70580 -374458 -782334 -429308 -313900 -743458 -798162 -639981 -482434 -673170 -574831 -765737 -76016 -14434 -303268 -386819 -915631 -163316 -667068 -652600 -917344 -593124 -457689 -835491 -456415 -206206 -282892 -288718 -164609 -934218 -123164 -949431 -270199 -113879 -780411 -180313 -345879 -26815 -524518 -693682 -281766 -339425 -86725 -175439 -650163 -46831 -904092 -81271 -245055 -570377 -919913 -495570 -276075 -490821 -633881 -677702 -866368 -95335 -802664 -13059 -322540 -484750 -79292 -339513 -164984 -729330 -651860 -892803 -192954 -69028 -875506 -419013 -800020 -639974 -46230 -13809 -501866 -363282 -339875 -864532 -955445 -450800 -512482 -546047 -179704 -101769 -712222 -890727 -832790 -207849 -633334 -321587 -383910 -474180 -325056 -668195 -14836 -364061 -799306 -444249 -299906 -768970 -695729 -212972 -609795 -931520 -85680 -640040 -565871 -819713 -639858 -933013 -904007 -339361 -501173 -328340 -865111 -112138 -11486 -77871 -273827 -772391 -89095 -140582 -272975 -132761 -275324 -245061 -908149 -786536 -924698 -451430 -43727 -228154 -604050 -477010 -228469 -165883 -391392 -840760 -288558 -368328 -273129 -737102 -676169 -72131 -154854 -115267 -305718 -793949 -810730 -847227 -797295 -186480 -537587 -339701 -779766 -274677 -12288 -421929 -137184 -742530 -22985 -51881 -930904 -263566 -728976 -846066 -176230 -147630 -339856 -814212 -90403 -101725 -798061 -393191 -527508 -639074 -312196 -125862 -121144 -639801 -435538 -799447 -165807 -503572 -291028 -783548 -816542 -586498 -893061 -271088 -547793 -632111 -276447 -371273 -165598 -394716 -246235 -570792 -64710 -276466 -9014 -606409 -118944 -52667 -432911 -32080 -931913 -581474 -339747 -99724 -625163 -889563 -761806 -67067 -403187 -654447 -170906 -163409 -943853 -800022 -70665 -61091 -828683 -15942 -30754 -621269 -511293 -196109 -120656 -867086 -624711 -892837 -633804 -552838 -369792 -522458 -339887 -446489 -398505 -342320 -491824 -588422 -137137 -854772 -661385 -147541 -605830 -330174 -339282 -428745 -939635 -64820 -797867 -204738 -536778 -760484 -551955 -278348 -160508 -514188 -362238 -632194 -953630 -644025 -121341 -101911 -517411 -364479 -33222 -603558 -512874 -945650 -137223 -364361 -638758 -477131 -711945 -279896 -268443 -917105 -451917 -823327 -482516 -568913 -638602 -101355 -1330 -934643 -771936 -457404 -237345 -200337 -787372 -65911 -447666 -714844 -904929 -89165 -938226 -117002 -648824 -231339 -907543 -265787 -653417 -298417 -200460 -750253 -165051 -332352 -37408 -457788 -22488 -339426 -272833 -801736 -165732 -30536 -576320 -920386 -894757 -155599 -45939 -555563 -908189 -650367 -445121 -49788 -257963 -339094 -288989 -215635 -550499 -165998 -133545 -516569 -236101 -347282 -630647 -109257 -527356 -294789 -192454 -831220 -335139 -212792 -950614 -723496 -72537 -797772 -174816 -461247 -172821 -562503 -635174 -245937 -92113 -913315 -165270 -904053 -77845 -593102 -244338 -413222 -506201 -126227 -680143 -424455 -23710 -716488 -929810 -330470 -763554 -356367 -73921 -11623 -117272 -501095 -683263 -361692 -658487 -571340 -361628 -372000 -6015 -853882 -175065 -263596 -491457 -879309 -448482 -626006 -798166 -491118 -365178 -367833 -248435 -837382 -526934 -190875 -624375 -624767 -888845 -883559 -164286 -387781 -13677 -836819 -239199 -793072 -245020 -889478 -310477 -226842 -809794 -163812 -772983 -397992 -133716 -455961 -102884 -607169 -75540 -839592 -110402 -952929 -832971 -246392 -778116 -657792 -51337 -931917 -15866 -904056 -125336 -253403 -102556 -600839 -616316 -675479 -797965 -945691 -903570 -323602 -395272 -322810 -935187 -150834 -949379 -614885 -113665 -181011 -812427 -13822 -151662 -667207 -356167 -122491 -618466 -772220 -44102 -54513 -22774 -639922 -117161 -15851 -355890 -431699 -424855 -13954 -137108 -32465 -387348 -422139 -863906 -190556 -260620 -381870 -571483 -744593 -652587 -585009 -230970 -369890 -237872 -264967 -263395 -324459 -784211 -903377 -292047 -824780 -74156 -863591 -26930 -625555 -528470 -13746 -395078 -462043 -224024 -60537 -632089 -856923 -230764 -482477 -907615 -823882 -860425 -132277 -169761 -164805 -34646 -803582 -544629 -186574 -298433 -165237 -102642 -809432 -431166 -146856 -295776 -633826 -60957 -539571 -431971 -834381 -64725 -133250 -29690 -30720 -16757 -129118 -822815 -206709 -78488 -692619 -445239 -13657 -811815 -196071 -771438 -659424 -623828 -406012 -369347 -419135 -116605 -314510 -618247 -243934 -659504 -162210 -259718 -703221 -242545 -287608 -660447 -155374 -837285 -114978 -633083 -518326 -458955 -4121 -15779 -112046 -483684 -92157 -32928 -510093 -625361 -309839 -321215 -261020 -273803 -278902 -691559 -186662 -926244 -57261 -377490 -633416 -490293 -899102 -635283 -369888 -31627 -291487 -228327 -662890 -54223 -322359 -842836 -237398 -912498 -600142 -662818 -63621 -777028 -164074 -888214 -362517 -864053 -237160 -136289 -931498 -772704 -861043 -101949 -79322 -326464 -173381 -146562 -687004 -126152 -72679 -231255 -1124 -70916 -243979 -263532 -165409 -732709 -115723 -364233 -829536 -332022 -433861 -221082 -818005 -954614 -603848 -235242 -771650 -698588 -639851 -310129 -165498 -264021 -123030 -74060 -146907 -633362 -875959 -377360 -684785 -639218 -428912 -255314 -396615 -669353 -114080 -277252 -170200 -231158 -22811 -454696 -87105 -634234 -778358 -449239 -113349 -934017 -896259 -418822 -31998 -110296 -592728 -235265 -70188 -173815 -667177 -185697 -330966 -155365 -229658 -791625 -832284 -180927 -377078 -894571 -165359 -20397 -920315 -197518 -580777 -726922 -848824 -721154 -897652 -443920 -244881 -908055 -161969 -442359 -638284 -382378 -744297 -11461 -948919 -623338 -531502 -371663 -446526 -390925 -147552 -639881 -633025 -235906 -831158 -51484 -905791 -46416 -442983 -255518 -457382 -15644 -210906 -180894 -365508 -139403 -136889 -338851 -428789 -76761 -636323 -904073 -727050 -173269 -576 -32242 -275008 -810833 -444967 -693627 -927515 -935689 -832786 -674276 -248244 -71264 -173820 -832597 -343896 -67480 -339739 -824205 -276311 -362000 -735428 -934304 -850864 -284406 -512525 -20546 -164832 -176246 -637455 -863183 -932735 -606521 -342632 -575034 -803536 -432633 -136292 -856937 -12296 -163801 -31968 -640007 -662252 -818230 -853000 -529175 -22616 -948963 -523894 -189952 -480993 -43383 -186846 -11362 -354358 -801668 -444071 -523211 -160418 -103710 -888285 -859183 -383988 -858197 -518255 -145241 -474444 -797828 -294873 -339237 -872559 -647657 -429277 -747985 -675917 -122470 -412979 -287295 -237547 -652480 -339645 -331130 -684742 -765681 -677252 -564354 -661955 -762442 -40463 -904162 -338959 -165971 -41358 -516610 -205801 -46028 -559216 -171118 -316960 -818385 -867022 -84751 -315721 -31615 -639982 -318750 -888792 -396932 -281139 -633709 -512447 -41409 -29141 -907534 -112059 -377222 -567704 -413008 -192166 -163677 -8843 -690440 -906829 -334178 -286946 -702987 -330775 -179779 -947123 -216064 -362471 -633562 -927879 -797917 -268442 -187539 -317819 -900161 -68366 -92137 -564010 -262623 -17342 -443072 -459339 -159629 -427985 -756249 -291699 -717539 -73343 -155623 -238715 -552931 -639741 -209134 -339118 -637574 -365207 -735999 -10075 -773306 -126014 -639988 -504293 -31950 -263478 -878604 -889526 -141649 -262841 -292236 -750026 -947108 -632919 -339890 -735266 -132258 -635790 -322880 -835103 -606189 -863197 -279102 -712077 -444387 -173035 -54488 -34900 -638006 -861059 -517730 -9316 -348464 -754559 -292723 -632578 -26234 -81187 -363717 -303115 -396378 -235749 -110427 -63475 -625012 -394806 -245281 -51369 -422045 -126255 -886490 -388028 -935364 -276859 -503368 -133268 -136836 -863520 -253721 -6146 -735034 -732762 -101460 -744246 -253833 -824647 -824610 -230983 -339899 -454619 -391222 -879483 -314287 -465073 -661756 -135618 -399605 -524008 -633720 -14699 -771082 -430411 -635173 -914115 -165803 -76343 -11524 -42753 -846608 -773764 -397329 -158867 -215637 -676136 -114175 -900877 -46261 -288477 -362139 -889649 -483742 -12185 -415214 -195557 -613021 -353366 -243835 -534687 -714607 -663874 -711700 -927086 -229376 -511080 -627240 -788537 -339889 -695873 -339310 -930324 -763164 -164942 -863075 -238138 -270993 -648555 -420174 -757833 -832825 -204728 -135751 -890892 -72478 -837925 -441886 -796852 -909678 -638221 -417029 -215758 -185243 -40344 -577898 -561521 -237124 -85245 -732814 -930717 -663863 -136870 -34492 -588283 -62760 -861278 -332288 -948959 -847490 -767699 -382992 -326442 -165513 -710984 -46575 -896138 -827074 -635576 -225529 -322288 -82298 -564172 -430342 -237171 -705391 -505912 -55820 -824482 -667083 -691636 -165418 -950725 -756472 -136035 -443578 -743456 -794911 -50201 -34113 -137158 -239292 -382294 -72776 -844384 -793505 -644391 -667117 -332153 -547143 -339524 -315668 -192817 -575180 -771602 -504225 -63142 -175265 -125693 -200725 -954737 -882827 -811958 -904091 -856585 -126699 -173898 -850946 -834496 -797939 -279761 -291797 -556433 -303328 -836874 -338621 -168123 -239237 -797063 -164730 -288138 -6027 -416928 -340778 -812021 -175187 -339116 -375303 -925863 -477200 -403643 -388358 -69979 -64680 -210837 -432883 -24952 -662921 -136953 -483179 -185870 -60301 -56761 -913050 -638689 -33176 -166090 -835290 -81723 -801717 -377363 -70829 -475308 -762158 -633204 -176486 -339721 -174291 -63913 -147465 -113965 -663698 -822828 -839451 -215706 -914240 -182844 -610917 -276960 -68507 -165053 -695947 -832080 -45309 -600994 -172378 -339868 -101796 -276401 -176570 -516278 -866912 -906651 -303630 -122990 -518817 -714446 -32966 -339641 -713877 -397921 -653618 -912495 -245683 -738397 -339872 -231312 -504215 -2595 -416298 -908129 -26937 -54636 -141699 -715782 -648751 -924756 -892830 -730762 -7639 -133429 -861343 -839472 -797623 -854659 -32209 -916436 -365482 -852868 -303580 -835377 -505962 -210832 -436309 -771005 -286276 -368630 -339170 -926180 -152916 -54670 -121206 -25239 -361123 -273153 -94915 -388914 -906430 -402864 -305808 -941495 -74699 -137212 -244015 -213371 -113621 -315321 -920101 -593935 -136223 -438726 -744401 -860170 -863828 -577633 -835401 -457707 -811876 -165614 -627631 -51775 -73796 -65985 -41349 -888037 -75740 -157452 -364831 -640023 -101543 -136760 -275223 -569905 -618661 -710927 -325151 -236005 -110487 -859240 -173786 -331857 -730146 -61035 -432500 -632204 -544422 -175814 -96393 -824066 -888238 -339673 -234541 -802730 -734489 -803259 -422622 -711752 -795194 -214987 -732683 -137020 -49924 -757044 -573124 -163854 -904137 -920018 -457534 -772202 -165705 -505471 -16404 -342918 -840202 -834978 -56135 -432549 -904144 -113532 -84769 -602698 -634597 -446763 -523064 -536731 -756510 -245496 -905166 -339703 -818640 -470211 -306849 -332199 -510775 -906731 -456464 -481138 -331954 -660000 -137098 -147449 -71911 -854429 -653051 -929536 -239384 -603704 -35539 -695377 -374751 -126249 -54931 -123053 -395196 -362033 -914711 -237319 -230208 -364933 -521496 -46090 -540 -841628 -933355 -54460 -953722 -573182 -232443 -816857 -761224 -326083 -363805 -301471 -136032 -34893 -914231 -40973 -50145 -696687 -476090 -504456 -526123 -722416 -889534 -63644 -696443 -124279 -541800 -339506 -712020 -542456 -176500 -602116 -786776 -797653 -78285 -63456 -487481 -907953 -904103 -81708 -423835 -242229 -339279 -34184 -222140 -766133 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_train.jpgl deleted file mode 100644 index 0b4bf52ffe91a8d6dcef8157a4edccdde60a1366..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/architecture_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -368079 -290819 -49210 -210836 -639307 -102300 -176159 -904194 -34015 -854623 -64966 -954496 -929000 -31553 -433557 -95278 -178804 -291272 -68306 -627147 -857229 -734891 -840924 -404505 -136754 -240548 -33457 -600557 -444557 -353993 -633149 -32665 -772031 -55861 -402075 -12290 -170221 -332324 -914159 -324703 -361607 -262611 -432430 -676821 -79297 -100431 -659494 -160406 -73969 -606151 -797285 -884283 -185413 -366025 -342339 -12660 -137123 -195053 -636995 -912837 -488743 -122957 -638800 -398265 -739866 -339882 -345926 -847238 -820925 -482221 -251863 -262953 -711304 -751944 -13787 -366124 -165802 -758363 -23031 -606347 -126664 -316419 -383404 -377520 -712006 -693737 -126168 -190970 -63678 -200443 -191558 -112486 -394224 -561588 -587547 -879257 -85021 -914083 -777052 -107471 -321349 -755681 -669548 -930435 -634320 -934371 -577298 -336248 -12121 -274834 -482723 -44173 -91783 -633316 -280544 -407711 -861042 -65624 -111579 -35757 -821040 -483929 -852729 -849734 -647998 -362731 -503219 -744124 -109815 -96688 -743360 -638811 -943971 -443762 -268939 -624840 -14721 -427683 -99703 -605891 -325094 -499204 -124609 -828199 -22646 -769126 -368679 -567972 -815358 -587511 -212464 -611619 -564409 -125381 -102427 -64444 -365093 -639821 -649019 -136968 -330435 -638493 -289114 -165739 -290555 -328592 -12244 -861316 -41403 -668500 -393445 -676646 -798053 -297751 -83646 -428608 -442516 -273254 -856926 -477494 -934607 -109188 -265497 -897267 -11518 -183677 -150706 -314561 -903948 -941966 -657785 -760300 -195781 -633587 -485527 -638616 -860647 -46000 -771440 -428857 -94604 -383252 -635566 -274565 -930293 -226728 -893051 -754361 -856949 -765762 -231092 -695986 -31100 -356688 -500 -839513 -139756 -822464 -496378 -35857 -180283 -35523 -860287 -834975 -205554 -400470 -103984 -647304 -743876 -369869 -186608 -810628 -138706 -929062 -770510 -244955 -711341 -834546 -315683 -396937 -164350 -12183 -225945 -633810 -167993 -129397 -449596 -147619 -602439 -808261 -136365 -518376 -940726 -229379 -135752 -394765 -136378 -895214 -648411 -610498 -766154 -835404 -32036 -462700 -121980 -759924 -835296 -742723 -639341 -164054 -605605 -296205 -771249 -23971 -339825 -196370 -62051 -771047 -893258 -431973 -432771 -847598 -228264 -632143 -197495 -688035 -563534 -853155 -903573 -164340 -945901 -442682 -339609 -930456 -857278 -262492 -661623 -232358 -840417 -488379 -524264 -761520 -30174 -339642 -896415 -930674 -21752 -233324 -146906 -73840 -504973 -663628 -664205 -289337 -592964 -130816 -548969 -816770 -696920 -914320 -411270 -778349 -395359 -626992 -606578 -423265 -332123 -736524 -362350 -155356 -155025 -27059 -711252 -711411 -61699 -165587 -70750 -639845 -798656 -67786 -950234 -155399 -940069 -623512 -31399 -331177 -362225 -50203 -46341 -331997 -633638 -126302 -505497 -852593 -574791 -773762 -121493 -943705 -396754 -823349 -542230 -516735 -625052 -237389 -136969 -639978 -45678 -332249 -164966 -96702 -442660 -836307 -72082 -817498 -136656 -587771 -103156 -456897 -450525 -339866 -588727 -13800 -645536 -126143 -14978 -857957 -857946 -31996 -522977 -669847 -285182 -185674 -828062 -879102 -137210 -696666 -883347 -183030 -10042 -90393 -626879 -9607 -537394 -432579 -180759 -136732 -442535 -30238 -797603 -29495 -161125 -501055 -147298 -332062 -507455 -455767 -403169 -122174 -880423 -639317 -794839 -950774 -414488 -30106 -137135 -160251 -441810 -625122 -365787 -199018 -834053 -907816 -343248 -588210 -85916 -442306 -12170 -195262 -771163 -891530 -803126 -70808 -33244 -943765 -362286 -13559 -789137 -756427 -122776 -926269 -105046 -771026 -121531 -278384 -817550 -40622 -703513 -176458 -863654 -72109 -13039 -373863 -944156 -426246 -28561 -137193 -423257 -505888 -930799 -328879 -662121 -324450 -653227 -510882 -817707 -173648 -477446 -892974 -711218 -711468 -188116 -557118 -395539 -242753 -454070 -396521 -298131 -155526 -640963 -121734 -564305 -248531 -163950 -809898 -797680 -298898 -338697 -146226 -81151 -165934 -654775 -287168 -485108 -228254 -338738 -101348 -661019 -578630 -331852 -821129 -603619 -146396 -319916 -365626 -728667 -541719 -771294 -28008 -950736 -416446 -1328 -444786 -857501 -395077 -771585 -703194 -343732 -101922 -163981 -846689 -613064 -338491 -623277 -86947 -915636 -315286 -775258 -917520 -75985 -571402 -913121 -849813 -359918 -926987 -857896 -795474 -639833 -10290 -339497 -640651 -172695 -362711 -129414 -897258 -20112 -906414 -617056 -207836 -282770 -155485 -29444 -61746 -759755 -662238 -135207 -571741 -904182 -938150 -456184 -442678 -586713 -694339 -773962 -12143 -861253 -798378 -363899 -612780 -298429 -543924 -146258 -805867 -388560 -928367 -31796 -244541 -575723 -574039 -765316 -602802 -938747 -230474 -236901 -559087 -458301 -17413 -810409 -113167 -264160 -16460 -904185 -888284 -783938 -239214 -441856 -69845 -340968 -20723 -523738 -766271 -694780 -103881 -235316 -761618 -332013 -482790 -271643 -303380 -888325 -147509 -722793 -136917 -707248 -35187 -423582 -639957 -669733 -322847 -889669 -426578 -13636 -120713 -85234 -166012 -104027 -663531 -183559 -513634 -802804 -638080 -462008 -853002 -631661 -833022 -17397 -491102 -26453 -86714 -129129 -165943 -772222 -163274 -113465 -799240 -210855 -945745 -376488 -950811 -564513 -34318 -191557 -940408 -98270 -923688 -422066 -41232 -44724 -638275 -137077 -195590 -328224 -206221 -799690 -42320 -78588 -175499 -403678 -95001 -69159 -85220 -536438 -906792 -749593 -571102 -27611 -245499 -114160 -40953 -865653 -332103 -892740 -84541 -26835 -164658 -494594 -274921 -927059 -295769 -664064 -35695 -81313 -516842 -638785 -674233 -16751 -771254 -765082 -231270 -246189 -801424 -246039 -16578 -753470 -849151 -610523 -929085 -930499 -674488 -41900 -121914 -360736 -262377 -136869 -3387 -63565 -916976 -450885 -332281 -191319 -824633 -679888 -947146 -192157 -704159 -137040 -848808 -137168 -886562 -648036 -825972 -902746 -11180 -903997 -443997 -518454 -749452 -165969 -328007 -103991 -87475 -1052 -712152 -10332 -542818 -758939 -880462 -116139 -623681 -822598 -346153 -339723 -82161 -41378 -817057 -13824 -95005 -462522 -322967 -184227 -833907 -64745 -851136 -483858 -766854 -820717 -331143 -791953 -620034 -687862 -234408 -80572 -236959 -506197 -41332 -832441 -589371 -231071 -903936 -743919 -644451 -186848 -11505 -660405 -232544 -474663 -34137 -938645 -288393 -585717 -828712 -426595 -474316 -46087 -71327 -771355 -147466 -913960 -295538 -184895 -818632 -435221 -503192 -420712 -886897 -814826 -523787 -823904 -861049 -446654 -673607 -40416 -729092 -249361 -238048 -361456 -856795 -505381 -11904 -208597 -738149 -605869 -114206 -802645 -874199 -676418 -40649 -797967 -861248 -402762 -687084 -742875 -659145 -903424 -494483 -820093 -64808 -232497 -157538 -49194 -926501 -339283 -426748 -15163 -320872 -178543 -828658 -782459 -896486 -889524 -362104 -115257 -930201 -790028 -260362 -134562 -395370 -273212 -451856 -716695 -605079 -607368 -195404 -632240 -903918 -34365 -55370 -779591 -42903 -575505 -818655 -932953 -251849 -610084 -165206 -593909 -918495 -113647 -953692 -307883 -414428 -364340 -339608 -175074 -137222 -652976 -210874 -633942 -861028 -684192 -96951 -394698 -567966 -72233 -121557 -281225 -883176 -321776 -79082 -481207 -458148 -147538 -325076 -276035 -40796 -800623 -672165 -863804 -609404 -633032 -779745 -65023 -120512 -703833 -569904 -735761 -412822 -158102 -188591 -795025 -237115 -523651 -730984 -41102 -770638 -339891 -125073 -520238 -897296 -426746 -185120 -889668 -242887 -846272 -63227 -861151 -365057 -789505 -366205 -298257 -317780 -527026 -165929 -601731 -635327 -164949 -146427 -734493 -638164 -165933 -325092 -802614 -230632 -824641 -888808 -603994 -777068 -664858 -210868 -636181 -145704 -386848 -338471 -897237 -103215 -271491 -337932 -811913 -539547 -787451 -941810 -474947 -244395 -67483 -800851 -850570 -633899 -426123 -897242 -479211 -741248 -123027 -160581 -273198 -881857 -637875 -166077 -778386 -83828 -55116 -586828 -776372 -899808 -34687 -560073 -903814 -777556 -247696 -637413 -397100 -163745 -854624 -948735 -64759 -134548 -236889 -888142 -854357 -849528 -136707 -559175 -50548 -342312 -771973 -165253 -900013 -714545 -377201 -361984 -339412 -654541 -912529 -366509 -676433 -688045 -342806 -10504 -577130 -31329 -120904 -712252 -481064 -11559 -377429 -114819 -164385 -235008 -339386 -539395 -208079 -64795 -828748 -644757 -35661 -148631 -939668 -471924 -663498 -742876 -496085 -416753 -13388 -13357 -606620 -136749 -374758 -81927 -591983 -516181 -673755 -623836 -135949 -22633 -600689 -297882 -339529 -344497 -631218 -376700 -944407 -801412 -46272 -568826 -514818 -360586 -96789 -14942 -892399 -447164 -339269 -853866 -232842 -196268 -137164 -946909 -801270 -425609 -853953 -13589 -91119 -797022 -231268 -72126 -223781 -797750 -504434 -672803 -13686 -902805 -211611 -136938 -74239 -332462 -67315 -338990 -72115 -50625 -72787 -446099 -711548 -442882 -298490 -362147 -762029 -65849 -913989 -49982 -851427 -648562 -366180 -504458 -944356 -54645 -611553 -32813 -410904 -863821 -542608 -54772 -103065 -380694 -1314 -339544 -861155 -54532 -863987 -297855 -12559 -948748 -103898 -339617 -283628 -24463 -344344 -853149 -55085 -738319 -904068 -195127 -251052 -941563 -766319 -275182 -10094 -602602 -13551 -324862 -332293 -927864 -4041 -41311 -360641 -813912 -950799 -229755 -342942 -429311 -880437 -770977 -405422 -886850 -489219 -339822 -597443 -938391 -42297 -896214 -166134 -23012 -797018 -283648 -632148 -83378 -750361 -570105 -192654 -291846 -103683 -403999 -779500 -785286 -606192 -674709 -863854 -892646 -864069 -176130 -696289 -197592 -98083 -630325 -375101 -310582 -374774 -633685 -164034 -164739 -302533 -348357 -790030 -12235 -79838 -49053 -232141 -234658 -164948 -46291 -605322 -11653 -12126 -289001 -533553 -503223 -236797 -263712 -272996 -30667 -691562 -860466 -639880 -100801 -230546 -729442 -362513 -797746 -11636 -386055 -652551 -351012 -602267 -750829 -578698 -239236 -24925 -826147 -147595 -286947 -12416 -749518 -880953 -691218 -661422 -32518 -570128 -673924 -69968 -224030 -518054 -29367 -289199 -307780 -360211 -857854 -73715 -773222 -84928 -142268 -770991 -773098 -632738 -251389 -339653 -462167 -660129 -176518 -889206 -639835 -82799 -456201 -244223 -122763 -424188 -626478 -236758 -173608 -853990 -102799 -10876 -922275 -835284 -779038 -34496 -542785 -889857 -786964 -155735 -364664 -298468 -857119 -136699 -712312 -570400 -861245 -314556 -296866 -924480 -41134 -164796 -4375 -338242 -606795 -797933 -771530 -11662 -223276 -504729 -440173 -282756 -606407 -566817 -31927 -268985 -325953 -21911 -632505 -46336 -13571 -460145 -587430 -604117 -174078 -23079 -16291 -166138 -920412 -797911 -451666 -798108 -278533 -539385 -879811 -625077 -444702 -850760 -262063 -624940 -16596 -849185 -660125 -790128 -500773 -517500 -42610 -366178 -639607 -796873 -574793 -160377 -293289 -331750 -96404 -11571 -495160 -810364 -229958 -889022 -32989 -339873 -798000 -668597 -591623 -322568 -480009 -632924 -339693 -137083 -643624 -929897 -640074 -668273 -490590 -901814 -210871 -863980 -737643 -430039 -211844 -624331 -160494 -246439 -896388 -165415 -147318 -802966 -779742 -891010 -797962 -315220 -40772 -879331 -639518 -165011 -430703 -817560 -744428 -930727 -347283 -165671 -136316 -184619 -20497 -211820 -446706 -390860 -61649 -137209 -904093 -349495 -280793 -338374 -426769 -37221 -42014 -852601 -653028 -505383 -139214 -173023 -428903 -172521 -698890 -146620 -140911 -634862 -331521 -899592 -828645 -610719 -186935 -14678 -303438 -181001 -291537 -429384 -229960 -139253 -879673 -800749 -48881 -841625 -664416 -749590 -749611 -63587 -648952 -456989 -857911 -446604 -797399 -857054 -185448 -908145 -78461 -611182 -63079 -320877 -550385 -297337 -229846 -146308 -558204 -123108 -863924 -706407 -438051 -797841 -323225 -903890 -542198 -954456 -696939 -599868 -113652 -339041 -257058 -427275 -703554 -41002 -502994 -510106 -635713 -489135 -164680 -694616 -832471 -212837 -599849 -564473 -391220 -812013 -838354 -206451 -711996 -591072 -425895 -136711 -770426 -194838 -347280 -186232 -639832 -32802 -687345 -843297 -338904 -298089 -637948 -778156 -490973 -781751 -135850 -246192 -908194 -32201 -744381 -196710 -10095 -856588 -566707 -136880 -331964 -428836 -141305 -797714 -949217 -750493 -278624 -164700 -423029 -506054 -668802 -147443 -771399 -713180 -905364 -680383 -771233 -165901 -231018 -186601 -72822 -900712 -861117 -124666 -40469 -326422 -322504 -176178 -104343 -624709 -123062 -126159 -190365 -27982 -107893 -448477 -49312 -638672 -635835 -922473 -73883 -818649 -238725 -45455 -328212 -230914 -298735 -165166 -339698 -216052 -704999 -761397 -660322 -231375 -12107 -799085 -15359 -426037 -771571 -347106 -251463 -669430 -835097 -840403 -606595 -40736 -866801 -776231 -10576 -176013 -382815 -126228 -516260 -271127 -33053 -543259 -41128 -838033 -888806 -54527 -200444 -418370 -54807 -846199 -164970 -200434 -41345 -277388 -16565 -818293 -912977 -892391 -204561 -451190 -939746 -903567 -524994 -633785 -40968 -852819 -96538 -330346 -68877 -296324 -930657 -225597 -445706 -431366 -495594 -736260 -801279 -296739 -816655 -820837 -638166 -946037 -385119 -293334 -176225 -126202 -22073 -905066 -210878 -1218 -908556 -164938 -256906 -40985 -70718 -294617 -215831 -323746 -878961 -141759 -500242 -820036 -136159 -298261 -828619 -359314 -13570 -638932 -727010 -323970 -225955 -606360 -674627 -216736 -147294 -339735 -854446 -192832 -848539 -638708 -896892 -132015 -639361 -10486 -236465 -192357 -929058 -904075 -398608 -186789 -547317 -500182 -306857 -365143 -46017 -523022 -863707 -677327 -669975 -840224 -236132 -295038 -330584 -357181 -856777 -196438 -861325 -712169 -766141 -331752 -32909 -904190 -362426 -441080 -495577 -147026 -908253 -674265 -726621 -147280 -345272 -779350 -125425 -638339 -135428 -146704 -37401 -20280 -332202 -135849 -104237 -64671 -647732 -696988 -570384 -419539 -383364 -605315 -64984 -918847 -276314 -505835 -722898 -193166 -170775 -147343 -292314 -751461 -145323 -331590 -741433 -603220 -602037 -662239 -364406 -16304 -569894 -632698 -9684 -749285 -843127 -725576 -287515 -931948 -533414 -245250 -858038 -577623 -863888 -348505 -797770 -135917 -92075 -887876 -648 -489787 -362368 -136327 -889683 -854753 -750662 -362795 -271492 -854716 -449153 -285689 -152444 -34727 -106707 -731511 -237380 -746856 -399450 -69132 -235869 -857545 -13645 -244682 -147604 -845876 -711954 -732885 -329685 -839614 -195774 -331711 -645303 -394942 -368620 -145782 -667175 -11267 -94905 -327935 -215987 -85946 -355927 -941110 -203 -136782 -682515 -648894 -491133 -526115 -950083 -534865 -331770 -761937 -325091 -62216 -206465 -64666 -511995 -54747 -290577 -366031 -303670 -831239 -121963 -153299 -440644 -432202 -903954 -136467 -176604 -931754 -694028 -231191 -54075 -429221 -63634 -147030 -465024 -732511 -324616 -315036 -195901 -66228 -10374 -278254 -170711 -423013 -808764 -331514 -338411 -775209 -667028 -484058 -861114 -339878 -276264 -361791 -494937 -13335 -629236 -771618 -861348 -13783 -387455 -353750 -424688 -950077 -36860 -164869 -339792 -518208 -320613 -888241 -606549 -811851 -455942 -230639 -832957 -826237 -896764 -801489 -155144 -70570 -325090 -361064 -365706 -933012 -18959 -902169 -514938 -511983 -332185 -23073 -226742 -96372 -703113 -108872 -513506 -627334 -168889 -225008 -101501 -13576 -429250 -331607 -64754 -604291 -314778 -297547 -639914 -927379 -941014 -815926 -358674 -70785 -918277 -281808 -364932 -84740 -78064 -339154 -602758 -363883 -800037 -638609 -173257 -195269 -121950 -463713 -301595 -164877 -577686 -49037 -623626 -495984 -455475 -633366 -164605 -831809 -757578 -41343 -478186 -113518 -953777 -443935 -471129 -124656 -441321 -639598 -395211 -914209 -621626 -479477 -165512 -68276 -606821 -166117 -458083 -113672 -934909 -639471 -523356 -9107 -824891 -387371 -115214 -638331 -362360 -103238 -886831 -844736 -492367 -303310 -692871 -455725 -120521 -474012 -376679 -424213 -137148 -676642 -413364 -119977 -146833 -836139 -372157 -105647 -328195 -554717 -468369 -50192 -874184 -128249 -712269 -784919 -135926 -238797 -639959 -31802 -632645 -223643 -863759 -225178 -496068 -415115 -281379 -541736 -33735 -237541 -339877 -239550 -937783 -44302 -179778 -904487 -903510 -843228 -824587 -863826 -896048 -206266 -362168 -836724 -125951 -606713 -904052 -235765 -506189 -411774 -713831 -633168 -639447 -369275 -228155 -779806 -146640 -863997 -722140 -137093 -639558 -29323 -383905 -539440 -67450 -39082 -30085 -40878 -387017 -606144 -910951 -671805 -22935 -875697 -112058 -268694 -173746 -355553 -479220 -430450 -124621 -117083 -11387 -126191 -392805 -730175 -4141 -13835 -278980 -39122 -42693 -831275 -825865 -49127 -624946 -345697 -639504 -568568 -289339 -833632 -750537 -147609 -292849 -236922 -354689 -180292 -551814 -897571 -913731 -784209 -925733 -735085 -524784 -712012 -164733 -215709 -133041 -22082 -802661 -398415 -757378 -97666 -749338 -579695 -228171 -528162 -324789 -892022 -449372 -403438 -27310 -13370 -491086 -184575 -101914 -186572 -789801 -743722 -837938 -711728 -542071 -186015 -857950 -428319 -631262 -233360 -916740 -185969 -683250 -867269 -580822 -502997 -693030 -305683 -886391 -185410 -714501 -797718 -339840 -348918 -897550 -457736 -769181 -125827 -648752 -235304 -192505 -674136 -64228 -927552 -22087 -911023 -687777 -281192 -533954 -165342 -186941 -906181 -166037 -361536 -136989 -555332 -386090 -743695 -691828 -308326 -99013 -768022 -738060 -738136 -136247 -176469 -165781 -227356 -903878 -324865 -238659 -797279 -248529 -870474 -828066 -11497 -11491 -32065 -703455 -256508 -429567 -206523 -286873 -805309 -73918 -307726 -338749 -208651 -147142 -777499 -343324 -934233 -524083 -827274 -423551 -442978 -740519 -281315 -711964 -607283 -403161 -74440 -915638 -1341 -948810 -40758 -888368 -72316 -332299 -410430 -75289 -634965 -843246 -24460 -46153 -768517 -212662 -779102 -164220 -693554 -832668 -110396 -230704 -518799 -674382 -505541 -432710 -77384 -429954 -45864 -431855 -49964 -125797 -115495 -445058 -339848 -96785 -330417 -674147 -166102 -158171 -172584 -230117 -523427 -63792 -930694 -637894 -622228 -72793 -80939 -209454 -506029 -632088 -153443 -385960 -366163 -22789 -443255 -290076 -848186 -770875 -196329 -587789 -907542 -332358 -771245 -818792 -339678 -917236 -524685 -339852 -323979 -398429 -168450 -204608 -211842 -13650 -797074 -90163 -339540 -649012 -60792 -743995 -723910 -298414 -639342 -376384 -368407 -424006 -88313 -853067 -559986 -915748 -211851 -654296 -208669 -904926 -639625 -376604 -606768 -831216 -566873 -721649 -788723 -518289 -465065 -137231 -212876 -695390 -357404 -859148 -147176 -13974 -760058 -292176 -861285 -673869 -676683 -938488 -332483 -482331 -924734 -514959 -331493 -791806 -654499 -717204 -330782 -724058 -365566 -338495 -482153 -770300 -96533 -106823 -747228 -516389 -146634 -430337 -151871 -415485 -861339 -244247 -457293 -414738 -119303 -32055 -673696 -836054 -80206 -482767 -286481 -551337 -26363 -835203 -779224 -132089 -332206 -930462 -328576 -165210 -797634 -662133 -738357 -797699 -12431 -30226 -114305 -159898 -444436 -34867 -11402 -561083 -516405 -921526 -339580 -445876 -165818 -950245 -405965 -13770 -186418 -903028 -585580 -9414 -682580 -640071 -483181 -236562 -289918 -810326 -890200 -121830 -230880 -603607 -638753 -863809 -920432 -164437 -545504 -5214 -523924 -911879 -362131 -72714 -638791 -30731 -146661 -632519 -534117 -567375 -364986 -537804 -802853 -932781 -147577 -814885 -257696 -356462 -449038 -829047 -83929 -695470 -888120 -52075 -908226 -72274 -70299 -722559 -424394 -6428 -825896 -625028 -136902 -424351 -175127 -397480 -323724 -777125 -896903 -590743 -231086 -22385 -267185 -854575 -164622 -639993 -277834 -951613 -159304 -115186 -208644 -293929 -126875 -165681 -861238 -391681 -481374 -176524 -11523 -29153 -248239 -604122 -626336 -839458 -905011 -294834 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_test.jpgl deleted file mode 100644 index 9afa56e01639d2344ea00d4d8a9f3da9eee1fb24..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -518612 -601116 -228156 -39829 -17868 -636226 -138515 -822507 -64885 -19250 -653610 -46215 -132479 -802978 -282206 -343994 -940061 -339257 -491203 -634871 -130108 -680221 -477371 -805803 -779600 -377212 -332343 -439904 -168299 -742619 -140642 -695359 -665918 -72323 -303435 -141881 -470920 -424783 -934514 -766115 -405001 -236602 -933840 -354480 -180714 -424203 -771174 -510347 -274769 -41313 -33634 -692680 -132468 -674799 -364297 -806044 -55729 -852019 -943842 -125933 -632233 -95011 -350891 -494546 -846059 -949668 -693738 -331397 -289910 -722010 -493499 -258239 -306461 -41389 -924184 -112973 -339322 -304002 -128661 -330839 -275063 -139985 -112380 -20269 -124978 -196886 -442456 -495681 -303591 -101684 -511920 -706060 -63398 -807440 -786059 -78949 -620325 -935236 -98177 -389558 -40778 -398346 -113587 -706103 -329376 -31866 -525387 -723136 -692133 -738279 -208634 -101614 -82222 -275328 -593889 -879126 -824293 -489268 -577741 -65813 -512002 -262972 -131537 -816575 -127982 -41399 -278868 -20503 -72211 -851350 -71940 -571382 -56983 -640768 -762290 -861244 -10933 -141521 -714234 -471481 -24197 -574792 -324838 -770770 -80748 -495829 -40792 -173157 -271812 -367630 -11327 -696526 -228330 -569444 -41094 -899324 -785927 -828817 -72614 -328696 -818771 -426419 -369417 -246521 -273892 -242691 -432340 -912608 -857527 -246123 -849841 -809765 -896178 -921289 -274611 -860235 -276157 -245015 -146164 -768482 -449035 -795537 -413251 -569804 -894833 -347308 -192412 -538198 -775208 -426402 -801564 -413096 -476548 -147015 -559375 -484416 -231058 -422472 -576962 -494776 -635964 -415564 -359265 -563967 -423166 -262511 -914050 -97663 -853788 -524881 -799218 -914251 -850540 -90810 -231318 -6120 -10667 -735031 -20434 -348820 -497193 -895375 -346183 -75684 -40645 -923566 -678045 -423280 -639561 -838041 -429040 -802502 -101772 -112114 -765396 -230512 -886920 -756461 -41333 -941532 -332475 -821066 -441825 -528618 -211827 -813403 -17521 -369579 -414439 -56083 -11562 -773226 -898274 -706405 -112695 -665718 -621106 -519804 -113220 -505525 -113495 -145374 -876005 -765982 -941852 -23058 -55928 -20439 -242779 -137078 -545161 -841751 -646219 -103254 -639579 -55533 -137006 -86399 -186394 -41265 -797723 -751508 -886550 -914143 -365680 -83066 -321574 -820889 -788346 -388374 -807172 -276098 -387559 -891405 -492644 -571921 -537912 -480284 -889549 -26922 -72293 -801441 -194925 -22777 -155201 -88058 -324103 -51415 -395771 -275286 -756499 -495896 -586590 -251005 -735924 -132184 -836878 -51030 -180724 -782954 -430750 -322569 -832637 -715786 -76844 -413249 -186850 -52064 -772389 -72013 -588441 -954013 -722923 -849372 -661775 -72774 -141902 -375422 -855334 -276099 -640773 -694315 -581110 -186928 -67570 -239131 -266724 -298863 -738263 -35304 -827225 -690893 -426212 -232232 -10522 -904057 -81128 -770608 -230433 -476365 -504455 -571953 -423359 -571308 -624301 -51388 -899766 -127344 -503355 -696956 -388720 -521548 -256381 -241818 -274651 -74355 -663907 -308917 -443277 -146538 -27459 -102645 -571842 -761249 -723708 -220584 -742889 -96357 -860274 -433064 -262788 -170843 -185086 -42995 -563141 -647569 -782132 -41350 -377196 -923482 -178565 -102258 -752211 -445792 -62093 -324815 -9891 -19359 -495812 -136762 -27898 -815667 -447819 -765091 -809061 -893101 -803601 -123051 -78092 -445777 -413123 -12242 -173399 -252227 -500988 -445774 -358776 -70857 -486306 -849748 -20009 -627221 -641356 -444720 -712307 -172872 -250650 -377443 -754440 -186429 -72068 -176206 -165616 -91028 -827892 -859989 -244976 -495576 -245518 -445661 -778651 -50193 -372194 -422184 -850012 -287828 -890860 -525425 -600551 -61685 -63615 -782623 -758069 -333446 -925649 -185100 -879942 -233340 -260952 -817885 -804850 -429257 -752154 -80271 -693029 -280861 -512591 -103106 -86657 -46278 -861337 -763364 -639594 -129047 -818828 -177528 -74434 -72492 -903521 -307444 -316647 -24741 -827432 -186278 -783421 -711543 -779497 -723517 -55744 -729339 -842985 -72143 -141140 -97677 -436156 -262991 -780994 -186645 -60934 -184947 -839535 -818161 -415149 -49273 -424330 -262520 -229775 -456027 -595 -55854 -424393 -235027 -275895 -363580 -562407 -835993 -107747 -128148 -337383 -579483 -636852 -141658 -252813 -857651 -900116 -756709 -433555 -495595 -510238 -68310 -72256 -709968 -72072 -571303 -486090 -801724 -72252 -68603 -412889 -20419 -639359 -105651 -727065 -12922 -13747 -514002 -459778 -624662 -330785 -102518 -823096 -741398 -806938 -224757 -13565 -252034 -244279 -889017 -451167 -867015 -28936 -349961 -871550 -274333 -262431 -463536 -547233 -559662 -139832 -254922 -147373 -10675 -861080 -230141 -731069 -142005 -606717 -308751 -938526 -954261 -934774 -79173 -126299 -189314 -602687 -696999 -445289 -81480 -938363 -588911 -839732 -429233 -907696 -755467 -63580 -10992 -153981 -942889 -632656 -276545 -180716 -693924 -828699 -44426 -861338 -41003 -886858 -568940 -801635 -652575 -710661 -894596 -952559 -374988 -638647 -866962 -236791 -856220 -900682 -230934 -797743 -74058 -624955 -64693 -415945 -850128 -335327 -19964 -338235 -542658 -125989 -916492 -272698 -781148 -362463 -250579 -53840 -334172 -843793 -230267 -661094 -765724 -791842 -857097 -899779 -276367 -255058 -297298 -67200 -756451 -925693 -593478 -489202 -242907 -120720 -904998 -217838 -339663 -622260 -77525 -72336 -16522 -330391 -323122 -801796 -470531 -941367 -4246 -27727 -423992 -429678 -97979 -779616 -107830 -577213 -423259 -255392 -257129 -648452 -332640 -934068 -377311 -634436 -23521 -288829 -694359 -338326 -876119 -195229 -91105 -403805 -921535 -475980 -424469 -300179 -887060 -27872 -27350 -101495 -27938 -387679 -602900 -672970 -349875 -97377 -33262 -386417 -823735 -660462 -921266 -800414 -850944 -288685 -924263 -386016 -13638 -118626 -185935 -802902 -97446 -142221 -36297 -63519 -542916 -571200 -571704 -375448 -164968 -202928 -340187 -45349 -282882 -263493 -765293 -927718 -66956 -105722 -442257 -847866 -54324 -81710 -669078 -231330 -164243 -734253 -100397 -765684 -186488 -834865 -532103 -12306 -488318 -264031 -825722 -857056 -848896 -929671 -72173 -16176 -18189 -866287 -611824 -352821 -388026 -431695 -45629 -614396 -852617 -335399 -834633 -134146 -624444 -755477 -398425 -812703 -362357 -918850 -569893 -37142 -446485 -572812 -6201 -362371 -743187 -445174 -782105 -173635 -173598 -331041 -515209 -927580 -940093 -258551 -445037 -562562 -165794 -217013 -893063 -16510 -21842 -52838 -136650 -671661 -129466 -839689 -779472 -65993 -15862 -889011 -693384 -663551 -101371 -46100 -140478 -410713 -231935 -855571 -177468 -6527 -846247 -695254 -602629 -727816 -263072 -696154 -34807 -520051 -327325 -422728 -669632 -232585 -348302 -429303 -324856 -398626 -29358 -102093 -254521 -910914 -570783 -26612 -358374 -283626 -126184 -503964 -388253 -115756 -118631 -457800 -145672 -706453 -759620 -482388 -849414 -495606 -266868 -569035 -429160 -211875 -749545 -314761 -921634 -931201 -377307 -2732 -11131 -59272 -693715 -735289 -116282 -98430 -924562 -330826 -32137 -402355 -330376 -730488 -173259 -102797 -13969 -11170 -330915 -351382 -936791 -28766 -461352 -27892 -128473 -543579 -18271 -133453 -368528 -64536 -78097 -325121 -818949 -96064 -339316 -922686 -735521 -605811 -41410 -824575 -838374 -924455 -656267 -761896 -496134 -40864 -490283 -338689 -494085 -775103 -239035 -593262 -63371 -775680 -690888 -255197 -743422 -34678 -24490 -564448 -40665 -684205 -214403 -54352 -94886 -663953 -275933 -556411 -692759 -741337 -45693 -934840 -413358 -421705 -163676 -816953 -164997 -569173 -277444 -75094 -648597 -443890 -669138 -798763 -331204 -838633 -446422 -760905 -174214 -37502 -356751 -207011 -34806 -648271 -945729 -899311 -394227 -781831 -41287 -435771 -280923 -282736 -13819 -327498 -592846 -48929 -339675 -768843 -250128 -428677 -804582 -394338 -368905 -668574 -536752 -18233 -948564 -255308 -412067 -903138 -428833 -85000 -461728 -439477 -685321 -929503 -571779 -68068 -470687 -20428 -331693 -303420 -41138 -123505 -282357 -11326 -500588 -72067 -20138 -445501 -954546 -208828 -24190 -12709 -393972 -860325 -539001 -837324 -714599 -925634 -147247 -460902 -102808 -660880 -823783 -279667 -70818 -526759 -35651 -324614 -350616 -726445 -110063 -233069 -165693 -532506 -238516 -624977 -102267 -10336 -101820 -66108 -647650 -266129 -764970 -753802 -638270 -121621 -238056 -427608 -767144 -2626 -282784 -697725 -71299 -44313 -173435 -146893 -41354 -20270 -237229 -429374 -387435 -231180 -10832 -104258 -252033 -5613 -132124 -886685 -83832 -308843 -41367 -570721 -174809 -13766 -400629 -497812 -70300 -945884 -805404 -72369 -831100 -340695 -182575 -332376 -424349 -726089 -586480 -421558 -820203 -383749 -648929 -396741 -133152 -890693 -402239 -663914 -704942 -282777 -72144 -844891 -65955 -488807 -494458 -890755 -275359 -2347 -806930 -102447 -26945 -113666 -361157 -514933 -429080 -429326 -230371 -166483 -244612 -763803 -838025 -494945 -276290 -692706 -233075 -169138 -91093 -125708 -834744 -744562 -502368 -465671 -147163 -246706 -829744 -63495 -276836 -835503 -591527 -839423 -839494 -232750 -168319 -950781 -486500 -113330 -471378 -328744 -113654 -71883 -233337 -85687 -385559 -432232 -81818 -388864 -425716 -582466 -477204 -897517 -33414 -13396 -603539 -362288 -533316 -361705 -735525 -811429 -158047 -668452 -270237 -174958 -891306 -892919 -469759 -134804 -147264 -27534 -375784 -276279 -41069 -781155 -332210 -903468 -449730 -227085 -904175 -893939 -12275 -490846 -75538 -886931 -901866 -360747 -395638 -22665 -398368 -706355 -290327 -96846 -423291 -165643 -107598 -664681 -339865 -779244 -279600 -812401 -339087 -570546 -932076 -12663 -490700 -113604 -404997 -648813 -246286 -777690 -239515 -458816 -330739 -22305 -276438 -892861 -562557 -250659 -807435 -428537 -381742 -843224 -716525 -273556 -330542 -886582 -839404 -647014 -474667 -67447 -373396 -799386 -941826 -24522 -19974 -339380 -761911 -643271 -687228 -49421 -495899 -176058 -760170 -731749 -810950 -211440 -6324 -146045 -102897 -331612 -235433 -802616 -147567 -566342 -591358 -765835 -824075 -164269 -458163 -420871 -80833 -771426 -353447 -71897 -164647 -837767 -919574 -349595 -238484 -390695 -771118 -85047 -824684 -360130 -30979 -861323 -571879 -696917 -165993 -465308 -362476 -623428 -839489 -768172 -633182 -5960 -604087 -95919 -706987 -145798 -11179 -284433 -800804 -71314 -768732 -352255 -254897 -142625 -428814 -505977 -761534 -860243 -184942 -405538 -86448 -233904 -172324 -54956 -21476 -67057 -186282 -92674 -873277 -186903 -67708 -97429 -371543 -587959 -812986 -261657 -81472 -395188 -27906 -98467 -432446 -13038 -833628 -832680 -770571 -861290 -427657 -136595 -326115 -99922 -357505 -273652 -948183 -891417 -664065 -40760 -663560 -139817 -239436 -481333 -432840 -438024 -428629 -643166 -571456 -198867 -747784 -693486 -114892 -251810 -112988 -2766 -721523 -693930 -68237 -61711 -245799 -250973 -298630 -512746 -803380 -839630 -195933 -56701 -674955 -272731 -80106 -412043 -765490 -767859 -229364 -672086 -437462 -54713 -445634 -786866 -656810 -752048 -275361 -6222 -637787 -489306 -140567 -216763 -199777 -472176 -72330 -754680 -255041 -190292 -513561 -276121 -276219 -578488 -412309 -333726 -812481 -941530 -494459 -41256 -50693 -481969 -931073 -603600 -188394 -693176 -41212 -72272 -278872 -303582 -749536 -377427 -388786 -71944 -231274 -500527 -830387 -533113 -2209 -426142 -275998 -54201 -477347 -147583 -66102 -168375 -736126 -60370 -68414 -159452 -702039 -525890 -147395 -96956 -273760 -303044 -252396 -72096 -147451 -126289 -790106 -680483 -361663 -359184 -192054 -734947 -656561 -94863 -200573 -786112 -184973 -746888 -482449 -640858 -418485 -539202 -34109 -420938 -832366 -331063 -953857 -69407 -897108 -201850 -500007 -339883 -944900 -736008 -928364 -102364 -10241 -238258 -632035 -13558 -281265 -837664 -861218 -68397 -196476 -237138 -72338 -377539 -263170 -197156 -441839 -796135 -238765 -483130 -570381 -250632 -11308 -398238 -331100 -429393 -835543 -358681 -824073 -5690 -934103 -495095 -147473 -332433 -165690 -838335 -649420 -734792 -511244 -323522 -841829 -172365 -215720 -307203 -25859 -56150 -892005 -41213 -188727 -34538 -41340 -282942 -835374 -924396 -772055 -163440 -672870 -212749 -373275 -692139 -857766 -205918 -924889 -422659 -489371 -841313 -63445 -52574 -695417 -337768 -822284 -824249 -274756 -950666 -17056 -828803 -385186 -819455 -54561 -215375 -750943 -600707 -707367 -190988 -163668 -49294 -693034 -791782 -398562 -282495 -766119 -136950 -893113 -694368 -834569 -926904 -23036 -98315 -571106 -42593 -383240 -231253 -134932 -308134 -861040 -95833 -932899 -136285 -211628 -274736 -186826 -817533 -244962 -766283 -887058 -49396 -431533 -893034 -463780 -230913 -11098 -799349 -664768 -693610 -850176 -892969 -521271 -25386 -176614 -101652 -775302 -677169 -330589 -243473 -693473 -481850 -173374 -341751 -879854 -330055 -861075 -385288 -274160 -932579 -571290 -892845 -10912 -83833 -627494 -486303 -574402 -623511 -497903 -831599 -236223 -591651 -435093 -423050 -175445 -177478 -423803 -722919 -30342 -733797 -112275 -591335 -12273 -861045 -409569 -679725 -147450 -495872 -857219 -12176 -481721 -13912 -280910 -429844 -166309 -113373 -481654 -468708 -32241 -1129 -704480 -693708 -32396 -444805 -211714 -873231 -103011 -186999 -40682 -476996 -799761 -20771 -854784 -101622 -875752 -50877 -779577 -20482 -56124 -39185 -27896 -19646 -682282 -417472 -287717 -776604 -428201 -235315 -666357 -306943 -801253 -429931 -782241 -56346 -664294 -828327 -354747 -838008 -703618 -891510 -331923 -284194 -67342 -41185 -43288 -282635 -26933 -766301 -460538 -478630 -775248 -104691 -856984 -462101 -540777 -398619 -51971 -444709 -558818 -667660 -540553 -165668 -245155 -850157 -542452 -728190 -27343 -248530 -889438 -232525 -836264 -649884 -272131 -532932 -638443 -20536 -437594 -486808 -13111 -772320 -246277 -168147 -40679 -165515 -196074 -477165 -797218 -569872 -784296 -602764 -34823 -439471 -497943 -706334 -831601 -9404 -33737 -254973 -741797 -41133 -279757 -427706 -63138 -319193 -456431 -494180 -278078 -769013 -779351 -562634 -20063 -277921 -231261 -493 -903181 -495835 -717167 -68551 -46078 -276120 -287914 -12464 -513656 -153907 -562971 -186275 -4394 -839316 -623270 -562318 -788444 -548046 -778684 -347815 -83042 -801903 -275645 -41150 -339704 -626239 -687510 -140459 -121932 -428977 -67983 -571956 -196443 -244514 -225411 -186576 -454764 -638859 -847046 -696085 -599263 -32762 -19716 -759318 -788564 -278577 -41338 -186884 -744305 -165281 -725149 -470052 -175170 -633791 -13413 -47689 -857145 -887071 -243697 -954990 -231166 -930455 -255543 -287495 -311402 -711938 -811891 -697012 -67196 -516988 -573436 -563280 -165965 -423098 -173284 -185136 -192880 -314749 -277826 -29760 -716582 -97135 -113429 -839414 -204684 -49379 -26699 -838607 -835578 -365413 -13861 -694399 -262308 -398288 -278493 -165453 -693012 -157143 -486723 -112175 -624445 -142706 -425734 -154148 -275420 -571319 -807188 -423129 -496109 -677438 -186592 -72339 -492975 -175526 -730690 -751215 -439536 -671761 -325114 -390534 -12578 -444363 -230940 -291953 -428743 -791486 -233258 -635751 -43921 -255380 -45441 -872994 -9548 -606078 -332370 -137249 -173649 -848969 -12664 -439815 -516681 -694116 -775607 -274114 -616391 -446234 -939331 -230171 -41008 -173146 -234364 -54598 -831238 -703616 -830149 -356236 -302860 -245850 -873448 -816404 -72169 -396698 -798708 -503970 -566236 -428520 -167332 -803197 -365843 -10810 -330772 -332226 -864074 -636421 -696451 -146528 -95341 -749697 -765132 -549463 -41261 -27882 -812908 -184731 -820368 -186715 -857459 -29591 -672583 -56048 -846017 -35653 -636940 -279278 -811949 -636144 -591187 -134153 -539574 -637843 -909034 -562860 -41351 -865134 -68690 -495574 -456083 -197212 -155429 -505167 -429358 -505421 -239643 -886573 -552087 -547148 -349854 -799808 -375022 -186853 -193919 -503954 -703537 -687334 -668403 -471062 -667001 -907600 -376662 -75126 -402199 -745475 -828939 -279025 -50697 -386403 -593622 -208624 -820085 -173509 -524386 -838655 -81606 -44307 -831109 -78341 -516036 -64833 -146520 -165738 -90584 -303725 -60154 -185303 -919650 -695745 -652869 -593774 -185594 -173348 -154102 -317399 -935418 -113360 -142204 -275948 -22730 -136029 -834864 -144422 -54477 -365299 -428889 -386612 -528547 -308921 -432327 -761752 -623549 -288613 -928983 -40759 -741864 -618423 -778275 -431683 -103666 -649730 -858085 -127962 -223834 -911565 -308791 -395603 -255467 -54973 -520497 -277057 -636339 -387792 -624789 -856421 -732507 -375027 -173863 -66377 -401233 -41404 -567296 -887446 -376039 -621474 -343924 -935470 -373279 -627940 -162784 -424211 -747528 -126262 -29056 -939653 -704026 -10274 -858034 -241586 -505603 -797982 -949092 -368695 -778696 -570920 -331376 -338854 -32128 -282556 -656842 -721451 -494867 -272466 -40540 -569900 -739730 -496126 -330298 -387862 -832151 -704604 -536122 -8728 -600561 -541103 -173159 -800879 -650063 -230682 -292709 -664104 -176251 -375954 -78502 -263361 -690204 -343697 -859696 -313776 -41049 -67768 -897883 -57756 -645399 -232344 -142708 -266135 -775441 -519032 -858852 -593053 -272618 -324193 -850027 -186808 -232973 -146996 -134702 -932140 -703723 -837284 -274868 -402345 -648836 -22884 -71124 -65890 -141883 -462059 -400695 -6725 -569337 -622191 -281221 -288006 -394440 -250787 -823028 -99791 -760040 -181604 -422002 -136030 -691639 -84838 -76087 -41331 -725789 -927729 -779149 -285827 -146986 -10944 -854305 -29126 -774103 -606552 -56094 -58179 -331895 -133974 -826835 -437094 -19455 -254389 -253791 -98327 -721273 -533652 -72093 -308380 -288151 -12689 -349742 -132004 -128293 -208756 -388670 -146043 -332313 -432722 -188287 -41762 -147559 -146542 -410693 -398457 -694115 -852614 -639734 -331098 -276289 -403349 -232526 -469671 -277985 -64124 -755257 -824557 -9531 -743440 -276325 -733873 -173763 -524068 -86096 -74352 -291453 -850057 -768417 -231069 -904486 -103086 -658602 -244853 -35741 -632554 -527340 -479963 -355687 -231236 -66014 -468000 -74402 -133061 -259393 -904205 -462239 -479097 -659182 -350408 -46595 -687599 -129027 -262291 -623323 -591782 -287655 -829297 -783391 -263093 -438517 -147304 -466062 -125728 -783555 -322555 -775786 -403598 -707084 -505868 -694422 -424400 -458820 -639715 -429072 -377492 -96725 -811573 -694426 -387820 -115830 -368427 -824341 -675927 -276088 -62615 -451750 -453760 -184886 -195857 -635284 -41372 -96994 -674171 -483762 -78316 -190922 -131445 -602737 -185871 -736005 -528102 -339837 -67472 -844407 -811941 -931888 -168303 -40579 -818642 -146554 -350466 -736519 -785258 -518089 -119221 -339124 -603750 -344976 -252120 -27802 -754748 -326147 -358296 -658482 -79590 -408322 -270798 -779635 -245685 -282583 -641314 -244049 -41302 -669893 -303840 -824236 -308315 -429435 -676236 -279084 -432307 -797220 -392304 -442133 -12167 -129115 -8803 -358308 -64778 -236736 -41155 -665982 -779533 -450894 -659687 -62970 -90632 -259827 -494188 -604138 -799677 -591690 -123530 -347362 -311813 -432666 -277966 -70699 -121890 -790733 -645546 -12117 -909774 -103335 -339226 -41346 -847546 -14711 -18083 -878506 -625588 -331370 -20322 -347354 -43785 -150309 -369568 -632291 -246256 -10906 -285473 -799273 -623863 -440951 -297582 -240683 -640959 -102161 -422762 -691998 -920341 -276065 -281218 -138827 -524048 -84847 -419384 -263256 -674790 -418626 -819527 -186870 -691722 -244078 -722463 -338956 -808195 -768623 -133558 -675970 -45926 -347541 -518872 -601047 -102285 -929379 -41161 -54458 -852426 -287482 -265838 -433416 -839426 -737893 -395494 -176114 -395607 -640466 -494865 -182902 -40952 -571416 -571104 -551560 -490733 -710914 -802531 -716317 -927448 -308570 -205948 -172325 -588073 -208527 -16648 -377418 -51838 -27884 -740557 -350991 -78426 -703075 -600482 -331969 -476616 -738686 -13574 -332110 -234426 -254042 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_train.jpgl deleted file mode 100644 index 58312058b404c4eac108d6ff033003a344bd2f2f..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/cityscape_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -82510 -295835 -396248 -887054 -129194 -193174 -656188 -10092 -802944 -632958 -495906 -732973 -830729 -340602 -377547 -368426 -420750 -235642 -146997 -242192 -873752 -850052 -483297 -349572 -275846 -493256 -168216 -41390 -860124 -475035 -193045 -43848 -3267 -11593 -741086 -96163 -295764 -172474 -27337 -808719 -281130 -264041 -602482 -736094 -276211 -189007 -274980 -416847 -139883 -745579 -571962 -191506 -913967 -21922 -212847 -74530 -669162 -685679 -34778 -113440 -812585 -56147 -207585 -804207 -422935 -777458 -357210 -947783 -663495 -400373 -139748 -385189 -277506 -31983 -287740 -830427 -314678 -332219 -893016 -204864 -27714 -897038 -126545 -193065 -141097 -19711 -363865 -457433 -590460 -570725 -475203 -423323 -722640 -244626 -428131 -12420 -231239 -1142 -204174 -225573 -360005 -275972 -173510 -745593 -879496 -478700 -544741 -577830 -239535 -27815 -330191 -942869 -694416 -894202 -185583 -795070 -917829 -391949 -779786 -196210 -312077 -162428 -20949 -120714 -17855 -593885 -896198 -571685 -828236 -811721 -849972 -897521 -237827 -112652 -230627 -101926 -27738 -265121 -761522 -72155 -923958 -90134 -70700 -13665 -935094 -22868 -779629 -563779 -284783 -828366 -706982 -331099 -15869 -20907 -824312 -712851 -169949 -636760 -810042 -938211 -292742 -233338 -904204 -436459 -593317 -444449 -21333 -788395 -474973 -316678 -571268 -14943 -395480 -692410 -502496 -923135 -16558 -860887 -62117 -47873 -244432 -648715 -627610 -14421 -7674 -756487 -173471 -832330 -920515 -632040 -734788 -49026 -477419 -275102 -186585 -682155 -177934 -250224 -275745 -425708 -172431 -83593 -173645 -140607 -274569 -429937 -195940 -13662 -889254 -286318 -15870 -755092 -236031 -268573 -237922 -216839 -288991 -827494 -210121 -464080 -154698 -760847 -954804 -299371 -41289 -730282 -651710 -28202 -573976 -121912 -85283 -244452 -703858 -938822 -511083 -23063 -53054 -836642 -65258 -238698 -751978 -31894 -639980 -734391 -850099 -331508 -41620 -83874 -274081 -808375 -897096 -925862 -210989 -538147 -557999 -18037 -825013 -262000 -779581 -796584 -382988 -122021 -20045 -200556 -738664 -81906 -612793 -275472 -155455 -537803 -759871 -387110 -413935 -364427 -123451 -137190 -13753 -879681 -146912 -98342 -340768 -198056 -766292 -346540 -423260 -573318 -239454 -828047 -544535 -920969 -242864 -568639 -320698 -774197 -363885 -316738 -832718 -751422 -619735 -859760 -495687 -916437 -126018 -860916 -167413 -239443 -889193 -706537 -102165 -267686 -913757 -403124 -40460 -878944 -514632 -552945 -55983 -731041 -432367 -847142 -639666 -715368 -751170 -173413 -624211 -11073 -444393 -588967 -429291 -97780 -173256 -73344 -482527 -175237 -314969 -120474 -429068 -368259 -319569 -14623 -438455 -246813 -638065 -12231 -156397 -75411 -418750 -562715 -280565 -209878 -11661 -40662 -594690 -524488 -424097 -918059 -696577 -931010 -743579 -898822 -454311 -475324 -113339 -707081 -645598 -765378 -853248 -22092 -161172 -215032 -610948 -888213 -69642 -937505 -175630 -21979 -779460 -431566 -588735 -691546 -861073 -60699 -845158 -451365 -571030 -339369 -135246 -25337 -458102 -191498 -81799 -450617 -478551 -694117 -941573 -365808 -858323 -133166 -133354 -921788 -624213 -645594 -775243 -16728 -51199 -428726 -40786 -86755 -113398 -436115 -68394 -446280 -769675 -88047 -332451 -504288 -281732 -10132 -449094 -471106 -741959 -428839 -927725 -340224 -113599 -171809 -444957 -749334 -46114 -495907 -6247 -654043 -350196 -852963 -349341 -126849 -296593 -850114 -625409 -496114 -853164 -204043 -810701 -12272 -129238 -90217 -853113 -163298 -542870 -15936 -22450 -424443 -332215 -115692 -423149 -724351 -795532 -775135 -69233 -141036 -738658 -621081 -81557 -688860 -63139 -147582 -339420 -488443 -340486 -692916 -309656 -944291 -534796 -648777 -765220 -861347 -928331 -237860 -259470 -491911 -285094 -147634 -22889 -210979 -284122 -173907 -41136 -755241 -173771 -659230 -214596 -862942 -72094 -131769 -224647 -82213 -55460 -715103 -301696 -849469 -16498 -57430 -760495 -339292 -282998 -822154 -557770 -184538 -132921 -423300 -914257 -145318 -826398 -13599 -696533 -12476 -797785 -436895 -802908 -362293 -309596 -251287 -919538 -868692 -173836 -62830 -346236 -431633 -703918 -848370 -397940 -252350 -716496 -37151 -261079 -774146 -889464 -429439 -246196 -723514 -869454 -113497 -423449 -955654 -377411 -569895 -500998 -303581 -147034 -73346 -377482 -344145 -1621 -871754 -388744 -91016 -215838 -705228 -296613 -790005 -909237 -697005 -252177 -199143 -398054 -256841 -696971 -21431 -341347 -39543 -79300 -789853 -368646 -623543 -289976 -22747 -743544 -679656 -831643 -20518 -86765 -951078 -568892 -55419 -570781 -213735 -114835 -284643 -887783 -319868 -429260 -361686 -29764 -722479 -70139 -632205 -732050 -532382 -251021 -155835 -630479 -738265 -886869 -515678 -332461 -489524 -693035 -49283 -252497 -83572 -330325 -242364 -113521 -289418 -632215 -310347 -262582 -463580 -90358 -40927 -677735 -34632 -44149 -447856 -810244 -494322 -63346 -345786 -836723 -64682 -388356 -751303 -411222 -20040 -692125 -337975 -77365 -602759 -164530 -779333 -450865 -292434 -422123 -330095 -116182 -558825 -575668 -433405 -238784 -69547 -941482 -121185 -322573 -423332 -664131 -97835 -403651 -270421 -275297 -40404 -275767 -763212 -429416 -276468 -656576 -626991 -818062 -13621 -906070 -432175 -34104 -691360 -903513 -282786 -343278 -288078 -113156 -495797 -288570 -245333 -550867 -772770 -505883 -828357 -173641 -96874 -450610 -639738 -226518 -125121 -634176 -658729 -751752 -793557 -11512 -648126 -906885 -623792 -571426 -251224 -84313 -819716 -41385 -177335 -619554 -591273 -573609 -518536 -19602 -53071 -498964 -761445 -743382 -204437 -189521 -896023 -520909 -331963 -779596 -672184 -14936 -362338 -786292 -12586 -355537 -415167 -41174 -746001 -397804 -388114 -298281 -861324 -664166 -951309 -573874 -782473 -142507 -648616 -474369 -79088 -11777 -770692 -404198 -571777 -19942 -577312 -233811 -849933 -17298 -160757 -166470 -48814 -429197 -49422 -426501 -900891 -913094 -13248 -927562 -33200 -801160 -695904 -328790 -571991 -623233 -424221 -33214 -862470 -36730 -52386 -37144 -486635 -565869 -354405 -276108 -182404 -180735 -161122 -796692 -146185 -29675 -810709 -325509 -949304 -75519 -268561 -283013 -174711 -446759 -851053 -815843 -499192 -60010 -137132 -828312 -145658 -265533 -516848 -593455 -11197 -428292 -618454 -539761 -72518 -33427 -827060 -694316 -693887 -199049 -64342 -358363 -48815 -912552 -173490 -654873 -414250 -135197 -222678 -328463 -735390 -786614 -211303 -569271 -558803 -418764 -446011 -751915 -712106 -903532 -288820 -712124 -670788 -911754 -812592 -186683 -492894 -65452 -894536 -192714 -54859 -230827 -654602 -145316 -231079 -723986 -479582 -427970 -745525 -195183 -344330 -27959 -78693 -480108 -579795 -667629 -802784 -175760 -810710 -287095 -422092 -734966 -40926 -802386 -134511 -173643 -545689 -665380 -635000 -126155 -324937 -201581 -779732 -729228 -294361 -186580 -386366 -239335 -52567 -816821 -307929 -244075 -191455 -775278 -170536 -609483 -154082 -634280 -195706 -83604 -546322 -853706 -50599 -442521 -410629 -495744 -721898 -945784 -894843 -838071 -13708 -178354 -72136 -148704 -639435 -774871 -53358 -308473 -19883 -672721 -776794 -772184 -395330 -910203 -16753 -422751 -763388 -329559 -440280 -886500 -955767 -239545 -41320 -570690 -89290 -287935 -72141 -274788 -478202 -629962 -563946 -940537 -681604 -227000 -922541 -951222 -113211 -266056 -111398 -59984 -499377 -147377 -659648 -886886 -638699 -186607 -176296 -757153 -744397 -258355 -172318 -828789 -890635 -84688 -339709 -494265 -226908 -537527 -813155 -892350 -185182 -429434 -64740 -118387 -41065 -742415 -69675 -445686 -593907 -282804 -950117 -579171 -396253 -429262 -948652 -693395 -809858 -89476 -83565 -579872 -149186 -154893 -281534 -12386 -173905 -571270 -917066 -829708 -276319 -926658 -873739 -824213 -808852 -586663 -103015 -137079 -490270 -766941 -204105 -126799 -34558 -81781 -404825 -14590 -437352 -276462 -797761 -902695 -570332 -81579 -40432 -412314 -855167 -495986 -74130 -774246 -230670 -471103 -12220 -322773 -126051 -812581 -802476 -916843 -658309 -12952 -76614 -504813 -86091 -235430 -73221 -276363 -189775 -907318 -83459 -674877 -806557 -180943 -648114 -821328 -114932 -283279 -211705 -137059 -11776 -781956 -719961 -829711 -512388 -653790 -41251 -176740 -25906 -146440 -704036 -686834 -98262 -640046 -824331 -828818 -756629 -878890 -409090 -244064 -490888 -471440 -361562 -541455 -623275 -78810 -314827 -422877 -593136 -534588 -831303 -577161 -766238 -501865 -472356 -448671 -813208 -800488 -779807 -772309 -362365 -267106 -786169 -894680 -696866 -127254 -823191 -690671 -190128 -71196 -545500 -493170 -305974 -303007 -102521 -839636 -471218 -291899 -167010 -504736 -142604 -72087 -870218 -178911 -275339 -655093 -813396 -30964 -239227 -262375 -13087 -745820 -493060 -844031 -818500 -361527 -238950 -468316 -287925 -495032 -20529 -471346 -463721 -550013 -377213 -857947 -132630 -492446 -711129 -694020 -528708 -684196 -703470 -721887 -112797 -417865 -476994 -427191 -860308 -457444 -472812 -722758 -125957 -19912 -186835 -238804 -463633 -730880 -569148 -314707 -888006 -497473 -411858 -878855 -429312 -429256 -139923 -55058 -683282 -494678 -953738 -374995 -428093 -778281 -737923 -188366 -230848 -365730 -570828 -443647 -652971 -51086 -146572 -934912 -831268 -899827 -362384 -724496 -137002 -693848 -6541 -931811 -872993 -423148 -113168 -927723 -239303 -41301 -532518 -126245 -693125 -64484 -263525 -20522 -260010 -163945 -19991 -690721 -706909 -236981 -732330 -339695 -502532 -502649 -95607 -104713 -206341 -837958 -13500 -503400 -889765 -20452 -816739 -129025 -846752 -496127 -669322 -821927 -113452 -276094 -561221 -613073 -141677 -732086 -645450 -37444 -504937 -52929 -474176 -446030 -779636 -542854 -325512 -273919 -358076 -902727 -829829 -264056 -208827 -358367 -427663 -635784 -429212 -633145 -113127 -690720 -192991 -129402 -692405 -887994 -101854 -52764 -771824 -10258 -739386 -388650 -496015 -330769 -365059 -449200 -604593 -838479 -66425 -282591 -423225 -112640 -262770 -56156 -693093 -78932 -939896 -504587 -223709 -561147 -77647 -43005 -173127 -126719 -647771 -571990 -49908 -374193 -617980 -696129 -873469 -894820 -342248 -428631 -236991 -237284 -27214 -913925 -281229 -172316 -12084 -331974 -186915 -276215 -44294 -32929 -450983 -446033 -774253 -704860 -716539 -818299 -188784 -9811 -801625 -695957 -770774 -97560 -414873 -215601 -167725 -581928 -607258 -519911 -186139 -471723 -495587 -178482 -194059 -326218 -921403 -770647 -888326 -924680 -142037 -411217 -913383 -372993 -173205 -60156 -332254 -584503 -75341 -693760 -359317 -770567 -71626 -96628 -900086 -263281 -558502 -623322 -173742 -63496 -903446 -336272 -87008 -275973 -825310 -328519 -276455 -137662 -303755 -361958 -245495 -476416 -113327 -483314 -863512 -276058 -303586 -852786 -27710 -812884 -738003 -282006 -72253 -443391 -398397 -639490 -366914 -830038 -794919 -600906 -30914 -287755 -425946 -343082 -26304 -770185 -653729 -24643 -86487 -284699 -282985 -102284 -72447 -659470 -262280 -636741 -805487 -388709 -409458 -663404 -254285 -792128 -186276 -131720 -72095 -537727 -246273 -11511 -125740 -755574 -17469 -932802 -637883 -185408 -439539 -417259 -461469 -925212 -887328 -263473 -52092 -900050 -429107 -810815 -32249 -788504 -636248 -761963 -346845 -25511 -83498 -180999 -451851 -930429 -332217 -52926 -245319 -490386 -774040 -615164 -239644 -275976 -426650 -117073 -838257 -230352 -304150 -15138 -442481 -916953 -775318 -887282 -210804 -111660 -97011 -472811 -153195 -481813 -715375 -437503 -830343 -251689 -146430 -464043 -422038 -945892 -416979 -9924 -429186 -423238 -555576 -331563 -475137 -41402 -114394 -603877 -799770 -693641 -85319 -41381 -710472 -238931 -571839 -329505 -354764 -818001 -903175 -638878 -488266 -517347 -808579 -185129 -772586 -64447 -308322 -824663 -430323 -347082 -275393 -74455 -566352 -375659 -43419 -482472 -361532 -10084 -40697 -639720 -83464 -444420 -349735 -70771 -429344 -673016 -275334 -430148 -633065 -835021 -103084 -644336 -402503 -255387 -7818 -825410 -277497 -283004 -102248 -636605 -602819 -211408 -861046 -496129 -105036 -848972 -938631 -261827 -308749 -845806 -11289 -633441 -183531 -158970 -680431 -101864 -482287 -85314 -360221 -332209 -286968 -767539 -774297 -428780 -495351 -308324 -85130 -121216 -543748 -276247 -622236 -755686 -394533 -160746 -571496 -956049 -473350 -204163 -859352 -941796 -591230 -210330 -45162 -623130 -126225 -65116 -445745 -810817 -403841 -440396 -27750 -113685 -261731 -830778 -887320 -327513 -20742 -232052 -741682 -705223 -422536 -6258 -85327 -11454 -430401 -273696 -289341 -164755 -716517 -832991 -538251 -839616 -251549 -896104 -211709 -11318 -322125 -510699 -64908 -276472 -10769 -173738 -347047 -173175 -163186 -727085 -524156 -954752 -475196 -308878 -332056 -275018 -356348 -644163 -45101 -889210 -55914 -824477 -479063 -165482 -803989 -478853 -167222 -789965 -328971 -56074 -145890 -330960 -563153 -850100 -55777 -388625 -765332 -756636 -564506 -374972 -146921 -644440 -908615 -348529 -458513 -287860 -489414 -41177 -147597 -126813 -667299 -659049 -424988 -861181 -113670 -710943 -343508 -863936 -879158 -41233 -158588 -18220 -252439 -63035 -41216 -102774 -66252 -147517 -623330 -656690 -860602 -55806 -11302 -282696 -20405 -41309 -135181 -147295 -184201 -423070 -512770 -27708 -740751 -727245 -178128 -743399 -196937 -640020 -26421 -145790 -927208 -75934 -68719 -705658 -101658 -160151 -102246 -308206 -588297 -548097 -324020 -113350 -282938 -299653 -498311 -476722 -217724 -437719 -102952 -498879 -41214 -210807 -905352 -674876 -254884 -282522 -890230 -429112 -750103 -276427 -72119 -41362 -905078 -83648 -35655 -665239 -127886 -326123 -137207 -648900 -666826 -818783 -257327 -303964 -465059 -429254 -13664 -77168 -762646 -445851 -229533 -308360 -602675 -145921 -827740 -490352 -273902 -192348 -353751 -185971 -231091 -562928 -239202 -836198 -286048 -897632 -185556 -211500 -571318 -271166 -276479 -11276 -41178 -175101 -165478 -603860 -887164 -84890 -102282 -354212 -20750 -461875 -692884 -124551 -171662 -648352 -281771 -777470 -428651 -439900 -836698 -84727 -134620 -237699 -210864 -303155 -624448 -62992 -40884 -605693 -695917 -78678 -19460 -703434 -663995 -147000 -374773 -114047 -545577 -137614 -274658 -38537 -505172 -322747 -490874 -786585 -81776 -640122 -850143 -437778 -422740 -332322 -331094 -845288 -400836 -445230 -274549 -908272 -648097 -636583 -942838 -835568 -863206 -104884 -891279 -953698 -839588 -76938 -191019 -577648 -949050 -458229 -239429 -139456 -624429 -623871 -398375 -362245 -79447 -42855 -800415 -623066 -694412 -805417 -788263 -349333 -325046 -142419 -145807 -724080 -362067 -528995 -861047 -896657 -532271 -706344 -934652 -600522 -30080 -870795 -276404 -480012 -562763 -384362 -331899 -422121 -86940 -849464 -13564 -423726 -319109 -331704 -34251 -99024 -173856 -714741 -136884 -64316 -770234 -113097 -12276 -70579 -81935 -515742 -158020 -310071 -13543 -101291 -625693 -172564 -485641 -682026 -824160 -777297 -951452 -760369 -141384 -11453 -423085 -495668 -693886 -103998 -949439 -356033 -923199 -440246 -17488 -733761 -540556 -127954 -33423 -365285 -902898 -483320 -282976 -6189 -262988 -177693 -952509 -676119 -566467 -64471 -719998 -149376 -693718 -304186 -447681 -165938 -836044 -22886 -126119 -941626 -349369 -251600 -412312 -371281 -263716 -112648 -149427 -20120 -175328 -281434 -11560 -280782 -682925 -693566 -64085 -934252 -215710 -477149 -297674 -287667 -670971 -603719 -414781 -491860 -83224 -707177 -446548 -854466 -801693 -809458 -768962 -607302 -93153 -102444 -637079 -677796 -426790 -40564 -692994 -120176 -79087 -843002 -889279 -428630 -839257 -823021 -477443 -684187 -511039 -10516 -251166 -701530 -429448 -572791 -598503 -50132 -732649 -590617 -669813 -766107 -432718 -449049 -76582 -383689 -770486 -707450 -253498 -687428 -524759 -844350 -186905 -361706 -330834 -832279 -866496 -779543 -495864 -849851 -55981 -317313 -824628 -211386 -808575 -32601 -438606 -602795 -782354 -568911 -16723 -874194 -758962 -66434 -920303 -874282 -13562 -666728 -342945 -185326 -707438 -94671 -367412 -925655 -813261 -607414 -571486 -107626 -236373 -702434 -516623 -328465 -349049 -492450 -495874 -74537 -694354 -309650 -571647 -121958 -471380 -763887 -71482 -786982 -766533 -863835 -778110 -282761 -314112 -12823 -570996 -69651 -518502 -741831 -96878 -631947 -37346 -710803 -873625 -853193 -282688 -878798 -25973 -752259 -693724 -840658 -428009 -2729 -11622 -623697 -928989 -768667 -274948 -929918 -694318 -268295 -619900 -854707 -707321 -930469 -734607 -44455 -778534 -821095 -636141 -819788 -134179 -331925 -424105 -776877 -721196 -661875 -419386 -602005 -172484 -40888 -403995 -147454 -886962 -415587 -69517 -926909 -113115 -325108 -338146 -121049 -14946 -604687 -763956 -577176 -755898 -12151 -430371 -927561 -605017 -237771 -356308 -72615 -443555 -230549 -822872 -442258 -210513 -495422 -18163 -332234 -422306 -772132 -502640 -81669 -623231 -616473 -681774 -297355 -505240 -541712 -155388 -172792 -358366 -230571 -477001 -22622 -457417 -564272 -860604 -515925 -67404 -431536 -457240 -566973 -908403 -236654 -424152 -414933 -315672 -693932 -146740 -251931 -273604 -64526 -833508 -926206 -563118 -70954 -549212 -52442 -811398 -845170 -914124 -257389 -2668 -332251 -834555 -175584 -904169 -345833 -278864 -175696 -821747 -427053 -41089 -721774 -950221 -287765 -809450 -398493 -640635 -858129 -97605 -46536 -282161 -439503 -424450 -661650 -741440 -32920 -656886 -615150 -816132 -64396 -494575 -274201 -113388 -637904 -361177 -836668 -324881 -136663 -331053 -306691 -747159 -175896 -357998 -510996 -571738 -347457 -13595 -569913 -429409 -226084 -72178 -96674 -733604 -790661 -86698 -837859 -926608 -13864 -146989 -623661 -857402 -142193 -27602 -745552 -116844 -196762 -339672 -683883 -896029 -88324 -304041 -192282 -232767 -820963 -185973 -432353 -423426 -282813 -464179 -694975 -697063 -320983 -940210 -863362 -233107 -432802 -40738 -20523 -117019 -253900 -828630 -41036 -338729 -80898 -873581 -863640 -227905 -48854 -847856 -785832 -667228 -770162 -136985 -22939 -909385 -180203 -735719 -113310 -495700 -386881 -169454 -49249 -763644 -428356 -423290 -512532 -930600 -75881 -423938 -30594 -798032 -487852 -147510 -128484 -903981 -788455 -112232 -852823 -843713 -70800 -377214 -468825 -850170 -903976 -503982 -707410 -824681 -357259 -76991 -738203 -629756 -694343 -587617 -941804 -34245 -495580 -192933 -69775 -430293 -817839 -77107 -24244 -103224 -141570 -126207 -440289 -262908 -85293 -52123 -663740 -68736 -405610 -120860 -125627 -743000 -766934 -672103 -861077 -71728 -474189 -86983 -75924 -158063 -172367 -704038 -142365 -339643 -624692 -453974 -332290 -102546 -228988 -603845 -150887 -626747 -564334 -505564 -673097 -495787 -588090 -405831 -761945 -273183 -275437 -390491 -113494 -564619 -84883 -63076 -914170 -190758 -54276 -722452 -276027 -515854 -806565 -232936 -251837 -861355 -792347 -98321 -546111 -536512 -930743 -374963 -14829 -79777 -40754 -276267 -756355 -827207 -69542 -142246 -808994 -365108 -199518 -223742 -827641 -19428 -635794 -444165 -141654 -794741 -852966 -691307 -659528 -14931 -81181 -791840 -826640 -272830 -263418 -227095 -367509 -570734 -283278 -102677 -283014 -68768 -402091 -515957 -35457 -571017 -524649 -82338 -730550 -671618 -848835 -846302 -603896 -755072 -495708 -80224 -823792 -189527 -51699 -394457 -659270 -444576 -420494 -40458 -70186 -376697 -381775 -17953 -165262 -587168 -451537 -453194 -849178 -29867 -307000 -16507 -192591 -83003 -310296 -162986 -40606 -638615 -947688 -51882 -350187 -6270 -849925 -291172 -849976 -579038 -765199 -272443 -346994 -891501 -301766 -430890 -146208 -832359 -41356 -930059 -328218 -597976 -11369 -432476 -805316 -134270 -903337 -154631 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_test.jpgl deleted file mode 100644 index 30b59479b46185f03b983fea6557f77210bb6e56..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -150438 -175797 -910007 -76574 -160466 -401426 -70685 -356351 -338602 -287484 -203539 -579177 -810807 -399723 -573672 -223893 -952088 -190953 -853962 -741462 -633812 -550179 -666998 -769552 -755225 -501767 -665094 -738392 -483839 -521483 -952173 -200282 -73475 -89289 -369096 -357360 -537154 -865178 -76504 -235694 -171199 -771685 -821001 -664146 -81695 -544041 -707376 -199540 -234578 -401875 -528582 -792353 -724229 -597029 -778328 -674848 -909126 -680906 -778226 -350915 -203522 -94283 -719924 -344175 -590577 -698829 -798273 -627533 -564038 -952108 -582116 -498210 -502401 -261913 -600382 -838367 -699730 -375443 -879767 -356262 -390147 -357266 -785710 -536278 -76257 -356566 -397277 -324465 -503018 -372523 -192448 -278627 -48572 -674744 -357002 -424467 -543952 -504236 -356411 -199310 -575546 -481617 -611078 -861628 -670010 -256592 -446740 -205144 -619125 -34180 -712324 -268301 -354452 -426162 -95429 -756596 -226399 -746101 -503385 -299206 -416374 -171315 -475090 -539666 -324667 -355808 -946051 -666171 -367232 -747714 -782239 -357328 -663756 -741991 -322159 -578656 -57675 -67326 -97947 -97988 -349956 -498222 -358316 -809505 -544247 -192806 -951949 -356260 -350881 -802831 -673168 -156275 -662175 -30808 -925832 -356691 -596954 -314769 -47358 -527687 -944699 -524949 -355704 -761313 -945857 -640904 -415541 -344495 -215523 -312516 -596565 -830468 -944493 -282151 -534178 -240607 -611656 -355893 -179460 -500866 -902972 -140657 -542196 -502623 -945306 -355992 -858906 -118021 -814108 -287677 -355250 -766372 -545910 -715800 -696094 -504178 -332295 -97190 -799267 -356695 -324798 -664713 -684277 -490024 -118124 -595803 -677622 -498208 -582271 -719138 -226177 -416985 -355346 -946023 -69639 -922298 -258051 -943008 -398561 -463420 -344421 -663535 -476036 -802458 -265116 -946094 -242968 -471202 -576164 -593975 -956517 -656663 -360849 -906221 -778442 -935531 -719450 -269534 -863456 -479704 -277636 -742155 -416110 -458116 -94735 -119395 -95323 -274823 -747675 -417003 -504688 -322814 -769430 -216745 -383414 -595706 -543878 -956394 -121238 -175359 -577947 -260716 -576257 -582292 -395928 -717240 -356542 -103722 -943969 -905289 -29163 -801045 -144447 -510511 -86522 -356311 -120548 -672091 -86588 -126771 -315148 -86494 -381825 -582486 -348353 -504498 -664465 -143947 -544240 -328233 -356175 -556132 -862970 -432696 -605492 -923093 -159332 -652216 -290517 -806809 -859025 -825946 -903601 -350674 -405255 -882840 -324033 -134679 -783414 -905346 -56534 -402118 -18823 -356104 -678171 -197801 -174929 -505689 -664028 -174722 -625634 -403188 -299888 -348265 -717484 -811654 -799326 -777115 -166721 -645544 -73456 -182655 -356704 -814838 -502117 -523723 -787596 -550526 -174177 -264179 -923078 -824483 -875719 -674797 -65439 -255619 -45329 -570652 -762664 -355642 -475989 -545060 -695922 -149803 -394009 -486827 -61703 -909575 -564564 -248489 -661354 -474534 -940888 -867700 -777173 -409754 -664953 -805606 -416201 -356359 -863674 -474774 -778218 -712164 -75626 -236316 -761039 -239230 -806768 -648969 -339228 -806758 -284112 -510092 -904342 -39061 -175371 -952951 -863795 -249280 -500604 -724865 -355772 -591633 -564574 -240211 -871583 -750809 -777949 -76458 -309773 -65909 -741634 -550591 -945550 -93471 -476665 -663540 -581743 -81649 -743726 -944166 -227117 -505588 -543399 -597480 -833954 -880737 -421130 -597500 -777285 -505751 -703009 -761503 -413737 -809206 -515624 -388982 -901993 -414931 -402203 -696159 -832586 -343865 -927784 -543326 -134380 -824381 -883064 -44167 -78538 -431948 -777147 -214808 -882334 -44419 -813986 -143832 -834277 -822519 -523860 -790173 -704231 -339859 -383836 -326481 -249179 -934153 -942730 -226372 -97598 -258097 -424388 -133758 -542052 -295849 -236144 -248160 -200739 -356393 -435034 -795180 -803506 -596397 -947733 -505720 -279810 -862596 -323540 -677642 -504161 -160879 -822545 -236073 -688022 -847228 -780017 -946487 -74285 -324012 -205846 -865677 -123930 -31021 -883462 -486986 -598168 -911311 -338791 -403485 -877089 -51606 -778505 -806399 -695850 -952056 -301806 -749453 -502168 -946289 -356031 -901223 -260703 -142346 -856780 -357246 -863410 -906068 -585828 -180880 -279121 -912034 -805913 -76686 -599967 -720296 -777861 -315256 -892696 -238459 -706348 -356840 -527305 -825367 -510732 -402034 -795586 -325101 -354195 -716227 -673306 -618239 -313143 -743105 -803336 -786940 -357242 -432422 -564044 -325131 -308766 -575529 -166057 -829573 -69256 -683408 -591090 -564224 -398372 -248821 -390176 -876061 -953980 -663996 -356320 -342392 -284132 -426149 -415680 -765361 -280287 -743733 -910311 -769301 -426669 -679915 -124357 -477315 -397947 -339377 -747857 -71255 -952137 -170139 -458234 -516987 -603906 -271119 -434169 -451677 -567751 -144985 -513274 -590770 -946442 -446237 -76032 -356156 -539371 -246263 -115017 -596825 -338661 -205141 -659629 -88325 -240583 -84611 -537500 -802590 -324016 -231082 -703294 -449078 -350060 -528694 -690646 -356495 -199588 -559319 -643715 -884530 -730938 -863694 -356079 -714836 -624340 -325081 -461612 -883584 -736196 -684658 -806163 -666847 -367875 -76818 -910287 -346181 -357347 -402044 -239156 -505620 -532436 -333126 -342624 -335464 -414604 -315203 -793816 -356571 -796797 -384191 -119579 -502450 -598152 -779847 -326460 -73987 -936153 -612940 -39870 -315475 -152854 -61131 -706464 -356975 -256822 -324983 -587960 -954712 -865138 -563801 -98011 -372007 -121977 -504403 -589325 -325198 -315013 -27008 -674716 -898114 -240114 -951561 -555763 -948809 -458507 -324689 -795585 -31145 -946739 -922344 -298570 -911348 -415187 -951381 -581766 -74981 -518873 -341539 -932531 -490749 -431924 -720238 -863696 -373493 -889253 -321640 -177942 -691481 -913371 -775432 -605788 -785504 -951851 -312444 -919148 -670492 -672409 -806551 -144396 -278463 -148915 -150982 -534940 -512649 -349545 -278822 -489159 -73829 -90288 -389903 -850810 -504555 -720146 -818788 -354296 -946823 -167753 -949411 -355723 -777254 -135447 -694493 -401676 -952158 -107991 -521766 -543336 -778175 -593731 -334879 -144372 -141173 -119553 -313662 -388992 -677929 -88308 -672544 -832558 -160814 -354753 -357178 -664978 -747883 -97207 -445143 -927491 -806724 -767095 -952878 -580336 -482140 -577784 -462013 -650420 -94693 -66045 -664791 -598197 -415786 -541688 -676815 -389984 -391652 -144335 -741987 -333127 -287361 -136633 -524399 -302625 -324280 -95283 -627054 -356822 -328428 -86357 -736591 -677987 -696648 -322956 -234535 -232301 -767591 -634815 -356240 -772357 -703713 -518392 -501744 -910187 -591139 -949820 -113480 -300804 -630534 -345075 -94037 -883488 -45603 -664482 -416136 -904548 -594062 -217745 -951954 -610076 -780703 -134199 -275229 -512879 -129208 -589660 -356926 -47817 -598241 -606273 -945302 -134491 -793955 -633872 -355283 -321029 -56554 -610997 -354649 -136208 -593469 -383761 -806748 -680101 -116285 -530244 -326489 -288612 -847114 -529024 -668059 -326007 -237419 -748037 -366076 -431992 -399733 -899468 -610284 -349486 -94565 -869976 -702557 -718081 -171326 -693315 -97736 -669595 -434436 -66667 -704185 -938256 -608965 -426628 -936812 -214547 -232839 -667187 -37939 -340787 -95523 -98013 -499061 -817090 -314671 -67169 -29482 -855666 -767535 -323107 -747541 -784495 -704360 -491514 -94592 -956753 -598648 -356596 -185991 -947882 -470321 -289022 -356937 -151188 -801301 -355081 -479146 -315324 -84861 -771651 -155133 -948968 -356279 -652474 -444493 -516388 -79154 -954254 -529162 -398931 -356188 -124137 -515132 -596644 -50745 -606106 -559459 -415419 -197841 -786560 -817305 -314541 -832476 -249589 -606253 -95252 -569225 -43051 -402047 -778515 -366483 -929311 -875298 -855647 -790534 -161463 -909263 -912039 -517398 -199210 -703684 -288113 -311616 -836178 -896056 -893784 -183052 -343751 -326496 -278043 -103675 -947839 -830690 -832348 -806172 -564225 -288979 -175041 -482117 -174948 -908034 -670772 -539985 -417024 -357202 -674514 -443270 -48663 -123052 -259363 -919009 -355382 -892856 -637094 -388841 -227087 -92052 -578859 -395038 -337835 -612364 -416278 -394248 -504123 -814795 -344469 -430763 -951800 -198616 -940708 -33769 -684766 -322772 -43890 -814146 -150764 -560270 -412927 -951837 -780021 -582243 -538079 -500972 -894700 -186169 -704451 -616573 -497813 -204801 -416474 -397064 -394379 -947771 -315221 -770220 -324629 -203368 -88349 -917104 -397847 -217880 -879678 -126078 -233802 -516087 -773842 -411997 -611108 -801872 -301853 -79557 -954666 -867323 -278226 -411909 -49001 -402121 -388016 -31062 -50313 -665771 -951936 -806507 -356213 -513118 -538207 -616570 -806508 -791778 -483638 -806789 -533339 -51607 -34118 -401818 -415816 -457553 -857206 -504430 -848287 -491543 -376041 -913726 -806735 -806389 -84870 -589938 -409454 -946800 -166539 -821090 -952942 -537059 -948678 -417631 -657116 -501807 -776893 -322403 -133759 -828191 -441358 -475295 -121649 -765063 -532234 -690970 -951180 -527082 -139738 -674185 -538062 -610184 -529866 -947759 -86506 -354278 -252211 -95491 -560458 -166709 -33835 -24071 -599988 -479624 -598631 -460192 -170947 -412973 -855892 -71239 -763758 -806370 -326148 -226694 -737975 -564159 -314369 -403659 -315388 -1164 -165162 -570475 -48885 -952147 -183031 -296459 -528748 -771041 -84761 -769388 -706788 -496839 -197893 -344198 -167916 -282010 -245321 -343795 -348281 -889387 -814893 -354046 -951960 -350756 -814754 -596880 -364230 -86472 -167963 -384069 -98017 -392322 -325604 -906141 -809032 -551364 -805017 -97929 -792738 -53051 -402170 -234010 -135492 -529151 -518714 -778071 -778359 -667046 -175408 -922576 -389039 -313227 -500517 -671777 -278582 -310907 -829486 -40333 -579160 -97347 -357064 -555033 -356696 -242904 -35411 -249210 -813207 -176215 -553923 -814560 -357054 -38017 -325073 -325142 -532508 -951221 -932854 -270944 -58944 -75715 -406041 -753340 -459548 -249032 -778517 -712284 -371413 -806237 -865624 -60247 -583272 -664147 -70155 -356726 -863509 -333913 -151475 -551077 -591533 -769381 -167269 -856237 -79262 -199279 -88572 -618335 -662360 -287177 -772651 -778642 -767526 -390099 -367256 -323348 -945217 -278469 -125902 -921222 -102089 -431875 -133443 -952094 -275903 -687600 -401082 -323198 -34004 -780471 -738362 -179551 -195903 -483560 -116917 -281997 -543869 -202182 -278863 -141980 -326561 -97330 -829581 -564597 -596110 -607010 -806821 -224050 -741893 -955390 -935628 -354817 -389224 -447572 -681077 -719474 -885063 -86578 -355505 -902410 -400843 -85786 -777774 -155227 -805520 -126357 -870847 -302840 -669610 -800954 -616122 -633773 -72725 -655818 -512345 -396635 -696701 -730339 -486610 -780308 -97810 -382679 -951463 -174927 -377551 -169308 -377613 -383649 -810826 -355296 -336971 -410753 -582161 -401635 -718316 -601000 -799319 -862954 -400893 -665758 -432049 -428753 -777621 -509729 -672189 -331266 -298449 -515819 -851547 -326414 -810141 -611803 -94715 -451659 -826113 -483302 -905186 -683691 -124034 -680204 -956863 -468596 -199318 -796214 -905162 -676749 -525625 -314450 -137423 -899549 -806800 -708615 -65077 -248354 -666349 -230685 -385903 -795512 -678766 -662137 -342802 -951150 -632546 -608800 -504794 -722174 -472716 -950494 -581101 -806835 -794975 -68212 -717017 -340165 -800990 -655373 -33950 -84144 -448547 -799372 -707362 -542630 -814632 -838153 -314878 -911784 -37250 -412869 -473383 -52937 -677762 -334952 -801055 -904511 -720160 -503597 -868215 -33014 -677592 -149870 -269977 -619130 -867402 -905262 -592870 -871046 -900939 -337489 -55104 -402470 -865635 -883338 -502660 -284765 -867174 -950790 -777711 -424383 -881674 -65601 -218026 -833537 -434638 -372026 -759583 -456192 -171264 -509230 -683499 -552831 -664954 -541227 -136550 -232396 -634551 -355114 -356377 -863569 -356933 -786037 -387604 -810993 -403716 -793724 -863780 -355062 -652832 -65531 -442406 -353881 -900717 -871192 -762435 -53089 -704265 -778581 -356037 -947224 -575165 -943120 -647329 -312541 -528981 -806866 -314041 -461631 -805570 -43402 -357118 -693964 -97707 -679914 -335452 -707461 -199101 -895477 -803544 -739370 -723396 -779566 -515130 -412940 -681721 -297222 -785562 -747946 -356338 -951240 -723637 -635339 -786863 -741119 -780193 -124939 -240186 -84903 -332208 -955895 -875148 -697969 -803371 -598173 -627178 -133388 -793708 -249306 -647581 -73644 -814941 -323210 -391477 -806535 -349973 -742001 -344310 -247301 -610413 -357262 -53273 -868709 -597920 -677178 -678644 -828914 -808909 -396655 -356881 -809214 -927122 -461018 -350746 -33781 -677467 -98007 -560526 -140659 -943660 -155692 -523010 -947034 -348028 -260249 -357313 -84613 -899031 -295617 -158158 -814859 -150865 -507269 -199641 -514301 -395404 -180920 -827636 -884426 -358097 -372326 -232319 -806713 -796561 -278702 -533361 -939642 -490544 -177721 -326113 -822481 -501017 -952082 -636158 -897193 -691898 -184039 -952936 -86853 -570081 -357268 -529092 -954732 -947746 -776317 -387486 -434414 -719421 -501018 -625097 -78507 -701247 -662570 -97293 -311639 -923614 -796818 -663412 -803017 -467886 -413462 -932131 -79389 -805751 -176605 -882740 -473836 -806530 -143533 -144095 -455773 -577721 -703465 -33539 -121132 -924170 -415107 -401893 -711999 -390216 -18160 -285656 -356594 -505548 -819587 -421060 -279448 -695776 -909207 -871371 -326019 -232291 -734613 -171089 -805686 -625817 -581633 -527659 -110184 -669824 -684312 -714543 -512365 -664518 -831889 -110010 -593641 -846706 -65598 -37892 -134695 -874869 -809212 -806686 -896110 -355519 -768818 -770590 -952362 -912720 -481740 -814499 -206579 -580537 -814659 -799382 -523170 -677472 -592401 -400772 -730909 -343509 -305659 -952121 -338962 -667246 -777757 -793913 -174598 -144419 -150344 -582242 -460988 -502460 -369070 -171153 -167489 -767353 -779959 -535599 -766616 -614898 -356945 -581511 -490254 -342719 -953257 -308832 -525298 -317090 -315083 -882111 -513362 -447862 -717178 -327570 -480282 -181885 -917326 -775766 -350984 -344272 -778394 -899644 -384190 -769667 -596645 -619251 -240227 -451797 -326461 -778420 -103946 -249245 -356350 -134591 -806539 -848141 -401939 -55669 -780544 -356513 -65875 -590604 -72430 -249124 -801102 -610635 -350990 -400921 -806369 -785982 -825975 -534878 -684342 -743511 -544198 -419366 -899501 -401663 -349175 -287154 -427399 -356721 -807710 -326081 -423146 -67355 -479934 -776834 -795207 -806135 -261972 -830639 -867045 -433289 -491138 -38903 -665922 -383754 -551025 -899196 -802771 -715548 -401275 -315479 -648650 -96723 -904986 -898912 -42717 -573865 -158175 -738019 -88612 -521926 -823129 -250088 -816239 -323050 -75970 -954826 -555700 -246762 -672131 -805877 -883202 -670337 -517003 -466758 -355303 -414124 -180453 -440148 -86622 -737101 -788506 -945783 -545315 -322609 -951885 -357290 -593714 -880055 -652873 -355085 -350830 -696008 -524483 -67081 -885150 -163675 -747726 -222123 -943623 -579626 -332379 -397201 -475924 -118140 -539759 -776616 -97286 -657698 -612534 -351015 -92990 -525190 -483530 -355124 -333058 -803257 -416729 -916405 -255529 -577385 -778309 -322220 -828093 -799790 -504924 -579202 -143760 -474251 -239475 -51799 -322040 -577474 -848921 -342964 -747262 -892895 -147829 -673898 -793227 -563607 -748009 -748856 -944520 -356131 -416938 -605706 -518408 -45100 -918180 -785717 -550063 -951028 -863204 -494460 -322559 -287121 -678613 -246488 -335445 -168212 -300934 -403673 -490366 -249160 -762230 -97813 -29759 -907768 -337657 -794402 -537683 -144375 -331849 -632230 -513371 -832139 -822671 -524969 -753871 -820529 -791748 -511814 -654492 -97622 -183304 -304183 -108111 -651924 -502231 -239676 -492658 -741902 -951769 -315215 -581342 -109658 -327931 -400133 -340673 -582257 -558822 -947775 -69590 -134456 -324026 -346753 -279222 -391735 -800845 -738498 -777769 -41140 -423246 -176396 -584360 -260124 -865103 -432105 -857670 -692061 -643160 -911052 -248559 -610591 -401091 -372439 -369622 -676706 -897993 -357355 -810222 -44344 -918276 -199380 -275752 -867434 -875921 -354638 -919654 -546776 -58756 -154129 -950465 -492554 -51823 -350672 -863549 -717971 -866649 -805522 -906434 -776401 -414790 -850042 -357285 -951314 -703902 -674335 -458662 -712219 -344678 -323701 -75496 -44936 -315575 -305483 -57034 -349605 -355679 -778641 -651595 -676428 -813973 -909999 -157880 -662926 -889870 -582529 -102701 -97781 -179582 -74633 -937858 -143668 -664423 -952064 -954723 -552872 -30755 -892668 -889277 -134495 -144518 -342697 -248341 -534786 -402145 -767048 -517452 -544007 -226917 -597693 -616577 -328544 -906478 -582204 -480179 -902802 -778082 -161290 -524391 -181357 -594006 -491153 -945371 -136441 -582565 -677721 -601235 -84085 -271030 -957000 -588682 -940105 -802207 -143675 -579818 -702189 -129333 -60322 -305170 -511919 -539900 -473899 -314972 -740470 -315642 -388818 -742934 -777737 -696680 -333854 -598274 -651434 -598040 -777313 -768938 -320187 -160590 -773322 -323952 -301415 -347305 -674903 -529887 -591719 -322783 -521867 -806733 -710673 -344239 -44927 -691964 -568167 -167868 -137407 -72858 -952086 -32478 -616273 -570687 -85834 -490147 -133842 -832137 -346005 -287866 -598070 -935651 -295816 -786966 -334039 -169980 -596135 -773507 -174305 -341682 -696997 -892678 -505523 -175028 -74021 -735312 -356844 -334969 -96896 -318733 -903710 -816654 -240409 -452974 -199409 -356818 -759096 -227018 -231275 -97986 -160866 -97747 -482329 -356649 -143837 -656858 -333864 -365954 -517074 -192461 -680079 -169656 -952126 -370865 -97722 -541755 -926192 -777945 -401634 -390533 -226747 -637070 -203940 -301841 -56484 -476134 -75246 -663307 -322241 -404912 -910304 -398832 -566878 -228883 -162937 -347450 -355930 -663401 -582296 -879561 -888832 -48057 -769433 -180992 -757369 -874371 -536003 -918214 -183046 -340195 -494727 -350046 -693550 -813007 -806755 -632383 -74008 -550603 -234156 -899541 -273626 -116578 -193173 -356765 -596991 -487359 -786800 -335380 -816072 -138735 -525442 -284028 -558412 -49783 -271299 -580998 -203410 -671906 -307606 -133762 -248937 -575569 -544177 -171128 -80321 -183067 -525030 -94566 -325628 -47777 -664845 -325881 -853430 -315726 -922589 -278427 -772368 -822550 -806641 -372550 -778211 -439720 -350075 -947578 -906605 -143651 -456193 -778637 -393865 -200441 -505115 -640618 -272322 -805180 -595484 -570487 -593699 -722714 -717603 -951268 -776872 -422686 -416027 -855528 -322649 -416450 -68820 -545907 -516379 -278080 -525231 -327615 -544127 -72733 -652000 -680545 -103561 -882803 -240105 -348793 -462142 -357368 -504371 -598340 -760903 -577689 -537506 -355082 -829541 -542427 -581134 -323096 -356123 -652886 -707179 -49039 -102948 -68717 -951723 -680571 -322082 -250191 -663188 -523000 -501646 -401841 -271508 -537992 -536762 -658784 -504619 -36242 -412887 -951559 -859111 -504062 -309632 -806833 -92155 -33394 -806512 -767170 -777511 -904064 -867482 -65831 -432569 -544013 -771735 -712163 -897483 -598430 -356685 -899575 -196394 -829196 -175188 -929779 -810225 -365077 -802811 -893552 -375785 -217740 -355290 -136177 -676629 -348187 -578946 -899437 -596729 -952343 -247495 -772511 -315640 -904988 -515953 -795590 -66990 -806754 -103387 -356392 -471879 -548037 -80308 -922575 -633298 -300956 -900497 -881941 -899584 -818457 -833980 -356288 -34047 -324143 -605989 -74380 -298755 -559727 -887420 -956689 -84864 -65422 -801426 -648347 -800191 -487616 -451954 -591400 -872894 -187858 -705394 -634119 -805365 -441446 -777472 -544099 -49088 -356946 -355471 -429192 -772042 -598007 -695566 -949303 -951266 -94683 -457651 -948903 -573433 -797662 -175911 -695242 -745616 -391569 -695703 -56220 -769169 -652915 -206153 -742021 -344490 -820610 -79032 -888056 -343942 -355671 -472334 -326180 -372402 -343951 -901225 -97960 -952110 -95466 -759772 -479811 -324941 -805010 -670252 -38131 -535547 -512716 -882222 -879071 -75954 -882364 -300592 -313868 -941140 -863979 -289111 -334318 -907494 -287910 -451741 -475504 -434218 -151571 -389879 -655595 -542883 -116762 -597448 -325468 -523689 -832488 -951845 -315168 -949355 -679856 -490078 -777927 -190121 -70324 -349484 -851108 -653796 -514174 -355636 -416886 -570373 -800981 -648538 -615786 -227081 -747752 -263804 -769044 -799295 -874972 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_train.jpgl deleted file mode 100644 index af1065c5d045f18c383603f46e1d724ca490c880..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/floral_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -884281 -793707 -595490 -108940 -349839 -168671 -823503 -483902 -757891 -71203 -656284 -848931 -355252 -570649 -503333 -952169 -651634 -480088 -778421 -778252 -491101 -176538 -377385 -863595 -611013 -672776 -43899 -84852 -698671 -591239 -377392 -564497 -511731 -801091 -740770 -743277 -355507 -378438 -660551 -863329 -356273 -823738 -773555 -534279 -874433 -65835 -664445 -674810 -627780 -33894 -431789 -143447 -416893 -573449 -702134 -126809 -804769 -815639 -684278 -315710 -81296 -866827 -543158 -575040 -585792 -562218 -805444 -711883 -916687 -86401 -43268 -343332 -538195 -278542 -887323 -298035 -821456 -863559 -76389 -698594 -158073 -779604 -380714 -58953 -424741 -30668 -326588 -342390 -806552 -278269 -180542 -303584 -301673 -208530 -596401 -511661 -278881 -367283 -803444 -97943 -677974 -725761 -243091 -946753 -277256 -899470 -600199 -66053 -892243 -818185 -478869 -755250 -344345 -944320 -811029 -629494 -778640 -733167 -951888 -567980 -323175 -866508 -199011 -537467 -327853 -778077 -516627 -543915 -65102 -939531 -132733 -356848 -806814 -476736 -51367 -577450 -749316 -398813 -836812 -742100 -624506 -669978 -264198 -135150 -916063 -171154 -48594 -403664 -35864 -143038 -182840 -283159 -582196 -77041 -805954 -651806 -775679 -603908 -590873 -901157 -170444 -403756 -778409 -605759 -61850 -72102 -764971 -458180 -396641 -67762 -510289 -515924 -173823 -806807 -143325 -455747 -74473 -755052 -28837 -540931 -275896 -596823 -570509 -777954 -260040 -733370 -663456 -44143 -230152 -839529 -707462 -706181 -461599 -755043 -806739 -325889 -685191 -745704 -139964 -416824 -155669 -570666 -598184 -87095 -946870 -891926 -793101 -125161 -434699 -798268 -778306 -597502 -281436 -596561 -501842 -539792 -83651 -44085 -389412 -952116 -939370 -289031 -663709 -918861 -921928 -942916 -505375 -598022 -199595 -761128 -249073 -593992 -551374 -527681 -775713 -236358 -457639 -952151 -824446 -582299 -125903 -198931 -504339 -401804 -323372 -806371 -919312 -400889 -756626 -633856 -859809 -644752 -271369 -29736 -555899 -828329 -682562 -326107 -134633 -589950 -956591 -512636 -47858 -598051 -741735 -502922 -940456 -301291 -372390 -802396 -613078 -778434 -703274 -582248 -350971 -794689 -315206 -511361 -806741 -202443 -791689 -364937 -534130 -778319 -157877 -955860 -813156 -904815 -111504 -328549 -711933 -56807 -778094 -189197 -632063 -468336 -582139 -167207 -496082 -213577 -309813 -357340 -951107 -401037 -240630 -139615 -671891 -484978 -883295 -259484 -326325 -466840 -889418 -480346 -94368 -951724 -356252 -580233 -935164 -632824 -485293 -704218 -775415 -111658 -477427 -785966 -790340 -97858 -326060 -781394 -350475 -358805 -354704 -712028 -788496 -810113 -217433 -909426 -326586 -627377 -601245 -770036 -402256 -119029 -433423 -806762 -178321 -609943 -126471 -383100 -524012 -773823 -249314 -663301 -585821 -863182 -673416 -719453 -550533 -954126 -313872 -170617 -264403 -516578 -832473 -355488 -97832 -887360 -61141 -596165 -335236 -661635 -856047 -432112 -811134 -126565 -153890 -951971 -356587 -697010 -360439 -134365 -313068 -491398 -403813 -149827 -755482 -945697 -491135 -796246 -249349 -477341 -416885 -829987 -66329 -693237 -512933 -395557 -865038 -718649 -505286 -528783 -634679 -65321 -356049 -920071 -718164 -581872 -815476 -702586 -945099 -351020 -439478 -868143 -161273 -662791 -477122 -507950 -480608 -892310 -326398 -303633 -905215 -106655 -355958 -898832 -669862 -777742 -536941 -711900 -544101 -871415 -118112 -276708 -362406 -633903 -535540 -356655 -48494 -595167 -790722 -597645 -596495 -806760 -480482 -893371 -535003 -86762 -738458 -157975 -666234 -416786 -806599 -814657 -899495 -175777 -427112 -368213 -922586 -902801 -382859 -507466 -617316 -724215 -830795 -324637 -371102 -365368 -289420 -403781 -103186 -434684 -596607 -590886 -324190 -678140 -106333 -929786 -806776 -226783 -358285 -167866 -490800 -303021 -837876 -183209 -614662 -633913 -33948 -174937 -667971 -357256 -803252 -69852 -489243 -65125 -570225 -391381 -703645 -57873 -746204 -768442 -433722 -572388 -230964 -767468 -126453 -539548 -368653 -348826 -232318 -194196 -500440 -510492 -724200 -65435 -692997 -778325 -67657 -84858 -711377 -237550 -200292 -597124 -764727 -611756 -159240 -331916 -625658 -368712 -686270 -591796 -615751 -356830 -689456 -300885 -48766 -806108 -368710 -347719 -806808 -350237 -160289 -156732 -572476 -767051 -717569 -947569 -297114 -460393 -248411 -716336 -354085 -578798 -95543 -540104 -909876 -152324 -693633 -370790 -446316 -402265 -183475 -44388 -701582 -242888 -947541 -385347 -489724 -341631 -151788 -431822 -582281 -243968 -591282 -266773 -948843 -742037 -675062 -80335 -66190 -481465 -679821 -870529 -180498 -198719 -887347 -353754 -97700 -516299 -446216 -952410 -664715 -158070 -343034 -415047 -207738 -154657 -945648 -315390 -59851 -488913 -402196 -110241 -527573 -415084 -301501 -612227 -240592 -570443 -283382 -236146 -742138 -702167 -674588 -666383 -816058 -198966 -314053 -543811 -334759 -393616 -536915 -674566 -625711 -99735 -863500 -121490 -802860 -802851 -537763 -95168 -56559 -540385 -680605 -482148 -694905 -805966 -892689 -682644 -350222 -267182 -523086 -776322 -663194 -16519 -595991 -249534 -826094 -60758 -343072 -357169 -898230 -355582 -686138 -577636 -902886 -946722 -591833 -516729 -326569 -581266 -879449 -951467 -357329 -492675 -76603 -596511 -806865 -956944 -468397 -952940 -236725 -747587 -951969 -97538 -580511 -205807 -814623 -240408 -57031 -543596 -742014 -274724 -633931 -516942 -921141 -717739 -440091 -334745 -802823 -754457 -334937 -181621 -313960 -74293 -678583 -151845 -240561 -434781 -350621 -38257 -770378 -257116 -790961 -663463 -460858 -397435 -542287 -938274 -340782 -891865 -368105 -278489 -883131 -951508 -327798 -829802 -181010 -350670 -388037 -580665 -950745 -96537 -598426 -784417 -675611 -847477 -888252 -287027 -609761 -97447 -150768 -174123 -806611 -936154 -880312 -206224 -236032 -383725 -879640 -514039 -395051 -322687 -623032 -820513 -357312 -44283 -492459 -67649 -580279 -677382 -313577 -516943 -705307 -459794 -898538 -806591 -809936 -811399 -778320 -778210 -944913 -400381 -625625 -143740 -315682 -952446 -249343 -695636 -463606 -259366 -832884 -879680 -86426 -677484 -559671 -716437 -397333 -597309 -271344 -174742 -355748 -665036 -350462 -360802 -404091 -301001 -174971 -854759 -596161 -97470 -171156 -951575 -97802 -401981 -214251 -444976 -782390 -607260 -103566 -263889 -798169 -52921 -838259 -811840 -46675 -398941 -798766 -458346 -460340 -864006 -429415 -673294 -595802 -589920 -354284 -917416 -735972 -401732 -956713 -918950 -326487 -462049 -611507 -65895 -160941 -386786 -595194 -340101 -803364 -474634 -471042 -778966 -209799 -94713 -183207 -516358 -133793 -597292 -328199 -431882 -255963 -159551 -356811 -596084 -830731 -174224 -550388 -863623 -544112 -65846 -335261 -657958 -664409 -678251 -703414 -491925 -492627 -335416 -65277 -354873 -301408 -656930 -650837 -369743 -287749 -899559 -951882 -521991 -598060 -58277 -814954 -369344 -247329 -372404 -418275 -257125 -719031 -857239 -622320 -296194 -140356 -442988 -74748 -361913 -313321 -306541 -579150 -942870 -505099 -261132 -854864 -938020 -361193 -832869 -656845 -265137 -937544 -664232 -515642 -917232 -228256 -326028 -952157 -144423 -78508 -315287 -162516 -657044 -778535 -949608 -76957 -716457 -459138 -952405 -298874 -86742 -328644 -47100 -349874 -150517 -445139 -940463 -95187 -43814 -635194 -32012 -674499 -715600 -951515 -776810 -197787 -483319 -505615 -185321 -793739 -804966 -115130 -899471 -702140 -518223 -806614 -400240 -271361 -864917 -601074 -948558 -278341 -66245 -271278 -899062 -415899 -778148 -37386 -747901 -150308 -355363 -667078 -754769 -192841 -534387 -433436 -909229 -626904 -612564 -889686 -196366 -474543 -579965 -902792 -476780 -939409 -303163 -291258 -717619 -196180 -331233 -381462 -51720 -324344 -883608 -450580 -241178 -947937 -599381 -511880 -356533 -335295 -881966 -79304 -867399 -664746 -539803 -276417 -602101 -386764 -802618 -315794 -593923 -335151 -451744 -239738 -247356 -227040 -81786 -905281 -692205 -563392 -885427 -581905 -416830 -81651 -182677 -285657 -950559 -491128 -919137 -947826 -402147 -597980 -792707 -457725 -86180 -65631 -904750 -67620 -59292 -125798 -170712 -580523 -777860 -675278 -510065 -778438 -458584 -76971 -483662 -177990 -605909 -391659 -605956 -374019 -426072 -356287 -821862 -175264 -390309 -150406 -166174 -664690 -309543 -490896 -487248 -701326 -349502 -315012 -433037 -372187 -117169 -350174 -70242 -557364 -126650 -698661 -717960 -786546 -664944 -419197 -880266 -182292 -777929 -598146 -349408 -875635 -863649 -204774 -824571 -487291 -451445 -348315 -806756 -458763 -334424 -426392 -350676 -541860 -156895 -557945 -432007 -167039 -321808 -117388 -97984 -539768 -238932 -328057 -515871 -435652 -88573 -757979 -290670 -329124 -580349 -776681 -832906 -324088 -154341 -823752 -724002 -497709 -297219 -634959 -262544 -481834 -786299 -680522 -366372 -477783 -430445 -518398 -691937 -199446 -84819 -912401 -372958 -676403 -698443 -166813 -741927 -755029 -288331 -879530 -49970 -829605 -828462 -144455 -122748 -355059 -771688 -627138 -909466 -104649 -354701 -103868 -434706 -684031 -499323 -315771 -465104 -271225 -865540 -388858 -260346 -328483 -142364 -269602 -472642 -142524 -242602 -492283 -373406 -847639 -758142 -181779 -532786 -666963 -34141 -597162 -450282 -597691 -767126 -636744 -768830 -787875 -778242 -778400 -865611 -405829 -302043 -795192 -506082 -497127 -502241 -356340 -924482 -767355 -97751 -258261 -730633 -558847 -357097 -357144 -793618 -823360 -480122 -143938 -356939 -49907 -545233 -301747 -199142 -432798 -704407 -504262 -279400 -504828 -77143 -505457 -402106 -776914 -940309 -811947 -945132 -954579 -298723 -761598 -437761 -51689 -329191 -671730 -951506 -324998 -596133 -779366 -238897 -894753 -667145 -169717 -390266 -335554 -900845 -480155 -715239 -527657 -596187 -666427 -677977 -85864 -528905 -703809 -270191 -712313 -97937 -297360 -803365 -735492 -348960 -182616 -469042 -356150 -678481 -458195 -355620 -203951 -775516 -390548 -442518 -300236 -199520 -330289 -287264 -346250 -322962 -328389 -48514 -354261 -899479 -543840 -770817 -485194 -412799 -320923 -65628 -535220 -255739 -348346 -598869 -577759 -946792 -480729 -741837 -313944 -911265 -199167 -777370 -376982 -772769 -236019 -249324 -198786 -951935 -408552 -446352 -772087 -93375 -882892 -502608 -912434 -341659 -403732 -952398 -236864 -598048 -558474 -632017 -806771 -604832 -291465 -610550 -778336 -596917 -560571 -237991 -855981 -778622 -264161 -883501 -666173 -827524 -897057 -354532 -288302 -325900 -563661 -599891 -802633 -942491 -848838 -106751 -350113 -951973 -65557 -802211 -316588 -695754 -922393 -952092 -276435 -458893 -134519 -599154 -406029 -461690 -550346 -677826 -143716 -369808 -446434 -871856 -175600 -167534 -767451 -59973 -802854 -595517 -726840 -892128 -490916 -581475 -356216 -325088 -954689 -635031 -597356 -79219 -947887 -525436 -674973 -717248 -832619 -738555 -805045 -339650 -134572 -746648 -70653 -653107 -651944 -357147 -562918 -738382 -517081 -755138 -894817 -784749 -815656 -356880 -103997 -526976 -721878 -767013 -545740 -706818 -669819 -295770 -492704 -288072 -667054 -64436 -138500 -805999 -199650 -932354 -667166 -264166 -866800 -777928 -524715 -108464 -850694 -615818 -662705 -320134 -396405 -885286 -153248 -596194 -534421 -487260 -667196 -879887 -301723 -542445 -833909 -785478 -314640 -777453 -433421 -315503 -678559 -455671 -426119 -595839 -357069 -51663 -240192 -769112 -647892 -904250 -377266 -775531 -455619 -884803 -151872 -389882 -88379 -353365 -315066 -38902 -111672 -53444 -677871 -599937 -217257 -158114 -805456 -693276 -289276 -34375 -198382 -829764 -237396 -940999 -667188 -457549 -160878 -326915 -947800 -248900 -856760 -520464 -47927 -824835 -474278 -458660 -685302 -891976 -606457 -786834 -473582 -951591 -793877 -139945 -737235 -193137 -738369 -330142 -45475 -948234 -698396 -67156 -224519 -90283 -587238 -693294 -357232 -795538 -103455 -248986 -754522 -45404 -827151 -315807 -676830 -339433 -827701 -581738 -579107 -431761 -569990 -518675 -951435 -344368 -800519 -326392 -313128 -753612 -919571 -674780 -678504 -168229 -51994 -738109 -712299 -775435 -390387 -661963 -710289 -298362 -632920 -479486 -71805 -432099 -311961 -883122 -323094 -77118 -579144 -582165 -613003 -119945 -355302 -249467 -328134 -356166 -98996 -459396 -393860 -279353 -226537 -800603 -141188 -271089 -800690 -830656 -737593 -157383 -344253 -862620 -540785 -152341 -801265 -160670 -751602 -331092 -604357 -597558 -60831 -751432 -857215 -34064 -726526 -91118 -328066 -122851 -400100 -66259 -97702 -357039 -181725 -464963 -885566 -799452 -610411 -299384 -80095 -791522 -902974 -50798 -599638 -809678 -85783 -506168 -596506 -950468 -768991 -903451 -401312 -947884 -51580 -323814 -48968 -806414 -868862 -95149 -167614 -704456 -755401 -295912 -598202 -234867 -303248 -690745 -58987 -540202 -627402 -871582 -855662 -397577 -540175 -806854 -492469 -480356 -577567 -183324 -439674 -479151 -160340 -402243 -650398 -777030 -721101 -401737 -598090 -762333 -199346 -715412 -487190 -950849 -30678 -656990 -298610 -860658 -45351 -619539 -504685 -747588 -356828 -582089 -742392 -357013 -51513 -923912 -199483 -955646 -65630 -651959 -103458 -432656 -62791 -550579 -777117 -434318 -126157 -250450 -248984 -446428 -678511 -867342 -428861 -365582 -581446 -935659 -543708 -523457 -477772 -198603 -678012 -415702 -43308 -163572 -407440 -340819 -223295 -88411 -713248 -324942 -516870 -822457 -623552 -534227 -59089 -457602 -44821 -474783 -390599 -742050 -350972 -76081 -127679 -511643 -610929 -325631 -390119 -328327 -227609 -874258 -806176 -85911 -787406 -490906 -433958 -717656 -809812 -886896 -248389 -375269 -403703 -550607 -314506 -544827 -908340 -736582 -368125 -84811 -257856 -126853 -600100 -948731 -38020 -806520 -150052 -724439 -325124 -279506 -64609 -249434 -397460 -66561 -773761 -274384 -526182 -720018 -511140 -594946 -737652 -239163 -369025 -544207 -904366 -951922 -489492 -598255 -42696 -660649 -915814 -356081 -693136 -587251 -30339 -790031 -765535 -80005 -143845 -429673 -265260 -944562 -482015 -633831 -122115 -814114 -714500 -955392 -781140 -828192 -952114 -793624 -279239 -830681 -950905 -582190 -881483 -303551 -651139 -515364 -170801 -388367 -356878 -79760 -543152 -487658 -808439 -49949 -596549 -86059 -326413 -580945 -59895 -605712 -413934 -302635 -717506 -695517 -95295 -777530 -449578 -885066 -777363 -356527 -778396 -369451 -864943 -88442 -45390 -775079 -88943 -488131 -475093 -846877 -46446 -806104 -534479 -370062 -886900 -285629 -458805 -950557 -504601 -150539 -199677 -174580 -328179 -474431 -661917 -806035 -583333 -388684 -336907 -702460 -706568 -78707 -60652 -324233 -435320 -881973 -44280 -524078 -875446 -841062 -315089 -805584 -227964 -47782 -288198 -288085 -387092 -559753 -779459 -80400 -942880 -769450 -814489 -524121 -337960 -337752 -478346 -81289 -356850 -856006 -284570 -666004 -388043 -669809 -627911 -181068 -684113 -75846 -832944 -820933 -315474 -373519 -301300 -417020 -449690 -769606 -765769 -698752 -899438 -314813 -344371 -103750 -895569 -410568 -181204 -514126 -486627 -806845 -677944 -236117 -160934 -651666 -559792 -909578 -762587 -67343 -271933 -814282 -245941 -743596 -899477 -298907 -598256 -544190 -771952 -661723 -315444 -183299 -848182 -826111 -308670 -236289 -416441 -782408 -659791 -842315 -200240 -150735 -810067 -902807 -432697 -298608 -583200 -945751 -101920 -402010 -883418 -308443 -227965 -480019 -600377 -778445 -29165 -356280 -562693 -286658 -106941 -956696 -510473 -865619 -326401 -487059 -810512 -29031 -827241 -947848 -825885 -516362 -771190 -687505 -287519 -660597 -771210 -664283 -481778 -66076 -625712 -40932 -240523 -324111 -121657 -314852 -538280 -369617 -34349 -313710 -896365 -859227 -878987 -693789 -475352 -859769 -806256 -509836 -298445 -597934 -97941 -651856 -816045 -74006 -711442 -397494 -356406 -732588 -94690 -892185 -947971 -563087 -206152 -778462 -858878 -264069 -534152 -388392 -542114 -450293 -199408 -249594 -546467 -334076 -334340 -605424 -672786 -180746 -593921 -154159 -755342 -463981 -94075 -797969 -89270 -899388 -527234 -931998 -663733 -355721 -442022 -380017 -326178 -777952 -33347 -594396 -501769 -678025 -314968 -664960 -66379 -390394 -315307 -539348 -821712 -357078 -678592 -254504 -323022 -315888 -357032 -476340 -103577 -686936 -893767 -502080 -65940 -579775 -236128 -547107 -888135 -502011 -864981 -477966 -912542 -321495 -909680 -803403 -30346 -344509 -96645 -143056 -599356 -854751 -328716 -948483 -400761 -71235 -916432 -106712 -684108 -30875 -474249 -862947 -238556 -687799 -847298 -665001 -356986 -465954 -946878 -529261 -315243 -369850 -383774 -724110 -769535 -581510 -951886 -591792 -778506 -802617 -607139 -805734 -451703 -349005 -317511 -536388 -356004 -87109 -126379 -240964 -471342 -49123 -527948 -777810 -217752 -952129 -106161 -598215 -543920 -370667 -112229 -823456 -248467 -325511 -883286 -349346 -342273 -168300 -501696 -233819 -76272 -561885 -482745 -421071 -671992 -34288 -859138 -674562 -164372 -934170 -169500 -786845 -922394 -576401 -948444 -205235 -167276 -369357 -514533 -821338 -323546 -103382 -814937 -949143 -818784 -505034 -948991 -33403 -893386 -879832 -712265 -93865 -872238 -31065 -391363 -356230 -838361 -278917 -677795 -854738 -916991 -635820 -88873 -170508 -278579 -680262 -397013 -236320 -725849 -678196 -576533 -355849 -609975 -272983 -884924 -97327 -209363 -828426 -357346 -301622 -806819 -790732 -97620 -695877 -692936 -50231 -344404 -269331 -935806 -952135 -742073 -595473 -922396 -475098 -401927 -777989 -806902 -328229 -939510 -424244 -74515 -76775 -406044 -825565 -577599 -236203 -59200 -97848 -340329 -360395 -295744 -504342 -635671 -582502 -341720 -711950 -126833 -434376 -590727 -710783 -357283 -785089 -726020 -57935 -540410 -602098 -772874 -805074 -103206 -521467 -349347 -333603 -356604 -48380 -569945 -350806 -56929 -737027 -155255 -257690 -388077 -600785 -527655 -481971 -559571 -110261 -278597 -48647 -897870 -150856 -750937 -830160 -900275 -465099 -364790 -849592 -260710 -199311 -605598 -656080 -871089 -777625 -601096 -595560 -557682 -403809 -276358 -799438 -31171 -170419 -847813 -284882 -701157 -653679 -472984 -579887 -818707 -884553 -138835 -457419 -870991 -949440 -391512 -801161 -736345 -543551 -778289 -174826 -664368 -753946 -432063 -463884 -664173 -572803 -427052 -917117 -712207 -97944 -770184 -814416 -400660 -780470 -159307 -302687 -166902 -260568 -808949 -504109 -815495 -796146 -631038 -389713 -773819 -951162 -695980 -168227 -952081 -514327 -502201 -97608 -403409 -512810 -160736 -908866 -605922 -889433 -236280 -357107 -579339 -810049 -356346 -324528 -402148 -607413 -704372 -451957 -756762 -155100 -714740 -334982 -515938 -874621 -776031 -312101 -346884 -515653 -84045 -910022 -811978 -860525 -669450 -357019 -95228 -633751 -356843 -765344 -632012 -264023 -778528 -356064 -144369 -786755 -763280 -138498 -802835 -315096 -707476 -598328 -738650 -816498 -711436 -935738 -695414 -261923 -635227 -356861 -829430 -234279 -315748 -511265 -596337 -562925 -350284 -97643 -817004 -43312 -88369 -882972 -108937 -206034 -335555 -951749 -110265 -814943 -825051 -468386 -659660 -288766 -323596 -805515 -260277 -623126 -597979 -594002 -564573 -951398 -504237 -775045 -785318 -805805 -502066 -360790 -716644 -502811 -824542 -38958 -769016 -945480 -360940 -778491 -735375 -899628 -724405 -718656 -474377 -580989 -591831 -597671 -803607 -355894 -865755 -170752 -416437 -711394 -167587 -379485 -361390 -684249 -335914 -954187 -881890 -197786 -86043 -371974 -401068 -527988 -77125 -597257 -443857 -947789 -66552 -541864 -806694 -802542 -806137 -247639 -598254 -693189 -500247 -543441 -197576 -526971 -799359 -865059 -343066 -947805 -665237 -175659 -669868 -740342 -463204 -287186 -799686 -707423 -61149 -545997 -951726 -669979 -466241 -218800 -80108 -948136 -705321 -487892 -301700 -443382 -97811 -144446 -158623 -818313 -199669 -249603 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_test.jpgl deleted file mode 100644 index b989ce7fc7c56b8ff77be7253874638144c6bf68..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -476122 -528536 -899152 -677883 -570309 -237155 -327006 -522824 -463235 -364473 -414522 -277377 -420698 -661566 -314327 -898179 -926115 -150949 -472002 -327571 -416494 -673950 -646289 -874663 -236930 -427478 -935768 -674331 -125922 -155393 -570668 -174577 -598016 -150959 -155643 -581019 -223763 -305351 -893983 -97959 -420974 -180107 -175705 -791603 -354761 -362401 -464514 -268900 -663933 -606898 -525662 -199406 -232993 -179167 -465267 -221269 -778921 -849540 -198381 -379734 -249385 -222068 -243020 -305321 -175379 -134508 -946025 -701275 -236498 -362451 -179605 -699466 -797883 -756352 -811722 -239658 -558059 -121121 -663971 -325063 -416789 -643132 -755878 -461454 -364381 -334048 -250548 -880064 -705510 -632917 -108601 -818683 -414171 -731066 -188525 -738662 -140781 -601008 -824657 -711266 -466685 -236786 -823751 -699082 -449898 -403112 -279434 -440330 -344000 -669889 -652562 -222064 -518501 -467364 -108523 -220441 -364541 -467001 -312498 -405827 -637979 -863378 -278812 -397359 -631992 -343630 -858002 -305079 -294390 -686237 -92405 -219972 -811357 -348815 -479952 -466317 -198099 -653839 -136970 -221971 -463757 -654770 -184378 -256752 -240537 -226998 -863630 -405920 -439626 -612727 -175690 -902932 -457731 -459904 -363546 -295544 -465567 -375889 -642954 -855934 -132299 -200263 -466903 -124763 -898795 -277832 -240536 -902532 -730714 -405768 -490187 -261440 -179354 -279478 -210104 -801345 -268300 -270999 -268879 -240526 -133761 -313074 -949469 -476055 -180817 -270535 -840740 -342723 -295710 -699679 -279512 -220843 -919135 -378480 -277965 -607614 -235913 -849629 -344258 -676143 -467130 -221543 -205138 -379859 -717518 -277169 -738651 -236175 -243166 -295369 -943310 -426778 -764328 -583913 -673737 -467390 -222029 -378682 -669791 -751384 -645421 -955901 -616659 -439767 -621687 -413018 -364735 -457772 -395146 -645917 -623366 -674369 -900114 -317624 -395054 -646042 -240415 -569330 -921999 -922485 -754982 -380190 -570277 -765659 -292598 -934092 -670734 -453994 -669886 -587648 -467042 -848862 -673746 -178438 -899076 -466881 -699474 -939681 -150618 -205328 -836860 -879264 -390094 -277528 -662023 -680163 -502359 -646241 -855463 -454155 -309845 -236264 -566413 -764199 -885757 -723762 -609864 -129392 -773320 -279440 -150833 -751007 -200316 -381885 -466970 -633928 -796171 -334020 -699985 -206284 -936478 -490729 -465419 -206525 -240197 -455688 -231925 -412723 -625553 -325082 -574737 -236703 -931947 -346537 -177966 -833825 -126843 -548485 -309646 -235203 -940435 -885673 -209651 -557126 -236537 -240552 -177638 -724072 -109224 -699605 -178802 -245538 -130744 -673629 -817776 -237096 -282752 -633249 -505377 -732899 -863508 -364616 -944076 -791421 -356378 -278396 -278280 -438637 -379454 -609952 -479888 -724083 -763802 -939299 -474470 -277670 -712319 -276852 -701524 -276844 -600345 -432699 -367002 -319521 -208603 -803362 -828824 -933697 -272993 -698698 -796238 -955908 -235607 -898635 -939890 -750651 -885921 -181695 -587964 -204818 -300632 -469748 -391223 -339502 -337998 -886093 -279039 -369293 -274584 -240511 -478698 -361306 -175052 -238473 -305188 -940584 -486817 -279582 -315756 -609335 -466677 -334560 -240348 -754929 -221662 -905202 -278658 -898491 -716856 -754161 -131856 -730897 -335368 -245577 -365087 -590888 -222053 -527081 -885486 -447233 -858184 -196814 -698460 -386233 -691115 -282262 -340773 -383640 -151715 -818311 -185822 -847173 -368570 -521764 -837133 -755920 -178518 -279571 -720063 -318826 -467196 -468367 -617499 -633860 -888149 -480204 -593630 -754704 -440294 -380362 -945284 -957008 -940676 -240419 -457509 -538261 -464068 -731121 -673794 -600383 -467340 -367041 -156779 -878695 -569423 -332714 -465710 -742728 -280689 -897762 -531499 -639737 -340603 -944582 -724277 -126755 -337447 -939477 -677930 -635674 -178695 -67366 -276987 -702106 -325143 -340766 -658515 -558824 -467182 -431814 -467377 -179272 -892660 -389705 -257707 -654373 -124751 -342672 -137736 -918409 -404584 -674497 -390742 -364829 -249123 -510713 -560313 -699583 -601106 -609871 -182904 -474644 -104230 -379592 -700921 -148984 -312578 -628124 -310437 -633754 -499338 -474069 -625162 -172381 -466386 -559910 -104936 -404974 -673847 -941604 -741829 -380294 -305396 -404688 -698511 -482491 -466806 -703930 -683133 -953178 -400185 -237765 -364807 -221619 -742541 -601051 -627199 -369132 -698764 -238973 -862437 -179037 -885698 -144521 -325540 -760951 -240175 -939538 -177534 -702100 -467337 -237140 -899297 -849002 -437868 -570655 -742653 -364560 -894366 -912644 -764226 -646447 -158890 -369706 -405812 -237196 -152592 -344507 -150058 -288479 -654246 -390852 -886050 -692952 -698611 -762994 -364501 -268581 -297848 -521546 -396596 -466892 -747826 -550534 -405191 -747439 -267722 -617406 -405474 -899606 -831003 -581107 -424270 -901062 -167671 -181778 -752273 -699168 -279368 -730689 -673342 -943029 -103407 -467370 -534225 -465414 -555349 -933712 -107738 -699592 -329141 -466098 -239231 -702012 -948391 -939810 -243068 -771248 -537468 -952866 -465733 -791663 -674225 -227229 -824623 -779595 -699570 -543796 -739677 -221947 -700246 -440192 -265300 -944901 -327237 -763578 -674404 -363780 -362903 -654669 -199529 -824520 -956826 -941841 -107398 -763196 -380700 -503387 -927431 -664238 -687039 -236978 -269728 -772429 -906567 -233991 -649733 -754458 -122074 -699484 -814570 -818057 -821259 -926253 -574624 -301529 -276876 -364923 -93633 -300698 -879444 -616231 -908100 -268876 -943767 -313891 -787455 -539008 -300759 -467372 -459494 -823729 -132501 -319463 -390392 -673865 -177504 -128009 -161838 -699410 -123732 -762877 -277812 -176785 -347330 -725233 -179362 -356270 -472355 -333476 -459910 -527562 -262571 -391186 -431614 -268828 -700709 -467165 -219758 -861755 -533223 -503728 -640219 -123942 -479232 -500745 -375873 -862099 -811543 -373258 -956632 -699598 -699635 -609411 -313232 -396679 -803579 -289266 -793577 -849670 -314699 -505905 -755861 -124842 -824966 -637076 -222074 -125949 -840535 -177973 -99117 -295860 -205107 -903700 -244631 -378048 -811385 -310924 -849685 -633598 -117971 -364781 -235745 -183053 -526763 -867934 -932359 -340204 -575243 -240121 -699619 -178657 -221244 -240292 -467041 -221541 -908121 -391009 -717041 -261155 -279062 -157444 -783576 -126622 -581815 -673848 -328206 -439994 -482837 -126864 -124952 -536732 -133594 -427211 -220775 -147846 -898623 -817635 -198178 -500455 -363675 -424169 -393131 -700371 -177120 -249432 -310463 -181346 -933145 -724479 -212527 -625599 -309261 -587414 -746100 -179119 -526775 -604278 -955966 -432456 -818777 -379755 -264861 -642370 -942473 -239129 -626824 -550562 -617403 -645800 -236879 -864795 -718873 -735706 -939713 -698293 -664256 -660978 -934109 -238147 -132375 -179056 -170983 -590590 -763410 -379291 -336298 -410247 -587804 -946726 -955910 -118671 -559586 -157633 -235970 -467125 -219997 -197624 -562559 -763800 -371089 -378185 -467453 -207828 -700350 -125184 -699597 -434411 -817171 -132169 -500761 -237236 -793051 -885549 -646209 -898928 -774879 -763235 -512509 -450551 -831064 -523690 -268886 -364057 -382377 -513208 -151424 -380514 -755876 -141820 -412231 -240133 -251693 -265430 -627216 -738510 -431892 -450925 -278764 -125301 -345325 -221780 -699414 -279202 -699403 -127564 -120896 -314614 -762377 -920344 -275624 -444995 -265471 -617906 -899807 -902602 -293958 -474741 -646467 -416993 -279018 -326475 -404795 -518973 -235269 -270335 -837028 -208709 -199531 -124232 -793718 -370900 -150526 -598186 -755657 -212814 -173120 -126802 -699561 -108424 -751490 -345238 -229092 -863493 -264290 -487613 -699646 -512792 -593234 -908214 -763524 -627738 -584253 -265763 -642913 -755737 -862514 -503306 -378472 -404404 -256416 -939326 -824924 -590826 -583254 -707125 -278251 -222121 -672008 -178055 -955299 -461460 -747330 -179098 -674180 -611504 -305288 -919838 -636441 -644254 -460484 -279424 -149875 -317355 -387735 -380544 -632098 -221710 -566417 -814758 -465992 -179146 -476978 -362043 -646353 -501373 -669773 -663400 -763712 -177546 -769985 -323006 -651670 -698749 -264555 -561680 -464033 -662610 -624296 -738590 -262039 -885503 -344790 -650423 -176150 -155072 -427550 -546686 -569991 -249401 -470414 -446633 -405214 -613018 -466917 -404130 -49986 -643437 -309934 -237320 -761312 -670591 -273936 -674436 -593559 -699443 -527663 -939226 -234343 -237020 -849627 -945584 -277975 -661293 -234601 -99432 -784087 -584188 -390342 -467145 -939212 -943316 -364545 -424067 -341818 -584515 -181523 -346502 -278075 -745120 -560118 -424292 -674550 -279219 -251915 -642715 -831023 -704002 -818684 -943852 -625363 -912291 -405609 -114622 -698377 -254819 -234049 -396971 -458143 -278920 -436791 -849502 -896108 -722785 -123712 -550959 -940865 -699663 -390343 -279443 -691497 -715325 -677727 -151652 -315169 -742022 -239485 -535667 -701950 -107469 -857959 -174194 -459115 -817637 -107639 -764541 -849574 -814190 -886067 -897758 -526913 -808389 -367856 -478458 -519021 -857785 -369331 -673271 -756003 -811307 -634463 -475919 -179045 -898656 -205943 -940917 -372467 -131031 -927014 -237976 -590650 -600828 -405369 -221849 -922978 -458189 -699648 -221960 -251345 -728540 -379068 -167707 -439817 -742561 -518475 -478846 -699656 -115938 -445163 -439990 -308115 -277272 -846633 -291805 -567528 -178967 -817272 -107823 -102640 -456991 -476812 -397001 -479028 -673807 -127863 -661114 -124639 -830461 -312992 -315497 -151823 -235746 -317613 -460056 -237266 -179330 -364105 -140654 -849534 -129074 -370867 -811578 -922404 -831042 -793764 -466319 -646044 -699289 -108596 -102351 -764270 -938978 -335430 -480246 -789866 -803443 -651736 -249458 -503393 -955786 -363697 -151840 -825725 -527334 -466760 -254153 -239532 -674112 -836180 -103749 -895940 -402214 -642051 -124017 -431286 -181006 -511309 -466969 -930653 -335431 -661322 -511958 -637421 -826203 -641468 -826097 -361875 -329417 -251788 -849548 -457117 -222085 -369333 -241839 -688698 -319691 -440552 -755556 -179852 -517701 -940928 -262902 -240400 -658968 -391187 -241084 -405321 -389956 -480068 -738698 -879447 -364113 -288123 -405921 -762150 -699406 -812962 -898266 -485888 -863697 -132470 -570656 -179170 -856500 -865590 -241871 -922079 -849665 -278586 -173197 -236076 -297762 -411863 -478619 -237316 -288994 -746956 -270888 -279585 -654534 -199874 -316713 -749119 -380282 -239732 -661193 -499383 -341054 -458749 -940131 -168480 -124865 -335176 -749405 -699684 -300937 -626972 -107496 -898406 -265392 -335588 -570051 -427178 -317810 -575137 -264871 -124890 -200291 -431435 -672799 -558841 -885899 -702188 -703356 -126598 -367122 -364917 -672883 -848109 -518235 -240116 -178849 -699393 -240009 -314623 -748611 -401905 -588818 -584099 -482109 -700832 -817544 -181707 -344467 -314284 -939410 -129078 -108362 -395049 -522231 -560053 -943044 -133958 -432584 -698065 -501489 -847613 -181614 -199882 -182206 -108409 -397214 -116805 -325745 -863126 -238181 -466224 -764104 -464331 -724346 -570212 -391242 -671392 -467333 -221896 -325478 -840950 -955912 -603137 -788671 -439638 -380733 -106286 -666238 -245506 -184018 -687528 -467365 -378036 -413181 -645558 -849500 -851315 -148185 -309141 -178934 -126062 -290933 -658208 -632727 -707433 -151769 -745956 -249537 -671921 -718867 -405924 -405196 -617307 -181491 -746183 -516183 -764642 -198633 -322821 -220409 -559289 -769218 -184082 -239622 -768714 -522216 -429922 -322588 -181046 -410877 -357180 -702190 -841053 -900061 -660096 -858203 -350245 -674391 -466616 -343668 -364240 -645944 -518372 -926655 -313657 -397463 -179044 -450756 -830944 -439787 -119894 -437470 -151501 -662633 -673916 -723378 -354598 -473343 -892580 -287355 -755191 -668065 -350423 -221264 -896148 -252118 -127347 -811830 -178142 -258050 -287943 -660727 -240482 -897585 -466264 -609905 -305173 -661487 -397113 -376644 -817613 -273075 -518377 -703890 -138847 -179345 -550564 -736525 -130712 -676833 -500392 -755849 -240513 -416822 -942648 -584478 -917698 -227436 -730856 -557877 -266850 -407640 -260891 -405976 -440257 -616571 -289304 -730803 -360923 -434129 -650570 -178702 -364896 -574369 -795684 -609809 -199474 -745818 -289370 -466513 -863312 -161162 -310239 -105936 -764147 -466266 -502444 -278841 -287963 -404449 -312394 -172599 -632054 -397040 -109657 -624893 -220709 -325974 -474988 -465304 -341743 -403968 -750792 -749081 -317015 -275446 -849551 -300364 -130850 -755618 -932749 -571836 -310862 -659401 -240579 -462944 -670889 -438237 -852005 -659511 -817701 -926965 -278356 -237147 -905341 -544241 -741669 -108164 -178579 -478483 -257146 -279519 -651773 -181175 -179343 -466355 -551589 -643157 -900120 -113640 -183191 -107392 -461355 -335107 -221633 -239421 -534198 -632247 -467424 -605271 -439771 -185507 -953186 -115402 -386775 -108556 -661434 -120174 -260106 -746159 -480059 -289335 -661195 -782860 -107572 -278835 -176816 -858162 -107882 -139641 -892836 -857812 -636085 -609634 -849503 -699579 -271064 -701957 -108435 -486820 -259530 -560435 -301874 -952719 -409568 -313648 -761455 -424414 -240412 -361991 -639461 -270628 -929989 -241957 -200349 -738267 -289656 -666636 -268943 -539956 -893433 -646243 -849644 -127556 -930514 -556567 -644422 -466223 -649752 -337167 -364740 -379803 -334045 -181540 -236934 -510992 -507071 -556988 -823120 -764786 -930246 -699275 -584754 -534381 -316897 -118018 -906115 -534692 -305380 -377797 -253660 -279590 -379576 -237239 -755784 -258612 -466653 -724114 -363756 -646443 -391561 -322863 -405514 -817811 -950684 -272853 -486569 -884588 -221624 -405774 -646424 -150502 -814800 -917022 -625811 -857924 -467382 -431900 -268695 -404699 -460849 -434680 -626303 -901446 -178133 -140341 -482443 -466291 -215569 -273446 -652057 -222050 -831005 -925988 -498405 -240439 -755949 -134894 -651599 -628357 -224799 -699705 -903659 -856707 -193175 -467208 -699697 -560189 -636055 -590805 -141391 -701199 -532798 -813662 -120267 -501430 -312038 -939897 -150971 -264711 -221637 -526258 -385440 -314974 -131304 -404614 -304207 -236890 -107762 -537985 -126770 -645468 -296487 -574104 -583290 -791532 -609961 -952888 -178265 -276273 -346382 -148037 -513393 -922972 -196958 -278115 -643093 -501166 -287155 -179309 -316850 -500369 -204224 -699607 -179229 -866033 -404109 -763576 -177573 -939429 -426440 -372498 -760500 -723949 -954010 -879145 -221565 -125593 -123306 -390132 -827792 -702215 -516952 -316564 -179273 -714481 -439180 -852782 -482095 -482601 -236796 -924835 -780157 -661184 -885370 -402429 -364624 -763457 -485130 -237036 -918057 -251998 -305168 -108573 -118216 -699320 -617439 -494464 -680439 -380605 -805881 -468373 -183845 -647495 -711294 -474843 -179071 -561786 -379791 -437620 -135012 -108588 -371758 -377218 -319796 -699016 -278052 -898567 -858140 -327671 -893965 -844270 -278894 -151098 -278346 -557471 -739530 -178898 -836982 -754959 -748795 -354530 -144449 -702163 -174669 -228013 -650700 -362912 -278691 -667049 -328816 -390747 -737537 -221840 -178146 -405867 -653699 -825775 -763215 -794873 -632932 -299671 -703273 -179285 -673142 -348854 -220066 -575526 -277708 -489288 -126350 -221980 -452993 -900149 -98740 -609820 -647457 -803464 -586466 -347551 -904580 -463990 -255207 -704058 -764621 -633984 -205772 -279503 -238962 -898408 -700835 -865634 -934065 -946081 -239954 -467154 -278457 -156067 -116940 -828381 -817282 -364700 -359973 -368411 -106499 -940137 -904541 -149882 -387715 -768752 -701845 -126881 -435162 -315692 -898565 -764094 -539544 -755550 -700597 -500978 -119946 -690553 -933139 -755552 -467186 -309598 -413191 -560046 -584346 -326360 -381499 -203583 -266102 -232699 -163562 -693243 -107532 -148995 -802359 -941354 -551256 -617493 -180224 -661415 -811546 -893802 -162199 -108518 -467166 -938399 -661246 -210800 -769750 -277471 -817773 -698256 -940530 -817834 -698369 -576569 -45550 -208677 -849505 -701115 -157948 -412824 -650676 -633739 -334697 -129185 -844541 -179297 -702203 -264066 -270718 -236136 -179248 -632965 -515803 -697902 -479340 -784275 -803085 -368369 -780463 -174831 -584275 -240137 -671219 -390589 -124275 -664687 -84930 -535361 -662804 -107450 -849581 -525938 -900139 -817607 -811455 -467273 -719528 -759735 -818528 -502200 -119940 -169786 -763768 -440104 -511954 -267228 -243854 -699685 -185627 -346177 -709080 -617013 -434775 -132199 -484680 -504654 -124766 -248976 -645515 -151347 -738141 -287947 -515416 -108154 -161970 -938493 -397447 -379747 -125345 -502466 -446273 -895532 -405649 -237467 -153876 -236487 -955785 -463867 -199105 -436836 -139989 -536572 -163579 -184193 -236614 -278623 -546643 -179155 -850726 -720243 -260687 -108586 -466400 -653323 -815989 -458753 -122742 -178932 -267728 -824373 -292290 -939225 -559914 -279528 -328823 -343152 -501327 -440537 -501165 -917919 -849484 -144346 -518776 -599847 -462238 -467381 -292342 -464765 -391366 -517041 -939509 -750727 -666844 -460833 -479830 -627159 -674475 -222031 -799277 -236751 -900111 -148659 -277753 -405584 -231174 -102890 -945207 -264121 -699703 -577174 -465530 -277681 -447004 -817693 -380000 -435316 -157213 -584481 -842285 -699825 -466689 -774096 -724249 -662937 -465963 -699552 -814824 -707364 -746118 -293067 -262517 -391442 -464012 -198440 -180681 -405895 -900080 -272716 -476813 -373712 -209458 -745373 -160836 -648534 -461652 -701222 -744006 -466833 -939584 -674547 -817114 -98105 -222157 -475499 -228011 -524385 -701361 -847320 -108323 -699613 -705494 -633121 -317520 -374344 -649535 -466986 -927496 -240293 -257272 -535261 -126619 -742031 -107944 -933304 -254938 -373633 -933983 -661185 -699323 -380646 -646378 -179144 -400742 -278351 -279490 -113838 -646430 -534510 -219588 -587284 -396748 -383780 -369750 -464440 -258148 -278870 -664838 -702154 -548093 -237326 -752445 -432849 -259692 -498219 -748764 -887237 -183732 -501416 -737784 -815819 -880410 -150921 -808539 -467329 -315798 -124396 -139678 -644214 -300180 -633734 -898551 -343776 -400113 -272887 -720260 -310269 -324469 -301285 -706375 -793197 -787555 -390991 -270631 -124363 -699638 -750764 -240562 -467427 -849573 -701096 -648052 -455362 -112941 -404902 -268915 -364009 -192524 -364788 -764259 -344209 -692574 -343247 -817641 -151435 -534774 -266035 -198456 -439712 -360614 -774034 -237301 -804685 -110374 -192342 -439476 -664513 -672145 -706152 -661291 -134161 -815927 -380493 -250274 -526720 -558325 -742543 -179151 -238935 -653476 -380212 -360896 -811898 -453191 -600893 -323459 -93603 -632080 -667257 -646313 -345720 -464036 -130550 -588540 -410547 -278229 -390219 -432894 -385913 -379321 -197215 -296453 -703540 -467445 -431138 -439657 -507152 -237797 -937359 -234280 -535225 -701150 -380629 -402813 -222169 -405425 -747452 -182103 -437282 -901164 -667856 -367210 -742232 -175397 -942142 -652019 -723299 -621732 -631749 -479217 -247146 -472557 -905812 -270590 -952850 -700358 -265364 -412296 -344351 -236187 -676781 -932751 -600870 -236561 -459635 -127657 -704214 -849578 -827520 -559619 -762281 -179274 -646437 -463584 -703962 -811582 -97725 -661337 -461669 -475985 -848332 -178152 -652047 -159913 -179281 -750655 -511539 -156426 -467135 -849217 -652085 -793929 -444918 -257120 -460436 -584498 -440320 -651091 -608916 -817242 -46657 -699308 -617028 -442694 -480149 -953286 -236722 -569852 -928236 -646006 -175054 -206964 -462431 -219627 -369114 -763745 -698082 -645487 -945408 -423237 -117099 -364819 -717557 -909942 -174702 -936022 -120058 -239747 -699536 -905309 -124058 -608860 -760284 -652044 -724387 -703097 -699569 -518515 -237394 -363721 -803166 -423496 -593808 -179257 -431659 -674769 -151368 -460286 -651933 -339780 -574223 -296815 -654760 -291582 -461492 -118689 -756590 -849585 -927874 -584108 -698768 -391717 -929179 -467394 -665091 -466514 -177476 -735215 -500184 -361105 -380727 -140622 -238696 -817283 -832774 -501452 -898513 -273166 -362916 -383194 -805351 -277381 -699969 -609504 -368392 -938957 -588041 -480202 -780051 -464587 -251430 -609734 -130794 -148994 -383757 -180109 -824428 -939198 -440357 -599974 -405312 -632330 -320849 -223868 -397045 -380177 -265034 -753740 -729985 -239625 -808916 -699617 -894341 -719797 -769505 -523549 -177799 -124042 -466703 -900033 -754320 -463072 -472659 -567472 -235109 -635830 -197587 -222109 -268092 -474691 -559267 -938550 -368355 -539524 -699986 -232700 -259613 -584473 -811542 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_train.jpgl deleted file mode 100644 index f75079fbfc6975be90461dcb8e49714132bcd642..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/fooddrink_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -244715 -310400 -744330 -126693 -645992 -132234 -336789 -885842 -724411 -285638 -288101 -932546 -446722 -618183 -150381 -373655 -42462 -364681 -235280 -262387 -623107 -107967 -742787 -467115 -886044 -786495 -772660 -698560 -237317 -363262 -673554 -650150 -747389 -560488 -504353 -344003 -685416 -467327 -938191 -179366 -557590 -220021 -442340 -380259 -830959 -934162 -475130 -277530 -263541 -424380 -817978 -364730 -953473 -584342 -466857 -764416 -650540 -108527 -106954 -368913 -206237 -440464 -379393 -836291 -442999 -612953 -440415 -690713 -617204 -181099 -674311 -458649 -849504 -707258 -719507 -177125 -467299 -849558 -731140 -763458 -646420 -315827 -316814 -351666 -380612 -221703 -467009 -108581 -278680 -885946 -698874 -140011 -240589 -755205 -894361 -178975 -719117 -298524 -750726 -737356 -466905 -335521 -236165 -939496 -424175 -430145 -501030 -851541 -616533 -340527 -939765 -466932 -237388 -379406 -533825 -295478 -500826 -633245 -298140 -781726 -584249 -628352 -372481 -364907 -351054 -702213 -754833 -179282 -949742 -921124 -790938 -179042 -673039 -653885 -264729 -755621 -412040 -773838 -208668 -279357 -704129 -356887 -661485 -725574 -456600 -222022 -424484 -479812 -279281 -538499 -700757 -390886 -480364 -380741 -699464 -236961 -947753 -342246 -569868 -178309 -480456 -817644 -195928 -176446 -749356 -269018 -723665 -260548 -412803 -744839 -206051 -653528 -278884 -580246 -306779 -379535 -404693 -889019 -551363 -912297 -178970 -281906 -939755 -467366 -655340 -848157 -498591 -309752 -405953 -470451 -222055 -482842 -275261 -699700 -439715 -174699 -486193 -662356 -777662 -465517 -221615 -643708 -404207 -892404 -466754 -458465 -754846 -699659 -247262 -379484 -310085 -646139 -345886 -279459 -745914 -162020 -834285 -940811 -380287 -308569 -693280 -439826 -628292 -340071 -152921 -440646 -609895 -647599 -273810 -364262 -792351 -738064 -181478 -359957 -237331 -467228 -364246 -378991 -300406 -568219 -697383 -856966 -660648 -718755 -175599 -699345 -379581 -279526 -449146 -643755 -512016 -279087 -948548 -817732 -802713 -179389 -379123 -653351 -105576 -467258 -500857 -830969 -616854 -482908 -396254 -949691 -478465 -234357 -369867 -927469 -700819 -674368 -570066 -103968 -738692 -701315 -364760 -900091 -460033 -133694 -742033 -938637 -118132 -432426 -913854 -817263 -405096 -150525 -661383 -220384 -817293 -755393 -396631 -181213 -279410 -654696 -763653 -865173 -199411 -400916 -443805 -646178 -235311 -487285 -784439 -755946 -126651 -946049 -249020 -427024 -674226 -724273 -279595 -172406 -300474 -944883 -814757 -661515 -127505 -768646 -645770 -616414 -199048 -652967 -257186 -268686 -312258 -938215 -231848 -130813 -885777 -644127 -354719 -258623 -574811 -413322 -653868 -276851 -837143 -906760 -108363 -818703 -293015 -125358 -364554 -475370 -369882 -640847 -382143 -793359 -534816 -739791 -953979 -199291 -718093 -115380 -898944 -701305 -158131 -764237 -830943 -787933 -704410 -232818 -734731 -900772 -124281 -874737 -274113 -644147 -825562 -883137 -234480 -724149 -423025 -364891 -437815 -181178 -118032 -157723 -279453 -769728 -849672 -304797 -726410 -613079 -438086 -747735 -449242 -391588 -485909 -440565 -150522 -262769 -336923 -706338 -215590 -131658 -362610 -601227 -380136 -257280 -326235 -699349 -911911 -950937 -251341 -465679 -379457 -501326 -639809 -248870 -467252 -391380 -742829 -235517 -899717 -405457 -786264 -466929 -146182 -343640 -935912 -763314 -627208 -699321 -755217 -240375 -742745 -466021 -237248 -279037 -841734 -239173 -178347 -107104 -858125 -862000 -870796 -377165 -673698 -699651 -823944 -777812 -438098 -364070 -674008 -335545 -922452 -271029 -295709 -539225 -396775 -509966 -378720 -940680 -699678 -776122 -466855 -537800 -335362 -221991 -440401 -568519 -699680 -240603 -326017 -390308 -861403 -642949 -461304 -48307 -499852 -467194 -898468 -480278 -577754 -840245 -936638 -156803 -178981 -574695 -364833 -315812 -627618 -120015 -143775 -849641 -704166 -575202 -699557 -939802 -745958 -249029 -652831 -297589 -125475 -338492 -673756 -364844 -724497 -160970 -699504 -942943 -466532 -736276 -460237 -238288 -259477 -331382 -315821 -803496 -764221 -161964 -108179 -380300 -533961 -334689 -501445 -651559 -222167 -764435 -593532 -742045 -813991 -643772 -939459 -939525 -927457 -367005 -652554 -589378 -241219 -500590 -737581 -480203 -436879 -851768 -502275 -769787 -364422 -302450 -315453 -506140 -755499 -877032 -120212 -404621 -279531 -490308 -817391 -529972 -458929 -378857 -768715 -517861 -219861 -654363 -334688 -237075 -787880 -343935 -179036 -469342 -570329 -674388 -304113 -179367 -569873 -764634 -742805 -907698 -292026 -369731 -466852 -810220 -467192 -755474 -763787 -345562 -511163 -661225 -761677 -265068 -238967 -287524 -293064 -126805 -645980 -527620 -646469 -835626 -864029 -655312 -669340 -955876 -279094 -278678 -646476 -892400 -387537 -183493 -108571 -151404 -762772 -151398 -131263 -308196 -681431 -258263 -899723 -449760 -764434 -251997 -364924 -438218 -478541 -570415 -157658 -769555 -608570 -467383 -704152 -120263 -648848 -707316 -746013 -937996 -198173 -123023 -300877 -939707 -335153 -325976 -787718 -108506 -940864 -177697 -588452 -829441 -480403 -467113 -464727 -903309 -142119 -511471 -560206 -108286 -677618 -362189 -381236 -608656 -308808 -179333 -818060 -865094 -701295 -730362 -702204 -251010 -313550 -191382 -221317 -248632 -691082 -507718 -266651 -430005 -378175 -121703 -428790 -240171 -125119 -177702 -301656 -99802 -134216 -228012 -236740 -143527 -823011 -674173 -698305 -222054 -955920 -442887 -259612 -857732 -718159 -742801 -534496 -896253 -702217 -531514 -355368 -235801 -263708 -848557 -699388 -786883 -134575 -363772 -178527 -551383 -898434 -850993 -178294 -108598 -440381 -755436 -458653 -477307 -144046 -699394 -940837 -940955 -181659 -642837 -240356 -715413 -126806 -466196 -151395 -334077 -267219 -350614 -431980 -220706 -708563 -448756 -177954 -569801 -707103 -151256 -265409 -863029 -300679 -646011 -108053 -827290 -458624 -98281 -653718 -229255 -432762 -273145 -664806 -179287 -235992 -466817 -430085 -433685 -817730 -221647 -365769 -858801 -943489 -914806 -108492 -932994 -475340 -206570 -804435 -397470 -242543 -439820 -111809 -654727 -940513 -237391 -764129 -602598 -814878 -380096 -862037 -500976 -671005 -520468 -111726 -636743 -764392 -501130 -112995 -217773 -861845 -251780 -534754 -584387 -817113 -776670 -254903 -663726 -903099 -699706 -699614 -479218 -206349 -500576 -205192 -942960 -764159 -178236 -760035 -323610 -668173 -769171 -346744 -380162 -200314 -939583 -764120 -103904 -618541 -380692 -716618 -312714 -139940 -456205 -584460 -698407 -266385 -242726 -637030 -380583 -405967 -306950 -162111 -849008 -667386 -655484 -852684 -699631 -151831 -315752 -237390 -920458 -864635 -533914 -221141 -344294 -108504 -439768 -505715 -219143 -642674 -474241 -741820 -654068 -938099 -646440 -244179 -278380 -395696 -942961 -393155 -609755 -237276 -671857 -405703 -549393 -848170 -841146 -700418 -639676 -721630 -467149 -656423 -616603 -235908 -646454 -472463 -752498 -501381 -722281 -439575 -382579 -257985 -396243 -396749 -181519 -672504 -459313 -235480 -562533 -405818 -222160 -569406 -379763 -108188 -383943 -500546 -466577 -204980 -277507 -741393 -811597 -342941 -476755 -820005 -712095 -112979 -627243 -699498 -174829 -208143 -115791 -179948 -344184 -884636 -378037 -221338 -424465 -511828 -849147 -579056 -98116 -78306 -350021 -560099 -905411 -232599 -108040 -900101 -862154 -697749 -488299 -576104 -754474 -236294 -479905 -156537 -200718 -648986 -802125 -900090 -955316 -440344 -647451 -119724 -755137 -235689 -294338 -811342 -940553 -724078 -938258 -264679 -661194 -617257 -181214 -315572 -627252 -849537 -329324 -693541 -219382 -438569 -479080 -671381 -474673 -335263 -721292 -200728 -299993 -674300 -364920 -255485 -646005 -526898 -585409 -787866 -527780 -511806 -262722 -645424 -940863 -179361 -141857 -640327 -379903 -931424 -334277 -745824 -628248 -713032 -299737 -527458 -440400 -179173 -910025 -235945 -791815 -279398 -179336 -364764 -710595 -245241 -550877 -769597 -694834 -460207 -174689 -347281 -282886 -573571 -240601 -643783 -240425 -140050 -849068 -517613 -235389 -702067 -279320 -664622 -222103 -787682 -616909 -570083 -466701 -316878 -220106 -460054 -707377 -754327 -337325 -571670 -177857 -856502 -627888 -819686 -242986 -833675 -124936 -183651 -251182 -559177 -745983 -255614 -937922 -237347 -857159 -126450 -750606 -590661 -198481 -273222 -358613 -632280 -479480 -590717 -108550 -761563 -467133 -178267 -643019 -891703 -277270 -723909 -818691 -754633 -148927 -279445 -406001 -515161 -570175 -265558 -252278 -705693 -939434 -501895 -466353 -439871 -154155 -525632 -592023 -644011 -729927 -108274 -857035 -764103 -405198 -636004 -409991 -724340 -314100 -636953 -268878 -636196 -467052 -752554 -260724 -113200 -501314 -633581 -684111 -286273 -706669 -198332 -849639 -949475 -545062 -437448 -724476 -738106 -344024 -108565 -270413 -356958 -848084 -646410 -103761 -131730 -377529 -838363 -649572 -338141 -698870 -518429 -644701 -646106 -150568 -276301 -763461 -457502 -102319 -235814 -575509 -439081 -700199 -779098 -209262 -456979 -390552 -631257 -949651 -894513 -364355 -699596 -867410 -475279 -856348 -204536 -731039 -533608 -817494 -218831 -439485 -895721 -343815 -268881 -945317 -235287 -737579 -327881 -793874 -210879 -828673 -562054 -884376 -236887 -699412 -476556 -673300 -369465 -671203 -953177 -698667 -199296 -126381 -643292 -481534 -802067 -584394 -215127 -176196 -279080 -674556 -745357 -125823 -501947 -755874 -952321 -677973 -863504 -301139 -340022 -787483 -179319 -700272 -705348 -290324 -645465 -834149 -108324 -865304 -168136 -337496 -858004 -210537 -654684 -284663 -846740 -120476 -837042 -955902 -583116 -403789 -178516 -575510 -296902 -661242 -198815 -391666 -209423 -939703 -842597 -769127 -381478 -582239 -123701 -123824 -683217 -362594 -478473 -258124 -340592 -486522 -653525 -518846 -701913 -755989 -671403 -720088 -352870 -158197 -569704 -745351 -898247 -803493 -316193 -181228 -692567 -360894 -400417 -405106 -176965 -780353 -344238 -458101 -244963 -534869 -257787 -180307 -701126 -430480 -120232 -896492 -707455 -337369 -568571 -431880 -364727 -109134 -240191 -151719 -847982 -439367 -353207 -732724 -350294 -763569 -475367 -421117 -235966 -479984 -220875 -235252 -849606 -480480 -236050 -919849 -135575 -442020 -662549 -405870 -813370 -945926 -787642 -287966 -367628 -719552 -625754 -239741 -699021 -699510 -702212 -863688 -334118 -431804 -380037 -560528 -622688 -511311 -659527 -467306 -236974 -731147 -479149 -750777 -817548 -542604 -875495 -173878 -642819 -908261 -770045 -240194 -793326 -731433 -179280 -811273 -849538 -888919 -577086 -108568 -755965 -222147 -236762 -133564 -119033 -364639 -699600 -108239 -608735 -221918 -345216 -673952 -467444 -616544 -919948 -639784 -692971 -680956 -769351 -179487 -122983 -378691 -503624 -937833 -380735 -465533 -635717 -616885 -922481 -557587 -600251 -849479 -439421 -142736 -467409 -237893 -107768 -179816 -108433 -546608 -107962 -156876 -311978 -849715 -458548 -140303 -724224 -230517 -650122 -724481 -150966 -636038 -849577 -196768 -771287 -467402 -642567 -237288 -199140 -674518 -364848 -488450 -808382 -830508 -645494 -458659 -699313 -177390 -672754 -741990 -224063 -577256 -900623 -825413 -317750 -344362 -339542 -699355 -608249 -900159 -478558 -440534 -265140 -819411 -148734 -293539 -386735 -499004 -627036 -354331 -379434 -237366 -723375 -369341 -364858 -646474 -642134 -835841 -324403 -769970 -395741 -886031 -362697 -899772 -699580 -609667 -569437 -143476 -696769 -611010 -633792 -441239 -388217 -240853 -927034 -180537 -817771 -654685 -174726 -126387 -765711 -252151 -124608 -335495 -322490 -108009 -166452 -742825 -652037 -619444 -221513 -397092 -488821 -379943 -644561 -830209 -238971 -438021 -469054 -363720 -674366 -770107 -863648 -391635 -646328 -439266 -900037 -334712 -134687 -661429 -528952 -391556 -222163 -885913 -108528 -379462 -466895 -328383 -279201 -570686 -318665 -380731 -531244 -543306 -439630 -115061 -238783 -894236 -849510 -400928 -178026 -762508 -344188 -893642 -670998 -609574 -319683 -361310 -300181 -477070 -879590 -488408 -239606 -953034 -612319 -779683 -802632 -220540 -645444 -356837 -830616 -420596 -278774 -324335 -491483 -292815 -466572 -221975 -661403 -107604 -288905 -227549 -446225 -929914 -849702 -429117 -264853 -220285 -677885 -314563 -556180 -864178 -927908 -363693 -936734 -251597 -490578 -346058 -379740 -646143 -615080 -707320 -278544 -590835 -899789 -712114 -236904 -814554 -857663 -474641 -108127 -107913 -768844 -144392 -650848 -237202 -124819 -898545 -898658 -764260 -952676 -631954 -673369 -380668 -236166 -543301 -817633 -904769 -619063 -861401 -633949 -161953 -488461 -343395 -364064 -240533 -594088 -177968 -773994 -346876 -380512 -329073 -249046 -406016 -669567 -738593 -703131 -332169 -140347 -476790 -134343 -422656 -206531 -278373 -276288 -189539 -644295 -601133 -699693 -390203 -161850 -376480 -300876 -334091 -701727 -110323 -776346 -432555 -258873 -369675 -637087 -644577 -235888 -567948 -698957 -857438 -179762 -940931 -463434 -701070 -434338 -946534 -198818 -527006 -200436 -45405 -181354 -602958 -237298 -814301 -755904 -747072 -885754 -769497 -723629 -255208 -764367 -920037 -466470 -674587 -898451 -866844 -699456 -237406 -943984 -768863 -249315 -921307 -705013 -401001 -701227 -125915 -206073 -743408 -764251 -409899 -184178 -300389 -311864 -219207 -378950 -946097 -236910 -267629 -274131 -378487 -501205 -707309 -584077 -762767 -466935 -179865 -660463 -755358 -181259 -237079 -301009 -673825 -764504 -938413 -221485 -222110 -367965 -698519 -480143 -472570 -671420 -474197 -380683 -298253 -150335 -693262 -719069 -832692 -641050 -755509 -724376 -817720 -935138 -379680 -293431 -648521 -121655 -303506 -612925 -498515 -616824 -766262 -465841 -236026 -902722 -467108 -108171 -269801 -108360 -206533 -612915 -707286 -463600 -645467 -268428 -208594 -380623 -275014 -181593 -363248 -755936 -764591 -550749 -404230 -261112 -487879 -327889 -466510 -97853 -926826 -439819 -369084 -222108 -395316 -298339 -467367 -671277 -240363 -671225 -222162 -222114 -661288 -255626 -209340 -943471 -234507 -279483 -303073 -237323 -204508 -542473 -311851 -394632 -466384 -231149 -467408 -872758 -701630 -476839 -265251 -369875 -310018 -368494 -932549 -198620 -374931 -157048 -459843 -921012 -467423 -292806 -179314 -476557 -242290 -271091 -177386 -861544 -663694 -952496 -817770 -768136 -755260 -464786 -309919 -265369 -747105 -324625 -158700 -334746 -703169 -673478 -848044 -459330 -179317 -334633 -107651 -301711 -240502 -623282 -221340 -219962 -782598 -442343 -661505 -270719 -179024 -626370 -701216 -268840 -364721 -667541 -900177 -405628 -898055 -885623 -465331 -305167 -279013 -524464 -279498 -178972 -324999 -348950 -701283 -364708 -397219 -314762 -831352 -144454 -766089 -895840 -830512 -704299 -482798 -390946 -609719 -679534 -467034 -665434 -754735 -268382 -275923 -443809 -690198 -919091 -294995 -126163 -205170 -742676 -742547 -734191 -301146 -501434 -482330 -605484 -609188 -482055 -691648 -260595 -652968 -343086 -674460 -178131 -181437 -124302 -501187 -937984 -671178 -949542 -795835 -769368 -743373 -466836 -178858 -467185 -897238 -661424 -818786 -701758 -174358 -755700 -460983 -642804 -196199 -780289 -849023 -673648 -919931 -314977 -719588 -911809 -755296 -229564 -732285 -192802 -222034 -698480 -269040 -101349 -279324 -179387 -178843 -656011 -178632 -466869 -501192 -419792 -288946 -803375 -221278 -467378 -661741 -669686 -689026 -161773 -598830 -945944 -251732 -387022 -817867 -526663 -255228 -574655 -817078 -663310 -222042 -349763 -346849 -208590 -277762 -918918 -363896 -300517 -755365 -912492 -754321 -674209 -945281 -642702 -177652 -814579 -151858 -206268 -617409 -314906 -215203 -467161 -243149 -950810 -179164 -243032 -633075 -706435 -724050 -361342 -699147 -862949 -882049 -436985 -433236 -956322 -949717 -274149 -779950 -848762 -144383 -301609 -488984 -653506 -123381 -386402 -439479 -729889 -750049 -763664 -273676 -313306 -208379 -395313 -177538 -264859 -693287 -260129 -364634 -602773 -440085 -305412 -362978 -400951 -235855 -696131 -467321 -205602 -239510 -404954 -884904 -544553 -826173 -596889 -443025 -821431 -467056 -955909 -701857 -126343 -364499 -851563 -278025 -649737 -144497 -697674 -955769 -279280 -922000 -434835 -442657 -380038 -531670 -738348 -396383 -368373 -277700 -151480 -742017 -671347 -315010 -700446 -193954 -466352 -600113 -646286 -749113 -811575 -326903 -178550 -139768 -515079 -645376 -755585 -124295 -763879 -718947 -717042 -177261 -560267 -747180 -439515 -667296 -468257 -814573 -763400 -239149 -701323 -378879 -109925 -764509 -940427 -277630 -856012 -763464 -269006 -607178 -398434 -467075 -467060 -879539 -364723 -380005 -335071 -569233 -533130 -151119 -466633 -912663 -673997 -466452 -897920 -938090 -523922 -524150 -898005 -673054 -220991 -609610 -764236 -373709 -762996 -177932 -742644 -126706 -248881 -270513 -673752 -678773 -108399 -945411 -181205 -268854 -610087 -653005 -885605 -324586 -700866 -413242 -539665 -654232 -583924 -699030 -221407 -901180 -291998 -472711 -438943 -763547 -939308 -821351 -427029 -234902 -118373 -466922 -722079 -733614 -939625 -737868 -175368 -301418 -364757 -103153 -773296 -904060 -609204 -221931 -570126 -373623 -340631 -207576 -779536 -742036 -199030 -245659 -238446 -236387 -646245 -863660 -295092 -692687 -439548 -609798 -265270 -364749 -343636 -948721 -698110 -501414 -439703 -745410 -253352 -395888 -769589 -181476 -670005 -701145 -626680 -905099 -764402 -315991 -308382 -260991 -817089 -349515 -699595 -105988 -391190 -335290 -949306 -836617 -634408 -467425 -364697 -884459 -701454 -251823 -632885 -534699 -486474 -592496 -899101 -703880 -500762 -884036 -952859 -235731 -368709 -654751 -699618 -633159 -278869 -325456 -204706 -653297 -651503 -670638 -192392 -333535 -605266 -364470 -787846 -918378 -293783 -126509 -457171 -570357 -572979 -133997 -380137 -242679 -861876 -704431 -364409 -466537 -439319 -899570 -700839 -221183 -439313 -865551 -124998 -830554 -583433 -475900 -920469 -671304 -823779 -897723 -899126 -222146 -209310 -466826 -157126 -335381 -402993 -651960 -412091 -711293 -192741 -910152 -735662 -584654 -294021 -177426 -222155 -531867 -272506 -335178 -534676 -883697 -631706 -364696 -382748 -622781 -731079 -431918 -584511 -242067 -637096 -516736 -102795 -594017 -300949 -289106 -140848 -716742 -472591 -793350 -702086 -364852 -435361 -514349 -828514 -692661 -603923 -643459 -226817 -364032 -592736 -120045 -129254 -433172 -701523 -424086 -899082 -126576 -204583 -508074 -181411 -150241 -885395 -181625 -388178 -150876 -953009 -180522 -222087 -278330 -141723 -857420 -480254 -446356 -268062 -651071 -676732 -411149 -848022 -590742 -236993 -616760 -110349 -905117 -717520 -125867 -458681 -380579 -358279 -251964 -234286 -375710 -177364 -391256 -412232 -134823 -625640 -221546 -176390 -479326 -237302 -674190 -206311 -736948 -240464 -700367 -439879 -661526 -243148 -440671 -942986 -220414 -527174 -920633 -178223 -422965 -427516 -674530 -801324 -389402 -533577 -135244 -764393 -598133 -410770 -653218 -810352 -177645 -507151 -181577 -699608 -460809 -383344 -577709 -801374 -277081 -898097 -237416 -628013 -328017 -400349 -566123 -221316 -568889 -378878 -388862 -390312 -456919 -582291 -110455 -347486 -124894 -391121 -147302 -371479 -466975 -438478 -220852 -695967 -220710 -769887 -237318 -459908 -922398 -272629 -236441 -704005 -952920 -174950 -118895 -405959 -238879 -198632 -282883 -699067 -190625 -125642 -364668 -512353 -818666 -132137 -900134 -506071 -701265 -388976 -181256 -326078 -742648 -171542 -238260 -313600 -439634 -699477 -704481 -373643 -390197 -461693 -404907 -379029 -395116 -699454 -673144 -206335 -751616 -613080 -324898 -935776 -830670 -364718 -501396 -369283 -846739 -342867 -288670 -539499 -742620 -692639 -369374 -467061 -179124 -943670 -335302 -849638 -178389 -269538 -725313 -738249 -466867 -859134 -401022 -265993 -848276 -343822 -224076 -489555 -364638 -291599 -383654 -436789 -126630 -480161 -653508 -529690 -643462 -762075 -515366 -259328 -342480 -288697 -763837 -627351 -108284 -609794 -625596 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ls_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ls_train.jpgl deleted file mode 100644 index 8fad95f8a1ffaa70c2fc1f0a1d2df1fca1e15151..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ls_train.jpgl +++ /dev/null @@ -1,20000 +0,0 @@ -417938 -173641 -294617 -937505 -276533 -398375 -472234 -236134 -466577 -172564 -429256 -24176 -888135 -886854 -102282 -797962 -480166 -255469 -289031 -462030 -113211 -937831 -650772 -838033 -122028 -778528 -828462 -51410 -444623 -666222 -696904 -611010 -569846 -54665 -465841 -355368 -129397 -215127 -627208 -490578 -321335 -128540 -60961 -889022 -387278 -889686 -883137 -931998 -239606 -90716 -216104 -883600 -168695 -769450 -12476 -42028 -217862 -90163 -390552 -935659 -25104 -870474 -13599 -808764 -719552 -935882 -139923 -14703 -908866 -74999 -123272 -485826 -611621 -899112 -30603 -18076 -390203 -653005 -742178 -451851 -771294 -252643 -147454 -501847 -74473 -714545 -135575 -498124 -319957 -803496 -547405 -615286 -239303 -446356 -194044 -265251 -755898 -474377 -247473 -418617 -113339 -923612 -287088 -950770 -770248 -26836 -207738 -75289 -938557 -303242 -356830 -298898 -751752 -113561 -314707 -274476 -145559 -79838 -145745 -146950 -391270 -38095 -924475 -793220 -162929 -476790 -803485 -524530 -314827 -557770 -609204 -556563 -610719 -319395 -1855 -274131 -118454 -878838 -919395 -205170 -581905 -846302 -349587 -255371 -70653 -104845 -687777 -766039 -26224 -76582 -673755 -166761 -350938 -96485 -841146 -682942 -88437 -952321 -361189 -668802 -680262 -64557 -880483 -60248 -930293 -186942 -476557 -607368 -628307 -171514 -18833 -749452 -527560 -865166 -505381 -763314 -349347 -810244 -38721 -409716 -615744 -54766 -339866 -77515 -331669 -632088 -350237 -691649 -386759 -134343 -29334 -265497 -644147 -682879 -801437 -12586 -122763 -179853 -481971 -442911 -515161 -677735 -576306 -35457 -524644 -164530 -803365 -279524 -948558 -894201 -281434 -853866 -16753 -69673 -265260 -797783 -240192 -85946 -718850 -72499 -357256 -42759 -874184 -30710 -85327 -23788 -931948 -138644 -333736 -784183 -145316 -37444 -817362 -256083 -32245 -778184 -650225 -637883 -298196 -746856 -902164 -42058 -443805 -282597 -365093 -832828 -46146 -474241 -748404 -183559 -636145 -294560 -383100 -644440 -361984 -96223 -916976 -362513 -227180 -951969 -735130 -142127 -101196 -909229 -593489 -505497 -348357 -479204 -186687 -71275 -713657 -342806 -118069 -139357 -571670 -769833 -921440 -332322 -281718 -542473 -563879 -917443 -557590 -188532 -97605 -457171 -839080 -668450 -255423 -463204 -633931 -948483 -289276 -624940 -129026 -71805 -298716 -442516 -193137 -643708 -837514 -446280 -61730 -427353 -449689 -338285 -531867 -873691 -437761 -288302 -332206 -456553 -817494 -232936 -56929 -569406 -778055 -880178 -770300 -580523 -25333 -831239 -471342 -103458 -67511 -703722 -444997 -685679 -677974 -356161 -175570 -40458 -433432 -379123 -279506 -569374 -44149 -430890 -555351 -220875 -584137 -149376 -68316 -277998 -949439 -33457 -22622 -515198 -766941 -546322 -390103 -208663 -924251 -686834 -446225 -336344 -563661 -639821 -781382 -533961 -383252 -603719 -60590 -559792 -388392 -887417 -76335 -61310 -722559 -287935 -849068 -710268 -96376 -40831 -297569 -249577 -49034 -37386 -52921 -346744 -186572 -477223 -155562 -308473 -316629 -31115 -644295 -920010 -410904 -751316 -338252 -669868 -92286 -861245 -499323 -108179 -85864 -696138 -175499 -85911 -759197 -856777 -182677 -769516 -271933 -934968 -195901 -675528 -185973 -850251 -395696 -137662 -920002 -712152 -579886 -150284 -927197 -516362 -285094 -383725 -761541 -12952 -824477 -302676 -525061 -828712 -436869 -546588 -130816 -476514 -313321 -274834 -417720 -628727 -831809 -403022 -786644 -178128 -46000 -395774 -278980 -828366 -212876 -478700 -723051 -281524 -939308 -577567 -315814 -423238 -199296 -38958 -114394 -580956 -538195 -734279 -268882 -388693 -542114 -320400 -224779 -401417 -703122 -942880 -795538 -166853 -690202 -64443 -151870 -531244 -904052 -126202 -682519 -594396 -756343 -268233 -921471 -230132 -814100 -726658 -86610 -485091 -643624 -185971 -348950 -388625 -793101 -793378 -693932 -415105 -200556 -786546 -391681 -899789 -502922 -407203 -255137 -240630 -298735 -847813 -654602 -178354 -699600 -776816 -503333 -936734 -198056 -377529 -830209 -125797 -67407 -170444 -649249 -752856 -422306 -517758 -471042 -317511 -18950 -306200 -848972 -52075 -617898 -767452 -205192 -489414 -69518 -51820 -126159 -4043 -640039 -770977 -820717 -831600 -782390 -581630 -564427 -652892 -708711 -240225 -498272 -413322 -315888 -532382 -900086 -372417 -82145 -165482 -602819 -578753 -468629 -810263 -784749 -449597 -251849 -483785 -481356 -879593 -632519 -713831 -229971 -298140 -445325 -931391 -403878 -823904 -354196 -76680 -239202 -874433 -574791 -724496 -95001 -577783 -510882 -143325 -126157 -1494 -258092 -647689 -245497 -626141 -663498 -230286 -646420 -469342 -394224 -388178 -151558 -211844 -295912 -334689 -844238 -379862 -314788 -664691 -922394 -311864 -647996 -76603 -180292 -913677 -741927 -678010 -490311 -950559 -664893 -894513 -763248 -834286 -609975 -782713 -115705 -66223 -783812 -279087 -570117 -84858 -46336 -879372 -930905 -174699 -179287 -698870 -82348 -298415 -474786 -14706 -312429 -64908 -92668 -638610 -751128 -379393 -282886 -342250 -303903 -943471 -785312 -809678 -662238 -237331 -603876 -135850 -68736 -602802 -255254 -158020 -452588 -219861 -556180 -503400 -652041 -693189 -637904 -540175 -254164 -803252 -160581 -90108 -346456 -259858 -634320 -298089 -773994 -398616 -896961 -914043 -70750 -212685 -142327 -32665 -357144 -405953 -808998 -161172 -425533 -642674 -221918 -764506 -349408 -633065 -786994 -46153 -579965 -365224 -823944 -230474 -229958 -690671 -747105 -747159 -185326 -717656 -158588 -129025 -360077 -817078 -598146 -46291 -852963 -819686 -703923 -415665 -521055 -237276 -622788 -769368 -105988 -887427 -479984 -771163 -649112 -486466 -356126 -679460 -141564 -387022 -523638 -166102 -240740 -907816 -412065 -404498 -824663 -340215 -661299 -744839 -225573 -458465 -543138 -506292 -935112 -623126 -338983 -111726 -767539 -289381 -110434 -489555 -196251 -811029 -477966 -27862 -168059 -398268 -582165 -20280 -505566 -308360 -673952 -145807 -419943 -420804 -833988 -160494 -415198 -205173 -944320 -474078 -10053 -862119 -422456 -714219 -297751 -666401 -563534 -938215 -461371 -772533 -404023 -644757 -125073 -830160 -778325 -752498 -350928 -409991 -573829 -80400 -584710 -926558 -8640 -626311 -84740 -309867 -24460 -521486 -917335 -838096 -414844 -747389 -33367 -449899 -425335 -134571 -711468 -950736 -186625 -782354 -106655 -833347 -327584 -611734 -294753 -845973 -243078 -570666 -631257 -252402 -328066 -633075 -750537 -903936 -639666 -527641 -24511 -798656 -738373 -726744 -909127 -243036 -786692 -12170 -339709 -495351 -456099 -40469 -72268 -851541 -297355 -634959 -505564 -517896 -809450 -227939 -551281 -799430 -651159 -167866 -677860 -244075 -763913 -167222 -766238 -273604 -598200 -544101 -946594 -10588 -255401 -180203 -281429 -806808 -80108 -459396 -314611 -326588 -551820 -244665 -773823 -361456 -80572 -851219 -115791 -368161 -129645 -93867 -246418 -298281 -155144 -426928 -127662 -724411 -10276 -423300 -50065 -759755 -243032 -718093 -872888 -632900 -771585 -126833 -556905 -755508 -449604 -572979 -830642 -363311 -937642 -416979 -172695 -794623 -731079 -693035 -701857 -823021 -478541 -162111 -41301 -597292 -160934 -297598 -191319 -386272 -174224 -365730 -707320 -112174 -839614 -159682 -63643 -63678 -490916 -129398 -59973 -369275 -314836 -59124 -804966 -547840 -302635 -538259 -915144 -124621 -188297 -258020 -755006 -889433 -502011 -412564 -190206 -333632 -875994 -528162 -97327 -228810 -25936 -276358 -735761 -60418 -101641 -852601 -425960 -505835 -752332 -165933 -230880 -939746 -332863 -485329 -533983 -165173 -642935 -627144 -899827 -905324 -165775 -72316 -795474 -435281 -593657 -468549 -719961 -527333 -783914 -389402 -883404 -280782 -893857 -298447 -309699 -117083 -101524 -209226 -146704 -826222 -693926 -776372 -40953 -121490 -130969 -476010 -568639 -288697 -707248 -111660 -47873 -556861 -726977 -224647 -640327 -873625 -130839 -857119 -224030 -205446 -226559 -177125 -475302 -416335 -18843 -158666 -219382 -340768 -669686 -643019 -204143 -900159 -21431 -259328 -487879 -703439 -185686 -10660 -184895 -635866 -115161 -458701 -181213 -769597 -286769 -735599 -886500 -297869 -732973 -334526 -95010 -558502 -442258 -332219 -368653 -199483 -30339 -787907 -280793 -50839 -303007 -10123 -653134 -705693 -443382 -467409 -724481 -457893 -637948 -125477 -475243 -315287 -461690 -511995 -342312 -485297 -605891 -489135 -849528 -54808 -608868 -799444 -701523 -895212 -398127 -560061 -906099 -409729 -704407 -861403 -416753 -799240 -705228 -500546 -136880 -683771 -638672 -315307 -633732 -698752 -633899 -396937 -122957 -855551 -766154 -834029 -662606 -779742 -930499 -732134 -758418 -388214 -276400 -751213 -456552 -249250 -407040 -271127 -703697 -401737 -527988 -157877 -415702 -247356 -434765 -681158 -704372 -10023 -309599 -17383 -141593 -661526 -439741 -711964 -386643 -281044 -384057 -331177 -687428 -52998 -504237 -124894 -526898 -443997 -714006 -667175 -903890 -106869 -446123 -546448 -835404 -939802 -836054 -131263 -251010 -19276 -183242 -572803 -712312 -467185 -196366 -605642 -58386 -178131 -607139 -288199 -594368 -75220 -92951 -693581 -590873 -111867 -45405 -750610 -814943 -464963 -899495 -342390 -851768 -51143 -322576 -730362 -617396 -777810 -278864 -810170 -364355 -375837 -251224 -478853 -948731 -642610 -888808 -262470 -73399 -419049 -599891 -342753 -1328 -675801 -853248 -170536 -281436 -282161 -575211 -232751 -232775 -70810 -90107 -659344 -138761 -932953 -879040 -129239 -249467 -96874 -774305 -756044 -878729 -824953 -466452 -863854 -761495 -26923 -78633 -395316 -504353 -321130 -710027 -699313 -800488 -430039 -664151 -150933 -445745 -459336 -210783 -205602 -552742 -704152 -897632 -60568 -521732 -523496 -65125 -738692 -564335 -716270 -623816 -806814 -343036 -55765 -334077 -606254 -859582 -48660 -718164 -147517 -340968 -45455 -417058 -523213 -822457 -542459 -786205 -166134 -811597 -459510 -186835 -69517 -577759 -730633 -904204 -947041 -542071 -85021 -225008 -432353 -38396 -628292 -344238 -448535 -584215 -587566 -262636 -221615 -179389 -678559 -593136 -674385 -157723 -395888 -190278 -179255 -40736 -271072 -617056 -703513 -450580 -676821 -85972 -834036 -803450 -142268 -163094 -418818 -54378 -382143 -209358 -38088 -33409 -328266 -723986 -308338 -805734 -646197 -627377 -777556 -573205 -422676 -60097 -914212 -445335 -751695 -865038 -267219 -403477 -126207 -60896 -108946 -934364 -915670 -576401 -458653 -638339 -51882 -404651 -66435 -419386 -727164 -791382 -524807 -258355 -25224 -457757 -180931 -43002 -61149 -22092 -633913 -288705 -598426 -777470 -537394 -437358 -230549 -824552 -805470 -405457 -431980 -47221 -253726 -616473 -61498 -764416 -228155 -635976 -286873 -282786 -703374 -263948 -859618 -321573 -591029 -948162 -390312 -456989 -750603 -204864 -879102 -65023 -72322 -890835 -281238 -648297 -165901 -638234 -894361 -840297 -775367 -451442 -940536 -902480 -224519 -395296 -65116 -349495 -201982 -7438 -427559 -528641 -159459 -785680 -645598 -764634 -818166 -765535 -474197 -403781 -136663 -113350 -564334 -146634 -751199 -824987 -817454 -409090 -586663 -172474 -482148 -875738 -460983 -755043 -605598 -694117 -32236 -579887 -676642 -948444 -726020 -54532 -788496 -491191 -886789 -327530 -322336 -206131 -621051 -563946 -635460 -607414 -426659 -704000 -172352 -228256 -629788 -731838 -303021 -563779 -227549 -865540 -845035 -697063 -467056 -284783 -712252 -806807 -141644 -903748 -870326 -710122 -204502 -795582 -450699 -769555 -952676 -414738 -450786 -343943 -375100 -29453 -364913 -229960 -423582 -141759 -923688 -682556 -572388 -278533 -816426 -900837 -859158 -586960 -295180 -798032 -169500 -786755 -163090 -78678 -38937 -114835 -956765 -701294 -349312 -253498 -579014 -21292 -308032 -849246 -803471 -505847 -787239 -797287 -844759 -574793 -147030 -276708 -96533 -132388 -870228 -590887 -61666 -676418 -148916 -722793 -52926 -574759 -119060 -395480 -331925 -699321 -885395 -176528 -223276 -26300 -426589 -787451 -394765 -365566 -811843 -778281 -861401 -426295 -328538 -33453 -20045 -854809 -896048 -916740 -147000 -624410 -454893 -234507 -34318 -182292 -331852 -802476 -91783 -164385 -618197 -368377 -668719 -571017 -151070 -564506 -64500 -779366 -806599 -244541 -449166 -646139 -34412 -573318 -892460 -300679 -200017 -449153 -451852 -751303 -650584 -470363 -906767 -708563 -348100 -488477 -679950 -655312 -238967 -234286 -86085 -767949 -266041 -208668 -382815 -426217 -257631 -691472 -819599 -793602 -188792 -121734 -344297 -824654 -785342 -108009 -884826 -704456 -308256 -262894 -290277 -227095 -35856 -112653 -826094 -536941 -192392 -237094 -188114 -276404 -328057 -612925 -420522 -378524 -403655 -264041 -557364 -675056 -190625 -340527 -698854 -27310 -546561 -772414 -655093 -880430 -606768 -12151 -588297 -176220 -146912 -20183 -696693 -164372 -672103 -364406 -306861 -121049 -883596 -315206 -81579 -785457 -401839 -800415 -788635 -699498 -694354 -440091 -340392 -21095 -429262 -298608 -482408 -596518 -501721 -574049 -420178 -76971 -126640 -449858 -851037 -166813 -602267 -724405 -632939 -82213 -49633 -270513 -501435 -639720 -594086 -920515 -738458 -582291 -790638 -233926 -60321 -330730 -745161 -668986 -717968 -77143 -830508 -422788 -728734 -879090 -536959 -179300 -122845 -595802 -431855 -151788 -56074 -730555 -13087 -298253 -405610 -941810 -258873 -330435 -403725 -706709 -524464 -571647 -703194 -768646 -511018 -28063 -95570 -234658 -897782 -365525 -343730 -29299 -488379 -98991 -203951 -165938 -771571 -467258 -627115 -625525 -226537 -534279 -433560 -416446 -106954 -284889 -728167 -315748 -43489 -447278 -303964 -354261 -920071 -65383 -20750 -688035 -889668 -645724 -105729 -810364 -419188 -550470 -162835 -833932 -448302 -872748 -119534 -146430 -687602 -183274 -570571 -304797 -73335 -285525 -562364 -808382 -99790 -887230 -431886 -115117 -755393 -751170 -544190 -277142 -650837 -335061 -177386 -332169 -948843 -22889 -764174 -710214 -878567 -761397 -370790 -287515 -74239 -872896 -50192 -468405 -348826 -753946 -12183 -714500 -836307 -797429 -814757 -666173 -894202 -278774 -492367 -754361 -733328 -506082 -199847 -653729 -483795 -388309 -394632 -431918 -24818 -815926 -627764 -844627 -174937 -282809 -594692 -668173 -437547 -879659 -516842 -527657 -233243 -63346 -916683 -675589 -418662 -54284 -215244 -916296 -478465 -585821 -563601 -476780 -132294 -856187 -599894 -921307 -733118 -391314 -348881 -297674 -394312 -48894 -288766 -333573 -362978 -730900 -786555 -897296 -230138 -896415 -232842 -775278 -382663 -663932 -696994 -801161 -656690 -484058 -701227 -703839 -116713 -6428 -741867 -676119 -174367 -80174 -98321 -210691 -740267 -627888 -261257 -488897 -716711 -466869 -323596 -665953 -491925 -772132 -638791 -861316 -284113 -329270 -391556 -760300 -577597 -653790 -901814 -126799 -612564 -605693 -251823 -512636 -722640 -816739 -904729 -310349 -327935 -863890 -20188 -842816 -340486 -450614 -72082 -918847 -604084 -283468 -262063 -813156 -271278 -388356 -119724 -199346 -768817 -933055 -544741 -360940 -222163 -203438 -51633 -911504 -106707 -772446 -518208 -431882 -85330 -442343 -762360 -101922 -639307 -545833 -658086 -33041 -354764 -955769 -406384 -167562 -95061 -175760 -248531 -395058 -518690 -607143 -553891 -34288 -878895 -741099 -927723 -921874 -144446 -830554 -436938 -68719 -443857 -1585 -146258 -48307 -427683 -799176 -827461 -862000 -177697 -39198 -64886 -215091 -756636 -19753 -619113 -297079 -626257 -426392 -326101 -825562 -674810 -383689 -885466 -236115 -173856 -742033 -49210 -147604 -763787 -99830 -701454 -177645 -25096 -604357 -221183 -598215 -863688 -779098 -704036 -478473 -120512 -650202 -164739 -139756 -684113 -949742 -751440 -244352 -167005 -20207 -661383 -318953 -95278 -161438 -802944 -429409 -108571 -941796 -698560 -287749 -264023 -699456 -592536 -763918 -541719 -382721 -379753 -937340 -826640 -105116 -40888 -376480 -825944 -477351 -18959 -68760 -19866 -517347 -228261 -102546 -363262 -20452 -515929 -210764 -630432 -26849 -571741 -235252 -172406 -486842 -597645 -52589 -711883 -146226 -340019 -797817 -1384 -16460 -105569 -303438 -886159 -638753 -954752 -527451 -21457 -658286 -132418 -538466 -153703 -239545 -654756 -186608 -779459 -596161 -895488 -825310 -109134 -11957 -114714 -651083 -786495 -922541 -120212 -202564 -238950 -633159 -895650 -867399 -507466 -871181 -215963 -946049 -362131 -11904 -526115 -160746 -349049 -411407 -537763 -233338 -396825 -331143 -806762 -349598 -750175 -580665 -34814 -817550 -802211 -949217 -741248 -832718 -926380 -848915 -126777 -327821 -81946 -829525 -301850 -237860 -656188 -666188 -13516 -539665 -436153 -571843 -785966 -424006 -355807 -279353 -23063 -312762 -925862 -830157 -573512 -772495 -330466 -817978 -699504 -897048 -491590 -336275 -614589 -35038 -315771 -750662 -767484 -835118 -158131 -338904 -45351 -485750 -56559 -592842 -276094 -830119 -710499 -511211 -564369 -397460 -30875 -233107 -11750 -518628 -344188 -236991 -546993 -369867 -8863 -11559 -940210 -262000 -773296 -571403 -953326 -790443 -828312 -423428 -377429 -361607 -73918 -436846 -328383 -659049 -230627 -199518 -541963 -775442 -432925 -942585 -950083 -425635 -23234 -126576 -356688 -99931 -64966 -702618 -638065 -450608 -26854 -689786 -301723 -199513 -906665 -463884 -404230 -56147 -536725 -46561 -570017 -609667 -416280 -741735 -209310 -113127 -429311 -121865 -46302 -124655 -372187 -232952 -179314 -593894 -308964 -134045 -86983 -279572 -656930 -724200 -305302 -319965 -268840 -809898 -528759 -435236 -230152 -571102 -635835 -448910 -466895 -308196 -132250 -52229 -365787 -95221 -545500 -269958 -18838 -928766 -784997 -248239 -468404 -900845 -181437 -66449 -741400 -777929 -700757 -466572 -248986 -934912 -848157 -339852 -571426 -167143 -165681 -427970 -499377 -120801 -12989 -555596 -775243 -930429 -187039 -420126 -505615 -350462 -272209 -73922 -518054 -124553 -468358 -495160 -619354 -370997 -779500 -269040 -86338 -771440 -12538 -101043 -454308 -795573 -744428 -182404 -136985 -485491 -787875 -141188 -838241 -383437 -67413 -180307 -102677 -183030 -117838 -483929 -909219 -7411 -88442 -539547 -222147 -21440 -660463 -582281 -924482 -163032 -725345 -490888 -344292 -204043 -498515 -623010 -375790 -867269 -207254 -773800 -137207 -911754 -77270 -588320 -755250 -906070 -12984 -858004 -892491 -708947 -393793 -332461 -729143 -607322 -934652 -889193 -700819 -770319 -897057 -68394 -501937 -418750 -750787 -696722 -403787 -577075 -262611 -120860 -25906 -268294 -246050 -460279 -587617 -349763 -478558 -774297 -934371 -379029 -825013 -329415 -265386 -257776 -148513 -524844 -560323 -80280 -691937 -420607 -856966 -900275 -145782 -834025 -719588 -152341 -622688 -895668 -919931 -467228 -369234 -49127 -802542 -635794 -64525 -326235 -76389 -12657 -686898 -699614 -226742 -712207 -18715 -108527 -315672 -805805 -418477 -694316 -687733 -451666 -326207 -416760 -403182 -734493 -725418 -750777 -728821 -347281 -457433 -566674 -85220 -488852 -623282 -635227 -431633 -96799 -204859 -498017 -579038 -95624 -314977 -309376 -364749 -670236 -85293 -741393 -180032 -124295 -936893 -823738 -113521 -297233 -952129 -316339 -17366 -792782 -184619 -505541 -558565 -100872 -402617 -645303 -664371 -949055 -846209 -653967 -589920 -827701 -559992 -362235 -143619 -502066 -361248 -673696 -120263 -186418 -121737 -515957 -428089 -302766 -146423 -940766 -13753 -742014 -896158 -592182 -23771 -406844 -648777 -408355 -276762 -117986 -183493 -638142 -697005 -181283 -757951 -538499 -711252 -97848 -281379 -315390 -289001 -64671 -693566 -309656 -447889 -897767 -517079 -233292 -208497 -866496 -598415 -699700 -229087 -13686 -254966 -661403 -638979 -44173 -540556 -492675 -150706 -222042 -564583 -197576 -63079 -424380 -829547 -383257 -816714 -326078 -910618 -661360 -94113 -86279 -297577 -344472 -74385 -328598 -411379 -851011 -23544 -151872 -107768 -480257 -147443 -297790 -718649 -308206 -456201 -68306 -515422 -518293 -305802 -260362 -97470 -157613 -65370 -579827 -472421 -326441 -698913 -869623 -29288 -763388 -69054 -457736 -460699 -335175 -129709 -452525 -344344 -596680 -107626 -713223 -240356 -755342 -619933 -595473 -44724 -306205 -866844 -552731 -913034 -458002 -873768 -195685 -935696 -805966 -738682 -908012 -391810 -765220 -313303 -118895 -674518 -870748 -490308 -490906 -60640 -33198 -549212 -552705 -364246 -640122 -853155 -65899 -644011 -14285 -545208 -659230 -911809 -74635 -56602 -76843 -185120 -314561 -298257 -761576 -905066 -635194 -824174 -616909 -663404 -373623 -602438 -18220 -299993 -734191 -48854 -267629 -137209 -776624 -717042 -733370 -236165 -765585 -333820 -403732 -139615 -255277 -162428 -850951 -653868 -185827 -140274 -814657 -177426 -161633 -788603 -251341 -754846 -212662 -539440 -571030 -220106 -901255 -141097 -622946 -78707 -217752 -750829 -605903 -205011 -942850 -358674 -440436 -600188 -510997 -417055 -369465 -402503 -318954 -678528 -898944 -190253 -613080 -72649 -674382 -281614 -141113 -550388 -477179 -435320 -13800 -26421 -67156 -481893 -34349 -794389 -714609 -863595 -313128 -50231 -294720 -502867 -738332 -56502 -849606 -180656 -357097 -664746 -300389 -205450 -325976 -285464 -356064 -295750 -178294 -404207 -728057 -501326 -588788 -191282 -791953 -941837 -309609 -164605 -309919 -141036 -585400 -491873 -380096 -442678 -466690 -177857 -254261 -620034 -114240 -679534 -672504 -406029 -127679 -118872 -432011 -824587 -574228 -20737 -30029 -166077 -131512 -650470 -682739 -526182 -35695 -429197 -880388 -103881 -607260 -854162 -820925 -516870 -857215 -837876 -458763 -574860 -855981 -99735 -47055 -767608 -403759 -848835 -616824 -96951 -815860 -663622 -485351 -940513 -873642 -181593 -23635 -356939 -238755 -365769 -122532 -498993 -48766 -274921 -815023 -886632 -82270 -90358 -253033 -650122 -263626 -110327 -251600 -795598 -182201 -158976 -736276 -395741 -663297 -288681 -946053 -754522 -30847 -185176 -67391 -23971 -777984 -379535 -745824 -200428 -13543 -534778 -903462 -97853 -334118 -579144 -803375 -418554 -890200 -807988 -656136 -790226 -921719 -711548 -696666 -551363 -716705 -776914 -31329 -126719 -274658 -132066 -54527 -580399 -58186 -935202 -663709 -467115 -915547 -380049 -554833 -570781 -71236 -37751 -736524 -764257 -121844 -625834 -449831 -294959 -295709 -477783 -743000 -181017 -171154 -164700 -303826 -615080 -823785 -744388 -852593 -76854 -937511 -871369 -693793 -776810 -636995 -624213 -327632 -60706 -204942 -335902 -134782 -362225 -237317 -315220 -730550 -695240 -687850 -17986 -929818 -313961 -107651 -458433 -68314 -445058 -821129 -262582 -204084 -511828 -762391 -884924 -131197 -640331 -146495 -405106 -954496 -185735 -95607 -674426 -818313 -155356 -58969 -215601 -567633 -556229 -574314 -308245 -362426 -440115 -369339 -41233 -383404 -755217 -535312 -130845 -615818 -291996 -706568 -577937 -710143 -298840 -10132 -556764 -939266 -574039 -777052 -370667 -72087 -286273 -855371 -17842 -755241 -315494 -211500 -94690 -140356 -430323 -756487 -892670 -612929 -146830 -423938 -373303 -172475 -818783 -555182 -122059 -456897 -863366 -899477 -617764 -44633 -482255 -781531 -743373 -203388 -650738 -419539 -150381 -322967 -396072 -307365 -89290 -212837 -265558 -73933 -320877 -671178 -640071 -545859 -86043 -528363 -771026 -362368 -199595 -726526 -677755 -192714 -540265 -236901 -894689 -828804 -160970 -372827 -195484 -52405 -460340 -775804 -578762 -298335 -60845 -81927 -360005 -253072 -898538 -616603 -920412 -333259 -43814 -334091 -171223 -115196 -676830 -396521 -249020 -391256 -439871 -942916 -589381 -742876 -271491 -685473 -818786 -623616 -228018 -76775 -173597 -883501 -411371 -13218 -236981 -520579 -231091 -934170 -133991 -699510 -949651 -751720 -278269 -735782 -575978 -287069 -894843 -792166 -134599 -896764 -763310 -946126 -764137 -897242 -858125 -440646 -537975 -633837 -765317 -849639 -278897 -106751 -808182 -276331 -938631 -356604 -704835 -166929 -228129 -630232 -163612 -784439 -251960 -180537 -514327 -383943 -340631 -742317 -251021 -834555 -808253 -673416 -931358 -28594 -633580 -85612 -365633 -811902 -766228 -431751 -561147 -238374 -132089 -692884 -494265 -889857 -940463 -725313 -364639 -653107 -943892 -764393 -14943 -21205 -307660 -140753 -666492 -395935 -319701 -303551 -278201 -134342 -111872 -458422 -292434 -682742 -442999 -529972 -491086 -669809 -146208 -778242 -22637 -108127 -6035 -593992 -822136 -356793 -181205 -848625 -802618 -172484 -439266 -336156 -629236 -806819 -716457 -528453 -475352 -396474 -903323 -280544 -423260 -716324 -617662 -78296 -596561 -465954 -115495 -784364 -550399 -902115 -650736 -701913 -47100 -254846 -380136 -297456 -581475 -465679 -840403 -202536 -398376 -477341 -13662 -751415 -290819 -738106 -540104 -938099 -345833 -922313 -156895 -694905 -697090 -648097 -879794 -31553 -701326 -829430 -446216 -255565 -650043 -340188 -778148 -285562 -40754 -625267 -171197 -617447 -649556 -549393 -885537 -765769 -540385 -828426 -33244 -817644 -650645 -864178 -292218 -34824 -901887 -103823 -265137 -777525 -178321 -436459 -349210 -268640 -126191 -287667 -798378 -346236 -325511 -827207 -173905 -196206 -328179 -595490 -111579 -604059 -214596 -125642 -376384 -918378 -769497 -776747 -169148 -712250 -340224 -833907 -443811 -291998 -137644 -643048 -179366 -468518 -577016 -160377 -812435 -41900 -376604 -259612 -387413 -239146 -734391 -900712 -511755 -562746 -458707 -122887 -794792 -288945 -862973 -242602 -857533 -714501 -84339 -258192 -278531 -678481 -113652 -805954 -730533 -880686 -631892 -653351 -173058 -712169 -263128 -259803 -765999 -214251 -244955 -891676 -328790 -350676 -861046 -450865 -455942 -900605 -805495 -633831 -876599 -386090 -164586 -759160 -70495 -769126 -251052 -114586 -923677 -160340 -638340 -741854 -467252 -418487 -195404 -654685 -288991 -162909 -685066 -106941 -542372 -854716 -7862 -764196 -744277 -594751 -550867 -282591 -276472 -355553 -33053 -932802 -69775 -823752 -640974 -388367 -895408 -736612 -633942 -162979 -661875 -359091 -179317 -350603 -326401 -62117 -381834 -516241 -342737 -274149 -95074 -606762 -314813 -812689 -905011 -164938 -786268 -246710 -338411 -788144 -226904 -743643 -490896 -332451 -904179 -455371 -643909 -25250 -795025 -272506 -873752 -234867 -241790 -84791 -692994 -368712 -956322 -436567 -416820 -876066 -30731 -828407 -635900 -150052 -112821 -820343 -35883 -333904 -138500 -803366 -532271 -562918 -673997 -466510 -550607 -324898 -75934 -558474 -282937 -141677 -271344 -78362 -187626 -210864 -271091 -750261 -780470 -451744 -845876 -615331 -444702 -395264 -615150 -476672 -593798 -818822 -742392 -760847 -69722 -126381 -439478 -881483 -64396 -72115 -844911 -873327 -830731 -61759 -903561 -577709 -386804 -455359 -121054 -374019 -167793 -650540 -656981 -589702 -322847 -687471 -276417 -531514 -450247 -236904 -77125 -617196 -835718 -481394 -692760 -716268 -326218 -17397 -74500 -776122 -395051 -99013 -438098 -491727 -294965 -70486 -920969 -235765 -206561 -369767 -198786 -465104 -100542 -86762 -598048 -337752 -641055 -361342 -321910 -796713 -852819 -228171 -635159 -197270 -543915 -662564 -713705 -796217 -240561 -212931 -797841 -73135 -631038 -230290 -387110 -463434 -674625 -693887 -351006 -693187 -724224 -879295 -702956 -806414 -577599 -555698 -11289 -13335 -285070 -319156 -135429 -834751 -301185 -442172 -49026 -418964 -146726 -844980 -912837 -402148 -388709 -639471 -232358 -837979 -497308 -101395 -462167 -108360 -402010 -647732 -276215 -660405 -726635 -440326 -524012 -859472 -891255 -846689 -539422 -275216 -302450 -489032 -24643 -481834 -938150 -22936 -234618 -594516 -97858 -925733 -905395 -409458 -793557 -880437 -269538 -109641 -209363 -60242 -704013 -769154 -932968 -200434 -515757 -691450 -898822 -833675 -42950 -334688 -112058 -289106 -380300 -114678 -534152 -165206 -505034 -174123 -427112 -83341 -205254 -824331 -698667 -484403 -898097 -712006 -103243 -389412 -564815 -365850 -230827 -727181 -805417 -699454 -657958 -702460 -37988 -778252 -650398 -346250 -473620 -616533 -458768 -279610 -914156 -335416 -667028 -243557 -821847 -581674 -913925 -365296 -556545 -743360 -108363 -238556 -463713 -473004 -237827 -320134 -769217 -438040 -782033 -292810 -324177 -914257 -440362 -618975 -322338 -745182 -230130 -847238 -857911 -371385 -541266 -555837 -332247 -301711 -439485 -945833 -730630 -13825 -300829 -97700 -45627 -64436 -276210 -47927 -751559 -52037 -504601 -864980 -109470 -948548 -355252 -240191 -784938 -603860 -495687 -321412 -157528 -311888 -832944 -698933 -339792 -706344 -755029 -440400 -60990 -364790 -165512 -258220 -433958 -119945 -103968 -519911 -394942 -72126 -776796 -483964 -254961 -334890 -11653 -416437 -68580 -900891 -404531 -801265 -11497 -825865 -627770 -64732 -699355 -321901 -80403 -893016 -334982 -439575 -310018 -487472 -801091 -553278 -707386 -886896 -830596 -754672 -860802 -749593 -827494 -854446 -248860 -536559 -755621 -146564 -646286 -504109 -211820 -346058 -432889 -663023 -82438 -947783 -760889 -146185 -724110 -946878 -927059 -66347 -211303 -824972 -357236 -646428 -797285 -150241 -813175 -397013 -335317 -835060 -429434 -725159 -19942 -315991 -174711 -376396 -827241 -444775 -388661 -244767 -558870 -326060 -235686 -844031 -152324 -791689 -778320 -889669 -108568 -10309 -78957 -453553 -87109 -566352 -326028 -244715 -22747 -771047 -81151 -93983 -35857 -935228 -267182 -661263 -33403 -523022 -609404 -687364 -13576 -123451 -938211 -743408 -420171 -80224 -291272 -388862 -275846 -831311 -953933 -441810 -18789 -56564 -45354 -743399 -696547 -426412 -636760 -23824 -302962 -945281 -827290 -121353 -882972 -430423 -474641 -784346 -499106 -857192 -180025 -545475 -860658 -26102 -869306 -832471 -294483 -174358 -32929 -322568 -516181 -673956 -714380 -315752 -503624 -779536 -34177 -786117 -335554 -916063 -860604 -59895 -346884 -276055 -24368 -547317 -434781 -66569 -927386 -287714 -227850 -564288 -654873 -702213 -269189 -745820 -446011 -188432 -249450 -609483 -755436 -434422 -912238 -732511 -657301 -175885 -112652 -757501 -900091 -486496 -501497 -639598 -61183 -94478 -954476 -874321 -625640 -103224 -770036 -11180 -521829 -429287 -448132 -262280 -752239 -604114 -767355 -788052 -145397 -840083 -251964 -921051 -165745 -88324 -817424 -10258 -920037 -854624 -749316 -70800 -31805 -568219 -135256 -745150 -678361 -491102 -681604 -19947 -356348 -372540 -350113 -339877 -626478 -496378 -405203 -219143 -440173 -37144 -174423 -136969 -66425 -893767 -272830 -498259 -645992 -835284 -763032 -383596 -533577 -181001 -677947 -335178 -632885 -22157 -828813 -161773 -806741 -450589 -442330 -287564 -311961 -11438 -335261 -605869 -43926 -901157 -492446 -300181 -826734 -32757 -885696 -932828 -176225 -124281 -857035 -642134 -582139 -712124 -134562 -651547 -904401 -228039 -268881 -116624 -280138 -756913 -831410 -932549 -591602 -85610 -891010 -332215 -258502 -456600 -731714 -509966 -810841 -49964 -486474 -899101 -134687 -432961 -324999 -154698 -24978 -288331 -854917 -861077 -182177 -695517 -398429 -36407 -520615 -174643 -849672 -784825 -477462 -185408 -461263 -529201 -524150 -124454 -274605 -632314 -221931 -367005 -249511 -129112 -674360 -321780 -199466 -863623 -331382 -829711 -941573 -673953 -435279 -196210 -544223 -787670 -136327 -607251 -849813 -604893 -804842 -768829 -681204 -343622 -516979 -786011 -546138 -830807 -558797 -248467 -303581 -741831 -40564 -746204 -242067 -870795 -291465 -634964 -881966 -233775 -417682 -605322 -692916 -418382 -680737 -644752 -53066 -612227 -505375 -864256 -178236 -1052 -638943 -181214 -15359 -353750 -224076 -800519 -423029 -174950 -691688 -356110 -454026 -512532 -888368 -389961 -151256 -280291 -645594 -744369 -590661 -90245 -692639 -488408 -698746 -39313 -180943 -539638 -236740 -653885 -725296 -398674 -691218 -401804 -457602 -318865 -718656 -207995 -874621 -327513 -588276 -904075 -27214 -96702 -449373 -284507 -664409 -891530 -715239 -108171 -761769 -306541 -354634 -215831 -694975 -943937 -223655 -19602 -43899 -376982 -448514 -322583 -787933 -339873 -343483 -275953 -289264 -674142 -647562 -948721 -613064 -262722 -412822 -838354 -667629 -756626 -518675 -552925 -758152 -382055 -31065 -525281 -811978 -47322 -84688 -604067 -622638 -618212 -183009 -913731 -196937 -511661 -622782 -670978 -747949 -52215 -760595 -173127 -197787 -921317 -841734 -88047 -174323 -256772 -254646 -719117 -531748 -718231 -569873 -383053 -799690 -523738 -624692 -64692 -893684 -656039 -571496 -605740 -603994 -351674 -512810 -805489 -694269 -218055 -375851 -459983 -777290 -899592 -286272 -353932 -865094 -267106 -163982 -20120 -369882 -354676 -8671 -27602 -450525 -775209 -145976 -829764 -314286 -527519 -439539 -158063 -10576 -265071 -170508 -276013 -224006 -857054 -7674 -813291 -951749 -801160 -66297 -64573 -633438 -31927 -113755 -713939 -745175 -132015 -940895 -804944 -168170 -863707 -844733 -901180 -431804 -914124 -710918 -478463 -208304 -598255 -662399 -909152 -459313 -862037 -13821 -13864 -152444 -671005 -210874 -382972 -125119 -596506 -268198 -10224 -188591 -738149 -360894 -570175 -357283 -520238 -654712 -341305 -212056 -898832 -849976 -947937 -515742 -543441 -281052 -856348 -108506 -458102 -336789 -361532 -697383 -200436 -453396 -438788 -596881 -262375 -545689 -930015 -872965 -222035 -70897 -501396 -240063 -763166 -851716 -183531 -732117 -405818 -785089 -660648 -582089 -224448 -544513 -347928 -727703 -744381 -716746 -722479 -670005 -674566 -346535 -291782 -905367 -690940 -400470 -484610 -305725 -887360 -144454 -786982 -376610 -44455 -364764 -145790 -416824 -41065 -925857 -361791 -13713 -261731 -11073 -298516 -364844 -364852 -237389 -475196 -268084 -296836 -671203 -72233 -364070 -849147 -23968 -471723 -618742 -569437 -449093 -754575 -610948 -210871 -866957 -856795 -246192 -500280 -773555 -779725 -834546 -537527 -287095 -25274 -95605 -738109 -325509 -73221 -634408 -42320 -778077 -11661 -254515 -277099 -65881 -397333 -430380 -771245 -927908 -816132 -227000 -74721 -147026 -287860 -228012 -304604 -857950 -935900 -158070 -939712 -284122 -515293 -22633 -239498 -659679 -426703 -293156 -338242 -75827 -917416 -571738 -708037 -488443 -830656 -855755 -124819 -179042 -577712 -674136 -743919 -902478 -830790 -791509 -309543 -290186 -17112 -551814 -593885 -661515 -288101 -465331 -523457 -929046 -18197 -274290 -32601 -745915 -734188 -195183 -713255 -929609 -400916 -874121 -363883 -731020 -551859 -295032 -55460 -693287 -894536 -129402 -809812 -781726 -30668 -726643 -289339 -285430 -439515 -583116 -268382 -485196 -915814 -335381 -795365 -949088 -860282 -314906 -428631 -599326 -879673 -541736 -355748 -541722 -848667 -199030 -528952 -946963 -870548 -788723 -861151 -128412 -955392 -626336 -11491 -126609 -623107 -167746 -164970 -572476 -332309 -364833 -78508 -208665 -854456 -743382 -790028 -560488 -897258 -300696 -268694 -252151 -272857 -343830 -944280 -704290 -185621 -785576 -496561 -752142 -444274 -171281 -585717 -677796 -691067 -749356 -923007 -482908 -617991 -354689 -364727 -622745 -321081 -916687 -600100 -482798 -671277 -926658 -627610 -777625 -395313 -482790 -419161 -312774 -588557 -624709 -755904 -281742 -629494 -938359 -29155 -37141 -91016 -595167 -633260 -292768 -502649 -387537 -819537 -597443 -69547 -429390 -599962 -95147 -126119 -461013 -590460 -37456 -339369 -134365 -88411 -432555 -388956 -329191 -86410 -6189 -786883 -65824 -388813 -821883 -570996 -956713 -755072 -570329 -704166 -357597 -369743 -603923 -624193 -608249 -566123 -886696 -827234 -770107 -438111 -693633 -24606 -328576 -31802 -706325 -674233 -674460 -70570 -852140 -155587 -431723 -822283 -25110 -674175 -221389 -902911 -601275 -677382 -270699 -891057 -791840 -64984 -437329 -671341 -181068 -570083 -328389 -268295 -285522 -769535 -332251 -330346 -516942 -18037 -827545 -48815 -526617 -696919 -222055 -199537 -663628 -724002 -931977 -814114 -324573 -75360 -421498 -650885 -189066 -308322 -918277 -850933 -742323 -365957 -523992 -389882 -546919 -916520 -779137 -783825 -144046 -652267 -684108 -64342 -484982 -210804 -844092 -228835 -57897 -127886 -391357 -335338 -696581 -424443 -894819 -17561 -182772 -44713 -701188 -771111 -69651 -310347 -937996 -26363 -292850 -303633 -81682 -240171 -763693 -939799 -661422 -824634 -327761 -78588 -810337 -261997 -926206 -422066 -157500 -436444 -368679 -220285 -693886 -87685 -321114 -480143 -33919 -53152 -784330 -252292 -954004 -215838 -49691 -646485 -868610 -422608 -405959 -633638 -59904 -335236 -67762 -97832 -350222 -85234 -384088 -323490 -137123 -574695 -542870 -24905 -364723 -385119 -755921 -810067 -276108 -242888 -315683 -298715 -501660 -863751 -522876 -920458 -575509 -898468 -77271 -587547 -534640 -742745 -676449 -464043 -458649 -237227 -181634 -54747 -381838 -334089 -238971 -742648 -85828 -879530 -155638 -423588 -588680 -158535 -756355 -604117 -256696 -381478 -474914 -911769 -423265 -643783 -741412 -335555 -489492 -49936 -632148 -635566 -667348 -763956 -947887 -898434 -772175 -145879 -833632 -763627 -573880 -788455 -81822 -769669 -845806 -199143 -210989 -102106 -899559 -46449 -949608 -773262 -332358 -627351 -248978 -72071 -702279 -821862 -477149 -124615 -649870 -11512 -767881 -283004 -649737 -268049 -104975 -402075 -624506 -21922 -879978 -870853 -938079 -325090 -150568 -176723 -692125 -13388 -844565 -913668 -225021 -935738 -581510 -9757 -177364 -179124 -210879 -934144 -856354 -261827 -386402 -562295 -880526 -336324 -776877 -15869 -273198 -206465 -876835 -550749 -515938 -751461 -899082 -842139 -910904 -279531 -927034 -306691 -348572 -503192 -756755 -368620 -768572 -528708 -42025 -386366 -136917 -747612 -745704 -372517 -495907 -232287 -236387 -862154 -433685 -517707 -22284 -321897 -269331 -873022 -183301 -190758 -155025 -817560 -189232 -810113 -100431 -535904 -425609 -40878 -871089 -21752 -11807 -809764 -242709 -839458 -93829 -190993 -619444 -523922 -824919 -922768 -779683 -281225 -232141 -753547 -761598 -343538 -593979 -315328 -424221 -9924 -571722 -701465 -350972 -165011 -779629 -864387 -717711 -230100 -334792 -298907 -30174 -102319 -516729 -327932 -837713 -831303 -116056 -834312 -9585 -954579 -888817 -207643 -278283 -397804 -75393 -72155 -613003 -10324 -357066 -315784 -735206 -206034 -17062 -654068 -64666 -504458 -42441 -165946 -770237 -131730 -771484 -113518 -626669 -350071 -623032 -883418 -749611 -391303 -96789 -362207 -772561 -763668 -426183 -345886 -144436 -255208 -636181 -422751 -950810 -476340 -167039 -222678 -701530 -301622 -330769 -523250 -420857 -543395 -863562 -873581 -810701 -920234 -718755 -636953 -925545 -312378 -850100 -600550 -41002 -348886 -699760 -680522 -795463 -359811 -759588 -857447 -11197 -665036 -771355 -413364 -766292 -230640 -142365 -150508 -730840 -65668 -49982 -177335 -831216 -625835 -314808 -361193 -576104 -714209 -623552 -871552 -281739 -86027 -745593 -316617 -218800 -298711 -330782 -385347 -903878 -726068 -699596 -16507 -782170 -405831 -559753 -835454 -894753 -597042 -953777 -638816 -388578 -235311 -725442 -175584 -431346 -568935 -422656 -763885 -390470 -579344 -90283 -845010 -385033 -887282 -51994 -136968 -705023 -880259 -475098 -212382 -636605 -833909 -951162 -51720 -166810 -579856 -462049 -322773 -661404 -16663 -102444 -332483 -754457 -855880 -191019 -331997 -126839 -594024 -298429 -587238 -849479 -328199 -798000 -740984 -1468 -69141 -205082 -747613 -179816 -395330 -324450 -158623 -775787 -689702 -236132 -105797 -437416 -331590 -766468 -444761 -238446 -564272 -394192 -639832 -622228 -836060 -283648 -459300 -674311 -368235 -854207 -476554 -755840 -949691 -659528 -315338 -125900 -251166 -450682 -461963 -82161 -911371 -898658 -570225 -570318 -569334 -803364 -8253 -677907 -173413 -1327 -720018 -862947 -135849 -810971 -803493 -197575 -464080 -173648 -450019 -451190 -288198 -760058 -693280 -462700 -739791 -635340 -284882 -674366 -824633 -537727 -365059 -277507 -744937 -627976 -68731 -301673 -266570 -773838 -678025 -838451 -552757 -745416 -696217 -450226 -896023 -379581 -567655 -734891 -691562 -913799 -326529 -92075 -134270 -94935 -778557 -358363 -932903 -656974 -761445 -823779 -86599 -766319 -910022 -236320 -11454 -447455 -652321 -328879 -642779 -204105 -319999 -482781 -829605 -237115 -238931 -778349 -196710 -178981 -715600 -499311 -140234 -457240 -200697 -244626 -771530 -776322 -835078 -274636 -676646 -674230 -165929 -454530 -486064 -879811 -364932 -686774 -192209 -86866 -236441 -742045 -235684 -767829 -461304 -802333 -266773 -45507 -499204 -934217 -342756 -632514 -913960 -795391 -374758 -126749 -912663 -617870 -144497 -673097 -203627 -815977 -751995 -764392 -775435 -943971 -159953 -600022 -366155 -495864 -357404 -820513 -230517 -829047 -444239 -172891 -38640 -192955 -833508 -922396 -744255 -838363 -177261 -280475 -605605 -70307 -658567 -627911 -10042 -864791 -173471 -527154 -848276 -53013 -338809 -949717 -34244 -667541 -672655 -877100 -679656 -396749 -606107 -403169 -82300 -923199 -255158 -911542 -406605 -477446 -174971 -172316 -344322 -162952 -673039 -442665 -132137 -755031 -282696 -491494 -429344 -588279 -165934 -746907 -910407 -831268 -467167 -103991 -832279 -812581 -745946 -472812 -898178 -610720 -483902 -830350 -559548 -13275 -680723 -699618 -291141 -204551 -127999 -745914 -879270 -855671 -840623 -96538 -934252 -148734 -162539 -118192 -89270 -556399 -570369 -680383 -338141 -951613 -914320 -763415 -52105 -880510 -427052 -908340 -146521 -152292 -584342 -397813 -76932 -33311 -715375 -373709 -716469 -879640 -691082 -594769 -946916 -570332 -518289 -311031 -901890 -501030 -423257 -324789 -836668 -154817 -17434 -113672 -315723 -390479 -407571 -561221 -664445 -448671 -854357 -53666 -878971 -284981 -540785 -650661 -701283 -396254 -92999 -318577 -86607 -693844 -726410 -343733 -122983 -810512 -518454 -39113 -704454 -263284 -406044 -348505 -244465 -209598 -196166 -420444 -863888 -569913 -253579 -354212 -380741 -875343 -467061 -850170 -742037 -936887 -447567 -869701 -723771 -192832 -326487 -625754 -12577 -726407 -219962 -251931 -47384 -173257 -542201 -114248 -193954 -42855 -384450 -278081 -295882 -795796 -667145 -271166 -634862 -185182 -749385 -884458 -593317 -685774 -64376 -879887 -244172 -535515 -147509 -22993 -268142 -349735 -805045 -426769 -444272 -657077 -278678 -720148 -907698 -921336 -254282 -89184 -331974 -926269 -287931 -799770 -856926 -597980 -158585 -174689 -138619 -34680 -70320 -66950 -527681 -849638 -142604 -113917 -14942 -215027 -429254 -476315 -25108 -903997 -847136 -314678 -754327 -225248 -802713 -927062 -229751 -441856 -518223 -467274 -247962 -402256 -557278 -543491 -276264 -225597 -482330 -783560 -681577 -731309 -819688 -255252 -166737 -365228 -683250 -55898 -406016 -818480 -412091 -236289 -851563 -253105 -704207 -225178 -605630 -738593 -315595 -694343 -660129 -48177 -663733 -439630 -664784 -767389 -450602 -624331 -950077 -298543 -342248 -593923 -12331 -458659 -199446 -263245 -148631 -898001 -198815 -40404 -480278 -206152 -661424 -938488 -326178 -637413 -439819 -398608 -812884 -950754 -256841 -919312 -140239 -309654 -49422 -274384 -861155 -295039 -244913 -371625 -11369 -710289 -797279 -625785 -799297 -337982 -291172 -616854 -703833 -587789 -715412 -693497 -892356 -694780 -516405 -334076 -669548 -935912 -634682 -344497 -395357 -344509 -674265 -570105 -929058 -852716 -258623 -677885 -772309 -634141 -93375 -528783 -223742 -235908 -693848 -300955 -542854 -175448 -497473 -902697 -161361 -242946 -45208 -576573 -573874 -239234 -301767 -637894 -30557 -633378 -766934 -39204 -348584 -927404 -125823 -129380 -476736 -336923 -279201 -139220 -474369 -251689 -196438 -294841 -120713 -166719 -790266 -65588 -797451 -282032 -637538 -163950 -803022 -18942 -171291 -244247 -12272 -229533 -569396 -380005 -85907 -215710 -911972 -454181 -247649 -275437 -75756 -880101 -129482 -874097 -334552 -741418 -116862 -909237 -670763 -795369 -581446 -339609 -177390 -944016 -42610 -39082 -434706 -153261 -214180 -444472 -666728 -45595 -842315 -81942 -943915 -765599 -656291 -797746 -785832 -436878 -288337 -556617 -14988 -356252 -830681 -325124 -129561 -151034 -505715 -510065 -811399 -356004 -593532 -715555 -669733 -327261 -521919 -294603 -684292 -119453 -326325 -917236 -857663 -110265 -927229 -144455 -824505 -545273 -225955 -860466 -39528 -158716 -217433 -868692 -443255 -84811 -910203 -358806 -932354 -629522 -473582 -68877 -152421 -956611 -30051 -772031 -314506 -489243 -229325 -707438 -919314 -25848 -186015 -472570 -522972 -913817 -44821 -315010 -662239 -689706 -633100 -94842 -48649 -659494 -639914 -440401 -211709 -260724 -724080 -124125 -753064 -41216 -388987 -596493 -283279 -257125 -292647 -778491 -98952 -133564 -545233 -437895 -244395 -324937 -36193 -778534 -600785 -7818 -600464 -268686 -37230 -237368 -461693 -715103 -324969 -55085 -242849 -46651 -491128 -818337 -361691 -905393 -893891 -951916 -742723 -421071 -764233 -287186 -204603 -153299 -458660 -546474 -650881 -420713 -240457 -774367 -537804 -711442 -32909 -364668 -239510 -887286 -30594 -862942 -769016 -18607 -361913 -616885 -34015 -696866 -677977 -577312 -858878 -146885 -465053 -612915 -897175 -169734 -276027 -59200 -768962 -37399 -287744 -11560 -137077 -635713 -106333 -168294 -821431 -78841 -940864 -163274 -287924 -198481 -711240 -398830 -894798 -803444 -322890 -891279 -560256 -90545 -566983 -461599 -767029 -368286 -12376 -84279 -884431 -652573 -35809 -22935 -136884 -111504 -188901 -937186 -650848 -315024 -743375 -940069 -675077 -887533 -735274 -114806 -309817 -248232 -704221 -568568 -271116 -369675 -273919 -340426 -236203 -305684 -258128 -338729 -395202 -677948 -892474 -736654 -738274 -631876 -280489 -342945 -600377 -785679 -477772 -419117 -364696 -476685 -80005 -274791 -840658 -696485 -13460 -482745 -75437 -806756 -570415 -123824 -261112 -704328 -778506 -328592 -838169 -951398 -803403 -848539 -863826 -524083 -140800 -648352 -858129 -356587 -38046 -504434 -446229 -133213 -489787 -338738 -72095 -97943 -482433 -598225 -536438 -879331 -11187 -479218 -913383 -543596 -80095 -362115 -130579 -106187 -724215 -628605 -161214 -428319 -462499 -900050 -32518 -427189 -356280 -295769 -388656 -14750 -902792 -933342 -722265 -860399 -116348 -428093 -432175 -316627 -195067 -682245 -36211 -630103 -952410 -237672 -471103 -955909 -70186 -664295 -364718 -234302 -940837 -209799 -150522 -314751 -599868 -86037 -784417 -475068 -260509 -258245 -618541 -222160 -428565 -600588 -762646 -76938 -278869 -297465 -633618 -280448 -590742 -745095 -199890 -830735 -695470 -196268 -297855 -818703 -737652 -769190 -350670 -937162 -860916 -783120 -314640 -192802 -357020 -351020 -802407 -14838 -677389 -10989 -848725 -316678 -747588 -542198 -424457 -328286 -638881 -324344 -569704 -941626 -730899 -306950 -703858 -437663 -332249 -465683 -331964 -313350 -571839 -840224 -37359 -650597 -279094 -696929 -120521 -858032 -640783 -760285 -93685 -316094 -717724 -405703 -844241 -278254 -118373 -226908 -414873 -162398 -951935 -41309 -310400 -281771 -483412 -251565 -22685 -891522 -891278 -236864 -239163 -458049 -358366 -312258 -795650 -264132 -237329 -446433 -195940 -230234 -287001 -775135 -426119 -582248 -377306 -682954 -63035 -84513 -103240 -831462 -368213 -282053 -397435 -3387 -952405 -66077 -347280 -684420 -673607 -810409 -134519 -240601 -189527 -908194 -432367 -571458 -458929 -693724 -127505 -887641 -770185 -160757 -512933 -238725 -937889 -324644 -892973 -69939 -263965 -42174 -295764 -296324 -221316 -601128 -904169 -918950 -115958 -121557 -590816 -39408 -743346 -215020 -809888 -804838 -486627 -816060 -180257 -107383 -951222 -805239 -315750 -498879 -55005 -11733 -30745 -817770 -467194 -256734 -525632 -516402 -892310 -295812 -865754 -539385 -9154 -913967 -209423 -174815 -263716 -281185 -257902 -172318 -491051 -255871 -273810 -842782 -244283 -64492 -265068 -181659 -897869 -432007 -598051 -275472 -896365 -737235 -409 -719507 -764258 -786009 -903099 -935776 -237248 -597934 -181010 -303215 -807868 -343066 -408110 -24372 -355849 -424188 -878524 -914159 -797399 -362338 -499004 -563154 -273102 -165365 -199991 -663463 -357210 -593907 -199408 -453194 -289984 -581883 -365706 -298648 -287168 -331092 -270624 -880492 -735985 -419991 -459794 -692687 -424213 -57040 -546719 -957462 -23031 -334424 -554885 -715255 -490270 -533780 -778068 -694416 -37346 -286318 -481374 -875647 -840417 -594002 -12121 -559234 -775713 -812592 -674368 -282003 -478351 -835235 -163078 -755401 -464179 -913761 -678196 -577623 -235869 -914669 -475093 -32833 -706669 -50198 -623792 -644451 -732724 -229379 -278072 -206041 -449291 -934162 -442427 -948833 -466241 -745958 -607413 -208961 -904190 -911846 -40985 -435221 -345216 -755936 -403995 -232289 -745410 -756323 -593813 -426037 -405420 -289114 -280784 -79760 -699639 -321758 -447949 -538251 -206341 -504685 -116844 -950937 -240363 -431905 -94075 -646328 -776879 -316902 -17650 -742138 -254955 -524520 -818665 -22283 -911352 -772087 -509836 -887054 -671322 -761522 -501399 -894765 -424988 -945051 -156397 -610411 -696289 -360006 -616580 -870796 -19883 -755574 -801176 -725576 -787682 -581199 -40662 -935556 -391421 -690772 -382638 -907880 -781394 -425816 -879590 -246273 -31996 -924680 -513810 -135002 -938191 -621027 -65885 -599638 -723736 -578798 -10049 -11260 -821328 -807137 -723208 -957011 -845066 -12660 -287004 -515871 -694028 -314893 -227965 -720931 -584394 -93153 -102973 -512016 -195436 -836139 -849933 -840007 -635617 -940999 -386764 -46647 -13708 -792988 -424244 -637024 -315036 -648355 -138408 -843955 -843160 -198966 -239535 -43312 -176178 -332787 -560528 -368977 -103156 -778210 -65630 -143446 -308174 -212617 -671618 -173733 -904926 -350294 -215590 -786264 -356843 -312714 -275014 -448756 -774992 -806771 -853592 -163572 -505383 -438086 -236050 -51818 -328726 -185969 -878798 -446335 -323175 -524973 -204073 -103206 -276525 -403999 -773161 -341347 -382262 -521973 -650640 -604126 -239533 -792928 -45431 -629969 -253900 -761563 -227200 -469054 -898545 -419104 -236910 -880424 -575469 -144425 -805456 -591985 -288820 -212639 -503223 -850181 -837143 -790938 -151760 -897952 -790661 -832617 -619055 -951591 -751188 -916991 -871370 -153179 -334312 -462009 -911909 -865551 -661288 -813370 -817732 -890325 -143038 -236269 -280908 -123062 -203753 -774445 -809739 -766475 -950495 -349439 -280860 -664205 -778535 -811342 -117288 -192901 -516299 -175303 -403834 -440527 -44909 -775646 -763461 -608735 -247329 -395077 -239503 -196329 -437348 -349543 -126163 -897096 -755138 -777123 -907318 -430844 -635699 -441663 -232599 -939583 -366509 -66379 -389022 -916299 -97835 -914806 -713012 -97984 -814204 -779581 -475203 -51663 -682502 -230271 -291258 -749285 -800894 -950849 -307726 -847039 -427191 -891131 -134626 -49855 -810906 -671805 -105746 -237893 -3827 -648952 -13500 -279809 -329244 -904250 -166800 -336803 -923147 -713521 -741433 -848001 -67390 -354583 -230914 -395211 -132742 -124753 -63409 -181621 -80390 -55098 -275288 -952940 -700866 -726938 -489625 -866800 -275973 -683149 -596187 -10290 -766759 -415221 -59984 -87095 -271089 -691307 -873861 -429224 -433199 -404246 -175368 -786834 -552945 -607178 -181476 -255460 -931580 -747266 -772192 -422600 -394520 -440114 -434524 -934509 -9913 -940456 -808375 -41278 -609943 -150534 -46325 -147538 -889279 -225945 -874262 -908107 -325406 -618921 -845057 -771824 -764236 -851136 -167534 -183314 -719042 -179762 -949401 -215961 -237396 -746001 -126813 -566873 -832957 -78064 -126343 -440491 -23873 -372479 -830670 -770692 -821747 -121493 -364427 -295875 -810022 -103004 -474262 -823036 -337496 -358144 -301339 -770412 -18765 -346166 -316878 -684176 -365582 -324703 -260568 -730998 -445686 -916965 -948313 -165739 -515079 -332462 -692662 -103577 -832359 -396754 -75603 -400928 -760287 -160289 -952092 -483320 -843106 -479104 -630125 -184160 -367412 -173738 -204146 -955920 -700199 -759859 -51656 -587430 -387729 -480564 -236026 -539348 -132921 -546661 -59270 -744124 -75903 -449372 -150942 -927000 -753074 -33928 -102246 -422549 -339386 -279324 -278373 -526971 -96688 -768517 -378487 -185645 -719998 -186532 -249133 -61109 -817089 -119959 -224516 -430005 -527421 -936638 -282562 -267686 -666975 -903446 -659487 -362711 -256353 -409990 -528995 -439548 -64609 -315812 -711293 -944001 -346519 -659394 -7443 -178858 -58391 -90580 -626101 -129344 -850073 -665001 -421033 -644336 -446726 -598503 -703414 -945121 -92720 -318588 -405315 -686440 -851433 -160371 -65849 -668517 -408169 -634988 -633290 -34982 -103984 -734362 -30741 -199048 -865173 -18084 -886554 -830248 -698443 -843127 -265533 -391190 -413934 -913827 -849538 -841040 -261079 -792786 -151490 -678075 -123223 -374774 -714856 -817771 -711954 -771254 -698661 -418653 -833794 -186276 -601731 -228254 -707075 -669567 -512771 -49322 -356533 -41089 -735937 -881670 -300873 -885913 -428726 -459645 -706818 -764591 -14643 -774365 -346845 -388650 -839636 -397940 -275946 -620311 -886831 -918861 -313224 -357019 -749334 -409834 -528432 -771952 -368709 -446706 -462153 -632040 -912878 -392483 -355582 -10574 -859345 -30408 -456979 -764402 -467113 -633316 -271039 -482836 -609719 -527655 -695439 -10658 -324784 -167207 -802617 -237075 -363720 -638164 -866508 -757891 -125951 -759611 -430145 -809667 -260991 -769589 -20723 -680639 -334759 -378878 -635031 -150856 -500 -904366 -342295 -13005 -488344 -27710 -333860 -12126 -56655 -362375 -287701 -437954 -48165 -103084 -416901 -365108 -147582 -711436 -224816 -853149 -949440 -266199 -137164 -4041 -779732 -332202 -695830 -777068 -163651 -316814 -516584 -770817 -673735 -857502 -75519 -736422 -681772 -706354 -712851 -13414 -954664 -181431 -861544 -483677 -547610 -633751 -717248 -282122 -653718 -186139 -245008 -650634 -779333 -668181 -233360 -664924 -485623 -40478 -778094 -639845 -950998 -594202 -474543 -774327 -439850 -684031 -3267 -24456 -272452 -736702 -772654 -52764 -121071 -85314 -609895 -46089 -564469 -590835 -273222 -845670 -623697 -126809 -647304 -731128 -443238 -690494 -86698 -869993 -839513 -917117 -686936 -735555 -192505 -96903 -32901 -146440 -113465 -51567 -123892 -480346 -108992 -345408 -666004 -545949 -285232 -229970 -650353 -66552 -126448 -433172 -951575 -167276 -777952 -427024 -571270 -934069 -743297 -259504 -677484 -113685 -437719 -619309 -461367 -777499 -944747 -132694 -412866 -693698 -598022 -244880 -564411 -230670 -669322 -297364 -149596 -926239 -703554 -485294 -171236 -504970 -830979 -735719 -443667 -657044 -658558 -287519 -109324 -651412 -188101 -22313 -633792 -528871 -467075 -516396 -633685 -236465 -425320 -436587 -126545 -206221 -83723 -608121 -570696 -37011 -449965 -703692 -30667 -310380 -58512 -433557 -575723 -287925 -152089 -354331 -429416 -21490 -670971 -871582 -801489 -953113 -848563 -71482 -674488 -244786 -166924 -831643 -863029 -778046 -284857 -494483 -874923 -64741 -747428 -311851 -196199 -863329 -418415 -14863 -257690 -12012 -460054 -366178 -150733 -301659 -925212 -555899 -374193 -135428 -328212 -95228 -182744 -490973 -402083 -269526 -667228 -650150 -10110 -333447 -565869 -239607 -849628 -500857 -446033 -259632 -168280 -121228 -862470 -523814 -772566 -865190 -738664 -415095 -103761 -10362 -422714 -52092 -920866 -276479 -294338 -678251 -640435 -277497 -342935 -280963 -756765 -863821 -427029 -399450 -420743 -294172 -34137 -365309 -18206 -864006 -83339 -631526 -412799 -55842 -78810 -634703 -46017 -465676 -662133 -81291 -16519 -111691 -282883 -806739 -145890 -331770 -808048 -150525 -436944 -154105 -244064 -141811 -698890 -676090 -787483 -19662 -828236 -851427 -779102 -927552 -811586 -796866 -31120 -737643 -245186 -360736 -195053 -682537 -391512 -714482 -931705 -905281 -310572 -55081 -353240 -793621 -827592 -324865 -758024 -129352 -956637 -794396 -639603 -882540 -392651 -586496 -247482 -432924 -357078 -846272 -353325 -719954 -345697 -807189 -97702 -800623 -223958 -718684 -888142 -276020 -505595 -213869 -207836 -188990 -231149 -40313 -770234 -424688 -89044 -880274 -609477 -245161 -367622 -420177 -717024 -696564 -763879 -929918 -793874 -388320 -725321 -445522 -56654 -401135 -339283 -806591 -451520 -699608 -257856 -165969 -260548 -652251 -104134 -408761 -685302 -939510 -268878 -255739 -256750 -523086 -35904 -904185 -500247 -193101 -931010 -506168 -858432 -12454 -623322 -173907 -906563 -118112 -232478 -878491 -488743 -945924 -208484 -874084 -129792 -287753 -755946 -271643 -14946 -263598 -80147 -733895 -10117 -38245 -668652 -897237 -284661 -891832 -466905 -563941 -792239 -11720 -12823 -604687 -94595 -103597 -325092 -243149 -756087 -204432 -85678 -162020 -693791 -380259 -589743 -126245 -635327 -223738 -22896 -603877 -693278 -485382 -850545 -673235 -664131 -8242 -87475 -387371 -765082 -844736 -81548 -933014 -696939 -702134 -67483 -208292 -463606 -84928 -135246 -452929 -744383 -95694 -637385 -702067 -179337 -449146 -628010 -695917 -366914 -768830 -15163 -445781 -32989 -281732 -755358 -31125 -236654 -477494 -11518 -134572 -680600 -937544 -97560 -178367 -746013 -464899 -50085 -696688 -88032 -64526 -769240 -365968 -257859 -475714 -875446 -9884 -914209 -378720 -60831 -476416 -734788 -455077 -791522 -733641 -335151 -918734 -569894 -111765 -162415 -281057 -350581 -748004 -344368 -19175 -263590 -56699 -202404 -371022 -911078 -324556 -335362 -897267 -472642 -278881 -731831 -695754 -701295 -568571 -930266 -80898 -900134 -625693 -161122 -602759 -555576 -41345 -786585 -884904 -315474 -269186 -610929 -21885 -323746 -384451 -593481 -673048 -162459 -24883 -605792 -65895 -206534 -693890 -864253 -638616 -753612 -137040 -591730 -559175 -850261 -368420 -314938 -195163 -515653 -764020 -110455 -247313 -52398 -91804 -954456 -846199 -127855 -333643 -571268 -892923 -955579 -438019 -243705 -685237 -664882 -125957 -733646 -703455 -275339 -674008 -713637 -247189 -755585 -534421 -123092 -94615 -899507 -102774 -952156 -835568 -18490 -284699 -548010 -443000 -903948 -616760 -366031 -67588 -793739 -55779 -13726 -544553 -125193 -166742 -282998 -218831 -433421 -803126 -78335 -18368 -934233 -65321 -236993 -676732 -128849 -618238 -511731 -871304 -357232 -927196 -940970 -741682 -834248 -822598 -764396 -926678 -633149 -403124 -778438 -466935 -721775 -24274 -49283 -827312 -492652 -916953 -475900 -238879 -112486 -332103 -840088 -805487 -955646 -162788 -373863 -39245 -696856 -324233 -727152 -793618 -472074 -457036 -485108 -471346 -899062 -944356 -254983 -819614 -176030 -115344 -611784 -417259 -9414 -851322 -418874 -935523 -790031 -625510 -126051 -17502 -691360 -702908 -307929 -167593 -368259 -453077 -213365 -812032 -712106 -762029 -387452 -30085 -707450 -277388 -482523 -10507 -356273 -123756 -278384 -846101 -105996 -17566 -349341 -326422 -328373 -149462 -106334 -482880 -627147 -638493 -156401 -104795 -17406 -38690 -442022 -703458 -826207 -714313 -570818 -45162 -561885 -806257 -380039 -273242 -767867 -699706 -121963 -742930 -703557 -116752 -437815 -124998 -706747 -438524 -935138 -72166 -154893 -137148 -926909 -227356 -161971 -18940 -64897 -323172 -906607 -756604 -710595 -99416 -372911 -625091 -178632 -7403 -228644 -400240 -875870 -773098 -664268 -330613 -463170 -382734 -744421 -754633 -276319 -471129 -646440 -331514 -594004 -114819 -75341 -707309 -279410 -652967 -68396 -136593 -49194 -799290 -847651 -409591 -747587 -651139 -298723 -772189 -391089 -350366 -382988 -295092 -763458 -879197 -101658 -367283 -952496 -289390 -717001 -335263 -340782 -292767 -883380 -502997 -865543 -848186 -248411 -764367 -190102 -848831 -212815 -943489 -777030 -848551 -830969 -276314 -155255 -879431 -701145 -580822 -802067 -947800 -349346 -703434 -51689 -707177 -309611 -534479 -37290 -751616 -593715 -147544 -339672 -6541 -435582 -784209 -48584 -178843 -688061 -695986 -682720 -443809 -139883 -951107 -426072 -672786 -148249 -468287 -25428 -787000 -236562 -114932 -793667 -699595 -831789 -296993 -639833 -244228 -339608 -70946 -402196 -784919 -599381 -364902 -72138 -431925 -421109 -435878 -799244 -648114 -894306 -134201 -252178 -264036 -906792 -955605 -236294 -926666 -94083 -906885 -327853 -655778 -20742 -430450 -835371 -598276 -930657 -255443 -22087 -606713 -828509 -446438 -103065 -231102 -276601 -920091 -325108 -664169 -41177 -666246 -560073 -652968 -165033 -411501 -750066 -281270 -432099 -321754 -598254 -350621 -316588 -284672 -31784 -320090 -45163 -426746 -153890 -763212 -120904 -851018 -917120 -613073 -235480 -147597 -161320 -253021 -555308 -861181 -443555 -79297 -252553 -478869 -211895 -64731 -502496 -471924 -84565 -828141 -12386 -809652 -571777 -800603 -41831 -638708 -406231 -498964 -832692 -878855 -245453 -70718 -660649 -887347 -374011 -379680 -101291 -386702 -240898 -756311 -106712 -360210 -940020 -754321 -843297 -297063 -72253 -49814 -312768 -16596 -530736 -762014 -481778 -929215 -935806 -365143 -415115 -648900 -164622 -674627 -242192 -928199 -816821 -34214 -850672 -238804 -156271 -53054 -44831 -345786 -529317 -928331 -639978 -360395 -158114 -129414 -543132 -894649 -678212 -810739 -591623 -290324 -439634 -139949 -129297 -930413 -893051 -35147 -805392 -492459 -838407 -356164 -304113 -228068 -432063 -796584 -753815 -738658 -298610 -556219 -420520 -87976 -163981 -800982 -158465 -706965 -153566 -344003 -435920 -212813 -577256 -210807 -316688 -237288 -535540 -129021 -545782 -708701 -162862 -13120 -781956 -105929 -542818 -205675 -86401 -50798 -643292 -692661 -57935 -892022 -379681 -630382 -544295 -909385 -165210 -52454 -470914 -667196 -192719 -375882 -29387 -693484 -754474 -597558 -946946 -626674 -854136 -712313 -724156 -817839 -881860 -183677 -308508 -480356 -134077 -129662 -350021 -644577 -753913 -372390 -756947 -43848 -840003 -426378 -828673 -55940 -181701 -826237 -894768 -715430 -791835 -90359 -336907 -930496 -9684 -892128 -26442 -390946 -11777 -53444 -13024 -897920 -383994 -567346 -855617 -648752 -265264 -752554 -916843 -871856 -250224 -481883 -400417 -81956 -778156 -924480 -810608 -258178 -761322 -178911 -175047 -204943 -493256 -279595 -101854 -461559 -468336 -251883 -577258 -624840 -684276 -296205 -555543 -10332 -238784 -638800 -390886 -953177 -933073 -891703 -226178 -357578 -650099 -86603 -495587 -268062 -156480 -405162 -739866 -311661 -421099 -465024 -850066 -797933 -806611 -740751 -249361 -14995 -315066 -674499 -767481 -911911 -318991 -622236 -449082 -443391 -151395 -770567 -165478 -262923 -356655 -55629 -896388 -66786 -835087 -68361 -496129 -948136 -41378 -342741 -873135 -873640 -94905 -468507 -888120 -332254 -400889 -349299 -546851 -667296 -291846 -757021 -45475 -817237 -916354 -288570 -43410 -99334 -863640 -74314 -505874 -12235 -859697 -85783 -32036 -181625 -418191 -904182 -341755 -764103 -770783 -348382 -235432 -839257 -659257 -957587 -791581 -626319 -146906 -649931 -200728 -817910 -165342 -838201 -932781 -942838 -1341 -20334 -432637 -588179 -10259 -117967 -667183 -902194 -426949 -231298 -51885 -358613 -483101 -117206 -706435 -480729 -113168 -45101 -364721 -485104 -936652 -480456 -607258 -440415 -903424 -72822 -155775 -855167 -664150 -284703 -339878 -562574 -231092 -314563 -944156 -742959 -927379 -308221 -650777 -98116 -660597 -280521 -669450 -639435 -412957 -114050 -690713 -270179 -245025 -571990 -373643 -333777 -433688 -803326 -956049 -295872 -770288 -486804 -256311 -138835 -117658 -173000 -467175 -623277 -588967 -375891 -945926 -5594 -567939 -366133 -483319 -900639 -947092 -950774 -180283 -942918 -543924 -596823 -898428 -389713 -458624 -538964 -922481 -135181 -199677 -114951 -36635 -605017 -702994 -364470 -63802 -418764 -126651 -400100 -146740 -133037 -78785 -705014 -208079 -419993 -249315 -862949 -950811 -757578 -543152 -164949 -533193 -900880 -544827 -298502 -240533 -401312 -651766 -411270 -10146 -535220 -896892 -403409 -895152 -594029 -256819 -245495 -100801 -79087 -598753 -504937 -656011 -704375 -808579 -828199 -442102 -15824 -802364 -836812 -674268 -13487 -490874 -861073 -58135 -780353 -865474 -327942 -821686 -328218 -569234 -14936 -438107 -65940 -778966 -323178 -824863 -66259 -385287 -673141 -777458 -703169 -766854 -360211 -403389 -673144 -220374 -316876 -687802 -597407 -50548 -638932 -45531 -263889 -836723 -584249 -40796 -413129 -901440 -314478 -413776 -102521 -60595 -654056 -281906 -722216 -334579 -195724 -919962 -394347 -566457 -263529 -155642 -819411 -934165 -947569 -614966 -43078 -812879 -107604 -177954 -400673 -687839 -670042 -282804 -898412 -770435 -482015 -847620 -774253 -674173 -322579 -431366 -314439 -27611 -439319 -570128 -104631 -303584 -316313 -210740 -482287 -460207 -682026 -122851 -625567 -97802 -108399 -343673 -31399 -368124 -811575 -763012 -243728 -280493 -579266 -183189 -340653 -817730 -836592 -474288 -775539 -137210 -608731 -865059 -216705 -69642 -220991 -350196 -573571 -852966 -66009 -678127 -476839 -817917 -633587 -320028 -932176 -26835 -796234 -360802 -196355 -307780 -13194 -429380 -331086 -108937 -523756 -662356 -804435 -175558 -764504 -226368 -449968 -267930 -560571 -362365 -77354 -642567 -301696 -197786 -21914 -398415 -54736 -8161 -224067 -837776 -711218 -428131 -35858 -929000 -181544 -458180 -45286 -875936 -51642 -378879 -289976 -74293 -171809 -332123 -84752 -134548 -749061 -276363 -109386 -49827 -759598 -633168 -542608 -93865 -556166 -35003 -378691 -239260 -850702 -108053 -88341 -663912 -892402 -330142 -614990 -711728 -643772 -331521 -293153 -903472 -246813 -378950 -72402 -848008 -322504 -273254 -768667 -821338 -227604 -460145 -933111 -229514 -132630 -635319 -560372 -14520 -635578 -535618 -896253 -808212 -697022 -583200 -937354 -271361 -880353 -817391 -474189 -14901 -286195 -894175 -932768 -523651 -927218 -638312 -595991 -147302 -390077 -359314 -884636 -819788 -331099 -417014 -295478 -292806 -795070 -12751 -716539 -756288 -476796 -446635 -883717 -668343 -430293 -278025 -48966 -756606 -827967 -4153 -439715 -523521 -271225 -905364 -274614 -240194 -636972 -297938 -834285 -948748 -184008 -950964 -265270 -423449 -19067 -942870 -391121 -516492 -379740 -810710 -11871 -161066 -42299 -562980 -390387 -623383 -276287 -366011 -368139 -218666 -221278 -904487 -666518 -245499 -385189 -134823 -72123 -253303 -365358 -427558 -606549 -617950 -174742 -873469 -593569 -653028 -774871 -702605 -566763 -901318 -289090 -356049 -345562 -459843 -596735 -236725 -156876 -391220 -522233 -353751 -693965 -339041 -836069 -803280 -436789 -513329 -602602 -491483 -190365 -687799 -891713 -433436 -849641 -919701 -44926 -140339 -45430 -126650 -235467 -814282 -762508 -784100 -588452 -269602 -945892 -840924 -950963 -356986 -666383 -150539 -951515 -301501 -313960 -516578 -559986 -429954 -674562 -722758 -396405 -955675 -640553 -362208 -118132 -672803 -39512 -828062 -622320 -275976 -127649 -37714 -828774 -263572 -378857 -480515 -487117 -248389 -104343 -114795 -150970 -817548 -390266 -886962 -150294 -237390 -415826 -109438 -750097 -434366 -745621 -45347 -700839 -240548 -129254 -557118 -346994 -514673 -164836 -98293 -263050 -34251 -693025 -289398 -217023 -204855 -191558 -834855 -720814 -724497 -239214 -286042 -289420 -39979 -170088 -873176 -382748 -315827 -329173 -266385 -134904 -477117 -636114 -84045 -136787 -863987 -405096 -346540 -948991 -297337 -313713 -938199 -668060 -712299 -103455 -383250 -611646 -155526 -619808 -692451 -14931 -550064 -772154 -67343 -935121 -677174 -29492 -362293 -30779 -474634 -151862 -639504 -685328 -324881 -729889 -659145 -559087 -885584 -441732 -892391 -823360 -861355 -641981 -938330 -101375 -596632 -245775 -93604 -150887 -943228 -672021 -949116 -880066 -306417 -753169 -164733 -781254 -698407 -811826 -234902 -852684 -18803 -835296 -46853 -889682 -126155 -697092 -590446 -837958 -704196 -719529 -921012 -695636 -795375 -504833 -15125 -751921 -777682 -215987 -135207 -918505 -177693 -13595 -639447 -684278 -326780 -198620 -70299 -912257 -99226 -378991 -659470 -124656 -291599 -596401 -774350 -327588 -618097 -648848 -730872 -76081 -161810 -14963 -570066 -629756 -34375 -881621 -165802 -152835 -97620 -747228 -479211 -143996 -201581 -239608 -723910 -246196 -23685 -593918 -357032 -192157 -63384 -213577 -543811 -277955 -603365 -910698 -121912 -206258 -724376 -314819 -108940 -665434 -745374 -359317 -902898 -237298 -606192 -879449 -546166 -200443 -787060 -13621 -520464 -922586 -682515 -18046 -785059 -687760 -608849 -522910 -429415 -938076 -146427 -435810 -458513 -363899 -669862 -340608 -571989 -117097 -931811 -32249 -751595 -659212 -111887 -272998 -204799 -448477 -282672 -13357 -271492 -136159 -251597 -150719 -639044 -563300 -692959 -86940 -835626 -99797 -84819 -199077 -425706 -547873 -185583 -817721 -134512 -376720 -270123 -736344 -377165 -540593 -941523 -558803 -808949 -779806 -769351 -913121 -685191 -41344 -943284 -175074 -79777 -236373 -588727 -801324 -167996 -273696 -81776 -607218 -236166 -53838 -204491 -806694 -71202 -766089 -65122 -769239 -682925 -177702 -240270 -121760 -848044 -3413 -68155 -531887 -115312 -186585 -402243 -173508 -657110 -900764 -498330 -638116 -660322 -534471 -195781 -110349 -330960 -751978 -486961 -464695 -540202 -525112 -705002 -681774 -372551 -364848 -602758 -41403 -945215 -472430 -270723 -487685 -103703 -876077 -89476 -630740 -71327 -854753 -546467 -516627 -938645 -638609 -354158 -640481 -167556 -75308 -356880 -118387 -438089 -619797 -937783 -757452 -150517 -772179 -199536 -39090 -4375 -850922 -593628 -644127 -226898 -931949 -135244 -185777 -904068 -523924 -434141 -221647 -85916 -115692 -32893 -953034 -25280 -344314 -654788 -36223 -167545 -954689 -426595 -825726 -235992 -440396 -382039 -96406 -855654 -645450 -540193 -319569 -686211 -857823 -17488 -161683 -305974 -923592 -308569 -423317 -345815 -192932 -330191 -330289 -432798 -725913 -952116 -236762 -768753 -864645 -377266 -522182 -414933 -404955 -380714 -289359 -174488 -341669 -518988 -176296 -909118 -818062 -445505 -596165 -249518 -157458 -353993 -436115 -189077 -247595 -101628 -924090 -134216 -83648 -952841 -354873 -799686 -905078 -797785 -109469 -765332 -678504 -264679 -522312 -632012 -248870 -872993 -106656 -80939 -230704 -516378 -534588 -511163 -892689 -466196 -518593 -423149 -404907 -202679 -591622 -674780 -501130 -234279 -786299 -696577 -674876 -759789 -790387 -294047 -83773 -7362 -72274 -456435 -333361 -454143 -940931 -501192 -939496 -210537 -496946 -354704 -266651 -206335 -521917 -468369 -328113 -515364 -938075 -723125 -810926 -416413 -133969 -402535 -731147 -885677 -550385 -486906 -64324 -857438 -953738 -136229 -596511 -224248 -803173 -239644 -46341 -278539 -424279 -170801 -84852 -186848 -585359 -126302 -262544 -314100 -787862 -861285 -386735 -279453 -931762 -94877 -363885 -128249 -108504 -368125 -21333 -511806 -593477 -777390 -897723 -65555 -472463 -255143 -491911 -575040 -601133 -159240 -797750 -711129 -150335 -186935 -133793 -467108 -81799 -695050 -494322 -917520 -872238 -933640 -590617 -626370 -15870 -902620 -66245 -134998 -904750 -237323 -596203 -239541 -120000 -607444 -339643 -27682 -410445 -759328 -617257 -699067 -462131 -273957 -534816 -205256 -187889 -635010 -356850 -693745 -167397 -287050 -236031 -368426 -193947 -422121 -599966 -111834 -177789 -781698 -204163 -625791 -20254 -813297 -39563 -597162 -303286 -354605 -492704 -527006 -30671 -12714 -313944 -61699 -454561 -765595 -678560 -349874 -382782 -209491 -126471 -176416 -251451 -841642 -799241 -593971 -451856 -25358 -938292 -323546 -439292 -587182 -319109 -579285 -768448 -815843 -555332 -327657 -669162 -828658 -738348 -240853 -795093 -855598 -305000 -871554 -304186 -390197 -874737 -375659 -404091 -785478 -653116 -497882 -22823 -220021 -839998 -394457 -328229 -149186 -680164 -108239 -954187 -782459 -470892 -883286 -417865 -856588 -736531 -180498 -46524 -147569 -702586 -820933 -737782 -333107 -198332 -818748 -224839 -335071 -483181 -896121 -112995 -551374 -449101 -810352 -805316 -603712 -65884 -738650 -660042 -909466 -463633 -755126 -10533 -204443 -794925 -640482 -305037 -777860 -680406 -136718 -256368 -474275 -824703 -180971 -600251 -292531 -30084 -41311 -723220 -245659 -902805 -618196 -28702 -483314 -45451 -265056 -237380 -846739 -439081 -72136 -909513 -210868 -84800 -429250 -885803 -40772 -773908 -500976 -397100 -467299 -54075 -474973 -404693 -588210 -602598 -98178 -716695 -75894 -801625 -456019 -509485 -710783 -189197 -428903 -598090 -450821 -584387 -517883 -527595 -873296 -830427 -38256 -947805 -857676 -325094 -128348 -355620 -202481 -38655 -147610 -170270 -939707 -552736 -632687 -416109 -155482 -101926 -773761 -48921 -905772 -324942 -385 -865674 -458893 -693818 -129000 -178550 -487285 -886562 -65209 -249046 -479219 -190128 -17953 -348918 -594088 -647892 -24990 -81651 -64399 -426123 -324625 -248911 -39543 -41390 -807144 -155073 -419291 -208543 -103382 -673924 -525436 -14842 -408561 -839529 -770162 -395375 -597691 -768844 -139945 -886195 -950094 -84591 -34778 -682301 -242679 -723597 -630707 -669839 -298975 -206451 -244744 -450617 -863559 -279852 -345477 -650413 -798880 -879613 -416885 -484978 -125915 -77118 -803286 -515678 -231059 -466352 -79839 -593904 -591983 -119303 -939231 -666234 -809052 -141305 -52123 -322747 -724439 -707081 -645444 -827310 -817113 -903175 -495422 -499192 -946407 -22401 -20522 -340697 -397092 -448569 -792128 -581710 -665239 -846877 -335295 -35523 -764586 -69132 -287990 -355507 -597671 -623275 -31894 -758363 -217866 -838364 -535003 -12774 -300877 -584511 -760882 -82799 -237416 -474316 -119332 -591273 -334712 -863500 -79447 -246052 -176524 -594946 -911929 -12005 -415171 -108598 -911023 -806760 -129129 -92670 -677973 -237541 -285689 -287264 -841211 -488299 -238698 -789619 -29323 -413242 -677826 -401732 -556393 -181354 -605922 -494678 -461826 -126806 -355894 -309750 -625409 -203 -432771 -850681 -162526 -854623 -445327 -409600 -186789 -635854 -663691 -737356 -628309 -252497 -447760 -764260 -422038 -48843 -822546 -496133 -883322 -429068 -340022 -346152 -239443 -585580 -934708 -636763 -262909 -22150 -284831 -693719 -786845 -583924 -209878 -286995 -689648 -222119 -183651 -407406 -607283 -325091 -494615 -420506 -34867 -735375 -933066 -386055 -242726 -109142 -301300 -650803 -855838 -649621 -324998 -314507 -424351 -556463 -698594 -199049 -453974 -611385 -38878 -268428 -227346 -913757 -767466 -20637 -485148 -899479 -810815 -290818 -608676 -772994 -103215 -209042 -369126 -597976 -23079 -358279 -33200 -373655 -400606 -542287 -763931 -502640 -477058 -374773 -153195 -593479 -915615 -37540 -179336 -332281 -810628 -691200 -733026 -74530 -317662 -578698 -321633 -551383 -570384 -158102 -229902 -231239 -338990 -238288 -165041 -422123 -341763 -181278 -222022 -96410 -902926 -391381 -284873 -13234 -863355 -261556 -705658 -899808 -734731 -676001 -335855 -539548 -167413 -146182 -846752 -518502 -935712 -696311 -849679 -330306 -466701 -200517 -230117 -171284 -797680 -564218 -613079 -419954 -198603 -126453 -81807 -501865 -242905 -58094 -844226 -422556 -825972 -834089 -612787 -78461 -426501 -355537 -637087 -364270 -63028 -909182 -566707 -915748 -938090 -573685 -327881 -309312 -563985 -236974 -861248 -770514 -809458 -431566 -486332 -767695 -463704 -635872 -2729 -898631 -692567 -253572 -204174 -93887 -21986 -564991 -142334 -726968 -510166 -880953 -755700 -179290 -282007 -210513 -457961 -692405 -640635 -121980 -737913 -602482 -926850 -41989 -321776 -48803 -264729 -209262 -432559 -449038 -186580 -91131 -83003 -215032 -67319 -17298 -857449 -85284 -374963 -35249 -60487 -32055 -126706 -769228 -343640 -647965 -724293 -212464 -694100 -388981 -456205 -55715 -442499 -430703 -763441 -278579 -947173 -404994 -510492 -371278 -9958 -268905 -778306 -103868 -74521 -908556 -674059 -764159 -646011 -170711 -734797 -908226 -527458 -528219 -192933 -119977 -481207 -768023 -903337 -405967 -380017 -467408 -343332 -942339 -161968 -681754 -860602 -822953 -162145 -184200 -314544 -94355 -810638 -802632 -745351 -161663 -504288 -302533 -607302 -74455 -428651 -146349 -671342 -848182 -250510 -592299 -293910 -178543 -893369 -605902 -292742 -636890 -160633 -266046 -43636 -830622 -379485 -564619 -923135 -669430 -947971 -428836 -810448 -944628 -817903 -466537 -282169 -75846 -955527 -438133 -197313 -930201 -874937 -301408 -338126 -871415 -955170 -239454 -101700 -249534 -477001 -178245 -49949 -337375 -397577 -105014 -254564 -364920 -591796 -309813 -328932 -513634 -210121 -477443 -167809 -562054 -540410 -472574 -837859 -79830 -290670 -667971 -349496 -843273 -568826 -843002 -377213 -379484 -814579 -176965 -285629 -356583 -710197 -604291 -793326 -440671 -338374 -251287 -395247 -37499 -854018 -174093 -761963 -555512 -515854 -770184 -125798 -922398 -667078 -50625 -258461 -522586 -263541 -779038 -674209 -757153 -287610 -368708 -25938 -724050 -159231 -547254 -11996 -767454 -282940 -754735 -109309 -778195 -879803 -356346 -779793 -473839 -906760 -732268 -953698 -244223 -36843 -500425 -293431 -644439 -705348 -180258 -176159 -810220 -438455 -391563 -37041 -263000 -947280 -516231 -235974 -405870 -287559 -788533 -97845 -773824 -888213 -506140 -809532 -940817 -835034 -193166 -251856 -771210 -807664 -922220 -863504 -238260 -949542 -411612 -258162 -724415 -684200 -434684 -178309 -623871 -238659 -483229 -368926 -167984 -148927 -738357 -63955 -182790 -879245 -504736 -778400 -545839 -288078 -932994 -703880 -230917 -883122 -112648 -70808 -179333 -247696 -904625 -265301 -713250 -536747 -848533 -353207 -482198 -60699 -1218 -76957 -471106 -65258 -164054 -334633 -749485 -146640 -360221 -763495 -889418 -24925 -54289 -938637 -40884 -721887 -658266 -388890 -11523 -810709 -205807 -903040 -17413 -132507 -507723 -29675 -357762 -850099 -101047 -395359 -851202 -861845 -357998 -251549 -569895 -953692 -664166 -954236 -631686 -632280 -251780 -745230 -404024 -439313 -723031 -471440 -326332 -74440 -412875 -45073 -819586 -633145 -206349 -459138 -432430 -472984 -424741 -847322 -716431 -761773 -927725 -636744 -231360 -308483 -925901 -584654 -83572 -797510 -405198 -938273 -871543 -254417 -290076 -182925 -808261 -24166 -450515 -101021 -801270 -778386 -325076 -440344 -952157 -250450 -356230 -494210 -892646 -666427 -13665 -29153 -10516 -735662 -243465 -151845 -412312 -379914 -768136 -873774 -899471 -654244 -173510 -83597 -85903 -830726 -826111 -637096 -571912 -146289 -256746 -938274 -56031 -645494 -755686 -67404 -825896 -894586 -20525 -750937 -842053 -188574 -722898 -3102 -951724 -5591 -570725 -357244 -382874 -21168 -115908 -51183 -772769 -365406 -157975 -160736 -912182 -277700 -109043 -925871 -830616 -259470 -78618 -156074 -122976 -321193 -140911 -418867 -677618 -772367 -20446 -950117 -69542 -9320 -331053 -324403 -792351 -390887 -543920 -66075 -390394 -458301 -888325 -732273 -314927 -779604 -816655 -408469 -313600 -254636 -719031 -32498 -317361 -231071 -619554 -651559 -13428 -172431 -256360 -63630 -871883 -104884 -11318 -948665 -384362 -27708 -632063 -65631 -191414 -889524 -913854 -610424 -553541 -275459 -154897 -857402 -612953 -913693 -41128 -116289 -811273 -154631 -248632 -92552 -462540 -446099 -101347 -66434 -113508 -78712 -432112 -316805 -315286 -460380 -520468 -749051 -676583 -550873 -815358 -109870 -288946 -18976 -12737 -64620 -899053 -412172 -14923 -118304 -819661 -902119 -75411 -204508 -888966 -31755 -543301 -678447 -22886 -574618 -121914 -741440 -43730 -694455 -626879 -875743 -891976 -829646 -827524 -639880 -815495 -76614 -703715 -310085 -135917 -560408 -786169 -944489 -639464 -70662 -560099 -339420 -814878 -81181 -836820 -851321 -716618 -142246 -192851 -887450 -651960 -356287 -523470 -639959 -910354 -247033 -705307 -929696 -591282 -84727 -81781 -222108 -927562 -85319 -853953 -146163 -466021 -423214 -728899 -134620 -285657 -444557 -626747 -26453 -146757 -628352 -242887 -178972 -80034 -600366 -852584 -2524 -770378 -511055 -126039 -182776 -56608 -828521 -38664 -58326 -693338 -866918 -277058 -879496 -932104 -173878 -802804 -572254 -380913 -56054 -649647 -380927 -463981 -8291 -900553 -301737 -870312 -308675 -444663 -86554 -115514 -429212 -304338 -850694 -174826 -531261 -49681 -466867 -849008 -12753 -558847 -115833 -678843 -146989 -293064 -918629 -639814 -864587 -80335 -121185 -930469 -195127 -950234 -562622 -74399 -392790 -769787 -577648 -804887 -896813 -7446 -887317 -515193 -179233 -298095 -263339 -162195 -146263 -672184 -693816 -265415 -663726 -109333 -539225 -692410 -868345 -865619 -401981 -251550 -315422 -938626 -743768 -136381 -61864 -544648 -41320 -59016 -388684 -151303 -274788 -6247 -885521 -662658 -501314 -331750 -67620 -930145 -814301 -149427 -41381 -942409 -416893 -296194 -232818 -313550 -803607 -90426 -281015 -925836 -706079 -646245 -741830 -697016 -327798 -432499 -764244 -850570 -657634 -356891 -824421 -99074 -133060 -591072 -632205 -687505 -819596 -298524 -119029 -229749 -196180 -828818 -482472 -115061 -328716 -171277 -117353 -712973 -141809 -426263 -432605 -146572 -196370 -616090 -504539 -25290 -299384 -822468 -955532 -142037 -125827 -265036 -827479 -252278 -14678 -585409 -678964 -276462 -451957 -63226 -97666 -688671 -600222 -167587 -901259 -161746 -769803 -105036 -220384 -952169 -919935 -389870 -200292 -700418 -172834 -244318 -128484 -150992 -741990 -368244 -44791 -560206 -599684 -640860 -422964 -444165 -34245 -883295 -368079 -121531 -79576 -724476 -728123 -235945 -147280 -335153 -588251 -590908 -857947 -209054 -806902 -304150 -284824 -384054 -306790 -161234 -189775 -295744 -873743 -446316 -725291 -550248 -267185 -26129 -669135 -254588 -12240 -856012 -257116 -308670 -540108 -439367 -910456 -278039 -672884 -745853 -575510 -306939 -175003 -387455 -51199 -413935 -140601 -797967 -653525 -638699 -730984 -325088 -602101 -459330 -664462 -825051 -102952 -634280 -890848 -154047 -763547 -825098 -919091 -758962 -66228 -853067 -619227 -881890 -338749 -936753 -743995 -90134 -180759 -220706 -685438 -699680 -415899 -768994 -493170 -903573 -946909 -373406 -364422 -230639 -822613 -191498 -127332 -576533 -98318 -286481 -438006 -610523 -103238 -821385 -886391 -771049 -802125 -246283 -848891 -867410 -35088 -56490 -633697 -639993 -34104 -640963 -244452 -661019 -808575 -689457 -302756 -257230 -136365 -429208 -11762 -721649 -879539 -233324 -260214 -480203 -263473 -311524 -397345 -775235 -631218 -403678 -137222 -746648 -648046 -415227 -125867 -181381 -874199 -741224 -301609 -250396 -666502 -878961 -198382 -257142 -474673 -240523 -557682 -903309 -495906 -632215 -48103 -609761 -735332 -894627 -779591 -554717 -175600 -468759 -432202 -544418 -126450 -135150 -552834 -785499 -264056 -701758 -731880 -204615 -424073 -276003 -802823 -865892 -281229 -884367 -420596 -176390 -389920 -37149 -905445 -879257 -20518 -588677 -322356 -627421 -450282 -190649 -394507 -287060 -950245 -503298 -656845 -529690 -131762 -13026 -432780 -750606 -726578 -99579 -204949 -287966 -817720 -115130 -661712 -418008 -538922 -158700 -446030 -792347 -706920 -338495 -932546 -177614 -65846 -276435 -99703 -347486 -706982 -573723 -838257 -77168 -836926 -558204 -429384 -21221 -949050 -790722 -850938 -722281 -729361 -75395 -151398 -590582 -340610 -418434 -524206 -747901 -542604 -129432 -950221 -360790 -861253 -243091 -798014 -22410 -663319 -539395 -724058 -31171 -244925 -350201 -467321 -812608 -423025 -52364 -475340 -466932 -290577 -2101 -772874 -528905 -325631 -547336 -561433 -497709 -81691 -13033 -466826 -254285 -619735 -568519 -532786 -161080 -42883 -380579 -605886 -247981 -447808 -53094 -45563 -75704 -601096 -696129 -124678 -952135 -474012 -127625 -438051 -276468 -916801 -420580 -178026 -404027 -887336 -429036 -504973 -824160 -696899 -319916 -412358 -424175 -858678 -696988 -137135 -654751 -895840 -483195 -802386 -349515 -390944 -905216 -820036 -433499 -887320 -679650 -170610 -428780 -754058 -498311 -126805 -37221 -738687 -188667 -483858 -524759 -195706 -36536 -896214 -761618 -860124 -95005 -568892 -332285 -441321 -267522 -864029 -651167 -118779 -434447 -942659 -674587 -467366 -482831 -607228 -601227 -822603 -550910 -24838 -524761 -108528 -716968 -221141 -875635 -309212 -652479 -847856 -856930 -519225 -662674 -208669 -157351 -495594 -142436 -791806 -95543 -285065 -326903 -935333 -181204 -81265 -618162 -778640 -446759 -15936 -305425 -577086 -63788 -851513 -29427 -415697 -623130 -598147 -221703 -54642 -363772 -652390 -505883 -17469 -143716 -449578 -32338 -818707 -499852 -592496 -108985 -623231 -920602 -546802 -11699 -55536 -488440 -409899 -946852 -48514 -683217 -938569 -61714 -366980 -232544 -482487 -854707 -742205 -940537 -101348 -440595 -362168 -431822 -661505 -313073 -396871 -851154 -654658 -2668 -211943 -441239 -437885 -369084 -289143 -763653 -864823 -927457 -843009 -468257 -310582 -700732 -488450 -717520 -619789 -436958 -704218 -724273 -908169 -867799 -270464 -191204 -151708 -83688 -763185 -313068 -55890 -378175 -811913 -404467 -198719 -682507 -658477 -222110 -41343 -65835 -693760 -682562 -564513 -283628 -596549 -58660 -500576 -416220 -558823 -228253 -41036 -569990 -875847 -916455 -801693 -75924 -808240 -888806 -59292 -403664 -199650 -278391 -397323 -808271 -420731 -192917 -325964 -161273 -142736 -875984 -680742 -872758 -207817 -742050 -581008 -851724 -77488 -354399 -836661 -46649 -206167 -244613 -405404 -344024 -956944 -212047 -757930 -635514 -741435 -664437 -472138 -221513 -574811 -269801 -905411 -111813 -830266 -776794 -173490 -156135 -362104 -362484 -566973 -490925 -556723 -673554 -312592 -472333 -422536 -739586 -34484 -714106 -390965 -400761 -340329 -339412 -432008 -725761 -743876 -892399 -33427 -917829 -653679 -10095 -400294 -574985 -896532 -192841 -845020 -423225 -168450 -92179 -148341 -69845 -442306 -679595 -783888 -624877 -706813 -562715 -446722 -492469 -664715 -167993 -44578 -776670 -478303 -439674 -817293 -356958 -265369 -94366 -257186 -762767 -13012 -939668 -445716 -648894 -725602 -10118 -701527 -487260 -319868 -110241 -217921 -14423 -48830 -368699 -883176 -168606 -381862 -663301 -55771 -711950 -646005 -11505 -314680 -731039 -448851 -903176 -126565 -797018 -338211 -372481 -577754 -377447 -368964 -821095 -719352 -136759 -224953 -813991 -640094 -74063 -792707 -240589 -872817 -237126 -440565 -303559 -146833 -590886 -710023 -611756 -385192 -771476 -45236 -927666 -727094 -898230 -592736 -770687 -160878 -606804 -606889 -486295 -592023 -661429 -822182 -864883 -814885 -7527 -920996 -667377 -947146 -275248 -586828 -126018 -766047 -93312 -323724 -594036 -49310 -20497 -835203 -417361 -483683 -52442 -663531 -110171 -451793 -236518 -758544 -702736 -648 -704399 -47858 -855672 -63227 -117805 -642916 -476455 -55983 -729196 -359918 -122267 -704299 -421100 -396783 -417447 -207364 -210878 -888284 -545062 -759999 -103998 -664283 -365626 -940408 -9916 -762996 -495700 -369808 -761462 -223382 -772088 -909656 -955597 -834975 -830959 -732755 -652568 -466855 -501434 -691993 -237699 -564380 -674288 -633810 -845158 -662791 -824641 -750893 -930462 -326107 -85240 -476026 -687084 -239143 -487059 -232343 -886869 -706293 -909426 -781754 -832473 -300949 -141353 -778021 -339822 -81820 -162113 -554328 -209340 -954804 -439258 -793877 -470716 -135197 -79300 -449596 -674973 -489524 -421117 -634679 -89232 -161953 -8232 -636282 -840079 -173607 -264853 -649782 -222146 -419131 -75743 -692971 -267885 -599356 -229846 -448002 -947216 -343502 -924734 -810070 -938391 -635671 -53358 -53071 -161033 -870991 -836027 -730880 -583333 -946097 -690721 -466633 -772660 -525626 -426743 -956589 -631262 -595052 -518398 -804207 -595839 -533398 -593990 -849159 -870218 -109925 -510699 -846740 -237406 -340592 -279264 -805443 -709101 -663310 -466836 -167687 -278748 -824312 -41174 -77384 -696519 -619249 -682119 -293985 -249603 -136707 -83565 -803989 -299737 -801374 -778341 -151119 -651710 -60156 -242290 -230546 -369025 -663614 -13219 -504828 -314053 -896486 -814319 -485293 -427516 -617015 -347082 -279280 -770486 -238681 -320698 -274113 -418948 -678592 -256710 -418275 -732086 -132307 -48968 -533825 -793572 -197199 -693294 -516943 -444786 -286038 -314556 -707462 -941563 -561083 -11276 -330095 -902500 -221015 -593455 -639361 -686823 -219536 -491790 -896657 -873021 -155455 -591792 -824891 -421122 -638166 -898078 -437809 -22450 -733604 -639784 -233819 -327889 -428630 -652070 -698671 -667407 -109019 -308889 -274724 -763981 -88876 -781751 -663223 -943603 -427303 -543759 -450674 -108565 -263601 -103186 -236146 -931953 -574217 -674570 -598328 -203653 -727052 -414781 -912542 -740454 -150735 -616544 -160471 -847714 -442535 -575336 -779916 -239408 -727085 -386591 -164948 -865755 -458681 -661635 -654363 -472232 -367743 -697732 -65277 -707286 -521502 -912401 -734407 -229602 -86487 -144349 -391371 -121703 -624448 -646476 -146864 -627193 -107962 -763280 -413082 -364697 -643518 -738136 -940863 -491398 -237771 -390430 -264363 -692951 -887164 -674419 -64085 -278380 -378037 -849178 -34193 -692736 -488841 -582190 -496015 -606595 -111873 -703733 -403938 -414679 -379763 -703274 -54276 -113647 -206563 -771399 -208379 -301732 -751602 -94671 -769675 -754283 -328809 -327070 -487658 -703470 -419792 -19212 -883131 -809623 -283805 -636014 -155565 -664987 -905488 -522977 -335386 -778390 -12420 -402385 -38257 -63030 -779543 -587294 -366180 -758414 -355721 -237347 -758277 -515924 -196890 -569148 -863924 -283102 -523436 -332056 -188715 -134642 -900640 -326586 -235814 -53940 -288670 -908253 -704224 -19991 -750201 -337996 -276359 -16751 -199411 -911771 -362406 -12248 -277834 -58650 -606821 -136525 -430371 -779636 -52040 -19214 -180204 -277515 -817318 -808439 -658548 -34365 -400349 -871754 -943765 -147595 -275972 -543748 -712815 -110468 -335104 -30625 -126693 -368611 -527777 -265409 -784794 -6773 -23310 -801424 -435948 -41984 -208594 -134575 -238965 -777812 -770647 -777583 -513664 -243968 -330922 -573041 -627679 -199170 -41289 -273749 -35536 -136409 -282366 -482842 -596133 -652554 -506550 -605366 -652726 -467383 -636741 -928989 -235430 -260333 -322125 -66252 -29893 -340602 -204536 -26731 -490590 -548097 -5908 -919538 -49970 -249314 -284817 -730229 -835021 -776329 -312250 -686329 -795627 -403651 -204980 -811547 -381462 -693673 -354699 -13181 -44280 -207942 -682085 -275297 -329505 -820837 -251983 -723909 -240592 -255451 -263459 -777742 -124608 -357013 -778319 -470451 -742801 -199142 -101864 -372404 -227040 -836838 -707459 -261274 -896029 -275334 -508074 -603607 -449199 -495787 -58035 -921193 -838086 -828763 -214365 -424465 -171867 -838577 -38483 -653227 -54860 -747965 -852786 -418752 -579775 -635000 -673294 -438569 -357039 -956419 -432590 -832592 -951886 -516848 -328134 -559120 -475834 -287072 -667390 -167010 -734326 -26714 -419965 -467423 -145005 -117282 -869454 -362384 -902807 -51439 -240604 -725902 -553297 -732711 -721774 -375269 -655484 -99800 -55694 -807342 -875485 -311192 -570686 -692997 -457293 -397724 -191279 -878529 -245009 -420124 -436126 -930435 -885543 -809774 -856760 -811134 -403865 -248373 -837869 -50278 -705280 -237302 -440462 -955346 -315821 -778622 -298874 -136749 -245105 -124818 -196752 -268051 -686833 -627780 -693541 -646704 -214794 -934375 -35169 -42617 -380668 -397401 -892185 -592680 -793666 -921788 -760801 -60758 -32065 -133533 -347719 -849851 -402436 -181779 -285316 -300316 -369818 -729228 -705687 -479947 -696647 -560545 -121216 -865611 -749888 -231086 -679888 -263751 -746150 -190162 -146357 -108324 -857159 -952401 -55806 -279439 -129458 -823349 -36860 -669979 -221975 -570649 -703918 -673300 -148446 -661242 -803028 -279400 -164796 -595194 -944246 -838071 -853043 -816058 -640911 -591230 -108464 -324528 -226084 -651635 -884036 -35757 -886738 -642949 -340578 -866944 -55914 -163298 -779807 -9191 -304194 -380287 -101349 -39122 -519550 -861042 -326398 -315682 -148704 -24682 -424394 -902517 -161964 -793359 -717157 -168216 -623929 -62432 -621081 -632240 -207583 -867342 -944381 -789853 -432802 -120474 -88573 -386786 -524088 -177538 -261439 -309455 -404375 -658765 -248449 -229629 -649887 -356238 -330417 -310659 -727072 -919137 -781176 -286658 -850563 -421110 -257389 -108433 -554865 -131720 -624392 -230245 -790750 -605424 -836474 -81786 -664750 -101039 -691546 -351012 -638615 -453603 -208651 -635820 -941980 -848854 -278597 -885605 -230701 -471051 -656288 -163186 -713650 -787846 -579942 -755681 -951726 -161282 -112232 -443025 -951309 -326017 -910849 -85448 -451445 -923938 -590559 -501445 -292314 -511311 -36958 -694412 -574234 -830320 -938073 -245466 -124305 -427663 -652831 -365724 -455767 -779984 -155549 -736260 -176385 -253392 -663740 -484143 -269018 -157538 -580511 -247976 -11177 -944913 -25973 -79219 -828158 -659689 -157658 -636978 -122174 -863182 -364708 -685416 -757312 -764971 -798053 -871430 -667299 -906181 -9607 -166778 -909161 -684104 -507577 -917066 -206533 -408418 -435760 -457417 -563397 -661723 -176130 -387126 -57873 -706942 -173742 -63139 -711900 -726717 -850114 -477419 -870213 -870868 -74350 -949304 -716363 -25511 -814687 -635560 -48594 -731830 -355927 -83646 -374632 -829470 -77365 -776231 -485584 -62961 -423551 -380888 -778434 -162516 -364540 -336198 -656886 -707103 -162770 -479812 -133694 -901299 -249440 -40460 -567733 -822960 -537074 -642665 -181725 -755809 -669264 -902212 -278542 -199011 -321808 -56621 -764599 -190970 -646340 -652971 -29867 -438049 -543158 -397494 -444576 -151742 -148425 -923121 -709766 -1314 -316419 -741685 -868165 -17294 -98281 -362286 -567375 -523212 -16728 -879465 -674709 -596741 -24676 -301291 -678848 -416992 -770510 -130813 -9790 -308035 -391949 -936247 -16498 -830778 -338282 -14856 -639738 -82352 -121922 -880423 -581738 -255788 -260014 -155100 -638648 -53179 -799452 -208644 -23059 -167602 -13202 -65624 -108832 -396222 -51367 -18840 -743579 -117207 -437848 -564600 -183195 -34632 -19747 -569842 -585466 -909922 -401001 -263525 -339693 -732641 -270507 -556621 -30226 -177934 -951971 -174829 -142193 -66996 -450054 -478551 -22385 -841073 -880312 -109140 -237391 -271029 -744066 -721630 -242543 -716729 -123027 -375568 -301766 -467378 -68768 -401752 -40926 -672721 -273212 -185413 -281438 -395116 -806776 -684249 -732710 -818329 -189526 -255463 -473212 -118623 -116549 -257696 -284156 -328195 -899628 -779786 -738265 -797718 -111672 -930799 -280565 -583433 -874098 -580279 -211408 -11814 -495984 -317780 -235888 -388114 -149507 -704363 -167310 -81669 -388623 -146196 -403809 -73883 -274810 -728501 -146661 -817707 -625658 -768863 -848838 -838479 -347812 -800987 -447996 -342968 -879098 -450293 -632505 -900101 -818505 -785318 -920633 -471588 -591831 -479480 -30964 -943139 -826140 -157327 -44919 -94713 -22789 -881227 -153248 -937833 -653751 -564497 -138706 -149280 -658198 -287948 -450804 -38860 -939765 -347240 -532245 -33313 -801166 -787701 -120714 -74115 -235255 -131379 -49908 -323979 -340819 -72135 -64527 -502201 -711996 -73344 -400951 -272625 -235287 -742865 -328483 -255042 -777928 -723629 -292815 -48380 -682644 -354085 -807343 -308443 -814416 -590743 -183798 -14997 -237230 -120614 -750933 -69728 -130491 -14688 -158540 -747735 -688155 -446420 -416441 -636248 -856502 -643459 -570848 -86765 -447234 -343696 -133176 -818299 -841323 -181519 -314969 -364499 -921638 -894236 -591215 -99024 -554325 -674659 -812519 -763887 -719132 -567783 -332062 -55913 -382742 -452480 -910142 -235895 -148502 -328463 -432476 -670998 -134722 -853164 -701323 -376679 -163413 -142419 -915457 -103997 -24463 -40786 -912247 -704268 -440289 -65557 -168064 -580944 -762411 -164869 -43451 -391380 -259366 -357147 -265027 -830166 -745983 -78611 -856949 -896903 -97538 -452320 -238932 -724078 -908240 -371465 -857545 -621719 -14922 -59534 -777530 -941823 -856128 -141384 -28561 -383364 -57018 -133997 -73259 -726462 -597356 -140303 -533130 -647998 -800540 -224583 -390138 -857052 -415892 -317750 -206523 -827641 -846652 -712114 -4141 -342941 -335221 -162413 -632645 -30654 -886571 -137059 -204469 -139761 -541320 -103015 -717531 -64754 -911879 -874282 -420818 -331916 -428705 -335400 -769225 -783957 -22065 -14898 -701042 -86947 -563549 -77107 -524649 -658264 -889464 -174078 -75486 -278444 -827878 -601245 -827026 -922708 -94708 -154082 -411217 -329257 -35042 -673231 -88820 -861117 -300575 -429221 -523427 -645467 -276978 -67725 -223643 -382300 -451703 -257058 -106824 -639607 -442789 -627243 -766107 -579812 -274997 -97412 -116726 -460858 -170544 -315243 -31995 -769606 -682292 -309596 -16958 -885754 -472811 -94753 -556323 -465099 -361868 -53101 -49356 -658729 -420199 -397726 -198931 -758125 -541860 -761132 -538147 -554334 -836793 -147377 -633949 -72141 -141723 -633174 -35175 -270413 -707699 -561588 -332209 -709883 -386617 -695704 -654727 -356878 -716591 -718947 -110152 -25195 -466213 -101824 -706785 -954466 -100871 -711304 -526331 -303380 -846175 -448608 -816100 -501205 -317621 -200360 -356919 -630479 -301418 -664949 -361367 -659660 -716517 -686937 -337960 -438478 -737995 -137079 -750105 -625122 -625625 -429937 -355917 -749338 -648715 -811851 -914083 -391551 -103566 -331963 -806256 -54807 -557334 -918495 -654544 -724149 -486193 -654750 -280780 -952859 -926501 -771545 -45633 -199816 -382859 -472356 -522674 -588719 -722452 -745932 -81534 -19912 -423148 -798268 -774040 -291899 -756762 -761566 -775358 -142104 -67224 -485517 -280577 -573029 -92065 -356527 -117968 -401927 -626699 -863866 -892350 -126168 -150125 -51580 -289341 -346876 -216052 -45539 -86180 -444682 -9811 -476556 -594840 -505099 -135752 -645376 -845288 -108023 -859138 -74537 -639625 -398813 -706537 -882049 -354405 -462522 -659791 -947884 -226778 -859718 -235304 -292026 -840372 -594670 -597309 -814863 -26213 -652325 -887334 -263056 -628013 -295538 -387863 -277253 -637114 -894386 -56144 -225640 -86531 -33042 -204706 -460116 -278478 -227609 -847423 -337945 -521589 -377520 -803233 -311865 -109294 -60491 -424105 -579056 -690720 -106341 -74748 -379406 -355302 -826398 -705378 -285292 -438868 -571731 -939731 -426578 -189045 -637868 -639490 -696920 -661650 -880047 -206224 -231352 -142119 -44701 -716540 -220414 -784078 -331094 -176604 -195590 -132858 -24244 -38167 -382206 -552681 -597482 -169949 -574715 -281053 -448572 -834149 -544050 -251182 -129194 -595511 -315444 -64592 -651607 -633032 -226564 -766533 -642881 -569474 -749113 -75398 -364340 -610781 -405900 -443996 -218839 -158499 -230964 -737882 -832330 -70191 -266717 -185344 -909302 -843713 -430337 -161614 -782473 -48881 -422965 -818666 -930694 -384144 -24930 -514533 -475324 -537800 -123023 -749889 -512770 -339400 -824446 -199167 -828923 -279498 -697749 -450057 -230369 -389013 -170775 -357128 -249343 -754833 -675848 -123701 -292540 -927072 -536641 -654296 -374972 -226783 -106724 -481660 -951751 -664806 -831115 -477070 -646474 -474947 -20907 -117202 -408554 -506551 -395557 -605079 -142524 -9978 -931062 -396253 -117106 -9107 -178970 -279239 -889254 -163745 -945002 -365803 -946037 -125358 -887328 -912108 -164755 -668273 -573976 -300763 -321864 -65452 -336248 -101573 -180746 -54772 -159898 -647962 -606352 -237318 -158073 -185407 -760035 -712028 -13564 -186683 -13039 -903451 -192950 -482331 -412803 -19984 -423811 -711411 -798255 -55981 -449443 -770824 -161072 -796113 -45388 -236959 -136711 -364634 -83604 -120190 -12143 -677213 -200726 -93658 -837794 -72615 -852028 -810049 -55875 -639778 -858038 -926509 -929897 -527620 -49312 -369546 -140007 -807452 -823011 -64484 -779350 -790961 -113327 -164383 -35661 -323094 -153022 -366124 -892400 -333078 -136869 -294505 -805515 -940884 -210136 -652037 -674147 -388560 -825917 -244560 -206311 -684554 -664622 -905351 -339840 -229051 -56807 -367509 -83651 -465319 -73969 -415485 -769181 -332119 -578758 -113494 -644163 -257280 -222966 -782648 -848859 -463721 -550700 -85283 -311978 -569801 -651806 -872315 -263439 -140848 -818293 -832074 -107471 -578111 -140347 -398361 -107913 -849185 -830771 -410430 -289120 -501947 -395833 -72447 -19711 -906414 -495668 -688045 -762566 -449540 -851053 -437778 -866421 -294112 -903567 -48487 -119488 -426434 -421121 -35187 -379943 -764376 -951973 -165262 -50889 -262810 -638785 -199520 -773900 -146585 -252350 -288033 -732436 -603893 -163935 -605678 -778396 -358367 -188366 -955491 -265541 -236019 -734927 -431536 -627252 -298801 -357169 -55058 -949306 -200398 -932544 -876576 -45404 -179282 -99059 -460881 -645424 -446548 -236002 -769171 -66190 -795835 -333891 -678583 -125121 -312956 -116182 -874005 -301700 -20695 -392805 -772635 -838259 -762075 -483984 -270524 -524078 -420223 -674588 -278544 -684196 -740342 -355488 -166138 -457186 -788596 -111078 -339678 -442882 -457502 -458195 -404993 -479477 -748335 -210330 -374508 -17549 -894357 -759871 -205756 -705825 -778409 -700367 -701157 -163553 -659270 -425946 -179778 -945132 -467192 -533553 -939755 -136226 -185674 -797699 -386750 -790732 -373519 -51513 -46889 -22939 -373517 -898451 -797022 -460996 -818500 -542785 -295628 -873994 -671381 -2547 -251463 -480608 -272337 -76272 -13570 -790005 -742073 -196151 -245333 -742547 -296593 -352870 -45576 -839588 -837099 -243806 -474249 -440381 -59237 -810918 -789801 -410629 -490800 -861876 -434962 -104027 -12290 -824628 -726041 -818185 -216839 -770638 -889683 -57896 -652618 -664858 -802966 -369862 -334197 -638756 -284136 -800037 -127857 -287765 -929062 -912297 -24175 -897870 -859352 -29031 -24644 -930052 -735972 -156537 -278562 -542636 -400373 -71235 -244432 -103153 -869009 -403161 -946105 -571479 -388037 -693276 -658239 -72793 -451537 -231079 -689456 -381775 -699349 -771287 -361177 -121076 -114206 -789505 -797911 -294398 -464513 -758367 -139940 -98270 -815639 -381339 -120148 -654511 -737923 -112418 -808320 -141486 -770589 -429907 -178223 -261951 -294582 -821927 -386799 -348315 -593311 -887876 -735270 -701334 -380512 -832441 -727109 -951452 -11511 -225842 -32775 -55772 -576532 -596889 -387156 -43821 -24325 -432945 -126143 -672776 -431241 -567972 -616671 -349279 -88313 -287751 -557045 -391588 -84883 -131769 -331154 -863206 -865608 -102741 -377442 -346076 -702217 -30914 -623512 -401459 -246189 -433722 -859763 -122115 -97643 -56114 -742787 -398493 -258021 -396009 -277686 -442660 -854466 -445230 -667188 -467034 -885946 -368407 -941582 -785313 -167761 -343732 -439503 -815476 -129238 -77167 -678612 -698527 -242753 -281736 -206051 -113388 -492585 -763217 -440085 -624429 -289337 -277256 -488913 -943282 -162939 -782218 -678511 -919922 -848238 -216644 -177968 -452335 -264161 -259477 -370230 -173205 -200240 -14827 -427053 -544112 -416662 -776031 -479991 -286860 -833994 -349123 -598258 -777947 -59089 -455963 -494575 -109589 -694616 -197967 -56683 -197567 -381650 -170322 -338697 -698783 -922672 -790340 -339269 -797603 -841434 -263472 -573449 -329559 -371338 -204843 -948234 -777387 -771674 -521195 -12276 -647599 -775318 -12864 -804769 -456016 -243113 -104237 -176538 -22073 -84651 -66882 -790128 -102427 -466929 -635834 -435361 -8838 -796146 -744397 -13100 -168671 -935094 -860287 -170172 -510996 -168227 -581266 -633947 -926293 -360641 -179865 -48494 -823191 -76991 -745542 -332554 -178749 -480155 -699388 -531670 -912248 -885135 -626991 -203893 -674679 -130824 -732277 -809676 -272324 -545017 -141570 -873405 -227905 -606151 -567966 -201717 -339698 -663238 -293920 -841319 -487852 -211386 -95062 -327272 -511471 -245250 -818731 -20405 -495986 -416830 -41356 -324637 -343815 -296232 -956516 -255614 -710692 -767051 -786238 -755474 -776379 -513018 -253040 -884281 -762843 -173746 -830757 -57929 -952381 -308749 -121775 -161125 -56097 -851749 -287606 -890106 -588735 -659670 -332234 -20523 -255228 -96974 -732039 -264403 -341723 -51699 -630798 -221340 -329685 -894817 -18865 -891106 -579171 -597257 -294102 -342942 -881973 -612931 -339542 -640661 -340538 -591612 -178902 -430148 -369850 -328445 -170617 -903028 -465533 -125869 -113310 -480088 -200698 -94368 -636034 -951656 -756407 -48234 -298851 -33894 -305967 -354339 -872707 -624946 -905352 -317798 -83464 -529049 -776374 -769970 -279406 -864584 -37387 -684553 -81501 -853193 -643462 -707316 -555359 -697032 -801181 -570690 -777366 -301009 -273140 -897011 -78598 -847639 -805074 -50132 -402091 -157048 -16565 -31466 -252177 -831352 -819849 -238783 -384877 -325900 -134972 -178482 -263885 -465517 -467149 -656239 -854339 -43119 -113894 -813208 -480108 -453879 -767126 -175264 -797402 -222034 -249594 -388364 -447856 -939625 -897571 -774158 -462534 -922473 -285603 -340015 -833789 -210979 -751915 -109191 -17855 -802784 -388744 -609188 -533954 -906632 -143740 -165587 -706364 -10769 -827638 -693125 -897570 -671420 -719069 -135949 -769462 -12937 -917872 -599842 -396641 -145323 -209653 -472711 -636583 -21989 -898099 -714034 -900461 -738382 -298261 -166117 -944562 -143456 -725574 -428839 -206531 -439698 -55683 -66154 -232798 -487248 -764237 -398433 -309965 -545504 -533883 -572791 -574207 -488266 -165818 -640677 -77039 -40932 -114160 -147619 -675611 -450819 -239335 -658622 -523356 -71999 -27620 -260270 -636040 -322951 -595517 -546111 -900963 -12322 -408556 -756427 -97608 -2918 -771618 -670028 -911265 -605812 -123381 -300304 -83751 -718159 -626802 -828748 -189780 -306467 -228376 -276001 -825043 -146879 -625712 -808178 -263868 -500440 -482055 -577726 -286968 -433527 -870529 -55032 -290555 -420750 -910329 -885800 -98576 -253318 -836427 -185321 -639027 -44017 -94051 -292877 -539761 -863804 -328465 -759268 -491101 -899388 -275018 -699412 -244485 -886031 -235008 -617441 -339848 -920980 -371479 -281988 -695416 -436099 -146762 -848808 -336261 -465052 -251863 -211705 -610084 -930023 -272983 -431761 -627334 -147609 -464339 -103112 -770886 -233811 -126875 -366372 -626091 -485157 -173913 -308368 -619539 -211759 -674190 -322795 -775045 -412653 -777297 -802854 -517708 -784690 -135145 -3826 -380037 -284663 -832589 -500590 -770875 -113599 -778399 -36812 -896198 -486522 -772432 -432528 -332013 -89323 -693718 -903510 -640074 -63634 -843228 -743596 -633245 -453596 -793707 -11328 -908264 -276781 -954750 -43176 -558027 -671347 -909680 -520909 -204537 -455658 -396631 -435616 -284945 -755965 -693394 -768747 -771880 -587771 -59883 -661194 -97780 -840245 -814279 -669847 -281211 -24766 -372981 -785498 -186601 -623241 -564638 -937984 -925413 -927561 -49123 -464356 -327072 -282761 -291370 -117388 -499352 -515925 -45571 -518649 -52567 -301656 -767451 -126580 -188784 -756629 -664599 -342828 -350174 -829829 -12154 -625903 -772519 -33423 -442518 -480254 -927084 -496114 -863980 -778054 -762333 -40968 -751530 -398545 -580246 -620682 -787406 -109163 -927469 -73346 -722314 -795729 -673752 -552081 -397480 -485641 -793943 -656080 -131658 -206177 -411858 -956582 -525132 -365057 -78932 -325432 -661225 -745552 -707321 -853113 -727010 -527674 -172608 -528412 -701727 -146393 -428790 -677871 -952457 -516302 -367965 -301747 -163086 -778462 -329178 -422360 -632461 -103683 -734577 -467402 -853918 -504813 -883347 -756340 -27738 -605729 -736582 -584077 -625077 -830943 -335996 -424450 -113565 -735711 -633856 -716496 -465059 -680979 -857024 -446604 -103904 -46195 -20368 -802860 -138486 -42462 -129009 -663181 -71761 -230711 -439826 -518846 -780289 -533958 -781734 -868825 -886850 -171542 -401068 -156435 -905033 -170221 -298952 -942960 -570403 -24604 -235208 -743544 -115214 -677619 -938993 -347457 -530470 -429152 -487291 -637397 -818649 -693237 -298131 -502379 -107104 -859735 -462008 -922393 -287203 -86091 -604141 -500182 -390599 -606347 -136782 -324748 -98458 -84826 -674192 -647451 -823846 -15956 -93511 -223125 -834209 -816194 -143938 -594819 -339617 -25013 -823503 -345202 -147510 -856006 -517604 -717506 -387936 -420603 -237388 -579795 -331899 -696533 -354284 -72514 -403813 -501842 -409556 -264069 -105046 -438606 -319683 -382970 -435652 -275767 -497252 -577686 -940309 -203142 -607157 -208940 -806035 -126849 -339427 -852991 -846269 -849972 -769168 -482153 -901681 -435415 -891926 -93929 -58277 -299371 -388541 -97836 -173256 -300008 -648986 -931424 -308584 -327778 -124936 -86280 -927219 -750103 -755260 -145699 -778110 -86248 -777131 -594017 -274565 -579859 -738099 -389737 -334610 -161850 -15138 -187486 -835097 -474024 -568927 -119881 -932670 -447164 -383344 -696769 -159307 -135926 -356811 -672754 -178222 -544409 -848709 -517081 -429739 -444420 -165166 -23791 -707423 -729927 -775516 -469411 -534936 -902722 -474278 -354701 -244179 -945901 -761937 -242460 -615751 -487892 -825831 -42693 -782186 -899470 -436359 -275330 -596106 -885427 -129035 -14978 -847982 -858057 -703714 -364064 -42297 -744161 -132733 -505240 -279454 -325889 -577176 -726840 -41332 -514025 -916432 -521637 -570509 -673869 -20529 -828066 -416847 -315572 -688032 -504594 -582299 -559671 -479326 -261753 -146308 -588655 -79082 -948144 -143447 -853002 -739550 -763199 -309752 -364664 -213735 -179361 -192591 -793624 -491135 -232742 -674964 -239334 -169355 -71114 -894680 -276301 -943608 -485194 -598177 -810887 -205014 -73840 -853476 -695397 -356216 -46666 -90866 -174342 -17027 -599937 -224912 -23972 -501263 -426723 -916498 -296866 -125111 -694020 -262770 -768058 -258195 -684111 -338146 -353365 -238048 -144643 -117190 -254842 -479486 -369613 -916106 -497127 -648521 -321635 -368710 -777125 -164034 -940955 -88943 -144140 -179239 -913989 -423013 -420137 -152783 -231096 -155754 -618454 -551337 -77647 -238897 -550710 -380038 -140607 -93587 -264085 -137080 -742825 -630790 -462210 -553635 -244963 -175696 -24446 -11662 -758142 -335302 -557352 -838247 -339433 -333804 -385754 -115815 -650713 -737579 -896492 -302946 -364554 -886234 -93316 -495577 -671221 -831275 -466857 -343034 -940378 -432457 -465021 -63076 -502080 -255485 -616087 -575543 -449163 -230848 -236358 -724351 -686554 -598317 -310584 -112229 -766170 -542230 -229725 -401872 -672787 -282756 -588090 -454070 -818060 -758016 -945648 -826173 -536915 -363896 -598201 -639495 -84067 -545215 -41539 -49789 -460063 -139214 -139768 -125475 -118189 -235966 -255150 -258231 -458805 -70771 -17889 -116340 -144383 -369617 -608446 -639676 -170877 -272443 -297813 -895214 -785559 -16558 -763014 -623681 -459414 -821039 -517613 -763464 -210683 -407899 -344333 -145170 -833022 -98996 -602675 -390253 -126509 -235389 -814937 -703174 -49865 -794968 -258003 -481574 -229428 -939434 -597364 -836665 -847142 -123531 -263640 -13541 -45557 -772470 -204608 -419197 -771960 -377221 -942986 -73715 -802396 -155388 -913908 -449760 -331607 -111370 -627402 -467306 -836617 -743765 -898151 -147318 -430401 -561159 -139201 -127254 -814489 -177932 -356166 -188441 -946534 -134633 -184201 -398434 -428356 -488821 -209024 -369357 -320872 -563449 -611013 -824571 -268854 -251126 -354377 -711749 -907542 -650572 -288905 -832869 -273902 -422092 -805584 -20112 -669813 -141321 -341631 -770369 -155835 -478355 -371991 -891865 -610087 -188372 -390308 -32802 -910152 -588050 -338492 -313778 -290158 -11302 -336258 -339566 -372993 -809601 -480480 -952081 -633366 -33623 -943984 -954557 -515642 -84766 -543708 -41863 -521991 -186941 -339650 -349367 -795532 -23012 -479902 -150650 -771253 -879680 -456313 -400982 -456436 -418975 -674909 -111571 -11706 -178347 -691871 -358805 -86032 -485398 -736695 -814954 -951467 -423534 -433309 -97751 -436929 -900772 -46576 -346283 -333535 -698110 -456919 -27750 -221610 -13052 -543306 -198429 -236128 -759340 -111493 -199291 -756712 -949143 -602037 -885623 -115257 -226946 -61031 -701582 -440510 -313577 -673165 -735085 -604329 -627036 -876571 -478202 -482723 -940441 -603896 -103898 -945317 -683847 -871873 -70583 -436788 -263418 -48567 -679934 -126444 -376700 -175328 -27059 -67649 -477009 -96785 -745722 -859760 -276211 -336076 -395539 -344371 -44450 -458083 -663995 -481465 -185448 -17528 -45358 -761677 -232899 -196781 -806552 -423070 -289199 -859769 -284806 -237202 -777662 -116338 -680956 -61850 -439879 -878944 -228158 -865723 -941335 -535043 -501388 -53248 -44388 -955767 -317053 -147295 -337369 -930536 -55818 -257491 -21596 -70087 -283278 -441080 -279357 -198632 -423256 -448486 -488773 -48511 -737832 -403438 -380735 -179367 -200314 -803575 -731433 -265121 -124302 -678000 -254592 -172156 -424086 -270191 -197631 -66356 -908585 -632143 -587168 -550651 -85130 -624243 -940553 -423426 -858392 -18009 -90217 -728667 -604122 -716895 -507950 -301871 -124383 -62065 -10644 -298339 -423323 -383560 -10486 -836642 -156346 -596495 -634462 -368261 -268582 -437448 -550346 -664484 -163052 -462098 -634176 -837978 -750049 -557999 -923174 -480009 -320923 -794743 -384252 -140579 -144731 -19131 -821040 -701126 -769033 -794970 -344362 -944291 -843456 -141761 -153352 -331561 -524121 -107967 -632824 -65102 -658709 -83929 -605323 -37995 -239461 -637042 -580211 -596337 -335876 -917668 -378438 -809936 -272529 -917396 -173175 -109002 -165601 -740334 -638811 -716513 -146921 -682586 -474783 -287089 -797770 -534773 -377392 -661623 -189539 -168245 -767700 -436411 -415264 -267909 -305683 -406761 -303260 -794600 -235517 -772545 -354719 -777370 -72094 -72178 -71571 -780788 -633441 -55640 -906721 -151614 -821456 -580349 -802064 -476968 -281917 -143056 -415606 -338471 -654775 -889210 -324088 -822464 -50599 -741959 -955531 -722079 -608673 -349962 -556622 -732885 -912977 -196898 -322962 -708072 -518802 -328847 -290243 -559177 -433551 -750491 -857239 -677071 -67314 -505560 -308324 -137083 -132684 -254903 -363474 -123108 -608897 -257329 -529494 -570828 -725900 -209454 -542445 -479063 -491375 -900135 -129815 -698957 -67766 -442521 -704038 -468386 -544525 -743001 -800886 -860887 -926826 -818655 -809484 -446654 -391764 -426775 -833822 -303717 -891024 -694372 -126387 -522975 -654499 -916004 -816498 -72518 -949209 -865221 -834053 -13787 -707476 -257388 -278341 -250046 -701720 -947611 -353569 -814000 -372393 -813261 -371990 -181411 -932736 -942869 -673410 -689784 -765005 -51728 -596917 -232300 -262908 -631954 -13664 -795479 -951036 -936418 -278102 -591692 -43308 -227086 -16403 -511983 -16551 -564409 -102979 -340071 -101501 -270421 -719453 -60892 -928367 -361064 -864951 -476722 -336332 -330036 -623737 -648072 -298762 -13497 -249352 -755092 -863759 -324335 -592754 -489725 -175659 -433437 -303155 -170753 -32012 -205343 -626462 -785466 -427529 -674539 -292507 -571883 -640611 -439479 -407711 -346153 -429448 -646454 -300885 -180735 -186068 -953550 -41251 -260010 -432656 -205016 -698267 -156235 -766251 -298490 -720298 -677944 -880268 -859078 -266285 -388653 -679295 -521757 -106282 -805325 -252439 -457568 -334745 -939409 -761499 -951269 -284362 -333512 -271104 -446352 -721274 -467444 -132991 -723719 -555776 -745525 -695669 -115380 -485527 -636743 -954809 -174580 -6880 -475035 -823792 -89306 -98083 -861028 -302497 -485909 -828795 -195956 -691853 -362147 -70139 -646469 -822872 -807166 -162907 -357340 -58177 -197190 -30815 -63587 -295676 -511361 -638962 -726887 -727245 -437356 -770991 -449094 -887179 -721925 -324020 -383654 -745579 -108923 -338210 -277184 -450983 -591515 -402236 -357312 -349504 -705385 -704431 -705343 -661247 -400381 -221407 -777117 -420115 -278489 -259360 -208590 -696971 -496817 -396243 -29165 -104713 -510289 -8284 -790505 -58615 -484306 -411314 -279047 -899438 -303248 -938413 -800737 -818253 -445876 -434818 -920469 -791756 -206266 -361706 -335472 -76046 -495744 -206176 -953979 -206570 -411218 -183207 -847298 -334304 -57430 -109815 -296613 -920303 -449956 -537467 -545440 -957055 -818691 -240586 -35655 -45497 -792619 -215203 -335495 -717960 -945753 -258124 -918918 -321997 -482767 -674342 -723794 -495580 -902886 -516735 -160322 -45018 -377482 -285642 -580233 -692205 -525373 -919150 -577443 -617610 -488775 -565959 -570348 -683879 -955902 -11636 -69675 -402043 -436485 -858323 -366163 -115419 -468316 -28756 -642471 -143527 -725797 -264166 -797452 -940811 -904093 -854317 -308528 -651795 -67315 -401037 -534496 -526565 -356081 -344145 -454311 -229867 -545763 -606457 -582245 -102300 -910909 -730651 -779179 -229634 -506723 -476755 -536868 -930659 -82338 -423290 -816326 -604593 -672165 -397470 -364937 -12231 -743396 -526976 -295868 -88379 -594451 -34301 -379462 -226728 -456290 -699659 -658838 -114832 -864635 -124458 -782237 -733553 -611619 -46050 -826658 -245851 -240964 -48998 -562925 -571685 -113398 -529025 -648863 -742875 -944407 -644380 -786590 -858801 -114480 -63672 -231001 -326569 -463701 -284849 -785823 -679821 -466754 -86614 -260595 -571991 -348103 -240464 -704860 -151858 -718564 -805265 -13650 -945181 -919566 -921526 -46638 -13770 -897539 -58205 -643015 -910057 -316307 -907761 -444019 -121280 -584503 -249073 -55499 -443597 -27982 -828692 -849537 -857854 -457954 -121460 -771249 -645536 -690025 -636118 -4114 -492550 -101741 -468397 -96645 -879148 -7839 -874205 -763828 -605956 -80461 -274693 -236961 -457549 -820502 -772586 -385663 -544636 -735659 -699557 -339580 -734607 -461447 -356921 -589371 -262837 -405628 -287409 -803054 -109188 -181577 -295038 -68718 -294021 -669975 -579107 -577636 -785826 -118032 -601074 -848557 -708769 -832906 -128451 -797342 -311809 -335545 -241881 -247813 -194059 -874747 -315503 -342564 -693554 -159304 -925847 -206268 -72787 -186232 -61492 -221991 -874258 -761520 -897521 -636020 -766320 -38268 -533583 -437570 -273722 -202443 -835403 -917232 -730396 -923094 -339497 -305412 -332774 -432710 -276035 -864558 -328192 -404644 -257985 -567802 -145318 -693737 -52929 -945394 -257326 -69233 -735389 -790763 -658711 -403703 -813303 -29938 -137691 -160251 -268561 -468650 -947753 -195928 -501414 -382239 -287755 -912171 -81296 -51710 -570335 -121657 -612549 -828192 -217257 -545577 -170419 -786129 -843246 -302687 -702140 -677795 -671996 -394154 -617779 -138498 -644561 -446005 -339944 -256508 -801279 -946870 -231848 -632738 -481064 -76077 -308808 -350187 -120697 -297360 -825885 -345926 -39679 -29764 -232536 -461469 -480296 -222451 -764129 -723665 -556911 -624211 -621626 -735390 -347283 -485562 -276959 -362731 -426066 -704173 -328187 -893520 -369738 -142507 -1947 -695877 -40432 -61537 -715368 -909876 -300474 -468637 -806176 -338696 -764434 -806137 -407469 -455492 -232302 -923958 -400836 -706181 -672118 -288259 -83224 -717204 -63496 -60652 -21911 -436323 -181772 -952446 -524156 -171662 -701070 -878987 -237871 -236273 -811386 -271787 -475617 -12395 -602958 -491403 -29495 -303263 -109477 -639341 -70700 -577830 -59851 -848084 -730282 -63125 -370127 -256741 -686456 -217967 -195269 -70242 -229564 -397750 -162166 -6270 -954835 -790030 -902231 -144857 -785267 -359557 -904790 -188116 -616242 -48569 -846924 -796246 -369856 -132234 -850760 -55560 -264054 -414428 -162986 -49249 -802835 -32043 -60655 -548969 -283382 -636196 -799359 -464274 -10094 -606941 -863835 -519028 -211851 -810355 -671891 -710771 -670788 -317398 -607461 -730978 -802851 -941110 -396485 -41981 -737581 -770426 -161288 -829913 -764095 -788263 -120209 -514287 -298255 -624304 -37004 -358663 -339529 -340101 -947541 -436564 -602820 -342867 -336272 -316682 -230352 -727023 -835841 -173645 -266056 -750726 -798810 -343324 -33933 -636038 -230115 -375802 -440562 -404825 -211611 -956696 -182675 -149302 -164220 -808719 -167614 -477122 -206296 -114047 -339723 -332185 -809695 -548267 -937407 -101513 -243663 -945805 -777901 -271752 -410568 -663456 -457444 -506197 -365808 -223709 -151463 -902169 -323588 -449581 -910905 -910025 -908272 -609610 -836698 -72102 -193116 -908403 -526817 -762772 -133876 -291527 -451572 -480403 -327788 -788504 -664827 -751987 -730331 -334523 -17951 -913787 -177990 -164350 -114487 -949989 -712269 -398218 -765344 -904498 -237284 -204634 -259484 -948652 -60746 -482294 -787880 -446235 -685748 -254295 -485183 -673648 -349502 -289918 -921596 -489724 -360586 -658651 -842597 -339544 -903513 -86961 -72356 -420399 -162258 -438943 -341582 -564573 -402106 -527474 -467227 -358184 -432214 -275261 -336306 -642994 -432426 -920020 -321324 -485081 -905099 -3362 -627531 -605484 -742866 -597502 -474859 -534631 -667386 -447681 -96674 -648562 -404879 -186915 -105647 -567856 -529278 -778017 -877032 -506056 -470413 -735272 -632818 -63565 -162570 -37798 -362594 -630325 -306700 -44577 -86742 -256434 -428448 -13370 -810042 -802908 -99705 -794919 -366025 -25561 -135037 -793657 -900339 -165781 -175525 -859134 -351054 -297670 -929085 -626680 -765199 -52010 -330325 -738319 -814826 -350284 -21670 -626541 -760369 -102795 -692265 -430445 -466353 -377303 -297547 -919030 -154159 -940396 -705321 -946722 -43005 -600130 -594663 -158988 -847598 -365805 -690745 -126703 -460033 -353754 -511265 -817004 -429260 -517028 -903918 -575320 -510473 -853096 -220540 -872348 -805015 -437019 -800690 -606144 -41232 -665237 -653762 -942491 -305167 -694082 -73511 -241683 -860647 -301146 -618456 -492894 -885777 -851520 -434206 -44143 -712877 -505286 -21411 -863654 -675064 -466540 -163267 -160406 -851457 -90460 -18093 -243783 -705794 -436895 -305852 -684269 -130904 -596567 -317313 -60587 -303310 -466384 -386881 -649387 -912492 -741053 -850143 -822656 -335392 -331493 -617323 -361310 -790554 -858135 -892243 -315794 -253771 -5910 -377385 -333022 -344404 -293015 -459908 -284643 -255121 -316738 -56557 -181178 -827151 -635717 -178516 -264198 -787718 -275923 -648981 -759924 -581928 -339735 -943705 -181478 -301316 -315561 -261974 -8196 -188615 -888919 -581845 -707416 -262988 -916437 -692179 -611507 -564473 -14876 -143845 -132760 -750366 -37031 -294159 -121830 -161791 -589378 -713248 -930280 -576400 -902192 -689026 -920932 -500826 -303153 -295772 -683282 -841049 -436985 -893642 -429117 -763569 -641408 -605686 -605712 -487058 -180542 -558825 -778289 -804262 -208827 -467133 -10876 -315096 -375249 -136989 -321927 -60809 -321229 -249029 -482429 -948287 -360439 -461850 -929786 -30080 -71626 -466819 -766262 -885286 -678378 -41999 -357204 -847875 -65851 -67450 -720088 -10374 -399541 -340284 -755171 -323797 -168416 -854759 -646699 -259337 -686138 -296620 -714741 -146620 -806152 -339292 -31796 -113452 -603615 -431895 -949223 -64447 -14421 -418588 -403841 -206390 -836724 -617409 -261923 -14590 -309767 -223831 -398054 -117169 -226337 -444436 -862620 -12559 -411137 -384185 -117019 -157381 -944883 -283014 -440244 -369283 -455747 -188104 -957004 -282685 -857420 -355059 -679264 -357346 -75857 -278917 -101315 -279449 -94794 -792851 -330327 -883980 -364032 -912529 -732013 -232819 -12518 -639950 -765527 -570470 -640847 -803535 -197592 -347609 -33347 -701265 -541864 -362521 -803867 -302611 -22135 -671304 -726385 -147577 -347106 -295835 -137132 -344294 -388976 -851535 -817118 -747026 -489219 -199311 -538242 -313831 -921403 -128573 -37494 -747180 -475130 -403463 -297219 -933591 -127977 -755252 -228258 -285698 -676433 -750452 -356340 -81313 -749525 -69753 -935409 -488102 -822988 -635461 -820005 -849734 -235642 -278584 -722471 -20196 -126379 -755052 -232664 -953009 -326915 -662549 -276247 -80206 -442340 -793956 -913811 -95631 -577161 -358285 -579788 -503982 -698519 -136938 -579482 -793885 -88250 -343980 -328343 -101914 -55419 -575505 -113670 -807354 -879681 -942939 -752251 -589354 -40738 -68430 -569945 -729092 -716677 -893371 -943050 -875495 -40017 -30678 -556222 -122171 -305669 -381395 -642480 -318665 -253351 -11571 -724340 -398265 -181256 -597763 -412173 -16291 -343996 -390119 -889463 -779460 -693641 -204827 -242834 -732050 -9219 -192282 -723058 -656284 -721292 -704432 -9517 -698874 -523349 -499025 -451157 -654043 -445706 -468627 -742676 -754500 -467060 -276058 -58464 -296902 -511140 -815656 -856047 -371797 -210836 -277630 -625711 -939157 -261132 -83705 -178804 -285901 -784383 -306616 -269326 -537862 -121944 -25929 -773762 -636004 -45075 -657785 -654684 -775079 -427596 -873858 -173823 -651071 -11402 -909000 -62791 -261743 -150180 -742017 -830372 -836467 -537803 -295311 -9778 -695390 -633830 -802892 -504342 -84313 -9912 -244867 -45864 -682391 -466470 -775660 -481534 -274081 -774370 -793842 -329324 -740770 -418936 -485064 -245241 -550877 -403347 -179024 -299653 -813155 -282938 -414488 -425151 -795114 -307424 -122021 -158970 -787814 -878890 -328875 -685472 -339657 -144369 -422694 -96878 -885566 -952398 -369670 -750060 -305864 -648411 -609794 -501113 -664690 -206227 -582502 -97800 -495032 -743722 -602773 -255387 -784998 -502241 -827424 -945652 -453254 -501895 -829441 -619830 -262377 -380731 -571739 -793350 -920432 -601119 -664956 -661741 -170712 -313710 -599154 -817285 -663495 -379412 -83459 -823456 -176548 -865317 -850332 -425687 -112979 -116139 -166548 -9921 -929278 -573514 -156803 -425708 -11818 -120045 -361536 -357329 -354532 -923912 -440534 -824213 -631947 -18163 -527782 -328017 -905117 -55861 -147463 -622380 -23407 -467052 -166902 -656990 -587805 -848762 -323610 -707410 -716742 -60671 -466817 -42267 -136247 -129903 -645980 -215969 -937303 -809938 -861049 -235280 -517861 -115063 -568889 -760246 -125765 -802633 -453633 -252329 -581080 -898517 -793754 -14506 -238736 -493060 -650625 -333485 -491860 -847305 -338848 -170752 -757979 -650826 -273145 -897155 -9084 -420484 -948984 -467912 -27815 -398397 -46238 -450984 -278465 -155669 -505172 -570532 -841258 -96909 -898055 -98342 -237991 -415650 -682580 -28008 -186035 -886886 -695414 -456184 -358562 -209357 -220710 -245941 -716437 -11769 -673016 -456499 -516389 -182616 -798766 -186905 -513506 -393445 -343082 -25520 -697489 -388217 -364681 -344345 -640046 -625028 -503219 -40606 -949357 -12431 -232052 -516623 -579340 -857732 -562693 -851306 -217590 -208143 -426056 -914714 -56748 -16723 -144423 -325046 -444976 -278624 -339642 -676613 -282770 -706338 -334696 -818648 -97944 -357134 -64829 -37151 -230507 -13603 -12107 -328447 -345272 -437751 -654209 -289089 -294191 -769136 -24882 -693762 -742113 -511439 -925872 -12433 -682004 -516187 -897038 -875697 -64589 -550533 -162614 -96571 -492627 -917348 -663694 -770045 -24636 -271660 -843209 -46448 -697025 -356749 -799438 -332299 -600557 -659963 -763664 -18565 -557678 -175630 -232767 -951888 -337975 -14623 -336084 -838361 -263847 -939170 -836755 -707258 -692828 -274201 -197436 -755205 -35659 -563434 -837042 -733761 -765559 -108581 -279459 -496085 -520630 -298362 -161866 -449850 -659527 -110323 -830079 -594079 -280102 -945751 -911185 -632924 -391659 -733614 -289034 -808068 -443647 -23729 -405965 -73301 -816081 -328877 -650855 -379903 -377547 -249434 -334746 -579487 -798108 -797430 -356848 -774131 -153427 -259851 -404834 -47283 -904387 -175033 -151629 -903702 -591165 -13205 -362067 -682218 -938477 -356544 -857501 -75403 -236758 -13559 -922275 -281446 -600906 -837205 -663769 -598869 -46536 -440644 -106253 -476994 -133041 -603908 -181099 -408713 -484051 -442978 -645770 -232413 -141857 -610498 -140050 -301210 -863997 -518429 -670638 -110128 -900623 -652974 -69677 -39197 -321950 -666937 -134559 -502608 -555167 -385257 -206070 -14628 -578630 -667054 -227060 -635088 -20693 -231268 -305166 -279754 -265140 -47159 -455930 -639835 -806520 -13237 -598142 -796127 -736686 -82167 -173023 -825875 -56462 -78693 -76797 -356308 -544172 -628248 -28580 -228988 -232915 -261015 -664064 -472549 -596671 -624936 -856995 -919849 -373912 -112640 -350614 -145593 -391472 -429567 -224276 -504565 -380583 -13392 -340534 -900090 -625594 -867080 -703659 -35864 -276455 -260040 -230355 -760417 -436105 -926987 -434376 -717147 -800789 -760507 -132284 -108550 -663194 -764221 -630773 -236922 -275182 -364135 -704410 -534796 -570430 -811398 -848170 -940726 -343935 -234357 -254571 -438110 -30268 -97937 -112468 -269387 -269943 -868862 -531383 -798169 -303163 -364760 -504339 -906843 -164680 -883402 -747184 -32813 -323814 -314267 -429312 -37492 -144800 -10084 -67405 -310784 -535243 -77041 -880733 -321957 -703999 -13562 -490591 -234480 -903954 -721898 -63731 -217368 -434455 -364638 -44302 -383439 -795192 -342608 -192991 -777090 -892740 -438065 -180999 -449638 -830512 -711394 -449200 -495749 -280797 -924529 -314778 -415047 -599878 -605315 -102248 -10632 -33948 -191506 -894528 -324586 -162518 -42692 -903976 -364891 -303506 -938096 -539121 -396768 -946753 -32204 -293289 -412877 -307102 -893258 -522148 -598202 -45390 -753233 -491133 -830481 -801542 -370290 -772567 -432379 -339882 -887994 -808852 -704187 -893110 -596744 -374995 -887783 -10227 -381043 -629425 -216736 -488984 -732467 -232869 -665890 -349369 -251495 -785534 -190213 -88930 -136902 -823938 -298771 -516358 -420092 -828630 -244941 -418688 -755104 -704806 -346849 -887323 -418370 -562533 -154965 -770048 -418596 -550424 -264859 -368863 -429291 -163295 -264872 -104725 -945784 -681614 -611128 -846265 -13783 -326047 -493606 -235491 -237941 -38020 -458548 -322280 -242986 -83378 -557483 -262387 -339886 -175599 -706407 -879832 -445851 -328549 -671857 -953473 -587511 -98262 -39910 -651666 -36412 -388077 -841062 -179948 -119122 -450610 -807316 -116761 -369261 -190623 -83277 -30106 -853595 -179268 -460809 -281808 -598023 -90757 -228703 -956877 -527948 -104649 -223161 -445067 -273676 -271161 -134014 -178372 -571962 -398012 -845220 -434318 -696433 -534130 -507151 -471218 -165943 -13824 -166452 -94432 -255963 -93311 -83722 -582196 -524685 -331704 -251389 -695967 -315453 -61141 -894640 -514938 -386848 -579339 -474176 -13835 -889019 -96628 -464786 -831102 -546068 -954976 -577298 -825565 -420712 -230571 -108284 -732150 -538347 -322573 -251975 -550579 -335290 -397219 -709905 -839716 -516736 -722140 -634196 -37401 -158129 -765606 -237550 -307908 -49926 -527234 -664368 -58178 -395370 -364907 -609798 -830301 -64740 -133166 -646410 -669978 -915933 -162995 -937922 -170428 -405786 -779745 -249180 -72298 -295770 -767295 -34185 -625052 -45116 -934607 -818784 -906199 -325486 -97011 -861347 -17051 -331563 -677650 -755989 -916456 -430085 -86755 -180522 -609574 -630764 -161647 -566312 -789981 -648972 -206237 -554629 -155399 -505697 -482221 -852985 -822995 -910951 -547107 -778445 -428183 -90383 -915645 -571477 -694339 -62991 -463600 -755499 -949475 -376697 -947848 -619431 -280786 -431880 -166043 -534676 -403344 -742100 -912552 -480161 -289238 -837938 -54645 -557587 -591183 -670682 -671992 -627063 -774246 -404505 -824967 -264765 -828619 -221317 -914964 -857896 -702434 -417052 -344184 -504300 -828789 -56690 -42861 -794839 -228264 -339891 -394533 -396248 -364838 -258261 -634965 -61560 -806865 -614662 -942961 -72119 -11622 -438218 -444495 -173836 -33098 -93233 -223295 -691648 -849469 -46592 -766141 -25218 -180822 -332293 -31983 -758001 -273528 -669340 -656423 -178389 -149962 -260277 -439820 -528729 -52555 -938016 -49053 -332324 -943254 -145658 -77268 -723514 -30346 -545740 -13102 -900531 -61649 -174814 -404198 -323372 -654696 -64471 -664173 -355958 -848950 -221989 -649012 -654541 -660557 -332290 -169454 -517500 -903590 -159226 -491068 -117036 -172584 -701630 -175896 -776681 -615164 -46272 -703552 -63792 -11624 -426524 -666574 -70783 -882892 -764466 -805308 -574260 -331711 -257327 -567850 -431817 -437696 -455671 -605759 -941205 -824681 -838337 -860308 -342924 -549385 -22082 -49037 -504714 -805309 -321279 -43268 -938822 -903532 -297803 -885066 -391635 -820642 -334937 -941661 -145836 -279483 -107893 -281130 -931472 -65435 -466829 -300876 -232318 -276379 -952509 -106161 -22646 -24316 -79304 -294831 -336985 -542062 -24341 -905203 -917404 -556976 -640965 -415280 -30635 -368646 -863809 -254145 -914490 -145704 -127804 -623836 -900122 -185597 -758040 -335598 -23988 -802661 -906014 -817057 -491518 -166174 -58966 -770774 -471380 -440346 -204583 -605978 -479220 -45141 -309677 -486658 -834765 -331752 -925348 -484039 -625828 -188659 -698480 -703131 -938221 -27337 -235731 -658907 -343508 -135393 -779596 -602005 -209466 -134734 -199018 -488458 -647771 -337325 -50244 -316660 -741323 -149212 -587976 -699345 -926254 -514959 -772535 -68459 -18946 -526102 -346896 -880435 -260710 -175101 -773937 -463580 -504396 -178527 -281544 -799085 -162112 -828514 -380612 -942229 -126664 -13072 -205458 -60924 -570357 -618584 -470565 -165253 -956701 -275955 -566467 -423332 -301429 -636141 -368373 -226518 -427595 -180981 -363248 -265622 -932801 -480122 -313306 -57582 -661485 -208145 -296934 -244401 -67441 -610550 -814145 -289418 -828645 -380162 -829811 -262396 -650475 -673054 -698305 -137597 -939828 -12220 -874359 -33111 -523645 -714024 -566817 -94778 -468345 -139964 -915638 -279270 -852729 -593909 -894543 -461323 -524602 -837939 -608414 -868711 -275102 -492655 -15883 -35165 -911322 -825869 -48705 -894350 -20949 -10350 -279281 -518536 -766656 -204437 -10335 -438021 -284859 -667102 -231270 -695980 -330584 -676403 -248529 -891879 -726783 -376488 -755304 -658767 -673189 -279526 -48126 -564305 -102799 -332950 -577450 -368260 -534117 -875255 -521660 -17462 -769127 -939459 -859809 -377214 -474663 -370062 -772310 -854730 -750493 -821351 -96537 -261364 -611393 -125425 -151871 -171486 -249324 -500773 -485397 -515366 -119920 -942943 -693328 -774146 -477130 -369731 -601122 -309836 -52444 -328674 -27959 -954403 -570126 -591239 -512330 -858178 -863758 -579086 -956316 -458148 -872653 -84913 -84541 -712095 -817633 -645580 -433236 -336287 -12263 -9929 -680657 -467009 -764727 -903981 -731041 -18181 -231191 -495874 -37762 -851313 -102284 -882742 -348960 -742036 -449437 -52345 -397393 -687862 -275478 -938427 -898247 -298887 -907772 -801223 -399505 -696328 -522872 -422740 -639957 -633903 -300236 -580488 -534254 -77824 -390648 -229753 -734966 -675552 -697674 -315012 -339540 -361390 -386340 -369344 -593671 -188929 -272629 -395156 -737593 -633651 -168300 -21324 -247262 -154158 -602688 -121058 -572005 -451609 -507718 -120208 -178054 -693030 -851142 -409803 -883697 -9915 -812576 -171447 -267904 -546608 -27968 -19404 -13780 -627375 -303563 -342246 -849577 -391666 -681431 -803640 -10887 -563646 -46570 -462721 -933105 -707456 -349158 -236027 -71317 -927864 -955326 -136656 -432697 -741086 -771190 -172108 -932570 -890635 -694318 -275640 -38866 -885541 -56663 -288001 -856007 -75408 -380623 -701315 -420052 -956489 -917268 -661286 -646143 -49076 -485770 -523762 -238821 -791995 -153443 -336333 -369869 -369320 -696131 -771884 -401022 -22076 -379289 -40779 -808994 -829873 -192357 -175127 -224342 -524061 -524994 -630153 -173608 -161827 -403711 -830974 -738249 -458229 -733685 -380694 -442342 -122748 -32920 -83298 -358411 -819716 -245469 -828698 -751422 -74515 -128878 -725849 -308326 -763886 -188371 -913736 -108188 -682155 -197495 -826121 -832905 -395592 -363788 -955876 -698396 -111317 -619063 -37448 -690517 -296650 -74006 -929083 -434835 -807935 -717569 -651503 -836182 -239741 -752259 -806291 -767468 -329073 -674388 -48814 -447221 -88657 -569271 -281534 -25192 -40649 -617316 -461579 -178267 -712133 -863936 -855916 -629962 -77169 -96372 -78306 -196768 -238797 -349163 -203787 -1561 -679873 -120232 -221485 -420475 -619900 -334680 -563087 -164658 -950545 -371102 -207576 -463760 -64593 -693071 -328601 -314762 -678012 -756005 -52811 -488330 -289109 -163945 -106114 -293334 -221546 -176740 -319934 -875575 -404954 -399103 -544207 -315439 -334340 -590936 -653297 -238968 -827229 -527573 -285413 -623626 -356828 -294995 -281315 -771295 -730175 -239124 -79299 -274569 -467327 -800028 -179036 -81935 -262603 -581872 -167708 -810801 -759729 -287027 -32201 -426650 -219020 -716644 -597929 -362795 -8538 -271267 -408552 -772222 -762412 -287524 -207046 -382579 -262186 -666963 -450885 -506189 -57221 -159551 -257653 -946643 -638275 -29617 -297589 -551393 -206394 -15010 -160151 -240425 -211842 -179280 -814407 -774197 -66357 -936154 -665380 -524784 -459504 -800749 -913094 -359957 -450835 -639558 -387503 -394213 -663651 -387869 -788395 -134179 -810723 -430159 -931425 -291537 -223781 -765316 -391745 -781685 -593135 -864803 -478186 -710803 -857946 -385916 -244905 -199140 -495708 -738203 -408422 -444449 -656289 -232497 -137168 -230341 -275896 -555323 -645465 -459835 -600113 -205373 -908145 -956955 -432762 -84702 -390548 -733167 -489726 -803487 -940427 -952920 -339825 -886897 -797761 -249349 -828987 -753470 -662206 -145921 -245954 -617980 -324190 -559007 -863649 -758077 -281484 -9833 -933012 -910214 -848022 -633785 -168229 -814573 -604173 -461312 -27714 -386997 -785854 -811947 -693560 -34727 -901641 -388781 -442657 -389712 -476969 -308931 -187924 -806557 -137231 -328224 -501987 -387523 -18724 -147309 -951435 -674300 -292849 -567980 -513377 -656148 -113156 -168136 -650048 -868928 -520038 -673825 -910721 -349572 -222162 -67657 -377411 -213546 -825076 -375101 -200444 -10606 -318582 -297882 -78709 -422877 -876936 -287932 -158814 -60010 -293539 -322349 -95149 -113167 -437352 -245380 -205235 -779153 -380692 -332598 -518603 -257521 -456473 -696509 -93289 -272996 -70785 -357107 -380137 -759594 -832991 -806845 -866930 -315171 -330215 -465561 -86125 -258181 -686376 -257191 -694834 -163114 -83498 -903814 -838194 -942268 -577906 -492656 -534754 -173616 -223992 -693242 -458101 -26940 -422935 -606583 -88369 -69727 -68762 -270719 -775704 -106728 -652551 -941966 -590727 -909578 -759560 -376419 -315807 -603845 -443935 -886827 -892979 -492450 -151719 -943670 -157383 -102165 -224063 -433423 -482697 -546638 -930674 -847676 -42903 -667166 -849702 -229772 -801277 -835130 -853063 -556346 -922000 -888241 -97461 -782537 -26907 -404621 -125740 -457765 -829987 -903670 -149827 -248881 -806024 -258718 -861348 -809858 -854864 -228206 -288611 -221516 -254884 -536512 -210663 -237922 -657388 -22849 -126065 -726995 -517631 -362360 -715413 -415270 -893386 -25579 -747072 -44792 -343999 -10504 -16223 -553962 -19428 -282976 -26635 -777521 -439320 -239550 -910336 -362189 -412386 -528292 -162025 -938296 -667301 -337833 -205108 -235855 -846538 -56549 -405064 -7788 -193174 -439421 -240226 -18442 -391800 -677057 -119385 -198818 -834188 -849715 -633107 -802290 -702086 -179387 -568189 -581020 -632401 -274796 -596084 -312101 -767013 -888954 -818403 -166970 -612780 -939703 -426246 -582239 -274549 -366205 -726621 -193887 -895569 -943656 -884553 -191382 -331233 -205456 -482527 -411774 -831429 -736594 -569917 -850820 -245130 -123097 -726411 -485695 -434699 -664902 -48641 -14829 -117212 -341659 -388043 -446428 -5214 -749518 -431809 -274948 -571795 -674226 -64316 -756705 -185129 -222087 -645896 -955303 -914170 -460237 -263281 -560267 -939896 -205352 -606349 -244690 -901860 -476102 -467440 -155485 -638878 -175237 -480012 -469232 -196762 -14721 -369451 -651634 -136609 -248537 -700272 -8456 -602795 -36529 -79235 -260346 -904134 -512388 -598060 -200435 -41084 -919948 -124551 -165878 -429112 -623330 -440280 -704139 -641050 -246039 -324111 -674530 -254504 -298043 -593940 -429186 -768705 -859380 -111658 -800851 -127954 -234628 -633545 -633581 -356944 -711753 -641393 -251403 -937232 -356150 -262492 -870706 -526663 -832668 -854575 -648724 -204561 -649974 -62493 -945480 -343072 -905215 -921049 -137002 -133354 -664416 -35078 -490352 -404714 -472591 -126630 -475097 -797074 -579207 -845170 -103750 -861238 -167544 -809170 -460569 -848931 -717619 -817774 -129648 -316193 -151404 -172521 -888326 -154341 -66053 -596630 -609179 -711933 -172752 -567948 -847709 -914296 -276267 -41136 -899723 -172944 -34064 -1621 -323970 -773962 -390140 -442864 -434338 -796095 -686791 -758490 -748061 -938290 -861659 -500762 -331508 -567006 -67040 -821118 -229255 -824911 -699464 -329124 -412910 -713174 -563153 -72239 -229950 -133081 -283159 -699147 -588601 -364757 -349433 -934787 -704481 -432739 -953143 -865653 -31292 -945099 -527026 -502275 -181228 -627752 -814554 -224293 -439424 -171156 -192741 -289292 -105576 -627618 -434110 -132622 -99802 -597429 -676683 -829802 -516756 -754971 -808990 -337932 -704471 -475367 -447981 -776346 -639917 -122776 -204888 -666123 -125381 -810817 -716336 -116793 -173419 -241928 -569814 -17400 -693093 -222054 -742805 -51086 -456309 -475279 -603218 -404792 -745615 -668500 -699030 -305342 -257423 -594085 -775531 -318096 -674726 -640020 -450564 -268883 -710472 -206257 -491775 -369803 -52270 -205085 -180194 -715454 -390995 -121958 -541772 -687872 -664960 -927204 -870439 -363693 -723375 -42719 -393155 -41178 -487190 -324862 -782573 -682319 -693929 -501187 -598184 -101924 -747483 -187953 -732649 -179319 -217425 -372157 -689606 -437976 -313872 -162094 -737027 -437472 -356837 -553486 -419235 -271193 -704440 -444957 -254618 -830343 -101170 -162808 -786292 -898681 -178975 -936605 -298445 -931754 -884803 -52336 -488461 -559571 -115186 -623274 -176469 -533608 -932880 -664730 -684626 -785286 -114305 -638331 -534387 -886900 -386053 -849600 -121592 -97539 -677874 -892974 -881857 -285187 -749129 -849517 -223783 -754769 -16304 -728586 -674556 -427581 -242364 -932278 -390491 -329163 -778093 -323225 -198798 -886196 -88873 -356033 -269006 -162985 -86597 -527780 -358315 -636821 -429439 -178272 -396694 -328534 -950799 -763180 -83524 -945307 -458584 -219207 -563392 -604119 -227964 -49481 -808198 -55370 -575668 -925092 -300641 -942219 -408351 -208495 -788726 -301139 -297708 -41362 -30238 -563118 -83874 -687345 -606703 -125161 -557945 -662121 -651944 -779950 -147343 -109933 -326392 -40416 -10477 -758271 -744330 -751944 -873800 -695957 -384132 -96404 -562218 -522884 -897550 -599849 -226185 -231018 -139706 -902727 -7864 -34141 -25995 -559201 -770662 -120015 -307000 -110350 -284570 -642835 -904769 -571678 -41385 -574463 -569808 -222114 -450351 -480482 -83614 -134986 -335521 -57181 -743695 -271893 -794741 -707372 -655340 -603220 -182840 -186607 -663713 -858516 -104855 -49727 -661963 -30492 -742620 -913065 -525035 -187914 -734933 -34496 -108890 -276427 -255496 -950557 -83593 -116081 -764035 -357069 -668597 -126228 -917763 -324110 -180093 -118606 -405697 -699580 -585792 -913042 -382974 -516260 -512353 -630420 -166470 -768849 -14916 -626904 -569798 -240603 -295757 -23073 -651643 -246924 -260129 -627984 -601251 -930631 -395323 -500998 -349839 -714183 -87024 -449690 -704159 -364730 -736948 -12207 -113497 -46435 -854738 -806854 -189007 -328519 -86059 -899717 -603619 -186937 -38874 -899570 -669819 -789137 -921664 -631706 -172792 -758939 -144476 -783938 -916016 -277879 -199364 -824542 -64759 -19988 -279398 -480019 -906413 -59666 -725585 -161503 -306863 -212847 -390521 -288072 -97811 -402147 -808063 -753099 -450538 -81289 -660125 -70722 -763644 -923867 -320983 -732330 -563536 -180598 -772355 -658553 -232687 -222103 -556876 -6258 -247639 -179164 -597979 -556840 -393616 -692936 -531260 -160670 -490649 -245858 -568339 -455475 -248984 -176013 -348842 -638673 -333603 -449058 -566563 -277762 -181683 -863660 -950468 -501769 -855455 -232749 -432964 -943271 -570443 -300680 -262763 -115665 -834556 -94604 -673687 -787642 -330834 -141685 -716561 -382198 -545007 -835011 -65628 -453973 -490386 -124235 -568278 -458346 -261699 -31105 -732588 -50256 -824835 -39959 -327366 -240502 -277303 -627602 -848538 -48647 -83582 -625763 -85928 -704031 -786534 -892463 -229060 -274980 -932065 -534869 -303670 -364121 -221338 -279445 -255810 -281317 -618183 -498117 -771973 -773222 -335630 -658421 -374970 -335914 -692871 -248955 -255195 -706909 -814925 -538175 -29736 -514126 -543106 -741837 -803240 -533960 -556750 -91118 -613078 -427126 -581579 -71196 -194838 -650464 -629684 -245319 -841625 -704284 -148296 -20342 -192984 -17290 -511880 -146396 -833513 -46087 -78447 -16578 -768001 -47296 -325512 -466840 -791690 -512675 -66818 -551327 -758341 -815814 -239429 -339454 -524488 -320613 -136732 -490048 -945745 -40697 -712012 -439384 -208597 -606736 -437813 -215903 -215452 -51516 -9526 -897238 -152921 -61929 -710037 -682725 -642702 -951882 -609755 -849592 -626704 -287740 -516915 -280620 -523827 -655612 -29367 -334277 -593921 -693136 -588223 -855825 -713180 -25337 -285182 -43902 -939834 -646178 -24951 -356170 -343248 -651959 -736345 -824854 -874529 -20154 -183299 -849558 -885842 -220852 -379457 -55777 -699631 -101775 -938747 -956063 -79088 -739471 -431973 -710943 -695904 -648772 -119304 -354007 -836291 -849925 -893701 -894041 -271083 -777446 -533095 -696057 -335307 -655468 -874174 -357223 -916627 -770675 -846666 -835081 -707455 -478346 -362350 -573878 -90393 -21389 -623661 -696122 -424408 -13551 -616579 -11593 -555062 -424152 -577231 -740519 -818792 -440464 -818001 -907811 -545997 -72046 -941519 -46446 -144516 -198173 -456823 -372958 -779224 -616414 -520712 -721196 -234605 -828357 -693851 -479582 -82510 -434133 -402762 -806614 -777453 -590717 -772523 -857229 -479080 -292176 -861047 -124609 -16744 -136316 -502532 -912434 -428861 -937037 -403756 -150876 -674877 -62051 -934542 -514349 -852715 -147142 -71203 -439703 -386130 -535474 -483909 -333665 -683304 -836064 -297551 -339653 -506071 -44223 -136378 -525523 -52625 -411266 -348529 -547381 -436874 -899772 -682471 -379434 -604832 -451365 -139748 -806104 -625596 -294745 -83387 -691828 -738060 -640857 -366149 -823956 -322687 -699394 -750538 -902974 -192348 -751381 -541712 -328007 -156471 -755137 -937856 -884376 -900013 -64521 -42014 -574655 -22868 -839616 -443762 -586383 -616493 -768991 -461503 -171182 -66329 -12995 -505457 -282870 -813396 -440452 -643020 -363222 -839254 -292578 -711377 -632450 -485131 -64763 -418785 -844350 -638587 -541242 -693256 -652610 -13974 -653506 -848971 -675278 -801899 -153146 -736433 -847477 -475137 -314631 -588995 -404039 -176196 -380683 -461298 -152325 -525801 -78037 -492283 -83828 -814623 -478979 -662705 -68614 -896104 -387902 -310071 -178580 -228125 -358076 -356887 -255224 -235801 -113200 -241651 -235513 -818632 -137818 -230388 -501055 -271369 -72714 -766291 -727170 -526199 -664944 -937120 -460381 -658309 -286757 -234020 -771688 -47606 -13252 -121950 -62974 -236887 -571814 -827060 -880462 -46675 -837855 -642837 -446434 -884283 -105489 -579940 -506029 -514725 -332217 -258362 -339204 -848329 -901857 -551874 -249220 -420993 -340550 -432356 -280233 -649019 -97941 -483871 -108274 -751423 -766271 -215709 -95295 -904060 -235471 -339128 -166037 -859227 -606578 -125903 -562763 -791760 -934312 -824584 -176518 -50203 -260965 -684721 -43164 -721878 -40673 -364262 -738555 -164877 -258868 -340665 -941804 -785471 -158232 -842601 -60792 -436035 -33500 -635525 -937027 -393860 -734479 -777363 -704005 -926574 -303246 -543259 -169557 -73792 -31242 -205363 -945697 -303755 -338419 -864069 -769887 -812714 -398465 -591453 -837067 -900177 -539792 -847223 -525201 -731140 -813912 -297114 -298416 -370286 -64444 -452078 -301390 -618368 -38537 -84607 -291827 -502811 -654232 -55701 -757824 -863648 -298035 -158197 -207585 -68276 -631661 -283013 -809485 -659648 -355363 -690957 -94524 -810326 -71728 -129391 -906713 -495797 -426748 -849023 -167494 -90035 -279037 -894820 -627880 -515704 -449049 -851573 -293929 -523787 -835111 -916930 -150966 -702541 -693789 -217724 -657385 -375710 -275026 -935840 -784871 -364301 -853990 -623066 -288085 -326528 -126853 -536006 -21988 -699477 -821386 -479338 -598389 -158000 -816770 -649666 -777301 -457419 -940859 -510106 -864808 -518799 -696216 -602911 -414250 -349005 -955654 -189521 -742644 -427569 -300406 -374931 -185410 -587139 -87008 -648616 -755296 -240375 -377347 -534860 -624303 -579150 -788485 -228952 -158973 -146425 -524264 -9527 -580945 -251732 -778297 -945944 -466247 -94090 -355215 -420494 -704999 -55706 -195774 -356406 -328644 -639809 -570427 -47782 -612793 -609021 -75985 -588040 -38172 -356861 -37264 -17954 -485724 -480364 -527174 -559139 -209498 -568911 -639518 -511643 -849151 -343109 -841997 -397269 -761275 -367038 -493871 -84890 -534390 -64795 -306857 -412676 -418680 -314968 -666826 -770335 -264160 -642819 -319227 -145749 -921928 -919856 -570734 -82536 -49489 -626992 -736094 -361686 -743277 -789675 -108007 -906746 -848383 -849510 -58953 -241219 -58987 -456314 -78464 -138394 -7074 -783865 -184538 -13589 -948453 -40622 -470328 -38902 -852823 -536388 -7727 -162920 -368105 -192654 -705223 -357181 -308001 -686340 -437503 -564589 -371038 -321349 -428857 -442979 -611182 -550013 -580541 -932998 -775258 -154657 -625242 -817263 -922452 -785586 -251997 -411751 -75115 -699678 -184178 -848370 -89336 -113440 -796873 -136317 -30452 -868660 -289163 -11267 -397090 -11795 -262769 -855662 -825633 -61746 -573516 -469042 -390860 -51333 -424484 -830038 -354028 -78481 -602909 -208530 -868143 -938020 -109369 -787840 -62992 -741209 -387042 -677724 -241798 -412232 -110142 -468825 -464021 -683883 -336979 -360819 -860525 -829708 -726098 -278884 -339695 -686270 -66076 -46114 -315089 -782598 -326570 -618189 -200718 -442896 -673698 -76010 -89294 -523653 -822323 -11948 -58532 -951508 -836198 -869949 -394698 -505475 -365285 -693395 -775433 -733078 -598256 -365480 -41134 -677327 -78903 -162801 -307883 -941014 -254808 -648126 -139845 -551432 -776651 -336953 -951506 -578903 -608570 -41214 -765762 -140790 -738369 -246439 -387017 -950905 -458187 -343278 -653508 -787866 -542293 -69968 -170466 -147034 -660551 -342480 -656576 -235689 -177652 -806371 -12244 -120601 -841044 -678773 -661917 -817867 -54859 -27497 -429107 -124617 -786193 -761128 -771233 -431789 -96317 -690198 -902695 -449862 -194196 -948810 -202489 -575202 -369374 -534699 -98878 -391363 -293783 -62830 -384260 -673369 -921133 -684187 -350567 -918668 -334785 -587251 -136467 -743266 -15959 -919571 -479905 -750936 -89929 -279080 -652976 -74130 -544535 -139253 -856940 -261967 -605909 -820963 -684192 -930743 -264057 -649572 -538280 -167074 -333744 -637030 -169717 -713032 -448884 -440246 -90161 -703645 -123437 -181259 -595560 -642652 -825410 -407159 -914603 -282006 -648520 -232311 -431768 -428292 -920464 -770987 -940680 -78471 -258174 -69761 -786233 -596194 -163089 -764120 -277072 -165919 -168889 -888252 -674752 -709498 -920358 -207378 -477427 -834431 -699021 -939525 -343822 -358407 -436976 -156732 -314775 -20016 -294896 -402163 -153123 -180281 -254158 -586713 -271282 -263712 -114048 -910455 -565236 -179487 -309650 -41620 -204774 -270845 -300056 -254859 -277530 -239149 -514039 -795080 -20371 -763835 -384165 -934620 -935164 -921141 -827635 -761459 -11040 -955316 -128416 -343636 -25494 -955860 -825861 -270639 -652592 -25188 -533290 -255626 -32224 -482899 -286947 -112797 -274116 -405724 -921176 -755509 -321369 -412403 -371974 -147176 -418778 -786614 -638042 -121655 -579432 -31100 -18684 -749930 -931055 -827274 -737868 -184227 -117073 -777954 -429673 -640651 -137193 -12029 -822154 -926838 -505963 -412314 -356462 -154155 -361527 -244682 -239518 -806108 -239738 -673478 -12084 -914303 -425895 -947789 -504262 -880266 -164674 -768963 -66555 -343086 -861325 -777989 -597124 -10503 -935688 -387857 -260247 -648902 -843281 -539803 -757378 -772770 -18199 -802645 -611553 -650613 -568728 -915636 -864100 -446241 -477307 -883532 -14817 -796692 -223820 -671403 -775654 -165415 -738064 -797629 -365368 -861339 -133855 -47347 -150406 -936428 -179173 -632958 -239227 -699801 -580989 -703113 -651856 -608656 -385960 -760495 -59085 -664698 -637875 -518376 -656195 -749590 -407440 -292724 -24686 -346738 -531857 -496127 -239173 -12645 -292627 -743180 -222155 -302418 -86474 -853800 -405829 -13390 -375504 -908615 -306779 -12515 -376995 -1142 -521823 -235316 -275745 -56722 -241178 -501643 -419511 -236797 -768751 -741820 -470708 -100233 -828329 -362610 -141818 -529261 -831019 -286048 -428608 -285638 -672879 -852816 -899319 -680431 -570400 -325367 -211464 -288542 -406001 -847784 -533938 -343352 -786964 -863512 -886473 -442682 -926425 -791993 -400751 -571486 -356626 -521467 -49971 -589886 -816045 -13434 -207379 -229755 -342481 -773853 -750684 -709902 -488209 -148615 -155222 -805444 -28202 -40927 -238789 -286851 -314852 -365709 -301595 -188547 -921366 -351942 -97447 -747918 -281482 -369341 -755005 -292731 -643755 -357259 -44283 -762587 -132018 -923624 -44085 -11774 -696616 -325953 -419972 -113115 -543840 -111809 -64739 -95168 -270238 -673756 -447319 -9371 -326413 -801036 -745357 -231375 -793246 -254877 -781551 -857589 -64228 -648276 -539499 -137190 -169227 -848730 -729442 -41102 -611600 -10641 -879158 -80204 -106359 -629427 -812013 -769112 -325616 -884459 -753104 -951078 -450636 -268939 -377516 -315710 -861324 -223249 -847220 -364924 -193065 -277081 -457725 -475370 -204093 -671288 -639342 -505888 -383774 -134511 -637079 -375809 -778421 -562928 -151372 -532518 -28837 -802614 -679686 -415084 -173771 -421127 -304041 -102999 -920431 -504729 -672717 -161167 -600689 -719096 -302043 -118036 -902801 -368944 -265993 -300803 -702167 -885285 -441658 -381236 -769728 -713541 -904194 -482116 -935858 -649052 -44294 -199669 -606407 -72249 -391711 -523746 -890230 -811840 -312579 -151399 -723297 -606646 -466566 -442988 -322455 -646106 -733497 -236185 -751432 -699693 -33214 -285442 -410770 -789965 -870468 -193045 -325938 -632698 -183178 -889057 -364986 -92240 -594817 -168361 -87083 -312077 -125077 -396685 -364842 -236280 -308382 -285449 -676355 -648450 -594690 -612319 -507455 -442093 -814730 -921455 -40758 -956591 -494937 -794689 -55128 -818190 -402286 -266869 -765711 -489368 -66561 -635784 -627241 -339154 -390309 -70243 -776878 -748608 -445002 -315416 -108872 -357245 -596607 -234408 -344363 -64745 -514379 -540931 -650888 -618251 -945411 -428009 -294361 -803121 -86426 -543747 -932119 -418360 -147294 -483297 -474604 -634561 -236117 -658679 -458472 -431636 -356865 -939531 -541455 -70954 -111398 -33735 -195262 -298535 -110396 -500242 -817498 -140011 -755482 -282522 -174695 -857278 -11872 -165951 -445139 -678140 -636000 -775415 -591833 -11366 -387092 -279320 -718291 -761945 -34042 -11776 -13248 -396775 -636081 -42696 -876126 -319738 -126225 -128244 -297528 -106823 -6019 -52386 -501696 -686617 -791326 -522464 -313773 -174726 -479151 -473350 -175777 -263119 -864943 -688860 -693262 -679912 -237366 -778336 -184575 -455817 -342902 -167725 -124666 -606310 -288637 -866801 -204688 -836044 -475870 -633933 -891501 -889765 -673988 -926528 -422343 -111863 -268573 -775511 -730340 -35184 -165671 -70579 -396383 -764423 -460393 -183475 -454522 -702212 -501381 -506054 -539768 -286775 -12466 -90493 -5217 -946717 -666753 -348346 -606620 -23629 -934603 -277506 -880223 -120476 -731511 -10017 -305422 -791815 -455725 -839949 -268208 -349203 -368494 -707377 -514479 -820553 -136699 -602098 -947688 -623543 -265244 -398941 -22155 -627138 -361562 -852399 -282688 -889827 -930727 -488131 -909651 -275393 -811721 -397810 -768442 -795613 -752795 -598133 -430480 -93517 -904815 -39956 -883608 -649284 -306785 -191557 -424097 -330547 -288231 -768715 -675062 -350475 -350971 -594527 -282835 -164966 -895721 -412040 -514632 -362527 -745444 -853239 -444393 -126117 -805867 -812585 -803276 -851075 -936148 -758345 -454339 -143775 -569904 -296739 -393392 -442020 -371281 -137614 -185963 -899126 -308878 -347047 -403248 -300517 -147298 -172367 -255488 -520878 -147634 -830795 -854751 -205554 -432718 -422741 -125627 -592964 -19460 -132349 -237079 -889206 -930290 -29444 -802648 -71269 -606763 -657240 -765378 -52623 -148614 -946100 -239236 -930059 -946792 -952406 -92965 -428514 -791390 -411149 -830729 -383905 -288906 -464402 -825413 -310296 -850052 -689349 -762757 -764525 -303646 -457703 -70177 -117830 -226817 -64682 -704129 -256783 -13636 -340506 -361958 -861114 -426790 -939370 -278744 -33049 -328971 -433405 -859148 -457639 -481813 -251407 -230632 -59996 -342273 -785913 -733451 -279013 -26304 -797714 -129720 -693757 -479436 -733322 -265874 -871157 -141146 -91119 -240408 -951449 -793642 -362697 -728025 -754661 -288393 -605266 -632017 -294595 -113097 -72109 -411222 -236032 -797969 -400660 -164340 -606360 -229608 -921919 -176458 -56629 -571318 -554857 -848809 -108492 -218638 -297774 -795356 -871211 -253352 -851100 -368913 -281904 -483662 -644701 -432080 -143476 -248900 -584460 -579693 -108040 -45112 -66422 -282985 -498591 -13707 -24831 -735492 -157126 -685359 -741445 -846763 -889274 -573813 -11906 -276288 -897626 -243946 -343395 -55116 -310574 -382865 -639317 -865304 -173643 -514818 -864981 -453076 -828047 -511083 -750323 -711341 -954126 -775679 -524715 -10092 -857512 -229721 -58373 -763837 -408832 -465065 -653218 -768591 -821060 -126217 -779773 -730666 -701305 -941482 -416786 -402265 -505733 -700446 -898005 -632920 -273146 -270915 -450043 -612852 -772184 -181372 -930600 -38481 -888006 -356901 -750361 -439768 -69852 -449242 -864917 -676299 -680605 -501714 -849879 -415587 -738003 -294834 -502994 -372052 -601481 -81557 -38168 -79319 -20267 -826147 -281192 -452028 -176446 -693712 -598008 -589950 -25560 -671730 -923011 -521697 -338491 -703809 -945724 -927494 -771376 -54809 -150308 -724381 -529020 -20414 -853706 -90551 -667307 -236889 -724440 -480196 -530723 -569868 -909376 -534227 -11453 -598830 -411291 -427275 -367628 -206073 -222167 -768022 -496082 -598013 -258263 -820093 -434119 -701216 -764251 -621390 -57031 -764509 -56156 -388858 -627876 -398438 -541453 -24568 -309366 -379898 -497894 -43817 -353260 -24480 -423420 -158171 -187879 -938601 -763400 -301001 -110506 -248527 -782408 -268985 -764435 -639980 -43717 -902746 -59573 -942006 -303586 -893864 -635923 -516506 -454647 -120176 -242864 -947826 -575187 -941773 -21979 -187357 -251837 -938258 -673849 -749030 -956671 -33108 -892404 -119033 -901139 -195848 -83931 -229811 -102349 -234268 -160941 -767521 -623233 -278680 -486635 -442481 -927208 -784770 -671225 -262953 -863362 -857957 -341720 -466852 -54165 -148562 -873739 -11387 -770038 -854611 -64409 -533914 -573609 -582325 -183324 -298414 -91045 -155377 -303288 -894509 -912662 -49907 -147466 -303073 -10138 -832884 -349333 -866827 -693536 -560480 -929914 -943737 -273183 -467367 -755874 -921377 -189011 -861817 -952114 -344253 -369875 -739386 -851135 -81906 -55705 -908261 -75881 -25092 -243148 -96163 -95187 -142317 -3496 -268283 -821124 -937228 -934909 -61845 -326123 -547300 -167919 -550328 -440058 -447677 -7516 -850993 -927332 -42907 -166012 -704063 -455619 -64808 -464727 -432579 -556283 -940308 -13645 -782258 -873756 -810715 -797634 -504587 -936701 -436879 -177470 -702204 -755365 -567929 -786190 -31121 -383235 -938469 -321495 -782183 -141654 -467425 -708937 -697010 -606795 -904880 -85152 -806565 -663802 -325456 -257184 -164879 -323022 -61741 -886044 -466975 -150768 -564487 -12416 -362245 -403789 -813225 -855853 -579872 -101031 -717739 -653528 -751334 -830657 -930456 -415167 -226903 -160620 -364409 -600522 -732285 -752979 -351666 -354610 -298468 -151480 -423726 -81212 -947074 -83909 -125140 -36730 -257380 -705013 -62216 -950745 -602439 -322490 -141631 -802853 -712265 -562093 -782257 -344330 -257787 -952151 -324616 -866835 -436355 -132680 -224876 -238144 -741629 -533414 -41402 -722160 -832619 -945803 -292544 -34687 -494594 -328020 -118361 -773819 -466532 -801412 -92544 -527424 -139456 -805999 -821712 -108286 -256906 -701693 -439900 -567918 -664232 -4174 -771581 -172434 -86714 -479149 -466922 -767607 -454930 -847874 -742829 -327386 -282813 -543551 -185556 -778529 -849549 -951922 -622781 -757962 -781140 -137093 -638080 -786036 -101920 -709323 -605975 -402993 -790345 -43419 -11613 -59086 -364858 -191455 -155735 -276851 -721101 -67786 -465041 -716479 -570429 -948735 -134476 -569233 -217773 -263708 -278330 -22248 -571402 -12844 -110261 -642804 -900037 -350806 -342339 -144392 -268262 -735344 -136754 -363865 -442887 -534865 -429806 -827740 -849504 -466113 -45678 -918059 -803091 -270189 -196954 -751624 -496068 -146997 -142364 -511039 -201754 -461875 -277270 -648036 -210855 -327692 -84381 -699651 -879971 -577130 -34558 -151831 -69159 -105106 -384089 -925655 -617204 -664889 -423085 -575451 -851587 -235515 -179379 -467161 -290916 -669131 -5577 -527864 -600861 -892995 -678728 -147590 -252708 -377201 -314112 -702346 -240477 -20040 -81455 -235358 -849464 -433037 -417020 -932530 -328327 -409138 -10198 -756749 -855800 -85923 -921124 -164437 -405422 -286986 -55581 -935655 -13571 -742415 -191454 -7453 -726711 -874194 -579695 -474431 -926608 -714740 -183209 -556339 -600199 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ss_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ss_train.jpgl deleted file mode 100644 index bc12b28dd4b2faa3002449db7f0055c731b0565a..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_ss_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -281044 -395557 -816100 -364937 -954976 -800886 -635560 -70700 -808261 -212056 -537803 -291899 -805316 -643772 -303073 -482487 -737356 -235869 -90866 -771287 -575451 -198429 -834029 -175074 -683304 -751461 -928199 -807452 -571647 -443647 -848157 -831352 -637385 -86698 -269538 -874174 -925212 -429806 -139220 -280291 -116289 -147582 -350294 -843246 -395264 -103084 -339542 -633638 -820717 -672118 -26635 -181772 -349279 -516735 -134823 -357032 -514959 -664902 -693965 -669135 -695439 -580488 -512016 -703858 -372393 -944291 -847220 -443935 -633587 -674659 -74063 -222055 -730555 -40736 -284945 -564573 -818001 -797603 -524464 -74293 -699313 -41065 -146585 -848835 -437848 -622380 -917443 -362168 -284362 -664368 -854730 -644380 -333573 -653028 -188371 -790750 -288199 -571777 -228155 -738099 -293431 -698480 -896903 -108832 -861324 -49356 -109469 -663740 -165587 -696433 -11512 -350972 -734927 -141818 -822953 -69753 -432356 -181001 -344253 -716268 -215709 -902169 -847477 -925862 -137691 -617257 -638080 -522182 -718159 -779950 -850681 -724481 -894753 -64436 -879673 -903446 -466510 -229867 -674342 -73135 -501842 -832592 -172695 -665036 -260346 -141305 -8456 -673988 -721292 -19866 -802290 -426650 -344333 -695517 -400751 -259851 -334340 -185556 -27750 -287004 -806845 -689457 -46087 -940766 -800851 -152325 -487059 -873739 -669686 -99074 -732039 -198620 -301316 -379484 -229811 -222108 -257280 -902194 -276533 -570357 -224583 -555167 -390387 -755029 -236981 -324110 -742676 -152783 -463633 -180759 -770185 -745542 -346076 -692125 -425946 -223161 -386643 -249440 -534936 -674426 -342942 -108571 -340071 -335263 -106941 -706942 -18442 -527641 -410430 -906099 -643755 -753913 -717042 -662399 -420993 -591730 -481883 -704999 -339792 -802966 -846652 -892310 -330613 -605869 -272629 -439320 -308808 -210804 -274614 -883980 -405959 -661019 -656974 -548969 -422694 -109815 -273696 -203627 -289292 -244228 -77647 -739791 -34042 -829987 -293920 -803471 -112979 -676821 -913827 -941626 -64897 -455747 -550873 -369867 -782186 -639603 -101348 -911322 -31120 -831268 -874097 -909302 -476685 -593135 -134986 -885800 -44831 -606578 -71327 -903954 -922708 -942918 -751530 -916498 -648114 -891131 -545017 -97811 -60010 -516302 -552925 -820837 -297790 -669862 -236887 -261699 -152421 -743408 -873625 -741830 -857159 -799085 -64525 -331143 -650772 -415270 -446241 -210136 -200314 -649249 -405703 -664893 -720298 -693536 -948162 -52625 -284703 -606762 -667390 -144369 -727109 -855672 -649737 -199408 -55914 -388114 -281211 -810723 -362235 -723058 -676646 -274116 -483902 -511018 -49210 -642779 -765316 -686617 -950557 -54532 -46666 -801277 -698874 -278980 -659394 -114795 -114048 -258092 -627036 -761598 -186015 -339369 -817644 -517028 -97848 -99931 -527154 -664268 -652610 -260270 -391381 -546638 -786546 -45112 -364723 -504685 -901259 -668986 -362131 -486804 -109369 -327788 -626091 -822960 -813225 -470363 -726098 -12220 -851573 -274921 -422092 -894817 -575336 -402043 -480403 -350676 -390552 -357169 -79838 -640857 -921176 -288198 -724411 -712250 -797285 -347106 -146762 -395833 -667028 -235895 -929085 -913960 -151463 -864256 -781698 -935112 -357210 -97802 -161273 -64808 -66552 -658477 -329685 -757378 -236166 -755904 -70810 -46651 -24274 -205085 -18959 -947826 -946753 -884281 -864178 -394632 -852684 -663531 -482781 -274565 -436869 -343538 -186608 -904498 -740454 -762772 -82536 -203 -515364 -814826 -166452 -684292 -831303 -793220 -262582 -356811 -908585 -403787 -673016 -366372 -732013 -442481 -287027 -697022 -751559 -923199 -190970 -165781 -162952 -656930 -371991 -85903 -570427 -758418 -876066 -325124 -791382 -682292 -23073 -786834 -774246 -578762 -693541 -908253 -459414 -438455 -714106 -327889 -538251 -316738 -120212 -880953 -122532 -196366 -650625 -601227 -541722 -733761 -101349 -202536 -674311 -268854 -951506 -827701 -105929 -183207 -24325 -520630 -665434 -233775 -38167 -276404 -67483 -45388 -687839 -192392 -439715 -37401 -706669 -289109 -64409 -557483 -628727 -803487 -778557 -773900 -221340 -836812 -743399 -828514 -170419 -282562 -837939 -3413 -626370 -83723 -643624 -368977 -411858 -932802 -938391 -691871 -132349 -146396 -618454 -64886 -416847 -660405 -746856 -387126 -339653 -33457 -240586 -803028 -307424 -382815 -600113 -197270 -472463 -325432 -634679 -44388 -416441 -626991 -89044 -626704 -166174 -822182 -84688 -422360 -17462 -119724 -193887 -590743 -46291 -889254 -596506 -119304 -934509 -811851 -405953 -144425 -401981 -900623 -760285 -867799 -769239 -81289 -280577 -560372 -108992 -630382 -772561 -571839 -104975 -438868 -331233 -784794 -279454 -872748 -610781 -636890 -239518 -404644 -135145 -596735 -253040 -729889 -290555 -651607 -933111 -786883 -265386 -712012 -861248 -809858 -476839 -883418 -9884 -836793 -460381 -849577 -401417 -56462 -942960 -446352 -653762 -693394 -398545 -737995 -431366 -893864 -187889 -852715 -952920 -781176 -162808 -64593 -474431 -571670 -197495 -389022 -81781 -237323 -592680 -857119 -843228 -664151 -857420 -938747 -95605 -553891 -95694 -134559 -356216 -331092 -706407 -839716 -118036 -235517 -502640 -101043 -579056 -242364 -301723 -892689 -600557 -128573 -296324 -954752 -707372 -288101 -1327 -841073 -436035 -154897 -640039 -778077 -257690 -403169 -166102 -150522 -781734 -210864 -411266 -261731 -87008 -879465 -703645 -942585 -781754 -412910 -522872 -172584 -471103 -487117 -350928 -951515 -445139 -783865 -186601 -686823 -811273 -205170 -570335 -636181 -900553 -637538 -7453 -857589 -786590 -681774 -308508 -136316 -327070 -368161 -37714 -921124 -232915 -315066 -482408 -433309 -376610 -523086 -124235 -465676 -534227 -44724 -265264 -75289 -271660 -623697 -816060 -848972 -845010 -554885 -905066 -486906 -934217 -466537 -777928 -402535 -390548 -228206 -17294 -806256 -189007 -679873 -30710 -669978 -550700 -69673 -220414 -674964 -910022 -241651 -163935 -513810 -945121 -315390 -378950 -847298 -754633 -390394 -691993 -467366 -458102 -790030 -90163 -878895 -820343 -441321 -713637 -446356 -607251 -658421 -883402 -487291 -125903 -340631 -43005 -132137 -865221 -389713 -12143 -231352 -263525 -703722 -698752 -560571 -236901 -579432 -779604 -396521 -934312 -196151 -111078 -843456 -922394 -293153 -806739 -630432 -319683 -636743 -642471 -649666 -380714 -180281 -256783 -425609 -540785 -248411 -745704 -778529 -724415 -301673 -408713 -768817 -512636 -74521 -305967 -689786 -933073 -388684 -673752 -265622 -956955 -764120 -91118 -165173 -898178 -18206 -783825 -938637 -753074 -504587 -610523 -74721 -58035 -493256 -821862 -15959 -673097 -308931 -681772 -173175 -480356 -284859 -889274 -932570 -134512 -18199 -192348 -398674 -821039 -335104 -589886 -292768 -313068 -331711 -942869 -830807 -917872 -803233 -950770 -712252 -405457 -22868 -594085 -230138 -710143 -664131 -570348 -715430 -313303 -725576 -637114 -244867 -51183 -528292 -113494 -7446 -19991 -275745 -930743 -751595 -83341 -727703 -141564 -458187 -256434 -938296 -70662 -483412 -755241 -707177 -699700 -380287 -613064 -580246 -200556 -754971 -9107 -521486 -791993 -652325 -281130 -863206 -624410 -32245 -466352 -512771 -226178 -725345 -694616 -769136 -324748 -438524 -445335 -204551 -245858 -263626 -401022 -400349 -247696 -403759 -368426 -835841 -817494 -857035 -346519 -396631 -215127 -239606 -760882 -758142 -151372 -64682 -328020 -283279 -437570 -73922 -322455 -648981 -650225 -252278 -769497 -940513 -215244 -335400 -666963 -738319 -181683 -194059 -596194 -72233 -65846 -165946 -94083 -14838 -645536 -455371 -915645 -460809 -64671 -354719 -165033 -755585 -636760 -76077 -185120 -32775 -444623 -423428 -218055 -951971 -374019 -14721 -279498 -861659 -793842 -501055 -377482 -208497 -286195 -273957 -44294 -545440 -135850 -904926 -831809 -72119 -188101 -537074 -298771 -17502 -303007 -606192 -81820 -171156 -181431 -952081 -395247 -186935 -289114 -692205 -706079 -471129 -314507 -39959 -369738 -749452 -79299 -821686 -768517 -341669 -244560 -649052 -379535 -870474 -619354 -206523 -422935 -714500 -919701 -229564 -588677 -838169 -881621 -524649 -848182 -886554 -222966 -255228 -726578 -873743 -162111 -704000 -124302 -927457 -36536 -455658 -813261 -462721 -28580 -679534 -45354 -701857 -106656 -785559 -79839 -501434 -424450 -174224 -571990 -678481 -695904 -849151 -463170 -175696 -382874 -830320 -454561 -128484 -337932 -577623 -520909 -10632 -244963 -404993 -879978 -624506 -282940 -181779 -589354 -876576 -645992 -261079 -108171 -28202 -23988 -640331 -396405 -461690 -861253 -894175 -140790 -720814 -428780 -266717 -870218 -807137 -99024 -882972 -938073 -795835 -244786 -634561 -660125 -929609 -600188 -537804 -863997 -949050 -824919 -64795 -334745 -165951 -270191 -932549 -439768 -806137 -769833 -384260 -180194 -52040 -328549 -24882 -476416 -682537 -396009 -645770 -33453 -156271 -328447 -342246 -477223 -434206 -564409 -373709 -556339 -25973 -663628 -567802 -949717 -693566 -458101 -25936 -582325 -640974 -457703 -705023 -326078 -151034 -516358 -298952 -80147 -286038 -599326 -38640 -829764 -264198 -96789 -467228 -938221 -771476 -588601 -145749 -86762 -917117 -878491 -821338 -624946 -650613 -129352 -726977 -141857 -864387 -690202 -472812 -428861 -180971 -949055 -806819 -296613 -372517 -365787 -574759 -470914 -623032 -357340 -860308 -482472 -597502 -868825 -945648 -684626 -704481 -865611 -220875 -141384 -283013 -405203 -845035 -395375 -585792 -944320 -894819 -16723 -295772 -610948 -622788 -295769 -577086 -374011 -806756 -454026 -96485 -764423 -474786 -835404 -677382 -417259 -328286 -338904 -923007 -339693 -281736 -774158 -762391 -766292 -635525 -221647 -418778 -35536 -466829 -74635 -937544 -747184 -236465 -204084 -142507 -678843 -838201 -570509 -736654 -296620 -627193 -92065 -112648 -244283 -70946 -682502 -807988 -38690 -338126 -338146 -468629 -343034 -802614 -205456 -467115 -287559 -923011 -692662 -743579 -661741 -599356 -694269 -948287 -122267 -134216 -852399 -573318 -835078 -944628 -897767 -475617 -763217 -32055 -542608 -9607 -237331 -825896 -472549 -935738 -491911 -524759 -121280 -794970 -179290 -545215 -756427 -95149 -282998 -315307 -927562 -818784 -956713 -250396 -207817 -648276 -16403 -758490 -775235 -793707 -298131 -343822 -849879 -568911 -240464 -223709 -61537 -701630 -68396 -285698 -125119 -569798 -898468 -696856 -732436 -13707 -841146 -126143 -324528 -397345 -766533 -940408 -654727 -223276 -288611 -99797 -12207 -285449 -107651 -564469 -532271 -474914 -597429 -268878 -606620 -27982 -764260 -403865 -666427 -338141 -541772 -431768 -569945 -697383 -510996 -938359 -472074 -43419 -706982 -821118 -917236 -615744 -258623 -568728 -422877 -14421 -656195 -639814 -595560 -471218 -378175 -404792 -239533 -196781 -166902 -656845 -671347 -71317 -358285 -674556 -327530 -797746 -950799 -412676 -680639 -385663 -573813 -443762 -757312 -113200 -485329 -451609 -625510 -927062 -926254 -482723 -123756 -438606 -867410 -52623 -356126 -22789 -231848 -292647 -268208 -83593 -895668 -29675 -350614 -193947 -275261 -848329 -360802 -756626 -418554 -678511 -629236 -491494 -623233 -417058 -886473 -640327 -117073 -500280 -126018 -794919 -674530 -230701 -841062 -244352 -167746 -902898 -51656 -261274 -798766 -362208 -180542 -229751 -825310 -404954 -915144 -251565 -48830 -832884 -441810 -66434 -597257 -828698 -46449 -319934 -925847 -45539 -340284 -648097 -744839 -208530 -131658 -402436 -726744 -769112 -728057 -709905 -237389 -96372 -699067 -534130 -456499 -855371 -661194 -749930 -755217 -477130 -477001 -279809 -53013 -617779 -810355 -239545 -851011 -622745 -111726 -204143 -416220 -637042 -474543 -333485 -910203 -837979 -342941 -321950 -764435 -806557 -300877 -691853 -895840 -428857 -136917 -10258 -37221 -88250 -287740 -504970 -53101 -369767 -487260 -570318 -674909 -449049 -96974 -101021 -817720 -772179 -900845 -309543 -161968 -281053 -236993 -852140 -334277 -450610 -468345 -51143 -30731 -391380 -161773 -436938 -155377 -97620 -43119 -673478 -787483 -173510 -52105 -712207 -165933 -292850 -917335 -147298 -809812 -316193 -732710 -715375 -778434 -617316 -717711 -367509 -537975 -350187 -713180 -268428 -653528 -865059 -440173 -252643 -188116 -276287 -68736 -117097 -446011 -119977 -667054 -364681 -5217 -431809 -808198 -671322 -938631 -766228 -230627 -152292 -598202 -825875 -501192 -93375 -270719 -125161 -759729 -350284 -263459 -822546 -439292 -742648 -190278 -682319 -762996 -659670 -537727 -526115 -369275 -622228 -511983 -730550 -64609 -161953 -67649 -764376 -420743 -49422 -387729 -744383 -879270 -157877 -651083 -75846 -577830 -20695 -409899 -619431 -832692 -103382 -546719 -812013 -651766 -200698 -109386 -465319 -757153 -890835 -662206 -54378 -49926 -827229 -452525 -626904 -347812 -13012 -485695 -522884 -498124 -505034 -815860 -60792 -677174 -164700 -712269 -855167 -127625 -231149 -948548 -59200 -10259 -120208 -629425 -899438 -754769 -339678 -443238 -388623 -795093 -544172 -515957 -699706 -956049 -271369 -688061 -42696 -207585 -25995 -587294 -597671 -742825 -289359 -706181 -546919 -476554 -830427 -218800 -244682 -17650 -950736 -344314 -109043 -219207 -629494 -685359 -693719 -403409 -830771 -766319 -170466 -701305 -751334 -286481 -10362 -435878 -808375 -315771 -824213 -491101 -276400 -476790 -356749 -7403 -556563 -579207 -741248 -154105 -785826 -173471 -615150 -427596 -279357 -210979 -570666 -724439 -830209 -435236 -635784 -162428 -278680 -84045 -325511 -912401 -799297 -714183 -563879 -181701 -941563 -559234 -421099 -338282 -314927 -830657 -11073 -495708 -51699 -391666 -255469 -411137 -176296 -592536 -857946 -810364 -327657 -405724 -249467 -375837 -525626 -943984 -899559 -464080 -388578 -312258 -278373 -107104 -328644 -24686 -46576 -701527 -238783 -894509 -835235 -711341 -699510 -579887 -281238 -910336 -64228 -401927 -37798 -696971 -66297 -343696 -262611 -106707 -446726 -861117 -633942 -148425 -72141 -451856 -196438 -503624 -146349 -432590 -505240 -287564 -278254 -441658 -801542 -870795 -911504 -235280 -77270 -944913 -491590 -44701 -474197 -712299 -590936 -435652 -752856 -778110 -356887 -245941 -13434 -512675 -44280 -364246 -85916 -836665 -836064 -692997 -207364 -285901 -710783 -540265 -240363 -298535 -80204 -129009 -291370 -922393 -275459 -108581 -811398 -530723 -673231 -571722 -442518 -369675 -623552 -400673 -742037 -358407 -566312 -495687 -802804 -460063 -682245 -48177 -920002 -674233 -206227 -756629 -263529 -285442 -297882 -585580 -835118 -476672 -90035 -785679 -393860 -763569 -298445 -810801 -255614 -192955 -344188 -282761 -55058 -804435 -488131 -398376 -661360 -328224 -13636 -66435 -518675 -463701 -27059 -942943 -230914 -297551 -424457 -126387 -903567 -334304 -137207 -359811 -773937 -168889 -814623 -933591 -704432 -491191 -440595 -838241 -70583 -189232 -140753 -365706 -622638 -680164 -144800 -427024 -237672 -148631 -506071 -150887 -705658 -11872 -284663 -926850 -830735 -615286 -10053 -678000 -699595 -309455 -137597 -461013 -599966 -623330 -787682 -392805 -448671 -364554 -732086 -128451 -314968 -598869 -483662 -924482 -860887 -438569 -183798 -952401 -616544 -25250 -195269 -886195 -907698 -215903 -88876 -43926 -93233 -902792 -890200 -278330 -87109 -311978 -921317 -945394 -205352 -195436 -657634 -185969 -219962 -61730 -830372 -144423 -375269 -42903 -25428 -56722 -298723 -556399 -910142 -245130 -101347 -732273 -699355 -438021 -54747 -221183 -30741 -842053 -617409 -635976 -158465 -861049 -516260 -103215 -185583 -839529 -717157 -516578 -433551 -224516 -240270 -249314 -191414 -594751 -694780 -553541 -483785 -491483 -556840 -83929 -126749 -204608 -596084 -909651 -703839 -779459 -226817 -864803 -37988 -262396 -167397 -501435 -565236 -474316 -402617 -796113 -806104 -856007 -932801 -571030 -506140 -326413 -939525 -258195 -459504 -811721 -382970 -99579 -929696 -323546 -94075 -518603 -239510 -755401 -485108 -120697 -674173 -315827 -422556 -237991 -115495 -366025 -706747 -102677 -428836 -827241 -298715 -141188 -279524 -52215 -287667 -828357 -376480 -12995 -166929 -148704 -149507 -885623 -334424 -29764 -592299 -161361 -499106 -102546 -777625 -343324 -419792 -693816 -633260 -594516 -851716 -281904 -751921 -71761 -612925 -121460 -710037 -903532 -520579 -96537 -884376 -864883 -529278 -403124 -312762 -479902 -897571 -773222 -840417 -233926 -121216 -787880 -639914 -412877 -10486 -743000 -863835 -57018 -906413 -491068 -525035 -765599 -35169 -423300 -167413 -171662 -604119 -707103 -434455 -608656 -107383 -295538 -442999 -505564 -851724 -854317 -560073 -60418 -915547 -421127 -503982 -851321 -830642 -836617 -872653 -628292 -819788 -592023 -755686 -913034 -753064 -382143 -81776 -623616 -35858 -330435 -195590 -243557 -643048 -761769 -246283 -33427 -511055 -693287 -864558 -638673 -773824 -512933 -677973 -355748 -502608 -164340 -599891 -602267 -395330 -735937 -109294 -625711 -372551 -848709 -705687 -935858 -246052 -844031 -766271 -173738 -58953 -879098 -113647 -810638 -52567 -428183 -761520 -124894 -524520 -338491 -906746 -862470 -513634 -873858 -146258 -223655 -541455 -679595 -510882 -498879 -424408 -755965 -114806 -693025 -442521 -734933 -770647 -542818 -253498 -803326 -604067 -894843 -139768 -331899 -303559 -72518 -923688 -13824 -787933 -946878 -354339 -41309 -112652 -909182 -766468 -760507 -450564 -336907 -834149 -292507 -242602 -321864 -55536 -80206 -905367 -731309 -578630 -863512 -299371 -922481 -236562 -231375 -327853 -204706 -226783 -454930 -428565 -230571 -301659 -25218 -21440 -854357 -418785 -861401 -98342 -591602 -440115 -170712 -873405 -314808 -817839 -822323 -825831 -281808 -405096 -711377 -19460 -474176 -275955 -793666 -113518 -94877 -866957 -125193 -523436 -527333 -676683 -899082 -30106 -397940 -633949 -188659 -15359 -317662 -905099 -696577 -261923 -920633 -450247 -259612 -265251 -156471 -420494 -262770 -282937 -351020 -560488 -706568 -598060 -594024 -536641 -432112 -759588 -65630 -108360 -52398 -361607 -696769 -841642 -396871 -904815 -716618 -369808 -542870 -55861 -140234 -106823 -11387 -100542 -545062 -268883 -748608 -941110 -61560 -456313 -573205 -31995 -249180 -183559 -644439 -518289 -930015 -924529 -120614 -828236 -504300 -228261 -356280 -677947 -359091 -201754 -14678 -717724 -633316 -786585 -768646 -294834 -899101 -152089 -120474 -104855 -750261 -86614 -426595 -485157 -849464 -711129 -921336 -787907 -44713 -239335 -946963 -857911 -325076 -778386 -956637 -16498 -566817 -861355 -187039 -388625 -160970 -185735 -827740 -664750 -833513 -879040 -494937 -277630 -952940 -663614 -816426 -571318 -524088 -749525 -380927 -901641 -41981 -905772 -521829 -301696 -46153 -65588 -103904 -691937 -886897 -824584 -189539 -161125 -440400 -636995 -843209 -763787 -230546 -206073 -864069 -916953 -298089 -527777 -550470 -485584 -836698 -944246 -146879 -451190 -728899 -162788 -101775 -501895 -426295 -295882 -349735 -817113 -730998 -125798 -857533 -878524 -121963 -935806 -905364 -47296 -704328 -127662 -46050 -450608 -243705 -689606 -48649 -399450 -65668 -501314 -332209 -263056 -865551 -310347 -362365 -819849 -743266 -818329 -480278 -239214 -342867 -902119 -439548 -147463 -501381 -566123 -750777 -514725 -87024 -572979 -54860 -666937 -434524 -916106 -946909 -518649 -941205 -147517 -434366 -639342 -407203 -875446 -130816 -785471 -938099 -391363 -584342 -547405 -206266 -45162 -94753 -263751 -409729 -293334 -847322 -226904 -853953 -202489 -673952 -556622 -442102 -140911 -280544 -126343 -90393 -885427 -844238 -562295 -875635 -287948 -848891 -237893 -417865 -312768 -332185 -174742 -41102 -939799 -147577 -384252 -275972 -527458 -930145 -106728 -516506 -11624 -502994 -144140 -711964 -769787 -930659 -294995 -418964 -591692 -642835 -326588 -150733 -872896 -43078 -745410 -10084 -561221 -833932 -522233 -863595 -827274 -335914 -412875 -849558 -433405 -422965 -91131 -874937 -899477 -60242 -483677 -678196 -635340 -364924 -642916 -311192 -604173 -449638 -499323 -767867 -888006 -416901 -56654 -85928 -210513 -754735 -25520 -296993 -516756 -662239 -19428 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_test.jpgl deleted file mode 100644 index fb21e962f1a970b64d0b69a6375f7e899eb62c6c..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/generic_test.jpgl +++ /dev/null @@ -1,20000 +0,0 @@ -629797 -902498 -588000 -448695 -237907 -314147 -306944 -486521 -545526 -126116 -28784 -415178 -713715 -234538 -53043 -497944 -722101 -843320 -334499 -156437 -185173 -413104 -639709 -384014 -438926 -758327 -349734 -722028 -822511 -731886 -534103 -538205 -715540 -120710 -598172 -555465 -427476 -864374 -40090 -200880 -926003 -232781 -596783 -778425 -605838 -645466 -323224 -743468 -799937 -445875 -649970 -941842 -810654 -764043 -405168 -862398 -836686 -347442 -185816 -505443 -310126 -38438 -67623 -80262 -935264 -85677 -579418 -72404 -761062 -432913 -223792 -389200 -518425 -756104 -172870 -204567 -638076 -133732 -72258 -597421 -85307 -303329 -635274 -429957 -723452 -95588 -669016 -317214 -79248 -747440 -25645 -119338 -425795 -463587 -637259 -595614 -234344 -206123 -640600 -846701 -118107 -922662 -162495 -545603 -857235 -477300 -26104 -683854 -434023 -879540 -500240 -748030 -662727 -365779 -709765 -472435 -792286 -288937 -537735 -764910 -475190 -786890 -954237 -43796 -155610 -857567 -938559 -338256 -13187 -812351 -453967 -203847 -1725 -359641 -35130 -763123 -778244 -637105 -81547 -168295 -577571 -893860 -82934 -157450 -620561 -31123 -698884 -650874 -245914 -119748 -71291 -11784 -942310 -405031 -948865 -256253 -518267 -285412 -60763 -276529 -906838 -327870 -174717 -38879 -160330 -946335 -859209 -679529 -118569 -526400 -614649 -901650 -652065 -310975 -109518 -580946 -751287 -11714 -365894 -172684 -611758 -12690 -449659 -437896 -669473 -817520 -284718 -525715 -120583 -376709 -354089 -638876 -36760 -251242 -505607 -919989 -917285 -560360 -671299 -437423 -526769 -684288 -317686 -430415 -430271 -773755 -902731 -456598 -284011 -302435 -482793 -204016 -77645 -196207 -90419 -951490 -366004 -281124 -880040 -546220 -578645 -938255 -810816 -759106 -527102 -785764 -887370 -93710 -277239 -386679 -852700 -581586 -595105 -809425 -913724 -456610 -569993 -863873 -486446 -291593 -809781 -225302 -728157 -422321 -287162 -840176 -597278 -577515 -905240 -263806 -506026 -884169 -676135 -512490 -864271 -576563 -244555 -845011 -676734 -48265 -141159 -557450 -763200 -926128 -511441 -706313 -340487 -434635 -783853 -524469 -433438 -561425 -349710 -300913 -650641 -759948 -140491 -954726 -637535 -626729 -693402 -234053 -725983 -476889 -854555 -514524 -367474 -263282 -243152 -94941 -437831 -425811 -220949 -843295 -231032 -908713 -442852 -187400 -425684 -278334 -445194 -570689 -182755 -706768 -494200 -505288 -257612 -626174 -639331 -848380 -298152 -413963 -577423 -248043 -206242 -425744 -752789 -133776 -189281 -339468 -907683 -287540 -824599 -759709 -122088 -665824 -426457 -816662 -343092 -894518 -321810 -261307 -847461 -30639 -24455 -102737 -241742 -855903 -258105 -405872 -737940 -310602 -597036 -627049 -203767 -82333 -546201 -894777 -613033 -18801 -458443 -227016 -160230 -713028 -255603 -796157 -778350 -184594 -778282 -373190 -579792 -95277 -853907 -136863 -382668 -254354 -719442 -19105 -305495 -477226 -134918 -120284 -475673 -875881 -899459 -384881 -640779 -866304 -162883 -481000 -864267 -879002 -638777 -935131 -285455 -265613 -247522 -305975 -723200 -852474 -894371 -836053 -579073 -186312 -263452 -21972 -595351 -897115 -936283 -402652 -910184 -637603 -233352 -650443 -204141 -204953 -186619 -163051 -637844 -637019 -818695 -321301 -495930 -611456 -916812 -283828 -124606 -650705 -318398 -3726 -309879 -55737 -456061 -287187 -627883 -826202 -110369 -181253 -21070 -757238 -886834 -520125 -880110 -884778 -286400 -776003 -916944 -847425 -67372 -161679 -771629 -879774 -204904 -794961 -34005 -540005 -716724 -429412 -848132 -517887 -338321 -608292 -784901 -263569 -735485 -755373 -939940 -189068 -340121 -350936 -329186 -463872 -62708 -443850 -344499 -168275 -677828 -851088 -286554 -770231 -578715 -245940 -106921 -32034 -251267 -357305 -11832 -757370 -343478 -84869 -285123 -23077 -716867 -357022 -908876 -283301 -405234 -458988 -307940 -881627 -163019 -944228 -516271 -67745 -693817 -582495 -909646 -650756 -937529 -19141 -339448 -446921 -176593 -189462 -778541 -847751 -416262 -39001 -756635 -521783 -402356 -759926 -738337 -713771 -305742 -163109 -68622 -46603 -679826 -376530 -109751 -189410 -477484 -764555 -737978 -902389 -589578 -714589 -751966 -120248 -650544 -777630 -681609 -78701 -140763 -49715 -689836 -517009 -427422 -417659 -767008 -536775 -743446 -75636 -751286 -574243 -614495 -948269 -672156 -187217 -638916 -829423 -649900 -738903 -129580 -615219 -420011 -337929 -78845 -293662 -802833 -577437 -36032 -714326 -81143 -578559 -342293 -487750 -577637 -18528 -372471 -138841 -201807 -38975 -331433 -756688 -564438 -716944 -455972 -586207 -25324 -480441 -388868 -284413 -185807 -78700 -287694 -9132 -188651 -601727 -764119 -570597 -628481 -430838 -580878 -595697 -135275 -847200 -43955 -938409 -459087 -40934 -11589 -656131 -188756 -771258 -467709 -851005 -416306 -455358 -489215 -36802 -741358 -376715 -756483 -70411 -356500 -388030 -170473 -476580 -598189 -911439 -106309 -831296 -25956 -456725 -67339 -698631 -577945 -790097 -437963 -795109 -830273 -155567 -878989 -84456 -546128 -81826 -949949 -625015 -287838 -505358 -732140 -898794 -772231 -303080 -136160 -738603 -772297 -188585 -865530 -288957 -492664 -278700 -564021 -11791 -49133 -802065 -840177 -122030 -65648 -611561 -795545 -589160 -956261 -117931 -369246 -55696 -612613 -263938 -287886 -36535 -830001 -545435 -468780 -188740 -198143 -433521 -828732 -189052 -455833 -513385 -526508 -257172 -121259 -785480 -75181 -71265 -857549 -395422 -632806 -774340 -96558 -504544 -19193 -504561 -316853 -499136 -570100 -712356 -581183 -573058 -649901 -894316 -577770 -825020 -772044 -578633 -159412 -408648 -40045 -615725 -804837 -763108 -526683 -581714 -747877 -763437 -427372 -78816 -429141 -149960 -497744 -933842 -637389 -56752 -254972 -154072 -355896 -599265 -818383 -251456 -648640 -655787 -661765 -55121 -814456 -358235 -923140 -737772 -383721 -614691 -502196 -638769 -205109 -405438 -109951 -674551 -315788 -718865 -831438 -585469 -273074 -85328 -742601 -342529 -446168 -464987 -651439 -124491 -598038 -241900 -776490 -552802 -55209 -454137 -464790 -732113 -755310 -333757 -40080 -391135 -120158 -781615 -277183 -707435 -851111 -691274 -237879 -163514 -30999 -735246 -927162 -480720 -622827 -296345 -272463 -500132 -934123 -936539 -109462 -123341 -383113 -458544 -204976 -638964 -390831 -421992 -409830 -893480 -720022 -230799 -188801 -569795 -748336 -116887 -343190 -485165 -66913 -67545 -263384 -835354 -188789 -427460 -662792 -903920 -603973 -158916 -127052 -368952 -656272 -187043 -369653 -666403 -917187 -535079 -532059 -391083 -731126 -925800 -784602 -287863 -453777 -870740 -658562 -917470 -767865 -55078 -306554 -383932 -641341 -924186 -222004 -729260 -786848 -79829 -26065 -577021 -575582 -235435 -190175 -653110 -330259 -505094 -643185 -452572 -906005 -53753 -253340 -527388 -243071 -441109 -720152 -796739 -782400 -188680 -775583 -18982 -667369 -370563 -716482 -759090 -204559 -902462 -772507 -781548 -371896 -802744 -24258 -63879 -345707 -115735 -19164 -667335 -596037 -53737 -578634 -161617 -22653 -593572 -862373 -484004 -56495 -151318 -637594 -765938 -192478 -429489 -168063 -885073 -597006 -109380 -841272 -455539 -279774 -232789 -551587 -650659 -204948 -894111 -769212 -152605 -704652 -712283 -90250 -629339 -772021 -419349 -637086 -854722 -595928 -727870 -394701 -522686 -828820 -488982 -163412 -255879 -678582 -932831 -69523 -5143 -1779 -188467 -61034 -664511 -337530 -530230 -898552 -71906 -764349 -776901 -650580 -638904 -26013 -161407 -409610 -451780 -650238 -797411 -5282 -332737 -436014 -27683 -134560 -757247 -782263 -63400 -651497 -661016 -574125 -155369 -706641 -772291 -727039 -544275 -158903 -625533 -395812 -625601 -369832 -779268 -362505 -436367 -945549 -264167 -732248 -630157 -686685 -569936 -763856 -656029 -754228 -625008 -386438 -109643 -680598 -579734 -947137 -560222 -445337 -385250 -761463 -693741 -502356 -284696 -514729 -830511 -705390 -592949 -638903 -676771 -780481 -770007 -37747 -902443 -331349 -617846 -564192 -902348 -595743 -483124 -133728 -777907 -519101 -154725 -143762 -802501 -69234 -797073 -710077 -486608 -276118 -754773 -155415 -168250 -19206 -116779 -828638 -441813 -756611 -564832 -40032 -528900 -158812 -665110 -816584 -391085 -121383 -477474 -893827 -197846 -437723 -943953 -358767 -927408 -205098 -748899 -393683 -268979 -894314 -177967 -136602 -770679 -896076 -790764 -600184 -593523 -230928 -319006 -45265 -150307 -448632 -637838 -40069 -629941 -455391 -842613 -284898 -924739 -402990 -756213 -665557 -827213 -671387 -733903 -759353 -777307 -160643 -562175 -296421 -67418 -563986 -210946 -708928 -638862 -690863 -436098 -342022 -753595 -387696 -246339 -148762 -44856 -362537 -666887 -33975 -40885 -292957 -121021 -538870 -598839 -287798 -911404 -712539 -761939 -617487 -38955 -324984 -638661 -227590 -577329 -451799 -256738 -497834 -950627 -344498 -726334 -278199 -464811 -902411 -328127 -957645 -43275 -939952 -66787 -607110 -541567 -106060 -445421 -777685 -403737 -71860 -182756 -370910 -611437 -898926 -954045 -400195 -609317 -300664 -160815 -436915 -300627 -412613 -78114 -38120 -449191 -289088 -63379 -162165 -86519 -109384 -894516 -948760 -269956 -778489 -816537 -83274 -731619 -305094 -249393 -60320 -158790 -829138 -912066 -508119 -342779 -947175 -657474 -754392 -27688 -15856 -124930 -361603 -831378 -756743 -24780 -150674 -204476 -838574 -782296 -943949 -713583 -162564 -524819 -109621 -687316 -515559 -233242 -723429 -799936 -643045 -211550 -493940 -136657 -626660 -225774 -523688 -713700 -289241 -437674 -81731 -278566 -106331 -917447 -948467 -609788 -135165 -608659 -460249 -129640 -42821 -434556 -259730 -79889 -686574 -730894 -768403 -326336 -914298 -12784 -808832 -654755 -299460 -247384 -411313 -318992 -461667 -667793 -13445 -667802 -30676 -132193 -578468 -515914 -204513 -545948 -287440 -457108 -802903 -646356 -223206 -694086 -483875 -642904 -359298 -771792 -771569 -946856 -796464 -228203 -175662 -455467 -294727 -3136 -842990 -281854 -366067 -56493 -911363 -477254 -19098 -69783 -118105 -343675 -106293 -75176 -842309 -10848 -948797 -654206 -764485 -797394 -185184 -598412 -24174 -475360 -328667 -599653 -855308 -344878 -384956 -763486 -24997 -504551 -120129 -907881 -666607 -902495 -727146 -532987 -756485 -908135 -162807 -9730 -839881 -27614 -458150 -403684 -514249 -271317 -11772 -181522 -552679 -751952 -287167 -917417 -317276 -728813 -318856 -85452 -174270 -512521 -272061 -456728 -646418 -875985 -899091 -315434 -82177 -661745 -74361 -438030 -734654 -140536 -22934 -498421 -19199 -772353 -234368 -791997 -189067 -460865 -185733 -37722 -282785 -938299 -609613 -607156 -117218 -4370 -60760 -444654 -734388 -899646 -356443 -571397 -109955 -395713 -742119 -437969 -754483 -668155 -762796 -232685 -386580 -373524 -867805 -327370 -538807 -451593 -159016 -943874 -755927 -129286 -300166 -633811 -26015 -734716 -665341 -34983 -534799 -893961 -462224 -274694 -395639 -948284 -117359 -241418 -564553 -730681 -183947 -200238 -587991 -105836 -625672 -782935 -502970 -129033 -388750 -75449 -729931 -384714 -247866 -764580 -579151 -18365 -656231 -907966 -837011 -717008 -528822 -327796 -796012 -813212 -284371 -109640 -63224 -786843 -841524 -831411 -445735 -349499 -710228 -724499 -828731 -46165 -593994 -396045 -54338 -63535 -764400 -608174 -635048 -7301 -582430 -765153 -129926 -369657 -292552 -388681 -95447 -205253 -201925 -858118 -505658 -15611 -607272 -732121 -598311 -777466 -770221 -590542 -816742 -518732 -930396 -18804 -188737 -919860 -289314 -456432 -274835 -664779 -367973 -43038 -810910 -17579 -919916 -779992 -543637 -283673 -954535 -390619 -638850 -432150 -451722 -285121 -764635 -784491 -259979 -715527 -669553 -72015 -639023 -61107 -30518 -86634 -498218 -18347 -156853 -300725 -284675 -567871 -573040 -851296 -661493 -227143 -7112 -495356 -10575 -808609 -456306 -391395 -591976 -284238 -284598 -164687 -516651 -713649 -500494 -253792 -317890 -487593 -118098 -917395 -436828 -84185 -572622 -730271 -324624 -786499 -661899 -437502 -203884 -595502 -821824 -550401 -300791 -295808 -787928 -336891 -656218 -764266 -358662 -162232 -764550 -359936 -771892 -65856 -327399 -851471 -391611 -713655 -375068 -778333 -230358 -611213 -920036 -239279 -39223 -204875 -911250 -85061 -850786 -109308 -293849 -617746 -468302 -466815 -459303 -45995 -18127 -579753 -221985 -906881 -802790 -226905 -553849 -118031 -570094 -196353 -300753 -731153 -745890 -188240 -474159 -350229 -803511 -17108 -38072 -588278 -163087 -188356 -446653 -756421 -345888 -405780 -284771 -404626 -555762 -240242 -272528 -117136 -468598 -315736 -614055 -403075 -44052 -714573 -514788 -859673 -115137 -327964 -650283 -161565 -607358 -101847 -719452 -674517 -828771 -156520 -344338 -421037 -836616 -324645 -58736 -649079 -596091 -666715 -39378 -227918 -777309 -930047 -511450 -43257 -768433 -884366 -256655 -640887 -56737 -644255 -672132 -528570 -279948 -436430 -650808 -731935 -648453 -456115 -314785 -712649 -134012 -328412 -684456 -601252 -593760 -382465 -679377 -36745 -698279 -317413 -81110 -303113 -675046 -650373 -342600 -320858 -134704 -501162 -456926 -496794 -606875 -907785 -18219 -484230 -38343 -116756 -818369 -188140 -786931 -501400 -948667 -105108 -504713 -596650 -643017 -795604 -503434 -361973 -248956 -343735 -799417 -704615 -848234 -564482 -119702 -483668 -588064 -547060 -768127 -900920 -26374 -449072 -303574 -77158 -369415 -878419 -546194 -688596 -391531 -713569 -592400 -109591 -716939 -285391 -902291 -302986 -655835 -116806 -202661 -810690 -591682 -830725 -633124 -898547 -709117 -423048 -115490 -853234 -540674 -617548 -593468 -899650 -743309 -732276 -786908 -950102 -253651 -665529 -276218 -251824 -842853 -827596 -660059 -9436 -170824 -590433 -13050 -167862 -132368 -163074 -433484 -282968 -803215 -87033 -803559 -153260 -866017 -551124 -523504 -39989 -790743 -536632 -375205 -802523 -477390 -502662 -769050 -934274 -748628 -514171 -19063 -909879 -726946 -132847 -597329 -477562 -897139 -592985 -791505 -106307 -947508 -284926 -566002 -223452 -640957 -733917 -543698 -412028 -788854 -544646 -603498 -708606 -84365 -938596 -529325 -446734 -716934 -527403 -264597 -65455 -734663 -884982 -638722 -420004 -132245 -18800 -342083 -640531 -45247 -705104 -377536 -246249 -199354 -331538 -40916 -648566 -457900 -477225 -842273 -30592 -24092 -854304 -552480 -244325 -880447 -679288 -457866 -524494 -692743 -205052 -597631 -171235 -848021 -823849 -91044 -19159 -154024 -953289 -276453 -398202 -505656 -78782 -206580 -84124 -573748 -140116 -942248 -597371 -204139 -349219 -868642 -284884 -263562 -119997 -26850 -554578 -66835 -524104 -220455 -16516 -121226 -140784 -265870 -676194 -136591 -360176 -109778 -22659 -357629 -894221 -797405 -640528 -942004 -632803 -109356 -455226 -888106 -222973 -792580 -610560 -237290 -365975 -699744 -237531 -456767 -662691 -77494 -204786 -437245 -459509 -186841 -733616 -13274 -456748 -601148 -802404 -704345 -364504 -233901 -516167 -455661 -510990 -102281 -18503 -67548 -405423 -616761 -825068 -601942 -118951 -857532 -790204 -182727 -435006 -451719 -916647 -570234 -235310 -9488 -716176 -117437 -287969 -684189 -437648 -260331 -817523 -162981 -938523 -393412 -944829 -775691 -760788 -456311 -899255 -256836 -189008 -162610 -205257 -86572 -367848 -387266 -446504 -517033 -577711 -510475 -456487 -61744 -45667 -955317 -189069 -487476 -938289 -199447 -84169 -770037 -188474 -913802 -425971 -8118 -106350 -388533 -215210 -564388 -183533 -36235 -348393 -285746 -162977 -248009 -857121 -386623 -18384 -109439 -902464 -683298 -519824 -278065 -12061 -297638 -682125 -109547 -69607 -796222 -456720 -133887 -559408 -525139 -36446 -500828 -600895 -19022 -865008 -639014 -598321 -204176 -431354 -755204 -188233 -462023 -733554 -504362 -778439 -129795 -69943 -650768 -309538 -716586 -698183 -881685 -437775 -698541 -522675 -879729 -292367 -283216 -421094 -186022 -233817 -686710 -50909 -538130 -684760 -18455 -730308 -162609 -825585 -923251 -80395 -693758 -238996 -543100 -796937 -360859 -669454 -67268 -123119 -342449 -75601 -661504 -18969 -385452 -885355 -516298 -333677 -59217 -42532 -867498 -491037 -731987 -21089 -755362 -284646 -764467 -461313 -444966 -661561 -932838 -795140 -398163 -65105 -680501 -525765 -271319 -522062 -64270 -26271 -257775 -328700 -226506 -161747 -656223 -533198 -223380 -513430 -86955 -12880 -303403 -449299 -938541 -444911 -734564 -285666 -684291 -631255 -367682 -37733 -626466 -471154 -151130 -776920 -312801 -593947 -803632 -300377 -587184 -615595 -598417 -205423 -724115 -671692 -456383 -902297 -651420 -187682 -439173 -651440 -202298 -157282 -176452 -941432 -809930 -297494 -438043 -670787 -697254 -94655 -258053 -129309 -781390 -51387 -453816 -435986 -57222 -327533 -94734 -102872 -830563 -670047 -638038 -790724 -284905 -135697 -792836 -894478 -284349 -539707 -156133 -625536 -518597 -698471 -109454 -660045 -395730 -429266 -762206 -530933 -480626 -456702 -26651 -637542 -639034 -536288 -525215 -148738 -413278 -61974 -19111 -83686 -952935 -776642 -281435 -638998 -405331 -549644 -25522 -285333 -409204 -333909 -504163 -53039 -650895 -947084 -447682 -189056 -455890 -157028 -693775 -576704 -122086 -44041 -390017 -597258 -109484 -716203 -324429 -362195 -457512 -316772 -680962 -330196 -479058 -778556 -154717 -773818 -597538 -323550 -763809 -454254 -323321 -825252 -67317 -686401 -602492 -204072 -216952 -106232 -475125 -446424 -778321 -705340 -86958 -434805 -458705 -456264 -638097 -705410 -72326 -750597 -598044 -570299 -568283 -825267 -56536 -491039 -652676 -721334 -785519 -344508 -411154 -941507 -777408 -449964 -284762 -74297 -663488 -290739 -97934 -777905 -908404 -529132 -229088 -298815 -651552 -796258 -800038 -67412 -14885 -433090 -56136 -690768 -18623 -804727 -614465 -279060 -463581 -719485 -312551 -515549 -638666 -582906 -586008 -563708 -564491 -463939 -158006 -157499 -571297 -476287 -21294 -634899 -60182 -763113 -712677 -109421 -373883 -748861 -462027 -769540 -285380 -438108 -57306 -524262 -94681 -356151 -124086 -18824 -777507 -158495 -577110 -778308 -67527 -785557 -577181 -328189 -864918 -723952 -350221 -712536 -440450 -905100 -723605 -763490 -338250 -457127 -756893 -453758 -902409 -917073 -19018 -754772 -39114 -311194 -777488 -102166 -883474 -516545 -882385 -600254 -320512 -57257 -109478 -148519 -935551 -434945 -626695 -234564 -44286 -114687 -56561 -648056 -132134 -948217 -434742 -403961 -397555 -66953 -271322 -227663 -258166 -150658 -716898 -419947 -18937 -674005 -80185 -848030 -181521 -129031 -656676 -539248 -511782 -574063 -846521 -54333 -893972 -354340 -751706 -188772 -230154 -297481 -901296 -652064 -931460 -638826 -667113 -761853 -598150 -784678 -750615 -638225 -48283 -249022 -760859 -317618 -30143 -36364 -85910 -846664 -121032 -755382 -653912 -178044 -18677 -472331 -168070 -504280 -808071 -271803 -704032 -282536 -736704 -723392 -761542 -438134 -357041 -94386 -716666 -69342 -292240 -754983 -846651 -755377 -329839 -603836 -236157 -538035 -44309 -388836 -797153 -109748 -406600 -158720 -883094 -13236 -416829 -713678 -667298 -116876 -57284 -881515 -850723 -518410 -77162 -182357 -916959 -812567 -456437 -618452 -785579 -287473 -940152 -419155 -943231 -418201 -76969 -420975 -775544 -561014 -598320 -445149 -122600 -599136 -456145 -455882 -600721 -450741 -614710 -224053 -893692 -649573 -473888 -261926 -743489 -653591 -951260 -286586 -288320 -74669 -18962 -831289 -79953 -614059 -604106 -516059 -56738 -426039 -172618 -767006 -505618 -851084 -863652 -799289 -55757 -57275 -120887 -438083 -291037 -93106 -518448 -644776 -144357 -638327 -266867 -664823 -566172 -596219 -698380 -693109 -325080 -772765 -864216 -754277 -189062 -189047 -387327 -599438 -675491 -713065 -327999 -339576 -536110 -623371 -800164 -574113 -614054 -222038 -296772 -534397 -582194 -857519 -221147 -481913 -453991 -59935 -13057 -771404 -427423 -357324 -690013 -903246 -211486 -258940 -35368 -526797 -98257 -151795 -929140 -440632 -11485 -306325 -896929 -147556 -46652 -428881 -542874 -303602 -256814 -43949 -338393 -376385 -749070 -113588 -853238 -928489 -904166 -855801 -167030 -935352 -263513 -849509 -230850 -175625 -631294 -738487 -231003 -879864 -879161 -831424 -593920 -889597 -838006 -257328 -191582 -894565 -638408 -482713 -159172 -622649 -68648 -938056 -472389 -121222 -856884 -626544 -226999 -603448 -68217 -674118 -606536 -721353 -566662 -34916 -331031 -541676 -324647 -824551 -868062 -804988 -34336 -819748 -735712 -749509 -102123 -32682 -660403 -795134 -147140 -883607 -422398 -272428 -652691 -151251 -808509 -853103 -85262 -226503 -291190 -132337 -174771 -916809 -32050 -730556 -634165 -176323 -30616 -489791 -278819 -112927 -212665 -546055 -934387 -186392 -208494 -64597 -337287 -631750 -361159 -43733 -772726 -443396 -393421 -338205 -137120 -236921 -424352 -849899 -757476 -32054 -533644 -812751 -430349 -798036 -137089 -278573 -338463 -930695 -904069 -863857 -848457 -368417 -639376 -130812 -771825 -44355 -767830 -375854 -136460 -809215 -472452 -211697 -230973 -186448 -215565 -34881 -743207 -803991 -717002 -765810 -20540 -27926 -75947 -263603 -903885 -147472 -808494 -105054 -735723 -849499 -163686 -738115 -248274 -812579 -701772 -176556 -255596 -892753 -297038 -913783 -17957 -779466 -275508 -606351 -517019 -263503 -526513 -137251 -878477 -921151 -230882 -903220 -91703 -482011 -9787 -231165 -356382 -342150 -505881 -276169 -482638 -778253 -684060 -282874 -926547 -494465 -368633 -12227 -355421 -64510 -927651 -75595 -170168 -13529 -574011 -139213 -847492 -803596 -770650 -16657 -930648 -177956 -501447 -723554 -280732 -771470 -192635 -173217 -230459 -35900 -423724 -71479 -502526 -34127 -627887 -92760 -341499 -339568 -247491 -623705 -802896 -113191 -360169 -238483 -339725 -744179 -12632 -64865 -136949 -696396 -664297 -229913 -904334 -903906 -453689 -169365 -137186 -203436 -663923 -331412 -260112 -485880 -928037 -96190 -347474 -210910 -192748 -638798 -666885 -661991 -857098 -749339 -10113 -448308 -90198 -933069 -377446 -96881 -64047 -309848 -449502 -34869 -210606 -165352 -248062 -393234 -196330 -246141 -166080 -365913 -828604 -131154 -64982 -263484 -166010 -11723 -865066 -86415 -244226 -257179 -842203 -217970 -387468 -64572 -126715 -155284 -164583 -801397 -769324 -897134 -898244 -857160 -817490 -693935 -893768 -406002 -623487 -85558 -41412 -814746 -863909 -317524 -147402 -315088 -186666 -638066 -760598 -893461 -324793 -78046 -773265 -196453 -206135 -821563 -388180 -639382 -49110 -165683 -613445 -926963 -451796 -6220 -126185 -106818 -236656 -798011 -137127 -420172 -462034 -751505 -677609 -911545 -45268 -903449 -141753 -104815 -136838 -74287 -926504 -54703 -137237 -698878 -320620 -848018 -791582 -339253 -289373 -362080 -924072 -388327 -743794 -227594 -502211 -506001 -930194 -563818 -43903 -208518 -345384 -786788 -192557 -606400 -343056 -132400 -90861 -850127 -690695 -653920 -396708 -935297 -669408 -228900 -779128 -230793 -676740 -164902 -394938 -339387 -639891 -210703 -500073 -71500 -429251 -171190 -680679 -154319 -43822 -260511 -879233 -177623 -438343 -667513 -65951 -40676 -56459 -244521 -435040 -802535 -167445 -926973 -163829 -616030 -376067 -224911 -836157 -930021 -695016 -96802 -899742 -72642 -231336 -11488 -639652 -146317 -329013 -602541 -9804 -11659 -824606 -151567 -210559 -821564 -706553 -325132 -648820 -705260 -342718 -303595 -303619 -403626 -157453 -447676 -805320 -185310 -338554 -521302 -314415 -235082 -173737 -289033 -3353 -20238 -237078 -332488 -350884 -639996 -627419 -12988 -558477 -54553 -113433 -634897 -778298 -631448 -781206 -283450 -33739 -797145 -171945 -770240 -797829 -383934 -102892 -177510 -439202 -233909 -486950 -70719 -179921 -677864 -824704 -606548 -391513 -794070 -931203 -801712 -246251 -544016 -34861 -429413 -856622 -409283 -303585 -863361 -933852 -413083 -331858 -895816 -229777 -413199 -453882 -917342 -137204 -24833 -852507 -794539 -260611 -464143 -230792 -164236 -122205 -484972 -360620 -880229 -732430 -490926 -280885 -424154 -502184 -105135 -741970 -298424 -429426 -797744 -65838 -339847 -11502 -276278 -888090 -660461 -174668 -538025 -912146 -592149 -153914 -173894 -196379 -2141 -431175 -165358 -454521 -710830 -13217 -20437 -719470 -88828 -13804 -47468 -470991 -684166 -272920 -230789 -305714 -233096 -234410 -697059 -31548 -11496 -326284 -939859 -889225 -680621 -332015 -624316 -639969 -924638 -375876 -770166 -286487 -72758 -363211 -524868 -16656 -945572 -237340 -888313 -339370 -157356 -514094 -20337 -230950 -165667 -653003 -770684 -116021 -769987 -683938 -645422 -930497 -771552 -575392 -914026 -774043 -174646 -422979 -903595 -146587 -164010 -33550 -881889 -323190 -495999 -245928 -74283 -653968 -772188 -771867 -273071 -458811 -772024 -349930 -43223 -918768 -21323 -281552 -139475 -428708 -32033 -193920 -59054 -298839 -365232 -49514 -136697 -215132 -661907 -426558 -163821 -563555 -518641 -820410 -185256 -244998 -944823 -811221 -166047 -244170 -768400 -155354 -735836 -859492 -881111 -463989 -328865 -339624 -857521 -535026 -819566 -230470 -456700 -55685 -135696 -802715 -304115 -10137 -593946 -431164 -193937 -475833 -94766 -66174 -13763 -262543 -64431 -712198 -147251 -693597 -13549 -176573 -248246 -276206 -763945 -175147 -899072 -80188 -394207 -761037 -860247 -449142 -455009 -210752 -524084 -32144 -114875 -639790 -882299 -518430 -118778 -657235 -238257 -929684 -901886 -560054 -322366 -921902 -127664 -561740 -324926 -897149 -693432 -677674 -861099 -233100 -245862 -288135 -914321 -738074 -858212 -398334 -84217 -837362 -432709 -86835 -236644 -397700 -362523 -837349 -230980 -542652 -798161 -40976 -175373 -899433 -489250 -349564 -522712 -819444 -443073 -55501 -215640 -246290 -571465 -208447 -164820 -63655 -28441 -926652 -888081 -68688 -847863 -165859 -165285 -346048 -811847 -331911 -234684 -283455 -654594 -164851 -847726 -900901 -136324 -71097 -11642 -332453 -180997 -456847 -186856 -943031 -296628 -22365 -388825 -817472 -252016 -770538 -917354 -159924 -799260 -317134 -457312 -926812 -785463 -934580 -328972 -34875 -78120 -838402 -639458 -137238 -339841 -147560 -256131 -897266 -787006 -187419 -146412 -19712 -899379 -943951 -59290 -12139 -119333 -827143 -63599 -339581 -236094 -659579 -923127 -888932 -308644 -12206 -798058 -799217 -254741 -416445 -573547 -662359 -174901 -49948 -671331 -817257 -625540 -361671 -824495 -805190 -356247 -617849 -818824 -799984 -421505 -137150 -160887 -457302 -95608 -828517 -772500 -339737 -11580 -339391 -65857 -31945 -6671 -539639 -604736 -192708 -694430 -188470 -147585 -360994 -661774 -424466 -615755 -676452 -517348 -903560 -419282 -495932 -3962 -503866 -657342 -68137 -339843 -116629 -20389 -924606 -227103 -405410 -185135 -853219 -635558 -475881 -827297 -164854 -314682 -227931 -136678 -45665 -934140 -4164 -291528 -660681 -136821 -693016 -602920 -840369 -951589 -625103 -384717 -517368 -15536 -19887 -136957 -338297 -416492 -42383 -933580 -840929 -744376 -60960 -78135 -842319 -509212 -758051 -78771 -84656 -34111 -905001 -232055 -799082 -308117 -155770 -902597 -190550 -829854 -224944 -81711 -711754 -943714 -101268 -617732 -559214 -347784 -416435 -794195 -633776 -633645 -165378 -132270 -732806 -731105 -657390 -523061 -748478 -579689 -27830 -154093 -215869 -339006 -296515 -889554 -908191 -949624 -308852 -488211 -321760 -771466 -412791 -15609 -258607 -481413 -913599 -75744 -432514 -113581 -50223 -185656 -37138 -40983 -477128 -240229 -803207 -732879 -331186 -286093 -33446 -854536 -602441 -137116 -801421 -505593 -475109 -534352 -13695 -130571 -456255 -606267 -195769 -164174 -40861 -924777 -545770 -121303 -445498 -132758 -32211 -263621 -433535 -506675 -347531 -593389 -339545 -663208 -818815 -165973 -430295 -101746 -498009 -267576 -46910 -429996 -32321 -574059 -101851 -176180 -124924 -576359 -276053 -939552 -277382 -197057 -824302 -924610 -442615 -819953 -820844 -166024 -432638 -11631 -132264 -621600 -276303 -364840 -330440 -628961 -153084 -818199 -816637 -491273 -924219 -426371 -31628 -832444 -67482 -33685 -633876 -47443 -831444 -660547 -63530 -124932 -339583 -165780 -662234 -165386 -812280 -669365 -930757 -631980 -85258 -165575 -64265 -20573 -663581 -315801 -698842 -799369 -136700 -638880 -173922 -512638 -694024 -853081 -46008 -395212 -191347 -828386 -860453 -41143 -954190 -338794 -338493 -788348 -65028 -860920 -473811 -13841 -176029 -263277 -80847 -929051 -946106 -502646 -294517 -903089 -742984 -230822 -13716 -779790 -28562 -131208 -324712 -136778 -244691 -196231 -350177 -6111 -49959 -166051 -741033 -339633 -848253 -637021 -70580 -374458 -782334 -429308 -313900 -743458 -798162 -639981 -482434 -673170 -574831 -765737 -76016 -14434 -303268 -386819 -915631 -163316 -667068 -652600 -917344 -593124 -457689 -835491 -456415 -206206 -282892 -288718 -164609 -934218 -123164 -949431 -270199 -113879 -780411 -180313 -345879 -26815 -524518 -693682 -281766 -339425 -86725 -175439 -650163 -46831 -904092 -81271 -245055 -570377 -919913 -495570 -276075 -490821 -633881 -677702 -866368 -95335 -802664 -13059 -322540 -484750 -79292 -339513 -164984 -729330 -651860 -892803 -192954 -69028 -875506 -419013 -800020 -639974 -46230 -13809 -501866 -363282 -339875 -864532 -955445 -450800 -512482 -546047 -179704 -101769 -712222 -890727 -832790 -207849 -633334 -321587 -383910 -474180 -325056 -668195 -14836 -364061 -799306 -444249 -299906 -768970 -695729 -212972 -609795 -931520 -85680 -640040 -565871 -819713 -639858 -933013 -904007 -339361 -501173 -328340 -865111 -112138 -11486 -77871 -273827 -772391 -89095 -140582 -272975 -132761 -275324 -245061 -908149 -786536 -924698 -451430 -43727 -228154 -604050 -477010 -228469 -165883 -391392 -840760 -288558 -368328 -273129 -737102 -676169 -72131 -154854 -115267 -305718 -793949 -810730 -847227 -797295 -186480 -537587 -339701 -779766 -274677 -12288 -421929 -137184 -742530 -22985 -51881 -930904 -263566 -728976 -846066 -176230 -147630 -339856 -814212 -90403 -101725 -798061 -393191 -527508 -639074 -312196 -125862 -121144 -639801 -435538 -799447 -165807 -503572 -291028 -783548 -816542 -586498 -893061 -271088 -547793 -632111 -276447 -371273 -165598 -394716 -246235 -570792 -64710 -276466 -9014 -606409 -118944 -52667 -432911 -32080 -931913 -581474 -339747 -99724 -625163 -889563 -761806 -67067 -403187 -654447 -170906 -163409 -943853 -800022 -70665 -61091 -828683 -15942 -30754 -621269 -511293 -196109 -120656 -867086 -624711 -892837 -633804 -552838 -369792 -522458 -339887 -446489 -398505 -342320 -491824 -588422 -137137 -854772 -661385 -147541 -605830 -330174 -339282 -428745 -939635 -64820 -797867 -204738 -536778 -760484 -551955 -278348 -160508 -514188 -362238 -632194 -953630 -644025 -121341 -101911 -517411 -364479 -33222 -603558 -512874 -945650 -137223 -364361 -638758 -477131 -711945 -279896 -268443 -917105 -451917 -823327 -482516 -568913 -638602 -101355 -1330 -934643 -771936 -457404 -237345 -200337 -787372 -65911 -447666 -714844 -904929 -89165 -938226 -117002 -648824 -231339 -907543 -265787 -653417 -298417 -200460 -750253 -165051 -332352 -37408 -457788 -22488 -339426 -272833 -801736 -165732 -30536 -576320 -920386 -894757 -155599 -45939 -555563 -908189 -650367 -445121 -49788 -257963 -339094 -288989 -215635 -550499 -165998 -133545 -516569 -236101 -347282 -630647 -109257 -527356 -294789 -192454 -831220 -335139 -212792 -950614 -723496 -72537 -797772 -174816 -461247 -172821 -562503 -635174 -245937 -92113 -913315 -165270 -904053 -77845 -593102 -244338 -413222 -506201 -126227 -680143 -424455 -23710 -716488 -929810 -330470 -763554 -356367 -73921 -11623 -117272 -501095 -683263 -361692 -658487 -571340 -361628 -372000 -6015 -853882 -175065 -263596 -491457 -879309 -448482 -626006 -798166 -491118 -365178 -367833 -248435 -837382 -526934 -190875 -624375 -624767 -888845 -883559 -164286 -387781 -13677 -836819 -239199 -793072 -245020 -889478 -310477 -226842 -809794 -163812 -772983 -397992 -133716 -455961 -102884 -607169 -75540 -839592 -110402 -952929 -832971 -246392 -778116 -657792 -51337 -931917 -15866 -904056 -125336 -253403 -102556 -600839 -616316 -675479 -797965 -945691 -903570 -323602 -395272 -322810 -935187 -150834 -949379 -614885 -113665 -181011 -812427 -13822 -151662 -667207 -356167 -122491 -618466 -772220 -44102 -54513 -22774 -639922 -117161 -15851 -355890 -431699 -424855 -13954 -137108 -32465 -387348 -422139 -863906 -190556 -260620 -381870 -571483 -744593 -652587 -585009 -230970 -369890 -237872 -264967 -263395 -324459 -784211 -903377 -292047 -824780 -74156 -863591 -26930 -625555 -528470 -13746 -395078 -462043 -224024 -60537 -632089 -856923 -230764 -482477 -907615 -823882 -860425 -132277 -169761 -164805 -34646 -803582 -544629 -186574 -298433 -165237 -102642 -809432 -431166 -146856 -295776 -633826 -60957 -539571 -431971 -834381 -64725 -133250 -29690 -30720 -16757 -129118 -822815 -206709 -78488 -692619 -445239 -13657 -811815 -196071 -771438 -659424 -623828 -406012 -369347 -419135 -116605 -314510 -618247 -243934 -659504 -162210 -259718 -703221 -242545 -287608 -660447 -155374 -837285 -114978 -633083 -518326 -458955 -4121 -15779 -112046 -483684 -92157 -32928 -510093 -625361 -309839 -321215 -261020 -273803 -278902 -691559 -186662 -926244 -57261 -377490 -633416 -490293 -899102 -635283 -369888 -31627 -291487 -228327 -662890 -54223 -322359 -842836 -237398 -912498 -600142 -662818 -63621 -777028 -164074 -888214 -362517 -864053 -237160 -136289 -931498 -772704 -861043 -101949 -79322 -326464 -173381 -146562 -687004 -126152 -72679 -231255 -1124 -70916 -243979 -263532 -165409 -732709 -115723 -364233 -829536 -332022 -433861 -221082 -818005 -954614 -603848 -235242 -771650 -698588 -639851 -310129 -165498 -264021 -123030 -74060 -146907 -633362 -875959 -377360 -684785 -639218 -428912 -255314 -396615 -669353 -114080 -277252 -170200 -231158 -22811 -454696 -87105 -634234 -778358 -449239 -113349 -934017 -896259 -418822 -31998 -110296 -592728 -235265 -70188 -173815 -667177 -185697 -330966 -155365 -229658 -791625 -832284 -180927 -377078 -894571 -165359 -20397 -920315 -197518 -580777 -726922 -848824 -721154 -897652 -443920 -244881 -908055 -161969 -442359 -638284 -382378 -744297 -11461 -948919 -623338 -531502 -371663 -446526 -390925 -147552 -639881 -633025 -235906 -831158 -51484 -905791 -46416 -442983 -255518 -457382 -15644 -210906 -180894 -365508 -139403 -136889 -338851 -428789 -76761 -636323 -904073 -727050 -173269 -576 -32242 -275008 -810833 -444967 -693627 -927515 -935689 -832786 -674276 -248244 -71264 -173820 -832597 -343896 -67480 -339739 -824205 -276311 -362000 -735428 -934304 -850864 -284406 -512525 -20546 -164832 -176246 -637455 -863183 -932735 -606521 -342632 -575034 -803536 -432633 -136292 -856937 -12296 -163801 -31968 -640007 -662252 -818230 -853000 -529175 -22616 -948963 -523894 -189952 -480993 -43383 -186846 -11362 -354358 -801668 -444071 -523211 -160418 -103710 -888285 -859183 -383988 -858197 -518255 -145241 -474444 -797828 -294873 -339237 -872559 -647657 -429277 -747985 -675917 -122470 -412979 -287295 -237547 -652480 -339645 -331130 -684742 -765681 -677252 -564354 -661955 -762442 -40463 -904162 -338959 -165971 -41358 -516610 -205801 -46028 -559216 -171118 -316960 -818385 -867022 -84751 -315721 -31615 -639982 -318750 -888792 -396932 -281139 -633709 -512447 -41409 -29141 -907534 -112059 -377222 -567704 -413008 -192166 -163677 -8843 -690440 -906829 -334178 -286946 -702987 -330775 -179779 -947123 -216064 -362471 -633562 -927879 -797917 -268442 -187539 -317819 -900161 -68366 -92137 -564010 -262623 -17342 -443072 -459339 -159629 -427985 -756249 -291699 -717539 -73343 -155623 -238715 -552931 -639741 -209134 -339118 -637574 -365207 -735999 -10075 -773306 -126014 -639988 -504293 -31950 -263478 -878604 -889526 -141649 -262841 -292236 -750026 -947108 -632919 -339890 -735266 -132258 -635790 -322880 -835103 -606189 -863197 -279102 -712077 -444387 -173035 -54488 -34900 -638006 -861059 -517730 -9316 -348464 -754559 -292723 -632578 -26234 -81187 -363717 -303115 -396378 -235749 -110427 -63475 -625012 -394806 -245281 -51369 -422045 -126255 -886490 -388028 -935364 -276859 -503368 -133268 -136836 -863520 -253721 -6146 -735034 -732762 -101460 -744246 -253833 -824647 -824610 -230983 -339899 -454619 -391222 -879483 -314287 -465073 -661756 -135618 -399605 -524008 -633720 -14699 -771082 -430411 -635173 -914115 -165803 -76343 -11524 -42753 -846608 -773764 -397329 -158867 -215637 -676136 -114175 -900877 -46261 -288477 -362139 -889649 -483742 -12185 -415214 -195557 -613021 -353366 -243835 -534687 -714607 -663874 -711700 -927086 -229376 -511080 -627240 -788537 -339889 -695873 -339310 -930324 -763164 -164942 -863075 -238138 -270993 -648555 -420174 -757833 -832825 -204728 -135751 -890892 -72478 -837925 -441886 -796852 -909678 -638221 -417029 -215758 -185243 -40344 -577898 -561521 -237124 -85245 -732814 -930717 -663863 -136870 -34492 -588283 -62760 -861278 -332288 -948959 -847490 -767699 -382992 -326442 -165513 -710984 -46575 -896138 -827074 -635576 -225529 -322288 -82298 -564172 -430342 -237171 -705391 -505912 -55820 -824482 -667083 -691636 -165418 -950725 -756472 -136035 -443578 -743456 -794911 -50201 -34113 -137158 -239292 -382294 -72776 -844384 -793505 -644391 -667117 -332153 -547143 -339524 -315668 -192817 -575180 -771602 -504225 -63142 -175265 -125693 -200725 -954737 -882827 -811958 -904091 -856585 -126699 -173898 -850946 -834496 -797939 -279761 -291797 -556433 -303328 -836874 -338621 -168123 -239237 -797063 -164730 -288138 -6027 -416928 -340778 -812021 -175187 -339116 -375303 -925863 -477200 -403643 -388358 -69979 -64680 -210837 -432883 -24952 -662921 -136953 -483179 -185870 -60301 -56761 -913050 -638689 -33176 -166090 -835290 -81723 -801717 -377363 -70829 -475308 -762158 -633204 -176486 -339721 -174291 -63913 -147465 -113965 -663698 -822828 -839451 -215706 -914240 -182844 -610917 -276960 -68507 -165053 -695947 -832080 -45309 -600994 -172378 -339868 -101796 -276401 -176570 -516278 -866912 -906651 -303630 -122990 -518817 -714446 -32966 -339641 -713877 -397921 -653618 -912495 -245683 -738397 -339872 -231312 -504215 -2595 -416298 -908129 -26937 -54636 -141699 -715782 -648751 -924756 -892830 -730762 -7639 -133429 -861343 -839472 -797623 -854659 -32209 -916436 -365482 -852868 -303580 -835377 -505962 -210832 -436309 -771005 -286276 -368630 -339170 -926180 -152916 -54670 -121206 -25239 -361123 -273153 -94915 -388914 -906430 -402864 -305808 -941495 -74699 -137212 -244015 -213371 -113621 -315321 -920101 -593935 -136223 -438726 -744401 -860170 -863828 -577633 -835401 -457707 -811876 -165614 -627631 -51775 -73796 -65985 -41349 -888037 -75740 -157452 -364831 -640023 -101543 -136760 -275223 -569905 -618661 -710927 -325151 -236005 -110487 -859240 -173786 -331857 -730146 -61035 -432500 -632204 -544422 -175814 -96393 -824066 -888238 -339673 -234541 -802730 -734489 -803259 -422622 -711752 -795194 -214987 -732683 -137020 -49924 -757044 -573124 -163854 -904137 -920018 -457534 -772202 -165705 -505471 -16404 -342918 -840202 -834978 -56135 -432549 -904144 -113532 -84769 -602698 -634597 -446763 -523064 -536731 -756510 -245496 -905166 -339703 -818640 -470211 -306849 -332199 -510775 -906731 -456464 -481138 -331954 -660000 -137098 -147449 -71911 -854429 -653051 -929536 -239384 -603704 -35539 -695377 -374751 -126249 -54931 -123053 -395196 -362033 -914711 -237319 -230208 -364933 -521496 -46090 -540 -841628 -933355 -54460 -953722 -573182 -232443 -816857 -761224 -326083 -363805 -301471 -136032 -34893 -914231 -40973 -50145 -696687 -476090 -504456 -526123 -722416 -889534 -63644 -696443 -124279 -541800 -339506 -712020 -542456 -176500 -602116 -786776 -797653 -78285 -63456 -487481 -907953 -904103 -81708 -423835 -242229 -339279 -34184 -222140 -766133 -518612 -601116 -228156 -39829 -17868 -636226 -138515 -822507 -64885 -19250 -653610 -46215 -132479 -802978 -282206 -343994 -940061 -339257 -491203 -634871 -130108 -680221 -477371 -805803 -779600 -377212 -332343 -439904 -168299 -742619 -140642 -695359 -665918 -72323 -303435 -141881 -470920 -424783 -934514 -766115 -405001 -236602 -933840 -354480 -180714 -424203 -771174 -510347 -274769 -41313 -33634 -692680 -132468 -674799 -364297 -806044 -55729 -852019 -943842 -125933 -632233 -95011 -350891 -494546 -846059 -949668 -693738 -331397 -289910 -722010 -493499 -258239 -306461 -41389 -924184 -112973 -339322 -304002 -128661 -330839 -275063 -139985 -112380 -20269 -124978 -196886 -442456 -495681 -303591 -101684 -511920 -706060 -63398 -807440 -786059 -78949 -620325 -935236 -98177 -389558 -40778 -398346 -113587 -706103 -329376 -31866 -525387 -723136 -692133 -738279 -208634 -101614 -82222 -275328 -593889 -879126 -824293 -489268 -577741 -65813 -512002 -262972 -131537 -816575 -127982 -41399 -278868 -20503 -72211 -851350 -71940 -571382 -56983 -640768 -762290 -861244 -10933 -141521 -714234 -471481 -24197 -574792 -324838 -770770 -80748 -495829 -40792 -173157 -271812 -367630 -11327 -696526 -228330 -569444 -41094 -899324 -785927 -828817 -72614 -328696 -818771 -426419 -369417 -246521 -273892 -242691 -432340 -912608 -857527 -246123 -849841 -809765 -896178 -921289 -274611 -860235 -276157 -245015 -146164 -768482 -449035 -795537 -413251 -569804 -894833 -347308 -192412 -538198 -775208 -426402 -801564 -413096 -476548 -147015 -559375 -484416 -231058 -422472 -576962 -494776 -635964 -415564 -359265 -563967 -423166 -262511 -914050 -97663 -853788 -524881 -799218 -914251 -850540 -90810 -231318 -6120 -10667 -735031 -20434 -348820 -497193 -895375 -346183 -75684 -40645 -923566 -678045 -423280 -639561 -838041 -429040 -802502 -101772 -112114 -765396 -230512 -886920 -756461 -41333 -941532 -332475 -821066 -441825 -528618 -211827 -813403 -17521 -369579 -414439 -56083 -11562 -773226 -898274 -706405 -112695 -665718 -621106 -519804 -113220 -505525 -113495 -145374 -876005 -765982 -941852 -23058 -55928 -20439 -242779 -137078 -545161 -841751 -646219 -103254 -639579 -55533 -137006 -86399 -186394 -41265 -797723 -751508 -886550 -914143 -365680 -83066 -321574 -820889 -788346 -388374 -807172 -276098 -387559 -891405 -492644 -571921 -537912 -480284 -889549 -26922 -72293 -801441 -194925 -22777 -155201 -88058 -324103 -51415 -395771 -275286 -756499 -495896 -586590 -251005 -735924 -132184 -836878 -51030 -180724 -782954 -430750 -322569 -832637 -715786 -76844 -413249 -186850 -52064 -772389 -72013 -588441 -954013 -722923 -849372 -661775 -72774 -141902 -375422 -855334 -276099 -640773 -694315 -581110 -186928 -67570 -239131 -266724 -298863 -738263 -35304 -827225 -690893 -426212 -232232 -10522 -904057 -81128 -770608 -230433 -476365 -504455 -571953 -423359 -571308 -624301 -51388 -899766 -127344 -503355 -696956 -388720 -521548 -256381 -241818 -274651 -74355 -663907 -308917 -443277 -146538 -27459 -102645 -571842 -761249 -723708 -220584 -742889 -96357 -860274 -433064 -262788 -170843 -185086 -42995 -563141 -647569 -782132 -41350 -377196 -923482 -178565 -102258 -752211 -445792 -62093 -324815 -9891 -19359 -495812 -136762 -27898 -815667 -447819 -765091 -809061 -893101 -803601 -123051 -78092 -445777 -413123 -12242 -173399 -252227 -500988 -445774 -358776 -70857 -486306 -849748 -20009 -627221 -641356 -444720 -712307 -172872 -250650 -377443 -754440 -186429 -72068 -176206 -165616 -91028 -827892 -859989 -244976 -495576 -245518 -445661 -778651 -50193 -372194 -422184 -850012 -287828 -890860 -525425 -600551 -61685 -63615 -782623 -758069 -333446 -925649 -185100 -879942 -233340 -260952 -817885 -804850 -429257 -752154 -80271 -693029 -280861 -512591 -103106 -86657 -46278 -861337 -763364 -639594 -129047 -818828 -177528 -74434 -72492 -903521 -307444 -316647 -24741 -827432 -186278 -783421 -711543 -779497 -723517 -55744 -729339 -842985 -72143 -141140 -97677 -436156 -262991 -780994 -186645 -60934 -184947 -839535 -818161 -415149 -49273 -424330 -262520 -229775 -456027 -595 -55854 -424393 -235027 -275895 -363580 -562407 -835993 -107747 -128148 -337383 -579483 -636852 -141658 -252813 -857651 -900116 -756709 -433555 -495595 -510238 -68310 -72256 -709968 -72072 -571303 -486090 -801724 -72252 -68603 -412889 -20419 -639359 -105651 -727065 -12922 -13747 -514002 -459778 -624662 -330785 -102518 -823096 -741398 -806938 -224757 -13565 -252034 -244279 -889017 -451167 -867015 -28936 -349961 -871550 -274333 -262431 -463536 -547233 -559662 -139832 -254922 -147373 -10675 -861080 -230141 -731069 -142005 -606717 -308751 -938526 -954261 -934774 -79173 -126299 -189314 -602687 -696999 -445289 -81480 -938363 -588911 -839732 -429233 -907696 -755467 -63580 -10992 -153981 -942889 -632656 -276545 -180716 -693924 -828699 -44426 -861338 -41003 -886858 -568940 -801635 -652575 -710661 -894596 -952559 -374988 -638647 -866962 -236791 -856220 -900682 -230934 -797743 -74058 -624955 -64693 -415945 -850128 -335327 -19964 -338235 -542658 -125989 -916492 -272698 -781148 -362463 -250579 -53840 -334172 -843793 -230267 -661094 -765724 -791842 -857097 -899779 -276367 -255058 -297298 -67200 -756451 -925693 -593478 -489202 -242907 -120720 -904998 -217838 -339663 -622260 -77525 -72336 -16522 -330391 -323122 -801796 -470531 -941367 -4246 -27727 -423992 -429678 -97979 -779616 -107830 -577213 -423259 -255392 -257129 -648452 -332640 -934068 -377311 -634436 -23521 -288829 -694359 -338326 -876119 -195229 -91105 -403805 -921535 -475980 -424469 -300179 -887060 -27872 -27350 -101495 -27938 -387679 -602900 -672970 -349875 -97377 -33262 -386417 -823735 -660462 -921266 -800414 -850944 -288685 -924263 -386016 -13638 -118626 -185935 -802902 -97446 -142221 -36297 -63519 -542916 -571200 -571704 -375448 -164968 -202928 -340187 -45349 -282882 -263493 -765293 -927718 -66956 -105722 -442257 -847866 -54324 -81710 -669078 -231330 -164243 -734253 -100397 -765684 -186488 -834865 -532103 -12306 -488318 -264031 -825722 -857056 -848896 -929671 -72173 -16176 -18189 -866287 -611824 -352821 -388026 -431695 -45629 -614396 -852617 -335399 -834633 -134146 -624444 -755477 -398425 -812703 -362357 -918850 -569893 -37142 -446485 -572812 -6201 -362371 -743187 -445174 -782105 -173635 -173598 -331041 -515209 -927580 -940093 -258551 -445037 -562562 -165794 -217013 -893063 -16510 -21842 -52838 -136650 -671661 -129466 -839689 -779472 -65993 -15862 -889011 -693384 -663551 -101371 -46100 -140478 -410713 -231935 -855571 -177468 -6527 -846247 -695254 -602629 -727816 -263072 -696154 -34807 -520051 -327325 -422728 -669632 -232585 -348302 -429303 -324856 -398626 -29358 -102093 -254521 -910914 -570783 -26612 -358374 -283626 -126184 -503964 -388253 -115756 -118631 -457800 -145672 -706453 -759620 -482388 -849414 -495606 -266868 -569035 -429160 -211875 -749545 -314761 -921634 -931201 -377307 -2732 -11131 -59272 -693715 -735289 -116282 -98430 -924562 -330826 -32137 -402355 -330376 -730488 -173259 -102797 -13969 -11170 -330915 -351382 -936791 -28766 -461352 -27892 -128473 -543579 -18271 -133453 -368528 -64536 -78097 -325121 -818949 -96064 -339316 -922686 -735521 -605811 -41410 -824575 -838374 -924455 -656267 -761896 -496134 -40864 -490283 -338689 -494085 -775103 -239035 -593262 -63371 -775680 -690888 -255197 -743422 -34678 -24490 -564448 -40665 -684205 -214403 -54352 -94886 -663953 -275933 -556411 -692759 -741337 -45693 -934840 -413358 -421705 -163676 -816953 -164997 -569173 -277444 -75094 -648597 -443890 -669138 -798763 -331204 -838633 -446422 -760905 -174214 -37502 -356751 -207011 -34806 -648271 -945729 -899311 -394227 -781831 -41287 -435771 -280923 -282736 -13819 -327498 -592846 -48929 -339675 -768843 -250128 -428677 -804582 -394338 -368905 -668574 -536752 -18233 -948564 -255308 -412067 -903138 -428833 -85000 -461728 -439477 -685321 -929503 -571779 -68068 -470687 -20428 -331693 -303420 -41138 -123505 -282357 -11326 -500588 -72067 -20138 -445501 -954546 -208828 -24190 -12709 -393972 -860325 -539001 -837324 -714599 -925634 -147247 -460902 -102808 -660880 -823783 -279667 -70818 -526759 -35651 -324614 -350616 -726445 -110063 -233069 -165693 -532506 -238516 -624977 -102267 -10336 -101820 -66108 -647650 -266129 -764970 -753802 -638270 -121621 -238056 -427608 -767144 -2626 -282784 -697725 -71299 -44313 -173435 -146893 -41354 -20270 -237229 -429374 -387435 -231180 -10832 -104258 -252033 -5613 -132124 -886685 -83832 -308843 -41367 -570721 -174809 -13766 -400629 -497812 -70300 -945884 -805404 -72369 -831100 -340695 -182575 -332376 -424349 -726089 -586480 -421558 -820203 -383749 -648929 -396741 -133152 -890693 -402239 -663914 -704942 -282777 -72144 -844891 -65955 -488807 -494458 -890755 -275359 -2347 -806930 -102447 -26945 -113666 -361157 -514933 -429080 -429326 -230371 -166483 -244612 -763803 -838025 -494945 -276290 -692706 -233075 -169138 -91093 -125708 -834744 -744562 -502368 -465671 -147163 -246706 -829744 -63495 -276836 -835503 -591527 -839423 -839494 -232750 -168319 -950781 -486500 -113330 -471378 -328744 -113654 -71883 -233337 -85687 -385559 -432232 -81818 -388864 -425716 -582466 -477204 -897517 -33414 -13396 -603539 -362288 -533316 -361705 -735525 -811429 -158047 -668452 -270237 -174958 -891306 -892919 -469759 -134804 -147264 -27534 -375784 -276279 -41069 -781155 -332210 -903468 -449730 -227085 -904175 -893939 -12275 -490846 -75538 -886931 -901866 -360747 -395638 -22665 -398368 -706355 -290327 -96846 -423291 -165643 -107598 -664681 -339865 -779244 -279600 -812401 -339087 -570546 -932076 -12663 -490700 -113604 -404997 -648813 -246286 -777690 -239515 -458816 -330739 -22305 -276438 -892861 -562557 -250659 -807435 -428537 -381742 -843224 -716525 -273556 -330542 -886582 -839404 -647014 -474667 -67447 -373396 -799386 -941826 -24522 -19974 -339380 -761911 -643271 -687228 -49421 -495899 -176058 -760170 -731749 -810950 -211440 -6324 -146045 -102897 -331612 -235433 -802616 -147567 -566342 -591358 -765835 -824075 -164269 -458163 -420871 -80833 -771426 -353447 -71897 -164647 -837767 -919574 -349595 -238484 -390695 -771118 -85047 -824684 -360130 -30979 -861323 -571879 -696917 -165993 -465308 -362476 -623428 -839489 -768172 -633182 -5960 -604087 -95919 -706987 -145798 -11179 -284433 -800804 -71314 -768732 -352255 -254897 -142625 -428814 -505977 -761534 -860243 -184942 -405538 -86448 -233904 -172324 -54956 -21476 -67057 -186282 -92674 -873277 -186903 -67708 -97429 -371543 -587959 -812986 -261657 -81472 -395188 -27906 -98467 -432446 -13038 -833628 -832680 -770571 -861290 -427657 -136595 -326115 -99922 -357505 -273652 -948183 -891417 -664065 -40760 -663560 -139817 -239436 -481333 -432840 -438024 -428629 -643166 -571456 -198867 -747784 -693486 -114892 -251810 -112988 -2766 -721523 -693930 -68237 -61711 -245799 -250973 -298630 -512746 -803380 -839630 -195933 -56701 -674955 -272731 -80106 -412043 -765490 -767859 -229364 -672086 -437462 -54713 -445634 -786866 -656810 -752048 -275361 -6222 -637787 -489306 -140567 -216763 -199777 -472176 -72330 -754680 -255041 -190292 -513561 -276121 -276219 -578488 -412309 -333726 -812481 -941530 -494459 -41256 -50693 -481969 -931073 -603600 -188394 -693176 -41212 -72272 -278872 -303582 -749536 -377427 -388786 -71944 -231274 -500527 -830387 -533113 -2209 -426142 -275998 -54201 -477347 -147583 -66102 -168375 -736126 -60370 -68414 -159452 -702039 -525890 -147395 -96956 -273760 -303044 -252396 -72096 -147451 -126289 -790106 -680483 -361663 -359184 -192054 -734947 -656561 -94863 -200573 -786112 -184973 -746888 -482449 -640858 -418485 -539202 -34109 -420938 -832366 -331063 -953857 -69407 -897108 -201850 -500007 -339883 -944900 -736008 -928364 -102364 -10241 -238258 -632035 -13558 -281265 -837664 -861218 -68397 -196476 -237138 -72338 -377539 -263170 -197156 -441839 -796135 -238765 -483130 -570381 -250632 -11308 -398238 -331100 -429393 -835543 -358681 -824073 -5690 -934103 -495095 -147473 -332433 -165690 -838335 -649420 -734792 -511244 -323522 -841829 -172365 -215720 -307203 -25859 -56150 -892005 -41213 -188727 -34538 -41340 -282942 -835374 -924396 -772055 -163440 -672870 -212749 -373275 -692139 -857766 -205918 -924889 -422659 -489371 -841313 -63445 -52574 -695417 -337768 -822284 -824249 -274756 -950666 -17056 -828803 -385186 -819455 -54561 -215375 -750943 -600707 -707367 -190988 -163668 -49294 -693034 -791782 -398562 -282495 -766119 -136950 -893113 -694368 -834569 -926904 -23036 -98315 -571106 -42593 -383240 -231253 -134932 -308134 -861040 -95833 -932899 -136285 -211628 -274736 -186826 -817533 -244962 -766283 -887058 -49396 -431533 -893034 -463780 -230913 -11098 -799349 -664768 -693610 -850176 -892969 -521271 -25386 -176614 -101652 -775302 -677169 -330589 -243473 -693473 -481850 -173374 -341751 -879854 -330055 -861075 -385288 -274160 -932579 -571290 -892845 -10912 -83833 -627494 -486303 -574402 -623511 -497903 -831599 -236223 -591651 -435093 -423050 -175445 -177478 -423803 -722919 -30342 -733797 -112275 -591335 -12273 -861045 -409569 -679725 -147450 -495872 -857219 -12176 -481721 -13912 -280910 -429844 -166309 -113373 -481654 -468708 -32241 -1129 -704480 -693708 -32396 -444805 -211714 -873231 -103011 -186999 -40682 -476996 -799761 -20771 -854784 -101622 -875752 -50877 -779577 -20482 -56124 -39185 -27896 -19646 -682282 -417472 -287717 -776604 -428201 -235315 -666357 -306943 -801253 -429931 -782241 -56346 -664294 -828327 -354747 -838008 -703618 -891510 -331923 -284194 -67342 -41185 -43288 -282635 -26933 -766301 -460538 -478630 -775248 -104691 -856984 -462101 -540777 -398619 -51971 -444709 -558818 -667660 -540553 -165668 -245155 -850157 -542452 -728190 -27343 -248530 -889438 -232525 -836264 -649884 -272131 -532932 -638443 -20536 -437594 -486808 -13111 -772320 -246277 -168147 -40679 -165515 -196074 -477165 -797218 -569872 -784296 -602764 -34823 -439471 -497943 -706334 -831601 -9404 -33737 -254973 -741797 -41133 -279757 -427706 -63138 -319193 -456431 -494180 -278078 -769013 -779351 -562634 -20063 -277921 -231261 -493 -903181 -495835 -717167 -68551 -46078 -276120 -287914 -12464 -513656 -153907 -562971 -186275 -4394 -839316 -623270 -562318 -788444 -548046 -778684 -347815 -83042 -801903 -275645 -41150 -339704 -626239 -687510 -140459 -121932 -428977 -67983 -571956 -196443 -244514 -225411 -186576 -454764 -638859 -847046 -696085 -599263 -32762 -19716 -759318 -788564 -278577 -41338 -186884 -744305 -165281 -725149 -470052 -175170 -633791 -13413 -47689 -857145 -887071 -243697 -954990 -231166 -930455 -255543 -287495 -311402 -711938 -811891 -697012 -67196 -516988 -573436 -563280 -165965 -423098 -173284 -185136 -192880 -314749 -277826 -29760 -716582 -97135 -113429 -839414 -204684 -49379 -26699 -838607 -835578 -365413 -13861 -694399 -262308 -398288 -278493 -165453 -693012 -157143 -486723 -112175 -624445 -142706 -425734 -154148 -275420 -571319 -807188 -423129 -496109 -677438 -186592 -72339 -492975 -175526 -730690 -751215 -439536 -671761 -325114 -390534 -12578 -444363 -230940 -291953 -428743 -791486 -233258 -635751 -43921 -255380 -45441 -872994 -9548 -606078 -332370 -137249 -173649 -848969 -12664 -439815 -516681 -694116 -775607 -274114 -616391 -446234 -939331 -230171 -41008 -173146 -234364 -54598 -831238 -703616 -830149 -356236 -302860 -245850 -873448 -816404 -72169 -396698 -798708 -503970 -566236 -428520 -167332 -803197 -365843 -10810 -330772 -332226 -864074 -636421 -696451 -146528 -95341 -749697 -765132 -549463 -41261 -27882 -812908 -184731 -820368 -186715 -857459 -29591 -672583 -56048 -846017 -35653 -636940 -279278 -811949 -636144 -591187 -134153 -539574 -637843 -909034 -562860 -41351 -865134 -68690 -495574 -456083 -197212 -155429 -505167 -429358 -505421 -239643 -886573 -552087 -547148 -349854 -799808 -375022 -186853 -193919 -503954 -703537 -687334 -668403 -471062 -667001 -907600 -376662 -75126 -402199 -745475 -828939 -279025 -50697 -386403 -593622 -208624 -820085 -173509 -524386 -838655 -81606 -44307 -831109 -78341 -516036 -64833 -146520 -165738 -90584 -303725 -60154 -185303 -919650 -695745 -652869 -593774 -185594 -173348 -154102 -317399 -935418 -113360 -142204 -275948 -22730 -136029 -834864 -144422 -54477 -365299 -428889 -386612 -528547 -308921 -432327 -761752 -623549 -288613 -928983 -40759 -741864 -618423 -778275 -431683 -103666 -649730 -858085 -127962 -223834 -911565 -308791 -395603 -255467 -54973 -520497 -277057 -636339 -387792 -624789 -856421 -732507 -375027 -173863 -66377 -401233 -41404 -567296 -887446 -376039 -621474 -343924 -935470 -373279 -627940 -162784 -424211 -747528 -126262 -29056 -939653 -704026 -10274 -858034 -241586 -505603 -797982 -949092 -368695 -778696 -570920 -331376 -338854 -32128 -282556 -656842 -721451 -494867 -272466 -40540 -569900 -739730 -496126 -330298 -387862 -832151 -704604 -536122 -8728 -600561 -541103 -173159 -800879 -650063 -230682 -292709 -664104 -176251 -375954 -78502 -263361 -690204 -343697 -859696 -313776 -41049 -67768 -897883 -57756 -645399 -232344 -142708 -266135 -775441 -519032 -858852 -593053 -272618 -324193 -850027 -186808 -232973 -146996 -134702 -932140 -703723 -837284 -274868 -402345 -648836 -22884 -71124 -65890 -141883 -462059 -400695 -6725 -569337 -622191 -281221 -288006 -394440 -250787 -823028 -99791 -760040 -181604 -422002 -136030 -691639 -84838 -76087 -41331 -725789 -927729 -779149 -285827 -146986 -10944 -854305 -29126 -774103 -606552 -56094 -58179 -331895 -133974 -826835 -437094 -19455 -254389 -253791 -98327 -721273 -533652 -72093 -308380 -288151 -12689 -349742 -132004 -128293 -208756 -388670 -146043 -332313 -432722 -188287 -41762 -147559 -146542 -410693 -398457 -694115 -852614 -639734 -331098 -276289 -403349 -232526 -469671 -277985 -64124 -755257 -824557 -9531 -743440 -276325 -733873 -173763 -524068 -86096 -74352 -291453 -850057 -768417 -231069 -904486 -103086 -658602 -244853 -35741 -632554 -527340 -479963 -355687 -231236 -66014 -468000 -74402 -133061 -259393 -904205 -462239 -479097 -659182 -350408 -46595 -687599 -129027 -262291 -623323 -591782 -287655 -829297 -783391 -263093 -438517 -147304 -466062 -125728 -783555 -322555 -775786 -403598 -707084 -505868 -694422 -424400 -458820 -639715 -429072 -377492 -96725 -811573 -694426 -387820 -115830 -368427 -824341 -675927 -276088 -62615 -451750 -453760 -184886 -195857 -635284 -41372 -96994 -674171 -483762 -78316 -190922 -131445 -602737 -185871 -736005 -528102 -339837 -67472 -844407 -811941 -931888 -168303 -40579 -818642 -146554 -350466 -736519 -785258 -518089 -119221 -339124 -603750 -344976 -252120 -27802 -754748 -326147 -358296 -658482 -79590 -408322 -270798 -779635 -245685 -282583 -641314 -244049 -41302 -669893 -303840 -824236 -308315 -429435 -676236 -279084 -432307 -797220 -392304 -442133 -12167 -129115 -8803 -358308 -64778 -236736 -41155 -665982 -779533 -450894 -659687 -62970 -90632 -259827 -494188 -604138 -799677 -591690 -123530 -347362 -311813 -432666 -277966 -70699 -121890 -790733 -645546 -12117 -909774 -103335 -339226 -41346 -847546 -14711 -18083 -878506 -625588 -331370 -20322 -347354 -43785 -150309 -369568 -632291 -246256 -10906 -285473 -799273 -623863 -440951 -297582 -240683 -640959 -102161 -422762 -691998 -920341 -276065 -281218 -138827 -524048 -84847 -419384 -263256 -674790 -418626 -819527 -186870 -691722 -244078 -722463 -338956 -808195 -768623 -133558 -675970 -45926 -347541 -518872 -601047 -102285 -929379 -41161 -54458 -852426 -287482 -265838 -433416 -839426 -737893 -395494 -176114 -395607 -640466 -494865 -182902 -40952 -571416 -571104 -551560 -490733 -710914 -802531 -716317 -927448 -308570 -205948 -172325 -588073 -208527 -16648 -377418 -51838 -27884 -740557 -350991 -78426 -703075 -600482 -331969 -476616 -738686 -13574 -332110 -234426 -254042 -150438 -175797 -910007 -76574 -160466 -401426 -70685 -356351 -338602 -287484 -203539 -579177 -810807 -399723 -573672 -223893 -952088 -190953 -853962 -741462 -633812 -550179 -666998 -769552 -755225 -501767 -665094 -738392 -483839 -521483 -952173 -200282 -73475 -89289 -369096 -357360 -537154 -865178 -76504 -235694 -171199 -771685 -821001 -664146 -81695 -544041 -707376 -199540 -234578 -401875 -528582 -792353 -724229 -597029 -778328 -674848 -909126 -680906 -778226 -350915 -203522 -94283 -719924 -344175 -590577 -698829 -798273 -627533 -564038 -952108 -582116 -498210 -502401 -261913 -600382 -838367 -699730 -375443 -879767 -356262 -390147 -357266 -785710 -536278 -76257 -356566 -397277 -324465 -503018 -372523 -192448 -278627 -48572 -674744 -357002 -424467 -543952 -504236 -356411 -199310 -575546 -481617 -611078 -861628 -670010 -256592 -446740 -205144 -619125 -34180 -712324 -268301 -354452 -426162 -95429 -756596 -226399 -746101 -503385 -299206 -416374 -171315 -475090 -539666 -324667 -355808 -946051 -666171 -367232 -747714 -782239 -357328 -663756 -741991 -322159 -578656 -57675 -67326 -97947 -97988 -349956 -498222 -358316 -809505 -544247 -192806 -951949 -356260 -350881 -802831 -673168 -156275 -662175 -30808 -925832 -356691 -596954 -314769 -47358 -527687 -944699 -524949 -355704 -761313 -945857 -640904 -415541 -344495 -215523 -312516 -596565 -830468 -944493 -282151 -534178 -240607 -611656 -355893 -179460 -500866 -902972 -140657 -542196 -502623 -945306 -355992 -858906 -118021 -814108 -287677 -355250 -766372 -545910 -715800 -696094 -504178 -332295 -97190 -799267 -356695 -324798 -664713 -684277 -490024 -118124 -595803 -677622 -498208 -582271 -719138 -226177 -416985 -355346 -946023 -69639 -922298 -258051 -943008 -398561 -463420 -344421 -663535 -476036 -802458 -265116 -946094 -242968 -471202 -576164 -593975 -956517 -656663 -360849 -906221 -778442 -935531 -719450 -269534 -863456 -479704 -277636 -742155 -416110 -458116 -94735 -119395 -95323 -274823 -747675 -417003 -504688 -322814 -769430 -216745 -383414 -595706 -543878 -956394 -121238 -175359 -577947 -260716 -576257 -582292 -395928 -717240 -356542 -103722 -943969 -905289 -29163 -801045 -144447 -510511 -86522 -356311 -120548 -672091 -86588 -126771 -315148 -86494 -381825 -582486 -348353 -504498 -664465 -143947 -544240 -328233 -356175 -556132 -862970 -432696 -605492 -923093 -159332 -652216 -290517 -806809 -859025 -825946 -903601 -350674 -405255 -882840 -324033 -134679 -783414 -905346 -56534 -402118 -18823 -356104 -678171 -197801 -174929 -505689 -664028 -174722 -625634 -403188 -299888 -348265 -717484 -811654 -799326 -777115 -166721 -645544 -73456 -182655 -356704 -814838 -502117 -523723 -787596 -550526 -174177 -264179 -923078 -824483 -875719 -674797 -65439 -255619 -45329 -570652 -762664 -355642 -475989 -545060 -695922 -149803 -394009 -486827 -61703 -909575 -564564 -248489 -661354 -474534 -940888 -867700 -777173 -409754 -664953 -805606 -416201 -356359 -863674 -474774 -778218 -712164 -75626 -236316 -761039 -239230 -806768 -648969 -339228 -806758 -284112 -510092 -904342 -39061 -175371 -952951 -863795 -249280 -500604 -724865 -355772 -591633 -564574 -240211 -871583 -750809 -777949 -76458 -309773 -65909 -741634 -550591 -945550 -93471 -476665 -663540 -581743 -81649 -743726 -944166 -227117 -505588 -543399 -597480 -833954 -880737 -421130 -597500 -777285 -505751 -703009 -761503 -413737 -809206 -515624 -388982 -901993 -414931 -402203 -696159 -832586 -343865 -927784 -543326 -134380 -824381 -883064 -44167 -78538 -431948 -777147 -214808 -882334 -44419 -813986 -143832 -834277 -822519 -523860 -790173 -704231 -339859 -383836 -326481 -249179 -934153 -942730 -226372 -97598 -258097 -424388 -133758 -542052 -295849 -236144 -248160 -200739 -356393 -435034 -795180 -803506 -596397 -947733 -505720 -279810 -862596 -323540 -677642 -504161 -160879 -822545 -236073 -688022 -847228 -780017 -946487 -74285 -324012 -205846 -865677 -123930 -31021 -883462 -486986 -598168 -911311 -338791 -403485 -877089 -51606 -778505 -806399 -695850 -952056 -301806 -749453 -502168 -946289 -356031 -901223 -260703 -142346 -856780 -357246 -863410 -906068 -585828 -180880 -279121 -912034 -805913 -76686 -599967 -720296 -777861 -315256 -892696 -238459 -706348 -356840 -527305 -825367 -510732 -402034 -795586 -325101 -354195 -716227 -673306 -618239 -313143 -743105 -803336 -786940 -357242 -432422 -564044 -325131 -308766 -575529 -166057 -829573 -69256 -683408 -591090 -564224 -398372 -248821 -390176 -876061 -953980 -663996 -356320 -342392 -284132 -426149 -415680 -765361 -280287 -743733 -910311 -769301 -426669 -679915 -124357 -477315 -397947 -339377 -747857 -71255 -952137 -170139 -458234 -516987 -603906 -271119 -434169 -451677 -567751 -144985 -513274 -590770 -946442 -446237 -76032 -356156 -539371 -246263 -115017 -596825 -338661 -205141 -659629 -88325 -240583 -84611 -537500 -802590 -324016 -231082 -703294 -449078 -350060 -528694 -690646 -356495 -199588 -559319 -643715 -884530 -730938 -863694 -356079 -714836 -624340 -325081 -461612 -883584 -736196 -684658 -806163 -666847 -367875 -76818 -910287 -346181 -357347 -402044 -239156 -505620 -532436 -333126 -342624 -335464 -414604 -315203 -793816 -356571 -796797 -384191 -119579 -502450 -598152 -779847 -326460 -73987 -936153 -612940 -39870 -315475 -152854 -61131 -706464 -356975 -256822 -324983 -587960 -954712 -865138 -563801 -98011 -372007 -121977 -504403 -589325 -325198 -315013 -27008 -674716 -898114 -240114 -951561 -555763 -948809 -458507 -324689 -795585 -31145 -946739 -922344 -298570 -911348 -415187 -951381 -581766 -74981 -518873 -341539 -932531 -490749 -431924 -720238 -863696 -373493 -889253 -321640 -177942 -691481 -913371 -775432 -605788 -785504 -951851 -312444 -919148 -670492 -672409 -806551 -144396 -278463 -148915 -150982 -534940 -512649 -349545 -278822 -489159 -73829 -90288 -389903 -850810 -504555 -720146 -818788 -354296 -946823 -167753 -949411 -355723 -777254 -135447 -694493 -401676 -952158 -107991 -521766 -543336 -778175 -593731 -334879 -144372 -141173 -119553 -313662 -388992 -677929 -88308 -672544 -832558 -160814 -354753 -357178 -664978 -747883 -97207 -445143 -927491 -806724 -767095 -952878 -580336 -482140 -577784 -462013 -650420 -94693 -66045 -664791 -598197 -415786 -541688 -676815 -389984 -391652 -144335 -741987 -333127 -287361 -136633 -524399 -302625 -324280 -95283 -627054 -356822 -328428 -86357 -736591 -677987 -696648 -322956 -234535 -232301 -767591 -634815 -356240 -772357 -703713 -518392 -501744 -910187 -591139 -949820 -113480 -300804 -630534 -345075 -94037 -883488 -45603 -664482 -416136 -904548 -594062 -217745 -951954 -610076 -780703 -134199 -275229 -512879 -129208 -589660 -356926 -47817 -598241 -606273 -945302 -134491 -793955 -633872 -355283 -321029 -56554 -610997 -354649 -136208 -593469 -383761 -806748 -680101 -116285 -530244 -326489 -288612 -847114 -529024 -668059 -326007 -237419 -748037 -366076 -431992 -399733 -899468 -610284 -349486 -94565 -869976 -702557 -718081 -171326 -693315 -97736 -669595 -434436 -66667 -704185 -938256 -608965 -426628 -936812 -214547 -232839 -667187 -37939 -340787 -95523 -98013 -499061 -817090 -314671 -67169 -29482 -855666 -767535 -323107 -747541 -784495 -704360 -491514 -94592 -956753 -598648 -356596 -185991 -947882 -470321 -289022 -356937 -151188 -801301 -355081 -479146 -315324 -84861 -771651 -155133 -948968 -356279 -652474 -444493 -516388 -79154 -954254 -529162 -398931 -356188 -124137 -515132 -596644 -50745 -606106 -559459 -415419 -197841 -786560 -817305 -314541 -832476 -249589 -606253 -95252 -569225 -43051 -402047 -778515 -366483 -929311 -875298 -855647 -790534 -161463 -909263 -912039 -517398 -199210 -703684 -288113 -311616 -836178 -896056 -893784 -183052 -343751 -326496 -278043 -103675 -947839 -830690 -832348 -806172 -564225 -288979 -175041 -482117 -174948 -908034 -670772 -539985 -417024 -357202 -674514 -443270 -48663 -123052 -259363 -919009 -355382 -892856 -637094 -388841 -227087 -92052 -578859 -395038 -337835 -612364 -416278 -394248 -504123 -814795 -344469 -430763 -951800 -198616 -940708 -33769 -684766 -322772 -43890 -814146 -150764 -560270 -412927 -951837 -780021 -582243 -538079 -500972 -894700 -186169 -704451 -616573 -497813 -204801 -416474 -397064 -394379 -947771 -315221 -770220 -324629 -203368 -88349 -917104 -397847 -217880 -879678 -126078 -233802 -516087 -773842 -411997 -611108 -801872 -301853 -79557 -954666 -867323 -278226 -411909 -49001 -402121 -388016 -31062 -50313 -665771 -951936 -806507 -356213 -513118 -538207 -616570 -806508 -791778 -483638 -806789 -533339 -51607 -34118 -401818 -415816 -457553 -857206 -504430 -848287 -491543 -376041 -913726 -806735 -806389 -84870 -589938 -409454 -946800 -166539 -821090 -952942 -537059 -948678 -417631 -657116 -501807 -776893 -322403 -133759 -828191 -441358 -475295 -121649 -765063 -532234 -690970 -951180 -527082 -139738 -674185 -538062 -610184 -529866 -947759 -86506 -354278 -252211 -95491 -560458 -166709 -33835 -24071 -599988 -479624 -598631 -460192 -170947 -412973 -855892 -71239 -763758 -806370 -326148 -226694 -737975 -564159 -314369 -403659 -315388 -1164 -165162 -570475 -48885 -952147 -183031 -296459 -528748 -771041 -84761 -769388 -706788 -496839 -197893 -344198 -167916 -282010 -245321 -343795 -348281 -889387 -814893 -354046 -951960 -350756 -814754 -596880 -364230 -86472 -167963 -384069 -98017 -392322 -325604 -906141 -809032 -551364 -805017 -97929 -792738 -53051 -402170 -234010 -135492 -529151 -518714 -778071 -778359 -667046 -175408 -922576 -389039 -313227 -500517 -671777 -278582 -310907 -829486 -40333 -579160 -97347 -357064 -555033 -356696 -242904 -35411 -249210 -813207 -176215 -553923 -814560 -357054 -38017 -325073 -325142 -532508 -951221 -932854 -270944 -58944 -75715 -406041 -753340 -459548 -249032 -778517 -712284 -371413 -806237 -865624 -60247 -583272 -664147 -70155 -356726 -863509 -333913 -151475 -551077 -591533 -769381 -167269 -856237 -79262 -199279 -88572 -618335 -662360 -287177 -772651 -778642 -767526 -390099 -367256 -323348 -945217 -278469 -125902 -921222 -102089 -431875 -133443 -952094 -275903 -687600 -401082 -323198 -34004 -780471 -738362 -179551 -195903 -483560 -116917 -281997 -543869 -202182 -278863 -141980 -326561 -97330 -829581 -564597 -596110 -607010 -806821 -224050 -741893 -955390 -935628 -354817 -389224 -447572 -681077 -719474 -885063 -86578 -355505 -902410 -400843 -85786 -777774 -155227 -805520 -126357 -870847 -302840 -669610 -800954 -616122 -633773 -72725 -655818 -512345 -396635 -696701 -730339 -486610 -780308 -97810 -382679 -951463 -174927 -377551 -169308 -377613 -383649 -810826 -355296 -336971 -410753 -582161 -401635 -718316 -601000 -799319 -862954 -400893 -665758 -432049 -428753 -777621 -509729 -672189 -331266 -298449 -515819 -851547 -326414 -810141 -611803 -94715 -451659 -826113 -483302 -905186 -683691 -124034 -680204 -956863 -468596 -199318 -796214 -905162 -676749 -525625 -314450 -137423 -899549 -806800 -708615 -65077 -248354 -666349 -230685 -385903 -795512 -678766 -662137 -342802 -951150 -632546 -608800 -504794 -722174 -472716 -950494 -581101 -806835 -794975 -68212 -717017 -340165 -800990 -655373 -33950 -84144 -448547 -799372 -707362 -542630 -814632 -838153 -314878 -911784 -37250 -412869 -473383 -52937 -677762 -334952 -801055 -904511 -720160 -503597 -868215 -33014 -677592 -149870 -269977 -619130 -867402 -905262 -592870 -871046 -900939 -337489 -55104 -402470 -865635 -883338 -502660 -284765 -867174 -950790 -777711 -424383 -881674 -65601 -218026 -833537 -434638 -372026 -759583 -456192 -171264 -509230 -683499 -552831 -664954 -541227 -136550 -232396 -634551 -355114 -356377 -863569 -356933 -786037 -387604 -810993 -403716 -793724 -863780 -355062 -652832 -65531 -442406 -353881 -900717 -871192 -762435 -53089 -704265 -778581 -356037 -947224 -575165 -943120 -647329 -312541 -528981 -806866 -314041 -461631 -805570 -43402 -357118 -693964 -97707 -679914 -335452 -707461 -199101 -895477 -803544 -739370 -723396 -779566 -515130 -412940 -681721 -297222 -785562 -747946 -356338 -951240 -723637 -635339 -786863 -741119 -780193 -124939 -240186 -84903 -332208 -955895 -875148 -697969 -803371 -598173 -627178 -133388 -793708 -249306 -647581 -73644 -814941 -323210 -391477 -806535 -349973 -742001 -344310 -247301 -610413 -357262 -53273 -868709 -597920 -677178 -678644 -828914 -808909 -396655 -356881 -809214 -927122 -461018 -350746 -33781 -677467 -98007 -560526 -140659 -943660 -155692 -523010 -947034 -348028 -260249 -357313 -84613 -899031 -295617 -158158 -814859 -150865 -507269 -199641 -514301 -395404 -180920 -827636 -884426 -358097 -372326 -232319 -806713 -796561 -278702 -533361 -939642 -490544 -177721 -326113 -822481 -501017 -952082 -636158 -897193 -691898 -184039 -952936 -86853 -570081 -357268 -529092 -954732 -947746 -776317 -387486 -434414 -719421 -501018 -625097 -78507 -701247 -662570 -97293 -311639 -923614 -796818 -663412 -803017 -467886 -413462 -932131 -79389 -805751 -176605 -882740 -473836 -806530 -143533 -144095 -455773 -577721 -703465 -33539 -121132 -924170 -415107 -401893 -711999 -390216 -18160 -285656 -356594 -505548 -819587 -421060 -279448 -695776 -909207 -871371 -326019 -232291 -734613 -171089 -805686 -625817 -581633 -527659 -110184 -669824 -684312 -714543 -512365 -664518 -831889 -110010 -593641 -846706 -65598 -37892 -134695 -874869 -809212 -806686 -896110 -355519 -768818 -770590 -952362 -912720 -481740 -814499 -206579 -580537 -814659 -799382 -523170 -677472 -592401 -400772 -730909 -343509 -305659 -952121 -338962 -667246 -777757 -793913 -174598 -144419 -150344 -582242 -460988 -502460 -369070 -171153 -167489 -767353 -779959 -535599 -766616 -614898 -356945 -581511 -490254 -342719 -953257 -308832 -525298 -317090 -315083 -882111 -513362 -447862 -717178 -327570 -480282 -181885 -917326 -775766 -350984 -344272 -778394 -899644 -384190 -769667 -596645 -619251 -240227 -451797 -326461 -778420 -103946 -249245 -356350 -134591 -806539 -848141 -401939 -55669 -780544 -356513 -65875 -590604 -72430 -249124 -801102 -610635 -350990 -400921 -806369 -785982 -825975 -534878 -684342 -743511 -544198 -419366 -899501 -401663 -349175 -287154 -427399 -356721 -807710 -326081 -423146 -67355 -479934 -776834 -795207 -806135 -261972 -830639 -867045 -433289 -491138 -38903 -665922 -383754 -551025 -899196 -802771 -715548 -401275 -315479 -648650 -96723 -904986 -898912 -42717 -573865 -158175 -738019 -88612 -521926 -823129 -250088 -816239 -323050 -75970 -954826 -555700 -246762 -672131 -805877 -883202 -670337 -517003 -466758 -355303 -414124 -180453 -440148 -86622 -737101 -788506 -945783 -545315 -322609 -951885 -357290 -593714 -880055 -652873 -355085 -350830 -696008 -524483 -67081 -885150 -163675 -747726 -222123 -943623 -579626 -332379 -397201 -475924 -118140 -539759 -776616 -97286 -657698 -612534 -351015 -92990 -525190 -483530 -355124 -333058 -803257 -416729 -916405 -255529 -577385 -778309 -322220 -828093 -799790 -504924 -579202 -143760 -474251 -239475 -51799 -322040 -577474 -848921 -342964 -747262 -892895 -147829 -673898 -793227 -563607 -748009 -748856 -944520 -356131 -416938 -605706 -518408 -45100 -918180 -785717 -550063 -951028 -863204 -494460 -322559 -287121 -678613 -246488 -335445 -168212 -300934 -403673 -490366 -249160 -762230 -97813 -29759 -907768 -337657 -794402 -537683 -144375 -331849 -632230 -513371 -832139 -822671 -524969 -753871 -820529 -791748 -511814 -654492 -97622 -183304 -304183 -108111 -651924 -502231 -239676 -492658 -741902 -951769 -315215 -581342 -109658 -327931 -400133 -340673 -582257 -558822 -947775 -69590 -134456 -324026 -346753 -279222 -391735 -800845 -738498 -777769 -41140 -423246 -176396 -584360 -260124 -865103 -432105 -857670 -692061 -643160 -911052 -248559 -610591 -401091 -372439 -369622 -676706 -897993 -357355 -810222 -44344 -918276 -199380 -275752 -867434 -875921 -354638 -919654 -546776 -58756 -154129 -950465 -492554 -51823 -350672 -863549 -717971 -866649 -805522 -906434 -776401 -414790 -850042 -357285 -951314 -703902 -674335 -458662 -712219 -344678 -323701 -75496 -44936 -315575 -305483 -57034 -349605 -355679 -778641 -651595 -676428 -813973 -909999 -157880 -662926 -889870 -582529 -102701 -97781 -179582 -74633 -937858 -143668 -664423 -952064 -954723 -552872 -30755 -892668 -889277 -134495 -144518 -342697 -248341 -534786 -402145 -767048 -517452 -544007 -226917 -597693 -616577 -328544 -906478 -582204 -480179 -902802 -778082 -161290 -524391 -181357 -594006 -491153 -945371 -136441 -582565 -677721 -601235 -84085 -271030 -957000 -588682 -940105 -802207 -143675 -579818 -702189 -129333 -60322 -305170 -511919 -539900 -473899 -314972 -740470 -315642 -388818 -742934 -777737 -696680 -333854 -598274 -651434 -598040 -777313 -768938 -320187 -160590 -773322 -323952 -301415 -347305 -674903 -529887 -591719 -322783 -521867 -806733 -710673 -344239 -44927 -691964 -568167 -167868 -137407 -72858 -952086 -32478 -616273 -570687 -85834 -490147 -133842 -832137 -346005 -287866 -598070 -935651 -295816 -786966 -334039 -169980 -596135 -773507 -174305 -341682 -696997 -892678 -505523 -175028 -74021 -735312 -356844 -334969 -96896 -318733 -903710 -816654 -240409 -452974 -199409 -356818 -759096 -227018 -231275 -97986 -160866 -97747 -482329 -356649 -143837 -656858 -333864 -365954 -517074 -192461 -680079 -169656 -952126 -370865 -97722 -541755 -926192 -777945 -401634 -390533 -226747 -637070 -203940 -301841 -56484 -476134 -75246 -663307 -322241 -404912 -910304 -398832 -566878 -228883 -162937 -347450 -355930 -663401 -582296 -879561 -888832 -48057 -769433 -180992 -757369 -874371 -536003 -918214 -183046 -340195 -494727 -350046 -693550 -813007 -806755 -632383 -74008 -550603 -234156 -899541 -273626 -116578 -193173 -356765 -596991 -487359 -786800 -335380 -816072 -138735 -525442 -284028 -558412 -49783 -271299 -580998 -203410 -671906 -307606 -133762 -248937 -575569 -544177 -171128 -80321 -183067 -525030 -94566 -325628 -47777 -664845 -325881 -853430 -315726 -922589 -278427 -772368 -822550 -806641 -372550 -778211 -439720 -350075 -947578 -906605 -143651 -456193 -778637 -393865 -200441 -505115 -640618 -272322 -805180 -595484 -570487 -593699 -722714 -717603 -951268 -776872 -422686 -416027 -855528 -322649 -416450 -68820 -545907 -516379 -278080 -525231 -327615 -544127 -72733 -652000 -680545 -103561 -882803 -240105 -348793 -462142 -357368 -504371 -598340 -760903 -577689 -537506 -355082 -829541 -542427 -581134 -323096 -356123 -652886 -707179 -49039 -102948 -68717 -951723 -680571 -322082 -250191 -663188 -523000 -501646 -401841 -271508 -537992 -536762 -658784 -504619 -36242 -412887 -951559 -859111 -504062 -309632 -806833 -92155 -33394 -806512 -767170 -777511 -904064 -867482 -65831 -432569 -544013 -771735 -712163 -897483 -598430 -356685 -899575 -196394 -829196 -175188 -929779 -810225 -365077 -802811 -893552 -375785 -217740 -355290 -136177 -676629 -348187 -578946 -899437 -596729 -952343 -247495 -772511 -315640 -904988 -515953 -795590 -66990 -806754 -103387 -356392 -471879 -548037 -80308 -922575 -633298 -300956 -900497 -881941 -899584 -818457 -833980 -356288 -34047 -324143 -605989 -74380 -298755 -559727 -887420 -956689 -84864 -65422 -801426 -648347 -800191 -487616 -451954 -591400 -872894 -187858 -705394 -634119 -805365 -441446 -777472 -544099 -49088 -356946 -355471 -429192 -772042 -598007 -695566 -949303 -951266 -94683 -457651 -948903 -573433 -797662 -175911 -695242 -745616 -391569 -695703 -56220 -769169 -652915 -206153 -742021 -344490 -820610 -79032 -888056 -343942 -355671 -472334 -326180 -372402 -343951 -901225 -97960 -952110 -95466 -759772 -479811 -324941 -805010 -670252 -38131 -535547 -512716 -882222 -879071 -75954 -882364 -300592 -313868 -941140 -863979 -289111 -334318 -907494 -287910 -451741 -475504 -434218 -151571 -389879 -655595 -542883 -116762 -597448 -325468 -523689 -832488 -951845 -315168 -949355 -679856 -490078 -777927 -190121 -70324 -349484 -851108 -653796 -514174 -355636 -416886 -570373 -800981 -648538 -615786 -227081 -747752 -263804 -769044 -799295 -874972 -476122 -528536 -899152 -677883 -570309 -237155 -327006 -522824 -463235 -364473 -414522 -277377 -420698 -661566 -314327 -898179 -926115 -150949 -472002 -327571 -416494 -673950 -646289 -874663 -236930 -427478 -935768 -674331 -125922 -155393 -570668 -174577 -598016 -150959 -155643 -581019 -223763 -305351 -893983 -97959 -420974 -180107 -175705 -791603 -354761 -362401 -464514 -268900 -663933 -606898 -525662 -199406 -232993 -179167 -465267 -221269 -778921 -849540 -198381 -379734 -249385 -222068 -243020 -305321 -175379 -134508 -946025 -701275 -236498 -362451 -179605 -699466 -797883 -756352 -811722 -239658 -558059 -121121 -663971 -325063 -416789 -643132 -755878 -461454 -364381 -334048 -250548 -880064 -705510 -632917 -108601 -818683 -414171 -731066 -188525 -738662 -140781 -601008 -824657 -711266 -466685 -236786 -823751 -699082 -449898 -403112 -279434 -440330 -344000 -669889 -652562 -222064 -518501 -467364 -108523 -220441 -364541 -467001 -312498 -405827 -637979 -863378 -278812 -397359 -631992 -343630 -858002 -305079 -294390 -686237 -92405 -219972 -811357 -348815 -479952 -466317 -198099 -653839 -136970 -221971 -463757 -654770 -184378 -256752 -240537 -226998 -863630 -405920 -439626 -612727 -175690 -902932 -457731 -459904 -363546 -295544 -465567 -375889 -642954 -855934 -132299 -200263 -466903 -124763 -898795 -277832 -240536 -902532 -730714 -405768 -490187 -261440 -179354 -279478 -210104 -801345 -268300 -270999 -268879 -240526 -133761 -313074 -949469 -476055 -180817 -270535 -840740 -342723 -295710 -699679 -279512 -220843 -919135 -378480 -277965 -607614 -235913 -849629 -344258 -676143 -467130 -221543 -205138 -379859 -717518 -277169 -738651 -236175 -243166 -295369 -943310 -426778 -764328 -583913 -673737 -467390 -222029 -378682 -669791 -751384 -645421 -955901 -616659 -439767 -621687 -413018 -364735 -457772 -395146 -645917 -623366 -674369 -900114 -317624 -395054 -646042 -240415 -569330 -921999 -922485 -754982 -380190 -570277 -765659 -292598 -934092 -670734 -453994 -669886 -587648 -467042 -848862 -673746 -178438 -899076 -466881 -699474 -939681 -150618 -205328 -836860 -879264 -390094 -277528 -662023 -680163 -502359 -646241 -855463 -454155 -309845 -236264 -566413 -764199 -885757 -723762 -609864 -129392 -773320 -279440 -150833 -751007 -200316 -381885 -466970 -633928 -796171 -334020 -699985 -206284 -936478 -490729 -465419 -206525 -240197 -455688 -231925 -412723 -625553 -325082 -574737 -236703 -931947 -346537 -177966 -833825 -126843 -548485 -309646 -235203 -940435 -885673 -209651 -557126 -236537 -240552 -177638 -724072 -109224 -699605 -178802 -245538 -130744 -673629 -817776 -237096 -282752 -633249 -505377 -732899 -863508 -364616 -944076 -791421 -356378 -278396 -278280 -438637 -379454 -609952 -479888 -724083 -763802 -939299 -474470 -277670 -712319 -276852 -701524 -276844 -600345 -432699 -367002 -319521 -208603 -803362 -828824 -933697 -272993 -698698 -796238 -955908 -235607 -898635 -939890 -750651 -885921 -181695 -587964 -204818 -300632 -469748 -391223 -339502 -337998 -886093 -279039 -369293 -274584 -240511 -478698 -361306 -175052 -238473 -305188 -940584 -486817 -279582 -315756 -609335 -466677 -334560 -240348 -754929 -221662 -905202 -278658 -898491 -716856 -754161 -131856 -730897 -335368 -245577 -365087 -590888 -222053 -527081 -885486 -447233 -858184 -196814 -698460 -386233 -691115 -282262 -340773 -383640 -151715 -818311 -185822 -847173 -368570 -521764 -837133 -755920 -178518 -279571 -720063 -318826 -467196 -468367 -617499 -633860 -888149 -480204 -593630 -754704 -440294 -380362 -945284 -957008 -940676 -240419 -457509 -538261 -464068 -731121 -673794 -600383 -467340 -367041 -156779 -878695 -569423 -332714 -465710 -742728 -280689 -897762 -531499 -639737 -340603 -944582 -724277 -126755 -337447 -939477 -677930 -635674 -178695 -67366 -276987 -702106 -325143 -340766 -658515 -558824 -467182 -431814 -467377 -179272 -892660 -389705 -257707 -654373 -124751 -342672 -137736 -918409 -404584 -674497 -390742 -364829 -249123 -510713 -560313 -699583 -601106 -609871 -182904 -474644 -104230 -379592 -700921 -148984 -312578 -628124 -310437 -633754 -499338 -474069 -625162 -172381 -466386 -559910 -104936 -404974 -673847 -941604 -741829 -380294 -305396 -404688 -698511 -482491 -466806 -703930 -683133 -953178 -400185 -237765 -364807 -221619 -742541 -601051 -627199 -369132 -698764 -238973 -862437 -179037 -885698 -144521 -325540 -760951 -240175 -939538 -177534 -702100 -467337 -237140 -899297 -849002 -437868 -570655 -742653 -364560 -894366 -912644 -764226 -646447 -158890 -369706 -405812 -237196 -152592 -344507 -150058 -288479 -654246 -390852 -886050 -692952 -698611 -762994 -364501 -268581 -297848 -521546 -396596 -466892 -747826 -550534 -405191 -747439 -267722 -617406 -405474 -899606 -831003 -581107 -424270 -901062 -167671 -181778 -752273 -699168 -279368 -730689 -673342 -943029 -103407 -467370 -534225 -465414 -555349 -933712 -107738 -699592 -329141 -466098 -239231 -702012 -948391 -939810 -243068 -771248 -537468 -952866 -465733 -791663 -674225 -227229 -824623 -779595 -699570 -543796 -739677 -221947 -700246 -440192 -265300 -944901 -327237 -763578 -674404 -363780 -362903 -654669 -199529 -824520 -956826 -941841 -107398 -763196 -380700 -503387 -927431 -664238 -687039 -236978 -269728 -772429 -906567 -233991 -649733 -754458 -122074 -699484 -814570 -818057 -821259 -926253 -574624 -301529 -276876 -364923 -93633 -300698 -879444 -616231 -908100 -268876 -943767 -313891 -787455 -539008 -300759 -467372 -459494 -823729 -132501 -319463 -390392 -673865 -177504 -128009 -161838 -699410 -123732 -762877 -277812 -176785 -347330 -725233 -179362 -356270 -472355 -333476 -459910 -527562 -262571 -391186 -431614 -268828 -700709 -467165 -219758 -861755 -533223 -503728 -640219 -123942 -479232 -500745 -375873 -862099 -811543 -373258 -956632 -699598 -699635 -609411 -313232 -396679 -803579 -289266 -793577 -849670 -314699 -505905 -755861 -124842 -824966 -637076 -222074 -125949 -840535 -177973 -99117 -295860 -205107 -903700 -244631 -378048 -811385 -310924 -849685 -633598 -117971 -364781 -235745 -183053 -526763 -867934 -932359 -340204 -575243 -240121 -699619 -178657 -221244 -240292 -467041 -221541 -908121 -391009 -717041 -261155 -279062 -157444 -783576 -126622 -581815 -673848 -328206 -439994 -482837 -126864 -124952 -536732 -133594 -427211 -220775 -147846 -898623 -817635 -198178 -500455 -363675 -424169 -393131 -700371 -177120 -249432 -310463 -181346 -933145 -724479 -212527 -625599 -309261 -587414 -746100 -179119 -526775 -604278 -955966 -432456 -818777 -379755 -264861 -642370 -942473 -239129 -626824 -550562 -617403 -645800 -236879 -864795 -718873 -735706 -939713 -698293 -664256 -660978 -934109 -238147 -132375 -179056 -170983 -590590 -763410 -379291 -336298 -410247 -587804 -946726 -955910 -118671 -559586 -157633 -235970 -467125 -219997 -197624 -562559 -763800 -371089 -378185 -467453 -207828 -700350 -125184 -699597 -434411 -817171 -132169 -500761 -237236 -793051 -885549 -646209 -898928 -774879 -763235 -512509 -450551 -831064 -523690 -268886 -364057 -382377 -513208 -151424 -380514 -755876 -141820 -412231 -240133 -251693 -265430 -627216 -738510 -431892 -450925 -278764 -125301 -345325 -221780 -699414 -279202 -699403 -127564 -120896 -314614 -762377 -920344 -275624 -444995 -265471 -617906 -899807 -902602 -293958 -474741 -646467 -416993 -279018 -326475 -404795 -518973 -235269 -270335 -837028 -208709 -199531 -124232 -793718 -370900 -150526 -598186 -755657 -212814 -173120 -126802 -699561 -108424 -751490 -345238 -229092 -863493 -264290 -487613 -699646 -512792 -593234 -908214 -763524 -627738 -584253 -265763 -642913 -755737 -862514 -503306 -378472 -404404 -256416 -939326 -824924 -590826 -583254 -707125 -278251 -222121 -672008 -178055 -955299 -461460 -747330 -179098 -674180 -611504 -305288 -919838 -636441 -644254 -460484 -279424 -149875 -317355 -387735 -380544 -632098 -221710 -566417 -814758 -465992 -179146 -476978 -362043 -646353 -501373 -669773 -663400 -763712 -177546 -769985 -323006 -651670 -698749 -264555 -561680 -464033 -662610 -624296 -738590 -262039 -885503 -344790 -650423 -176150 -155072 -427550 -546686 -569991 -249401 -470414 -446633 -405214 -613018 -466917 -404130 -49986 -643437 -309934 -237320 -761312 -670591 -273936 -674436 -593559 -699443 -527663 -939226 -234343 -237020 -849627 -945584 -277975 -661293 -234601 -99432 -784087 -584188 -390342 -467145 -939212 -943316 -364545 -424067 -341818 -584515 -181523 -346502 -278075 -745120 -560118 -424292 -674550 -279219 -251915 -642715 -831023 -704002 -818684 -943852 -625363 -912291 -405609 -114622 -698377 -254819 -234049 -396971 -458143 -278920 -436791 -849502 -896108 -722785 -123712 -550959 -940865 -699663 -390343 -279443 -691497 -715325 -677727 -151652 -315169 -742022 -239485 -535667 -701950 -107469 -857959 -174194 -459115 -817637 -107639 -764541 -849574 -814190 -886067 -897758 -526913 -808389 -367856 -478458 -519021 -857785 -369331 -673271 -756003 -811307 -634463 -475919 -179045 -898656 -205943 -940917 -372467 -131031 -927014 -237976 -590650 -600828 -405369 -221849 -922978 -458189 -699648 -221960 -251345 -728540 -379068 -167707 -439817 -742561 -518475 -478846 -699656 -115938 -445163 -439990 -308115 -277272 -846633 -291805 -567528 -178967 -817272 -107823 -102640 -456991 -476812 -397001 -479028 -673807 -127863 -661114 -124639 -830461 -312992 -315497 -151823 -235746 -317613 -460056 -237266 -179330 -364105 -140654 -849534 -129074 -370867 -811578 -922404 -831042 -793764 -466319 -646044 -699289 -108596 -102351 -764270 -938978 -335430 -480246 -789866 -803443 -651736 -249458 -503393 -955786 -363697 -151840 -825725 -527334 -466760 -254153 -239532 -674112 -836180 -103749 -895940 -402214 -642051 -124017 -431286 -181006 -511309 -466969 -930653 -335431 -661322 -511958 -637421 -826203 -641468 -826097 -361875 -329417 -251788 -849548 -457117 -222085 -369333 -241839 -688698 -319691 -440552 -755556 -179852 -517701 -940928 -262902 -240400 -658968 -391187 -241084 -405321 -389956 -480068 -738698 -879447 -364113 -288123 -405921 -762150 -699406 -812962 -898266 -485888 -863697 -132470 -570656 -179170 -856500 -865590 -241871 -922079 -849665 -278586 -173197 -236076 -297762 -411863 -478619 -237316 -288994 -746956 -270888 -279585 -654534 -199874 -316713 -749119 -380282 -239732 -661193 -499383 -341054 -458749 -940131 -168480 -124865 -335176 -749405 -699684 -300937 -626972 -107496 -898406 -265392 -335588 -570051 -427178 -317810 -575137 -264871 -124890 -200291 -431435 -672799 -558841 -885899 -702188 -703356 -126598 -367122 -364917 -672883 -848109 -518235 -240116 -178849 -699393 -240009 -314623 -748611 -401905 -588818 -584099 -482109 -700832 -817544 -181707 -344467 -314284 -939410 -129078 -108362 -395049 -522231 -560053 -943044 -133958 -432584 -698065 -501489 -847613 -181614 -199882 -182206 -108409 -397214 -116805 -325745 -863126 -238181 -466224 -764104 -464331 -724346 -570212 -391242 -671392 -467333 -221896 -325478 -840950 -955912 -603137 -788671 -439638 -380733 -106286 -666238 -245506 -184018 -687528 -467365 -378036 -413181 -645558 -849500 -851315 -148185 -309141 -178934 -126062 -290933 -658208 -632727 -707433 -151769 -745956 -249537 -671921 -718867 -405924 -405196 -617307 -181491 -746183 -516183 -764642 -198633 -322821 -220409 -559289 -769218 -184082 -239622 -768714 -522216 -429922 -322588 -181046 -410877 -357180 -702190 -841053 -900061 -660096 -858203 -350245 -674391 -466616 -343668 -364240 -645944 -518372 -926655 -313657 -397463 -179044 -450756 -830944 -439787 -119894 -437470 -151501 -662633 -673916 -723378 -354598 -473343 -892580 -287355 -755191 -668065 -350423 -221264 -896148 -252118 -127347 -811830 -178142 -258050 -287943 -660727 -240482 -897585 -466264 -609905 -305173 -661487 -397113 -376644 -817613 -273075 -518377 -703890 -138847 -179345 -550564 -736525 -130712 -676833 -500392 -755849 -240513 -416822 -942648 -584478 -917698 -227436 -730856 -557877 -266850 -407640 -260891 -405976 -440257 -616571 -289304 -730803 -360923 -434129 -650570 -178702 -364896 -574369 -795684 -609809 -199474 -745818 -289370 -466513 -863312 -161162 -310239 -105936 -764147 -466266 -502444 -278841 -287963 -404449 -312394 -172599 -632054 -397040 -109657 -624893 -220709 -325974 -474988 -465304 -341743 -403968 -750792 -749081 -317015 -275446 -849551 -300364 -130850 -755618 -932749 -571836 -310862 -659401 -240579 -462944 -670889 -438237 -852005 -659511 -817701 -926965 -278356 -237147 -905341 -544241 -741669 -108164 -178579 -478483 -257146 -279519 -651773 -181175 -179343 -466355 -551589 -643157 -900120 -113640 -183191 -107392 -461355 -335107 -221633 -239421 -534198 -632247 -467424 -605271 -439771 -185507 -953186 -115402 -386775 -108556 -661434 -120174 -260106 -746159 -480059 -289335 -661195 -782860 -107572 -278835 -176816 -858162 -107882 -139641 -892836 -857812 -636085 -609634 -849503 -699579 -271064 -701957 -108435 -486820 -259530 -560435 -301874 -952719 -409568 -313648 -761455 -424414 -240412 -361991 -639461 -270628 -929989 -241957 -200349 -738267 -289656 -666636 -268943 -539956 -893433 -646243 -849644 -127556 -930514 -556567 -644422 -466223 -649752 -337167 -364740 -379803 -334045 -181540 -236934 -510992 -507071 -556988 -823120 -764786 -930246 -699275 -584754 -534381 -316897 -118018 -906115 -534692 -305380 -377797 -253660 -279590 -379576 -237239 -755784 -258612 -466653 -724114 -363756 -646443 -391561 -322863 -405514 -817811 -950684 -272853 -486569 -884588 -221624 -405774 -646424 -150502 -814800 -917022 -625811 -857924 -467382 -431900 -268695 -404699 -460849 -434680 -626303 -901446 -178133 -140341 -482443 -466291 -215569 -273446 -652057 -222050 -831005 -925988 -498405 -240439 -755949 -134894 -651599 -628357 -224799 -699705 -903659 -856707 -193175 -467208 -699697 -560189 -636055 -590805 -141391 -701199 -532798 -813662 -120267 -501430 -312038 -939897 -150971 -264711 -221637 -526258 -385440 -314974 -131304 -404614 -304207 -236890 -107762 -537985 -126770 -645468 -296487 -574104 -583290 -791532 -609961 -952888 -178265 -276273 -346382 -148037 -513393 -922972 -196958 -278115 -643093 -501166 -287155 -179309 -316850 -500369 -204224 -699607 -179229 -866033 -404109 -763576 -177573 -939429 -426440 -372498 -760500 -723949 -954010 -879145 -221565 -125593 -123306 -390132 -827792 -702215 -516952 -316564 -179273 -714481 -439180 -852782 -482095 -482601 -236796 -924835 -780157 -661184 -885370 -402429 -364624 -763457 -485130 -237036 -918057 -251998 -305168 -108573 -118216 -699320 -617439 -494464 -680439 -380605 -805881 -468373 -183845 -647495 -711294 -474843 -179071 -561786 -379791 -437620 -135012 -108588 -371758 -377218 -319796 -699016 -278052 -898567 -858140 -327671 -893965 -844270 -278894 -151098 -278346 -557471 -739530 -178898 -836982 -754959 -748795 -354530 -144449 -702163 -174669 -228013 -650700 -362912 -278691 -667049 -328816 -390747 -737537 -221840 -178146 -405867 -653699 -825775 -763215 -794873 -632932 -299671 -703273 -179285 -673142 -348854 -220066 -575526 -277708 -489288 -126350 -221980 -452993 -900149 -98740 -609820 -647457 -803464 -586466 -347551 -904580 -463990 -255207 -704058 -764621 -633984 -205772 -279503 -238962 -898408 -700835 -865634 -934065 -946081 -239954 -467154 -278457 -156067 -116940 -828381 -817282 -364700 -359973 -368411 -106499 -940137 -904541 -149882 -387715 -768752 -701845 -126881 -435162 -315692 -898565 -764094 -539544 -755550 -700597 -500978 -119946 -690553 -933139 -755552 -467186 -309598 -413191 -560046 -584346 -326360 -381499 -203583 -266102 -232699 -163562 -693243 -107532 -148995 -802359 -941354 -551256 -617493 -180224 -661415 -811546 -893802 -162199 -108518 -467166 -938399 -661246 -210800 -769750 -277471 -817773 -698256 -940530 -817834 -698369 -576569 -45550 -208677 -849505 -701115 -157948 -412824 -650676 -633739 -334697 -129185 -844541 -179297 -702203 -264066 -270718 -236136 -179248 -632965 -515803 -697902 -479340 -784275 -803085 -368369 -780463 -174831 -584275 -240137 -671219 -390589 -124275 -664687 -84930 -535361 -662804 -107450 -849581 -525938 -900139 -817607 -811455 -467273 -719528 -759735 -818528 -502200 -119940 -169786 -763768 -440104 -511954 -267228 -243854 -699685 -185627 -346177 -709080 -617013 -434775 -132199 -484680 -504654 -124766 -248976 -645515 -151347 -738141 -287947 -515416 -108154 -161970 -938493 -397447 -379747 -125345 -502466 -446273 -895532 -405649 -237467 -153876 -236487 -955785 -463867 -199105 -436836 -139989 -536572 -163579 -184193 -236614 -278623 -546643 -179155 -850726 -720243 -260687 -108586 -466400 -653323 -815989 -458753 -122742 -178932 -267728 -824373 -292290 -939225 -559914 -279528 -328823 -343152 -501327 -440537 -501165 -917919 -849484 -144346 -518776 -599847 -462238 -467381 -292342 -464765 -391366 -517041 -939509 -750727 -666844 -460833 -479830 -627159 -674475 -222031 -799277 -236751 -900111 -148659 -277753 -405584 -231174 -102890 -945207 -264121 -699703 -577174 -465530 -277681 -447004 -817693 -380000 -435316 -157213 -584481 -842285 -699825 -466689 -774096 -724249 -662937 -465963 -699552 -814824 -707364 -746118 -293067 -262517 -391442 -464012 -198440 -180681 -405895 -900080 -272716 -476813 -373712 -209458 -745373 -160836 -648534 -461652 -701222 -744006 -466833 -939584 -674547 -817114 -98105 -222157 -475499 -228011 -524385 -701361 -847320 -108323 -699613 -705494 -633121 -317520 -374344 -649535 -466986 -927496 -240293 -257272 -535261 -126619 -742031 -107944 -933304 -254938 -373633 -933983 -661185 -699323 -380646 -646378 -179144 -400742 -278351 -279490 -113838 -646430 -534510 -219588 -587284 -396748 -383780 -369750 -464440 -258148 -278870 -664838 -702154 -548093 -237326 -752445 -432849 -259692 -498219 -748764 -887237 -183732 -501416 -737784 -815819 -880410 -150921 -808539 -467329 -315798 -124396 -139678 -644214 -300180 -633734 -898551 -343776 -400113 -272887 -720260 -310269 -324469 -301285 -706375 -793197 -787555 -390991 -270631 -124363 -699638 -750764 -240562 -467427 -849573 -701096 -648052 -455362 -112941 -404902 -268915 -364009 -192524 -364788 -764259 -344209 -692574 -343247 -817641 -151435 -534774 -266035 -198456 -439712 -360614 -774034 -237301 -804685 -110374 -192342 -439476 -664513 -672145 -706152 -661291 -134161 -815927 -380493 -250274 -526720 -558325 -742543 -179151 -238935 -653476 -380212 -360896 -811898 -453191 -600893 -323459 -93603 -632080 -667257 -646313 -345720 -464036 -130550 -588540 -410547 -278229 -390219 -432894 -385913 -379321 -197215 -296453 -703540 -467445 -431138 -439657 -507152 -237797 -937359 -234280 -535225 -701150 -380629 -402813 -222169 -405425 -747452 -182103 -437282 -901164 -667856 -367210 -742232 -175397 -942142 -652019 -723299 -621732 -631749 -479217 -247146 -472557 -905812 -270590 -952850 -700358 -265364 -412296 -344351 -236187 -676781 -932751 -600870 -236561 -459635 -127657 -704214 -849578 -827520 -559619 -762281 -179274 -646437 -463584 -703962 -811582 -97725 -661337 -461669 -475985 -848332 -178152 -652047 -159913 -179281 -750655 -511539 -156426 -467135 -849217 -652085 -793929 -444918 -257120 -460436 -584498 -440320 -651091 -608916 -817242 -46657 -699308 -617028 -442694 -480149 -953286 -236722 -569852 -928236 -646006 -175054 -206964 -462431 -219627 -369114 -763745 -698082 -645487 -945408 -423237 -117099 -364819 -717557 -909942 -174702 -936022 -120058 -239747 -699536 -905309 -124058 -608860 -760284 -652044 -724387 -703097 -699569 -518515 -237394 -363721 -803166 -423496 -593808 -179257 -431659 -674769 -151368 -460286 -651933 -339780 -574223 -296815 -654760 -291582 -461492 -118689 -756590 -849585 -927874 -584108 -698768 -391717 -929179 -467394 -665091 -466514 -177476 -735215 -500184 -361105 -380727 -140622 -238696 -817283 -832774 -501452 -898513 -273166 -362916 -383194 -805351 -277381 -699969 -609504 -368392 -938957 -588041 -480202 -780051 -464587 -251430 -609734 -130794 -148994 -383757 -180109 -824428 -939198 -440357 -599974 -405312 -632330 -320849 -223868 -397045 -380177 -265034 -753740 -729985 -239625 -808916 -699617 -894341 -719797 -769505 -523549 -177799 -124042 -466703 -900033 -754320 -463072 -472659 -567472 -235109 -635830 -197587 -222109 -268092 -474691 -559267 -938550 -368355 -539524 -699986 -232700 -259613 -584473 -811542 -839829 -660628 -838258 -286106 -556084 -819785 -770668 -287048 -239434 -807299 -729923 -382184 -33865 -771924 -682723 -163633 -722138 -653059 -383921 -676035 -254873 -935640 -851153 -59379 -294978 -239352 -664568 -847031 -663300 -693537 -850016 -954823 -115767 -119387 -955584 -887458 -407307 -13779 -945760 -287144 -944588 -112183 -261824 -541996 -872022 -361587 -648500 -64793 -934675 -595660 -254478 -394490 -778647 -197411 -75369 -547434 -390361 -260512 -897352 -944032 -195760 -588475 -574462 -147204 -392824 -385441 -155481 -308582 -943988 -538044 -761620 -751825 -664132 -524079 -589747 -103120 -582260 -578977 -285238 -647954 -62068 -26221 -384808 -168165 -823056 -760006 -33206 -771717 -100693 -70626 -579515 -873608 -315762 -287074 -861150 -315855 -640693 -910839 -757441 -659682 -647798 -696984 -934534 -75854 -240181 -42110 -828510 -394526 -264086 -870017 -787158 -288652 -765434 -237985 -743133 -168331 -693576 -694236 -828675 -897510 -694862 -921383 -850921 -81069 -762324 -924872 -233763 -287266 -768957 -852843 -357136 -417911 -840430 -830506 -13978 -419989 -693674 -136450 -891378 -26830 -518784 -696902 -835001 -822063 -303510 -817181 -834877 -664242 -45915 -540729 -522887 -797888 -282444 -823320 -524863 -167637 -70684 -574998 -165970 -906346 -280943 -405338 -535410 -874287 -809941 -203824 -696512 -712266 -873790 -327849 -875289 -625397 -564625 -229500 -721840 -55080 -778602 -767449 -64611 -897116 -802712 -41062 -955623 -842946 -801836 -262220 -640802 -246951 -786972 -738256 -755245 -24521 -294791 -897977 -781912 -632008 -365642 -140484 -564539 -812916 -547108 -797628 -81589 -930057 -160547 -555555 -830756 -932639 -241892 -604472 -286762 -756645 -793746 -303379 -18213 -767422 -395419 -101511 -411002 -727192 -96948 -45973 -729063 -871749 -391798 -759395 -189594 -73575 -114567 -103928 -668524 -901068 -571981 -570577 -938608 -743443 -266666 -391718 -775294 -873344 -603996 -607234 -332200 -248928 -328746 -856238 -217790 -648108 -419541 -396995 -398600 -874619 -909199 -13594 -847030 -286346 -663712 -834927 -874055 -294139 -120971 -255186 -949878 -927183 -237714 -920389 -136162 -564548 -785136 -16772 -100514 -411335 -771149 -745855 -830388 -273073 -632845 -835007 -800195 -696543 -153291 -228151 -397221 -34128 -60285 -99914 -878657 -190056 -887192 -616526 -794713 -141441 -615604 -635543 -130154 -668803 -919968 -246049 -946320 -874218 -788707 -649204 -788717 -629658 -281581 -418636 -365933 -761396 -886946 -705025 -417412 -756428 -152436 -916074 -632966 -276095 -857638 -132463 -61350 -616961 -897299 -892550 -674940 -115263 -42837 -807416 -536112 -758263 -278428 -189700 -873139 -912690 -623688 -118049 -172694 -195274 -189516 -908894 -33167 -167230 -618181 -931012 -160307 -674567 -758076 -60479 -628393 -779715 -651411 -33045 -294425 -247875 -601983 -411507 -227902 -347273 -138747 -872339 -846332 -809399 -394432 -755664 -543861 -587161 -86931 -837381 -751537 -957656 -357973 -759656 -886583 -158728 -361969 -801062 -752627 -132541 -517276 -254606 -82046 -153016 -375730 -601071 -573599 -579714 -950634 -527824 -904668 -230805 -824000 -704782 -633208 -921917 -419887 -402815 -677675 -544027 -911961 -831198 -82315 -309087 -563901 -599001 -895792 -160274 -131428 -854684 -807584 -893920 -388805 -829917 -266030 -742942 -874056 -666977 -47052 -927108 -874239 -265623 -71771 -918887 -417374 -346443 -528844 -64542 -785942 -635998 -402119 -275961 -612437 -855150 -166056 -546833 -645561 -703914 -118173 -269904 -238537 -398595 -167971 -132206 -251461 -343806 -298733 -610246 -254421 -386327 -31483 -186064 -838502 -941840 -882254 -955466 -75543 -755061 -700925 -18248 -228095 -388994 -870778 -280091 -857551 -239172 -226823 -136795 -415193 -263833 -101044 -653058 -67364 -593762 -873284 -830769 -884795 -771289 -419516 -517856 -70206 -705756 -771684 -289385 -628320 -666642 -719058 -920829 -99789 -955228 -758107 -104932 -164848 -761427 -564187 -171283 -760457 -66679 -690182 -289255 -287706 -541989 -403268 -848788 -947838 -702001 -67387 -128035 -659164 -932010 -607469 -785359 -909178 -344277 -226972 -571915 -167337 -329777 -285675 -733940 -253913 -53108 -638137 -519422 -279936 -784771 -831469 -863824 -214984 -823235 -697000 -751990 -579345 -825874 -109975 -611386 -755561 -824839 -236917 -600708 -86404 -873601 -167525 -632574 -694110 -264529 -245040 -94892 -255409 -226549 -770111 -601383 -374984 -874253 -957753 -941502 -691023 -132084 -223852 -294023 -954213 -288529 -174447 -254704 -627790 -274894 -390505 -880037 -115804 -390037 -813285 -754520 -697519 -706739 -281747 -74588 -294408 -847905 -721302 -690397 -12850 -567249 -196161 -45877 -847038 -690800 -547271 -618529 -523315 -298846 -887214 -130221 -822038 -245275 -11739 -733117 -759005 -911793 -606467 -105030 -545139 -692450 -362311 -394079 -309237 -938474 -767186 -386460 -848350 -891511 -94799 -632761 -303610 -165987 -331904 -756103 -264050 -700033 -685476 -770287 -616334 -32680 -226544 -674958 -363893 -835051 -603033 -19586 -171341 -761519 -827784 -753216 -625197 -831717 -755884 -627983 -810639 -161858 -285416 -631001 -692175 -321013 -75702 -54970 -951018 -542374 -254986 -333385 -579599 -891130 -543430 -913649 -174600 -68561 -856938 -101643 -599247 -571257 -624843 -209269 -758242 -735310 -772514 -834434 -848373 -750198 -253020 -256700 -562941 -411106 -899787 -911102 -281504 -800825 -579690 -30546 -957256 -659595 -386323 -308981 -570110 -12968 -365339 -739429 -397349 -802070 -72156 -294402 -745065 -571425 -340274 -788053 -298419 -33164 -417471 -304059 -707394 -751836 -542478 -822842 -165360 -891699 -240394 -628331 -944224 -341219 -232863 -954455 -135927 -11193 -705660 -928397 -168712 -694421 -86956 -605910 -29186 -246216 -369988 -253087 -867794 -594076 -705225 -25227 -253834 -775712 -824088 -605374 -253799 -751557 -521889 -31192 -832615 -594051 -869633 -25556 -244050 -828646 -45161 -140921 -694290 -244525 -155381 -574736 -365301 -782134 -693675 -664408 -174623 -900305 -147291 -412256 -402859 -226743 -933958 -836846 -127971 -404433 -702040 -540567 -579927 -139620 -227030 -96937 -674339 -604976 -289104 -32773 -314739 -830704 -770828 -692974 -146216 -943334 -912093 -741529 -123130 -570703 -255038 -789938 -836912 -659241 -419383 -870525 -758235 -368629 -617364 -152958 -366113 -254680 -725305 -297345 -911977 -742583 -288737 -42922 -547443 -674651 -830507 -917053 -119487 -47522 -852858 -338316 -714744 -91073 -605019 -786211 -387084 -182782 -136425 -199673 -253801 -611629 -238710 -771392 -42678 -645292 -13520 -723959 -383337 -955146 -93245 -114302 -174808 -605727 -636452 -26315 -362200 -627914 -676827 -543366 -816913 -67586 -526625 -255435 -790451 -583202 -90574 -231877 -927202 -233363 -32776 -287537 -255306 -19668 -834955 -24465 -656232 -81150 -593855 -742905 -836651 -623529 -705259 -381120 -874254 -848814 -759677 -115556 -147299 -413224 -873646 -294588 -294668 -759535 -85955 -308705 -345878 -701773 -25651 -294268 -705258 -771131 -625339 -275966 -739465 -316356 -387095 -282884 -871676 -888217 -391491 -570889 -37912 -697024 -298779 -54544 -863937 -726954 -126114 -397719 -682565 -60026 -183115 -579475 -800974 -200732 -281989 -393825 -946526 -105734 -755197 -886211 -941752 -596661 -828210 -41961 -296805 -294719 -230809 -946671 -676242 -144371 -618375 -211605 -417878 -103073 -158050 -932025 -569326 -384741 -622844 -864395 -78956 -54901 -603037 -308161 -205062 -943607 -736606 -13569 -99360 -103217 -372067 -658877 -656248 -923643 -347530 -935456 -100664 -255198 -908879 -836669 -287333 -593354 -906839 -627093 -696622 -31853 -135613 -725827 -274336 -664653 -412740 -314701 -716938 -784909 -348898 -236057 -941774 -282559 -254015 -322900 -731142 -829208 -655322 -745568 -350912 -873887 -238925 -104775 -694355 -332476 -675048 -365267 -150806 -755838 -126226 -115333 -792551 -72773 -569879 -80529 -668887 -844555 -24516 -254613 -119564 -625623 -898092 -287868 -593196 -234600 -182183 -297254 -570328 -98759 -381764 -886783 -320767 -957154 -388010 -372455 -13971 -861525 -96500 -134951 -40672 -697070 -633560 -956333 -753753 -912015 -693027 -518457 -772301 -697109 -633805 -936515 -840289 -843227 -876114 -602072 -834984 -843892 -800794 -891189 -340305 -26086 -403329 -263328 -76168 -286939 -118987 -124880 -391779 -950317 -315858 -349419 -34339 -635123 -90432 -696863 -774213 -694248 -263492 -816570 -760880 -745623 -393221 -375823 -62954 -694376 -909261 -879227 -33151 -693249 -348991 -204700 -226885 -68483 -548043 -617222 -887285 -23725 -771291 -323886 -284541 -409974 -33043 -86100 -127610 -810700 -768377 -131962 -264611 -881442 -253011 -707136 -767334 -845549 -855982 -70725 -662397 -187559 -569479 -204024 -420209 -262227 -394377 -87093 -322219 -553985 -825686 -873242 -255476 -136756 -830280 -559726 -99120 -874228 -770645 -702222 -763523 -64750 -941618 -278325 -116094 -176307 -346561 -327458 -32694 -548095 -224240 -623480 -232047 -559140 -820207 -837761 -373598 -55680 -304112 -786027 -703296 -256249 -148843 -700569 -81528 -381966 -546630 -821102 -880201 -17329 -830651 -551207 -938406 -716634 -927310 -60129 -760711 -869300 -96520 -904725 -603955 -894180 -831288 -254848 -74100 -567726 -748962 -279958 -911251 -83925 -860966 -652805 -691846 -177945 -625468 -67801 -664168 -948844 -747554 -617467 -393641 -413303 -593518 -85346 -741816 -624983 -570085 -690431 -911287 -231009 -627973 -128375 -663837 -32963 -668669 -736072 -62693 -572889 -29180 -295129 -254225 -187464 -75583 -383008 -50010 -596897 -601165 -906668 -845681 -373022 -931128 -596250 -135551 -675997 -253301 -571939 -568947 -674862 -785217 -828439 -824638 -772342 -577031 -167758 -635317 -145869 -254600 -761546 -295697 -873806 -522369 -571762 -330753 -357292 -955667 -594159 -560044 -358655 -948310 -832138 -799179 -287752 -770410 -770180 -680644 -772488 -914604 -343588 -181785 -60916 -838104 -735469 -847029 -691107 -133890 -878673 -653499 -704631 -819702 -695578 -659492 -368215 -598972 -801028 -772558 -365198 -663549 -18100 -415413 -547040 -759319 -322907 -415604 -918658 -879892 -42608 -125025 -816558 -42918 -611760 -955435 -519699 -521396 -245163 -52657 -885748 -830712 -772637 -122151 -525378 -637401 -696575 -570903 -64706 -355690 -933078 -321701 -316735 -547568 -552142 -579889 -545587 -360749 -932369 -223948 -564149 -384883 -164213 -627651 -759625 -331439 -735697 -153222 -20515 -835061 -60459 -659811 -244927 -254627 -894567 -826164 -367106 -311904 -715326 -330743 -664962 -600122 -377584 -564534 -20385 -716373 -778361 -238979 -385516 -244813 -62337 -759103 -254459 -603640 -871032 -115390 -844167 -925405 -305171 -413310 -795095 -349410 -924695 -172462 -183321 -778272 -167185 -147505 -274673 -298427 -759618 -850860 -618581 -114883 -328735 -802406 -682394 -379297 -419204 -745451 -697013 -251380 -276032 -671712 -591572 -55424 -721587 -103207 -303389 -294832 -69137 -185561 -571908 -91452 -318997 -568343 -161061 -838507 -582251 -289103 -667439 -605495 -662577 -281896 -533259 -740734 -659596 -330843 -209384 -916260 -50611 -251003 -580891 -843159 -650794 -692632 -900454 -920564 -927061 -874190 -921532 -786053 -325115 -758278 -632577 -649721 -13750 -348569 -117223 -605704 -401007 -778324 -335047 -795559 -627455 -113684 -394513 -525413 -126240 -835000 -810419 -339612 -830482 -906117 -736714 -229678 -696898 -827281 -852750 -395760 -538693 -766079 -255505 -84286 -274936 -656303 -568315 -904579 -125955 -173431 -387690 -890379 -176092 -836638 -281280 -365229 -917102 -239276 -680080 -243157 -521795 -776214 -274198 -239483 -805388 -416980 -41441 -579329 -929777 -767574 -797788 -327933 -635695 -951597 -522217 -790605 -127974 -571951 -786132 -676416 -300677 -254976 -875824 -75350 -230241 -254978 -63101 -255620 -680504 -829319 -603031 -70910 -616722 -579710 -799287 -116317 -28395 -742355 -135339 -818407 -760043 -805339 -30950 -322820 -521068 -152625 -932585 -410268 -25850 -894519 -244996 -323467 -758953 -752752 -604484 -840266 -696450 -102653 -660864 -570058 -256450 -822875 -292851 -836775 -647080 -807319 -678400 -914799 -823805 -253100 -42027 -756544 -926462 -850890 -253797 -738550 -604112 -857187 -62503 -724432 -870465 -875317 -277465 -571142 -359917 -87151 -659333 -692284 -103154 -930929 -96975 -874223 -308173 -11877 -907725 -707082 -914515 -390041 -786250 -722168 -343677 -168184 -398033 -691183 -732284 -692016 -72797 -46316 -242050 -141514 -670729 -419790 -60146 -864254 -910332 -807164 -800765 -297738 -786582 -873886 -658799 -746067 -410763 -676360 -546203 -837393 -766018 -692739 -571042 -533484 -835003 -390310 -941730 -861088 -820096 -287795 -229460 -850068 -308953 -50746 -692963 -128163 -943141 -86323 -112339 -523613 -17295 -829465 -254801 -541865 -294512 -681639 -104940 -794161 -807207 -255258 -192046 -356505 -937817 -159020 -124962 -151797 -388008 -834881 -243790 -733369 -29108 -783876 -570336 -571333 -521915 -293952 -196348 -887234 -348996 -632638 -770422 -361783 -831641 -196098 -634945 -147278 -938764 -233105 -696572 -816738 -84689 -676514 -746285 -13017 -160007 -954793 -601932 -246212 -835951 -875493 -926843 -37720 -588213 -757699 -279728 -823279 -612302 -152756 -525358 -557950 -649013 -743405 -11837 -418349 -562221 -115446 -890807 -235487 -632535 -756524 -570035 -33121 -132073 -419997 -269004 -385294 -372034 -244731 -669549 -667271 -923957 -832424 -905312 -345916 -15131 -281259 -314441 -552972 -676620 -944394 -217929 -101868 -18404 -786478 -394144 -261371 -73787 -50761 -571896 -41165 -693918 -262381 -648829 -653007 -805431 -566687 -829771 -776735 -874650 -874216 -795127 -921404 -570303 -254858 -516630 -913972 -262079 -831645 -126916 -246414 -606581 -827581 -86596 -62301 -828467 -693569 -606729 -350641 -564495 -331701 -802354 -86865 -369277 -105190 -673845 -664200 -274678 -577595 -133415 -828395 -653008 -145815 -11133 -915637 -382877 -124061 -245168 -545595 -685479 -153493 -891536 -716187 -405793 -17956 -579749 -645386 -521464 -69560 -96133 -337336 -183159 -874318 -640490 -681794 -667355 -95012 -740389 -571755 -106285 -772186 -934137 -923857 -617140 -809394 -677722 -192985 -336773 -874994 -595956 -398251 -287769 -893845 -846327 -711043 -244888 -687294 -163533 -569398 -717730 -83509 -119341 -274680 -225546 -929509 -580456 -413530 -790716 -121939 -528970 -172429 -394275 -716905 -753985 -417687 -654531 -244375 -755178 -419397 -834060 -372514 -696871 -70697 -113367 -372549 -152702 -784849 -538286 -347158 -184157 -372058 -114082 -55585 -938160 -578943 -370948 -55647 -364538 -842736 -785558 -525198 -534736 -93565 -46057 -253843 -765251 -911238 -931999 -940547 -588374 -759694 -921437 -546097 -835824 -687382 -919918 -263234 -731038 -756108 -767537 -32774 -385950 -234158 -822940 -771172 -281548 -284052 -153932 -955016 -779109 -839307 -611794 -849906 -759675 -18596 -932971 -870802 -852735 -890550 -935680 -873573 -281591 -951645 -663882 -50623 -402219 -71717 -293726 -125952 -281637 -663852 -280504 -42434 -913855 -594022 -956717 -627505 -666699 -115251 -878546 -97004 -759568 -836732 -12487 -197343 -281490 -62486 -230630 -132449 -547989 -658212 -716592 -874301 -406870 -624480 -383241 -848519 -197021 -518838 -168119 -836794 -319669 -13718 -658559 -751759 -786126 -943909 -277668 -770417 -778436 -50077 -633106 -548056 -89254 -786192 -932296 -891663 -183938 -519850 -537866 -21072 -617367 -225532 -47396 -324938 -19730 -255047 -66692 -526369 -538272 -851522 -416444 -856666 -606747 -695516 -786308 -766103 -840494 -900904 -135263 -69538 -610089 -636694 -391025 -706123 -665443 -80122 -716583 -698943 -597388 -377414 -823837 -69524 -540800 -605685 -955664 -159160 -715216 -236168 -767219 -239743 -153138 -51863 -742835 -281212 -745482 -685447 -860000 -918997 -633210 -255575 -922983 -617405 -61146 -570776 -59916 -712318 -926361 -709007 -759666 -771052 -931239 -929303 -830087 -940101 -328337 -634633 -401607 -167762 -281197 -758217 -287890 -894587 -248484 -894211 -253495 -955632 -265286 -226083 -664660 -781959 -86782 -194046 -170803 -623858 -933011 -272408 -613718 -258334 -923103 -353446 -714893 -794614 -254736 -843632 -693721 -351000 -650249 -892049 -256711 -648599 -847753 -854323 -39369 -194083 -99165 -615734 -380178 -189263 -262528 -925925 -880273 -741646 -756527 -297302 -189779 -124883 -730077 -695172 -103723 -634120 -691813 -53872 -844408 -547318 -517082 -755969 -340783 -56143 -125967 -21053 -593461 -292532 -824761 -908916 -263419 -44819 -302996 -382683 -81717 -253770 -722266 -75288 -872576 -236170 -62986 -253803 -12156 -525196 -880225 -245003 -72279 -669970 -281612 -345484 -161119 -26228 -570979 -661940 -165897 -136319 -388812 -528286 -834750 -743630 -217973 -712206 -260918 -694109 -911186 -871486 -132174 -934291 -835101 -522309 -765021 -401381 -136049 -955617 -673853 -54028 -588202 -683927 -588485 -740339 -648954 -757522 -621053 -745434 -635787 -556331 -798112 -388802 -411163 -185673 -185493 -859214 -409522 -607451 -675050 -809327 -278746 -930969 -894190 -743752 -782357 -186860 -605034 -829823 -873393 -242987 -907568 -386664 -392421 -153109 -159403 -875299 -805574 -911760 -571967 -420168 -292712 -416898 -647013 -872884 -227183 -174459 -810809 -650899 -756326 -324615 -675763 -289378 -716716 -690583 -12935 -254892 -276970 -579653 -319787 -653011 -876086 -593890 -627865 -695105 -750531 -571423 -321039 -792813 -791164 -917493 -873847 -751717 -788705 -525040 -418969 -113369 -348582 -834860 -900330 -254195 -538186 -772591 -734505 -278048 -667197 -913214 -419102 -734945 -873842 -571384 -144899 -26222 -155590 -632226 -873278 -318850 -947128 -172483 -666398 -90357 -871851 -312200 -298631 -934848 -857131 -902121 -182281 -694075 -387763 -569188 -817555 -741722 -96879 -757690 -180769 -134345 -917227 -418294 -615687 -855423 -571772 -695748 -418933 -607188 -127723 -42414 -151042 -232987 -800270 -921557 -34493 -70354 -834667 -696531 -722575 -168169 -910235 -784049 -863139 -716703 -617376 -51574 -753189 -793814 -521987 -167145 -635475 -871279 -945357 -724298 -755684 -197204 -362533 -663899 -275251 -349221 -44373 -619102 -286450 -826220 -45970 -185309 -11546 -857027 -864188 -593141 -50228 -547351 -712633 -50813 -406034 -944993 -781471 -239397 -165894 -411372 -18912 -873987 -716864 -403844 -563796 -827889 -386578 -777747 -925648 -37128 -54744 -766691 -627981 -658322 -288309 -924875 -714787 -12093 -12489 -168151 -754747 -238590 -575266 -551380 -741476 -203485 -674210 -835987 -372183 -571114 -623460 -660997 -255159 -376086 -766621 -802866 -872773 -394172 -365909 -822574 -570156 -681156 -669486 -627746 -874681 -99926 -21456 -31162 -81670 -394199 -152894 -785754 -338528 -177674 -663688 -344224 -605504 -655459 -793581 -795117 -225847 -942032 -690980 -830432 -782191 -586659 -845572 -633189 -28364 -802537 -637909 -891578 -945787 -760864 -754387 -785995 -570421 -659141 -762564 -769455 -893865 -268936 -243026 -141531 -108071 -79580 -179077 -885301 -752871 -745581 -305944 -232718 -648497 -523459 -627466 -68754 -12611 -261523 -803237 -803242 -908870 -605264 -696966 -726918 -40833 -25831 -741426 -303154 -576066 -527123 -793442 -316635 -802503 -34217 -178573 -347157 -255404 -844014 -812892 -199819 -26319 -403311 -26254 -255400 -107693 -870751 -627986 -135519 -612830 -696503 -155527 -524666 -616791 -43414 -534921 -245283 -770986 -927857 -518219 -932044 -562399 -778119 -152980 -144453 -277182 -863941 -863130 -804764 -721702 -342843 -343834 -693815 -525356 -624619 -34241 -677510 -229038 -926226 -86418 -869935 -713979 -827886 -836788 -67410 -770406 -359280 -693336 -955613 -628007 -928255 -71865 -627939 -786266 -869665 -864003 -167814 -954452 -828146 -353413 -644600 -813099 -939360 -538421 -152274 -272556 -835580 -706734 -602090 -153967 -544292 -147329 -17236 -205339 -394456 -854120 -20240 -956503 -786135 -847906 -153388 -311331 -568732 -353716 -571946 -954829 -757660 -570272 -603538 -779744 -340755 -254110 -534401 -564239 -810956 -779802 -302765 -291539 -693909 -419474 -26052 -417566 -118101 -152836 -255479 -706404 -90593 -163433 -760452 -243490 -535851 -138702 -372016 -55724 -362442 -480256 -354289 -596912 -230198 -650838 -195945 -418119 -714829 -848487 -303983 -807711 -895200 -289414 -256173 -472005 -682441 -382333 -437732 -814619 -826084 -841249 -132327 -190134 -488998 -208180 -435772 -780362 -889192 -141687 -419948 -131136 -75914 -124492 -10133 -424969 -743026 -836046 -148748 -845565 -529314 -757424 -807995 -242088 -682620 -343116 -391560 -886616 -468993 -808172 -567005 -485411 -420183 -334149 -948961 -756278 -340455 -751466 -834374 -591748 -704478 -216065 -663524 -371844 -840477 -112172 -770297 -818945 -756258 -808049 -947157 -261908 -386099 -797386 -527672 -327179 -888744 -77024 -321020 -427484 -935346 -940332 -941591 -412164 -25035 -448331 -485573 -921029 -664876 -751285 -543950 -115898 -280695 -168236 -630625 -627079 -321315 -747893 -334877 -110344 -401762 -880131 -820055 -64280 -659310 -481464 -24814 -627985 -740686 -738160 -436888 -346105 -296832 -67937 -35925 -84780 -185283 -518978 -77636 -641003 -551288 -11971 -626937 -743467 -908373 -654778 -473544 -4423 -810774 -757414 -427469 -519094 -10204 -293069 -591780 -448260 -732884 -473144 -562478 -899385 -482716 -449835 -948744 -25133 -438090 -449468 -418660 -650734 -784558 -657104 -203336 -844335 -99223 -886796 -460420 -10149 -433472 -14905 -634368 -163102 -534545 -956640 -810904 -1850 -439513 -485550 -349703 -673173 -166766 -850970 -556829 -42230 -158446 -24327 -822942 -44253 -332168 -704875 -656025 -846091 -681608 -100207 -144850 -304868 -146194 -685467 -316895 -368385 -111482 -887731 -682971 -436034 -101908 -257307 -781535 -175404 -287488 -386312 -166408 -640944 -401899 -932041 -257588 -321408 -880026 -756675 -827226 -111727 -306769 -717672 -449773 -920119 -389138 -94101 -9510 -122076 -515804 -103920 -450467 -15813 -785219 -524384 -190008 -10012 -44380 -939795 -629951 -894339 -139240 -112238 -854150 -117835 -436275 -172935 -529073 -127606 -851670 -450833 -426526 -878454 -825657 -167727 -635972 -470539 -420015 -22429 -755925 -555777 -476948 -85622 -661431 -443062 -770581 -609897 -321967 -433204 -727092 -630735 -834202 -368961 -737906 -450672 -433550 -814504 -573065 -698739 -764458 -38427 -871233 -366777 -321352 -268214 -699153 -448536 -353624 -445158 -921280 -717695 -940605 -673922 -449298 -895610 -179301 -113481 -38740 -132881 -940914 -337435 -232774 -750801 -935897 -693033 -444059 -301725 -780427 -104435 -856008 -418366 -10240 -229944 -528801 -442249 -941593 -158592 -447866 -519022 -499091 -634501 -174289 -63838 -146882 -38367 -403497 -691483 -368498 -842731 -688874 -682105 -266127 -489152 -358460 -334105 -887398 -567753 -888 -15197 -607167 -172543 -9907 -552871 -588649 -727016 -851233 -880470 -437171 -630162 -537973 -25185 -677843 -410792 -751088 -314495 -281131 -556230 -302838 -563315 -473074 -575995 -665802 -443933 -16626 -658330 -772436 -335659 -727063 -880214 -105825 -129566 -895419 -603771 -560645 -4187 -652896 -759161 -319824 -322002 -164695 -929448 -728684 -643061 -772434 -932727 -550665 -490827 -112365 -422320 -886844 -687090 -92203 -556383 -431640 -824875 -610188 -319730 -437418 -10243 -146842 -10510 -83825 -420118 -593495 -141597 -737594 -449124 -3504 -933182 -650563 -321833 -777509 -11771 -828101 -830650 -276085 -289161 -64459 -725369 -779226 -218873 -84474 -864970 -387143 -485051 -64481 -438927 -815855 -576690 -660456 -755599 -154942 -870840 -126224 -298925 -818296 -292482 -346780 -449717 -300421 -98992 -212927 -573148 -334524 -588240 -838661 -408308 -470195 -408224 -508574 -679016 -150703 -145618 -422363 -683167 -580455 -940935 -88579 -438012 -821930 -172960 -468844 -306619 -198619 -448409 -404452 -268527 -335672 -630800 -420842 -121269 -422695 -287968 -938424 -331223 -429980 -326397 -173779 -372238 -802562 -625443 -722261 -265396 -890941 -619478 -818498 -420641 -169853 -10440 -823043 -136329 -860711 -674968 -320014 -391312 -546586 -663904 -649219 -448049 -743174 -685508 -802863 -825522 -252218 -593829 -10189 -309301 -176129 -297797 -109812 -519569 -483609 -96374 -455853 -952695 -488002 -545121 -679923 -227989 -747365 -405611 -612933 -450595 -36441 -760343 -772196 -273496 -449369 -483633 -650798 -751404 -681667 -690497 -721673 -10193 -437076 -623099 -298011 -335510 -427597 -437572 -25086 -845072 -675058 -714834 -820201 -24633 -200253 -210724 -188433 -606881 -857156 -134498 -802230 -868998 -847313 -808281 -280349 -695451 -769145 -210131 -677996 -590367 -474231 -948680 -623079 -385813 -450492 -682200 -757469 -258190 -158123 -385595 -534378 -167798 -924857 -53003 -300015 -894787 -746194 -448426 -892555 -588036 -701192 -824511 -658772 -887726 -938949 -763882 -25214 -483761 -757557 -36800 -903481 -473860 -799655 -474213 -943691 -181370 -587832 -261162 -25433 -182716 -836815 -482691 -524857 -40576 -910676 -635958 -810876 -673020 -946386 -321821 -153602 -533187 -943006 -796183 -672410 -338218 -120576 -786949 -442092 -232728 -172974 -723992 -248518 -271971 -843089 -51370 -834201 -689798 -439724 -782221 -863364 -563538 -619291 -616852 -607349 -65737 -321368 -388983 -156242 -404928 -82206 -77364 -539372 -912241 -749984 -851255 -142102 -735044 -569376 -761549 -772620 -577180 -100830 -162569 -708482 -452846 -561640 -772073 -485331 -790358 -9941 -554028 -479836 -306633 -863200 -742732 -485772 -103376 -422455 -259418 -425280 -309451 -437746 -855441 -772710 -770179 -145678 -38085 -122656 -404204 -482040 -634586 -553980 -944771 -826210 -249297 -842140 -107650 -517048 -755360 -906712 -353216 -795712 -419950 -475256 -649404 -328503 -757474 -407394 -25199 -419498 -114138 -873346 -524549 -679921 -297025 -457780 -125870 -16662 -911376 -940342 -146872 -77398 -944721 -412223 -570614 -728936 -874358 -597503 -875905 -763481 -221022 -202331 -826080 -913797 -705054 -705166 -229981 -618202 -124253 -515488 -251485 -772033 -425396 -807940 -86305 -92937 -7339 -682450 -835220 -743427 -85176 -281755 -459551 -295627 -340784 -653049 -135451 -111703 -347542 -631004 -689791 -770626 -15040 -507471 -49435 -915135 -816576 -594833 -342519 -546178 -415274 -792358 -475551 -111728 -614609 -48799 -744423 -8921 -284843 -427417 -852066 -229663 -85938 -25130 -186065 -929602 -10571 -248981 -940841 -659835 -910052 -660078 -467225 -506339 -421058 -329164 -630696 -166474 -420987 -450294 -791218 -374466 -872344 -24828 -441464 -36583 -727203 -420472 -756953 -12953 -935583 -300676 -398481 -86409 -790838 -714895 -887306 -335602 -141466 -813296 -116408 -546902 -450763 -304449 -348988 -24747 -607138 -945537 -737854 -229841 -634259 -260489 -259765 -481119 -56705 -319866 -288397 -647888 -684732 -831428 -378683 -138736 -229748 -821226 -369769 -689627 -555286 -778191 -541704 -887351 -170900 -54418 -299994 -447872 -62994 -756922 -145742 -146543 -672003 -145269 -481149 -44049 -436811 -504838 -280576 -395378 -485330 -851470 -302462 -333367 -321222 -248753 -554577 -69732 -457030 -743429 -421036 -778487 -770373 -223750 -919168 -283282 -843733 -656463 -664223 -303676 -857514 -120575 -640590 -853961 -926478 -90394 -380944 -671860 -23454 -91240 -437291 -490779 -726942 -760407 -569770 -742712 -681080 -27223 -300851 -802075 -426379 -650359 -44712 -62772 -437613 -77060 -949033 -642880 -285796 -432546 -825905 -533114 -843270 -906332 -251582 -596109 -689797 -64550 -626705 -81543 -736277 -801387 -528583 -921483 -84970 -284602 -806178 -738897 -756262 -349589 -485855 -879964 -880023 -573717 -698497 -192422 -947207 -924018 -381018 -59097 -919956 -200770 -711648 -223027 -420504 -682740 -879712 -407497 -505622 -426163 -689274 -800857 -673881 -234414 -24583 -825893 -910392 -276040 -455465 -42812 -154798 -343079 -682616 -86700 -341482 -417780 -31468 -101443 -777163 -682976 -711921 -910405 -439425 -729141 -356524 -111389 -309933 -488068 -62484 -564511 -115820 -546113 -1620 -561655 -680108 -605705 -641631 -704877 -382800 -349581 -879563 -24764 -436461 -917191 -952453 -751780 -418973 -284622 -260082 -933128 -504448 -264539 -369477 -218566 -504127 -70567 -448194 -452845 -60434 -910386 -449198 -309917 -484994 -836845 -21785 -283191 -545231 -895415 -578432 -735925 -38447 -658800 -349390 -174813 -755259 -689894 -287185 -262614 -554811 -249383 -105071 -434207 -555320 -556392 -100989 -286796 -833236 -462052 -432900 -830809 -429181 -386165 -449763 -280470 -869420 -390306 -105162 -925703 -32859 -450588 -472718 -461015 -672658 -136689 -334573 -514634 -857358 -763631 -743550 -449467 -757828 -892827 -893604 -743571 -477129 -171926 -257994 -808282 -717664 -627253 -928205 -844598 -390597 -24391 -389137 -451953 -287023 -728666 -870155 -609837 -328049 -25244 -732471 -844174 -576279 -760213 -667212 -301823 -448911 -328803 -952426 -957271 -642453 -556882 -630244 -151843 -67720 -474158 -739564 -761544 -244186 -313288 -166871 -137713 -788293 -383810 -528526 -425200 -334575 -725882 -684689 -743024 -803281 -680563 -335903 -501958 -431756 -561611 -229864 -38738 -579732 -57324 -476835 -402564 -156227 -875170 -387805 -639572 -822406 -460159 -556733 -594046 -887564 -757053 -372423 -482265 -436421 -946844 -436354 -143094 -125430 -158803 -319974 -78375 -477467 -895465 -554512 -649248 -751527 -795493 -635960 -485719 -887105 -486638 -334338 -871305 -594043 -787610 -340599 -356152 -484930 -86402 -281846 -922996 -879805 -229062 -555955 -674529 -940896 -609517 -419882 -620615 -55135 -672856 -619922 -478680 -177466 -846668 -179993 -630506 -675222 -476970 -650786 -298727 -299439 -843203 -271253 -418437 -32361 -649805 -10187 -335506 -271000 -726125 -605836 -629881 -841789 -39480 -892993 -919718 -269535 -111589 -85894 -865417 -311624 -535387 -819640 -300460 -460384 -833291 -436797 -807590 -223975 -616201 -264120 -844977 -420959 -80972 -747852 -757854 -743585 -541934 -16549 -240560 -25288 -921988 -947916 -778490 -673895 -321400 -436959 -368575 -232230 -467783 -368707 -391740 -882210 -167153 -810209 -829322 -515964 -301007 -219696 -416251 -594780 -12890 -284785 -462139 -761901 -804346 -867118 -236346 -698109 -682557 -98850 -121658 -280809 -423503 -303012 -228388 -879484 -180798 -94820 -611524 -397682 -165452 -375377 -410724 -424106 -682909 -594871 -226982 -841733 -945024 -111684 -483665 -678333 -658555 -593550 -230091 -120618 -533412 -742135 -135034 -742182 -320581 -461822 -682928 -641154 -650883 -418651 -12209 -24638 -323551 -926163 -342821 -625117 -640187 -274841 -435968 -230059 -619823 -288453 -337506 -698257 -904050 -279599 -954234 -164756 -643148 -421056 -853652 -917063 -569432 -661461 -211549 -554515 -829132 -145121 -180606 -732264 -344211 -381904 -497271 -771822 -447848 -594734 -942362 -716484 -863356 -117180 -438101 -420541 -679816 -875074 -322584 -741561 -448446 -349608 -151793 -724158 -322969 -202775 -234179 -116337 -111845 -787019 -878470 -689715 -587927 -287030 -539208 -149503 -98408 -477084 -553839 -906391 -487897 -720465 -682402 -684116 -120366 -921982 -64598 -262315 -406987 -833850 -234461 -403620 -816597 -577316 -443003 -192339 -24957 -165639 -768576 -188811 -619493 -736607 -220306 -118697 -485868 -340483 -283476 -99090 -878755 -319761 -357287 -827616 -498642 -174841 -541987 -232082 -880199 -22700 -103475 -847191 -39373 -418282 -937895 -636774 -260615 -335328 -111659 -439028 -333949 -725996 -55483 -713679 -275323 -458769 -10586 -41994 -448402 -802608 -935070 -894796 -173014 -493797 -432414 -167130 -25249 -636306 -793478 -15918 -827425 -676179 -532187 -462141 -764064 -332450 -742856 -773502 -854118 -285100 -808286 -27717 -145067 -682539 -431266 -426818 -870270 -608690 -399666 -64499 -567527 -200174 -234491 -460610 -427376 -489391 -422416 -279842 -167706 -569906 -35605 -111612 -563969 -145799 -349182 -388984 -736613 -823361 -151411 -659152 -562292 -833669 -487259 -890831 -305806 -402310 -810902 -674858 -693274 -926539 -309729 -742118 -792104 -248524 -795172 -12010 -851844 -285597 -848369 -84917 -769898 -12946 -85698 -153958 -135127 -449180 -674543 -155844 -588516 -17493 -590597 -104073 -808273 -154811 -840145 -182950 -682863 -537829 -925861 -737888 -622887 -444610 -67455 -334545 -844299 -725523 -333559 -8750 -943925 -145676 -451581 -22780 -617446 -640299 -190118 -953627 -934567 -844415 -157357 -855729 -879520 -64167 -763491 -278900 -167078 -30105 -416737 -894782 -422531 -280748 -1930 -388814 -336253 -321727 -39068 -682614 -819410 -340476 -312675 -331172 -65463 -600560 -361459 -779999 -454616 -77374 -572181 -448922 -98348 -321879 -919178 -126095 -908078 -55077 -339389 -167754 -494694 -751291 -278666 -667250 -738221 -229937 -47967 -938513 -228850 -278124 -162812 -319490 -651844 -910772 -741570 -356496 -216940 -756274 -891051 -942865 -925601 -943429 -153231 -369765 -693258 -78704 -453902 -725401 -86429 -109656 -248405 -34475 -61764 -134665 -614349 -918496 -717738 -742005 -650762 -274882 -158930 -472300 -762769 -641129 -432715 -566971 -94916 -556085 -314252 -295733 -11680 -25258 -232225 -121378 -123314 -420463 -934377 -492001 -42867 -135322 -642711 -768644 -86446 -874740 -623879 -24723 -100813 -247684 -933091 -874987 -532269 -177875 -808107 -285354 -116960 -87106 -98480 -930750 -682563 -559437 -61070 -617927 -515866 -631887 -693333 -807818 -706173 -225415 -510918 -871585 -468843 -682961 -101919 -24650 -827683 -200727 -817254 -427418 -416149 -505709 -772130 -579879 -61893 -204922 -228318 -382187 -261418 -676307 -734089 -315567 -451305 -413435 -419285 -880419 -230299 -686518 -546301 -33177 -313616 -279015 -667291 -764912 -437438 -163763 -603078 -139497 -770153 -578033 -440147 -680958 -619896 -640019 -843849 -891920 -273319 -63865 -883898 -682930 -142986 -777369 -88366 -25279 -721318 -173436 -737065 -337429 -592134 -808939 -305972 -895533 -314285 -335306 -762283 -332601 -916312 -333889 -248785 -799135 -570624 -427588 -724112 -669013 -226684 -89224 -298214 -109615 -939256 -623131 -555184 -455784 -264077 -372103 -111558 -544876 -63864 -681136 -181025 -475373 -287093 -673293 -47242 -906315 -448484 -281264 -460210 -618344 -555170 -826229 -833633 -289355 -616479 -426347 -702957 -7007 -615148 -427010 -681743 -698881 -350421 -262355 -101033 -946772 -641339 -638329 -157299 -770087 -329426 -446744 -87007 -800937 -420872 -420450 -225864 -368698 -248080 -485723 -281630 -554904 -535472 -447912 -95051 -550214 -832928 -609701 -947154 -720408 -286354 -659243 -485274 -121243 -482161 -895510 -640639 -650522 -180205 -670032 -262251 -873541 -384694 -151122 -412730 -18049 -871011 -111745 -273132 -733784 -338125 -449359 -671430 -838454 -64502 -257995 -619636 -375586 -174505 -139358 -895386 -391322 -454225 -875199 -305428 -425475 -77640 -681169 -485313 -427356 -66144 -843309 -855086 -148702 -801464 -404808 -927024 -440624 -106872 -918235 -736460 -330795 -85934 -39420 -857173 -19710 -828745 -244175 -303957 -871188 -905579 -798827 -733550 -404015 -114351 -385967 -73492 -807624 -399227 -387401 -698924 -827625 -941928 -427061 -329153 -109041 -845015 -220336 -432527 -485179 -420664 -629991 -285341 -200584 -448787 -836872 -771718 -64618 -460848 -320738 -408523 -52534 -334037 -447187 -606154 -32864 -552952 -436173 -648639 -289298 -792149 -411103 -227640 -659335 -298585 -549084 -188755 -101867 -11895 -407432 -832327 -575411 -888367 -555427 -807422 -22734 -146499 -435229 -424984 -952312 -274729 -54725 -334587 -711939 -751347 -187296 -365089 -878512 -741411 -450657 -361851 -333620 -853936 -606150 -801151 -682688 -761912 -556997 -899519 -336060 -301614 -62088 -295886 -820095 -220734 -687868 -534494 -99058 -627426 -231181 -753949 -86271 -879878 -111397 -819787 -490377 -717741 -300848 -417619 -544119 -594019 -844956 -247964 -605984 -808248 -43203 -832990 -427243 -45692 -88174 -727027 -233260 -659393 -458688 -426557 -628421 -328032 -534704 -879301 -157873 -32570 -424557 -11944 -689699 -682647 -613711 -342712 -858885 -630586 -819936 -145734 -448620 -630814 -190958 -303445 -229000 -545240 -108537 -319522 -524371 -230149 -918760 -472446 -717033 -65805 -818787 -448568 -610737 -693095 -937394 -477127 -32783 -320077 -620747 -642993 -248002 -284677 -257553 -580006 -321576 -599224 -379502 -770262 -309244 -847194 -918470 -447876 -682000 -816178 -757543 -427594 -777605 -479725 -760774 -630481 -69346 -43274 -177796 -56685 -828065 -438011 -111789 -295908 -273544 -606702 -490768 -948650 -192599 -226760 -70471 -62522 -64519 -24684 -491108 -117119 -258782 -596784 -633304 -299965 -11410 -682288 -26953 -756538 -438032 -362161 -447171 -448720 -37212 -144301 -202301 -686173 -296930 -592137 -323053 -142815 -105136 -422646 -633476 -866059 -554271 -368351 -158464 -408550 -567372 -703906 -250590 -472404 -930516 -925673 -435008 -439974 -25047 -334080 -763634 -829204 -879059 -932753 -272745 -64422 -69649 -657938 -425973 -407614 -954771 -232996 -905006 -402745 -751928 -295099 -170195 -298166 -774724 -287345 -846482 -554523 -123742 -809496 -448540 -262833 -756377 -682393 -845047 -768679 -162322 -132121 -77847 -556798 -763703 -555569 -675003 -587917 -451467 -111801 -36844 -369746 -449988 -807954 -556405 -145552 -81766 -343638 -26288 -258079 -7822 -486222 -2920 -182646 -162559 -819660 -929271 -564503 -263025 -314855 -230231 -682367 -606603 -283643 -808104 -226820 -95057 -488142 -23826 -9447 -391651 -121202 -858654 -693623 -844109 -755242 -77985 -322008 -681076 -42728 -684279 -691259 -290202 -641920 -490019 -618187 -450450 -86255 -604198 -666534 -717201 -150695 -564265 -42626 -865202 -882032 -705271 -844168 -516897 -464912 -59995 -922704 -878696 -124339 -180923 -25043 -252444 -224971 -450860 -718782 -481959 -912551 -317531 -725352 -630613 -53093 -423816 -793068 -553770 -290334 -333679 -802478 -726920 -321932 -170241 -138184 -422550 -361229 -677725 -88469 -390090 -895359 -485489 -618332 -684487 -111737 -829840 -75490 -175597 -911385 -830674 -473969 -256808 -539279 -301785 -950926 -654486 -850604 -435645 -538668 -682400 -419254 -650557 -450537 -508412 -88209 -952832 -151037 -777991 -841256 -474354 -425702 -430287 -12905 -940199 -449220 -919789 -828321 -683899 -24215 -683900 -336394 -946837 -513477 -157129 -50255 -69231 -877124 -167657 -139075 -449360 -791575 -305246 -162164 -498589 -315017 -604978 -735296 -337092 -334572 -120147 -342925 -930587 -248526 -321926 -887527 -383498 -102333 -619367 -281129 -316524 -14877 -476131 -230086 -532119 -446733 -134897 -627836 -885848 -544485 -450552 -891072 -129182 -924265 -476558 -223462 -607184 -115925 -608711 -675847 -64353 -727009 -48902 -179987 -625057 -642398 -716697 -490230 -724441 -121751 -285257 -478259 -316354 -25266 -16952 -850980 -143466 -104999 -525120 -726035 -382858 -911684 -687431 -830794 -301343 -367451 -234123 -333943 -556906 -607361 -156356 -466995 -626691 -7468 -617999 -533526 -649382 -816190 -289107 -772421 -33953 -427184 -850404 -82414 -413304 -701926 -918686 -561468 -104252 -386600 -288574 -846639 -13105 -232030 -86275 -756624 -680953 -384843 -314641 -10186 -650247 -25276 -484009 -527148 -563370 -280714 -245095 -387125 -129229 -774298 -59072 -554770 -278359 -24478 -937956 -619885 -182692 -532445 -287450 -754544 -687000 -865141 -736368 -588312 -388258 -133085 -44005 -146878 -249507 -482614 -679864 -859946 -683719 -813373 -380991 -742194 -767467 -532989 -529247 -684296 -450723 -340779 -912256 -93476 -807858 -847137 -554875 -299010 -331497 -726498 -112340 -730807 -25020 -945761 -168180 -763544 -577580 -295622 -763514 -167695 -134016 -450802 -348663 -664824 -652219 -50171 -857407 -461295 -936213 -663843 -131965 -663685 -432203 -346438 -181736 -429991 -419896 -172141 -650891 -334112 -905265 -500420 -554317 -215078 -880194 -134801 -680051 -717677 -698522 -228847 -485649 -25106 -64987 -305645 -333663 -133673 -157922 -153725 -314713 -543999 -365767 -472008 -288740 -447001 -421135 -65723 -845028 -885025 -163050 -420845 -674258 -65632 -319424 -762493 -611689 -296328 -424307 -285593 -545111 -841255 -939431 -248887 -615013 -448892 -217525 -775891 -689729 -11594 -629552 -629319 -229115 -937207 -32765 -848506 -470505 -301820 -135001 -649505 -167176 -678362 -643058 -775020 -810653 -50947 -106016 -245984 -89014 -443436 -642909 -615031 -457123 -378155 -864907 -893830 -932820 -119522 -673597 -12030 -350148 -702164 -687781 -703946 -346481 -577159 -475639 -802120 -93927 -432025 -479073 -633402 -837666 -75816 -651394 -363994 -309409 -212811 -83927 -115497 -609797 -724654 -617187 -267670 -174341 -111894 -208335 -413085 -9589 -442446 -83916 -61421 -404600 -315229 -74486 -871567 -827515 -744258 -214193 -650916 -494741 -61101 -21951 -559723 -325966 -336894 -312822 -905392 -367996 -38625 -34789 -724366 -14880 -336085 -95258 -257986 -288086 -133344 -92608 -746137 -334108 -53367 -459829 -12570 -88890 -343236 -906093 -308330 -870697 -135454 -304671 -461151 -94540 -306841 -70948 -260766 -260487 -11955 -570539 -18137 -44324 -668771 -239726 -189955 -634329 -449144 -630115 -206814 -761574 -602803 -65393 -68262 -618736 -934524 -781715 -133757 -679748 -755476 -102746 -14687 -354632 -940620 -363483 -263700 -464948 -18123 -50888 -112629 -710097 -505695 -209431 -350182 -51594 -43950 -82255 -129270 -742046 -291087 -482280 -369149 -659532 -793133 -525162 -764389 -763658 -863213 -306935 -356572 -46635 -11374 -335315 -315652 -116564 -292773 -35216 -133990 -538931 -421197 -494149 -50266 -555029 -623357 -9553 -71034 -193894 -24025 -24996 -327252 -360197 -591878 -769536 -793958 -670659 -938298 -303655 -709891 -151434 -14982 -926171 -94094 -21661 -658965 -912997 -80270 -726081 -49028 -305631 -668047 -70546 -361292 -144333 -167535 -16771 -3991 -713934 -301340 -343026 -702995 -160995 -581053 -92979 -64157 -42909 -61709 -371256 -938917 -71280 -314674 -24994 -124369 -847134 -444681 -17043 -72772 -140540 -36282 -912699 -703710 -286969 -12970 -381819 -771538 -25512 -28889 -741672 -362524 -159583 -516199 -761811 -387150 -654612 -262755 -12712 -109573 -874523 -91366 -49376 -501397 -335448 -943583 -23474 -207060 -18264 -70473 -337130 -312173 -664861 -826238 -560397 -372446 -71000 -125181 -162202 -21384 -67312 -781773 -13106 -48897 -431907 -148919 -305433 -20320 -431952 -44483 -243730 -343608 -276222 -795495 -49910 -20843 -703907 -709809 -492058 -526562 -49853 -209470 -822384 -523895 -358143 -84588 -780186 -773810 -118714 -114209 -661987 -392876 -67809 -354393 -110509 -835194 -29476 -707413 -676754 -89063 -949351 -475277 -83831 -597337 -334693 -81804 -67102 -900081 -576910 -856916 -286027 -78526 -487768 -14820 -732171 -564359 -633786 -871115 -780863 -203649 -119072 -36743 -75742 -372305 -60163 -591683 -566811 -42274 -372934 -31907 -83906 -480369 -71120 -29105 -95539 -9450 -132217 -480294 -821354 -529115 -340723 -13982 -209182 -708895 -7296 -728672 -719070 -263064 -782229 -409719 -298687 -294323 -10986 -14604 -78867 -458224 -625898 -593905 -764162 -11796 -24153 -162021 -348885 -320610 -449560 -85644 -851705 -799202 -44246 -379608 -717364 -810232 -625799 -334536 -664933 -9633 -446208 -762539 -208571 -368418 -780897 -48856 -121092 -50067 -123028 -177547 -16485 -44021 -769024 -22239 -64031 -537498 -30078 -650644 -11619 -465056 -66410 -179004 -174853 -777995 -936737 -769554 -58505 -56503 -721595 -47569 -13462 -74423 -79302 -622726 -479476 -316867 -235516 -223266 -828552 -501340 -273013 -774329 -626828 -41809 -126613 -304134 -703801 -28879 -847915 -375376 -199787 -892026 -18013 -616044 -60366 -222905 -747948 -527512 -134618 -73618 -4012 -169785 -49710 -762424 -180865 -341471 -793822 -724362 -130270 -7707 -593276 -39176 -420552 -321799 -832849 -608481 -541030 -427585 -355841 -314498 -124483 -893904 -5461 -751374 -178487 -48251 -870102 -345731 -43127 -71270 -88352 -939640 -957079 -312208 -303465 -427671 -268090 -28567 -70649 -118026 -29727 -179877 -230752 -242308 -58520 -273338 -776395 -11584 -856767 -418486 -178916 -590492 -9452 -249932 -236505 -673560 -901467 -95421 -513439 -672909 -746180 -30809 -55055 -45264 -459038 -501917 -267136 -560511 -91885 -236112 -129213 -15643 -825384 -316904 -788749 -870021 -14720 -56108 -319423 -526356 -170359 -242624 -506098 -637756 -356232 -50105 -125074 -301660 -897606 -747815 -267927 -654709 -158928 -353398 -66201 -704326 -70633 -570500 -121097 -674123 -77648 -455685 -99775 -943090 -330840 -368686 -12038 -389221 -740101 -489341 -275649 -18830 -306468 -255379 -957009 -168001 -151517 -738483 -626414 -93866 -73929 -354087 -119931 -733874 -357311 -21076 -67194 -782691 -78861 -275184 -956979 -8153 -224411 -208771 -316879 -525458 -323361 -407648 -567973 -215614 -802780 -903486 -215820 -62102 -710200 -952217 -383917 -43240 -121055 -288002 -739553 -82383 -300101 -208976 -788554 -91984 -167019 -468442 -654446 -60566 -690598 -77322 -140272 -673891 -316043 -930624 -64775 -186816 -547999 -546093 -475081 -202304 -559969 -611586 -166897 -211674 -361135 -741483 -34489 -824425 -141888 -588298 -248591 -761679 -919082 -439935 -368043 -262645 -319993 -843742 -301835 -601130 -793553 -124987 -654358 -464048 -673632 -467338 -558976 -316638 -527694 -34549 -9877 -335442 -53961 -463894 -434026 -623839 -527142 -42428 -841604 -23401 -234688 -31596 -104914 -209539 -482439 -219092 -786072 -278328 -54689 -305395 -316216 -881222 -270564 -125066 -27299 -889413 -711748 -661067 -633177 -286116 -521582 -208083 -277049 -800756 -40322 -383698 -847571 -425705 -88424 -140631 -478171 -62779 -945837 -12745 -927616 -590097 -528800 -367298 -94196 -693114 -199439 -1480 -288627 -492095 -62777 -372497 -11532 -623060 -178585 -487358 -3849 -522256 -445401 -443079 -166603 -17389 -8507 -221744 -54727 -77326 -847657 -938756 -379458 -461052 -134777 -642789 -92597 -886094 -181616 -750708 -175693 -191075 -60576 -701280 -927780 -373172 -606090 -512791 -817940 -34837 -13006 -49161 -12427 -122488 -626049 -13178 -882565 -295795 -315815 -251301 -24380 -626103 -166962 -79296 -155506 -451853 -793795 -852673 -25370 -938995 -45636 -423762 -35200 -58894 -267004 -538390 -335332 -303518 -320481 -68733 -50270 -122505 -315383 -763954 -332242 -673355 -19498 -75834 -60570 -377534 -20836 -45303 -747923 -753772 -44582 -79450 -139998 -761721 -64673 -655983 -20258 -322390 -468746 -709150 -95579 -32347 -63103 -821435 -140580 -124485 -538128 -310271 -335414 -232415 -9592 -65742 -42173 -50196 -606519 -233764 -11850 -703448 -315018 -771346 -611735 -390936 -920910 -58891 -471898 -905995 -66149 -738030 -148423 -925188 -554439 -821560 -763538 -66339 -336260 -558958 -673070 -342778 -606660 -883360 -78720 -669133 -423189 -672405 -950688 -232669 -65015 -263637 -709788 -656926 -231008 -10353 -559309 -594599 -196295 -288009 -230353 -871303 -123533 -224061 -575315 -475967 -142828 -113763 -943329 -341252 -472437 -127915 -151860 -11918 -51825 -361820 -24267 -167458 -45171 -262027 -676065 -46599 -433487 -902238 -729261 -88087 -793937 -363869 -527645 -150448 -62399 -606319 -866145 -277435 -892863 -702709 -619030 -264022 -320887 -475454 -195020 -84907 -869348 -943812 -58470 -68128 -42017 -556484 -653283 -60481 -122967 -11427 -271085 -488087 -307793 -26855 -933192 -278376 -135495 -29372 -704064 -703871 -12485 -924217 -175661 -935759 -21714 -42098 -798145 -709141 -238929 -719133 -559549 -334442 -921819 -35140 -21085 -174534 -329020 -625736 -60982 -663831 -718945 -13186 -57708 -369304 -26206 -309556 -793594 -937055 -71829 -423940 -919078 -784073 -446704 -64257 -652800 -197418 -671365 -567093 -206440 -45042 -387420 -14652 -180036 -611027 -283661 -41923 -38192 -327940 -854955 -821414 -559923 -697074 -590651 -747486 -267277 -195091 -432064 -449076 -803052 -460413 -288744 -227660 -885455 -707468 -943634 -684115 -863330 -59976 -913144 -534968 -85937 -279321 -722921 -196821 -8614 -52805 -674285 -236502 -83677 -13510 -442253 -281561 -95202 -168677 -12043 -647463 -130728 -140897 -477422 -905008 -288728 -24891 -86103 -101745 -472541 -317768 -682118 -956279 -60500 -649774 -17109 -121663 -914313 -567544 -134794 -871067 -907814 -256902 -940387 -896788 -858796 -13523 -124292 -264536 -27076 -761425 -197081 -167956 -60665 -558555 -62101 -203374 -234321 -483251 -335322 -640430 -670568 -547478 -20686 -952329 -791693 -736669 -337687 -271023 -478654 -698634 -351008 -48620 -226666 -334041 -168143 -903598 -748396 -61351 -181576 -832375 -11908 -623873 -625863 -560238 -503681 -471976 -9503 -177137 -913041 -112517 -772571 -222168 -516625 -263512 -329150 -446378 -517792 -459334 -53431 -50202 -393967 -774086 -177767 -814289 -209137 -383955 -717415 -555571 -631478 -166798 -465009 -795946 -442992 -677496 -263763 -93922 -288550 -77581 -301781 -75522 -74488 -199071 -198627 -903778 -769547 -114190 -135452 -351744 -84174 -675143 -180162 -180179 -16609 -125103 -94691 -939232 -947345 -793933 -422989 -42332 -558220 -237588 -494610 -442985 -45211 -11782 -34810 -188783 -125688 -24031 -91030 -522825 -174625 -134360 -309844 -682028 -174712 -852696 -583481 -447729 -73679 -23829 -718040 -166955 -936173 -52855 -901244 -22212 -110263 -737789 -125136 -831373 -10656 -61857 -569918 -131255 -378502 -209101 -368621 -654560 -856920 -143451 -60821 -144029 -831265 -42238 -468072 -556152 -926986 -148505 -413269 -335375 -18252 -50249 -903633 -750968 -738354 -750404 -665726 -474190 -854124 -65217 -41959 -74508 -34964 -837126 -237150 -632941 -68592 -332569 -34779 -702077 -497484 -119965 -68759 -15162 -473351 -397806 -4447 -372429 -180707 -12582 -386657 -735841 -479887 -495794 -717334 -863277 -930959 -13077 -769842 -933140 -199345 -793662 -704295 -869987 -425630 -557406 -17229 -29650 -617275 -178987 -93682 -772062 -145649 -760449 -875160 -833268 -460995 -310647 -731334 -956418 -304751 -703353 -892373 -192488 -42039 -255593 -257394 -790590 -773992 -94835 -567330 -793663 -690380 -30578 -465788 -104871 -334946 -758092 -792837 -905557 -267293 -602488 -782567 -17139 -460283 -892520 -440467 -201796 -947352 -14853 -412677 -383719 -369338 -47366 -221757 -335443 -442415 -249356 -814794 -90494 -115125 -149983 -632846 -479973 -196899 -43693 -717722 -119287 -581079 -903523 -814883 -93928 -249148 -559515 -78866 -408901 -372510 -765962 -463288 -693123 -946486 -270490 -149433 -27663 -5494 -271652 -264989 -139995 -416125 -43331 -148991 -795510 -858093 -13289 -135455 -591686 -623554 -328540 -110249 -198488 -306900 -380885 -47325 -131298 -792382 -51209 -843897 -930899 -792287 -336973 -452973 -84020 -132620 -57863 -678776 -751507 -703070 -47211 -941750 -26289 -249377 -271236 -384003 -4344 -20896 -656699 -112913 -273942 -486189 -574466 -679423 -21488 -10394 -651830 -627545 -890526 -94870 -151857 -20561 -825551 -450780 -73989 -262653 -20496 -57674 -70807 -271801 -95597 -35112 -887713 -343234 -118325 -315032 -810187 -818606 -277096 -199680 -270648 -356373 -21173 -616716 -343632 -950874 -774067 -120138 -34619 -334735 -903546 -159619 -69626 -7419 -337948 -67166 -149246 -263098 -120228 -75552 -296974 -94955 -79240 -36999 -61518 -73370 -23583 -458809 -926595 -491993 -354550 -458935 -519851 -467123 -635285 -70639 -881725 -257820 -742032 -759336 -118288 -793057 -9927 -468205 -107927 -69333 -342688 -68767 -386684 -638814 -242843 -75851 -938736 -37049 -174905 -429605 -92123 -560509 -62333 -390012 -226801 -750701 -338287 -289943 -20782 -664517 -736734 -60533 -328452 -16463 -926806 -518427 -390202 -534559 -427390 -600829 -801220 -271815 -259638 -183790 -49256 -23228 -42241 -99934 -431524 -769602 -664909 -704444 -626570 -13116 -191056 -704066 -334640 -231831 -225507 -26276 -95259 -301842 -45609 -335228 -126397 -486645 -433512 -956884 -645557 -461314 -58110 -49975 -555387 -9979 -315142 -830981 -452948 -77551 -276168 -446637 -688412 -665765 -945653 -633193 -663235 -77650 -51137 -21947 -131048 -289399 -180175 -277913 -931991 -772527 -144111 -480847 -81553 -209650 -735033 -753867 -329737 -340450 -945309 -636884 -277870 -907535 -901188 -176347 -931011 -54724 -550447 -199887 -54397 -413449 -249920 -813908 -377891 -247151 -18637 -488280 -92501 -291061 -61373 -569351 -210526 -188770 -20391 -397607 -335312 -22470 -687855 -60524 -638633 -88593 -928039 -332641 -472098 -50612 -413268 -225012 -566552 -462240 -883046 -120132 -736464 -248222 -268251 -12327 -11977 -664274 -335601 -441829 -213690 -863416 -198768 -12833 -48451 -75917 -485552 -307986 -260436 -718845 -443028 -15114 -483727 -903492 -364476 -693059 -275028 -536462 -342958 -29183 -316323 -121832 -424867 -903465 -451598 -317739 -691323 -869503 -269835 -335463 -903568 -45140 -366471 -44964 -737752 -636518 -867415 -103547 -52854 -747345 -237710 -387975 -800305 -108516 -25547 -395028 -262699 -167302 -11864 -23128 -732638 -824655 -45308 -161260 -625094 -101822 -379270 -30703 -126359 -715253 -412584 -335475 -73619 -609731 -864986 -60223 -159934 -533297 -460214 -695381 -942329 -56149 -42344 -641762 -678739 -330066 -161986 -11591 -12510 -686869 -756045 -20649 -811309 -141230 -129110 -349266 -297034 -428904 -867519 -267903 -72502 -14788 -661830 -847717 -461342 -34481 -63574 -63716 -634848 -2166 -846201 -130258 -438171 -527993 -956686 -6857 -717482 -276224 -602408 -447472 -205865 -248436 -15881 -475894 -34573 -415081 -35231 -380988 -12319 -863263 -930046 -952952 -53766 -236001 -505407 -192258 -161078 -190661 -193159 -100990 -416974 -351226 -410657 -118768 -809748 -900895 -84204 -251957 -45575 -859262 -83814 -66413 -143618 -198387 -58095 -50310 -956797 -804987 -471338 -197253 -50143 -647708 -575197 -28908 -501419 -636539 -54399 -650086 -699176 -937980 -325542 -512653 -13452 -185261 -517782 -12567 -635809 -41957 -347478 -617516 -793970 -1350 -43282 -305299 -97568 -846192 -453996 -911865 -942634 -457032 -196398 -334763 -380050 -4726 -51000 -465396 -612392 -227049 -60979 -836881 -401072 -140679 -933041 -150467 -427068 -75456 -356481 -384085 -654032 -120220 -34469 -49108 -125144 -107856 -604811 -600807 -791199 -805523 -141732 -255864 -155376 -63607 -295895 -952604 -222719 -709841 -360901 -287929 -197354 -103976 -956940 -182112 -200225 -115524 -167776 -20764 -192881 -390416 -337971 -855932 -279079 -721596 -271364 -224737 -784189 -224907 -782541 -350737 -377882 -284030 -6952 -317617 -110326 -545559 -651649 -769553 -332937 -859126 -550453 -560539 -37001 -166776 -21993 -101522 -202470 -35909 -186811 -79294 -22785 -77179 -88142 -881872 -48626 -289166 -703698 -236694 -54664 -119735 -387600 -645351 -95242 -366016 -9965 -101683 -292652 -167609 -712253 -129007 -931121 -48503 -367673 -493704 -171334 -836809 -943484 -13321 -768741 -99903 -99060 -648979 -793818 -74429 -16945 -560446 -198457 -693320 -534292 -8960 -10060 -747805 -224678 -534140 -699390 -693238 -605656 -642905 -79211 -479851 -793748 -57150 -501069 -29505 -461589 -709932 -543886 -351035 -95086 -679674 -436157 -664783 -549537 -279433 -628266 -262383 -751491 -82870 -830988 -665961 -670990 -768739 -678665 -852708 -25450 -17821 -773298 -622793 -121947 -326420 -179311 -429846 -292022 -26878 -1006 -106861 -323538 -41747 -93618 -224254 -682030 -196134 -780185 -56230 -17576 -35190 -833661 -131369 -647502 -88191 -692278 -69556 -379588 -394731 -689004 -93473 -694634 -119746 -913150 -104289 -42318 -21971 -750592 -445696 -348485 -335240 -236210 -192563 -536109 -806973 -483528 -352830 -263855 -277116 -457484 -257764 -78545 -138873 -326439 -199936 -520098 -109340 -387791 -688795 -864315 -644610 -40336 -51021 -791606 -16325 -20400 -599233 -232005 -559395 -308401 -135444 -169480 -692746 -110508 -335135 -942883 -554508 -251596 -130964 -953012 -663048 -712865 -63004 -635176 -205946 -896677 -3261 -753824 -119057 -200693 -260811 -557355 -209601 -119079 -346254 -640072 -524161 -261758 -21321 -467833 -42745 -88293 -431754 -481650 -303143 -89267 -297795 -782277 -879104 -130305 -347161 -324507 -53930 -89164 -871169 -781752 -402048 -106764 -76904 -60624 -250853 -551348 -265940 -42431 -64990 -9846 -222675 -829141 -304799 -848065 -23528 -266313 -194075 -19406 -773421 -274100 -59273 -57877 -515801 -129222 -771508 -176314 -11635 -113389 -168711 -466889 -48152 -111991 -401562 -80530 -177491 -58338 -149343 -678497 -610939 -76073 -575539 -8627 -139089 -13693 -380705 -23427 -65854 -840240 -73095 -12867 -72394 -764622 -720000 -77381 -97341 -58357 -60184 -454340 -622057 -407232 -287091 -224301 -340671 -593789 -74104 -836896 -151371 -319502 -63121 -499053 -200020 -567877 -61132 -577365 -373529 -201842 -128890 -719487 -893996 -35214 -750344 -927791 -742009 -647783 -3478 -28839 -306776 -710164 -139739 -30181 -197048 -39494 -928109 -54156 -869608 -616155 -67562 -480073 -837569 -9899 -129393 -60111 -484368 -903326 -859002 -457729 -486577 -37829 -927943 -952608 -426080 -380672 -224498 -94584 -248949 -846176 -943079 -458798 -22499 -45319 -240845 -170153 -928248 -956172 -409210 -482529 -921794 -20462 -168376 -459966 -661223 -721776 -316733 -74171 -105146 -61782 -249472 -151712 -199993 -92607 -236097 -324269 -777331 -343233 -300533 -140575 -61126 -166763 -13492 -24908 -259994 -922212 -45428 -275113 -266955 -348852 -45409 -460642 -46223 -329329 -624850 -827942 -271041 -129463 -287545 -367417 -811404 -272974 -372133 -60464 -368491 -144526 -590195 -124701 -45346 -770043 -442750 -630275 -455672 -59116 -69471 -251278 -78865 -104316 -134807 -845800 -280482 -956165 -329273 -151479 -28374 -93247 -316302 -344050 -203975 -162924 -373667 -368642 -39919 -258102 -654720 -781253 -158157 -260997 -334158 -151306 -359338 -902647 -458450 -201369 -10551 -318601 -44811 -50574 -811796 -29646 -614671 -308467 -937861 -21669 -76054 -607993 -605813 -923059 -269407 -862615 -814723 -12584 -333468 -367901 -13566 -861940 -858576 -886158 -68678 -223869 -364770 -289284 -45625 -635526 -580194 -494738 -902631 -263698 -214806 -938233 -85569 -83794 -73493 -603909 -26825 -206241 -347352 -589676 -223421 -120522 -663903 -480319 -79250 -693314 -612992 -903559 -21930 -23700 -131253 -763068 -247515 -434717 -347313 -334795 -751536 -119919 -486997 -35933 -83138 -61114 -46723 -922463 -500946 -673518 -480176 -762640 -6746 -62370 -35071 -901270 -179262 -32138 -397305 -903555 -671429 -599788 -439595 -671384 -13279 -208275 -52396 -69481 -54043 -822978 -381215 -295853 -208523 -224700 -34788 -7462 -72104 -387058 -231728 -747974 -6867 -40178 -291243 -284110 -650507 -373294 -819511 -600358 -932591 -574459 -618560 -738223 -76017 -292861 -566328 -492626 -588410 -325356 -871559 -773983 -256702 -249089 -749241 -441705 -120198 -279408 -17485 -934557 -190979 -549699 -88407 -60787 -197355 -124515 -624590 -704385 -334030 -14672 -92148 -304710 -99087 -192565 -210886 -444009 -127619 -46566 -885853 -52281 -554624 -798658 -196751 -68609 -885553 -863642 -364579 -2802 -45131 -29631 -12687 -309689 -908292 -61727 -786689 -82160 -451702 -704107 -227536 -416852 -205909 -80279 -234550 -317326 -88527 -31005 -254933 -64686 -848212 -836310 -134899 -516702 -594497 -267478 -149603 -458684 -897654 -215605 -248854 -956984 -279530 -55009 -333252 -251859 -332364 -717902 -66069 -836068 -807022 -45376 -127923 -582387 -586471 -719173 -881897 -305287 -429159 -160594 -192492 -33066 -215381 -793616 -803196 -89257 -440533 -6663 -459654 -45289 -49591 -133649 -13420 -237788 -73610 -14802 -29114 -240431 -271365 -57044 -197277 -62134 -408732 -477169 -460856 -63623 -363062 -467658 -626005 -524202 -12969 -673974 -250108 -669002 -642006 -475351 -75963 -666221 -25976 -723450 -787777 -786410 -904066 -269020 -276604 -451912 -62853 -936516 -890711 -724087 -381063 -57078 -625734 -80850 -803010 -814769 -355999 -29181 -790503 -337109 -761974 -154949 -71110 -334085 -356980 -458687 -79814 -93963 -494104 -928110 -792546 -107193 -793604 -167309 -885929 -20311 -297642 -324640 -911528 -663871 -34791 -224888 -497849 -174719 -83968 -768653 -849727 -128145 -95285 -383251 -491815 -625635 -44857 -10691 -703498 -54972 -62759 -179886 -903593 -75780 -769730 -395723 -335265 -743987 -343606 -60186 -180026 -711303 -15679 -45420 -84011 -674325 -15765 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_test.jpgl deleted file mode 100644 index 0a7d999428c225ddec080e2843e169f6400394b0..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -839829 -660628 -838258 -286106 -556084 -819785 -770668 -287048 -239434 -807299 -729923 -382184 -33865 -771924 -682723 -163633 -722138 -653059 -383921 -676035 -254873 -935640 -851153 -59379 -294978 -239352 -664568 -847031 -663300 -693537 -850016 -954823 -115767 -119387 -955584 -887458 -407307 -13779 -945760 -287144 -944588 -112183 -261824 -541996 -872022 -361587 -648500 -64793 -934675 -595660 -254478 -394490 -778647 -197411 -75369 -547434 -390361 -260512 -897352 -944032 -195760 -588475 -574462 -147204 -392824 -385441 -155481 -308582 -943988 -538044 -761620 -751825 -664132 -524079 -589747 -103120 -582260 -578977 -285238 -647954 -62068 -26221 -384808 -168165 -823056 -760006 -33206 -771717 -100693 -70626 -579515 -873608 -315762 -287074 -861150 -315855 -640693 -910839 -757441 -659682 -647798 -696984 -934534 -75854 -240181 -42110 -828510 -394526 -264086 -870017 -787158 -288652 -765434 -237985 -743133 -168331 -693576 -694236 -828675 -897510 -694862 -921383 -850921 -81069 -762324 -924872 -233763 -287266 -768957 -852843 -357136 -417911 -840430 -830506 -13978 -419989 -693674 -136450 -891378 -26830 -518784 -696902 -835001 -822063 -303510 -817181 -834877 -664242 -45915 -540729 -522887 -797888 -282444 -823320 -524863 -167637 -70684 -574998 -165970 -906346 -280943 -405338 -535410 -874287 -809941 -203824 -696512 -712266 -873790 -327849 -875289 -625397 -564625 -229500 -721840 -55080 -778602 -767449 -64611 -897116 -802712 -41062 -955623 -842946 -801836 -262220 -640802 -246951 -786972 -738256 -755245 -24521 -294791 -897977 -781912 -632008 -365642 -140484 -564539 -812916 -547108 -797628 -81589 -930057 -160547 -555555 -830756 -932639 -241892 -604472 -286762 -756645 -793746 -303379 -18213 -767422 -395419 -101511 -411002 -727192 -96948 -45973 -729063 -871749 -391798 -759395 -189594 -73575 -114567 -103928 -668524 -901068 -571981 -570577 -938608 -743443 -266666 -391718 -775294 -873344 -603996 -607234 -332200 -248928 -328746 -856238 -217790 -648108 -419541 -396995 -398600 -874619 -909199 -13594 -847030 -286346 -663712 -834927 -874055 -294139 -120971 -255186 -949878 -927183 -237714 -920389 -136162 -564548 -785136 -16772 -100514 -411335 -771149 -745855 -830388 -273073 -632845 -835007 -800195 -696543 -153291 -228151 -397221 -34128 -60285 -99914 -878657 -190056 -887192 -616526 -794713 -141441 -615604 -635543 -130154 -668803 -919968 -246049 -946320 -874218 -788707 -649204 -788717 -629658 -281581 -418636 -365933 -761396 -886946 -705025 -417412 -756428 -152436 -916074 -632966 -276095 -857638 -132463 -61350 -616961 -897299 -892550 -674940 -115263 -42837 -807416 -536112 -758263 -278428 -189700 -873139 -912690 -623688 -118049 -172694 -195274 -189516 -908894 -33167 -167230 -618181 -931012 -160307 -674567 -758076 -60479 -628393 -779715 -651411 -33045 -294425 -247875 -601983 -411507 -227902 -347273 -138747 -872339 -846332 -809399 -394432 -755664 -543861 -587161 -86931 -837381 -751537 -957656 -357973 -759656 -886583 -158728 -361969 -801062 -752627 -132541 -517276 -254606 -82046 -153016 -375730 -601071 -573599 -579714 -950634 -527824 -904668 -230805 -824000 -704782 -633208 -921917 -419887 -402815 -677675 -544027 -911961 -831198 -82315 -309087 -563901 -599001 -895792 -160274 -131428 -854684 -807584 -893920 -388805 -829917 -266030 -742942 -874056 -666977 -47052 -927108 -874239 -265623 -71771 -918887 -417374 -346443 -528844 -64542 -785942 -635998 -402119 -275961 -612437 -855150 -166056 -546833 -645561 -703914 -118173 -269904 -238537 -398595 -167971 -132206 -251461 -343806 -298733 -610246 -254421 -386327 -31483 -186064 -838502 -941840 -882254 -955466 -75543 -755061 -700925 -18248 -228095 -388994 -870778 -280091 -857551 -239172 -226823 -136795 -415193 -263833 -101044 -653058 -67364 -593762 -873284 -830769 -884795 -771289 -419516 -517856 -70206 -705756 -771684 -289385 -628320 -666642 -719058 -920829 -99789 -955228 -758107 -104932 -164848 -761427 -564187 -171283 -760457 -66679 -690182 -289255 -287706 -541989 -403268 -848788 -947838 -702001 -67387 -128035 -659164 -932010 -607469 -785359 -909178 -344277 -226972 -571915 -167337 -329777 -285675 -733940 -253913 -53108 -638137 -519422 -279936 -784771 -831469 -863824 -214984 -823235 -697000 -751990 -579345 -825874 -109975 -611386 -755561 -824839 -236917 -600708 -86404 -873601 -167525 -632574 -694110 -264529 -245040 -94892 -255409 -226549 -770111 -601383 -374984 -874253 -957753 -941502 -691023 -132084 -223852 -294023 -954213 -288529 -174447 -254704 -627790 -274894 -390505 -880037 -115804 -390037 -813285 -754520 -697519 -706739 -281747 -74588 -294408 -847905 -721302 -690397 -12850 -567249 -196161 -45877 -847038 -690800 -547271 -618529 -523315 -298846 -887214 -130221 -822038 -245275 -11739 -733117 -759005 -911793 -606467 -105030 -545139 -692450 -362311 -394079 -309237 -938474 -767186 -386460 -848350 -891511 -94799 -632761 -303610 -165987 -331904 -756103 -264050 -700033 -685476 -770287 -616334 -32680 -226544 -674958 -363893 -835051 -603033 -19586 -171341 -761519 -827784 -753216 -625197 -831717 -755884 -627983 -810639 -161858 -285416 -631001 -692175 -321013 -75702 -54970 -951018 -542374 -254986 -333385 -579599 -891130 -543430 -913649 -174600 -68561 -856938 -101643 -599247 -571257 -624843 -209269 -758242 -735310 -772514 -834434 -848373 -750198 -253020 -256700 -562941 -411106 -899787 -911102 -281504 -800825 -579690 -30546 -957256 -659595 -386323 -308981 -570110 -12968 -365339 -739429 -397349 -802070 -72156 -294402 -745065 -571425 -340274 -788053 -298419 -33164 -417471 -304059 -707394 -751836 -542478 -822842 -165360 -891699 -240394 -628331 -944224 -341219 -232863 -954455 -135927 -11193 -705660 -928397 -168712 -694421 -86956 -605910 -29186 -246216 -369988 -253087 -867794 -594076 -705225 -25227 -253834 -775712 -824088 -605374 -253799 -751557 -521889 -31192 -832615 -594051 -869633 -25556 -244050 -828646 -45161 -140921 -694290 -244525 -155381 -574736 -365301 -782134 -693675 -664408 -174623 -900305 -147291 -412256 -402859 -226743 -933958 -836846 -127971 -404433 -702040 -540567 -579927 -139620 -227030 -96937 -674339 -604976 -289104 -32773 -314739 -830704 -770828 -692974 -146216 -943334 -912093 -741529 -123130 -570703 -255038 -789938 -836912 -659241 -419383 -870525 -758235 -368629 -617364 -152958 -366113 -254680 -725305 -297345 -911977 -742583 -288737 -42922 -547443 -674651 -830507 -917053 -119487 -47522 -852858 -338316 -714744 -91073 -605019 -786211 -387084 -182782 -136425 -199673 -253801 -611629 -238710 -771392 -42678 -645292 -13520 -723959 -383337 -955146 -93245 -114302 -174808 -605727 -636452 -26315 -362200 -627914 -676827 -543366 -816913 -67586 -526625 -255435 -790451 -583202 -90574 -231877 -927202 -233363 -32776 -287537 -255306 -19668 -834955 -24465 -656232 -81150 -593855 -742905 -836651 -623529 -705259 -381120 -874254 -848814 -759677 -115556 -147299 -413224 -873646 -294588 -294668 -759535 -85955 -308705 -345878 -701773 -25651 -294268 -705258 -771131 -625339 -275966 -739465 -316356 -387095 -282884 -871676 -888217 -391491 -570889 -37912 -697024 -298779 -54544 -863937 -726954 -126114 -397719 -682565 -60026 -183115 -579475 -800974 -200732 -281989 -393825 -946526 -105734 -755197 -886211 -941752 -596661 -828210 -41961 -296805 -294719 -230809 -946671 -676242 -144371 -618375 -211605 -417878 -103073 -158050 -932025 -569326 -384741 -622844 -864395 -78956 -54901 -603037 -308161 -205062 -943607 -736606 -13569 -99360 -103217 -372067 -658877 -656248 -923643 -347530 -935456 -100664 -255198 -908879 -836669 -287333 -593354 -906839 -627093 -696622 -31853 -135613 -725827 -274336 -664653 -412740 -314701 -716938 -784909 -348898 -236057 -941774 -282559 -254015 -322900 -731142 -829208 -655322 -745568 -350912 -873887 -238925 -104775 -694355 -332476 -675048 -365267 -150806 -755838 -126226 -115333 -792551 -72773 -569879 -80529 -668887 -844555 -24516 -254613 -119564 -625623 -898092 -287868 -593196 -234600 -182183 -297254 -570328 -98759 -381764 -886783 -320767 -957154 -388010 -372455 -13971 -861525 -96500 -134951 -40672 -697070 -633560 -956333 -753753 -912015 -693027 -518457 -772301 -697109 -633805 -936515 -840289 -843227 -876114 -602072 -834984 -843892 -800794 -891189 -340305 -26086 -403329 -263328 -76168 -286939 -118987 -124880 -391779 -950317 -315858 -349419 -34339 -635123 -90432 -696863 -774213 -694248 -263492 -816570 -760880 -745623 -393221 -375823 -62954 -694376 -909261 -879227 -33151 -693249 -348991 -204700 -226885 -68483 -548043 -617222 -887285 -23725 -771291 -323886 -284541 -409974 -33043 -86100 -127610 -810700 -768377 -131962 -264611 -881442 -253011 -707136 -767334 -845549 -855982 -70725 -662397 -187559 -569479 -204024 -420209 -262227 -394377 -87093 -322219 -553985 -825686 -873242 -255476 -136756 -830280 -559726 -99120 -874228 -770645 -702222 -763523 -64750 -941618 -278325 -116094 -176307 -346561 -327458 -32694 -548095 -224240 -623480 -232047 -559140 -820207 -837761 -373598 -55680 -304112 -786027 -703296 -256249 -148843 -700569 -81528 -381966 -546630 -821102 -880201 -17329 -830651 -551207 -938406 -716634 -927310 -60129 -760711 -869300 -96520 -904725 -603955 -894180 -831288 -254848 -74100 -567726 -748962 -279958 -911251 -83925 -860966 -652805 -691846 -177945 -625468 -67801 -664168 -948844 -747554 -617467 -393641 -413303 -593518 -85346 -741816 -624983 -570085 -690431 -911287 -231009 -627973 -128375 -663837 -32963 -668669 -736072 -62693 -572889 -29180 -295129 -254225 -187464 -75583 -383008 -50010 -596897 -601165 -906668 -845681 -373022 -931128 -596250 -135551 -675997 -253301 -571939 -568947 -674862 -785217 -828439 -824638 -772342 -577031 -167758 -635317 -145869 -254600 -761546 -295697 -873806 -522369 -571762 -330753 -357292 -955667 -594159 -560044 -358655 -948310 -832138 -799179 -287752 -770410 -770180 -680644 -772488 -914604 -343588 -181785 -60916 -838104 -735469 -847029 -691107 -133890 -878673 -653499 -704631 -819702 -695578 -659492 -368215 -598972 -801028 -772558 -365198 -663549 -18100 -415413 -547040 -759319 -322907 -415604 -918658 -879892 -42608 -125025 -816558 -42918 -611760 -955435 -519699 -521396 -245163 -52657 -885748 -830712 -772637 -122151 -525378 -637401 -696575 -570903 -64706 -355690 -933078 -321701 -316735 -547568 -552142 -579889 -545587 -360749 -932369 -223948 -564149 -384883 -164213 -627651 -759625 -331439 -735697 -153222 -20515 -835061 -60459 -659811 -244927 -254627 -894567 -826164 -367106 -311904 -715326 -330743 -664962 -600122 -377584 -564534 -20385 -716373 -778361 -238979 -385516 -244813 -62337 -759103 -254459 -603640 -871032 -115390 -844167 -925405 -305171 -413310 -795095 -349410 -924695 -172462 -183321 -778272 -167185 -147505 -274673 -298427 -759618 -850860 -618581 -114883 -328735 -802406 -682394 -379297 -419204 -745451 -697013 -251380 -276032 -671712 -591572 -55424 -721587 -103207 -303389 -294832 -69137 -185561 -571908 -91452 -318997 -568343 -161061 -838507 -582251 -289103 -667439 -605495 -662577 -281896 -533259 -740734 -659596 -330843 -209384 -916260 -50611 -251003 -580891 -843159 -650794 -692632 -900454 -920564 -927061 -874190 -921532 -786053 -325115 -758278 -632577 -649721 -13750 -348569 -117223 -605704 -401007 -778324 -335047 -795559 -627455 -113684 -394513 -525413 -126240 -835000 -810419 -339612 -830482 -906117 -736714 -229678 -696898 -827281 -852750 -395760 -538693 -766079 -255505 -84286 -274936 -656303 -568315 -904579 -125955 -173431 -387690 -890379 -176092 -836638 -281280 -365229 -917102 -239276 -680080 -243157 -521795 -776214 -274198 -239483 -805388 -416980 -41441 -579329 -929777 -767574 -797788 -327933 -635695 -951597 -522217 -790605 -127974 -571951 -786132 -676416 -300677 -254976 -875824 -75350 -230241 -254978 -63101 -255620 -680504 -829319 -603031 -70910 -616722 -579710 -799287 -116317 -28395 -742355 -135339 -818407 -760043 -805339 -30950 -322820 -521068 -152625 -932585 -410268 -25850 -894519 -244996 -323467 -758953 -752752 -604484 -840266 -696450 -102653 -660864 -570058 -256450 -822875 -292851 -836775 -647080 -807319 -678400 -914799 -823805 -253100 -42027 -756544 -926462 -850890 -253797 -738550 -604112 -857187 -62503 -724432 -870465 -875317 -277465 -571142 -359917 -87151 -659333 -692284 -103154 -930929 -96975 -874223 -308173 -11877 -907725 -707082 -914515 -390041 -786250 -722168 -343677 -168184 -398033 -691183 -732284 -692016 -72797 -46316 -242050 -141514 -670729 -419790 -60146 -864254 -910332 -807164 -800765 -297738 -786582 -873886 -658799 -746067 -410763 -676360 -546203 -837393 -766018 -692739 -571042 -533484 -835003 -390310 -941730 -861088 -820096 -287795 -229460 -850068 -308953 -50746 -692963 -128163 -943141 -86323 -112339 -523613 -17295 -829465 -254801 -541865 -294512 -681639 -104940 -794161 -807207 -255258 -192046 -356505 -937817 -159020 -124962 -151797 -388008 -834881 -243790 -733369 -29108 -783876 -570336 -571333 -521915 -293952 -196348 -887234 -348996 -632638 -770422 -361783 -831641 -196098 -634945 -147278 -938764 -233105 -696572 -816738 -84689 -676514 -746285 -13017 -160007 -954793 -601932 -246212 -835951 -875493 -926843 -37720 -588213 -757699 -279728 -823279 -612302 -152756 -525358 -557950 -649013 -743405 -11837 -418349 -562221 -115446 -890807 -235487 -632535 -756524 -570035 -33121 -132073 -419997 -269004 -385294 -372034 -244731 -669549 -667271 -923957 -832424 -905312 -345916 -15131 -281259 -314441 -552972 -676620 -944394 -217929 -101868 -18404 -786478 -394144 -261371 -73787 -50761 -571896 -41165 -693918 -262381 -648829 -653007 -805431 -566687 -829771 -776735 -874650 -874216 -795127 -921404 -570303 -254858 -516630 -913972 -262079 -831645 -126916 -246414 -606581 -827581 -86596 -62301 -828467 -693569 -606729 -350641 -564495 -331701 -802354 -86865 -369277 -105190 -673845 -664200 -274678 -577595 -133415 -828395 -653008 -145815 -11133 -915637 -382877 -124061 -245168 -545595 -685479 -153493 -891536 -716187 -405793 -17956 -579749 -645386 -521464 -69560 -96133 -337336 -183159 -874318 -640490 -681794 -667355 -95012 -740389 -571755 -106285 -772186 -934137 -923857 -617140 -809394 -677722 -192985 -336773 -874994 -595956 -398251 -287769 -893845 -846327 -711043 -244888 -687294 -163533 -569398 -717730 -83509 -119341 -274680 -225546 -929509 -580456 -413530 -790716 -121939 -528970 -172429 -394275 -716905 -753985 -417687 -654531 -244375 -755178 -419397 -834060 -372514 -696871 -70697 -113367 -372549 -152702 -784849 -538286 -347158 -184157 -372058 -114082 -55585 -938160 -578943 -370948 -55647 -364538 -842736 -785558 -525198 -534736 -93565 -46057 -253843 -765251 -911238 -931999 -940547 -588374 -759694 -921437 -546097 -835824 -687382 -919918 -263234 -731038 -756108 -767537 -32774 -385950 -234158 -822940 -771172 -281548 -284052 -153932 -955016 -779109 -839307 -611794 -849906 -759675 -18596 -932971 -870802 -852735 -890550 -935680 -873573 -281591 -951645 -663882 -50623 -402219 -71717 -293726 -125952 -281637 -663852 -280504 -42434 -913855 -594022 -956717 -627505 -666699 -115251 -878546 -97004 -759568 -836732 -12487 -197343 -281490 -62486 -230630 -132449 -547989 -658212 -716592 -874301 -406870 -624480 -383241 -848519 -197021 -518838 -168119 -836794 -319669 -13718 -658559 -751759 -786126 -943909 -277668 -770417 -778436 -50077 -633106 -548056 -89254 -786192 -932296 -891663 -183938 -519850 -537866 -21072 -617367 -225532 -47396 -324938 -19730 -255047 -66692 -526369 -538272 -851522 -416444 -856666 -606747 -695516 -786308 -766103 -840494 -900904 -135263 -69538 -610089 -636694 -391025 -706123 -665443 -80122 -716583 -698943 -597388 -377414 -823837 -69524 -540800 -605685 -955664 -159160 -715216 -236168 -767219 -239743 -153138 -51863 -742835 -281212 -745482 -685447 -860000 -918997 -633210 -255575 -922983 -617405 -61146 -570776 -59916 -712318 -926361 -709007 -759666 -771052 -931239 -929303 -830087 -940101 -328337 -634633 -401607 -167762 -281197 -758217 -287890 -894587 -248484 -894211 -253495 -955632 -265286 -226083 -664660 -781959 -86782 -194046 -170803 -623858 -933011 -272408 -613718 -258334 -923103 -353446 -714893 -794614 -254736 -843632 -693721 -351000 -650249 -892049 -256711 -648599 -847753 -854323 -39369 -194083 -99165 -615734 -380178 -189263 -262528 -925925 -880273 -741646 -756527 -297302 -189779 -124883 -730077 -695172 -103723 -634120 -691813 -53872 -844408 -547318 -517082 -755969 -340783 -56143 -125967 -21053 -593461 -292532 -824761 -908916 -263419 -44819 -302996 -382683 -81717 -253770 -722266 -75288 -872576 -236170 -62986 -253803 -12156 -525196 -880225 -245003 -72279 -669970 -281612 -345484 -161119 -26228 -570979 -661940 -165897 -136319 -388812 -528286 -834750 -743630 -217973 -712206 -260918 -694109 -911186 -871486 -132174 -934291 -835101 -522309 -765021 -401381 -136049 -955617 -673853 -54028 -588202 -683927 -588485 -740339 -648954 -757522 -621053 -745434 -635787 -556331 -798112 -388802 -411163 -185673 -185493 -859214 -409522 -607451 -675050 -809327 -278746 -930969 -894190 -743752 -782357 -186860 -605034 -829823 -873393 -242987 -907568 -386664 -392421 -153109 -159403 -875299 -805574 -911760 -571967 -420168 -292712 -416898 -647013 -872884 -227183 -174459 -810809 -650899 -756326 -324615 -675763 -289378 -716716 -690583 -12935 -254892 -276970 -579653 -319787 -653011 -876086 -593890 -627865 -695105 -750531 -571423 -321039 -792813 -791164 -917493 -873847 -751717 -788705 -525040 -418969 -113369 -348582 -834860 -900330 -254195 -538186 -772591 -734505 -278048 -667197 -913214 -419102 -734945 -873842 -571384 -144899 -26222 -155590 -632226 -873278 -318850 -947128 -172483 -666398 -90357 -871851 -312200 -298631 -934848 -857131 -902121 -182281 -694075 -387763 -569188 -817555 -741722 -96879 -757690 -180769 -134345 -917227 -418294 -615687 -855423 -571772 -695748 -418933 -607188 -127723 -42414 -151042 -232987 -800270 -921557 -34493 -70354 -834667 -696531 -722575 -168169 -910235 -784049 -863139 -716703 -617376 -51574 -753189 -793814 -521987 -167145 -635475 -871279 -945357 -724298 -755684 -197204 -362533 -663899 -275251 -349221 -44373 -619102 -286450 -826220 -45970 -185309 -11546 -857027 -864188 -593141 -50228 -547351 -712633 -50813 -406034 -944993 -781471 -239397 -165894 -411372 -18912 -873987 -716864 -403844 -563796 -827889 -386578 -777747 -925648 -37128 -54744 -766691 -627981 -658322 -288309 -924875 -714787 -12093 -12489 -168151 -754747 -238590 -575266 -551380 -741476 -203485 -674210 -835987 -372183 -571114 -623460 -660997 -255159 -376086 -766621 -802866 -872773 -394172 -365909 -822574 -570156 -681156 -669486 -627746 -874681 -99926 -21456 -31162 -81670 -394199 -152894 -785754 -338528 -177674 -663688 -344224 -605504 -655459 -793581 -795117 -225847 -942032 -690980 -830432 -782191 -586659 -845572 -633189 -28364 -802537 -637909 -891578 -945787 -760864 -754387 -785995 -570421 -659141 -762564 -769455 -893865 -268936 -243026 -141531 -108071 -79580 -179077 -885301 -752871 -745581 -305944 -232718 -648497 -523459 -627466 -68754 -12611 -261523 -803237 -803242 -908870 -605264 -696966 -726918 -40833 -25831 -741426 -303154 -576066 -527123 -793442 -316635 -802503 -34217 -178573 -347157 -255404 -844014 -812892 -199819 -26319 -403311 -26254 -255400 -107693 -870751 -627986 -135519 -612830 -696503 -155527 -524666 -616791 -43414 -534921 -245283 -770986 -927857 -518219 -932044 -562399 -778119 -152980 -144453 -277182 -863941 -863130 -804764 -721702 -342843 -343834 -693815 -525356 -624619 -34241 -677510 -229038 -926226 -86418 -869935 -713979 -827886 -836788 -67410 -770406 -359280 -693336 -955613 -628007 -928255 -71865 -627939 -786266 -869665 -864003 -167814 -954452 -828146 -353413 -644600 -813099 -939360 -538421 -152274 -272556 -835580 -706734 -602090 -153967 -544292 -147329 -17236 -205339 -394456 -854120 -20240 -956503 -786135 -847906 -153388 -311331 -568732 -353716 -571946 -954829 -757660 -570272 -603538 -779744 -340755 -254110 -534401 -564239 -810956 -779802 -302765 -291539 -693909 -419474 -26052 -417566 -118101 -152836 -255479 -706404 -90593 -163433 -760452 -243490 -535851 -138702 -372016 -55724 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_train.jpgl deleted file mode 100644 index 92c02e2fe2a759e4ffe8fbf3d4495dc9db66ea9a..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/landscape_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -696328 -862119 -879613 -384185 -281446 -628307 -830807 -757501 -388813 -69722 -851587 -639495 -346456 -836182 -893864 -860282 -168361 -683847 -903472 -652592 -327588 -292540 -521589 -916498 -571477 -16744 -564335 -544636 -756005 -765999 -286038 -894819 -750603 -940536 -53094 -172944 -672118 -954809 -330036 -671996 -66569 -540108 -167687 -669839 -33198 -762411 -272209 -419991 -244744 -832592 -518293 -726968 -716268 -631526 -81212 -395247 -52811 -253105 -953143 -172352 -26907 -90551 -594085 -948984 -276533 -664956 -693338 -243465 -185645 -784998 -814100 -26836 -848551 -784330 -365968 -204855 -824552 -349158 -674419 -693581 -907772 -765005 -185777 -693851 -728123 -591612 -117353 -568927 -648972 -703839 -633438 -84067 -287931 -697092 -816426 -116348 -604119 -581630 -955579 -891713 -759999 -681772 -80204 -657385 -836027 -569808 -14922 -161647 -535904 -616671 -52405 -192984 -687839 -771545 -129720 -668343 -912108 -77270 -84565 -755809 -872348 -407469 -911929 -710023 -314788 -807664 -32901 -617610 -923624 -834188 -850681 -593979 -123892 -420399 -918734 -417938 -851154 -74999 -415171 -809938 -276287 -308584 -767484 -797629 -126039 -835118 -170428 -375790 -834089 -675064 -366133 -880686 -649556 -666492 -911771 -932880 -81501 -837794 -298415 -824584 -633580 -79299 -953113 -801166 -155562 -800540 -234628 -61310 -378524 -873774 -344297 -368420 -253726 -117212 -13072 -387278 -693791 -322280 -911972 -32893 -37399 -328266 -147544 -939157 -843106 -851724 -758414 -210764 -315784 -938626 -325406 -286775 -911504 -640661 -114806 -418964 -745416 -516979 -604893 -55875 -956671 -45388 -790226 -83614 -148513 -803575 -923938 -706747 -580541 -40313 -398465 -713939 -621051 -153022 -254983 -382663 -418936 -72166 -852584 -749385 -388890 -713541 -570335 -635866 -915547 -270699 -178580 -289143 -567802 -547873 -390479 -387413 -30084 -18197 -314775 -376720 -873743 -684292 -857052 -86027 -397401 -662658 -287990 -391303 -955675 -771111 -602820 -255150 -255371 -543138 -921051 -718291 -353260 -326441 -288681 -873756 -846209 -60640 -64620 -215903 -733895 -372517 -916296 -142127 -371797 -527777 -24368 -691649 -238681 -938330 -391810 -893857 -12395 -600861 -192719 -568278 -574228 -775511 -377442 -696616 -830248 -638116 -185344 -97539 -356865 -692179 -771960 -779725 -664698 -51885 -33042 -253318 -664827 -408832 -339566 -564600 -666574 -226178 -749930 -522884 -588719 -909219 -348881 -102979 -97412 -81822 -101513 -280620 -208543 -245161 -547610 -19753 -816326 -255496 -726977 -282870 -772189 -726938 -303563 -254282 -892460 -298711 -254955 -37988 -377221 -934542 -235471 -255137 -338282 -926528 -40478 -648046 -45073 -656288 -874121 -65884 -891522 -743001 -132680 -101375 -255488 -767700 -303717 -21914 -237941 -752142 -365724 -827878 -404792 -196898 -791760 -196166 -70486 -872653 -716270 -944489 -81291 -733646 -90716 -760882 -934509 -324969 -872707 -124125 -686937 -183274 -705343 -115705 -51728 -834855 -282122 -12376 -873176 -593569 -797783 -916801 -588276 -569396 -125111 -854611 -894689 -364842 -950545 -239503 -130579 -232289 -309965 -607218 -890835 -697016 -516492 -756340 -767867 -674142 -46302 -824967 -96406 -391314 -81956 -607143 -381339 -232478 -778399 -418662 -403248 -330547 -668450 -327932 -741412 -411751 -121760 -937856 -696899 -37494 -22896 -186687 -873135 -772654 -667377 -595511 -62961 -603876 -112418 -247813 -692265 -946643 -254261 -847322 -840297 -603365 -955491 -388653 -262763 -343622 -585466 -894640 -851313 -255423 -824911 -636890 -544295 -788635 -856940 -363474 -162518 -740984 -524973 -617779 -695416 -261974 -150508 -605740 -835087 -770319 -195956 -579086 -525061 -716677 -19662 -420223 -916520 -170610 -287559 -910336 -847136 -134642 -161633 -951751 -563879 -544050 -757930 -545208 -254846 -670042 -718850 -152783 -570427 -757452 -254592 -235255 -349433 -771880 -287948 -278201 -910849 -751595 -624303 -744369 -278391 -124753 -157528 -664987 -682507 -767029 -775704 -948144 -236518 -34042 -521917 -722265 -915457 -165951 -516302 -946105 -643518 -387503 -418434 -176416 -115665 -292507 -271660 -741867 -196206 -324748 -633947 -883404 -878529 -693926 -287753 -389022 -772561 -284672 -237230 -809484 -55694 -835130 -547300 -702618 -349543 -905772 -83705 -271893 -226904 -181683 -787907 -175885 -60491 -578903 -957587 -664437 -137597 -785576 -950495 -772566 -935712 -313073 -405724 -547405 -740267 -293156 -626541 -226903 -772192 -276781 -261951 -81820 -383235 -904880 -716431 -933640 -801899 -693484 -533958 -72046 -548267 -48803 -383596 -935333 -857676 -47055 -383560 -600222 -869623 -850938 -190278 -939170 -872965 -873022 -171867 -178367 -934603 -178222 -818665 -871552 -929278 -938199 -415892 -696485 -148425 -192209 -398616 -674268 -71236 -190253 -656974 -152292 -294841 -909118 -212813 -693328 -121076 -281429 -86597 -282940 -281917 -230507 -567918 -837776 -46651 -102973 -675589 -256360 -305166 -828923 -784997 -879593 -571739 -874262 -607251 -701294 -636972 -101924 -722216 -277879 -658622 -81807 -922220 -955597 -931977 -768591 -150719 -391357 -275946 -869009 -245130 -930052 -693071 -20368 -116289 -365228 -830642 -803173 -932768 -419235 -390430 -909000 -761462 -237871 -851513 -17889 -62991 -256434 -173508 -879978 -847875 -132349 -841211 -391472 -590887 -268142 -888954 -75360 -152835 -897011 -180822 -349210 -749030 -397323 -634141 -61560 -275953 -279852 -348842 -935882 -394213 -147610 -251407 -727152 -601251 -768705 -195685 -742205 -254966 -571883 -75393 -394192 -880274 -13541 -43410 -850181 -365480 -602438 -50256 -910455 -314478 -769168 -761322 -706785 -361367 -570430 -951449 -926425 -873691 -846763 -909152 -912248 -930905 -704268 -147590 -34244 -699760 -875847 -176723 -756288 -694455 -66786 -625525 -13825 -872817 -37031 -730900 -96799 -358315 -632514 -23873 -288906 -873858 -758345 -226368 -950770 -743266 -349312 -344322 -308174 -117282 -260014 -886234 -341763 -155775 -547254 -264057 -665953 -810887 -695050 -151558 -838364 -137691 -95624 -185686 -24372 -851433 -767389 -836838 -891832 -923592 -279449 -365525 -735332 -523992 -239260 -623241 -64399 -252553 -60590 -579340 -277099 -304194 -823785 -770335 -626802 -244228 -765317 -947611 -53101 -31105 -730396 -101775 -197567 -922313 -921471 -697090 -201982 -161288 -842601 -923007 -676583 -116340 -50889 -146423 -753074 -162770 -418874 -113894 -824174 -762014 -827461 -13821 -13713 -884431 -373517 -906746 -365805 -227060 -662606 -72268 -946717 -255158 -129482 -848667 -820553 -739471 -257388 -316617 -51410 -671288 -604329 -12248 -237368 -857192 -66154 -543106 -93829 -638042 -331154 -634703 -722160 -872888 -692451 -54289 -281482 -917872 -681754 -256750 -824919 -18076 -386799 -263640 -636040 -770237 -658567 -876066 -86599 -693025 -85610 -926293 -677057 -605630 -55842 -948453 -790443 -784794 -680639 -21440 -228018 -541963 -634988 -803121 -255460 -134904 -356583 -14628 -871554 -72649 -330327 -206070 -418653 -563941 -118779 -217866 -593311 -276210 -37995 -25938 -402286 -945652 -230711 -690940 -562295 -244941 -253033 -769240 -382239 -281524 -298975 -13707 -386804 -294582 -874174 -860802 -262810 -230234 -386759 -356901 -255451 -293153 -51633 -66422 -33049 -775646 -129000 -664730 -72138 -717157 -411501 -55581 -93604 -859345 -898178 -392790 -818166 -571479 -704221 -657240 -652251 -148615 -921664 -687602 -84702 -150970 -740454 -825861 -324556 -521637 -171236 -328343 -888817 -696433 -153352 -244485 -368244 -519028 -674570 -253771 -938469 -570348 -682720 -153261 -607228 -523827 -852715 -889274 -49076 -18976 -605812 -894586 -542372 -25995 -590446 -136609 -567006 -750066 -241651 -563300 -833988 -666753 -77039 -758367 -810638 -18843 -716711 -828763 -164586 -528759 -851749 -381834 -287060 -821060 -242946 -782033 -115117 -230388 -727181 -761576 -700732 -847220 -403834 -131512 -875343 -744383 -730978 -658553 -97836 -282053 -680164 -312250 -837514 -656981 -42883 -945924 -664295 -286757 -264872 -548010 -817237 -748608 -696647 -21596 -873994 -103243 -733328 -937889 -766320 -957462 -228253 -920431 -318954 -101047 -37011 -521697 -869993 -239518 -932544 -580399 -785471 -786117 -716324 -300056 -759588 -604067 -570017 -230245 -636034 -66435 -946946 -391745 -849879 -52040 -633290 -920602 -253392 -745161 -230286 -282809 -778529 -772545 -289163 -258718 -330306 -140800 -121071 -668719 -581199 -388578 -80034 -735711 -277142 -714856 -191414 -520579 -830622 -356944 -420092 -33453 -596567 -825869 -664893 -769190 -164383 -807452 -116549 -908585 -50065 -404879 -412875 -758077 -109470 -812576 -606349 -781734 -228158 -253303 -857024 -330730 -101196 -812435 -103240 -725602 -759340 -779153 -825043 -955346 -594036 -868711 -259504 -546919 -419131 -851573 -928199 -359091 -521486 -183189 -403182 -794396 -393392 -294603 -208663 -658711 -419117 -604141 -785823 -342741 -388214 -255252 -830596 -696217 -41278 -391711 -386340 -541772 -569234 -774445 -85907 -947041 -245105 -53940 -818337 -763627 -588050 -60809 -937162 -652479 -846666 -377447 -695397 -591730 -810918 -906713 -905393 -941661 -19947 -371338 -636763 -263965 -906843 -652892 -836665 -121922 -180204 -308931 -231102 -672787 -615744 -390648 -853043 -659487 -541722 -84591 -384450 -818748 -281718 -757824 -750538 -733078 -876126 -894649 -750366 -894627 -772635 -691688 -408761 -359811 -401417 -115196 -358806 -814204 -795598 -759560 -269189 -579014 -912171 -386643 -881621 -30492 -921638 -899319 -278531 -730229 -55560 -211895 -179290 -139357 -183009 -382055 -162113 -691853 -753913 -856128 -757021 -623737 -772355 -636114 -799430 -315439 -282597 -64324 -46089 -683879 -785679 -569798 -930536 -403022 -601275 -938427 -29492 -823938 -160471 -324644 -777390 -834286 -837855 -770886 -26224 -40779 -853096 -365850 -724156 -282032 -855671 -891278 -65885 -525132 -774992 -55629 -155754 -954476 -807343 -914490 -126065 -18181 -571403 -759729 -122171 -825633 -932104 -524761 -944280 -938073 -566457 -382972 -419943 -546474 -168245 -931705 -113565 -18009 -266046 -600130 -579827 -55765 -33367 -113561 -728586 -417361 -245186 -376419 -850922 -875255 -292578 -831600 -525035 -767607 -635525 -62432 -841434 -119385 -934069 -294745 -255565 -684626 -143456 -204143 -621390 -619797 -381395 -314544 -176548 -835011 -686456 -664462 -782218 -297569 -873642 -238755 -54642 -29299 -921719 -750201 -278072 -834029 -603615 -365309 -772432 -635461 -945753 -313224 -176528 -741685 -521195 -812608 -263751 -524520 -255121 -37762 -662674 -286272 -418680 -526617 -218055 -627115 -910909 -829525 -341755 -788052 -255277 -626462 -197967 -680742 -669131 -696904 -185963 -298648 -570818 -934375 -173597 -835078 -47606 -919314 -281052 -830481 -197313 -874098 -706920 -847223 -400751 -635834 -760889 -525373 -102741 -887417 -523814 -627144 -835081 -332247 -853592 -340550 -113508 -927386 -323588 -170466 -401459 -363788 -777446 -350938 -632687 -852991 -41344 -705825 -848563 -344472 -932119 -760246 -693242 -26923 -153179 -151372 -822960 -78841 -942268 -280780 -259858 -570532 -857589 -45141 -243557 -89184 -324110 -685237 -75395 -404994 -160620 -927196 -108992 -23788 -658421 -579940 -625763 -756323 -228129 -864387 -73301 -954403 -603893 -78903 -281988 -912247 -227180 -759328 -636000 -522182 -677389 -870853 -802892 -901641 -245497 -126580 -255195 -661712 -749061 -801542 -887317 -245025 -635088 -279454 -294112 -120601 -936753 -381862 -761132 -356110 -549385 -20267 -262470 -631876 -790266 -328192 -42174 -254515 -133037 -822995 -81682 -20342 -759160 -923677 -130839 -834312 -874084 -640481 -418975 -909302 -362235 -898099 -159231 -541266 -101641 -387863 -949116 -235515 -133081 -289238 -667348 -817118 -747266 -257326 -745946 -932670 -158535 -546993 -794970 -196355 -706942 -756947 -625242 -254571 -924529 -874097 -934620 -288611 -101700 -831410 -807342 -258362 -742865 -955303 -46524 -388987 -799241 -90426 -593671 -244283 -945394 -90545 -311809 -931580 -926239 -128244 -67725 -786205 -401839 -666401 -607444 -397810 -695704 -382721 -55499 -416901 -329257 -854317 -63125 -521502 -314507 -403711 -927218 -273102 -776796 -254295 -544223 -936893 -855654 -905203 -632450 -388781 -693394 -718684 -544513 -154965 -770675 -784346 -71202 -588655 -870326 -297063 -752332 -690494 -36412 -83582 -405420 -298716 -185597 -574985 -20254 -163612 -956489 -770662 -100542 -14688 -758490 -144425 -232915 -181283 -394347 -196251 -391371 -195436 -159682 -166043 -298335 -626699 -913799 -287069 -758271 -658477 -745095 -575211 -632314 -11795 -692760 -287610 -297456 -417055 -264036 -552731 -830726 -768817 -160322 -564638 -357223 -128416 -392651 -840623 -277955 -99800 -393793 -64886 -605366 -589381 -33108 -216104 -818190 -70662 -843009 -663023 -938601 -420052 -570117 -943050 -71761 -116081 -384451 -830079 -382734 -301185 -23629 -412065 -332119 -803487 -917443 -745150 -134626 -397813 -420178 -418778 -349598 -84913 -254417 -751987 -60896 -114795 -684420 -834751 -41989 -244613 -942409 -70946 -948833 -287409 -921317 -53666 -581020 -523250 -405697 -707075 -119534 -38168 -280475 -394520 -394154 -900553 -167494 -134782 -138644 -523762 -581845 -228068 -168416 -281736 -874005 -397393 -768963 -343538 -180598 -253579 -372551 -828804 -72322 -39528 -593481 -254859 -161167 -880101 -127977 -13603 -229060 -279047 -622745 -916930 -770783 -115958 -244665 -631686 -647996 -52105 -292768 -848854 -404024 -33111 -747428 -238965 -397726 -913761 -828509 -568935 -114832 -404498 -31125 -639950 -56144 -621719 -116338 -773161 -832074 -121944 -735555 -782258 -253021 -741445 -738099 -663713 -168064 -579266 -714609 -165365 -935556 -108832 -952156 -674539 -245466 -386617 -810906 -546561 -892923 -734577 -132622 -162398 -945002 -244352 -239334 -799444 -18838 -523349 -674175 -747949 -55683 -12774 -545475 -382865 -122267 -31121 -396485 -108023 -570318 -894765 -735659 -954236 -24636 -338285 -322356 -848538 -522464 -155377 -741435 -26102 -735274 -747613 -683304 -886195 -412172 -627752 -735206 -294959 -817917 -697022 -879148 -686833 -591183 -749889 -693673 -93867 -907761 -745444 -866835 -706813 -21989 -289264 -250510 -346896 -758152 -617870 -915615 -696057 -75743 -873861 -692951 -234020 -786190 -676355 -938993 -30847 -321927 -243705 -803450 -282685 -795375 -115312 -640860 -282835 -939834 -211464 -253040 -605729 -938296 -696216 -101824 -954976 -773262 -785913 -40673 -85828 -303826 -94794 -573041 -696929 -697025 -648520 -703722 -310659 -254961 -716561 -403865 -419161 -322455 -418596 -229811 -720148 -282672 -114714 -683771 -520712 -578762 -46146 -278039 -824634 -766039 -878895 -588279 -225842 -931953 -261699 -910407 -707456 -210136 -807137 -951656 -812714 -624936 -610720 -106341 -872896 -664784 -398545 -165878 -26300 -793220 -923867 -945724 -955326 -570696 -121054 -892979 -339128 -418382 -55701 -732467 -839716 -340534 -822283 -172156 -781382 -658765 -943915 -552736 -775660 -795093 -692662 -835718 -812519 -840003 -755006 -24905 -605978 -134722 -787814 -273957 -631892 -315328 -49481 -81455 -922768 -659963 -255254 -165919 -758544 -915933 -785854 -321758 -572005 -286769 -617396 -364540 -931472 -37264 -533583 -535515 -147309 -182790 -782183 -741629 -786644 -167996 -634561 -114586 -411218 -56031 -828692 -172108 -755031 -325432 -33500 -593918 -48165 -900764 -704063 -521055 -302756 -834765 -54809 -130845 -97461 -67224 -717147 -954835 -742323 -745915 -691871 -266285 -663691 -341305 -835060 -693890 -521919 -294896 -693698 -395375 -893891 -687471 -536725 -332309 -754971 -30452 -545215 -915144 -871370 -345477 -786268 -308001 -281317 -121460 -535474 -633837 -282007 -20154 -45116 -102999 -676449 -233775 -153146 -55032 -255469 -844226 -911909 -80280 -164836 -695439 -305669 -420444 -905351 -153427 -72071 -931762 -891879 -657110 -674679 -756044 -259337 -693965 -914964 -350581 -872315 -857823 -253351 -92544 -163267 -24951 -418752 -944628 -857533 -612549 -850545 -55890 -951036 -679295 -801176 -894543 -794792 -887230 -365406 -618368 -696693 -772519 -824972 -900122 -71571 -594769 -832617 -880178 -217590 -135145 -365803 -889057 -72135 -340578 -263847 -932968 -935112 -239408 -254145 -650645 -822613 -394312 -571912 -349299 -13202 -617196 -195484 -874205 -785312 -396871 -666188 -917668 -618189 -879372 -652070 -408355 -52345 -800982 -226185 -800987 -314893 -325486 -920980 -892463 -161033 -817424 -750060 -758277 -638962 -263598 -659679 -260247 -909651 -331669 -354377 -767521 -346152 -590936 -873021 -366155 -96317 -535312 -943139 -418867 -31292 -854207 -288945 -648772 -795479 -381650 -69939 -806257 -285525 -349123 -415665 -766170 -916354 -181017 -398012 -254842 -745230 -850251 -786011 -147569 -920234 -696581 -280521 -573029 -159226 -349203 -308889 -906199 -923174 -165041 -707459 -778557 -610781 -836069 -546802 -768994 -242905 -919922 -86338 -398433 -542459 -89044 -246050 -696509 -60587 -54378 -745853 -146950 -744421 -163295 -759268 -571795 -725296 -925348 -821847 -369613 -527519 -243946 -712250 -608673 -308245 -607157 -618584 -955527 -696564 -134201 -955170 -798014 -634682 -846265 -734188 -101573 -605642 -546166 -86085 -606763 -707416 -571989 -828774 -544172 -864587 -356170 -657301 -92965 -819688 -195724 -591602 -753099 -254808 -759594 -387857 -868660 -418487 -142104 -886473 -765559 -933055 -938477 -873296 -823036 -916299 -801036 -24341 -150180 -605323 -233926 -403655 -766468 -384132 -716363 -71999 -777131 -933105 -254618 -708037 -570848 -635010 -892356 -279754 -118623 -828521 -180981 -173419 -745182 -800894 -26635 -406231 -96376 -52270 -921874 -245009 -242849 -60595 -302962 -551874 -563985 -956516 -758016 -418948 -649052 -837978 -916106 -244465 -852028 -909182 -593971 -546138 -571458 -336979 -895212 -362207 -415650 -402535 -343943 -695830 -732641 -835111 -735344 -246283 -375802 -696519 -953550 -357236 -568339 -745621 -119920 -725291 -275955 -404039 -652325 -628727 -389870 -807166 -24456 -232899 -766291 -550700 -914212 -96974 -364902 -284859 -60321 -332285 -155638 -132991 -122028 -833513 -864980 -606310 -211759 -772567 -900837 -101741 -365633 -837939 -365224 -117206 -956063 -797287 -232751 -207942 -918505 -255401 -70307 -636014 -751624 -376610 -115063 -872748 -200435 -617323 -43489 -824863 -161234 -239498 -742930 -294191 -664151 -402385 -873768 -607322 -160371 -46448 -772310 -803326 -736654 -388981 -891024 -254588 -70722 -388623 -795365 -244905 -838194 -322583 -338809 -157458 -255143 -285901 -67441 -563536 -529317 -244786 -377303 -64897 -896532 -758001 -943228 -909161 -645580 -734797 -388656 -52364 -753064 -760507 -914043 -655612 -821118 -420126 -879465 -840372 -880268 -605886 -188667 -908264 -20414 -741323 -319395 -831789 -785826 -383437 -761499 -372417 -168606 -30741 -114480 -420124 -783825 -72249 -272337 -921049 -387729 -419993 -521732 -35536 -756311 -398376 -734479 -785342 -280489 -288337 -829913 -255042 -873640 -54808 -271039 -693712 -649782 -569842 -547840 -365296 -730555 -417720 -627421 -261997 -704196 -141593 -96410 -244880 -873327 -245469 -96903 -628010 -873405 -881860 -239533 -714380 -523638 -547381 -817454 -658266 -878838 -604114 -938016 -696994 -828141 -54665 -826222 -767452 -615286 -805265 -401752 -542201 -420199 -34301 -731128 -171514 -134077 -93233 -945805 -398127 -103112 -714034 -244867 -927404 -887450 -856354 -887336 -274636 -99059 -604084 -303646 -238789 -253572 -891676 -778046 -843456 -81942 -545949 -17294 -239541 -340015 -403787 -284824 -11040 -402236 -931949 -837713 -277058 -254646 -52398 -696547 -252643 -141761 -239461 -801437 -762360 -563601 -517028 -714209 -200360 -536641 -807354 -697032 -874529 -297598 -586383 -653134 -547336 -556463 -185735 -782170 -766228 -20207 -618975 -704835 -714006 -190993 -819849 -160633 -349163 -56114 -254636 -955531 -141146 -744937 -794925 -294965 -917763 -873800 -315595 -932736 -608676 -693929 -161066 -541453 -280102 -657388 -934217 -417052 -955532 -851535 -856995 -116624 -652321 -805015 -323490 -361691 -803028 -848383 -751995 -255224 -820502 -941335 -237329 -408351 -254564 -223161 -314611 -200398 -906767 -409138 -394507 -668517 -696919 -151708 -838247 -224516 -939266 -368863 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_test.jpgl deleted file mode 100644 index 119e44aff936702096a250012dec90beceadd030..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -362442 -480256 -354289 -596912 -230198 -650838 -195945 -418119 -714829 -848487 -303983 -807711 -895200 -289414 -256173 -472005 -682441 -382333 -437732 -814619 -826084 -841249 -132327 -190134 -488998 -208180 -435772 -780362 -889192 -141687 -419948 -131136 -75914 -124492 -10133 -424969 -743026 -836046 -148748 -845565 -529314 -757424 -807995 -242088 -682620 -343116 -391560 -886616 -468993 -808172 -567005 -485411 -420183 -334149 -948961 -756278 -340455 -751466 -834374 -591748 -704478 -216065 -663524 -371844 -840477 -112172 -770297 -818945 -756258 -808049 -947157 -261908 -386099 -797386 -527672 -327179 -888744 -77024 -321020 -427484 -935346 -940332 -941591 -412164 -25035 -448331 -485573 -921029 -664876 -751285 -543950 -115898 -280695 -168236 -630625 -627079 -321315 -747893 -334877 -110344 -401762 -880131 -820055 -64280 -659310 -481464 -24814 -627985 -740686 -738160 -436888 -346105 -296832 -67937 -35925 -84780 -185283 -518978 -77636 -641003 -551288 -11971 -626937 -743467 -908373 -654778 -473544 -4423 -810774 -757414 -427469 -519094 -10204 -293069 -591780 -448260 -732884 -473144 -562478 -899385 -482716 -449835 -948744 -25133 -438090 -449468 -418660 -650734 -784558 -657104 -203336 -844335 -99223 -886796 -460420 -10149 -433472 -14905 -634368 -163102 -534545 -956640 -810904 -1850 -439513 -485550 -349703 -673173 -166766 -850970 -556829 -42230 -158446 -24327 -822942 -44253 -332168 -704875 -656025 -846091 -681608 -100207 -144850 -304868 -146194 -685467 -316895 -368385 -111482 -887731 -682971 -436034 -101908 -257307 -781535 -175404 -287488 -386312 -166408 -640944 -401899 -932041 -257588 -321408 -880026 -756675 -827226 -111727 -306769 -717672 -449773 -920119 -389138 -94101 -9510 -122076 -515804 -103920 -450467 -15813 -785219 -524384 -190008 -10012 -44380 -939795 -629951 -894339 -139240 -112238 -854150 -117835 -436275 -172935 -529073 -127606 -851670 -450833 -426526 -878454 -825657 -167727 -635972 -470539 -420015 -22429 -755925 -555777 -476948 -85622 -661431 -443062 -770581 -609897 -321967 -433204 -727092 -630735 -834202 -368961 -737906 -450672 -433550 -814504 -573065 -698739 -764458 -38427 -871233 -366777 -321352 -268214 -699153 -448536 -353624 -445158 -921280 -717695 -940605 -673922 -449298 -895610 -179301 -113481 -38740 -132881 -940914 -337435 -232774 -750801 -935897 -693033 -444059 -301725 -780427 -104435 -856008 -418366 -10240 -229944 -528801 -442249 -941593 -158592 -447866 -519022 -499091 -634501 -174289 -63838 -146882 -38367 -403497 -691483 -368498 -842731 -688874 -682105 -266127 -489152 -358460 -334105 -887398 -567753 -888 -15197 -607167 -172543 -9907 -552871 -588649 -727016 -851233 -880470 -437171 -630162 -537973 -25185 -677843 -410792 -751088 -314495 -281131 -556230 -302838 -563315 -473074 -575995 -665802 -443933 -16626 -658330 -772436 -335659 -727063 -880214 -105825 -129566 -895419 -603771 -560645 -4187 -652896 -759161 -319824 -322002 -164695 -929448 -728684 -643061 -772434 -932727 -550665 -490827 -112365 -422320 -886844 -687090 -92203 -556383 -431640 -824875 -610188 -319730 -437418 -10243 -146842 -10510 -83825 -420118 -593495 -141597 -737594 -449124 -3504 -933182 -650563 -321833 -777509 -11771 -828101 -830650 -276085 -289161 -64459 -725369 -779226 -218873 -84474 -864970 -387143 -485051 -64481 -438927 -815855 -576690 -660456 -755599 -154942 -870840 -126224 -298925 -818296 -292482 -346780 -449717 -300421 -98992 -212927 -573148 -334524 -588240 -838661 -408308 -470195 -408224 -508574 -679016 -150703 -145618 -422363 -683167 -580455 -940935 -88579 -438012 -821930 -172960 -468844 -306619 -198619 -448409 -404452 -268527 -335672 -630800 -420842 -121269 -422695 -287968 -938424 -331223 -429980 -326397 -173779 -372238 -802562 -625443 -722261 -265396 -890941 -619478 -818498 -420641 -169853 -10440 -823043 -136329 -860711 -674968 -320014 -391312 -546586 -663904 -649219 -448049 -743174 -685508 -802863 -825522 -252218 -593829 -10189 -309301 -176129 -297797 -109812 -519569 -483609 -96374 -455853 -952695 -488002 -545121 -679923 -227989 -747365 -405611 -612933 -450595 -36441 -760343 -772196 -273496 -449369 -483633 -650798 -751404 -681667 -690497 -721673 -10193 -437076 -623099 -298011 -335510 -427597 -437572 -25086 -845072 -675058 -714834 -820201 -24633 -200253 -210724 -188433 -606881 -857156 -134498 -802230 -868998 -847313 -808281 -280349 -695451 -769145 -210131 -677996 -590367 -474231 -948680 -623079 -385813 -450492 -682200 -757469 -258190 -158123 -385595 -534378 -167798 -924857 -53003 -300015 -894787 -746194 -448426 -892555 -588036 -701192 -824511 -658772 -887726 -938949 -763882 -25214 -483761 -757557 -36800 -903481 -473860 -799655 -474213 -943691 -181370 -587832 -261162 -25433 -182716 -836815 -482691 -524857 -40576 -910676 -635958 -810876 -673020 -946386 -321821 -153602 -533187 -943006 -796183 -672410 -338218 -120576 -786949 -442092 -232728 -172974 -723992 -248518 -271971 -843089 -51370 -834201 -689798 -439724 -782221 -863364 -563538 -619291 -616852 -607349 -65737 -321368 -388983 -156242 -404928 -82206 -77364 -539372 -912241 -749984 -851255 -142102 -735044 -569376 -761549 -772620 -577180 -100830 -162569 -708482 -452846 -561640 -772073 -485331 -790358 -9941 -554028 -479836 -306633 -863200 -742732 -485772 -103376 -422455 -259418 -425280 -309451 -437746 -855441 -772710 -770179 -145678 -38085 -122656 -404204 -482040 -634586 -553980 -944771 -826210 -249297 -842140 -107650 -517048 -755360 -906712 -353216 -795712 -419950 -475256 -649404 -328503 -757474 -407394 -25199 -419498 -114138 -873346 -524549 -679921 -297025 -457780 -125870 -16662 -911376 -940342 -146872 -77398 -944721 -412223 -570614 -728936 -874358 -597503 -875905 -763481 -221022 -202331 -826080 -913797 -705054 -705166 -229981 -618202 -124253 -515488 -251485 -772033 -425396 -807940 -86305 -92937 -7339 -682450 -835220 -743427 -85176 -281755 -459551 -295627 -340784 -653049 -135451 -111703 -347542 -631004 -689791 -770626 -15040 -507471 -49435 -915135 -816576 -594833 -342519 -546178 -415274 -792358 -475551 -111728 -614609 -48799 -744423 -8921 -284843 -427417 -852066 -229663 -85938 -25130 -186065 -929602 -10571 -248981 -940841 -659835 -910052 -660078 -467225 -506339 -421058 -329164 -630696 -166474 -420987 -450294 -791218 -374466 -872344 -24828 -441464 -36583 -727203 -420472 -756953 -12953 -935583 -300676 -398481 -86409 -790838 -714895 -887306 -335602 -141466 -813296 -116408 -546902 -450763 -304449 -348988 -24747 -607138 -945537 -737854 -229841 -634259 -260489 -259765 -481119 -56705 -319866 -288397 -647888 -684732 -831428 -378683 -138736 -229748 -821226 -369769 -689627 -555286 -778191 -541704 -887351 -170900 -54418 -299994 -447872 -62994 -756922 -145742 -146543 -672003 -145269 -481149 -44049 -436811 -504838 -280576 -395378 -485330 -851470 -302462 -333367 -321222 -248753 -554577 -69732 -457030 -743429 -421036 -778487 -770373 -223750 -919168 -283282 -843733 -656463 -664223 -303676 -857514 -120575 -640590 -853961 -926478 -90394 -380944 -671860 -23454 -91240 -437291 -490779 -726942 -760407 -569770 -742712 -681080 -27223 -300851 -802075 -426379 -650359 -44712 -62772 -437613 -77060 -949033 -642880 -285796 -432546 -825905 -533114 -843270 -906332 -251582 -596109 -689797 -64550 -626705 -81543 -736277 -801387 -528583 -921483 -84970 -284602 -806178 -738897 -756262 -349589 -485855 -879964 -880023 -573717 -698497 -192422 -947207 -924018 -381018 -59097 -919956 -200770 -711648 -223027 -420504 -682740 -879712 -407497 -505622 -426163 -689274 -800857 -673881 -234414 -24583 -825893 -910392 -276040 -455465 -42812 -154798 -343079 -682616 -86700 -341482 -417780 -31468 -101443 -777163 -682976 -711921 -910405 -439425 -729141 -356524 -111389 -309933 -488068 -62484 -564511 -115820 -546113 -1620 -561655 -680108 -605705 -641631 -704877 -382800 -349581 -879563 -24764 -436461 -917191 -952453 -751780 -418973 -284622 -260082 -933128 -504448 -264539 -369477 -218566 -504127 -70567 -448194 -452845 -60434 -910386 -449198 -309917 -484994 -836845 -21785 -283191 -545231 -895415 -578432 -735925 -38447 -658800 -349390 -174813 -755259 -689894 -287185 -262614 -554811 -249383 -105071 -434207 -555320 -556392 -100989 -286796 -833236 -462052 -432900 -830809 -429181 -386165 -449763 -280470 -869420 -390306 -105162 -925703 -32859 -450588 -472718 -461015 -672658 -136689 -334573 -514634 -857358 -763631 -743550 -449467 -757828 -892827 -893604 -743571 -477129 -171926 -257994 -808282 -717664 -627253 -928205 -844598 -390597 -24391 -389137 -451953 -287023 -728666 -870155 -609837 -328049 -25244 -732471 -844174 -576279 -760213 -667212 -301823 -448911 -328803 -952426 -957271 -642453 -556882 -630244 -151843 -67720 -474158 -739564 -761544 -244186 -313288 -166871 -137713 -788293 -383810 -528526 -425200 -334575 -725882 -684689 -743024 -803281 -680563 -335903 -501958 -431756 -561611 -229864 -38738 -579732 -57324 -476835 -402564 -156227 -875170 -387805 -639572 -822406 -460159 -556733 -594046 -887564 -757053 -372423 -482265 -436421 -946844 -436354 -143094 -125430 -158803 -319974 -78375 -477467 -895465 -554512 -649248 -751527 -795493 -635960 -485719 -887105 -486638 -334338 -871305 -594043 -787610 -340599 -356152 -484930 -86402 -281846 -922996 -879805 -229062 -555955 -674529 -940896 -609517 -419882 -620615 -55135 -672856 -619922 -478680 -177466 -846668 -179993 -630506 -675222 -476970 -650786 -298727 -299439 -843203 -271253 -418437 -32361 -649805 -10187 -335506 -271000 -726125 -605836 -629881 -841789 -39480 -892993 -919718 -269535 -111589 -85894 -865417 -311624 -535387 -819640 -300460 -460384 -833291 -436797 -807590 -223975 -616201 -264120 -844977 -420959 -80972 -747852 -757854 -743585 -541934 -16549 -240560 -25288 -921988 -947916 -778490 -673895 -321400 -436959 -368575 -232230 -467783 -368707 -391740 -882210 -167153 -810209 -829322 -515964 -301007 -219696 -416251 -594780 -12890 -284785 -462139 -761901 -804346 -867118 -236346 -698109 -682557 -98850 -121658 -280809 -423503 -303012 -228388 -879484 -180798 -94820 -611524 -397682 -165452 -375377 -410724 -424106 -682909 -594871 -226982 -841733 -945024 -111684 -483665 -678333 -658555 -593550 -230091 -120618 -533412 -742135 -135034 -742182 -320581 -461822 -682928 -641154 -650883 -418651 -12209 -24638 -323551 -926163 -342821 -625117 -640187 -274841 -435968 -230059 -619823 -288453 -337506 -698257 -904050 -279599 -954234 -164756 -643148 -421056 -853652 -917063 -569432 -661461 -211549 -554515 -829132 -145121 -180606 -732264 -344211 -381904 -497271 -771822 -447848 -594734 -942362 -716484 -863356 -117180 -438101 -420541 -679816 -875074 -322584 -741561 -448446 -349608 -151793 -724158 -322969 -202775 -234179 -116337 -111845 -787019 -878470 -689715 -587927 -287030 -539208 -149503 -98408 -477084 -553839 -906391 -487897 -720465 -682402 -684116 -120366 -921982 -64598 -262315 -406987 -833850 -234461 -403620 -816597 -577316 -443003 -192339 -24957 -165639 -768576 -188811 -619493 -736607 -220306 -118697 -485868 -340483 -283476 -99090 -878755 -319761 -357287 -827616 -498642 -174841 -541987 -232082 -880199 -22700 -103475 -847191 -39373 -418282 -937895 -636774 -260615 -335328 -111659 -439028 -333949 -725996 -55483 -713679 -275323 -458769 -10586 -41994 -448402 -802608 -935070 -894796 -173014 -493797 -432414 -167130 -25249 -636306 -793478 -15918 -827425 -676179 -532187 -462141 -764064 -332450 -742856 -773502 -854118 -285100 -808286 -27717 -145067 -682539 -431266 -426818 -870270 -608690 -399666 -64499 -567527 -200174 -234491 -460610 -427376 -489391 -422416 -279842 -167706 -569906 -35605 -111612 -563969 -145799 -349182 -388984 -736613 -823361 -151411 -659152 -562292 -833669 -487259 -890831 -305806 -402310 -810902 -674858 -693274 -926539 -309729 -742118 -792104 -248524 -795172 -12010 -851844 -285597 -848369 -84917 -769898 -12946 -85698 -153958 -135127 -449180 -674543 -155844 -588516 -17493 -590597 -104073 -808273 -154811 -840145 -182950 -682863 -537829 -925861 -737888 -622887 -444610 -67455 -334545 -844299 -725523 -333559 -8750 -943925 -145676 -451581 -22780 -617446 -640299 -190118 -953627 -934567 -844415 -157357 -855729 -879520 -64167 -763491 -278900 -167078 -30105 -416737 -894782 -422531 -280748 -1930 -388814 -336253 -321727 -39068 -682614 -819410 -340476 -312675 -331172 -65463 -600560 -361459 -779999 -454616 -77374 -572181 -448922 -98348 -321879 -919178 -126095 -908078 -55077 -339389 -167754 -494694 -751291 -278666 -667250 -738221 -229937 -47967 -938513 -228850 -278124 -162812 -319490 -651844 -910772 -741570 -356496 -216940 -756274 -891051 -942865 -925601 -943429 -153231 -369765 -693258 -78704 -453902 -725401 -86429 -109656 -248405 -34475 -61764 -134665 -614349 -918496 -717738 -742005 -650762 -274882 -158930 -472300 -762769 -641129 -432715 -566971 -94916 -556085 -314252 -295733 -11680 -25258 -232225 -121378 -123314 -420463 -934377 -492001 -42867 -135322 -642711 -768644 -86446 -874740 -623879 -24723 -100813 -247684 -933091 -874987 -532269 -177875 -808107 -285354 -116960 -87106 -98480 -930750 -682563 -559437 -61070 -617927 -515866 -631887 -693333 -807818 -706173 -225415 -510918 -871585 -468843 -682961 -101919 -24650 -827683 -200727 -817254 -427418 -416149 -505709 -772130 -579879 -61893 -204922 -228318 -382187 -261418 -676307 -734089 -315567 -451305 -413435 -419285 -880419 -230299 -686518 -546301 -33177 -313616 -279015 -667291 -764912 -437438 -163763 -603078 -139497 -770153 -578033 -440147 -680958 -619896 -640019 -843849 -891920 -273319 -63865 -883898 -682930 -142986 -777369 -88366 -25279 -721318 -173436 -737065 -337429 -592134 -808939 -305972 -895533 -314285 -335306 -762283 -332601 -916312 -333889 -248785 -799135 -570624 -427588 -724112 -669013 -226684 -89224 -298214 -109615 -939256 -623131 -555184 -455784 -264077 -372103 -111558 -544876 -63864 -681136 -181025 -475373 -287093 -673293 -47242 -906315 -448484 -281264 -460210 -618344 -555170 -826229 -833633 -289355 -616479 -426347 -702957 -7007 -615148 -427010 -681743 -698881 -350421 -262355 -101033 -946772 -641339 -638329 -157299 -770087 -329426 -446744 -87007 -800937 -420872 -420450 -225864 -368698 -248080 -485723 -281630 -554904 -535472 -447912 -95051 -550214 -832928 -609701 -947154 -720408 -286354 -659243 -485274 -121243 -482161 -895510 -640639 -650522 -180205 -670032 -262251 -873541 -384694 -151122 -412730 -18049 -871011 -111745 -273132 -733784 -338125 -449359 -671430 -838454 -64502 -257995 -619636 -375586 -174505 -139358 -895386 -391322 -454225 -875199 -305428 -425475 -77640 -681169 -485313 -427356 -66144 -843309 -855086 -148702 -801464 -404808 -927024 -440624 -106872 -918235 -736460 -330795 -85934 -39420 -857173 -19710 -828745 -244175 -303957 -871188 -905579 -798827 -733550 -404015 -114351 -385967 -73492 -807624 -399227 -387401 -698924 -827625 -941928 -427061 -329153 -109041 -845015 -220336 -432527 -485179 -420664 -629991 -285341 -200584 -448787 -836872 -771718 -64618 -460848 -320738 -408523 -52534 -334037 -447187 -606154 -32864 -552952 -436173 -648639 -289298 -792149 -411103 -227640 -659335 -298585 -549084 -188755 -101867 -11895 -407432 -832327 -575411 -888367 -555427 -807422 -22734 -146499 -435229 -424984 -952312 -274729 -54725 -334587 -711939 -751347 -187296 -365089 -878512 -741411 -450657 -361851 -333620 -853936 -606150 -801151 -682688 -761912 -556997 -899519 -336060 -301614 -62088 -295886 -820095 -220734 -687868 -534494 -99058 -627426 -231181 -753949 -86271 -879878 -111397 -819787 -490377 -717741 -300848 -417619 -544119 -594019 -844956 -247964 -605984 -808248 -43203 -832990 -427243 -45692 -88174 -727027 -233260 -659393 -458688 -426557 -628421 -328032 -534704 -879301 -157873 -32570 -424557 -11944 -689699 -682647 -613711 -342712 -858885 -630586 -819936 -145734 -448620 -630814 -190958 -303445 -229000 -545240 -108537 -319522 -524371 -230149 -918760 -472446 -717033 -65805 -818787 -448568 -610737 -693095 -937394 -477127 -32783 -320077 -620747 -642993 -248002 -284677 -257553 -580006 -321576 -599224 -379502 -770262 -309244 -847194 -918470 -447876 -682000 -816178 -757543 -427594 -777605 -479725 -760774 -630481 -69346 -43274 -177796 -56685 -828065 -438011 -111789 -295908 -273544 -606702 -490768 -948650 -192599 -226760 -70471 -62522 -64519 -24684 -491108 -117119 -258782 -596784 -633304 -299965 -11410 -682288 -26953 -756538 -438032 -362161 -447171 -448720 -37212 -144301 -202301 -686173 -296930 -592137 -323053 -142815 -105136 -422646 -633476 -866059 -554271 -368351 -158464 -408550 -567372 -703906 -250590 -472404 -930516 -925673 -435008 -439974 -25047 -334080 -763634 -829204 -879059 -932753 -272745 -64422 -69649 -657938 -425973 -407614 -954771 -232996 -905006 -402745 -751928 -295099 -170195 -298166 -774724 -287345 -846482 -554523 -123742 -809496 -448540 -262833 -756377 -682393 -845047 -768679 -162322 -132121 -77847 -556798 -763703 -555569 -675003 -587917 -451467 -111801 -36844 -369746 -449988 -807954 -556405 -145552 -81766 -343638 -26288 -258079 -7822 -486222 -2920 -182646 -162559 -819660 -929271 -564503 -263025 -314855 -230231 -682367 -606603 -283643 -808104 -226820 -95057 -488142 -23826 -9447 -391651 -121202 -858654 -693623 -844109 -755242 -77985 -322008 -681076 -42728 -684279 -691259 -290202 -641920 -490019 -618187 -450450 -86255 -604198 -666534 -717201 -150695 -564265 -42626 -865202 -882032 -705271 -844168 -516897 -464912 -59995 -922704 -878696 -124339 -180923 -25043 -252444 -224971 -450860 -718782 -481959 -912551 -317531 -725352 -630613 -53093 -423816 -793068 -553770 -290334 -333679 -802478 -726920 -321932 -170241 -138184 -422550 -361229 -677725 -88469 -390090 -895359 -485489 -618332 -684487 -111737 -829840 -75490 -175597 -911385 -830674 -473969 -256808 -539279 -301785 -950926 -654486 -850604 -435645 -538668 -682400 -419254 -650557 -450537 -508412 -88209 -952832 -151037 -777991 -841256 -474354 -425702 -430287 -12905 -940199 -449220 -919789 -828321 -683899 -24215 -683900 -336394 -946837 -513477 -157129 -50255 -69231 -877124 -167657 -139075 -449360 -791575 -305246 -162164 -498589 -315017 -604978 -735296 -337092 -334572 -120147 -342925 -930587 -248526 -321926 -887527 -383498 -102333 -619367 -281129 -316524 -14877 -476131 -230086 -532119 -446733 -134897 -627836 -885848 -544485 -450552 -891072 -129182 -924265 -476558 -223462 -607184 -115925 -608711 -675847 -64353 -727009 -48902 -179987 -625057 -642398 -716697 -490230 -724441 -121751 -285257 -478259 -316354 -25266 -16952 -850980 -143466 -104999 -525120 -726035 -382858 -911684 -687431 -830794 -301343 -367451 -234123 -333943 -556906 -607361 -156356 -466995 -626691 -7468 -617999 -533526 -649382 -816190 -289107 -772421 -33953 -427184 -850404 -82414 -413304 -701926 -918686 -561468 -104252 -386600 -288574 -846639 -13105 -232030 -86275 -756624 -680953 -384843 -314641 -10186 -650247 -25276 -484009 -527148 -563370 -280714 -245095 -387125 -129229 -774298 -59072 -554770 -278359 -24478 -937956 -619885 -182692 -532445 -287450 -754544 -687000 -865141 -736368 -588312 -388258 -133085 -44005 -146878 -249507 -482614 -679864 -859946 -683719 -813373 -380991 -742194 -767467 -532989 -529247 -684296 -450723 -340779 -912256 -93476 -807858 -847137 -554875 -299010 -331497 -726498 -112340 -730807 -25020 -945761 -168180 -763544 -577580 -295622 -763514 -167695 -134016 -450802 -348663 -664824 -652219 -50171 -857407 -461295 -936213 -663843 -131965 -663685 -432203 -346438 -181736 -429991 -419896 -172141 -650891 -334112 -905265 -500420 -554317 -215078 -880194 -134801 -680051 -717677 -698522 -228847 -485649 -25106 -64987 -305645 -333663 -133673 -157922 -153725 -314713 -543999 -365767 -472008 -288740 -447001 -421135 -65723 -845028 -885025 -163050 -420845 -674258 -65632 -319424 -762493 -611689 -296328 -424307 -285593 -545111 -841255 -939431 -248887 -615013 -448892 -217525 -775891 -689729 -11594 -629552 -629319 -229115 -937207 -32765 -848506 -470505 -301820 -135001 -649505 -167176 -678362 -643058 -775020 -810653 -50947 -106016 -245984 -89014 -443436 -642909 -615031 -457123 -378155 -864907 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_train.jpgl deleted file mode 100644 index 9d11ee42316cdaff69575215f999809949a42ecd..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/portrait_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -944016 -848831 -334696 -473839 -105746 -750452 -659670 -67390 -871369 -174093 -167143 -309609 -101395 -546638 -816081 -808253 -876835 -161320 -769217 -426928 -779179 -827310 -529494 -844911 -39198 -162995 -750787 -734927 -876571 -66347 -825875 -619933 -116761 -396694 -577726 -515704 -382974 -649974 -433499 -171284 -802333 -917120 -886854 -504396 -222035 -321081 -420603 -145836 -564288 -567929 -852399 -418617 -516241 -678612 -432961 -608121 -405315 -680737 -156346 -932998 -427303 -423534 -857447 -132018 -650736 -912182 -277686 -411379 -842782 -488897 -454530 -682586 -556323 -333891 -898412 -484143 -120614 -229602 -672021 -324177 -167708 -285562 -316805 -886738 -848891 -880526 -280291 -900639 -425960 -115815 -258128 -792166 -678528 -350201 -418554 -608849 -13024 -895408 -319701 -556622 -349439 -855880 -143619 -723597 -803867 -420475 -804262 -436035 -788144 -408713 -351942 -895668 -284156 -310584 -111493 -436153 -229725 -933111 -556840 -672655 -693816 -322349 -188101 -261556 -769225 -261967 -844241 -759598 -956316 -437329 -596518 -750491 -343730 -505963 -425335 -59124 -427595 -295628 -682739 -52555 -627602 -321780 -420171 -760285 -404644 -726658 -599894 -280138 -434110 -446123 -750105 -268294 -207643 -167761 -554629 -635560 -929609 -405203 -263626 -629788 -486332 -880424 -686774 -677948 -146425 -484039 -22685 -321910 -728821 -454893 -650772 -301316 -347609 -863355 -741224 -459645 -733497 -289984 -432605 -594202 -336306 -35249 -142317 -162788 -672884 -553278 -419972 -390965 -911352 -10227 -608868 -635514 -573723 -512771 -678378 -111867 -514287 -676001 -772533 -871430 -151870 -151862 -940766 -436411 -806152 -556617 -851321 -143446 -229749 -819586 -386750 -336258 -418360 -682245 -523436 -763981 -807988 -682519 -309366 -719096 -173058 -593813 -355917 -348886 -497882 -102106 -44831 -841049 -651635 -699801 -450786 -937232 -396768 -53066 -430844 -425320 -134599 -309212 -674059 -949223 -795369 -513329 -240604 -444682 -550064 -106824 -422556 -298715 -642610 -527424 -934364 -24990 -280493 -321369 -287089 -486658 -682292 -776879 -624392 -146495 -838577 -262186 -161214 -449597 -568728 -773824 -303215 -865723 -99830 -229634 -938290 -24978 -438110 -719352 -281739 -688671 -650464 -162952 -913736 -852816 -808320 -333904 -85972 -192932 -544648 -449850 -533290 -24686 -25218 -492585 -64521 -674385 -943937 -340653 -360819 -13005 -890106 -619830 -804838 -336287 -477130 -710027 -121844 -321130 -466829 -725321 -727703 -618921 -174323 -294505 -879245 -10198 -444472 -485081 -624304 -247981 -278444 -431768 -696122 -433560 -335876 -121865 -667102 -685473 -716591 -132760 -145005 -630773 -488440 -111691 -808063 -862973 -545017 -224006 -449166 -228261 -167397 -240477 -867799 -791382 -382300 -770369 -66297 -880492 -652573 -119122 -845973 -717531 -642881 -920932 -673849 -229325 -249250 -826207 -190213 -281238 -321897 -485148 -418785 -751199 -30268 -821039 -268283 -128878 -125477 -12864 -853595 -131762 -673141 -319965 -421127 -248527 -115908 -649112 -111872 -232300 -480564 -111813 -228810 -467175 -520630 -326332 -52444 -859472 -567783 -83688 -530723 -10309 -482831 -523521 -443996 -627876 -562622 -604173 -940817 -556545 -42058 -556166 -408556 -940859 -294483 -714024 -24883 -150942 -515193 -596630 -295772 -668181 -947092 -131379 -447996 -921193 -664371 -380039 -63384 -915670 -106282 -470413 -822603 -505560 -420522 -442093 -268640 -244767 -808178 -436929 -277184 -408554 -755005 -277998 -427596 -674360 -305684 -810715 -851075 -315814 -274614 -286042 -447234 -649931 -451852 -858516 -634964 -556283 -768753 -594692 -245954 -701042 -563434 -335996 -464513 -550910 -342608 -894386 -843955 -343696 -342481 -826734 -483785 -46570 -813303 -110171 -42719 -887533 -652974 -863562 -396783 -432011 -834431 -167556 -475617 -415280 -276959 -703557 -297079 -111863 -418415 -829646 -555351 -133213 -24818 -630382 -450821 -902231 -230100 -556399 -702346 -436126 -230290 -63030 -431723 -726385 -167746 -690772 -17951 -224912 -605975 -307908 -26129 -319156 -562574 -921133 -528219 -322338 -152089 -660557 -16958 -334526 -450043 -450674 -564427 -129792 -675848 -435415 -263056 -146830 -287714 -623929 -794968 -799244 -625903 -321635 -659257 -143996 -905488 -756604 -292544 -556723 -327070 -594516 -134014 -485131 -384260 -397724 -867080 -737995 -412358 -135002 -10023 -544409 -922672 -391270 -552681 -751128 -135256 -54766 -824953 -747612 -101031 -761566 -847039 -336324 -280963 -437895 -144800 -555323 -483909 -649887 -53013 -281742 -446235 -167005 -228644 -461367 -944001 -677860 -229608 -619789 -341582 -474024 -641393 -633378 -231096 -140601 -484982 -656195 -356626 -810841 -706325 -237126 -764525 -574618 -803022 -375100 -651643 -449968 -167809 -205016 -485770 -708711 -871181 -132742 -461850 -108923 -758418 -934708 -910698 -646428 -674659 -444274 -449965 -65370 -791993 -876077 -447677 -263948 -738682 -140234 -458187 -869306 -120208 -302766 -448302 -725900 -25195 -853476 -411314 -390138 -164879 -438868 -290243 -446635 -693844 -449058 -555776 -25358 -228952 -93511 -223249 -449862 -854136 -484051 -449638 -184200 -158540 -930659 -682004 -682725 -38937 -870213 -674288 -555167 -854018 -594663 -840007 -219020 -940970 -312768 -556219 -763310 -627976 -93983 -422676 -182744 -153123 -295757 -767608 -822953 -10606 -556563 -470708 -840079 -594817 -629969 -129815 -295039 -896813 -630764 -925847 -264054 -935900 -275478 -420607 -666123 -437885 -215091 -305422 -574234 -225021 -229971 -931062 -697489 -321573 -479338 -682556 -766759 -502867 -477058 -726462 -307660 -309599 -46050 -420743 -14750 -218666 -449540 -814730 -770048 -228258 -124454 -422694 -421110 -611393 -898151 -593135 -432964 -297364 -805239 -941582 -298502 -648072 -207817 -885800 -113917 -36211 -778184 -633260 -286851 -412866 -566763 -895488 -512330 -426434 -791690 -415270 -847874 -550328 -86037 -93658 -760595 -43078 -546588 -554857 -308338 -158232 -519550 -898001 -64592 -25280 -588557 -854917 -879098 -910904 -418191 -891131 -809888 -789675 -125869 -230138 -544525 -274796 -619431 -741830 -169557 -450019 -167593 -703439 -281044 -189066 -289109 -426524 -325938 -205014 -150733 -265541 -339657 -703458 -283468 -86125 -627193 -165601 -788485 -636978 -555543 -880223 -295750 -145397 -302418 -33928 -871304 -395296 -675528 -162413 -162808 -851011 -577016 -426743 -670028 -725797 -492652 -259851 -575187 -791326 -785267 -298535 -321324 -930023 -120697 -185407 -309455 -864951 -64557 -551432 -624193 -899507 -450247 -546851 -921176 -710918 -528453 -445716 -776878 -726068 -468759 -121058 -12263 -526199 -938273 -825831 -64409 -418688 -152325 -155549 -334197 -439698 -573813 -25192 -106728 -390077 -231001 -691472 -210783 -420115 -229950 -710143 -190623 -11818 -303286 -814319 -55913 -809623 -618456 -689702 -77167 -619354 -418588 -298840 -106869 -435616 -830166 -750175 -48921 -117097 -33313 -229629 -693793 -133533 -791581 -386130 -408561 -879431 -482116 -885135 -427558 -279572 -104855 -735130 -429806 -455492 -25274 -868345 -156074 -342935 -218638 -434133 -712133 -836820 -764233 -791509 -643020 -524206 -530470 -10335 -422456 -178372 -450054 -436958 -638340 -827424 -356891 -617950 -281057 -281544 -748404 -723058 -12466 -668060 -357066 -333107 -682742 -321864 -598200 -678728 -449858 -778021 -682119 -432356 -146521 -171486 -310349 -625594 -771581 -482899 -541320 -717024 -593657 -513810 -5594 -166719 -871543 -10138 -485104 -630103 -524530 -33919 -488102 -730998 -491727 -808271 -322890 -85678 -656291 -630790 -949357 -450515 -158716 -287088 -751381 -162539 -630432 -855916 -844759 -450804 -555512 -937340 -146163 -844980 -449831 -725345 -10362 -921440 -678361 -848709 -849549 -714482 -524844 -460279 -637868 -920091 -689786 -838241 -69761 -418477 -854339 -34484 -684276 -594086 -807189 -434962 -534390 -136525 -520038 -296836 -501497 -522975 -706709 -853800 -619055 -448910 -452028 -921366 -879197 -349279 -447889 -484610 -504539 -755840 -945833 -611784 -458049 -66996 -448486 -481893 -427126 -943603 -228206 -754500 -606941 -657077 -327778 -106656 -1468 -380888 -334312 -88250 -552742 -733451 -534860 -556861 -146357 -880066 -144140 -421122 -321412 -727023 -180194 -728025 -886632 -682537 -485091 -850702 -103703 -927062 -111834 -217023 -336803 -808198 -701693 -551327 -432889 -691993 -232536 -112653 -539422 -7074 -470892 -185621 -24682 -450835 -880510 -498330 -436567 -453396 -879794 -952406 -913817 -533193 -772495 -439424 -206227 -947173 -336275 -241798 -290186 -294172 -954664 -25108 -830771 -683149 -298447 -210691 -880388 -25096 -483101 -236134 -266570 -33409 -705002 -86961 -686791 -772179 -363222 -485064 -442330 -738332 -408469 -64376 -902478 -727109 -658907 -258231 -67413 -25104 -898428 -146757 -321633 -432499 -179337 -708769 -556229 -32338 -839998 -229772 -666222 -246924 -462153 -711749 -689457 -427581 -920002 -459504 -900605 -675077 -695669 -600588 -25520 -354028 -579886 -44792 -906563 -144436 -450636 -297803 -308508 -875936 -425151 -247962 -717711 -716479 -682391 -925857 -949401 -859718 -1947 -488209 -27968 -426412 -321335 -90383 -420177 -408169 -450602 -181772 -349496 -335630 -445505 -303288 -803535 -939828 -448884 -68396 -112174 -407203 -319738 -170088 -866930 -594451 -424408 -640553 -426589 -516506 -104134 -206131 -273722 -25092 -702279 -3827 -818480 -385 -851018 -845035 -156401 -101170 -466690 -404531 -733685 -943284 -335902 -836926 -242834 -43902 -426217 -776374 -574715 -111887 -640331 -135037 -46561 -751440 -949989 -763217 -865166 -419291 -786692 -842139 -284889 -442172 -228703 -770248 -848625 -88657 -791390 -625510 -150125 -851457 -845057 -462009 -328447 -418008 -731831 -921377 -415198 -689706 -431925 -342828 -10259 -350567 -664484 -9915 -577783 -282003 -751695 -807935 -399103 -273242 -864645 -630740 -417682 -422360 -555182 -86410 -476026 -576306 -522148 -925872 -148249 -328373 -138408 -444272 -851322 -96909 -422788 -523496 -746150 -13100 -30603 -276013 -138619 -696138 -244560 -444663 -894041 -865221 -514025 -569334 -37290 -808212 -736594 -594024 -385192 -258092 -776329 -848725 -302497 -483229 -798810 -63788 -168280 -633732 -146585 -235358 -859078 -650885 -854730 -792239 -415095 -726717 -611128 -32043 -836793 -449082 -920996 -556346 -447319 -917396 -229428 -29893 -727164 -385287 -644439 -516402 -321229 -225248 -485584 -658558 -158499 -258162 -750893 -78481 -422600 -431636 -835454 -288231 -607461 -795613 -933014 -146762 -926678 -576573 -268905 -321957 -305802 -618742 -761541 -479991 -85152 -714313 -12454 -496946 -935202 -486466 -556764 -680979 -309376 -682954 -386997 -99705 -490591 -419511 -166742 -522674 -866421 -96223 -328601 -145749 -564380 -779916 -167919 -314267 -879295 -237227 -172752 -640039 -948287 -458768 -420804 -245851 -884826 -22284 -630232 -151463 -864803 -24831 -443811 -663223 -325616 -315750 -682471 -302946 -941205 -82438 -751559 -384877 -427189 -932065 -932530 -122887 -554328 -681158 -948162 -764137 -55706 -78633 -851306 -434119 -729196 -262837 -817910 -650826 -314751 -893520 -499025 -485183 -938076 -672717 -618162 -36193 -269387 -448569 -167562 -279809 -736422 -533780 -77268 -569814 -675801 -484403 -555596 -865754 -830657 -168294 -763828 -416820 -172834 -118192 -904790 -162979 -229753 -318582 -664150 -854456 -859380 -715555 -717968 -823956 -335400 -425533 -910456 -448132 -707372 -942229 -447567 -625835 -886554 -457954 -10123 -230115 -493871 -237094 -234268 -741418 -629684 -148562 -616087 -230130 -442102 -937511 -769228 -763913 -522910 -450057 -948313 -141321 -871873 -531857 -10117 -387936 -318953 -515757 -910214 -624877 -210663 -232798 -878524 -626319 -921455 -925545 -145593 -286986 -794389 -888966 -759611 -509485 -824854 -784100 -289090 -422549 -632818 -60242 -750936 -682942 -842053 -248449 -678964 -155222 -808048 -231360 -687872 -835034 -562746 -891057 -449199 -189780 -407040 -883980 -841258 -874321 -853918 -662564 -336076 -382206 -17400 -328113 -598389 -391421 -182776 -175003 -881227 -485724 -181544 -871883 -64573 -276003 -139220 -122059 -529278 -333447 -420520 -482880 -940378 -428514 -429739 -523213 -492656 -338696 -760287 -468345 -465052 -209653 -726098 -697732 -223831 -581080 -648297 -626311 -370230 -270639 -905367 -460881 -485623 -111571 -369738 -709101 -701334 -799176 -295872 -877100 -203653 -64589 -58386 -240898 -232413 -639778 -453596 -449101 -216705 -809052 -77271 -81265 -914603 -932801 -723208 -756755 -321114 -649666 -478463 -875870 -247313 -485750 -92668 -409990 -109140 -408422 -870228 -421100 -743396 -146885 -845010 -475243 -180931 -769669 -408110 -556621 -830301 -813225 -555359 -244172 -756606 -546448 -85928 -431905 -658239 -528871 -730899 -833347 -382638 -436359 -468650 -118606 -875984 -643909 -258502 -429390 -517758 -666518 -267904 -336333 -111873 -421033 -450589 -450351 -158973 -11438 -794743 -343502 -22410 -444495 -594819 -422343 -365709 -336084 -343673 -605903 -223992 -934968 -808240 -421121 -362521 -328538 -753104 -12005 -786590 -829547 -684553 -639603 -422714 -769462 -268051 -144476 -295032 -63643 -353932 -870868 -209466 -527782 -650855 -760417 -61031 -811386 -485491 -577258 -921336 -726635 -256783 -432590 -556393 -305967 -101347 -524807 -730533 -477223 -573685 -457186 -64525 -592680 -954557 -172608 -268582 -301871 -172434 -543759 -650881 -318865 -914296 -854162 -12995 -297813 -803286 -2524 -594751 -501714 -146864 -449437 -841040 -64593 -354676 -652390 -287001 -472430 -429287 -870748 -326047 -290277 -749888 -467227 -419049 -727072 -692736 -629522 -458472 -755104 -84381 -121280 -531383 -307424 -521757 -111370 -640677 -869949 -751316 -388956 -117288 -420857 -803240 -448608 -232343 -640094 -457757 -450538 -940884 -848008 -784364 -321193 -655468 -696722 -302611 -679264 -787701 -78296 -167074 -84607 -296650 -725585 -301339 -679873 -827479 -628605 -682319 -440114 -476685 -310572 -485294 -136229 -555698 -228125 -433551 -803471 -742866 -86280 -333361 -751334 -522233 -611600 -166924 -619309 -368139 -111765 -640965 -121592 -554865 -718231 -123531 -13120 -338848 -930631 -951269 -855838 -641981 -327072 -788533 -554325 -474275 -389920 -448572 -897952 -305037 -674752 -682502 -117106 -684554 -935688 -238736 -449373 -468507 -876599 -880353 -543395 -128412 -449956 -25290 -300829 -745615 -145559 -217368 -945051 -808182 -162985 -175303 -281015 -756087 -608731 -456016 -553635 -7727 -304604 -639464 -520878 -688061 -819599 -866918 -86603 -85240 -477351 -515198 -772154 -468637 -633545 -506551 -786534 -880047 -659344 -618238 -150294 -246418 -412957 -673956 -57040 -810739 -465053 -726643 -926254 -150992 -127999 -385754 -756913 -148916 -409 -921596 -98991 -450819 -626101 -685472 -308964 -55536 -681614 -682218 -336156 -99416 -693757 -450226 -23234 -693745 -436105 -334792 -485351 -772175 -319934 -892474 -672879 -369818 -895650 -879803 -708701 -442665 -685438 -817318 -713223 -661360 -380927 -204551 -230369 -533960 -100872 -427569 -297790 -381838 -447949 -95605 -919150 -395833 -77354 -217967 -264085 -526565 -284661 -247482 -687850 -156435 -874923 -658086 -480196 -226559 -294102 -217921 -635340 -525281 -25110 -472234 -447221 -553541 -58650 -433437 -817362 -810355 -67040 -298095 -263885 -916965 -659394 -935409 -328875 -658286 -282562 -485297 -447455 -650202 -321950 -309750 -327657 -847305 -90107 -37387 -937354 -228376 -933066 -309817 -94708 -52454 -64500 -705378 -221015 -899112 -166853 -690517 -588995 -327788 -340188 -524602 -809695 -682085 -642652 -395058 -234605 -229051 -844627 -265874 -24644 -768572 -202404 -679934 -171447 -420484 -650597 -48584 -218839 -775787 -505874 -98576 -673687 -282366 -279270 -747184 -759197 -104631 -851202 -229902 -276762 -774327 -490311 -25188 -486064 -317662 -301429 -807868 -99579 -819614 -119881 -405404 -447760 -305864 -636145 -448535 -527421 -505595 -420713 -15824 -182925 -38245 -833822 -726887 -678560 -757962 -357128 -288542 -40831 -918629 -146726 -312429 -449581 -780788 -227086 -104975 -592182 -121353 -59534 -301390 -863751 -287701 -421109 -816194 -837869 -318096 -290818 -11872 -9585 -491518 -726411 -556750 -684176 -308368 -727094 -732755 -751415 -573514 -704432 -485382 -732711 -417058 -758024 -26849 -775804 -11706 -450682 -269186 -83339 -440562 -104725 -432739 -674625 -98178 -85284 -37041 -116862 -257329 -477462 -682879 -403878 -309312 -132694 -13012 -230271 -233243 -319999 -513018 -925901 -686823 -349504 -39313 -804944 -930413 -180281 -145699 -300575 -25494 -230341 -271193 -230132 -175525 -898631 -812689 -420818 -521660 -485398 -235467 -579207 -437751 -476102 -935696 -56490 -522972 -146349 -810723 -136381 -438040 -827635 -485826 -614966 -388320 -594670 -57018 -897869 -617764 -498993 -498272 -10224 -935655 -247189 -819537 -286995 -170172 -432925 -918668 -228835 -812032 -513664 -851100 -27862 -99226 -311031 -69753 -926850 -606254 -289034 -601122 -689784 -736433 -336261 -86279 -639917 -10146 -220374 -128348 -474262 -850073 -67405 -725418 -154158 -868825 -492550 -906413 -404955 -573512 -743180 -63731 -29617 -42950 -422608 -722471 -280797 -258021 -528729 -630125 -333512 -258192 -444775 -226564 -742178 -728899 -743768 -458707 -420137 -229751 -736702 -562093 -687364 -86248 -486295 -132418 -554334 -741053 -876936 -11814 -25929 -215452 -162526 -831115 -25224 -844733 -10989 -485397 -298196 -267885 -553891 -163032 -777123 -764396 -846538 -119453 -145879 -764174 -750097 -41999 -115161 -775539 -280233 -500425 -481574 -132250 -531748 -419188 -783957 -711753 -910354 -456019 -294398 -212382 -663651 -109019 -174488 -338252 -703733 -488852 -396685 -875743 -420506 -66449 -117036 -751423 -256353 -157613 -648450 -294047 -880435 -156480 -564411 -30557 -244913 -429907 -443667 -910618 -531260 -248860 -556339 -117805 -78362 -408418 -642480 -407571 -828813 -768849 -627764 -137644 -777387 -159459 -693256 -736695 -619227 -756765 -23791 -306616 -331086 -3362 -534936 -463760 -281438 -230355 -514379 -592842 -938075 -617662 -311524 -232749 -616579 -298543 -704806 -437663 -24766 -611621 -929083 -766656 -384088 -120801 -450614 -276525 -591985 -650777 -718564 -498117 -7527 -449899 -22248 -946916 -251126 -531887 -134734 -181634 -412653 -167793 -768829 -919566 -853239 -318991 -128451 -879971 -333259 -772535 -440462 -894768 -913677 -483677 -756705 -755921 -149212 -661299 -577075 -60568 -555837 -162094 -848329 -663297 -247976 -85612 -85923 -145976 -768751 -35904 -10660 -652726 -226946 -297670 -931391 -18789 -841642 -556222 -24930 -215961 -782573 -329270 -734407 -824421 -630707 -728167 -632939 -745542 -326101 -74314 -257653 -488477 -484306 -24676 -553962 -17549 -904387 -678843 -830320 -281211 -146879 -895152 -491051 -48705 -945181 -703692 -629427 -193116 -878971 -437358 -161282 -658709 -144857 -106114 -620682 -8671 -336344 -101039 -320400 -409716 -550470 -630420 -133876 -690957 -850672 -938569 -395357 -577937 -166800 -241881 -146393 -663238 -925836 -819661 -316307 -179853 -217862 -10641 -163089 -501113 -270189 -642916 -359557 -36812 -34193 -24568 -482433 -652610 -439384 -386591 -10887 -532245 -615331 -633830 -368699 -24604 -257491 -170753 -591622 -734933 -297869 -620311 -483871 -930290 -940895 -485695 -321754 -450564 -258245 -594527 -879040 -127332 -84279 -827026 -920866 -56629 -439320 -703923 -324784 -37492 -226778 -823846 -431817 -714219 -335855 -678075 -329178 -64527 -270238 -338210 -37714 -10118 -797817 -129026 -144516 -10632 -251403 -423214 -784183 -257776 -398830 -65899 -569846 -121737 -272625 -819596 -24882 -426378 -783812 -943892 -132284 -217425 -21670 -910905 -427353 -836592 -440527 -775235 -91045 -321901 -334579 -891255 -543747 -141486 -287924 -695240 -204859 -449689 -558027 -802648 -477117 -63028 -24606 -517604 -479104 -674426 -405786 -912257 -483195 -178054 -84791 -135429 -447278 -810022 -593894 -552757 -673735 -337833 -141685 -431751 -252292 -273528 -730340 -440326 -504970 -579482 -146196 -591165 -863890 -334523 -167544 -798255 -9191 -598258 -146289 -300955 -871157 -298516 -564815 -64443 -417447 -910329 -868165 -731830 -357244 -284817 -845066 -426295 -556905 -146564 -411371 -449291 -229867 -229087 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_test.jpgl deleted file mode 100644 index 8ec9e8c8bf8141d8e5f8f51d1bb4fa57a2676992..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_test.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -893830 -932820 -119522 -673597 -12030 -350148 -702164 -687781 -703946 -346481 -577159 -475639 -802120 -93927 -432025 -479073 -633402 -837666 -75816 -651394 -363994 -309409 -212811 -83927 -115497 -609797 -724654 -617187 -267670 -174341 -111894 -208335 -413085 -9589 -442446 -83916 -61421 -404600 -315229 -74486 -871567 -827515 -744258 -214193 -650916 -494741 -61101 -21951 -559723 -325966 -336894 -312822 -905392 -367996 -38625 -34789 -724366 -14880 -336085 -95258 -257986 -288086 -133344 -92608 -746137 -334108 -53367 -459829 -12570 -88890 -343236 -906093 -308330 -870697 -135454 -304671 -461151 -94540 -306841 -70948 -260766 -260487 -11955 -570539 -18137 -44324 -668771 -239726 -189955 -634329 -449144 -630115 -206814 -761574 -602803 -65393 -68262 -618736 -934524 -781715 -133757 -679748 -755476 -102746 -14687 -354632 -940620 -363483 -263700 -464948 -18123 -50888 -112629 -710097 -505695 -209431 -350182 -51594 -43950 -82255 -129270 -742046 -291087 -482280 -369149 -659532 -793133 -525162 -764389 -763658 -863213 -306935 -356572 -46635 -11374 -335315 -315652 -116564 -292773 -35216 -133990 -538931 -421197 -494149 -50266 -555029 -623357 -9553 -71034 -193894 -24025 -24996 -327252 -360197 -591878 -769536 -793958 -670659 -938298 -303655 -709891 -151434 -14982 -926171 -94094 -21661 -658965 -912997 -80270 -726081 -49028 -305631 -668047 -70546 -361292 -144333 -167535 -16771 -3991 -713934 -301340 -343026 -702995 -160995 -581053 -92979 -64157 -42909 -61709 -371256 -938917 -71280 -314674 -24994 -124369 -847134 -444681 -17043 -72772 -140540 -36282 -912699 -703710 -286969 -12970 -381819 -771538 -25512 -28889 -741672 -362524 -159583 -516199 -761811 -387150 -654612 -262755 -12712 -109573 -874523 -91366 -49376 -501397 -335448 -943583 -23474 -207060 -18264 -70473 -337130 -312173 -664861 -826238 -560397 -372446 -71000 -125181 -162202 -21384 -67312 -781773 -13106 -48897 -431907 -148919 -305433 -20320 -431952 -44483 -243730 -343608 -276222 -795495 -49910 -20843 -703907 -709809 -492058 -526562 -49853 -209470 -822384 -523895 -358143 -84588 -780186 -773810 -118714 -114209 -661987 -392876 -67809 -354393 -110509 -835194 -29476 -707413 -676754 -89063 -949351 -475277 -83831 -597337 -334693 -81804 -67102 -900081 -576910 -856916 -286027 -78526 -487768 -14820 -732171 -564359 -633786 -871115 -780863 -203649 -119072 -36743 -75742 -372305 -60163 -591683 -566811 -42274 -372934 -31907 -83906 -480369 -71120 -29105 -95539 -9450 -132217 -480294 -821354 -529115 -340723 -13982 -209182 -708895 -7296 -728672 -719070 -263064 -782229 -409719 -298687 -294323 -10986 -14604 -78867 -458224 -625898 -593905 -764162 -11796 -24153 -162021 -348885 -320610 -449560 -85644 -851705 -799202 -44246 -379608 -717364 -810232 -625799 -334536 -664933 -9633 -446208 -762539 -208571 -368418 -780897 -48856 -121092 -50067 -123028 -177547 -16485 -44021 -769024 -22239 -64031 -537498 -30078 -650644 -11619 -465056 -66410 -179004 -174853 -777995 -936737 -769554 -58505 -56503 -721595 -47569 -13462 -74423 -79302 -622726 -479476 -316867 -235516 -223266 -828552 -501340 -273013 -774329 -626828 -41809 -126613 -304134 -703801 -28879 -847915 -375376 -199787 -892026 -18013 -616044 -60366 -222905 -747948 -527512 -134618 -73618 -4012 -169785 -49710 -762424 -180865 -341471 -793822 -724362 -130270 -7707 -593276 -39176 -420552 -321799 -832849 -608481 -541030 -427585 -355841 -314498 -124483 -893904 -5461 -751374 -178487 -48251 -870102 -345731 -43127 -71270 -88352 -939640 -957079 -312208 -303465 -427671 -268090 -28567 -70649 -118026 -29727 -179877 -230752 -242308 -58520 -273338 -776395 -11584 -856767 -418486 -178916 -590492 -9452 -249932 -236505 -673560 -901467 -95421 -513439 -672909 -746180 -30809 -55055 -45264 -459038 -501917 -267136 -560511 -91885 -236112 -129213 -15643 -825384 -316904 -788749 -870021 -14720 -56108 -319423 -526356 -170359 -242624 -506098 -637756 -356232 -50105 -125074 -301660 -897606 -747815 -267927 -654709 -158928 -353398 -66201 -704326 -70633 -570500 -121097 -674123 -77648 -455685 -99775 -943090 -330840 -368686 -12038 -389221 -740101 -489341 -275649 -18830 -306468 -255379 -957009 -168001 -151517 -738483 -626414 -93866 -73929 -354087 -119931 -733874 -357311 -21076 -67194 -782691 -78861 -275184 -956979 -8153 -224411 -208771 -316879 -525458 -323361 -407648 -567973 -215614 -802780 -903486 -215820 -62102 -710200 -952217 -383917 -43240 -121055 -288002 -739553 -82383 -300101 -208976 -788554 -91984 -167019 -468442 -654446 -60566 -690598 -77322 -140272 -673891 -316043 -930624 -64775 -186816 -547999 -546093 -475081 -202304 -559969 -611586 -166897 -211674 -361135 -741483 -34489 -824425 -141888 -588298 -248591 -761679 -919082 -439935 -368043 -262645 -319993 -843742 -301835 -601130 -793553 -124987 -654358 -464048 -673632 -467338 -558976 -316638 -527694 -34549 -9877 -335442 -53961 -463894 -434026 -623839 -527142 -42428 -841604 -23401 -234688 -31596 -104914 -209539 -482439 -219092 -786072 -278328 -54689 -305395 -316216 -881222 -270564 -125066 -27299 -889413 -711748 -661067 -633177 -286116 -521582 -208083 -277049 -800756 -40322 -383698 -847571 -425705 -88424 -140631 -478171 -62779 -945837 -12745 -927616 -590097 -528800 -367298 -94196 -693114 -199439 -1480 -288627 -492095 -62777 -372497 -11532 -623060 -178585 -487358 -3849 -522256 -445401 -443079 -166603 -17389 -8507 -221744 -54727 -77326 -847657 -938756 -379458 -461052 -134777 -642789 -92597 -886094 -181616 -750708 -175693 -191075 -60576 -701280 -927780 -373172 -606090 -512791 -817940 -34837 -13006 -49161 -12427 -122488 -626049 -13178 -882565 -295795 -315815 -251301 -24380 -626103 -166962 -79296 -155506 -451853 -793795 -852673 -25370 -938995 -45636 -423762 -35200 -58894 -267004 -538390 -335332 -303518 -320481 -68733 -50270 -122505 -315383 -763954 -332242 -673355 -19498 -75834 -60570 -377534 -20836 -45303 -747923 -753772 -44582 -79450 -139998 -761721 -64673 -655983 -20258 -322390 -468746 -709150 -95579 -32347 -63103 -821435 -140580 -124485 -538128 -310271 -335414 -232415 -9592 -65742 -42173 -50196 -606519 -233764 -11850 -703448 -315018 -771346 -611735 -390936 -920910 -58891 -471898 -905995 -66149 -738030 -148423 -925188 -554439 -821560 -763538 -66339 -336260 -558958 -673070 -342778 -606660 -883360 -78720 -669133 -423189 -672405 -950688 -232669 -65015 -263637 -709788 -656926 -231008 -10353 -559309 -594599 -196295 -288009 -230353 -871303 -123533 -224061 -575315 -475967 -142828 -113763 -943329 -341252 -472437 -127915 -151860 -11918 -51825 -361820 -24267 -167458 -45171 -262027 -676065 -46599 -433487 -902238 -729261 -88087 -793937 -363869 -527645 -150448 -62399 -606319 -866145 -277435 -892863 -702709 -619030 -264022 -320887 -475454 -195020 -84907 -869348 -943812 -58470 -68128 -42017 -556484 -653283 -60481 -122967 -11427 -271085 -488087 -307793 -26855 -933192 -278376 -135495 -29372 -704064 -703871 -12485 -924217 -175661 -935759 -21714 -42098 -798145 -709141 -238929 -719133 -559549 -334442 -921819 -35140 -21085 -174534 -329020 -625736 -60982 -663831 -718945 -13186 -57708 -369304 -26206 -309556 -793594 -937055 -71829 -423940 -919078 -784073 -446704 -64257 -652800 -197418 -671365 -567093 -206440 -45042 -387420 -14652 -180036 -611027 -283661 -41923 -38192 -327940 -854955 -821414 -559923 -697074 -590651 -747486 -267277 -195091 -432064 -449076 -803052 -460413 -288744 -227660 -885455 -707468 -943634 -684115 -863330 -59976 -913144 -534968 -85937 -279321 -722921 -196821 -8614 -52805 -674285 -236502 -83677 -13510 -442253 -281561 -95202 -168677 -12043 -647463 -130728 -140897 -477422 -905008 -288728 -24891 -86103 -101745 -472541 -317768 -682118 -956279 -60500 -649774 -17109 -121663 -914313 -567544 -134794 -871067 -907814 -256902 -940387 -896788 -858796 -13523 -124292 -264536 -27076 -761425 -197081 -167956 -60665 -558555 -62101 -203374 -234321 -483251 -335322 -640430 -670568 -547478 -20686 -952329 -791693 -736669 -337687 -271023 -478654 -698634 -351008 -48620 -226666 -334041 -168143 -903598 -748396 -61351 -181576 -832375 -11908 -623873 -625863 -560238 -503681 -471976 -9503 -177137 -913041 -112517 -772571 -222168 -516625 -263512 -329150 -446378 -517792 -459334 -53431 -50202 -393967 -774086 -177767 -814289 -209137 -383955 -717415 -555571 -631478 -166798 -465009 -795946 -442992 -677496 -263763 -93922 -288550 -77581 -301781 -75522 -74488 -199071 -198627 -903778 -769547 -114190 -135452 -351744 -84174 -675143 -180162 -180179 -16609 -125103 -94691 -939232 -947345 -793933 -422989 -42332 -558220 -237588 -494610 -442985 -45211 -11782 -34810 -188783 -125688 -24031 -91030 -522825 -174625 -134360 -309844 -682028 -174712 -852696 -583481 -447729 -73679 -23829 -718040 -166955 -936173 -52855 -901244 -22212 -110263 -737789 -125136 -831373 -10656 -61857 -569918 -131255 -378502 -209101 -368621 -654560 -856920 -143451 -60821 -144029 -831265 -42238 -468072 -556152 -926986 -148505 -413269 -335375 -18252 -50249 -903633 -750968 -738354 -750404 -665726 -474190 -854124 -65217 -41959 -74508 -34964 -837126 -237150 -632941 -68592 -332569 -34779 -702077 -497484 -119965 -68759 -15162 -473351 -397806 -4447 -372429 -180707 -12582 -386657 -735841 -479887 -495794 -717334 -863277 -930959 -13077 -769842 -933140 -199345 -793662 -704295 -869987 -425630 -557406 -17229 -29650 -617275 -178987 -93682 -772062 -145649 -760449 -875160 -833268 -460995 -310647 -731334 -956418 -304751 -703353 -892373 -192488 -42039 -255593 -257394 -790590 -773992 -94835 -567330 -793663 -690380 -30578 -465788 -104871 -334946 -758092 -792837 -905557 -267293 -602488 -782567 -17139 -460283 -892520 -440467 -201796 -947352 -14853 -412677 -383719 -369338 -47366 -221757 -335443 -442415 -249356 -814794 -90494 -115125 -149983 -632846 -479973 -196899 -43693 -717722 -119287 -581079 -903523 -814883 -93928 -249148 -559515 -78866 -408901 -372510 -765962 -463288 -693123 -946486 -270490 -149433 -27663 -5494 -271652 -264989 -139995 -416125 -43331 -148991 -795510 -858093 -13289 -135455 -591686 -623554 -328540 -110249 -198488 -306900 -380885 -47325 -131298 -792382 -51209 -843897 -930899 -792287 -336973 -452973 -84020 -132620 -57863 -678776 -751507 -703070 -47211 -941750 -26289 -249377 -271236 -384003 -4344 -20896 -656699 -112913 -273942 -486189 -574466 -679423 -21488 -10394 -651830 -627545 -890526 -94870 -151857 -20561 -825551 -450780 -73989 -262653 -20496 -57674 -70807 -271801 -95597 -35112 -887713 -343234 -118325 -315032 -810187 -818606 -277096 -199680 -270648 -356373 -21173 -616716 -343632 -950874 -774067 -120138 -34619 -334735 -903546 -159619 -69626 -7419 -337948 -67166 -149246 -263098 -120228 -75552 -296974 -94955 -79240 -36999 -61518 -73370 -23583 -458809 -926595 -491993 -354550 -458935 -519851 -467123 -635285 -70639 -881725 -257820 -742032 -759336 -118288 -793057 -9927 -468205 -107927 -69333 -342688 -68767 -386684 -638814 -242843 -75851 -938736 -37049 -174905 -429605 -92123 -560509 -62333 -390012 -226801 -750701 -338287 -289943 -20782 -664517 -736734 -60533 -328452 -16463 -926806 -518427 -390202 -534559 -427390 -600829 -801220 -271815 -259638 -183790 -49256 -23228 -42241 -99934 -431524 -769602 -664909 -704444 -626570 -13116 -191056 -704066 -334640 -231831 -225507 -26276 -95259 -301842 -45609 -335228 -126397 -486645 -433512 -956884 -645557 -461314 -58110 -49975 -555387 -9979 -315142 -830981 -452948 -77551 -276168 -446637 -688412 -665765 -945653 -633193 -663235 -77650 -51137 -21947 -131048 -289399 -180175 -277913 -931991 -772527 -144111 -480847 -81553 -209650 -735033 -753867 -329737 -340450 -945309 -636884 -277870 -907535 -901188 -176347 -931011 -54724 -550447 -199887 -54397 -413449 -249920 -813908 -377891 -247151 -18637 -488280 -92501 -291061 -61373 -569351 -210526 -188770 -20391 -397607 -335312 -22470 -687855 -60524 -638633 -88593 -928039 -332641 -472098 -50612 -413268 -225012 -566552 -462240 -883046 -120132 -736464 -248222 -268251 -12327 -11977 -664274 -335601 -441829 -213690 -863416 -198768 -12833 -48451 -75917 -485552 -307986 -260436 -718845 -443028 -15114 -483727 -903492 -364476 -693059 -275028 -536462 -342958 -29183 -316323 -121832 -424867 -903465 -451598 -317739 -691323 -869503 -269835 -335463 -903568 -45140 -366471 -44964 -737752 -636518 -867415 -103547 -52854 -747345 -237710 -387975 -800305 -108516 -25547 -395028 -262699 -167302 -11864 -23128 -732638 -824655 -45308 -161260 -625094 -101822 -379270 -30703 -126359 -715253 -412584 -335475 -73619 -609731 -864986 -60223 -159934 -533297 -460214 -695381 -942329 -56149 -42344 -641762 -678739 -330066 -161986 -11591 -12510 -686869 -756045 -20649 -811309 -141230 -129110 -349266 -297034 -428904 -867519 -267903 -72502 -14788 -661830 -847717 -461342 -34481 -63574 -63716 -634848 -2166 -846201 -130258 -438171 -527993 -956686 -6857 -717482 -276224 -602408 -447472 -205865 -248436 -15881 -475894 -34573 -415081 -35231 -380988 -12319 -863263 -930046 -952952 -53766 -236001 -505407 -192258 -161078 -190661 -193159 -100990 -416974 -351226 -410657 -118768 -809748 -900895 -84204 -251957 -45575 -859262 -83814 -66413 -143618 -198387 -58095 -50310 -956797 -804987 -471338 -197253 -50143 -647708 -575197 -28908 -501419 -636539 -54399 -650086 -699176 -937980 -325542 -512653 -13452 -185261 -517782 -12567 -635809 -41957 -347478 -617516 -793970 -1350 -43282 -305299 -97568 -846192 -453996 -911865 -942634 -457032 -196398 -334763 -380050 -4726 -51000 -465396 -612392 -227049 -60979 -836881 -401072 -140679 -933041 -150467 -427068 -75456 -356481 -384085 -654032 -120220 -34469 -49108 -125144 -107856 -604811 -600807 -791199 -805523 -141732 -255864 -155376 -63607 -295895 -952604 -222719 -709841 -360901 -287929 -197354 -103976 -956940 -182112 -200225 -115524 -167776 -20764 -192881 -390416 -337971 -855932 -279079 -721596 -271364 -224737 -784189 -224907 -782541 -350737 -377882 -284030 -6952 -317617 -110326 -545559 -651649 -769553 -332937 -859126 -550453 -560539 -37001 -166776 -21993 -101522 -202470 -35909 -186811 -79294 -22785 -77179 -88142 -881872 -48626 -289166 -703698 -236694 -54664 -119735 -387600 -645351 -95242 -366016 -9965 -101683 -292652 -167609 -712253 -129007 -931121 -48503 -367673 -493704 -171334 -836809 -943484 -13321 -768741 -99903 -99060 -648979 -793818 -74429 -16945 -560446 -198457 -693320 -534292 -8960 -10060 -747805 -224678 -534140 -699390 -693238 -605656 -642905 -79211 -479851 -793748 -57150 -501069 -29505 -461589 -709932 -543886 -351035 -95086 -679674 -436157 -664783 -549537 -279433 -628266 -262383 -751491 -82870 -830988 -665961 -670990 -768739 -678665 -852708 -25450 -17821 -773298 -622793 -121947 -326420 -179311 -429846 -292022 -26878 -1006 -106861 -323538 -41747 -93618 -224254 -682030 -196134 -780185 -56230 -17576 -35190 -833661 -131369 -647502 -88191 -692278 -69556 -379588 -394731 -689004 -93473 -694634 -119746 -913150 -104289 -42318 -21971 -750592 -445696 -348485 -335240 -236210 -192563 -536109 -806973 -483528 -352830 -263855 -277116 -457484 -257764 -78545 -138873 -326439 -199936 -520098 -109340 -387791 -688795 -864315 -644610 -40336 -51021 -791606 -16325 -20400 -599233 -232005 -559395 -308401 -135444 -169480 -692746 -110508 -335135 -942883 -554508 -251596 -130964 -953012 -663048 -712865 -63004 -635176 -205946 -896677 -3261 -753824 -119057 -200693 -260811 -557355 -209601 -119079 -346254 -640072 -524161 -261758 -21321 -467833 -42745 -88293 -431754 -481650 -303143 -89267 -297795 -782277 -879104 -130305 -347161 -324507 -53930 -89164 -871169 -781752 -402048 -106764 -76904 -60624 -250853 -551348 -265940 -42431 -64990 -9846 -222675 -829141 -304799 -848065 -23528 -266313 -194075 -19406 -773421 -274100 -59273 -57877 -515801 -129222 -771508 -176314 -11635 -113389 -168711 -466889 -48152 -111991 -401562 -80530 -177491 -58338 -149343 -678497 -610939 -76073 -575539 -8627 -139089 -13693 -380705 -23427 -65854 -840240 -73095 -12867 -72394 -764622 -720000 -77381 -97341 -58357 -60184 -454340 -622057 -407232 -287091 -224301 -340671 -593789 -74104 -836896 -151371 -319502 -63121 -499053 -200020 -567877 -61132 -577365 -373529 -201842 -128890 -719487 -893996 -35214 -750344 -927791 -742009 -647783 -3478 -28839 -306776 -710164 -139739 -30181 -197048 -39494 -928109 -54156 -869608 -616155 -67562 -480073 -837569 -9899 -129393 -60111 -484368 -903326 -859002 -457729 -486577 -37829 -927943 -952608 -426080 -380672 -224498 -94584 -248949 -846176 -943079 -458798 -22499 -45319 -240845 -170153 -928248 -956172 -409210 -482529 -921794 -20462 -168376 -459966 -661223 -721776 -316733 -74171 -105146 -61782 -249472 -151712 -199993 -92607 -236097 -324269 -777331 -343233 -300533 -140575 -61126 -166763 -13492 -24908 -259994 -922212 -45428 -275113 -266955 -348852 -45409 -460642 -46223 -329329 -624850 -827942 -271041 -129463 -287545 -367417 -811404 -272974 -372133 -60464 -368491 -144526 -590195 -124701 -45346 -770043 -442750 -630275 -455672 -59116 -69471 -251278 -78865 -104316 -134807 -845800 -280482 -956165 -329273 -151479 -28374 -93247 -316302 -344050 -203975 -162924 -373667 -368642 -39919 -258102 -654720 -781253 -158157 -260997 -334158 -151306 -359338 -902647 -458450 -201369 -10551 -318601 -44811 -50574 -811796 -29646 -614671 -308467 -937861 -21669 -76054 -607993 -605813 -923059 -269407 -862615 -814723 -12584 -333468 -367901 -13566 -861940 -858576 -886158 -68678 -223869 -364770 -289284 -45625 -635526 -580194 -494738 -902631 -263698 -214806 -938233 -85569 -83794 -73493 -603909 -26825 -206241 -347352 -589676 -223421 -120522 -663903 -480319 -79250 -693314 -612992 -903559 -21930 -23700 -131253 -763068 -247515 -434717 -347313 -334795 -751536 -119919 -486997 -35933 -83138 -61114 -46723 -922463 -500946 -673518 -480176 -762640 -6746 -62370 -35071 -901270 -179262 -32138 -397305 -903555 -671429 -599788 -439595 -671384 -13279 -208275 -52396 -69481 -54043 -822978 -381215 -295853 -208523 -224700 -34788 -7462 -72104 -387058 -231728 -747974 -6867 -40178 -291243 -284110 -650507 -373294 -819511 -600358 -932591 -574459 -618560 -738223 -76017 -292861 -566328 -492626 -588410 -325356 -871559 -773983 -256702 -249089 -749241 -441705 -120198 -279408 -17485 -934557 -190979 -549699 -88407 -60787 -197355 -124515 -624590 -704385 -334030 -14672 -92148 -304710 -99087 -192565 -210886 -444009 -127619 -46566 -885853 -52281 -554624 -798658 -196751 -68609 -885553 -863642 -364579 -2802 -45131 -29631 -12687 -309689 -908292 -61727 -786689 -82160 -451702 -704107 -227536 -416852 -205909 -80279 -234550 -317326 -88527 -31005 -254933 -64686 -848212 -836310 -134899 -516702 -594497 -267478 -149603 -458684 -897654 -215605 -248854 -956984 -279530 -55009 -333252 -251859 -332364 -717902 -66069 -836068 -807022 -45376 -127923 -582387 -586471 -719173 -881897 -305287 -429159 -160594 -192492 -33066 -215381 -793616 -803196 -89257 -440533 -6663 -459654 -45289 -49591 -133649 -13420 -237788 -73610 -14802 -29114 -240431 -271365 -57044 -197277 -62134 -408732 -477169 -460856 -63623 -363062 -467658 -626005 -524202 -12969 -673974 -250108 -669002 -642006 -475351 -75963 -666221 -25976 -723450 -787777 -786410 -904066 -269020 -276604 -451912 -62853 -936516 -890711 -724087 -381063 -57078 -625734 -80850 -803010 -814769 -355999 -29181 -790503 -337109 -761974 -154949 -71110 -334085 -356980 -458687 -79814 -93963 -494104 -928110 -792546 -107193 -793604 -167309 -885929 -20311 -297642 -324640 -911528 -663871 -34791 -224888 -497849 -174719 -83968 -768653 -849727 -128145 -95285 -383251 -491815 -625635 -44857 -10691 -703498 -54972 -62759 -179886 -903593 -75780 -769730 -395723 -335265 -743987 -343606 -60186 -180026 -711303 -15679 -45420 -84011 -674325 -15765 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_train.jpgl deleted file mode 100644 index 9875b427395c4cf06e5bef5f2e7c2aae625b084a..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/aesthetics_image_lists/stilllife_train.jpgl +++ /dev/null @@ -1,2500 +0,0 @@ -212815 -400673 -192901 -151742 -522586 -507723 -273146 -766251 -255463 -348100 -848809 -300641 -207378 -18206 -956637 -13218 -608897 -41831 -702605 -130491 -956589 -777583 -360006 -606736 -662206 -389013 -939731 -481660 -141631 -60990 -565959 -666502 -357578 -789981 -346738 -816714 -543491 -558565 -140579 -335598 -383439 -691067 -793642 -115833 -557334 -906665 -896121 -313773 -758125 -395323 -309654 -545440 -14827 -93312 -24316 -461263 -335307 -567655 -177789 -677874 -316313 -58373 -738687 -768023 -360210 -12577 -306785 -413082 -14876 -92286 -786238 -510166 -474604 -844092 -174342 -483683 -556976 -88341 -930015 -581710 -188715 -335175 -748061 -309836 -371625 -854809 -126448 -49926 -354339 -332863 -305725 -943254 -719042 -125765 -847714 -679650 -550248 -99797 -335317 -705014 -211943 -903462 -726041 -58186 -35165 -616580 -7516 -64492 -251565 -402083 -389961 -169734 -563549 -62974 -838086 -105014 -64829 -300763 -709883 -847676 -209042 -712973 -34982 -93587 -129297 -356921 -261439 -224067 -142327 -292531 -74063 -13205 -166970 -212056 -18715 -43821 -17290 -80461 -751530 -243036 -129458 -45627 -161866 -28594 -55940 -312579 -43817 -72356 -78598 -6880 -436938 -450984 -792988 -31242 -210683 -64732 -149280 -13026 -11720 -298952 -295875 -900880 -855672 -90866 -518988 -445325 -32224 -105116 -396009 -70177 -96571 -768058 -545782 -807144 -263529 -204615 -369767 -453254 -114048 -38655 -98878 -732710 -808990 -53179 -354399 -761459 -334890 -1561 -206563 -703999 -305342 -334304 -141811 -533938 -432780 -829873 -848971 -279524 -368377 -229721 -94083 -818648 -266199 -627241 -704399 -762566 -8232 -449163 -735599 -100233 -457765 -849517 -839949 -335338 -452320 -126640 -93929 -298771 -155565 -191279 -400294 -191204 -328286 -677947 -37230 -115514 -946126 -459300 -466819 -307102 -275026 -227604 -805443 -77488 -298801 -60845 -138394 -58464 -45208 -263284 -773853 -199890 -387156 -403389 -33933 -306939 -113755 -186942 -940308 -45633 -374508 -591029 -939799 -268262 -278478 -848730 -651412 -764020 -61109 -183301 -25333 -781254 -45347 -612852 -2918 -742317 -687802 -282937 -335472 -462721 -93517 -130824 -368964 -444019 -719954 -51820 -452078 -315494 -663769 -558823 -8284 -9912 -64692 -321279 -395156 -50085 -139949 -687733 -377516 -208665 -301659 -58615 -197190 -830757 -55898 -19984 -132507 -927219 -458002 -726783 -372393 -785680 -46435 -34824 -679595 -8640 -661286 -23729 -431809 -124678 -654658 -208497 -180032 -266041 -6773 -599966 -635460 -649249 -195067 -847709 -769239 -129648 -45497 -330922 -704363 -606583 -936148 -625091 -4043 -61492 -70191 -11187 -271267 -240457 -774365 -704471 -262603 -358663 -577906 -523756 -60706 -617447 -22135 -837099 -9526 -723736 -209598 -368977 -163651 -606352 -251451 -501660 -66818 -18199 -61845 -827545 -203142 -534773 -10110 -864558 -118036 -457568 -59904 -306205 -196954 -932176 -236002 -664924 -273749 -882742 -334610 -517079 -431241 -469411 -102349 -179233 -76077 -94355 -734279 -316627 -281484 -501937 -882540 -936428 -751188 -212685 -208292 -902926 -489032 -367038 -457893 -885584 -85903 -8863 -151760 -342968 -858178 -127804 -714183 -208484 -13181 -937027 -445781 -44577 -787670 -453076 -750684 -937037 -580956 -9084 -453973 -93311 -9929 -111317 -475097 -45018 -209357 -801181 -58135 -403463 -951916 -42907 -935228 -325367 -68430 -4174 -368161 -643048 -379753 -75408 -7453 -587139 -793943 -294831 -946053 -208145 -693278 -903748 -653967 -193101 -95061 -39910 -391563 -35659 -472549 -93289 -83909 -262894 -247473 -424457 -486496 -204943 -358184 -545007 -59996 -99790 -33623 -25560 -793572 -287004 -333804 -235513 -574860 -734362 -13392 -154047 -180257 -163982 -900640 -415264 -60746 -711240 -565236 -38874 -277072 -118454 -196781 -8838 -453077 -37751 -529049 -404714 -287564 -292810 -112821 -858432 -11948 -624410 -234618 -35038 -588601 -265056 -356161 -897782 -920358 -363311 -926838 -846652 -49865 -58035 -251983 -195848 -460063 -192955 -316688 -887641 -130969 -308528 -491191 -677071 -664691 -765599 -450699 -892973 -566312 -892670 -92240 -860399 -41981 -15010 -308256 -12645 -7864 -222966 -763886 -51183 -129352 -45557 -233292 -114240 -34814 -502379 -810971 -784690 -49814 -654544 -633618 -625567 -435279 -197199 -43451 -103004 -930266 -223382 -20695 -7446 -263119 -244690 -20183 -409600 -416109 -316660 -387042 -364121 -166929 -115419 -13414 -573205 -278081 -74521 -952457 -476968 -723031 -261753 -647689 -49727 -334089 -161968 -475068 -81946 -272998 -318588 -51143 -792786 -661404 -468549 -315416 -17528 -795627 -787862 -9916 -30635 -149462 -929696 -904729 -328598 -307365 -936701 -773908 -747026 -667407 -344363 -946100 -73135 -174423 -235491 -735937 -278102 -674342 -317621 -739586 -368708 -256696 -232819 -316902 -372052 -335061 -124235 -952381 -24446 -799290 -844238 -23310 -48126 -283102 -312378 -249220 -694269 -448851 -459835 -82536 -467440 -366980 -76335 -91131 -127649 -42025 -747965 -33098 -874359 -947074 -296620 -204603 -78957 -308483 -84339 -370290 -934165 -787060 -21988 -559234 -849159 -22936 -747483 -885696 -27620 -956765 -229970 -37448 -786009 -175047 -66075 -9154 -381043 -435281 -322576 -449093 -300316 -745722 -477009 -44791 -17986 -396222 -956955 -223655 -851716 -10350 -782237 -13390 -23407 -48830 -864883 -827234 -701465 -745374 -118872 -774367 -848238 -47221 -464695 -187626 -12989 -258181 -332554 -258020 -44909 -271161 -896961 -301737 -38088 -335221 -17842 -584137 -295882 -515293 -802364 -485157 -22283 -16663 -438006 -133060 -93685 -706079 -859158 -215027 -781754 -14842 -88032 -48569 -487058 -354196 -627880 -527451 -521823 -179255 -338211 -14863 -488344 -864584 -127857 -11260 -114050 -443000 -35809 -45354 -60961 -120209 -354699 -439850 -398218 -7862 -491775 -813297 -590582 -461579 -870439 -123272 -155642 -445522 -781698 -249518 -653751 -764095 -761769 -7839 -126703 -209024 -853063 -262636 -814000 -48487 -782648 -95694 -709323 -709498 -398438 -58391 -20693 -863758 -9219 -194044 -259632 -917268 -232311 -48966 -249133 -264765 -320090 -709905 -369546 -239146 -333573 -268084 -144349 -868610 -705687 -455359 -545763 -846175 -651607 -814279 -848950 -180656 -358144 -12737 -382782 -425687 -197436 -831019 -379412 -913034 -342564 -1494 -119304 -333665 -370127 -903176 -184160 -61730 -57897 -423317 -68731 -65555 -651766 -616090 -654750 -38095 -291141 -593477 -588223 -385033 -650043 -476796 -263472 -947280 -123092 -315024 -905216 -9320 -286195 -616242 -178749 -787840 -426066 -412910 -203627 -13516 -679950 -463704 -482429 -137818 -12538 -280784 -384165 -952841 -479902 -281185 -416280 -56748 -342737 -83931 -929818 -292767 -14901 -593628 -404246 -287606 -671322 -371385 -64741 -65383 -53838 -574759 -30029 -580944 -17561 -466247 -35042 -114951 -125900 -878729 -141644 -17462 -942918 -125140 -241790 -43119 -314439 -763693 -328534 -926380 -178272 -97845 -263459 -23972 -169227 -426263 -481356 -207254 -161080 -122976 -16551 -75220 -421498 -753233 -240586 -763668 -239234 -166761 -151629 -20196 -499311 -454181 -181278 -357134 -319957 -20016 -669135 -94842 -501643 -738274 -1585 -538466 -224876 -733641 -785059 -715454 -83524 -663181 -79839 -815977 -557483 -654712 -261257 -733026 -232287 -132294 -17954 -61741 -94778 -188297 -197631 -413129 -827229 -151490 -338126 -382970 -21324 -46647 -808998 -155587 -750610 -301732 -704440 -809170 -482523 -457703 -664882 -816100 -859763 -361248 -914714 -528641 -240063 -721274 -124305 -525626 -138486 -202489 -42759 -460381 -786129 -793602 -903670 -355807 -491494 -15959 -900531 -207046 -772446 -249352 -14856 -557278 -332774 -640783 -310574 -77824 -129035 -737882 -12753 -291827 -18084 -747918 -173733 -265301 -126609 -925092 -10477 -34214 -368261 -793246 -849679 -189232 -701527 -453553 -460116 -122845 -12240 -478355 -793621 -559548 -892995 -362527 -793885 -945307 -397345 -73399 -936652 -237672 -470363 -894357 -42267 -376995 -505475 -199513 -165946 -387523 -268233 -465319 -240740 -908107 -124615 -270179 -315338 -933591 -753169 -49827 -956877 -129380 -212639 -60487 -268208 -9921 -17062 -927666 -633174 -139761 -804887 -297551 -95221 -434447 -410445 -242709 -182201 -291782 -430380 -433688 -623274 -752795 -45507 -248978 -267522 -587294 -622946 -58205 -569474 -704031 -162258 -196752 -212617 -49681 -677650 -29334 -204634 -291996 -930496 -845220 -426183 -710499 -934312 -190649 -83597 -256741 -703715 -440452 -12518 -153566 -582245 -105929 -741099 -462030 -936605 -149507 -83387 -727170 -25579 -795650 -140339 -369320 -466566 -38396 -224342 -89929 -397269 -404993 -333643 -763835 -52336 -316629 -79830 -388693 -956582 -49310 -44701 -21205 -193887 -45358 -870548 -479436 -400606 -686440 -13726 -341723 -454026 -60248 -489368 -70810 -17112 -58178 -56462 -270524 -323178 -782537 -947216 -5910 -772994 -109324 -248537 -535618 -35169 -735389 -243663 -38860 -327366 -471051 -37499 -10017 -10049 -226337 -446229 -277253 -567733 -724381 -587182 -666246 -474914 -166548 -809667 -611385 -44017 -322795 -45163 -48567 -542636 -63955 -246710 -752856 -169148 -42441 -390944 -64731 -48660 -89232 -51516 -35883 -439258 -290916 -397750 -209498 -231059 -101021 -354583 -298887 -458433 -297528 -708072 -300008 -412173 -64763 -450608 -21885 -313778 -267930 -903702 -92999 -89306 -78464 -140007 -596671 -752251 -567856 -269958 -730666 -56054 -49789 -12012 -379862 -320028 -180025 -51818 -136317 -125193 -783560 -702908 -428705 -907880 -72239 -488773 -46889 -761773 -781176 -518628 -300680 -452929 -406844 -337982 -231352 -83751 -506056 -150534 -22157 -123756 -241928 -550424 -57929 -93316 -105797 -14988 -560545 -480257 -943271 -265071 -7443 -825076 -17566 -35858 -743375 -686376 -293920 -308032 -476315 -212047 -207364 -326529 -935840 -46238 -166810 -124383 -813291 -206177 -313831 -465676 -76010 -60655 -795356 -656289 -35088 -402436 -481883 -235974 -9978 -914669 -676613 -903040 -782713 -269943 -851520 -13252 -251975 -478979 -47347 -141818 -258868 -151614 -129009 -633100 -885466 -491375 -22150 -490925 -263245 -23771 -295311 -524088 -456823 -516396 -42299 -63226 -22637 -847423 -474786 -781531 -151399 -34680 -907811 -523645 -459336 -64739 -134045 -29938 -928766 -934144 -493606 -677755 -31784 -685359 -395264 -123097 -577231 -93887 -78447 -55081 -559992 -223783 -68718 -342753 -94051 -904401 -840083 -287072 -716895 -126444 -510997 -10588 -183195 -193947 -151034 -728734 -588680 -704173 -628309 -270507 -78471 -49034 -266717 -238821 -473620 -456313 -112468 -957004 -303260 -333736 -70243 -124818 -446726 -50278 -29155 -232952 -12322 -382262 -482255 -52623 -95631 -134512 -126839 -441663 -802064 -58326 -257631 -276400 -927000 -705794 -238144 -38640 -263050 -305425 -239124 -73792 -222451 -117658 -178902 -134986 -584215 -181701 -90757 -47384 -622380 -174814 -46649 -589886 -9884 -263868 -744161 -98318 -953326 -173607 -3496 -847651 -837205 -315422 -23685 -314836 -5591 -265244 -4153 -24176 -619249 -124617 -30745 -479204 -206296 -339400 -458701 -793754 -14706 -15125 -674230 -296934 -328726 -202679 -257521 -14817 -407406 -56690 -48894 -177470 -399505 -270845 -560480 -45236 -167545 -311865 -179379 -171223 -23544 -379898 -673410 -353325 -74350 -94432 -835403 -527560 -7362 -398361 -207379 -127662 -723125 -805308 -732436 -395202 -814407 -292647 -632401 -265264 -861817 -69727 -213365 -642835 -776651 -483984 -903561 -593479 -11807 -232869 -467167 -1855 -566563 -6019 -190206 -248232 -215963 -704187 -611734 -651167 -63802 -23635 -232742 -460699 -37456 -3102 -300696 -83722 -771376 -932903 -465683 -203893 -314819 -159953 -15883 -811547 -28702 -180971 -276020 -601481 -168170 -167984 -139706 -68361 -263601 -11769 -439292 -599842 -196151 -687760 -787239 -223820 -559120 -200697 -296993 -10053 -367743 -796866 -200726 -805489 -177614 -137080 -197270 -937228 -723794 -92951 -58512 -224779 -664949 -58660 -204888 -903323 -560061 -150650 -945121 -7788 -251883 -461312 -758341 -32245 -145745 -25428 -214180 -669264 -148296 -129239 -468287 -332950 -12984 -710268 -795463 -870312 -885537 -235432 -4114 -661247 -496133 -90161 -864808 -265386 -224583 -429380 -103823 -627679 -89323 -312592 -208940 -801277 -538922 -486906 -61498 -855598 -647965 -275216 -267909 -252708 -12937 -486842 -710214 -946852 -842816 -13428 -497252 -73922 -47322 -8291 -46638 -939712 -42028 -774370 -762391 -206394 -114248 -454339 -86614 -908169 -943656 -806291 -435948 -858392 -56655 -466113 -12714 -849628 -43002 -621027 -776747 -884367 -487117 -187914 -92720 -326528 -126117 -127855 -264363 -192950 -12331 -793378 -296232 -449604 -749129 -185176 -442789 -329415 -488330 -289398 -45075 -110434 -414679 -350366 -626669 -605902 -68762 -663622 -943282 -223738 -17502 -475834 -645896 -26442 -438524 -938079 -737913 -68580 -434206 -706354 -485196 -330215 -124655 -793657 -21457 -47283 -21986 -589354 -919856 -107383 -617441 -7438 -891106 -333022 -950963 -41539 -14423 -942585 -27682 -702956 -254877 -852985 -841323 -710197 -183178 -575469 -730651 -130904 -466540 -12751 -423811 -279610 -467912 -205011 -20637 -114487 -724415 -224448 -827312 -44926 -89336 -919030 -94753 -340608 -704139 -20188 -890848 -436846 -475302 -104795 -911322 -339427 -371278 -357597 -903590 -856007 -880259 -830979 -309611 -610424 -658198 -793842 -821385 -48843 -149596 -442979 -540193 -925413 -14898 -28756 -24838 -427559 -710692 -346076 -333777 -92552 -606646 -594840 -333820 -309767 -288033 -648981 -704000 -49356 -45286 -205256 -475714 -209054 -487685 -213546 -865674 -623010 -199816 -757951 -521829 -334680 -358407 -808068 -67511 -339204 -420580 -37359 -76843 -94524 -289292 -855800 -94366 -12657 -335386 -409729 -56097 -295180 -240226 -526102 -214365 -281614 -670236 -702994 -534254 -37004 -837067 -297577 -200428 -6035 -68314 -10644 -885803 -369670 -838451 -889827 -516915 -941823 -336953 -297233 -312774 -449443 -717724 -654209 -36536 -65824 -45431 -796234 -751213 -694082 -103597 -291527 -186532 -724293 -10658 -175558 -30779 -892402 -119488 -805470 -171291 -730331 -254164 -45563 -460380 -138761 -379681 -21292 -73335 -728057 -46853 -479219 -18046 -90580 -47159 -181381 -368124 -625834 -66009 -327632 -380049 -297465 -764376 -101043 -846101 -128573 -13194 -265415 -774131 -115344 -18093 -195163 -555308 -438133 -454308 -704290 -26940 -251960 -231298 -865608 -39204 -262923 -709902 -770589 -726711 -165033 -825944 -45576 -75308 -94595 -897175 -704375 -464402 -551393 -74385 -702541 -760801 -723051 -560256 -704224 -120148 -35147 -200698 -68614 -664169 -328445 -365358 -883596 -199991 -175448 -104845 -622788 -21221 -606703 -260965 -263439 -855371 -100871 -440595 -468518 -606889 -332598 -505847 -622782 -207995 -227346 -340392 -59270 -88930 -49489 -58969 -511018 -89294 -53248 -663614 -61537 -13219 -141113 -25250 -90035 -342924 -673235 -468627 -312956 -261743 -79235 -870706 -407159 -14963 -846924 -674192 -66356 -463170 -470914 -206258 -69728 -94615 -295812 -825917 -20737 -90359 -710037 -101628 -21168 -767466 -818822 -59666 -328020 -43730 -646197 -45451 -434366 -57582 -21411 -482836 -39979 -251550 -5577 -356544 -560408 -594368 -649387 -295868 -150284 -913042 -255810 -99074 -75903 -49936 -957011 -727052 -187486 -937303 -301210 -749051 -152421 -830157 -942659 -126217 -22823 -383053 -239607 -315171 -334785 -776379 -232687 -65851 -305000 -258220 -723220 -333078 -11624 -725913 -282169 -5908 -120190 -769516 -48998 -789619 -351006 -635900 -906099 -504300 -395774 -265036 -10533 -31995 -88437 -434455 -400982 -889682 -567633 -87976 -875647 -736612 -90493 -327261 -134998 -835371 -209491 -126749 -60097 -288259 -871211 -45571 -95062 -42861 -292731 -171281 -736344 -92670 -29427 -811586 -811843 -326207 -801223 -316094 -54284 -11957 -60892 -642665 -28580 -693187 -559007 -179239 -901259 -258178 -343830 -44633 -480296 -356919 -703374 -13234 -11613 -263128 -952401 -61666 -243806 -91804 -791756 -423428 -758040 -360077 -476010 -637024 -436878 -859582 -140753 -354007 -343733 -80403 -885677 -251495 -46592 -859618 -387869 -18724 -110142 -306417 -56663 -919395 -20371 -75756 -88820 -58966 -708947 -343352 -557678 -855853 -83277 -238374 -491790 -942939 -41984 -441658 -29288 -826121 -162195 -786036 -633651 -48511 -197575 -555062 -333860 -274116 -412564 -65668 -556911 -15956 -409556 -10574 -41084 -208495 -671221 -442342 -209226 -442896 -268198 -590908 -923612 -30654 -122532 -368235 -909127 -855551 -608414 -11177 -586496 -270624 -347812 -618197 -841073 -74500 -792782 -362484 -196890 -270464 -814687 -51439 -538242 -433527 -434765 -144731 -243783 -478351 -738373 -340426 -54736 -58532 -536959 -774305 -33041 -858135 -224293 -134972 -11328 -453633 -486961 -858678 -501399 -523746 -316339 -38256 -893110 -883600 -60671 -29387 -308221 -256746 -775367 -17051 -306863 -97800 -94877 -316876 -274997 -248955 -3826 -31466 -911769 -257859 -49691 -340506 -68760 -207583 -384057 -48103 -8538 -836467 -609477 -861659 -332787 -326570 -44223 -602909 -855617 -603218 -286860 -176030 -13434 -199364 -673231 -87685 -790763 -27497 -105106 -357204 -59883 -309867 -58094 -235686 -145170 -11906 -557352 -11871 -453879 -704013 -68459 -276331 -482487 -713521 -440436 -49971 -340610 -386702 -181431 -781551 -429208 -515422 -13487 -44919 -661263 -446005 -422964 -34412 -17406 -37149 -46195 -66357 -368611 -900339 -442864 -149962 -214794 -459510 -409803 -32204 -317398 -94090 -905445 -14506 -134571 -349587 -514479 -790505 -836474 -161072 -379914 -12207 -357245 -83341 -777947 -174815 -432080 -263000 -816060 -72298 -240225 -79319 -242460 -192851 -849600 -14916 -704454 -278539 -490048 -39408 -248911 -39679 -480515 -255788 -849246 -411612 -468405 -462210 -11750 -50244 -168695 -76797 -438107 -466213 -175033 -263339 -317798 -416220 -14997 -31115 -774350 -511439 -116752 -224816 -45595 -14703 -48649 -37141 -591215 -692959 -79576 -358562 -656239 -912878 -432637 -355215 -166737 -206176 -357762 -361868 -601128 -774158 -67588 -664750 -308675 -202564 -459983 -702736 -11366 -52010 -9778 -83298 -162166 -405162 -648863 -199077 -179300 -404027 -440362 -61759 -254158 -679686 -86032 -627770 -266869 -404467 -586960 -34177 -49855 -161683 -80390 -60924 -57896 -212931 -791995 -276001 -560323 -26854 -123437 -224953 -389712 -71269 -301850 -10503 -897155 -148614 -803640 -276379 -98293 -818253 -609021 -578111 -587805 -834556 -404651 -76680 -187889 -51710 -442427 -421099 -131197 -865190 -829470 -22065 -141809 -845670 -825098 -239143 -405900 -38046 -73511 -67391 -675552 -690202 -30051 -292850 -271083 -263590 -354605 -384144 -153703 -488458 -567850 -779984 -793956 -464356 -333744 -14643 -846269 -748004 -22155 -45430 -323797 -166778 -822988 -513377 -525801 -66077 -398268 -476554 -416335 -529201 -76046 -781685 -14285 -279439 -45531 -20334 -612787 -52229 -190102 -451572 -31120 -17366 -550399 -3413 -670763 -429036 -940020 -24480 -36958 -253072 -709766 -111078 -45539 -41863 -44578 -440058 -744277 -216644 -190162 -501847 -35175 -482408 -121775 -335104 -306861 -614990 -475870 -893701 -14923 -730840 -8196 -333632 -56549 -9517 -126777 -306467 -346519 -13237 -278465 -108007 -372981 -23824 -94113 -175570 -22401 -392483 -457036 -154897 -221389 -737782 -13033 -767481 -305302 -24274 -491590 -45112 -239608 -479947 -938359 -704284 -35184 -313961 -361189 -179268 -209358 -140790 -129391 -559201 -19988 -692828 -678127 -625791 -385916 -706293 -515929 -482697 -275459 -210740 -944747 -303559 -13497 -769803 -936418 -170877 -626704 -703552 -146263 -635976 -199847 -654511 -339454 -300873 -86610 -354634 -49633 -762412 -334552 -768448 -434422 -98952 -679912 -744255 -832905 -824505 -240270 -22076 -705023 -51656 -109933 -403759 -742113 -118361 -909376 -162025 -268049 -468629 -58177 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/challenges.txt b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/challenges.txt deleted file mode 100644 index 6b6bb2d0c33745bff26ecdfab737bdadaf26cef2..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/challenges.txt +++ /dev/null @@ -1,1398 +0,0 @@ -1396 100_Meters -1004 100_Years_Old -1329 100_Years_Old_II -608 12_Days_Of_Christmas -311 1970s -1009 1-Second_Exposure -876 2_Person_Portrait -465 2-Second_Exposure -511 30_Seconds_or_More -419 4_00-5_00_am -1291 4_00-5_00_am_II -1120 47_Steps -37 7_Deadly_Sins -449 7_Deadly_Sins_II -879 7_Deadly_Sins_III -450 7_Heavenly_Virtues -880 7_Heavenly_Virtues_II -605 AA_Battery -941 Abandoned -328 Abandoned_Buildings -803 Abandoned_Buildings_II -859 ABC...LMN...XYZ -1232 Absolut_Advertisement -1407 Absolut_Advertisement_II -212 Abstract -910 _Abstract_Black_and_White -925 Abstract_Emotion -524 Abstract_Food -444 Abstract_II -471 Abstract_Macro -559 Abstract_Macro_II -1082 Abstract_Macro_III -1011 Abstract_Motion -1134 A_Bugs_Life_Insects_Bugs_Beetle -325 Accidental_Letters -922 Accidental_Letters_II -639 Acronyms -169 Action_Shot -532 Action_Shot_II -998 Action_Shot_III -411 Adulthood_Without_Adults -14 Advertisement -812 Advertisement_III -233 Advertisement_Revisited -364 Affluence -936 Affluence_II -176 After_Dark -459 Afterlife -574 After_the_Game -1095 A_Hug_And_A_Kiss -1208 A_Is_For________ -150 All_Alone -1333 All_Four_Elements -966 All_I_Want_for_Christmas -1190 All_Things_Being_Equal_Three -777 Alone_In_A_Crowd -643 Alternative_Medicine -657 Anachronism -114 A_Night_on_the_Town -1117 Animal_People_Interaction -1026 Animals_In_Motion -315 Ansel_Adams -982 Ansel_Adams_II -889 Anything_But_Landscape -341 Apple -991 Apple_II -9 Architecture -299 Architecture_II -500 Architecture_III -809 Architecture_IV -1048 Architecture_V -1254 Architecture_VI -1107 Artificial_Lighting -969 Asia -878 A_Single_Line -552 A_Single_Tree -984 A_Single_Tree_II -141 At_Rest -359 At_the_Zoo -109 At_Work -280 Authority -782 Automobile_Ad -1039 Automobile_Ad_II -1249 Baby_Animals -253 Backlighting -433 Backlighting_II -729 Backlighting_III -954 Backlighting_IV -696 Backsides -134 Back_To_School -1091 Back_To_School_II -630 Bad -236 Balance -1198 Balloons -221 Banana -1078 Band_Names -1384 Bank -1350 Batteries -617 Battle_Of_The_Sexes -501 Beatles_Song_Lyrics -344 Beauty -787 Beauty_In_The_Everyday -563 Beer_or_Soft_Drink_Advertisement -1115 Beer_or_Soft_Drink_Advertisement_II -62 Before_and_After -962 Before_and_After_II -988 Begin -952 Benches -318 Best_Friends -476 Best_Of_2002 -296 Best_of_2004 -430 Best_of_2005 -616 Best_Of_2006 -804 Best_Of_2007 -980 Best_Of_2008 -1154 Best_of_2009 -1331 Best_of_2010 -1369 Between_the_Knee_and_the_Neck -384 Beverages -663 Bicycles -860 Bicycles_II -314 Billboard -348 Birds -807 Birds_II -1361 Birds_In_Flight -531 Bits___Pieces -1320 Bits___Pieces_II -1183 Bizarrechitecture -272 Bizarre_Nature -191 Black -529 Black_and_White_in_Color -823 Black_and_White_in_Color_II -1201 Black_and_White_Landscape -51 Black_and_White_Portrait -614 Black_and_White_Portrait_II -1253 Black_and_White_Still_Life -108 Black_on_Black -1192 Black_on_Black_II -18 Black___White -278 Black___White_II -583 Black___White_III -1368 Black___White_IV -44 Blue -443 Blue_II -947 Blue_III -829 Blurry_Mess -865 Boats -1225 Boats_II -1284 Body_Forms -50 Body_Parts -841 Body_Parts_II -297 Bokeh -512 Bokeh_II -573 Bokeh_III -736 Bokeh_IV -964 Bokeh_V -1213 Bokeh_VI -1379 Bokeh_VII -593 Bond,_James_Bond -1228 Books -774 Book_Smarts -158 Book_Titles -1077 Book_Titles_II -320 Bored -1139 Bored_II -247 Botany -1231 Bovine -375 Branch -1181 Branch_II -815 Bread -300 Breaking_New_Ground -74 Bridges -309 Bridges_II -1281 Bridges_III -286 Broken -446 Broken_II -602 Brown -820 Brown_Ribbon_Deja_Vu -990 Brown_Ribbon_Deja_Vu_II -379 Bubbles -671 Bubbles_II -1156 Bubbles_III -923 Bummer! -432 Burst_of_Color -700 Burst_of_Color_II -1375 Burst_of_Color_III -398 Busy -273 Calendar -997 Calendar_II -1403 Calendar_III -1211 Camera_Bag -1114 Camera_Movement -1383 Camera_Phone_Free_Study -539 Camera_Self_Portrait -407 Camouflage -31 Candid -293 Candid_II -479 Candid_III -693 Candid_IV -1024 Candid_V -1146 Candid_VI -417 Candlelight -86 Candy -739 Candy_II -895 Cardboard_Box -388 Celebration -652 Cell_Phone_Mania -321 Cemetery -216 Centered_Composition -610 Centered_Composition_II -844 Centered_Composition_III -1124 Centered_Composition_IV -661 Chains -1165 Chairs -1283 Chalk -665 Changed -204 Chaos -1234 Chaos_II -408 Cheater! -873 Chemistry -30 Childhood_Without_Children -805 Childhood_Without_Children_II -1194 Children -473 Childrens_Toy -722 Childrens_Toy_II -1178 Childrens_Toy_III -182 Chinese_Zodiac -1370 Chips -237 Chocolate -227 Choices -1318 Christmas_Song_Titles -478 Chrome -1223 Churches -355 Circle -646 Circle_II -1073 Circle_III -21 City_Life -428 City_Life_II -290 Classy_Holiday_Decorations -741 Closing -1301 Clouds -798 Clowns -1354 Coffee -386 Coffee_Shop -893 Cold -1163 Cold_II -412 Collections -83 Color -924 Color_in_Black_and_White -528 Color_on_Color -822 Color_on_Color_II -1393 Color_on_Color_III -376 Color_Portrait -650 Color_Portrait_II -230 Color_Studio_Portrait -480 Color_Studio_Portrait_II -927 Color_Studio_Portrait_III -456 Comfort -266 Communication -98 Complementary_Colors -387 Complementary_Colors_II -484 Complementary_Colors_III -778 Complementary_Colors_IV -1295 Complementary_Colors_V -260 Complexity -189 Conflict -381 Conspiracy -1169 Constructed_By_Man -1170 Constructed_By_Nature -347 Construction -1051 Construction_II -118 Contrasts -658 Contre-jour -1135 Contre-Jour_II -1322 Contre-jour_III -839 Cool_Colors -1374 Cool_Colors_II -110 Country_Life -448 Country_Life_II -1274 Country_Life_III -1405 Country_Music_Song_Titles -1019 Crayons___Colored_Pencils -875 Crime_Scene -647 Crossdress -678 Cultural_Events -10 Curves -838 Curves_II -371 Dairy -1172 Dance -864 Dappled_Light -349 Darkness -1030 Darkness_II -1355 Day_Taken_At_Night -402 Dead_End -595 Death -1071 Death_II -163 December_Free_Study -345 Decisions -224 Deep_DOF -1096 Deep_DOF_II -265 Defining_Feature -288 Deja_Vu -468 Deja_Vu_II -742 Deja_Vu_III -396 Delicate -1157 Delicate_II -1034 De-Motivational_Poster -196 Design___Engineering -126 Desolation -510 Desolation_II -70 Despair -378 Destinations -592 Diagonal -706 Dichotomy -597 Dirt -1365 Disassembled_Objects -759 Distance -372 D_L -842 DNMC -912 Dolls___Puppets -1212 Door_Knobs,_Handles___Locks -906 Doors -1202 Double_Exposure -689 Double_Take -911 Double_Take_II -1222 Double_Take_III -238 DPC_Album_Cover -490 DPC_Cinema -1108 DPC_Cinema_II -92 DPChallenge.com_Sticker_Design -1209 DPChallenge_User_Portrait -93 DPCPrints.com_Sticker_Design -680 DPL_Album_Cover -1083 Drama -336 Dreams -144 Dreams_and_Nightmares -708 Dreams_II -1287 Dreams_III -676 Dr._Seuss -567 Ducky -903 Ducky_II -100 Duotones -453 Duotones_II -770 Duotones_III -1049 Duotones_IV -810 Earliest_Memory -463 Education -1366 Edward_Weston -558 Electricity -79 Emotion -503 Empty_Room -1376 Empty_Room_II -989 End -1044 Enemies -1138 Enthused -621 Entrance -1188 Entrance_II -493 Environmental_Portrait -832 Environmental_Portrait_II -409 Even -850 Even_II -900 Evening -239 Everyday_Objects -855 Every_Picture_Tells_A_Story -622 Exit -1189 Exit_II -146 Exposed -231 Extraordinary -327 Extreme_Action -715 Extreme_Emotion_Faceless -1363 Extreme_Supermoon -301 Faceless -566 Faceless_Portrait -1306 Faces_in_Household_Items -499 Failure -250 Fairy_Tales -779 Fairy_Tales_II -1273 Fairy_Tales_III -898 Fallen -356 Family -1219 Family_II -591 Famous_Last_Words -1224 Famous_Photograph -438 Fantasy -350 Fantasy_World -555 Far_Side_Gary_Larson_Tribute -454 Fashion -1203 Fashion_II -724 Fast_Food -89 Fauna -753 Fauna_II -1013 Fauna_III -23 Fear -958 Feast -243 Feet -866 Female_Portrait -609 Fences -833 Fences_II -1386 Fences_III -961 Fill_Flash -1280 Fill_Flash_II -120 Fill_the_Frame -624 Fill_the_Frame_II -731 Fill_the_Frame_III -1177 Fine_Arts_Exhibit_1 -1367 Fine_Arts_Exhibit_2 -193 Fire -537 Fire_II -794 Fire_III -1101 Fire_IV -521 Fireworks -611 Fireworks_II -975 Fireworks_III -1323 Fireworks_IV -1240 First_Entry -659 Fitness -339 Five -142 Flight -88 Flora -754 Flora_II -1014 Flora_III -516 Flowers -1063 Flowers_II -1391 Flowers_in_Garden___Field -1362 Focal_Point -1112 Foliage -462 Footwear -1061 Footwear_II -772 Foreground_Bokeh -598 For_Sale -49 Four -251 Framing -508 Framing_II -806 Framing_III -1174 Framing_IV -139 Freedom -234 Freedom_II -24 Free_Study -615 Free_Study_2007-01 -631 Free_Study_2007-02 -645 Free_Study_2007-03 -664 Free_Study_2007-04 -679 Free_Study_2007-05 -692 Free_Study_2007-06 -707 Free_Study_2007-07 -721 Free_Study_2007-08 -738 Free_Study_2007-09 -751 Free_Study_2007-10 -769 Free_Study_2007-11 -783 Free_Study_2007-12 -797 Free_Study_2008-01 -813 Free_Study_2008-02 -827 Free_Study_2008-03 -843 Free_Study_2008-04 -858 Free_Study_2008-05 -871 Free_Study_2008-06 -886 Free_Study_2008-07 -901 Free_Study_2008-08 -915 Free_Study_2008-09 -931 Free_Study_2008-10 -944 Free_Study_2008-11 -960 Free_Study_2008-12 -976 Free_Study_2009-01 -993 Free_Study_2009-02 -1003 Free_Study_2009-03 -1018 Free_Study_2009-04 -1032 Free_Study_2009-05 -1045 Free_Study_2009-06 -1060 Free_Study_2009-07 -1075 Free_Study_2009-08 -1089 Free_Study_2009-09 -1104 Free_Study_2009-10 -1118 Free_Study_2009-11 -1136 Free_Study_2009-12 -1150 Free_Study_2010-01 -1164 Free_Study_2010-02 -1180 Free_Study_2010-03 -1193 Free_Study_2010-04 -1207 Free_Study_2010-05 -1221 Free_Study_2010-06 -1236 Free_Study_2010-07 -1250 Free_Study_2010-08 -1263 Free_Study_2010-09 -1279 Free_Study_2010-10 -1293 Free_Study_2010-11 -1308 Free_Study_2010-12 -1324 Free_Study_2011-01 -1339 Free_Study_2011-02 -1356 Free_Study_2011-03 -1371 Free_Study_2011-04 -1387 Free_Study_2011-05 -401 Free_Study_IX -322 Free_Study_VIII -431 Free_Study_X -489 Free_Study_XI -536 Free_Study_XII -551 Free_Study_XIII -565 Free_Study_XIV -581 Free_Study_XV -596 Free_Study_XVI -727 Free_Study_XVII -1043 Friends -77 From_Above -1062 From_Above_II -13 From_the_Ground_Up -383 From_the_Ground_Up_II -535 From_the_Ground_Up_III -760 From_the_Ground_Up_IV -1054 From_the_Ground_Up_V -1311 From_the_Ground_Up_VI -1282 From_The_Knees_Down -32 Fruits_and_Vegetables -632 Fruits_and_Vegetables_II -1200 Full-Length_Studio_Shot -642 Furniture -1035 Furniture_II -16 Games -852 Games_II -185 Garage_Art -36 Garbage -404 Garbage_II -995 Gas_Stations -1064 Geology -164 Giving_Thanks -1037 Glamour -95 Glass -983 Glasses -515 Glass_II__with_a_twist_ -527 Gold -1388 Gold_II -629 Good -59 Got_Milk -1336 Got_Milk_Portrait -153 Grace -1159 Graffiti_ -343 Granular -78 Green -505 Green_II -1028 Green_star_II -382 Greeting_Cards -987 Grey -750 Group_Portrait -1038 Grunge -217 Habits -669 Hair -748 Half -1349 Half_II -151 Halloween -768 Halloween_II -1119 Halloween_III -1286 Halloween_Song_Titles -466 Hands -953 Hanging_On_By_A_Thread -607 Harsh_Environments -831 Harsh_Environments_II -637 Hate -1143 Hate_II -586 HDR -1092 HDR_II -1220 HDR_III -584 Headwear -1168 Headwear_II -853 Healthy_Food -452 Heart -949 Heart_II -497 Heat -784 Heaven -785 Hell -1395 Henri_Cartier-Bresson -277 Heroes -291 Hidden_Faces -1005 Hidden_Gem_--_1,000th_Challenge! -1210 Hidden_Gem_Break_Time -1102 Hidden_Treasures -374 High_Contrast -564 High_Contrast_II -874 High_Contrast_III -1057 High_Contrast_IV -1270 High_Key -418 Holiday_Catalog -1327 Holidays -491 Holy_Places -845 Homemade_Landscapes -1292 Homemade_Landscapes_II -101 Home_Sweet_Home -1401 Honey -249 Hope -1006 Hope_II -1307 Horizon_Line -908 Horse_s_ -894 Hot -1162 Hot_II -1081 Household_Appliances -56 Humor -283 Humor_II -1152 Humor_III -786 I_Bought_It_On_eBay -640 Ice -795 Ice_II -1008 Illuminative_Subject -39 Illusions -366 Illusions_II -394 Image_Grain -648 Image_Grain_II -1056 Image_Grain_III -545 Image_without_Subject -917 Immovable -269 Implied_Lines -276 Impressionism -737 Impressionism_II -275 Indecision -358 Independence -81 Indoor_Macro_Shot -509 Indulgence -413 Industrial -1245 Industrial_II -154 Infinite -1264 Innocent_Bystander -135 Insects -667 Insects_II -125 Inside_Looking_Out -1315 Inside_Looking_Out_II -933 Inside_Out -323 In_the_Beginning... -121 In_the_Garden -1173 In_the_Garden_II -1090 In_The_Style_Of_Heida -1358 In_The_Style_Of_librodo -1260 In_The_Style_Of_Nixter -835 Intimacy -1106 Into_or_Out_Of_the_Frame -1041 I_Quit -143 Irony -1067 Its_All_About_Position -332 Jewelry_Advertisement -1312 John_Lennon_Song_or_Lyrics -477 Jump -1289 Jump_II -220 June_Free_Study -1317 Kids_With_Toys -76 Kitchen_Art -670 Kitchenware -414 Knife_Fork_Spoon -1330 Lamp -284 Landmarks -705 Land__not_sea_ -57 Landscape -403 Landscape_II -668 Landscape_III -576 Landscape_in_Portrait_Orientation -887 Landscape_IV -1126 Landscape_V -653 Langdons_Birthday -1010 Language -335 Late_Night -896 Lawn -1319 Layers -71 Leading_Lines -352 Leading_Lines_II -557 Leading_Lines_III -818 Leading_Lines_IV -1341 Leading_Lines_V -1337 Least_Most_Favorite_Household_Items -824 Led_Zeppelin -494 Lenscap -188 Letting_Go -138 Life -1070 Life___Death -594 Life_II -977 Life_III -1217 Life_In_Your_City -1309 Life_IV -303 Light -884 Light_Bulb -1397 Lighter_Than_Air -1031 Light_II -149 Lighting -342 Lighting_II -570 Lighting_III -1021 Lighting_IV -313 Light_On_White -395 Light_On_White_II -590 Light_on_White_III -1000 Light_on_White_IV -1392 Light_on_White_V -38 Light_Source -317 Lines -526 Lines_II -1086 Lines_III -1196 Lingerie -103 Liquid -157 Literalisms -461 Literary_Adventure -369 Live_Music -1347 Lonely_Shoes_In_Black_and_White -363 Long_Exposure -578 Long_Exposure_II -788 Long_Exposure_III -921 Long_Exposure_IV -1226 Long_Exposure_V -69 Love -636 Love_II -1142 Love_III -467 Low_Key -641 Low_Key_II -1103 Low_Key_IV -281 Low_Tech -973 Lucky -1364 Lucky_13 -282 Lucky_7 -710 Lucky_7_II -1259 Lucky_7_III -41 Macro -140 Macro_II -167 Macro_III -240 Macro_IV -354 Macro_V -755 Macro_VI -1276 Macro_VII -274 Macro_Without_Bugs_or_Flowers -849 Macro_Without_Bugs_or_Flowers_II -1130 Macro_Without_Bugs_or_Flowers_III -105 Magazine_Cover -200 Magazine_Cover_Revisited -541 Magic___Mystery -1321 Magnifying_Glass -1160 Main_Street -867 Male_Portrait -195 March_Free_Study -837 Marshmallow_Peeps -868 Masks -460 Master_of_Disguise -254 Masters_Free_Study -945 Masters_Free_Study_II -619 Match -905 Mathematics -292 Mechanical -1277 Memorials_and_Monuments -351 Metal -1278 Metal_on_Metal -1059 Michael_Jackson_Song_Lyrics -1288 Mid-Day_Sun -1299 Military -241 Miniature -1036 Miniature_II -333 Minimalism -623 Minimalism_II -1246 Minimalism_in_Black_and_White -1399 Minimalist_Landscape -255 Mirrors -943 Mirrors_II -1257 Misquotes -1094 Missed_Focus -1214 Missed_Focus_II -711 Missing_Link -817 Misunderstanding -170 Money -939 Money_II -1334 Monty_Python -130 Monuments -334 Moods -569 Morning -899 Morning_II -427 Mother -45 Motion -202 Motion_Blur -513 Motion_Blur_II -940 Motion_Blur_III -1310 Motion_Blur_IV -447 Motion_Panning -618 Motion_Panning_II -1050 Motion_Panning_III -168 Motivational_Poster -734 Motivational_Poster_II -1033 Motivational_Poster_III -122 Movies -1340 Movies_II -298 Movie_Titles -863 Movie_Titles_II -834 Mug_Shot -90 Multi-Image_Compositions -219 Multiple_Light_Sources -651 Multiple_Light_Sources_II -192 Mundane -271 Music -1241 Mythical_Creatures -178 National_Geographic -1197 Natural_Light_Indoors -712 Natural_Light_Portrait -346 Naturally_Framed -73 Natural_Numbers -485 Negative_Image -848 Negative_Image_II -1275 Negative_Image_III -33 Negative_Space -128 Negative_Space_II -697 Negative_Space_III -1351 Negative_Space_IV -246 Neon -579 Neon_Signs -1055 Never_Seen_on_DPC! -1398 Never_Seen_on_DPC_II -229 Newspaper -53 New_Years_Resolution -175 New_Years_Resolution_II -295 New_Years_Resolution_III -709 Nightmares -1022 Nightmares_II -8 Night_Shot -267 Night_Shot_II -492 Night_Shot_III -662 Night_Shot_IV -1182 Night_Shot_V -870 Night_Sky -1093 Nine -136 Nostalgia -1023 Not_Quite_Right -115 Nude -248 Nude_II -370 Nude_III -625 Nude_IV -1100 Nude_V -918 Numbers -792 Object_Isolation_by_Contrast -353 Obsolete -1406 Obvious_Tripod -264 October_Free_Study -410 Odd -851 Odd_II -441 Off-Centered_Subject_II -1297 Off-Centered_Subject_III -106 Off-Center_Subject -104 Office_Art -197 Off-Screen_Expectation -1072 Oil -302 Old_and_New -1053 Old_Cars -808 Old_Ways -242 Once_in_a_Blue_Moon -1149 One_In_7_Billion -525 On_the_Beach -173 On_the_Edge -19 On_the_Road -133 Oops! -425 Oops!_II -740 Opening -215 Opposites -201 Orange -1187 Orange_II -1304 Orange_III -1235 Order -1216 Other_Art_Forms -5 Outdoor_Macro_Shot -1302 Outdoor_Night_Portrait -1325 Out_of_Balance -203 Out_of_Place -1195 Out_of_The_Ordinary -337 Outside_Looking_In -1316 Outside_Looking_In_II -1251 Over- -913 Overexposed -571 Oxymoron -1255 Oxymoron_ll -307 Pain -1121 Painted_Face -180 Painting_with_Light -457 Painting_With_Light_II -690 Painting_With_Light_III -926 Pajamas -816 Panning -713 Paper -199 Parallel_Lines -1176 Parallel_Lines_II -869 Partners -263 Parts -312 Passing_Time -1085 Pasta -548 Pastels -426 Pattern -606 Pattern_II -836 Pattern_III -1147 Paul_Simon_Lyrics -1305 Payphones -819 Peace -1215 Peanuts -538 PEAS! -828 Peek-a-Boo -29 Pencil -17 People -329 People_II -946 Periodic_Table -981 Personality -389 Personification -628 Personification_II -965 Personification_III -1155 Personified_Smiles_and_Frowns -65 Perspective -377 Perspective_II -523 Perspective_III -589 Perspective_IV -789 Perspective_V -1167 Perspective_VI -324 Pet_Portrait -599 Pet_Portrait_II -821 Pet_Portrait_III -992 Pet_Portrait_IV -289 Pets_and_Their_People -422 Phobia -1113 Photographing_Photographers -43 Photojournalism -486 Photojournalism_II -761 Photojournalism_III -1261 Photojournalism_IV -1344 Photoshop_Terms -84 Pi -464 Pick_Two -1161 Pieces_of_the_Human_Form -1068 Pigeons -674 Pi_II -306 Pink -603 Pink_Floyd -1080 Pink_II -226 Planes,_Trains_and_Automobiles -1185 Planes,_Trains_and_Automobiles_II -930 Play -470 Playtime -885 Point_of_Color -1227 Point_Of_Color_II -177 Point_of_View -757 Point_of_View_II -1389 Point_of_View_III -1129 Polka_Dots -830 Pollution -766 Popcorn -654 Pop_Culture -198 Portrait -1314 Portrait_From_Behind -577 Portrait_in_Landscape_Orientation -862 Portrait_of_a_Camera -1144 Portrait_Of_A_Wild_Bird -971 Portrait_Of_The_Elderly -1066 Portraits_Without_Children -1294 Portrait_Triptych -1272 Portrait_with_Chair -799 Portrait_with_Spectacles -94 Postcard -587 Postcard_II -1015 Postcard_III -1303 Posthumous_Ribbon -994 Post-It_Note -1242 Potatoes -270 Poverty -937 Poverty_II -735 Power -1133 Powerlines -85 Practical_Jokes -390 Pride -96 Primary_Colors -612 Procrastination -914 Product_Shot -1184 Product_Shot_II -522 Progress -1046 Promote_Your_Zoo -159 Propaganda -211 Proportion -695 Pure... -560 Purple_II -907 Purple_III -999 Puzzled -698 Puzzle_Macro -951 Puzzle_Macro_II -1141 Puzzle_Macro_III -1346 Puzzle_Macro_IV -1381 Queen_Song_Lyrics -368 Rain -758 Rainbow -1123 Rainbow_II -561 Rain_II -890 Recipe__Beverage_ -147 Recipe__Food_ -434 Recipe__Food__II -891 Recipe__Food__III -1238 Rectangle -6 Red -644 Red_II -948 Red_III -35 Reflections_Without_Mirrors -392 Reflections_Without_Mirrors_II -580 Reflections_Without_Mirrors_III -814 Reflections_Without_Mirrors_IV -1298 Reflections_Without_Mirrors_V -474 Refraction_of_Light -1204 Rejected_Movie_Poster -687 Religion -1127 Religion_II -1007 Remember_Those -132 Repetition -66 Rhythm -487 Rhythm_II -714 Rhythm_III -123 Right_Angles -919 Risk -800 Rivers___Streams -436 Road -2 Road_Signs -304 Road_Signs_IV -179 Road_Signs_Re-revisited -58 Road_Signs_Revisited -330 Rock,_Paper,_Scissors -1012 Rock_Song_Titles -1047 Rocks,_Stones,_Pebbles -718 Rolling_Stones_Songs -442 Romance -365 Room -542 Rope -117 Round -326 Rubber_Ducky -1328 Rubber_Ducky_II -380 Rule_of_Thirds -549 Rule_of_Thirds_II -672 Rule_of_Thirds_III -1084 Rule_of_Thirds_IV -1342 Rule_of_Thirds_V -1140 Rural_Decay -725 Rural_Landscapes -882 Rural_Landscapes_II -213 Rusted -1256 Rusted_II -156 Sacred_Places -1377 Sadness -920 Safety -972 Sand -420 Say_Cheese! -546 Scene_It! -765 Scene_It!_II -161 Scents_and_Aromas -268 School_Days -633 School_Days_Biology -553 School_Days_Chemistry -554 School_Days_Geometry -634 School_Days_Music -148 Science -688 Science_II -1128 Science_III -702 Sci-Fi_Celebration -746 S-Curve -1262 S-Curve_II -704 Sea__not_land_ -752 Searching -129 Seasonal_Shots -97 Secondary_Colors -556 Seed -781 Seeing_the_Unseen -228 Selective_Desaturation -683 Selective_Desaturation_II -7 Self-Portrait -308 Self-Portrait_III -496 Self_Portrait_IV -107 Self-Portrait_Revisited -582 Self_Portrait_V -780 Self_Portrait_VI -1218 Self_Portrait_VII -1002 Self_Portrait_Without_People -1230 Self_Portrait_Without_People_II -1335 Sentinel -310 Separation -854 Sepia -209 Serendipity -1380 Seven_Deadly_Sins_IV -20 Shadows -152 Shadows_II -507 Shadows_III -720 Shadows_IV -968 Shadows_V -1179 Shadows_VI -186 Shallow_DOF -423 Shallow_DOF_II -626 Shallow_DOF_III -916 Shallow_DOF_IV -1243 Shallow_DOF_V -165 Shapes -429 Shapes_II -685 Shapes_III -1296 Shapes_IV -373 Shoes -1171 Shoes_II -1385 Shotglasses -399 Shutter_Speed -1153 Signature_Style -437 Signs -194 Silence -985 Silence_II -1402 Silhouette_At_Night -208 Silhouettes -340 Silhouettes_II -547 Silhouettes_III -744 Silhouettes_IV -681 Silky-Smooth -826 Silverware -550 Simple_Pleasures -171 Simplicity -435 Singled-Out -406 Single_Light_Source_II -502 Single_Light_Source_III -767 Single_Light_Source_IV -801 Six -1001 Skin -600 Sky -1266 Skyscape -256 Smoke -942 Smoke_II -162 Soft_Focus -543 Soft_Focus_II -747 Soft_Focus_III -861 Soft_Focus_IV -701 Solo -28 Something_New -214 Something_New_II -481 Something_New_III -763 Something_New_IV -27 Something_Old -482 Something_Old_II -764 Something_Old_III -54 Song_Titles -613 Song_Titles,_2006 -102 Sound -986 Sound_II -1285 Sound_III -1058 Spam -112 Speed -732 Speed_II -1239 Spheres -655 Spinning -137 Sports -357 Sports_II -677 Sports_III -1205 Sports_IV -585 Spots -61 Square -458 Square_Crop -1382 Square_Crop_II -1074 Square_II -963 Stars -517 Stationary -518 Stationery -601 Sticky -656 Still -155 Still_Life -495 Still_Life_II -716 Still_Life_III -897 Still_Life_IV -1040 Still_Life_V -1158 Still_Life_With_Fruit -745 Still_Life_With_Motion -68 Stock_Photography -319 Stock_Photography_II -979 Stock_Photos_Cooking -1017 Stock_Photos_Fitness -1247 Stock_Photos_Medicine -978 Stock_Photos_The_Business_Person -1248 Stock_Photos_The_Operator -11 Stopped_Motion -258 Stopped_Motion_II -533 Stopped_Motion_III -773 Stopped_Motion_IV -1186 Stopped_Motion_V -956 Straight -519 Straight_from_the_Camera -1098 Straight_II -55 Stranger_In_A_Strange_Land -635 Street_Photography -717 Street_Photography_II -938 Street_Photography_III -1065 Street_Photography_In_Color -1343 Street_Photography_IV -1233 Street_Portraiture -775 Street_Smarts -207 Strength -793 Stupid_Gifts -540 Stupid,_Stupid! -932 Suburbia -498 Success -877 Success_II -892 Sugar -1244 Summertime_Meals -857 Sun_in_Frame -1390 Sunrise_Sunset_Look_the_Other_Way -959 Sunset_or_Sunrise -1269 Sunshine_After_The_Rain -955 Superpowers -40 Superstitions___Urban_Legends -514 Superstitions___Urban_Legends_II -160 Surprise! -316 Surrealism -1404 Symbolic_Still_Life -82 Symmetry -675 Symmetry_II -1122 Symmetry_III -4 Table_Shot -627 Table_Shot_II -1029 Table_Shot_III -331 Tacks! -1025 Tacks!_II -174 Tacky_Holiday_Decorations -504 Take_Two -1408 Take_Two_II -1353 Tarot_Card -257 Team_Sport_Action -223 Team_Sports_Without_Players -1206 Team_Sports_Without_Players_II -42 Technology -749 Technology_II -116 Temperature -25 Texture -190 Textures_II -360 Textures_III -475 Textures_IV -790 Textures_V -1016 Textures_VI -1271 Thar_Be_Pirates -451 The_80s -762 The_Beginning_of_the_End -928 The_Brothers_Grimm -232 The_Color_Purple -26 The_Corporate_World -872 The_Cowboy -72 The_Egg -1175 The_Egg_II -811 The_Eyes_Have_It! -187 The_Four_Elements -686 The_Four_Elements_II -124 The_Future -400 The_Great_Pumpkin_Carving_Challenge -791 The_Hidden_City -111 The_Letter_B -1148 The_Moon -520 The_Number_10 -455 The_Odd_Couple -847 The_Paranormal -127 The_Past -1079 The_Ribbon -909 The_Road_Less_Traveled -730 The_Sacred -1125 The_Spirit_Of_A_Country -424 The_Username_Challenge -684 The_Username_Challenge_II -1069 The_Username_Challenge_III -1348 The_Work_Place -588 The_Year_You_Were_Born -1166 Things_that_Count -184 Things_That_Go_Together -1151 Things_That_No_Longer_Work -305 Three -222 Threes -1111 Three_Techniques -825 Tilted -996 Tilted_Horizon -1372 Tilted_Horizon_II -1116 Tilted_II -1229 Tilted_III -1132 Tilt_Shift -80 Time -367 Time_Capsule -649 Time_II -796 Time_Lapse -279 Time_Passing -1268 Toilet_Paper -415 Too_Early -416 Too_Late -131 Tools -362 Tools_of_the_Trade -1131 Tools_of_the_Trade_II -771 Topless...With_No_People -259 Touch -572 Trains___Railroads -1020 Trains___Railroads_II -12 Transitions -694 Transitions_II -22 Transparency -397 Transparency_II -970 Transparency_III -91 Transportation -534 Transportation_II -52 Travel -252 Travel_Guides -638 Trees -1027 Trees_II -119 Trends -338 Triangle -856 Triangle_Composition -1265 Triangle_II -440 Tribute -405 Triptych -673 Triptych_II -1110 Triptych_III -719 Triumph -1076 Tunnels_and_Caves -957 Twisted -1099 Twisted_II -1352 Two_Colors -1145 Umbrella -113 Unanswered_Questions -1252 Under- -1267 Underexposed -506 Unexpected_Find -974 Unlucky -562 Unrelatedness -1042 Unusual_Objects -218 Unusual_Viewpoint -15 Upside_Down -723 Upside_Down_II -934 Upside_Down_III -1137 Urban_Decay -145 Urban_Landscapes -726 Urban_Landscapes_II -883 Urban_Landscapes_III -1357 Urban_Nature -1345 Valentines_Photo -660 Vanish -244 Vanishing_Point -682 Vanishing_Point_II -1087 Veggie_Tales -172 Vehicles -1300 Vintage -421 Visual_Puns -1378 Visual_Puns_II -261 Wacky_Foods -225 Waiting -1191 Waiting_II -840 Warm_Colors -1373 Warm_Colors_II -166 Water -1359 Water_Bottle -469 Water_II -846 Water_III -743 Wealth -87 Weather -888 Weathered -1237 Weathered_II -703 Weekend -393 What -1338 What_Doesnt_Belong -1360 What_DPC_Loves_the_Most -99 What_is_the_Matrix -756 What_is_this_Pencil -1394 Whats_In_Your_Fridge -205 Wheels -1332 Wheels_II -950 Where_In_The_World_Is_Art_Roflmao -776 Where_In_The_World_Is_drewmedia -544 Where_In_The_World_Is_stdavidson -64 Wheres_Waldo -294 Wheres_Waldo_II -699 Wheres_Waldo_III -1088 Wheres_Waldo_IV -210 Where_You_Live -691 Why -391 Wide_Angle -262 Wildlife -439 Wildlife_II -620 Wildlife_III -935 Wildlife_IV -1290 Wildlife_V -287 Wind -575 Wind_II -483 Window_Framed -60 Windows_and_Doors -967 Window_Shopping -1313 Window_Shopping_II -206 Window_View -1105 Window_View_II -728 Wings -47 Without_the_Hand_of_Man -361 Wooden -568 Woody -904 Woody_II -235 Words -929 Work -1326 Work_II -733 Working_Without_a_Net -1097 X_Marks_The_Spot -67 Yellow -472 Yellow_III -802 Yellow_IV -285 Yellow_Revisited -1258 Yellow_V -34 Your_Corner_of_the_World -385 Your_Corner_of_the_World_II -1109 Your_Corner_of_the_World_III -48 Your_Occupation -604 Your_Occupation_II -902 Your_Occupation_III -183 Your_Shadow -445 Your_Shadow_II -530 Zen_Photography -1052 Zen_Photography_II -1199 Zen_Photography_III -181 Zodiac diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/styles.txt b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/styles.txt deleted file mode 100644 index 544f637d49401c8ad233effed089721e5983160f..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/styles.txt +++ /dev/null @@ -1,14 +0,0 @@ -1 Complementary_Colors -2 Duotones -3 HDR -4 Image_Grain -5 Light_On_White -6 Long_Exposure -7 Macro -8 Motion_Blur -9 Negative_Image -10 Rule_of_Thirds -11 Shallow_DOF -12 Silhouettes -13 Soft_Focus -14 Vanishing_Point diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.jpgl deleted file mode 100644 index b7f3984217b7caa9e8ff95b66dec87d79f96b07e..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.jpgl +++ /dev/null @@ -1,2809 +0,0 @@ -615561 -615681 -615746 -615982 -616084 -616191 -616259 -616483 -616570 -616603 -616734 -616876 -616909 -616963 -617013 -617100 -617175 -617213 -617249 -617292 -617299 -617316 -617332 -617360 -617380 -617397 -617410 -617424 -617441 -617449 -617470 -617481 -617496 -617515 -21502 -21641 -21699 -21741 -21780 -21824 -21843 -21866 -21907 -21927 -21937 -21952 -21962 -21969 -21986 -21992 -323348 -323400 -323604 -323636 -323737 -323886 -324012 -324102 -324225 -324331 -324401 -324465 -324582 -324613 -324633 -324708 -324749 -324886 -324940 -324981 -325082 -325162 -325198 -325240 -325381 -325401 -325452 -325511 -325540 -325740 -325868 -325889 -325910 -325973 -325981 -326046 -326071 -326083 -326107 -326128 -326148 -326178 -326212 -326235 -326272 -326345 -326375 -326396 -326412 -326438 -326465 -326481 -326492 -326499 -326553 -326573 -326586 -917941 -918089 -918259 -918305 -918370 -918514 -918625 -918666 -918842 -918876 -918924 -918970 -918996 -919028 -919077 -919100 -919122 -919133 -919169 -919191 -237547 -237705 -237825 -237953 -238071 -238147 -238173 -238305 -238400 -238456 -238510 -238740 -238777 -238832 -238899 -238932 -238975 -239163 -239260 -239375 -239394 -239504 -239567 -239607 -239624 -239645 -239684 -239734 -239742 -239751 -239818 -239895 -239927 -240007 -240044 -240065 -240105 -240129 -240156 -240191 -240210 -240227 -240242 -240275 -240306 -240351 -240359 -240379 -240392 -240409 -240422 -240438 -240454 -240480 -240497 -240521 -240532 -240543 -240560 -240581 -240592 -240604 -296122 -296156 -296194 -296269 -296313 -296336 -296376 -296390 -296422 -296452 -296472 -296522 -296578 -296628 -296736 -296778 -296808 -296831 -296864 -296916 -296942 -296967 -296993 -297009 -297039 -297058 -297076 -297124 -297143 -297222 -297241 -297266 -297302 -297337 -297366 -297411 -297436 -297459 -297493 -297517 -297547 -297560 -297573 -297606 -297663 -297687 -297710 -297774 -297814 -297867 -297883 -297929 -297941 -297961 -297978 -297988 -298011 -298035 -298048 -298065 -298098 -298109 -298131 -298143 -298153 -298176 -298196 -298246 -298255 -298268 -298291 -298318 -298328 -298346 -298372 -298414 -298421 -298428 -298433 -298445 -298452 -298467 -298477 -298488 -298501 -298516 -298530 -298544 -298553 -298561 -298570 -298592 -298608 -298614 -298621 -298628 -298635 -298640 -298657 -298708 -298716 -298725 -298731 -298741 -298751 -298769 -298783 -298815 -298839 -298851 -298857 -298871 -298878 -298889 -298896 -298906 -298918 -298928 -298955 -298963 -298982 -609299 -609377 -609594 -609809 -609926 -610109 -610188 -610293 -610405 -610415 -610543 -610611 -610641 -610703 -610760 -610859 -610899 -610929 -610940 -611028 -611088 -611128 -611207 -611341 -611389 -611403 -611434 -611455 -611470 -611476 -611496 -611511 -611524 -611539 -611556 -611573 -611581 -611595 -611611 -611636 -611675 -611698 -611710 -611729 -611736 -611742 -611752 -611758 -611770 -611795 -611806 -611820 -611829 -611839 -612230 -612245 -612264 -612278 -612285 -797817 -797932 -798174 -798268 -798355 -798408 -798518 -798626 -798737 -798766 -798806 -798839 -798869 -798904 -798952 -798990 -799038 -799074 -799094 -799118 -799141 -799156 -799181 -799195 -799214 -799225 -799238 -799245 -799260 -799266 -799275 -799286 -799295 -799305 -799313 -799326 -799334 -799346 -799359 -799365 -799370 -799381 -799393 -799407 -799418 -799427 -799434 -799440 -799447 -799452 -22023 -22069 -22146 -22214 -22273 -22295 -22313 -22395 -22410 -22451 -22464 -22474 -22500 -22618 -22628 -22656 -22680 -22689 -22696 -22701 -22709 -22729 -22734 -22745 -22753 -22759 -22769 -22780 -22786 -22792 -887580 -887876 -887999 -888114 -888147 -888190 -888213 -888280 -888287 -888360 -888377 -888778 -888797 -888820 -888832 -888857 -888919 -888937 -888959 -888970 -888989 -889012 -889037 -889068 -889079 -889186 -889194 -889215 -889241 -889254 -889267 -889279 -820096 -820305 -820374 -820483 -820518 -820552 -820592 -820672 -820708 -820729 -820758 -820791 -820829 -820849 -820889 -820902 -820914 -820923 -820945 -820963 -820977 -820988 -820995 -821005 -821033 -821043 -821058 -821071 -821093 -821098 -426125 -426212 -426272 -426346 -426399 -426428 -426486 -426520 -426546 -426573 -426617 -426700 -426734 -426755 -426781 -426800 -426820 -480690 -480747 -480849 -480993 -481181 -481279 -481374 -481444 -481521 -481654 -481697 -481723 -481808 -481877 -481914 -481978 -482030 -482094 -482177 -482221 -482280 -482356 -482413 -482474 -482516 -482642 -482746 -482883 -482903 -482990 -483031 -483085 -483125 -483156 -483169 -483200 -483249 -483281 -483301 -483317 -483362 -483394 -483507 -483528 -483564 -483589 -483594 -483606 -483616 -483633 -483655 -483668 -483686 -483720 -483739 -483750 -483761 -483773 -483797 -483819 -483835 -483843 -483853 -483869 -483875 -483886 -483902 -483921 -483927 -483939 -483964 -483978 -483986 -483996 -484004 -484016 -484024 -484030 -801315 -801822 -801890 -802116 -802230 -802350 -802377 -802410 -802458 -802480 -802513 -802528 -802568 -802580 -802617 -802630 -802646 -802656 -802668 -802683 -802718 -802728 -802739 -802746 -802762 -802788 -802812 -802821 -802831 -802841 -802854 -802861 -802877 -802890 -802901 -245494 -245685 -245944 -245995 -246282 -246521 -246759 -246813 -246901 -246937 -247050 -247245 -247311 -247337 -247365 -247484 -247515 -247589 -247656 -247720 -247815 -247834 -247888 -247934 -247981 -248008 -248037 -248055 -248072 -248084 -248111 -248125 -248155 -248176 -248224 -248239 -248247 -248257 -248270 -248288 -248343 -248353 -248369 -248382 -248389 -248405 -248417 -248428 -248441 -248462 -248469 -248485 -248499 -248526 -248531 -429892 -430266 -430449 -430643 -430805 -430882 -430925 -431047 -431085 -431120 -431203 -431251 -431300 -431315 -431383 -431411 -431501 -431549 -431614 -431640 -431672 -431727 -431757 -431789 -431812 -431842 -431861 -431876 -431889 -431900 -431917 -431941 -431949 -431955 -431980 -432007 -432016 -432026 -432049 -432063 -432073 -432078 -432086 -432093 -432102 -432108 -951295 -951438 -951507 -951642 -951823 -951960 -952080 -952208 -952233 -952321 -952330 -952354 -952381 -952394 -952404 -952413 -952436 -952451 -952460 -767784 -768307 -768419 -768496 -768585 -768670 -768740 -768815 -768879 -768934 -768981 -769044 -769145 -769204 -769260 -769296 -769319 -769330 -769367 -769380 -769409 -769429 -769436 -769455 -769473 -769482 -769501 -769516 -769535 -769546 -769553 -769567 -769588 -769600 -769605 -246556 -246812 -246934 -247033 -247113 -247198 -247302 -247357 -247485 -247502 -247614 -247705 -247835 -247926 -248106 -248142 -248222 -248295 -248525 -248562 -248754 -248821 -248880 -248902 -248931 -248964 -248980 -248998 -249029 -249076 -249123 -249167 -249199 -249207 -249261 -249287 -249322 -249343 -249382 -249394 -249406 -249417 -249430 -249451 -249472 -249505 -249537 -249551 -249566 -249576 -249584 -249597 -249602 -249614 -149700 -149797 -149846 -149875 -149962 -150020 -150051 -150075 -150128 -150169 -150185 -150225 -150259 -150291 -150304 -150317 -150346 -150363 -150388 -150438 -150459 -150491 -150518 -150534 -150564 -150597 -150616 -150681 -150701 -150717 -150737 -150763 -150782 -150813 -150850 -150873 -150917 -150971 -151031 -151151 -151184 -151254 -151279 -151303 -151319 -151347 -151365 -151372 -151387 -151394 -151407 -151434 -151453 -151459 -151475 -151482 -151490 -151508 -151562 -151568 -151582 -151611 -151624 -151650 -151664 -151674 -151685 -151695 -151712 -151719 -151736 -151756 -151762 -151783 -151788 -151797 -151818 -151827 -151835 -151842 -151848 -151856 -151861 -151868 -151873 -622160 -622260 -622510 -622633 -622707 -622777 -622939 -623068 -623183 -623208 -623270 -623315 -623339 -623373 -623459 -623482 -623514 -623543 -623620 -623666 -623685 -623704 -623717 -623772 -623792 -623829 -623839 -623850 -623856 -623864 -623879 -721101 -721272 -721488 -721726 -721827 -721898 -721938 -722072 -722160 -722309 -722475 -722493 -722567 -722635 -722686 -722711 -722743 -722758 -722773 -722790 -722818 -722887 -722912 -722921 -722929 -420113 -420439 -420614 -421139 -421375 -421624 -421699 -421766 -421926 -422091 -422212 -422318 -422487 -422536 -422602 -422670 -422699 -422732 -422785 -422868 -422979 -423015 -423040 -423049 -423064 -423099 -423132 -423145 -423166 -423184 -423203 -423225 -423236 -423246 -423259 -423265 -423276 -423286 -423296 -423305 -423332 -423357 -423371 -423383 -423414 -423423 -423430 -209134 -209262 -209692 -209895 -210057 -210141 -210371 -210453 -210561 -210726 -210816 -210882 -210946 -210983 -211169 -211292 -211312 -211400 -211440 -211467 -211492 -211517 -211558 -211611 -211661 -211680 -211709 -211731 -211759 -211782 -211788 -211795 -211806 -211828 -211842 -211855 -211869 -211875 -211892 -211897 -890166 -890477 -890630 -890808 -890892 -891010 -891140 -891234 -891282 -891315 -891378 -891395 -891472 -891519 -891530 -891538 -891558 -891588 -891630 -891666 -891690 -891736 -891756 -891810 -891824 -891851 -37984 -38011 -38060 -38134 -38192 -38247 -38281 -38300 -38352 -38399 -38425 -38458 -38480 -38568 -38622 -38642 -38667 -38686 -38724 -38734 -38760 -38792 -38807 -38824 -38853 -38865 -38873 -38878 -38895 -38903 -38924 -38944 -38956 -38965 -38971 -38981 -38991 -38999 -39005 -39011 -196784 -196941 -197052 -197205 -197530 -197648 -197787 -197876 -197909 -197937 -197970 -198071 -198127 -198181 -198228 -198272 -198288 -198356 -198382 -198448 -198488 -198525 -198614 -198633 -198665 -198719 -198762 -198793 -198806 -198846 -198926 -198961 -199021 -199038 -199061 -199080 -199114 -199140 -199165 -199197 -199218 -199266 -199286 -199296 -199306 -199316 -199331 -199341 -199347 -199354 -199393 -199401 -199409 -199417 -199427 -199443 -199453 -199471 -199483 -199499 -199514 -199523 -199533 -199539 -199546 -199583 -199591 -199598 -199613 -199641 -199652 -199659 -199668 -199676 -911557 -911764 -911946 -912022 -912177 -912296 -912392 -912429 -912482 -912491 -912534 -912556 -912590 -912611 -912630 -912643 -912650 -912662 -912679 -912695 -912703 -912718 -912728 -912735 -912744 -912755 -912763 -912770 -912791 -912797 -912805 -912811 -912817 -50991 -51122 -51167 -51209 -51295 -51338 -51367 -51393 -51462 -51508 -51519 -51557 -51580 -51604 -51621 -51643 -51656 -51679 -51688 -51698 -51710 -51719 -51727 -51737 -51752 -51761 -51774 -51781 -51792 -51802 -51812 -51821 -51826 -93652 -93759 -93798 -93877 -93985 -94047 -94192 -94233 -94247 -94296 -94349 -94381 -94394 -94419 -94463 -94478 -94493 -94526 -94554 -94592 -94627 -94663 -94688 -94729 -94753 -94786 -94827 -94875 -94935 -94973 -94988 -95006 -95032 -95047 -95072 -95095 -95118 -95138 -95167 -95179 -95196 -95214 -95232 -95244 -95262 -95281 -95302 -95316 -95326 -95343 -597432 -597603 -597985 -598131 -598510 -598810 -598862 -599044 -599154 -599212 -599259 -599314 -599342 -599381 -599451 -599504 -599606 -599635 -599666 -599692 -599778 -599839 -599859 -599906 -599944 -599952 -599974 -599988 -600023 -600049 -600067 -600080 -600101 -600119 -600133 -600150 -600188 -600199 -600216 -600236 -600257 -600304 -600313 -600332 -600344 -600358 -600371 -600380 -600389 -7875 -7891 -7898 -7906 -7914 -7921 -7928 -7933 -7940 -7945 -7953 -7958 -7969 -7978 -7986 -7993 -8001 -8015 -8021 -8029 -8039 -8045 -8050 -8061 -8067 -8072 -8079 -8087 -8097 -8106 -8115 -8122 -8128 -8133 -8141 -8151 -8160 -8166 -8173 -8179 -8184 -8192 -8198 -8205 -8215 -8222 -8229 -8234 -8239 -8245 -8250 -8255 -8261 -8267 -8272 -8278 -8285 -8291 -8299 -8305 -350184 -351323 -351587 -351891 -351942 -352338 -352528 -352738 -352850 -352983 -353035 -353098 -353153 -353202 -353249 -353297 -353314 -353332 -353365 -353380 -353393 -353408 -353423 -353447 -353486 -353513 -353520 -353591 -353624 -353655 -353704 -353720 -353737 -353743 -353754 -66242 -66489 -66690 -66827 -66914 -66942 -66966 -66983 -66996 -67018 -67034 -67047 -67057 -67072 -67089 -67112 -67124 -67136 -67143 -67160 -67166 -67171 -67179 -923283 -923395 -923501 -923549 -923650 -923700 -923848 -923921 -923999 -924033 -924053 -924070 -924100 -924147 -924169 -924181 -924202 -924225 -924233 -924250 -924263 -924276 -924288 -732928 -733049 -733137 -733279 -733341 -733374 -733451 -733537 -733555 -733662 -733737 -733901 -733950 -733973 -734089 -734168 -734198 -734215 -734244 -734264 -734291 -734332 -734364 -734388 -734413 -734446 -734480 -734512 -734529 -734545 -734564 -734577 -734604 -734616 -734631 -734653 -734662 -734679 -734713 -734729 -323361 -323490 -323540 -323580 -323605 -323676 -323731 -323775 -323888 -323924 -323977 -323993 -324045 -324115 -324189 -324230 -324266 -324315 -324335 -324356 -324400 -324423 -324443 -324459 -324529 -324557 -324626 -324644 -324677 -324740 -324807 -324851 -324882 -324926 -324954 -324998 -325021 -325070 -325106 -325133 -325150 -325176 -325245 -325324 -325367 -325384 -325431 -325447 -325481 -325492 -325514 -325542 -325628 -325811 -325876 -325900 -325916 -325965 -325987 -326019 -326037 -326060 -326093 -326102 -326121 -326134 -326155 -326180 -326199 -326224 -326250 -326268 -326276 -326324 -326343 -326357 -326389 -326402 -326420 -326436 -326445 -326461 -326478 -326503 -326561 -326587 -667513 -667577 -667745 -667832 -667961 -668041 -668110 -668165 -668206 -668269 -668338 -668361 -668404 -668482 -668506 -668570 -668601 -668630 -668665 -668693 -668760 -668940 -668976 -669013 -669135 -669179 -669264 -669282 -669335 -669359 -669395 -669418 -669443 -669472 -669491 -669529 -669552 -669571 -669595 -669618 -669641 -669660 -669671 -669687 -669732 -669745 -669753 -669773 -669782 -669790 -669805 -669811 -669825 -669836 -669842 -669850 -669855 -669868 -669879 -669887 -669902 -669929 -669951 -669965 -669975 -669995 -670010 -670029 -670042 -670051 -670060 -910871 -910902 -910950 -911058 -911085 -911148 -911177 -911223 -911262 -911274 -911302 -911351 -911389 -911434 -911499 -911531 -911550 -911564 -911589 -911618 -911678 -911698 -911739 -911761 -911769 -911783 -911799 -911815 -911827 -911846 -911856 -911867 -911878 -911889 -815358 -815602 -815785 -815817 -815900 -815966 -815995 -816063 -816108 -816159 -816211 -816280 -816312 -816368 -816395 -816411 -816436 -816477 -816526 -816549 -816572 -816584 -816643 -816662 -816686 -816705 -816725 -816737 -816777 -816785 -816811 -816856 -816871 -816880 -816897 -816907 -816916 -816924 -934197 -934327 -934684 -934796 -934873 -934936 -935021 -935084 -935153 -935202 -935241 -935287 -935346 -935363 -935405 -935432 -935444 -935466 -935483 -935494 -935524 -935541 -935553 -935585 -935611 -935626 -935645 -935654 -935668 -935685 -935695 -231525 -231877 -232061 -232156 -232280 -232318 -232357 -232421 -232455 -232501 -232565 -232611 -232655 -232726 -232774 -232809 -232819 -232840 -232891 -232914 -232995 -233043 -233090 -233241 -233281 -233352 -233388 -233765 -233799 -233811 -233839 -233900 -233915 -233921 -233936 -233965 -234010 -234040 -234075 -234105 -234149 -234164 -234179 -234194 -234273 -234281 -234297 -234312 -234321 -234341 -234368 -234398 -234414 -234432 -234447 -234458 -234479 -234491 -234503 -234527 -234539 -234573 -234581 -234593 -234603 -234616 -234628 -234638 -234649 -234659 -499796 -499887 -500073 -500161 -500241 -500323 -500420 -500489 -500512 -500553 -500604 -500705 -500770 -500830 -500890 -500972 -501014 -501036 -501070 -501109 -501141 -501173 -501191 -501271 -501313 -501402 -501435 -501473 -501525 -501577 -501617 -501650 -501689 -501718 -501746 -501779 -501813 -501829 -501843 -501858 -501875 -501961 -502005 -502018 -502048 -502059 -502074 -502094 -502107 -502123 -502180 -502201 -502230 -502249 -502295 -502334 -502368 -502378 -502391 -502401 -502440 -502449 -502459 -502478 -502527 -502550 -502573 -502608 -502623 -502638 -502646 -502655 -502668 -502685 -502693 -388304 -388721 -388992 -389219 -389413 -389558 -389654 -389711 -389860 -389916 -389961 -390039 -390073 -390140 -390211 -390351 -390445 -390550 -390586 -390628 -390679 -390739 -390830 -390860 -390895 -390941 -390981 -390997 -391036 -391074 -391089 -391118 -391150 -391183 -391200 -391237 -391248 -391270 -391307 -391322 -391374 -391392 -391419 -391431 -391441 -391487 -391513 -391527 -391556 -391566 -391581 -391602 -391625 -391641 -391655 -391666 -391679 -391705 -391718 -391745 -391773 -391784 -391800 -457881 -457955 -458098 -458142 -458196 -458357 -458455 -458611 -458675 -458831 -458982 -459106 -459248 -459309 -459336 -459355 -459387 -459416 -459461 -459529 -459574 -459742 -459813 -459853 -459891 -459915 -459969 -460048 -460118 -460171 -460218 -460247 -460376 -460403 -460433 -460457 -460505 -460527 -460570 -460629 -460645 -460684 -460746 -460798 -460817 -460882 -460901 -460952 -460988 -461015 -461033 -461070 -461095 -461117 -461151 -461201 -461219 -461259 -461290 -461312 -461326 -461347 -461367 -461392 -461419 -461435 -461451 -461466 -461496 -461544 -461558 -461569 -461579 -461590 -461599 -461610 -461623 -461632 -461652 -461670 -461686 -461697 -58389 -58503 -58602 -58639 -58660 -58736 -58793 -58840 -58853 -58892 -58908 -58927 -58950 -58967 -59013 -59021 -59031 -59051 -59065 -59086 -59103 -59116 -59132 -59158 -59187 -59205 -59217 -59229 -59242 -59258 -59269 -59288 -59300 -59306 -59311 -717932 -717964 -718032 -718175 -718197 -718269 -718380 -718494 -718564 -718599 -718631 -718656 -718733 -718796 -718813 -718865 -718889 -718983 -718996 -719050 -719068 -719146 -719170 -719276 -719378 -719424 -719452 -719473 -719501 -719511 -719548 -719566 -719611 -719624 -719653 -719660 -719823 -719862 -719884 -719947 -719962 -719981 -720016 -720026 -720041 -720058 -720070 -720075 -720094 -720121 -720132 -720142 -720150 -720158 -720165 -720172 -720179 -720205 -720233 -720244 -720251 -720264 -720292 -720299 -269105 -269211 -269249 -269311 -269359 -269424 -269505 -269536 -269602 -269669 -269728 -269802 -269846 -269917 -269956 -269968 -269994 -270090 -270135 -270191 -270238 -270254 -270332 -270400 -270424 -270449 -270459 -270506 -270533 -270602 -270625 -270650 -270688 -270716 -270725 -270762 -270790 -270815 -270845 -270887 -270920 -270944 -270979 -270994 -271017 -271038 -271057 -271085 -271093 -271106 -271115 -271126 -271152 -271171 -271214 -271227 -271243 -271255 -271271 -271291 -271309 -271319 -271331 -271338 -271353 -271361 -271369 -271378 -898340 -898498 -898577 -898687 -898779 -898904 -898918 -898961 -899003 -899034 -899064 -899089 -899130 -899173 -899196 -899212 -899229 -899255 -899269 -899304 -899311 -899332 -899347 -899383 -899395 -899422 -899434 -899452 -899463 -899475 -899496 -899509 -899525 -899541 -899551 -899570 -899580 -899587 -899604 -899612 -899617 -899627 -899633 -899641 -899646 -899651 -586181 -586456 -586586 -586803 -586878 -586972 -587149 -587273 -587380 -587457 -587594 -587699 -587798 -587929 -587977 -588008 -588064 -588086 -588138 -588179 -588210 -588225 -588260 -588279 -588320 -588329 -588363 -588395 -588410 -588438 -588473 -588511 -588525 -588546 -588558 -588568 -588598 -588648 -588653 -588670 -588686 -588719 -588742 -588752 -588765 -588783 -588799 -588808 -588828 -588845 -588883 -588909 -588941 -588968 -176001 -176132 -176252 -176399 -176524 -176749 -176957 -177092 -177235 -177393 -177466 -177492 -177515 -177618 -177657 -177693 -177723 -177795 -177879 -177934 -177952 -177979 -178004 -178046 -178073 -178130 -178158 -178209 -178243 -178258 -178285 -178297 -178329 -178354 -178362 -178384 -178436 -178452 -178464 -178486 -178493 -178514 -178532 -178544 -178559 -178565 -178571 -178576 -178586 -384303 -384455 -384708 -384841 -384886 -385098 -385154 -385249 -385424 -385563 -385682 -385837 -385905 -385949 -386047 -386120 -386171 -386241 -386263 -386327 -386366 -386430 -386511 -386605 -386627 -386729 -386760 -386814 -386881 -386921 -386996 -387040 -387075 -387094 -387114 -387147 -387180 -387247 -387266 -387305 -387356 -387411 -387459 -387477 -387523 -387536 -387563 -387612 -387640 -387657 -387680 -387712 -387729 -387746 -387771 -387782 -387800 -387818 -387840 -387853 -387862 -387870 -387883 -387900 -387931 -387949 -387975 -388011 -388028 -69936 -70201 -70268 -70302 -70341 -70411 -70471 -70511 -70546 -70579 -70616 -70639 -70662 -70684 -70701 -70712 -70725 -70738 -70768 -70782 -70799 -70806 -70820 -70836 -70857 -70889 -70901 -70910 -70916 -70921 -70929 -70937 -70948 -70959 -381462 -381585 -381730 -381838 -382055 -382124 -382224 -382261 -382360 -382439 -382653 -382679 -382721 -382786 -382835 -382931 -382974 -383029 -383157 -383217 -383243 -383307 -383342 -383398 -383460 -383539 -383578 -383633 -383684 -383721 -383753 -383780 -383816 -383848 -383889 -383915 -383946 -383994 -384034 -384054 -384079 -384089 -384106 -384125 -384138 -384160 -384170 -384194 -48503 -48592 -48758 -48799 -48845 -48903 -48955 -49012 -49033 -49041 -49082 -49101 -49107 -49119 -49129 -49138 -49155 -49178 -49195 -589052 -589160 -589376 -589606 -589795 -589950 -590111 -590266 -590446 -590542 -590654 -590770 -590864 -590957 -591070 -591139 -591190 -591222 -591273 -591342 -591508 -591531 -591561 -591582 -591618 -591644 -591667 -591691 -591719 -591748 -591780 -591794 -591800 -591816 -591828 -676879 -677034 -677133 -677189 -677389 -677417 -677484 -677543 -677634 -677665 -677715 -677762 -677828 -677890 -677967 -678031 -678051 -678152 -678196 -678236 -678255 -678333 -678364 -678378 -678394 -678425 -678451 -678473 -678486 -678507 -678530 -678555 -678566 -678573 -678592 -678605 -678615 -678629 -678644 -678654 -95822 -95893 -95990 -96085 -96133 -96168 -96219 -96252 -96315 -96347 -96362 -96377 -96401 -96409 -96440 -96461 -96479 -96503 -96546 -96595 -96625 -96651 -96679 -96699 -96724 -96739 -96755 -96766 -96785 -96798 -96808 -96850 -96860 -96872 -96881 -96903 -96910 -96917 -96926 -96939 -96951 -96960 -96972 -96979 -96985 -96991 -96997 -97003 -97009 -510135 -510324 -510457 -510548 -510698 -510747 -510815 -510898 -510996 -511057 -511125 -511213 -511293 -511527 -511622 -511723 -511767 -511830 -511995 -512153 -512262 -512296 -512360 -512424 -512470 -512487 -512525 -512557 -512591 -512640 -512669 -512718 -512751 -512781 -512815 -512847 -512887 -512901 -1282 -1341 -800749 -801279 -801736 -236303 -237101 -603032 -924600 -374774 -375541 -376461 -377201 -377475 -193157 -195013 -195588 -195774 -196011 -196211 -196263 -196379 -933824 -934269 -934584 -647466 -647839 -648045 -648215 -648562 -648715 -648820 -648931 -649019 -13330 -396136 -397272 -398095 -398454 -64211 -64399 -64578 -64740 -64851 -856476 -857688 -858130 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.multilab b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.multilab deleted file mode 100644 index 053f42bbb4811b09a488856b0cfca8e98158774f..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/test.multilab +++ /dev/null @@ -1,2809 +0,0 @@ -1 0 0 0 0 0 0 0 0 1 0 1 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 1 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 1 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 1 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 1 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 1 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 1 0 0 0 0 -0 0 1 0 0 1 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 1 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 1 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 1 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 1 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 1 1 0 0 1 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 1 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 1 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 1 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 1 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 1 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 1 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 1 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 1 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 1 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 1 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 1 0 0 -0 0 0 1 0 0 0 0 0 0 0 1 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 1 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 1 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 1 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 1 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 1 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 1 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 1 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 1 0 0 1 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 1 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 1 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 1 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 1 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 1 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 1 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 1 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 1 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 1 0 0 0 -0 0 0 0 0 1 1 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 1 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 1 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 1 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 1 1 1 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 1 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 1 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 1 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 1 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 1 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 1 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 1 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 1 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 1 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 1 0 0 0 0 0 0 -0 1 0 0 0 0 0 1 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 1 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 1 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 1 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 1 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 1 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 0 -0 1 0 0 0 0 0 0 1 0 0 0 0 1 -0 0 0 0 0 0 1 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 1 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 1 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 1 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 0 0 0 0 -0 0 0 0 0 0 0 0 1 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 1 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 1 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 1 0 0 0 1 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 1 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 1 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 1 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 1 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 1 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 1 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 1 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 1 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 1 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 1 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 1 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 1 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 1 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 1 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 1 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 1 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 1 0 1 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 1 1 0 -0 0 0 0 0 0 1 1 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 1 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 1 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 1 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 0 0 0 0 0 1 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 1 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 1 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 1 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 1 0 1 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 1 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 1 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 1 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 1 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 1 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 1 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 1 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 1 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 1 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 0 0 0 1 -0 0 0 0 0 0 0 0 0 0 1 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 -0 1 0 0 0 0 0 0 0 0 1 0 0 1 -0 0 0 0 0 0 0 0 0 0 0 0 0 1 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.jpgl b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.jpgl deleted file mode 100644 index cd34ad82e6fc492131a30a6ce4fb8db66f070f5b..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.jpgl +++ /dev/null @@ -1,11270 +0,0 @@ -615485 -615595 -615709 -615751 -616023 -616104 -616199 -616273 -616488 -616571 -616659 -616758 -616885 -616912 -616970 -617028 -617106 -617182 -617222 -617257 -617293 -617301 -617319 -617334 -617364 -617383 -617403 -617412 -617427 -617444 -617451 -617472 -617483 -617498 -617518 -21503 -21657 -21700 -21742 -21781 -21826 -21847 -21885 -21911 -21929 -21938 -21954 -21963 -21971 -21988 -21993 -323351 -323440 -323610 -323701 -323773 -323929 -324016 -324109 -324236 -324344 -324402 -324469 -324586 -324615 -324638 -324717 -324751 -324887 -324941 -324999 -325088 -325166 -325199 -325241 -325386 -325410 -325468 -325512 -325541 -325745 -325871 -325892 -325941 -325974 -326007 -326048 -326074 -326095 -326109 -326142 -326149 -326198 -326217 -326242 -326325 -326351 -326381 -326397 -326413 -326439 -326468 -326487 -326495 -326508 -326565 -326576 -326591 -917986 -918116 -918262 -918320 -918378 -918522 -918647 -918675 -918857 -918913 -918947 -918971 -919004 -919029 -919082 -919109 -919129 -919135 -919172 -919192 -237550 -237710 -237856 -237962 -238074 -238149 -238183 -238356 -238408 -238459 -238556 -238742 -238781 -238838 -238923 -238933 -239128 -239165 -239274 -239379 -239395 -239512 -239580 -239608 -239625 -239654 -239698 -239735 -239743 -239752 -239838 -239898 -239937 -240008 -240045 -240071 -240111 -240134 -240169 -240192 -240211 -240228 -240247 -240281 -240307 -240354 -240360 -240381 -240393 -240410 -240425 -240440 -240457 -240486 -240503 -240522 -240533 -240547 -240561 -240583 -240594 -240606 -296019 -296134 -296161 -296205 -296283 -296324 -296341 -296377 -296391 -296425 -296453 -296481 -296528 -296593 -296630 -296739 -296781 -296815 -296834 -296866 -296917 -296952 -296973 -296995 -297010 -297040 -297063 -297085 -297127 -297217 -297223 -297252 -297268 -297310 -297345 -297368 -297417 -297442 -297467 -297494 -297519 -297548 -297562 -297582 -297607 -297670 -297690 -297734 -297777 -297841 -297868 -297884 -297933 -297942 -297967 -297979 -297990 -298015 -298037 -298049 -298072 -298099 -298111 -298138 -298144 -298160 -298182 -298202 -298247 -298257 -298276 -298294 -298319 -298330 -298360 -298375 -298415 -298423 -298429 -298438 -298448 -298455 -298468 -298479 -298490 -298503 -298517 -298531 -298547 -298557 -298563 -298571 -298593 -298610 -298615 -298622 -298630 -298636 -298647 -298685 -298710 -298717 -298726 -298733 -298745 -298753 -298771 -298784 -298817 -298840 -298852 -298861 -298872 -298879 -298891 -298897 -298907 -298920 -298936 -298957 -298967 -298989 -609317 -609401 -609641 -609838 -609982 -610143 -610205 -610315 -610407 -610417 -610550 -610613 -610651 -610708 -610761 -610877 -610917 -610930 -610952 -611042 -611089 -611140 -611208 -611368 -611393 -611406 -611435 -611460 -611471 -611480 -611501 -611512 -611525 -611540 -611557 -611575 -611585 -611599 -611619 -611638 -611681 -611700 -611722 -611731 -611737 -611743 -611753 -611759 -611771 -611796 -611810 -611823 -611831 -611847 -612232 -612246 -612269 -612280 -612286 -797821 -797977 -798175 -798271 -798378 -798434 -798530 -798650 -798738 -798780 -798810 -798841 -798878 -798917 -798953 -798994 -799041 -799078 -799105 -799132 -799145 -799173 -799184 -799197 -799215 -799226 -799239 -799246 -799262 -799267 -799276 -799287 -799297 -799308 -799314 -799328 -799336 -799349 -799360 -799366 -799372 -799382 -799395 -799408 -799419 -799430 -799436 -799442 -799448 -799453 -22024 -22072 -22149 -22215 -22274 -22299 -22317 -22401 -22420 -22456 -22466 -22479 -22505 -22620 -22632 -22657 -22683 -22691 -22697 -22702 -22710 -22730 -22735 -22747 -22754 -22763 -22770 -22781 -22787 -22793 -887234 -887771 -887877 -888018 -888116 -888159 -888191 -888217 -888282 -888307 -888367 -888380 -888788 -888806 -888823 -888846 -888905 -888926 -888947 -888961 -888975 -888990 -889017 -889044 -889069 -889086 -889187 -889205 -889216 -889243 -889257 -889271 -819788 -820141 -820323 -820410 -820486 -820526 -820556 -820610 -820679 -820715 -820732 -820760 -820794 -820834 -820857 -820891 -820904 -820916 -820927 -820951 -820964 -820978 -820989 -820996 -821006 -821036 -821044 -821060 -821078 -821094 -821099 -426142 -426226 -426303 -426365 -426404 -426463 -426491 -426521 -426549 -426586 -426623 -426707 -426740 -426763 -426785 -426802 -426824 -480608 -480695 -480751 -480901 -481000 -481193 -481306 -481413 -481464 -481533 -481657 -481700 -481770 -481813 -481878 -481938 -481981 -482036 -482097 -482186 -482223 -482286 -482376 -482426 -482476 -482527 -482712 -482757 -482884 -482905 -482995 -483037 -483101 -483127 -483159 -483177 -483229 -483262 -483283 -483308 -483319 -483378 -483396 -483518 -483530 -483567 -483590 -483599 -483607 -483618 -483634 -483656 -483677 -483688 -483723 -483741 -483751 -483762 -483775 -483809 -483821 -483837 -483847 -483858 -483870 -483876 -483889 -483907 -483922 -483929 -483952 -483965 -483979 -483987 -483998 -484010 -484018 -484025 -484031 -801422 -801827 -801906 -802167 -802299 -802354 -802379 -802426 -802471 -802486 -802514 -802530 -802569 -802586 -802618 -802632 -802648 -802657 -802669 -802701 -802720 -802729 -802740 -802747 -802771 -802793 -802813 -802824 -802833 -802844 -802855 -802865 -802879 -802896 -802903 -245496 -245847 -245961 -246126 -246339 -246582 -246762 -246826 -246920 -246938 -247052 -247266 -247315 -247345 -247370 -247491 -247520 -247596 -247662 -247722 -247819 -247845 -247909 -247953 -247991 -248032 -248040 -248062 -248076 -248099 -248115 -248126 -248160 -248183 -248228 -248242 -248251 -248262 -248275 -248290 -248344 -248356 -248372 -248384 -248392 -248410 -248418 -248431 -248443 -248464 -248474 -248491 -248501 -248527 -429501 -430024 -430294 -430451 -430658 -430831 -430887 -430948 -431051 -431086 -431129 -431214 -431266 -431304 -431326 -431397 -431433 -431517 -431567 -431624 -431642 -431684 -431751 -431758 -431790 -431814 -431843 -431865 -431880 -431891 -431902 -431918 -431945 -431950 -431958 -431981 -432008 -432017 -432028 -432051 -432064 -432074 -432079 -432087 -432094 -432104 -432110 -951324 -951447 -951554 -951697 -951838 -951965 -952116 -952213 -952238 -952322 -952338 -952356 -952386 -952398 -952405 -952415 -952446 -952452 -952475 -768016 -768313 -768423 -768532 -768637 -768677 -768741 -768840 -768895 -768935 -768988 -769079 -769151 -769250 -769267 -769297 -769322 -769335 -769368 -769381 -769410 -769430 -769438 -769465 -769475 -769487 -769502 -769518 -769536 -769547 -769554 -769577 -769589 -769601 -769606 -246686 -246820 -246943 -247034 -247131 -247220 -247318 -247384 -247487 -247527 -247639 -247707 -247866 -247964 -248107 -248148 -248223 -248315 -248537 -248563 -248766 -248827 -248887 -248909 -248943 -248970 -248981 -248999 -249033 -249078 -249127 -249183 -249200 -249221 -249266 -249298 -249326 -249350 -249385 -249399 -249410 -249418 -249433 -249458 -249478 -249506 -249540 -249555 -249569 -249577 -249590 -249598 -249603 -249617 -149746 -149803 -149859 -149882 -149974 -150023 -150052 -150078 -150129 -150171 -150212 -150233 -150269 -150294 -150306 -150335 -150357 -150380 -150389 -150443 -150464 -150493 -150525 -150535 -150578 -150605 -150618 -150682 -150702 -150720 -150741 -150764 -150788 -150832 -150851 -150881 -150931 -150976 -151062 -151161 -151188 -151255 -151291 -151306 -151320 -151348 -151367 -151373 -151388 -151395 -151411 -151435 -151454 -151460 -151476 -151484 -151493 -151509 -151563 -151571 -151585 -151612 -151628 -151652 -151670 -151675 -151686 -151698 -151715 -151720 -151737 -151757 -151763 -151784 -151789 -151798 -151820 -151829 -151837 -151843 -151849 -151857 -151862 -151869 -151874 -621985 -622191 -622264 -622537 -622635 -622715 -622786 -623029 -623110 -623184 -623212 -623275 -623322 -623348 -623376 -623460 -623483 -623520 -623557 -623626 -623673 -623688 -623708 -623741 -623775 -623796 -623830 -623842 -623852 -623857 -623866 -720822 -721104 -721273 -721536 -721732 -721840 -721904 -721996 -722077 -722162 -722419 -722480 -722551 -722572 -722636 -722688 -722717 -722752 -722764 -722777 -722793 -722819 -722898 -722913 -722923 -419539 -420169 -420500 -420750 -421152 -421390 -421643 -421705 -421771 -422006 -422121 -422232 -422325 -422509 -422546 -422623 -422677 -422707 -422742 -422788 -422941 -422984 -423027 -423042 -423050 -423065 -423108 -423140 -423146 -423169 -423185 -423204 -423227 -423238 -423250 -423260 -423267 -423279 -423288 -423297 -423314 -423347 -423359 -423372 -423387 -423416 -423425 -423431 -209155 -209269 -209697 -209906 -210121 -210158 -210425 -210465 -210638 -210738 -210821 -210903 -210947 -210987 -211183 -211297 -211313 -211424 -211454 -211475 -211493 -211548 -211559 -211612 -211673 -211688 -211711 -211733 -211760 -211783 -211790 -211798 -211816 -211831 -211844 -211858 -211870 -211877 -211893 -211898 -890302 -890478 -890693 -890812 -890895 -891011 -891146 -891236 -891283 -891316 -891379 -891398 -891490 -891521 -891531 -891540 -891567 -891591 -891639 -891669 -891694 -891747 -891761 -891813 -891826 -37864 -37996 -38038 -38088 -38146 -38222 -38257 -38283 -38337 -38366 -38406 -38428 -38465 -38483 -38592 -38623 -38643 -38670 -38687 -38725 -38739 -38763 -38793 -38811 -38827 -38856 -38868 -38874 -38879 -38897 -38904 -38931 -38947 -38958 -38966 -38972 -38982 -38994 -39000 -39006 -196659 -196814 -196968 -197058 -197333 -197576 -197649 -197801 -197886 -197911 -197938 -198022 -198103 -198143 -198204 -198236 -198278 -198291 -198358 -198412 -198472 -198494 -198557 -198620 -198643 -198669 -198724 -198763 -198798 -198815 -198857 -198927 -198962 -199026 -199039 -199069 -199101 -199120 -199142 -199166 -199210 -199247 -199269 -199289 -199298 -199310 -199317 -199333 -199342 -199348 -199363 -199395 -199403 -199410 -199419 -199430 -199445 -199456 -199472 -199484 -199500 -199515 -199526 -199534 -199540 -199579 -199584 -199594 -199605 -199622 -199647 -199653 -199661 -199669 -199677 -911561 -911772 -911965 -912031 -912245 -912302 -912401 -912451 -912485 -912492 -912535 -912557 -912592 -912613 -912631 -912644 -912651 -912663 -912680 -912697 -912704 -912719 -912729 -912736 -912746 -912757 -912764 -912773 -912792 -912799 -912806 -912813 -912818 -51000 -51128 -51169 -51211 -51299 -51343 -51368 -51428 -51465 -51511 -51541 -51565 -51582 -51607 -51622 -51644 -51658 -51682 -51689 -51701 -51714 -51720 -51729 -51740 -51753 -51766 -51776 -51782 -51793 -51805 -51817 -51822 -51827 -93659 -93778 -93801 -93883 -93995 -94076 -94196 -94235 -94250 -94314 -94355 -94382 -94396 -94432 -94465 -94479 -94511 -94530 -94564 -94595 -94636 -94664 -94690 -94731 -94764 -94789 -94828 -94881 -94938 -94976 -94996 -95009 -95034 -95053 -95073 -95102 -95129 -95147 -95168 -95182 -95198 -95220 -95237 -95245 -95267 -95282 -95309 -95317 -95329 -597164 -597446 -597606 -598070 -598160 -598529 -598826 -598869 -599063 -599159 -599218 -599265 -599326 -599344 -599404 -599452 -599510 -599610 -599638 -599667 -599693 -599783 -599841 -599865 -599911 -599945 -599962 -599977 -599990 -600024 -600058 -600068 -600087 -600103 -600127 -600137 -600165 -600189 -600201 -600219 -600242 -600278 -600305 -600318 -600333 -600345 -600359 -600373 -600381 -600390 -7876 -7892 -7899 -7909 -7916 -7922 -7929 -7935 -7941 -7946 -7954 -7962 -7973 -7980 -7987 -7994 -8005 -8016 -8022 -8032 -8040 -8046 -8052 -8062 -8068 -8073 -8081 -8088 -8101 -8107 -8116 -8123 -8129 -8135 -8144 -8153 -8161 -8168 -8174 -8180 -8186 -8193 -8200 -8208 -8216 -8223 -8230 -8235 -8240 -8246 -8251 -8256 -8262 -8268 -8273 -8279 -8286 -8293 -8301 -8306 -349735 -350203 -351360 -351691 -351895 -351943 -352358 -352659 -352740 -352882 -352984 -353048 -353101 -353154 -353214 -353263 -353304 -353323 -353336 -353367 -353383 -353397 -353409 -353434 -353459 -353488 -353514 -353542 -353592 -353635 -353656 -353708 -353728 -353739 -353746 -65955 -66289 -66589 -66771 -66870 -66923 -66951 -66969 -66984 -67003 -67023 -67039 -67048 -67059 -67074 -67090 -67116 -67128 -67138 -67145 -67161 -67167 -67172 -67180 -923288 -923399 -923502 -923554 -923658 -923726 -923852 -923937 -924002 -924040 -924054 -924074 -924112 -924163 -924173 -924185 -924203 -924227 -924235 -924255 -924264 -924278 -924289 -732960 -733073 -733158 -733281 -733349 -733389 -733498 -733538 -733587 -733664 -733754 -733932 -733957 -733986 -734090 -734186 -734199 -734221 -734245 -734276 -734292 -734333 -734365 -734399 -734418 -734455 -734494 -734513 -734531 -734549 -734565 -734591 -734605 -734618 -734642 -734654 -734663 -734684 -734716 -734736 -323321 -323370 -323494 -323541 -323581 -323614 -323688 -323738 -323786 -323899 -323928 -323979 -324001 -324077 -324117 -324193 -324233 -324269 -324330 -324337 -324358 -324403 -324426 -324447 -324468 -324531 -324584 -324630 -324645 -324682 -324754 -324829 -324854 -324883 -324933 -324958 -325006 -325025 -325076 -325110 -325141 -325151 -325177 -325307 -325326 -325374 -325385 -325440 -325448 -325486 -325504 -325518 -325552 -325629 -325823 -325887 -325901 -325944 -325971 -325996 -326023 -326044 -326061 -326098 -326113 -326122 -326137 -326157 -326187 -326204 -326234 -326256 -326269 -326277 -326332 -326348 -326358 -326391 -326407 -326421 -326437 -326449 -326462 -326479 -326504 -326563 -326588 -667514 -667590 -667772 -667838 -667971 -668044 -668115 -668167 -668210 -668273 -668342 -668379 -668444 -668491 -668514 -668573 -668605 -668635 -668666 -668697 -668762 -668942 -668986 -669020 -669145 -669189 -669269 -669283 -669342 -669362 -669405 -669424 -669444 -669473 -669501 -669530 -669553 -669572 -669598 -669625 -669644 -669662 -669672 -669691 -669733 -669747 -669764 -669776 -669783 -669791 -669806 -669813 -669827 -669837 -669846 -669851 -669860 -669869 -669880 -669893 -669908 -669932 -669952 -669967 -669978 -669996 -670012 -670031 -670044 -670052 -670061 -910877 -910903 -911002 -911069 -911095 -911155 -911182 -911235 -911263 -911276 -911303 -911359 -911409 -911439 -911511 -911532 -911552 -911568 -911599 -911659 -911682 -911708 -911744 -911762 -911770 -911784 -911802 -911816 -911831 -911848 -911857 -911868 -911879 -911892 -815280 -815401 -815624 -815805 -815824 -815901 -815969 -816000 -816093 -816113 -816160 -816213 -816282 -816321 -816369 -816396 -816418 -816437 -816478 -816531 -816557 -816575 -816593 -816651 -816663 -816689 -816708 -816727 -816742 -816778 -816786 -816818 -816857 -816875 -816886 -816902 -816911 -816917 -816925 -934216 -934598 -934722 -934805 -934926 -934944 -935029 -935108 -935166 -935207 -935243 -935332 -935347 -935364 -935409 -935434 -935446 -935472 -935485 -935497 -935525 -935544 -935559 -935588 -935614 -935627 -935646 -935655 -935669 -935686 -935706 -231831 -231893 -232097 -232220 -232281 -232319 -232358 -232426 -232465 -232506 -232568 -232614 -232657 -232746 -232781 -232812 -232835 -232861 -232893 -232920 -233002 -233047 -233103 -233256 -233309 -233353 -233401 -233773 -233801 -233816 -233859 -233901 -233916 -233926 -233937 -233966 -234017 -234047 -234084 -234123 -234156 -234168 -234181 -234264 -234274 -234283 -234299 -234313 -234323 -234342 -234376 -234399 -234420 -234437 -234451 -234460 -234480 -234492 -234506 -234528 -234541 -234575 -234583 -234596 -234604 -234617 -234629 -234640 -234651 -234660 -499806 -500001 -500131 -500165 -500247 -500326 -500425 -500496 -500517 -500559 -500630 -500718 -500773 -500858 -500903 -500988 -501017 -501051 -501074 -501113 -501160 -501174 -501253 -501290 -501323 -501403 -501442 -501485 -501532 -501582 -501618 -501652 -501696 -501720 -501762 -501781 -501816 -501832 -501845 -501863 -501880 -501974 -502007 -502020 -502049 -502062 -502080 -502097 -502112 -502127 -502184 -502202 -502231 -502257 -502312 -502348 -502369 -502382 -502393 -502407 -502441 -502450 -502460 -502509 -502531 -502553 -502576 -502609 -502626 -502640 -502647 -502657 -502669 -502686 -388207 -388587 -388745 -389097 -389224 -389422 -389562 -389657 -389768 -389879 -389917 -389966 -390063 -390079 -390142 -390216 -390365 -390446 -390557 -390587 -390629 -390691 -390747 -390834 -390863 -390925 -390944 -390983 -391013 -391049 -391080 -391096 -391127 -391154 -391187 -391217 -391238 -391251 -391284 -391312 -391325 -391375 -391396 -391421 -391432 -391444 -391490 -391515 -391531 -391557 -391569 -391587 -391607 -391626 -391645 -391659 -391667 -391681 -391707 -391726 -391752 -391774 -391789 -391802 -457804 -457888 -458075 -458099 -458143 -458223 -458417 -458475 -458624 -458717 -458862 -458993 -459131 -459274 -459313 -459337 -459367 -459388 -459419 -459467 -459530 -459611 -459763 -459819 -459856 -459903 -459935 -459976 -460049 -460121 -460184 -460226 -460283 -460385 -460411 -460436 -460467 -460517 -460533 -460572 -460632 -460648 -460690 -460781 -460799 -460857 -460884 -460902 -460957 -460989 -461016 -461038 -461080 -461096 -461119 -461153 -461202 -461220 -461263 -461297 -461313 -461328 -461348 -461368 -461405 -461421 -461437 -461452 -461468 -461499 -461551 -461561 -461570 -461581 -461592 -461601 -461612 -461625 -461642 -461654 -461671 -461687 -461699 -58414 -58524 -58615 -58640 -58661 -58756 -58794 -58847 -58855 -58894 -58919 -58941 -58953 -58987 -59015 -59022 -59036 -59054 -59067 -59089 -59109 -59119 -59136 -59160 -59196 -59208 -59221 -59234 -59247 -59259 -59270 -59290 -59301 -59307 -717830 -717951 -717968 -718081 -718177 -718223 -718290 -718394 -718504 -718565 -718600 -718634 -718674 -718752 -718798 -718850 -718871 -718926 -718989 -719013 -719051 -719102 -719153 -719172 -719287 -719381 -719425 -719453 -719474 -719504 -719528 -719549 -719572 -719616 -719625 -719655 -719665 -719827 -719863 -719901 -719950 -719963 -719997 -720018 -720027 -720051 -720059 -720071 -720079 -720098 -720124 -720133 -720144 -720152 -720159 -720166 -720173 -720180 -720209 -720238 -720245 -720257 -720287 -720295 -269049 -269110 -269222 -269260 -269317 -269384 -269429 -269524 -269538 -269606 -269672 -269755 -269812 -269856 -269920 -269957 -269970 -270012 -270095 -270158 -270199 -270243 -270255 -270343 -270401 -270430 -270450 -270466 -270508 -270543 -270603 -270631 -270653 -270693 -270717 -270727 -270777 -270791 -270816 -270866 -270889 -270921 -270945 -270987 -270998 -271026 -271039 -271059 -271086 -271101 -271108 -271117 -271127 -271154 -271172 -271215 -271228 -271244 -271258 -271272 -271294 -271312 -271322 -271332 -271339 -271354 -271363 -271371 -271380 -898348 -898523 -898591 -898689 -898791 -898906 -898922 -898962 -899005 -899039 -899075 -899090 -899132 -899176 -899200 -899216 -899230 -899259 -899278 -899305 -899315 -899337 -899350 -899384 -899397 -899424 -899437 -899453 -899468 -899477 -899501 -899514 -899527 -899542 -899559 -899573 -899581 -899588 -899608 -899613 -899620 -899628 -899634 -899642 -899647 -899652 -585848 -586274 -586496 -586602 -586828 -586886 -587062 -587168 -587278 -587401 -587511 -587608 -587702 -587831 -587953 -587978 -588012 -588070 -588090 -588147 -588180 -588212 -588232 -588267 -588281 -588323 -588335 -588368 -588397 -588414 -588441 -588475 -588516 -588528 -588550 -588559 -588574 -588602 -588649 -588654 -588676 -588699 -588721 -588743 -588754 -588767 -588787 -588800 -588813 -588829 -588847 -588887 -588911 -588958 -588972 -176064 -176199 -176255 -176434 -176528 -176797 -177011 -177108 -177263 -177394 -177468 -177500 -177528 -177620 -177660 -177700 -177738 -177796 -177890 -177942 -177956 -177983 -178012 -178048 -178083 -178132 -178174 -178222 -178245 -178264 -178290 -178321 -178330 -178356 -178367 -178390 -178440 -178453 -178477 -178487 -178495 -178517 -178533 -178546 -178560 -178566 -178572 -178577 -178587 -384362 -384477 -384740 -384843 -384903 -385105 -385155 -385258 -385449 -385602 -385697 -385857 -385913 -385967 -386054 -386129 -386175 -386243 -386265 -386337 -386375 -386434 -386517 -386611 -386664 -386735 -386766 -386830 -386902 -386971 -387018 -387042 -387077 -387095 -387119 -387150 -387221 -387248 -387276 -387323 -387368 -387417 -387462 -387482 -387525 -387537 -387593 -387613 -387650 -387665 -387684 -387715 -387731 -387753 -387775 -387785 -387802 -387820 -387844 -387854 -387863 -387871 -387887 -387902 -387934 -387952 -387994 -388012 -388029 -69939 -70206 -70295 -70307 -70354 -70420 -70481 -70522 -70566 -70580 -70626 -70642 -70667 -70697 -70702 -70714 -70731 -70745 -70771 -70783 -70800 -70808 -70828 -70840 -70858 -70892 -70902 -70911 -70917 -70925 -70931 -70938 -70951 -70960 -381338 -381478 -381592 -381784 -381870 -382077 -382180 -382225 -382294 -382368 -382472 -382658 -382682 -382727 -382789 -382842 -382937 -382989 -383059 -383158 -383225 -383254 -383310 -383344 -383401 -383468 -383547 -383588 -383649 -383692 -383724 -383754 -383785 -383817 -383850 -383891 -383927 -383955 -383995 -384035 -384064 -384080 -384094 -384108 -384130 -384145 -384161 -384172 -48432 -48515 -48631 -48765 -48801 -48856 -48909 -48968 -49014 -49035 -49063 -49088 -49102 -49108 -49121 -49130 -49141 -49161 -49181 -49196 -589054 -589167 -589380 -589660 -589885 -589955 -590134 -590347 -590451 -590594 -590683 -590798 -590866 -591028 -591081 -591156 -591197 -591224 -591278 -591412 -591513 -591533 -591563 -591584 -591619 -591646 -591673 -591692 -591724 -591766 -591784 -591795 -591803 -591820 -591829 -676963 -677037 -677155 -677196 -677406 -677444 -677502 -677571 -677638 -677675 -677718 -677781 -677841 -677910 -677971 -678035 -678127 -678154 -678198 -678246 -678258 -678342 -678365 -678379 -678400 -678426 -678452 -678474 -678487 -678509 -678538 -678559 -678567 -678576 -678594 -678610 -678619 -678631 -678646 -95754 -95833 -95898 -95999 -96114 -96145 -96169 -96222 -96264 -96325 -96352 -96366 -96378 -96403 -96410 -96446 -96463 -96481 -96508 -96548 -96618 -96628 -96661 -96682 -96702 -96725 -96746 -96758 -96772 -96786 -96799 -96824 -96851 -96864 -96874 -96891 -96906 -96911 -96918 -96927 -96940 -96952 -96963 -96974 -96980 -96986 -96993 -96998 -97004 -509630 -510197 -510347 -510460 -510592 -510702 -510756 -510821 -510919 -511009 -511067 -511157 -511221 -511323 -511546 -511636 -511731 -511785 -511902 -512018 -512196 -512267 -512323 -512388 -512439 -512471 -512497 -512527 -512558 -512596 -512653 -512677 -512724 -512752 -512789 -512817 -512848 -512891 -512916 -1295 -1347 -800804 -801365 -235008 -236373 -237193 -603304 -924680 -374848 -375684 -376468 -377222 -192981 -193891 -195053 -195597 -195829 -196171 -196212 -196277 -196382 -933832 -934395 -647073 -647530 -647863 -648046 -648288 -648564 -648744 -648829 -648974 -649031 -13335 -396485 -397335 -398138 -398465 -64279 -64452 -64611 -64750 -64856 -856616 -857895 -858132 -615486 -615625 -615719 -615754 -616030 -616122 -616205 -616366 -616533 -616573 -616675 -616760 -616892 -616924 -616971 -617078 -617109 -617185 -617225 -617258 -617295 -617307 -617320 -617343 -617372 -617389 -617404 -617413 -617428 -617445 -617466 -617476 -617485 -617499 -21412 -21577 -21661 -21708 -21753 -21798 -21830 -21850 -21894 -21914 -21930 -21947 -21955 -21965 -21974 -21989 -21994 -323365 -323459 -323621 -323707 -323797 -323938 -324033 -324143 -324237 -324360 -324424 -324509 -324592 -324623 -324666 -324736 -324798 -324898 -324947 -325063 -325101 -325175 -325203 -325331 -325387 -325432 -325478 -325515 -325604 -325806 -325880 -325896 -325964 -325976 -326018 -326056 -326076 -326096 -326110 -326143 -326150 -326200 -326218 -326251 -326329 -326353 -326383 -326403 -326414 -326441 -326470 -326488 -326496 -326515 -326566 -326579 -326592 -918016 -918180 -918270 -918337 -918433 -918586 -918655 -918681 -918858 -918915 -918950 -918982 -919009 -919030 -919089 -919116 -919130 -919137 -919174 -237468 -237672 -237761 -237901 -237976 -238077 -238150 -238206 -238360 -238435 -238468 -238568 -238752 -238785 -238845 -238924 -238959 -239139 -239191 -239300 -239381 -239475 -239556 -239589 -239610 -239640 -239655 -239700 -239736 -239744 -239809 -239840 -239904 -239951 -240013 -240047 -240073 -240112 -240137 -240173 -240193 -240223 -240229 -240262 -240284 -240310 -240355 -240365 -240383 -240398 -240412 -240430 -240444 -240464 -240489 -240505 -240523 -240537 -240551 -240573 -240586 -240596 -240607 -296038 -296146 -296175 -296232 -296287 -296325 -296345 -296378 -296393 -296446 -296455 -296484 -296529 -296613 -296685 -296741 -296795 -296821 -296835 -296884 -296918 -296953 -296974 -296998 -297028 -297049 -297064 -297092 -297130 -297218 -297224 -297254 -297277 -297311 -297355 -297395 -297421 -297443 -297477 -297503 -297528 -297551 -297567 -297585 -297616 -297674 -297695 -297738 -297794 -297848 -297873 -297914 -297935 -297954 -297968 -297981 -297991 -298026 -298038 -298052 -298085 -298103 -298115 -298139 -298150 -298162 -298187 -298204 -298248 -298259 -298277 -298305 -298320 -298331 -298362 -298387 -298416 -298424 -298430 -298439 -298449 -298459 -298471 -298482 -298498 -298504 -298520 -298532 -298548 -298558 -298565 -298576 -298603 -298611 -298616 -298624 -298631 -298637 -298648 -298686 -298711 -298720 -298727 -298735 -298747 -298757 -298775 -298785 -298825 -298846 -298853 -298863 -298874 -298881 -298892 -298898 -298909 -298923 -298948 -298959 -298970 -298995 -609332 -609404 -609675 -609869 -610076 -610155 -610208 -610325 -610409 -610511 -610558 -610614 -610673 -610738 -610765 -610882 -610919 -610931 -611012 -611057 -611092 -611146 -611213 -611375 -611394 -611410 -611436 -611463 -611473 -611481 -611505 -611520 -611533 -611547 -611558 -611576 -611586 -611600 -611621 -611643 -611689 -611702 -611725 -611733 -611738 -611746 -611755 -611760 -611784 -611801 -611814 -611824 -611833 -611851 -612233 -612247 -612270 -612281 -797648 -797836 -798008 -798222 -798272 -798379 -798494 -798540 -798658 -798741 -798781 -798827 -798858 -798880 -798924 -798958 -799018 -799043 -799079 -799107 -799133 -799146 -799177 -799189 -799199 -799217 -799233 -799241 -799248 -799263 -799268 -799277 -799288 -799299 -799309 -799318 -799329 -799338 -799354 -799361 -799367 -799374 -799386 -799403 -799414 -799421 -799431 -799437 -799444 -799449 -799454 -22049 -22082 -22194 -22248 -22275 -22305 -22335 -22403 -22427 -22458 -22468 -22488 -22510 -22625 -22633 -22658 -22685 -22692 -22698 -22703 -22724 -22731 -22736 -22750 -22755 -22766 -22773 -22782 -22788 -887284 -887785 -887893 -888053 -888135 -888176 -888194 -888238 -888283 -888326 -888369 -888762 -888789 -888809 -888828 -888847 -888908 -888927 -888948 -888967 -888980 -888991 -889022 -889046 -889071 -889088 -889188 -889206 -889221 -889244 -889258 -889274 -819840 -820167 -820343 -820425 -820502 -820529 -820559 -820620 -820686 -820716 -820734 -820771 -820795 -820837 -820858 -820894 -820906 -820917 -820932 -820959 -820965 -820983 -820990 -821000 -821012 -821038 -821048 -821063 -821088 -821095 -821101 -426144 -426246 -426315 -426376 -426410 -426481 -426498 -426523 -426558 -426588 -426650 -426708 -426742 -426765 -426786 -426803 -480626 -480710 -480763 -480953 -481080 -481194 -481333 -481417 -481472 -481535 -481664 -481703 -481771 -481818 -481888 -481950 -482009 -482040 -482138 -482188 -482259 -482306 -482380 -482465 -482482 -482609 -482713 -482793 -482886 -482938 -482999 -483070 -483121 -483135 -483162 -483179 -483233 -483265 -483297 -483310 -483320 -483387 -483398 -483519 -483531 -483570 -483591 -483600 -483610 -483622 -483638 -483658 -483681 -483690 -483727 -483742 -483753 -483764 -483787 -483811 -483825 -483839 -483849 -483859 -483872 -483881 -483890 -483908 -483923 -483930 -483953 -483971 -483982 -483988 -484001 -484011 -484019 -484026 -801227 -801433 -801852 -801949 -802177 -802323 -802360 -802380 -802427 -802475 -802487 -802518 -802533 -802571 -802590 -802625 -802637 -802649 -802661 -802670 -802713 -802721 -802730 -802743 -802756 -802780 -802794 -802816 -802826 -802834 -802848 -802857 -802866 -802884 -802898 -802906 -245561 -245871 -245970 -246201 -246488 -246685 -246764 -246835 -246924 -246960 -247053 -247284 -247329 -247346 -247473 -247492 -247521 -247598 -247684 -247751 -247822 -247857 -247923 -247974 -247994 -248033 -248046 -248063 -248080 -248103 -248116 -248130 -248163 -248192 -248232 -248244 -248254 -248264 -248278 -248293 -248345 -248360 -248375 -248386 -248393 -248411 -248419 -248435 -248444 -248466 -248479 -248492 -248505 -248528 -429805 -430105 -430353 -430588 -430689 -430839 -430896 -430952 -431061 -431087 -431132 -431227 -431294 -431306 -431348 -431398 -431435 -431524 -431596 -431625 -431649 -431704 -431754 -431761 -431792 -431816 -431849 -431870 -431882 -431892 -431906 -431925 -431946 -431951 -431967 -431992 -432010 -432018 -432029 -432056 -432065 -432075 -432080 -432088 -432097 -432105 -432111 -951397 -951462 -951595 -951716 -951839 -952008 -952118 -952227 -952291 -952324 -952342 -952357 -952387 -952401 -952406 -952417 -952447 -952453 -952483 -768055 -768314 -768433 -768535 -768653 -768699 -768746 -768844 -768905 -768965 -769011 -769091 -769163 -769252 -769268 -769298 -769325 -769337 -769372 -769382 -769416 -769433 -769445 -769467 -769477 -769488 -769504 -769519 -769537 -769549 -769555 -769579 -769590 -769602 -769607 -246689 -246865 -246951 -247038 -247143 -247262 -247319 -247386 -247488 -247528 -247666 -247810 -247878 -248002 -248112 -248159 -248253 -248396 -248545 -248591 -248785 -248854 -248893 -248911 -248949 -248973 -248986 -249020 -249043 -249081 -249135 -249188 -249203 -249247 -249272 -249308 -249332 -249370 -249390 -249401 -249411 -249421 -249440 -249461 -249479 -249514 -249541 -249556 -249570 -249578 -249593 -249599 -249604 -249618 -149764 -149807 -149865 -149884 -149985 -150025 -150054 -150087 -150132 -150172 -150214 -150241 -150276 -150296 -150308 -150336 -150358 -150381 -150406 -150445 -150474 -150513 -150526 -150539 -150586 -150606 -150619 -150687 -150704 -150731 -150743 -150768 -150794 -150833 -150856 -150895 -150935 -150980 -151067 -151163 -151235 -151256 -151293 -151307 -151324 -151355 -151368 -151374 -151390 -151398 -151413 -151437 -151455 -151463 -151478 -151486 -151494 -151511 -151564 -151574 -151589 -151613 -151629 -151653 -151671 -151681 -151687 -151700 -151716 -151723 -151742 -151759 -151768 -151785 -151793 -151802 -151822 -151830 -151838 -151844 -151850 -151858 -151863 -151870 -151876 -621993 -622220 -622316 -622569 -622654 -622730 -622792 -623042 -623130 -623186 -623231 -623277 -623323 -623352 -623377 -623463 -623486 -623522 -623558 -623655 -623676 -623693 -623709 -623752 -623779 -623808 -623836 -623843 -623853 -623859 -623871 -720932 -721191 -721329 -721602 -721755 -721880 -721905 -721998 -722111 -722224 -722451 -722481 -722559 -722575 -722640 -722690 -722724 -722755 -722765 -722780 -722802 -722837 -722906 -722918 -722924 -419996 -420201 -420571 -420871 -421174 -421505 -421645 -421711 -421809 -422066 -422123 -422233 -422398 -422511 -422548 -422629 -422684 -422713 -422751 -422799 -422953 -422985 -423029 -423043 -423053 -423070 -423110 -423141 -423148 -423172 -423190 -423206 -423228 -423239 -423253 -423262 -423270 -423280 -423290 -423299 -423320 -423348 -423360 -423374 -423393 -423418 -423426 -423433 -209156 -209384 -209799 -209914 -210135 -210298 -210440 -210474 -210657 -210740 -210837 -210905 -210973 -211016 -211199 -211301 -211322 -211425 -211464 -211476 -211500 -211549 -211574 -211628 -211674 -211692 -211714 -211745 -211767 -211785 -211792 -211799 -211820 -211833 -211845 -211860 -211871 -211886 -211894 -211899 -890335 -890547 -890778 -890816 -890899 -891013 -891182 -891239 -891284 -891322 -891382 -891405 -891491 -891522 -891532 -891549 -891573 -891615 -891646 -891673 -891699 -891748 -891780 -891816 -891839 -37882 -38001 -38046 -38108 -38179 -38227 -38260 -38292 -38338 -38384 -38407 -38438 -38474 -38518 -38606 -38626 -38655 -38677 -38717 -38726 -38741 -38773 -38800 -38812 -38832 -38857 -38870 -38875 -38881 -38899 -38909 -38934 -38949 -38959 -38967 -38975 -38985 -38995 -39001 -39007 -196724 -196836 -196987 -197169 -197391 -197579 -197756 -197841 -197893 -197916 -197945 -198026 -198113 -198150 -198209 -198254 -198283 -198332 -198360 -198421 -198478 -198503 -198558 -198622 -198644 -198698 -198739 -198765 -198801 -198816 -198866 -198931 -198973 -199027 -199042 -199071 -199103 -199124 -199149 -199170 -199213 -199250 -199272 -199291 -199301 -199311 -199320 -199334 -199344 -199349 -199378 -199397 -199404 -199412 -199422 -199438 -199446 -199459 -199473 -199489 -199502 -199519 -199527 -199535 -199541 -199580 -199586 -199595 -199607 -199631 -199649 -199654 -199662 -199671 -911476 -911604 -911779 -911980 -912040 -912261 -912333 -912405 -912452 -912486 -912496 -912536 -912558 -912605 -912614 -912632 -912645 -912652 -912664 -912683 -912699 -912705 -912720 -912732 -912737 -912747 -912758 -912766 -912774 -912794 -912801 -912807 -912814 -912819 -51019 -51142 -51171 -51222 -51332 -51350 -51370 -51438 -51473 -51513 -51545 -51567 -51593 -51614 -51624 -51645 -51662 -51683 -51691 -51702 -51715 -51721 -51732 -51742 -51758 -51769 -51777 -51787 -51794 -51806 -51818 -51823 -51828 -93710 -93789 -93840 -93891 -94009 -94121 -94220 -94240 -94260 -94328 -94362 -94386 -94398 -94434 -94467 -94481 -94512 -94531 -94565 -94602 -94650 -94666 -94694 -94735 -94769 -94791 -94859 -94901 -94947 -94977 -94998 -95014 -95039 -95054 -95074 -95105 -95132 -95157 -95169 -95183 -95199 -95224 -95238 -95246 -95269 -95283 -95311 -95318 -95337 -597301 -597450 -597613 -598077 -598299 -598541 -598829 -598904 -599128 -599195 -599227 -599274 -599330 -599356 -599408 -599456 -599548 -599611 -599653 -599673 -599707 -599784 -599844 -599879 -599912 -599946 -599965 -599983 -600009 -600040 -600060 -600071 -600095 -600108 -600128 -600139 -600177 -600194 -600202 -600221 -600243 -600296 -600308 -600320 -600334 -600349 -600363 -600375 -600382 -600391 -7881 -7895 -7900 -7910 -7917 -7923 -7930 -7936 -7942 -7949 -7955 -7964 -7974 -7982 -7988 -7995 -8006 -8018 -8023 -8036 -8042 -8047 -8056 -8063 -8069 -8074 -8083 -8093 -8103 -8108 -8117 -8124 -8130 -8137 -8145 -8154 -8162 -8169 -8175 -8181 -8188 -8194 -8201 -8211 -8218 -8224 -8231 -8236 -8241 -8247 -8252 -8257 -8263 -8269 -8274 -8280 -8287 -8294 -8302 -8307 -349946 -350223 -351382 -351693 -351904 -352198 -352467 -352722 -352782 -352883 -353005 -353049 -353119 -353161 -353215 -353267 -353305 -353324 -353348 -353370 -353384 -353403 -353410 -353438 -353464 -353496 -353515 -353558 -353613 -353642 -353663 -353714 -353730 -353740 -353748 -66049 -66425 -66638 -66795 -66882 -66925 -66953 -66970 -66985 -67007 -67024 -67040 -67049 -67062 -67080 -67101 -67117 -67129 -67140 -67154 -67162 -67168 -67174 -67181 -923292 -923420 -923513 -923567 -923662 -923731 -923856 -923956 -924017 -924044 -924055 -924080 -924115 -924164 -924176 -924186 -924217 -924229 -924236 -924257 -924266 -924283 -924292 -732963 -733076 -733236 -733296 -733350 -733390 -733503 -733543 -733616 -733669 -733788 -733941 -733966 -734012 -734115 -734188 -734200 -734223 -734253 -734281 -734295 -734334 -734376 -734400 -734430 -734473 -734501 -734518 -734532 -734553 -734569 -734592 -734607 -734620 -734646 -734656 -734665 -734693 -734717 -734739 -323323 -323375 -323507 -323546 -323588 -323634 -323715 -323740 -323787 -323913 -323958 -323980 -324020 -324086 -324145 -324198 -324235 -324273 -324332 -324340 -324368 -324412 -324428 -324448 -324507 -324539 -324587 -324637 -324646 -324688 -324761 -324845 -324859 -324897 -324944 -324965 -325009 -325043 -325080 -325111 -325142 -325161 -325189 -325313 -325338 -325376 -325398 -325441 -325455 -325487 -325505 -325521 -325571 -325632 -325835 -325888 -325902 -325948 -325977 -326009 -326027 -326047 -326062 -326099 -326115 -326130 -326141 -326168 -326189 -326208 -326239 -326260 -326273 -326279 -326335 -326350 -326359 -326393 -326408 -326422 -326440 -326450 -326464 -326484 -326505 -326569 -326594 -667522 -667650 -667791 -667856 -668000 -668047 -668118 -668189 -668218 -668284 -668343 -668380 -668449 -668497 -668517 -668577 -668607 -668645 -668681 -668699 -668802 -668944 -669002 -669057 -669151 -669215 -669274 -669285 -669346 -669365 -669407 -669434 -669450 -669477 -669516 -669546 -669565 -669573 -669601 -669632 -669651 -669663 -669675 -669698 -669740 -669748 -669766 -669777 -669784 -669796 -669807 -669819 -669828 -669838 -669847 -669852 -669861 -669870 -669881 -669894 -669920 -669937 -669953 -669968 -669980 -669998 -670013 -670032 -670045 -670055 -910821 -910878 -910910 -911003 -911070 -911144 -911156 -911185 -911248 -911264 -911279 -911307 -911365 -911418 -911444 -911525 -911542 -911554 -911569 -911603 -911664 -911684 -911714 -911754 -911766 -911776 -911785 -911804 -911821 -911834 -911849 -911858 -911869 -911884 -911895 -815323 -815449 -815631 -815807 -815843 -815911 -815971 -816005 -816094 -816116 -816164 -816216 -816303 -816353 -816391 -816397 -816420 -816469 -816498 -816532 -816558 -816576 -816595 -816653 -816678 -816697 -816711 -816728 -816744 -816779 -816789 -816821 -816864 -816877 -816891 -816903 -816912 -816920 -816926 -934222 -934605 -934730 -934809 -934928 -934958 -935035 -935126 -935183 -935209 -935248 -935333 -935356 -935381 -935416 -935437 -935448 -935477 -935486 -935515 -935528 -935545 -935568 -935589 -935617 -935628 -935647 -935659 -935672 -935688 -935712 -231832 -231919 -232098 -232225 -232289 -232338 -232387 -232437 -232473 -232536 -232581 -232643 -232669 -232748 -232789 -232813 -232837 -232863 -232897 -232944 -233006 -233068 -233109 -233266 -233324 -233365 -233404 -233775 -233802 -233817 -233861 -233905 -233917 -233928 -233942 -233973 -234019 -234053 -234095 -234125 -234157 -234170 -234186 -234265 -234278 -234290 -234301 -234314 -234324 -234344 -234388 -234405 -234422 -234443 -234452 -234463 -234483 -234496 -234507 -234532 -234550 -234576 -234587 -234600 -234605 -234621 -234630 -234642 -234654 -234661 -499818 -500007 -500132 -500235 -500281 -500346 -500451 -500497 -500522 -500561 -500644 -500725 -500797 -500866 -500918 -500992 -501020 -501053 -501090 -501119 -501161 -501178 -501259 -501304 -501337 -501404 -501447 -501501 -501551 -501596 -501619 -501680 -501700 -501734 -501763 -501799 -501822 -501840 -501847 -501865 -501906 -501987 -502013 -502022 -502051 -502067 -502084 -502103 -502117 -502168 -502185 -502205 -502232 -502263 -502318 -502349 -502370 -502385 -502394 -502410 -502442 -502451 -502464 -502515 -502534 -502566 -502593 -502616 -502627 -502642 -502649 -502659 -502679 -502690 -388208 -388625 -388821 -389137 -389247 -389517 -389586 -389658 -389778 -389885 -389921 -389984 -390064 -390103 -390143 -390311 -390385 -390474 -390577 -390599 -390648 -390698 -390760 -390841 -390865 -390929 -390951 -390985 -391022 -391053 -391082 -391108 -391139 -391166 -391192 -391220 -391239 -391254 -391285 -391314 -391363 -391379 -391403 -391422 -391434 -391446 -391495 -391519 -391532 -391560 -391570 -391589 -391611 -391627 -391651 -391661 -391669 -391686 -391708 -391727 -391756 -391778 -391791 -391805 -457866 -457893 -458085 -458105 -458163 -458323 -458426 -458476 -458636 -458728 -458882 -459011 -459136 -459284 -459328 -459339 -459369 -459393 -459444 -459473 -459551 -459616 -459778 -459827 -459876 -459904 -459942 -459990 -460074 -460124 -460192 -460229 -460347 -460387 -460413 -460439 -460483 -460518 -460566 -460602 -460633 -460656 -460712 -460789 -460802 -460858 -460890 -460904 -460959 -460993 -461022 -461044 -461088 -461102 -461127 -461154 -461205 -461223 -461279 -461298 -461314 -461337 -461355 -461371 -461407 -461424 -461439 -461454 -461476 -461507 -461554 -461564 -461572 -461586 -461593 -461603 -461613 -461627 -461646 -461655 -461672 -461690 -58271 -58470 -58548 -58616 -58647 -58672 -58766 -58820 -58849 -58861 -58895 -58922 -58944 -58959 -58992 -59016 -59026 -59038 -59055 -59072 -59090 -59110 -59121 -59137 -59168 -59199 -59211 -59223 -59237 -59248 -59260 -59273 -59292 -59302 -59308 -717854 -717954 -717971 -718137 -718181 -718231 -718316 -718449 -718552 -718568 -718602 -718648 -718683 -718755 -718806 -718851 -718881 -718957 -718991 -719025 -719052 -719113 -719156 -719228 -719352 -719395 -719432 -719455 -719478 -719505 -719529 -719550 -719578 -719618 -719646 -719657 -719789 -719852 -719865 -719923 -719955 -719974 -720000 -720020 -720028 -720054 -720061 -720072 -720083 -720110 -720126 -720135 -720146 -720154 -720160 -720168 -720174 -720186 -720210 -720239 -720246 -720258 -720288 -720296 -269057 -269186 -269229 -269261 -269318 -269387 -269463 -269526 -269539 -269610 -269688 -269785 -269825 -269881 -269943 -269958 -269971 -270053 -270112 -270172 -270215 -270244 -270297 -270363 -270415 -270434 -270451 -270481 -270515 -270564 -270608 -270638 -270666 -270699 -270719 -270732 -270778 -270795 -270823 -270876 -270900 -270924 -270947 -270989 -271000 -271029 -271041 -271064 -271089 -271103 -271109 -271119 -271134 -271160 -271181 -271220 -271231 -271246 -271262 -271277 -271298 -271314 -271324 -271334 -271344 -271355 -271364 -271373 -271382 -898445 -898540 -898607 -898742 -898829 -898910 -898926 -898970 -899006 -899042 -899082 -899091 -899143 -899177 -899207 -899218 -899240 -899264 -899297 -899306 -899317 -899340 -899373 -899385 -899402 -899426 -899438 -899454 -899470 -899479 -899506 -899519 -899528 -899547 -899560 -899575 -899583 -899589 -899609 -899614 -899623 -899629 -899636 -899643 -899648 -899653 -585983 -586339 -586498 -586605 -586832 -586895 -587067 -587182 -587338 -587430 -587512 -587617 -587713 -587838 -587955 -587982 -588018 -588073 -588112 -588148 -588186 -588213 -588235 -588275 -588282 -588325 -588339 -588371 -588399 -588417 -588444 -588478 -588517 -588537 -588553 -588564 -588576 -588603 -588650 -588655 -588677 -588702 -588727 -588749 -588755 -588769 -588788 -588802 -588814 -588831 -588849 -588893 -588918 -588961 -588974 -176082 -176200 -176296 -176447 -176533 -176828 -177017 -177121 -177335 -177398 -177475 -177503 -177541 -177623 -177664 -177703 -177754 -177797 -177904 -177945 -177970 -177990 -178033 -178065 -178093 -178136 -178176 -178232 -178246 -178269 -178291 -178323 -178335 -178357 -178368 -178393 -178441 -178456 -178478 -178489 -178496 -178520 -178534 -178548 -178561 -178567 -178573 -178580 -178588 -384370 -384487 -384757 -384880 -384959 -385116 -385157 -385336 -385457 -385603 -385698 -385868 -385916 -386014 -386070 -386130 -386226 -386249 -386266 -386340 -386392 -386435 -386547 -386616 -386678 -386736 -386770 -386854 -386905 -386974 -387020 -387057 -387082 -387104 -387127 -387156 -387223 -387251 -387300 -387327 -387371 -387419 -387463 -387503 -387528 -387541 -387598 -387617 -387651 -387669 -387688 -387720 -387732 -387762 -387776 -387789 -387807 -387826 -387845 -387856 -387866 -387874 -387889 -387908 -387938 -387953 -387998 -388016 -388031 -69943 -70239 -70296 -70317 -70370 -70434 -70486 -70523 -70568 -70599 -70627 -70646 -70669 -70698 -70704 -70715 -70732 -70746 -70773 -70785 -70801 -70814 -70829 -70841 -70862 -70896 -70903 -70912 -70918 -70926 -70933 -70940 -70953 -381341 -381499 -381649 -381794 -381871 -382089 -382184 -382229 -382333 -382418 -382579 -382661 -382709 -382728 -382791 -382857 -382947 -383013 -383100 -383176 -383229 -383257 -383319 -383364 -383402 -383496 -383551 -383601 -383654 -383699 -383725 -383757 -383788 -383827 -383858 -383892 -383931 -383956 -384019 -384039 -384070 -384081 -384097 -384118 -384132 -384147 -384163 -384177 -48455 -48568 -48705 -48766 -48803 -48885 -48919 -48969 -49018 -49036 -49076 -49089 -49103 -49110 -49123 -49131 -49142 -49164 -49184 -49197 -589114 -589227 -589525 -589677 -589911 -590023 -590147 -590348 -590496 -590601 -590713 -590812 -590919 -591029 -591090 -591159 -591203 -591235 -591282 -591453 -591514 -591535 -591570 -591590 -591631 -591647 -591678 -591703 -591725 -591767 -591789 -591796 -591812 -591823 -591830 -676991 -677047 -677167 -677314 -677407 -677450 -677509 -677578 -677648 -677698 -677721 -677795 -677848 -677920 -677977 -678036 -678129 -678158 -678199 -678249 -678259 -678347 -678366 -678384 -678412 -678430 -678464 -678478 -678488 -678511 -678546 -678560 -678570 -678582 -678597 -678611 -678620 -678636 -678648 -95763 -95838 -95899 -96049 -96121 -96152 -96190 -96230 -96289 -96327 -96355 -96372 -96384 -96404 -96412 -96454 -96467 -96485 -96511 -96559 -96619 -96631 -96662 -96688 -96708 -96727 -96748 -96760 -96773 -96789 -96800 -96825 -96852 -96865 -96877 -96895 -96907 -96913 -96922 -96931 -96941 -96954 -96964 -96975 -96981 -96987 -96994 -96999 -97005 -509928 -510227 -510413 -510486 -510632 -510703 -510771 -510831 -510934 -511025 -511069 -511170 -511232 -511474 -511554 -511640 -511738 -511790 -511920 -512031 -512206 -512284 -512348 -512411 -512442 -512473 -512503 -512541 -512570 -512599 -512661 -512689 -512727 -512753 -512791 -512828 -512874 -512892 -1187 -1300 -1350 -801174 -801397 -235765 -236529 -237262 -603781 -924788 -374861 -376039 -376946 -377273 -193041 -194321 -195269 -195622 -195832 -196198 -196216 -196329 -196425 -933852 -934535 -647377 -647612 -647893 -648054 -648352 -648601 -648752 -648851 -648997 -649040 -13366 -396508 -397349 -398154 -398501 -64312 -64484 -64680 -64765 -64862 -856904 -857896 -858142 -615501 -615627 -615731 -615818 -616042 -616135 -616232 -616374 -616541 -616577 -616691 -616769 -616893 -616927 -616982 -617096 -617139 -617187 -617231 -617275 -617297 -617311 -617324 -617350 -617373 -617390 -617405 -617414 -617429 -617446 -617467 -617477 -617486 -617500 -21477 -21578 -21669 -21714 -21756 -21803 -21831 -21852 -21895 -21920 -21931 -21948 -21957 -21966 -21978 -21990 -21995 -323369 -323596 -323632 -323719 -323807 -323952 -324034 -324164 -324280 -324385 -324452 -324528 -324609 -324625 -324674 -324742 -324827 -324901 -324957 -325073 -325131 -325182 -325204 -325366 -325391 -325443 -325483 -325530 -325616 -325813 -325881 -325904 -325966 -325978 -326028 -326058 -326078 -326097 -326111 -326144 -326156 -326207 -326226 -326252 -326330 -326360 -326392 -326409 -326423 -326448 -326475 -326489 -326497 -326528 -326570 -326580 -326593 -918056 -918214 -918276 -918350 -918449 -918601 -918658 -918743 -918861 -918916 -918954 -918983 -919013 -919074 -919091 -919120 -919131 -919155 -919185 -237469 -237677 -237779 -237907 -237991 -238082 -238170 -238244 -238374 -238451 -238479 -238590 -238759 -238792 -238881 -238926 -238968 -239143 -239194 -239348 -239392 -239482 -239558 -239601 -239617 -239643 -239676 -239721 -239738 -239745 -239812 -239841 -239905 -239964 -240015 -240059 -240074 -240114 -240139 -240181 -240198 -240225 -240231 -240270 -240291 -240322 -240356 -240368 -240385 -240399 -240416 -240431 -240449 -240466 -240493 -240512 -240529 -240538 -240553 -240576 -240589 -240597 -240608 -296044 -296151 -296179 -296248 -296290 -296328 -296367 -296380 -296410 -296447 -296458 -296487 -296530 -296620 -296686 -296755 -296803 -296827 -296838 -296899 -296926 -296964 -296981 -297001 -297034 -297051 -297067 -297112 -297133 -297219 -297225 -297261 -297278 -297316 -297360 -297406 -297423 -297444 -297481 -297506 -297536 -297552 -297569 -297587 -297638 -297682 -297706 -297751 -297801 -297849 -297881 -297916 -297938 -297955 -297970 -297985 -298001 -298028 -298039 -298054 -298089 -298104 -298129 -298140 -298151 -298163 -298189 -298216 -298249 -298261 -298281 -298308 -298325 -298335 -298363 -298396 -298417 -298426 -298431 -298440 -298450 -298460 -298472 -298484 -298499 -298505 -298524 -298540 -298549 -298559 -298566 -298583 -298604 -298612 -298617 -298625 -298632 -298638 -298650 -298687 -298713 -298723 -298728 -298736 -298749 -298760 -298778 -298801 -298828 -298848 -298854 -298865 -298875 -298884 -298894 -298900 -298913 -298926 -298952 -298960 -298974 -298998 -609334 -609514 -609696 -609873 -610079 -610182 -610242 -610359 -610411 -610523 -610587 -610616 -610677 -610745 -610809 -610885 -610923 -610934 -611020 -611063 -611104 -611195 -611332 -611383 -611397 -611411 -611437 -611465 -611474 -611485 -611506 -611522 -611534 -611553 -611559 -611577 -611588 -611607 -611626 -611646 -611693 -611704 -611727 -611734 -611739 -611747 -611756 -611764 -611790 -611803 -611816 -611825 -611834 -612223 -612234 -612258 -612272 -612283 -797702 -797888 -798167 -798253 -798273 -798382 -798503 -798616 -798702 -798756 -798799 -798830 -798866 -798900 -798936 -798962 -799027 -799060 -799090 -799110 -799134 -799149 -799179 -799191 -799202 -799218 -799234 -799242 -799255 -799264 -799273 -799278 -799289 -799302 -799310 -799319 -799331 -799343 -799356 -799362 -799368 -799375 -799387 -799404 -799416 -799422 -799432 -799438 -799445 -799450 -799455 -22054 -22117 -22199 -22257 -22283 -22307 -22362 -22405 -22429 -22462 -22470 -22490 -22614 -22626 -22635 -22665 -22686 -22693 -22699 -22705 -22726 -22732 -22743 -22751 -22757 -22767 -22776 -22784 -22790 -887333 -887852 -887925 -888090 -888140 -888178 -888201 -888241 -888284 -888352 -888372 -888767 -888794 -888817 -888829 -888849 -888911 -888933 -888954 -888968 -888985 -888995 -889033 -889049 -889073 -889091 -889192 -889210 -889225 -889250 -889259 -889277 -820036 -820171 -820368 -820455 -820509 -820530 -820575 -820631 -820692 -820717 -820735 -820779 -820806 -820838 -820860 -820896 -820907 -820919 -820941 -820960 -820971 -820986 -820991 -821003 -821017 -821040 -821049 -821066 -821090 -821096 -821102 -426152 -426253 -426317 -426392 -426414 -426484 -426501 -426533 -426564 -426601 -426669 -426717 -426745 -426766 -426789 -426804 -480683 -480727 -480824 -480970 -481149 -481209 -481340 -481434 -481510 -481574 -481671 -481721 -481773 -481850 -481893 -481956 -482013 -482058 -482155 -482198 -482264 -482322 -482387 -482468 -482510 -482624 -482728 -482865 -482899 -482980 -483010 -483082 -483123 -483147 -483163 -483181 -483235 -483266 -483298 -483311 -483345 -483390 -483412 -483520 -483540 -483582 -483592 -483603 -483611 -483623 -483643 -483662 -483683 -483699 -483732 -483747 -483755 -483765 -483790 -483813 -483828 -483841 -483851 -483862 -483873 -483882 -483898 -483914 -483925 -483931 -483957 -483973 -483984 -483989 -484002 -484013 -484020 -484027 -801277 -801728 -801869 -802027 -802207 -802340 -802364 -802381 -802435 -802478 -802495 -802522 -802565 -802572 -802608 -802627 -802640 -802650 -802664 -802671 -802715 -802722 -802732 -802744 -802758 -802783 -802801 -802817 -802827 -802837 -802851 -802858 -802872 -802887 -802899 -245296 -245640 -245931 -245984 -246275 -246506 -246707 -246765 -246836 -246927 -246969 -247147 -247305 -247330 -247358 -247482 -247494 -247522 -247606 -247696 -247798 -247831 -247868 -247929 -247979 -248004 -248034 -248051 -248065 -248081 -248108 -248117 -248132 -248165 -248210 -248235 -248245 -248255 -248265 -248280 -248296 -248346 -248362 -248377 -248387 -248394 -248412 -248422 -248436 -248447 -248467 -248482 -248496 -248518 -248529 -429846 -430159 -430421 -430594 -430707 -430842 -430897 -431012 -431072 -431095 -431140 -431232 -431296 -431308 -431362 -431402 -431441 -431538 -431598 -431636 -431659 -431705 -431755 -431762 -431802 -431817 -431852 -431873 -431885 -431895 -431907 -431931 -431947 -431952 -431976 -431995 -432011 -432024 -432032 -432059 -432069 -432076 -432082 -432090 -432099 -432106 -432112 -951400 -951467 -951615 -951752 -951916 -952014 -952145 -952229 -952297 -952325 -952343 -952362 -952388 -952402 -952407 -952422 -952448 -952457 -767647 -768058 -768369 -768448 -768571 -768664 -768703 -768766 -768850 -768910 -768969 -769017 -769129 -769171 -769255 -769288 -769299 -769326 -769351 -769373 -769384 -769427 -769434 -769450 -769470 -769478 -769489 -769510 -769523 -769540 -769550 -769558 -769586 -769596 -769603 -769608 -246699 -246867 -246953 -247077 -247151 -247263 -247335 -247402 -247489 -247590 -247667 -247816 -247908 -248006 -248123 -248194 -248285 -248438 -248548 -248592 -248802 -248860 -248894 -248915 -248956 -248976 -248994 -249022 -249046 -249089 -249145 -249193 -249204 -249249 -249274 -249312 -249336 -249377 -249392 -249402 -249415 -249427 -249441 -249462 -249484 -249520 -249547 -249564 -249571 -249581 -249594 -249600 -249608 -149663 -149789 -149818 -149870 -149904 -149994 -150044 -150058 -150110 -150159 -150180 -150215 -150251 -150284 -150301 -150309 -150337 -150359 -150382 -150429 -150448 -150478 -150516 -150527 -150546 -150588 -150610 -150650 -150691 -150705 -150732 -150753 -150769 -150806 -150834 -150865 -150904 -150957 -150982 -151110 -151165 -151240 -151270 -151296 -151312 -151326 -151357 -151370 -151375 -151392 -151399 -151423 -151438 -151456 -151465 -151479 -151488 -151501 -151517 -151566 -151579 -151591 -151614 -151646 -151654 -151672 -151683 -151688 -151702 -151717 -151728 -151744 -151760 -151769 -151786 -151795 -151806 -151823 -151831 -151840 -151845 -151851 -151859 -151865 -151871 -151877 -622023 -622229 -622382 -622592 -622672 -622745 -622844 -623048 -623178 -623194 -623252 -623279 -623325 -623359 -623380 -623480 -623500 -623529 -623576 -623661 -623680 -623697 -623713 -623753 -623785 -623810 -623837 -623845 -623854 -623861 -623873 -721062 -721206 -721382 -721704 -721808 -721884 -721908 -722010 -722140 -722289 -722452 -722486 -722563 -722592 -722666 -722701 -722725 -722756 -722768 -722786 -722803 -722861 -722909 -722919 -722925 -420008 -420222 -420585 -420929 -421282 -421549 -421663 -421715 -421823 -422084 -422139 -422274 -422470 -422523 -422557 -422654 -422686 -422718 -422754 -422862 -422970 -423013 -423032 -423046 -423054 -423085 -423117 -423143 -423150 -423176 -423192 -423207 -423231 -423240 -423254 -423263 -423271 -423283 -423292 -423300 -423324 -423355 -423361 -423380 -423400 -423421 -423428 -423434 -209188 -209519 -209823 -209941 -210136 -210330 -210441 -210513 -210692 -210764 -210840 -210927 -210977 -211023 -211213 -211306 -211357 -211431 -211465 -211479 -211501 -211550 -211576 -211632 -211677 -211697 -211720 -211756 -211771 -211786 -211793 -211800 -211821 -211838 -211849 -211861 -211872 -211887 -211895 -211900 -890400 -890551 -890804 -890843 -890971 -891040 -891204 -891259 -891305 -891327 -891389 -891417 -891501 -891524 -891535 -891552 -891578 -891624 -891651 -891681 -891703 -891752 -891794 -891817 -891846 -37929 -38005 -38052 -38109 -38181 -38228 -38261 -38296 -38341 -38390 -38408 -38449 -38476 -38520 -38608 -38628 -38660 -38678 -38721 -38727 -38754 -38774 -38803 -38813 -38836 -38858 -38871 -38876 -38888 -38900 -38914 -38935 -38951 -38962 -38968 -38976 -38989 -38996 -39002 -39008 -196767 -196888 -197022 -197179 -197427 -197624 -197764 -197846 -197894 -197917 -197960 -198048 -198115 -198154 -198220 -198256 -198284 -198338 -198376 -198423 -198480 -198505 -198569 -198623 -198655 -198700 -198756 -198786 -198802 -198830 -198921 -198935 -198977 -199036 -199048 -199074 -199106 -199126 -199158 -199175 -199216 -199251 -199279 -199292 -199304 -199314 -199328 -199337 -199345 -199351 -199380 -199398 -199406 -199413 -199425 -199441 -199447 -199466 -199475 -199492 -199511 -199520 -199528 -199536 -199543 -199581 -199589 -199596 -199608 -199635 -199650 -199656 -199666 -199672 -911492 -911709 -911916 -911981 -912067 -912265 -912345 -912419 -912461 -912489 -912505 -912542 -912559 -912607 -912621 -912640 -912647 -912655 -912666 -912687 -912701 -912706 -912721 -912733 -912740 -912748 -912759 -912767 -912775 -912795 -912802 -912809 -912815 -50909 -51103 -51148 -51176 -51252 -51333 -51360 -51385 -51439 -51481 -51514 -51554 -51571 -51594 -51618 -51629 -51648 -51663 -51685 -51693 -51705 -51717 -51722 -51734 -51744 -51759 -51770 -51778 -51790 -51799 -51807 -51819 -51824 -93635 -93723 -93794 -93870 -93958 -94029 -94128 -94228 -94245 -94280 -94329 -94364 -94390 -94401 -94445 -94470 -94485 -94513 -94536 -94566 -94617 -94652 -94677 -94709 -94739 -94773 -94793 -94865 -94928 -94948 -94980 -94999 -95015 -95042 -95057 -95077 -95108 -95134 -95158 -95170 -95186 -95201 -95225 -95239 -95251 -95272 -95295 -95313 -95323 -95338 -597321 -597506 -597673 -598083 -598384 -598554 -598830 -599005 -599129 -599203 -599250 -599277 -599340 -599369 -599437 -599480 -599586 -599619 -599661 -599679 -599709 -599787 -599846 -599901 -599936 -599948 -599967 -599985 -600021 -600044 -600061 -600075 -600099 -600112 -600129 -600141 -600184 -600196 -600204 -600226 -600251 -600302 -600311 -600321 -600337 -600352 -600368 -600376 -600385 -7869 -7887 -7896 -7904 -7911 -7918 -7926 -7931 -7938 -7943 -7950 -7956 -7965 -7976 -7984 -7989 -7999 -8012 -8019 -8026 -8037 -8043 -8048 -8057 -8065 -8070 -8076 -8085 -8094 -8104 -8109 -8118 -8126 -8131 -8138 -8146 -8157 -8163 -8170 -8176 -8182 -8190 -8196 -8202 -8212 -8219 -8226 -8232 -8237 -8242 -8248 -8253 -8258 -8265 -8270 -8275 -8281 -8288 -8297 -8303 -8308 -350052 -351039 -351489 -351741 -351911 -352294 -352486 -352731 -352819 -352892 -353012 -353054 -353137 -353168 -353218 -353283 -353306 -353328 -353351 -353375 -353388 -353404 -353412 -353440 -353468 -353510 -353516 -353569 -353614 -353649 -353671 -353716 -353734 -353741 -353751 -66053 -66446 -66669 -66799 -66889 -66927 -66962 -66977 -66987 -67016 -67027 -67041 -67050 -67063 -67082 -67107 -67119 -67133 -67141 -67155 -67163 -67169 -67176 -923239 -923318 -923471 -923516 -923612 -923670 -923745 -923865 -923991 -924018 -924046 -924061 -924097 -924123 -924166 -924177 -924187 -924220 -924230 -924241 -924258 -924267 -924285 -924293 -733011 -733078 -733244 -733319 -733364 -733430 -733513 -733548 -733619 -733677 -733791 -733946 -733969 -734032 -734159 -734191 -734203 -734225 -734256 -734285 -734326 -734337 -734385 -734401 -734432 -734476 -734505 -734524 -734534 -734554 -734573 -734595 -734613 -734626 -734650 -734657 -734671 -734703 -734722 -734748 -323336 -323411 -323527 -323550 -323595 -323645 -323716 -323742 -323790 -323922 -323969 -323984 -324026 -324100 -324148 -324201 -324241 -324275 -324333 -324342 -324380 -324418 -324429 -324449 -324520 -324555 -324590 -324640 -324652 -324725 -324787 -324847 -324860 -324907 -324949 -324975 -325010 -325052 -325091 -325115 -325148 -325172 -325191 -325314 -325352 -325377 -325403 -325442 -325456 -325489 -325509 -325528 -325606 -325682 -325846 -325890 -325903 -325953 -325982 -326012 -326029 -326054 -326067 -326100 -326116 -326131 -326147 -326177 -326194 -326211 -326246 -326265 -326274 -326284 -326336 -326352 -326386 -326398 -326411 -326425 -326442 -326458 -326467 -326494 -326506 -326584 -667441 -667570 -667659 -667793 -667859 -668011 -668048 -668120 -668193 -668230 -668288 -668344 -668394 -668450 -668500 -668559 -668589 -668622 -668652 -668682 -668710 -668936 -668949 -669003 -669093 -669166 -669250 -669277 -669293 -669351 -669388 -669408 -669435 -669452 -669486 -669521 -669548 -669568 -669574 -669606 -669636 -669655 -669664 -669677 -669713 -669742 -669750 -669768 -669779 -669785 -669800 -669808 -669820 -669829 -669839 -669848 -669853 -669862 -669871 -669883 -669895 -669921 -669938 -669955 -669970 -669984 -669999 -670022 -670033 -670046 -670056 -910837 -910896 -910917 -911017 -911074 -911145 -911157 -911197 -911256 -911265 -911283 -911308 -911376 -911419 -911449 -911526 -911544 -911556 -911575 -911606 -911676 -911685 -911717 -911758 -911767 -911778 -911789 -911811 -911822 -911838 -911854 -911863 -911873 -911885 -911896 -815334 -815455 -815665 -815809 -815865 -815922 -815988 -816036 -816100 -816130 -816182 -816234 -816308 -816359 -816392 -816401 -816426 -816470 -816512 -816537 -816561 -816582 -816607 -816654 -816679 -816698 -816714 -816731 -816757 -816780 -816809 -816833 -816865 -816878 -816892 -816905 -816913 -816922 -816927 -934264 -934647 -934782 -934863 -934929 -934967 -935052 -935128 -935195 -935224 -935259 -935336 -935358 -935386 -935417 -935442 -935453 -935479 -935492 -935517 -935533 -935547 -935573 -935601 -935620 -935632 -935648 -935661 -935678 -935689 -231489 -231838 -231973 -232107 -232227 -232301 -232341 -232388 -232438 -232475 -232550 -232585 -232645 -232714 -232755 -232791 -232814 -232838 -232873 -232900 -232959 -233031 -233075 -233113 -233277 -233337 -233373 -233407 -233776 -233805 -233819 -233869 -233909 -233918 -233930 -233945 -233977 -234020 -234054 -234103 -234134 -234158 -234174 -234189 -234267 -234279 -234293 -234302 -234315 -234328 -234363 -234392 -234408 -234423 -234444 -234454 -234465 -234485 -234500 -234508 -234535 -234553 -234577 -234589 -234601 -234609 -234622 -234632 -234644 -234656 -499486 -499850 -500035 -500134 -500236 -500310 -500392 -500475 -500498 -500527 -500566 -500651 -500728 -500801 -500876 -500934 -500998 -501023 -501055 -501095 -501128 -501164 -501188 -501263 -501308 -501388 -501406 -501453 -501503 -501575 -501597 -501621 -501682 -501701 -501736 -501764 -501807 -501823 -501841 -501853 -501866 -501916 -501989 -502015 -502031 -502052 -502068 -502087 -502104 -502120 -502170 -502196 -502227 -502241 -502264 -502323 -502354 -502371 -502386 -502395 -502428 -502443 -502454 -502467 -502522 -502535 -502567 -502600 -502619 -502629 -502643 -502651 -502660 -502681 -502691 -388219 -388695 -388924 -389176 -389273 -389524 -389606 -389672 -389796 -389899 -389940 -390000 -390066 -390122 -390172 -390341 -390395 -390505 -390584 -390609 -390669 -390727 -390787 -390849 -390866 -390930 -390965 -390986 -391025 -391062 -391083 -391109 -391140 -391173 -391193 -391226 -391240 -391260 -391290 -391317 -391366 -391389 -391408 -391425 -391435 -391451 -391501 -391522 -391534 -391564 -391576 -391591 -391621 -391633 -391652 -391663 -391672 -391696 -391715 -391728 -391764 -391779 -391794 -391811 -457870 -457900 -458090 -458116 -458189 -458348 -458429 -458511 -458646 -458753 -458893 -459022 -459180 -459287 -459330 -459340 -459378 -459396 -459447 -459507 -459558 -459671 -459794 -459836 -459881 -459905 -459966 -460008 -460091 -460152 -460206 -460237 -460355 -460393 -460431 -460444 -460486 -460519 -460567 -460610 -460635 -460658 -460721 -460791 -460809 -460860 -460893 -460910 -460983 -460994 -461023 -461055 -461093 -461103 -461128 -461158 -461206 -461242 -461283 -461301 -461324 -461341 -461357 -461377 -461412 -461426 -461443 -461458 -461480 -461514 -461555 -461565 -461573 -461587 -461595 -461607 -461618 -461628 -461649 -461657 -461673 -461691 -58302 -58473 -58554 -58624 -58650 -58675 -58781 -58829 -58851 -58863 -58898 -58924 -58945 -58960 -59006 -59018 -59027 -59042 -59058 -59081 -59097 -59114 -59125 -59155 -59174 -59200 -59214 -59225 -59238 -59249 -59261 -59276 -59298 -59303 -59309 -717874 -717958 -717984 -718164 -718184 -718254 -718337 -718455 -718560 -718597 -718615 -718649 -718690 -718756 -718807 -718853 -718884 -718959 -718992 -719037 -719053 -719118 -719158 -719234 -719354 -719419 -719442 -719458 -719485 -719507 -719534 -719552 -719593 -719622 -719647 -719658 -719797 -719853 -719882 -719924 -719958 -719975 -720014 -720022 -720038 -720055 -720063 -720073 -720087 -720117 -720130 -720138 -720147 -720156 -720162 -720170 -720176 -720200 -720213 -720242 -720249 -720259 -720289 -720297 -269071 -269189 -269231 -269273 -269331 -269397 -269494 -269534 -269573 -269620 -269692 -269792 -269843 -269891 -269948 -269959 -269977 -270062 -270126 -270179 -270222 -270246 -270307 -270366 -270416 -270438 -270455 -270490 -270524 -270595 -270610 -270641 -270678 -270700 -270721 -270747 -270780 -270799 -270825 -270879 -270910 -270925 -270952 -270991 -271003 -271030 -271045 -271074 -271090 -271104 -271110 -271120 -271135 -271165 -271210 -271222 -271236 -271249 -271266 -271278 -271299 -271316 -271325 -271335 -271346 -271357 -271365 -271376 -271384 -898464 -898549 -898663 -898745 -898832 -898911 -898943 -898971 -899031 -899053 -899086 -899093 -899166 -899183 -899210 -899219 -899252 -899267 -899298 -899309 -899326 -899342 -899376 -899388 -899406 -899430 -899440 -899459 -899471 -899493 -899507 -899521 -899532 -899548 -899561 -899576 -899584 -899596 -899610 -899615 -899625 -899630 -899637 -899644 -899649 -899654 -586008 -586383 -586531 -586663 -586848 -586932 -587068 -587244 -587359 -587450 -587546 -587628 -587754 -587888 -587957 -587987 -588050 -588082 -588117 -588150 -588187 -588222 -588251 -588276 -588297 -588326 -588342 -588376 -588401 -588420 -588453 -588485 -588521 -588540 -588555 -588565 -588581 -588608 -588651 -588657 -588680 -588714 -588729 -588750 -588760 -588772 -588792 -588803 -588817 -588834 -588854 -588898 -588924 -588962 -175911 -176117 -176208 -176338 -176450 -176595 -176889 -177036 -177122 -177348 -177447 -177478 -177505 -177569 -177648 -177672 -177715 -177766 -177803 -177905 -177946 -177975 -177999 -178037 -178066 -178116 -178138 -178196 -178239 -178255 -178270 -178293 -178324 -178342 -178358 -178372 -178427 -178444 -178459 -178482 -178490 -178499 -178529 -178536 -178553 -178562 -178568 -178574 -178581 -384203 -384380 -384492 -384759 -384881 -385076 -385135 -385168 -385367 -385516 -385668 -385703 -385893 -385933 -386025 -386099 -386138 -386228 -386258 -386307 -386347 -386400 -386481 -386563 -386617 -386684 -386742 -386785 -386859 -386912 -386978 -387028 -387067 -387084 -387107 -387140 -387157 -387229 -387253 -387302 -387331 -387393 -387455 -387472 -387517 -387530 -387559 -387600 -387620 -387654 -387672 -387692 -387727 -387735 -387763 -387778 -387791 -387808 -387831 -387846 -387857 -387867 -387875 -387893 -387910 -387939 -387970 -388008 -388020 -69737 -70129 -70252 -70298 -70320 -70382 -70437 -70496 -70536 -70570 -70600 -70633 -70649 -70671 -70699 -70708 -70719 -70734 -70749 -70779 -70792 -70802 -70818 -70833 -70846 -70885 -70899 -70904 -70914 -70919 -70927 -70934 -70945 -70955 -381364 -381541 -381686 -381825 -381955 -382111 -382190 -382237 -382334 -382430 -382616 -382668 -382711 -382742 -382800 -382859 -382957 -383018 -383115 -383178 -383230 -383271 -383338 -383384 -383414 -383498 -383560 -383622 -383658 -383716 -383726 -383761 -383791 -383835 -383868 -383899 -383932 -383969 -384030 -384044 -384075 -384085 -384103 -384119 -384134 -384156 -384164 -384190 -48465 -48572 -48714 -48771 -48815 -48894 -48921 -49001 -49026 -49038 -49080 -49090 -49105 -49117 -49126 -49133 -49143 -49165 -49193 -49198 -589115 -589320 -589551 -589680 -589919 -590053 -590245 -590413 -590501 -590616 -590716 -590815 -590933 -591051 -591096 -591164 -591204 -591247 -591298 -591457 -591515 -591543 -591574 -591591 -591633 -591665 -591684 -591704 -591727 -591774 -591792 -591797 -591814 -591826 -591831 -676998 -677071 -677182 -677366 -677412 -677467 -677527 -677580 -677654 -677701 -677736 -677802 -677871 -677935 -677993 -678037 -678140 -678164 -678222 -678250 -678288 -678354 -678367 -678389 -678422 -678442 -678465 -678481 -678498 -678512 -678550 -678563 -678571 -678583 -678599 -678612 -678625 -678639 -678649 -95797 -95839 -95919 -96050 -96124 -96154 -96203 -96232 -96299 -96331 -96356 -96375 -96393 -96406 -96418 -96455 -96474 -96495 -96520 -96564 -96621 -96640 -96674 -96697 -96711 -96732 -96751 -96762 -96781 -96791 -96801 -96846 -96858 -96869 -96878 -96899 -96908 -96915 -96923 -96936 -96948 -96956 -96966 -96977 -96983 -96988 -96995 -97000 -97007 -510019 -510238 -510426 -510512 -510641 -510710 -510775 -510882 -510978 -511039 -511080 -511188 -511244 -511476 -511561 -511671 -511752 -511791 -511927 -512087 -512236 -512293 -512354 -512413 -512446 -512482 -512521 -512546 -512577 -512615 -512663 -512696 -512746 -512758 -512812 -512842 -512878 -512897 -1270 -1307 -1351 -801184 -801441 -235915 -236753 -602003 -924455 -374418 -375421 -376053 -376952 -377407 -193084 -194746 -195397 -195675 -195839 -196208 -196251 -196347 -933530 -933958 -934566 -647459 -647650 -647927 -648098 -648492 -648654 -648766 -648858 -649001 -649055 -13396 -396871 -397814 -398334 -398513 -64378 -64507 -64715 -64813 -64908 -857521 -857946 -858165 -615518 -615652 -615744 -615830 -616044 -616159 -616242 -616390 -616544 -616592 -616724 -616854 -616901 -616954 -617006 -617097 -617152 -617211 -617234 -617289 -617298 -617313 -617328 -617351 -617376 -617396 -617407 -617418 -617440 -617448 -617468 -617480 -617492 -617509 -21500 -21596 -21676 -21740 -21774 -21805 -21842 -21857 -21899 -21922 -21932 -21949 -21960 -21968 -21983 -21991 -323279 -323372 -323599 -323635 -323735 -323814 -323995 -324088 -324190 -324309 -324399 -324462 -324544 -324612 -324629 -324689 -324746 -324881 -324929 -324969 -325081 -325143 -325196 -325235 -325370 -325396 -325449 -325500 -325534 -325631 -325824 -325882 -325906 -325970 -325980 -326038 -326068 -326080 -326106 -326123 -326146 -326158 -326210 -326231 -326259 -326333 -326374 -326395 -326410 -326427 -326460 -326477 -326491 -326498 -326529 -326571 -326581 -917919 -918057 -918226 -918298 -918352 -918510 -918608 -918661 -918750 -918866 -918918 -918958 -918990 -919016 -919075 -919094 -919121 -919132 -919167 -919189 -237531 -237688 -237788 -237938 -238048 -238133 -238172 -238251 -238399 -238453 -238499 -238681 -238770 -238821 -238897 -238929 -238971 -239156 -239230 -239365 -239393 -239501 -239562 -239606 -239621 -239644 -239677 -239733 -239740 -239746 -239814 -239886 -239907 -240002 -240043 -240064 -240081 -240124 -240142 -240186 -240200 -240226 -240232 -240273 -240304 -240350 -240358 -240375 -240386 -240408 -240417 -240434 -240452 -240472 -240495 -240513 -240531 -240542 -240556 -240578 -240591 -240602 -240610 -296080 -296155 -296190 -296259 -296311 -296335 -296368 -296381 -296421 -296449 -296459 -296515 -296576 -296623 -296688 -296772 -296805 -296830 -296859 -296902 -296938 -296966 -296983 -297008 -297038 -297055 -297073 -297114 -297141 -297220 -297233 -297265 -297298 -297336 -297363 -297408 -297427 -297456 -297488 -297512 -297546 -297557 -297571 -297598 -297648 -297685 -297708 -297773 -297803 -297855 -297882 -297925 -297939 -297959 -297972 -297986 -298010 -298030 -298041 -298064 -298097 -298108 -298130 -298141 -298152 -298164 -298192 -298242 -298253 -298263 -298288 -298309 -298327 -298339 -298371 -298411 -298419 -298427 -298432 -298444 -298451 -298461 -298476 -298485 -298500 -298509 -298526 -298543 -298550 -298560 -298567 -298585 -298606 -298613 -298618 -298626 -298634 -298639 -298654 -298700 -298714 -298724 -298730 -298738 -298750 -298762 -298779 -298810 -298829 -298850 -298855 -298870 -298877 -298887 -298895 -298901 -298917 -298927 -298953 -298962 -298975 -609237 -609350 -609593 -609783 -609907 -610088 -610184 -610284 -610368 -610413 -610529 -610592 -610635 -610678 -610746 -610847 -610894 -610926 -610939 -611022 -611066 -611120 -611205 -611333 -611386 -611401 -611416 -611452 -611467 -611475 -611494 -611509 -611523 -611537 -611554 -611565 -611578 -611590 -611610 -611629 -611653 -611694 -611707 -611728 -611735 -611740 -611748 -611757 -611768 -611793 -611805 -611819 -611826 -611835 -612229 -612238 -612260 -612274 -612284 -797730 -797905 -798172 -798261 -798354 -798400 -798511 -798617 -798707 -798763 -798803 -798835 -798867 -798903 -798948 -798986 -799033 -799061 -799091 -799112 -799135 -799151 -799180 -799192 -799211 -799224 -799237 -799244 -799258 -799265 -799274 -799283 -799290 -799303 -799311 -799322 -799333 -799345 -799357 -799364 -799369 -799380 -799391 -799406 -799417 -799425 -799433 -799439 -799446 -799451 -799457 -22057 -22145 -22213 -22267 -22284 -22308 -22371 -22409 -22450 -22463 -22471 -22491 -22617 -22627 -22637 -22667 -22688 -22695 -22700 -22708 -22728 -22733 -22744 -22752 -22758 -22768 -22777 -22785 -22791 -887550 -887873 -887973 -888110 -888142 -888179 -888210 -888268 -888286 -888359 -888376 -888771 -888796 -888819 -888831 -888855 -888914 -888934 -888957 -888969 -888986 -888997 -889034 -889065 -889074 -889092 -889193 -889214 -889240 -889253 -889264 -889278 -820058 -820206 -820373 -820465 -820513 -820549 -820590 -820634 -820694 -820719 -820748 -820781 -820828 -820844 -820878 -820900 -820908 -820922 -820944 -820962 -820974 -820987 -820994 -821004 -821025 -821041 -821053 -821070 -821091 -821097 -821103 -426155 -426266 -426340 -426396 -426420 -426485 -426503 -426539 -426569 -426609 -426691 -426729 -426753 -426768 -426790 -426813 -480689 -480746 -480847 -480990 -481180 -481222 -481352 -481440 -481518 -481616 -481687 -481722 -481806 -481871 -481897 -481959 -482015 -482093 -482173 -482217 -482268 -482326 -482389 -482473 -482514 -482641 -482738 -482878 -482900 -482989 -483012 -483083 -483124 -483155 -483167 -483197 -483246 -483279 -483299 -483314 -483351 -483392 -483430 -483523 -483560 -483587 -483593 -483605 -483613 -483626 -483653 -483665 -483684 -483701 -483735 -483748 -483758 -483770 -483795 -483814 -483829 -483842 -483852 -483864 -483874 -483885 -483899 -483919 -483926 -483933 -483963 -483974 -483985 -483991 -484003 -484014 -484023 -484028 -801308 -801773 -801872 -802074 -802222 -802347 -802371 -802409 -802456 -802479 -802499 -802523 -802566 -802573 -802614 -802629 -802642 -802651 -802666 -802672 -802717 -802727 -802734 -802745 -802760 -802784 -802804 -802818 -802828 -802838 -802853 -802859 -802874 -802889 -802900 -245466 -245659 -245939 -245994 -246279 -246508 -246709 -246796 -246890 -246933 -247045 -247148 -247306 -247331 -247361 -247483 -247506 -247534 -247649 -247704 -247813 -247833 -247875 -247933 -247980 -248007 -248035 -248054 -248066 -248083 -248109 -248124 -248151 -248175 -248217 -248238 -248246 -248256 -248269 -248286 -248336 -248347 -248364 -248381 -248388 -248401 -248415 -248424 -248439 -248460 -248468 -248483 -248498 -248524 -248530 -429891 -430232 -430445 -430637 -430748 -430865 -430918 -431034 -431073 -431096 -431156 -431241 -431299 -431310 -431374 -431405 -431463 -431547 -431610 -431639 -431666 -431720 -431756 -431764 -431804 -431822 -431858 -431874 -431886 -431897 -431908 -431934 -431948 -431953 -431978 -432002 -432014 -432025 -432041 -432061 -432072 -432077 -432084 -432091 -432101 -432107 -951282 -951408 -951490 -951616 -951757 -951918 -952025 -952206 -952230 -952312 -952329 -952344 -952373 -952393 -952403 -952410 -952426 -952449 -952458 -767725 -768256 -768386 -768488 -768573 -768669 -768714 -768767 -768874 -768915 -768980 -769024 -769130 -769201 -769257 -769294 -769301 -769328 -769365 -769378 -769388 -769428 -769435 -769451 -769471 -769479 -769500 -769513 -769530 -769542 -769552 -769560 -769587 -769597 -769604 -246492 -246717 -246917 -246959 -247106 -247190 -247301 -247352 -247472 -247490 -247597 -247698 -247823 -247922 -248043 -248127 -248219 -248294 -248480 -248559 -248658 -248804 -248868 -248900 -248927 -248963 -248978 -248997 -249026 -249073 -249108 -249148 -249198 -249206 -249250 -249275 -249319 -249342 -249379 -249393 -249403 -249416 -249429 -249444 -249469 -249498 -249522 -249548 -249565 -249573 -249583 -249595 -249601 -249610 -149694 -149790 -149825 -149872 -149960 -149995 -150050 -150073 -150125 -150162 -150183 -150220 -150253 -150289 -150302 -150315 -150344 -150362 -150386 -150434 -150453 -150483 -150517 -150528 -150556 -150593 -150613 -150678 -150694 -150712 -150735 -150761 -150780 -150812 -150836 -150867 -150914 -150966 -150995 -151133 -151167 -151248 -151275 -151297 -151318 -151341 -151363 -151371 -151386 -151393 -151404 -151424 -151450 -151457 -151466 -151480 -151489 -151504 -151552 -151567 -151581 -151599 -151621 -151649 -151662 -151673 -151684 -151694 -151707 -151718 -151732 -151755 -151761 -151773 -151787 -151796 -151809 -151826 -151834 -151841 -151846 -151852 -151860 -151866 -151872 -151878 -622085 -622236 -622447 -622609 -622695 -622746 -622886 -623066 -623181 -623195 -623258 -623281 -623330 -623366 -623441 -623481 -623510 -623541 -623608 -623664 -623684 -623699 -623714 -623756 -623790 -623825 -623838 -623847 -623855 -623863 -623876 -721065 -721247 -721478 -721712 -721817 -721886 -721910 -722041 -722158 -722295 -722463 -722487 -722566 -722631 -722673 -722707 -722728 -722757 -722770 -722787 -722806 -722865 -722911 -722920 -722928 -420037 -420408 -420608 -420943 -421283 -421553 -421667 -421740 -421857 -422087 -422186 -422278 -422472 -422533 -422572 -422659 -422688 -422728 -422760 -422867 -422972 -423014 -423039 -423047 -423056 -423098 -423128 -423144 -423163 -423183 -423197 -423215 -423234 -423242 -423256 -423264 -423274 -423285 -423294 -423301 -423329 -423356 -423364 -423382 -423411 -423422 -423429 -208981 -209206 -209669 -209838 -209997 -210138 -210355 -210448 -210540 -210724 -210804 -210848 -210943 -210979 -211030 -211214 -211311 -211386 -211439 -211466 -211491 -211504 -211557 -211605 -211644 -211679 -211705 -211721 -211758 -211777 -211787 -211794 -211805 -211824 -211841 -211851 -211864 -211873 -211889 -211896 -889911 -890469 -890564 -890807 -890860 -890996 -891069 -891212 -891278 -891306 -891353 -891394 -891440 -891506 -891527 -891536 -891553 -891587 -891628 -891663 -891684 -891715 -891753 -891808 -891819 -891848 -37969 -38010 -38055 -38129 -38188 -38239 -38278 -38298 -38351 -38396 -38409 -38451 -38477 -38537 -38620 -38631 -38665 -38681 -38722 -38733 -38757 -38782 -38804 -38814 -38848 -38859 -38872 -38877 -38892 -38902 -38919 -38939 -38955 -38963 -38969 -38977 -38990 -38998 -39003 -39009 -196770 -196891 -197030 -197202 -197524 -197647 -197784 -197848 -197895 -197923 -197963 -198055 -198116 -198175 -198226 -198270 -198285 -198339 -198381 -198435 -198481 -198506 -198610 -198632 -198656 -198704 -198761 -198787 -198803 -198841 -198922 -198937 -199011 -199037 -199052 -199078 -199110 -199131 -199164 -199178 -199217 -199252 -199285 -199294 -199305 -199315 -199329 -199338 -199346 -199352 -199385 -199399 -199408 -199415 -199426 -199442 -199451 -199467 -199481 -199497 -199513 -199521 -199531 -199537 -199545 -199582 -199590 -199597 -199612 -199639 -199651 -199657 -199667 -199674 -911537 -911763 -911918 -912017 -912131 -912291 -912352 -912424 -912463 -912490 -912528 -912549 -912572 -912609 -912629 -912641 -912648 -912661 -912668 -912689 -912702 -912715 -912727 -912734 -912742 -912754 -912762 -912769 -912789 -912796 -912803 -912810 -912816 -50973 -51108 -51161 -51181 -51286 -51334 -51366 -51387 -51461 -51498 -51516 -51556 -51575 -51599 -51619 -51631 -51649 -51678 -51687 -51697 -51706 -51718 -51726 -51735 -51746 -51760 -51771 -51779 -51791 -51800 -51811 -51820 -51825 -93648 -93758 -93797 -93875 -93966 -94037 -94163 -94231 -94246 -94283 -94348 -94366 -94392 -94405 -94456 -94473 -94492 -94523 -94547 -94586 -94624 -94655 -94681 -94722 -94743 -94785 -94818 -94866 -94930 -94955 -94987 -95003 -95029 -95045 -95062 -95088 -95111 -95136 -95164 -95171 -95187 -95202 -95229 -95241 -95252 -95277 -95298 -95314 -95324 -95339 -597361 -597542 -597917 -598090 -598502 -598753 -598839 -599022 -599142 -599208 -599252 -599285 -599341 -599372 -599438 -599503 -599601 -599620 -599665 -599685 -599776 -599807 -599847 -599903 -599937 -599951 -599968 -599987 -600022 -600047 -600062 -600079 -600100 -600115 -600132 -600145 -600187 -600197 -600213 -600230 -600254 -600303 -600312 -600323 -600340 -600356 -600370 -600377 -600387 -7871 -7888 -7897 -7905 -7912 -7920 -7927 -7932 -7939 -7944 -7951 -7957 -7967 -7977 -7985 -7991 -8000 -8013 -8020 -8027 -8038 -8044 -8049 -8058 -8066 -8071 -8078 -8086 -8096 -8105 -8114 -8121 -8127 -8132 -8140 -8147 -8159 -8164 -8172 -8178 -8183 -8191 -8197 -8204 -8213 -8221 -8227 -8233 -8238 -8243 -8249 -8254 -8259 -8266 -8271 -8276 -8284 -8290 -8298 -8304 -350166 -351272 -351544 -351746 -351937 -352311 -352512 -352736 -352846 -352902 -353015 -353083 -353146 -353198 -353219 -353296 -353308 -353329 -353362 -353379 -353389 -353406 -353413 -353446 -353472 -353511 -353517 -353583 -353616 -353654 -353701 -353717 -353735 -353742 -353753 -66151 -66449 -66676 -66824 -66899 -66934 -66963 -66979 -66988 -67017 -67031 -67042 -67051 -67064 -67087 -67108 -67123 -67134 -67142 -67156 -67165 -67170 -67177 -923258 -923392 -923479 -923538 -923626 -923692 -923756 -923878 -923997 -924030 -924049 -924068 -924099 -924139 -924168 -924180 -924201 -924221 -924231 -924247 -924261 -924271 -924287 -732905 -733029 -733100 -733266 -733320 -733369 -733432 -733531 -733554 -733621 -733707 -733804 -733948 -733970 -734033 -734161 -734193 -734213 -734231 -734262 -734287 -734327 -734340 -734387 -734407 -734444 -734477 -734506 -734525 -734544 -734555 -734576 -734603 -734615 -734630 -734652 -734659 -734675 -734711 -734723 -734753 -323337 -323484 -323538 -323568 -323598 -323664 -323720 -323752 -323805 -323923 -323975 -323990 -324042 -324111 -324150 -324215 -324264 -324308 -324334 -324350 -324394 -324419 -324442 -324451 -324525 -324556 -324624 -324643 -324662 -324728 -324791 -324849 -324880 -324915 -324951 -324983 -325018 -325065 -325097 -325124 -325149 -325174 -325205 -325315 -325356 -325379 -325406 -325446 -325466 -325490 -325510 -325538 -325626 -325691 -325850 -325893 -325912 -325960 -325986 -326017 -326036 -326057 -326081 -326101 -326117 -326133 -326151 -326179 -326195 -326220 -326248 -326267 -326275 -326323 -326338 -326354 -326388 -326401 -326418 -326430 -326444 -326459 -326472 -326502 -326507 -326585 -667443 -667574 -667714 -667802 -667863 -668013 -668059 -668156 -668195 -668259 -668294 -668348 -668402 -668455 -668503 -668568 -668597 -668623 -668663 -668690 -668737 -668939 -668960 -669011 -669098 -669177 -669257 -669279 -669322 -669353 -669394 -669416 -669436 -669468 -669489 -669526 -669550 -669569 -669594 -669610 -669637 -669656 -669667 -669686 -669728 -669743 -669751 -669771 -669781 -669787 -669802 -669809 -669821 -669831 -669841 -669849 -669854 -669864 -669872 -669886 -669896 -669926 -669950 -669962 -669973 -669990 -670006 -670025 -670034 -670047 -670059 -910840 -910899 -910939 -911052 -911078 -911147 -911163 -911198 -911257 -911273 -911289 -911333 -911381 -911423 -911463 -911528 -911545 -911559 -911581 -911617 -911677 -911695 -911720 -911759 -911768 -911780 -911797 -911812 -911826 -911845 -911855 -911865 -911876 -911888 -911898 -815355 -815490 -815761 -815812 -815873 -815926 -815989 -816058 -816105 -816139 -816194 -816243 -816311 -816363 -816393 -816404 -816429 -816471 -816520 -816543 -816570 -816583 -816637 -816657 -816685 -816703 -816715 -816734 -816758 -816781 -816810 -816851 -816869 -816879 -816893 -816906 -816915 -816923 -934179 -934286 -934669 -934788 -934867 -934934 -935000 -935069 -935139 -935199 -935227 -935264 -935337 -935360 -935400 -935423 -935443 -935464 -935481 -935493 -935523 -935539 -935549 -935583 -935607 -935621 -935638 -935651 -935663 -935682 -935692 -231516 -231844 -231997 -232141 -232229 -232302 -232344 -232389 -232444 -232478 -232559 -232598 -232654 -232715 -232766 -232806 -232816 -232839 -232884 -232901 -232965 -233038 -233077 -233114 -233279 -233348 -233379 -233763 -233781 -233806 -233821 -233876 -233914 -233919 -233933 -233952 -233978 -234032 -234058 -234104 -234147 -234162 -234175 -234191 -234268 -234280 -234296 -234311 -234320 -234340 -234364 -234393 -234410 -234424 -234445 -234455 -234468 -234489 -234502 -234509 -234536 -234564 -234578 -234590 -234602 -234612 -234626 -234637 -234646 -234657 -499487 -499855 -500046 -500138 -500240 -500322 -500419 -500480 -500510 -500533 -500588 -500653 -500763 -500812 -500879 -500950 -501008 -501026 -501057 -501102 -501135 -501170 -501190 -501266 -501309 -501400 -501426 -501462 -501507 -501576 -501603 -501646 -501685 -501711 -501744 -501777 -501809 -501827 -501842 -501856 -501869 -501922 -501993 -502016 -502032 -502058 -502070 -502093 -502105 -502122 -502173 -502197 -502228 -502247 -502275 -502326 -502356 -502375 -502390 -502398 -502432 -502448 -502457 -502477 -502526 -502545 -502568 -502601 -502621 -502637 -502644 -502653 -502667 -502682 -502692 -388235 -388718 -388968 -389200 -389279 -389529 -389639 -389676 -389801 -389915 -389949 -390017 -390068 -390135 -390204 -390342 -390444 -390506 -390585 -390626 -390674 -390731 -390789 -390858 -390893 -390939 -390970 -390995 -391032 -391072 -391085 -391117 -391147 -391181 -391199 -391231 -391241 -391266 -391303 -391318 -391370 -391390 -391417 -391427 -391437 -391477 -391511 -391525 -391551 -391565 -391578 -391593 -391622 -391636 -391653 -391665 -391677 -391703 -391716 -391735 -391767 -391780 -391798 -391814 -457876 -457950 -458091 -458137 -458194 -458349 -458443 -458518 -458649 -458784 -458894 -459043 -459186 -459292 -459334 -459354 -459379 -459408 -459455 -459509 -459572 -459723 -459796 -459850 -459882 -459910 -459967 -460009 -460116 -460166 -460207 -460245 -460360 -460397 -460432 -460451 -460502 -460523 -460569 -460612 -460644 -460682 -460722 -460795 -460812 -460880 -460899 -460917 -460986 -461013 -461031 -461062 -461094 -461105 -461148 -461200 -461212 -461255 -461285 -461307 -461325 -461345 -461361 -461391 -461413 -461433 -461450 -461460 -461488 -461517 -461556 -461567 -461576 -461589 -461597 -461609 -461622 -461631 -461651 -461664 -461681 -461693 -58332 -58491 -58555 -58626 -58654 -58730 -58784 -58839 -58852 -58891 -58899 -58925 -58949 -58966 -59011 -59019 -59030 -59043 -59061 -59085 -59102 -59115 -59127 -59157 -59183 -59204 -59216 -59227 -59240 -59253 -59262 -59282 -59299 -59305 -59310 -717892 -717960 -717985 -718166 -718187 -718261 -718378 -718465 -718563 -718598 -718627 -718651 -718714 -718782 -718812 -718856 -718886 -718966 -718993 -719040 -719066 -719132 -719161 -719245 -719364 -719421 -719450 -719470 -719487 -719509 -719545 -719556 -719594 -719623 -719651 -719659 -719798 -719859 -719883 -719928 -719961 -719976 -720015 -720025 -720039 -720056 -720066 -720074 -720088 -720119 -720131 -720140 -720149 -720157 -720164 -720171 -720177 -720204 -720231 -720243 -720250 -720261 -720290 -720298 -269094 -269193 -269243 -269301 -269334 -269407 -269498 -269535 -269596 -269631 -269697 -269801 -269844 -269911 -269954 -269966 -269984 -270066 -270130 -270189 -270227 -270251 -270320 -270380 -270418 -270443 -270456 -270505 -270528 -270598 -270621 -270649 -270680 -270705 -270722 -270756 -270783 -270807 -270835 -270885 -270914 -270939 -270960 -270993 -271016 -271035 -271046 -271083 -271091 -271105 -271114 -271125 -271149 -271166 -271213 -271225 -271237 -271254 -271267 -271287 -271307 -271317 -271326 -271336 -271352 -271360 -271367 -271377 -898281 -898476 -898555 -898682 -898759 -898886 -898912 -898947 -898990 -899032 -899062 -899087 -899106 -899170 -899184 -899211 -899220 -899254 -899268 -899299 -899310 -899330 -899343 -899381 -899394 -899407 -899431 -899443 -899460 -899474 -899495 -899508 -899522 -899537 -899549 -899567 -899577 -899586 -899602 -899611 -899616 -899626 -899632 -899638 -899645 -899650 -899655 -586061 -586388 -586538 -586786 -586867 -586964 -587082 -587250 -587379 -587451 -587583 -587636 -587792 -587925 -587959 -587991 -588058 -588085 -588130 -588164 -588202 -588223 -588255 -588278 -588312 -588327 -588356 -588381 -588405 -588422 -588461 -588497 -588522 -588545 -588557 -588566 -588596 -588647 -588652 -588665 -588684 -588716 -588735 -588751 -588764 -588782 -588793 -588806 -588824 -588838 -588879 -588901 -588939 -588965 -175917 -176129 -176243 -176344 -176493 -176742 -176916 -177051 -177172 -177358 -177465 -177491 -177510 -177581 -177654 -177674 -177721 -177770 -177805 -177924 -177951 -177978 -178003 -178045 -178069 -178128 -178149 -178207 -178241 -178256 -178271 -178295 -178328 -178353 -178360 -178382 -178428 -178447 -178460 -178484 -178492 -178507 -178530 -178538 -178558 -178563 -178569 -178575 -178585 -384206 -384445 -384681 -384765 -384882 -385083 -385152 -385218 -385392 -385559 -385680 -385807 -385903 -385942 -386032 -386113 -386139 -386233 -386261 -386312 -386361 -386407 -386486 -386600 -386623 -386725 -386759 -386801 -386867 -386920 -386985 -387029 -387069 -387092 -387110 -387143 -387177 -387232 -387260 -387303 -387339 -387410 -387458 -387476 -387521 -387535 -387561 -387604 -387622 -387655 -387677 -387696 -387728 -387740 -387767 -387781 -387792 -387814 -387838 -387851 -387860 -387869 -387878 -387898 -387927 -387944 -387972 -388010 -388022 -69777 -70132 -70265 -70300 -70322 -70401 -70448 -70503 -70537 -70573 -70610 -70637 -70652 -70681 -70700 -70710 -70724 -70736 -70758 -70781 -70797 -70803 -70819 -70834 -70847 -70887 -70900 -70906 -70915 -70920 -70928 -70935 -70946 -70958 -381405 -381559 -381726 -381834 -382039 -382120 -382198 -382250 -382335 -382433 -382624 -382677 -382718 -382749 -382821 -382914 -382973 -383028 -383134 -383179 -383238 -383274 -383340 -383385 -383446 -383512 -383566 -383627 -383673 -383717 -383727 -383768 -383812 -383836 -383886 -383914 -383941 -383975 -384033 -384052 -384078 -384088 -384104 -384120 -384137 -384157 -384166 -384191 -48487 -48584 -48730 -48788 -48816 -48901 -48945 -49011 -49030 -49039 -49081 -49094 -49106 -49118 -49128 -49134 -49154 -49172 -49194 -49199 -589134 -589355 -589594 -589756 -589943 -590098 -590252 -590424 -590534 -590649 -590768 -590836 -590941 -591061 -591112 -591165 -591214 -591272 -591326 -591473 -591527 -591548 -591581 -591616 -591642 -591666 -591689 -591714 -591730 -591777 -591793 -591798 -591815 -591827 -591833 -677019 -677105 -677186 -677382 -677414 -677472 -677536 -677595 -677664 -677713 -677746 -677826 -677878 -677944 -677994 -678045 -678143 -678171 -678226 -678251 -678316 -678361 -678374 -678392 -678424 -678443 -678472 -678483 -678504 -678529 -678554 -678565 -678572 -678588 -678601 -678613 -678626 -678642 -678652 -95817 -95875 -95982 -96062 -96125 -96163 -96205 -96251 -96307 -96335 -96357 -96376 -96398 -96408 -96438 -96458 -96478 -96500 -96538 -96587 -96623 -96649 -96678 -96698 -96720 -96733 -96753 -96763 -96784 -96795 -96802 -96847 -96859 -96871 -96879 -96900 -96909 -96916 -96924 -96937 -96950 -96957 -96967 -96978 -96984 -96989 -96996 -97001 -97008 -510106 -510322 -510455 -510517 -510687 -510745 -510796 -510895 -510982 -511049 -511083 -511209 -511272 -511481 -511618 -511715 -511757 -511817 -511983 -512129 -512256 -512294 -512357 -512422 -512447 -512485 -512522 -512556 -512578 -512638 -512664 -512705 -512749 -512770 -512813 -512845 -512883 -512898 -1279 -1328 -800283 -801261 -801551 -236108 -236921 -602752 -924565 -374509 -375521 -376384 -377173 -377438 -193156 -194777 -195436 -195760 -195954 -196210 -196254 -196368 -933814 -934069 -934580 -647463 -647760 -648015 -648111 -648500 -648696 -648789 -648929 -649016 -13318 -395603 -397221 -398075 -398444 -64145 -64398 -64536 -64727 -64825 -65023 -857527 -858053 -858212 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.lab b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.lab deleted file mode 100644 index dcb9569c6b5066e9be421240eae85d5289e93f03..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/style_image_lists/train.lab +++ /dev/null @@ -1,11270 +0,0 @@ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14 diff --git a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/tags.txt b/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/tags.txt deleted file mode 100644 index 834e49af64700d578c60c4b66dbf1a943fed266c..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/detection/NIMA_ID0158_for_TensorFlow/AVA_dataset/tags.txt +++ /dev/null @@ -1,66 +0,0 @@ -1 Abstract -24 Action -31 Advertisement -66 Analog -19 Animals -20 Architecture -43 Astrophotography -57 Birds -21 Black and White -51 Blur -64 Camera Phones -16 Candid -50 Children -2 Cityscape -34 Digital Art -37 Diptych / Triptych -49 DPChallenge GTGs -12 Emotive -4 Family -3 Fashion -63 Fish Eye -38 Floral -40 Food and Drink -53 High Dynamic Range (HDR) -45 History -58 Horror -5 Humorous -46 Infrared -65 Insects, etc -6 Interior -14 Landscape -62 Lensbaby -22 Macro -56 Maternity -44 Military -59 Music -15 Nature -26 Nude -55 Overlays -33 Panoramic -13 Performance -32 Persuasive -52 Photo-Impressionism -25 Photojournalism -60 Pinhole/Zone Plate -30 Political -17 Portraiture -27 Rural -41 Science and Technology -35 Seascapes -47 Self Portrait -7 Sky -8 Snapshot -9 Sports -18 Still Life -61 Street -29 Studio -54 Texture Library -48 Textures -36 Traditional Art -39 Transportation -23 Travel -10 Urban -11 Vintage -28 Water -42 Wedding diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/Dockerfile b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/Dockerfile index 6076e6fcde50a005f94e3d57f1c03ec2d7b448aa..0dd97d97fd08921d2ac594e511efce5c452e4b79 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/Dockerfile +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/Dockerfile @@ -1,9 +1,7 @@ ARG FROM_IMAGE_NAME=ascend-tensorflow-arm:20.1.0 FROM ${FROM_IMAGE_NAME} - +USER root RUN apt -y install libgl1-mesa-glx COPY requirements.txt . RUN pip3.7 install -r requirements.txt - -RUN ln -s /usr/bin/python3.7 /usr/bin/python3 \ No newline at end of file diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/docker_start.sh b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/docker_start.sh index e99bbe7685ba6f302f694e54a5d15ebe0f1c6b08..949698ab8238841d4b1d1adef4cf6387b0642e2f 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/docker_start.sh +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/docker_start.sh @@ -1,5 +1,19 @@ #!/bin/bash +#Copyright 2022 Huawei Technologies Co., Ltd + +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at + +#http://www.apache.org/licenses/LICENSE-2.0 + +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. + docker_image=$1 data_dir=$2 model_dir=$3 diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/infer/docker_start_infer.sh b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/infer/docker_start_infer.sh index 72889067a499eb55e93cac635d4b00454799524a..69f4fbbf409fdef7a78bc6c3a6d484f93bdec952 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/infer/docker_start_infer.sh +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/infer/docker_start_infer.sh @@ -38,7 +38,7 @@ function param_check() { param_check -docker run -it \ +docker run -it -u root \ --device=/dev/davinci0 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_multi.py b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_multi.py index 2d7d2032f135a8f9330f61eeffd7f99ff50d093a..7ae30ea0cbadcb0115bad2844c437896d8996223 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_multi.py +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_multi.py @@ -45,7 +45,7 @@ if not os.path.exists(save_dir): if not os.path.exists(log_dir): os.makedirs(log_dir) -work_path = '/cache/user-job-dir/YoloV3_for_TensorFlow' +work_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "../") ### Some paths train_file = os.path.join(work_path, './modelarts/coco2014_trainval_modelarts.txt') # The path of the training txt file. diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_single.py b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_single.py index 3cf9c95680169187bfb77d8251d09177f4173576..7f5d4bd356c4835bdfaeda5be64088b23627a90f 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_single.py +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/modelarts/args_modelarts_single.py @@ -45,7 +45,7 @@ if not os.path.exists(save_dir): if not os.path.exists(log_dir): os.makedirs(log_dir) -work_path = '/cache/user-job-dir/YoloV3_for_TensorFlow' +work_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), "../") ### Some paths train_file = os.path.join(work_path, './modelarts/coco2014_trainval_modelarts.txt') # The path of the training txt file. diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_1p.sh index 714d7a8b5ddbaa3291cebf414bbff110e202a79f..ad5504a6d7fbb1e61758be164d293b9a02d19b1b 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_1p.sh @@ -135,6 +135,7 @@ do --mode single \ --data_url $data_path/coco \ --train_url ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ + --total_epoches 1 \ --over_dump ${over_dump} \ --over_dump_path ${over_dump_path} \ > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_8p.sh b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_8p.sh index 2d7e9b1c5e1df38e2afd4f664087c6374ff7d270..79e72a8da8dad4b8ff3dce733fc8f2538d976ed9 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_8p.sh +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/test/train_performance_8p.sh @@ -152,6 +152,7 @@ do --mode single \ --data_url $data_path/coco \ --train_url ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ + --total_epoches 1 \ --over_dump ${over_dump} \ --over_dump_path ${over_dump_path} \ > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/train.py b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/train.py index 9fdc9b34e8a921e006f19e303db69325e84fe114..2348373849d32bebe03a546faeb4c475cd495c5a 100644 --- a/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/train.py +++ b/TensorFlow/built-in/cv/detection/YoloV3_ID0076_for_TensorFlow/train.py @@ -71,7 +71,8 @@ parser.add_argument("--save_dir", default='./training/', help="path of ckpt.") parser.add_argument("--batch_size", type=int, default=16, help="batchsize.") - +parser.add_argument("--total_epoches", type=int, default=200, + help="epoches of train.") # modify for npu overflow start # enable overflow parser.add_argument("--over_dump", type=str, default="False", @@ -108,7 +109,8 @@ if args_input.save_dir: args.save_dir = args_input.save_dir if args_input.batch_size: args.batch_size = args_input.batch_size - +if args_input.total_epoches: + args.total_epoches = args_input.total_epoches print('setting train mode %s.' % args_input.mode) # setting loggers diff --git a/TensorFlow/built-in/cv/image_classification/AM3_ID1260_for_TensorFlow/datasets/mini_imagenet_class_label_dict3.txt b/TensorFlow/built-in/cv/image_classification/AM3_ID1260_for_TensorFlow/datasets/mini_imagenet_class_label_dict3.txt deleted file mode 100644 index 0d93f41323c8f320ae043d931d2774548139cc71..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/image_classification/AM3_ID1260_for_TensorFlow/datasets/mini_imagenet_class_label_dict3.txt +++ /dev/null @@ -1,1000 +0,0 @@ -n02119789 1 kit_fox -n02100735 2 English_setter -n02110185 3 Siberian_husky -n02096294 4 Australian_terrier -n02102040 5 English_springer -n02066245 6 grey_whale -n02509815 7 lesser_panda -n02124075 8 Egyptian_cat -n02417914 9 ibex -n02123394 10 Persian_cat -n02125311 11 cougar -n02423022 12 gazelle -n02346627 13 porcupine -n02077923 14 sea_lion -n02110063 15 malamute -n02447366 16 badger -n02109047 17 Great_Dane -n02089867 18 Walker_hound -n02102177 19 Welsh_springer_spaniel -n02091134 20 whippet -n02092002 21 Scottish_deerhound -n02071294 22 killer_whale -n02442845 23 mink -n02504458 24 African_elephant -n02092339 25 Weimaraner -n02098105 26 soft-coated_wheaten_terrier -n02096437 27 Dandie_Dinmont_terrier -n02114712 28 red_wolf -n02105641 29 Old_English_sheepdog -n02128925 30 jaguar -n02091635 31 otter_hound -n02088466 32 bloodhound -n02096051 33 Airedale -n02117135 34 hyena -n02138441 35 meerkat -n02097130 36 giant_schnauzer -n02493509 37 titi -n02457408 38 three-toed_sloth -n02389026 39 sorrel -n02443484 40 black-footed_ferret -n02110341 41 dalmatian -n02089078 42 black-and-tan_coonhound -n02086910 43 papillon -n02445715 44 skunk -n02093256 45 Staffordshire_bullterrier -n02113978 46 Mexican_hairless -n02106382 47 Bouvier_des_Flandres -n02441942 48 weasel -n02113712 49 miniature_poodle -n02113186 50 Cardigan -n02105162 51 malinois -n02415577 52 bighorn -n02356798 53 fox_squirrel -n02488702 54 colobus -n02123159 55 tiger_cat -n02098413 56 Lhasa -n02422699 57 impala -n02114855 58 coyote -n02094433 59 Yorkshire_terrier -n02111277 60 Newfoundland -n02132136 61 brown_bear -n02119022 62 red_fox -n02091467 63 Norwegian_elkhound -n02106550 64 Rottweiler -n02422106 65 hartebeest -n02091831 66 Saluki -n02120505 67 grey_fox -n02104365 68 schipperke -n02086079 69 Pekinese -n02112706 70 Brabancon_griffon -n02098286 71 West_Highland_white_terrier -n02095889 72 Sealyham_terrier -n02484975 73 guenon -n02137549 74 mongoose -n02500267 75 indri -n02129604 76 tiger -n02090721 77 Irish_wolfhound -n02396427 78 wild_boar -n02108000 79 EntleBucher -n02391049 80 zebra -n02412080 81 ram -n02108915 82 French_bulldog -n02480495 83 orangutan -n02110806 84 basenji -n02128385 85 leopard -n02107683 86 Bernese_mountain_dog -n02085936 87 Maltese_dog -n02094114 88 Norfolk_terrier -n02087046 89 toy_terrier -n02100583 90 vizsla -n02096177 91 cairn -n02494079 92 squirrel_monkey -n02105056 93 groenendael -n02101556 94 clumber -n02123597 95 Siamese_cat -n02481823 96 chimpanzee -n02105505 97 komondor -n02088094 98 Afghan_hound -n02085782 99 Japanese_spaniel -n02489166 100 proboscis_monkey -n02364673 101 guinea_pig -n02114548 102 white_wolf -n02134084 103 ice_bear -n02480855 104 gorilla -n02090622 105 borzoi -n02113624 106 toy_poodle -n02093859 107 Kerry_blue_terrier -n02403003 108 ox -n02097298 109 Scotch_terrier -n02108551 110 Tibetan_mastiff -n02493793 111 spider_monkey -n02107142 112 Doberman -n02096585 113 Boston_bull -n02107574 114 Greater_Swiss_Mountain_dog -n02107908 115 Appenzeller -n02086240 116 Shih-Tzu -n02102973 117 Irish_water_spaniel -n02112018 118 Pomeranian -n02093647 119 Bedlington_terrier -n02397096 120 warthog -n02437312 121 Arabian_camel -n02483708 122 siamang -n02097047 123 miniature_schnauzer -n02106030 124 collie -n02099601 125 golden_retriever -n02093991 126 Irish_terrier -n02110627 127 affenpinscher -n02106166 128 Border_collie -n02326432 129 hare -n02108089 130 boxer -n02097658 131 silky_terrier -n02088364 132 beagle -n02111129 133 Leonberg -n02100236 134 German_short-haired_pointer -n02486261 135 patas -n02115913 136 dhole -n02486410 137 baboon -n02487347 138 macaque -n02099849 139 Chesapeake_Bay_retriever -n02108422 140 bull_mastiff -n02104029 141 kuvasz -n02492035 142 capuchin -n02110958 143 pug -n02099429 144 curly-coated_retriever -n02094258 145 Norwich_terrier -n02099267 146 flat-coated_retriever -n02395406 147 hog -n02112350 148 keeshond -n02109961 149 Eskimo_dog -n02101388 150 Brittany_spaniel -n02113799 151 standard_poodle -n02095570 152 Lakeland_terrier -n02128757 153 snow_leopard -n02101006 154 Gordon_setter -n02115641 155 dingo -n02097209 156 standard_schnauzer -n02342885 157 hamster -n02097474 158 Tibetan_terrier -n02120079 159 Arctic_fox -n02095314 160 wire-haired_fox_terrier -n02088238 161 basset -n02408429 162 water_buffalo -n02133161 163 American_black_bear -n02328150 164 Angora -n02410509 165 bison -n02492660 166 howler_monkey -n02398521 167 hippopotamus -n02112137 168 chow -n02510455 169 giant_panda -n02093428 170 American_Staffordshire_terrier -n02105855 171 Shetland_sheepdog -n02111500 172 Great_Pyrenees -n02085620 173 Chihuahua -n02123045 174 tabby -n02490219 175 marmoset -n02099712 176 Labrador_retriever -n02109525 177 Saint_Bernard -n02454379 178 armadillo -n02111889 179 Samoyed -n02088632 180 bluetick -n02090379 181 redbone -n02443114 182 polecat -n02361337 183 marmot -n02105412 184 kelpie -n02483362 185 gibbon -n02437616 186 llama -n02107312 187 miniature_pinscher -n02325366 188 wood_rabbit -n02091032 189 Italian_greyhound -n02129165 190 lion -n02102318 191 cocker_spaniel -n02100877 192 Irish_setter -n02074367 193 dugong -n02504013 194 Indian_elephant -n02363005 195 beaver -n02102480 196 Sussex_spaniel -n02113023 197 Pembroke -n02086646 198 Blenheim_spaniel -n02497673 199 Madagascar_cat -n02087394 200 Rhodesian_ridgeback -n02127052 201 lynx -n02116738 202 African_hunting_dog -n02488291 203 langur -n02091244 204 Ibizan_hound -n02114367 205 timber_wolf -n02130308 206 cheetah -n02089973 207 English_foxhound -n02105251 208 briard -n02134418 209 sloth_bear -n02093754 210 Border_terrier -n02106662 211 German_shepherd -n02444819 212 otter -n01882714 213 koala -n01871265 214 tusker -n01872401 215 echidna -n01877812 216 wallaby -n01873310 217 platypus -n01883070 218 wombat -n04086273 219 revolver -n04507155 220 umbrella -n04147183 221 schooner -n04254680 222 soccer_ball -n02672831 223 accordion -n02219486 224 ant -n02317335 225 starfish -n01968897 226 chambered_nautilus -n03452741 227 grand_piano -n03642806 228 laptop -n07745940 229 strawberry -n02690373 230 airliner -n04552348 231 warplane -n02692877 232 airship -n02782093 233 balloon -n04266014 234 space_shuttle -n03344393 235 fireboat -n03447447 236 gondola -n04273569 237 speedboat -n03662601 238 lifeboat -n02951358 239 canoe -n04612504 240 yawl -n02981792 241 catamaran -n04483307 242 trimaran -n03095699 243 container_ship -n03673027 244 liner -n03947888 245 pirate -n02687172 246 aircraft_carrier -n04347754 247 submarine -n04606251 248 wreck -n03478589 249 half_track -n04389033 250 tank -n03773504 251 missile -n02860847 252 bobsled -n03218198 253 dogsled -n02835271 254 tandem_bicycle -n03792782 255 mountain_bike -n03393912 256 freight_car -n03895866 257 passenger_car -n02797295 258 barrow -n04204347 259 shopping_cart -n03791053 260 motor_scooter -n03384352 261 forklift -n03272562 262 electric_locomotive -n04310018 263 steam_locomotive -n02704792 264 amphibian -n02701002 265 ambulance -n02814533 266 beach_wagon -n02930766 267 cab -n03100240 268 convertible -n03594945 269 jeep -n03670208 270 limousine -n03770679 271 minivan -n03777568 272 Model_T -n04037443 273 racer -n04285008 274 sports_car -n03444034 275 go-kart -n03445924 276 golfcart -n03785016 277 moped -n04252225 278 snowplow -n03345487 279 fire_engine -n03417042 280 garbage_truck -n03930630 281 pickup -n04461696 282 tow_truck -n04467665 283 trailer_truck -n03796401 284 moving_van -n03977966 285 police_van -n04065272 286 recreational_vehicle -n04335435 287 streetcar -n04252077 288 snowmobile -n04465501 289 tractor -n03776460 290 mobile_home -n04482393 291 tricycle -n04509417 292 unicycle -n03538406 293 horse_cart -n03599486 294 ricksha_rickshaw -n03868242 295 oxcart -n02804414 296 bassinet -n03125729 297 cradle -n03131574 298 crib -n03388549 299 four-poster -n02870880 300 bookcase -n03018349 301 china_cabinet -n03742115 302 medicine_chest -n03016953 303 chiffonier -n04380533 304 table_lamp -n03337140 305 file -n03891251 306 park_bench -n02791124 307 barber_chair -n04429376 308 throne -n03376595 309 folding_chair -n04099969 310 rocking_chair -n04344873 311 studio_couch -n04447861 312 toilet_seat -n03179701 313 desk -n03982430 314 pool_table -n03201208 315 dining_table -n03290653 316 entertainment_center -n04550184 317 wardrobe -n07742313 318 Granny_Smith -n07747607 319 orange -n07749582 320 lemon -n07753113 321 fig -n07753275 322 pineapple -n07753592 323 banana -n07754684 324 jackfruit -n07760859 325 custard_apple -n07768694 326 pomegranate -n12267677 327 acorn -n12620546 328 hip -n13133613 329 ear -n11879895 330 rapeseed -n12144580 331 corn -n12768682 332 buckeye -n03854065 333 organ -n04515003 334 upright -n03017168 335 chime -n03249569 336 drum -n03447721 337 gong -n03720891 338 maraca -n03721384 339 marimba -n04311174 340 steel_drum -n02787622 341 banjo -n02992211 342 cello -n04536866 343 violin -n03495258 344 harp -n02676566 345 acoustic_guitar -n03272010 346 electric_guitar -n03110669 347 cornet -n03394916 348 French_horn -n04487394 349 trombone -n03494278 350 harmonica -n03840681 351 ocarina -n03884397 352 panpipe -n02804610 353 bassoon -n03838899 354 oboe -n04141076 355 sax -n03372029 356 flute -n11939491 357 daisy -n12057211 358 yellow_lady's_slipper -n09246464 359 cliff -n09468604 360 valley -n09193705 361 alp -n09472597 362 volcano -n09399592 363 promontory -n09421951 364 sandbar -n09256479 365 coral_reef -n09332890 366 lakeside -n09428293 367 seashore -n09288635 368 geyser -n03498962 369 hatchet -n03041632 370 cleaver -n03658185 371 letter_opener -n03954731 372 plane -n03995372 373 power_drill -n03649909 374 lawn_mower -n03481172 375 hammer -n03109150 376 corkscrew -n02951585 377 can_opener -n03970156 378 plunger -n04154565 379 screwdriver -n04208210 380 shovel -n03967562 381 plow -n03000684 382 chain_saw -n01514668 383 cock -n01514859 384 hen -n01518878 385 ostrich -n01530575 386 brambling -n01531178 387 goldfinch -n01532829 388 house_finch -n01534433 389 junco -n01537544 390 indigo_bunting -n01558993 391 robin -n01560419 392 bulbul -n01580077 393 jay -n01582220 394 magpie -n01592084 395 chickadee -n01601694 396 water_ouzel -n01608432 397 kite -n01614925 398 bald_eagle -n01616318 399 vulture -n01622779 400 great_grey_owl -n01795545 401 black_grouse -n01796340 402 ptarmigan -n01797886 403 ruffed_grouse -n01798484 404 prairie_chicken -n01806143 405 peacock -n01806567 406 quail -n01807496 407 partridge -n01817953 408 African_grey -n01818515 409 macaw -n01819313 410 sulphur-crested_cockatoo -n01820546 411 lorikeet -n01824575 412 coucal -n01828970 413 bee_eater -n01829413 414 hornbill -n01833805 415 hummingbird -n01843065 416 jacamar -n01843383 417 toucan -n01847000 418 drake -n01855032 419 red-breasted_merganser -n01855672 420 goose -n01860187 421 black_swan -n02002556 422 white_stork -n02002724 423 black_stork -n02006656 424 spoonbill -n02007558 425 flamingo -n02009912 426 American_egret -n02009229 427 little_blue_heron -n02011460 428 bittern -n02012849 429 crane -n02013706 430 Aramus_pictus -n02018207 431 American_coot -n02018795 432 bustard -n02025239 433 ruddy_turnstone -n02027492 434 red-backed_sandpiper -n02028035 435 redshank -n02033041 436 dowitcher -n02037110 437 oystercatcher -n02017213 438 European_gallinule -n02051845 439 pelican -n02056570 440 king_penguin -n02058221 441 albatross -n01484850 442 great_white_shark -n01491361 443 tiger_shark -n01494475 444 hammerhead -n01496331 445 electric_ray -n01498041 446 stingray -n02514041 447 snoek -n02536864 448 coho -n01440764 449 tench -n01443537 450 goldfish -n02526121 451 eel -n02606052 452 rock_beauty -n02607072 453 anemone_fish -n02643566 454 lionfish -n02655020 455 puffer -n02640242 456 sturgeon -n02641379 457 gar -n01664065 458 loggerhead -n01665541 459 leatherback_turtle -n01667114 460 mud_turtle -n01667778 461 terrapin -n01669191 462 box_turtle -n01675722 463 banded_gecko -n01677366 464 common_iguana -n01682714 465 American_chameleon -n01685808 466 whiptail -n01687978 467 agama -n01688243 468 frilled_lizard -n01689811 469 alligator_lizard -n01692333 470 Gila_monster -n01693334 471 green_lizard -n01694178 472 African_chameleon -n01695060 473 Komodo_dragon -n01704323 474 triceratops -n01697457 475 African_crocodile -n01698640 476 American_alligator -n01728572 477 thunder_snake -n01728920 478 ringneck_snake -n01729322 479 hognose_snake -n01729977 480 green_snake -n01734418 481 king_snake -n01735189 482 garter_snake -n01737021 483 water_snake -n01739381 484 vine_snake -n01740131 485 night_snake -n01742172 486 boa_constrictor -n01744401 487 rock_python -n01748264 488 Indian_cobra -n01749939 489 green_mamba -n01751748 490 sea_snake -n01753488 491 horned_viper -n01755581 492 diamondback -n01756291 493 sidewinder -n01629819 494 European_fire_salamander -n01630670 495 common_newt -n01631663 496 eft -n01632458 497 spotted_salamander -n01632777 498 axolotl -n01641577 499 bullfrog -n01644373 500 tree_frog -n01644900 501 tailed_frog -n04579432 502 whistle -n04592741 503 wing -n03876231 504 paintbrush -n03483316 505 hand_blower -n03868863 506 oxygen_mask -n04251144 507 snorkel -n03691459 508 loudspeaker -n03759954 509 microphone -n04152593 510 screen -n03793489 511 mouse -n03271574 512 electric_fan -n03843555 513 oil_filter -n04332243 514 strainer -n04265275 515 space_heater -n04330267 516 stove -n03467068 517 guillotine -n02794156 518 barometer -n04118776 519 rule -n03841143 520 odometer -n04141975 521 scale -n02708093 522 analog_clock -n03196217 523 digital_clock -n04548280 524 wall_clock -n03544143 525 hourglass -n04355338 526 sundial -n03891332 527 parking_meter -n04328186 528 stopwatch -n03197337 529 digital_watch -n04317175 530 stethoscope -n04376876 531 syringe -n03706229 532 magnetic_compass -n02841315 533 binoculars -n04009552 534 projector -n04356056 535 sunglasses -n03692522 536 loupe -n04044716 537 radio_telescope -n02879718 538 bow -n02950826 539 cannon -n02749479 540 assault_rifle -n04090263 541 rifle -n04008634 542 projectile -n03085013 543 computer_keyboard -n04505470 544 typewriter_keyboard -n03126707 545 crane -n03666591 546 lighter -n02666196 547 abacus -n02977058 548 cash_machine -n04238763 549 slide_rule -n03180011 550 desktop_computer -n03485407 551 hand-held_computer -n03832673 552 notebook -n06359193 553 web_site -n03496892 554 harvester -n04428191 555 thresher -n04004767 556 printer -n04243546 557 slot -n04525305 558 vending_machine -n04179913 559 sewing_machine -n03602883 560 joystick -n04372370 561 switch -n03532672 562 hook -n02974003 563 car_wheel -n03874293 564 paddlewheel -n03944341 565 pinwheel -n03992509 566 potter's_wheel -n03425413 567 gas_pump -n02966193 568 carousel -n04371774 569 swing -n04067472 570 reel -n04040759 571 radiator -n04019541 572 puck -n03492542 573 hard_disc -n04355933 574 sunglass -n03929660 575 pick -n02965783 576 car_mirror -n04258138 577 solar_dish -n04074963 578 remote_control -n03208938 579 disk_brake -n02910353 580 buckle -n03476684 581 hair_slide -n03627232 582 knot -n03075370 583 combination_lock -n03874599 584 padlock -n03804744 585 nail -n04127249 586 safety_pin -n04153751 587 screw -n03803284 588 muzzle -n04162706 589 seat_belt -n04228054 590 ski -n02948072 591 candle -n03590841 592 jack-o'-lantern -n04286575 593 spotlight -n04456115 594 torch -n03814639 595 neck_brace -n03933933 596 pier -n04485082 597 tripod -n03733131 598 maypole -n03794056 599 mousetrap -n04275548 600 spider_web -n01768244 601 trilobite -n01770081 602 harvestman -n01770393 603 scorpion -n01773157 604 black_and_gold_garden_spider -n01773549 605 barn_spider -n01773797 606 garden_spider -n01774384 607 black_widow -n01774750 608 tarantula -n01775062 609 wolf_spider -n01776313 610 tick -n01784675 611 centipede -n01990800 612 isopod -n01978287 613 Dungeness_crab -n01978455 614 rock_crab -n01980166 615 fiddler_crab -n01981276 616 king_crab -n01983481 617 American_lobster -n01984695 618 spiny_lobster -n01985128 619 crayfish -n01986214 620 hermit_crab -n02165105 621 tiger_beetle -n02165456 622 ladybug -n02167151 623 ground_beetle -n02168699 624 long-horned_beetle -n02169497 625 leaf_beetle -n02172182 626 dung_beetle -n02174001 627 rhinoceros_beetle -n02177972 628 weevil -n02190166 629 fly -n02206856 630 bee -n02226429 631 grasshopper -n02229544 632 cricket -n02231487 633 walking_stick -n02233338 634 cockroach -n02236044 635 mantis -n02256656 636 cicada -n02259212 637 leafhopper -n02264363 638 lacewing -n02268443 639 dragonfly -n02268853 640 damselfly -n02276258 641 admiral -n02277742 642 ringlet -n02279972 643 monarch -n02280649 644 cabbage_butterfly -n02281406 645 sulphur_butterfly -n02281787 646 lycaenid_butterfly -n01910747 647 jellyfish -n01914609 648 sea_anemone -n01917289 649 brain_coral -n01924916 650 flatworm -n01930112 651 nematode -n01943899 652 conch -n01944390 653 snail -n01945685 654 slug -n01950731 655 sea_slug -n01955084 656 chiton -n02319095 657 sea_urchin -n02321529 658 sea_cucumber -n03584829 659 iron -n03297495 660 espresso_maker -n03761084 661 microwave -n03259280 662 Dutch_oven -n04111531 663 rotisserie -n04442312 664 toaster -n04542943 665 waffle_iron -n04517823 666 vacuum -n03207941 667 dishwasher -n04070727 668 refrigerator -n04554684 669 washer -n03133878 670 Crock_Pot -n03400231 671 frying_pan -n04596742 672 wok -n02939185 673 caldron -n03063689 674 coffeepot -n04398044 675 teapot -n04270147 676 spatula -n02699494 677 altar -n04486054 678 triumphal_arch -n03899768 679 patio -n04311004 680 steel_arch_bridge -n04366367 681 suspension_bridge -n04532670 682 viaduct -n02793495 683 barn -n03457902 684 greenhouse -n03877845 685 palace -n03781244 686 monastery -n03661043 687 library -n02727426 688 apiary -n02859443 689 boathouse -n03028079 690 church -n03788195 691 mosque -n04346328 692 stupa -n03956157 693 planetarium -n04081281 694 restaurant -n03032252 695 cinema -n03529860 696 home_theater -n03697007 697 lumbermill -n03065424 698 coil -n03837869 699 obelisk -n04458633 700 totem_pole -n02980441 701 castle -n04005630 702 prison -n03461385 703 grocery_store -n02776631 704 bakery -n02791270 705 barbershop -n02871525 706 bookshop -n02927161 707 butcher_shop -n03089624 708 confectionery -n04200800 709 shoe_shop -n04443257 710 tobacco_shop -n04462240 711 toyshop -n03388043 712 fountain -n03042490 713 cliff_dwelling -n04613696 714 yurt -n03216828 715 dock -n02892201 716 brass -n03743016 717 megalith -n02788148 718 bannister -n02894605 719 breakwater -n03160309 720 dam -n03000134 721 chainlink_fence -n03930313 722 picket_fence -n04604644 723 worm_fence -n04326547 724 stone_wall -n03459775 725 grille -n04239074 726 sliding_door -n04501370 727 turnstile -n03792972 728 mountain_tent -n04149813 729 scoreboard -n03530642 730 honeycomb -n03961711 731 plate_rack -n03903868 732 pedestal -n02814860 733 beacon -n07711569 734 mashed_potato -n07720875 735 bell_pepper -n07714571 736 head_cabbage -n07714990 737 broccoli -n07715103 738 cauliflower -n07716358 739 zucchini -n07716906 740 spaghetti_squash -n07717410 741 acorn_squash -n07717556 742 butternut_squash -n07718472 743 cucumber -n07718747 744 artichoke -n07730033 745 cardoon -n07734744 746 mushroom -n04209239 747 shower_curtain -n03594734 748 jean -n02971356 749 carton -n03485794 750 handkerchief -n04133789 751 sandal -n02747177 752 ashcan -n04125021 753 safe -n07579787 754 plate -n03814906 755 necklace -n03134739 756 croquet_ball -n03404251 757 fur_coat -n04423845 758 thimble -n03877472 759 pajama -n04120489 760 running_shoe -n03062245 761 cocktail_shaker -n03014705 762 chest -n03717622 763 manhole_cover -n03777754 764 modem -n04493381 765 tub -n04476259 766 tray -n02777292 767 balance_beam -n07693725 768 bagel -n03998194 769 prayer_rug -n03617480 770 kimono -n07590611 771 hot_pot -n04579145 772 whiskey_jug -n03623198 773 knee_pad -n07248320 774 book_jacket -n04277352 775 spindle -n04229816 776 ski_mask -n02823428 777 beer_bottle -n03127747 778 crash_helmet -n02877765 779 bottlecap -n04435653 780 tile_roof -n03724870 781 mask -n03710637 782 maillot -n03920288 783 Petri_dish -n03379051 784 football_helmet -n02807133 785 bathing_cap -n04399382 786 teddy -n03527444 787 holster -n03983396 788 pop_bottle -n03924679 789 photocopier -n04532106 790 vestment -n06785654 791 crossword_puzzle -n03445777 792 golf_ball -n07613480 793 trifle -n04350905 794 suit -n04562935 795 water_tower -n03325584 796 feather_boa -n03045698 797 cloak -n07892512 798 red_wine -n03250847 799 drumstick -n04192698 800 shield -n03026506 801 Christmas_stocking -n03534580 802 hoopskirt -n07565083 803 menu -n04296562 804 stage -n02869837 805 bonnet -n07871810 806 meat_loaf -n02799071 807 baseball -n03314780 808 face_powder -n04141327 809 scabbard -n04357314 810 sunscreen -n02823750 811 beer_glass -n13052670 812 hen_of_the_woods -n07583066 813 guacamole -n03637318 814 lampshade -n04599235 815 wool -n07802026 816 hay -n02883205 817 bow_tie -n03709823 818 mailbag -n04560804 819 water_jug -n02909870 820 bucket -n03207743 821 dishrag -n04263257 822 soup_bowl -n07932039 823 eggnog -n03786901 824 mortar -n04479046 825 trench_coat -n03873416 826 paddle -n02999410 827 chain -n04367480 828 swab -n03775546 829 mixing_bowl -n07875152 830 potpie -n04591713 831 wine_bottle -n04201297 832 shoji -n02916936 833 bulletproof_vest -n03240683 834 drilling_platform -n02840245 835 binder -n02963159 836 cardigan -n04370456 837 sweatshirt -n03991062 838 pot -n02843684 839 birdhouse -n03482405 840 hamper -n03942813 841 ping-pong_ball -n03908618 842 pencil_box -n03902125 843 pay-phone -n07584110 844 consomme -n02730930 845 apron -n04023962 846 punching_bag -n02769748 847 backpack -n10148035 848 groom -n02817516 849 bearskin -n03908714 850 pencil_sharpener -n02906734 851 broom -n03788365 852 mosquito_net -n02667093 853 abaya -n03787032 854 mortarboard -n03980874 855 poncho -n03141823 856 crutch -n03976467 857 Polaroid_camera -n04264628 858 space_bar -n07930864 859 cup -n04039381 860 racket -n06874185 861 traffic_light -n04033901 862 quill -n04041544 863 radio -n07860988 864 dough -n03146219 865 cuirass -n03763968 866 military_uniform -n03676483 867 lipstick -n04209133 868 shower_cap -n03782006 869 monitor -n03857828 870 oscilloscope -n03775071 871 mitten -n02892767 872 brassiere -n07684084 873 French_loaf -n04522168 874 vase -n03764736 875 milk_can -n04118538 876 rugby_ball -n03887697 877 paper_towel -n13044778 878 earthstar -n03291819 879 envelope -n03770439 880 miniskirt -n03124170 881 cowboy_hat -n04487081 882 trolleybus -n03916031 883 perfume -n02808440 884 bathtub -n07697537 885 hotdog -n12985857 886 coral_fungus -n02917067 887 bullet_train -n03938244 888 pillow -n15075141 889 toilet_tissue -n02978881 890 cassette -n02966687 891 carpenter's_kit -n03633091 892 ladle -n13040303 893 stinkhorn -n03690938 894 lotion -n03476991 895 hair_spray -n02669723 896 academic_gown -n03220513 897 dome -n03127925 898 crate -n04584207 899 wig -n07880968 900 burrito -n03937543 901 pill_bottle -n03000247 902 chain_mail -n04418357 903 theater_curtain -n04590129 904 window_shade -n02795169 905 barrel -n04553703 906 washbasin -n02783161 907 ballpoint -n02802426 908 basketball -n02808304 909 bath_towel -n03124043 910 cowboy_boot -n03450230 911 gown -n04589890 912 window_screen -n12998815 913 agaric -n02992529 914 cellular_telephone -n03825788 915 nipple -n02790996 916 barbell -n03710193 917 mailbox -n03630383 918 lab_coat -n03347037 919 fire_screen -n03769881 920 minibus -n03871628 921 packet -n03733281 922 maze -n03976657 923 pole -n03535780 924 horizontal_bar -n04259630 925 sombrero -n03929855 926 pickelhaube -n04049303 927 rain_barrel -n04548362 928 wallet -n02979186 929 cassette_player -n06596364 930 comic_book -n03935335 931 piggy_bank -n06794110 932 street_sign -n02825657 933 bell_cote -n03388183 934 fountain_pen -n04591157 935 Windsor_tie -n04540053 936 volleyball -n03866082 937 overskirt -n04136333 938 sarong -n04026417 939 purse -n02865351 940 bolo_tie -n02834397 941 bib -n03888257 942 parachute -n04235860 943 sleeping_bag -n04404412 944 television -n04371430 945 swimming_trunks -n03733805 946 measuring_cup -n07920052 947 espresso -n07873807 948 pizza -n02895154 949 breastplate -n04204238 950 shopping_basket -n04597913 951 wooden_spoon -n04131690 952 saltshaker -n07836838 953 chocolate_sauce -n09835506 954 ballplayer -n03443371 955 goblet -n13037406 956 gyromitra -n04336792 957 stretcher -n04557648 958 water_bottle -n03187595 959 dial_telephone -n04254120 960 soap_dispenser -n03595614 961 jersey -n04146614 962 school_bus -n03598930 963 jigsaw_puzzle -n03958227 964 plastic_bag -n04069434 965 reflex_camera -n03188531 966 diaper -n02786058 967 Band_Aid -n07615774 968 ice_lolly -n04525038 969 velvet -n04409515 970 tennis_ball -n03424325 971 gasmask -n03223299 972 doormat -n03680355 973 Loafer -n07614500 974 ice_cream -n07695742 975 pretzel -n04033995 976 quilt -n03710721 977 maillot -n04392985 978 tape_player -n03047690 979 clog -n03584254 980 iPod -n13054560 981 bolete -n10565667 982 scuba_diver -n03950228 983 pitcher -n03729826 984 matchstick -n02837789 985 bikini -n04254777 986 sock -n02988304 987 CD_player -n03657121 988 lens_cap -n04417672 989 thatch -n04523525 990 vault -n02815834 991 beaker -n09229709 992 bubble -n07697313 993 cheeseburger -n03888605 994 parallel_bars -n03355925 995 flagpole -n03063599 996 coffee_mug -n04116512 997 rubber_eraser -n04325704 998 stole -n07831146 999 carbonara -n03255030 1000 dumbbell \ No newline at end of file diff --git a/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/set_ranktable.py b/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/set_ranktable.py new file mode 100644 index 0000000000000000000000000000000000000000..c25b51462c5df2325462786688d4a206ee29fb9a --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/set_ranktable.py @@ -0,0 +1,1740 @@ +import argparse +parser = argparse.ArgumentParser() +parser.add_argument('-n', '--npu_nums', type=int, default='2', help='nums of npu') +parser.add_argument('-c', '--conf_path', type=str, default='./', help='the path of server_info') +FLAGS = parser.parse_args() + +import json +import os +server = [] +server_conf = [] +server_list = ["0", "1", "2", "3", "4", "5", "6", "7"] +if os.path.isdir(FLAGS.conf_path): + for f in os.listdir(FLAGS.conf_path): + if (f.split("_")[-1]).split(".")[0] in server_list and (f.split("_")[-1]).split(".")[1] == 'info' and f.split("_")[0] == 'server': + server_conf.append(f) + + + + + + +rank_address = [] +for i in range(FLAGS.npu_nums): + for x in server_conf: + if (x.split("_")[-1]).split(".")[0] == str(i): + server.append(x.split("_")[1]) + l = FLAGS.conf_path + "/" + x + with open(l, "r") as a: + s = a.readlines() + for s_ in s: + if 'address_0' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_1' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_2' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_3' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_4' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_5' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_6' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_7' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + +if FLAGS.npu_nums == 1: + rank = { + "server_count":"1", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 2: + rank = { + "server_count":"2", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]} + ], + + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 3: + rank = { + "server_count":"3", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 4: + rank = { + "server_count":"4", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 5: + rank = { + "server_count":"5", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + +elif FLAGS.npu_nums == 6: + rank = { + "server_count":"6", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 7: + rank = { + "server_count":"7", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +elif FLAGS.npu_nums == 8: + rank = { + "server_count":"8", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]}, + { + "server_id":server[7], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[56], + "rank_id":"56" + }, + { + "device_id":"1", + "device_ip":rank_address[57], + "rank_id":"57" + }, + { + "device_id":"2", + "device_ip":rank_address[58], + "rank_id":"58" + }, + { + "device_id":"3", + "device_ip":rank_address[59], + "rank_id":"59" + }, + { + "device_id":"4", + "device_ip":rank_address[60], + "rank_id":"60" + }, + { + "device_id":"5", + "device_ip":rank_address[61], + "rank_id":"61" + }, + { + "device_id":"6", + "device_ip":rank_address[62], + "rank_id":"62" + }, + { + "device_id":"7", + "device_ip":rank_address[63], + "rank_id":"63" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +with open("rank_table.json", "w") as f: + json.dump(rank, f) + + + + + + diff --git a/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/train_performance_16p.sh b/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/train_performance_16p.sh new file mode 100644 index 0000000000000000000000000000000000000000..2c22303b31d5b7840b66693ba46a639842e30aff --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/Densenet_3D_ID0121_for_TensorFlow/test/train_performance_16p.sh @@ -0,0 +1,106 @@ +#!/bin/bash + + +cur_path=`pwd`/.. +RANK_ID_START=0 +export RANK_ID=0 +export RANK_SIZE=16 +export JOB_ID=888886 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 +export ASCEND_GLOBAL_LOG_LEVEL=3 + +#基础参数 需要模型审视修改 +#网络名称,同目录名称 +Network="Densenet_3D_ID0121_for_TensorFlow" +batch_size=2 +#维测参数,precision_mode需要模型审视修改 +autotune=False + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --autotune* ]];then + autotune=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --server_index* ]];then + server_index=`echo ${para#*=}` + elif [[ $para == --conf_path* ]];then + conf_path=`echo ${para#*=}` + fi +done + +# 自动生成ranktable的脚本 +rank_size=8 +nohup python3 set_ranktable.py --npu_nums=$((RANK_SIZE/rank_size)) --conf_path=$conf_path +wait +export RANK_TABLE_FILE=${cur_path}/test/rank_table.json + +start=$(date +%s) +for((RANK_ID=$((rank_size*server_index));RANK_ID<$((((server_index+1))*rank_size));RANK_ID++)); +do + # 设置环境变量 + export RANK_ID=$RANK_ID + export DEVICE_INDEX=`expr ${RANK_ID} - $((rank_size*server_index))` + export ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + echo "DEVICE ID: $ASCEND_DEVICE_ID" + #进入训练脚本目录,需要模型审视修改 + if [ -d $cur_path/test/output/$ASCEND_DEVICE_ID ];then + rm -rf $cur_path/test/output/$ASCEND_DEVICE_ID + mkdir -p $cur_path/test/output/$ASCEND_DEVICE_ID + else + mkdir -p $cur_path/test/output/$ASCEND_DEVICE_ID + fi + cd $cur_path + python3 train.py -bs 2 -mn dense24 -sp dense24_correction -nc True -e 1 -r ${data_path} -per True -mul_rank_size=$RANK_SIZE -mul_device_id=$RANK_ID > $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait +end=$(date +%s) +e2etime=$(( $end - $start )) +step_sec=`grep -a 'epoch-patient' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log |awk 'END {print $16}'` +ActualFPS=`awk 'BEGIN{printf "%.2f\n",'${RANK_SIZE}'*'${batch_size}'/'$step_sec'}'` +echo "--------Final Result ----------" +echo "Final Performance ms/step : $ActualFPS" +echo "Final Training Duration sec : $e2etime" +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +grep 'patient acc:' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log|awk '{print $6}'|sed 's/,//g' >> $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt +#最后一个迭代acc值,不需要修改 +train_accuracy=`awk 'END {print}' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt` + +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +#稳定性精度看护结果汇总 + +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据 +#单迭代训练时长,不需要修改 +TrainingTime=`grep "time cust:" $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $16}'` +#ActualFPS=`echo "scale=2;${BatchSize} / ${TrainingTime}"|bc` + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep 'patient loss:' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${ASCEND_DEVICE_ID}.log|awk '{print $3}'|sed 's/,//g' >> $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2etime}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/ReduceMeanD.json b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/ReduceMeanD.json new file mode 100644 index 0000000000000000000000000000000000000000..6de932d0c6b151ecb1ffca1a26d3af4e0feca412 --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/ReduceMeanD.json @@ -0,0 +1,17 @@ +{ + "black-list":{ + "to-remove":[ + ], + "to-add":[ + ] + }, + "white-list":{ + "to-remove":[ + ], + "to-add":[ + "ReduceMeanD","ReduceMean" + ] + }, + "gray-list":{ + } +} \ No newline at end of file diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/efficientnet_model.py b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/efficientnet_model.py index 8319a3514587c8bb1fafdee192533e9a47f0019f..3f34d6a38d3a167986d4c90e5960ed8c63f07855 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/efficientnet_model.py +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/efficientnet_model.py @@ -29,7 +29,7 @@ import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf - +from npu_bridge.estimator import npu_ops import utils GlobalParams = collections.namedtuple('GlobalParams', [ @@ -636,7 +636,8 @@ class Model(tf.keras.Model): self.endpoints['pooled_features'] = outputs if not pooled_features_only: if self._dropout: - outputs = self._dropout(outputs, training=training) + #outputs = self._dropout(outputs, training=training) + outputs = npu_ops.dropout(outputs, keep_prob = 1.0 - self._global_params.drop_connect_rate) self.endpoints['global_pool'] = outputs if self._fc: outputs = tf.squeeze(outputs, self._spatial_dims) @@ -647,7 +648,8 @@ class Model(tf.keras.Model): self.endpoints['pooled_features'] = outputs if not pooled_features_only: if self._dropout: - outputs = self._dropout(outputs, training=training) + #outputs = self._dropout(outputs, training=training) + outputs = npu_ops.dropout(outputs, keep_prob = 1.0 - self._global_params.drop_connect_rate) self.endpoints['global_pool'] = outputs if self._fc: outputs = self._fc(outputs) diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/main_npu.py b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/main_npu.py index f4b7fb74ec725bf1ea2fbecd3e8e660a669d761d..e8131ad312aedde72f252b52619b2fc0b7e71c74 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/main_npu.py +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/efficientnet/main_npu.py @@ -692,6 +692,7 @@ def main(unused_argv): session_config=estimator_config, model_dir=FLAGS.model_dir, iterations_per_loop=FLAGS.iterations_per_loop, + modify_mixlist='./efficientnet/ReduceMeanD.json', keep_checkpoint_max=5) # for NPU diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_1p.sh index 037b342b51a43dae1879688557c9bc021ab7e738..943ceae25b48e18e2132ff896f8fec49a4c101f8 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_1p.sh @@ -92,6 +92,9 @@ if [[ $data_path == "" ]];then exit 1 fi +#修改参数 +sed -i "695s|./efficientnet/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../efficientnet/main_npu.py + #训练开始时间,不需要修改 start_time=$(date +%s) cd $cur_path/../ @@ -117,8 +120,8 @@ do --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ --mode=train \ --train_batch_size=256 \ - --train_steps=250 \ - --iterations_per_loop=10 \ + --train_steps=500 \ + --iterations_per_loop=100 \ --model_name=efficientnet-b0 > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -127,6 +130,9 @@ wait end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) +#恢复参数 +sed -i "695s|${cur_path}/../ReduceMeanD.json|./efficientnet/ReduceMeanD.json|g" $cur_path/../efficientnet/main_npu.py + #结果打印,不需要修改 echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 diff --git a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_8p.sh b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_8p.sh index 087e7104498773af4229c0a98e3a7b2ede4f5e49..8502e079e3dc5fd811164d3bd602cd2089118483 100644 --- a/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_8p.sh +++ b/TensorFlow/built-in/cv/image_classification/EfficientNet_B0_ID0009_for_TensorFlow/test/train_performance_8p.sh @@ -98,6 +98,9 @@ if [[ $data_path == "" ]];then exit 1 fi +#修改参数 +sed -i "695s|./efficientnet/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../efficientnet/main_npu.py + #autotune时,先开启autotune执行单P训练,不需要修改 if [[ $autotune == True ]]; then train_full_1p.sh --autotune=$autotune --data_path=$data_path @@ -142,8 +145,8 @@ do --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ --mode=train_and_eval \ --train_batch_size=256 \ - --train_steps=250 \ - --iterations_per_loop=10 \ + --train_steps=500 \ + --iterations_per_loop=100 \ --steps_per_eval=31250 \ --eval_batch_size=128 \ --base_learning_rate=0.2 \ @@ -155,6 +158,9 @@ wait end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) +#恢复参数 +sed -i "695s|${cur_path}/../ReduceMeanD.json|./efficientnet/ReduceMeanD.json|g" $cur_path/../efficientnet/main_npu.py + #结果打印,不需要修改 echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 diff --git a/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/test/train_full_1p.sh index e9100627aea62b026ecb378f049293ae86748095..ef4ae989b3606ce99bcc5d1d19427e05b15169ed 100644 --- a/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/Oct-ResNet_ID0251_for_TensorFlow/test/train_full_1p.sh @@ -155,7 +155,7 @@ FPS=`awk 'BEGIN {printf "%.2f\n",'${batch_size}'*'${batch_per_sec}'}'` echo "Final Performance images/sec : $FPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep "acc =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | tail -n 1 | awk -F " " '{print $9}'` +train_accuracy=`grep "acc =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | tail -n 1 | tr -d ','| awk -F " " '{print $9}'` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/ReduceMeanD.json b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/ReduceMeanD.json new file mode 100644 index 0000000000000000000000000000000000000000..6de932d0c6b151ecb1ffca1a26d3af4e0feca412 --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/ReduceMeanD.json @@ -0,0 +1,17 @@ +{ + "black-list":{ + "to-remove":[ + ], + "to-add":[ + ] + }, + "white-list":{ + "to-remove":[ + ], + "to-add":[ + "ReduceMeanD","ReduceMean" + ] + }, + "gray-list":{ + } +} \ No newline at end of file diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/gpu_base_trainer.py b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/gpu_base_trainer.py index d42c68ec57bafe02426a8e38d0ceaef22f56a64e..9a517ee1985239e05b9d9f73578011a183916f41 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/gpu_base_trainer.py +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/src/trainers/gpu_base_trainer.py @@ -100,7 +100,16 @@ class GPUBaseTrain(object): run_config = NPURunConfig(dump_config=dump_config, hcom_parallel=True, precision_mode="allow_mix_precision", save_summary_steps=0, log_step_count_steps=None, enable_data_pre_proc=True,save_checkpoints_secs=1e9, session_config=session_config, model_dir = self.config['model_dir'], iterations_per_loop=self.config['iterations_per_loop']) else: if self.config['debug'] : - run_config = NPURunConfig(hcom_parallel=True, precision_mode="allow_mix_precision", enable_data_pre_proc=True, save_checkpoints_steps=112590, session_config=session_config, model_dir = self.config['model_dir'], iterations_per_loop=self.config['iterations_per_loop'], keep_checkpoint_max=5) + run_config = NPURunConfig(hcom_parallel=True, + precision_mode="allow_mix_precision", + enable_data_pre_proc=True, + save_checkpoints_steps=112590, + session_config=session_config, + model_dir = self.config['model_dir'], + iterations_per_loop=self.config['iterations_per_loop'], + keep_checkpoint_max=5, + enable_small_channel=1, + modify_mixlist='./src/trainers/ReduceMeanD.json') else : run_config = NPURunConfig(hcom_parallel=True, precision_mode="allow_mix_precision", save_summary_steps=0, log_step_count_steps=None, enable_data_pre_proc=True,save_checkpoints_secs=1e9, session_config=session_config, model_dir = self.config['model_dir'], iterations_per_loop=self.config['iterations_per_loop']) diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/set_ranktable.py b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/set_ranktable.py new file mode 100644 index 0000000000000000000000000000000000000000..c25b51462c5df2325462786688d4a206ee29fb9a --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/set_ranktable.py @@ -0,0 +1,1740 @@ +import argparse +parser = argparse.ArgumentParser() +parser.add_argument('-n', '--npu_nums', type=int, default='2', help='nums of npu') +parser.add_argument('-c', '--conf_path', type=str, default='./', help='the path of server_info') +FLAGS = parser.parse_args() + +import json +import os +server = [] +server_conf = [] +server_list = ["0", "1", "2", "3", "4", "5", "6", "7"] +if os.path.isdir(FLAGS.conf_path): + for f in os.listdir(FLAGS.conf_path): + if (f.split("_")[-1]).split(".")[0] in server_list and (f.split("_")[-1]).split(".")[1] == 'info' and f.split("_")[0] == 'server': + server_conf.append(f) + + + + + + +rank_address = [] +for i in range(FLAGS.npu_nums): + for x in server_conf: + if (x.split("_")[-1]).split(".")[0] == str(i): + server.append(x.split("_")[1]) + l = FLAGS.conf_path + "/" + x + with open(l, "r") as a: + s = a.readlines() + for s_ in s: + if 'address_0' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_1' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_2' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_3' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_4' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_5' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_6' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_7' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + +if FLAGS.npu_nums == 1: + rank = { + "server_count":"1", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 2: + rank = { + "server_count":"2", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]} + ], + + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 3: + rank = { + "server_count":"3", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 4: + rank = { + "server_count":"4", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 5: + rank = { + "server_count":"5", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + +elif FLAGS.npu_nums == 6: + rank = { + "server_count":"6", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 7: + rank = { + "server_count":"7", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +elif FLAGS.npu_nums == 8: + rank = { + "server_count":"8", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]}, + { + "server_id":server[7], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[56], + "rank_id":"56" + }, + { + "device_id":"1", + "device_ip":rank_address[57], + "rank_id":"57" + }, + { + "device_id":"2", + "device_ip":rank_address[58], + "rank_id":"58" + }, + { + "device_id":"3", + "device_ip":rank_address[59], + "rank_id":"59" + }, + { + "device_id":"4", + "device_ip":rank_address[60], + "rank_id":"60" + }, + { + "device_id":"5", + "device_ip":rank_address[61], + "rank_id":"61" + }, + { + "device_id":"6", + "device_ip":rank_address[62], + "rank_id":"62" + }, + { + "device_id":"7", + "device_ip":rank_address[63], + "rank_id":"63" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +with open("rank_table.json", "w") as f: + json.dump(rank, f) + + + + + + diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_1p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_1p.sh index 2107632c35bd6d37b43ef24bc298451c6a97249c..30fd680e6e538521e855940e1add830d8f4f591f 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_1p.sh @@ -96,6 +96,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_256bs_1p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_256bs_1p.py +sed -i "112s|./src/trainers/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #训练开始时间,不需要修改 @@ -135,6 +136,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_1p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_1p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_8p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_8p.sh index 024f66aaa686ce46d78c8c77e668d2555b8d80c0..35f1881cc11d8b41c6e8a52066b6807fb6d60c2e 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_8p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_8p.sh @@ -101,6 +101,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_256bs_8p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_256bs_8p.py +sed -i "112s|./src/trainers/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #autotune时,先开启autotune执行单P训练,不需要修改 @@ -159,6 +160,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_8p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_8p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_16p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_16p.sh new file mode 100644 index 0000000000000000000000000000000000000000..e18ba26d3a76b015705a20244462cc8473204e60 --- /dev/null +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_16p.sh @@ -0,0 +1,209 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=16 +export JOB_ID=99990001 +export RANK_ID=8 +export SLOG_PRINT_TO_STDOUT=0 +export HCCL_CONNECT_TIMEOUT=600 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 +export ASCEND_GLOBAL_LOG_LEVEL=3 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="ResNet50_ID0058_for_TensorFlow" +#训练epoch +train_epochs=1 +#训练batch_size +batch_size=256 +#训练step +train_steps=2000 +#学习率 +learning_rate= + +#维测参数,precision_mode需要模型审视修改 +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False +autotune=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --autotune whether to enable autotune, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --autotune* ]];then + autotune=`echo ${para#*=}` + mv $install_path/fwkacllib/data/rl/Ascend910/custom $install_path/fwkacllib/data/rl/Ascend910/custom_bak + mv $install_path/fwkacllib/data/tiling/Ascend910/custom $install_path/fwkacllib/data/tiling/Ascend910/custom_bak + autotune_dump_path=${cur_path}/output/autotune_dump + mkdir -p ${autotune_dump_path}/GA + mkdir -p ${autotune_dump_path}/rl + cp -rf $install_path/fwkacllib/data/tiling/Ascend910/custom ${autotune_dump_path}/GA/ + cp -rf $install_path/fwkacllib/data/rl/Ascend910/custom ${autotune_dump_path}/RL/ + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --server_index* ]];then + server_index=`echo ${para#*=}` + elif [[ $para == --conf_path* ]];then + conf_path=`echo ${para#*=}` + elif [[ $para == --bind_core* ]]; then + bind_core=`echo ${para#*=}` + name_bind="_bindcore" + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +# 自动生成ranktable的脚本 +rank_size=8 +nohup python3 set_ranktable.py --npu_nums=$((RANK_SIZE/rank_size)) --conf_path=$conf_path +wait +export RANK_TABLE_FILE=${cur_path}/rank_table.json + + +#修改参数 +sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py +sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py + +cp data_loader.py $cur_path/../src/data_loader/resnet50/ +#autotune时,先开启autotune执行单P训练,不需要修改 +if [[ $autotune == True ]]; then + train_full_1p.sh --autotune=$autotune --data_path=$data_path + wait + autotune=False +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 +cd $cur_path/../ +for((RANK_ID=$((rank_size*server_index));RANK_ID<$((((server_index+1))*rank_size));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export DEVICE_INDEX=`expr ${RANK_ID} - $((rank_size*server_index))` + export ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + # 绑核,不需要的绑核的模型删除,需要模型审视修改 + corenum=`cat /proc/cpuinfo |grep "processor"|wc -l` + let a=ASCEND_DEVICE_ID*${corenum}/8 + let b=ASCEND_DEVICE_ID+1 + let c=b*${corenum}/8-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + if [ "x${bind_core}" != x ];then + bind_core="taskset -c $a-$c" + fi + nohup ${bind_core} python3.7 ${cur_path}/../src/mains/res50.py --config_file=res50_256bs_HW192_8p \ + --max_train_steps=${train_steps} \ + --iterations_per_loop=100 \ + --debug=True \ + --eval=False \ + --model_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/d_solution/ckpt${ASCEND_DEVICE_ID} >> ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#参数改回 +sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py +sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +FPS=`cat ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | grep "FPS:" | awk -F "FPS:" '{print $2}' | awk -F " loss:" '{print $1}' | tail -n +2 | awk '{sum+=$1} END {print sum*2/NR}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#打印,不需要修改 +echo "E2E Training Duration sec : $e2e_time" + +#稳定性精度看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}${name_bind}_bs${BatchSize}_${RANK_SIZE}'p_hw192'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "FPS:" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss: " '{print $2}' | awk -F "total" '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_1p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_1p.sh index 9c2c2c93e845d58ae3231e4c5e29912d3105650f..b70f86f1ab0dd204be34b7ef8d2a06a143522c0a 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_1p.sh @@ -96,6 +96,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_256bs_HW192_1p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_256bs_HW192_1p.py +sed -i "112s|./src/trainers/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #训练开始时间,不需要修改 @@ -135,6 +136,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_1p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_1p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_8p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_8p.sh index 7046b5c50cd2819c96797c67e0a5ba005b6b1311..a32343d7684739180b568cbc40946fbe0a9ec01f 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_8p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs256_hw192_8p.sh @@ -101,6 +101,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py +sed -i "112s|./src/trainers/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #autotune时,先开启autotune执行单P训练,不需要修改 @@ -159,6 +160,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_256bs_HW192_8p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_1p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_1p.sh index 6c08021b499cdd6fcc6dbfefd9397ce13e0833a1..551f6d7ef7fcc7199d35e817e6247c2557bfc0af 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_1p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_1p.sh @@ -96,6 +96,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_32bs_1p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_32bs_1p.py +sed -i "112s|./src/trainers/ReduceMeanD.jsonn|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #训练开始时间,不需要修改 @@ -135,6 +136,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_32bs_1p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_32bs_1p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_8p.sh b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_8p.sh index e18a92d993c952020ecf4ac43f12075e9bf9e31f..d6b1f66d5e722f0fc0b8184f926177b29c7e0354 100644 --- a/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_8p.sh +++ b/TensorFlow/built-in/cv/image_classification/ResNet50_ID0058_for_TensorFlow/test/train_performance_bs32_8p.sh @@ -101,6 +101,7 @@ fi #修改参数 sed -i "50s|PATH_TO_BE_CONFIGURED|${data_path}|g" $cur_path/../src/configs/res50_32bs_8p.py sed -i "107s|PATH_TO_BE_CONFIGURED|${cur_path}/output/0/d\_solution/ckpt0|g" $cur_path/../src/configs/res50_32bs_8p.py +sed -i "112s|./src/trainers/ReduceMeanD.json|${cur_path}/../ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py cp data_loader.py $cur_path/../src/data_loader/resnet50/ #autotune时,先开启autotune执行单P训练,不需要修改 @@ -159,6 +160,7 @@ e2e_time=$(( $end_time - $start_time )) #参数改回 sed -i "50s|${data_path}|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_32bs_8p.py sed -i "107s|${cur_path}/output/0/d\_solution/ckpt0|PATH_TO_BE_CONFIGURED|g" $cur_path/../src/configs/res50_32bs_8p.py +sed -i "112s|${cur_path}/../ReduceMeanD.json|./src/trainers/ReduceMeanD.json|g" $cur_path/../src/trainers/gpu_base_trainer.py #结果打印,不需要修改 echo "------------------ Final result ------------------" diff --git a/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/main_npu.py b/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/main_npu.py index f0cfc1c366126831f74ebe8e6b05ff4ba1b1454b..fd1bc90d78820c6d682984cc72b0bb4a08781f25 100644 --- a/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/main_npu.py +++ b/TensorFlow/built-in/cv/image_segmentation/UNet3D_ID0057_for_TensorFlow/main_npu.py @@ -39,8 +39,8 @@ from dataset.data_loader import Dataset, CLASSES from runtime.hooks import get_hooks, ProfilingHook, TrainingHook from runtime.arguments import PARSER from runtime.setup import prepare_model_dir, build_estimator, set_flags, get_logger -#from hccl.split.api import set_split_strategy_by_idx -#set_split_strategy_by_idx([1,90,99]) +from hccl.split.api import set_split_strategy_by_idx +set_split_strategy_by_idx([1,90,99]) def parse_evaluation_results(result): data = {CLASSES[i]: result[CLASSES[i]] for i in range(len(CLASSES))} diff --git a/TensorFlow/built-in/cv/image_synthesis/DCGAN_ID2196_for_TensorFlow/web/index.html b/TensorFlow/built-in/cv/image_synthesis/DCGAN_ID2196_for_TensorFlow/web/index.html deleted file mode 100644 index 6ea2fe6158ffbc6f72e303c305ec055980f885e5..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/cv/image_synthesis/DCGAN_ID2196_for_TensorFlow/web/index.html +++ /dev/null @@ -1,427 +0,0 @@ - - - - - - - - - - - - - - - - - - - Neural Face | 프사 뉴럴 - - - - - - - - - - - - - - - - - - -
-
- - - - - - -
- -
-
-
- -
-
-
-
- -
-
-

프사 뉴럴

-

Neural Face

-
-

프사 뉴럴은 Facebook AI Research에서 개발한 Deep Convolutional Generative Adversarial Networks (DCGAN) 이라는 기계 학습 모델을 사용해 만들어졌습니다.

-

프사 뉴럴은 얼굴 사진을 만드는 인공 지능이며
이 페이지에 나오는 모든 사람들은 이세상에 존재하지 않습니다.

-
-
-

Neural Face uses Deep Convolutional Generative Adversarial Networks (DCGAN), which is developed by Facebook AI Research.

-

Neural Face is an Artificial Intelligence which generates face images
and all images in this page are not REAL.

-
-
-
-
-
-
- - -
-
-

Image Generation

-
- - - - -
-
-

프사 뉴럴은 0에서 1 사이의 100개의 숫자 z로 사람의 이미지를 만들어내는 인공지능입니다.

-

1. 아래에 보이는 100개의 픽셀을 z의 각 숫자를 나타냅니다.
2. 만들어진 사진 위에 마우스를 올리면 사진에 사용된 z가 보입니다.
3. 만들어진 이미지를 누르시면 그 이미지의 z가 복사됩니다.

-
-
-

Neural Face uses a vector z that consists of 100 real numbers ranging from 0 to 1.

-

1. Each pixel in the below pallete represents a value in z.
2. If you hover your mouse over an image, z for that image will be displayed.
3. If you click an image, z will be copied to the palette.

-
-
-

(브라우저 성능에 따라 1~10초가 걸립니다)

-

(Might take 1 to 10 seconds depending on your browser)

-
-
-
-
-
- -

- Sorry, your browser doesn't support the element. -

-

- Please upgrade to - IE 9 - or use the latest - Chrome - or - Firefox -

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

프사 뉴럴을 불러오고 있습니다...

-

Neural Face is preparing to draw...

-
-
- -
-
-
- -
-
-
-

알고리즘

-

Algorithm

-
- - - -
-

프사 뉴럴의 핵심 모델인 DCGAN은 두 개의 인공 신경망으로 구성되어 있으며, 각각

-

1. 사진을 만들어내는 생성자 (G)
2. 진짜 사진과 생성자가 만든 사진을 구분하는 구분자 (D)

-

라고 부릅니다.

-

두 신경망은 수많은 이미지를 반복적으로 보면서 생성자는 구분자를 속이기 위해, 구분자는 생성자가 만든 사진을 판별하기 위해 학습합니다. 이러한 학습 방법을 적대적 학습 (Adversarial Learning)이라고 하며, 생성자와 구분자를 도둑경찰로 비유하기도 합니다.

-
-
-

DCGAN, which is the core of Neural Face, consists of two different neural networks which are:

-

1. Generator (G) that generates an image
2. Discriminator (D) that discriminate real images from generated images

-

Two neural networks compete as one tries to deceive the other. This kind of learning is called Adversarial Learning. Because of this, Generator and Discriminator are described as a thief and police, respectively.

-
-
- - -
-


생성자와 구분자는 여러 가지 인공 신경망 종류 중에서 각각 Deconvolutional Network (DNN)Convolutional Neural Network (CNN)로 구현되어 있습니다. CNN은 수백 개의 픽셀로 이루어진 이미지를 작은 차원의 숫자들 (z)로 잘 요약할 수 있는 필터를 배우는 인공 신경망이며, DNN은 이렇게 작아진 차원의 숫자들로 원래 이미지를 복원하는 필터를 배우는 신경망입니다.

-

구분자는 인공 신경망에 실제 이미지를 넣은 결과를 1로, 만들어진 이미지의 결과는 0으로 구분하도록 학습합니다. 반대로 생성자는 Gaussian Distribution을 따르는 z라는 확률 변수를 두고, 사람의 이미지의 확률 분포를 z를 사용해 계산합니다. 이렇게 만들어진 이미지를 구분자가 실제 이미지라고 잘못 판단하도록 계속 학습합니다.

-
-
-


Generator and Discriminator consist of Deconvolutional Network (DNN) and Convolutional Neural Network (CNN). CNN is a neural network which encodes the hundreds of pixels of an image into a vector of small dimensions (z) which is a summary of the image. DNN is a network that learns filters to recover the original image from z.

-

When a real image is given, Discriminator should output 1 or 0 for whether the image was generated from Generator. In the contrast, Generator generates an image from z, which follows a Gaussian Distribution, and tries to figure out the distribution of human images from z. In this way, a Generator tries to cheat Discriminator into making a wrong decision.

-
-
-
- -
-
-

Results

-
-

프사 뉴럴를 학습시키기 위해 인터넷에 10만 개 이상의 사진들을 모았고 이 사진들에서 얼굴 사진만 잘라서 얼굴 데이터 셋을 만들었습니다. 코드는 최근에 구글에서 공개한 TensorFlow로 구현했으며 GTX 980 Ti를 사용하여 이틀간 학습시켰습니다.

-

아래는 초기 학습 단계에서 프사 뉴럴이 정해진 z로 얼굴 사진을 만들어 가는 과정을 보여줍니다.

-

More than 100K images are crawled from online communities and those images are cropped by using openface which is a face recognition framework. Neural Face is implemented with TensorFlow and a GTX 980 Ti is used to train for two days.

-

Below is a series of images generated by Generator with a fixed z between the first and the fith epoch of training.

- -
- -
-



생성자가 사용하는 z는 -1에서 1 사이의 Gaussian Distribution을 따르는 확률 변수이며, 평균값인 0으로 이미지를 만들게 되면, 프사 뉴럴이 생각하는 평균적인 얼굴을 알 수 있습니다.

-



The vector z has real values from -1 to 1 and it follows the Gaussian Distribution. We can see the most common face that is interpreted by Neural Face using 0 as all values of z.

-
-
- -
- -
-



평균값 0에서 랜덤한 차원의 값을 조금씩 바꾸면 아래와 같은 변화를 볼 수 있습니다.

-



The below images are generated by changing the values of z continuously, starting from the average value (0) to -1 or 1.

-
-
- -
- -
-



아래의 사진들은 100차원의 z 값 중에서 임의의 차원들을 -1부터 1까지 바꾸면서 생성자 신경망에 넣은 결과이며, 점점 미소를 짓거나, 안경이 생기거나, 흑백 사진이 되거나, 성별이 바뀌는 등의 결과를 확인하실 수 있습니다.

-



The below images are generated by changing ten different values of z from -1 to 1. People in the images vary in characteristics such as smiling, wearing glasses, turning into black and white images, and changing into different sex.

-
-
-
-
-
- - - - - - -
-
-
-
-
-



프사 뉴럴의 코드는 이곳에 공개되어 있습니다.

-



The code of Neural Face can be found here.

-
-
-
- -
-
-

Misc.

-
-

마지막으로 튜링 테스트를 해 보겠습니다 :)
아래 사진 중에서 진짜 사진은 무엇일까요?

-

(마우스로 클릭하면 정답이 보입니다)

-
-
-

Lastly, let's conduct a Turing Test :)
Can you guess which are the real images?

-

(Answer will be showed if you click an image)

-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - -
-
-
-
- -
-
- - -
-
-
-

Taehoon Kim

-

@carpedm20

- - - - - - - - - - - - - -
-
-
- - -
-
-
-
- - - - - - - - - - - - - - - - - - - - diff --git a/TensorFlow/built-in/cv/image_synthesis/VAE-GAN_ID1800_for_TensorFlow/utils.py b/TensorFlow/built-in/cv/image_synthesis/VAE-GAN_ID1800_for_TensorFlow/utils.py index 5e8fc04028a4709b590cf3ade1f753acf796ea97..2529eb3685a92725365d4a44f583adb578dc67cf 100644 --- a/TensorFlow/built-in/cv/image_synthesis/VAE-GAN_ID1800_for_TensorFlow/utils.py +++ b/TensorFlow/built-in/cv/image_synthesis/VAE-GAN_ID1800_for_TensorFlow/utils.py @@ -45,7 +45,8 @@ def encoder(input_tensor, output_size): net = layers.conv2d(net, 32, 5, stride=2) net = layers.conv2d(net, 64, 5, stride=2) net = layers.conv2d(net, 128, 5, stride=2, padding='VALID') - net = layers.dropout(net, keep_prob=0.9) + # net = layers.dropout(net, keep_prob=0.9) + net = npu_ops.dropout(net, keep_prob=0.9) net = layers.flatten(net) return layers.fully_connected(net, output_size, activation_fn=None) diff --git a/TensorFlow/built-in/nlp/Albert_ID0632_for_TensorFlow/albert/albert_config/vocab.txt b/TensorFlow/built-in/nlp/Albert_ID0632_for_TensorFlow/albert/albert_config/vocab.txt deleted file mode 100644 index ca4f9781030019ab9b253c6dcb8c7878b6dc87a5..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/Albert_ID0632_for_TensorFlow/albert/albert_config/vocab.txt +++ /dev/null @@ -1,21128 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] - - -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -£ -¤ -¥ -§ -© -« -® -° -± -² -³ -µ -· -¹ -º -» -¼ -× -ß -æ -÷ -ø -đ -ŋ -ɔ -ə -ɡ -ʰ -ˇ -ˈ -ˊ -ˋ -ˍ -ː -˙ -˚ -ˢ -α -β -γ -δ -ε -η -θ -ι -κ -λ -μ -ν -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -а -б -в -г -д -е -ж -з -и -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -ы -ь -я -і -ا -ب -ة -ت -د -ر -س -ع -ل -م -ن -ه -و -ي -۩ -ก -ง -น -ม -ย -ร -อ -า -เ -๑ -་ -ღ -ᄀ -ᄁ -ᄂ -ᄃ -ᄅ -ᄆ -ᄇ -ᄈ -ᄉ -ᄋ -ᄌ -ᄎ -ᄏ -ᄐ -ᄑ -ᄒ -ᅡ -ᅢ -ᅣ -ᅥ -ᅦ -ᅧ -ᅨ -ᅩ -ᅪ -ᅬ -ᅭ -ᅮ -ᅯ -ᅲ -ᅳ -ᅴ -ᅵ -ᆨ -ᆫ -ᆯ -ᆷ -ᆸ -ᆺ -ᆻ -ᆼ -ᗜ -ᵃ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵘ -‖ -„ -† -• -‥ -‧ -
 -‰ -′ -″ -‹ -› -※ -‿ -⁄ -ⁱ -⁺ -ⁿ -₁ -₂ -₃ -₄ -€ -℃ -№ -™ -ⅰ -ⅱ -ⅲ -ⅳ -ⅴ -← -↑ -→ -↓ -↔ -↗ -↘ -⇒ -∀ -− -∕ -∙ -√ -∞ -∟ -∠ -∣ -∥ -∩ -∮ -∶ -∼ -∽ -≈ -≒ -≡ -≤ -≥ -≦ -≧ -≪ -≫ -⊙ -⋅ -⋈ -⋯ -⌒ -① -② -③ -④ -⑤ -⑥ -⑦ -⑧ -⑨ -⑩ -⑴ -⑵ -⑶ -⑷ -⑸ -⒈ -⒉ -⒊ -⒋ -ⓒ -ⓔ -ⓘ -─ -━ -│ -┃ -┅ -┆ -┊ -┌ -└ -├ -┣ -═ -║ -╚ -╞ -╠ -╭ -╮ -╯ -╰ -╱ -╳ -▂ -▃ -▅ -▇ -█ -▉ -▋ -▌ -▍ -▎ -■ -□ -▪ -▫ -▬ -▲ -△ -▶ -► -▼ -▽ -◆ -◇ -○ -◎ -● -◕ -◠ -◢ -◤ -☀ -★ -☆ -☕ -☞ -☺ -☼ -♀ -♂ -♠ -♡ -♣ -♥ -♦ -♪ -♫ -♬ -✈ -✔ -✕ -✖ -✦ -✨ -✪ -✰ -✿ -❀ -❤ -➜ -➤ -⦿ -、 -。 -〃 -々 -〇 -〈 -〉 -《 -》 -「 -」 -『 -』 -【 -】 -〓 -〔 -〕 -〖 -〗 -〜 -〝 -〞 -ぁ -あ -ぃ -い -う -ぇ -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -っ -つ -て -と -な -に -ぬ -ね -の -は -ひ -ふ -へ -ほ -ま -み -む -め -も -ゃ -や -ゅ -ゆ -ょ -よ -ら -り -る -れ -ろ -わ -を -ん -゜ -ゝ -ァ -ア -ィ -イ -ゥ -ウ -ェ -エ -ォ -オ -カ -キ -ク -ケ -コ -サ -シ -ス -セ -ソ -タ -チ -ッ -ツ -テ -ト -ナ -ニ -ヌ -ネ -ノ -ハ -ヒ -フ -ヘ -ホ -マ -ミ -ム -メ -モ -ャ -ヤ -ュ -ユ -ョ -ヨ -ラ -リ -ル -レ -ロ -ワ -ヲ -ン -ヶ -・ -ー -ヽ -ㄅ -ㄆ -ㄇ -ㄉ -ㄋ -ㄌ -ㄍ -ㄎ -ㄏ -ㄒ -ㄚ -ㄛ -ㄞ -ㄟ -ㄢ -ㄤ -ㄥ -ㄧ -ㄨ -ㆍ -㈦ -㊣ -㎡ -㗎 -一 -丁 -七 -万 -丈 -三 -上 -下 -不 -与 -丐 -丑 -专 -且 -丕 -世 -丘 -丙 -业 -丛 -东 -丝 -丞 -丟 -両 -丢 -两 -严 -並 -丧 -丨 -个 -丫 -中 -丰 -串 -临 -丶 -丸 -丹 -为 -主 -丼 -丽 -举 -丿 -乂 -乃 -久 -么 -义 -之 -乌 -乍 -乎 -乏 -乐 -乒 -乓 -乔 -乖 -乗 -乘 -乙 -乜 -九 -乞 -也 -习 -乡 -书 -乩 -买 -乱 -乳 -乾 -亀 -亂 -了 -予 -争 -事 -二 -于 -亏 -云 -互 -五 -井 -亘 -亙 -亚 -些 -亜 -亞 -亟 -亡 -亢 -交 -亥 -亦 -产 -亨 -亩 -享 -京 -亭 -亮 -亲 -亳 -亵 -人 -亿 -什 -仁 -仃 -仄 -仅 -仆 -仇 -今 -介 -仍 -从 -仏 -仑 -仓 -仔 -仕 -他 -仗 -付 -仙 -仝 -仞 -仟 -代 -令 -以 -仨 -仪 -们 -仮 -仰 -仲 -件 -价 -任 -份 -仿 -企 -伉 -伊 -伍 -伎 -伏 -伐 -休 -伕 -众 -优 -伙 -会 -伝 -伞 -伟 -传 -伢 -伤 -伦 -伪 -伫 -伯 -估 -伴 -伶 -伸 -伺 -似 -伽 -佃 -但 -佇 -佈 -位 -低 -住 -佐 -佑 -体 -佔 -何 -佗 -佘 -余 -佚 -佛 -作 -佝 -佞 -佟 -你 -佢 -佣 -佤 -佥 -佩 -佬 -佯 -佰 -佳 -併 -佶 -佻 -佼 -使 -侃 -侄 -來 -侈 -例 -侍 -侏 -侑 -侖 -侗 -供 -依 -侠 -価 -侣 -侥 -侦 -侧 -侨 -侬 -侮 -侯 -侵 -侶 -侷 -便 -係 -促 -俄 -俊 -俎 -俏 -俐 -俑 -俗 -俘 -俚 -保 -俞 -俟 -俠 -信 -俨 -俩 -俪 -俬 -俭 -修 -俯 -俱 -俳 -俸 -俺 -俾 -倆 -倉 -個 -倌 -倍 -倏 -們 -倒 -倔 -倖 -倘 -候 -倚 -倜 -借 -倡 -値 -倦 -倩 -倪 -倫 -倬 -倭 -倶 -债 -值 -倾 -偃 -假 -偈 -偉 -偌 -偎 -偏 -偕 -做 -停 -健 -側 -偵 -偶 -偷 -偻 -偽 -偿 -傀 -傅 -傍 -傑 -傘 -備 -傚 -傢 -傣 -傥 -储 -傩 -催 -傭 -傲 -傳 -債 -傷 -傻 -傾 -僅 -働 -像 -僑 -僕 -僖 -僚 -僥 -僧 -僭 -僮 -僱 -僵 -價 -僻 -儀 -儂 -億 -儆 -儉 -儋 -儒 -儕 -儘 -償 -儡 -優 -儲 -儷 -儼 -儿 -兀 -允 -元 -兄 -充 -兆 -兇 -先 -光 -克 -兌 -免 -児 -兑 -兒 -兔 -兖 -党 -兜 -兢 -入 -內 -全 -兩 -八 -公 -六 -兮 -兰 -共 -兲 -关 -兴 -兵 -其 -具 -典 -兹 -养 -兼 -兽 -冀 -内 -円 -冇 -冈 -冉 -冊 -册 -再 -冏 -冒 -冕 -冗 -写 -军 -农 -冠 -冢 -冤 -冥 -冨 -冪 -冬 -冯 -冰 -冲 -决 -况 -冶 -冷 -冻 -冼 -冽 -冾 -净 -凄 -准 -凇 -凈 -凉 -凋 -凌 -凍 -减 -凑 -凛 -凜 -凝 -几 -凡 -凤 -処 -凪 -凭 -凯 -凰 -凱 -凳 -凶 -凸 -凹 -出 -击 -函 -凿 -刀 -刁 -刃 -分 -切 -刈 -刊 -刍 -刎 -刑 -划 -列 -刘 -则 -刚 -创 -初 -删 -判 -別 -刨 -利 -刪 -别 -刮 -到 -制 -刷 -券 -刹 -刺 -刻 -刽 -剁 -剂 -剃 -則 -剉 -削 -剋 -剌 -前 -剎 -剐 -剑 -剔 -剖 -剛 -剜 -剝 -剣 -剤 -剥 -剧 -剩 -剪 -副 -割 -創 -剷 -剽 -剿 -劃 -劇 -劈 -劉 -劊 -劍 -劏 -劑 -力 -劝 -办 -功 -加 -务 -劣 -动 -助 -努 -劫 -劭 -励 -劲 -劳 -労 -劵 -効 -劾 -势 -勁 -勃 -勇 -勉 -勋 -勐 -勒 -動 -勖 -勘 -務 -勛 -勝 -勞 -募 -勢 -勤 -勧 -勳 -勵 -勸 -勺 -勻 -勾 -勿 -匀 -包 -匆 -匈 -匍 -匐 -匕 -化 -北 -匙 -匝 -匠 -匡 -匣 -匪 -匮 -匯 -匱 -匹 -区 -医 -匾 -匿 -區 -十 -千 -卅 -升 -午 -卉 -半 -卍 -华 -协 -卑 -卒 -卓 -協 -单 -卖 -南 -単 -博 -卜 -卞 -卟 -占 -卡 -卢 -卤 -卦 -卧 -卫 -卮 -卯 -印 -危 -即 -却 -卵 -卷 -卸 -卻 -卿 -厂 -厄 -厅 -历 -厉 -压 -厌 -厕 -厘 -厚 -厝 -原 -厢 -厥 -厦 -厨 -厩 -厭 -厮 -厲 -厳 -去 -县 -叁 -参 -參 -又 -叉 -及 -友 -双 -反 -収 -发 -叔 -取 -受 -变 -叙 -叛 -叟 -叠 -叡 -叢 -口 -古 -句 -另 -叨 -叩 -只 -叫 -召 -叭 -叮 -可 -台 -叱 -史 -右 -叵 -叶 -号 -司 -叹 -叻 -叼 -叽 -吁 -吃 -各 -吆 -合 -吉 -吊 -吋 -同 -名 -后 -吏 -吐 -向 -吒 -吓 -吕 -吖 -吗 -君 -吝 -吞 -吟 -吠 -吡 -否 -吧 -吨 -吩 -含 -听 -吭 -吮 -启 -吱 -吳 -吴 -吵 -吶 -吸 -吹 -吻 -吼 -吽 -吾 -呀 -呂 -呃 -呆 -呈 -告 -呋 -呎 -呐 -呓 -呕 -呗 -员 -呛 -呜 -呢 -呤 -呦 -周 -呱 -呲 -味 -呵 -呷 -呸 -呻 -呼 -命 -咀 -咁 -咂 -咄 -咆 -咋 -和 -咎 -咏 -咐 -咒 -咔 -咕 -咖 -咗 -咘 -咙 -咚 -咛 -咣 -咤 -咦 -咧 -咨 -咩 -咪 -咫 -咬 -咭 -咯 -咱 -咲 -咳 -咸 -咻 -咽 -咿 -哀 -品 -哂 -哄 -哆 -哇 -哈 -哉 -哋 -哌 -响 -哎 -哏 -哐 -哑 -哒 -哔 -哗 -哟 -員 -哥 -哦 -哧 -哨 -哩 -哪 -哭 -哮 -哲 -哺 -哼 -哽 -唁 -唄 -唆 -唇 -唉 -唏 -唐 -唑 -唔 -唠 -唤 -唧 -唬 -售 -唯 -唰 -唱 -唳 -唷 -唸 -唾 -啃 -啄 -商 -啉 -啊 -問 -啓 -啕 -啖 -啜 -啞 -啟 -啡 -啤 -啥 -啦 -啧 -啪 -啫 -啬 -啮 -啰 -啱 -啲 -啵 -啶 -啷 -啸 -啻 -啼 -啾 -喀 -喂 -喃 -善 -喆 -喇 -喉 -喊 -喋 -喎 -喏 -喔 -喘 -喙 -喚 -喜 -喝 -喟 -喧 -喪 -喫 -喬 -單 -喰 -喱 -喲 -喳 -喵 -営 -喷 -喹 -喺 -喻 -喽 -嗅 -嗆 -嗇 -嗎 -嗑 -嗒 -嗓 -嗔 -嗖 -嗚 -嗜 -嗝 -嗟 -嗡 -嗣 -嗤 -嗦 -嗨 -嗪 -嗬 -嗯 -嗰 -嗲 -嗳 -嗶 -嗷 -嗽 -嘀 -嘅 -嘆 -嘈 -嘉 -嘌 -嘍 -嘎 -嘔 -嘖 -嘗 -嘘 -嘚 -嘛 -嘜 -嘞 -嘟 -嘢 -嘣 -嘤 -嘧 -嘩 -嘭 -嘮 -嘯 -嘰 -嘱 -嘲 -嘴 -嘶 -嘸 -嘹 -嘻 -嘿 -噁 -噌 -噎 -噓 -噔 -噗 -噙 -噜 -噠 -噢 -噤 -器 -噩 -噪 -噬 -噱 -噴 -噶 -噸 -噹 -噻 -噼 -嚀 -嚇 -嚎 -嚏 -嚐 -嚓 -嚕 -嚟 -嚣 -嚥 -嚨 -嚮 -嚴 -嚷 -嚼 -囂 -囉 -囊 -囍 -囑 -囔 -囗 -囚 -四 -囝 -回 -囟 -因 -囡 -团 -団 -囤 -囧 -囪 -囫 -园 -困 -囱 -囲 -図 -围 -囹 -固 -国 -图 -囿 -圃 -圄 -圆 -圈 -國 -圍 -圏 -園 -圓 -圖 -團 -圜 -土 -圣 -圧 -在 -圩 -圭 -地 -圳 -场 -圻 -圾 -址 -坂 -均 -坊 -坍 -坎 -坏 -坐 -坑 -块 -坚 -坛 -坝 -坞 -坟 -坠 -坡 -坤 -坦 -坨 -坪 -坯 -坳 -坵 -坷 -垂 -垃 -垄 -型 -垒 -垚 -垛 -垠 -垢 -垣 -垦 -垩 -垫 -垭 -垮 -垵 -埂 -埃 -埋 -城 -埔 -埕 -埗 -域 -埠 -埤 -埵 -執 -埸 -培 -基 -埼 -堀 -堂 -堃 -堅 -堆 -堇 -堑 -堕 -堙 -堡 -堤 -堪 -堯 -堰 -報 -場 -堵 -堺 -堿 -塊 -塌 -塑 -塔 -塗 -塘 -塚 -塞 -塢 -塩 -填 -塬 -塭 -塵 -塾 -墀 -境 -墅 -墉 -墊 -墒 -墓 -増 -墘 -墙 -墜 -增 -墟 -墨 -墩 -墮 -墳 -墻 -墾 -壁 -壅 -壆 -壇 -壊 -壑 -壓 -壕 -壘 -壞 -壟 -壢 -壤 -壩 -士 -壬 -壮 -壯 -声 -売 -壳 -壶 -壹 -壺 -壽 -处 -备 -変 -复 -夏 -夔 -夕 -外 -夙 -多 -夜 -够 -夠 -夢 -夥 -大 -天 -太 -夫 -夭 -央 -夯 -失 -头 -夷 -夸 -夹 -夺 -夾 -奂 -奄 -奇 -奈 -奉 -奋 -奎 -奏 -奐 -契 -奔 -奕 -奖 -套 -奘 -奚 -奠 -奢 -奥 -奧 -奪 -奬 -奮 -女 -奴 -奶 -奸 -她 -好 -如 -妃 -妄 -妆 -妇 -妈 -妊 -妍 -妒 -妓 -妖 -妘 -妙 -妝 -妞 -妣 -妤 -妥 -妨 -妩 -妪 -妮 -妲 -妳 -妹 -妻 -妾 -姆 -姉 -姊 -始 -姍 -姐 -姑 -姒 -姓 -委 -姗 -姚 -姜 -姝 -姣 -姥 -姦 -姨 -姪 -姫 -姬 -姹 -姻 -姿 -威 -娃 -娄 -娅 -娆 -娇 -娉 -娑 -娓 -娘 -娛 -娜 -娟 -娠 -娣 -娥 -娩 -娱 -娲 -娴 -娶 -娼 -婀 -婁 -婆 -婉 -婊 -婕 -婚 -婢 -婦 -婧 -婪 -婭 -婴 -婵 -婶 -婷 -婺 -婿 -媒 -媚 -媛 -媞 -媧 -媲 -媳 -媽 -媾 -嫁 -嫂 -嫉 -嫌 -嫑 -嫔 -嫖 -嫘 -嫚 -嫡 -嫣 -嫦 -嫩 -嫲 -嫵 -嫻 -嬅 -嬉 -嬌 -嬗 -嬛 -嬢 -嬤 -嬪 -嬰 -嬴 -嬷 -嬸 -嬿 -孀 -孃 -子 -孑 -孔 -孕 -孖 -字 -存 -孙 -孚 -孛 -孜 -孝 -孟 -孢 -季 -孤 -学 -孩 -孪 -孫 -孬 -孰 -孱 -孳 -孵 -學 -孺 -孽 -孿 -宁 -它 -宅 -宇 -守 -安 -宋 -完 -宏 -宓 -宕 -宗 -官 -宙 -定 -宛 -宜 -宝 -实 -実 -宠 -审 -客 -宣 -室 -宥 -宦 -宪 -宫 -宮 -宰 -害 -宴 -宵 -家 -宸 -容 -宽 -宾 -宿 -寂 -寄 -寅 -密 -寇 -富 -寐 -寒 -寓 -寛 -寝 -寞 -察 -寡 -寢 -寥 -實 -寧 -寨 -審 -寫 -寬 -寮 -寰 -寵 -寶 -寸 -对 -寺 -寻 -导 -対 -寿 -封 -専 -射 -将 -將 -專 -尉 -尊 -尋 -對 -導 -小 -少 -尔 -尕 -尖 -尘 -尚 -尝 -尤 -尧 -尬 -就 -尴 -尷 -尸 -尹 -尺 -尻 -尼 -尽 -尾 -尿 -局 -屁 -层 -屄 -居 -屆 -屈 -屉 -届 -屋 -屌 -屍 -屎 -屏 -屐 -屑 -展 -屜 -属 -屠 -屡 -屢 -層 -履 -屬 -屯 -山 -屹 -屿 -岀 -岁 -岂 -岌 -岐 -岑 -岔 -岖 -岗 -岘 -岙 -岚 -岛 -岡 -岩 -岫 -岬 -岭 -岱 -岳 -岷 -岸 -峇 -峋 -峒 -峙 -峡 -峤 -峥 -峦 -峨 -峪 -峭 -峯 -峰 -峴 -島 -峻 -峽 -崁 -崂 -崆 -崇 -崎 -崑 -崔 -崖 -崗 -崙 -崛 -崧 -崩 -崭 -崴 -崽 -嵇 -嵊 -嵋 -嵌 -嵐 -嵘 -嵩 -嵬 -嵯 -嶂 -嶄 -嶇 -嶋 -嶙 -嶺 -嶼 -嶽 -巅 -巍 -巒 -巔 -巖 -川 -州 -巡 -巢 -工 -左 -巧 -巨 -巩 -巫 -差 -己 -已 -巳 -巴 -巷 -巻 -巽 -巾 -巿 -币 -市 -布 -帅 -帆 -师 -希 -帐 -帑 -帕 -帖 -帘 -帚 -帛 -帜 -帝 -帥 -带 -帧 -師 -席 -帮 -帯 -帰 -帳 -帶 -帷 -常 -帼 -帽 -幀 -幂 -幄 -幅 -幌 -幔 -幕 -幟 -幡 -幢 -幣 -幫 -干 -平 -年 -并 -幸 -幹 -幺 -幻 -幼 -幽 -幾 -广 -庁 -広 -庄 -庆 -庇 -床 -序 -庐 -库 -应 -底 -庖 -店 -庙 -庚 -府 -庞 -废 -庠 -度 -座 -庫 -庭 -庵 -庶 -康 -庸 -庹 -庾 -廁 -廂 -廃 -廈 -廉 -廊 -廓 -廖 -廚 -廝 -廟 -廠 -廢 -廣 -廬 -廳 -延 -廷 -建 -廿 -开 -弁 -异 -弃 -弄 -弈 -弊 -弋 -式 -弑 -弒 -弓 -弔 -引 -弗 -弘 -弛 -弟 -张 -弥 -弦 -弧 -弩 -弭 -弯 -弱 -張 -強 -弹 -强 -弼 -弾 -彅 -彆 -彈 -彌 -彎 -归 -当 -录 -彗 -彙 -彝 -形 -彤 -彥 -彦 -彧 -彩 -彪 -彫 -彬 -彭 -彰 -影 -彷 -役 -彻 -彼 -彿 -往 -征 -径 -待 -徇 -很 -徉 -徊 -律 -後 -徐 -徑 -徒 -従 -徕 -得 -徘 -徙 -徜 -從 -徠 -御 -徨 -復 -循 -徬 -微 -徳 -徴 -徵 -德 -徹 -徼 -徽 -心 -必 -忆 -忌 -忍 -忏 -忐 -忑 -忒 -忖 -志 -忘 -忙 -応 -忠 -忡 -忤 -忧 -忪 -快 -忱 -念 -忻 -忽 -忿 -怀 -态 -怂 -怅 -怆 -怎 -怏 -怒 -怔 -怕 -怖 -怙 -怜 -思 -怠 -怡 -急 -怦 -性 -怨 -怪 -怯 -怵 -总 -怼 -恁 -恃 -恆 -恋 -恍 -恐 -恒 -恕 -恙 -恚 -恢 -恣 -恤 -恥 -恨 -恩 -恪 -恫 -恬 -恭 -息 -恰 -恳 -恵 -恶 -恸 -恺 -恻 -恼 -恿 -悄 -悅 -悉 -悌 -悍 -悔 -悖 -悚 -悟 -悠 -患 -悦 -您 -悩 -悪 -悬 -悯 -悱 -悲 -悴 -悵 -悶 -悸 -悻 -悼 -悽 -情 -惆 -惇 -惊 -惋 -惑 -惕 -惘 -惚 -惜 -惟 -惠 -惡 -惦 -惧 -惨 -惩 -惫 -惬 -惭 -惮 -惯 -惰 -惱 -想 -惴 -惶 -惹 -惺 -愁 -愆 -愈 -愉 -愍 -意 -愕 -愚 -愛 -愜 -感 -愣 -愤 -愧 -愫 -愷 -愿 -慄 -慈 -態 -慌 -慎 -慑 -慕 -慘 -慚 -慟 -慢 -慣 -慧 -慨 -慫 -慮 -慰 -慳 -慵 -慶 -慷 -慾 -憂 -憊 -憋 -憎 -憐 -憑 -憔 -憚 -憤 -憧 -憨 -憩 -憫 -憬 -憲 -憶 -憾 -懂 -懇 -懈 -應 -懊 -懋 -懑 -懒 -懦 -懲 -懵 -懶 -懷 -懸 -懺 -懼 -懾 -懿 -戀 -戈 -戊 -戌 -戍 -戎 -戏 -成 -我 -戒 -戕 -或 -战 -戚 -戛 -戟 -戡 -戦 -截 -戬 -戮 -戰 -戲 -戳 -戴 -戶 -户 -戸 -戻 -戾 -房 -所 -扁 -扇 -扈 -扉 -手 -才 -扎 -扑 -扒 -打 -扔 -払 -托 -扛 -扣 -扦 -执 -扩 -扪 -扫 -扬 -扭 -扮 -扯 -扰 -扱 -扳 -扶 -批 -扼 -找 -承 -技 -抄 -抉 -把 -抑 -抒 -抓 -投 -抖 -抗 -折 -抚 -抛 -抜 -択 -抟 -抠 -抡 -抢 -护 -报 -抨 -披 -抬 -抱 -抵 -抹 -押 -抽 -抿 -拂 -拄 -担 -拆 -拇 -拈 -拉 -拋 -拌 -拍 -拎 -拐 -拒 -拓 -拔 -拖 -拗 -拘 -拙 -拚 -招 -拜 -拟 -拡 -拢 -拣 -拥 -拦 -拧 -拨 -择 -括 -拭 -拮 -拯 -拱 -拳 -拴 -拷 -拼 -拽 -拾 -拿 -持 -挂 -指 -挈 -按 -挎 -挑 -挖 -挙 -挚 -挛 -挝 -挞 -挟 -挠 -挡 -挣 -挤 -挥 -挨 -挪 -挫 -振 -挲 -挹 -挺 -挽 -挾 -捂 -捅 -捆 -捉 -捋 -捌 -捍 -捎 -捏 -捐 -捕 -捞 -损 -捡 -换 -捣 -捧 -捨 -捩 -据 -捱 -捲 -捶 -捷 -捺 -捻 -掀 -掂 -掃 -掇 -授 -掉 -掌 -掏 -掐 -排 -掖 -掘 -掙 -掛 -掠 -採 -探 -掣 -接 -控 -推 -掩 -措 -掬 -掰 -掲 -掳 -掴 -掷 -掸 -掺 -揀 -揃 -揄 -揆 -揉 -揍 -描 -提 -插 -揖 -揚 -換 -握 -揣 -揩 -揪 -揭 -揮 -援 -揶 -揸 -揹 -揽 -搀 -搁 -搂 -搅 -損 -搏 -搐 -搓 -搔 -搖 -搗 -搜 -搞 -搡 -搪 -搬 -搭 -搵 -搶 -携 -搽 -摀 -摁 -摄 -摆 -摇 -摈 -摊 -摒 -摔 -摘 -摞 -摟 -摧 -摩 -摯 -摳 -摸 -摹 -摺 -摻 -撂 -撃 -撅 -撇 -撈 -撐 -撑 -撒 -撓 -撕 -撚 -撞 -撤 -撥 -撩 -撫 -撬 -播 -撮 -撰 -撲 -撵 -撷 -撸 -撻 -撼 -撿 -擀 -擁 -擂 -擄 -擅 -擇 -擊 -擋 -操 -擎 -擒 -擔 -擘 -據 -擞 -擠 -擡 -擢 -擦 -擬 -擰 -擱 -擲 -擴 -擷 -擺 -擼 -擾 -攀 -攏 -攒 -攔 -攘 -攙 -攜 -攝 -攞 -攢 -攣 -攤 -攥 -攪 -攫 -攬 -支 -收 -攸 -改 -攻 -放 -政 -故 -效 -敌 -敍 -敎 -敏 -救 -敕 -敖 -敗 -敘 -教 -敛 -敝 -敞 -敢 -散 -敦 -敬 -数 -敲 -整 -敵 -敷 -數 -斂 -斃 -文 -斋 -斌 -斎 -斐 -斑 -斓 -斗 -料 -斛 -斜 -斟 -斡 -斤 -斥 -斧 -斩 -斫 -斬 -断 -斯 -新 -斷 -方 -於 -施 -旁 -旃 -旅 -旋 -旌 -旎 -族 -旖 -旗 -无 -既 -日 -旦 -旧 -旨 -早 -旬 -旭 -旮 -旱 -时 -旷 -旺 -旻 -昀 -昂 -昆 -昇 -昉 -昊 -昌 -明 -昏 -易 -昔 -昕 -昙 -星 -映 -春 -昧 -昨 -昭 -是 -昱 -昴 -昵 -昶 -昼 -显 -晁 -時 -晃 -晉 -晋 -晌 -晏 -晒 -晓 -晔 -晕 -晖 -晗 -晚 -晝 -晞 -晟 -晤 -晦 -晨 -晩 -普 -景 -晰 -晴 -晶 -晷 -智 -晾 -暂 -暄 -暇 -暈 -暉 -暌 -暐 -暑 -暖 -暗 -暝 -暢 -暧 -暨 -暫 -暮 -暱 -暴 -暸 -暹 -曄 -曆 -曇 -曉 -曖 -曙 -曜 -曝 -曠 -曦 -曬 -曰 -曲 -曳 -更 -書 -曹 -曼 -曾 -替 -最 -會 -月 -有 -朋 -服 -朐 -朔 -朕 -朗 -望 -朝 -期 -朦 -朧 -木 -未 -末 -本 -札 -朮 -术 -朱 -朴 -朵 -机 -朽 -杀 -杂 -权 -杆 -杈 -杉 -李 -杏 -材 -村 -杓 -杖 -杜 -杞 -束 -杠 -条 -来 -杨 -杭 -杯 -杰 -東 -杳 -杵 -杷 -杼 -松 -板 -极 -构 -枇 -枉 -枋 -析 -枕 -林 -枚 -果 -枝 -枢 -枣 -枪 -枫 -枭 -枯 -枰 -枱 -枳 -架 -枷 -枸 -柄 -柏 -某 -柑 -柒 -染 -柔 -柘 -柚 -柜 -柞 -柠 -柢 -查 -柩 -柬 -柯 -柱 -柳 -柴 -柵 -査 -柿 -栀 -栃 -栄 -栅 -标 -栈 -栉 -栋 -栎 -栏 -树 -栓 -栖 -栗 -校 -栩 -株 -样 -核 -根 -格 -栽 -栾 -桀 -桁 -桂 -桃 -桅 -框 -案 -桉 -桌 -桎 -桐 -桑 -桓 -桔 -桜 -桠 -桡 -桢 -档 -桥 -桦 -桧 -桨 -桩 -桶 -桿 -梁 -梅 -梆 -梏 -梓 -梗 -條 -梟 -梢 -梦 -梧 -梨 -梭 -梯 -械 -梳 -梵 -梶 -检 -棂 -棄 -棉 -棋 -棍 -棒 -棕 -棗 -棘 -棚 -棟 -棠 -棣 -棧 -森 -棱 -棲 -棵 -棹 -棺 -椁 -椅 -椋 -植 -椎 -椒 -検 -椪 -椭 -椰 -椹 -椽 -椿 -楂 -楊 -楓 -楔 -楚 -楝 -楞 -楠 -楣 -楨 -楫 -業 -楮 -極 -楷 -楸 -楹 -楼 -楽 -概 -榄 -榆 -榈 -榉 -榔 -榕 -榖 -榛 -榜 -榨 -榫 -榭 -榮 -榱 -榴 -榷 -榻 -槁 -槃 -構 -槌 -槍 -槎 -槐 -槓 -様 -槛 -槟 -槤 -槭 -槲 -槳 -槻 -槽 -槿 -樁 -樂 -樊 -樑 -樓 -標 -樞 -樟 -模 -樣 -権 -横 -樫 -樯 -樱 -樵 -樸 -樹 -樺 -樽 -樾 -橄 -橇 -橋 -橐 -橘 -橙 -機 -橡 -橢 -橫 -橱 -橹 -橼 -檀 -檄 -檎 -檐 -檔 -檗 -檜 -檢 -檬 -檯 -檳 -檸 -檻 -櫃 -櫚 -櫛 -櫥 -櫸 -櫻 -欄 -權 -欒 -欖 -欠 -次 -欢 -欣 -欧 -欲 -欸 -欺 -欽 -款 -歆 -歇 -歉 -歌 -歎 -歐 -歓 -歙 -歛 -歡 -止 -正 -此 -步 -武 -歧 -歩 -歪 -歯 -歲 -歳 -歴 -歷 -歸 -歹 -死 -歼 -殁 -殃 -殆 -殇 -殉 -殊 -残 -殒 -殓 -殖 -殘 -殞 -殡 -殤 -殭 -殯 -殲 -殴 -段 -殷 -殺 -殼 -殿 -毀 -毁 -毂 -毅 -毆 -毋 -母 -毎 -每 -毒 -毓 -比 -毕 -毗 -毘 -毙 -毛 -毡 -毫 -毯 -毽 -氈 -氏 -氐 -民 -氓 -气 -氖 -気 -氙 -氛 -氟 -氡 -氢 -氣 -氤 -氦 -氧 -氨 -氪 -氫 -氮 -氯 -氰 -氲 -水 -氷 -永 -氹 -氾 -汀 -汁 -求 -汆 -汇 -汉 -汎 -汐 -汕 -汗 -汙 -汛 -汝 -汞 -江 -池 -污 -汤 -汨 -汩 -汪 -汰 -汲 -汴 -汶 -汹 -決 -汽 -汾 -沁 -沂 -沃 -沅 -沈 -沉 -沌 -沏 -沐 -沒 -沓 -沖 -沙 -沛 -沟 -没 -沢 -沣 -沥 -沦 -沧 -沪 -沫 -沭 -沮 -沱 -河 -沸 -油 -治 -沼 -沽 -沾 -沿 -況 -泄 -泉 -泊 -泌 -泓 -法 -泗 -泛 -泞 -泠 -泡 -波 -泣 -泥 -注 -泪 -泫 -泮 -泯 -泰 -泱 -泳 -泵 -泷 -泸 -泻 -泼 -泽 -泾 -洁 -洄 -洋 -洒 -洗 -洙 -洛 -洞 -津 -洩 -洪 -洮 -洱 -洲 -洵 -洶 -洸 -洹 -活 -洼 -洽 -派 -流 -浃 -浄 -浅 -浆 -浇 -浊 -测 -济 -浏 -浑 -浒 -浓 -浔 -浙 -浚 -浜 -浣 -浦 -浩 -浪 -浬 -浮 -浯 -浴 -海 -浸 -涂 -涅 -涇 -消 -涉 -涌 -涎 -涓 -涔 -涕 -涙 -涛 -涝 -涞 -涟 -涠 -涡 -涣 -涤 -润 -涧 -涨 -涩 -涪 -涮 -涯 -液 -涵 -涸 -涼 -涿 -淀 -淄 -淅 -淆 -淇 -淋 -淌 -淑 -淒 -淖 -淘 -淙 -淚 -淞 -淡 -淤 -淦 -淨 -淩 -淪 -淫 -淬 -淮 -深 -淳 -淵 -混 -淹 -淺 -添 -淼 -清 -済 -渉 -渊 -渋 -渍 -渎 -渐 -渔 -渗 -渙 -渚 -減 -渝 -渠 -渡 -渣 -渤 -渥 -渦 -温 -測 -渭 -港 -渲 -渴 -游 -渺 -渾 -湃 -湄 -湊 -湍 -湖 -湘 -湛 -湟 -湧 -湫 -湮 -湯 -湳 -湾 -湿 -満 -溃 -溅 -溉 -溏 -源 -準 -溜 -溝 -溟 -溢 -溥 -溧 -溪 -溫 -溯 -溱 -溴 -溶 -溺 -溼 -滁 -滂 -滄 -滅 -滇 -滋 -滌 -滑 -滓 -滔 -滕 -滙 -滚 -滝 -滞 -滟 -满 -滢 -滤 -滥 -滦 -滨 -滩 -滬 -滯 -滲 -滴 -滷 -滸 -滾 -滿 -漁 -漂 -漆 -漉 -漏 -漓 -演 -漕 -漠 -漢 -漣 -漩 -漪 -漫 -漬 -漯 -漱 -漲 -漳 -漸 -漾 -漿 -潆 -潇 -潋 -潍 -潑 -潔 -潘 -潛 -潜 -潞 -潟 -潢 -潤 -潦 -潧 -潭 -潮 -潰 -潴 -潸 -潺 -潼 -澀 -澄 -澆 -澈 -澍 -澎 -澗 -澜 -澡 -澤 -澧 -澱 -澳 -澹 -激 -濁 -濂 -濃 -濑 -濒 -濕 -濘 -濛 -濟 -濠 -濡 -濤 -濫 -濬 -濮 -濯 -濱 -濺 -濾 -瀅 -瀆 -瀉 -瀋 -瀏 -瀑 -瀕 -瀘 -瀚 -瀛 -瀝 -瀞 -瀟 -瀧 -瀨 -瀬 -瀰 -瀾 -灌 -灏 -灑 -灘 -灝 -灞 -灣 -火 -灬 -灭 -灯 -灰 -灵 -灶 -灸 -灼 -災 -灾 -灿 -炀 -炁 -炅 -炉 -炊 -炎 -炒 -炔 -炕 -炖 -炙 -炜 -炫 -炬 -炭 -炮 -炯 -炳 -炷 -炸 -点 -為 -炼 -炽 -烁 -烂 -烃 -烈 -烊 -烏 -烘 -烙 -烛 -烟 -烤 -烦 -烧 -烨 -烩 -烫 -烬 -热 -烯 -烷 -烹 -烽 -焉 -焊 -焕 -焖 -焗 -焘 -焙 -焚 -焜 -無 -焦 -焯 -焰 -焱 -然 -焼 -煅 -煉 -煊 -煌 -煎 -煒 -煖 -煙 -煜 -煞 -煤 -煥 -煦 -照 -煨 -煩 -煮 -煲 -煸 -煽 -熄 -熊 -熏 -熒 -熔 -熙 -熟 -熠 -熨 -熬 -熱 -熵 -熹 -熾 -燁 -燃 -燄 -燈 -燉 -燊 -燎 -燒 -燔 -燕 -燙 -燜 -營 -燥 -燦 -燧 -燭 -燮 -燴 -燻 -燼 -燿 -爆 -爍 -爐 -爛 -爪 -爬 -爭 -爰 -爱 -爲 -爵 -父 -爷 -爸 -爹 -爺 -爻 -爽 -爾 -牆 -片 -版 -牌 -牍 -牒 -牙 -牛 -牝 -牟 -牠 -牡 -牢 -牦 -牧 -物 -牯 -牲 -牴 -牵 -特 -牺 -牽 -犀 -犁 -犄 -犊 -犍 -犒 -犢 -犧 -犬 -犯 -状 -犷 -犸 -犹 -狀 -狂 -狄 -狈 -狎 -狐 -狒 -狗 -狙 -狞 -狠 -狡 -狩 -独 -狭 -狮 -狰 -狱 -狸 -狹 -狼 -狽 -猎 -猕 -猖 -猗 -猙 -猛 -猜 -猝 -猥 -猩 -猪 -猫 -猬 -献 -猴 -猶 -猷 -猾 -猿 -獄 -獅 -獎 -獐 -獒 -獗 -獠 -獣 -獨 -獭 -獰 -獲 -獵 -獷 -獸 -獺 -獻 -獼 -獾 -玄 -率 -玉 -王 -玑 -玖 -玛 -玟 -玠 -玥 -玩 -玫 -玮 -环 -现 -玲 -玳 -玷 -玺 -玻 -珀 -珂 -珅 -珈 -珉 -珊 -珍 -珏 -珐 -珑 -珙 -珞 -珠 -珣 -珥 -珩 -珪 -班 -珮 -珲 -珺 -現 -球 -琅 -理 -琇 -琉 -琊 -琍 -琏 -琐 -琛 -琢 -琥 -琦 -琨 -琪 -琬 -琮 -琰 -琲 -琳 -琴 -琵 -琶 -琺 -琼 -瑀 -瑁 -瑄 -瑋 -瑕 -瑗 -瑙 -瑚 -瑛 -瑜 -瑞 -瑟 -瑠 -瑣 -瑤 -瑩 -瑪 -瑯 -瑰 -瑶 -瑾 -璀 -璁 -璃 -璇 -璉 -璋 -璎 -璐 -璜 -璞 -璟 -璧 -璨 -環 -璽 -璿 -瓊 -瓏 -瓒 -瓜 -瓢 -瓣 -瓤 -瓦 -瓮 -瓯 -瓴 -瓶 -瓷 -甄 -甌 -甕 -甘 -甙 -甚 -甜 -生 -產 -産 -甥 -甦 -用 -甩 -甫 -甬 -甭 -甯 -田 -由 -甲 -申 -电 -男 -甸 -町 -画 -甾 -畀 -畅 -界 -畏 -畑 -畔 -留 -畜 -畝 -畢 -略 -畦 -番 -畫 -異 -畲 -畳 -畴 -當 -畸 -畹 -畿 -疆 -疇 -疊 -疏 -疑 -疔 -疖 -疗 -疙 -疚 -疝 -疟 -疡 -疣 -疤 -疥 -疫 -疮 -疯 -疱 -疲 -疳 -疵 -疸 -疹 -疼 -疽 -疾 -痂 -病 -症 -痈 -痉 -痊 -痍 -痒 -痔 -痕 -痘 -痙 -痛 -痞 -痠 -痢 -痣 -痤 -痧 -痨 -痪 -痫 -痰 -痱 -痴 -痹 -痺 -痼 -痿 -瘀 -瘁 -瘋 -瘍 -瘓 -瘘 -瘙 -瘟 -瘠 -瘡 -瘢 -瘤 -瘦 -瘧 -瘩 -瘪 -瘫 -瘴 -瘸 -瘾 -療 -癇 -癌 -癒 -癖 -癜 -癞 -癡 -癢 -癣 -癥 -癫 -癬 -癮 -癱 -癲 -癸 -発 -登 -發 -白 -百 -皂 -的 -皆 -皇 -皈 -皋 -皎 -皑 -皓 -皖 -皙 -皚 -皮 -皰 -皱 -皴 -皺 -皿 -盂 -盃 -盅 -盆 -盈 -益 -盎 -盏 -盐 -监 -盒 -盔 -盖 -盗 -盘 -盛 -盜 -盞 -盟 -盡 -監 -盤 -盥 -盧 -盪 -目 -盯 -盱 -盲 -直 -相 -盹 -盼 -盾 -省 -眈 -眉 -看 -県 -眙 -眞 -真 -眠 -眦 -眨 -眩 -眯 -眶 -眷 -眸 -眺 -眼 -眾 -着 -睁 -睇 -睏 -睐 -睑 -睛 -睜 -睞 -睡 -睢 -督 -睥 -睦 -睨 -睪 -睫 -睬 -睹 -睽 -睾 -睿 -瞄 -瞅 -瞇 -瞋 -瞌 -瞎 -瞑 -瞒 -瞓 -瞞 -瞟 -瞠 -瞥 -瞧 -瞩 -瞪 -瞬 -瞭 -瞰 -瞳 -瞻 -瞼 -瞿 -矇 -矍 -矗 -矚 -矛 -矜 -矢 -矣 -知 -矩 -矫 -短 -矮 -矯 -石 -矶 -矽 -矾 -矿 -码 -砂 -砌 -砍 -砒 -研 -砖 -砗 -砚 -砝 -砣 -砥 -砧 -砭 -砰 -砲 -破 -砷 -砸 -砺 -砼 -砾 -础 -硅 -硐 -硒 -硕 -硝 -硫 -硬 -确 -硯 -硼 -碁 -碇 -碉 -碌 -碍 -碎 -碑 -碓 -碗 -碘 -碚 -碛 -碟 -碣 -碧 -碩 -碰 -碱 -碳 -碴 -確 -碼 -碾 -磁 -磅 -磊 -磋 -磐 -磕 -磚 -磡 -磨 -磬 -磯 -磲 -磷 -磺 -礁 -礎 -礙 -礡 -礦 -礪 -礫 -礴 -示 -礼 -社 -祀 -祁 -祂 -祇 -祈 -祉 -祎 -祐 -祕 -祖 -祗 -祚 -祛 -祜 -祝 -神 -祟 -祠 -祢 -祥 -票 -祭 -祯 -祷 -祸 -祺 -祿 -禀 -禁 -禄 -禅 -禍 -禎 -福 -禛 -禦 -禧 -禪 -禮 -禱 -禹 -禺 -离 -禽 -禾 -禿 -秀 -私 -秃 -秆 -秉 -秋 -种 -科 -秒 -秘 -租 -秣 -秤 -秦 -秧 -秩 -秭 -积 -称 -秸 -移 -秽 -稀 -稅 -程 -稍 -税 -稔 -稗 -稚 -稜 -稞 -稟 -稠 -稣 -種 -稱 -稲 -稳 -稷 -稹 -稻 -稼 -稽 -稿 -穀 -穂 -穆 -穌 -積 -穎 -穗 -穢 -穩 -穫 -穴 -究 -穷 -穹 -空 -穿 -突 -窃 -窄 -窈 -窍 -窑 -窒 -窓 -窕 -窖 -窗 -窘 -窜 -窝 -窟 -窠 -窥 -窦 -窨 -窩 -窪 -窮 -窯 -窺 -窿 -竄 -竅 -竇 -竊 -立 -竖 -站 -竜 -竞 -竟 -章 -竣 -童 -竭 -端 -競 -竹 -竺 -竽 -竿 -笃 -笆 -笈 -笋 -笏 -笑 -笔 -笙 -笛 -笞 -笠 -符 -笨 -第 -笹 -笺 -笼 -筆 -等 -筊 -筋 -筍 -筏 -筐 -筑 -筒 -答 -策 -筛 -筝 -筠 -筱 -筲 -筵 -筷 -筹 -签 -简 -箇 -箋 -箍 -箏 -箐 -箔 -箕 -算 -箝 -管 -箩 -箫 -箭 -箱 -箴 -箸 -節 -篁 -範 -篆 -篇 -築 -篑 -篓 -篙 -篝 -篠 -篡 -篤 -篩 -篪 -篮 -篱 -篷 -簇 -簌 -簍 -簡 -簦 -簧 -簪 -簫 -簷 -簸 -簽 -簾 -簿 -籁 -籃 -籌 -籍 -籐 -籟 -籠 -籤 -籬 -籮 -籲 -米 -类 -籼 -籽 -粄 -粉 -粑 -粒 -粕 -粗 -粘 -粟 -粤 -粥 -粧 -粪 -粮 -粱 -粲 -粳 -粵 -粹 -粼 -粽 -精 -粿 -糅 -糊 -糍 -糕 -糖 -糗 -糙 -糜 -糞 -糟 -糠 -糧 -糬 -糯 -糰 -糸 -系 -糾 -紀 -紂 -約 -紅 -紉 -紊 -紋 -納 -紐 -紓 -純 -紗 -紘 -紙 -級 -紛 -紜 -素 -紡 -索 -紧 -紫 -紮 -累 -細 -紳 -紹 -紺 -終 -絃 -組 -絆 -経 -結 -絕 -絞 -絡 -絢 -給 -絨 -絮 -統 -絲 -絳 -絵 -絶 -絹 -綁 -綏 -綑 -經 -継 -続 -綜 -綠 -綢 -綦 -綫 -綬 -維 -綱 -網 -綴 -綵 -綸 -綺 -綻 -綽 -綾 -綿 -緊 -緋 -総 -緑 -緒 -緘 -線 -緝 -緞 -締 -緣 -編 -緩 -緬 -緯 -練 -緹 -緻 -縁 -縄 -縈 -縛 -縝 -縣 -縫 -縮 -縱 -縴 -縷 -總 -績 -繁 -繃 -繆 -繇 -繋 -織 -繕 -繚 -繞 -繡 -繩 -繪 -繫 -繭 -繳 -繹 -繼 -繽 -纂 -續 -纍 -纏 -纓 -纔 -纖 -纜 -纠 -红 -纣 -纤 -约 -级 -纨 -纪 -纫 -纬 -纭 -纯 -纰 -纱 -纲 -纳 -纵 -纶 -纷 -纸 -纹 -纺 -纽 -纾 -线 -绀 -练 -组 -绅 -细 -织 -终 -绊 -绍 -绎 -经 -绑 -绒 -结 -绔 -绕 -绘 -给 -绚 -绛 -络 -绝 -绞 -统 -绡 -绢 -绣 -绥 -绦 -继 -绩 -绪 -绫 -续 -绮 -绯 -绰 -绳 -维 -绵 -绶 -绷 -绸 -绻 -综 -绽 -绾 -绿 -缀 -缄 -缅 -缆 -缇 -缈 -缉 -缎 -缓 -缔 -缕 -编 -缘 -缙 -缚 -缜 -缝 -缠 -缢 -缤 -缥 -缨 -缩 -缪 -缭 -缮 -缰 -缱 -缴 -缸 -缺 -缽 -罂 -罄 -罌 -罐 -网 -罔 -罕 -罗 -罚 -罡 -罢 -罩 -罪 -置 -罰 -署 -罵 -罷 -罹 -羁 -羅 -羈 -羊 -羌 -美 -羔 -羚 -羞 -羟 -羡 -羣 -群 -羥 -羧 -羨 -義 -羯 -羲 -羸 -羹 -羽 -羿 -翁 -翅 -翊 -翌 -翎 -習 -翔 -翘 -翟 -翠 -翡 -翦 -翩 -翰 -翱 -翳 -翹 -翻 -翼 -耀 -老 -考 -耄 -者 -耆 -耋 -而 -耍 -耐 -耒 -耕 -耗 -耘 -耙 -耦 -耨 -耳 -耶 -耷 -耸 -耻 -耽 -耿 -聂 -聆 -聊 -聋 -职 -聒 -联 -聖 -聘 -聚 -聞 -聪 -聯 -聰 -聲 -聳 -聴 -聶 -職 -聽 -聾 -聿 -肃 -肄 -肅 -肆 -肇 -肉 -肋 -肌 -肏 -肓 -肖 -肘 -肚 -肛 -肝 -肠 -股 -肢 -肤 -肥 -肩 -肪 -肮 -肯 -肱 -育 -肴 -肺 -肽 -肾 -肿 -胀 -胁 -胃 -胄 -胆 -背 -胍 -胎 -胖 -胚 -胛 -胜 -胝 -胞 -胡 -胤 -胥 -胧 -胫 -胭 -胯 -胰 -胱 -胳 -胴 -胶 -胸 -胺 -能 -脂 -脅 -脆 -脇 -脈 -脉 -脊 -脍 -脏 -脐 -脑 -脓 -脖 -脘 -脚 -脛 -脣 -脩 -脫 -脯 -脱 -脲 -脳 -脸 -脹 -脾 -腆 -腈 -腊 -腋 -腌 -腎 -腐 -腑 -腓 -腔 -腕 -腥 -腦 -腩 -腫 -腭 -腮 -腰 -腱 -腳 -腴 -腸 -腹 -腺 -腻 -腼 -腾 -腿 -膀 -膈 -膊 -膏 -膑 -膘 -膚 -膛 -膜 -膝 -膠 -膦 -膨 -膩 -膳 -膺 -膻 -膽 -膾 -膿 -臀 -臂 -臃 -臆 -臉 -臊 -臍 -臓 -臘 -臟 -臣 -臥 -臧 -臨 -自 -臬 -臭 -至 -致 -臺 -臻 -臼 -臾 -舀 -舂 -舅 -舆 -與 -興 -舉 -舊 -舌 -舍 -舎 -舐 -舒 -舔 -舖 -舗 -舛 -舜 -舞 -舟 -航 -舫 -般 -舰 -舱 -舵 -舶 -舷 -舸 -船 -舺 -舾 -艇 -艋 -艘 -艙 -艦 -艮 -良 -艰 -艱 -色 -艳 -艷 -艹 -艺 -艾 -节 -芃 -芈 -芊 -芋 -芍 -芎 -芒 -芙 -芜 -芝 -芡 -芥 -芦 -芩 -芪 -芫 -芬 -芭 -芮 -芯 -花 -芳 -芷 -芸 -芹 -芻 -芽 -芾 -苁 -苄 -苇 -苋 -苍 -苏 -苑 -苒 -苓 -苔 -苕 -苗 -苛 -苜 -苞 -苟 -苡 -苣 -若 -苦 -苫 -苯 -英 -苷 -苹 -苻 -茁 -茂 -范 -茄 -茅 -茉 -茎 -茏 -茗 -茜 -茧 -茨 -茫 -茬 -茭 -茯 -茱 -茲 -茴 -茵 -茶 -茸 -茹 -茼 -荀 -荃 -荆 -草 -荊 -荏 -荐 -荒 -荔 -荖 -荘 -荚 -荞 -荟 -荠 -荡 -荣 -荤 -荥 -荧 -荨 -荪 -荫 -药 -荳 -荷 -荸 -荻 -荼 -荽 -莅 -莆 -莉 -莊 -莎 -莒 -莓 -莖 -莘 -莞 -莠 -莢 -莧 -莪 -莫 -莱 -莲 -莴 -获 -莹 -莺 -莽 -莿 -菀 -菁 -菅 -菇 -菈 -菊 -菌 -菏 -菓 -菖 -菘 -菜 -菟 -菠 -菡 -菩 -華 -菱 -菲 -菸 -菽 -萁 -萃 -萄 -萊 -萋 -萌 -萍 -萎 -萘 -萝 -萤 -营 -萦 -萧 -萨 -萩 -萬 -萱 -萵 -萸 -萼 -落 -葆 -葉 -著 -葚 -葛 -葡 -董 -葦 -葩 -葫 -葬 -葭 -葯 -葱 -葳 -葵 -葷 -葺 -蒂 -蒋 -蒐 -蒔 -蒙 -蒜 -蒞 -蒟 -蒡 -蒨 -蒲 -蒸 -蒹 -蒻 -蒼 -蒿 -蓁 -蓄 -蓆 -蓉 -蓋 -蓑 -蓓 -蓖 -蓝 -蓟 -蓦 -蓬 -蓮 -蓼 -蓿 -蔑 -蔓 -蔔 -蔗 -蔘 -蔚 -蔡 -蔣 -蔥 -蔫 -蔬 -蔭 -蔵 -蔷 -蔺 -蔻 -蔼 -蔽 -蕁 -蕃 -蕈 -蕉 -蕊 -蕎 -蕙 -蕤 -蕨 -蕩 -蕪 -蕭 -蕲 -蕴 -蕻 -蕾 -薄 -薅 -薇 -薈 -薊 -薏 -薑 -薔 -薙 -薛 -薦 -薨 -薩 -薪 -薬 -薯 -薰 -薹 -藉 -藍 -藏 -藐 -藓 -藕 -藜 -藝 -藤 -藥 -藩 -藹 -藻 -藿 -蘆 -蘇 -蘊 -蘋 -蘑 -蘚 -蘭 -蘸 -蘼 -蘿 -虎 -虏 -虐 -虑 -虔 -處 -虚 -虛 -虜 -虞 -號 -虢 -虧 -虫 -虬 -虱 -虹 -虻 -虽 -虾 -蚀 -蚁 -蚂 -蚊 -蚌 -蚓 -蚕 -蚜 -蚝 -蚣 -蚤 -蚩 -蚪 -蚯 -蚱 -蚵 -蛀 -蛆 -蛇 -蛊 -蛋 -蛎 -蛐 -蛔 -蛙 -蛛 -蛟 -蛤 -蛭 -蛮 -蛰 -蛳 -蛹 -蛻 -蛾 -蜀 -蜂 -蜃 -蜆 -蜇 -蜈 -蜊 -蜍 -蜒 -蜓 -蜕 -蜗 -蜘 -蜚 -蜜 -蜡 -蜢 -蜥 -蜱 -蜴 -蜷 -蜻 -蜿 -蝇 -蝈 -蝉 -蝌 -蝎 -蝕 -蝗 -蝙 -蝟 -蝠 -蝦 -蝨 -蝴 -蝶 -蝸 -蝼 -螂 -螃 -融 -螞 -螢 -螨 -螯 -螳 -螺 -蟀 -蟄 -蟆 -蟋 -蟎 -蟑 -蟒 -蟠 -蟬 -蟲 -蟹 -蟻 -蟾 -蠅 -蠍 -蠔 -蠕 -蠛 -蠟 -蠡 -蠢 -蠣 -蠱 -蠶 -蠹 -蠻 -血 -衄 -衅 -衆 -行 -衍 -術 -衔 -街 -衙 -衛 -衝 -衞 -衡 -衢 -衣 -补 -表 -衩 -衫 -衬 -衮 -衰 -衲 -衷 -衹 -衾 -衿 -袁 -袂 -袄 -袅 -袈 -袋 -袍 -袒 -袖 -袜 -袞 -袤 -袪 -被 -袭 -袱 -裁 -裂 -装 -裆 -裊 -裏 -裔 -裕 -裘 -裙 -補 -裝 -裟 -裡 -裤 -裨 -裱 -裳 -裴 -裸 -裹 -製 -裾 -褂 -複 -褐 -褒 -褓 -褔 -褚 -褥 -褪 -褫 -褲 -褶 -褻 -襁 -襄 -襟 -襠 -襪 -襬 -襯 -襲 -西 -要 -覃 -覆 -覇 -見 -規 -覓 -視 -覚 -覦 -覧 -親 -覬 -観 -覷 -覺 -覽 -觀 -见 -观 -规 -觅 -视 -览 -觉 -觊 -觎 -觐 -觑 -角 -觞 -解 -觥 -触 -觸 -言 -訂 -計 -訊 -討 -訓 -訕 -訖 -託 -記 -訛 -訝 -訟 -訣 -訥 -訪 -設 -許 -訳 -訴 -訶 -診 -註 -証 -詆 -詐 -詔 -評 -詛 -詞 -詠 -詡 -詢 -詣 -試 -詩 -詫 -詬 -詭 -詮 -詰 -話 -該 -詳 -詹 -詼 -誅 -誇 -誉 -誌 -認 -誓 -誕 -誘 -語 -誠 -誡 -誣 -誤 -誥 -誦 -誨 -說 -説 -読 -誰 -課 -誹 -誼 -調 -諄 -談 -請 -諏 -諒 -論 -諗 -諜 -諡 -諦 -諧 -諫 -諭 -諮 -諱 -諳 -諷 -諸 -諺 -諾 -謀 -謁 -謂 -謄 -謊 -謎 -謐 -謔 -謗 -謙 -講 -謝 -謠 -謨 -謬 -謹 -謾 -譁 -證 -譎 -譏 -識 -譙 -譚 -譜 -警 -譬 -譯 -議 -譲 -譴 -護 -譽 -讀 -變 -讓 -讚 -讞 -计 -订 -认 -讥 -讧 -讨 -让 -讪 -讫 -训 -议 -讯 -记 -讲 -讳 -讴 -讶 -讷 -许 -讹 -论 -讼 -讽 -设 -访 -诀 -证 -诃 -评 -诅 -识 -诈 -诉 -诊 -诋 -词 -诏 -译 -试 -诗 -诘 -诙 -诚 -诛 -话 -诞 -诟 -诠 -诡 -询 -诣 -诤 -该 -详 -诧 -诩 -诫 -诬 -语 -误 -诰 -诱 -诲 -说 -诵 -诶 -请 -诸 -诺 -读 -诽 -课 -诿 -谀 -谁 -调 -谄 -谅 -谆 -谈 -谊 -谋 -谌 -谍 -谎 -谏 -谐 -谑 -谒 -谓 -谔 -谕 -谗 -谘 -谙 -谚 -谛 -谜 -谟 -谢 -谣 -谤 -谥 -谦 -谧 -谨 -谩 -谪 -谬 -谭 -谯 -谱 -谲 -谴 -谶 -谷 -豁 -豆 -豇 -豈 -豉 -豊 -豌 -豎 -豐 -豔 -豚 -象 -豢 -豪 -豫 -豬 -豹 -豺 -貂 -貅 -貌 -貓 -貔 -貘 -貝 -貞 -負 -財 -貢 -貧 -貨 -販 -貪 -貫 -責 -貯 -貰 -貳 -貴 -貶 -買 -貸 -費 -貼 -貽 -貿 -賀 -賁 -賂 -賃 -賄 -資 -賈 -賊 -賑 -賓 -賜 -賞 -賠 -賡 -賢 -賣 -賤 -賦 -質 -賬 -賭 -賴 -賺 -購 -賽 -贅 -贈 -贊 -贍 -贏 -贓 -贖 -贛 -贝 -贞 -负 -贡 -财 -责 -贤 -败 -账 -货 -质 -贩 -贪 -贫 -贬 -购 -贮 -贯 -贰 -贱 -贲 -贴 -贵 -贷 -贸 -费 -贺 -贻 -贼 -贾 -贿 -赁 -赂 -赃 -资 -赅 -赈 -赊 -赋 -赌 -赎 -赏 -赐 -赓 -赔 -赖 -赘 -赚 -赛 -赝 -赞 -赠 -赡 -赢 -赣 -赤 -赦 -赧 -赫 -赭 -走 -赳 -赴 -赵 -赶 -起 -趁 -超 -越 -趋 -趕 -趙 -趟 -趣 -趨 -足 -趴 -趵 -趸 -趺 -趾 -跃 -跄 -跆 -跋 -跌 -跎 -跑 -跖 -跚 -跛 -距 -跟 -跡 -跤 -跨 -跩 -跪 -路 -跳 -践 -跷 -跹 -跺 -跻 -踉 -踊 -踌 -踏 -踐 -踝 -踞 -踟 -踢 -踩 -踪 -踮 -踱 -踴 -踵 -踹 -蹂 -蹄 -蹇 -蹈 -蹉 -蹊 -蹋 -蹑 -蹒 -蹙 -蹟 -蹣 -蹤 -蹦 -蹩 -蹬 -蹭 -蹲 -蹴 -蹶 -蹺 -蹼 -蹿 -躁 -躇 -躉 -躊 -躋 -躍 -躏 -躪 -身 -躬 -躯 -躲 -躺 -軀 -車 -軋 -軌 -軍 -軒 -軟 -転 -軸 -軼 -軽 -軾 -較 -載 -輒 -輓 -輔 -輕 -輛 -輝 -輟 -輩 -輪 -輯 -輸 -輻 -輾 -輿 -轄 -轅 -轆 -轉 -轍 -轎 -轟 -车 -轧 -轨 -轩 -转 -轭 -轮 -软 -轰 -轲 -轴 -轶 -轻 -轼 -载 -轿 -较 -辄 -辅 -辆 -辇 -辈 -辉 -辊 -辍 -辐 -辑 -输 -辕 -辖 -辗 -辘 -辙 -辛 -辜 -辞 -辟 -辣 -辦 -辨 -辩 -辫 -辭 -辮 -辯 -辰 -辱 -農 -边 -辺 -辻 -込 -辽 -达 -迁 -迂 -迄 -迅 -过 -迈 -迎 -运 -近 -返 -还 -这 -进 -远 -违 -连 -迟 -迢 -迤 -迥 -迦 -迩 -迪 -迫 -迭 -述 -迴 -迷 -迸 -迹 -迺 -追 -退 -送 -适 -逃 -逅 -逆 -选 -逊 -逍 -透 -逐 -递 -途 -逕 -逗 -這 -通 -逛 -逝 -逞 -速 -造 -逢 -連 -逮 -週 -進 -逵 -逶 -逸 -逻 -逼 -逾 -遁 -遂 -遅 -遇 -遊 -運 -遍 -過 -遏 -遐 -遑 -遒 -道 -達 -違 -遗 -遙 -遛 -遜 -遞 -遠 -遢 -遣 -遥 -遨 -適 -遭 -遮 -遲 -遴 -遵 -遶 -遷 -選 -遺 -遼 -遽 -避 -邀 -邁 -邂 -邃 -還 -邇 -邈 -邊 -邋 -邏 -邑 -邓 -邕 -邛 -邝 -邢 -那 -邦 -邨 -邪 -邬 -邮 -邯 -邰 -邱 -邳 -邵 -邸 -邹 -邺 -邻 -郁 -郅 -郊 -郎 -郑 -郜 -郝 -郡 -郢 -郤 -郦 -郧 -部 -郫 -郭 -郴 -郵 -郷 -郸 -都 -鄂 -鄉 -鄒 -鄔 -鄙 -鄞 -鄢 -鄧 -鄭 -鄰 -鄱 -鄲 -鄺 -酉 -酊 -酋 -酌 -配 -酐 -酒 -酗 -酚 -酝 -酢 -酣 -酥 -酩 -酪 -酬 -酮 -酯 -酰 -酱 -酵 -酶 -酷 -酸 -酿 -醃 -醇 -醉 -醋 -醍 -醐 -醒 -醚 -醛 -醜 -醞 -醣 -醪 -醫 -醬 -醮 -醯 -醴 -醺 -釀 -釁 -采 -釉 -释 -釋 -里 -重 -野 -量 -釐 -金 -釗 -釘 -釜 -針 -釣 -釦 -釧 -釵 -鈀 -鈉 -鈍 -鈎 -鈔 -鈕 -鈞 -鈣 -鈦 -鈪 -鈴 -鈺 -鈾 -鉀 -鉄 -鉅 -鉉 -鉑 -鉗 -鉚 -鉛 -鉤 -鉴 -鉻 -銀 -銃 -銅 -銑 -銓 -銖 -銘 -銜 -銬 -銭 -銮 -銳 -銷 -銹 -鋁 -鋅 -鋒 -鋤 -鋪 -鋰 -鋸 -鋼 -錄 -錐 -錘 -錚 -錠 -錢 -錦 -錨 -錫 -錮 -錯 -録 -錳 -錶 -鍊 -鍋 -鍍 -鍛 -鍥 -鍰 -鍵 -鍺 -鍾 -鎂 -鎊 -鎌 -鎏 -鎔 -鎖 -鎗 -鎚 -鎧 -鎬 -鎮 -鎳 -鏈 -鏖 -鏗 -鏘 -鏞 -鏟 -鏡 -鏢 -鏤 -鏽 -鐘 -鐮 -鐲 -鐳 -鐵 -鐸 -鐺 -鑄 -鑊 -鑑 -鑒 -鑣 -鑫 -鑰 -鑲 -鑼 -鑽 -鑾 -鑿 -针 -钉 -钊 -钎 -钏 -钒 -钓 -钗 -钙 -钛 -钜 -钝 -钞 -钟 -钠 -钡 -钢 -钣 -钤 -钥 -钦 -钧 -钨 -钩 -钮 -钯 -钰 -钱 -钳 -钴 -钵 -钺 -钻 -钼 -钾 -钿 -铀 -铁 -铂 -铃 -铄 -铅 -铆 -铉 -铎 -铐 -铛 -铜 -铝 -铠 -铡 -铢 -铣 -铤 -铨 -铩 -铬 -铭 -铮 -铰 -铲 -铵 -银 -铸 -铺 -链 -铿 -销 -锁 -锂 -锄 -锅 -锆 -锈 -锉 -锋 -锌 -锏 -锐 -锑 -错 -锚 -锟 -锡 -锢 -锣 -锤 -锥 -锦 -锭 -键 -锯 -锰 -锲 -锵 -锹 -锺 -锻 -镀 -镁 -镂 -镇 -镉 -镌 -镍 -镐 -镑 -镕 -镖 -镗 -镛 -镜 -镣 -镭 -镯 -镰 -镳 -镶 -長 -长 -門 -閃 -閉 -開 -閎 -閏 -閑 -閒 -間 -閔 -閘 -閡 -関 -閣 -閥 -閨 -閩 -閱 -閲 -閹 -閻 -閾 -闆 -闇 -闊 -闌 -闍 -闔 -闕 -闖 -闘 -關 -闡 -闢 -门 -闪 -闫 -闭 -问 -闯 -闰 -闲 -间 -闵 -闷 -闸 -闹 -闺 -闻 -闽 -闾 -阀 -阁 -阂 -阅 -阆 -阇 -阈 -阉 -阎 -阐 -阑 -阔 -阕 -阖 -阙 -阚 -阜 -队 -阡 -阪 -阮 -阱 -防 -阳 -阴 -阵 -阶 -阻 -阿 -陀 -陂 -附 -际 -陆 -陇 -陈 -陋 -陌 -降 -限 -陕 -陛 -陝 -陞 -陟 -陡 -院 -陣 -除 -陨 -险 -陪 -陰 -陲 -陳 -陵 -陶 -陷 -陸 -険 -陽 -隅 -隆 -隈 -隊 -隋 -隍 -階 -随 -隐 -隔 -隕 -隘 -隙 -際 -障 -隠 -隣 -隧 -隨 -險 -隱 -隴 -隶 -隸 -隻 -隼 -隽 -难 -雀 -雁 -雄 -雅 -集 -雇 -雉 -雋 -雌 -雍 -雎 -雏 -雑 -雒 -雕 -雖 -雙 -雛 -雜 -雞 -離 -難 -雨 -雪 -雯 -雰 -雲 -雳 -零 -雷 -雹 -電 -雾 -需 -霁 -霄 -霆 -震 -霈 -霉 -霊 -霍 -霎 -霏 -霑 -霓 -霖 -霜 -霞 -霧 -霭 -霰 -露 -霸 -霹 -霽 -霾 -靂 -靄 -靈 -青 -靓 -靖 -静 -靚 -靛 -靜 -非 -靠 -靡 -面 -靥 -靦 -革 -靳 -靴 -靶 -靼 -鞅 -鞋 -鞍 -鞏 -鞑 -鞘 -鞠 -鞣 -鞦 -鞭 -韆 -韋 -韌 -韓 -韜 -韦 -韧 -韩 -韬 -韭 -音 -韵 -韶 -韻 -響 -頁 -頂 -頃 -項 -順 -須 -頌 -預 -頑 -頒 -頓 -頗 -領 -頜 -頡 -頤 -頫 -頭 -頰 -頷 -頸 -頹 -頻 -頼 -顆 -題 -額 -顎 -顏 -顔 -願 -顛 -類 -顧 -顫 -顯 -顱 -顴 -页 -顶 -顷 -项 -顺 -须 -顼 -顽 -顾 -顿 -颁 -颂 -预 -颅 -领 -颇 -颈 -颉 -颊 -颌 -颍 -颐 -频 -颓 -颔 -颖 -颗 -题 -颚 -颛 -颜 -额 -颞 -颠 -颡 -颢 -颤 -颦 -颧 -風 -颯 -颱 -颳 -颶 -颼 -飄 -飆 -风 -飒 -飓 -飕 -飘 -飙 -飚 -飛 -飞 -食 -飢 -飨 -飩 -飪 -飯 -飲 -飼 -飽 -飾 -餃 -餅 -餉 -養 -餌 -餐 -餒 -餓 -餘 -餚 -餛 -餞 -餡 -館 -餮 -餵 -餾 -饅 -饈 -饋 -饌 -饍 -饑 -饒 -饕 -饗 -饞 -饥 -饨 -饪 -饬 -饭 -饮 -饯 -饰 -饱 -饲 -饴 -饵 -饶 -饷 -饺 -饼 -饽 -饿 -馀 -馁 -馄 -馅 -馆 -馈 -馋 -馍 -馏 -馒 -馔 -首 -馗 -香 -馥 -馨 -馬 -馭 -馮 -馳 -馴 -駁 -駄 -駅 -駆 -駐 -駒 -駕 -駛 -駝 -駭 -駱 -駿 -騁 -騎 -騏 -験 -騙 -騨 -騰 -騷 -驀 -驅 -驊 -驍 -驒 -驕 -驗 -驚 -驛 -驟 -驢 -驥 -马 -驭 -驮 -驯 -驰 -驱 -驳 -驴 -驶 -驷 -驸 -驹 -驻 -驼 -驾 -驿 -骁 -骂 -骄 -骅 -骆 -骇 -骈 -骊 -骋 -验 -骏 -骐 -骑 -骗 -骚 -骛 -骜 -骞 -骠 -骡 -骤 -骥 -骧 -骨 -骯 -骰 -骶 -骷 -骸 -骼 -髂 -髅 -髋 -髏 -髒 -髓 -體 -髖 -高 -髦 -髪 -髮 -髯 -髻 -鬃 -鬆 -鬍 -鬓 -鬚 -鬟 -鬢 -鬣 -鬥 -鬧 -鬱 -鬼 -魁 -魂 -魄 -魅 -魇 -魍 -魏 -魔 -魘 -魚 -魯 -魷 -鮑 -鮨 -鮪 -鮭 -鮮 -鯉 -鯊 -鯖 -鯛 -鯨 -鯰 -鯽 -鰍 -鰓 -鰭 -鰲 -鰻 -鰾 -鱈 -鱉 -鱔 -鱗 -鱷 -鱸 -鱼 -鱿 -鲁 -鲈 -鲍 -鲑 -鲛 -鲜 -鲟 -鲢 -鲤 -鲨 -鲫 -鲱 -鲲 -鲶 -鲷 -鲸 -鳃 -鳄 -鳅 -鳌 -鳍 -鳕 -鳖 -鳗 -鳝 -鳞 -鳥 -鳩 -鳳 -鳴 -鳶 -鴉 -鴕 -鴛 -鴦 -鴨 -鴻 -鴿 -鵑 -鵜 -鵝 -鵡 -鵬 -鵰 -鵲 -鶘 -鶩 -鶯 -鶴 -鷗 -鷲 -鷹 -鷺 -鸚 -鸞 -鸟 -鸠 -鸡 -鸢 -鸣 -鸥 -鸦 -鸨 -鸪 -鸭 -鸯 -鸳 -鸵 -鸽 -鸾 -鸿 -鹂 -鹃 -鹄 -鹅 -鹈 -鹉 -鹊 -鹌 -鹏 -鹑 -鹕 -鹘 -鹜 -鹞 -鹤 -鹦 -鹧 -鹫 -鹭 -鹰 -鹳 -鹵 -鹹 -鹼 -鹽 -鹿 -麂 -麋 -麒 -麓 -麗 -麝 -麟 -麥 -麦 -麩 -麴 -麵 -麸 -麺 -麻 -麼 -麽 -麾 -黃 -黄 -黍 -黎 -黏 -黑 -黒 -黔 -默 -黛 -黜 -黝 -點 -黠 -黨 -黯 -黴 -鼋 -鼎 -鼐 -鼓 -鼠 -鼬 -鼹 -鼻 -鼾 -齁 -齊 -齋 -齐 -齒 -齡 -齢 -齣 -齦 -齿 -龄 -龅 -龈 -龊 -龋 -龌 -龍 -龐 -龔 -龕 -龙 -龚 -龛 -龜 -龟 -︰ -︱ -︶ -︿ -﹁ -﹂ -﹍ -﹏ -﹐ -﹑ -﹒ -﹔ -﹕ -﹖ -﹗ -﹙ -﹚ -﹝ -﹞ -﹡ -﹣ -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -。 -「 -」 -、 -・ -ッ -ー -イ -ク -シ -ス -ト -ノ -フ -ラ -ル -ン -゙ -゚ - ̄ -¥ -👍 -🔥 -😂 -😎 -... -yam -10 -2017 -12 -11 -2016 -20 -30 -15 -06 -lofter -##s -2015 -by -16 -14 -18 -13 -24 -17 -2014 -21 -##0 -22 -19 -25 -23 -com -100 -00 -05 -2013 -##a -03 -09 -08 -28 -##2 -50 -01 -04 -##1 -27 -02 -2012 -##3 -26 -##e -07 -##8 -##5 -##6 -##4 -##9 -##7 -29 -2011 -40 -##t -2010 -##o -##d -##i -2009 -##n -app -www -the -##m -31 -##c -##l -##y -##r -##g -2008 -60 -http -200 -qq -##p -80 -##f -google -pixnet -90 -cookies -tripadvisor -500 -##er -##k -35 -##h -facebook -2007 -2000 -70 -##b -of -##x -##u -45 -300 -iphone -32 -1000 -2006 -48 -ip -36 -in -38 -3d -##w -##ing -55 -ctrip -##on -##v -33 -##の -to -34 -400 -id -2005 -it -37 -windows -llc -top -99 -42 -39 -000 -led -at -##an -41 -51 -52 -46 -49 -43 -53 -44 -##z -android -58 -and -59 -2004 -56 -vr -##か -5000 -2003 -47 -blogthis -twitter -54 -##le -150 -ok -2018 -57 -75 -cn -no -ios -##in -##mm -##00 -800 -on -te -3000 -65 -2001 -360 -95 -ig -lv -120 -##ng -##を -##us -##に -pc -てす -── -600 -##te -85 -2002 -88 -##ed -html -ncc -wifi -email -64 -blog -is -##10 -##て -mail -online -##al -dvd -##ic -studio -##は -##℃ -##ia -##と -line -vip -72 -##q -98 -##ce -##en -for -##is -##ra -##es -##j -usb -net -cp -1999 -asia -4g -##cm -diy -new -3c -##お -ta -66 -language -vs -apple -tw -86 -web -##ne -ipad -62 -you -##re -101 -68 -##tion -ps -de -bt -pony -atm -##2017 -1998 -67 -##ch -ceo -##or -go -##na -av -pro -cafe -96 -pinterest -97 -63 -pixstyleme3c -##ta -more -said -##2016 -1997 -mp3 -700 -##ll -nba -jun -##20 -92 -tv -1995 -pm -61 -76 -nbsp -250 -##ie -linux -##ma -cd -110 -hd -##17 -78 -##ion -77 -6000 -am -##th -##st -94 -##se -##et -69 -180 -gdp -my -105 -81 -abc -89 -flash -79 -one -93 -1990 -1996 -##ck -gps -##も -##ly -web885 -106 -2020 -91 -##ge -4000 -1500 -xd -boss -isbn -1994 -org -##ry -me -love -##11 -0fork -73 -##12 -3g -##ter -##ar -71 -82 -##la -hotel -130 -1970 -pk -83 -87 -140 -ie -##os -##30 -##el -74 -##50 -seo -cpu -##ml -p2p -84 -may -##る -sun -tue -internet -cc -posted -youtube -##at -##ン -##man -ii -##ル -##15 -abs -nt -pdf -yahoo -ago -1980 -##it -news -mac -104 -##てす -##me -##り -java -1992 -spa -##de -##nt -hk -all -plus -la -1993 -##mb -##16 -##ve -west -##da -160 -air -##い -##ps -から -##to -1989 -logo -htc -php -https -fi -momo -##son -sat -##ke -##80 -ebd -suv -wi -day -apk -##88 -##um -mv -galaxy -wiki -or -brake -##ス -1200 -する -this -1991 -mon -##こ -❤2017 -po -##ない -javascript -life -home -june -##ss -system -900 -##ー -##0 -pp -1988 -world -fb -4k -br -##as -ic -ai -leonardo -safari -##60 -live -free -xx -wed -win7 -kiehl -##co -lg -o2o -##go -us -235 -1949 -mm -しい -vfm -kanye -##90 -##2015 -##id -jr -##ey -123 -rss -##sa -##ro -##am -##no -thu -fri -350 -##sh -##ki -103 -comments -name -##のて -##pe -##ine -max -1987 -8000 -uber -##mi -##ton -wordpress -office -1986 -1985 -##ment -107 -bd -win10 -##ld -##li -gmail -bb -dior -##rs -##ri -##rd -##ます -up -cad -##® -dr -して -read -##21 -をお -##io -##99 -url -1984 -pvc -paypal -show -policy -##40 -##ty -##18 -with -##★ -##01 -txt -102 -##ba -dna -from -post -mini -ar -taiwan -john -##ga -privacy -agoda -##13 -##ny -word -##24 -##22 -##by -##ur -##hz -1982 -##ang -265 -cookie -netscape -108 -##ka -##~ -##ad -house -share -note -ibm -code -hello -nike -sim -survey -##016 -1979 -1950 -wikia -##32 -##017 -5g -cbc -##tor -##kg -1983 -##rt -##14 -campaign -store -2500 -os -##ct -##ts -##° -170 -api -##ns -365 -excel -##な -##ao -##ら -##し -~~ -##nd -university -163 -には -518 -##70 -##ya -##il -##25 -pierre -ipo -0020 -897 -##23 -hotels -##ian -のお -125 -years -6606 -##ers -##26 -high -##day -time -##ay -bug -##line -##く -##す -##be -xp -talk2yam -yamservice -10000 -coco -##dy -sony -##ies -1978 -microsoft -david -people -##ha -1960 -instagram -intel -その -##ot -iso -1981 -##va -115 -##mo -##land -xxx -man -co -ltxsw -##ation -baby -220 -##pa -##ol -1945 -7000 -tag -450 -##ue -msn -##31 -oppo -##ト -##ca -control -##om -st -chrome -##ure -##ん -be -##き -lol -##19 -した -##bo -240 -lady -##100 -##way -##から -4600 -##ko -##do -##un -4s -corporation -168 -##ni -herme -##28 -cp -978 -##up -##06 -ui -##ds -ppt -admin -three -します -bbc -re -128 -##48 -ca -##015 -##35 -hp -##ee -tpp -##た -##ive -×× -root -##cc -##ました -##ble -##ity -adobe -park -114 -et -oled -city -##ex -##ler -##ap -china -##book -20000 -view -##ice -global -##km -your -hong -##mg -out -##ms -ng -ebay -##29 -menu -ubuntu -##cy -rom -##view -open -ktv -do -server -##lo -if -english -##ね -##5 -##oo -1600 -##02 -step1 -kong -club -135 -july -inc -1976 -mr -hi -##net -touch -##ls -##ii -michael -lcd -##05 -##33 -phone -james -step2 -1300 -ios9 -##box -dc -##2 -##ley -samsung -111 -280 -pokemon -css -##ent -##les -いいえ -##1 -s8 -atom -play -bmw -##said -sa -etf -ctrl -♥yoyo♥ -##55 -2025 -##2014 -##66 -adidas -amazon -1958 -##ber -##ner -visa -##77 -##der -1800 -connectivity -##hi -firefox -109 -118 -hr -so -style -mark -pop -ol -skip -1975 -as -##27 -##ir -##61 -190 -mba -##う -##ai -le -##ver -1900 -cafe2017 -lte -super -113 -129 -##ron -amd -like -##☆ -are -##ster -we -##sk -paul -data -international -##ft -longchamp -ssd -good -##ート -##ti -reply -##my -↓↓↓ -apr -star -##ker -source -136 -js -112 -get -force -photo -##one -126 -##2013 -##ow -link -bbs -1972 -goods -##lin -python -119 -##ip -game -##ics -##ません -blue -##● -520 -##45 -page -itunes -##03 -1955 -260 -1968 -gt -gif -618 -##ff -##47 -group -くたさい -about -bar -ganji -##nce -music -lee -not -1977 -1971 -1973 -##per -an -faq -comment -##って -days -##ock -116 -##bs -1974 -1969 -v1 -player -1956 -xbox -sql -fm -f1 -139 -##ah -210 -##lv -##mp -##000 -melody -1957 -##3 -550 -17life -199 -1966 -xml -market -##au -##71 -999 -##04 -what -gl -##95 -##age -tips -##68 -book -##ting -mysql -can -1959 -230 -##ung -wonderland -watch -10℃ -##ction -9000 -mar -mobile -1946 -1962 -article -##db -part -▲top -party -って -1967 -1964 -1948 -##07 -##ore -##op -この -dj -##78 -##38 -010 -main -225 -1965 -##ong -art -320 -ad -134 -020 -##73 -117 -pm2 -japan -228 -##08 -ts -1963 -##ica -der -sm -##36 -2019 -##wa -ct -##7 -##や -##64 -1937 -homemesh -search -##85 -##れは -##tv -##di -macbook -##9 -##くたさい -service -##♥ -type -った -750 -##ier -##si -##75 -##います -##ok -best -##ット -goris -lock -##った -cf -3m -big -##ut -ftp -carol -##vi -10 -1961 -happy -sd -##ac -122 -anti -pe -cnn -iii -1920 -138 -##ラ -1940 -esp -jan -tags -##98 -##51 -august -vol -##86 -154 -##™ -##fs -##れ -##sion -design -ac -##ム -press -jordan -ppp -that -key -check -##6 -##tt -##㎡ -1080p -##lt -power -##42 -1952 -##bc -vivi -##ック -he -133 -121 -jpg -##rry -201 -175 -3500 -1947 -nb -##ted -##rn -しています -1954 -usd -##t00 -master -##ンク -001 -model -##58 -al -##09 -1953 -##34 -ram -goo -ても -##ui -127 -1930 -red -##ary -rpg -item -##pm -##41 -270 -##za -project -##2012 -hot -td -blogabstract -##ger -##62 -650 -##44 -gr2 -##します -##m -black -electronic -nfc -year -asus -また -html5 -cindy -##hd -m3 -132 -esc -##od -booking -##53 -fed -tvb -##81 -##ina -mit -165 -##いる -chan -192 -distribution -next -になる -peter -bios -steam -cm -1941 -にも -pk10 -##ix -##65 -##91 -dec -nasa -##ana -icecat -00z -b1 -will -##46 -li -se -##ji -##み -##ard -oct -##ain -jp -##ze -##bi -cio -##56 -smart -h5 -##39 -##port -curve -vpn -##nm -##dia -utc -##あり -12345678910 -##52 -rmvb -chanel -a4 -miss -##and -##im -media -who -##63 -she -girl -5s -124 -vera -##して -class -vivo -king -##フ -##ei -national -ab -1951 -5cm -888 -145 -ipod -ap -1100 -5mm -211 -ms -2756 -##69 -mp4 -msci -##po -##89 -131 -mg -index -380 -##bit -##out -##zz -##97 -##67 -158 -apec -##8 -photoshop -opec -¥799 -ては -##96 -##tes -##ast -2g -○○ -##ール -¥2899 -##ling -##よ -##ory -1938 -##ical -kitty -content -##43 -step3 -##cn -win8 -155 -vc -1400 -iphone7 -robert -##した -tcl -137 -beauty -##87 -en -dollars -##ys -##oc -step -pay -yy -a1 -##2011 -##lly -##ks -##♪ -1939 -188 -download -1944 -sep -exe -ph -います -school -gb -center -pr -street -##board -uv -##37 -##lan -winrar -##que -##ua -##com -1942 -1936 -480 -gpu -##4 -ettoday -fu -tom -##54 -##ren -##via -149 -##72 -b2b -144 -##79 -##tch -rose -arm -mb -##49 -##ial -##nn -nvidia -step4 -mvp -00㎡ -york -156 -##イ -how -cpi -591 -2765 -gov -kg -joe -##xx -mandy -pa -##ser -copyright -fashion -1935 -don -##け -ecu -##ist -##art -erp -wap -have -##lm -talk -##ek -##ning -##if -ch -##ite -video -1943 -cs -san -iot -look -##84 -##2010 -##ku -october -##ux -trump -##hs -##ide -box -141 -first -##ins -april -##ight -##83 -185 -angel -protected -aa -151 -162 -x1 -m2 -##fe -##× -##ho -size -143 -min -ofo -fun -gomaji -ex -hdmi -food -dns -march -chris -kevin -##のか -##lla -##pp -##ec -ag -ems -6s -720p -##rm -##ham -off -##92 -asp -team -fandom -ed -299 -▌♥ -##ell -info -されています -##82 -sina -4066 -161 -##able -##ctor -330 -399 -315 -dll -rights -ltd -idc -jul -3kg -1927 -142 -ma -surface -##76 -##ク -~~~ -304 -mall -eps -146 -green -##59 -map -space -donald -v2 -sodu -##light -1931 -148 -1700 -まて -310 -reserved -htm -##han -##57 -2d -178 -mod -##ise -##tions -152 -ti -##shi -doc -1933 -icp -055 -wang -##ram -shopping -aug -##pi -##well -now -wam -b2 -からお -##hu -236 -1928 -##gb -266 -f2 -##93 -153 -mix -##ef -##uan -bwl -##plus -##res -core -##ess -tea -5℃ -hktvmall -nhk -##ate -list -##ese -301 -feb -4m -inn -ての -nov -159 -12345 -daniel -##ci -pass -##bet -##nk -coffee -202 -ssl -airbnb -##ute -fbi -woshipm -skype -ea -cg -sp -##fc -##www -yes -edge -alt -007 -##94 -fpga -##ght -##gs -iso9001 -さい -##ile -##wood -##uo -image -lin -icon -american -##em -1932 -set -says -##king -##tive -blogger -##74 -なと -256 -147 -##ox -##zy -##red -##ium -##lf -nokia -claire -##リ -##ding -november -lohas -##500 -##tic -##マ -##cs -##ある -##che -##ire -##gy -##ult -db -january -win -##カ -166 -road -ptt -##ま -##つ -198 -##fa -##mer -anna -pchome -はい -udn -ef -420 -##time -##tte -2030 -##ア -g20 -white -かかります -1929 -308 -garden -eleven -di -##おります -chen -309b -777 -172 -young -cosplay -ちてない -4500 -bat -##123 -##tra -##ては -kindle -npc -steve -etc -##ern -##| -call -xperia -ces -travel -sk -s7 -##ous -1934 -##int -みいたたけます -183 -edu -file -cho -qr -##car -##our -186 -##ant -##d -eric -1914 -rends -##jo -##する -mastercard -##2000 -kb -##min -290 -##ino -vista -##ris -##ud -jack -2400 -##set -169 -pos -1912 -##her -##ou -taipei -しく -205 -beta -##ませんか -232 -##fi -express -255 -body -##ill -aphojoy -user -december -meiki -##ick -tweet -richard -##av -##ᆫ -iphone6 -##dd -ちてすか -views -##mark -321 -pd -##00 -times -##▲ -level -##ash -10g -point -5l -##ome -208 -koreanmall -##ak -george -q2 -206 -wma -tcp -##200 -スタッフ -full -mlb -##lle -##watch -tm -run -179 -911 -smith -business -##und -1919 -color -##tal -222 -171 -##less -moon -4399 -##rl -update -pcb -shop -499 -157 -little -なし -end -##mhz -van -dsp -easy -660 -##house -##key -history -##o -oh -##001 -##hy -##web -oem -let -was -##2009 -##gg -review -##wan -182 -##°c -203 -uc -title -##val -united -233 -2021 -##ons -doi -trivago -overdope -sbs -##ance -##ち -grand -special -573032185 -imf -216 -wx17house -##so -##ーム -audi -##he -london -william -##rp -##ake -science -beach -cfa -amp -ps4 -880 -##800 -##link -##hp -crm -ferragamo -bell -make -##eng -195 -under -zh -photos -2300 -##style -##ント -via -176 -da -##gi -company -i7 -##ray -thomas -370 -ufo -i5 -##max -plc -ben -back -research -8g -173 -mike -##pc -##ッフ -september -189 -##ace -vps -february -167 -pantos -wp -lisa -1921 -★★ -jquery -night -long -offer -##berg -##news -1911 -##いて -ray -fks -wto -せます -over -164 -340 -##all -##rus -1924 -##888 -##works -blogtitle -loftpermalink -##→ -187 -martin -test -ling -km -##め -15000 -fda -v3 -##ja -##ロ -wedding -かある -outlet -family -##ea -をこ -##top -story -##ness -salvatore -##lu -204 -swift -215 -room -している -oracle -##ul -1925 -sam -b2c -week -pi -rock -##のは -##a -##けと -##ean -##300 -##gle -cctv -after -chinese -##back -powered -x2 -##tan -1918 -##nes -##イン -canon -only -181 -##zi -##las -say -##oe -184 -##sd -221 -##bot -##world -##zo -sky -made -top100 -just -1926 -pmi -802 -234 -gap -##vr -177 -les -174 -▲topoct -ball -vogue -vi -ing -ofweek -cos -##list -##ort -▲topmay -##なら -##lon -として -last -##tc -##of -##bus -##gen -real -eva -##コ -a3 -nas -##lie -##ria -##coin -##bt -▲topapr -his -212 -cat -nata -vive -health -⋯⋯ -drive -sir -▲topmar -du -cup -##カー -##ook -##よう -##sy -alex -msg -tour -しました -3ce -##word -193 -ebooks -r8 -block -318 -##より -2200 -nice -pvp -207 -months -1905 -rewards -##ther -1917 -0800 -##xi -##チ -##sc -micro -850 -gg -blogfp -op -1922 -daily -m1 -264 -true -##bb -ml -##tar -##のお -##ky -anthony -196 -253 -##yo -state -218 -##ara -##aa -##rc -##tz -##ston -より -gear -##eo -##ade -ge -see -1923 -##win -##ura -ss -heart -##den -##ita -down -##sm -el -png -2100 -610 -rakuten -whatsapp -bay -dream -add -##use -680 -311 -pad -gucci -mpv -##ode -##fo -island -▲topjun -##▼ -223 -jason -214 -chicago -##❤ -しの -##hone -io -##れる -##ことか -sogo -be2 -##ology -990 -cloud -vcd -##con -2~3 -##ford -##joy -##kb -##こさいます -##rade -but -##ach -docker -##ful -rfid -ul -##ase -hit -ford -##star -580 -##○ -11 -a2 -sdk -reading -edited -##are -cmos -##mc -238 -siri -light -##ella -##ため -bloomberg -##read -pizza -##ison -jimmy -##vm -college -node -journal -ba -18k -##play -245 -##cer -20 -magic -##yu -191 -jump -288 -tt -##ings -asr -##lia -3200 -step5 -network -##cd -mc -いします -1234 -pixstyleme -273 -##600 -2800 -money -★★★★★ -1280 -12 -430 -bl -みの -act -##tus -tokyo -##rial -##life -emba -##ae -saas -tcs -##rk -##wang -summer -##sp -ko -##ving -390 -premium -##その -netflix -##ヒ -uk -mt -##lton -right -frank -two -209 -える -##ple -##cal -021 -##んな -##sen -##ville -hold -nexus -dd -##ius -てお -##mah -##なく -tila -zero -820 -ce -##tin -resort -##ws -charles -old -p10 -5d -report -##360 -##ru -##には -bus -vans -lt -##est -pv -##レ -links -rebecca -##ツ -##dm -azure -##365 -きな -limited -bit -4gb -##mon -1910 -moto -##eam -213 -1913 -var -eos -なとの -226 -blogspot -された -699 -e3 -dos -dm -fc -##ments -##ik -##kw -boy -##bin -##ata -960 -er -##せ -219 -##vin -##tu -##ula -194 -##∥ -station -##ろ -##ature -835 -files -zara -hdr -top10 -nature -950 -magazine -s6 -marriott -##シ -avira -case -##っと -tab -##ran -tony -##home -oculus -im -##ral -jean -saint -cry -307 -rosie -##force -##ini -ice -##bert -のある -##nder -##mber -pet -2600 -##◆ -plurk -▲topdec -##sis -00kg -▲topnov -720 -##ence -tim -##ω -##nc -##ても -##name -log -ips -great -ikea -malaysia -unix -##イト -3600 -##ncy -##nie -12000 -akb48 -##ye -##oid -404 -##chi -##いた -oa -xuehai -##1000 -##orm -##rf -275 -さん -##ware -##リー -980 -ho -##pro -text -##era -560 -bob -227 -##ub -##2008 -8891 -scp -avi -##zen -2022 -mi -wu -museum -qvod -apache -lake -jcb -▲topaug -★★★ -ni -##hr -hill -302 -ne -weibo -490 -ruby -##ーシ -##ヶ -##row -4d -▲topjul -iv -##ish -github -306 -mate -312 -##スト -##lot -##ane -andrew -のハイト -##tina -t1 -rf -ed2k -##vel -##900 -way -final -りの -ns -5a -705 -197 -##メ -sweet -bytes -##ene -▲topjan -231 -##cker -##2007 -##px -100g -topapp -229 -helpapp -rs -low -14k -g4g -care -630 -ldquo -あり -##fork -leave -rm -edition -##gan -##zon -##qq -▲topsep -##google -##ism -gold -224 -explorer -##zer -toyota -category -select -visual -##labels -restaurant -##md -posts -s1 -##ico -もっと -angelababy -123456 -217 -sports -s3 -mbc -1915 -してくたさい -shell -x86 -candy -##new -kbs -face -xl -470 -##here -4a -swissinfo -v8 -▲topfeb -dram -##ual -##vice -3a -##wer -sport -q1 -ios10 -public -int -card -##c -ep -au -rt -##れた -1080 -bill -##mll -kim -30 -460 -wan -##uk -##ミ -x3 -298 -0t -scott -##ming -239 -e5 -##3d -h7n9 -worldcat -brown -##あります -##vo -##led -##580 -##ax -249 -410 -##ert -paris -##~6 -polo -925 -##lr -599 -##ナ -capital -##hing -bank -cv -1g -##chat -##s -##たい -adc -##ule -2m -##e -digital -hotmail -268 -##pad -870 -bbq -quot -##ring -before -wali -##まて -mcu -2k -2b -という -costco -316 -north -333 -switch -##city -##p -philips -##mann -management -panasonic -##cl -##vd -##ping -##rge -alice -##lk -##ましょう -css3 -##ney -vision -alpha -##ular -##400 -##tter -lz -にお -##ありません -mode -gre -1916 -pci -##tm -237 -1~2 -##yan -##そ -について -##let -##キ -work -war -coach -ah -mary -##ᅵ -huang -##pt -a8 -pt -follow -##berry -1895 -##ew -a5 -ghost -##ション -##wn -##og -south -##code -girls -##rid -action -villa -git -r11 -table -games -##cket -error -##anonymoussaid -##ag -here -##ame -##gc -qa -##■ -##lis -gmp -##gin -vmalife -##cher -yu -wedding -##tis -demo -dragon -530 -soho -social -bye -##rant -river -orz -acer -325 -##↑ -##ース -##ats -261 -del -##ven -440 -ups -##ように -##ター -305 -value -macd -yougou -##dn -661 -##ano -ll -##urt -##rent -continue -script -##wen -##ect -paper -263 -319 -shift -##chel -##フト -##cat -258 -x5 -fox -243 -##さん -car -aaa -##blog -loading -##yn -##tp -kuso -799 -si -sns -イカせるテンマ -ヒンクテンマ3 -rmb -vdc -forest -central -prime -help -ultra -##rmb -##ような -241 -square -688 -##しい -のないフロクに -##field -##reen -##ors -##ju -c1 -start -510 -##air -##map -cdn -##wo -cba -stephen -m8 -100km -##get -opera -##base -##ood -vsa -com™ -##aw -##ail -251 -なのて -count -t2 -##ᅡ -##een -2700 -hop -##gp -vsc -tree -##eg -##ose -816 -285 -##ories -##shop -alphago -v4 -1909 -simon -##ᆼ -fluke62max -zip -スホンサー -##sta -louis -cr -bas -##~10 -bc -##yer -hadoop -##ube -##wi -1906 -0755 -hola -##low -place -centre -5v -d3 -##fer -252 -##750 -##media -281 -540 -0l -exchange -262 -series -##ハー -##san -eb -##bank -##k -q3 -##nge -##mail -take -##lp -259 -1888 -client -east -cache -event -vincent -##ールを -きを -##nse -sui -855 -adchoice -##и -##stry -##なたの -246 -##zone -ga -apps -sea -##ab -248 -cisco -##タ -##rner -kymco -##care -dha -##pu -##yi -minkoff -royal -p1 -への -annie -269 -collection -kpi -playstation -257 -になります -866 -bh -##bar -queen -505 -radio -1904 -andy -armani -##xy -manager -iherb -##ery -##share -spring -raid -johnson -1908 -##ob -volvo -hall -##ball -v6 -our -taylor -##hk -bi -242 -##cp -kate -bo -water -technology -##rie -サイトは -277 -##ona -##sl -hpv -303 -gtx -hip -rdquo -jayz -stone -##lex -##rum -namespace -##やり -620 -##ale -##atic -des -##erson -##ql -##ves -##type -enter -##この -##てきます -d2 -##168 -##mix -##bian -との -a9 -jj -ky -##lc -access -movie -##hc -リストに -tower -##ration -##mit -ます -##nch -ua -tel -prefix -##o2 -1907 -##point -1901 -ott -~10 -##http -##ury -baidu -##ink -member -##logy -bigbang -nownews -##js -##shot -##tb -##こと -247 -eba -##tics -##lus -ける -v5 -spark -##ama -there -##ions -god -##lls -##down -hiv -##ress -burberry -day2 -##kv -◆◆ -jeff -related -film -edit -joseph -283 -##ark -cx -32gb -order -g9 -30000 -##ans -##tty -s5 -##bee -かあります -thread -xr -buy -sh -005 -land -spotify -mx -##ari -276 -##verse -×email -sf -why -##ことて -244 -7headlines -nego -sunny -dom -exo -401 -666 -positioning -fit -rgb -##tton -278 -kiss -alexa -adam -lp -みリストを -##g -mp -##ties -##llow -amy -##du -np -002 -institute -271 -##rth -##lar -2345 -590 -##des -sidebar -15 -imax -site -##cky -##kit -##ime -##009 -season -323 -##fun -##ンター -##ひ -gogoro -a7 -pu -lily -fire -twd600 -##ッセーシを -いて -##vis -30ml -##cture -##をお -information -##オ -close -friday -##くれる -yi -nick -てすか -##tta -##tel -6500 -##lock -cbd -economy -254 -かお -267 -tinker -double -375 -8gb -voice -##app -oops -channel -today -985 -##right -raw -xyz -##+ -jim -edm -##cent -7500 -supreme -814 -ds -##its -##asia -dropbox -##てすか -##tti -books -272 -100ml -##tle -##ller -##ken -##more -##boy -sex -309 -##dom -t3 -##ider -##なります -##unch -1903 -810 -feel -5500 -##かった -##put -により -s2 -mo -##gh -men -ka -amoled -div -##tr -##n1 -port -howard -##tags -ken -dnf -##nus -adsense -##а -ide -##へ -buff -thunder -##town -##ique -has -##body -auto -pin -##erry -tee -てした -295 -number -##the -##013 -object -psp -cool -udnbkk -16gb -##mic -miui -##tro -most -r2 -##alk -##nity -1880 -±0 -##いました -428 -s4 -law -version -##oa -n1 -sgs -docomo -##tf -##ack -henry -fc2 -##ded -##sco -##014 -##rite -286 -0mm -linkedin -##ada -##now -wii -##ndy -ucbug -##◎ -sputniknews -legalminer -##ika -##xp -2gb -##bu -q10 -oo -b6 -come -##rman -cheese -ming -maker -##gm -nikon -##fig -ppi -kelly -##ります -jchere -てきます -ted -md -003 -fgo -tech -##tto -dan -soc -##gl -##len -hair -earth -640 -521 -img -##pper -##a1 -##てきる -##ロク -acca -##ition -##ference -suite -##ig -outlook -##mond -##cation -398 -##pr -279 -101vip -358 -##999 -282 -64gb -3800 -345 -airport -##over -284 -##おり -jones -##ith -lab -##su -##いるのて -co2 -town -piece -##llo -no1 -vmware -24h -##qi -focus -reader -##admin -##ora -tb -false -##log -1898 -know -lan -838 -##ces -f4 -##ume -motel -stop -##oper -na -flickr -netcomponents -##af -##─ -pose -williams -local -##ound -##cg -##site -##iko -いお -274 -5m -gsm -con -##ath -1902 -friends -##hip -cell -317 -##rey -780 -cream -##cks -012 -##dp -facebooktwitterpinterestgoogle -sso -324 -shtml -song -swiss -##mw -##キンク -lumia -xdd -string -tiffany -522 -marc -られた -insee -russell -sc -dell -##ations -ok -camera -289 -##vs -##flow -##late -classic -287 -##nter -stay -g1 -mtv -512 -##ever -##lab -##nger -qe -sata -ryan -d1 -50ml -cms -##cing -su -292 -3300 -editor -296 -##nap -security -sunday -association -##ens -##700 -##bra -acg -##かり -sofascore -とは -mkv -##ign -jonathan -gary -build -labels -##oto -tesla -moba -qi -gohappy -general -ajax -1024 -##かる -サイト -society -##test -##urs -wps -fedora -##ich -mozilla -328 -##480 -##dr -usa -urn -##lina -##r -grace -##die -##try -##ader -1250 -##なり -elle -570 -##chen -##ᆯ -price -##ten -uhz -##ough -eq -##hen -states -push -session -balance -wow -506 -##cus -##py -when -##ward -##ep -34e -wong -library -prada -##サイト -##cle -running -##ree -313 -ck -date -q4 -##ctive -##ool -##> -mk -##ira -##163 -388 -die -secret -rq -dota -buffet -は1ヶ -e6 -##ez -pan -368 -ha -##card -##cha -2a -##さ -alan -day3 -eye -f3 -##end -france -keep -adi -rna -tvbs -##ala -solo -nova -##え -##tail -##ょう -support -##ries -##なる -##ved -base -copy -iis -fps -##ways -hero -hgih -profile -fish -mu -ssh -entertainment -chang -##wd -click -cake -##ond -pre -##tom -kic -pixel -##ov -##fl -product -6a -##pd -dear -##gate -es -yumi -audio -##² -##sky -echo -bin -where -##ture -329 -##ape -find -sap -isis -##なと -nand -##101 -##load -##ream -band -a6 -525 -never -##post -festival -50cm -##we -555 -guide -314 -zenfone -##ike -335 -gd -forum -jessica -strong -alexander -##ould -software -allen -##ious -program -360° -else -lohasthree -##gar -することかてきます -please -##れます -rc -##ggle -##ric -bim -50000 -##own -eclipse -355 -brian -3ds -##side -061 -361 -##other -##ける -##tech -##ator -485 -engine -##ged -##t -plaza -##fit -cia -ngo -westbrook -shi -tbs -50mm -##みませんか -sci -291 -reuters -##ily -contextlink -##hn -af -##cil -bridge -very -##cel -1890 -cambridge -##ize -15g -##aid -##data -790 -frm -##head -award -butler -##sun -meta -##mar -america -ps3 -puma -pmid -##すか -lc -670 -kitchen -##lic -オーフン5 -きなしソフトサーヒス -そして -day1 -future -★★★★ -##text -##page -##rris -pm1 -##ket -fans -##っています -1001 -christian -bot -kids -trackback -##hai -c3 -display -##hl -n2 -1896 -idea -さんも -##sent -airmail -##ug -##men -pwm -けます -028 -##lution -369 -852 -awards -schemas -354 -asics -wikipedia -font -##tional -##vy -c2 -293 -##れている -##dget -##ein -っている -contact -pepper -スキル -339 -##~5 -294 -##uel -##ument -730 -##hang -みてす -q5 -##sue -rain -##ndi -wei -swatch -##cept -わせ -331 -popular -##ste -##tag -p2 -501 -trc -1899 -##west -##live -justin -honda -ping -messenger -##rap -v9 -543 -##とは -unity -appqq -はすへて -025 -leo -##tone -##テ -##ass -uniqlo -##010 -502 -her -jane -memory -moneydj -##tical -human -12306 -していると -##m2 -coc -miacare -##mn -tmt -##core -vim -kk -##may -fan -target -use -too -338 -435 -2050 -867 -737 -fast -##2c -services -##ope -omega -energy -##わ -pinkoi -1a -##なから -##rain -jackson -##ement -##シャンルの -374 -366 -そんな -p9 -rd -##ᆨ -1111 -##tier -##vic -zone -##│ -385 -690 -dl -isofix -cpa -m4 -322 -kimi -めて -davis -##lay -lulu -##uck -050 -weeks -qs -##hop -920 -##n -ae -##ear -~5 -eia -405 -##fly -korea -jpeg -boost -##ship -small -##リア -1860 -eur -297 -425 -valley -##iel -simple -##ude -rn -k2 -##ena -されます -non -patrick -しているから -##ナー -feed -5757 -30g -process -well -qqmei -##thing -they -aws -lu -pink -##ters -##kin -または -board -##vertisement -wine -##ien -unicode -##dge -r1 -359 -##tant -いを -##twitter -##3c -cool1 -される -##れて -##l -isp -##012 -standard -45㎡2 -402 -##150 -matt -##fu -326 -##iner -googlemsn -pixnetfacebookyahoo -##ラン -x7 -886 -##uce -メーカー -sao -##ev -##きました -##file -9678 -403 -xddd -shirt -6l -##rio -##hat -3mm -givenchy -ya -bang -##lio -monday -crystal -ロクイン -##abc -336 -head -890 -ubuntuforumwikilinuxpastechat -##vc -##~20 -##rity -cnc -7866 -ipv6 -null -1897 -##ost -yang -imsean -tiger -##fet -##ンス -352 -##= -dji -327 -ji -maria -##come -##んて -foundation -3100 -##beth -##なった -1m -601 -active -##aft -##don -3p -sr -349 -emma -##khz -living -415 -353 -1889 -341 -709 -457 -sas -x6 -##face -pptv -x4 -##mate -han -sophie -##jing -337 -fifa -##mand -other -sale -inwedding -##gn -てきちゃいます -##mmy -##pmlast -bad -nana -nbc -してみてくたさいね -なとはお -##wu -##かあります -##あ -note7 -single -##340 -せからこ -してくたさい♪この -しにはとんとんワークケートを -するとあなたにもっとマッチした -ならワークケートへ -もみつかっちゃうかも -ワークケートの -##bel -window -##dio -##ht -union -age -382 -14 -##ivity -##y -コメント -domain -neo -##isa -##lter -5k -f5 -steven -##cts -powerpoint -tft -self -g2 -ft -##テル -zol -##act -mwc -381 -343 -もう -nbapop -408 -てある -eds -ace -##room -previous -author -tomtom -il -##ets -hu -financial -☆☆☆ -っています -bp -5t -chi -1gb -##hg -fairmont -cross -008 -gay -h2 -function -##けて -356 -also -1b -625 -##ータ -##raph -1894 -3~5 -##ils -i3 -334 -avenue -##host -による -##bon -##tsu -message -navigation -50g -fintech -h6 -##ことを -8cm -##ject -##vas -##firm -credit -##wf -xxxx -form -##nor -##space -huawei -plan -json -sbl -##dc -machine -921 -392 -wish -##120 -##sol -windows7 -edward -##ために -development -washington -##nsis -lo -818 -##sio -##ym -##bor -planet -##~8 -##wt -ieee -gpa -##めて -camp -ann -gm -##tw -##oka -connect -##rss -##work -##atus -wall -chicken -soul -2mm -##times -fa -##ather -##cord -009 -##eep -hitachi -gui -harry -##pan -e1 -disney -##press -##ーション -wind -386 -frigidaire -##tl -liu -hsu -332 -basic -von -ev -いた -てきる -スホンサーサイト -learning -##ull -expedia -archives -change -##wei -santa -cut -ins -6gb -turbo -brand -cf1 -508 -004 -return -747 -##rip -h1 -##nis -##をこ -128gb -##にお -3t -application -しており -emc -rx -##oon -384 -quick -412 -15058 -wilson -wing -chapter -##bug -beyond -##cms -##dar -##oh -zoom -e2 -trip -sb -##nba -rcep -342 -aspx -ci -080 -gc -gnu -める -##count -advanced -dance -dv -##url -##ging -367 -8591 -am09 -shadow -battle -346 -##i -##cia -##という -emily -##のてす -##tation -host -ff -techorz -sars -##mini -##mporary -##ering -nc -4200 -798 -##next -cma -##mbps -##gas -##ift -##dot -##ィ -455 -##~17 -amana -##りの -426 -##ros -ir -00㎡1 -##eet -##ible -##↓ -710 -ˋ▽ˊ -##aka -dcs -iq -##v -l1 -##lor -maggie -##011 -##iu -588 -##~1 -830 -##gt -1tb -articles -create -##burg -##iki -database -fantasy -##rex -##cam -dlc -dean -##you -hard -path -gaming -victoria -maps -cb -##lee -##itor -overchicstoretvhome -systems -##xt -416 -p3 -sarah -760 -##nan -407 -486 -x9 -install -second -626 -##ann -##ph -##rcle -##nic -860 -##nar -ec -##とう -768 -metro -chocolate -##rian -~4 -##table -##しています -skin -##sn -395 -mountain -##0mm -inparadise -6m -7x24 -ib -4800 -##jia -eeworld -creative -g5 -g3 -357 -parker -ecfa -village -からの -18000 -sylvia -サーヒス -hbl -##ques -##onsored -##x2 -##きます -##v4 -##tein -ie6 -383 -##stack -389 -ver -##ads -##baby -sound -bbe -##110 -##lone -##uid -ads -022 -gundam -351 -thinkpad -006 -scrum -match -##ave -mems -##470 -##oy -##なりました -##talk -glass -lamigo -span -##eme -job -##a5 -jay -wade -kde -498 -##lace -ocean -tvg -##covery -##r3 -##ners -##rea -junior -think -##aine -cover -##ision -##sia -↓↓ -##bow -msi -413 -458 -406 -##love -711 -801 -soft -z2 -##pl -456 -1840 -mobil -mind -##uy -427 -nginx -##oi -めた -##rr -6221 -##mple -##sson -##ーシてす -371 -##nts -91tv -comhd -crv3000 -##uard -1868 -397 -deep -lost -field -gallery -##bia -rate -spf -redis -traction -930 -icloud -011 -なら -fe -jose -372 -##tory -into -sohu -fx -899 -379 -kicstart2 -##hia -すく -##~3 -##sit -ra -24 -##walk -##xure -500g -##pact -pacific -xa -natural -carlo -##250 -##walker -1850 -##can -cto -gigi -516 -##サー -pen -##hoo -ob -matlab -##b -##yy -13913459 -##iti -mango -##bbs -sense -c5 -oxford -##ニア -walker -jennifer -##ola -course -##bre -701 -##pus -##rder -lucky -075 -##ぁ -ivy -なお -##nia -sotheby -side -##ugh -joy -##orage -##ush -##bat -##dt -364 -r9 -##2d -##gio -511 -country -wear -##lax -##~7 -##moon -393 -seven -study -411 -348 -lonzo -8k -##ェ -evolution -##イフ -##kk -gs -kd -##レス -arduino -344 -b12 -##lux -arpg -##rdon -cook -##x5 -dark -five -##als -##ida -とても -sign -362 -##ちの -something -20mm -##nda -387 -##posted -fresh -tf -1870 -422 -cam -##mine -##skip -##form -##ssion -education -394 -##tee -dyson -stage -##jie -want -##night -epson -pack -あります -##ppy -テリヘル -##█ -wd -##eh -##rence -left -##lvin -golden -mhz -discovery -##trix -##n2 -loft -##uch -##dra -##sse -speed -~1 -1mdb -sorry -welcome -##urn -wave -gaga -##lmer -teddy -##160 -トラックハック -せよ -611 -##f2016 -378 -rp -##sha -rar -##あなたに -##きた -840 -holiday -##ュー -373 -074 -##vg -##nos -##rail -gartner -gi -6p -##dium -kit -488 -b3 -eco -##ろう -20g -sean -##stone -autocad -nu -##np -f16 -write -029 -m5 -##ias -images -atp -##dk -fsm -504 -1350 -ve -52kb -##xxx -##のに -##cake -414 -unit -lim -ru -1v -##ification -published -angela -16g -analytics -ak -##q -##nel -gmt -##icon -again -##₂ -##bby -ios11 -445 -かこさいます -waze -いてす -##ハ -9985 -##ust -##ティー -framework -##007 -iptv -delete -52sykb -cl -wwdc -027 -30cm -##fw -##ての -1389 -##xon -brandt -##ses -##dragon -tc -vetements -anne -monte -modern -official -##へて -##ere -##nne -##oud -もちろん -50 -etnews -##a2 -##graphy -421 -863 -##ちゃん -444 -##rtex -##てお -l2 -##gma -mount -ccd -たと -archive -morning -tan -ddos -e7 -##ホ -day4 -##ウ -gis -453 -its -495 -factory -bruce -pg -##ito -ってくたさい -guest -cdma -##lling -536 -n3 -しかし -3~4 -mega -eyes -ro -13 -women -dac -church -##jun -singapore -##facebook -6991 -starbucks -##tos -##stin -##shine -zen -##mu -tina -20℃ -1893 -##たけて -503 -465 -request -##gence -qt -##っ -1886 -347 -363 -q7 -##zzi -diary -##tore -409 -##ead -468 -cst -##osa -canada -agent -va -##jiang -##ちは -##ーク -##lam -sg -##nix -##sday -##よって -g6 -##master -bing -##zl -charlie -16 -8mm -nb40 -##ーン -thai -##ルフ -ln284ct -##itz -##2f -bonnie -##food -##lent -originals -##stro -##lts -418 -∟∣ -##bscribe -children -ntd -yesstyle -##かも -hmv -##tment -d5 -2cm -arts -sms -##pn -##я -##いい -topios9 -539 -lifestyle -virtual -##ague -xz -##deo -muji -024 -unt -##nnis -##ᅩ -faq1 -1884 -396 -##ette -fly -64㎡ -はしめまして -441 -curry -##pop -のこ -release -##← -##◆◆ -##cast -073 -ありな -500ml -##ews -5c -##stle -ios7 -##ima -787 -dog -lenovo -##r4 -roger -013 -cbs -vornado -100m -417 -##desk -##クok -##ald -1867 -9595 -2900 -##van -oil -##x -some -break -common -##jy -##lines -g7 -twice -419 -ella -nano -belle -にこ -##mes -##self -##note -jb -##ことかてきます -benz -##との -##ova -451 -save -##wing -##ますのて -kai -りは -##hua -##rect -rainer -##unge -448 -##0m -adsl -##かな -guestname -##uma -##kins -##zu -tokichoi -##price -county -##med -##mus -rmk -391 -address -vm -えて -openload -##group -##hin -##iginal -amg -urban -##oz -jobs -emi -##public -beautiful -##sch -album -##dden -##bell -jerry -works -hostel -miller -##drive -##rmin -##10 -376 -boot -828 -##370 -##fx -##cm~ -1885 -##nome -##ctionary -##oman -##lish -##cr -##hm -433 -##how -432 -francis -xi -c919 -b5 -evernote -##uc -vga -##3000 -coupe -##urg -##cca -##uality -019 -6g -れる -multi -##また -##ett -em -hey -##ani -##tax -##rma -inside -than -740 -leonnhurt -##jin -ict -れた -bird -notes -200mm -くの -##dical -##lli -result -442 -iu -ee -438 -smap -gopro -##last -yin -pure -998 -32g -けた -5kg -##dan -##rame -mama -##oot -bean -marketing -##hur -2l -bella -sync -xuite -##ground -515 -discuz -##getrelax -##ince -##bay -##5s -cj -##イス -gmat -apt -##pass -jing -##rix -c4 -rich -##とても -niusnews -##ello -bag -770 -##eting -##mobile -18 -culture -015 -##のてすか -377 -1020 -area -##ience -616 -details -gp -universal -silver -dit -はお -private -ddd -u11 -kanshu -##ified -fung -##nny -dx -##520 -tai -475 -023 -##fr -##lean -3s -##pin -429 -##rin -25000 -ly -rick -##bility -usb3 -banner -##baru -##gion -metal -dt -vdf -1871 -karl -qualcomm -bear -1010 -oldid -ian -jo -##tors -population -##ernel -1882 -mmorpg -##mv -##bike -603 -##© -ww -friend -##ager -exhibition -##del -##pods -fpx -structure -##free -##tings -kl -##rley -##copyright -##mma -california -3400 -orange -yoga -4l -canmake -honey -##anda -##コメント -595 -nikkie -##ルハイト -dhl -publishing -##mall -##gnet -20cm -513 -##クセス -##┅ -e88 -970 -##dog -fishbase -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##{ -##| -##} -##~ -##£ -##¤ -##¥ -##§ -##« -##± -##³ -##µ -##· -##¹ -##º -##» -##¼ -##ß -##æ -##÷ -##ø -##đ -##ŋ -##ɔ -##ə -##ɡ -##ʰ -##ˇ -##ˈ -##ˊ -##ˋ -##ˍ -##ː -##˙ -##˚ -##ˢ -##α -##β -##γ -##δ -##ε -##η -##θ -##ι -##κ -##λ -##μ -##ν -##ο -##π -##ρ -##ς -##σ -##τ -##υ -##φ -##χ -##ψ -##б -##в -##г -##д -##е -##ж -##з -##к -##л -##м -##н -##о -##п -##р -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##ы -##ь -##і -##ا -##ب -##ة -##ت -##د -##ر -##س -##ع -##ل -##م -##ن -##ه -##و -##ي -##۩ -##ก -##ง -##น -##ม -##ย -##ร -##อ -##า -##เ -##๑ -##་ -##ღ -##ᄀ -##ᄁ -##ᄂ -##ᄃ -##ᄅ -##ᄆ -##ᄇ -##ᄈ -##ᄉ -##ᄋ -##ᄌ -##ᄎ -##ᄏ -##ᄐ -##ᄑ -##ᄒ -##ᅢ -##ᅣ -##ᅥ -##ᅦ -##ᅧ -##ᅨ -##ᅪ -##ᅬ -##ᅭ -##ᅮ -##ᅯ -##ᅲ -##ᅳ -##ᅴ -##ᆷ -##ᆸ -##ᆺ -##ᆻ -##ᗜ -##ᵃ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵘ -##‖ -##„ -##† -##• -##‥ -##‧ -##
 -##‰ -##′ -##″ -##‹ -##› -##※ -##‿ -##⁄ -##ⁱ -##⁺ -##ⁿ -##₁ -##₃ -##₄ -##€ -##№ -##ⅰ -##ⅱ -##ⅲ -##ⅳ -##ⅴ -##↔ -##↗ -##↘ -##⇒ -##∀ -##− -##∕ -##∙ -##√ -##∞ -##∟ -##∠ -##∣ -##∩ -##∮ -##∶ -##∼ -##∽ -##≈ -##≒ -##≡ -##≤ -##≥ -##≦ -##≧ -##≪ -##≫ -##⊙ -##⋅ -##⋈ -##⋯ -##⌒ -##① -##② -##③ -##④ -##⑤ -##⑥ -##⑦ -##⑧ -##⑨ -##⑩ -##⑴ -##⑵ -##⑶ -##⑷ -##⑸ -##⒈ -##⒉ -##⒊ -##⒋ -##ⓒ -##ⓔ -##ⓘ -##━ -##┃ -##┆ -##┊ -##┌ -##└ -##├ -##┣ -##═ -##║ -##╚ -##╞ -##╠ -##╭ -##╮ -##╯ -##╰ -##╱ -##╳ -##▂ -##▃ -##▅ -##▇ -##▉ -##▋ -##▌ -##▍ -##▎ -##□ -##▪ -##▫ -##▬ -##△ -##▶ -##► -##▽ -##◇ -##◕ -##◠ -##◢ -##◤ -##☀ -##☕ -##☞ -##☺ -##☼ -##♀ -##♂ -##♠ -##♡ -##♣ -##♦ -##♫ -##♬ -##✈ -##✔ -##✕ -##✖ -##✦ -##✨ -##✪ -##✰ -##✿ -##❀ -##➜ -##➤ -##⦿ -##、 -##。 -##〃 -##々 -##〇 -##〈 -##〉 -##《 -##》 -##「 -##」 -##『 -##』 -##【 -##】 -##〓 -##〔 -##〕 -##〖 -##〗 -##〜 -##〝 -##〞 -##ぃ -##ぇ -##ぬ -##ふ -##ほ -##む -##ゃ -##ゅ -##ゆ -##ょ -##゜ -##ゝ -##ァ -##ゥ -##エ -##ォ -##ケ -##サ -##セ -##ソ -##ッ -##ニ -##ヌ -##ネ -##ノ -##ヘ -##モ -##ャ -##ヤ -##ュ -##ユ -##ョ -##ヨ -##ワ -##ヲ -##・ -##ヽ -##ㄅ -##ㄆ -##ㄇ -##ㄉ -##ㄋ -##ㄌ -##ㄍ -##ㄎ -##ㄏ -##ㄒ -##ㄚ -##ㄛ -##ㄞ -##ㄟ -##ㄢ -##ㄤ -##ㄥ -##ㄧ -##ㄨ -##ㆍ -##㈦ -##㊣ -##㗎 -##一 -##丁 -##七 -##万 -##丈 -##三 -##上 -##下 -##不 -##与 -##丐 -##丑 -##专 -##且 -##丕 -##世 -##丘 -##丙 -##业 -##丛 -##东 -##丝 -##丞 -##丟 -##両 -##丢 -##两 -##严 -##並 -##丧 -##丨 -##个 -##丫 -##中 -##丰 -##串 -##临 -##丶 -##丸 -##丹 -##为 -##主 -##丼 -##丽 -##举 -##丿 -##乂 -##乃 -##久 -##么 -##义 -##之 -##乌 -##乍 -##乎 -##乏 -##乐 -##乒 -##乓 -##乔 -##乖 -##乗 -##乘 -##乙 -##乜 -##九 -##乞 -##也 -##习 -##乡 -##书 -##乩 -##买 -##乱 -##乳 -##乾 -##亀 -##亂 -##了 -##予 -##争 -##事 -##二 -##于 -##亏 -##云 -##互 -##五 -##井 -##亘 -##亙 -##亚 -##些 -##亜 -##亞 -##亟 -##亡 -##亢 -##交 -##亥 -##亦 -##产 -##亨 -##亩 -##享 -##京 -##亭 -##亮 -##亲 -##亳 -##亵 -##人 -##亿 -##什 -##仁 -##仃 -##仄 -##仅 -##仆 -##仇 -##今 -##介 -##仍 -##从 -##仏 -##仑 -##仓 -##仔 -##仕 -##他 -##仗 -##付 -##仙 -##仝 -##仞 -##仟 -##代 -##令 -##以 -##仨 -##仪 -##们 -##仮 -##仰 -##仲 -##件 -##价 -##任 -##份 -##仿 -##企 -##伉 -##伊 -##伍 -##伎 -##伏 -##伐 -##休 -##伕 -##众 -##优 -##伙 -##会 -##伝 -##伞 -##伟 -##传 -##伢 -##伤 -##伦 -##伪 -##伫 -##伯 -##估 -##伴 -##伶 -##伸 -##伺 -##似 -##伽 -##佃 -##但 -##佇 -##佈 -##位 -##低 -##住 -##佐 -##佑 -##体 -##佔 -##何 -##佗 -##佘 -##余 -##佚 -##佛 -##作 -##佝 -##佞 -##佟 -##你 -##佢 -##佣 -##佤 -##佥 -##佩 -##佬 -##佯 -##佰 -##佳 -##併 -##佶 -##佻 -##佼 -##使 -##侃 -##侄 -##來 -##侈 -##例 -##侍 -##侏 -##侑 -##侖 -##侗 -##供 -##依 -##侠 -##価 -##侣 -##侥 -##侦 -##侧 -##侨 -##侬 -##侮 -##侯 -##侵 -##侶 -##侷 -##便 -##係 -##促 -##俄 -##俊 -##俎 -##俏 -##俐 -##俑 -##俗 -##俘 -##俚 -##保 -##俞 -##俟 -##俠 -##信 -##俨 -##俩 -##俪 -##俬 -##俭 -##修 -##俯 -##俱 -##俳 -##俸 -##俺 -##俾 -##倆 -##倉 -##個 -##倌 -##倍 -##倏 -##們 -##倒 -##倔 -##倖 -##倘 -##候 -##倚 -##倜 -##借 -##倡 -##値 -##倦 -##倩 -##倪 -##倫 -##倬 -##倭 -##倶 -##债 -##值 -##倾 -##偃 -##假 -##偈 -##偉 -##偌 -##偎 -##偏 -##偕 -##做 -##停 -##健 -##側 -##偵 -##偶 -##偷 -##偻 -##偽 -##偿 -##傀 -##傅 -##傍 -##傑 -##傘 -##備 -##傚 -##傢 -##傣 -##傥 -##储 -##傩 -##催 -##傭 -##傲 -##傳 -##債 -##傷 -##傻 -##傾 -##僅 -##働 -##像 -##僑 -##僕 -##僖 -##僚 -##僥 -##僧 -##僭 -##僮 -##僱 -##僵 -##價 -##僻 -##儀 -##儂 -##億 -##儆 -##儉 -##儋 -##儒 -##儕 -##儘 -##償 -##儡 -##優 -##儲 -##儷 -##儼 -##儿 -##兀 -##允 -##元 -##兄 -##充 -##兆 -##兇 -##先 -##光 -##克 -##兌 -##免 -##児 -##兑 -##兒 -##兔 -##兖 -##党 -##兜 -##兢 -##入 -##內 -##全 -##兩 -##八 -##公 -##六 -##兮 -##兰 -##共 -##兲 -##关 -##兴 -##兵 -##其 -##具 -##典 -##兹 -##养 -##兼 -##兽 -##冀 -##内 -##円 -##冇 -##冈 -##冉 -##冊 -##册 -##再 -##冏 -##冒 -##冕 -##冗 -##写 -##军 -##农 -##冠 -##冢 -##冤 -##冥 -##冨 -##冪 -##冬 -##冯 -##冰 -##冲 -##决 -##况 -##冶 -##冷 -##冻 -##冼 -##冽 -##冾 -##净 -##凄 -##准 -##凇 -##凈 -##凉 -##凋 -##凌 -##凍 -##减 -##凑 -##凛 -##凜 -##凝 -##几 -##凡 -##凤 -##処 -##凪 -##凭 -##凯 -##凰 -##凱 -##凳 -##凶 -##凸 -##凹 -##出 -##击 -##函 -##凿 -##刀 -##刁 -##刃 -##分 -##切 -##刈 -##刊 -##刍 -##刎 -##刑 -##划 -##列 -##刘 -##则 -##刚 -##创 -##初 -##删 -##判 -##別 -##刨 -##利 -##刪 -##别 -##刮 -##到 -##制 -##刷 -##券 -##刹 -##刺 -##刻 -##刽 -##剁 -##剂 -##剃 -##則 -##剉 -##削 -##剋 -##剌 -##前 -##剎 -##剐 -##剑 -##剔 -##剖 -##剛 -##剜 -##剝 -##剣 -##剤 -##剥 -##剧 -##剩 -##剪 -##副 -##割 -##創 -##剷 -##剽 -##剿 -##劃 -##劇 -##劈 -##劉 -##劊 -##劍 -##劏 -##劑 -##力 -##劝 -##办 -##功 -##加 -##务 -##劣 -##动 -##助 -##努 -##劫 -##劭 -##励 -##劲 -##劳 -##労 -##劵 -##効 -##劾 -##势 -##勁 -##勃 -##勇 -##勉 -##勋 -##勐 -##勒 -##動 -##勖 -##勘 -##務 -##勛 -##勝 -##勞 -##募 -##勢 -##勤 -##勧 -##勳 -##勵 -##勸 -##勺 -##勻 -##勾 -##勿 -##匀 -##包 -##匆 -##匈 -##匍 -##匐 -##匕 -##化 -##北 -##匙 -##匝 -##匠 -##匡 -##匣 -##匪 -##匮 -##匯 -##匱 -##匹 -##区 -##医 -##匾 -##匿 -##區 -##十 -##千 -##卅 -##升 -##午 -##卉 -##半 -##卍 -##华 -##协 -##卑 -##卒 -##卓 -##協 -##单 -##卖 -##南 -##単 -##博 -##卜 -##卞 -##卟 -##占 -##卡 -##卢 -##卤 -##卦 -##卧 -##卫 -##卮 -##卯 -##印 -##危 -##即 -##却 -##卵 -##卷 -##卸 -##卻 -##卿 -##厂 -##厄 -##厅 -##历 -##厉 -##压 -##厌 -##厕 -##厘 -##厚 -##厝 -##原 -##厢 -##厥 -##厦 -##厨 -##厩 -##厭 -##厮 -##厲 -##厳 -##去 -##县 -##叁 -##参 -##參 -##又 -##叉 -##及 -##友 -##双 -##反 -##収 -##发 -##叔 -##取 -##受 -##变 -##叙 -##叛 -##叟 -##叠 -##叡 -##叢 -##口 -##古 -##句 -##另 -##叨 -##叩 -##只 -##叫 -##召 -##叭 -##叮 -##可 -##台 -##叱 -##史 -##右 -##叵 -##叶 -##号 -##司 -##叹 -##叻 -##叼 -##叽 -##吁 -##吃 -##各 -##吆 -##合 -##吉 -##吊 -##吋 -##同 -##名 -##后 -##吏 -##吐 -##向 -##吒 -##吓 -##吕 -##吖 -##吗 -##君 -##吝 -##吞 -##吟 -##吠 -##吡 -##否 -##吧 -##吨 -##吩 -##含 -##听 -##吭 -##吮 -##启 -##吱 -##吳 -##吴 -##吵 -##吶 -##吸 -##吹 -##吻 -##吼 -##吽 -##吾 -##呀 -##呂 -##呃 -##呆 -##呈 -##告 -##呋 -##呎 -##呐 -##呓 -##呕 -##呗 -##员 -##呛 -##呜 -##呢 -##呤 -##呦 -##周 -##呱 -##呲 -##味 -##呵 -##呷 -##呸 -##呻 -##呼 -##命 -##咀 -##咁 -##咂 -##咄 -##咆 -##咋 -##和 -##咎 -##咏 -##咐 -##咒 -##咔 -##咕 -##咖 -##咗 -##咘 -##咙 -##咚 -##咛 -##咣 -##咤 -##咦 -##咧 -##咨 -##咩 -##咪 -##咫 -##咬 -##咭 -##咯 -##咱 -##咲 -##咳 -##咸 -##咻 -##咽 -##咿 -##哀 -##品 -##哂 -##哄 -##哆 -##哇 -##哈 -##哉 -##哋 -##哌 -##响 -##哎 -##哏 -##哐 -##哑 -##哒 -##哔 -##哗 -##哟 -##員 -##哥 -##哦 -##哧 -##哨 -##哩 -##哪 -##哭 -##哮 -##哲 -##哺 -##哼 -##哽 -##唁 -##唄 -##唆 -##唇 -##唉 -##唏 -##唐 -##唑 -##唔 -##唠 -##唤 -##唧 -##唬 -##售 -##唯 -##唰 -##唱 -##唳 -##唷 -##唸 -##唾 -##啃 -##啄 -##商 -##啉 -##啊 -##問 -##啓 -##啕 -##啖 -##啜 -##啞 -##啟 -##啡 -##啤 -##啥 -##啦 -##啧 -##啪 -##啫 -##啬 -##啮 -##啰 -##啱 -##啲 -##啵 -##啶 -##啷 -##啸 -##啻 -##啼 -##啾 -##喀 -##喂 -##喃 -##善 -##喆 -##喇 -##喉 -##喊 -##喋 -##喎 -##喏 -##喔 -##喘 -##喙 -##喚 -##喜 -##喝 -##喟 -##喧 -##喪 -##喫 -##喬 -##單 -##喰 -##喱 -##喲 -##喳 -##喵 -##営 -##喷 -##喹 -##喺 -##喻 -##喽 -##嗅 -##嗆 -##嗇 -##嗎 -##嗑 -##嗒 -##嗓 -##嗔 -##嗖 -##嗚 -##嗜 -##嗝 -##嗟 -##嗡 -##嗣 -##嗤 -##嗦 -##嗨 -##嗪 -##嗬 -##嗯 -##嗰 -##嗲 -##嗳 -##嗶 -##嗷 -##嗽 -##嘀 -##嘅 -##嘆 -##嘈 -##嘉 -##嘌 -##嘍 -##嘎 -##嘔 -##嘖 -##嘗 -##嘘 -##嘚 -##嘛 -##嘜 -##嘞 -##嘟 -##嘢 -##嘣 -##嘤 -##嘧 -##嘩 -##嘭 -##嘮 -##嘯 -##嘰 -##嘱 -##嘲 -##嘴 -##嘶 -##嘸 -##嘹 -##嘻 -##嘿 -##噁 -##噌 -##噎 -##噓 -##噔 -##噗 -##噙 -##噜 -##噠 -##噢 -##噤 -##器 -##噩 -##噪 -##噬 -##噱 -##噴 -##噶 -##噸 -##噹 -##噻 -##噼 -##嚀 -##嚇 -##嚎 -##嚏 -##嚐 -##嚓 -##嚕 -##嚟 -##嚣 -##嚥 -##嚨 -##嚮 -##嚴 -##嚷 -##嚼 -##囂 -##囉 -##囊 -##囍 -##囑 -##囔 -##囗 -##囚 -##四 -##囝 -##回 -##囟 -##因 -##囡 -##团 -##団 -##囤 -##囧 -##囪 -##囫 -##园 -##困 -##囱 -##囲 -##図 -##围 -##囹 -##固 -##国 -##图 -##囿 -##圃 -##圄 -##圆 -##圈 -##國 -##圍 -##圏 -##園 -##圓 -##圖 -##團 -##圜 -##土 -##圣 -##圧 -##在 -##圩 -##圭 -##地 -##圳 -##场 -##圻 -##圾 -##址 -##坂 -##均 -##坊 -##坍 -##坎 -##坏 -##坐 -##坑 -##块 -##坚 -##坛 -##坝 -##坞 -##坟 -##坠 -##坡 -##坤 -##坦 -##坨 -##坪 -##坯 -##坳 -##坵 -##坷 -##垂 -##垃 -##垄 -##型 -##垒 -##垚 -##垛 -##垠 -##垢 -##垣 -##垦 -##垩 -##垫 -##垭 -##垮 -##垵 -##埂 -##埃 -##埋 -##城 -##埔 -##埕 -##埗 -##域 -##埠 -##埤 -##埵 -##執 -##埸 -##培 -##基 -##埼 -##堀 -##堂 -##堃 -##堅 -##堆 -##堇 -##堑 -##堕 -##堙 -##堡 -##堤 -##堪 -##堯 -##堰 -##報 -##場 -##堵 -##堺 -##堿 -##塊 -##塌 -##塑 -##塔 -##塗 -##塘 -##塚 -##塞 -##塢 -##塩 -##填 -##塬 -##塭 -##塵 -##塾 -##墀 -##境 -##墅 -##墉 -##墊 -##墒 -##墓 -##増 -##墘 -##墙 -##墜 -##增 -##墟 -##墨 -##墩 -##墮 -##墳 -##墻 -##墾 -##壁 -##壅 -##壆 -##壇 -##壊 -##壑 -##壓 -##壕 -##壘 -##壞 -##壟 -##壢 -##壤 -##壩 -##士 -##壬 -##壮 -##壯 -##声 -##売 -##壳 -##壶 -##壹 -##壺 -##壽 -##处 -##备 -##変 -##复 -##夏 -##夔 -##夕 -##外 -##夙 -##多 -##夜 -##够 -##夠 -##夢 -##夥 -##大 -##天 -##太 -##夫 -##夭 -##央 -##夯 -##失 -##头 -##夷 -##夸 -##夹 -##夺 -##夾 -##奂 -##奄 -##奇 -##奈 -##奉 -##奋 -##奎 -##奏 -##奐 -##契 -##奔 -##奕 -##奖 -##套 -##奘 -##奚 -##奠 -##奢 -##奥 -##奧 -##奪 -##奬 -##奮 -##女 -##奴 -##奶 -##奸 -##她 -##好 -##如 -##妃 -##妄 -##妆 -##妇 -##妈 -##妊 -##妍 -##妒 -##妓 -##妖 -##妘 -##妙 -##妝 -##妞 -##妣 -##妤 -##妥 -##妨 -##妩 -##妪 -##妮 -##妲 -##妳 -##妹 -##妻 -##妾 -##姆 -##姉 -##姊 -##始 -##姍 -##姐 -##姑 -##姒 -##姓 -##委 -##姗 -##姚 -##姜 -##姝 -##姣 -##姥 -##姦 -##姨 -##姪 -##姫 -##姬 -##姹 -##姻 -##姿 -##威 -##娃 -##娄 -##娅 -##娆 -##娇 -##娉 -##娑 -##娓 -##娘 -##娛 -##娜 -##娟 -##娠 -##娣 -##娥 -##娩 -##娱 -##娲 -##娴 -##娶 -##娼 -##婀 -##婁 -##婆 -##婉 -##婊 -##婕 -##婚 -##婢 -##婦 -##婧 -##婪 -##婭 -##婴 -##婵 -##婶 -##婷 -##婺 -##婿 -##媒 -##媚 -##媛 -##媞 -##媧 -##媲 -##媳 -##媽 -##媾 -##嫁 -##嫂 -##嫉 -##嫌 -##嫑 -##嫔 -##嫖 -##嫘 -##嫚 -##嫡 -##嫣 -##嫦 -##嫩 -##嫲 -##嫵 -##嫻 -##嬅 -##嬉 -##嬌 -##嬗 -##嬛 -##嬢 -##嬤 -##嬪 -##嬰 -##嬴 -##嬷 -##嬸 -##嬿 -##孀 -##孃 -##子 -##孑 -##孔 -##孕 -##孖 -##字 -##存 -##孙 -##孚 -##孛 -##孜 -##孝 -##孟 -##孢 -##季 -##孤 -##学 -##孩 -##孪 -##孫 -##孬 -##孰 -##孱 -##孳 -##孵 -##學 -##孺 -##孽 -##孿 -##宁 -##它 -##宅 -##宇 -##守 -##安 -##宋 -##完 -##宏 -##宓 -##宕 -##宗 -##官 -##宙 -##定 -##宛 -##宜 -##宝 -##实 -##実 -##宠 -##审 -##客 -##宣 -##室 -##宥 -##宦 -##宪 -##宫 -##宮 -##宰 -##害 -##宴 -##宵 -##家 -##宸 -##容 -##宽 -##宾 -##宿 -##寂 -##寄 -##寅 -##密 -##寇 -##富 -##寐 -##寒 -##寓 -##寛 -##寝 -##寞 -##察 -##寡 -##寢 -##寥 -##實 -##寧 -##寨 -##審 -##寫 -##寬 -##寮 -##寰 -##寵 -##寶 -##寸 -##对 -##寺 -##寻 -##导 -##対 -##寿 -##封 -##専 -##射 -##将 -##將 -##專 -##尉 -##尊 -##尋 -##對 -##導 -##小 -##少 -##尔 -##尕 -##尖 -##尘 -##尚 -##尝 -##尤 -##尧 -##尬 -##就 -##尴 -##尷 -##尸 -##尹 -##尺 -##尻 -##尼 -##尽 -##尾 -##尿 -##局 -##屁 -##层 -##屄 -##居 -##屆 -##屈 -##屉 -##届 -##屋 -##屌 -##屍 -##屎 -##屏 -##屐 -##屑 -##展 -##屜 -##属 -##屠 -##屡 -##屢 -##層 -##履 -##屬 -##屯 -##山 -##屹 -##屿 -##岀 -##岁 -##岂 -##岌 -##岐 -##岑 -##岔 -##岖 -##岗 -##岘 -##岙 -##岚 -##岛 -##岡 -##岩 -##岫 -##岬 -##岭 -##岱 -##岳 -##岷 -##岸 -##峇 -##峋 -##峒 -##峙 -##峡 -##峤 -##峥 -##峦 -##峨 -##峪 -##峭 -##峯 -##峰 -##峴 -##島 -##峻 -##峽 -##崁 -##崂 -##崆 -##崇 -##崎 -##崑 -##崔 -##崖 -##崗 -##崙 -##崛 -##崧 -##崩 -##崭 -##崴 -##崽 -##嵇 -##嵊 -##嵋 -##嵌 -##嵐 -##嵘 -##嵩 -##嵬 -##嵯 -##嶂 -##嶄 -##嶇 -##嶋 -##嶙 -##嶺 -##嶼 -##嶽 -##巅 -##巍 -##巒 -##巔 -##巖 -##川 -##州 -##巡 -##巢 -##工 -##左 -##巧 -##巨 -##巩 -##巫 -##差 -##己 -##已 -##巳 -##巴 -##巷 -##巻 -##巽 -##巾 -##巿 -##币 -##市 -##布 -##帅 -##帆 -##师 -##希 -##帐 -##帑 -##帕 -##帖 -##帘 -##帚 -##帛 -##帜 -##帝 -##帥 -##带 -##帧 -##師 -##席 -##帮 -##帯 -##帰 -##帳 -##帶 -##帷 -##常 -##帼 -##帽 -##幀 -##幂 -##幄 -##幅 -##幌 -##幔 -##幕 -##幟 -##幡 -##幢 -##幣 -##幫 -##干 -##平 -##年 -##并 -##幸 -##幹 -##幺 -##幻 -##幼 -##幽 -##幾 -##广 -##庁 -##広 -##庄 -##庆 -##庇 -##床 -##序 -##庐 -##库 -##应 -##底 -##庖 -##店 -##庙 -##庚 -##府 -##庞 -##废 -##庠 -##度 -##座 -##庫 -##庭 -##庵 -##庶 -##康 -##庸 -##庹 -##庾 -##廁 -##廂 -##廃 -##廈 -##廉 -##廊 -##廓 -##廖 -##廚 -##廝 -##廟 -##廠 -##廢 -##廣 -##廬 -##廳 -##延 -##廷 -##建 -##廿 -##开 -##弁 -##异 -##弃 -##弄 -##弈 -##弊 -##弋 -##式 -##弑 -##弒 -##弓 -##弔 -##引 -##弗 -##弘 -##弛 -##弟 -##张 -##弥 -##弦 -##弧 -##弩 -##弭 -##弯 -##弱 -##張 -##強 -##弹 -##强 -##弼 -##弾 -##彅 -##彆 -##彈 -##彌 -##彎 -##归 -##当 -##录 -##彗 -##彙 -##彝 -##形 -##彤 -##彥 -##彦 -##彧 -##彩 -##彪 -##彫 -##彬 -##彭 -##彰 -##影 -##彷 -##役 -##彻 -##彼 -##彿 -##往 -##征 -##径 -##待 -##徇 -##很 -##徉 -##徊 -##律 -##後 -##徐 -##徑 -##徒 -##従 -##徕 -##得 -##徘 -##徙 -##徜 -##從 -##徠 -##御 -##徨 -##復 -##循 -##徬 -##微 -##徳 -##徴 -##徵 -##德 -##徹 -##徼 -##徽 -##心 -##必 -##忆 -##忌 -##忍 -##忏 -##忐 -##忑 -##忒 -##忖 -##志 -##忘 -##忙 -##応 -##忠 -##忡 -##忤 -##忧 -##忪 -##快 -##忱 -##念 -##忻 -##忽 -##忿 -##怀 -##态 -##怂 -##怅 -##怆 -##怎 -##怏 -##怒 -##怔 -##怕 -##怖 -##怙 -##怜 -##思 -##怠 -##怡 -##急 -##怦 -##性 -##怨 -##怪 -##怯 -##怵 -##总 -##怼 -##恁 -##恃 -##恆 -##恋 -##恍 -##恐 -##恒 -##恕 -##恙 -##恚 -##恢 -##恣 -##恤 -##恥 -##恨 -##恩 -##恪 -##恫 -##恬 -##恭 -##息 -##恰 -##恳 -##恵 -##恶 -##恸 -##恺 -##恻 -##恼 -##恿 -##悄 -##悅 -##悉 -##悌 -##悍 -##悔 -##悖 -##悚 -##悟 -##悠 -##患 -##悦 -##您 -##悩 -##悪 -##悬 -##悯 -##悱 -##悲 -##悴 -##悵 -##悶 -##悸 -##悻 -##悼 -##悽 -##情 -##惆 -##惇 -##惊 -##惋 -##惑 -##惕 -##惘 -##惚 -##惜 -##惟 -##惠 -##惡 -##惦 -##惧 -##惨 -##惩 -##惫 -##惬 -##惭 -##惮 -##惯 -##惰 -##惱 -##想 -##惴 -##惶 -##惹 -##惺 -##愁 -##愆 -##愈 -##愉 -##愍 -##意 -##愕 -##愚 -##愛 -##愜 -##感 -##愣 -##愤 -##愧 -##愫 -##愷 -##愿 -##慄 -##慈 -##態 -##慌 -##慎 -##慑 -##慕 -##慘 -##慚 -##慟 -##慢 -##慣 -##慧 -##慨 -##慫 -##慮 -##慰 -##慳 -##慵 -##慶 -##慷 -##慾 -##憂 -##憊 -##憋 -##憎 -##憐 -##憑 -##憔 -##憚 -##憤 -##憧 -##憨 -##憩 -##憫 -##憬 -##憲 -##憶 -##憾 -##懂 -##懇 -##懈 -##應 -##懊 -##懋 -##懑 -##懒 -##懦 -##懲 -##懵 -##懶 -##懷 -##懸 -##懺 -##懼 -##懾 -##懿 -##戀 -##戈 -##戊 -##戌 -##戍 -##戎 -##戏 -##成 -##我 -##戒 -##戕 -##或 -##战 -##戚 -##戛 -##戟 -##戡 -##戦 -##截 -##戬 -##戮 -##戰 -##戲 -##戳 -##戴 -##戶 -##户 -##戸 -##戻 -##戾 -##房 -##所 -##扁 -##扇 -##扈 -##扉 -##手 -##才 -##扎 -##扑 -##扒 -##打 -##扔 -##払 -##托 -##扛 -##扣 -##扦 -##执 -##扩 -##扪 -##扫 -##扬 -##扭 -##扮 -##扯 -##扰 -##扱 -##扳 -##扶 -##批 -##扼 -##找 -##承 -##技 -##抄 -##抉 -##把 -##抑 -##抒 -##抓 -##投 -##抖 -##抗 -##折 -##抚 -##抛 -##抜 -##択 -##抟 -##抠 -##抡 -##抢 -##护 -##报 -##抨 -##披 -##抬 -##抱 -##抵 -##抹 -##押 -##抽 -##抿 -##拂 -##拄 -##担 -##拆 -##拇 -##拈 -##拉 -##拋 -##拌 -##拍 -##拎 -##拐 -##拒 -##拓 -##拔 -##拖 -##拗 -##拘 -##拙 -##拚 -##招 -##拜 -##拟 -##拡 -##拢 -##拣 -##拥 -##拦 -##拧 -##拨 -##择 -##括 -##拭 -##拮 -##拯 -##拱 -##拳 -##拴 -##拷 -##拼 -##拽 -##拾 -##拿 -##持 -##挂 -##指 -##挈 -##按 -##挎 -##挑 -##挖 -##挙 -##挚 -##挛 -##挝 -##挞 -##挟 -##挠 -##挡 -##挣 -##挤 -##挥 -##挨 -##挪 -##挫 -##振 -##挲 -##挹 -##挺 -##挽 -##挾 -##捂 -##捅 -##捆 -##捉 -##捋 -##捌 -##捍 -##捎 -##捏 -##捐 -##捕 -##捞 -##损 -##捡 -##换 -##捣 -##捧 -##捨 -##捩 -##据 -##捱 -##捲 -##捶 -##捷 -##捺 -##捻 -##掀 -##掂 -##掃 -##掇 -##授 -##掉 -##掌 -##掏 -##掐 -##排 -##掖 -##掘 -##掙 -##掛 -##掠 -##採 -##探 -##掣 -##接 -##控 -##推 -##掩 -##措 -##掬 -##掰 -##掲 -##掳 -##掴 -##掷 -##掸 -##掺 -##揀 -##揃 -##揄 -##揆 -##揉 -##揍 -##描 -##提 -##插 -##揖 -##揚 -##換 -##握 -##揣 -##揩 -##揪 -##揭 -##揮 -##援 -##揶 -##揸 -##揹 -##揽 -##搀 -##搁 -##搂 -##搅 -##損 -##搏 -##搐 -##搓 -##搔 -##搖 -##搗 -##搜 -##搞 -##搡 -##搪 -##搬 -##搭 -##搵 -##搶 -##携 -##搽 -##摀 -##摁 -##摄 -##摆 -##摇 -##摈 -##摊 -##摒 -##摔 -##摘 -##摞 -##摟 -##摧 -##摩 -##摯 -##摳 -##摸 -##摹 -##摺 -##摻 -##撂 -##撃 -##撅 -##撇 -##撈 -##撐 -##撑 -##撒 -##撓 -##撕 -##撚 -##撞 -##撤 -##撥 -##撩 -##撫 -##撬 -##播 -##撮 -##撰 -##撲 -##撵 -##撷 -##撸 -##撻 -##撼 -##撿 -##擀 -##擁 -##擂 -##擄 -##擅 -##擇 -##擊 -##擋 -##操 -##擎 -##擒 -##擔 -##擘 -##據 -##擞 -##擠 -##擡 -##擢 -##擦 -##擬 -##擰 -##擱 -##擲 -##擴 -##擷 -##擺 -##擼 -##擾 -##攀 -##攏 -##攒 -##攔 -##攘 -##攙 -##攜 -##攝 -##攞 -##攢 -##攣 -##攤 -##攥 -##攪 -##攫 -##攬 -##支 -##收 -##攸 -##改 -##攻 -##放 -##政 -##故 -##效 -##敌 -##敍 -##敎 -##敏 -##救 -##敕 -##敖 -##敗 -##敘 -##教 -##敛 -##敝 -##敞 -##敢 -##散 -##敦 -##敬 -##数 -##敲 -##整 -##敵 -##敷 -##數 -##斂 -##斃 -##文 -##斋 -##斌 -##斎 -##斐 -##斑 -##斓 -##斗 -##料 -##斛 -##斜 -##斟 -##斡 -##斤 -##斥 -##斧 -##斩 -##斫 -##斬 -##断 -##斯 -##新 -##斷 -##方 -##於 -##施 -##旁 -##旃 -##旅 -##旋 -##旌 -##旎 -##族 -##旖 -##旗 -##无 -##既 -##日 -##旦 -##旧 -##旨 -##早 -##旬 -##旭 -##旮 -##旱 -##时 -##旷 -##旺 -##旻 -##昀 -##昂 -##昆 -##昇 -##昉 -##昊 -##昌 -##明 -##昏 -##易 -##昔 -##昕 -##昙 -##星 -##映 -##春 -##昧 -##昨 -##昭 -##是 -##昱 -##昴 -##昵 -##昶 -##昼 -##显 -##晁 -##時 -##晃 -##晉 -##晋 -##晌 -##晏 -##晒 -##晓 -##晔 -##晕 -##晖 -##晗 -##晚 -##晝 -##晞 -##晟 -##晤 -##晦 -##晨 -##晩 -##普 -##景 -##晰 -##晴 -##晶 -##晷 -##智 -##晾 -##暂 -##暄 -##暇 -##暈 -##暉 -##暌 -##暐 -##暑 -##暖 -##暗 -##暝 -##暢 -##暧 -##暨 -##暫 -##暮 -##暱 -##暴 -##暸 -##暹 -##曄 -##曆 -##曇 -##曉 -##曖 -##曙 -##曜 -##曝 -##曠 -##曦 -##曬 -##曰 -##曲 -##曳 -##更 -##書 -##曹 -##曼 -##曾 -##替 -##最 -##會 -##月 -##有 -##朋 -##服 -##朐 -##朔 -##朕 -##朗 -##望 -##朝 -##期 -##朦 -##朧 -##木 -##未 -##末 -##本 -##札 -##朮 -##术 -##朱 -##朴 -##朵 -##机 -##朽 -##杀 -##杂 -##权 -##杆 -##杈 -##杉 -##李 -##杏 -##材 -##村 -##杓 -##杖 -##杜 -##杞 -##束 -##杠 -##条 -##来 -##杨 -##杭 -##杯 -##杰 -##東 -##杳 -##杵 -##杷 -##杼 -##松 -##板 -##极 -##构 -##枇 -##枉 -##枋 -##析 -##枕 -##林 -##枚 -##果 -##枝 -##枢 -##枣 -##枪 -##枫 -##枭 -##枯 -##枰 -##枱 -##枳 -##架 -##枷 -##枸 -##柄 -##柏 -##某 -##柑 -##柒 -##染 -##柔 -##柘 -##柚 -##柜 -##柞 -##柠 -##柢 -##查 -##柩 -##柬 -##柯 -##柱 -##柳 -##柴 -##柵 -##査 -##柿 -##栀 -##栃 -##栄 -##栅 -##标 -##栈 -##栉 -##栋 -##栎 -##栏 -##树 -##栓 -##栖 -##栗 -##校 -##栩 -##株 -##样 -##核 -##根 -##格 -##栽 -##栾 -##桀 -##桁 -##桂 -##桃 -##桅 -##框 -##案 -##桉 -##桌 -##桎 -##桐 -##桑 -##桓 -##桔 -##桜 -##桠 -##桡 -##桢 -##档 -##桥 -##桦 -##桧 -##桨 -##桩 -##桶 -##桿 -##梁 -##梅 -##梆 -##梏 -##梓 -##梗 -##條 -##梟 -##梢 -##梦 -##梧 -##梨 -##梭 -##梯 -##械 -##梳 -##梵 -##梶 -##检 -##棂 -##棄 -##棉 -##棋 -##棍 -##棒 -##棕 -##棗 -##棘 -##棚 -##棟 -##棠 -##棣 -##棧 -##森 -##棱 -##棲 -##棵 -##棹 -##棺 -##椁 -##椅 -##椋 -##植 -##椎 -##椒 -##検 -##椪 -##椭 -##椰 -##椹 -##椽 -##椿 -##楂 -##楊 -##楓 -##楔 -##楚 -##楝 -##楞 -##楠 -##楣 -##楨 -##楫 -##業 -##楮 -##極 -##楷 -##楸 -##楹 -##楼 -##楽 -##概 -##榄 -##榆 -##榈 -##榉 -##榔 -##榕 -##榖 -##榛 -##榜 -##榨 -##榫 -##榭 -##榮 -##榱 -##榴 -##榷 -##榻 -##槁 -##槃 -##構 -##槌 -##槍 -##槎 -##槐 -##槓 -##様 -##槛 -##槟 -##槤 -##槭 -##槲 -##槳 -##槻 -##槽 -##槿 -##樁 -##樂 -##樊 -##樑 -##樓 -##標 -##樞 -##樟 -##模 -##樣 -##権 -##横 -##樫 -##樯 -##樱 -##樵 -##樸 -##樹 -##樺 -##樽 -##樾 -##橄 -##橇 -##橋 -##橐 -##橘 -##橙 -##機 -##橡 -##橢 -##橫 -##橱 -##橹 -##橼 -##檀 -##檄 -##檎 -##檐 -##檔 -##檗 -##檜 -##檢 -##檬 -##檯 -##檳 -##檸 -##檻 -##櫃 -##櫚 -##櫛 -##櫥 -##櫸 -##櫻 -##欄 -##權 -##欒 -##欖 -##欠 -##次 -##欢 -##欣 -##欧 -##欲 -##欸 -##欺 -##欽 -##款 -##歆 -##歇 -##歉 -##歌 -##歎 -##歐 -##歓 -##歙 -##歛 -##歡 -##止 -##正 -##此 -##步 -##武 -##歧 -##歩 -##歪 -##歯 -##歲 -##歳 -##歴 -##歷 -##歸 -##歹 -##死 -##歼 -##殁 -##殃 -##殆 -##殇 -##殉 -##殊 -##残 -##殒 -##殓 -##殖 -##殘 -##殞 -##殡 -##殤 -##殭 -##殯 -##殲 -##殴 -##段 -##殷 -##殺 -##殼 -##殿 -##毀 -##毁 -##毂 -##毅 -##毆 -##毋 -##母 -##毎 -##每 -##毒 -##毓 -##比 -##毕 -##毗 -##毘 -##毙 -##毛 -##毡 -##毫 -##毯 -##毽 -##氈 -##氏 -##氐 -##民 -##氓 -##气 -##氖 -##気 -##氙 -##氛 -##氟 -##氡 -##氢 -##氣 -##氤 -##氦 -##氧 -##氨 -##氪 -##氫 -##氮 -##氯 -##氰 -##氲 -##水 -##氷 -##永 -##氹 -##氾 -##汀 -##汁 -##求 -##汆 -##汇 -##汉 -##汎 -##汐 -##汕 -##汗 -##汙 -##汛 -##汝 -##汞 -##江 -##池 -##污 -##汤 -##汨 -##汩 -##汪 -##汰 -##汲 -##汴 -##汶 -##汹 -##決 -##汽 -##汾 -##沁 -##沂 -##沃 -##沅 -##沈 -##沉 -##沌 -##沏 -##沐 -##沒 -##沓 -##沖 -##沙 -##沛 -##沟 -##没 -##沢 -##沣 -##沥 -##沦 -##沧 -##沪 -##沫 -##沭 -##沮 -##沱 -##河 -##沸 -##油 -##治 -##沼 -##沽 -##沾 -##沿 -##況 -##泄 -##泉 -##泊 -##泌 -##泓 -##法 -##泗 -##泛 -##泞 -##泠 -##泡 -##波 -##泣 -##泥 -##注 -##泪 -##泫 -##泮 -##泯 -##泰 -##泱 -##泳 -##泵 -##泷 -##泸 -##泻 -##泼 -##泽 -##泾 -##洁 -##洄 -##洋 -##洒 -##洗 -##洙 -##洛 -##洞 -##津 -##洩 -##洪 -##洮 -##洱 -##洲 -##洵 -##洶 -##洸 -##洹 -##活 -##洼 -##洽 -##派 -##流 -##浃 -##浄 -##浅 -##浆 -##浇 -##浊 -##测 -##济 -##浏 -##浑 -##浒 -##浓 -##浔 -##浙 -##浚 -##浜 -##浣 -##浦 -##浩 -##浪 -##浬 -##浮 -##浯 -##浴 -##海 -##浸 -##涂 -##涅 -##涇 -##消 -##涉 -##涌 -##涎 -##涓 -##涔 -##涕 -##涙 -##涛 -##涝 -##涞 -##涟 -##涠 -##涡 -##涣 -##涤 -##润 -##涧 -##涨 -##涩 -##涪 -##涮 -##涯 -##液 -##涵 -##涸 -##涼 -##涿 -##淀 -##淄 -##淅 -##淆 -##淇 -##淋 -##淌 -##淑 -##淒 -##淖 -##淘 -##淙 -##淚 -##淞 -##淡 -##淤 -##淦 -##淨 -##淩 -##淪 -##淫 -##淬 -##淮 -##深 -##淳 -##淵 -##混 -##淹 -##淺 -##添 -##淼 -##清 -##済 -##渉 -##渊 -##渋 -##渍 -##渎 -##渐 -##渔 -##渗 -##渙 -##渚 -##減 -##渝 -##渠 -##渡 -##渣 -##渤 -##渥 -##渦 -##温 -##測 -##渭 -##港 -##渲 -##渴 -##游 -##渺 -##渾 -##湃 -##湄 -##湊 -##湍 -##湖 -##湘 -##湛 -##湟 -##湧 -##湫 -##湮 -##湯 -##湳 -##湾 -##湿 -##満 -##溃 -##溅 -##溉 -##溏 -##源 -##準 -##溜 -##溝 -##溟 -##溢 -##溥 -##溧 -##溪 -##溫 -##溯 -##溱 -##溴 -##溶 -##溺 -##溼 -##滁 -##滂 -##滄 -##滅 -##滇 -##滋 -##滌 -##滑 -##滓 -##滔 -##滕 -##滙 -##滚 -##滝 -##滞 -##滟 -##满 -##滢 -##滤 -##滥 -##滦 -##滨 -##滩 -##滬 -##滯 -##滲 -##滴 -##滷 -##滸 -##滾 -##滿 -##漁 -##漂 -##漆 -##漉 -##漏 -##漓 -##演 -##漕 -##漠 -##漢 -##漣 -##漩 -##漪 -##漫 -##漬 -##漯 -##漱 -##漲 -##漳 -##漸 -##漾 -##漿 -##潆 -##潇 -##潋 -##潍 -##潑 -##潔 -##潘 -##潛 -##潜 -##潞 -##潟 -##潢 -##潤 -##潦 -##潧 -##潭 -##潮 -##潰 -##潴 -##潸 -##潺 -##潼 -##澀 -##澄 -##澆 -##澈 -##澍 -##澎 -##澗 -##澜 -##澡 -##澤 -##澧 -##澱 -##澳 -##澹 -##激 -##濁 -##濂 -##濃 -##濑 -##濒 -##濕 -##濘 -##濛 -##濟 -##濠 -##濡 -##濤 -##濫 -##濬 -##濮 -##濯 -##濱 -##濺 -##濾 -##瀅 -##瀆 -##瀉 -##瀋 -##瀏 -##瀑 -##瀕 -##瀘 -##瀚 -##瀛 -##瀝 -##瀞 -##瀟 -##瀧 -##瀨 -##瀬 -##瀰 -##瀾 -##灌 -##灏 -##灑 -##灘 -##灝 -##灞 -##灣 -##火 -##灬 -##灭 -##灯 -##灰 -##灵 -##灶 -##灸 -##灼 -##災 -##灾 -##灿 -##炀 -##炁 -##炅 -##炉 -##炊 -##炎 -##炒 -##炔 -##炕 -##炖 -##炙 -##炜 -##炫 -##炬 -##炭 -##炮 -##炯 -##炳 -##炷 -##炸 -##点 -##為 -##炼 -##炽 -##烁 -##烂 -##烃 -##烈 -##烊 -##烏 -##烘 -##烙 -##烛 -##烟 -##烤 -##烦 -##烧 -##烨 -##烩 -##烫 -##烬 -##热 -##烯 -##烷 -##烹 -##烽 -##焉 -##焊 -##焕 -##焖 -##焗 -##焘 -##焙 -##焚 -##焜 -##無 -##焦 -##焯 -##焰 -##焱 -##然 -##焼 -##煅 -##煉 -##煊 -##煌 -##煎 -##煒 -##煖 -##煙 -##煜 -##煞 -##煤 -##煥 -##煦 -##照 -##煨 -##煩 -##煮 -##煲 -##煸 -##煽 -##熄 -##熊 -##熏 -##熒 -##熔 -##熙 -##熟 -##熠 -##熨 -##熬 -##熱 -##熵 -##熹 -##熾 -##燁 -##燃 -##燄 -##燈 -##燉 -##燊 -##燎 -##燒 -##燔 -##燕 -##燙 -##燜 -##營 -##燥 -##燦 -##燧 -##燭 -##燮 -##燴 -##燻 -##燼 -##燿 -##爆 -##爍 -##爐 -##爛 -##爪 -##爬 -##爭 -##爰 -##爱 -##爲 -##爵 -##父 -##爷 -##爸 -##爹 -##爺 -##爻 -##爽 -##爾 -##牆 -##片 -##版 -##牌 -##牍 -##牒 -##牙 -##牛 -##牝 -##牟 -##牠 -##牡 -##牢 -##牦 -##牧 -##物 -##牯 -##牲 -##牴 -##牵 -##特 -##牺 -##牽 -##犀 -##犁 -##犄 -##犊 -##犍 -##犒 -##犢 -##犧 -##犬 -##犯 -##状 -##犷 -##犸 -##犹 -##狀 -##狂 -##狄 -##狈 -##狎 -##狐 -##狒 -##狗 -##狙 -##狞 -##狠 -##狡 -##狩 -##独 -##狭 -##狮 -##狰 -##狱 -##狸 -##狹 -##狼 -##狽 -##猎 -##猕 -##猖 -##猗 -##猙 -##猛 -##猜 -##猝 -##猥 -##猩 -##猪 -##猫 -##猬 -##献 -##猴 -##猶 -##猷 -##猾 -##猿 -##獄 -##獅 -##獎 -##獐 -##獒 -##獗 -##獠 -##獣 -##獨 -##獭 -##獰 -##獲 -##獵 -##獷 -##獸 -##獺 -##獻 -##獼 -##獾 -##玄 -##率 -##玉 -##王 -##玑 -##玖 -##玛 -##玟 -##玠 -##玥 -##玩 -##玫 -##玮 -##环 -##现 -##玲 -##玳 -##玷 -##玺 -##玻 -##珀 -##珂 -##珅 -##珈 -##珉 -##珊 -##珍 -##珏 -##珐 -##珑 -##珙 -##珞 -##珠 -##珣 -##珥 -##珩 -##珪 -##班 -##珮 -##珲 -##珺 -##現 -##球 -##琅 -##理 -##琇 -##琉 -##琊 -##琍 -##琏 -##琐 -##琛 -##琢 -##琥 -##琦 -##琨 -##琪 -##琬 -##琮 -##琰 -##琲 -##琳 -##琴 -##琵 -##琶 -##琺 -##琼 -##瑀 -##瑁 -##瑄 -##瑋 -##瑕 -##瑗 -##瑙 -##瑚 -##瑛 -##瑜 -##瑞 -##瑟 -##瑠 -##瑣 -##瑤 -##瑩 -##瑪 -##瑯 -##瑰 -##瑶 -##瑾 -##璀 -##璁 -##璃 -##璇 -##璉 -##璋 -##璎 -##璐 -##璜 -##璞 -##璟 -##璧 -##璨 -##環 -##璽 -##璿 -##瓊 -##瓏 -##瓒 -##瓜 -##瓢 -##瓣 -##瓤 -##瓦 -##瓮 -##瓯 -##瓴 -##瓶 -##瓷 -##甄 -##甌 -##甕 -##甘 -##甙 -##甚 -##甜 -##生 -##產 -##産 -##甥 -##甦 -##用 -##甩 -##甫 -##甬 -##甭 -##甯 -##田 -##由 -##甲 -##申 -##电 -##男 -##甸 -##町 -##画 -##甾 -##畀 -##畅 -##界 -##畏 -##畑 -##畔 -##留 -##畜 -##畝 -##畢 -##略 -##畦 -##番 -##畫 -##異 -##畲 -##畳 -##畴 -##當 -##畸 -##畹 -##畿 -##疆 -##疇 -##疊 -##疏 -##疑 -##疔 -##疖 -##疗 -##疙 -##疚 -##疝 -##疟 -##疡 -##疣 -##疤 -##疥 -##疫 -##疮 -##疯 -##疱 -##疲 -##疳 -##疵 -##疸 -##疹 -##疼 -##疽 -##疾 -##痂 -##病 -##症 -##痈 -##痉 -##痊 -##痍 -##痒 -##痔 -##痕 -##痘 -##痙 -##痛 -##痞 -##痠 -##痢 -##痣 -##痤 -##痧 -##痨 -##痪 -##痫 -##痰 -##痱 -##痴 -##痹 -##痺 -##痼 -##痿 -##瘀 -##瘁 -##瘋 -##瘍 -##瘓 -##瘘 -##瘙 -##瘟 -##瘠 -##瘡 -##瘢 -##瘤 -##瘦 -##瘧 -##瘩 -##瘪 -##瘫 -##瘴 -##瘸 -##瘾 -##療 -##癇 -##癌 -##癒 -##癖 -##癜 -##癞 -##癡 -##癢 -##癣 -##癥 -##癫 -##癬 -##癮 -##癱 -##癲 -##癸 -##発 -##登 -##發 -##白 -##百 -##皂 -##的 -##皆 -##皇 -##皈 -##皋 -##皎 -##皑 -##皓 -##皖 -##皙 -##皚 -##皮 -##皰 -##皱 -##皴 -##皺 -##皿 -##盂 -##盃 -##盅 -##盆 -##盈 -##益 -##盎 -##盏 -##盐 -##监 -##盒 -##盔 -##盖 -##盗 -##盘 -##盛 -##盜 -##盞 -##盟 -##盡 -##監 -##盤 -##盥 -##盧 -##盪 -##目 -##盯 -##盱 -##盲 -##直 -##相 -##盹 -##盼 -##盾 -##省 -##眈 -##眉 -##看 -##県 -##眙 -##眞 -##真 -##眠 -##眦 -##眨 -##眩 -##眯 -##眶 -##眷 -##眸 -##眺 -##眼 -##眾 -##着 -##睁 -##睇 -##睏 -##睐 -##睑 -##睛 -##睜 -##睞 -##睡 -##睢 -##督 -##睥 -##睦 -##睨 -##睪 -##睫 -##睬 -##睹 -##睽 -##睾 -##睿 -##瞄 -##瞅 -##瞇 -##瞋 -##瞌 -##瞎 -##瞑 -##瞒 -##瞓 -##瞞 -##瞟 -##瞠 -##瞥 -##瞧 -##瞩 -##瞪 -##瞬 -##瞭 -##瞰 -##瞳 -##瞻 -##瞼 -##瞿 -##矇 -##矍 -##矗 -##矚 -##矛 -##矜 -##矢 -##矣 -##知 -##矩 -##矫 -##短 -##矮 -##矯 -##石 -##矶 -##矽 -##矾 -##矿 -##码 -##砂 -##砌 -##砍 -##砒 -##研 -##砖 -##砗 -##砚 -##砝 -##砣 -##砥 -##砧 -##砭 -##砰 -##砲 -##破 -##砷 -##砸 -##砺 -##砼 -##砾 -##础 -##硅 -##硐 -##硒 -##硕 -##硝 -##硫 -##硬 -##确 -##硯 -##硼 -##碁 -##碇 -##碉 -##碌 -##碍 -##碎 -##碑 -##碓 -##碗 -##碘 -##碚 -##碛 -##碟 -##碣 -##碧 -##碩 -##碰 -##碱 -##碳 -##碴 -##確 -##碼 -##碾 -##磁 -##磅 -##磊 -##磋 -##磐 -##磕 -##磚 -##磡 -##磨 -##磬 -##磯 -##磲 -##磷 -##磺 -##礁 -##礎 -##礙 -##礡 -##礦 -##礪 -##礫 -##礴 -##示 -##礼 -##社 -##祀 -##祁 -##祂 -##祇 -##祈 -##祉 -##祎 -##祐 -##祕 -##祖 -##祗 -##祚 -##祛 -##祜 -##祝 -##神 -##祟 -##祠 -##祢 -##祥 -##票 -##祭 -##祯 -##祷 -##祸 -##祺 -##祿 -##禀 -##禁 -##禄 -##禅 -##禍 -##禎 -##福 -##禛 -##禦 -##禧 -##禪 -##禮 -##禱 -##禹 -##禺 -##离 -##禽 -##禾 -##禿 -##秀 -##私 -##秃 -##秆 -##秉 -##秋 -##种 -##科 -##秒 -##秘 -##租 -##秣 -##秤 -##秦 -##秧 -##秩 -##秭 -##积 -##称 -##秸 -##移 -##秽 -##稀 -##稅 -##程 -##稍 -##税 -##稔 -##稗 -##稚 -##稜 -##稞 -##稟 -##稠 -##稣 -##種 -##稱 -##稲 -##稳 -##稷 -##稹 -##稻 -##稼 -##稽 -##稿 -##穀 -##穂 -##穆 -##穌 -##積 -##穎 -##穗 -##穢 -##穩 -##穫 -##穴 -##究 -##穷 -##穹 -##空 -##穿 -##突 -##窃 -##窄 -##窈 -##窍 -##窑 -##窒 -##窓 -##窕 -##窖 -##窗 -##窘 -##窜 -##窝 -##窟 -##窠 -##窥 -##窦 -##窨 -##窩 -##窪 -##窮 -##窯 -##窺 -##窿 -##竄 -##竅 -##竇 -##竊 -##立 -##竖 -##站 -##竜 -##竞 -##竟 -##章 -##竣 -##童 -##竭 -##端 -##競 -##竹 -##竺 -##竽 -##竿 -##笃 -##笆 -##笈 -##笋 -##笏 -##笑 -##笔 -##笙 -##笛 -##笞 -##笠 -##符 -##笨 -##第 -##笹 -##笺 -##笼 -##筆 -##等 -##筊 -##筋 -##筍 -##筏 -##筐 -##筑 -##筒 -##答 -##策 -##筛 -##筝 -##筠 -##筱 -##筲 -##筵 -##筷 -##筹 -##签 -##简 -##箇 -##箋 -##箍 -##箏 -##箐 -##箔 -##箕 -##算 -##箝 -##管 -##箩 -##箫 -##箭 -##箱 -##箴 -##箸 -##節 -##篁 -##範 -##篆 -##篇 -##築 -##篑 -##篓 -##篙 -##篝 -##篠 -##篡 -##篤 -##篩 -##篪 -##篮 -##篱 -##篷 -##簇 -##簌 -##簍 -##簡 -##簦 -##簧 -##簪 -##簫 -##簷 -##簸 -##簽 -##簾 -##簿 -##籁 -##籃 -##籌 -##籍 -##籐 -##籟 -##籠 -##籤 -##籬 -##籮 -##籲 -##米 -##类 -##籼 -##籽 -##粄 -##粉 -##粑 -##粒 -##粕 -##粗 -##粘 -##粟 -##粤 -##粥 -##粧 -##粪 -##粮 -##粱 -##粲 -##粳 -##粵 -##粹 -##粼 -##粽 -##精 -##粿 -##糅 -##糊 -##糍 -##糕 -##糖 -##糗 -##糙 -##糜 -##糞 -##糟 -##糠 -##糧 -##糬 -##糯 -##糰 -##糸 -##系 -##糾 -##紀 -##紂 -##約 -##紅 -##紉 -##紊 -##紋 -##納 -##紐 -##紓 -##純 -##紗 -##紘 -##紙 -##級 -##紛 -##紜 -##素 -##紡 -##索 -##紧 -##紫 -##紮 -##累 -##細 -##紳 -##紹 -##紺 -##終 -##絃 -##組 -##絆 -##経 -##結 -##絕 -##絞 -##絡 -##絢 -##給 -##絨 -##絮 -##統 -##絲 -##絳 -##絵 -##絶 -##絹 -##綁 -##綏 -##綑 -##經 -##継 -##続 -##綜 -##綠 -##綢 -##綦 -##綫 -##綬 -##維 -##綱 -##網 -##綴 -##綵 -##綸 -##綺 -##綻 -##綽 -##綾 -##綿 -##緊 -##緋 -##総 -##緑 -##緒 -##緘 -##線 -##緝 -##緞 -##締 -##緣 -##編 -##緩 -##緬 -##緯 -##練 -##緹 -##緻 -##縁 -##縄 -##縈 -##縛 -##縝 -##縣 -##縫 -##縮 -##縱 -##縴 -##縷 -##總 -##績 -##繁 -##繃 -##繆 -##繇 -##繋 -##織 -##繕 -##繚 -##繞 -##繡 -##繩 -##繪 -##繫 -##繭 -##繳 -##繹 -##繼 -##繽 -##纂 -##續 -##纍 -##纏 -##纓 -##纔 -##纖 -##纜 -##纠 -##红 -##纣 -##纤 -##约 -##级 -##纨 -##纪 -##纫 -##纬 -##纭 -##纯 -##纰 -##纱 -##纲 -##纳 -##纵 -##纶 -##纷 -##纸 -##纹 -##纺 -##纽 -##纾 -##线 -##绀 -##练 -##组 -##绅 -##细 -##织 -##终 -##绊 -##绍 -##绎 -##经 -##绑 -##绒 -##结 -##绔 -##绕 -##绘 -##给 -##绚 -##绛 -##络 -##绝 -##绞 -##统 -##绡 -##绢 -##绣 -##绥 -##绦 -##继 -##绩 -##绪 -##绫 -##续 -##绮 -##绯 -##绰 -##绳 -##维 -##绵 -##绶 -##绷 -##绸 -##绻 -##综 -##绽 -##绾 -##绿 -##缀 -##缄 -##缅 -##缆 -##缇 -##缈 -##缉 -##缎 -##缓 -##缔 -##缕 -##编 -##缘 -##缙 -##缚 -##缜 -##缝 -##缠 -##缢 -##缤 -##缥 -##缨 -##缩 -##缪 -##缭 -##缮 -##缰 -##缱 -##缴 -##缸 -##缺 -##缽 -##罂 -##罄 -##罌 -##罐 -##网 -##罔 -##罕 -##罗 -##罚 -##罡 -##罢 -##罩 -##罪 -##置 -##罰 -##署 -##罵 -##罷 -##罹 -##羁 -##羅 -##羈 -##羊 -##羌 -##美 -##羔 -##羚 -##羞 -##羟 -##羡 -##羣 -##群 -##羥 -##羧 -##羨 -##義 -##羯 -##羲 -##羸 -##羹 -##羽 -##羿 -##翁 -##翅 -##翊 -##翌 -##翎 -##習 -##翔 -##翘 -##翟 -##翠 -##翡 -##翦 -##翩 -##翰 -##翱 -##翳 -##翹 -##翻 -##翼 -##耀 -##老 -##考 -##耄 -##者 -##耆 -##耋 -##而 -##耍 -##耐 -##耒 -##耕 -##耗 -##耘 -##耙 -##耦 -##耨 -##耳 -##耶 -##耷 -##耸 -##耻 -##耽 -##耿 -##聂 -##聆 -##聊 -##聋 -##职 -##聒 -##联 -##聖 -##聘 -##聚 -##聞 -##聪 -##聯 -##聰 -##聲 -##聳 -##聴 -##聶 -##職 -##聽 -##聾 -##聿 -##肃 -##肄 -##肅 -##肆 -##肇 -##肉 -##肋 -##肌 -##肏 -##肓 -##肖 -##肘 -##肚 -##肛 -##肝 -##肠 -##股 -##肢 -##肤 -##肥 -##肩 -##肪 -##肮 -##肯 -##肱 -##育 -##肴 -##肺 -##肽 -##肾 -##肿 -##胀 -##胁 -##胃 -##胄 -##胆 -##背 -##胍 -##胎 -##胖 -##胚 -##胛 -##胜 -##胝 -##胞 -##胡 -##胤 -##胥 -##胧 -##胫 -##胭 -##胯 -##胰 -##胱 -##胳 -##胴 -##胶 -##胸 -##胺 -##能 -##脂 -##脅 -##脆 -##脇 -##脈 -##脉 -##脊 -##脍 -##脏 -##脐 -##脑 -##脓 -##脖 -##脘 -##脚 -##脛 -##脣 -##脩 -##脫 -##脯 -##脱 -##脲 -##脳 -##脸 -##脹 -##脾 -##腆 -##腈 -##腊 -##腋 -##腌 -##腎 -##腐 -##腑 -##腓 -##腔 -##腕 -##腥 -##腦 -##腩 -##腫 -##腭 -##腮 -##腰 -##腱 -##腳 -##腴 -##腸 -##腹 -##腺 -##腻 -##腼 -##腾 -##腿 -##膀 -##膈 -##膊 -##膏 -##膑 -##膘 -##膚 -##膛 -##膜 -##膝 -##膠 -##膦 -##膨 -##膩 -##膳 -##膺 -##膻 -##膽 -##膾 -##膿 -##臀 -##臂 -##臃 -##臆 -##臉 -##臊 -##臍 -##臓 -##臘 -##臟 -##臣 -##臥 -##臧 -##臨 -##自 -##臬 -##臭 -##至 -##致 -##臺 -##臻 -##臼 -##臾 -##舀 -##舂 -##舅 -##舆 -##與 -##興 -##舉 -##舊 -##舌 -##舍 -##舎 -##舐 -##舒 -##舔 -##舖 -##舗 -##舛 -##舜 -##舞 -##舟 -##航 -##舫 -##般 -##舰 -##舱 -##舵 -##舶 -##舷 -##舸 -##船 -##舺 -##舾 -##艇 -##艋 -##艘 -##艙 -##艦 -##艮 -##良 -##艰 -##艱 -##色 -##艳 -##艷 -##艹 -##艺 -##艾 -##节 -##芃 -##芈 -##芊 -##芋 -##芍 -##芎 -##芒 -##芙 -##芜 -##芝 -##芡 -##芥 -##芦 -##芩 -##芪 -##芫 -##芬 -##芭 -##芮 -##芯 -##花 -##芳 -##芷 -##芸 -##芹 -##芻 -##芽 -##芾 -##苁 -##苄 -##苇 -##苋 -##苍 -##苏 -##苑 -##苒 -##苓 -##苔 -##苕 -##苗 -##苛 -##苜 -##苞 -##苟 -##苡 -##苣 -##若 -##苦 -##苫 -##苯 -##英 -##苷 -##苹 -##苻 -##茁 -##茂 -##范 -##茄 -##茅 -##茉 -##茎 -##茏 -##茗 -##茜 -##茧 -##茨 -##茫 -##茬 -##茭 -##茯 -##茱 -##茲 -##茴 -##茵 -##茶 -##茸 -##茹 -##茼 -##荀 -##荃 -##荆 -##草 -##荊 -##荏 -##荐 -##荒 -##荔 -##荖 -##荘 -##荚 -##荞 -##荟 -##荠 -##荡 -##荣 -##荤 -##荥 -##荧 -##荨 -##荪 -##荫 -##药 -##荳 -##荷 -##荸 -##荻 -##荼 -##荽 -##莅 -##莆 -##莉 -##莊 -##莎 -##莒 -##莓 -##莖 -##莘 -##莞 -##莠 -##莢 -##莧 -##莪 -##莫 -##莱 -##莲 -##莴 -##获 -##莹 -##莺 -##莽 -##莿 -##菀 -##菁 -##菅 -##菇 -##菈 -##菊 -##菌 -##菏 -##菓 -##菖 -##菘 -##菜 -##菟 -##菠 -##菡 -##菩 -##華 -##菱 -##菲 -##菸 -##菽 -##萁 -##萃 -##萄 -##萊 -##萋 -##萌 -##萍 -##萎 -##萘 -##萝 -##萤 -##营 -##萦 -##萧 -##萨 -##萩 -##萬 -##萱 -##萵 -##萸 -##萼 -##落 -##葆 -##葉 -##著 -##葚 -##葛 -##葡 -##董 -##葦 -##葩 -##葫 -##葬 -##葭 -##葯 -##葱 -##葳 -##葵 -##葷 -##葺 -##蒂 -##蒋 -##蒐 -##蒔 -##蒙 -##蒜 -##蒞 -##蒟 -##蒡 -##蒨 -##蒲 -##蒸 -##蒹 -##蒻 -##蒼 -##蒿 -##蓁 -##蓄 -##蓆 -##蓉 -##蓋 -##蓑 -##蓓 -##蓖 -##蓝 -##蓟 -##蓦 -##蓬 -##蓮 -##蓼 -##蓿 -##蔑 -##蔓 -##蔔 -##蔗 -##蔘 -##蔚 -##蔡 -##蔣 -##蔥 -##蔫 -##蔬 -##蔭 -##蔵 -##蔷 -##蔺 -##蔻 -##蔼 -##蔽 -##蕁 -##蕃 -##蕈 -##蕉 -##蕊 -##蕎 -##蕙 -##蕤 -##蕨 -##蕩 -##蕪 -##蕭 -##蕲 -##蕴 -##蕻 -##蕾 -##薄 -##薅 -##薇 -##薈 -##薊 -##薏 -##薑 -##薔 -##薙 -##薛 -##薦 -##薨 -##薩 -##薪 -##薬 -##薯 -##薰 -##薹 -##藉 -##藍 -##藏 -##藐 -##藓 -##藕 -##藜 -##藝 -##藤 -##藥 -##藩 -##藹 -##藻 -##藿 -##蘆 -##蘇 -##蘊 -##蘋 -##蘑 -##蘚 -##蘭 -##蘸 -##蘼 -##蘿 -##虎 -##虏 -##虐 -##虑 -##虔 -##處 -##虚 -##虛 -##虜 -##虞 -##號 -##虢 -##虧 -##虫 -##虬 -##虱 -##虹 -##虻 -##虽 -##虾 -##蚀 -##蚁 -##蚂 -##蚊 -##蚌 -##蚓 -##蚕 -##蚜 -##蚝 -##蚣 -##蚤 -##蚩 -##蚪 -##蚯 -##蚱 -##蚵 -##蛀 -##蛆 -##蛇 -##蛊 -##蛋 -##蛎 -##蛐 -##蛔 -##蛙 -##蛛 -##蛟 -##蛤 -##蛭 -##蛮 -##蛰 -##蛳 -##蛹 -##蛻 -##蛾 -##蜀 -##蜂 -##蜃 -##蜆 -##蜇 -##蜈 -##蜊 -##蜍 -##蜒 -##蜓 -##蜕 -##蜗 -##蜘 -##蜚 -##蜜 -##蜡 -##蜢 -##蜥 -##蜱 -##蜴 -##蜷 -##蜻 -##蜿 -##蝇 -##蝈 -##蝉 -##蝌 -##蝎 -##蝕 -##蝗 -##蝙 -##蝟 -##蝠 -##蝦 -##蝨 -##蝴 -##蝶 -##蝸 -##蝼 -##螂 -##螃 -##融 -##螞 -##螢 -##螨 -##螯 -##螳 -##螺 -##蟀 -##蟄 -##蟆 -##蟋 -##蟎 -##蟑 -##蟒 -##蟠 -##蟬 -##蟲 -##蟹 -##蟻 -##蟾 -##蠅 -##蠍 -##蠔 -##蠕 -##蠛 -##蠟 -##蠡 -##蠢 -##蠣 -##蠱 -##蠶 -##蠹 -##蠻 -##血 -##衄 -##衅 -##衆 -##行 -##衍 -##術 -##衔 -##街 -##衙 -##衛 -##衝 -##衞 -##衡 -##衢 -##衣 -##补 -##表 -##衩 -##衫 -##衬 -##衮 -##衰 -##衲 -##衷 -##衹 -##衾 -##衿 -##袁 -##袂 -##袄 -##袅 -##袈 -##袋 -##袍 -##袒 -##袖 -##袜 -##袞 -##袤 -##袪 -##被 -##袭 -##袱 -##裁 -##裂 -##装 -##裆 -##裊 -##裏 -##裔 -##裕 -##裘 -##裙 -##補 -##裝 -##裟 -##裡 -##裤 -##裨 -##裱 -##裳 -##裴 -##裸 -##裹 -##製 -##裾 -##褂 -##複 -##褐 -##褒 -##褓 -##褔 -##褚 -##褥 -##褪 -##褫 -##褲 -##褶 -##褻 -##襁 -##襄 -##襟 -##襠 -##襪 -##襬 -##襯 -##襲 -##西 -##要 -##覃 -##覆 -##覇 -##見 -##規 -##覓 -##視 -##覚 -##覦 -##覧 -##親 -##覬 -##観 -##覷 -##覺 -##覽 -##觀 -##见 -##观 -##规 -##觅 -##视 -##览 -##觉 -##觊 -##觎 -##觐 -##觑 -##角 -##觞 -##解 -##觥 -##触 -##觸 -##言 -##訂 -##計 -##訊 -##討 -##訓 -##訕 -##訖 -##託 -##記 -##訛 -##訝 -##訟 -##訣 -##訥 -##訪 -##設 -##許 -##訳 -##訴 -##訶 -##診 -##註 -##証 -##詆 -##詐 -##詔 -##評 -##詛 -##詞 -##詠 -##詡 -##詢 -##詣 -##試 -##詩 -##詫 -##詬 -##詭 -##詮 -##詰 -##話 -##該 -##詳 -##詹 -##詼 -##誅 -##誇 -##誉 -##誌 -##認 -##誓 -##誕 -##誘 -##語 -##誠 -##誡 -##誣 -##誤 -##誥 -##誦 -##誨 -##說 -##説 -##読 -##誰 -##課 -##誹 -##誼 -##調 -##諄 -##談 -##請 -##諏 -##諒 -##論 -##諗 -##諜 -##諡 -##諦 -##諧 -##諫 -##諭 -##諮 -##諱 -##諳 -##諷 -##諸 -##諺 -##諾 -##謀 -##謁 -##謂 -##謄 -##謊 -##謎 -##謐 -##謔 -##謗 -##謙 -##講 -##謝 -##謠 -##謨 -##謬 -##謹 -##謾 -##譁 -##證 -##譎 -##譏 -##識 -##譙 -##譚 -##譜 -##警 -##譬 -##譯 -##議 -##譲 -##譴 -##護 -##譽 -##讀 -##變 -##讓 -##讚 -##讞 -##计 -##订 -##认 -##讥 -##讧 -##讨 -##让 -##讪 -##讫 -##训 -##议 -##讯 -##记 -##讲 -##讳 -##讴 -##讶 -##讷 -##许 -##讹 -##论 -##讼 -##讽 -##设 -##访 -##诀 -##证 -##诃 -##评 -##诅 -##识 -##诈 -##诉 -##诊 -##诋 -##词 -##诏 -##译 -##试 -##诗 -##诘 -##诙 -##诚 -##诛 -##话 -##诞 -##诟 -##诠 -##诡 -##询 -##诣 -##诤 -##该 -##详 -##诧 -##诩 -##诫 -##诬 -##语 -##误 -##诰 -##诱 -##诲 -##说 -##诵 -##诶 -##请 -##诸 -##诺 -##读 -##诽 -##课 -##诿 -##谀 -##谁 -##调 -##谄 -##谅 -##谆 -##谈 -##谊 -##谋 -##谌 -##谍 -##谎 -##谏 -##谐 -##谑 -##谒 -##谓 -##谔 -##谕 -##谗 -##谘 -##谙 -##谚 -##谛 -##谜 -##谟 -##谢 -##谣 -##谤 -##谥 -##谦 -##谧 -##谨 -##谩 -##谪 -##谬 -##谭 -##谯 -##谱 -##谲 -##谴 -##谶 -##谷 -##豁 -##豆 -##豇 -##豈 -##豉 -##豊 -##豌 -##豎 -##豐 -##豔 -##豚 -##象 -##豢 -##豪 -##豫 -##豬 -##豹 -##豺 -##貂 -##貅 -##貌 -##貓 -##貔 -##貘 -##貝 -##貞 -##負 -##財 -##貢 -##貧 -##貨 -##販 -##貪 -##貫 -##責 -##貯 -##貰 -##貳 -##貴 -##貶 -##買 -##貸 -##費 -##貼 -##貽 -##貿 -##賀 -##賁 -##賂 -##賃 -##賄 -##資 -##賈 -##賊 -##賑 -##賓 -##賜 -##賞 -##賠 -##賡 -##賢 -##賣 -##賤 -##賦 -##質 -##賬 -##賭 -##賴 -##賺 -##購 -##賽 -##贅 -##贈 -##贊 -##贍 -##贏 -##贓 -##贖 -##贛 -##贝 -##贞 -##负 -##贡 -##财 -##责 -##贤 -##败 -##账 -##货 -##质 -##贩 -##贪 -##贫 -##贬 -##购 -##贮 -##贯 -##贰 -##贱 -##贲 -##贴 -##贵 -##贷 -##贸 -##费 -##贺 -##贻 -##贼 -##贾 -##贿 -##赁 -##赂 -##赃 -##资 -##赅 -##赈 -##赊 -##赋 -##赌 -##赎 -##赏 -##赐 -##赓 -##赔 -##赖 -##赘 -##赚 -##赛 -##赝 -##赞 -##赠 -##赡 -##赢 -##赣 -##赤 -##赦 -##赧 -##赫 -##赭 -##走 -##赳 -##赴 -##赵 -##赶 -##起 -##趁 -##超 -##越 -##趋 -##趕 -##趙 -##趟 -##趣 -##趨 -##足 -##趴 -##趵 -##趸 -##趺 -##趾 -##跃 -##跄 -##跆 -##跋 -##跌 -##跎 -##跑 -##跖 -##跚 -##跛 -##距 -##跟 -##跡 -##跤 -##跨 -##跩 -##跪 -##路 -##跳 -##践 -##跷 -##跹 -##跺 -##跻 -##踉 -##踊 -##踌 -##踏 -##踐 -##踝 -##踞 -##踟 -##踢 -##踩 -##踪 -##踮 -##踱 -##踴 -##踵 -##踹 -##蹂 -##蹄 -##蹇 -##蹈 -##蹉 -##蹊 -##蹋 -##蹑 -##蹒 -##蹙 -##蹟 -##蹣 -##蹤 -##蹦 -##蹩 -##蹬 -##蹭 -##蹲 -##蹴 -##蹶 -##蹺 -##蹼 -##蹿 -##躁 -##躇 -##躉 -##躊 -##躋 -##躍 -##躏 -##躪 -##身 -##躬 -##躯 -##躲 -##躺 -##軀 -##車 -##軋 -##軌 -##軍 -##軒 -##軟 -##転 -##軸 -##軼 -##軽 -##軾 -##較 -##載 -##輒 -##輓 -##輔 -##輕 -##輛 -##輝 -##輟 -##輩 -##輪 -##輯 -##輸 -##輻 -##輾 -##輿 -##轄 -##轅 -##轆 -##轉 -##轍 -##轎 -##轟 -##车 -##轧 -##轨 -##轩 -##转 -##轭 -##轮 -##软 -##轰 -##轲 -##轴 -##轶 -##轻 -##轼 -##载 -##轿 -##较 -##辄 -##辅 -##辆 -##辇 -##辈 -##辉 -##辊 -##辍 -##辐 -##辑 -##输 -##辕 -##辖 -##辗 -##辘 -##辙 -##辛 -##辜 -##辞 -##辟 -##辣 -##辦 -##辨 -##辩 -##辫 -##辭 -##辮 -##辯 -##辰 -##辱 -##農 -##边 -##辺 -##辻 -##込 -##辽 -##达 -##迁 -##迂 -##迄 -##迅 -##过 -##迈 -##迎 -##运 -##近 -##返 -##还 -##这 -##进 -##远 -##违 -##连 -##迟 -##迢 -##迤 -##迥 -##迦 -##迩 -##迪 -##迫 -##迭 -##述 -##迴 -##迷 -##迸 -##迹 -##迺 -##追 -##退 -##送 -##适 -##逃 -##逅 -##逆 -##选 -##逊 -##逍 -##透 -##逐 -##递 -##途 -##逕 -##逗 -##這 -##通 -##逛 -##逝 -##逞 -##速 -##造 -##逢 -##連 -##逮 -##週 -##進 -##逵 -##逶 -##逸 -##逻 -##逼 -##逾 -##遁 -##遂 -##遅 -##遇 -##遊 -##運 -##遍 -##過 -##遏 -##遐 -##遑 -##遒 -##道 -##達 -##違 -##遗 -##遙 -##遛 -##遜 -##遞 -##遠 -##遢 -##遣 -##遥 -##遨 -##適 -##遭 -##遮 -##遲 -##遴 -##遵 -##遶 -##遷 -##選 -##遺 -##遼 -##遽 -##避 -##邀 -##邁 -##邂 -##邃 -##還 -##邇 -##邈 -##邊 -##邋 -##邏 -##邑 -##邓 -##邕 -##邛 -##邝 -##邢 -##那 -##邦 -##邨 -##邪 -##邬 -##邮 -##邯 -##邰 -##邱 -##邳 -##邵 -##邸 -##邹 -##邺 -##邻 -##郁 -##郅 -##郊 -##郎 -##郑 -##郜 -##郝 -##郡 -##郢 -##郤 -##郦 -##郧 -##部 -##郫 -##郭 -##郴 -##郵 -##郷 -##郸 -##都 -##鄂 -##鄉 -##鄒 -##鄔 -##鄙 -##鄞 -##鄢 -##鄧 -##鄭 -##鄰 -##鄱 -##鄲 -##鄺 -##酉 -##酊 -##酋 -##酌 -##配 -##酐 -##酒 -##酗 -##酚 -##酝 -##酢 -##酣 -##酥 -##酩 -##酪 -##酬 -##酮 -##酯 -##酰 -##酱 -##酵 -##酶 -##酷 -##酸 -##酿 -##醃 -##醇 -##醉 -##醋 -##醍 -##醐 -##醒 -##醚 -##醛 -##醜 -##醞 -##醣 -##醪 -##醫 -##醬 -##醮 -##醯 -##醴 -##醺 -##釀 -##釁 -##采 -##釉 -##释 -##釋 -##里 -##重 -##野 -##量 -##釐 -##金 -##釗 -##釘 -##釜 -##針 -##釣 -##釦 -##釧 -##釵 -##鈀 -##鈉 -##鈍 -##鈎 -##鈔 -##鈕 -##鈞 -##鈣 -##鈦 -##鈪 -##鈴 -##鈺 -##鈾 -##鉀 -##鉄 -##鉅 -##鉉 -##鉑 -##鉗 -##鉚 -##鉛 -##鉤 -##鉴 -##鉻 -##銀 -##銃 -##銅 -##銑 -##銓 -##銖 -##銘 -##銜 -##銬 -##銭 -##銮 -##銳 -##銷 -##銹 -##鋁 -##鋅 -##鋒 -##鋤 -##鋪 -##鋰 -##鋸 -##鋼 -##錄 -##錐 -##錘 -##錚 -##錠 -##錢 -##錦 -##錨 -##錫 -##錮 -##錯 -##録 -##錳 -##錶 -##鍊 -##鍋 -##鍍 -##鍛 -##鍥 -##鍰 -##鍵 -##鍺 -##鍾 -##鎂 -##鎊 -##鎌 -##鎏 -##鎔 -##鎖 -##鎗 -##鎚 -##鎧 -##鎬 -##鎮 -##鎳 -##鏈 -##鏖 -##鏗 -##鏘 -##鏞 -##鏟 -##鏡 -##鏢 -##鏤 -##鏽 -##鐘 -##鐮 -##鐲 -##鐳 -##鐵 -##鐸 -##鐺 -##鑄 -##鑊 -##鑑 -##鑒 -##鑣 -##鑫 -##鑰 -##鑲 -##鑼 -##鑽 -##鑾 -##鑿 -##针 -##钉 -##钊 -##钎 -##钏 -##钒 -##钓 -##钗 -##钙 -##钛 -##钜 -##钝 -##钞 -##钟 -##钠 -##钡 -##钢 -##钣 -##钤 -##钥 -##钦 -##钧 -##钨 -##钩 -##钮 -##钯 -##钰 -##钱 -##钳 -##钴 -##钵 -##钺 -##钻 -##钼 -##钾 -##钿 -##铀 -##铁 -##铂 -##铃 -##铄 -##铅 -##铆 -##铉 -##铎 -##铐 -##铛 -##铜 -##铝 -##铠 -##铡 -##铢 -##铣 -##铤 -##铨 -##铩 -##铬 -##铭 -##铮 -##铰 -##铲 -##铵 -##银 -##铸 -##铺 -##链 -##铿 -##销 -##锁 -##锂 -##锄 -##锅 -##锆 -##锈 -##锉 -##锋 -##锌 -##锏 -##锐 -##锑 -##错 -##锚 -##锟 -##锡 -##锢 -##锣 -##锤 -##锥 -##锦 -##锭 -##键 -##锯 -##锰 -##锲 -##锵 -##锹 -##锺 -##锻 -##镀 -##镁 -##镂 -##镇 -##镉 -##镌 -##镍 -##镐 -##镑 -##镕 -##镖 -##镗 -##镛 -##镜 -##镣 -##镭 -##镯 -##镰 -##镳 -##镶 -##長 -##长 -##門 -##閃 -##閉 -##開 -##閎 -##閏 -##閑 -##閒 -##間 -##閔 -##閘 -##閡 -##関 -##閣 -##閥 -##閨 -##閩 -##閱 -##閲 -##閹 -##閻 -##閾 -##闆 -##闇 -##闊 -##闌 -##闍 -##闔 -##闕 -##闖 -##闘 -##關 -##闡 -##闢 -##门 -##闪 -##闫 -##闭 -##问 -##闯 -##闰 -##闲 -##间 -##闵 -##闷 -##闸 -##闹 -##闺 -##闻 -##闽 -##闾 -##阀 -##阁 -##阂 -##阅 -##阆 -##阇 -##阈 -##阉 -##阎 -##阐 -##阑 -##阔 -##阕 -##阖 -##阙 -##阚 -##阜 -##队 -##阡 -##阪 -##阮 -##阱 -##防 -##阳 -##阴 -##阵 -##阶 -##阻 -##阿 -##陀 -##陂 -##附 -##际 -##陆 -##陇 -##陈 -##陋 -##陌 -##降 -##限 -##陕 -##陛 -##陝 -##陞 -##陟 -##陡 -##院 -##陣 -##除 -##陨 -##险 -##陪 -##陰 -##陲 -##陳 -##陵 -##陶 -##陷 -##陸 -##険 -##陽 -##隅 -##隆 -##隈 -##隊 -##隋 -##隍 -##階 -##随 -##隐 -##隔 -##隕 -##隘 -##隙 -##際 -##障 -##隠 -##隣 -##隧 -##隨 -##險 -##隱 -##隴 -##隶 -##隸 -##隻 -##隼 -##隽 -##难 -##雀 -##雁 -##雄 -##雅 -##集 -##雇 -##雉 -##雋 -##雌 -##雍 -##雎 -##雏 -##雑 -##雒 -##雕 -##雖 -##雙 -##雛 -##雜 -##雞 -##離 -##難 -##雨 -##雪 -##雯 -##雰 -##雲 -##雳 -##零 -##雷 -##雹 -##電 -##雾 -##需 -##霁 -##霄 -##霆 -##震 -##霈 -##霉 -##霊 -##霍 -##霎 -##霏 -##霑 -##霓 -##霖 -##霜 -##霞 -##霧 -##霭 -##霰 -##露 -##霸 -##霹 -##霽 -##霾 -##靂 -##靄 -##靈 -##青 -##靓 -##靖 -##静 -##靚 -##靛 -##靜 -##非 -##靠 -##靡 -##面 -##靥 -##靦 -##革 -##靳 -##靴 -##靶 -##靼 -##鞅 -##鞋 -##鞍 -##鞏 -##鞑 -##鞘 -##鞠 -##鞣 -##鞦 -##鞭 -##韆 -##韋 -##韌 -##韓 -##韜 -##韦 -##韧 -##韩 -##韬 -##韭 -##音 -##韵 -##韶 -##韻 -##響 -##頁 -##頂 -##頃 -##項 -##順 -##須 -##頌 -##預 -##頑 -##頒 -##頓 -##頗 -##領 -##頜 -##頡 -##頤 -##頫 -##頭 -##頰 -##頷 -##頸 -##頹 -##頻 -##頼 -##顆 -##題 -##額 -##顎 -##顏 -##顔 -##願 -##顛 -##類 -##顧 -##顫 -##顯 -##顱 -##顴 -##页 -##顶 -##顷 -##项 -##顺 -##须 -##顼 -##顽 -##顾 -##顿 -##颁 -##颂 -##预 -##颅 -##领 -##颇 -##颈 -##颉 -##颊 -##颌 -##颍 -##颐 -##频 -##颓 -##颔 -##颖 -##颗 -##题 -##颚 -##颛 -##颜 -##额 -##颞 -##颠 -##颡 -##颢 -##颤 -##颦 -##颧 -##風 -##颯 -##颱 -##颳 -##颶 -##颼 -##飄 -##飆 -##风 -##飒 -##飓 -##飕 -##飘 -##飙 -##飚 -##飛 -##飞 -##食 -##飢 -##飨 -##飩 -##飪 -##飯 -##飲 -##飼 -##飽 -##飾 -##餃 -##餅 -##餉 -##養 -##餌 -##餐 -##餒 -##餓 -##餘 -##餚 -##餛 -##餞 -##餡 -##館 -##餮 -##餵 -##餾 -##饅 -##饈 -##饋 -##饌 -##饍 -##饑 -##饒 -##饕 -##饗 -##饞 -##饥 -##饨 -##饪 -##饬 -##饭 -##饮 -##饯 -##饰 -##饱 -##饲 -##饴 -##饵 -##饶 -##饷 -##饺 -##饼 -##饽 -##饿 -##馀 -##馁 -##馄 -##馅 -##馆 -##馈 -##馋 -##馍 -##馏 -##馒 -##馔 -##首 -##馗 -##香 -##馥 -##馨 -##馬 -##馭 -##馮 -##馳 -##馴 -##駁 -##駄 -##駅 -##駆 -##駐 -##駒 -##駕 -##駛 -##駝 -##駭 -##駱 -##駿 -##騁 -##騎 -##騏 -##験 -##騙 -##騨 -##騰 -##騷 -##驀 -##驅 -##驊 -##驍 -##驒 -##驕 -##驗 -##驚 -##驛 -##驟 -##驢 -##驥 -##马 -##驭 -##驮 -##驯 -##驰 -##驱 -##驳 -##驴 -##驶 -##驷 -##驸 -##驹 -##驻 -##驼 -##驾 -##驿 -##骁 -##骂 -##骄 -##骅 -##骆 -##骇 -##骈 -##骊 -##骋 -##验 -##骏 -##骐 -##骑 -##骗 -##骚 -##骛 -##骜 -##骞 -##骠 -##骡 -##骤 -##骥 -##骧 -##骨 -##骯 -##骰 -##骶 -##骷 -##骸 -##骼 -##髂 -##髅 -##髋 -##髏 -##髒 -##髓 -##體 -##髖 -##高 -##髦 -##髪 -##髮 -##髯 -##髻 -##鬃 -##鬆 -##鬍 -##鬓 -##鬚 -##鬟 -##鬢 -##鬣 -##鬥 -##鬧 -##鬱 -##鬼 -##魁 -##魂 -##魄 -##魅 -##魇 -##魍 -##魏 -##魔 -##魘 -##魚 -##魯 -##魷 -##鮑 -##鮨 -##鮪 -##鮭 -##鮮 -##鯉 -##鯊 -##鯖 -##鯛 -##鯨 -##鯰 -##鯽 -##鰍 -##鰓 -##鰭 -##鰲 -##鰻 -##鰾 -##鱈 -##鱉 -##鱔 -##鱗 -##鱷 -##鱸 -##鱼 -##鱿 -##鲁 -##鲈 -##鲍 -##鲑 -##鲛 -##鲜 -##鲟 -##鲢 -##鲤 -##鲨 -##鲫 -##鲱 -##鲲 -##鲶 -##鲷 -##鲸 -##鳃 -##鳄 -##鳅 -##鳌 -##鳍 -##鳕 -##鳖 -##鳗 -##鳝 -##鳞 -##鳥 -##鳩 -##鳳 -##鳴 -##鳶 -##鴉 -##鴕 -##鴛 -##鴦 -##鴨 -##鴻 -##鴿 -##鵑 -##鵜 -##鵝 -##鵡 -##鵬 -##鵰 -##鵲 -##鶘 -##鶩 -##鶯 -##鶴 -##鷗 -##鷲 -##鷹 -##鷺 -##鸚 -##鸞 -##鸟 -##鸠 -##鸡 -##鸢 -##鸣 -##鸥 -##鸦 -##鸨 -##鸪 -##鸭 -##鸯 -##鸳 -##鸵 -##鸽 -##鸾 -##鸿 -##鹂 -##鹃 -##鹄 -##鹅 -##鹈 -##鹉 -##鹊 -##鹌 -##鹏 -##鹑 -##鹕 -##鹘 -##鹜 -##鹞 -##鹤 -##鹦 -##鹧 -##鹫 -##鹭 -##鹰 -##鹳 -##鹵 -##鹹 -##鹼 -##鹽 -##鹿 -##麂 -##麋 -##麒 -##麓 -##麗 -##麝 -##麟 -##麥 -##麦 -##麩 -##麴 -##麵 -##麸 -##麺 -##麻 -##麼 -##麽 -##麾 -##黃 -##黄 -##黍 -##黎 -##黏 -##黑 -##黒 -##黔 -##默 -##黛 -##黜 -##黝 -##點 -##黠 -##黨 -##黯 -##黴 -##鼋 -##鼎 -##鼐 -##鼓 -##鼠 -##鼬 -##鼹 -##鼻 -##鼾 -##齁 -##齊 -##齋 -##齐 -##齒 -##齡 -##齢 -##齣 -##齦 -##齿 -##龄 -##龅 -##龈 -##龊 -##龋 -##龌 -##龍 -##龐 -##龔 -##龕 -##龙 -##龚 -##龛 -##龜 -##龟 -##︰ -##︱ -##︶ -##︿ -##﹁ -##﹂ -##﹍ -##﹏ -##﹐ -##﹑ -##﹒ -##﹔ -##﹕ -##﹖ -##﹗ -##﹙ -##﹚ -##﹝ -##﹞ -##﹡ -##﹣ -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##, -##- -##. -##/ -##: -##; -##< -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##f -##h -##j -##u -##w -##z -##{ -##} -##。 -##「 -##」 -##、 -##・ -##ッ -##ー -##イ -##ク -##シ -##ス -##ト -##ノ -##フ -##ラ -##ル -##ン -##゙ -##゚ -## ̄ -##¥ -##👍 -##🔥 -##😂 -##😎 diff --git a/TensorFlow/built-in/nlp/Albert_ZH_for_TensorFlow/albert_config/vocab.txt b/TensorFlow/built-in/nlp/Albert_ZH_for_TensorFlow/albert_config/vocab.txt deleted file mode 100644 index ca4f9781030019ab9b253c6dcb8c7878b6dc87a5..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/Albert_ZH_for_TensorFlow/albert_config/vocab.txt +++ /dev/null @@ -1,21128 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] - - -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -£ -¤ -¥ -§ -© -« -® -° -± -² -³ -µ -· -¹ -º -» -¼ -× -ß -æ -÷ -ø -đ -ŋ -ɔ -ə -ɡ -ʰ -ˇ -ˈ -ˊ -ˋ -ˍ -ː -˙ -˚ -ˢ -α -β -γ -δ -ε -η -θ -ι -κ -λ -μ -ν -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -а -б -в -г -д -е -ж -з -и -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -ы -ь -я -і -ا -ب -ة -ت -د -ر -س -ع -ل -م -ن -ه -و -ي -۩ -ก -ง -น -ม -ย -ร -อ -า -เ -๑ -་ -ღ -ᄀ -ᄁ -ᄂ -ᄃ -ᄅ -ᄆ -ᄇ -ᄈ -ᄉ -ᄋ -ᄌ -ᄎ -ᄏ -ᄐ -ᄑ -ᄒ -ᅡ -ᅢ -ᅣ -ᅥ -ᅦ -ᅧ -ᅨ -ᅩ -ᅪ -ᅬ -ᅭ -ᅮ -ᅯ -ᅲ -ᅳ -ᅴ -ᅵ -ᆨ -ᆫ -ᆯ -ᆷ -ᆸ -ᆺ -ᆻ -ᆼ -ᗜ -ᵃ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵘ -‖ -„ -† -• -‥ -‧ -
 -‰ -′ -″ -‹ -› -※ -‿ -⁄ -ⁱ -⁺ -ⁿ -₁ -₂ -₃ -₄ -€ -℃ -№ -™ -ⅰ -ⅱ -ⅲ -ⅳ -ⅴ -← -↑ -→ -↓ -↔ -↗ -↘ -⇒ -∀ -− -∕ -∙ -√ -∞ -∟ -∠ -∣ -∥ -∩ -∮ -∶ -∼ -∽ -≈ -≒ -≡ -≤ -≥ -≦ -≧ -≪ -≫ -⊙ -⋅ -⋈ -⋯ -⌒ -① -② -③ -④ -⑤ -⑥ -⑦ -⑧ -⑨ -⑩ -⑴ -⑵ -⑶ -⑷ -⑸ -⒈ -⒉ -⒊ -⒋ -ⓒ -ⓔ -ⓘ -─ -━ -│ -┃ -┅ -┆ -┊ -┌ -└ -├ -┣ -═ -║ -╚ -╞ -╠ -╭ -╮ -╯ -╰ -╱ -╳ -▂ -▃ -▅ -▇ -█ -▉ -▋ -▌ -▍ -▎ -■ -□ -▪ -▫ -▬ -▲ -△ -▶ -► -▼ -▽ -◆ -◇ -○ -◎ -● -◕ -◠ -◢ -◤ -☀ -★ -☆ -☕ -☞ -☺ -☼ -♀ -♂ -♠ -♡ -♣ -♥ -♦ -♪ -♫ -♬ -✈ -✔ -✕ -✖ -✦ -✨ -✪ -✰ -✿ -❀ -❤ -➜ -➤ -⦿ -、 -。 -〃 -々 -〇 -〈 -〉 -《 -》 -「 -」 -『 -』 -【 -】 -〓 -〔 -〕 -〖 -〗 -〜 -〝 -〞 -ぁ -あ -ぃ -い -う -ぇ -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -っ -つ -て -と -な -に -ぬ -ね -の -は -ひ -ふ -へ -ほ -ま -み -む -め -も -ゃ -や -ゅ -ゆ -ょ -よ -ら -り -る -れ -ろ -わ -を -ん -゜ -ゝ -ァ -ア -ィ -イ -ゥ -ウ -ェ -エ -ォ -オ -カ -キ -ク -ケ -コ -サ -シ -ス -セ -ソ -タ -チ -ッ -ツ -テ -ト -ナ -ニ -ヌ -ネ -ノ -ハ -ヒ -フ -ヘ -ホ -マ -ミ -ム -メ -モ -ャ -ヤ -ュ -ユ -ョ -ヨ -ラ -リ -ル -レ -ロ -ワ -ヲ -ン -ヶ -・ -ー -ヽ -ㄅ -ㄆ -ㄇ -ㄉ -ㄋ -ㄌ -ㄍ -ㄎ -ㄏ -ㄒ -ㄚ -ㄛ -ㄞ -ㄟ -ㄢ -ㄤ -ㄥ -ㄧ -ㄨ -ㆍ -㈦ -㊣ -㎡ -㗎 -一 -丁 -七 -万 -丈 -三 -上 -下 -不 -与 -丐 -丑 -专 -且 -丕 -世 -丘 -丙 -业 -丛 -东 -丝 -丞 -丟 -両 -丢 -两 -严 -並 -丧 -丨 -个 -丫 -中 -丰 -串 -临 -丶 -丸 -丹 -为 -主 -丼 -丽 -举 -丿 -乂 -乃 -久 -么 -义 -之 -乌 -乍 -乎 -乏 -乐 -乒 -乓 -乔 -乖 -乗 -乘 -乙 -乜 -九 -乞 -也 -习 -乡 -书 -乩 -买 -乱 -乳 -乾 -亀 -亂 -了 -予 -争 -事 -二 -于 -亏 -云 -互 -五 -井 -亘 -亙 -亚 -些 -亜 -亞 -亟 -亡 -亢 -交 -亥 -亦 -产 -亨 -亩 -享 -京 -亭 -亮 -亲 -亳 -亵 -人 -亿 -什 -仁 -仃 -仄 -仅 -仆 -仇 -今 -介 -仍 -从 -仏 -仑 -仓 -仔 -仕 -他 -仗 -付 -仙 -仝 -仞 -仟 -代 -令 -以 -仨 -仪 -们 -仮 -仰 -仲 -件 -价 -任 -份 -仿 -企 -伉 -伊 -伍 -伎 -伏 -伐 -休 -伕 -众 -优 -伙 -会 -伝 -伞 -伟 -传 -伢 -伤 -伦 -伪 -伫 -伯 -估 -伴 -伶 -伸 -伺 -似 -伽 -佃 -但 -佇 -佈 -位 -低 -住 -佐 -佑 -体 -佔 -何 -佗 -佘 -余 -佚 -佛 -作 -佝 -佞 -佟 -你 -佢 -佣 -佤 -佥 -佩 -佬 -佯 -佰 -佳 -併 -佶 -佻 -佼 -使 -侃 -侄 -來 -侈 -例 -侍 -侏 -侑 -侖 -侗 -供 -依 -侠 -価 -侣 -侥 -侦 -侧 -侨 -侬 -侮 -侯 -侵 -侶 -侷 -便 -係 -促 -俄 -俊 -俎 -俏 -俐 -俑 -俗 -俘 -俚 -保 -俞 -俟 -俠 -信 -俨 -俩 -俪 -俬 -俭 -修 -俯 -俱 -俳 -俸 -俺 -俾 -倆 -倉 -個 -倌 -倍 -倏 -們 -倒 -倔 -倖 -倘 -候 -倚 -倜 -借 -倡 -値 -倦 -倩 -倪 -倫 -倬 -倭 -倶 -债 -值 -倾 -偃 -假 -偈 -偉 -偌 -偎 -偏 -偕 -做 -停 -健 -側 -偵 -偶 -偷 -偻 -偽 -偿 -傀 -傅 -傍 -傑 -傘 -備 -傚 -傢 -傣 -傥 -储 -傩 -催 -傭 -傲 -傳 -債 -傷 -傻 -傾 -僅 -働 -像 -僑 -僕 -僖 -僚 -僥 -僧 -僭 -僮 -僱 -僵 -價 -僻 -儀 -儂 -億 -儆 -儉 -儋 -儒 -儕 -儘 -償 -儡 -優 -儲 -儷 -儼 -儿 -兀 -允 -元 -兄 -充 -兆 -兇 -先 -光 -克 -兌 -免 -児 -兑 -兒 -兔 -兖 -党 -兜 -兢 -入 -內 -全 -兩 -八 -公 -六 -兮 -兰 -共 -兲 -关 -兴 -兵 -其 -具 -典 -兹 -养 -兼 -兽 -冀 -内 -円 -冇 -冈 -冉 -冊 -册 -再 -冏 -冒 -冕 -冗 -写 -军 -农 -冠 -冢 -冤 -冥 -冨 -冪 -冬 -冯 -冰 -冲 -决 -况 -冶 -冷 -冻 -冼 -冽 -冾 -净 -凄 -准 -凇 -凈 -凉 -凋 -凌 -凍 -减 -凑 -凛 -凜 -凝 -几 -凡 -凤 -処 -凪 -凭 -凯 -凰 -凱 -凳 -凶 -凸 -凹 -出 -击 -函 -凿 -刀 -刁 -刃 -分 -切 -刈 -刊 -刍 -刎 -刑 -划 -列 -刘 -则 -刚 -创 -初 -删 -判 -別 -刨 -利 -刪 -别 -刮 -到 -制 -刷 -券 -刹 -刺 -刻 -刽 -剁 -剂 -剃 -則 -剉 -削 -剋 -剌 -前 -剎 -剐 -剑 -剔 -剖 -剛 -剜 -剝 -剣 -剤 -剥 -剧 -剩 -剪 -副 -割 -創 -剷 -剽 -剿 -劃 -劇 -劈 -劉 -劊 -劍 -劏 -劑 -力 -劝 -办 -功 -加 -务 -劣 -动 -助 -努 -劫 -劭 -励 -劲 -劳 -労 -劵 -効 -劾 -势 -勁 -勃 -勇 -勉 -勋 -勐 -勒 -動 -勖 -勘 -務 -勛 -勝 -勞 -募 -勢 -勤 -勧 -勳 -勵 -勸 -勺 -勻 -勾 -勿 -匀 -包 -匆 -匈 -匍 -匐 -匕 -化 -北 -匙 -匝 -匠 -匡 -匣 -匪 -匮 -匯 -匱 -匹 -区 -医 -匾 -匿 -區 -十 -千 -卅 -升 -午 -卉 -半 -卍 -华 -协 -卑 -卒 -卓 -協 -单 -卖 -南 -単 -博 -卜 -卞 -卟 -占 -卡 -卢 -卤 -卦 -卧 -卫 -卮 -卯 -印 -危 -即 -却 -卵 -卷 -卸 -卻 -卿 -厂 -厄 -厅 -历 -厉 -压 -厌 -厕 -厘 -厚 -厝 -原 -厢 -厥 -厦 -厨 -厩 -厭 -厮 -厲 -厳 -去 -县 -叁 -参 -參 -又 -叉 -及 -友 -双 -反 -収 -发 -叔 -取 -受 -变 -叙 -叛 -叟 -叠 -叡 -叢 -口 -古 -句 -另 -叨 -叩 -只 -叫 -召 -叭 -叮 -可 -台 -叱 -史 -右 -叵 -叶 -号 -司 -叹 -叻 -叼 -叽 -吁 -吃 -各 -吆 -合 -吉 -吊 -吋 -同 -名 -后 -吏 -吐 -向 -吒 -吓 -吕 -吖 -吗 -君 -吝 -吞 -吟 -吠 -吡 -否 -吧 -吨 -吩 -含 -听 -吭 -吮 -启 -吱 -吳 -吴 -吵 -吶 -吸 -吹 -吻 -吼 -吽 -吾 -呀 -呂 -呃 -呆 -呈 -告 -呋 -呎 -呐 -呓 -呕 -呗 -员 -呛 -呜 -呢 -呤 -呦 -周 -呱 -呲 -味 -呵 -呷 -呸 -呻 -呼 -命 -咀 -咁 -咂 -咄 -咆 -咋 -和 -咎 -咏 -咐 -咒 -咔 -咕 -咖 -咗 -咘 -咙 -咚 -咛 -咣 -咤 -咦 -咧 -咨 -咩 -咪 -咫 -咬 -咭 -咯 -咱 -咲 -咳 -咸 -咻 -咽 -咿 -哀 -品 -哂 -哄 -哆 -哇 -哈 -哉 -哋 -哌 -响 -哎 -哏 -哐 -哑 -哒 -哔 -哗 -哟 -員 -哥 -哦 -哧 -哨 -哩 -哪 -哭 -哮 -哲 -哺 -哼 -哽 -唁 -唄 -唆 -唇 -唉 -唏 -唐 -唑 -唔 -唠 -唤 -唧 -唬 -售 -唯 -唰 -唱 -唳 -唷 -唸 -唾 -啃 -啄 -商 -啉 -啊 -問 -啓 -啕 -啖 -啜 -啞 -啟 -啡 -啤 -啥 -啦 -啧 -啪 -啫 -啬 -啮 -啰 -啱 -啲 -啵 -啶 -啷 -啸 -啻 -啼 -啾 -喀 -喂 -喃 -善 -喆 -喇 -喉 -喊 -喋 -喎 -喏 -喔 -喘 -喙 -喚 -喜 -喝 -喟 -喧 -喪 -喫 -喬 -單 -喰 -喱 -喲 -喳 -喵 -営 -喷 -喹 -喺 -喻 -喽 -嗅 -嗆 -嗇 -嗎 -嗑 -嗒 -嗓 -嗔 -嗖 -嗚 -嗜 -嗝 -嗟 -嗡 -嗣 -嗤 -嗦 -嗨 -嗪 -嗬 -嗯 -嗰 -嗲 -嗳 -嗶 -嗷 -嗽 -嘀 -嘅 -嘆 -嘈 -嘉 -嘌 -嘍 -嘎 -嘔 -嘖 -嘗 -嘘 -嘚 -嘛 -嘜 -嘞 -嘟 -嘢 -嘣 -嘤 -嘧 -嘩 -嘭 -嘮 -嘯 -嘰 -嘱 -嘲 -嘴 -嘶 -嘸 -嘹 -嘻 -嘿 -噁 -噌 -噎 -噓 -噔 -噗 -噙 -噜 -噠 -噢 -噤 -器 -噩 -噪 -噬 -噱 -噴 -噶 -噸 -噹 -噻 -噼 -嚀 -嚇 -嚎 -嚏 -嚐 -嚓 -嚕 -嚟 -嚣 -嚥 -嚨 -嚮 -嚴 -嚷 -嚼 -囂 -囉 -囊 -囍 -囑 -囔 -囗 -囚 -四 -囝 -回 -囟 -因 -囡 -团 -団 -囤 -囧 -囪 -囫 -园 -困 -囱 -囲 -図 -围 -囹 -固 -国 -图 -囿 -圃 -圄 -圆 -圈 -國 -圍 -圏 -園 -圓 -圖 -團 -圜 -土 -圣 -圧 -在 -圩 -圭 -地 -圳 -场 -圻 -圾 -址 -坂 -均 -坊 -坍 -坎 -坏 -坐 -坑 -块 -坚 -坛 -坝 -坞 -坟 -坠 -坡 -坤 -坦 -坨 -坪 -坯 -坳 -坵 -坷 -垂 -垃 -垄 -型 -垒 -垚 -垛 -垠 -垢 -垣 -垦 -垩 -垫 -垭 -垮 -垵 -埂 -埃 -埋 -城 -埔 -埕 -埗 -域 -埠 -埤 -埵 -執 -埸 -培 -基 -埼 -堀 -堂 -堃 -堅 -堆 -堇 -堑 -堕 -堙 -堡 -堤 -堪 -堯 -堰 -報 -場 -堵 -堺 -堿 -塊 -塌 -塑 -塔 -塗 -塘 -塚 -塞 -塢 -塩 -填 -塬 -塭 -塵 -塾 -墀 -境 -墅 -墉 -墊 -墒 -墓 -増 -墘 -墙 -墜 -增 -墟 -墨 -墩 -墮 -墳 -墻 -墾 -壁 -壅 -壆 -壇 -壊 -壑 -壓 -壕 -壘 -壞 -壟 -壢 -壤 -壩 -士 -壬 -壮 -壯 -声 -売 -壳 -壶 -壹 -壺 -壽 -处 -备 -変 -复 -夏 -夔 -夕 -外 -夙 -多 -夜 -够 -夠 -夢 -夥 -大 -天 -太 -夫 -夭 -央 -夯 -失 -头 -夷 -夸 -夹 -夺 -夾 -奂 -奄 -奇 -奈 -奉 -奋 -奎 -奏 -奐 -契 -奔 -奕 -奖 -套 -奘 -奚 -奠 -奢 -奥 -奧 -奪 -奬 -奮 -女 -奴 -奶 -奸 -她 -好 -如 -妃 -妄 -妆 -妇 -妈 -妊 -妍 -妒 -妓 -妖 -妘 -妙 -妝 -妞 -妣 -妤 -妥 -妨 -妩 -妪 -妮 -妲 -妳 -妹 -妻 -妾 -姆 -姉 -姊 -始 -姍 -姐 -姑 -姒 -姓 -委 -姗 -姚 -姜 -姝 -姣 -姥 -姦 -姨 -姪 -姫 -姬 -姹 -姻 -姿 -威 -娃 -娄 -娅 -娆 -娇 -娉 -娑 -娓 -娘 -娛 -娜 -娟 -娠 -娣 -娥 -娩 -娱 -娲 -娴 -娶 -娼 -婀 -婁 -婆 -婉 -婊 -婕 -婚 -婢 -婦 -婧 -婪 -婭 -婴 -婵 -婶 -婷 -婺 -婿 -媒 -媚 -媛 -媞 -媧 -媲 -媳 -媽 -媾 -嫁 -嫂 -嫉 -嫌 -嫑 -嫔 -嫖 -嫘 -嫚 -嫡 -嫣 -嫦 -嫩 -嫲 -嫵 -嫻 -嬅 -嬉 -嬌 -嬗 -嬛 -嬢 -嬤 -嬪 -嬰 -嬴 -嬷 -嬸 -嬿 -孀 -孃 -子 -孑 -孔 -孕 -孖 -字 -存 -孙 -孚 -孛 -孜 -孝 -孟 -孢 -季 -孤 -学 -孩 -孪 -孫 -孬 -孰 -孱 -孳 -孵 -學 -孺 -孽 -孿 -宁 -它 -宅 -宇 -守 -安 -宋 -完 -宏 -宓 -宕 -宗 -官 -宙 -定 -宛 -宜 -宝 -实 -実 -宠 -审 -客 -宣 -室 -宥 -宦 -宪 -宫 -宮 -宰 -害 -宴 -宵 -家 -宸 -容 -宽 -宾 -宿 -寂 -寄 -寅 -密 -寇 -富 -寐 -寒 -寓 -寛 -寝 -寞 -察 -寡 -寢 -寥 -實 -寧 -寨 -審 -寫 -寬 -寮 -寰 -寵 -寶 -寸 -对 -寺 -寻 -导 -対 -寿 -封 -専 -射 -将 -將 -專 -尉 -尊 -尋 -對 -導 -小 -少 -尔 -尕 -尖 -尘 -尚 -尝 -尤 -尧 -尬 -就 -尴 -尷 -尸 -尹 -尺 -尻 -尼 -尽 -尾 -尿 -局 -屁 -层 -屄 -居 -屆 -屈 -屉 -届 -屋 -屌 -屍 -屎 -屏 -屐 -屑 -展 -屜 -属 -屠 -屡 -屢 -層 -履 -屬 -屯 -山 -屹 -屿 -岀 -岁 -岂 -岌 -岐 -岑 -岔 -岖 -岗 -岘 -岙 -岚 -岛 -岡 -岩 -岫 -岬 -岭 -岱 -岳 -岷 -岸 -峇 -峋 -峒 -峙 -峡 -峤 -峥 -峦 -峨 -峪 -峭 -峯 -峰 -峴 -島 -峻 -峽 -崁 -崂 -崆 -崇 -崎 -崑 -崔 -崖 -崗 -崙 -崛 -崧 -崩 -崭 -崴 -崽 -嵇 -嵊 -嵋 -嵌 -嵐 -嵘 -嵩 -嵬 -嵯 -嶂 -嶄 -嶇 -嶋 -嶙 -嶺 -嶼 -嶽 -巅 -巍 -巒 -巔 -巖 -川 -州 -巡 -巢 -工 -左 -巧 -巨 -巩 -巫 -差 -己 -已 -巳 -巴 -巷 -巻 -巽 -巾 -巿 -币 -市 -布 -帅 -帆 -师 -希 -帐 -帑 -帕 -帖 -帘 -帚 -帛 -帜 -帝 -帥 -带 -帧 -師 -席 -帮 -帯 -帰 -帳 -帶 -帷 -常 -帼 -帽 -幀 -幂 -幄 -幅 -幌 -幔 -幕 -幟 -幡 -幢 -幣 -幫 -干 -平 -年 -并 -幸 -幹 -幺 -幻 -幼 -幽 -幾 -广 -庁 -広 -庄 -庆 -庇 -床 -序 -庐 -库 -应 -底 -庖 -店 -庙 -庚 -府 -庞 -废 -庠 -度 -座 -庫 -庭 -庵 -庶 -康 -庸 -庹 -庾 -廁 -廂 -廃 -廈 -廉 -廊 -廓 -廖 -廚 -廝 -廟 -廠 -廢 -廣 -廬 -廳 -延 -廷 -建 -廿 -开 -弁 -异 -弃 -弄 -弈 -弊 -弋 -式 -弑 -弒 -弓 -弔 -引 -弗 -弘 -弛 -弟 -张 -弥 -弦 -弧 -弩 -弭 -弯 -弱 -張 -強 -弹 -强 -弼 -弾 -彅 -彆 -彈 -彌 -彎 -归 -当 -录 -彗 -彙 -彝 -形 -彤 -彥 -彦 -彧 -彩 -彪 -彫 -彬 -彭 -彰 -影 -彷 -役 -彻 -彼 -彿 -往 -征 -径 -待 -徇 -很 -徉 -徊 -律 -後 -徐 -徑 -徒 -従 -徕 -得 -徘 -徙 -徜 -從 -徠 -御 -徨 -復 -循 -徬 -微 -徳 -徴 -徵 -德 -徹 -徼 -徽 -心 -必 -忆 -忌 -忍 -忏 -忐 -忑 -忒 -忖 -志 -忘 -忙 -応 -忠 -忡 -忤 -忧 -忪 -快 -忱 -念 -忻 -忽 -忿 -怀 -态 -怂 -怅 -怆 -怎 -怏 -怒 -怔 -怕 -怖 -怙 -怜 -思 -怠 -怡 -急 -怦 -性 -怨 -怪 -怯 -怵 -总 -怼 -恁 -恃 -恆 -恋 -恍 -恐 -恒 -恕 -恙 -恚 -恢 -恣 -恤 -恥 -恨 -恩 -恪 -恫 -恬 -恭 -息 -恰 -恳 -恵 -恶 -恸 -恺 -恻 -恼 -恿 -悄 -悅 -悉 -悌 -悍 -悔 -悖 -悚 -悟 -悠 -患 -悦 -您 -悩 -悪 -悬 -悯 -悱 -悲 -悴 -悵 -悶 -悸 -悻 -悼 -悽 -情 -惆 -惇 -惊 -惋 -惑 -惕 -惘 -惚 -惜 -惟 -惠 -惡 -惦 -惧 -惨 -惩 -惫 -惬 -惭 -惮 -惯 -惰 -惱 -想 -惴 -惶 -惹 -惺 -愁 -愆 -愈 -愉 -愍 -意 -愕 -愚 -愛 -愜 -感 -愣 -愤 -愧 -愫 -愷 -愿 -慄 -慈 -態 -慌 -慎 -慑 -慕 -慘 -慚 -慟 -慢 -慣 -慧 -慨 -慫 -慮 -慰 -慳 -慵 -慶 -慷 -慾 -憂 -憊 -憋 -憎 -憐 -憑 -憔 -憚 -憤 -憧 -憨 -憩 -憫 -憬 -憲 -憶 -憾 -懂 -懇 -懈 -應 -懊 -懋 -懑 -懒 -懦 -懲 -懵 -懶 -懷 -懸 -懺 -懼 -懾 -懿 -戀 -戈 -戊 -戌 -戍 -戎 -戏 -成 -我 -戒 -戕 -或 -战 -戚 -戛 -戟 -戡 -戦 -截 -戬 -戮 -戰 -戲 -戳 -戴 -戶 -户 -戸 -戻 -戾 -房 -所 -扁 -扇 -扈 -扉 -手 -才 -扎 -扑 -扒 -打 -扔 -払 -托 -扛 -扣 -扦 -执 -扩 -扪 -扫 -扬 -扭 -扮 -扯 -扰 -扱 -扳 -扶 -批 -扼 -找 -承 -技 -抄 -抉 -把 -抑 -抒 -抓 -投 -抖 -抗 -折 -抚 -抛 -抜 -択 -抟 -抠 -抡 -抢 -护 -报 -抨 -披 -抬 -抱 -抵 -抹 -押 -抽 -抿 -拂 -拄 -担 -拆 -拇 -拈 -拉 -拋 -拌 -拍 -拎 -拐 -拒 -拓 -拔 -拖 -拗 -拘 -拙 -拚 -招 -拜 -拟 -拡 -拢 -拣 -拥 -拦 -拧 -拨 -择 -括 -拭 -拮 -拯 -拱 -拳 -拴 -拷 -拼 -拽 -拾 -拿 -持 -挂 -指 -挈 -按 -挎 -挑 -挖 -挙 -挚 -挛 -挝 -挞 -挟 -挠 -挡 -挣 -挤 -挥 -挨 -挪 -挫 -振 -挲 -挹 -挺 -挽 -挾 -捂 -捅 -捆 -捉 -捋 -捌 -捍 -捎 -捏 -捐 -捕 -捞 -损 -捡 -换 -捣 -捧 -捨 -捩 -据 -捱 -捲 -捶 -捷 -捺 -捻 -掀 -掂 -掃 -掇 -授 -掉 -掌 -掏 -掐 -排 -掖 -掘 -掙 -掛 -掠 -採 -探 -掣 -接 -控 -推 -掩 -措 -掬 -掰 -掲 -掳 -掴 -掷 -掸 -掺 -揀 -揃 -揄 -揆 -揉 -揍 -描 -提 -插 -揖 -揚 -換 -握 -揣 -揩 -揪 -揭 -揮 -援 -揶 -揸 -揹 -揽 -搀 -搁 -搂 -搅 -損 -搏 -搐 -搓 -搔 -搖 -搗 -搜 -搞 -搡 -搪 -搬 -搭 -搵 -搶 -携 -搽 -摀 -摁 -摄 -摆 -摇 -摈 -摊 -摒 -摔 -摘 -摞 -摟 -摧 -摩 -摯 -摳 -摸 -摹 -摺 -摻 -撂 -撃 -撅 -撇 -撈 -撐 -撑 -撒 -撓 -撕 -撚 -撞 -撤 -撥 -撩 -撫 -撬 -播 -撮 -撰 -撲 -撵 -撷 -撸 -撻 -撼 -撿 -擀 -擁 -擂 -擄 -擅 -擇 -擊 -擋 -操 -擎 -擒 -擔 -擘 -據 -擞 -擠 -擡 -擢 -擦 -擬 -擰 -擱 -擲 -擴 -擷 -擺 -擼 -擾 -攀 -攏 -攒 -攔 -攘 -攙 -攜 -攝 -攞 -攢 -攣 -攤 -攥 -攪 -攫 -攬 -支 -收 -攸 -改 -攻 -放 -政 -故 -效 -敌 -敍 -敎 -敏 -救 -敕 -敖 -敗 -敘 -教 -敛 -敝 -敞 -敢 -散 -敦 -敬 -数 -敲 -整 -敵 -敷 -數 -斂 -斃 -文 -斋 -斌 -斎 -斐 -斑 -斓 -斗 -料 -斛 -斜 -斟 -斡 -斤 -斥 -斧 -斩 -斫 -斬 -断 -斯 -新 -斷 -方 -於 -施 -旁 -旃 -旅 -旋 -旌 -旎 -族 -旖 -旗 -无 -既 -日 -旦 -旧 -旨 -早 -旬 -旭 -旮 -旱 -时 -旷 -旺 -旻 -昀 -昂 -昆 -昇 -昉 -昊 -昌 -明 -昏 -易 -昔 -昕 -昙 -星 -映 -春 -昧 -昨 -昭 -是 -昱 -昴 -昵 -昶 -昼 -显 -晁 -時 -晃 -晉 -晋 -晌 -晏 -晒 -晓 -晔 -晕 -晖 -晗 -晚 -晝 -晞 -晟 -晤 -晦 -晨 -晩 -普 -景 -晰 -晴 -晶 -晷 -智 -晾 -暂 -暄 -暇 -暈 -暉 -暌 -暐 -暑 -暖 -暗 -暝 -暢 -暧 -暨 -暫 -暮 -暱 -暴 -暸 -暹 -曄 -曆 -曇 -曉 -曖 -曙 -曜 -曝 -曠 -曦 -曬 -曰 -曲 -曳 -更 -書 -曹 -曼 -曾 -替 -最 -會 -月 -有 -朋 -服 -朐 -朔 -朕 -朗 -望 -朝 -期 -朦 -朧 -木 -未 -末 -本 -札 -朮 -术 -朱 -朴 -朵 -机 -朽 -杀 -杂 -权 -杆 -杈 -杉 -李 -杏 -材 -村 -杓 -杖 -杜 -杞 -束 -杠 -条 -来 -杨 -杭 -杯 -杰 -東 -杳 -杵 -杷 -杼 -松 -板 -极 -构 -枇 -枉 -枋 -析 -枕 -林 -枚 -果 -枝 -枢 -枣 -枪 -枫 -枭 -枯 -枰 -枱 -枳 -架 -枷 -枸 -柄 -柏 -某 -柑 -柒 -染 -柔 -柘 -柚 -柜 -柞 -柠 -柢 -查 -柩 -柬 -柯 -柱 -柳 -柴 -柵 -査 -柿 -栀 -栃 -栄 -栅 -标 -栈 -栉 -栋 -栎 -栏 -树 -栓 -栖 -栗 -校 -栩 -株 -样 -核 -根 -格 -栽 -栾 -桀 -桁 -桂 -桃 -桅 -框 -案 -桉 -桌 -桎 -桐 -桑 -桓 -桔 -桜 -桠 -桡 -桢 -档 -桥 -桦 -桧 -桨 -桩 -桶 -桿 -梁 -梅 -梆 -梏 -梓 -梗 -條 -梟 -梢 -梦 -梧 -梨 -梭 -梯 -械 -梳 -梵 -梶 -检 -棂 -棄 -棉 -棋 -棍 -棒 -棕 -棗 -棘 -棚 -棟 -棠 -棣 -棧 -森 -棱 -棲 -棵 -棹 -棺 -椁 -椅 -椋 -植 -椎 -椒 -検 -椪 -椭 -椰 -椹 -椽 -椿 -楂 -楊 -楓 -楔 -楚 -楝 -楞 -楠 -楣 -楨 -楫 -業 -楮 -極 -楷 -楸 -楹 -楼 -楽 -概 -榄 -榆 -榈 -榉 -榔 -榕 -榖 -榛 -榜 -榨 -榫 -榭 -榮 -榱 -榴 -榷 -榻 -槁 -槃 -構 -槌 -槍 -槎 -槐 -槓 -様 -槛 -槟 -槤 -槭 -槲 -槳 -槻 -槽 -槿 -樁 -樂 -樊 -樑 -樓 -標 -樞 -樟 -模 -樣 -権 -横 -樫 -樯 -樱 -樵 -樸 -樹 -樺 -樽 -樾 -橄 -橇 -橋 -橐 -橘 -橙 -機 -橡 -橢 -橫 -橱 -橹 -橼 -檀 -檄 -檎 -檐 -檔 -檗 -檜 -檢 -檬 -檯 -檳 -檸 -檻 -櫃 -櫚 -櫛 -櫥 -櫸 -櫻 -欄 -權 -欒 -欖 -欠 -次 -欢 -欣 -欧 -欲 -欸 -欺 -欽 -款 -歆 -歇 -歉 -歌 -歎 -歐 -歓 -歙 -歛 -歡 -止 -正 -此 -步 -武 -歧 -歩 -歪 -歯 -歲 -歳 -歴 -歷 -歸 -歹 -死 -歼 -殁 -殃 -殆 -殇 -殉 -殊 -残 -殒 -殓 -殖 -殘 -殞 -殡 -殤 -殭 -殯 -殲 -殴 -段 -殷 -殺 -殼 -殿 -毀 -毁 -毂 -毅 -毆 -毋 -母 -毎 -每 -毒 -毓 -比 -毕 -毗 -毘 -毙 -毛 -毡 -毫 -毯 -毽 -氈 -氏 -氐 -民 -氓 -气 -氖 -気 -氙 -氛 -氟 -氡 -氢 -氣 -氤 -氦 -氧 -氨 -氪 -氫 -氮 -氯 -氰 -氲 -水 -氷 -永 -氹 -氾 -汀 -汁 -求 -汆 -汇 -汉 -汎 -汐 -汕 -汗 -汙 -汛 -汝 -汞 -江 -池 -污 -汤 -汨 -汩 -汪 -汰 -汲 -汴 -汶 -汹 -決 -汽 -汾 -沁 -沂 -沃 -沅 -沈 -沉 -沌 -沏 -沐 -沒 -沓 -沖 -沙 -沛 -沟 -没 -沢 -沣 -沥 -沦 -沧 -沪 -沫 -沭 -沮 -沱 -河 -沸 -油 -治 -沼 -沽 -沾 -沿 -況 -泄 -泉 -泊 -泌 -泓 -法 -泗 -泛 -泞 -泠 -泡 -波 -泣 -泥 -注 -泪 -泫 -泮 -泯 -泰 -泱 -泳 -泵 -泷 -泸 -泻 -泼 -泽 -泾 -洁 -洄 -洋 -洒 -洗 -洙 -洛 -洞 -津 -洩 -洪 -洮 -洱 -洲 -洵 -洶 -洸 -洹 -活 -洼 -洽 -派 -流 -浃 -浄 -浅 -浆 -浇 -浊 -测 -济 -浏 -浑 -浒 -浓 -浔 -浙 -浚 -浜 -浣 -浦 -浩 -浪 -浬 -浮 -浯 -浴 -海 -浸 -涂 -涅 -涇 -消 -涉 -涌 -涎 -涓 -涔 -涕 -涙 -涛 -涝 -涞 -涟 -涠 -涡 -涣 -涤 -润 -涧 -涨 -涩 -涪 -涮 -涯 -液 -涵 -涸 -涼 -涿 -淀 -淄 -淅 -淆 -淇 -淋 -淌 -淑 -淒 -淖 -淘 -淙 -淚 -淞 -淡 -淤 -淦 -淨 -淩 -淪 -淫 -淬 -淮 -深 -淳 -淵 -混 -淹 -淺 -添 -淼 -清 -済 -渉 -渊 -渋 -渍 -渎 -渐 -渔 -渗 -渙 -渚 -減 -渝 -渠 -渡 -渣 -渤 -渥 -渦 -温 -測 -渭 -港 -渲 -渴 -游 -渺 -渾 -湃 -湄 -湊 -湍 -湖 -湘 -湛 -湟 -湧 -湫 -湮 -湯 -湳 -湾 -湿 -満 -溃 -溅 -溉 -溏 -源 -準 -溜 -溝 -溟 -溢 -溥 -溧 -溪 -溫 -溯 -溱 -溴 -溶 -溺 -溼 -滁 -滂 -滄 -滅 -滇 -滋 -滌 -滑 -滓 -滔 -滕 -滙 -滚 -滝 -滞 -滟 -满 -滢 -滤 -滥 -滦 -滨 -滩 -滬 -滯 -滲 -滴 -滷 -滸 -滾 -滿 -漁 -漂 -漆 -漉 -漏 -漓 -演 -漕 -漠 -漢 -漣 -漩 -漪 -漫 -漬 -漯 -漱 -漲 -漳 -漸 -漾 -漿 -潆 -潇 -潋 -潍 -潑 -潔 -潘 -潛 -潜 -潞 -潟 -潢 -潤 -潦 -潧 -潭 -潮 -潰 -潴 -潸 -潺 -潼 -澀 -澄 -澆 -澈 -澍 -澎 -澗 -澜 -澡 -澤 -澧 -澱 -澳 -澹 -激 -濁 -濂 -濃 -濑 -濒 -濕 -濘 -濛 -濟 -濠 -濡 -濤 -濫 -濬 -濮 -濯 -濱 -濺 -濾 -瀅 -瀆 -瀉 -瀋 -瀏 -瀑 -瀕 -瀘 -瀚 -瀛 -瀝 -瀞 -瀟 -瀧 -瀨 -瀬 -瀰 -瀾 -灌 -灏 -灑 -灘 -灝 -灞 -灣 -火 -灬 -灭 -灯 -灰 -灵 -灶 -灸 -灼 -災 -灾 -灿 -炀 -炁 -炅 -炉 -炊 -炎 -炒 -炔 -炕 -炖 -炙 -炜 -炫 -炬 -炭 -炮 -炯 -炳 -炷 -炸 -点 -為 -炼 -炽 -烁 -烂 -烃 -烈 -烊 -烏 -烘 -烙 -烛 -烟 -烤 -烦 -烧 -烨 -烩 -烫 -烬 -热 -烯 -烷 -烹 -烽 -焉 -焊 -焕 -焖 -焗 -焘 -焙 -焚 -焜 -無 -焦 -焯 -焰 -焱 -然 -焼 -煅 -煉 -煊 -煌 -煎 -煒 -煖 -煙 -煜 -煞 -煤 -煥 -煦 -照 -煨 -煩 -煮 -煲 -煸 -煽 -熄 -熊 -熏 -熒 -熔 -熙 -熟 -熠 -熨 -熬 -熱 -熵 -熹 -熾 -燁 -燃 -燄 -燈 -燉 -燊 -燎 -燒 -燔 -燕 -燙 -燜 -營 -燥 -燦 -燧 -燭 -燮 -燴 -燻 -燼 -燿 -爆 -爍 -爐 -爛 -爪 -爬 -爭 -爰 -爱 -爲 -爵 -父 -爷 -爸 -爹 -爺 -爻 -爽 -爾 -牆 -片 -版 -牌 -牍 -牒 -牙 -牛 -牝 -牟 -牠 -牡 -牢 -牦 -牧 -物 -牯 -牲 -牴 -牵 -特 -牺 -牽 -犀 -犁 -犄 -犊 -犍 -犒 -犢 -犧 -犬 -犯 -状 -犷 -犸 -犹 -狀 -狂 -狄 -狈 -狎 -狐 -狒 -狗 -狙 -狞 -狠 -狡 -狩 -独 -狭 -狮 -狰 -狱 -狸 -狹 -狼 -狽 -猎 -猕 -猖 -猗 -猙 -猛 -猜 -猝 -猥 -猩 -猪 -猫 -猬 -献 -猴 -猶 -猷 -猾 -猿 -獄 -獅 -獎 -獐 -獒 -獗 -獠 -獣 -獨 -獭 -獰 -獲 -獵 -獷 -獸 -獺 -獻 -獼 -獾 -玄 -率 -玉 -王 -玑 -玖 -玛 -玟 -玠 -玥 -玩 -玫 -玮 -环 -现 -玲 -玳 -玷 -玺 -玻 -珀 -珂 -珅 -珈 -珉 -珊 -珍 -珏 -珐 -珑 -珙 -珞 -珠 -珣 -珥 -珩 -珪 -班 -珮 -珲 -珺 -現 -球 -琅 -理 -琇 -琉 -琊 -琍 -琏 -琐 -琛 -琢 -琥 -琦 -琨 -琪 -琬 -琮 -琰 -琲 -琳 -琴 -琵 -琶 -琺 -琼 -瑀 -瑁 -瑄 -瑋 -瑕 -瑗 -瑙 -瑚 -瑛 -瑜 -瑞 -瑟 -瑠 -瑣 -瑤 -瑩 -瑪 -瑯 -瑰 -瑶 -瑾 -璀 -璁 -璃 -璇 -璉 -璋 -璎 -璐 -璜 -璞 -璟 -璧 -璨 -環 -璽 -璿 -瓊 -瓏 -瓒 -瓜 -瓢 -瓣 -瓤 -瓦 -瓮 -瓯 -瓴 -瓶 -瓷 -甄 -甌 -甕 -甘 -甙 -甚 -甜 -生 -產 -産 -甥 -甦 -用 -甩 -甫 -甬 -甭 -甯 -田 -由 -甲 -申 -电 -男 -甸 -町 -画 -甾 -畀 -畅 -界 -畏 -畑 -畔 -留 -畜 -畝 -畢 -略 -畦 -番 -畫 -異 -畲 -畳 -畴 -當 -畸 -畹 -畿 -疆 -疇 -疊 -疏 -疑 -疔 -疖 -疗 -疙 -疚 -疝 -疟 -疡 -疣 -疤 -疥 -疫 -疮 -疯 -疱 -疲 -疳 -疵 -疸 -疹 -疼 -疽 -疾 -痂 -病 -症 -痈 -痉 -痊 -痍 -痒 -痔 -痕 -痘 -痙 -痛 -痞 -痠 -痢 -痣 -痤 -痧 -痨 -痪 -痫 -痰 -痱 -痴 -痹 -痺 -痼 -痿 -瘀 -瘁 -瘋 -瘍 -瘓 -瘘 -瘙 -瘟 -瘠 -瘡 -瘢 -瘤 -瘦 -瘧 -瘩 -瘪 -瘫 -瘴 -瘸 -瘾 -療 -癇 -癌 -癒 -癖 -癜 -癞 -癡 -癢 -癣 -癥 -癫 -癬 -癮 -癱 -癲 -癸 -発 -登 -發 -白 -百 -皂 -的 -皆 -皇 -皈 -皋 -皎 -皑 -皓 -皖 -皙 -皚 -皮 -皰 -皱 -皴 -皺 -皿 -盂 -盃 -盅 -盆 -盈 -益 -盎 -盏 -盐 -监 -盒 -盔 -盖 -盗 -盘 -盛 -盜 -盞 -盟 -盡 -監 -盤 -盥 -盧 -盪 -目 -盯 -盱 -盲 -直 -相 -盹 -盼 -盾 -省 -眈 -眉 -看 -県 -眙 -眞 -真 -眠 -眦 -眨 -眩 -眯 -眶 -眷 -眸 -眺 -眼 -眾 -着 -睁 -睇 -睏 -睐 -睑 -睛 -睜 -睞 -睡 -睢 -督 -睥 -睦 -睨 -睪 -睫 -睬 -睹 -睽 -睾 -睿 -瞄 -瞅 -瞇 -瞋 -瞌 -瞎 -瞑 -瞒 -瞓 -瞞 -瞟 -瞠 -瞥 -瞧 -瞩 -瞪 -瞬 -瞭 -瞰 -瞳 -瞻 -瞼 -瞿 -矇 -矍 -矗 -矚 -矛 -矜 -矢 -矣 -知 -矩 -矫 -短 -矮 -矯 -石 -矶 -矽 -矾 -矿 -码 -砂 -砌 -砍 -砒 -研 -砖 -砗 -砚 -砝 -砣 -砥 -砧 -砭 -砰 -砲 -破 -砷 -砸 -砺 -砼 -砾 -础 -硅 -硐 -硒 -硕 -硝 -硫 -硬 -确 -硯 -硼 -碁 -碇 -碉 -碌 -碍 -碎 -碑 -碓 -碗 -碘 -碚 -碛 -碟 -碣 -碧 -碩 -碰 -碱 -碳 -碴 -確 -碼 -碾 -磁 -磅 -磊 -磋 -磐 -磕 -磚 -磡 -磨 -磬 -磯 -磲 -磷 -磺 -礁 -礎 -礙 -礡 -礦 -礪 -礫 -礴 -示 -礼 -社 -祀 -祁 -祂 -祇 -祈 -祉 -祎 -祐 -祕 -祖 -祗 -祚 -祛 -祜 -祝 -神 -祟 -祠 -祢 -祥 -票 -祭 -祯 -祷 -祸 -祺 -祿 -禀 -禁 -禄 -禅 -禍 -禎 -福 -禛 -禦 -禧 -禪 -禮 -禱 -禹 -禺 -离 -禽 -禾 -禿 -秀 -私 -秃 -秆 -秉 -秋 -种 -科 -秒 -秘 -租 -秣 -秤 -秦 -秧 -秩 -秭 -积 -称 -秸 -移 -秽 -稀 -稅 -程 -稍 -税 -稔 -稗 -稚 -稜 -稞 -稟 -稠 -稣 -種 -稱 -稲 -稳 -稷 -稹 -稻 -稼 -稽 -稿 -穀 -穂 -穆 -穌 -積 -穎 -穗 -穢 -穩 -穫 -穴 -究 -穷 -穹 -空 -穿 -突 -窃 -窄 -窈 -窍 -窑 -窒 -窓 -窕 -窖 -窗 -窘 -窜 -窝 -窟 -窠 -窥 -窦 -窨 -窩 -窪 -窮 -窯 -窺 -窿 -竄 -竅 -竇 -竊 -立 -竖 -站 -竜 -竞 -竟 -章 -竣 -童 -竭 -端 -競 -竹 -竺 -竽 -竿 -笃 -笆 -笈 -笋 -笏 -笑 -笔 -笙 -笛 -笞 -笠 -符 -笨 -第 -笹 -笺 -笼 -筆 -等 -筊 -筋 -筍 -筏 -筐 -筑 -筒 -答 -策 -筛 -筝 -筠 -筱 -筲 -筵 -筷 -筹 -签 -简 -箇 -箋 -箍 -箏 -箐 -箔 -箕 -算 -箝 -管 -箩 -箫 -箭 -箱 -箴 -箸 -節 -篁 -範 -篆 -篇 -築 -篑 -篓 -篙 -篝 -篠 -篡 -篤 -篩 -篪 -篮 -篱 -篷 -簇 -簌 -簍 -簡 -簦 -簧 -簪 -簫 -簷 -簸 -簽 -簾 -簿 -籁 -籃 -籌 -籍 -籐 -籟 -籠 -籤 -籬 -籮 -籲 -米 -类 -籼 -籽 -粄 -粉 -粑 -粒 -粕 -粗 -粘 -粟 -粤 -粥 -粧 -粪 -粮 -粱 -粲 -粳 -粵 -粹 -粼 -粽 -精 -粿 -糅 -糊 -糍 -糕 -糖 -糗 -糙 -糜 -糞 -糟 -糠 -糧 -糬 -糯 -糰 -糸 -系 -糾 -紀 -紂 -約 -紅 -紉 -紊 -紋 -納 -紐 -紓 -純 -紗 -紘 -紙 -級 -紛 -紜 -素 -紡 -索 -紧 -紫 -紮 -累 -細 -紳 -紹 -紺 -終 -絃 -組 -絆 -経 -結 -絕 -絞 -絡 -絢 -給 -絨 -絮 -統 -絲 -絳 -絵 -絶 -絹 -綁 -綏 -綑 -經 -継 -続 -綜 -綠 -綢 -綦 -綫 -綬 -維 -綱 -網 -綴 -綵 -綸 -綺 -綻 -綽 -綾 -綿 -緊 -緋 -総 -緑 -緒 -緘 -線 -緝 -緞 -締 -緣 -編 -緩 -緬 -緯 -練 -緹 -緻 -縁 -縄 -縈 -縛 -縝 -縣 -縫 -縮 -縱 -縴 -縷 -總 -績 -繁 -繃 -繆 -繇 -繋 -織 -繕 -繚 -繞 -繡 -繩 -繪 -繫 -繭 -繳 -繹 -繼 -繽 -纂 -續 -纍 -纏 -纓 -纔 -纖 -纜 -纠 -红 -纣 -纤 -约 -级 -纨 -纪 -纫 -纬 -纭 -纯 -纰 -纱 -纲 -纳 -纵 -纶 -纷 -纸 -纹 -纺 -纽 -纾 -线 -绀 -练 -组 -绅 -细 -织 -终 -绊 -绍 -绎 -经 -绑 -绒 -结 -绔 -绕 -绘 -给 -绚 -绛 -络 -绝 -绞 -统 -绡 -绢 -绣 -绥 -绦 -继 -绩 -绪 -绫 -续 -绮 -绯 -绰 -绳 -维 -绵 -绶 -绷 -绸 -绻 -综 -绽 -绾 -绿 -缀 -缄 -缅 -缆 -缇 -缈 -缉 -缎 -缓 -缔 -缕 -编 -缘 -缙 -缚 -缜 -缝 -缠 -缢 -缤 -缥 -缨 -缩 -缪 -缭 -缮 -缰 -缱 -缴 -缸 -缺 -缽 -罂 -罄 -罌 -罐 -网 -罔 -罕 -罗 -罚 -罡 -罢 -罩 -罪 -置 -罰 -署 -罵 -罷 -罹 -羁 -羅 -羈 -羊 -羌 -美 -羔 -羚 -羞 -羟 -羡 -羣 -群 -羥 -羧 -羨 -義 -羯 -羲 -羸 -羹 -羽 -羿 -翁 -翅 -翊 -翌 -翎 -習 -翔 -翘 -翟 -翠 -翡 -翦 -翩 -翰 -翱 -翳 -翹 -翻 -翼 -耀 -老 -考 -耄 -者 -耆 -耋 -而 -耍 -耐 -耒 -耕 -耗 -耘 -耙 -耦 -耨 -耳 -耶 -耷 -耸 -耻 -耽 -耿 -聂 -聆 -聊 -聋 -职 -聒 -联 -聖 -聘 -聚 -聞 -聪 -聯 -聰 -聲 -聳 -聴 -聶 -職 -聽 -聾 -聿 -肃 -肄 -肅 -肆 -肇 -肉 -肋 -肌 -肏 -肓 -肖 -肘 -肚 -肛 -肝 -肠 -股 -肢 -肤 -肥 -肩 -肪 -肮 -肯 -肱 -育 -肴 -肺 -肽 -肾 -肿 -胀 -胁 -胃 -胄 -胆 -背 -胍 -胎 -胖 -胚 -胛 -胜 -胝 -胞 -胡 -胤 -胥 -胧 -胫 -胭 -胯 -胰 -胱 -胳 -胴 -胶 -胸 -胺 -能 -脂 -脅 -脆 -脇 -脈 -脉 -脊 -脍 -脏 -脐 -脑 -脓 -脖 -脘 -脚 -脛 -脣 -脩 -脫 -脯 -脱 -脲 -脳 -脸 -脹 -脾 -腆 -腈 -腊 -腋 -腌 -腎 -腐 -腑 -腓 -腔 -腕 -腥 -腦 -腩 -腫 -腭 -腮 -腰 -腱 -腳 -腴 -腸 -腹 -腺 -腻 -腼 -腾 -腿 -膀 -膈 -膊 -膏 -膑 -膘 -膚 -膛 -膜 -膝 -膠 -膦 -膨 -膩 -膳 -膺 -膻 -膽 -膾 -膿 -臀 -臂 -臃 -臆 -臉 -臊 -臍 -臓 -臘 -臟 -臣 -臥 -臧 -臨 -自 -臬 -臭 -至 -致 -臺 -臻 -臼 -臾 -舀 -舂 -舅 -舆 -與 -興 -舉 -舊 -舌 -舍 -舎 -舐 -舒 -舔 -舖 -舗 -舛 -舜 -舞 -舟 -航 -舫 -般 -舰 -舱 -舵 -舶 -舷 -舸 -船 -舺 -舾 -艇 -艋 -艘 -艙 -艦 -艮 -良 -艰 -艱 -色 -艳 -艷 -艹 -艺 -艾 -节 -芃 -芈 -芊 -芋 -芍 -芎 -芒 -芙 -芜 -芝 -芡 -芥 -芦 -芩 -芪 -芫 -芬 -芭 -芮 -芯 -花 -芳 -芷 -芸 -芹 -芻 -芽 -芾 -苁 -苄 -苇 -苋 -苍 -苏 -苑 -苒 -苓 -苔 -苕 -苗 -苛 -苜 -苞 -苟 -苡 -苣 -若 -苦 -苫 -苯 -英 -苷 -苹 -苻 -茁 -茂 -范 -茄 -茅 -茉 -茎 -茏 -茗 -茜 -茧 -茨 -茫 -茬 -茭 -茯 -茱 -茲 -茴 -茵 -茶 -茸 -茹 -茼 -荀 -荃 -荆 -草 -荊 -荏 -荐 -荒 -荔 -荖 -荘 -荚 -荞 -荟 -荠 -荡 -荣 -荤 -荥 -荧 -荨 -荪 -荫 -药 -荳 -荷 -荸 -荻 -荼 -荽 -莅 -莆 -莉 -莊 -莎 -莒 -莓 -莖 -莘 -莞 -莠 -莢 -莧 -莪 -莫 -莱 -莲 -莴 -获 -莹 -莺 -莽 -莿 -菀 -菁 -菅 -菇 -菈 -菊 -菌 -菏 -菓 -菖 -菘 -菜 -菟 -菠 -菡 -菩 -華 -菱 -菲 -菸 -菽 -萁 -萃 -萄 -萊 -萋 -萌 -萍 -萎 -萘 -萝 -萤 -营 -萦 -萧 -萨 -萩 -萬 -萱 -萵 -萸 -萼 -落 -葆 -葉 -著 -葚 -葛 -葡 -董 -葦 -葩 -葫 -葬 -葭 -葯 -葱 -葳 -葵 -葷 -葺 -蒂 -蒋 -蒐 -蒔 -蒙 -蒜 -蒞 -蒟 -蒡 -蒨 -蒲 -蒸 -蒹 -蒻 -蒼 -蒿 -蓁 -蓄 -蓆 -蓉 -蓋 -蓑 -蓓 -蓖 -蓝 -蓟 -蓦 -蓬 -蓮 -蓼 -蓿 -蔑 -蔓 -蔔 -蔗 -蔘 -蔚 -蔡 -蔣 -蔥 -蔫 -蔬 -蔭 -蔵 -蔷 -蔺 -蔻 -蔼 -蔽 -蕁 -蕃 -蕈 -蕉 -蕊 -蕎 -蕙 -蕤 -蕨 -蕩 -蕪 -蕭 -蕲 -蕴 -蕻 -蕾 -薄 -薅 -薇 -薈 -薊 -薏 -薑 -薔 -薙 -薛 -薦 -薨 -薩 -薪 -薬 -薯 -薰 -薹 -藉 -藍 -藏 -藐 -藓 -藕 -藜 -藝 -藤 -藥 -藩 -藹 -藻 -藿 -蘆 -蘇 -蘊 -蘋 -蘑 -蘚 -蘭 -蘸 -蘼 -蘿 -虎 -虏 -虐 -虑 -虔 -處 -虚 -虛 -虜 -虞 -號 -虢 -虧 -虫 -虬 -虱 -虹 -虻 -虽 -虾 -蚀 -蚁 -蚂 -蚊 -蚌 -蚓 -蚕 -蚜 -蚝 -蚣 -蚤 -蚩 -蚪 -蚯 -蚱 -蚵 -蛀 -蛆 -蛇 -蛊 -蛋 -蛎 -蛐 -蛔 -蛙 -蛛 -蛟 -蛤 -蛭 -蛮 -蛰 -蛳 -蛹 -蛻 -蛾 -蜀 -蜂 -蜃 -蜆 -蜇 -蜈 -蜊 -蜍 -蜒 -蜓 -蜕 -蜗 -蜘 -蜚 -蜜 -蜡 -蜢 -蜥 -蜱 -蜴 -蜷 -蜻 -蜿 -蝇 -蝈 -蝉 -蝌 -蝎 -蝕 -蝗 -蝙 -蝟 -蝠 -蝦 -蝨 -蝴 -蝶 -蝸 -蝼 -螂 -螃 -融 -螞 -螢 -螨 -螯 -螳 -螺 -蟀 -蟄 -蟆 -蟋 -蟎 -蟑 -蟒 -蟠 -蟬 -蟲 -蟹 -蟻 -蟾 -蠅 -蠍 -蠔 -蠕 -蠛 -蠟 -蠡 -蠢 -蠣 -蠱 -蠶 -蠹 -蠻 -血 -衄 -衅 -衆 -行 -衍 -術 -衔 -街 -衙 -衛 -衝 -衞 -衡 -衢 -衣 -补 -表 -衩 -衫 -衬 -衮 -衰 -衲 -衷 -衹 -衾 -衿 -袁 -袂 -袄 -袅 -袈 -袋 -袍 -袒 -袖 -袜 -袞 -袤 -袪 -被 -袭 -袱 -裁 -裂 -装 -裆 -裊 -裏 -裔 -裕 -裘 -裙 -補 -裝 -裟 -裡 -裤 -裨 -裱 -裳 -裴 -裸 -裹 -製 -裾 -褂 -複 -褐 -褒 -褓 -褔 -褚 -褥 -褪 -褫 -褲 -褶 -褻 -襁 -襄 -襟 -襠 -襪 -襬 -襯 -襲 -西 -要 -覃 -覆 -覇 -見 -規 -覓 -視 -覚 -覦 -覧 -親 -覬 -観 -覷 -覺 -覽 -觀 -见 -观 -规 -觅 -视 -览 -觉 -觊 -觎 -觐 -觑 -角 -觞 -解 -觥 -触 -觸 -言 -訂 -計 -訊 -討 -訓 -訕 -訖 -託 -記 -訛 -訝 -訟 -訣 -訥 -訪 -設 -許 -訳 -訴 -訶 -診 -註 -証 -詆 -詐 -詔 -評 -詛 -詞 -詠 -詡 -詢 -詣 -試 -詩 -詫 -詬 -詭 -詮 -詰 -話 -該 -詳 -詹 -詼 -誅 -誇 -誉 -誌 -認 -誓 -誕 -誘 -語 -誠 -誡 -誣 -誤 -誥 -誦 -誨 -說 -説 -読 -誰 -課 -誹 -誼 -調 -諄 -談 -請 -諏 -諒 -論 -諗 -諜 -諡 -諦 -諧 -諫 -諭 -諮 -諱 -諳 -諷 -諸 -諺 -諾 -謀 -謁 -謂 -謄 -謊 -謎 -謐 -謔 -謗 -謙 -講 -謝 -謠 -謨 -謬 -謹 -謾 -譁 -證 -譎 -譏 -識 -譙 -譚 -譜 -警 -譬 -譯 -議 -譲 -譴 -護 -譽 -讀 -變 -讓 -讚 -讞 -计 -订 -认 -讥 -讧 -讨 -让 -讪 -讫 -训 -议 -讯 -记 -讲 -讳 -讴 -讶 -讷 -许 -讹 -论 -讼 -讽 -设 -访 -诀 -证 -诃 -评 -诅 -识 -诈 -诉 -诊 -诋 -词 -诏 -译 -试 -诗 -诘 -诙 -诚 -诛 -话 -诞 -诟 -诠 -诡 -询 -诣 -诤 -该 -详 -诧 -诩 -诫 -诬 -语 -误 -诰 -诱 -诲 -说 -诵 -诶 -请 -诸 -诺 -读 -诽 -课 -诿 -谀 -谁 -调 -谄 -谅 -谆 -谈 -谊 -谋 -谌 -谍 -谎 -谏 -谐 -谑 -谒 -谓 -谔 -谕 -谗 -谘 -谙 -谚 -谛 -谜 -谟 -谢 -谣 -谤 -谥 -谦 -谧 -谨 -谩 -谪 -谬 -谭 -谯 -谱 -谲 -谴 -谶 -谷 -豁 -豆 -豇 -豈 -豉 -豊 -豌 -豎 -豐 -豔 -豚 -象 -豢 -豪 -豫 -豬 -豹 -豺 -貂 -貅 -貌 -貓 -貔 -貘 -貝 -貞 -負 -財 -貢 -貧 -貨 -販 -貪 -貫 -責 -貯 -貰 -貳 -貴 -貶 -買 -貸 -費 -貼 -貽 -貿 -賀 -賁 -賂 -賃 -賄 -資 -賈 -賊 -賑 -賓 -賜 -賞 -賠 -賡 -賢 -賣 -賤 -賦 -質 -賬 -賭 -賴 -賺 -購 -賽 -贅 -贈 -贊 -贍 -贏 -贓 -贖 -贛 -贝 -贞 -负 -贡 -财 -责 -贤 -败 -账 -货 -质 -贩 -贪 -贫 -贬 -购 -贮 -贯 -贰 -贱 -贲 -贴 -贵 -贷 -贸 -费 -贺 -贻 -贼 -贾 -贿 -赁 -赂 -赃 -资 -赅 -赈 -赊 -赋 -赌 -赎 -赏 -赐 -赓 -赔 -赖 -赘 -赚 -赛 -赝 -赞 -赠 -赡 -赢 -赣 -赤 -赦 -赧 -赫 -赭 -走 -赳 -赴 -赵 -赶 -起 -趁 -超 -越 -趋 -趕 -趙 -趟 -趣 -趨 -足 -趴 -趵 -趸 -趺 -趾 -跃 -跄 -跆 -跋 -跌 -跎 -跑 -跖 -跚 -跛 -距 -跟 -跡 -跤 -跨 -跩 -跪 -路 -跳 -践 -跷 -跹 -跺 -跻 -踉 -踊 -踌 -踏 -踐 -踝 -踞 -踟 -踢 -踩 -踪 -踮 -踱 -踴 -踵 -踹 -蹂 -蹄 -蹇 -蹈 -蹉 -蹊 -蹋 -蹑 -蹒 -蹙 -蹟 -蹣 -蹤 -蹦 -蹩 -蹬 -蹭 -蹲 -蹴 -蹶 -蹺 -蹼 -蹿 -躁 -躇 -躉 -躊 -躋 -躍 -躏 -躪 -身 -躬 -躯 -躲 -躺 -軀 -車 -軋 -軌 -軍 -軒 -軟 -転 -軸 -軼 -軽 -軾 -較 -載 -輒 -輓 -輔 -輕 -輛 -輝 -輟 -輩 -輪 -輯 -輸 -輻 -輾 -輿 -轄 -轅 -轆 -轉 -轍 -轎 -轟 -车 -轧 -轨 -轩 -转 -轭 -轮 -软 -轰 -轲 -轴 -轶 -轻 -轼 -载 -轿 -较 -辄 -辅 -辆 -辇 -辈 -辉 -辊 -辍 -辐 -辑 -输 -辕 -辖 -辗 -辘 -辙 -辛 -辜 -辞 -辟 -辣 -辦 -辨 -辩 -辫 -辭 -辮 -辯 -辰 -辱 -農 -边 -辺 -辻 -込 -辽 -达 -迁 -迂 -迄 -迅 -过 -迈 -迎 -运 -近 -返 -还 -这 -进 -远 -违 -连 -迟 -迢 -迤 -迥 -迦 -迩 -迪 -迫 -迭 -述 -迴 -迷 -迸 -迹 -迺 -追 -退 -送 -适 -逃 -逅 -逆 -选 -逊 -逍 -透 -逐 -递 -途 -逕 -逗 -這 -通 -逛 -逝 -逞 -速 -造 -逢 -連 -逮 -週 -進 -逵 -逶 -逸 -逻 -逼 -逾 -遁 -遂 -遅 -遇 -遊 -運 -遍 -過 -遏 -遐 -遑 -遒 -道 -達 -違 -遗 -遙 -遛 -遜 -遞 -遠 -遢 -遣 -遥 -遨 -適 -遭 -遮 -遲 -遴 -遵 -遶 -遷 -選 -遺 -遼 -遽 -避 -邀 -邁 -邂 -邃 -還 -邇 -邈 -邊 -邋 -邏 -邑 -邓 -邕 -邛 -邝 -邢 -那 -邦 -邨 -邪 -邬 -邮 -邯 -邰 -邱 -邳 -邵 -邸 -邹 -邺 -邻 -郁 -郅 -郊 -郎 -郑 -郜 -郝 -郡 -郢 -郤 -郦 -郧 -部 -郫 -郭 -郴 -郵 -郷 -郸 -都 -鄂 -鄉 -鄒 -鄔 -鄙 -鄞 -鄢 -鄧 -鄭 -鄰 -鄱 -鄲 -鄺 -酉 -酊 -酋 -酌 -配 -酐 -酒 -酗 -酚 -酝 -酢 -酣 -酥 -酩 -酪 -酬 -酮 -酯 -酰 -酱 -酵 -酶 -酷 -酸 -酿 -醃 -醇 -醉 -醋 -醍 -醐 -醒 -醚 -醛 -醜 -醞 -醣 -醪 -醫 -醬 -醮 -醯 -醴 -醺 -釀 -釁 -采 -釉 -释 -釋 -里 -重 -野 -量 -釐 -金 -釗 -釘 -釜 -針 -釣 -釦 -釧 -釵 -鈀 -鈉 -鈍 -鈎 -鈔 -鈕 -鈞 -鈣 -鈦 -鈪 -鈴 -鈺 -鈾 -鉀 -鉄 -鉅 -鉉 -鉑 -鉗 -鉚 -鉛 -鉤 -鉴 -鉻 -銀 -銃 -銅 -銑 -銓 -銖 -銘 -銜 -銬 -銭 -銮 -銳 -銷 -銹 -鋁 -鋅 -鋒 -鋤 -鋪 -鋰 -鋸 -鋼 -錄 -錐 -錘 -錚 -錠 -錢 -錦 -錨 -錫 -錮 -錯 -録 -錳 -錶 -鍊 -鍋 -鍍 -鍛 -鍥 -鍰 -鍵 -鍺 -鍾 -鎂 -鎊 -鎌 -鎏 -鎔 -鎖 -鎗 -鎚 -鎧 -鎬 -鎮 -鎳 -鏈 -鏖 -鏗 -鏘 -鏞 -鏟 -鏡 -鏢 -鏤 -鏽 -鐘 -鐮 -鐲 -鐳 -鐵 -鐸 -鐺 -鑄 -鑊 -鑑 -鑒 -鑣 -鑫 -鑰 -鑲 -鑼 -鑽 -鑾 -鑿 -针 -钉 -钊 -钎 -钏 -钒 -钓 -钗 -钙 -钛 -钜 -钝 -钞 -钟 -钠 -钡 -钢 -钣 -钤 -钥 -钦 -钧 -钨 -钩 -钮 -钯 -钰 -钱 -钳 -钴 -钵 -钺 -钻 -钼 -钾 -钿 -铀 -铁 -铂 -铃 -铄 -铅 -铆 -铉 -铎 -铐 -铛 -铜 -铝 -铠 -铡 -铢 -铣 -铤 -铨 -铩 -铬 -铭 -铮 -铰 -铲 -铵 -银 -铸 -铺 -链 -铿 -销 -锁 -锂 -锄 -锅 -锆 -锈 -锉 -锋 -锌 -锏 -锐 -锑 -错 -锚 -锟 -锡 -锢 -锣 -锤 -锥 -锦 -锭 -键 -锯 -锰 -锲 -锵 -锹 -锺 -锻 -镀 -镁 -镂 -镇 -镉 -镌 -镍 -镐 -镑 -镕 -镖 -镗 -镛 -镜 -镣 -镭 -镯 -镰 -镳 -镶 -長 -长 -門 -閃 -閉 -開 -閎 -閏 -閑 -閒 -間 -閔 -閘 -閡 -関 -閣 -閥 -閨 -閩 -閱 -閲 -閹 -閻 -閾 -闆 -闇 -闊 -闌 -闍 -闔 -闕 -闖 -闘 -關 -闡 -闢 -门 -闪 -闫 -闭 -问 -闯 -闰 -闲 -间 -闵 -闷 -闸 -闹 -闺 -闻 -闽 -闾 -阀 -阁 -阂 -阅 -阆 -阇 -阈 -阉 -阎 -阐 -阑 -阔 -阕 -阖 -阙 -阚 -阜 -队 -阡 -阪 -阮 -阱 -防 -阳 -阴 -阵 -阶 -阻 -阿 -陀 -陂 -附 -际 -陆 -陇 -陈 -陋 -陌 -降 -限 -陕 -陛 -陝 -陞 -陟 -陡 -院 -陣 -除 -陨 -险 -陪 -陰 -陲 -陳 -陵 -陶 -陷 -陸 -険 -陽 -隅 -隆 -隈 -隊 -隋 -隍 -階 -随 -隐 -隔 -隕 -隘 -隙 -際 -障 -隠 -隣 -隧 -隨 -險 -隱 -隴 -隶 -隸 -隻 -隼 -隽 -难 -雀 -雁 -雄 -雅 -集 -雇 -雉 -雋 -雌 -雍 -雎 -雏 -雑 -雒 -雕 -雖 -雙 -雛 -雜 -雞 -離 -難 -雨 -雪 -雯 -雰 -雲 -雳 -零 -雷 -雹 -電 -雾 -需 -霁 -霄 -霆 -震 -霈 -霉 -霊 -霍 -霎 -霏 -霑 -霓 -霖 -霜 -霞 -霧 -霭 -霰 -露 -霸 -霹 -霽 -霾 -靂 -靄 -靈 -青 -靓 -靖 -静 -靚 -靛 -靜 -非 -靠 -靡 -面 -靥 -靦 -革 -靳 -靴 -靶 -靼 -鞅 -鞋 -鞍 -鞏 -鞑 -鞘 -鞠 -鞣 -鞦 -鞭 -韆 -韋 -韌 -韓 -韜 -韦 -韧 -韩 -韬 -韭 -音 -韵 -韶 -韻 -響 -頁 -頂 -頃 -項 -順 -須 -頌 -預 -頑 -頒 -頓 -頗 -領 -頜 -頡 -頤 -頫 -頭 -頰 -頷 -頸 -頹 -頻 -頼 -顆 -題 -額 -顎 -顏 -顔 -願 -顛 -類 -顧 -顫 -顯 -顱 -顴 -页 -顶 -顷 -项 -顺 -须 -顼 -顽 -顾 -顿 -颁 -颂 -预 -颅 -领 -颇 -颈 -颉 -颊 -颌 -颍 -颐 -频 -颓 -颔 -颖 -颗 -题 -颚 -颛 -颜 -额 -颞 -颠 -颡 -颢 -颤 -颦 -颧 -風 -颯 -颱 -颳 -颶 -颼 -飄 -飆 -风 -飒 -飓 -飕 -飘 -飙 -飚 -飛 -飞 -食 -飢 -飨 -飩 -飪 -飯 -飲 -飼 -飽 -飾 -餃 -餅 -餉 -養 -餌 -餐 -餒 -餓 -餘 -餚 -餛 -餞 -餡 -館 -餮 -餵 -餾 -饅 -饈 -饋 -饌 -饍 -饑 -饒 -饕 -饗 -饞 -饥 -饨 -饪 -饬 -饭 -饮 -饯 -饰 -饱 -饲 -饴 -饵 -饶 -饷 -饺 -饼 -饽 -饿 -馀 -馁 -馄 -馅 -馆 -馈 -馋 -馍 -馏 -馒 -馔 -首 -馗 -香 -馥 -馨 -馬 -馭 -馮 -馳 -馴 -駁 -駄 -駅 -駆 -駐 -駒 -駕 -駛 -駝 -駭 -駱 -駿 -騁 -騎 -騏 -験 -騙 -騨 -騰 -騷 -驀 -驅 -驊 -驍 -驒 -驕 -驗 -驚 -驛 -驟 -驢 -驥 -马 -驭 -驮 -驯 -驰 -驱 -驳 -驴 -驶 -驷 -驸 -驹 -驻 -驼 -驾 -驿 -骁 -骂 -骄 -骅 -骆 -骇 -骈 -骊 -骋 -验 -骏 -骐 -骑 -骗 -骚 -骛 -骜 -骞 -骠 -骡 -骤 -骥 -骧 -骨 -骯 -骰 -骶 -骷 -骸 -骼 -髂 -髅 -髋 -髏 -髒 -髓 -體 -髖 -高 -髦 -髪 -髮 -髯 -髻 -鬃 -鬆 -鬍 -鬓 -鬚 -鬟 -鬢 -鬣 -鬥 -鬧 -鬱 -鬼 -魁 -魂 -魄 -魅 -魇 -魍 -魏 -魔 -魘 -魚 -魯 -魷 -鮑 -鮨 -鮪 -鮭 -鮮 -鯉 -鯊 -鯖 -鯛 -鯨 -鯰 -鯽 -鰍 -鰓 -鰭 -鰲 -鰻 -鰾 -鱈 -鱉 -鱔 -鱗 -鱷 -鱸 -鱼 -鱿 -鲁 -鲈 -鲍 -鲑 -鲛 -鲜 -鲟 -鲢 -鲤 -鲨 -鲫 -鲱 -鲲 -鲶 -鲷 -鲸 -鳃 -鳄 -鳅 -鳌 -鳍 -鳕 -鳖 -鳗 -鳝 -鳞 -鳥 -鳩 -鳳 -鳴 -鳶 -鴉 -鴕 -鴛 -鴦 -鴨 -鴻 -鴿 -鵑 -鵜 -鵝 -鵡 -鵬 -鵰 -鵲 -鶘 -鶩 -鶯 -鶴 -鷗 -鷲 -鷹 -鷺 -鸚 -鸞 -鸟 -鸠 -鸡 -鸢 -鸣 -鸥 -鸦 -鸨 -鸪 -鸭 -鸯 -鸳 -鸵 -鸽 -鸾 -鸿 -鹂 -鹃 -鹄 -鹅 -鹈 -鹉 -鹊 -鹌 -鹏 -鹑 -鹕 -鹘 -鹜 -鹞 -鹤 -鹦 -鹧 -鹫 -鹭 -鹰 -鹳 -鹵 -鹹 -鹼 -鹽 -鹿 -麂 -麋 -麒 -麓 -麗 -麝 -麟 -麥 -麦 -麩 -麴 -麵 -麸 -麺 -麻 -麼 -麽 -麾 -黃 -黄 -黍 -黎 -黏 -黑 -黒 -黔 -默 -黛 -黜 -黝 -點 -黠 -黨 -黯 -黴 -鼋 -鼎 -鼐 -鼓 -鼠 -鼬 -鼹 -鼻 -鼾 -齁 -齊 -齋 -齐 -齒 -齡 -齢 -齣 -齦 -齿 -龄 -龅 -龈 -龊 -龋 -龌 -龍 -龐 -龔 -龕 -龙 -龚 -龛 -龜 -龟 -︰ -︱ -︶ -︿ -﹁ -﹂ -﹍ -﹏ -﹐ -﹑ -﹒ -﹔ -﹕ -﹖ -﹗ -﹙ -﹚ -﹝ -﹞ -﹡ -﹣ -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -。 -「 -」 -、 -・ -ッ -ー -イ -ク -シ -ス -ト -ノ -フ -ラ -ル -ン -゙ -゚ - ̄ -¥ -👍 -🔥 -😂 -😎 -... -yam -10 -2017 -12 -11 -2016 -20 -30 -15 -06 -lofter -##s -2015 -by -16 -14 -18 -13 -24 -17 -2014 -21 -##0 -22 -19 -25 -23 -com -100 -00 -05 -2013 -##a -03 -09 -08 -28 -##2 -50 -01 -04 -##1 -27 -02 -2012 -##3 -26 -##e -07 -##8 -##5 -##6 -##4 -##9 -##7 -29 -2011 -40 -##t -2010 -##o -##d -##i -2009 -##n -app -www -the -##m -31 -##c -##l -##y -##r -##g -2008 -60 -http -200 -qq -##p -80 -##f -google -pixnet -90 -cookies -tripadvisor -500 -##er -##k -35 -##h -facebook -2007 -2000 -70 -##b -of -##x -##u -45 -300 -iphone -32 -1000 -2006 -48 -ip -36 -in -38 -3d -##w -##ing -55 -ctrip -##on -##v -33 -##の -to -34 -400 -id -2005 -it -37 -windows -llc -top -99 -42 -39 -000 -led -at -##an -41 -51 -52 -46 -49 -43 -53 -44 -##z -android -58 -and -59 -2004 -56 -vr -##か -5000 -2003 -47 -blogthis -twitter -54 -##le -150 -ok -2018 -57 -75 -cn -no -ios -##in -##mm -##00 -800 -on -te -3000 -65 -2001 -360 -95 -ig -lv -120 -##ng -##を -##us -##に -pc -てす -── -600 -##te -85 -2002 -88 -##ed -html -ncc -wifi -email -64 -blog -is -##10 -##て -mail -online -##al -dvd -##ic -studio -##は -##℃ -##ia -##と -line -vip -72 -##q -98 -##ce -##en -for -##is -##ra -##es -##j -usb -net -cp -1999 -asia -4g -##cm -diy -new -3c -##お -ta -66 -language -vs -apple -tw -86 -web -##ne -ipad -62 -you -##re -101 -68 -##tion -ps -de -bt -pony -atm -##2017 -1998 -67 -##ch -ceo -##or -go -##na -av -pro -cafe -96 -pinterest -97 -63 -pixstyleme3c -##ta -more -said -##2016 -1997 -mp3 -700 -##ll -nba -jun -##20 -92 -tv -1995 -pm -61 -76 -nbsp -250 -##ie -linux -##ma -cd -110 -hd -##17 -78 -##ion -77 -6000 -am -##th -##st -94 -##se -##et -69 -180 -gdp -my -105 -81 -abc -89 -flash -79 -one -93 -1990 -1996 -##ck -gps -##も -##ly -web885 -106 -2020 -91 -##ge -4000 -1500 -xd -boss -isbn -1994 -org -##ry -me -love -##11 -0fork -73 -##12 -3g -##ter -##ar -71 -82 -##la -hotel -130 -1970 -pk -83 -87 -140 -ie -##os -##30 -##el -74 -##50 -seo -cpu -##ml -p2p -84 -may -##る -sun -tue -internet -cc -posted -youtube -##at -##ン -##man -ii -##ル -##15 -abs -nt -pdf -yahoo -ago -1980 -##it -news -mac -104 -##てす -##me -##り -java -1992 -spa -##de -##nt -hk -all -plus -la -1993 -##mb -##16 -##ve -west -##da -160 -air -##い -##ps -から -##to -1989 -logo -htc -php -https -fi -momo -##son -sat -##ke -##80 -ebd -suv -wi -day -apk -##88 -##um -mv -galaxy -wiki -or -brake -##ス -1200 -する -this -1991 -mon -##こ -❤2017 -po -##ない -javascript -life -home -june -##ss -system -900 -##ー -##0 -pp -1988 -world -fb -4k -br -##as -ic -ai -leonardo -safari -##60 -live -free -xx -wed -win7 -kiehl -##co -lg -o2o -##go -us -235 -1949 -mm -しい -vfm -kanye -##90 -##2015 -##id -jr -##ey -123 -rss -##sa -##ro -##am -##no -thu -fri -350 -##sh -##ki -103 -comments -name -##のて -##pe -##ine -max -1987 -8000 -uber -##mi -##ton -wordpress -office -1986 -1985 -##ment -107 -bd -win10 -##ld -##li -gmail -bb -dior -##rs -##ri -##rd -##ます -up -cad -##® -dr -して -read -##21 -をお -##io -##99 -url -1984 -pvc -paypal -show -policy -##40 -##ty -##18 -with -##★ -##01 -txt -102 -##ba -dna -from -post -mini -ar -taiwan -john -##ga -privacy -agoda -##13 -##ny -word -##24 -##22 -##by -##ur -##hz -1982 -##ang -265 -cookie -netscape -108 -##ka -##~ -##ad -house -share -note -ibm -code -hello -nike -sim -survey -##016 -1979 -1950 -wikia -##32 -##017 -5g -cbc -##tor -##kg -1983 -##rt -##14 -campaign -store -2500 -os -##ct -##ts -##° -170 -api -##ns -365 -excel -##な -##ao -##ら -##し -~~ -##nd -university -163 -には -518 -##70 -##ya -##il -##25 -pierre -ipo -0020 -897 -##23 -hotels -##ian -のお -125 -years -6606 -##ers -##26 -high -##day -time -##ay -bug -##line -##く -##す -##be -xp -talk2yam -yamservice -10000 -coco -##dy -sony -##ies -1978 -microsoft -david -people -##ha -1960 -instagram -intel -その -##ot -iso -1981 -##va -115 -##mo -##land -xxx -man -co -ltxsw -##ation -baby -220 -##pa -##ol -1945 -7000 -tag -450 -##ue -msn -##31 -oppo -##ト -##ca -control -##om -st -chrome -##ure -##ん -be -##き -lol -##19 -した -##bo -240 -lady -##100 -##way -##から -4600 -##ko -##do -##un -4s -corporation -168 -##ni -herme -##28 -cp -978 -##up -##06 -ui -##ds -ppt -admin -three -します -bbc -re -128 -##48 -ca -##015 -##35 -hp -##ee -tpp -##た -##ive -×× -root -##cc -##ました -##ble -##ity -adobe -park -114 -et -oled -city -##ex -##ler -##ap -china -##book -20000 -view -##ice -global -##km -your -hong -##mg -out -##ms -ng -ebay -##29 -menu -ubuntu -##cy -rom -##view -open -ktv -do -server -##lo -if -english -##ね -##5 -##oo -1600 -##02 -step1 -kong -club -135 -july -inc -1976 -mr -hi -##net -touch -##ls -##ii -michael -lcd -##05 -##33 -phone -james -step2 -1300 -ios9 -##box -dc -##2 -##ley -samsung -111 -280 -pokemon -css -##ent -##les -いいえ -##1 -s8 -atom -play -bmw -##said -sa -etf -ctrl -♥yoyo♥ -##55 -2025 -##2014 -##66 -adidas -amazon -1958 -##ber -##ner -visa -##77 -##der -1800 -connectivity -##hi -firefox -109 -118 -hr -so -style -mark -pop -ol -skip -1975 -as -##27 -##ir -##61 -190 -mba -##う -##ai -le -##ver -1900 -cafe2017 -lte -super -113 -129 -##ron -amd -like -##☆ -are -##ster -we -##sk -paul -data -international -##ft -longchamp -ssd -good -##ート -##ti -reply -##my -↓↓↓ -apr -star -##ker -source -136 -js -112 -get -force -photo -##one -126 -##2013 -##ow -link -bbs -1972 -goods -##lin -python -119 -##ip -game -##ics -##ません -blue -##● -520 -##45 -page -itunes -##03 -1955 -260 -1968 -gt -gif -618 -##ff -##47 -group -くたさい -about -bar -ganji -##nce -music -lee -not -1977 -1971 -1973 -##per -an -faq -comment -##って -days -##ock -116 -##bs -1974 -1969 -v1 -player -1956 -xbox -sql -fm -f1 -139 -##ah -210 -##lv -##mp -##000 -melody -1957 -##3 -550 -17life -199 -1966 -xml -market -##au -##71 -999 -##04 -what -gl -##95 -##age -tips -##68 -book -##ting -mysql -can -1959 -230 -##ung -wonderland -watch -10℃ -##ction -9000 -mar -mobile -1946 -1962 -article -##db -part -▲top -party -って -1967 -1964 -1948 -##07 -##ore -##op -この -dj -##78 -##38 -010 -main -225 -1965 -##ong -art -320 -ad -134 -020 -##73 -117 -pm2 -japan -228 -##08 -ts -1963 -##ica -der -sm -##36 -2019 -##wa -ct -##7 -##や -##64 -1937 -homemesh -search -##85 -##れは -##tv -##di -macbook -##9 -##くたさい -service -##♥ -type -った -750 -##ier -##si -##75 -##います -##ok -best -##ット -goris -lock -##った -cf -3m -big -##ut -ftp -carol -##vi -10 -1961 -happy -sd -##ac -122 -anti -pe -cnn -iii -1920 -138 -##ラ -1940 -esp -jan -tags -##98 -##51 -august -vol -##86 -154 -##™ -##fs -##れ -##sion -design -ac -##ム -press -jordan -ppp -that -key -check -##6 -##tt -##㎡ -1080p -##lt -power -##42 -1952 -##bc -vivi -##ック -he -133 -121 -jpg -##rry -201 -175 -3500 -1947 -nb -##ted -##rn -しています -1954 -usd -##t00 -master -##ンク -001 -model -##58 -al -##09 -1953 -##34 -ram -goo -ても -##ui -127 -1930 -red -##ary -rpg -item -##pm -##41 -270 -##za -project -##2012 -hot -td -blogabstract -##ger -##62 -650 -##44 -gr2 -##します -##m -black -electronic -nfc -year -asus -また -html5 -cindy -##hd -m3 -132 -esc -##od -booking -##53 -fed -tvb -##81 -##ina -mit -165 -##いる -chan -192 -distribution -next -になる -peter -bios -steam -cm -1941 -にも -pk10 -##ix -##65 -##91 -dec -nasa -##ana -icecat -00z -b1 -will -##46 -li -se -##ji -##み -##ard -oct -##ain -jp -##ze -##bi -cio -##56 -smart -h5 -##39 -##port -curve -vpn -##nm -##dia -utc -##あり -12345678910 -##52 -rmvb -chanel -a4 -miss -##and -##im -media -who -##63 -she -girl -5s -124 -vera -##して -class -vivo -king -##フ -##ei -national -ab -1951 -5cm -888 -145 -ipod -ap -1100 -5mm -211 -ms -2756 -##69 -mp4 -msci -##po -##89 -131 -mg -index -380 -##bit -##out -##zz -##97 -##67 -158 -apec -##8 -photoshop -opec -¥799 -ては -##96 -##tes -##ast -2g -○○ -##ール -¥2899 -##ling -##よ -##ory -1938 -##ical -kitty -content -##43 -step3 -##cn -win8 -155 -vc -1400 -iphone7 -robert -##した -tcl -137 -beauty -##87 -en -dollars -##ys -##oc -step -pay -yy -a1 -##2011 -##lly -##ks -##♪ -1939 -188 -download -1944 -sep -exe -ph -います -school -gb -center -pr -street -##board -uv -##37 -##lan -winrar -##que -##ua -##com -1942 -1936 -480 -gpu -##4 -ettoday -fu -tom -##54 -##ren -##via -149 -##72 -b2b -144 -##79 -##tch -rose -arm -mb -##49 -##ial -##nn -nvidia -step4 -mvp -00㎡ -york -156 -##イ -how -cpi -591 -2765 -gov -kg -joe -##xx -mandy -pa -##ser -copyright -fashion -1935 -don -##け -ecu -##ist -##art -erp -wap -have -##lm -talk -##ek -##ning -##if -ch -##ite -video -1943 -cs -san -iot -look -##84 -##2010 -##ku -october -##ux -trump -##hs -##ide -box -141 -first -##ins -april -##ight -##83 -185 -angel -protected -aa -151 -162 -x1 -m2 -##fe -##× -##ho -size -143 -min -ofo -fun -gomaji -ex -hdmi -food -dns -march -chris -kevin -##のか -##lla -##pp -##ec -ag -ems -6s -720p -##rm -##ham -off -##92 -asp -team -fandom -ed -299 -▌♥ -##ell -info -されています -##82 -sina -4066 -161 -##able -##ctor -330 -399 -315 -dll -rights -ltd -idc -jul -3kg -1927 -142 -ma -surface -##76 -##ク -~~~ -304 -mall -eps -146 -green -##59 -map -space -donald -v2 -sodu -##light -1931 -148 -1700 -まて -310 -reserved -htm -##han -##57 -2d -178 -mod -##ise -##tions -152 -ti -##shi -doc -1933 -icp -055 -wang -##ram -shopping -aug -##pi -##well -now -wam -b2 -からお -##hu -236 -1928 -##gb -266 -f2 -##93 -153 -mix -##ef -##uan -bwl -##plus -##res -core -##ess -tea -5℃ -hktvmall -nhk -##ate -list -##ese -301 -feb -4m -inn -ての -nov -159 -12345 -daniel -##ci -pass -##bet -##nk -coffee -202 -ssl -airbnb -##ute -fbi -woshipm -skype -ea -cg -sp -##fc -##www -yes -edge -alt -007 -##94 -fpga -##ght -##gs -iso9001 -さい -##ile -##wood -##uo -image -lin -icon -american -##em -1932 -set -says -##king -##tive -blogger -##74 -なと -256 -147 -##ox -##zy -##red -##ium -##lf -nokia -claire -##リ -##ding -november -lohas -##500 -##tic -##マ -##cs -##ある -##che -##ire -##gy -##ult -db -january -win -##カ -166 -road -ptt -##ま -##つ -198 -##fa -##mer -anna -pchome -はい -udn -ef -420 -##time -##tte -2030 -##ア -g20 -white -かかります -1929 -308 -garden -eleven -di -##おります -chen -309b -777 -172 -young -cosplay -ちてない -4500 -bat -##123 -##tra -##ては -kindle -npc -steve -etc -##ern -##| -call -xperia -ces -travel -sk -s7 -##ous -1934 -##int -みいたたけます -183 -edu -file -cho -qr -##car -##our -186 -##ant -##d -eric -1914 -rends -##jo -##する -mastercard -##2000 -kb -##min -290 -##ino -vista -##ris -##ud -jack -2400 -##set -169 -pos -1912 -##her -##ou -taipei -しく -205 -beta -##ませんか -232 -##fi -express -255 -body -##ill -aphojoy -user -december -meiki -##ick -tweet -richard -##av -##ᆫ -iphone6 -##dd -ちてすか -views -##mark -321 -pd -##00 -times -##▲ -level -##ash -10g -point -5l -##ome -208 -koreanmall -##ak -george -q2 -206 -wma -tcp -##200 -スタッフ -full -mlb -##lle -##watch -tm -run -179 -911 -smith -business -##und -1919 -color -##tal -222 -171 -##less -moon -4399 -##rl -update -pcb -shop -499 -157 -little -なし -end -##mhz -van -dsp -easy -660 -##house -##key -history -##o -oh -##001 -##hy -##web -oem -let -was -##2009 -##gg -review -##wan -182 -##°c -203 -uc -title -##val -united -233 -2021 -##ons -doi -trivago -overdope -sbs -##ance -##ち -grand -special -573032185 -imf -216 -wx17house -##so -##ーム -audi -##he -london -william -##rp -##ake -science -beach -cfa -amp -ps4 -880 -##800 -##link -##hp -crm -ferragamo -bell -make -##eng -195 -under -zh -photos -2300 -##style -##ント -via -176 -da -##gi -company -i7 -##ray -thomas -370 -ufo -i5 -##max -plc -ben -back -research -8g -173 -mike -##pc -##ッフ -september -189 -##ace -vps -february -167 -pantos -wp -lisa -1921 -★★ -jquery -night -long -offer -##berg -##news -1911 -##いて -ray -fks -wto -せます -over -164 -340 -##all -##rus -1924 -##888 -##works -blogtitle -loftpermalink -##→ -187 -martin -test -ling -km -##め -15000 -fda -v3 -##ja -##ロ -wedding -かある -outlet -family -##ea -をこ -##top -story -##ness -salvatore -##lu -204 -swift -215 -room -している -oracle -##ul -1925 -sam -b2c -week -pi -rock -##のは -##a -##けと -##ean -##300 -##gle -cctv -after -chinese -##back -powered -x2 -##tan -1918 -##nes -##イン -canon -only -181 -##zi -##las -say -##oe -184 -##sd -221 -##bot -##world -##zo -sky -made -top100 -just -1926 -pmi -802 -234 -gap -##vr -177 -les -174 -▲topoct -ball -vogue -vi -ing -ofweek -cos -##list -##ort -▲topmay -##なら -##lon -として -last -##tc -##of -##bus -##gen -real -eva -##コ -a3 -nas -##lie -##ria -##coin -##bt -▲topapr -his -212 -cat -nata -vive -health -⋯⋯ -drive -sir -▲topmar -du -cup -##カー -##ook -##よう -##sy -alex -msg -tour -しました -3ce -##word -193 -ebooks -r8 -block -318 -##より -2200 -nice -pvp -207 -months -1905 -rewards -##ther -1917 -0800 -##xi -##チ -##sc -micro -850 -gg -blogfp -op -1922 -daily -m1 -264 -true -##bb -ml -##tar -##のお -##ky -anthony -196 -253 -##yo -state -218 -##ara -##aa -##rc -##tz -##ston -より -gear -##eo -##ade -ge -see -1923 -##win -##ura -ss -heart -##den -##ita -down -##sm -el -png -2100 -610 -rakuten -whatsapp -bay -dream -add -##use -680 -311 -pad -gucci -mpv -##ode -##fo -island -▲topjun -##▼ -223 -jason -214 -chicago -##❤ -しの -##hone -io -##れる -##ことか -sogo -be2 -##ology -990 -cloud -vcd -##con -2~3 -##ford -##joy -##kb -##こさいます -##rade -but -##ach -docker -##ful -rfid -ul -##ase -hit -ford -##star -580 -##○ -11 -a2 -sdk -reading -edited -##are -cmos -##mc -238 -siri -light -##ella -##ため -bloomberg -##read -pizza -##ison -jimmy -##vm -college -node -journal -ba -18k -##play -245 -##cer -20 -magic -##yu -191 -jump -288 -tt -##ings -asr -##lia -3200 -step5 -network -##cd -mc -いします -1234 -pixstyleme -273 -##600 -2800 -money -★★★★★ -1280 -12 -430 -bl -みの -act -##tus -tokyo -##rial -##life -emba -##ae -saas -tcs -##rk -##wang -summer -##sp -ko -##ving -390 -premium -##その -netflix -##ヒ -uk -mt -##lton -right -frank -two -209 -える -##ple -##cal -021 -##んな -##sen -##ville -hold -nexus -dd -##ius -てお -##mah -##なく -tila -zero -820 -ce -##tin -resort -##ws -charles -old -p10 -5d -report -##360 -##ru -##には -bus -vans -lt -##est -pv -##レ -links -rebecca -##ツ -##dm -azure -##365 -きな -limited -bit -4gb -##mon -1910 -moto -##eam -213 -1913 -var -eos -なとの -226 -blogspot -された -699 -e3 -dos -dm -fc -##ments -##ik -##kw -boy -##bin -##ata -960 -er -##せ -219 -##vin -##tu -##ula -194 -##∥ -station -##ろ -##ature -835 -files -zara -hdr -top10 -nature -950 -magazine -s6 -marriott -##シ -avira -case -##っと -tab -##ran -tony -##home -oculus -im -##ral -jean -saint -cry -307 -rosie -##force -##ini -ice -##bert -のある -##nder -##mber -pet -2600 -##◆ -plurk -▲topdec -##sis -00kg -▲topnov -720 -##ence -tim -##ω -##nc -##ても -##name -log -ips -great -ikea -malaysia -unix -##イト -3600 -##ncy -##nie -12000 -akb48 -##ye -##oid -404 -##chi -##いた -oa -xuehai -##1000 -##orm -##rf -275 -さん -##ware -##リー -980 -ho -##pro -text -##era -560 -bob -227 -##ub -##2008 -8891 -scp -avi -##zen -2022 -mi -wu -museum -qvod -apache -lake -jcb -▲topaug -★★★ -ni -##hr -hill -302 -ne -weibo -490 -ruby -##ーシ -##ヶ -##row -4d -▲topjul -iv -##ish -github -306 -mate -312 -##スト -##lot -##ane -andrew -のハイト -##tina -t1 -rf -ed2k -##vel -##900 -way -final -りの -ns -5a -705 -197 -##メ -sweet -bytes -##ene -▲topjan -231 -##cker -##2007 -##px -100g -topapp -229 -helpapp -rs -low -14k -g4g -care -630 -ldquo -あり -##fork -leave -rm -edition -##gan -##zon -##qq -▲topsep -##google -##ism -gold -224 -explorer -##zer -toyota -category -select -visual -##labels -restaurant -##md -posts -s1 -##ico -もっと -angelababy -123456 -217 -sports -s3 -mbc -1915 -してくたさい -shell -x86 -candy -##new -kbs -face -xl -470 -##here -4a -swissinfo -v8 -▲topfeb -dram -##ual -##vice -3a -##wer -sport -q1 -ios10 -public -int -card -##c -ep -au -rt -##れた -1080 -bill -##mll -kim -30 -460 -wan -##uk -##ミ -x3 -298 -0t -scott -##ming -239 -e5 -##3d -h7n9 -worldcat -brown -##あります -##vo -##led -##580 -##ax -249 -410 -##ert -paris -##~6 -polo -925 -##lr -599 -##ナ -capital -##hing -bank -cv -1g -##chat -##s -##たい -adc -##ule -2m -##e -digital -hotmail -268 -##pad -870 -bbq -quot -##ring -before -wali -##まて -mcu -2k -2b -という -costco -316 -north -333 -switch -##city -##p -philips -##mann -management -panasonic -##cl -##vd -##ping -##rge -alice -##lk -##ましょう -css3 -##ney -vision -alpha -##ular -##400 -##tter -lz -にお -##ありません -mode -gre -1916 -pci -##tm -237 -1~2 -##yan -##そ -について -##let -##キ -work -war -coach -ah -mary -##ᅵ -huang -##pt -a8 -pt -follow -##berry -1895 -##ew -a5 -ghost -##ション -##wn -##og -south -##code -girls -##rid -action -villa -git -r11 -table -games -##cket -error -##anonymoussaid -##ag -here -##ame -##gc -qa -##■ -##lis -gmp -##gin -vmalife -##cher -yu -wedding -##tis -demo -dragon -530 -soho -social -bye -##rant -river -orz -acer -325 -##↑ -##ース -##ats -261 -del -##ven -440 -ups -##ように -##ター -305 -value -macd -yougou -##dn -661 -##ano -ll -##urt -##rent -continue -script -##wen -##ect -paper -263 -319 -shift -##chel -##フト -##cat -258 -x5 -fox -243 -##さん -car -aaa -##blog -loading -##yn -##tp -kuso -799 -si -sns -イカせるテンマ -ヒンクテンマ3 -rmb -vdc -forest -central -prime -help -ultra -##rmb -##ような -241 -square -688 -##しい -のないフロクに -##field -##reen -##ors -##ju -c1 -start -510 -##air -##map -cdn -##wo -cba -stephen -m8 -100km -##get -opera -##base -##ood -vsa -com™ -##aw -##ail -251 -なのて -count -t2 -##ᅡ -##een -2700 -hop -##gp -vsc -tree -##eg -##ose -816 -285 -##ories -##shop -alphago -v4 -1909 -simon -##ᆼ -fluke62max -zip -スホンサー -##sta -louis -cr -bas -##~10 -bc -##yer -hadoop -##ube -##wi -1906 -0755 -hola -##low -place -centre -5v -d3 -##fer -252 -##750 -##media -281 -540 -0l -exchange -262 -series -##ハー -##san -eb -##bank -##k -q3 -##nge -##mail -take -##lp -259 -1888 -client -east -cache -event -vincent -##ールを -きを -##nse -sui -855 -adchoice -##и -##stry -##なたの -246 -##zone -ga -apps -sea -##ab -248 -cisco -##タ -##rner -kymco -##care -dha -##pu -##yi -minkoff -royal -p1 -への -annie -269 -collection -kpi -playstation -257 -になります -866 -bh -##bar -queen -505 -radio -1904 -andy -armani -##xy -manager -iherb -##ery -##share -spring -raid -johnson -1908 -##ob -volvo -hall -##ball -v6 -our -taylor -##hk -bi -242 -##cp -kate -bo -water -technology -##rie -サイトは -277 -##ona -##sl -hpv -303 -gtx -hip -rdquo -jayz -stone -##lex -##rum -namespace -##やり -620 -##ale -##atic -des -##erson -##ql -##ves -##type -enter -##この -##てきます -d2 -##168 -##mix -##bian -との -a9 -jj -ky -##lc -access -movie -##hc -リストに -tower -##ration -##mit -ます -##nch -ua -tel -prefix -##o2 -1907 -##point -1901 -ott -~10 -##http -##ury -baidu -##ink -member -##logy -bigbang -nownews -##js -##shot -##tb -##こと -247 -eba -##tics -##lus -ける -v5 -spark -##ama -there -##ions -god -##lls -##down -hiv -##ress -burberry -day2 -##kv -◆◆ -jeff -related -film -edit -joseph -283 -##ark -cx -32gb -order -g9 -30000 -##ans -##tty -s5 -##bee -かあります -thread -xr -buy -sh -005 -land -spotify -mx -##ari -276 -##verse -×email -sf -why -##ことて -244 -7headlines -nego -sunny -dom -exo -401 -666 -positioning -fit -rgb -##tton -278 -kiss -alexa -adam -lp -みリストを -##g -mp -##ties -##llow -amy -##du -np -002 -institute -271 -##rth -##lar -2345 -590 -##des -sidebar -15 -imax -site -##cky -##kit -##ime -##009 -season -323 -##fun -##ンター -##ひ -gogoro -a7 -pu -lily -fire -twd600 -##ッセーシを -いて -##vis -30ml -##cture -##をお -information -##オ -close -friday -##くれる -yi -nick -てすか -##tta -##tel -6500 -##lock -cbd -economy -254 -かお -267 -tinker -double -375 -8gb -voice -##app -oops -channel -today -985 -##right -raw -xyz -##+ -jim -edm -##cent -7500 -supreme -814 -ds -##its -##asia -dropbox -##てすか -##tti -books -272 -100ml -##tle -##ller -##ken -##more -##boy -sex -309 -##dom -t3 -##ider -##なります -##unch -1903 -810 -feel -5500 -##かった -##put -により -s2 -mo -##gh -men -ka -amoled -div -##tr -##n1 -port -howard -##tags -ken -dnf -##nus -adsense -##а -ide -##へ -buff -thunder -##town -##ique -has -##body -auto -pin -##erry -tee -てした -295 -number -##the -##013 -object -psp -cool -udnbkk -16gb -##mic -miui -##tro -most -r2 -##alk -##nity -1880 -±0 -##いました -428 -s4 -law -version -##oa -n1 -sgs -docomo -##tf -##ack -henry -fc2 -##ded -##sco -##014 -##rite -286 -0mm -linkedin -##ada -##now -wii -##ndy -ucbug -##◎ -sputniknews -legalminer -##ika -##xp -2gb -##bu -q10 -oo -b6 -come -##rman -cheese -ming -maker -##gm -nikon -##fig -ppi -kelly -##ります -jchere -てきます -ted -md -003 -fgo -tech -##tto -dan -soc -##gl -##len -hair -earth -640 -521 -img -##pper -##a1 -##てきる -##ロク -acca -##ition -##ference -suite -##ig -outlook -##mond -##cation -398 -##pr -279 -101vip -358 -##999 -282 -64gb -3800 -345 -airport -##over -284 -##おり -jones -##ith -lab -##su -##いるのて -co2 -town -piece -##llo -no1 -vmware -24h -##qi -focus -reader -##admin -##ora -tb -false -##log -1898 -know -lan -838 -##ces -f4 -##ume -motel -stop -##oper -na -flickr -netcomponents -##af -##─ -pose -williams -local -##ound -##cg -##site -##iko -いお -274 -5m -gsm -con -##ath -1902 -friends -##hip -cell -317 -##rey -780 -cream -##cks -012 -##dp -facebooktwitterpinterestgoogle -sso -324 -shtml -song -swiss -##mw -##キンク -lumia -xdd -string -tiffany -522 -marc -られた -insee -russell -sc -dell -##ations -ok -camera -289 -##vs -##flow -##late -classic -287 -##nter -stay -g1 -mtv -512 -##ever -##lab -##nger -qe -sata -ryan -d1 -50ml -cms -##cing -su -292 -3300 -editor -296 -##nap -security -sunday -association -##ens -##700 -##bra -acg -##かり -sofascore -とは -mkv -##ign -jonathan -gary -build -labels -##oto -tesla -moba -qi -gohappy -general -ajax -1024 -##かる -サイト -society -##test -##urs -wps -fedora -##ich -mozilla -328 -##480 -##dr -usa -urn -##lina -##r -grace -##die -##try -##ader -1250 -##なり -elle -570 -##chen -##ᆯ -price -##ten -uhz -##ough -eq -##hen -states -push -session -balance -wow -506 -##cus -##py -when -##ward -##ep -34e -wong -library -prada -##サイト -##cle -running -##ree -313 -ck -date -q4 -##ctive -##ool -##> -mk -##ira -##163 -388 -die -secret -rq -dota -buffet -は1ヶ -e6 -##ez -pan -368 -ha -##card -##cha -2a -##さ -alan -day3 -eye -f3 -##end -france -keep -adi -rna -tvbs -##ala -solo -nova -##え -##tail -##ょう -support -##ries -##なる -##ved -base -copy -iis -fps -##ways -hero -hgih -profile -fish -mu -ssh -entertainment -chang -##wd -click -cake -##ond -pre -##tom -kic -pixel -##ov -##fl -product -6a -##pd -dear -##gate -es -yumi -audio -##² -##sky -echo -bin -where -##ture -329 -##ape -find -sap -isis -##なと -nand -##101 -##load -##ream -band -a6 -525 -never -##post -festival -50cm -##we -555 -guide -314 -zenfone -##ike -335 -gd -forum -jessica -strong -alexander -##ould -software -allen -##ious -program -360° -else -lohasthree -##gar -することかてきます -please -##れます -rc -##ggle -##ric -bim -50000 -##own -eclipse -355 -brian -3ds -##side -061 -361 -##other -##ける -##tech -##ator -485 -engine -##ged -##t -plaza -##fit -cia -ngo -westbrook -shi -tbs -50mm -##みませんか -sci -291 -reuters -##ily -contextlink -##hn -af -##cil -bridge -very -##cel -1890 -cambridge -##ize -15g -##aid -##data -790 -frm -##head -award -butler -##sun -meta -##mar -america -ps3 -puma -pmid -##すか -lc -670 -kitchen -##lic -オーフン5 -きなしソフトサーヒス -そして -day1 -future -★★★★ -##text -##page -##rris -pm1 -##ket -fans -##っています -1001 -christian -bot -kids -trackback -##hai -c3 -display -##hl -n2 -1896 -idea -さんも -##sent -airmail -##ug -##men -pwm -けます -028 -##lution -369 -852 -awards -schemas -354 -asics -wikipedia -font -##tional -##vy -c2 -293 -##れている -##dget -##ein -っている -contact -pepper -スキル -339 -##~5 -294 -##uel -##ument -730 -##hang -みてす -q5 -##sue -rain -##ndi -wei -swatch -##cept -わせ -331 -popular -##ste -##tag -p2 -501 -trc -1899 -##west -##live -justin -honda -ping -messenger -##rap -v9 -543 -##とは -unity -appqq -はすへて -025 -leo -##tone -##テ -##ass -uniqlo -##010 -502 -her -jane -memory -moneydj -##tical -human -12306 -していると -##m2 -coc -miacare -##mn -tmt -##core -vim -kk -##may -fan -target -use -too -338 -435 -2050 -867 -737 -fast -##2c -services -##ope -omega -energy -##わ -pinkoi -1a -##なから -##rain -jackson -##ement -##シャンルの -374 -366 -そんな -p9 -rd -##ᆨ -1111 -##tier -##vic -zone -##│ -385 -690 -dl -isofix -cpa -m4 -322 -kimi -めて -davis -##lay -lulu -##uck -050 -weeks -qs -##hop -920 -##n -ae -##ear -~5 -eia -405 -##fly -korea -jpeg -boost -##ship -small -##リア -1860 -eur -297 -425 -valley -##iel -simple -##ude -rn -k2 -##ena -されます -non -patrick -しているから -##ナー -feed -5757 -30g -process -well -qqmei -##thing -they -aws -lu -pink -##ters -##kin -または -board -##vertisement -wine -##ien -unicode -##dge -r1 -359 -##tant -いを -##twitter -##3c -cool1 -される -##れて -##l -isp -##012 -standard -45㎡2 -402 -##150 -matt -##fu -326 -##iner -googlemsn -pixnetfacebookyahoo -##ラン -x7 -886 -##uce -メーカー -sao -##ev -##きました -##file -9678 -403 -xddd -shirt -6l -##rio -##hat -3mm -givenchy -ya -bang -##lio -monday -crystal -ロクイン -##abc -336 -head -890 -ubuntuforumwikilinuxpastechat -##vc -##~20 -##rity -cnc -7866 -ipv6 -null -1897 -##ost -yang -imsean -tiger -##fet -##ンス -352 -##= -dji -327 -ji -maria -##come -##んて -foundation -3100 -##beth -##なった -1m -601 -active -##aft -##don -3p -sr -349 -emma -##khz -living -415 -353 -1889 -341 -709 -457 -sas -x6 -##face -pptv -x4 -##mate -han -sophie -##jing -337 -fifa -##mand -other -sale -inwedding -##gn -てきちゃいます -##mmy -##pmlast -bad -nana -nbc -してみてくたさいね -なとはお -##wu -##かあります -##あ -note7 -single -##340 -せからこ -してくたさい♪この -しにはとんとんワークケートを -するとあなたにもっとマッチした -ならワークケートへ -もみつかっちゃうかも -ワークケートの -##bel -window -##dio -##ht -union -age -382 -14 -##ivity -##y -コメント -domain -neo -##isa -##lter -5k -f5 -steven -##cts -powerpoint -tft -self -g2 -ft -##テル -zol -##act -mwc -381 -343 -もう -nbapop -408 -てある -eds -ace -##room -previous -author -tomtom -il -##ets -hu -financial -☆☆☆ -っています -bp -5t -chi -1gb -##hg -fairmont -cross -008 -gay -h2 -function -##けて -356 -also -1b -625 -##ータ -##raph -1894 -3~5 -##ils -i3 -334 -avenue -##host -による -##bon -##tsu -message -navigation -50g -fintech -h6 -##ことを -8cm -##ject -##vas -##firm -credit -##wf -xxxx -form -##nor -##space -huawei -plan -json -sbl -##dc -machine -921 -392 -wish -##120 -##sol -windows7 -edward -##ために -development -washington -##nsis -lo -818 -##sio -##ym -##bor -planet -##~8 -##wt -ieee -gpa -##めて -camp -ann -gm -##tw -##oka -connect -##rss -##work -##atus -wall -chicken -soul -2mm -##times -fa -##ather -##cord -009 -##eep -hitachi -gui -harry -##pan -e1 -disney -##press -##ーション -wind -386 -frigidaire -##tl -liu -hsu -332 -basic -von -ev -いた -てきる -スホンサーサイト -learning -##ull -expedia -archives -change -##wei -santa -cut -ins -6gb -turbo -brand -cf1 -508 -004 -return -747 -##rip -h1 -##nis -##をこ -128gb -##にお -3t -application -しており -emc -rx -##oon -384 -quick -412 -15058 -wilson -wing -chapter -##bug -beyond -##cms -##dar -##oh -zoom -e2 -trip -sb -##nba -rcep -342 -aspx -ci -080 -gc -gnu -める -##count -advanced -dance -dv -##url -##ging -367 -8591 -am09 -shadow -battle -346 -##i -##cia -##という -emily -##のてす -##tation -host -ff -techorz -sars -##mini -##mporary -##ering -nc -4200 -798 -##next -cma -##mbps -##gas -##ift -##dot -##ィ -455 -##~17 -amana -##りの -426 -##ros -ir -00㎡1 -##eet -##ible -##↓ -710 -ˋ▽ˊ -##aka -dcs -iq -##v -l1 -##lor -maggie -##011 -##iu -588 -##~1 -830 -##gt -1tb -articles -create -##burg -##iki -database -fantasy -##rex -##cam -dlc -dean -##you -hard -path -gaming -victoria -maps -cb -##lee -##itor -overchicstoretvhome -systems -##xt -416 -p3 -sarah -760 -##nan -407 -486 -x9 -install -second -626 -##ann -##ph -##rcle -##nic -860 -##nar -ec -##とう -768 -metro -chocolate -##rian -~4 -##table -##しています -skin -##sn -395 -mountain -##0mm -inparadise -6m -7x24 -ib -4800 -##jia -eeworld -creative -g5 -g3 -357 -parker -ecfa -village -からの -18000 -sylvia -サーヒス -hbl -##ques -##onsored -##x2 -##きます -##v4 -##tein -ie6 -383 -##stack -389 -ver -##ads -##baby -sound -bbe -##110 -##lone -##uid -ads -022 -gundam -351 -thinkpad -006 -scrum -match -##ave -mems -##470 -##oy -##なりました -##talk -glass -lamigo -span -##eme -job -##a5 -jay -wade -kde -498 -##lace -ocean -tvg -##covery -##r3 -##ners -##rea -junior -think -##aine -cover -##ision -##sia -↓↓ -##bow -msi -413 -458 -406 -##love -711 -801 -soft -z2 -##pl -456 -1840 -mobil -mind -##uy -427 -nginx -##oi -めた -##rr -6221 -##mple -##sson -##ーシてす -371 -##nts -91tv -comhd -crv3000 -##uard -1868 -397 -deep -lost -field -gallery -##bia -rate -spf -redis -traction -930 -icloud -011 -なら -fe -jose -372 -##tory -into -sohu -fx -899 -379 -kicstart2 -##hia -すく -##~3 -##sit -ra -24 -##walk -##xure -500g -##pact -pacific -xa -natural -carlo -##250 -##walker -1850 -##can -cto -gigi -516 -##サー -pen -##hoo -ob -matlab -##b -##yy -13913459 -##iti -mango -##bbs -sense -c5 -oxford -##ニア -walker -jennifer -##ola -course -##bre -701 -##pus -##rder -lucky -075 -##ぁ -ivy -なお -##nia -sotheby -side -##ugh -joy -##orage -##ush -##bat -##dt -364 -r9 -##2d -##gio -511 -country -wear -##lax -##~7 -##moon -393 -seven -study -411 -348 -lonzo -8k -##ェ -evolution -##イフ -##kk -gs -kd -##レス -arduino -344 -b12 -##lux -arpg -##rdon -cook -##x5 -dark -five -##als -##ida -とても -sign -362 -##ちの -something -20mm -##nda -387 -##posted -fresh -tf -1870 -422 -cam -##mine -##skip -##form -##ssion -education -394 -##tee -dyson -stage -##jie -want -##night -epson -pack -あります -##ppy -テリヘル -##█ -wd -##eh -##rence -left -##lvin -golden -mhz -discovery -##trix -##n2 -loft -##uch -##dra -##sse -speed -~1 -1mdb -sorry -welcome -##urn -wave -gaga -##lmer -teddy -##160 -トラックハック -せよ -611 -##f2016 -378 -rp -##sha -rar -##あなたに -##きた -840 -holiday -##ュー -373 -074 -##vg -##nos -##rail -gartner -gi -6p -##dium -kit -488 -b3 -eco -##ろう -20g -sean -##stone -autocad -nu -##np -f16 -write -029 -m5 -##ias -images -atp -##dk -fsm -504 -1350 -ve -52kb -##xxx -##のに -##cake -414 -unit -lim -ru -1v -##ification -published -angela -16g -analytics -ak -##q -##nel -gmt -##icon -again -##₂ -##bby -ios11 -445 -かこさいます -waze -いてす -##ハ -9985 -##ust -##ティー -framework -##007 -iptv -delete -52sykb -cl -wwdc -027 -30cm -##fw -##ての -1389 -##xon -brandt -##ses -##dragon -tc -vetements -anne -monte -modern -official -##へて -##ere -##nne -##oud -もちろん -50 -etnews -##a2 -##graphy -421 -863 -##ちゃん -444 -##rtex -##てお -l2 -##gma -mount -ccd -たと -archive -morning -tan -ddos -e7 -##ホ -day4 -##ウ -gis -453 -its -495 -factory -bruce -pg -##ito -ってくたさい -guest -cdma -##lling -536 -n3 -しかし -3~4 -mega -eyes -ro -13 -women -dac -church -##jun -singapore -##facebook -6991 -starbucks -##tos -##stin -##shine -zen -##mu -tina -20℃ -1893 -##たけて -503 -465 -request -##gence -qt -##っ -1886 -347 -363 -q7 -##zzi -diary -##tore -409 -##ead -468 -cst -##osa -canada -agent -va -##jiang -##ちは -##ーク -##lam -sg -##nix -##sday -##よって -g6 -##master -bing -##zl -charlie -16 -8mm -nb40 -##ーン -thai -##ルフ -ln284ct -##itz -##2f -bonnie -##food -##lent -originals -##stro -##lts -418 -∟∣ -##bscribe -children -ntd -yesstyle -##かも -hmv -##tment -d5 -2cm -arts -sms -##pn -##я -##いい -topios9 -539 -lifestyle -virtual -##ague -xz -##deo -muji -024 -unt -##nnis -##ᅩ -faq1 -1884 -396 -##ette -fly -64㎡ -はしめまして -441 -curry -##pop -のこ -release -##← -##◆◆ -##cast -073 -ありな -500ml -##ews -5c -##stle -ios7 -##ima -787 -dog -lenovo -##r4 -roger -013 -cbs -vornado -100m -417 -##desk -##クok -##ald -1867 -9595 -2900 -##van -oil -##x -some -break -common -##jy -##lines -g7 -twice -419 -ella -nano -belle -にこ -##mes -##self -##note -jb -##ことかてきます -benz -##との -##ova -451 -save -##wing -##ますのて -kai -りは -##hua -##rect -rainer -##unge -448 -##0m -adsl -##かな -guestname -##uma -##kins -##zu -tokichoi -##price -county -##med -##mus -rmk -391 -address -vm -えて -openload -##group -##hin -##iginal -amg -urban -##oz -jobs -emi -##public -beautiful -##sch -album -##dden -##bell -jerry -works -hostel -miller -##drive -##rmin -##10 -376 -boot -828 -##370 -##fx -##cm~ -1885 -##nome -##ctionary -##oman -##lish -##cr -##hm -433 -##how -432 -francis -xi -c919 -b5 -evernote -##uc -vga -##3000 -coupe -##urg -##cca -##uality -019 -6g -れる -multi -##また -##ett -em -hey -##ani -##tax -##rma -inside -than -740 -leonnhurt -##jin -ict -れた -bird -notes -200mm -くの -##dical -##lli -result -442 -iu -ee -438 -smap -gopro -##last -yin -pure -998 -32g -けた -5kg -##dan -##rame -mama -##oot -bean -marketing -##hur -2l -bella -sync -xuite -##ground -515 -discuz -##getrelax -##ince -##bay -##5s -cj -##イス -gmat -apt -##pass -jing -##rix -c4 -rich -##とても -niusnews -##ello -bag -770 -##eting -##mobile -18 -culture -015 -##のてすか -377 -1020 -area -##ience -616 -details -gp -universal -silver -dit -はお -private -ddd -u11 -kanshu -##ified -fung -##nny -dx -##520 -tai -475 -023 -##fr -##lean -3s -##pin -429 -##rin -25000 -ly -rick -##bility -usb3 -banner -##baru -##gion -metal -dt -vdf -1871 -karl -qualcomm -bear -1010 -oldid -ian -jo -##tors -population -##ernel -1882 -mmorpg -##mv -##bike -603 -##© -ww -friend -##ager -exhibition -##del -##pods -fpx -structure -##free -##tings -kl -##rley -##copyright -##mma -california -3400 -orange -yoga -4l -canmake -honey -##anda -##コメント -595 -nikkie -##ルハイト -dhl -publishing -##mall -##gnet -20cm -513 -##クセス -##┅ -e88 -970 -##dog -fishbase -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##{ -##| -##} -##~ -##£ -##¤ -##¥ -##§ -##« -##± -##³ -##µ -##· -##¹ -##º -##» -##¼ -##ß -##æ -##÷ -##ø -##đ -##ŋ -##ɔ -##ə -##ɡ -##ʰ -##ˇ -##ˈ -##ˊ -##ˋ -##ˍ -##ː -##˙ -##˚ -##ˢ -##α -##β -##γ -##δ -##ε -##η -##θ -##ι -##κ -##λ -##μ -##ν -##ο -##π -##ρ -##ς -##σ -##τ -##υ -##φ -##χ -##ψ -##б -##в -##г -##д -##е -##ж -##з -##к -##л -##м -##н -##о -##п -##р -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##ы -##ь -##і -##ا -##ب -##ة -##ت -##د -##ر -##س -##ع -##ل -##م -##ن -##ه -##و -##ي -##۩ -##ก -##ง -##น -##ม -##ย -##ร -##อ -##า -##เ -##๑ -##་ -##ღ -##ᄀ -##ᄁ -##ᄂ -##ᄃ -##ᄅ -##ᄆ -##ᄇ -##ᄈ -##ᄉ -##ᄋ -##ᄌ -##ᄎ -##ᄏ -##ᄐ -##ᄑ -##ᄒ -##ᅢ -##ᅣ -##ᅥ -##ᅦ -##ᅧ -##ᅨ -##ᅪ -##ᅬ -##ᅭ -##ᅮ -##ᅯ -##ᅲ -##ᅳ -##ᅴ -##ᆷ -##ᆸ -##ᆺ -##ᆻ -##ᗜ -##ᵃ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵘ -##‖ -##„ -##† -##• -##‥ -##‧ -##
 -##‰ -##′ -##″ -##‹ -##› -##※ -##‿ -##⁄ -##ⁱ -##⁺ -##ⁿ -##₁ -##₃ -##₄ -##€ -##№ -##ⅰ -##ⅱ -##ⅲ -##ⅳ -##ⅴ -##↔ -##↗ -##↘ -##⇒ -##∀ -##− -##∕ -##∙ -##√ -##∞ -##∟ -##∠ -##∣ -##∩ -##∮ -##∶ -##∼ -##∽ -##≈ -##≒ -##≡ -##≤ -##≥ -##≦ -##≧ -##≪ -##≫ -##⊙ -##⋅ -##⋈ -##⋯ -##⌒ -##① -##② -##③ -##④ -##⑤ -##⑥ -##⑦ -##⑧ -##⑨ -##⑩ -##⑴ -##⑵ -##⑶ -##⑷ -##⑸ -##⒈ -##⒉ -##⒊ -##⒋ -##ⓒ -##ⓔ -##ⓘ -##━ -##┃ -##┆ -##┊ -##┌ -##└ -##├ -##┣ -##═ -##║ -##╚ -##╞ -##╠ -##╭ -##╮ -##╯ -##╰ -##╱ -##╳ -##▂ -##▃ -##▅ -##▇ -##▉ -##▋ -##▌ -##▍ -##▎ -##□ -##▪ -##▫ -##▬ -##△ -##▶ -##► -##▽ -##◇ -##◕ -##◠ -##◢ -##◤ -##☀ -##☕ -##☞ -##☺ -##☼ -##♀ -##♂ -##♠ -##♡ -##♣ -##♦ -##♫ -##♬ -##✈ -##✔ -##✕ -##✖ -##✦ -##✨ -##✪ -##✰ -##✿ -##❀ -##➜ -##➤ -##⦿ -##、 -##。 -##〃 -##々 -##〇 -##〈 -##〉 -##《 -##》 -##「 -##」 -##『 -##』 -##【 -##】 -##〓 -##〔 -##〕 -##〖 -##〗 -##〜 -##〝 -##〞 -##ぃ -##ぇ -##ぬ -##ふ -##ほ -##む -##ゃ -##ゅ -##ゆ -##ょ -##゜ -##ゝ -##ァ -##ゥ -##エ -##ォ -##ケ -##サ -##セ -##ソ -##ッ -##ニ -##ヌ -##ネ -##ノ -##ヘ -##モ -##ャ -##ヤ -##ュ -##ユ -##ョ -##ヨ -##ワ -##ヲ -##・ -##ヽ -##ㄅ -##ㄆ -##ㄇ -##ㄉ -##ㄋ -##ㄌ -##ㄍ -##ㄎ -##ㄏ -##ㄒ -##ㄚ -##ㄛ -##ㄞ -##ㄟ -##ㄢ -##ㄤ -##ㄥ -##ㄧ -##ㄨ -##ㆍ -##㈦ -##㊣ -##㗎 -##一 -##丁 -##七 -##万 -##丈 -##三 -##上 -##下 -##不 -##与 -##丐 -##丑 -##专 -##且 -##丕 -##世 -##丘 -##丙 -##业 -##丛 -##东 -##丝 -##丞 -##丟 -##両 -##丢 -##两 -##严 -##並 -##丧 -##丨 -##个 -##丫 -##中 -##丰 -##串 -##临 -##丶 -##丸 -##丹 -##为 -##主 -##丼 -##丽 -##举 -##丿 -##乂 -##乃 -##久 -##么 -##义 -##之 -##乌 -##乍 -##乎 -##乏 -##乐 -##乒 -##乓 -##乔 -##乖 -##乗 -##乘 -##乙 -##乜 -##九 -##乞 -##也 -##习 -##乡 -##书 -##乩 -##买 -##乱 -##乳 -##乾 -##亀 -##亂 -##了 -##予 -##争 -##事 -##二 -##于 -##亏 -##云 -##互 -##五 -##井 -##亘 -##亙 -##亚 -##些 -##亜 -##亞 -##亟 -##亡 -##亢 -##交 -##亥 -##亦 -##产 -##亨 -##亩 -##享 -##京 -##亭 -##亮 -##亲 -##亳 -##亵 -##人 -##亿 -##什 -##仁 -##仃 -##仄 -##仅 -##仆 -##仇 -##今 -##介 -##仍 -##从 -##仏 -##仑 -##仓 -##仔 -##仕 -##他 -##仗 -##付 -##仙 -##仝 -##仞 -##仟 -##代 -##令 -##以 -##仨 -##仪 -##们 -##仮 -##仰 -##仲 -##件 -##价 -##任 -##份 -##仿 -##企 -##伉 -##伊 -##伍 -##伎 -##伏 -##伐 -##休 -##伕 -##众 -##优 -##伙 -##会 -##伝 -##伞 -##伟 -##传 -##伢 -##伤 -##伦 -##伪 -##伫 -##伯 -##估 -##伴 -##伶 -##伸 -##伺 -##似 -##伽 -##佃 -##但 -##佇 -##佈 -##位 -##低 -##住 -##佐 -##佑 -##体 -##佔 -##何 -##佗 -##佘 -##余 -##佚 -##佛 -##作 -##佝 -##佞 -##佟 -##你 -##佢 -##佣 -##佤 -##佥 -##佩 -##佬 -##佯 -##佰 -##佳 -##併 -##佶 -##佻 -##佼 -##使 -##侃 -##侄 -##來 -##侈 -##例 -##侍 -##侏 -##侑 -##侖 -##侗 -##供 -##依 -##侠 -##価 -##侣 -##侥 -##侦 -##侧 -##侨 -##侬 -##侮 -##侯 -##侵 -##侶 -##侷 -##便 -##係 -##促 -##俄 -##俊 -##俎 -##俏 -##俐 -##俑 -##俗 -##俘 -##俚 -##保 -##俞 -##俟 -##俠 -##信 -##俨 -##俩 -##俪 -##俬 -##俭 -##修 -##俯 -##俱 -##俳 -##俸 -##俺 -##俾 -##倆 -##倉 -##個 -##倌 -##倍 -##倏 -##們 -##倒 -##倔 -##倖 -##倘 -##候 -##倚 -##倜 -##借 -##倡 -##値 -##倦 -##倩 -##倪 -##倫 -##倬 -##倭 -##倶 -##债 -##值 -##倾 -##偃 -##假 -##偈 -##偉 -##偌 -##偎 -##偏 -##偕 -##做 -##停 -##健 -##側 -##偵 -##偶 -##偷 -##偻 -##偽 -##偿 -##傀 -##傅 -##傍 -##傑 -##傘 -##備 -##傚 -##傢 -##傣 -##傥 -##储 -##傩 -##催 -##傭 -##傲 -##傳 -##債 -##傷 -##傻 -##傾 -##僅 -##働 -##像 -##僑 -##僕 -##僖 -##僚 -##僥 -##僧 -##僭 -##僮 -##僱 -##僵 -##價 -##僻 -##儀 -##儂 -##億 -##儆 -##儉 -##儋 -##儒 -##儕 -##儘 -##償 -##儡 -##優 -##儲 -##儷 -##儼 -##儿 -##兀 -##允 -##元 -##兄 -##充 -##兆 -##兇 -##先 -##光 -##克 -##兌 -##免 -##児 -##兑 -##兒 -##兔 -##兖 -##党 -##兜 -##兢 -##入 -##內 -##全 -##兩 -##八 -##公 -##六 -##兮 -##兰 -##共 -##兲 -##关 -##兴 -##兵 -##其 -##具 -##典 -##兹 -##养 -##兼 -##兽 -##冀 -##内 -##円 -##冇 -##冈 -##冉 -##冊 -##册 -##再 -##冏 -##冒 -##冕 -##冗 -##写 -##军 -##农 -##冠 -##冢 -##冤 -##冥 -##冨 -##冪 -##冬 -##冯 -##冰 -##冲 -##决 -##况 -##冶 -##冷 -##冻 -##冼 -##冽 -##冾 -##净 -##凄 -##准 -##凇 -##凈 -##凉 -##凋 -##凌 -##凍 -##减 -##凑 -##凛 -##凜 -##凝 -##几 -##凡 -##凤 -##処 -##凪 -##凭 -##凯 -##凰 -##凱 -##凳 -##凶 -##凸 -##凹 -##出 -##击 -##函 -##凿 -##刀 -##刁 -##刃 -##分 -##切 -##刈 -##刊 -##刍 -##刎 -##刑 -##划 -##列 -##刘 -##则 -##刚 -##创 -##初 -##删 -##判 -##別 -##刨 -##利 -##刪 -##别 -##刮 -##到 -##制 -##刷 -##券 -##刹 -##刺 -##刻 -##刽 -##剁 -##剂 -##剃 -##則 -##剉 -##削 -##剋 -##剌 -##前 -##剎 -##剐 -##剑 -##剔 -##剖 -##剛 -##剜 -##剝 -##剣 -##剤 -##剥 -##剧 -##剩 -##剪 -##副 -##割 -##創 -##剷 -##剽 -##剿 -##劃 -##劇 -##劈 -##劉 -##劊 -##劍 -##劏 -##劑 -##力 -##劝 -##办 -##功 -##加 -##务 -##劣 -##动 -##助 -##努 -##劫 -##劭 -##励 -##劲 -##劳 -##労 -##劵 -##効 -##劾 -##势 -##勁 -##勃 -##勇 -##勉 -##勋 -##勐 -##勒 -##動 -##勖 -##勘 -##務 -##勛 -##勝 -##勞 -##募 -##勢 -##勤 -##勧 -##勳 -##勵 -##勸 -##勺 -##勻 -##勾 -##勿 -##匀 -##包 -##匆 -##匈 -##匍 -##匐 -##匕 -##化 -##北 -##匙 -##匝 -##匠 -##匡 -##匣 -##匪 -##匮 -##匯 -##匱 -##匹 -##区 -##医 -##匾 -##匿 -##區 -##十 -##千 -##卅 -##升 -##午 -##卉 -##半 -##卍 -##华 -##协 -##卑 -##卒 -##卓 -##協 -##单 -##卖 -##南 -##単 -##博 -##卜 -##卞 -##卟 -##占 -##卡 -##卢 -##卤 -##卦 -##卧 -##卫 -##卮 -##卯 -##印 -##危 -##即 -##却 -##卵 -##卷 -##卸 -##卻 -##卿 -##厂 -##厄 -##厅 -##历 -##厉 -##压 -##厌 -##厕 -##厘 -##厚 -##厝 -##原 -##厢 -##厥 -##厦 -##厨 -##厩 -##厭 -##厮 -##厲 -##厳 -##去 -##县 -##叁 -##参 -##參 -##又 -##叉 -##及 -##友 -##双 -##反 -##収 -##发 -##叔 -##取 -##受 -##变 -##叙 -##叛 -##叟 -##叠 -##叡 -##叢 -##口 -##古 -##句 -##另 -##叨 -##叩 -##只 -##叫 -##召 -##叭 -##叮 -##可 -##台 -##叱 -##史 -##右 -##叵 -##叶 -##号 -##司 -##叹 -##叻 -##叼 -##叽 -##吁 -##吃 -##各 -##吆 -##合 -##吉 -##吊 -##吋 -##同 -##名 -##后 -##吏 -##吐 -##向 -##吒 -##吓 -##吕 -##吖 -##吗 -##君 -##吝 -##吞 -##吟 -##吠 -##吡 -##否 -##吧 -##吨 -##吩 -##含 -##听 -##吭 -##吮 -##启 -##吱 -##吳 -##吴 -##吵 -##吶 -##吸 -##吹 -##吻 -##吼 -##吽 -##吾 -##呀 -##呂 -##呃 -##呆 -##呈 -##告 -##呋 -##呎 -##呐 -##呓 -##呕 -##呗 -##员 -##呛 -##呜 -##呢 -##呤 -##呦 -##周 -##呱 -##呲 -##味 -##呵 -##呷 -##呸 -##呻 -##呼 -##命 -##咀 -##咁 -##咂 -##咄 -##咆 -##咋 -##和 -##咎 -##咏 -##咐 -##咒 -##咔 -##咕 -##咖 -##咗 -##咘 -##咙 -##咚 -##咛 -##咣 -##咤 -##咦 -##咧 -##咨 -##咩 -##咪 -##咫 -##咬 -##咭 -##咯 -##咱 -##咲 -##咳 -##咸 -##咻 -##咽 -##咿 -##哀 -##品 -##哂 -##哄 -##哆 -##哇 -##哈 -##哉 -##哋 -##哌 -##响 -##哎 -##哏 -##哐 -##哑 -##哒 -##哔 -##哗 -##哟 -##員 -##哥 -##哦 -##哧 -##哨 -##哩 -##哪 -##哭 -##哮 -##哲 -##哺 -##哼 -##哽 -##唁 -##唄 -##唆 -##唇 -##唉 -##唏 -##唐 -##唑 -##唔 -##唠 -##唤 -##唧 -##唬 -##售 -##唯 -##唰 -##唱 -##唳 -##唷 -##唸 -##唾 -##啃 -##啄 -##商 -##啉 -##啊 -##問 -##啓 -##啕 -##啖 -##啜 -##啞 -##啟 -##啡 -##啤 -##啥 -##啦 -##啧 -##啪 -##啫 -##啬 -##啮 -##啰 -##啱 -##啲 -##啵 -##啶 -##啷 -##啸 -##啻 -##啼 -##啾 -##喀 -##喂 -##喃 -##善 -##喆 -##喇 -##喉 -##喊 -##喋 -##喎 -##喏 -##喔 -##喘 -##喙 -##喚 -##喜 -##喝 -##喟 -##喧 -##喪 -##喫 -##喬 -##單 -##喰 -##喱 -##喲 -##喳 -##喵 -##営 -##喷 -##喹 -##喺 -##喻 -##喽 -##嗅 -##嗆 -##嗇 -##嗎 -##嗑 -##嗒 -##嗓 -##嗔 -##嗖 -##嗚 -##嗜 -##嗝 -##嗟 -##嗡 -##嗣 -##嗤 -##嗦 -##嗨 -##嗪 -##嗬 -##嗯 -##嗰 -##嗲 -##嗳 -##嗶 -##嗷 -##嗽 -##嘀 -##嘅 -##嘆 -##嘈 -##嘉 -##嘌 -##嘍 -##嘎 -##嘔 -##嘖 -##嘗 -##嘘 -##嘚 -##嘛 -##嘜 -##嘞 -##嘟 -##嘢 -##嘣 -##嘤 -##嘧 -##嘩 -##嘭 -##嘮 -##嘯 -##嘰 -##嘱 -##嘲 -##嘴 -##嘶 -##嘸 -##嘹 -##嘻 -##嘿 -##噁 -##噌 -##噎 -##噓 -##噔 -##噗 -##噙 -##噜 -##噠 -##噢 -##噤 -##器 -##噩 -##噪 -##噬 -##噱 -##噴 -##噶 -##噸 -##噹 -##噻 -##噼 -##嚀 -##嚇 -##嚎 -##嚏 -##嚐 -##嚓 -##嚕 -##嚟 -##嚣 -##嚥 -##嚨 -##嚮 -##嚴 -##嚷 -##嚼 -##囂 -##囉 -##囊 -##囍 -##囑 -##囔 -##囗 -##囚 -##四 -##囝 -##回 -##囟 -##因 -##囡 -##团 -##団 -##囤 -##囧 -##囪 -##囫 -##园 -##困 -##囱 -##囲 -##図 -##围 -##囹 -##固 -##国 -##图 -##囿 -##圃 -##圄 -##圆 -##圈 -##國 -##圍 -##圏 -##園 -##圓 -##圖 -##團 -##圜 -##土 -##圣 -##圧 -##在 -##圩 -##圭 -##地 -##圳 -##场 -##圻 -##圾 -##址 -##坂 -##均 -##坊 -##坍 -##坎 -##坏 -##坐 -##坑 -##块 -##坚 -##坛 -##坝 -##坞 -##坟 -##坠 -##坡 -##坤 -##坦 -##坨 -##坪 -##坯 -##坳 -##坵 -##坷 -##垂 -##垃 -##垄 -##型 -##垒 -##垚 -##垛 -##垠 -##垢 -##垣 -##垦 -##垩 -##垫 -##垭 -##垮 -##垵 -##埂 -##埃 -##埋 -##城 -##埔 -##埕 -##埗 -##域 -##埠 -##埤 -##埵 -##執 -##埸 -##培 -##基 -##埼 -##堀 -##堂 -##堃 -##堅 -##堆 -##堇 -##堑 -##堕 -##堙 -##堡 -##堤 -##堪 -##堯 -##堰 -##報 -##場 -##堵 -##堺 -##堿 -##塊 -##塌 -##塑 -##塔 -##塗 -##塘 -##塚 -##塞 -##塢 -##塩 -##填 -##塬 -##塭 -##塵 -##塾 -##墀 -##境 -##墅 -##墉 -##墊 -##墒 -##墓 -##増 -##墘 -##墙 -##墜 -##增 -##墟 -##墨 -##墩 -##墮 -##墳 -##墻 -##墾 -##壁 -##壅 -##壆 -##壇 -##壊 -##壑 -##壓 -##壕 -##壘 -##壞 -##壟 -##壢 -##壤 -##壩 -##士 -##壬 -##壮 -##壯 -##声 -##売 -##壳 -##壶 -##壹 -##壺 -##壽 -##处 -##备 -##変 -##复 -##夏 -##夔 -##夕 -##外 -##夙 -##多 -##夜 -##够 -##夠 -##夢 -##夥 -##大 -##天 -##太 -##夫 -##夭 -##央 -##夯 -##失 -##头 -##夷 -##夸 -##夹 -##夺 -##夾 -##奂 -##奄 -##奇 -##奈 -##奉 -##奋 -##奎 -##奏 -##奐 -##契 -##奔 -##奕 -##奖 -##套 -##奘 -##奚 -##奠 -##奢 -##奥 -##奧 -##奪 -##奬 -##奮 -##女 -##奴 -##奶 -##奸 -##她 -##好 -##如 -##妃 -##妄 -##妆 -##妇 -##妈 -##妊 -##妍 -##妒 -##妓 -##妖 -##妘 -##妙 -##妝 -##妞 -##妣 -##妤 -##妥 -##妨 -##妩 -##妪 -##妮 -##妲 -##妳 -##妹 -##妻 -##妾 -##姆 -##姉 -##姊 -##始 -##姍 -##姐 -##姑 -##姒 -##姓 -##委 -##姗 -##姚 -##姜 -##姝 -##姣 -##姥 -##姦 -##姨 -##姪 -##姫 -##姬 -##姹 -##姻 -##姿 -##威 -##娃 -##娄 -##娅 -##娆 -##娇 -##娉 -##娑 -##娓 -##娘 -##娛 -##娜 -##娟 -##娠 -##娣 -##娥 -##娩 -##娱 -##娲 -##娴 -##娶 -##娼 -##婀 -##婁 -##婆 -##婉 -##婊 -##婕 -##婚 -##婢 -##婦 -##婧 -##婪 -##婭 -##婴 -##婵 -##婶 -##婷 -##婺 -##婿 -##媒 -##媚 -##媛 -##媞 -##媧 -##媲 -##媳 -##媽 -##媾 -##嫁 -##嫂 -##嫉 -##嫌 -##嫑 -##嫔 -##嫖 -##嫘 -##嫚 -##嫡 -##嫣 -##嫦 -##嫩 -##嫲 -##嫵 -##嫻 -##嬅 -##嬉 -##嬌 -##嬗 -##嬛 -##嬢 -##嬤 -##嬪 -##嬰 -##嬴 -##嬷 -##嬸 -##嬿 -##孀 -##孃 -##子 -##孑 -##孔 -##孕 -##孖 -##字 -##存 -##孙 -##孚 -##孛 -##孜 -##孝 -##孟 -##孢 -##季 -##孤 -##学 -##孩 -##孪 -##孫 -##孬 -##孰 -##孱 -##孳 -##孵 -##學 -##孺 -##孽 -##孿 -##宁 -##它 -##宅 -##宇 -##守 -##安 -##宋 -##完 -##宏 -##宓 -##宕 -##宗 -##官 -##宙 -##定 -##宛 -##宜 -##宝 -##实 -##実 -##宠 -##审 -##客 -##宣 -##室 -##宥 -##宦 -##宪 -##宫 -##宮 -##宰 -##害 -##宴 -##宵 -##家 -##宸 -##容 -##宽 -##宾 -##宿 -##寂 -##寄 -##寅 -##密 -##寇 -##富 -##寐 -##寒 -##寓 -##寛 -##寝 -##寞 -##察 -##寡 -##寢 -##寥 -##實 -##寧 -##寨 -##審 -##寫 -##寬 -##寮 -##寰 -##寵 -##寶 -##寸 -##对 -##寺 -##寻 -##导 -##対 -##寿 -##封 -##専 -##射 -##将 -##將 -##專 -##尉 -##尊 -##尋 -##對 -##導 -##小 -##少 -##尔 -##尕 -##尖 -##尘 -##尚 -##尝 -##尤 -##尧 -##尬 -##就 -##尴 -##尷 -##尸 -##尹 -##尺 -##尻 -##尼 -##尽 -##尾 -##尿 -##局 -##屁 -##层 -##屄 -##居 -##屆 -##屈 -##屉 -##届 -##屋 -##屌 -##屍 -##屎 -##屏 -##屐 -##屑 -##展 -##屜 -##属 -##屠 -##屡 -##屢 -##層 -##履 -##屬 -##屯 -##山 -##屹 -##屿 -##岀 -##岁 -##岂 -##岌 -##岐 -##岑 -##岔 -##岖 -##岗 -##岘 -##岙 -##岚 -##岛 -##岡 -##岩 -##岫 -##岬 -##岭 -##岱 -##岳 -##岷 -##岸 -##峇 -##峋 -##峒 -##峙 -##峡 -##峤 -##峥 -##峦 -##峨 -##峪 -##峭 -##峯 -##峰 -##峴 -##島 -##峻 -##峽 -##崁 -##崂 -##崆 -##崇 -##崎 -##崑 -##崔 -##崖 -##崗 -##崙 -##崛 -##崧 -##崩 -##崭 -##崴 -##崽 -##嵇 -##嵊 -##嵋 -##嵌 -##嵐 -##嵘 -##嵩 -##嵬 -##嵯 -##嶂 -##嶄 -##嶇 -##嶋 -##嶙 -##嶺 -##嶼 -##嶽 -##巅 -##巍 -##巒 -##巔 -##巖 -##川 -##州 -##巡 -##巢 -##工 -##左 -##巧 -##巨 -##巩 -##巫 -##差 -##己 -##已 -##巳 -##巴 -##巷 -##巻 -##巽 -##巾 -##巿 -##币 -##市 -##布 -##帅 -##帆 -##师 -##希 -##帐 -##帑 -##帕 -##帖 -##帘 -##帚 -##帛 -##帜 -##帝 -##帥 -##带 -##帧 -##師 -##席 -##帮 -##帯 -##帰 -##帳 -##帶 -##帷 -##常 -##帼 -##帽 -##幀 -##幂 -##幄 -##幅 -##幌 -##幔 -##幕 -##幟 -##幡 -##幢 -##幣 -##幫 -##干 -##平 -##年 -##并 -##幸 -##幹 -##幺 -##幻 -##幼 -##幽 -##幾 -##广 -##庁 -##広 -##庄 -##庆 -##庇 -##床 -##序 -##庐 -##库 -##应 -##底 -##庖 -##店 -##庙 -##庚 -##府 -##庞 -##废 -##庠 -##度 -##座 -##庫 -##庭 -##庵 -##庶 -##康 -##庸 -##庹 -##庾 -##廁 -##廂 -##廃 -##廈 -##廉 -##廊 -##廓 -##廖 -##廚 -##廝 -##廟 -##廠 -##廢 -##廣 -##廬 -##廳 -##延 -##廷 -##建 -##廿 -##开 -##弁 -##异 -##弃 -##弄 -##弈 -##弊 -##弋 -##式 -##弑 -##弒 -##弓 -##弔 -##引 -##弗 -##弘 -##弛 -##弟 -##张 -##弥 -##弦 -##弧 -##弩 -##弭 -##弯 -##弱 -##張 -##強 -##弹 -##强 -##弼 -##弾 -##彅 -##彆 -##彈 -##彌 -##彎 -##归 -##当 -##录 -##彗 -##彙 -##彝 -##形 -##彤 -##彥 -##彦 -##彧 -##彩 -##彪 -##彫 -##彬 -##彭 -##彰 -##影 -##彷 -##役 -##彻 -##彼 -##彿 -##往 -##征 -##径 -##待 -##徇 -##很 -##徉 -##徊 -##律 -##後 -##徐 -##徑 -##徒 -##従 -##徕 -##得 -##徘 -##徙 -##徜 -##從 -##徠 -##御 -##徨 -##復 -##循 -##徬 -##微 -##徳 -##徴 -##徵 -##德 -##徹 -##徼 -##徽 -##心 -##必 -##忆 -##忌 -##忍 -##忏 -##忐 -##忑 -##忒 -##忖 -##志 -##忘 -##忙 -##応 -##忠 -##忡 -##忤 -##忧 -##忪 -##快 -##忱 -##念 -##忻 -##忽 -##忿 -##怀 -##态 -##怂 -##怅 -##怆 -##怎 -##怏 -##怒 -##怔 -##怕 -##怖 -##怙 -##怜 -##思 -##怠 -##怡 -##急 -##怦 -##性 -##怨 -##怪 -##怯 -##怵 -##总 -##怼 -##恁 -##恃 -##恆 -##恋 -##恍 -##恐 -##恒 -##恕 -##恙 -##恚 -##恢 -##恣 -##恤 -##恥 -##恨 -##恩 -##恪 -##恫 -##恬 -##恭 -##息 -##恰 -##恳 -##恵 -##恶 -##恸 -##恺 -##恻 -##恼 -##恿 -##悄 -##悅 -##悉 -##悌 -##悍 -##悔 -##悖 -##悚 -##悟 -##悠 -##患 -##悦 -##您 -##悩 -##悪 -##悬 -##悯 -##悱 -##悲 -##悴 -##悵 -##悶 -##悸 -##悻 -##悼 -##悽 -##情 -##惆 -##惇 -##惊 -##惋 -##惑 -##惕 -##惘 -##惚 -##惜 -##惟 -##惠 -##惡 -##惦 -##惧 -##惨 -##惩 -##惫 -##惬 -##惭 -##惮 -##惯 -##惰 -##惱 -##想 -##惴 -##惶 -##惹 -##惺 -##愁 -##愆 -##愈 -##愉 -##愍 -##意 -##愕 -##愚 -##愛 -##愜 -##感 -##愣 -##愤 -##愧 -##愫 -##愷 -##愿 -##慄 -##慈 -##態 -##慌 -##慎 -##慑 -##慕 -##慘 -##慚 -##慟 -##慢 -##慣 -##慧 -##慨 -##慫 -##慮 -##慰 -##慳 -##慵 -##慶 -##慷 -##慾 -##憂 -##憊 -##憋 -##憎 -##憐 -##憑 -##憔 -##憚 -##憤 -##憧 -##憨 -##憩 -##憫 -##憬 -##憲 -##憶 -##憾 -##懂 -##懇 -##懈 -##應 -##懊 -##懋 -##懑 -##懒 -##懦 -##懲 -##懵 -##懶 -##懷 -##懸 -##懺 -##懼 -##懾 -##懿 -##戀 -##戈 -##戊 -##戌 -##戍 -##戎 -##戏 -##成 -##我 -##戒 -##戕 -##或 -##战 -##戚 -##戛 -##戟 -##戡 -##戦 -##截 -##戬 -##戮 -##戰 -##戲 -##戳 -##戴 -##戶 -##户 -##戸 -##戻 -##戾 -##房 -##所 -##扁 -##扇 -##扈 -##扉 -##手 -##才 -##扎 -##扑 -##扒 -##打 -##扔 -##払 -##托 -##扛 -##扣 -##扦 -##执 -##扩 -##扪 -##扫 -##扬 -##扭 -##扮 -##扯 -##扰 -##扱 -##扳 -##扶 -##批 -##扼 -##找 -##承 -##技 -##抄 -##抉 -##把 -##抑 -##抒 -##抓 -##投 -##抖 -##抗 -##折 -##抚 -##抛 -##抜 -##択 -##抟 -##抠 -##抡 -##抢 -##护 -##报 -##抨 -##披 -##抬 -##抱 -##抵 -##抹 -##押 -##抽 -##抿 -##拂 -##拄 -##担 -##拆 -##拇 -##拈 -##拉 -##拋 -##拌 -##拍 -##拎 -##拐 -##拒 -##拓 -##拔 -##拖 -##拗 -##拘 -##拙 -##拚 -##招 -##拜 -##拟 -##拡 -##拢 -##拣 -##拥 -##拦 -##拧 -##拨 -##择 -##括 -##拭 -##拮 -##拯 -##拱 -##拳 -##拴 -##拷 -##拼 -##拽 -##拾 -##拿 -##持 -##挂 -##指 -##挈 -##按 -##挎 -##挑 -##挖 -##挙 -##挚 -##挛 -##挝 -##挞 -##挟 -##挠 -##挡 -##挣 -##挤 -##挥 -##挨 -##挪 -##挫 -##振 -##挲 -##挹 -##挺 -##挽 -##挾 -##捂 -##捅 -##捆 -##捉 -##捋 -##捌 -##捍 -##捎 -##捏 -##捐 -##捕 -##捞 -##损 -##捡 -##换 -##捣 -##捧 -##捨 -##捩 -##据 -##捱 -##捲 -##捶 -##捷 -##捺 -##捻 -##掀 -##掂 -##掃 -##掇 -##授 -##掉 -##掌 -##掏 -##掐 -##排 -##掖 -##掘 -##掙 -##掛 -##掠 -##採 -##探 -##掣 -##接 -##控 -##推 -##掩 -##措 -##掬 -##掰 -##掲 -##掳 -##掴 -##掷 -##掸 -##掺 -##揀 -##揃 -##揄 -##揆 -##揉 -##揍 -##描 -##提 -##插 -##揖 -##揚 -##換 -##握 -##揣 -##揩 -##揪 -##揭 -##揮 -##援 -##揶 -##揸 -##揹 -##揽 -##搀 -##搁 -##搂 -##搅 -##損 -##搏 -##搐 -##搓 -##搔 -##搖 -##搗 -##搜 -##搞 -##搡 -##搪 -##搬 -##搭 -##搵 -##搶 -##携 -##搽 -##摀 -##摁 -##摄 -##摆 -##摇 -##摈 -##摊 -##摒 -##摔 -##摘 -##摞 -##摟 -##摧 -##摩 -##摯 -##摳 -##摸 -##摹 -##摺 -##摻 -##撂 -##撃 -##撅 -##撇 -##撈 -##撐 -##撑 -##撒 -##撓 -##撕 -##撚 -##撞 -##撤 -##撥 -##撩 -##撫 -##撬 -##播 -##撮 -##撰 -##撲 -##撵 -##撷 -##撸 -##撻 -##撼 -##撿 -##擀 -##擁 -##擂 -##擄 -##擅 -##擇 -##擊 -##擋 -##操 -##擎 -##擒 -##擔 -##擘 -##據 -##擞 -##擠 -##擡 -##擢 -##擦 -##擬 -##擰 -##擱 -##擲 -##擴 -##擷 -##擺 -##擼 -##擾 -##攀 -##攏 -##攒 -##攔 -##攘 -##攙 -##攜 -##攝 -##攞 -##攢 -##攣 -##攤 -##攥 -##攪 -##攫 -##攬 -##支 -##收 -##攸 -##改 -##攻 -##放 -##政 -##故 -##效 -##敌 -##敍 -##敎 -##敏 -##救 -##敕 -##敖 -##敗 -##敘 -##教 -##敛 -##敝 -##敞 -##敢 -##散 -##敦 -##敬 -##数 -##敲 -##整 -##敵 -##敷 -##數 -##斂 -##斃 -##文 -##斋 -##斌 -##斎 -##斐 -##斑 -##斓 -##斗 -##料 -##斛 -##斜 -##斟 -##斡 -##斤 -##斥 -##斧 -##斩 -##斫 -##斬 -##断 -##斯 -##新 -##斷 -##方 -##於 -##施 -##旁 -##旃 -##旅 -##旋 -##旌 -##旎 -##族 -##旖 -##旗 -##无 -##既 -##日 -##旦 -##旧 -##旨 -##早 -##旬 -##旭 -##旮 -##旱 -##时 -##旷 -##旺 -##旻 -##昀 -##昂 -##昆 -##昇 -##昉 -##昊 -##昌 -##明 -##昏 -##易 -##昔 -##昕 -##昙 -##星 -##映 -##春 -##昧 -##昨 -##昭 -##是 -##昱 -##昴 -##昵 -##昶 -##昼 -##显 -##晁 -##時 -##晃 -##晉 -##晋 -##晌 -##晏 -##晒 -##晓 -##晔 -##晕 -##晖 -##晗 -##晚 -##晝 -##晞 -##晟 -##晤 -##晦 -##晨 -##晩 -##普 -##景 -##晰 -##晴 -##晶 -##晷 -##智 -##晾 -##暂 -##暄 -##暇 -##暈 -##暉 -##暌 -##暐 -##暑 -##暖 -##暗 -##暝 -##暢 -##暧 -##暨 -##暫 -##暮 -##暱 -##暴 -##暸 -##暹 -##曄 -##曆 -##曇 -##曉 -##曖 -##曙 -##曜 -##曝 -##曠 -##曦 -##曬 -##曰 -##曲 -##曳 -##更 -##書 -##曹 -##曼 -##曾 -##替 -##最 -##會 -##月 -##有 -##朋 -##服 -##朐 -##朔 -##朕 -##朗 -##望 -##朝 -##期 -##朦 -##朧 -##木 -##未 -##末 -##本 -##札 -##朮 -##术 -##朱 -##朴 -##朵 -##机 -##朽 -##杀 -##杂 -##权 -##杆 -##杈 -##杉 -##李 -##杏 -##材 -##村 -##杓 -##杖 -##杜 -##杞 -##束 -##杠 -##条 -##来 -##杨 -##杭 -##杯 -##杰 -##東 -##杳 -##杵 -##杷 -##杼 -##松 -##板 -##极 -##构 -##枇 -##枉 -##枋 -##析 -##枕 -##林 -##枚 -##果 -##枝 -##枢 -##枣 -##枪 -##枫 -##枭 -##枯 -##枰 -##枱 -##枳 -##架 -##枷 -##枸 -##柄 -##柏 -##某 -##柑 -##柒 -##染 -##柔 -##柘 -##柚 -##柜 -##柞 -##柠 -##柢 -##查 -##柩 -##柬 -##柯 -##柱 -##柳 -##柴 -##柵 -##査 -##柿 -##栀 -##栃 -##栄 -##栅 -##标 -##栈 -##栉 -##栋 -##栎 -##栏 -##树 -##栓 -##栖 -##栗 -##校 -##栩 -##株 -##样 -##核 -##根 -##格 -##栽 -##栾 -##桀 -##桁 -##桂 -##桃 -##桅 -##框 -##案 -##桉 -##桌 -##桎 -##桐 -##桑 -##桓 -##桔 -##桜 -##桠 -##桡 -##桢 -##档 -##桥 -##桦 -##桧 -##桨 -##桩 -##桶 -##桿 -##梁 -##梅 -##梆 -##梏 -##梓 -##梗 -##條 -##梟 -##梢 -##梦 -##梧 -##梨 -##梭 -##梯 -##械 -##梳 -##梵 -##梶 -##检 -##棂 -##棄 -##棉 -##棋 -##棍 -##棒 -##棕 -##棗 -##棘 -##棚 -##棟 -##棠 -##棣 -##棧 -##森 -##棱 -##棲 -##棵 -##棹 -##棺 -##椁 -##椅 -##椋 -##植 -##椎 -##椒 -##検 -##椪 -##椭 -##椰 -##椹 -##椽 -##椿 -##楂 -##楊 -##楓 -##楔 -##楚 -##楝 -##楞 -##楠 -##楣 -##楨 -##楫 -##業 -##楮 -##極 -##楷 -##楸 -##楹 -##楼 -##楽 -##概 -##榄 -##榆 -##榈 -##榉 -##榔 -##榕 -##榖 -##榛 -##榜 -##榨 -##榫 -##榭 -##榮 -##榱 -##榴 -##榷 -##榻 -##槁 -##槃 -##構 -##槌 -##槍 -##槎 -##槐 -##槓 -##様 -##槛 -##槟 -##槤 -##槭 -##槲 -##槳 -##槻 -##槽 -##槿 -##樁 -##樂 -##樊 -##樑 -##樓 -##標 -##樞 -##樟 -##模 -##樣 -##権 -##横 -##樫 -##樯 -##樱 -##樵 -##樸 -##樹 -##樺 -##樽 -##樾 -##橄 -##橇 -##橋 -##橐 -##橘 -##橙 -##機 -##橡 -##橢 -##橫 -##橱 -##橹 -##橼 -##檀 -##檄 -##檎 -##檐 -##檔 -##檗 -##檜 -##檢 -##檬 -##檯 -##檳 -##檸 -##檻 -##櫃 -##櫚 -##櫛 -##櫥 -##櫸 -##櫻 -##欄 -##權 -##欒 -##欖 -##欠 -##次 -##欢 -##欣 -##欧 -##欲 -##欸 -##欺 -##欽 -##款 -##歆 -##歇 -##歉 -##歌 -##歎 -##歐 -##歓 -##歙 -##歛 -##歡 -##止 -##正 -##此 -##步 -##武 -##歧 -##歩 -##歪 -##歯 -##歲 -##歳 -##歴 -##歷 -##歸 -##歹 -##死 -##歼 -##殁 -##殃 -##殆 -##殇 -##殉 -##殊 -##残 -##殒 -##殓 -##殖 -##殘 -##殞 -##殡 -##殤 -##殭 -##殯 -##殲 -##殴 -##段 -##殷 -##殺 -##殼 -##殿 -##毀 -##毁 -##毂 -##毅 -##毆 -##毋 -##母 -##毎 -##每 -##毒 -##毓 -##比 -##毕 -##毗 -##毘 -##毙 -##毛 -##毡 -##毫 -##毯 -##毽 -##氈 -##氏 -##氐 -##民 -##氓 -##气 -##氖 -##気 -##氙 -##氛 -##氟 -##氡 -##氢 -##氣 -##氤 -##氦 -##氧 -##氨 -##氪 -##氫 -##氮 -##氯 -##氰 -##氲 -##水 -##氷 -##永 -##氹 -##氾 -##汀 -##汁 -##求 -##汆 -##汇 -##汉 -##汎 -##汐 -##汕 -##汗 -##汙 -##汛 -##汝 -##汞 -##江 -##池 -##污 -##汤 -##汨 -##汩 -##汪 -##汰 -##汲 -##汴 -##汶 -##汹 -##決 -##汽 -##汾 -##沁 -##沂 -##沃 -##沅 -##沈 -##沉 -##沌 -##沏 -##沐 -##沒 -##沓 -##沖 -##沙 -##沛 -##沟 -##没 -##沢 -##沣 -##沥 -##沦 -##沧 -##沪 -##沫 -##沭 -##沮 -##沱 -##河 -##沸 -##油 -##治 -##沼 -##沽 -##沾 -##沿 -##況 -##泄 -##泉 -##泊 -##泌 -##泓 -##法 -##泗 -##泛 -##泞 -##泠 -##泡 -##波 -##泣 -##泥 -##注 -##泪 -##泫 -##泮 -##泯 -##泰 -##泱 -##泳 -##泵 -##泷 -##泸 -##泻 -##泼 -##泽 -##泾 -##洁 -##洄 -##洋 -##洒 -##洗 -##洙 -##洛 -##洞 -##津 -##洩 -##洪 -##洮 -##洱 -##洲 -##洵 -##洶 -##洸 -##洹 -##活 -##洼 -##洽 -##派 -##流 -##浃 -##浄 -##浅 -##浆 -##浇 -##浊 -##测 -##济 -##浏 -##浑 -##浒 -##浓 -##浔 -##浙 -##浚 -##浜 -##浣 -##浦 -##浩 -##浪 -##浬 -##浮 -##浯 -##浴 -##海 -##浸 -##涂 -##涅 -##涇 -##消 -##涉 -##涌 -##涎 -##涓 -##涔 -##涕 -##涙 -##涛 -##涝 -##涞 -##涟 -##涠 -##涡 -##涣 -##涤 -##润 -##涧 -##涨 -##涩 -##涪 -##涮 -##涯 -##液 -##涵 -##涸 -##涼 -##涿 -##淀 -##淄 -##淅 -##淆 -##淇 -##淋 -##淌 -##淑 -##淒 -##淖 -##淘 -##淙 -##淚 -##淞 -##淡 -##淤 -##淦 -##淨 -##淩 -##淪 -##淫 -##淬 -##淮 -##深 -##淳 -##淵 -##混 -##淹 -##淺 -##添 -##淼 -##清 -##済 -##渉 -##渊 -##渋 -##渍 -##渎 -##渐 -##渔 -##渗 -##渙 -##渚 -##減 -##渝 -##渠 -##渡 -##渣 -##渤 -##渥 -##渦 -##温 -##測 -##渭 -##港 -##渲 -##渴 -##游 -##渺 -##渾 -##湃 -##湄 -##湊 -##湍 -##湖 -##湘 -##湛 -##湟 -##湧 -##湫 -##湮 -##湯 -##湳 -##湾 -##湿 -##満 -##溃 -##溅 -##溉 -##溏 -##源 -##準 -##溜 -##溝 -##溟 -##溢 -##溥 -##溧 -##溪 -##溫 -##溯 -##溱 -##溴 -##溶 -##溺 -##溼 -##滁 -##滂 -##滄 -##滅 -##滇 -##滋 -##滌 -##滑 -##滓 -##滔 -##滕 -##滙 -##滚 -##滝 -##滞 -##滟 -##满 -##滢 -##滤 -##滥 -##滦 -##滨 -##滩 -##滬 -##滯 -##滲 -##滴 -##滷 -##滸 -##滾 -##滿 -##漁 -##漂 -##漆 -##漉 -##漏 -##漓 -##演 -##漕 -##漠 -##漢 -##漣 -##漩 -##漪 -##漫 -##漬 -##漯 -##漱 -##漲 -##漳 -##漸 -##漾 -##漿 -##潆 -##潇 -##潋 -##潍 -##潑 -##潔 -##潘 -##潛 -##潜 -##潞 -##潟 -##潢 -##潤 -##潦 -##潧 -##潭 -##潮 -##潰 -##潴 -##潸 -##潺 -##潼 -##澀 -##澄 -##澆 -##澈 -##澍 -##澎 -##澗 -##澜 -##澡 -##澤 -##澧 -##澱 -##澳 -##澹 -##激 -##濁 -##濂 -##濃 -##濑 -##濒 -##濕 -##濘 -##濛 -##濟 -##濠 -##濡 -##濤 -##濫 -##濬 -##濮 -##濯 -##濱 -##濺 -##濾 -##瀅 -##瀆 -##瀉 -##瀋 -##瀏 -##瀑 -##瀕 -##瀘 -##瀚 -##瀛 -##瀝 -##瀞 -##瀟 -##瀧 -##瀨 -##瀬 -##瀰 -##瀾 -##灌 -##灏 -##灑 -##灘 -##灝 -##灞 -##灣 -##火 -##灬 -##灭 -##灯 -##灰 -##灵 -##灶 -##灸 -##灼 -##災 -##灾 -##灿 -##炀 -##炁 -##炅 -##炉 -##炊 -##炎 -##炒 -##炔 -##炕 -##炖 -##炙 -##炜 -##炫 -##炬 -##炭 -##炮 -##炯 -##炳 -##炷 -##炸 -##点 -##為 -##炼 -##炽 -##烁 -##烂 -##烃 -##烈 -##烊 -##烏 -##烘 -##烙 -##烛 -##烟 -##烤 -##烦 -##烧 -##烨 -##烩 -##烫 -##烬 -##热 -##烯 -##烷 -##烹 -##烽 -##焉 -##焊 -##焕 -##焖 -##焗 -##焘 -##焙 -##焚 -##焜 -##無 -##焦 -##焯 -##焰 -##焱 -##然 -##焼 -##煅 -##煉 -##煊 -##煌 -##煎 -##煒 -##煖 -##煙 -##煜 -##煞 -##煤 -##煥 -##煦 -##照 -##煨 -##煩 -##煮 -##煲 -##煸 -##煽 -##熄 -##熊 -##熏 -##熒 -##熔 -##熙 -##熟 -##熠 -##熨 -##熬 -##熱 -##熵 -##熹 -##熾 -##燁 -##燃 -##燄 -##燈 -##燉 -##燊 -##燎 -##燒 -##燔 -##燕 -##燙 -##燜 -##營 -##燥 -##燦 -##燧 -##燭 -##燮 -##燴 -##燻 -##燼 -##燿 -##爆 -##爍 -##爐 -##爛 -##爪 -##爬 -##爭 -##爰 -##爱 -##爲 -##爵 -##父 -##爷 -##爸 -##爹 -##爺 -##爻 -##爽 -##爾 -##牆 -##片 -##版 -##牌 -##牍 -##牒 -##牙 -##牛 -##牝 -##牟 -##牠 -##牡 -##牢 -##牦 -##牧 -##物 -##牯 -##牲 -##牴 -##牵 -##特 -##牺 -##牽 -##犀 -##犁 -##犄 -##犊 -##犍 -##犒 -##犢 -##犧 -##犬 -##犯 -##状 -##犷 -##犸 -##犹 -##狀 -##狂 -##狄 -##狈 -##狎 -##狐 -##狒 -##狗 -##狙 -##狞 -##狠 -##狡 -##狩 -##独 -##狭 -##狮 -##狰 -##狱 -##狸 -##狹 -##狼 -##狽 -##猎 -##猕 -##猖 -##猗 -##猙 -##猛 -##猜 -##猝 -##猥 -##猩 -##猪 -##猫 -##猬 -##献 -##猴 -##猶 -##猷 -##猾 -##猿 -##獄 -##獅 -##獎 -##獐 -##獒 -##獗 -##獠 -##獣 -##獨 -##獭 -##獰 -##獲 -##獵 -##獷 -##獸 -##獺 -##獻 -##獼 -##獾 -##玄 -##率 -##玉 -##王 -##玑 -##玖 -##玛 -##玟 -##玠 -##玥 -##玩 -##玫 -##玮 -##环 -##现 -##玲 -##玳 -##玷 -##玺 -##玻 -##珀 -##珂 -##珅 -##珈 -##珉 -##珊 -##珍 -##珏 -##珐 -##珑 -##珙 -##珞 -##珠 -##珣 -##珥 -##珩 -##珪 -##班 -##珮 -##珲 -##珺 -##現 -##球 -##琅 -##理 -##琇 -##琉 -##琊 -##琍 -##琏 -##琐 -##琛 -##琢 -##琥 -##琦 -##琨 -##琪 -##琬 -##琮 -##琰 -##琲 -##琳 -##琴 -##琵 -##琶 -##琺 -##琼 -##瑀 -##瑁 -##瑄 -##瑋 -##瑕 -##瑗 -##瑙 -##瑚 -##瑛 -##瑜 -##瑞 -##瑟 -##瑠 -##瑣 -##瑤 -##瑩 -##瑪 -##瑯 -##瑰 -##瑶 -##瑾 -##璀 -##璁 -##璃 -##璇 -##璉 -##璋 -##璎 -##璐 -##璜 -##璞 -##璟 -##璧 -##璨 -##環 -##璽 -##璿 -##瓊 -##瓏 -##瓒 -##瓜 -##瓢 -##瓣 -##瓤 -##瓦 -##瓮 -##瓯 -##瓴 -##瓶 -##瓷 -##甄 -##甌 -##甕 -##甘 -##甙 -##甚 -##甜 -##生 -##產 -##産 -##甥 -##甦 -##用 -##甩 -##甫 -##甬 -##甭 -##甯 -##田 -##由 -##甲 -##申 -##电 -##男 -##甸 -##町 -##画 -##甾 -##畀 -##畅 -##界 -##畏 -##畑 -##畔 -##留 -##畜 -##畝 -##畢 -##略 -##畦 -##番 -##畫 -##異 -##畲 -##畳 -##畴 -##當 -##畸 -##畹 -##畿 -##疆 -##疇 -##疊 -##疏 -##疑 -##疔 -##疖 -##疗 -##疙 -##疚 -##疝 -##疟 -##疡 -##疣 -##疤 -##疥 -##疫 -##疮 -##疯 -##疱 -##疲 -##疳 -##疵 -##疸 -##疹 -##疼 -##疽 -##疾 -##痂 -##病 -##症 -##痈 -##痉 -##痊 -##痍 -##痒 -##痔 -##痕 -##痘 -##痙 -##痛 -##痞 -##痠 -##痢 -##痣 -##痤 -##痧 -##痨 -##痪 -##痫 -##痰 -##痱 -##痴 -##痹 -##痺 -##痼 -##痿 -##瘀 -##瘁 -##瘋 -##瘍 -##瘓 -##瘘 -##瘙 -##瘟 -##瘠 -##瘡 -##瘢 -##瘤 -##瘦 -##瘧 -##瘩 -##瘪 -##瘫 -##瘴 -##瘸 -##瘾 -##療 -##癇 -##癌 -##癒 -##癖 -##癜 -##癞 -##癡 -##癢 -##癣 -##癥 -##癫 -##癬 -##癮 -##癱 -##癲 -##癸 -##発 -##登 -##發 -##白 -##百 -##皂 -##的 -##皆 -##皇 -##皈 -##皋 -##皎 -##皑 -##皓 -##皖 -##皙 -##皚 -##皮 -##皰 -##皱 -##皴 -##皺 -##皿 -##盂 -##盃 -##盅 -##盆 -##盈 -##益 -##盎 -##盏 -##盐 -##监 -##盒 -##盔 -##盖 -##盗 -##盘 -##盛 -##盜 -##盞 -##盟 -##盡 -##監 -##盤 -##盥 -##盧 -##盪 -##目 -##盯 -##盱 -##盲 -##直 -##相 -##盹 -##盼 -##盾 -##省 -##眈 -##眉 -##看 -##県 -##眙 -##眞 -##真 -##眠 -##眦 -##眨 -##眩 -##眯 -##眶 -##眷 -##眸 -##眺 -##眼 -##眾 -##着 -##睁 -##睇 -##睏 -##睐 -##睑 -##睛 -##睜 -##睞 -##睡 -##睢 -##督 -##睥 -##睦 -##睨 -##睪 -##睫 -##睬 -##睹 -##睽 -##睾 -##睿 -##瞄 -##瞅 -##瞇 -##瞋 -##瞌 -##瞎 -##瞑 -##瞒 -##瞓 -##瞞 -##瞟 -##瞠 -##瞥 -##瞧 -##瞩 -##瞪 -##瞬 -##瞭 -##瞰 -##瞳 -##瞻 -##瞼 -##瞿 -##矇 -##矍 -##矗 -##矚 -##矛 -##矜 -##矢 -##矣 -##知 -##矩 -##矫 -##短 -##矮 -##矯 -##石 -##矶 -##矽 -##矾 -##矿 -##码 -##砂 -##砌 -##砍 -##砒 -##研 -##砖 -##砗 -##砚 -##砝 -##砣 -##砥 -##砧 -##砭 -##砰 -##砲 -##破 -##砷 -##砸 -##砺 -##砼 -##砾 -##础 -##硅 -##硐 -##硒 -##硕 -##硝 -##硫 -##硬 -##确 -##硯 -##硼 -##碁 -##碇 -##碉 -##碌 -##碍 -##碎 -##碑 -##碓 -##碗 -##碘 -##碚 -##碛 -##碟 -##碣 -##碧 -##碩 -##碰 -##碱 -##碳 -##碴 -##確 -##碼 -##碾 -##磁 -##磅 -##磊 -##磋 -##磐 -##磕 -##磚 -##磡 -##磨 -##磬 -##磯 -##磲 -##磷 -##磺 -##礁 -##礎 -##礙 -##礡 -##礦 -##礪 -##礫 -##礴 -##示 -##礼 -##社 -##祀 -##祁 -##祂 -##祇 -##祈 -##祉 -##祎 -##祐 -##祕 -##祖 -##祗 -##祚 -##祛 -##祜 -##祝 -##神 -##祟 -##祠 -##祢 -##祥 -##票 -##祭 -##祯 -##祷 -##祸 -##祺 -##祿 -##禀 -##禁 -##禄 -##禅 -##禍 -##禎 -##福 -##禛 -##禦 -##禧 -##禪 -##禮 -##禱 -##禹 -##禺 -##离 -##禽 -##禾 -##禿 -##秀 -##私 -##秃 -##秆 -##秉 -##秋 -##种 -##科 -##秒 -##秘 -##租 -##秣 -##秤 -##秦 -##秧 -##秩 -##秭 -##积 -##称 -##秸 -##移 -##秽 -##稀 -##稅 -##程 -##稍 -##税 -##稔 -##稗 -##稚 -##稜 -##稞 -##稟 -##稠 -##稣 -##種 -##稱 -##稲 -##稳 -##稷 -##稹 -##稻 -##稼 -##稽 -##稿 -##穀 -##穂 -##穆 -##穌 -##積 -##穎 -##穗 -##穢 -##穩 -##穫 -##穴 -##究 -##穷 -##穹 -##空 -##穿 -##突 -##窃 -##窄 -##窈 -##窍 -##窑 -##窒 -##窓 -##窕 -##窖 -##窗 -##窘 -##窜 -##窝 -##窟 -##窠 -##窥 -##窦 -##窨 -##窩 -##窪 -##窮 -##窯 -##窺 -##窿 -##竄 -##竅 -##竇 -##竊 -##立 -##竖 -##站 -##竜 -##竞 -##竟 -##章 -##竣 -##童 -##竭 -##端 -##競 -##竹 -##竺 -##竽 -##竿 -##笃 -##笆 -##笈 -##笋 -##笏 -##笑 -##笔 -##笙 -##笛 -##笞 -##笠 -##符 -##笨 -##第 -##笹 -##笺 -##笼 -##筆 -##等 -##筊 -##筋 -##筍 -##筏 -##筐 -##筑 -##筒 -##答 -##策 -##筛 -##筝 -##筠 -##筱 -##筲 -##筵 -##筷 -##筹 -##签 -##简 -##箇 -##箋 -##箍 -##箏 -##箐 -##箔 -##箕 -##算 -##箝 -##管 -##箩 -##箫 -##箭 -##箱 -##箴 -##箸 -##節 -##篁 -##範 -##篆 -##篇 -##築 -##篑 -##篓 -##篙 -##篝 -##篠 -##篡 -##篤 -##篩 -##篪 -##篮 -##篱 -##篷 -##簇 -##簌 -##簍 -##簡 -##簦 -##簧 -##簪 -##簫 -##簷 -##簸 -##簽 -##簾 -##簿 -##籁 -##籃 -##籌 -##籍 -##籐 -##籟 -##籠 -##籤 -##籬 -##籮 -##籲 -##米 -##类 -##籼 -##籽 -##粄 -##粉 -##粑 -##粒 -##粕 -##粗 -##粘 -##粟 -##粤 -##粥 -##粧 -##粪 -##粮 -##粱 -##粲 -##粳 -##粵 -##粹 -##粼 -##粽 -##精 -##粿 -##糅 -##糊 -##糍 -##糕 -##糖 -##糗 -##糙 -##糜 -##糞 -##糟 -##糠 -##糧 -##糬 -##糯 -##糰 -##糸 -##系 -##糾 -##紀 -##紂 -##約 -##紅 -##紉 -##紊 -##紋 -##納 -##紐 -##紓 -##純 -##紗 -##紘 -##紙 -##級 -##紛 -##紜 -##素 -##紡 -##索 -##紧 -##紫 -##紮 -##累 -##細 -##紳 -##紹 -##紺 -##終 -##絃 -##組 -##絆 -##経 -##結 -##絕 -##絞 -##絡 -##絢 -##給 -##絨 -##絮 -##統 -##絲 -##絳 -##絵 -##絶 -##絹 -##綁 -##綏 -##綑 -##經 -##継 -##続 -##綜 -##綠 -##綢 -##綦 -##綫 -##綬 -##維 -##綱 -##網 -##綴 -##綵 -##綸 -##綺 -##綻 -##綽 -##綾 -##綿 -##緊 -##緋 -##総 -##緑 -##緒 -##緘 -##線 -##緝 -##緞 -##締 -##緣 -##編 -##緩 -##緬 -##緯 -##練 -##緹 -##緻 -##縁 -##縄 -##縈 -##縛 -##縝 -##縣 -##縫 -##縮 -##縱 -##縴 -##縷 -##總 -##績 -##繁 -##繃 -##繆 -##繇 -##繋 -##織 -##繕 -##繚 -##繞 -##繡 -##繩 -##繪 -##繫 -##繭 -##繳 -##繹 -##繼 -##繽 -##纂 -##續 -##纍 -##纏 -##纓 -##纔 -##纖 -##纜 -##纠 -##红 -##纣 -##纤 -##约 -##级 -##纨 -##纪 -##纫 -##纬 -##纭 -##纯 -##纰 -##纱 -##纲 -##纳 -##纵 -##纶 -##纷 -##纸 -##纹 -##纺 -##纽 -##纾 -##线 -##绀 -##练 -##组 -##绅 -##细 -##织 -##终 -##绊 -##绍 -##绎 -##经 -##绑 -##绒 -##结 -##绔 -##绕 -##绘 -##给 -##绚 -##绛 -##络 -##绝 -##绞 -##统 -##绡 -##绢 -##绣 -##绥 -##绦 -##继 -##绩 -##绪 -##绫 -##续 -##绮 -##绯 -##绰 -##绳 -##维 -##绵 -##绶 -##绷 -##绸 -##绻 -##综 -##绽 -##绾 -##绿 -##缀 -##缄 -##缅 -##缆 -##缇 -##缈 -##缉 -##缎 -##缓 -##缔 -##缕 -##编 -##缘 -##缙 -##缚 -##缜 -##缝 -##缠 -##缢 -##缤 -##缥 -##缨 -##缩 -##缪 -##缭 -##缮 -##缰 -##缱 -##缴 -##缸 -##缺 -##缽 -##罂 -##罄 -##罌 -##罐 -##网 -##罔 -##罕 -##罗 -##罚 -##罡 -##罢 -##罩 -##罪 -##置 -##罰 -##署 -##罵 -##罷 -##罹 -##羁 -##羅 -##羈 -##羊 -##羌 -##美 -##羔 -##羚 -##羞 -##羟 -##羡 -##羣 -##群 -##羥 -##羧 -##羨 -##義 -##羯 -##羲 -##羸 -##羹 -##羽 -##羿 -##翁 -##翅 -##翊 -##翌 -##翎 -##習 -##翔 -##翘 -##翟 -##翠 -##翡 -##翦 -##翩 -##翰 -##翱 -##翳 -##翹 -##翻 -##翼 -##耀 -##老 -##考 -##耄 -##者 -##耆 -##耋 -##而 -##耍 -##耐 -##耒 -##耕 -##耗 -##耘 -##耙 -##耦 -##耨 -##耳 -##耶 -##耷 -##耸 -##耻 -##耽 -##耿 -##聂 -##聆 -##聊 -##聋 -##职 -##聒 -##联 -##聖 -##聘 -##聚 -##聞 -##聪 -##聯 -##聰 -##聲 -##聳 -##聴 -##聶 -##職 -##聽 -##聾 -##聿 -##肃 -##肄 -##肅 -##肆 -##肇 -##肉 -##肋 -##肌 -##肏 -##肓 -##肖 -##肘 -##肚 -##肛 -##肝 -##肠 -##股 -##肢 -##肤 -##肥 -##肩 -##肪 -##肮 -##肯 -##肱 -##育 -##肴 -##肺 -##肽 -##肾 -##肿 -##胀 -##胁 -##胃 -##胄 -##胆 -##背 -##胍 -##胎 -##胖 -##胚 -##胛 -##胜 -##胝 -##胞 -##胡 -##胤 -##胥 -##胧 -##胫 -##胭 -##胯 -##胰 -##胱 -##胳 -##胴 -##胶 -##胸 -##胺 -##能 -##脂 -##脅 -##脆 -##脇 -##脈 -##脉 -##脊 -##脍 -##脏 -##脐 -##脑 -##脓 -##脖 -##脘 -##脚 -##脛 -##脣 -##脩 -##脫 -##脯 -##脱 -##脲 -##脳 -##脸 -##脹 -##脾 -##腆 -##腈 -##腊 -##腋 -##腌 -##腎 -##腐 -##腑 -##腓 -##腔 -##腕 -##腥 -##腦 -##腩 -##腫 -##腭 -##腮 -##腰 -##腱 -##腳 -##腴 -##腸 -##腹 -##腺 -##腻 -##腼 -##腾 -##腿 -##膀 -##膈 -##膊 -##膏 -##膑 -##膘 -##膚 -##膛 -##膜 -##膝 -##膠 -##膦 -##膨 -##膩 -##膳 -##膺 -##膻 -##膽 -##膾 -##膿 -##臀 -##臂 -##臃 -##臆 -##臉 -##臊 -##臍 -##臓 -##臘 -##臟 -##臣 -##臥 -##臧 -##臨 -##自 -##臬 -##臭 -##至 -##致 -##臺 -##臻 -##臼 -##臾 -##舀 -##舂 -##舅 -##舆 -##與 -##興 -##舉 -##舊 -##舌 -##舍 -##舎 -##舐 -##舒 -##舔 -##舖 -##舗 -##舛 -##舜 -##舞 -##舟 -##航 -##舫 -##般 -##舰 -##舱 -##舵 -##舶 -##舷 -##舸 -##船 -##舺 -##舾 -##艇 -##艋 -##艘 -##艙 -##艦 -##艮 -##良 -##艰 -##艱 -##色 -##艳 -##艷 -##艹 -##艺 -##艾 -##节 -##芃 -##芈 -##芊 -##芋 -##芍 -##芎 -##芒 -##芙 -##芜 -##芝 -##芡 -##芥 -##芦 -##芩 -##芪 -##芫 -##芬 -##芭 -##芮 -##芯 -##花 -##芳 -##芷 -##芸 -##芹 -##芻 -##芽 -##芾 -##苁 -##苄 -##苇 -##苋 -##苍 -##苏 -##苑 -##苒 -##苓 -##苔 -##苕 -##苗 -##苛 -##苜 -##苞 -##苟 -##苡 -##苣 -##若 -##苦 -##苫 -##苯 -##英 -##苷 -##苹 -##苻 -##茁 -##茂 -##范 -##茄 -##茅 -##茉 -##茎 -##茏 -##茗 -##茜 -##茧 -##茨 -##茫 -##茬 -##茭 -##茯 -##茱 -##茲 -##茴 -##茵 -##茶 -##茸 -##茹 -##茼 -##荀 -##荃 -##荆 -##草 -##荊 -##荏 -##荐 -##荒 -##荔 -##荖 -##荘 -##荚 -##荞 -##荟 -##荠 -##荡 -##荣 -##荤 -##荥 -##荧 -##荨 -##荪 -##荫 -##药 -##荳 -##荷 -##荸 -##荻 -##荼 -##荽 -##莅 -##莆 -##莉 -##莊 -##莎 -##莒 -##莓 -##莖 -##莘 -##莞 -##莠 -##莢 -##莧 -##莪 -##莫 -##莱 -##莲 -##莴 -##获 -##莹 -##莺 -##莽 -##莿 -##菀 -##菁 -##菅 -##菇 -##菈 -##菊 -##菌 -##菏 -##菓 -##菖 -##菘 -##菜 -##菟 -##菠 -##菡 -##菩 -##華 -##菱 -##菲 -##菸 -##菽 -##萁 -##萃 -##萄 -##萊 -##萋 -##萌 -##萍 -##萎 -##萘 -##萝 -##萤 -##营 -##萦 -##萧 -##萨 -##萩 -##萬 -##萱 -##萵 -##萸 -##萼 -##落 -##葆 -##葉 -##著 -##葚 -##葛 -##葡 -##董 -##葦 -##葩 -##葫 -##葬 -##葭 -##葯 -##葱 -##葳 -##葵 -##葷 -##葺 -##蒂 -##蒋 -##蒐 -##蒔 -##蒙 -##蒜 -##蒞 -##蒟 -##蒡 -##蒨 -##蒲 -##蒸 -##蒹 -##蒻 -##蒼 -##蒿 -##蓁 -##蓄 -##蓆 -##蓉 -##蓋 -##蓑 -##蓓 -##蓖 -##蓝 -##蓟 -##蓦 -##蓬 -##蓮 -##蓼 -##蓿 -##蔑 -##蔓 -##蔔 -##蔗 -##蔘 -##蔚 -##蔡 -##蔣 -##蔥 -##蔫 -##蔬 -##蔭 -##蔵 -##蔷 -##蔺 -##蔻 -##蔼 -##蔽 -##蕁 -##蕃 -##蕈 -##蕉 -##蕊 -##蕎 -##蕙 -##蕤 -##蕨 -##蕩 -##蕪 -##蕭 -##蕲 -##蕴 -##蕻 -##蕾 -##薄 -##薅 -##薇 -##薈 -##薊 -##薏 -##薑 -##薔 -##薙 -##薛 -##薦 -##薨 -##薩 -##薪 -##薬 -##薯 -##薰 -##薹 -##藉 -##藍 -##藏 -##藐 -##藓 -##藕 -##藜 -##藝 -##藤 -##藥 -##藩 -##藹 -##藻 -##藿 -##蘆 -##蘇 -##蘊 -##蘋 -##蘑 -##蘚 -##蘭 -##蘸 -##蘼 -##蘿 -##虎 -##虏 -##虐 -##虑 -##虔 -##處 -##虚 -##虛 -##虜 -##虞 -##號 -##虢 -##虧 -##虫 -##虬 -##虱 -##虹 -##虻 -##虽 -##虾 -##蚀 -##蚁 -##蚂 -##蚊 -##蚌 -##蚓 -##蚕 -##蚜 -##蚝 -##蚣 -##蚤 -##蚩 -##蚪 -##蚯 -##蚱 -##蚵 -##蛀 -##蛆 -##蛇 -##蛊 -##蛋 -##蛎 -##蛐 -##蛔 -##蛙 -##蛛 -##蛟 -##蛤 -##蛭 -##蛮 -##蛰 -##蛳 -##蛹 -##蛻 -##蛾 -##蜀 -##蜂 -##蜃 -##蜆 -##蜇 -##蜈 -##蜊 -##蜍 -##蜒 -##蜓 -##蜕 -##蜗 -##蜘 -##蜚 -##蜜 -##蜡 -##蜢 -##蜥 -##蜱 -##蜴 -##蜷 -##蜻 -##蜿 -##蝇 -##蝈 -##蝉 -##蝌 -##蝎 -##蝕 -##蝗 -##蝙 -##蝟 -##蝠 -##蝦 -##蝨 -##蝴 -##蝶 -##蝸 -##蝼 -##螂 -##螃 -##融 -##螞 -##螢 -##螨 -##螯 -##螳 -##螺 -##蟀 -##蟄 -##蟆 -##蟋 -##蟎 -##蟑 -##蟒 -##蟠 -##蟬 -##蟲 -##蟹 -##蟻 -##蟾 -##蠅 -##蠍 -##蠔 -##蠕 -##蠛 -##蠟 -##蠡 -##蠢 -##蠣 -##蠱 -##蠶 -##蠹 -##蠻 -##血 -##衄 -##衅 -##衆 -##行 -##衍 -##術 -##衔 -##街 -##衙 -##衛 -##衝 -##衞 -##衡 -##衢 -##衣 -##补 -##表 -##衩 -##衫 -##衬 -##衮 -##衰 -##衲 -##衷 -##衹 -##衾 -##衿 -##袁 -##袂 -##袄 -##袅 -##袈 -##袋 -##袍 -##袒 -##袖 -##袜 -##袞 -##袤 -##袪 -##被 -##袭 -##袱 -##裁 -##裂 -##装 -##裆 -##裊 -##裏 -##裔 -##裕 -##裘 -##裙 -##補 -##裝 -##裟 -##裡 -##裤 -##裨 -##裱 -##裳 -##裴 -##裸 -##裹 -##製 -##裾 -##褂 -##複 -##褐 -##褒 -##褓 -##褔 -##褚 -##褥 -##褪 -##褫 -##褲 -##褶 -##褻 -##襁 -##襄 -##襟 -##襠 -##襪 -##襬 -##襯 -##襲 -##西 -##要 -##覃 -##覆 -##覇 -##見 -##規 -##覓 -##視 -##覚 -##覦 -##覧 -##親 -##覬 -##観 -##覷 -##覺 -##覽 -##觀 -##见 -##观 -##规 -##觅 -##视 -##览 -##觉 -##觊 -##觎 -##觐 -##觑 -##角 -##觞 -##解 -##觥 -##触 -##觸 -##言 -##訂 -##計 -##訊 -##討 -##訓 -##訕 -##訖 -##託 -##記 -##訛 -##訝 -##訟 -##訣 -##訥 -##訪 -##設 -##許 -##訳 -##訴 -##訶 -##診 -##註 -##証 -##詆 -##詐 -##詔 -##評 -##詛 -##詞 -##詠 -##詡 -##詢 -##詣 -##試 -##詩 -##詫 -##詬 -##詭 -##詮 -##詰 -##話 -##該 -##詳 -##詹 -##詼 -##誅 -##誇 -##誉 -##誌 -##認 -##誓 -##誕 -##誘 -##語 -##誠 -##誡 -##誣 -##誤 -##誥 -##誦 -##誨 -##說 -##説 -##読 -##誰 -##課 -##誹 -##誼 -##調 -##諄 -##談 -##請 -##諏 -##諒 -##論 -##諗 -##諜 -##諡 -##諦 -##諧 -##諫 -##諭 -##諮 -##諱 -##諳 -##諷 -##諸 -##諺 -##諾 -##謀 -##謁 -##謂 -##謄 -##謊 -##謎 -##謐 -##謔 -##謗 -##謙 -##講 -##謝 -##謠 -##謨 -##謬 -##謹 -##謾 -##譁 -##證 -##譎 -##譏 -##識 -##譙 -##譚 -##譜 -##警 -##譬 -##譯 -##議 -##譲 -##譴 -##護 -##譽 -##讀 -##變 -##讓 -##讚 -##讞 -##计 -##订 -##认 -##讥 -##讧 -##讨 -##让 -##讪 -##讫 -##训 -##议 -##讯 -##记 -##讲 -##讳 -##讴 -##讶 -##讷 -##许 -##讹 -##论 -##讼 -##讽 -##设 -##访 -##诀 -##证 -##诃 -##评 -##诅 -##识 -##诈 -##诉 -##诊 -##诋 -##词 -##诏 -##译 -##试 -##诗 -##诘 -##诙 -##诚 -##诛 -##话 -##诞 -##诟 -##诠 -##诡 -##询 -##诣 -##诤 -##该 -##详 -##诧 -##诩 -##诫 -##诬 -##语 -##误 -##诰 -##诱 -##诲 -##说 -##诵 -##诶 -##请 -##诸 -##诺 -##读 -##诽 -##课 -##诿 -##谀 -##谁 -##调 -##谄 -##谅 -##谆 -##谈 -##谊 -##谋 -##谌 -##谍 -##谎 -##谏 -##谐 -##谑 -##谒 -##谓 -##谔 -##谕 -##谗 -##谘 -##谙 -##谚 -##谛 -##谜 -##谟 -##谢 -##谣 -##谤 -##谥 -##谦 -##谧 -##谨 -##谩 -##谪 -##谬 -##谭 -##谯 -##谱 -##谲 -##谴 -##谶 -##谷 -##豁 -##豆 -##豇 -##豈 -##豉 -##豊 -##豌 -##豎 -##豐 -##豔 -##豚 -##象 -##豢 -##豪 -##豫 -##豬 -##豹 -##豺 -##貂 -##貅 -##貌 -##貓 -##貔 -##貘 -##貝 -##貞 -##負 -##財 -##貢 -##貧 -##貨 -##販 -##貪 -##貫 -##責 -##貯 -##貰 -##貳 -##貴 -##貶 -##買 -##貸 -##費 -##貼 -##貽 -##貿 -##賀 -##賁 -##賂 -##賃 -##賄 -##資 -##賈 -##賊 -##賑 -##賓 -##賜 -##賞 -##賠 -##賡 -##賢 -##賣 -##賤 -##賦 -##質 -##賬 -##賭 -##賴 -##賺 -##購 -##賽 -##贅 -##贈 -##贊 -##贍 -##贏 -##贓 -##贖 -##贛 -##贝 -##贞 -##负 -##贡 -##财 -##责 -##贤 -##败 -##账 -##货 -##质 -##贩 -##贪 -##贫 -##贬 -##购 -##贮 -##贯 -##贰 -##贱 -##贲 -##贴 -##贵 -##贷 -##贸 -##费 -##贺 -##贻 -##贼 -##贾 -##贿 -##赁 -##赂 -##赃 -##资 -##赅 -##赈 -##赊 -##赋 -##赌 -##赎 -##赏 -##赐 -##赓 -##赔 -##赖 -##赘 -##赚 -##赛 -##赝 -##赞 -##赠 -##赡 -##赢 -##赣 -##赤 -##赦 -##赧 -##赫 -##赭 -##走 -##赳 -##赴 -##赵 -##赶 -##起 -##趁 -##超 -##越 -##趋 -##趕 -##趙 -##趟 -##趣 -##趨 -##足 -##趴 -##趵 -##趸 -##趺 -##趾 -##跃 -##跄 -##跆 -##跋 -##跌 -##跎 -##跑 -##跖 -##跚 -##跛 -##距 -##跟 -##跡 -##跤 -##跨 -##跩 -##跪 -##路 -##跳 -##践 -##跷 -##跹 -##跺 -##跻 -##踉 -##踊 -##踌 -##踏 -##踐 -##踝 -##踞 -##踟 -##踢 -##踩 -##踪 -##踮 -##踱 -##踴 -##踵 -##踹 -##蹂 -##蹄 -##蹇 -##蹈 -##蹉 -##蹊 -##蹋 -##蹑 -##蹒 -##蹙 -##蹟 -##蹣 -##蹤 -##蹦 -##蹩 -##蹬 -##蹭 -##蹲 -##蹴 -##蹶 -##蹺 -##蹼 -##蹿 -##躁 -##躇 -##躉 -##躊 -##躋 -##躍 -##躏 -##躪 -##身 -##躬 -##躯 -##躲 -##躺 -##軀 -##車 -##軋 -##軌 -##軍 -##軒 -##軟 -##転 -##軸 -##軼 -##軽 -##軾 -##較 -##載 -##輒 -##輓 -##輔 -##輕 -##輛 -##輝 -##輟 -##輩 -##輪 -##輯 -##輸 -##輻 -##輾 -##輿 -##轄 -##轅 -##轆 -##轉 -##轍 -##轎 -##轟 -##车 -##轧 -##轨 -##轩 -##转 -##轭 -##轮 -##软 -##轰 -##轲 -##轴 -##轶 -##轻 -##轼 -##载 -##轿 -##较 -##辄 -##辅 -##辆 -##辇 -##辈 -##辉 -##辊 -##辍 -##辐 -##辑 -##输 -##辕 -##辖 -##辗 -##辘 -##辙 -##辛 -##辜 -##辞 -##辟 -##辣 -##辦 -##辨 -##辩 -##辫 -##辭 -##辮 -##辯 -##辰 -##辱 -##農 -##边 -##辺 -##辻 -##込 -##辽 -##达 -##迁 -##迂 -##迄 -##迅 -##过 -##迈 -##迎 -##运 -##近 -##返 -##还 -##这 -##进 -##远 -##违 -##连 -##迟 -##迢 -##迤 -##迥 -##迦 -##迩 -##迪 -##迫 -##迭 -##述 -##迴 -##迷 -##迸 -##迹 -##迺 -##追 -##退 -##送 -##适 -##逃 -##逅 -##逆 -##选 -##逊 -##逍 -##透 -##逐 -##递 -##途 -##逕 -##逗 -##這 -##通 -##逛 -##逝 -##逞 -##速 -##造 -##逢 -##連 -##逮 -##週 -##進 -##逵 -##逶 -##逸 -##逻 -##逼 -##逾 -##遁 -##遂 -##遅 -##遇 -##遊 -##運 -##遍 -##過 -##遏 -##遐 -##遑 -##遒 -##道 -##達 -##違 -##遗 -##遙 -##遛 -##遜 -##遞 -##遠 -##遢 -##遣 -##遥 -##遨 -##適 -##遭 -##遮 -##遲 -##遴 -##遵 -##遶 -##遷 -##選 -##遺 -##遼 -##遽 -##避 -##邀 -##邁 -##邂 -##邃 -##還 -##邇 -##邈 -##邊 -##邋 -##邏 -##邑 -##邓 -##邕 -##邛 -##邝 -##邢 -##那 -##邦 -##邨 -##邪 -##邬 -##邮 -##邯 -##邰 -##邱 -##邳 -##邵 -##邸 -##邹 -##邺 -##邻 -##郁 -##郅 -##郊 -##郎 -##郑 -##郜 -##郝 -##郡 -##郢 -##郤 -##郦 -##郧 -##部 -##郫 -##郭 -##郴 -##郵 -##郷 -##郸 -##都 -##鄂 -##鄉 -##鄒 -##鄔 -##鄙 -##鄞 -##鄢 -##鄧 -##鄭 -##鄰 -##鄱 -##鄲 -##鄺 -##酉 -##酊 -##酋 -##酌 -##配 -##酐 -##酒 -##酗 -##酚 -##酝 -##酢 -##酣 -##酥 -##酩 -##酪 -##酬 -##酮 -##酯 -##酰 -##酱 -##酵 -##酶 -##酷 -##酸 -##酿 -##醃 -##醇 -##醉 -##醋 -##醍 -##醐 -##醒 -##醚 -##醛 -##醜 -##醞 -##醣 -##醪 -##醫 -##醬 -##醮 -##醯 -##醴 -##醺 -##釀 -##釁 -##采 -##釉 -##释 -##釋 -##里 -##重 -##野 -##量 -##釐 -##金 -##釗 -##釘 -##釜 -##針 -##釣 -##釦 -##釧 -##釵 -##鈀 -##鈉 -##鈍 -##鈎 -##鈔 -##鈕 -##鈞 -##鈣 -##鈦 -##鈪 -##鈴 -##鈺 -##鈾 -##鉀 -##鉄 -##鉅 -##鉉 -##鉑 -##鉗 -##鉚 -##鉛 -##鉤 -##鉴 -##鉻 -##銀 -##銃 -##銅 -##銑 -##銓 -##銖 -##銘 -##銜 -##銬 -##銭 -##銮 -##銳 -##銷 -##銹 -##鋁 -##鋅 -##鋒 -##鋤 -##鋪 -##鋰 -##鋸 -##鋼 -##錄 -##錐 -##錘 -##錚 -##錠 -##錢 -##錦 -##錨 -##錫 -##錮 -##錯 -##録 -##錳 -##錶 -##鍊 -##鍋 -##鍍 -##鍛 -##鍥 -##鍰 -##鍵 -##鍺 -##鍾 -##鎂 -##鎊 -##鎌 -##鎏 -##鎔 -##鎖 -##鎗 -##鎚 -##鎧 -##鎬 -##鎮 -##鎳 -##鏈 -##鏖 -##鏗 -##鏘 -##鏞 -##鏟 -##鏡 -##鏢 -##鏤 -##鏽 -##鐘 -##鐮 -##鐲 -##鐳 -##鐵 -##鐸 -##鐺 -##鑄 -##鑊 -##鑑 -##鑒 -##鑣 -##鑫 -##鑰 -##鑲 -##鑼 -##鑽 -##鑾 -##鑿 -##针 -##钉 -##钊 -##钎 -##钏 -##钒 -##钓 -##钗 -##钙 -##钛 -##钜 -##钝 -##钞 -##钟 -##钠 -##钡 -##钢 -##钣 -##钤 -##钥 -##钦 -##钧 -##钨 -##钩 -##钮 -##钯 -##钰 -##钱 -##钳 -##钴 -##钵 -##钺 -##钻 -##钼 -##钾 -##钿 -##铀 -##铁 -##铂 -##铃 -##铄 -##铅 -##铆 -##铉 -##铎 -##铐 -##铛 -##铜 -##铝 -##铠 -##铡 -##铢 -##铣 -##铤 -##铨 -##铩 -##铬 -##铭 -##铮 -##铰 -##铲 -##铵 -##银 -##铸 -##铺 -##链 -##铿 -##销 -##锁 -##锂 -##锄 -##锅 -##锆 -##锈 -##锉 -##锋 -##锌 -##锏 -##锐 -##锑 -##错 -##锚 -##锟 -##锡 -##锢 -##锣 -##锤 -##锥 -##锦 -##锭 -##键 -##锯 -##锰 -##锲 -##锵 -##锹 -##锺 -##锻 -##镀 -##镁 -##镂 -##镇 -##镉 -##镌 -##镍 -##镐 -##镑 -##镕 -##镖 -##镗 -##镛 -##镜 -##镣 -##镭 -##镯 -##镰 -##镳 -##镶 -##長 -##长 -##門 -##閃 -##閉 -##開 -##閎 -##閏 -##閑 -##閒 -##間 -##閔 -##閘 -##閡 -##関 -##閣 -##閥 -##閨 -##閩 -##閱 -##閲 -##閹 -##閻 -##閾 -##闆 -##闇 -##闊 -##闌 -##闍 -##闔 -##闕 -##闖 -##闘 -##關 -##闡 -##闢 -##门 -##闪 -##闫 -##闭 -##问 -##闯 -##闰 -##闲 -##间 -##闵 -##闷 -##闸 -##闹 -##闺 -##闻 -##闽 -##闾 -##阀 -##阁 -##阂 -##阅 -##阆 -##阇 -##阈 -##阉 -##阎 -##阐 -##阑 -##阔 -##阕 -##阖 -##阙 -##阚 -##阜 -##队 -##阡 -##阪 -##阮 -##阱 -##防 -##阳 -##阴 -##阵 -##阶 -##阻 -##阿 -##陀 -##陂 -##附 -##际 -##陆 -##陇 -##陈 -##陋 -##陌 -##降 -##限 -##陕 -##陛 -##陝 -##陞 -##陟 -##陡 -##院 -##陣 -##除 -##陨 -##险 -##陪 -##陰 -##陲 -##陳 -##陵 -##陶 -##陷 -##陸 -##険 -##陽 -##隅 -##隆 -##隈 -##隊 -##隋 -##隍 -##階 -##随 -##隐 -##隔 -##隕 -##隘 -##隙 -##際 -##障 -##隠 -##隣 -##隧 -##隨 -##險 -##隱 -##隴 -##隶 -##隸 -##隻 -##隼 -##隽 -##难 -##雀 -##雁 -##雄 -##雅 -##集 -##雇 -##雉 -##雋 -##雌 -##雍 -##雎 -##雏 -##雑 -##雒 -##雕 -##雖 -##雙 -##雛 -##雜 -##雞 -##離 -##難 -##雨 -##雪 -##雯 -##雰 -##雲 -##雳 -##零 -##雷 -##雹 -##電 -##雾 -##需 -##霁 -##霄 -##霆 -##震 -##霈 -##霉 -##霊 -##霍 -##霎 -##霏 -##霑 -##霓 -##霖 -##霜 -##霞 -##霧 -##霭 -##霰 -##露 -##霸 -##霹 -##霽 -##霾 -##靂 -##靄 -##靈 -##青 -##靓 -##靖 -##静 -##靚 -##靛 -##靜 -##非 -##靠 -##靡 -##面 -##靥 -##靦 -##革 -##靳 -##靴 -##靶 -##靼 -##鞅 -##鞋 -##鞍 -##鞏 -##鞑 -##鞘 -##鞠 -##鞣 -##鞦 -##鞭 -##韆 -##韋 -##韌 -##韓 -##韜 -##韦 -##韧 -##韩 -##韬 -##韭 -##音 -##韵 -##韶 -##韻 -##響 -##頁 -##頂 -##頃 -##項 -##順 -##須 -##頌 -##預 -##頑 -##頒 -##頓 -##頗 -##領 -##頜 -##頡 -##頤 -##頫 -##頭 -##頰 -##頷 -##頸 -##頹 -##頻 -##頼 -##顆 -##題 -##額 -##顎 -##顏 -##顔 -##願 -##顛 -##類 -##顧 -##顫 -##顯 -##顱 -##顴 -##页 -##顶 -##顷 -##项 -##顺 -##须 -##顼 -##顽 -##顾 -##顿 -##颁 -##颂 -##预 -##颅 -##领 -##颇 -##颈 -##颉 -##颊 -##颌 -##颍 -##颐 -##频 -##颓 -##颔 -##颖 -##颗 -##题 -##颚 -##颛 -##颜 -##额 -##颞 -##颠 -##颡 -##颢 -##颤 -##颦 -##颧 -##風 -##颯 -##颱 -##颳 -##颶 -##颼 -##飄 -##飆 -##风 -##飒 -##飓 -##飕 -##飘 -##飙 -##飚 -##飛 -##飞 -##食 -##飢 -##飨 -##飩 -##飪 -##飯 -##飲 -##飼 -##飽 -##飾 -##餃 -##餅 -##餉 -##養 -##餌 -##餐 -##餒 -##餓 -##餘 -##餚 -##餛 -##餞 -##餡 -##館 -##餮 -##餵 -##餾 -##饅 -##饈 -##饋 -##饌 -##饍 -##饑 -##饒 -##饕 -##饗 -##饞 -##饥 -##饨 -##饪 -##饬 -##饭 -##饮 -##饯 -##饰 -##饱 -##饲 -##饴 -##饵 -##饶 -##饷 -##饺 -##饼 -##饽 -##饿 -##馀 -##馁 -##馄 -##馅 -##馆 -##馈 -##馋 -##馍 -##馏 -##馒 -##馔 -##首 -##馗 -##香 -##馥 -##馨 -##馬 -##馭 -##馮 -##馳 -##馴 -##駁 -##駄 -##駅 -##駆 -##駐 -##駒 -##駕 -##駛 -##駝 -##駭 -##駱 -##駿 -##騁 -##騎 -##騏 -##験 -##騙 -##騨 -##騰 -##騷 -##驀 -##驅 -##驊 -##驍 -##驒 -##驕 -##驗 -##驚 -##驛 -##驟 -##驢 -##驥 -##马 -##驭 -##驮 -##驯 -##驰 -##驱 -##驳 -##驴 -##驶 -##驷 -##驸 -##驹 -##驻 -##驼 -##驾 -##驿 -##骁 -##骂 -##骄 -##骅 -##骆 -##骇 -##骈 -##骊 -##骋 -##验 -##骏 -##骐 -##骑 -##骗 -##骚 -##骛 -##骜 -##骞 -##骠 -##骡 -##骤 -##骥 -##骧 -##骨 -##骯 -##骰 -##骶 -##骷 -##骸 -##骼 -##髂 -##髅 -##髋 -##髏 -##髒 -##髓 -##體 -##髖 -##高 -##髦 -##髪 -##髮 -##髯 -##髻 -##鬃 -##鬆 -##鬍 -##鬓 -##鬚 -##鬟 -##鬢 -##鬣 -##鬥 -##鬧 -##鬱 -##鬼 -##魁 -##魂 -##魄 -##魅 -##魇 -##魍 -##魏 -##魔 -##魘 -##魚 -##魯 -##魷 -##鮑 -##鮨 -##鮪 -##鮭 -##鮮 -##鯉 -##鯊 -##鯖 -##鯛 -##鯨 -##鯰 -##鯽 -##鰍 -##鰓 -##鰭 -##鰲 -##鰻 -##鰾 -##鱈 -##鱉 -##鱔 -##鱗 -##鱷 -##鱸 -##鱼 -##鱿 -##鲁 -##鲈 -##鲍 -##鲑 -##鲛 -##鲜 -##鲟 -##鲢 -##鲤 -##鲨 -##鲫 -##鲱 -##鲲 -##鲶 -##鲷 -##鲸 -##鳃 -##鳄 -##鳅 -##鳌 -##鳍 -##鳕 -##鳖 -##鳗 -##鳝 -##鳞 -##鳥 -##鳩 -##鳳 -##鳴 -##鳶 -##鴉 -##鴕 -##鴛 -##鴦 -##鴨 -##鴻 -##鴿 -##鵑 -##鵜 -##鵝 -##鵡 -##鵬 -##鵰 -##鵲 -##鶘 -##鶩 -##鶯 -##鶴 -##鷗 -##鷲 -##鷹 -##鷺 -##鸚 -##鸞 -##鸟 -##鸠 -##鸡 -##鸢 -##鸣 -##鸥 -##鸦 -##鸨 -##鸪 -##鸭 -##鸯 -##鸳 -##鸵 -##鸽 -##鸾 -##鸿 -##鹂 -##鹃 -##鹄 -##鹅 -##鹈 -##鹉 -##鹊 -##鹌 -##鹏 -##鹑 -##鹕 -##鹘 -##鹜 -##鹞 -##鹤 -##鹦 -##鹧 -##鹫 -##鹭 -##鹰 -##鹳 -##鹵 -##鹹 -##鹼 -##鹽 -##鹿 -##麂 -##麋 -##麒 -##麓 -##麗 -##麝 -##麟 -##麥 -##麦 -##麩 -##麴 -##麵 -##麸 -##麺 -##麻 -##麼 -##麽 -##麾 -##黃 -##黄 -##黍 -##黎 -##黏 -##黑 -##黒 -##黔 -##默 -##黛 -##黜 -##黝 -##點 -##黠 -##黨 -##黯 -##黴 -##鼋 -##鼎 -##鼐 -##鼓 -##鼠 -##鼬 -##鼹 -##鼻 -##鼾 -##齁 -##齊 -##齋 -##齐 -##齒 -##齡 -##齢 -##齣 -##齦 -##齿 -##龄 -##龅 -##龈 -##龊 -##龋 -##龌 -##龍 -##龐 -##龔 -##龕 -##龙 -##龚 -##龛 -##龜 -##龟 -##︰ -##︱ -##︶ -##︿ -##﹁ -##﹂ -##﹍ -##﹏ -##﹐ -##﹑ -##﹒ -##﹔ -##﹕ -##﹖ -##﹗ -##﹙ -##﹚ -##﹝ -##﹞ -##﹡ -##﹣ -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##, -##- -##. -##/ -##: -##; -##< -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##f -##h -##j -##u -##w -##z -##{ -##} -##。 -##「 -##」 -##、 -##・ -##ッ -##ー -##イ -##ク -##シ -##ス -##ト -##ノ -##フ -##ラ -##ル -##ン -##゙ -##゚ -## ̄ -##¥ -##👍 -##🔥 -##😂 -##😎 diff --git a/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/cased_L-12_H-768_A-12/download_from_bert_first.txt b/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/cased_L-12_H-768_A-12/download_from_bert_first.txt deleted file mode 100644 index 2ea941cc79a6f3d7985ca6991ef4f67dad62af04..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/cased_L-12_H-768_A-12/download_from_bert_first.txt +++ /dev/null @@ -1,28996 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] -[unused100] -[unused101] -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -A -B -C -D -E -F -G -H -I -J -K -L -M -N -O -P -Q -R -S -T -U -V -W -X -Y -Z -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -¡ -¢ -£ -¥ -§ -¨ -© -ª -« -¬ -® -° -± -² -³ -´ -µ -¶ -· -¹ -º -» -¼ -½ -¾ -¿ -À -Á - -Ä -Å -Æ -Ç -È -É -Í -Î -Ñ -Ó -Ö -× -Ø -Ú -Ü -Þ -ß -à -á -â -ã -ä -å -æ -ç -è -é -ê -ë -ì -í -î -ï -ð -ñ -ò -ó -ô -õ -ö -÷ -ø -ù -ú -û -ü -ý -þ -ÿ -Ā -ā -ă -ą -Ć -ć -Č -č -ď -Đ -đ -ē -ė -ę -ě -ğ -ġ -Ħ -ħ -ĩ -Ī -ī -İ -ı -ļ -Ľ -ľ -Ł -ł -ń -ņ -ň -ŋ -Ō -ō -ŏ -ő -Œ -œ -ř -Ś -ś -Ş -ş -Š -š -Ţ -ţ -ť -ũ -ū -ŭ -ů -ű -ų -ŵ -ŷ -ź -Ż -ż -Ž -ž -Ə -ƒ -ơ -ư -ǎ -ǐ -ǒ -ǔ -ǫ -Ș -ș -Ț -ț -ɐ -ɑ -ɔ -ɕ -ə -ɛ -ɡ -ɣ -ɨ -ɪ -ɲ -ɾ -ʀ -ʁ -ʂ -ʃ -ʊ -ʋ -ʌ -ʐ -ʑ -ʒ -ʔ -ʰ -ʲ -ʳ -ʷ -ʻ -ʼ -ʾ -ʿ -ˈ -ː -ˡ -ˢ -ˣ -́ -̃ -̍ -̯ -͡ -Α -Β -Γ -Δ -Ε -Η -Θ -Ι -Κ -Λ -Μ -Ν -Ο -Π -Σ -Τ -Φ -Χ -Ψ -Ω -ά -έ -ή -ί -α -β -γ -δ -ε -ζ -η -θ -ι -κ -λ -μ -ν -ξ -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -ό -ύ -ώ -І -Ј -А -Б -В -Г -Д -Е -Ж -З -И -К -Л -М -Н -О -П -Р -С -Т -У -Ф -Х -Ц -Ч -Ш -Э -Ю -Я -а -б -в -г -д -е -ж -з -и -й -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -щ -ъ -ы -ь -э -ю -я -ё -і -ї -ј -њ -ћ -Ա -Հ -ա -ե -ի -կ -մ -յ -ն -ո -ս -տ -ր -ւ -ְ -ִ -ֵ -ֶ -ַ -ָ -ֹ -ּ -א -ב -ג -ד -ה -ו -ז -ח -ט -י -כ -ל -ם -מ -ן -נ -ס -ע -פ -צ -ק -ר -ש -ת -، -ء -آ -أ -إ -ئ -ا -ب -ة -ت -ث -ج -ح -خ -د -ذ -ر -ز -س -ش -ص -ض -ط -ظ -ع -غ -ف -ق -ك -ل -م -ن -ه -و -ى -ي -َ -ِ -ٹ -پ -چ -ک -گ -ہ -ی -ے -ं -आ -क -ग -च -ज -ण -त -द -ध -न -प -ब -भ -म -य -र -ल -व -श -ष -स -ह -ा -ि -ी -ु -े -ो -् -। -॥ -আ -ই -এ -ও -ক -খ -গ -চ -ছ -জ -ট -ত -থ -দ -ধ -ন -প -ব -ম -য -র -ল -শ -স -হ -় -া -ি -ী -ু -ে -ো -্ -য় -க -த -ப -ம -ய -ர -ல -வ -ா -ி -ு -் -ร -་ -ག -ང -ད -ན -བ -མ -ར -ལ -ས -ི -ུ -ེ -ོ -ა -ე -ი -ლ -ნ -ო -რ -ს -ᴬ -ᴵ -ᵀ -ᵃ -ᵇ -ᵈ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵖ -ᵗ -ᵘ -ᵢ -ᵣ -ᵤ -ᵥ -ᶜ -ᶠ -ḍ -Ḥ -ḥ -Ḩ -ḩ -ḳ -ṃ -ṅ -ṇ -ṛ -ṣ -ṭ -ạ -ả -ấ -ầ -ẩ -ậ -ắ -ế -ề -ể -ễ -ệ -ị -ọ -ố -ồ -ổ -ộ -ớ -ờ -ợ -ụ -ủ -ứ -ừ -ử -ữ -ự -ỳ -ỹ -ἀ -ἐ -ὁ -ὐ -ὰ -ὶ -ὸ -ῆ -ῖ -ῦ -ῶ -‐ -‑ -‒ -– -— -― -‖ -‘ -’ -‚ -“ -” -„ -† -‡ -• -… -‰ -′ -″ -⁄ -⁰ -ⁱ -⁴ -⁵ -⁶ -⁷ -⁸ -⁹ -⁺ -⁻ -ⁿ -₀ -₁ -₂ -₃ -₄ -₅ -₆ -₇ -₈ -₉ -₊ -₍ -₎ -ₐ -ₑ -ₒ -ₓ -ₕ -ₖ -ₘ -ₙ -ₚ -ₛ -ₜ -₤ -€ -₱ -₹ -ℓ -№ -ℝ -⅓ -← -↑ -→ -↔ -⇌ -⇒ -∂ -∈ -− -∗ -∘ -√ -∞ -∧ -∨ -∩ -∪ -≈ -≠ -≡ -≤ -≥ -⊂ -⊆ -⊕ -⋅ -─ -│ -■ -● -★ -☆ -☉ -♠ -♣ -♥ -♦ -♭ -♯ -⟨ -⟩ -ⱼ -、 -。 -《 -》 -「 -」 -『 -』 -〜 -い -う -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -つ -て -と -な -に -の -は -ひ -ま -み -む -め -も -や -ゆ -よ -ら -り -る -れ -ん -ア -ィ -イ -ウ -エ -オ -カ -ガ -キ -ク -グ -コ -サ -シ -ジ -ス -ズ -タ -ダ -ッ -テ -デ -ト -ド -ナ -ニ -ハ -バ -パ -フ -ブ -プ -マ -ミ -ム -ャ -ュ -ラ -リ -ル -レ -ロ -ン -・ -ー -一 -三 -上 -下 -中 -事 -二 -井 -京 -人 -亻 -仁 -佐 -侍 -光 -公 -力 -北 -十 -南 -原 -口 -史 -司 -吉 -同 -和 -囗 -国 -國 -土 -城 -士 -大 -天 -太 -夫 -女 -子 -宀 -安 -宮 -宿 -小 -尚 -山 -島 -川 -州 -平 -年 -心 -愛 -戸 -文 -新 -方 -日 -明 -星 -書 -月 -木 -本 -李 -村 -東 -松 -林 -正 -武 -氏 -水 -氵 -江 -河 -海 -版 -犬 -王 -生 -田 -白 -皇 -省 -真 -石 -社 -神 -竹 -美 -義 -花 -藤 -西 -谷 -車 -辶 -道 -郎 -郡 -部 -野 -金 -長 -門 -陽 -青 -食 -馬 -高 -龍 -龸 -사 -씨 -의 -이 -한 -fi -fl -! -( -) -, -- -/ -: -the -of -and -to -in -was -The -is -for -as -on -with -that -##s -his -by -he -at -from -it -her -He -had -an -were -you -be -In -she -are -but -which -It -not -or -have -my -him -one -this -me -has -also -up -their -first -out -who -been -they -She -into -all -would -its -##ing -time -two -##a -##e -said -about -when -over -more -other -can -after -back -them -then -##ed -there -like -so -only -##n -could -##d -##i -##y -what -no -##o -where -This -made -than -if -You -##ly -through -we -before -##r -just -some -##er -years -do -New -##t -down -between -new -now -will -three -most -On -around -year -used -such -being -well -during -They -know -against -under -later -did -part -known -off -while -His -re -... -##l -people -until -way -American -didn -University -your -both -many -get -United -became -head -There -second -As -work -any -But -still -again -born -even -eyes -After -including -de -took -And -long -team -season -family -see -right -same -called -name -because -film -don -10 -found -much -school -##es -going -won -place -away -We -day -left -John -000 -hand -since -World -these -how -make -number -each -life -area -man -four -go -No -here -very -National -##m -played -released -never -began -States -album -home -last -too -held -several -May -own -##on -take -end -School -##h -ll -series -What -want -use -another -city -When -2010 -side -At -may -That -came -face -June -think -game -those -high -March -early -September -##al -2011 -looked -July -state -small -thought -went -January -October -##u -based -August -##us -world -good -April -York -us -12 -2012 -2008 -For -2009 -group -along -few -South -little -##k -following -November -something -2013 -December -set -2007 -old -2006 -2014 -located -##an -music -County -City -former -##in -room -ve -next -All -##man -got -father -house -##g -body -15 -20 -18 -started -If -2015 -town -our -line -War -large -population -named -British -company -member -five -My -single -##en -age -State -moved -February -11 -Her -should -century -government -built -come -best -show -However -within -look -men -door -without -need -wasn -2016 -water -One -system -knew -every -died -League -turned -asked -North -St -wanted -building -received -song -served -though -felt -##ia -station -band -##ers -local -public -himself -different -death -say -##1 -30 -##2 -2005 -16 -night -behind -children -English -members -near -saw -together -son -14 -voice -village -13 -hands -help -##3 -due -French -London -top -told -open -published -third -2017 -play -across -During -put -final -often -include -25 -##le -main -having -2004 -once -ever -let -book -led -gave -late -front -find -club -##4 -German -included -species -College -form -opened -mother -women -enough -West -must -2000 -power -really -17 -making -half -##6 -order -might -##is -given -million -times -days -point -full -service -With -km -major -##7 -original -become -seen -II -north -six -##te -love -##0 -national -International -##5 -24 -So -District -lost -run -couldn -career -always -##9 -2003 -##th -country -##z -House -air -tell -south -worked -woman -player -##A -almost -war -River -##ic -married -continued -Then -James -close -black -short -##8 -##na -using -history -returned -light -car -##ra -sure -William -things -General -##ry -2002 -better -support -100 -among -From -feet -King -anything -21 -19 -established -district -2001 -feel -great -##ton -level -Cup -These -written -games -others -already -title -story -##p -law -thing -US -record -role -however -By -students -England -white -control -least -inside -land -##C -22 -give -community -hard -##ie -non -##c -produced -George -round -period -Park -business -various -##ne -does -present -wife -far -taken -per -reached -David -able -version -working -young -live -created -joined -East -living -appeared -case -High -done -23 -important -President -Award -France -position -office -looking -total -general -class -To -production -##S -football -party -brother -keep -mind -free -Street -hair -announced -development -either -nothing -moment -Church -followed -wrote -why -India -San -election -1999 -lead -How -##ch -##rs -words -European -course -considered -America -arms -Army -political -##la -28 -26 -west -east -ground -further -church -less -site -First -Not -Australia -toward -California -##ness -described -works -An -Council -heart -past -military -27 -##or -heard -field -human -soon -founded -1998 -playing -trying -##x -##ist -##ta -television -mouth -although -taking -win -fire -Division -##ity -Party -Royal -program -Some -Don -Association -According -tried -TV -Paul -outside -daughter -Best -While -someone -match -recorded -Canada -closed -region -Air -above -months -elected -##da -##ian -road -##ar -brought -move -1997 -leave -##um -Thomas -1996 -am -low -Robert -formed -person -services -points -Mr -miles -##b -stop -rest -doing -needed -international -release -floor -start -sound -call -killed -real -dark -research -finished -language -Michael -professional -change -sent -50 -upon -29 -track -hit -event -2018 -term -example -Germany -similar -return -##ism -fact -pulled -stood -says -ran -information -yet -result -developed -girl -##re -God -1995 -areas -signed -decided -##ment -Company -seemed -##el -co -turn -race -common -video -Charles -Indian -##ation -blood -art -red -##able -added -rather -1994 -met -director -addition -design -average -minutes -##ies -##ted -available -bed -coming -friend -idea -kind -Union -Road -remained -##ting -everything -##ma -running -care -finally -Chinese -appointed -1992 -Australian -##ley -popular -mean -teams -probably -##land -usually -project -social -Championship -possible -word -Russian -instead -mi -herself -##T -Peter -Hall -Center -seat -style -money -1993 -else -Department -table -Music -current -31 -features -special -events -character -Two -square -sold -debut -##v -process -Although -Since -##ka -40 -Central -currently -education -placed -lot -China -quickly -forward -seven -##ling -Europe -arm -performed -Japanese -1991 -Henry -Now -Dr -##ion -week -Group -myself -big -UK -Washington -ten -deep -1990 -Club -Japan -space -La -directed -smile -episode -hours -whole -##de -##less -Why -wouldn -designed -strong -training -changed -Society -stage -involved -hadn -towards -leading -police -eight -kept -Institute -study -largest -child -eventually -private -modern -Court -throughout -getting -originally -attack -##E -talk -Great -longer -songs -alone -##ine -wide -dead -walked -shot -##ri -Oh -force -##st -Art -today -friends -Island -Richard -1989 -center -construction -believe -size -White -ship -completed -##B -gone -Just -rock -sat -##R -radio -below -entire -families -league -includes -type -lived -official -range -hold -featured -Most -##ter -president -passed -means -##f -forces -lips -Mary -Do -guitar -##ce -food -wall -Of -spent -Its -performance -hear -##P -Western -reported -sister -##et -morning -##M -especially -##ive -Minister -itself -post -bit -groups -1988 -##tion -Black -##ng -Well -raised -sometimes -Canadian -Paris -Spanish -replaced -schools -Academy -leaving -central -female -Christian -Jack -whose -college -onto -provided -##D -##ville -players -actually -stopped -##son -Museum -doesn -##ts -books -fight -allowed -##ur -beginning -Records -awarded -parents -coach -##os -Red -saying -##ck -Smith -Yes -Lake -##L -aircraft -1987 -##ble -previous -ft -action -Italian -African -happened -vocals -Act -future -court -##ge -1986 -degree -phone -##ro -Is -countries -winning -breath -Love -river -matter -Lord -Other -list -self -parts -##ate -provide -cut -shows -plan -1st -interest -##ized -Africa -stated -Sir -fell -owned -earlier -ended -competition -attention -1985 -lower -nearly -bad -older -stay -Saint -##se -certain -1984 -fingers -blue -try -fourth -Grand -##as -king -##nt -makes -chest -movement -states -moving -data -introduced -model -date -section -Los -deal -##I -skin -entered -middle -success -Texas -##w -summer -island -##N -Republic -length -husband -1980 -##ey -reason -anyone -forced -via -base -500 -job -covered -Festival -Roman -successful -rights -cover -Man -writing -Ireland -##F -related -goal -takes -buildings -true -weeks -1983 -Because -opening -novel -ISBN -meet -gold -##ous -mid -km² -standing -Football -Chicago -shook -whom -##ki -1982 -Day -feeling -scored -boy -higher -Force -leader -heavy -fall -question -sense -army -Second -energy -meeting -themselves -kill -##am -board -census -##ya -##ns -mine -meant -market -required -battle -campaign -attended -approximately -Kingdom -runs -active -##ha -contract -clear -previously -health -1979 -Arts -complete -Catholic -couple -units -##ll -##ty -Committee -shoulder -sea -systems -listed -##O -caught -tournament -##G -northern -author -Film -Your -##men -holding -offered -personal -1981 -southern -artist -traditional -studio -200 -capital -##ful -regular -ask -giving -organization -month -news -Are -read -managed -helped -studied -student -defeated -natural -industry -Year -noted -decision -Government -quite -##id -smiled -1972 -Maybe -tracks -##ke -Mark -al -media -engine -hour -Their -relationship -plays -property -structure -1976 -ago -Hill -Martin -1978 -ready -Many -Like -Bay -immediately -generally -Italy -Greek -practice -caused -division -significant -Joseph -speed -Let -thinking -completely -1974 -primary -mostly -##field -##K -1975 -##to -Even -writer -##led -dropped -magazine -collection -understand -route -highest -particular -films -lines -network -Science -loss -carried -direction -green -1977 -location -producer -according -Women -Queen -neck -thus -independent -view -1970 -Angeles -Soviet -distance -problem -Board -tour -western -income -appearance -access -Mexico -nodded -street -surface -arrived -believed -Old -1968 -1973 -becoming -whether -1945 -figure -singer -stand -Following -issue -window -wrong -pain -everyone -lives -issues -park -slowly -la -act -##va -bring -Lee -operations -key -comes -fine -cold -famous -Navy -1971 -Me -additional -individual -##ner -Zealand -goals -county -contains -Service -minute -2nd -reach -talking -particularly -##ham -movie -Director -glass -paper -studies -##co -railway -standard -Education -45 -represented -Chief -Louis -launched -Star -terms -60 -1969 -experience -watched -Another -Press -Tom -staff -starting -subject -break -Virginia -nine -eye -##age -evidence -foot -##est -companies -Prince -##V -gun -create -Big -People -guy -Green -simply -numerous -##line -increased -twenty -##ga -##do -1967 -award -officer -stone -Before -material -Northern -grew -male -plant -Life -legs -step -Al -unit -35 -except -answer -##U -report -response -Edward -commercial -edition -trade -science -##ca -Irish -Law -shown -rate -failed -##ni -remains -changes -mm -limited -larger -Later -cause -waiting -Time -##wood -cost -Bill -manager -activities -likely -allow -operated -retired -##ping -65 -directly -Who -associated -effect -hell -Florida -straight -hot -Valley -management -girls -expected -eastern -Mike -chance -cast -centre -chair -hurt -problems -##li -walk -programs -Team -characters -Battle -edge -pay -maybe -corner -majority -medical -Joe -Summer -##io -attempt -Pacific -command -Radio -##by -names -municipality -1964 -train -economic -Brown -feature -sex -source -agreed -remember -Three -1966 -1965 -Pennsylvania -victory -senior -annual -III -Southern -results -Sam -serving -religious -Jones -appears -##der -despite -claimed -Both -musical -matches -fast -security -selected -Young -double -complex -hospital -chief -Times -##ve -Championships -filled -Public -Despite -beautiful -Research -plans -Province -##ally -Wales -##ko -artists -metal -nearby -Spain -##il -32 -houses -supported -piece -##no -stared -recording -nature -legal -Russia -##ization -remaining -looks -##sh -bridge -closer -cases -scene -marriage -Little -##é -uses -Earth -specific -Frank -theory -Good -discovered -referred -bass -culture -university -presented -Congress -##go -metres -continue -1960 -isn -Awards -meaning -cell -composed -separate -Series -forms -Blue -cross -##tor -increase -test -computer -slightly -Where -Jewish -Town -tree -status -1944 -variety -responsible -pretty -initially -##way -realized -pass -provides -Captain -Alexander -recent -score -broke -Scott -drive -financial -showed -Line -stories -ordered -soldiers -genus -operation -gaze -sitting -society -Only -hope -actor -follow -Empire -Yeah -technology -happy -focus -policy -spread -situation -##ford -##ba -Mrs -watch -Can -1963 -Commission -touch -earned -troops -Under -1962 -individuals -cannot -19th -##lin -mile -expression -exactly -suddenly -weight -dance -stepped -places -appear -difficult -Railway -anti -numbers -kilometres -star -##ier -department -ice -Britain -removed -Once -##lo -Boston -value -##ant -mission -trees -Order -sports -join -serve -Major -poor -Poland -mainly -Theatre -pushed -Station -##it -Lady -federal -silver -##ler -foreign -##ard -Eastern -##den -box -hall -subsequently -lies -acquired -1942 -ancient -CD -History -Jean -beyond -##ger -El -##les -growing -championship -native -Parliament -Williams -watching -direct -overall -offer -Also -80 -Secretary -spoke -Latin -ability -##ated -safe -presence -##ial -headed -regional -planned -1961 -Johnson -throat -consists -##W -extended -Or -bar -walls -Chris -stations -politician -Olympics -influence -share -fighting -speak -hundred -Carolina -die -stars -##tic -color -Chapter -##ish -fear -sleep -goes -Francisco -oil -Bank -sign -physical -##berg -Dutch -seasons -##rd -Games -Governor -sorry -lack -Centre -memory -baby -smaller -charge -Did -multiple -ships -shirt -Assembly -amount -leaves -3rd -Foundation -conditions -1943 -Rock -Democratic -Daniel -##at -winner -products -##ina -store -latter -Professor -civil -prior -host -1956 -soft -vote -needs -Each -rules -1958 -pressure -letter -normal -proposed -levels -records -1959 -paid -intended -Victoria -purpose -okay -historical -issued -1980s -broadcast -rule -simple -picked -firm -Sea -1941 -Elizabeth -1940 -serious -featuring -highly -graduated -mentioned -choice -1948 -replied -percent -Scotland -##hi -females -constructed -1957 -settled -Steve -recognized -cities -crew -glanced -kiss -competed -flight -knowledge -editor -More -Conference -##H -fifth -elements -##ee -##tes -function -newspaper -recently -Miss -cultural -brown -twice -Office -1939 -truth -Creek -1946 -households -USA -1950 -quality -##tt -border -seconds -destroyed -pre -wait -ahead -build -image -90 -cars -##mi -33 -promoted -professor -et -bank -medal -text -broken -Middle -revealed -sides -wing -seems -channel -1970s -Ben -loved -effort -officers -Will -##ff -70 -Israel -Jim -upper -fully -label -Jr -assistant -powerful -pair -positive -##ary -gives -1955 -20th -races -remain -kitchen -primarily -##ti -Sydney -easy -Tour -whispered -buried -300 -News -Polish -1952 -Duke -Columbia -produce -accepted -00 -approach -minor -1947 -Special -44 -Asian -basis -visit -Fort -Civil -finish -formerly -beside -leaned -##ite -median -rose -coast -effects -supposed -Cross -##hip -Corps -residents -Jackson -##ir -Bob -basketball -36 -Asia -seem -Bishop -Book -##ber -ring -##ze -owner -BBC -##ja -transferred -acting -De -appearances -walking -Le -press -grabbed -1954 -officially -1953 -##pe -risk -taught -review -##X -lay -##well -council -Avenue -seeing -losing -Ohio -Super -province -ones -travel -##sa -projects -equipment -spot -Berlin -administrative -heat -potential -shut -capacity -elections -growth -fought -Republican -mixed -Andrew -teacher -turning -strength -shoulders -beat -wind -1949 -Health -follows -camp -suggested -perhaps -Alex -mountain -contact -divided -candidate -fellow -34 -Show -necessary -workers -ball -horse -ways -questions -protect -gas -activity -younger -bottom -founder -Scottish -screen -treatment -easily -com -##house -dedicated -Master -warm -Night -Georgia -Long -von -##me -perfect -website -1960s -piano -efforts -##ide -Tony -sort -offers -Development -Simon -executive -##nd -save -Over -Senate -1951 -1990s -draw -master -Police -##ius -renamed -boys -initial -prominent -damage -Co -##ov -##za -online -begin -occurred -captured -youth -Top -account -tells -Justice -conducted -forest -##town -bought -teeth -Jersey -##di -purchased -agreement -Michigan -##ure -campus -prison -becomes -product -secret -guess -Route -huge -types -drums -64 -split -defeat -estate -housing -##ot -brothers -Coast -declared -happen -titled -therefore -sun -commonly -alongside -Stadium -library -Home -article -steps -telling -slow -assigned -refused -laughed -wants -Nick -wearing -Rome -Open -##ah -Hospital -pointed -Taylor -lifted -escape -participated -##j -drama -parish -Santa -##per -organized -mass -pick -Airport -gets -Library -unable -pull -Live -##ging -surrounding -##ries -focused -Adam -facilities -##ning -##ny -38 -##ring -notable -era -connected -gained -operating -laid -Regiment -branch -defined -Christmas -machine -Four -academic -Iran -adopted -concept -Men -compared -search -traffic -Max -Maria -greater -##ding -widely -##burg -serves -1938 -37 -Go -hotel -shared -typically -scale -1936 -leg -suffered -yards -pieces -Ministry -Wilson -episodes -empty -1918 -safety -continues -yellow -historic -settlement -400 -Come -Corporation -enemy -content -picture -evening -territory -method -trial -solo -driver -Here -##ls -entrance -Prize -spring -whatever -##ent -75 -##ji -reading -Arthur -##cy -Our -clothes -Prime -Illinois -Kong -code -##ria -sit -Harry -Federal -chosen -administration -bodies -begins -stomach -Though -seats -Hong -density -Sun -leaders -Field -museum -chart -platform -languages -##ron -birth -holds -Gold -##un -fish -combined -##ps -4th -1937 -largely -captain -trust -Game -van -boat -Oxford -basic -beneath -Islands -painting -nice -Toronto -path -males -sources -block -conference -parties -murder -clubs -crowd -calling -About -Business -peace -knows -lake -speaking -stayed -Brazil -allowing -Born -unique -thick -Technology -##que -receive -des -semi -alive -noticed -format -##ped -coffee -digital -##ned -handed -guard -tall -faced -setting -plants -partner -claim -reduced -temple -animals -determined -classes -##out -estimated -##ad -Olympic -providing -Massachusetts -learned -Inc -Philadelphia -Social -carry -42 -possibly -hosted -tonight -respectively -Today -shape -Mount -roles -designated -brain -etc -Korea -thoughts -Brian -Highway -doors -background -drew -models -footballer -tone -turns -1935 -quiet -tower -wood -bus -write -software -weapons -flat -marked -1920 -newly -tight -Eric -finger -Journal -FC -Van -rise -critical -Atlantic -granted -returning -communities -humans -quick -39 -48 -ranked -sight -pop -Swedish -Stephen -card -analysis -attacked -##wa -Sunday -identified -Jason -champion -situated -1930 -expanded -tears -##nce -reaching -Davis -protection -Emperor -positions -nominated -Bridge -tax -dress -allows -avoid -leadership -killing -actress -guest -steel -knowing -electric -cells -disease -grade -unknown -##ium -resulted -Pakistan -confirmed -##ged -tongue -covers -##Y -roof -entirely -applied -votes -drink -interview -exchange -Township -reasons -##ised -page -calls -dog -agent -nose -teaching -##ds -##ists -advanced -wish -Golden -existing -vehicle -del -1919 -develop -attacks -pressed -Sports -planning -resulting -facility -Sarah -notes -1933 -Class -Historic -winter -##mo -audience -Community -household -Netherlands -creation -##ize -keeping -1914 -claims -dry -guys -opposite -##ak -explained -Ontario -secondary -difference -Francis -actions -organizations -yard -animal -Up -Lewis -titles -Several -1934 -Ryan -55 -Supreme -rolled -1917 -distribution -figures -afraid -rural -yourself -##rt -sets -barely -Instead -passing -awards -41 -silence -authority -occupied -environment -windows -engineering -surprised -flying -crime -reports -Mountain -powers -driving -succeeded -reviews -1929 -Head -missing -Song -Jesus -opportunity -inspired -ends -albums -conversation -impact -injury -surprise -billion -learning -heavily -oldest -union -creating -##ky -festival -literature -letters -sexual -##tte -apartment -Final -comedy -nation -orders -##sen -contemporary -Power -drawn -existence -connection -##ating -Post -Junior -remembered -message -Medal -castle -note -engineer -sounds -Beach -crossed -##dy -ear -scientific -sales -##ai -theme -starts -clearly -##ut -trouble -##gan -bag -##han -BC -sons -1928 -silent -versions -daily -Studies -ending -Rose -guns -1932 -headquarters -reference -obtained -Squadron -concert -none -du -Among -##don -prevent -Member -answered -staring -Between -##lla -portion -drug -liked -association -performances -Nations -formation -Castle -lose -learn -scoring -relatively -quarter -47 -Premier -##ors -Sweden -baseball -attempted -trip -worth -perform -airport -fields -enter -honor -Medical -rear -commander -officials -condition -supply -materials -52 -Anna -volume -threw -Persian -43 -interested -Gallery -achieved -visited -laws -relief -Area -Matt -singles -Lieutenant -Country -fans -Cambridge -sky -Miller -effective -tradition -Port -##ana -minister -extra -entitled -System -sites -authorities -acres -committee -racing -1931 -desk -trains -ass -weren -Family -farm -##ance -industrial -##head -iron -49 -abandoned -Out -Holy -chairman -waited -frequently -display -Light -transport -starring -Patrick -Engineering -eat -FM -judge -reaction -centuries -price -##tive -Korean -defense -Get -arrested -1927 -send -urban -##ss -pilot -Okay -Media -reality -arts -soul -thirty -##be -catch -generation -##nes -apart -Anne -drop -See -##ving -sixth -trained -Management -magic -cm -height -Fox -Ian -resources -vampire -principal -Was -haven -##au -Walter -Albert -rich -1922 -causing -entry -##ell -shortly -46 -worry -doctor -composer -rank -Network -bright -showing -regions -1924 -wave -carrying -kissed -finding -missed -Earl -lying -target -vehicles -Military -controlled -dinner -##board -briefly -lyrics -motion -duty -strange -attempts -invited -kg -villages -5th -Land -##mer -Christ -prepared -twelve -check -thousand -earth -copies -en -transfer -citizens -Americans -politics -nor -theatre -Project -##bo -clean -rooms -laugh -##ran -application -contained -anyway -containing -Sciences -1925 -rare -speech -exist -1950s -falling -passenger -##im -stands -51 -##ol -##ow -phase -governor -kids -details -methods -Vice -employed -performing -counter -Jane -heads -Channel -wine -opposition -aged -1912 -Every -1926 -highway -##ura -1921 -aired -978 -permanent -Forest -finds -joint -approved -##pur -brief -doubt -acts -brand -wild -closely -Ford -Kevin -chose -shall -port -sweet -fun -asking -Be -##bury -sought -Dave -Mexican -mom -Right -Howard -Moscow -Charlie -Stone -##mann -admitted -##ver -wooden -1923 -Officer -relations -Hot -combat -publication -chain -shop -inhabitants -proved -ideas -address -1915 -Memorial -explain -increasing -conflict -Anthony -Melbourne -narrow -temperature -slid -1916 -worse -selling -documentary -Ali -Ray -opposed -vision -dad -extensive -Infantry -commissioned -Doctor -offices -programming -core -respect -storm -##pa -##ay -##om -promotion -der -struck -anymore -shit -Region -receiving -DVD -alternative -##ue -ride -maximum -1910 -##ious -Third -Affairs -cancer -Executive -##op -dream -18th -Due -##ker -##worth -economy -IV -Billboard -identity -subsequent -statement -skills -##back -funding -##ons -Round -Foreign -truck -Please -lights -wondered -##ms -frame -yes -Still -districts -fiction -Colonel -converted -150 -grown -accident -critics -fit -Information -architecture -Point -Five -armed -Billy -poet -functions -consisted -suit -Turkish -Band -object -desire -##ities -sounded -flow -Norwegian -articles -Marie -pulling -thin -singing -Hunter -Human -Battalion -Federation -Kim -origin -represent -dangerous -weather -fuel -ex -##sing -Last -bedroom -aid -knees -Alan -angry -assumed -plane -Something -founding -concerned -global -Fire -di -please -Portuguese -touched -Roger -nuclear -Register -Jeff -fixed -royal -lie -finals -NFL -Manchester -towns -handle -shaped -Chairman -Dean -launch -understanding -Children -violence -failure -sector -Brigade -wrapped -fired -sharp -tiny -developing -expansion -Free -institutions -technical -Nothing -otherwise -Main -inch -Saturday -wore -Senior -attached -cheek -representing -Kansas -##chi -##kin -actual -advantage -Dan -Austria -##dale -hoped -multi -squad -Norway -streets -1913 -Services -hired -grow -pp -wear -painted -Minnesota -stuff -Building -54 -Philippines -1900 -##ties -educational -Khan -Magazine -##port -Cape -signal -Gordon -sword -Anderson -cool -engaged -Commander -images -Upon -tied -Security -cup -rail -Vietnam -successfully -##red -Muslim -gain -bringing -Native -hers -occurs -negative -Philip -Kelly -Colorado -category -##lan -600 -Have -supporting -wet -56 -stairs -Grace -observed -##ung -funds -restaurant -1911 -Jews -##ments -##che -Jake -Back -53 -asks -journalist -accept -bands -bronze -helping -##ice -decades -mayor -survived -usual -influenced -Douglas -Hey -##izing -surrounded -retirement -Temple -derived -Pope -registered -producing -##ral -structures -Johnny -contributed -finishing -buy -specifically -##king -patients -Jordan -internal -regarding -Samuel -Clark -##q -afternoon -Finally -scenes -notice -refers -quietly -threat -Water -Those -Hamilton -promise -freedom -Turkey -breaking -maintained -device -lap -ultimately -Champion -Tim -Bureau -expressed -investigation -extremely -capable -qualified -recognition -items -##up -Indiana -adult -rain -greatest -architect -Morgan -dressed -equal -Antonio -collected -drove -occur -Grant -graduate -anger -Sri -worried -standards -##ore -injured -somewhere -damn -Singapore -Jimmy -pocket -homes -stock -religion -aware -regarded -Wisconsin -##tra -passes -fresh -##ea -argued -Ltd -EP -Diego -importance -Census -incident -Egypt -Missouri -domestic -leads -ceremony -Early -camera -Father -challenge -Switzerland -lands -familiar -hearing -spend -educated -Tennessee -Thank -##ram -Thus -concern -putting -inches -map -classical -Allen -crazy -valley -Space -softly -##my -pool -worldwide -climate -experienced -neighborhood -scheduled -neither -fleet -1908 -Girl -##J -Part -engines -locations -darkness -Revolution -establishment -lawyer -objects -apparently -Queensland -Entertainment -bill -mark -Television -##ong -pale -demand -Hotel -selection -##rn -##ino -Labour -Liberal -burned -Mom -merged -Arizona -request -##lia -##light -hole -employees -##ical -incorporated -95 -independence -Walker -covering -joining -##ica -task -papers -backing -sell -biggest -6th -strike -establish -##ō -gently -59 -Orchestra -Winter -protein -Juan -locked -dates -Boy -aren -shooting -Luke -solid -charged -Prior -resigned -interior -garden -spoken -improve -wonder -promote -hidden -##med -combination -Hollywood -Swiss -consider -##ks -Lincoln -literary -drawing -Marine -weapon -Victor -Trust -Maryland -properties -##ara -exhibition -understood -hung -Tell -installed -loud -fashion -affected -junior -landing -flowers -##he -Internet -beach -Heart -tries -Mayor -programme -800 -wins -noise -##ster -##ory -58 -contain -fair -delivered -##ul -wedding -Square -advance -behavior -Program -Oregon -##rk -residence -realize -certainly -hill -Houston -57 -indicated -##water -wounded -Village -massive -Moore -thousands -personnel -dating -opera -poetry -##her -causes -feelings -Frederick -applications -push -approached -foundation -pleasure -sale -fly -gotten -northeast -costs -raise -paintings -##ney -views -horses -formal -Arab -hockey -typical -representative -rising -##des -clock -stadium -shifted -Dad -peak -Fame -vice -disappeared -users -Way -Naval -prize -hoping -values -evil -Bell -consisting -##ón -Regional -##ics -improved -circle -carefully -broad -##ini -Fine -maintain -operate -offering -mention -Death -stupid -Through -Princess -attend -interests -ruled -somewhat -wings -roads -grounds -##ual -Greece -Champions -facing -hide -voted -require -Dark -Matthew -credit -sighed -separated -manner -##ile -Boys -1905 -committed -impossible -lip -candidates -7th -Bruce -arranged -Islamic -courses -criminal -##ened -smell -##bed -08 -consecutive -##ening -proper -purchase -weak -Prix -1906 -aside -introduction -Look -##ku -changing -budget -resistance -factory -Forces -agency -##tone -northwest -user -1907 -stating -##one -sport -Design -environmental -cards -concluded -Carl -250 -accused -##ology -Girls -sick -intelligence -Margaret -responsibility -Guard -##tus -17th -sq -goods -1909 -hate -##ek -capture -stores -Gray -comic -Modern -Silver -Andy -electronic -wheel -##ied -Deputy -##bs -Czech -zone -choose -constant -reserve -##lle -Tokyo -spirit -sub -degrees -flew -pattern -compete -Dance -##ik -secretary -Imperial -99 -reduce -Hungarian -confused -##rin -Pierre -describes -regularly -Rachel -85 -landed -passengers -##ise -##sis -historian -meters -Youth -##ud -participate -##cing -arrival -tired -Mother -##gy -jumped -Kentucky -faces -feed -Israeli -Ocean -##Q -##án -plus -snow -techniques -plate -sections -falls -jazz -##ris -tank -loan -repeated -opinion -##res -unless -rugby -journal -Lawrence -moments -shock -distributed -##ded -adjacent -Argentina -crossing -uncle -##ric -Detroit -communication -mental -tomorrow -session -Emma -Without -##gen -Miami -charges -Administration -hits -coat -protected -Cole -invasion -priest -09 -Gary -enjoyed -plot -measure -bound -friendly -throw -musician -##lon -##ins -Age -knife -damaged -birds -driven -lit -ears -breathing -Arabic -Jan -faster -Jonathan -##gate -Independent -starred -Harris -teachers -Alice -sequence -mph -file -translated -decide -determine -Review -documents -sudden -threatened -##ft -bear -distinct -decade -burning -##sky -1930s -replace -begun -extension -##time -1904 -equivalent -accompanied -Christopher -Danish -##ye -Besides -##more -persons -fallen -Rural -roughly -saved -willing -ensure -Belgium -05 -musicians -##ang -giant -Six -Retrieved -worst -purposes -##bly -mountains -seventh -slipped -brick -07 -##py -somehow -Carter -Iraq -cousin -favor -islands -journey -FIFA -contrast -planet -vs -calm -##ings -concrete -branches -gray -profit -Russell -##ae -##ux -##ens -philosophy -businesses -talked -parking -##ming -owners -Place -##tle -agricultural -Kate -06 -southeast -draft -Eddie -earliest -forget -Dallas -Commonwealth -edited -66 -inner -ed -operates -16th -Harvard -assistance -##si -designs -Take -bathroom -indicate -CEO -Command -Louisiana -1902 -Dublin -Books -1901 -tropical -1903 -##tors -Places -tie -progress -forming -solution -62 -letting -##ery -studying -##jo -duties -Baseball -taste -Reserve -##ru -Ann -##gh -visible -##vi -notably -link -NCAA -southwest -Never -storage -mobile -writers -favorite -Pro -pages -truly -count -##tta -string -kid -98 -Ross -row -##idae -Kennedy -##tan -Hockey -hip -waist -grandfather -listen -##ho -feels -busy -72 -stream -obvious -cycle -shaking -Knight -##ren -Carlos -painter -trail -web -linked -04 -Palace -existed -##ira -responded -closing -End -examples -Marshall -weekend -jaw -Denmark -lady -township -medium -chin -Story -option -fifteen -Moon -represents -makeup -investment -jump -childhood -Oklahoma -roll -normally -Ten -Operation -Graham -Seattle -Atlanta -paused -promised -rejected -treated -returns -flag -##ita -Hungary -danger -glad -movements -visual -subjects -credited -soldier -Norman -ill -translation -José -Quebec -medicine -warning -theater -praised -municipal -01 -commune -churches -acid -folk -8th -testing -add -survive -Sound -devices -residential -severe -presidential -Mississippi -Austin -Perhaps -Charlotte -hanging -Montreal -grin -##ten -racial -partnership -shoot -shift -##nie -Les -downtown -Brothers -Garden -matters -restored -mirror -forever -winners -rapidly -poverty -##ible -Until -DC -faith -hundreds -Real -Ukraine -Nelson -balance -Adams -contest -relative -ethnic -Edinburgh -composition -##nts -emergency -##van -marine -reputation -Down -pack -12th -Communist -Mountains -pro -stages -measures -##ld -ABC -Li -victims -benefit -Iowa -Broadway -gathered -rating -Defense -classic -##ily -ceiling -##ions -snapped -Everything -constituency -Franklin -Thompson -Stewart -entering -Judge -forth -##sk -wanting -smiling -moves -tunnel -premiered -grass -unusual -Ukrainian -bird -Friday -tail -Portugal -coal -element -Fred -guards -Senator -collaboration -beauty -Wood -chemical -beer -justice -signs -##Z -sees -##zi -Puerto -##zed -96 -smooth -Bowl -gift -limit -97 -heading -Source -wake -requires -Ed -Constitution -factor -Lane -factors -adding -Note -cleared -pictures -pink -##ola -Kent -Local -Singh -moth -Ty -##ture -courts -Seven -temporary -involving -Vienna -emerged -fishing -agree -defensive -stuck -secure -Tamil -##ick -bottle -03 -Player -instruments -Spring -patient -flesh -contributions -cry -Malaysia -120 -Global -da -Alabama -Within -##work -debuted -expect -Cleveland -concerns -retained -horror -10th -spending -Peace -Transport -grand -Crown -instance -institution -acted -Hills -mounted -Campbell -shouldn -1898 -##ably -chamber -soil -88 -Ethan -sand -cheeks -##gi -marry -61 -weekly -classification -DNA -Elementary -Roy -definitely -Soon -Rights -gate -suggests -aspects -imagine -golden -beating -Studios -Warren -differences -significantly -glance -occasionally -##od -clothing -Assistant -depth -sending -possibility -mode -prisoners -requirements -daughters -dated -Representatives -prove -guilty -interesting -smoke -cricket -93 -##ates -rescue -Connecticut -underground -Opera -13th -reign -##ski -thanks -leather -equipped -routes -fan -##ans -script -Wright -bishop -Welsh -jobs -faculty -eleven -Railroad -appearing -anniversary -Upper -##down -anywhere -Rugby -Metropolitan -Meanwhile -Nicholas -champions -forehead -mining -drinking -76 -Jerry -membership -Brazilian -Wild -Rio -scheme -Unlike -strongly -##bility -fill -##rian -easier -MP -Hell -##sha -Stanley -banks -Baron -##ique -Robinson -67 -Gabriel -Austrian -Wayne -exposed -##wan -Alfred -1899 -manage -mix -visitors -eating -##rate -Sean -commission -Cemetery -policies -Camp -parallel -traveled -guitarist -02 -supplies -couples -poem -blocks -Rick -Training -Energy -achieve -appointment -Wing -Jamie -63 -novels -##em -1890 -songwriter -Base -Jay -##gar -naval -scared -miss -labor -technique -crisis -Additionally -backed -destroy -seriously -tools -tennis -91 -god -##ington -continuing -steam -obviously -Bobby -adapted -fifty -enjoy -Jacob -publishing -column -##ular -Baltimore -Donald -Liverpool -92 -drugs -movies -##ock -Heritage -##je -##istic -vocal -strategy -gene -advice -##bi -Ottoman -riding -##side -Agency -Indonesia -11th -laughing -sleeping -und -muttered -listening -deck -tip -77 -ownership -grey -Claire -deeply -provincial -popularity -Cooper -##á -Emily -##sed -designer -Murray -describe -Danny -Around -Parker -##dae -68 -rates -suffering -considerable -78 -nervous -powered -tons -circumstances -wished -belonged -Pittsburgh -flows -9th -##use -belt -81 -useful -15th -context -List -Dead -Iron -seek -Season -worn -frequency -legislation -replacement -memories -Tournament -Again -Barry -organisation -copy -Gulf -waters -meets -struggle -Oliver -1895 -Susan -protest -kick -Alliance -components -1896 -Tower -Windows -demanded -regiment -sentence -Woman -Logan -Referee -hosts -debate -knee -Blood -##oo -universities -practices -Ward -ranking -correct -happening -Vincent -attracted -classified -##stic -processes -immediate -waste -increasingly -Helen -##po -Lucas -Phil -organ -1897 -tea -suicide -actors -lb -crash -approval -waves -##ered -hated -grip -700 -amongst -69 -74 -hunting -dying -lasted -illegal -##rum -stare -defeating -##gs -shrugged -°C -Jon -Count -Orleans -94 -affairs -formally -##and -##ves -criticized -Disney -Vol -successor -tests -scholars -palace -Would -celebrated -rounds -grant -Schools -Such -commanded -demon -Romania -##all -Karl -71 -##yn -84 -Daily -totally -Medicine -fruit -Die -upset -Lower -Conservative -14th -Mitchell -escaped -shoes -Morris -##tz -queen -harder -prime -Thanks -indeed -Sky -authors -rocks -definition -Nazi -accounts -printed -experiences -##ters -divisions -Cathedral -denied -depending -Express -##let -73 -appeal -loose -colors -filed -##isation -gender -##ew -throne -forests -Finland -domain -boats -Baker -squadron -shore -remove -##ification -careful -wound -railroad -82 -seeking -agents -##ved -Blues -##off -customers -ignored -net -##ction -hiding -Originally -declined -##ess -franchise -eliminated -NBA -merely -pure -appropriate -visiting -forty -markets -offensive -coverage -cave -##nia -spell -##lar -Benjamin -##ire -Convention -filmed -Trade -##sy -##ct -Having -palm -1889 -Evans -intense -plastic -Julia -document -jeans -vessel -SR -##fully -proposal -Birmingham -le -##ative -assembly -89 -fund -lock -1893 -AD -meetings -occupation -modified -Years -odd -aimed -reform -Mission -Works -shake -cat -exception -convinced -executed -pushing -dollars -replacing -soccer -manufacturing -##ros -expensive -kicked -minimum -Josh -coastal -Chase -ha -Thailand -publications -deputy -Sometimes -Angel -effectively -##illa -criticism -conduct -Serbian -landscape -NY -absence -passage -##ula -Blake -Indians -1892 -admit -Trophy -##ball -Next -##rated -##ians -charts -kW -orchestra -79 -heritage -1894 -rough -exists -boundary -Bible -Legislative -moon -medieval -##over -cutting -print -##ett -birthday -##hood -destruction -Julian -injuries -influential -sisters -raising -statue -colour -dancing -characteristics -orange -##ok -##aries -Ken -colonial -twin -Larry -surviving -##shi -Barbara -personality -entertainment -assault -##ering -talent -happens -license -86 -couch -Century -soundtrack -shower -swimming -cash -Staff -bent -1885 -bay -lunch -##lus -dozen -vessels -CBS -greatly -critic -Test -symbol -panel -shell -output -reaches -87 -Front -motor -ocean -##era -##ala -maintenance -violent -scent -Limited -Las -Hope -Theater -Which -survey -Robin -recordings -compilation -##ward -bomb -insurance -Authority -sponsored -satellite -Jazz -refer -stronger -blow -whilst -Wrestling -suggest -##rie -climbed -##els -voices -shopping -1891 -Neil -discovery -##vo -##ations -burst -Baby -peaked -Brooklyn -knocked -lift -##try -false -nations -Hugh -Catherine -preserved -distinguished -terminal -resolution -ratio -pants -cited -competitions -completion -DJ -bone -uniform -schedule -shouted -83 -1920s -rarely -Basketball -Taiwan -artistic -bare -vampires -arrest -Utah -Marcus -assist -gradually -qualifying -Victorian -vast -rival -Warner -Terry -Economic -##cia -losses -boss -versus -audio -runner -apply -surgery -Play -twisted -comfortable -##cs -Everyone -guests -##lt -Harrison -UEFA -lowered -occasions -##lly -##cher -chapter -youngest -eighth -Culture -##room -##stone -1888 -Songs -Seth -Digital -involvement -expedition -relationships -signing -1000 -fault -annually -circuit -afterwards -meat -creature -##ou -cable -Bush -##net -Hispanic -rapid -gonna -figured -extent -considering -cried -##tin -sigh -dynasty -##ration -cabinet -Richmond -stable -##zo -1864 -Admiral -Unit -occasion -shares -badly -longest -##ify -Connor -extreme -wondering -girlfriend -Studio -##tions -1865 -tribe -exact -muscles -hat -Luis -Orthodox -decisions -amateur -description -##lis -hips -kingdom -##ute -Portland -whereas -Bachelor -outer -discussion -partly -Arkansas -1880 -dreams -perfectly -Lloyd -##bridge -asleep -##tti -Greg -permission -trading -pitch -mill -Stage -liquid -Keith -##tal -wolf -processing -stick -Jerusalem -profile -rushed -spiritual -argument -Ice -Guy -till -Delhi -roots -Section -missions -Glasgow -penalty -NBC -encouraged -identify -keyboards -##zing -##ston -disc -plain -informed -Bernard -thinks -fled -Justin -##day -newspapers -##wick -Ralph -##zer -unlike -Stars -artillery -##ified -recovered -arrangement -searching -##pers -##tory -##rus -deaths -Egyptian -diameter -##í -marketing -corporate -teach -marks -Turner -staying -hallway -Sebastian -chapel -naked -mistake -possession -1887 -dominated -jacket -creative -Fellow -Falls -Defence -suspended -employment -##rry -Hebrew -Hudson -Week -Wars -recognize -Natural -controversial -Tommy -thank -Athletic -benefits -decline -intention -##ets -Lost -Wall -participation -elevation -supports -parliament -1861 -concentration -Movement -##IS -competing -stops -behalf -##mm -limits -funded -discuss -Collins -departure -obtain -woods -latest -universe -alcohol -Laura -rush -blade -funny -Dennis -forgotten -Amy -Symphony -apparent -graduating -1862 -Rob -Grey -collections -Mason -emotions -##ugh -literally -Any -counties -1863 -nomination -fighter -habitat -respond -external -Capital -exit -Video -carbon -sharing -Bad -opportunities -Perry -photo -##mus -Orange -posted -remainder -transportation -portrayed -Labor -recommended -percussion -rated -Grade -rivers -partially -suspected -strip -adults -button -struggled -intersection -Canal -##ability -poems -claiming -Madrid -1886 -Together -##our -Much -Vancouver -instrument -instrumental -1870 -mad -angle -Control -Phoenix -Leo -Communications -mail -##ette -##ev -preferred -adaptation -alleged -discussed -deeper -##ane -Yet -Monday -volumes -thrown -Zane -##logy -displayed -rolling -dogs -Along -Todd -##ivity -withdrew -representation -belief -##sia -crown -Late -Short -hardly -grinned -romantic -Pete -##ken -networks -enemies -Colin -Eventually -Side -donated -##su -steady -grab -guide -Finnish -Milan -pregnant -controversy -reminded -1884 -Stuart -##bach -##ade -Race -Belgian -LP -Production -Zone -lieutenant -infantry -Child -confusion -sang -resident -##ez -victim -1881 -channels -Ron -businessman -##gle -Dick -colony -pace -producers -##ese -agencies -Craig -Lucy -Very -centers -Yorkshire -photography -##ched -Album -championships -Metro -substantial -Standard -terrible -directors -contribution -advertising -emotional -##its -layer -segment -sir -folded -Roberts -ceased -Hampshire -##ray -detailed -partners -m² -##pt -Beth -genre -commented -generated -remote -aim -Hans -credits -concerts -periods -breakfast -gay -shadow -defence -Too -Had -transition -Afghanistan -##book -eggs -defend -##lli -writes -Systems -bones -mess -seed -scientists -Shortly -Romanian -##zy -Freedom -muscle -hero -parent -agriculture -checked -Islam -Bristol -Freyja -Arena -cabin -Germans -electricity -ranks -viewed -medals -Wolf -associate -Madison -Sorry -fort -Chile -detail -widespread -attorney -boyfriend -##nan -Students -Spencer -##ig -bite -Maine -demolished -Lisa -erected -Someone -operational -Commissioner -NHL -Coach -Bar -forcing -Dream -Rico -cargo -Murphy -##fish -##ase -distant -##master -##ora -Organization -doorway -Steven -traded -electrical -frequent -##wn -Branch -Sure -1882 -placing -Manhattan -attending -attributed -excellent -pounds -ruling -principles -component -Mediterranean -Vegas -machines -percentage -infrastructure -throwing -affiliated -Kings -secured -Caribbean -Track -Ted -honour -opponent -Virgin -Construction -grave -produces -Challenge -stretched -paying -murmured -##ata -integrated -waved -Nathan -##ator -transmission -videos -##yan -##hu -Nova -descent -AM -Harold -conservative -Therefore -venue -competitive -##ui -conclusion -funeral -confidence -releases -scholar -##sson -Treaty -stress -mood -##sm -Mac -residing -Action -Fund -##ship -animated -fitted -##kar -defending -voting -tend -##berry -answers -believes -##ci -helps -Aaron -##tis -themes -##lay -populations -Players -stroke -Trinity -electoral -paint -abroad -charity -keys -Fair -##pes -interrupted -participants -murdered -Days -supporters -##ab -expert -borders -mate -##llo -solar -architectural -tension -##bling -Parish -tape -operator -Cultural -Clinton -indicates -publisher -ordinary -sugar -arrive -rifle -acoustic -##uring -assets -##shire -SS -sufficient -options -HMS -Classic -bars -rebuilt -governments -Beijing -reporter -screamed -Abbey -crying -mechanical -instantly -communications -Political -cemetery -Cameron -Stop -representatives -USS -texts -mathematics -innings -civilian -Serbia -##hill -practical -patterns -dust -Faculty -debt -##end -##cus -junction -suppose -experimental -Computer -Food -wrist -abuse -dealing -bigger -cap -principle -##pin -Muhammad -Fleet -Collection -attempting -dismissed -##burn -regime -Herbert -##ua -shadows -1883 -Eve -Lanka -1878 -Performance -fictional -##lock -Noah -Run -Voivodeship -exercise -broadcasting -##fer -RAF -Magic -Bangladesh -suitable -##low -##del -styles -toured -Code -identical -links -insisted -110 -flash -Model -slave -Derek -Rev -fairly -Greater -sole -##lands -connecting -zero -bench -##ome -switched -Fall -Owen -yours -Electric -shocked -convention -##bra -climb -memorial -swept -Racing -decides -belong -##nk -parliamentary -##und -ages -proof -##dan -delivery -1860 -##ów -sad -publicly -leaning -Archbishop -dirt -##ose -categories -1876 -burn -##bing -requested -Guinea -Historical -rhythm -relation -##heim -ye -pursue -merchant -##mes -lists -continuous -frowned -colored -tool -gods -involves -Duncan -photographs -Cricket -slight -Gregory -atmosphere -wider -Cook -##tar -essential -Being -FA -emperor -wealthy -nights -##bar -licensed -Hawaii -viewers -Language -load -nearest -milk -kilometers -platforms -##ys -territories -Rogers -sheet -Rangers -contested -##lation -isolated -assisted -swallowed -Small -Contemporary -Technical -Edwards -express -Volume -endemic -##ei -tightly -Whatever -indigenous -Colombia -##ulation -hp -characterized -##ida -Nigeria -Professional -duo -Soccer -slaves -Farm -smart -Attorney -Attendance -Common -salt -##vin -tribes -nod -sentenced -bid -sample -Drive -switch -instant -21st -Cuba -drunk -Alaska -proud -awareness -hitting -sessions -Thai -locally -elsewhere -Dragon -gentle -touching -##lee -Springs -Universal -Latino -spin -1871 -Chart -recalled -Type -pointing -##ii -lowest -##ser -grandmother -Adelaide -Jacques -spotted -Buffalo -restoration -Son -Joan -farmers -Lily -1879 -lucky -##dal -luck -eldest -##rant -Market -drummer -deployed -warned -prince -sing -amazing -sailed -##oon -1875 -Primary -traveling -Masters -Sara -cattle -Trail -gang -Further -desert -relocated -##tch -##ord -Flight -illness -Munich -ninth -repair -Singles -##lated -Tyler -tossed -boots -Work -sized -earning -shoved -magazines -housed -dam -researchers -Former -spun -premiere -spaces -organised -wealth -crimes -devoted -stones -Urban -automatic -hop -affect -outstanding -tanks -mechanism -Muslims -Ms -shots -argue -Jeremy -connections -Armenian -increases -rubbed -1867 -retail -gear -Pan -bonus -jurisdiction -weird -concerning -whisper -##gal -Microsoft -tenure -hills -www -Gmina -porch -files -reportedly -venture -Storm -##ence -Nature -killer -panic -fate -Secret -Wang -scream -drivers -belongs -Chamber -clan -monument -mixing -Peru -bet -Riley -Friends -Isaac -submarine -1877 -130 -judges -harm -ranging -affair -prepare -pupils -householder -Policy -decorated -Nation -slammed -activist -implemented -Room -qualify -Publishing -establishing -Baptist -touring -subsidiary -##nal -legend -1872 -laughter -PC -Athens -settlers -ties -dual -dear -Draft -strategic -Ivan -reveal -closest -dominant -Ah -##ult -Denver -bond -boundaries -drafted -tables -##TV -eyed -Edition -##ena -1868 -belonging -1874 -Industrial -cream -Ridge -Hindu -scholarship -Ma -opens -initiated -##ith -yelled -compound -random -Throughout -grades -physics -sank -grows -exclusively -settle -Saints -brings -Amsterdam -Make -Hart -walks -battery -violin -##born -explanation -##ware -1873 -##har -provinces -thrust -exclusive -sculpture -shops -##fire -VI -constitution -Barcelona -monster -Devon -Jefferson -Sullivan -bow -##din -desperate -##ć -Julie -##mon -##ising -terminus -Jesse -abilities -golf -##ple -##via -##away -Raymond -measured -jury -firing -revenue -suburb -Bulgarian -1866 -##cha -timber -Things -##weight -Morning -spots -Alberta -Data -explains -Kyle -friendship -raw -tube -demonstrated -aboard -immigrants -reply -breathe -Manager -ease -##ban -##dia -Diocese -##vy -##ía -pit -ongoing -##lie -Gilbert -Costa -1940s -Report -voters -cloud -traditions -##MS -gallery -Jennifer -swung -Broadcasting -Does -diverse -reveals -arriving -initiative -##ani -Give -Allied -Pat -Outstanding -monastery -blind -Currently -##war -bloody -stopping -focuses -managing -Florence -Harvey -creatures -900 -breast -internet -Artillery -purple -##mate -alliance -excited -fee -Brisbane -lifetime -Private -##aw -##nis -##gue -##ika -phrase -regulations -reflected -manufactured -conventional -pleased -client -##ix -##ncy -Pedro -reduction -##con -welcome -jail -comfort -Iranian -Norfolk -Dakota -##tein -evolution -everywhere -Initially -sensitive -Olivia -Oscar -implementation -sits -stolen -demands -slide -grandson -##ich -merger -##mic -Spirit -##° -ticket -root -difficulty -Nevada -##als -lined -Dylan -Original -Call -biological -EU -dramatic -##hn -Operations -treaty -gap -##list -Am -Romanized -moral -Butler -perspective -Furthermore -Manuel -absolutely -unsuccessful -disaster -dispute -preparation -tested -discover -##ach -shield -squeezed -brushed -battalion -Arnold -##ras -superior -treat -clinical -##so -Apple -Syria -Cincinnati -package -flights -editions -Leader -minority -wonderful -hang -Pop -Philippine -telephone -bell -honorary -##mar -balls -Democrat -dirty -thereafter -collapsed -Inside -slip -wrestling -##ín -listened -regard -bowl -None -Sport -completing -trapped -##view -copper -Wallace -Honor -blame -Peninsula -##ert -##oy -Anglo -bearing -simultaneously -honest -##ias -Mix -Got -speaker -voiced -impressed -prices -error -1869 -##feld -trials -Nine -Industry -substitute -Municipal -departed -slept -##ama -Junction -Socialist -flower -dropping -comment -fantasy -##ress -arrangements -travelled -furniture -fist -relieved -##tics -Leonard -linear -earn -expand -Soul -Plan -Leeds -Sierra -accessible -innocent -Winner -Fighter -Range -winds -vertical -Pictures -101 -charter -cooperation -prisoner -interviews -recognised -sung -manufacturer -exposure -submitted -Mars -leaf -gauge -screaming -likes -eligible -##ac -gathering -columns -##dra -belly -UN -maps -messages -speakers -##ants -garage -unincorporated -Number -Watson -sixteen -lots -beaten -Could -Municipality -##ano -Horse -talks -Drake -scores -Venice -genetic -##mal -##ère -Cold -Jose -nurse -traditionally -##bus -Territory -Key -Nancy -##win -thumb -São -index -dependent -carries -controls -Comics -coalition -physician -referring -Ruth -Based -restricted -inherited -internationally -stretch -THE -plates -margin -Holland -knock -significance -valuable -Kenya -carved -emotion -conservation -municipalities -overseas -resumed -Finance -graduation -blinked -temperatures -constantly -productions -scientist -ghost -cuts -permitted -##ches -firmly -##bert -patrol -##yo -Croatian -attacking -1850 -portrait -promoting -sink -conversion -##kov -locomotives -Guide -##val -nephew -relevant -Marc -drum -originated -Chair -visits -dragged -Price -favour -corridor -properly -respective -Caroline -reporting -inaugural -1848 -industries -##ching -edges -Christianity -Maurice -Trent -Economics -carrier -Reed -##gon -tribute -Pradesh -##ale -extend -attitude -Yale -##lu -settlements -glasses -taxes -targets -##ids -quarters -##ological -connect -hence -metre -collapse -underneath -banned -Future -clients -alternate -explosion -kinds -Commons -hungry -dragon -Chapel -Buddhist -lover -depression -pulls -##ges -##uk -origins -computers -crosses -kissing -assume -emphasis -lighting -##ites -personally -crashed -beam -touchdown -lane -comparison -##mont -Hitler -##las -execution -##ene -acre -sum -Pearl -ray -##point -essentially -worker -convicted -tear -Clay -recovery -Literature -Unfortunately -##row -partial -Petersburg -Bulgaria -coaching -evolved -reception -enters -narrowed -elevator -therapy -defended -pairs -##lam -breaks -Bennett -Uncle -cylinder -##ison -passion -bases -Actor -cancelled -battles -extensively -oxygen -Ancient -specialized -negotiations -##rat -acquisition -convince -interpretation -##00 -photos -aspect -colleges -Artist -keeps -##wing -Croatia -##ona -Hughes -Otto -comments -##du -Ph -Sweet -adventure -describing -Student -Shakespeare -scattered -objective -Aviation -Phillips -Fourth -athletes -##hal -##tered -Guitar -intensity -née -dining -curve -Obama -topics -legislative -Mill -Cruz -##ars -Members -recipient -Derby -inspiration -corresponding -fed -YouTube -coins -pressing -intent -Karen -cinema -Delta -destination -shorter -Christians -imagined -canal -Newcastle -Shah -Adrian -super -Males -160 -liberal -lord -bat -supplied -Claude -meal -worship -##atic -Han -wire -°F -##tha -punishment -thirteen -fighters -##ibility -1859 -Ball -gardens -##ari -Ottawa -pole -indicating -Twenty -Higher -Bass -Ivy -farming -##urs -certified -Saudi -plenty -##ces -restaurants -Representative -Miles -payment -##inger -##rit -Confederate -festivals -references -##ić -Mario -PhD -playoffs -witness -rice -mask -saving -opponents -enforcement -automatically -relegated -##oe -radar -whenever -Financial -imperial -uncredited -influences -Abraham -skull -Guardian -Haven -Bengal -impressive -input -mixture -Warsaw -altitude -distinction -1857 -collective -Annie -##ean -##bal -directions -Flying -##nic -faded -##ella -contributing -##ó -employee -##lum -##yl -ruler -oriented -conductor -focusing -##die -Giants -Mills -mines -Deep -curled -Jessica -guitars -Louise -procedure -Machine -failing -attendance -Nepal -Brad -Liam -tourist -exhibited -Sophie -depicted -Shaw -Chuck -##can -expecting -challenges -##nda -equally -resignation -##logical -Tigers -loop -pitched -outdoor -reviewed -hopes -True -temporarily -Borough -torn -jerked -collect -Berkeley -Independence -cotton -retreat -campaigns -participating -Intelligence -Heaven -##ked -situations -borough -Democrats -Harbor -##len -Liga -serial -circles -fourteen -##lot -seized -filling -departments -finance -absolute -Roland -Nate -floors -raced -struggling -deliver -protests -##tel -Exchange -efficient -experiments -##dar -faint -3D -binding -Lions -lightly -skill -proteins -difficulties -##cal -monthly -camps -flood -loves -Amanda -Commerce -##oid -##lies -elementary -##tre -organic -##stein -##ph -receives -Tech -enormous -distinctive -Joint -experiment -Circuit -citizen -##hy -shelter -ideal -practically -formula -addressed -Foster -Productions -##ax -variable -punk -Voice -fastest -concentrated -##oma -##yer -stored -surrender -vary -Sergeant -Wells -ward -Wait -##ven -playoff -reducing -cavalry -##dle -Venezuela -tissue -amounts -sweat -##we -Non -##nik -beetle -##bu -##tu -Jared -Hunt -##₂ -fat -Sultan -Living -Circle -Secondary -Suddenly -reverse -##min -Travel -##bin -Lebanon -##mas -virus -Wind -dissolved -enrolled -holiday -Keep -helicopter -Clarke -constitutional -technologies -doubles -instructions -##ace -Azerbaijan -##ill -occasional -frozen -trick -wiped -writings -Shanghai -preparing -challenged -mainstream -summit -180 -##arian -##rating -designation -##ada -revenge -filming -tightened -Miguel -Montana -reflect -celebration -bitch -flashed -signals -rounded -peoples -##tation -renowned -Google -characteristic -Campaign -sliding -##rman -usage -Record -Using -woke -solutions -holes -theories -logo -Protestant -relaxed -brow -nickname -Reading -marble -##tro -symptoms -Overall -capita -##ila -outbreak -revolution -deemed -Principal -Hannah -approaches -inducted -Wellington -vulnerable -Environmental -Drama -incumbent -Dame -1854 -travels -samples -accurate -physically -Sony -Nashville -##sville -##lic -##og -Producer -Lucky -tough -Stanford -resort -repeatedly -eyebrows -Far -choir -commenced -##ep -##ridge -rage -swing -sequel -heir -buses -ad -Grove -##late -##rick -updated -##SA -Delaware -##fa -Athletics -warmth -Off -excitement -verse -Protection -Villa -corruption -intellectual -Jenny -##lyn -mystery -prayer -healthy -##ologist -Bear -lab -Ernest -Remix -register -basement -Montgomery -consistent -tier -1855 -Preston -Brooks -##maker -vocalist -laboratory -delayed -wheels -rope -bachelor -pitcher -Block -Nevertheless -suspect -efficiency -Nebraska -siege -FBI -planted -##AC -Newton -breeding -##ain -eighteen -Argentine -encounter -servant -1858 -elder -Shadow -Episode -fabric -doctors -survival -removal -chemistry -volunteers -Kane -variant -arrives -Eagle -Left -##fe -Jo -divorce -##ret -yesterday -Bryan -handling -diseases -customer -Sheriff -Tiger -Harper -##oi -resting -Linda -Sheffield -gasped -sexy -economics -alien -tale -footage -Liberty -yeah -fundamental -Ground -flames -Actress -photographer -Maggie -Additional -joke -custom -Survey -Abu -silk -consumption -Ellis -bread -##uous -engagement -puts -Dog -##hr -poured -guilt -CDP -boxes -hardware -clenched -##cio -stem -arena -extending -##com -examination -Steel -encountered -revised -140 -picking -Car -hasn -Minor -pride -Roosevelt -boards -##mia -blocked -curious -drag -narrative -brigade -Prefecture -mysterious -namely -connects -Devil -historians -CHAPTER -quit -installation -Golf -empire -elevated -##eo -releasing -Bond -##uri -harsh -ban -##BA -contracts -cloth -presents -stake -chorus -##eau -swear -##mp -allies -generations -Motor -meter -pen -warrior -veteran -##EC -comprehensive -missile -interaction -instruction -Renaissance -rested -Dale -fix -fluid -les -investigate -loaded -widow -exhibit -artificial -select -rushing -tasks -signature -nowhere -Engineer -feared -Prague -bother -extinct -gates -Bird -climbing -heels -striking -artwork -hunt -awake -##hin -Formula -thereby -commitment -imprisoned -Beyond -##MA -transformed -Agriculture -Low -Movie -radical -complicated -Yellow -Auckland -mansion -tenth -Trevor -predecessor -##eer -disbanded -sucked -circular -witch -gaining -lean -Behind -illustrated -rang -celebrate -bike -consist -framework -##cent -Shane -owns -350 -comprises -collaborated -colleagues -##cast -engage -fewer -##ave -1856 -observation -diplomatic -legislature -improvements -Interstate -craft -MTV -martial -administered -jet -approaching -permanently -attraction -manuscript -numbered -Happy -Andrea -shallow -Gothic -Anti -##bad -improvement -trace -preserve -regardless -rode -dies -achievement -maintaining -Hamburg -spine -##air -flowing -encourage -widened -posts -##bound -125 -Southeast -Santiago -##bles -impression -receiver -Single -closure -##unt -communist -honors -Northwest -105 -##ulated -cared -un -hug -magnetic -seeds -topic -perceived -prey -prevented -Marvel -Eight -Michel -Transportation -rings -Gate -##gne -Byzantine -accommodate -floating -##dor -equation -ministry -##ito -##gled -Rules -earthquake -revealing -Brother -Celtic -blew -chairs -Panama -Leon -attractive -descendants -Care -Ambassador -tours -breathed -threatening -##cho -smiles -Lt -Beginning -##iness -fake -assists -fame -strings -Mobile -Liu -parks -http -1852 -brush -Aunt -bullet -consciousness -##sta -##ther -consequences -gather -dug -1851 -bridges -Doug -##sion -Artists -ignore -Carol -brilliant -radiation -temples -basin -clouds -##cted -Stevens -spite -soap -consumer -Damn -Snow -recruited -##craft -Advanced -tournaments -Quinn -undergraduate -questioned -Palmer -Annual -Others -feeding -Spider -printing -##orn -cameras -functional -Chester -readers -Alpha -universal -Faith -Brandon -François -authored -Ring -el -aims -athletic -possessed -Vermont -programmes -##uck -bore -Fisher -statements -shed -saxophone -neighboring -pronounced -barrel -bags -##dge -organisations -pilots -casualties -Kenneth -##brook -silently -Malcolm -span -Essex -anchor -##hl -virtual -lessons -Henri -Trump -Page -pile -locomotive -wounds -uncomfortable -sustained -Diana -Eagles -##pi -2000s -documented -##bel -Cassie -delay -kisses -##ines -variation -##ag -growled -##mark -##ways -Leslie -studios -Friedrich -aunt -actively -armor -eaten -historically -Better -purse -honey -ratings -##ée -naturally -1840 -peer -Kenny -Cardinal -database -Looking -runners -handsome -Double -PA -##boat -##sted -protecting -##jan -Diamond -concepts -interface -##aki -Watch -Article -Columbus -dialogue -pause -##rio -extends -blanket -pulse -1853 -affiliate -ladies -Ronald -counted -kills -demons -##zation -Airlines -Marco -Cat -companion -mere -Yugoslavia -Forum -Allan -pioneer -Competition -Methodist -patent -nobody -Stockholm -##ien -regulation -##ois -accomplished -##itive -washed -sake -Vladimir -crops -prestigious -humor -Sally -labour -tributary -trap -altered -examined -Mumbai -bombing -Ash -noble -suspension -ruins -##bank -spare -displays -guided -dimensional -Iraqi -##hon -sciences -Franz -relating -fence -followers -Palestine -invented -proceeded -Batman -Bradley -##yard -##ova -crystal -Kerala -##ima -shipping -handled -Want -abolished -Drew -##tter -Powell -Half -##table -##cker -exhibitions -Were -assignment -assured -##rine -Indonesian -Grammy -acknowledged -Kylie -coaches -structural -clearing -stationed -Say -Total -Rail -besides -glow -threats -afford -Tree -Musical -##pp -elite -centered -explore -Engineers -Stakes -Hello -tourism -severely -assessment -##tly -crack -politicians -##rrow -sheets -volunteer -##borough -##hold -announcement -recover -contribute -lungs -##ille -mainland -presentation -Johann -Writing -1849 -##bird -Study -Boulevard -coached -fail -airline -Congo -Plus -Syrian -introduce -ridge -Casey -manages -##fi -searched -Support -succession -progressive -coup -cultures -##lessly -sensation -Cork -Elena -Sofia -Philosophy -mini -trunk -academy -Mass -Liz -practiced -Reid -##ule -satisfied -experts -Wilhelm -Woods -invitation -Angels -calendar -joy -Sr -Dam -packed -##uan -bastard -Workers -broadcasts -logic -cooking -backward -##ack -Chen -creates -enzyme -##xi -Davies -aviation -VII -Conservation -fucking -Knights -##kan -requiring -hectares -wars -ate -##box -Mind -desired -oak -absorbed -Really -Vietnamese -Paulo -athlete -##car -##eth -Talk -Wu -##cks -survivors -Yang -Joel -Almost -Holmes -Armed -Joshua -priests -discontinued -##sey -blond -Rolling -suggesting -CA -clay -exterior -Scientific -##sive -Giovanni -Hi -farther -contents -Winners -animation -neutral -mall -Notes -layers -professionals -Armstrong -Against -Piano -involve -monitor -angel -parked -bears -seated -feat -beliefs -##kers -Version -suffer -##ceae -guidance -##eur -honored -raid -alarm -Glen -Ellen -Jamaica -trio -enabled -##ils -procedures -##hus -moderate -upstairs -##ses -torture -Georgian -rebellion -Fernando -Nice -##are -Aires -Campus -beast -##hing -1847 -##FA -Isle -##logist -Princeton -cathedral -Oakland -Solomon -##tto -Milwaukee -upcoming -midfielder -Neither -sacred -Eyes -appreciate -Brunswick -secrets -Rice -Somerset -Chancellor -Curtis -##gel -Rich -separation -grid -##los -##bon -urge -##ees -##ree -freight -towers -psychology -requirement -dollar -##fall -##sman -exile -tomb -Salt -Stefan -Buenos -Revival -Porter -tender -diesel -chocolate -Eugene -Legion -Laboratory -sheep -arched -hospitals -orbit -Full -##hall -drinks -ripped -##RS -tense -Hank -leagues -##nberg -PlayStation -fool -Punjab -relatives -Comedy -sur -1846 -Tonight -Sox -##if -Rabbi -org -speaks -institute -defender -painful -wishes -Weekly -literacy -portions -snake -item -deals -##tum -autumn -sharply -reforms -thighs -prototype -##ition -argues -disorder -Physics -terror -provisions -refugees -predominantly -independently -march -##graphy -Arabia -Andrews -Bus -Money -drops -##zar -pistol -matrix -revolutionary -##ust -Starting -##ptic -Oak -Monica -##ides -servants -##hed -archaeological -divorced -rocket -enjoying -fires -##nel -assembled -qualification -retiring -##fied -Distinguished -handful -infection -Durham -##itz -fortune -renewed -Chelsea -##sley -curved -gesture -retain -exhausted -##ifying -Perth -jumping -Palestinian -Simpson -colonies -steal -##chy -corners -Finn -arguing -Martha -##var -Betty -emerging -Heights -Hindi -Manila -pianist -founders -regret -Napoleon -elbow -overhead -bold -praise -humanity -##ori -Revolutionary -##ere -fur -##ole -Ashley -Official -##rm -lovely -Architecture -##sch -Baronet -virtually -##OS -descended -immigration -##das -##kes -Holly -Wednesday -maintains -theatrical -Evan -Gardens -citing -##gia -segments -Bailey -Ghost -##city -governing -graphics -##ined -privately -potentially -transformation -Crystal -Cabinet -sacrifice -hesitated -mud -Apollo -Desert -bin -victories -Editor -Railways -Web -Case -tourists -Brussels -Franco -compiled -topped -Gene -engineers -commentary -egg -escort -nerve -arch -necessarily -frustration -Michelle -democracy -genes -Facebook -halfway -##ient -102 -flipped -Won -##mit -NASA -Lynn -Provincial -ambassador -Inspector -glared -Change -McDonald -developments -tucked -noting -Gibson -circulation -dubbed -armies -resource -Headquarters -##iest -Mia -Albanian -Oil -Albums -excuse -intervention -Grande -Hugo -integration -civilians -depends -reserves -Dee -compositions -identification -restrictions -quarterback -Miranda -Universe -favourite -ranges -hint -loyal -Op -entity -Manual -quoted -dealt -specialist -Zhang -download -Westminster -Rebecca -streams -Anglican -variations -Mine -detective -Films -reserved -##oke -##key -sailing -##gger -expanding -recall -discovers -particles -behaviour -Gavin -blank -permit -Java -Fraser -Pass -##non -##TA -panels -statistics -notion -courage -dare -venues -##roy -Box -Newport -travelling -Thursday -warriors -Glenn -criteria -360 -mutual -restore -varied -bitter -Katherine -##lant -ritual -bits -##à -Henderson -trips -Richardson -Detective -curse -psychological -Il -midnight -streak -facts -Dawn -Indies -Edmund -roster -Gen -##nation -1830 -congregation -shaft -##ically -##mination -Indianapolis -Sussex -loving -##bit -sounding -horrible -Continental -Griffin -advised -magical -millions -##date -1845 -Safety -lifting -determination -valid -dialect -Penn -Know -triple -avoided -dancer -judgment -sixty -farmer -lakes -blast -aggressive -Abby -tag -chains -inscription -##nn -conducting -Scout -buying -##wich -spreading -##OC -array -hurried -Environment -improving -prompted -fierce -Taking -Away -tune -pissed -Bull -catching -##ying -eyebrow -metropolitan -terrain -##rel -Lodge -manufacturers -creator -##etic -happiness -ports -##ners -Relations -fortress -targeted -##ST -allegedly -blues -##osa -Bosnia -##dom -burial -similarly -stranger -pursued -symbols -rebels -reflection -routine -traced -indoor -eventual -##ska -##ão -##una -MD -##phone -oh -grants -Reynolds -rid -operators -##nus -Joey -vital -siblings -keyboard -br -removing -societies -drives -solely -princess -lighter -Various -Cavalry -believing -SC -underwent -relay -smelled -syndrome -welfare -authorized -seemingly -Hard -chicken -##rina -Ages -Bo -democratic -barn -Eye -shorts -##coming -##hand -disappointed -unexpected -centres -Exhibition -Stories -Site -banking -accidentally -Agent -conjunction -André -Chloe -resist -width -Queens -provision -##art -Melissa -Honorary -Del -prefer -abruptly -duration -##vis -Glass -enlisted -##ado -discipline -Sisters -carriage -##ctor -##sburg -Lancashire -log -fuck -##iz -closet -collecting -holy -rape -trusted -cleaning -inhabited -Rocky -104 -editorial -##yu -##ju -succeed -strict -Cuban -##iya -Bronze -outcome -##ifies -##set -corps -Hero -barrier -Kumar -groaned -Nina -Burton -enable -stability -Milton -knots -##ination -slavery -##borg -curriculum -trailer -warfare -Dante -Edgar -revival -Copenhagen -define -advocate -Garrett -Luther -overcome -pipe -750 -construct -Scotia -kings -flooding -##hard -Ferdinand -Felix -forgot -Fish -Kurt -elaborate -##BC -graphic -gripped -colonel -Sophia -Advisory -Self -##uff -##lio -monitoring -seal -senses -rises -peaceful -journals -1837 -checking -legendary -Ghana -##power -ammunition -Rosa -Richards -nineteenth -ferry -aggregate -Troy -inter -##wall -Triple -steep -tent -Cyprus -1844 -##woman -commanding -farms -doi -navy -specified -na -cricketer -transported -Think -comprising -grateful -solve -##core -beings -clerk -grain -vector -discrimination -##TC -Katie -reasonable -drawings -veins -consideration -Monroe -repeat -breed -dried -witnessed -ordained -Current -spirits -remarkable -consultant -urged -Remember -anime -singers -phenomenon -Rhode -Carlo -demanding -findings -manual -varying -Fellowship -generate -safely -heated -withdrawn -##ao -headquartered -##zon -##lav -##ency -Col -Memphis -imposed -rivals -Planet -healing -##hs -ensemble -Warriors -##bone -cult -Frankfurt -##HL -diversity -Gerald -intermediate -##izes -reactions -Sister -##ously -##lica -quantum -awkward -mentions -pursuit -##ography -varies -profession -molecular -consequence -lectures -cracked -103 -slowed -##tsu -cheese -upgraded -suite -substance -Kingston -1800 -Idaho -Theory -##een -ain -Carson -Molly -##OR -configuration -Whitney -reads -audiences -##tie -Geneva -Outside -##nen -##had -transit -volleyball -Randy -Chad -rubber -motorcycle -respected -eager -Level -coin -##lets -neighbouring -##wski -confident -##cious -poll -uncertain -punch -thesis -Tucker -IATA -Alec -##ographic -##law -1841 -desperately -1812 -Lithuania -accent -Cox -lightning -skirt -##load -Burns -Dynasty -##ug -chapters -Working -dense -Morocco -##kins -casting -Set -activated -oral -Brien -horn -HIV -dawn -stumbled -altar -tore -considerably -Nicole -interchange -registration -biography -Hull -Stan -bulk -consent -Pierce -##ER -Fifth -marched -terrorist -##piece -##itt -Presidential -Heather -staged -Plant -relegation -sporting -joins -##ced -Pakistani -dynamic -Heat -##lf -ourselves -Except -Elliott -nationally -goddess -investors -Burke -Jackie -##ā -##RA -Tristan -Associate -Tuesday -scope -Near -bunch -##abad -##ben -sunlight -##aire -manga -Willie -trucks -boarding -Lion -lawsuit -Learning -Der -pounding -awful -##mine -IT -Legend -romance -Serie -AC -gut -precious -Robertson -hometown -realm -Guards -Tag -batting -##vre -halt -conscious -1838 -acquire -collar -##gg -##ops -Herald -nationwide -citizenship -Aircraft -decrease -em -Fiction -Female -corporation -Located -##ip -fights -unconscious -Tampa -Poetry -lobby -Malta -##sar -##bie -layout -Tate -reader -stained -##bre -##rst -##ulate -loudly -Eva -Cohen -exploded -Merit -Maya -##rable -Rovers -##IC -Morrison -Should -vinyl -##mie -onwards -##gie -vicinity -Wildlife -probability -Mar -Barnes -##ook -spinning -Moses -##vie -Surrey -Planning -conferences -protective -Plaza -deny -Canterbury -manor -Estate -tilted -comics -IBM -destroying -server -Dorothy -##horn -Oslo -lesser -heaven -Marshal -scales -strikes -##ath -firms -attract -##BS -controlling -Bradford -southeastern -Amazon -Travis -Janet -governed -1842 -Train -Holden -bleeding -gifts -rent -1839 -palms -##ū -judicial -Ho -Finals -conflicts -unlikely -draws -##cies -compensation -adds -elderly -Anton -lasting -Nintendo -codes -ministers -pot -associations -capabilities -##cht -libraries -##sie -chances -performers -runway -##af -##nder -Mid -Vocals -##uch -##eon -interpreted -priority -Uganda -ruined -Mathematics -cook -AFL -Lutheran -AIDS -Capitol -chase -axis -Moreover -María -Saxon -storyline -##ffed -Tears -Kid -cent -colours -Sex -##long -pm -blonde -Edwin -CE -diocese -##ents -##boy -Inn -##ller -Saskatchewan -##kh -stepping -Windsor -##oka -##eri -Xavier -Resources -1843 -##top -##rad -##lls -Testament -poorly -1836 -drifted -slope -CIA -remix -Lords -mature -hosting -diamond -beds -##ncies -luxury -trigger -##lier -preliminary -hybrid -journalists -Enterprise -proven -expelled -insects -Beautiful -lifestyle -vanished -##ake -##ander -matching -surfaces -Dominican -Kids -referendum -Orlando -Truth -Sandy -privacy -Calgary -Speaker -sts -Nobody -shifting -##gers -Roll -Armenia -Hand -##ES -106 -##ont -Guild -larvae -Stock -flame -gravity -enhanced -Marion -surely -##tering -Tales -algorithm -Emmy -darker -VIII -##lash -hamlet -deliberately -occurring -choices -Gage -fees -settling -ridiculous -##ela -Sons -cop -custody -##ID -proclaimed -Cardinals -##pm -Metal -Ana -1835 -clue -Cardiff -riders -observations -MA -sometime -##och -performer -intact -Points -allegations -rotation -Tennis -tenor -Directors -##ats -Transit -thigh -Complex -##works -twentieth -Factory -doctrine -Daddy -##ished -pretend -Winston -cigarette -##IA -specimens -hydrogen -smoking -mathematical -arguments -openly -developer -##iro -fists -somebody -##san -Standing -Caleb -intelligent -Stay -Interior -echoed -Valentine -varieties -Brady -cluster -Ever -voyage -##of -deposits -ultimate -Hayes -horizontal -proximity -##ás -estates -exploration -NATO -Classical -##most -bills -condemned -1832 -hunger -##ato -planes -deserve -offense -sequences -rendered -acceptance -##ony -manufacture -Plymouth -innovative -predicted -##RC -Fantasy -##une -supporter -absent -Picture -bassist -rescued -##MC -Ahmed -Monte -##sts -##rius -insane -novelist -##és -agrees -Antarctic -Lancaster -Hopkins -calculated -startled -##star -tribal -Amendment -##hoe -invisible -patron -deer -Walk -tracking -Lyon -tickets -##ED -philosopher -compounds -chuckled -##wi -pound -loyalty -Academic -petition -refuses -marking -Mercury -northeastern -dimensions -scandal -Canyon -patch -publish -##oning -Peak -minds -##boro -Presbyterian -Hardy -theoretical -magnitude -bombs -cage -##ders -##kai -measuring -explaining -avoiding -touchdowns -Card -theology -##ured -Popular -export -suspicious -Probably -photograph -Lou -Parks -Arms -compact -Apparently -excess -Banks -lied -stunned -territorial -Filipino -spectrum -learns -wash -imprisonment -ugly -##rose -Albany -Erik -sends -##hara -##rid -consumed -##gling -Belgrade -Da -opposing -Magnus -footsteps -glowing -delicate -Alexandria -Ludwig -gorgeous -Bros -Index -##PA -customs -preservation -bonds -##mond -environments -##nto -instructed -parted -adoption -locality -workshops -goalkeeper -##rik -##uma -Brighton -Slovenia -##ulating -##tical -towel -hugged -stripped -Bears -upright -Wagner -##aux -secretly -Adventures -nest -Course -Lauren -Boeing -Abdul -Lakes -450 -##cu -USSR -caps -Chan -##nna -conceived -Actually -Belfast -Lithuanian -concentrate -possess -militia -pine -protagonist -Helena -##PS -##band -Belle -Clara -Reform -currency -pregnancy -1500 -##rim -Isabella -hull -Name -trend -journalism -diet -##mel -Recording -acclaimed -Tang -Jace -steering -vacant -suggestion -costume -laser -##š -##ink -##pan -##vić -integral -achievements -wise -classroom -unions -southwestern -##uer -Garcia -toss -Tara -Large -##tate -evident -responsibilities -populated -satisfaction -##bia -casual -Ecuador -##ght -arose -##ović -Cornwall -embrace -refuse -Heavyweight -XI -Eden -activists -##uation -biology -##shan -fraud -Fuck -matched -legacy -Rivers -missionary -extraordinary -Didn -holder -wickets -crucial -Writers -Hurricane -Iceland -gross -trumpet -accordance -hurry -flooded -doctorate -Albania -##yi -united -deceased -jealous -grief -flute -portraits -##а -pleasant -Founded -Face -crowned -Raja -advisor -Salem -##ec -Achievement -admission -freely -minimal -Sudan -developers -estimate -disabled -##lane -downstairs -Bruno -##pus -pinyin -##ude -lecture -deadly -underlying -optical -witnesses -Combat -Julius -tapped -variants -##like -Colonial -Critics -Similarly -mouse -voltage -sculptor -Concert -salary -Frances -##ground -hook -premises -Software -instructor -nominee -##ited -fog -slopes -##zu -vegetation -sail -##rch -Body -Apart -atop -View -utility -ribs -cab -migration -##wyn -bounded -2019 -pillow -trails -##ub -Halifax -shade -Rush -##lah -##dian -Notre -interviewed -Alexandra -Springfield -Indeed -rubbing -dozens -amusement -legally -##lers -Jill -Cinema -ignoring -Choice -##ures -pockets -##nell -laying -Blair -tackles -separately -##teen -Criminal -performs -theorem -Communication -suburbs -##iel -competitors -rows -##hai -Manitoba -Eleanor -interactions -nominations -assassination -##dis -Edmonton -diving -##dine -essay -##tas -AFC -Edge -directing -imagination -sunk -implement -Theodore -trembling -sealed -##rock -Nobel -##ancy -##dorf -##chen -genuine -apartments -Nicolas -AA -Bach -Globe -Store -220 -##10 -Rochester -##ño -alert -107 -Beck -##nin -Naples -Basin -Crawford -fears -Tracy -##hen -disk -##pped -seventeen -Lead -backup -reconstruction -##lines -terrified -sleeve -nicknamed -popped -##making -##ern -Holiday -Gospel -ibn -##ime -convert -divine -resolved -##quet -ski -realizing -##RT -Legislature -reservoir -Rain -sinking -rainfall -elimination -challenging -tobacco -##outs -Given -smallest -Commercial -pin -rebel -comedian -exchanged -airing -dish -Salvador -promising -##wl -relax -presenter -toll -aerial -##eh -Fletcher -brass -disappear -zones -adjusted -contacts -##lk -sensed -Walt -mild -toes -flies -shame -considers -wildlife -Hanna -Arsenal -Ladies -naming -##ishing -anxiety -discussions -cute -undertaken -Cash -strain -Wyoming -dishes -precise -Angela -##ided -hostile -twins -115 -Built -##pel -Online -tactics -Newman -##bourne -unclear -repairs -embarrassed -listing -tugged -Vale -##gin -Meredith -bout -##cle -velocity -tips -froze -evaluation -demonstrate -##card -criticised -Nash -lineup -Rao -monks -bacteria -lease -##lish -frightened -den -revived -finale -##rance -flee -Letters -decreased -##oh -Sounds -wrap -Sharon -incidents -renovated -everybody -stole -Bath -boxing -1815 -withdraw -backs -interim -react -murders -Rhodes -Copa -framed -flown -Estonia -Heavy -explored -##rra -##GA -##ali -Istanbul -1834 -##rite -##aging -##ues -Episcopal -arc -orientation -Maxwell -infected -##rot -BCE -Brook -grasp -Roberto -Excellence -108 -withdrawal -Marines -rider -Lo -##sin -##run -Subsequently -garrison -hurricane -facade -Prussia -crushed -enterprise -##mber -Twitter -Generation -Physical -Sugar -editing -communicate -Ellie -##hurst -Ernst -wagon -promotional -conquest -Parliamentary -courtyard -lawyers -Superman -email -Prussian -lately -lecturer -Singer -Majesty -Paradise -sooner -Heath -slot -curves -convoy -##vian -induced -synonym -breeze -##plane -##ox -peered -Coalition -##hia -odds -##esh -##lina -Tomorrow -Nadu -##ico -##rah -damp -autonomous -console -Victory -counts -Luxembourg -intimate -Archived -Carroll -spy -Zero -habit -Always -faction -teenager -Johnston -chaos -ruin -commerce -blog -##shed -##the -reliable -Word -Yu -Norton -parade -Catholics -damned -##iling -surgeon -##tia -Allison -Jonas -remarked -##ès -idiot -Making -proposals -Industries -strategies -artifacts -batteries -reward -##vers -Agricultural -distinguish -lengths -Jeffrey -Progressive -kicking -Patricia -##gio -ballot -##ios -skilled -##gation -Colt -limestone -##AS -peninsula -##itis -LA -hotels -shapes -Crime -depicting -northwestern -HD -silly -Das -##² -##ws -##ash -##matic -thermal -Has -forgive -surrendered -Palm -Nacional -drank -haired -Mercedes -##foot -loading -Timothy -##roll -mechanisms -traces -digging -discussing -Natalie -##zhou -Forbes -landmark -Anyway -Manor -conspiracy -gym -knocking -viewing -Formation -Pink -Beauty -limbs -Phillip -sponsor -Joy -granite -Harbour -##ero -payments -Ballet -conviction -##dam -Hood -estimates -lacked -Mad -Jorge -##wen -refuge -##LA -invaded -Kat -suburban -##fold -investigated -Ari -complained -creek -Georges -##uts -powder -accepting -deserved -carpet -Thunder -molecules -Legal -cliff -strictly -enrollment -ranch -##rg -##mba -proportion -renovation -crop -grabbing -##liga -finest -entries -receptor -helmet -blown -Listen -flagship -workshop -resolve -nails -Shannon -portal -jointly -shining -Violet -overwhelming -upward -Mick -proceedings -##dies -##aring -Laurence -Churchill -##rice -commit -170 -inclusion -Examples -##verse -##rma -fury -paths -##SC -ankle -nerves -Chemistry -rectangular -sworn -screenplay -cake -Mann -Seoul -Animal -sizes -Speed -vol -Population -Southwest -Hold -continuously -Qualified -wishing -Fighting -Made -disappointment -Portsmouth -Thirty -##beck -Ahmad -teammate -MLB -graph -Charleston -realizes -##dium -exhibits -preventing -##int -fever -rivalry -Male -mentally -dull -##lor -##rich -consistently -##igan -Madame -certificate -suited -Krishna -accuracy -Webb -Budapest -Rex -1831 -Cornell -OK -surveillance -##gated -habitats -Adventure -Conrad -Superior -Gay -sofa -aka -boot -Statistics -Jessie -Liberation -##lip -##rier -brands -saint -Heinrich -Christine -bath -Rhine -ballet -Jin -consensus -chess -Arctic -stack -furious -cheap -toy -##yre -##face -##gging -gastropod -##nne -Romans -membrane -answering -25th -architects -sustainable -##yne -Hon -1814 -Baldwin -dome -##awa -##zen -celebrity -enclosed -##uit -##mmer -Electronic -locals -##CE -supervision -mineral -Chemical -Slovakia -alley -hub -##az -heroes -Creative -##AM -incredible -politically -ESPN -yanked -halls -Aboriginal -Greatest -yield -##20 -congressional -robot -Kiss -welcomed -MS -speeds -proceed -Sherman -eased -Greene -Walsh -Geoffrey -variables -rocky -##print -acclaim -Reverend -Wonder -tonnes -recurring -Dawson -continent -finite -AP -continental -ID -facilitate -essays -Rafael -Neal -1833 -ancestors -##met -##gic -Especially -teenage -frustrated -Jules -cock -expense -##oli -##old -blocking -Notable -prohibited -ca -dock -organize -##wald -Burma -Gloria -dimension -aftermath -choosing -Mickey -torpedo -pub -##used -manuscripts -laps -Ulster -staircase -sphere -Insurance -Contest -lens -risks -investigations -ERA -glare -##play -Graduate -auction -Chronicle -##tric -##50 -Coming -seating -Wade -seeks -inland -Thames -Rather -butterfly -contracted -positioned -consumers -contestants -fragments -Yankees -Santos -administrator -hypothesis -retire -Denis -agreements -Winnipeg -##rill -1820 -trophy -crap -shakes -Jenkins -##rium -ya -twist -labels -Maritime -##lings -##iv -111 -##ensis -Cairo -Anything -##fort -opinions -crowded -##nian -abandon -##iff -drained -imported -##rr -tended -##rain -Going -introducing -sculptures -bankruptcy -danced -demonstration -stance -settings -gazed -abstract -pet -Calvin -stiff -strongest -wrestler -##dre -Republicans -grace -allocated -cursed -snail -advancing -Return -errors -Mall -presenting -eliminate -Amateur -Institution -counting -##wind -warehouse -##nde -Ethiopia -trailed -hollow -##press -Literary -capability -nursing -preceding -lamp -Thomson -Morton -##ctic -Crew -Close -composers -boom -Clare -missiles -112 -hunter -snap -##oni -##tail -Us -declaration -##cock -rally -huh -lion -straightened -Philippe -Sutton -alpha -valued -maker -navigation -detected -favorable -perception -Charter -##ña -Ricky -rebounds -tunnels -slapped -Emergency -supposedly -##act -deployment -socialist -tubes -anybody -corn -##NA -Seminary -heating -pump -##AA -achieving -souls -##ass -Link -##ele -##smith -greeted -Bates -Americas -Elder -cure -contestant -240 -fold -Runner -Uh -licked -Politics -committees -neighbors -fairy -Silva -Leipzig -tipped -correctly -exciting -electronics -foundations -cottage -governmental -##hat -allied -claws -presidency -cruel -Agreement -slender -accompanying -precisely -##pass -driveway -swim -Stand -crews -##mission -rely -everyday -Wings -demo -##hic -recreational -min -nationality -##duction -Easter -##hole -canvas -Kay -Leicester -talented -Discovery -shells -##ech -Kerry -Ferguson -Leave -##place -altogether -adopt -butt -wolves -##nsis -##ania -modest -soprano -Boris -##ught -electron -depicts -hid -cruise -differ -treasure -##nch -Gun -Mama -Bengali -trainer -merchants -innovation -presumably -Shirley -bottles -proceeds -Fear -invested -Pirates -particle -Dominic -blamed -Fight -Daisy -##pper -##graphic -nods -knight -Doyle -tales -Carnegie -Evil -Inter -Shore -Nixon -transform -Savannah -##gas -Baltic -stretching -worlds -protocol -Percy -Toby -Heroes -brave -dancers -##aria -backwards -responses -Chi -Gaelic -Berry -crush -embarked -promises -Madonna -researcher -realised -inaugurated -Cherry -Mikhail -Nottingham -reinforced -subspecies -rapper -##kie -Dreams -Re -Damon -Minneapolis -monsters -suspicion -Tel -surroundings -afterward -complaints -OF -sectors -Algeria -lanes -Sabha -objectives -Donna -bothered -distracted -deciding -##ives -##CA -##onia -bishops -Strange -machinery -Voiced -synthesis -reflects -interference -##TS -##ury -keen -##ign -frown -freestyle -ton -Dixon -Sacred -Ruby -Prison -##ión -1825 -outfit -##tain -curiosity -##ight -frames -steadily -emigrated -horizon -##erly -Doc -philosophical -Table -UTC -Marina -##DA -secular -##eed -Zimbabwe -cops -Mack -sheriff -Sanskrit -Francesco -catches -questioning -streaming -Kill -testimony -hissed -tackle -countryside -copyright -##IP -Buddhism -##rator -ladder -##ON -Past -rookie -depths -##yama -##ister -##HS -Samantha -Dana -Educational -brows -Hammond -raids -envelope -##sco -##hart -##ulus -epic -detection -Streets -Potter -statistical -für -ni -accounting -##pot -employer -Sidney -Depression -commands -Tracks -averaged -lets -Ram -longtime -suits -branded -chip -Shield -loans -ought -Said -sip -##rome -requests -Vernon -bordered -veterans -##ament -Marsh -Herzegovina -Pine -##igo -mills -anticipation -reconnaissance -##ef -expectations -protested -arrow -guessed -depot -maternal -weakness -##ap -projected -pour -Carmen -provider -newer -remind -freed -##rily -##wal -##tones -intentions -Fiji -timing -Match -managers -Kosovo -Herman -Wesley -Chang -135 -semifinals -shouting -Indo -Janeiro -Chess -Macedonia -Buck -##onies -rulers -Mail -##vas -##sel -MHz -Programme -Task -commercially -subtle -propaganda -spelled -bowling -basically -Raven -1828 -Colony -109 -##ingham -##wara -anticipated -1829 -##iers -graduates -##rton -##fication -endangered -ISO -diagnosed -##tage -exercises -Battery -bolt -poison -cartoon -##ción -hood -bowed -heal -Meyer -Reagan -##wed -subfamily -##gent -momentum -infant -detect -##sse -Chapman -Darwin -mechanics -NSW -Cancer -Brooke -Nuclear -comprised -hire -sanctuary -wingspan -contrary -remembering -surprising -Basic -stealing -OS -hatred -##lled -masters -violation -Rule -##nger -assuming -conquered -louder -robe -Beatles -legitimate -##vation -massacre -Rica -unsuccessfully -poets -##enberg -careers -doubled -premier -battalions -Dubai -Paper -Louisville -gestured -dressing -successive -mumbled -Vic -referee -pupil -##cated -##rre -ceremonies -picks -##IN -diplomat -alike -geographical -rays -##HA -##read -harbour -factories -pastor -playwright -Ultimate -nationalist -uniforms -obtaining -kit -Amber -##pling -screenwriter -ancestry -##cott -Fields -PR -Coleman -rat -Bavaria -squeeze -highlighted -Adult -reflecting -Mel -1824 -bicycle -organizing -sided -Previously -Underground -Prof -athletics -coupled -mortal -Hampton -worthy -immune -Ava -##gun -encouraging -simplified -##ssa -##nte -##ann -Providence -entities -Pablo -Strong -Housing -##ista -##ators -kidnapped -mosque -Kirk -whispers -fruits -shattered -fossil -Empress -Johns -Webster -Thing -refusing -differently -specimen -Ha -##EN -##tina -##elle -##night -Horn -neighbourhood -Bolivia -##rth -genres -Pre -##vich -Amelia -swallow -Tribune -Forever -Psychology -Use -##bers -Gazette -ash -##usa -Monster -##cular -delegation -blowing -Oblast -retreated -automobile -##ex -profits -shirts -devil -Treasury -##backs -Drums -Ronnie -gameplay -expertise -Evening -resides -Caesar -unity -Crazy -linking -Vision -donations -Isabel -valve -Sue -WWE -logical -availability -fitting -revolt -##mill -Linux -taxi -Access -pollution -statues -Augustus -##pen -cello -##some -lacking -##ati -Gwen -##aka -##ovich -1821 -Wow -initiatives -Uruguay -Cain -stroked -examine -##ī -mentor -moist -disorders -buttons -##tica -##anna -Species -Lynch -museums -scorer -Poor -eligibility -op -unveiled -cats -Title -wheat -critically -Syracuse -##osis -marketed -enhance -Ryder -##NG -##ull -##rna -embedded -throws -foods -happily -##ami -lesson -formats -punched -##rno -expressions -qualities -##sal -Gods -##lity -elect -wives -##lling -jungle -Toyota -reversed -Grammar -Cloud -Agnes -##ules -disputed -verses -Lucien -threshold -##rea -scanned -##bled -##dley -##lice -Kazakhstan -Gardner -Freeman -##rz -inspection -Rita -accommodation -advances -chill -Elliot -thriller -Constantinople -##mos -debris -whoever -1810 -Santo -Carey -remnants -Guatemala -##irs -carriers -equations -mandatory -##WA -anxious -measurement -Summit -Terminal -Erin -##zes -LLC -##uo -glancing -sin -##₃ -Downtown -flowering -Euro -Leigh -Lance -warn -decent -recommendations -##ote -Quartet -##rrell -Clarence -colleague -guarantee -230 -Clayton -Beast -addresses -prospect -destroyer -vegetables -Leadership -fatal -prints -190 -##makers -Hyde -persuaded -illustrations -Southampton -Joyce -beats -editors -mount -##grave -Malaysian -Bombay -endorsed -##sian -##bee -applying -Religion -nautical -bomber -Na -airfield -gravel -##rew -Cave -bye -dig -decree -burden -Election -Hawk -Fe -##iled -reunited -##tland -liver -Teams -Put -delegates -Ella -##fect -Cal -invention -Castro -bored -##kawa -##ail -Trinidad -NASCAR -pond -develops -##pton -expenses -Zoe -Released -##rf -organs -beta -parameters -Neill -##lene -lateral -Beat -blades -Either -##hale -Mitch -##ET -##vous -Rod -burnt -phones -Rising -##front -investigating -##dent -Stephanie -##keeper -screening -##uro -Swan -Sinclair -modes -bullets -Nigerian -melody -##ques -Rifle -##12 -128 -##jin -charm -Venus -##tian -fusion -advocated -visitor -pinned -genera -3000 -Ferry -Solo -quantity -regained -platinum -shoots -narrowly -preceded -update -##ichi -equality -unaware -regiments -ally -##tos -transmitter -locks -Seeing -outlets -feast -reopened -##ows -struggles -Buddy -1826 -bark -elegant -amused -Pretty -themed -schemes -Lisbon -Te -patted -terrorism -Mystery -##croft -##imo -Madagascar -Journey -dealer -contacted -##quez -ITV -vacation -Wong -Sacramento -organisms -##pts -balcony -coloured -sheer -defines -MC -abortion -forbidden -accredited -Newfoundland -tendency -entrepreneur -Benny -Tanzania -needing -finalist -mythology -weakened -gown -sentences -Guest -websites -Tibetan -UFC -voluntary -annoyed -Welcome -honestly -correspondence -geometry -Deutsche -Biology -Help -##aya -Lines -Hector -##ael -reluctant -##ages -wears -inquiry -##dell -Holocaust -Tourism -Wei -volcanic -##mates -Visual -sorts -neighborhoods -Running -apple -shy -Laws -bend -Northeast -feminist -Speedway -Murder -visa -stuffed -fangs -transmitted -fiscal -Ain -enlarged -##ndi -Cecil -Peterson -Benson -Bedford -acceptable -##CC -##wer -purely -triangle -foster -Alberto -educator -Highland -acute -LGBT -Tina -Mi -adventures -Davidson -Honda -translator -monk -enacted -summoned -##ional -collector -Genesis -Un -liner -Di -Statistical -##CS -filter -Knox -Religious -Stella -Estonian -Turn -##ots -primitive -parishes -##lles -complexity -autobiography -rigid -cannon -pursuing -exploring -##gram -##mme -freshman -caves -Expedition -Traditional -iTunes -certification -cooling -##ort -##gna -##IT -##lman -##VA -Motion -explosive -licence -boxer -shrine -loosely -Brigadier -Savage -Brett -MVP -heavier -##elli -##gged -Buddha -Easy -spells -fails -incredibly -Georg -stern -compatible -Perfect -applies -cognitive -excessive -nightmare -neighbor -Sicily -appealed -static -##₁ -Aberdeen -##leigh -slipping -bride -##guard -Um -Clyde -1818 -##gible -Hal -Frost -Sanders -interactive -Hour -##vor -hurting -bull -termed -shelf -capturing -##pace -rolls -113 -##bor -Chilean -teaches -##rey -exam -shipped -Twin -borrowed -##lift -Shit -##hot -Lindsay -Below -Kiev -Lin -leased -##sto -Eli -Diane -Val -subtropical -shoe -Bolton -Dragons -##rification -Vatican -##pathy -Crisis -dramatically -talents -babies -##ores -surname -##AP -##cology -cubic -opted -Archer -sweep -tends -Karnataka -Judy -stint -Similar -##nut -explicitly -##nga -interact -Mae -portfolio -clinic -abbreviated -Counties -##iko -hearts -##ı -providers -screams -Individual -##etti -Monument -##iana -accessed -encounters -gasp -##rge -defunct -Avery -##rne -nobility -useless -Phase -Vince -senator -##FL -1813 -surprisingly -##illo -##chin -Boyd -rumors -equity -Gone -Hearts -chassis -overnight -Trek -wrists -submit -civic -designers -##rity -prominence -decorative -derives -starter -##AF -wisdom -Powers -reluctantly -measurements -doctoral -Noel -Gideon -Baden -Cologne -lawn -Hawaiian -anthology -##rov -Raiders -embassy -Sterling -##pal -Telugu -troubled -##FC -##bian -fountain -observe -ore -##uru -##gence -spelling -Border -grinning -sketch -Benedict -Xbox -dialects -readily -immigrant -Constitutional -aided -nevertheless -SE -tragedy -##ager -##rden -Flash -##MP -Europa -emissions -##ield -panties -Beverly -Homer -curtain -##oto -toilet -Isn -Jerome -Chiefs -Hermann -supernatural -juice -integrity -Scots -auto -Patriots -Strategic -engaging -prosecution -cleaned -Byron -investments -adequate -vacuum -laughs -##inus -##nge -Usually -Roth -Cities -Brand -corpse -##ffy -Gas -rifles -Plains -sponsorship -Levi -tray -owed -della -commanders -##ead -tactical -##rion -García -harbor -discharge -##hausen -gentleman -endless -highways -##itarian -pleaded -##eta -archive -Midnight -exceptions -instances -Gibraltar -cart -##NS -Darren -Bonnie -##yle -##iva -OCLC -bra -Jess -##EA -consulting -Archives -Chance -distances -commissioner -##AR -LL -sailors -##sters -enthusiasm -Lang -##zia -Yugoslav -confirm -possibilities -Suffolk -##eman -banner -1822 -Supporting -fingertips -civilization -##gos -technically -1827 -Hastings -sidewalk -strained -monuments -Floyd -Chennai -Elvis -villagers -Cumberland -strode -albeit -Believe -planets -combining -Mohammad -container -##mouth -##tures -verb -BA -Tank -Midland -screened -Gang -Democracy -Helsinki -screens -thread -charitable -##version -swiftly -ma -rational -combine -##SS -##antly -dragging -Cliff -Tasmania -quest -professionally -##aj -rap -##lion -livestock -##hua -informal -specially -lonely -Matthews -Dictionary -1816 -Observatory -correspondent -constitute -homeless -waving -appreciated -Analysis -Meeting -dagger -##AL -Gandhi -flank -Giant -Choir -##not -glimpse -toe -Writer -teasing -springs -##dt -Glory -healthcare -regulated -complaint -math -Publications -makers -##hips -cement -Need -apologize -disputes -finishes -Partners -boring -ups -gains -1793 -Congressional -clergy -Folk -##made -##nza -Waters -stays -encoded -spider -betrayed -Applied -inception -##urt -##zzo -wards -bells -UCLA -Worth -bombers -Mo -trademark -Piper -##vel -incorporates -1801 -##cial -dim -Twelve -##word -Appeals -tighter -spacecraft -##tine -coordinates -##iac -mistakes -Zach -laptop -Teresa -##llar -##yr -favored -Nora -sophisticated -Irving -hammer -División -corporations -niece -##rley -Patterson -UNESCO -trafficking -Ming -balanced -plaque -Latvia -broader -##owed -Save -confined -##vable -Dalton -tide -##right -##ural -##num -swords -caring -##eg -IX -Acting -paved -##moto -launching -Antoine -substantially -Pride -Philharmonic -grammar -Indoor -Ensemble -enabling -114 -resided -Angelo -publicity -chaired -crawled -Maharashtra -Telegraph -lengthy -preference -differential -anonymous -Honey -##itation -wage -##iki -consecrated -Bryant -regulatory -Carr -##én -functioning -watches -##ú -shifts -diagnosis -Search -app -Peters -##SE -##cat -Andreas -honours -temper -counsel -Urdu -Anniversary -maritime -##uka -harmony -##unk -essence -Lorenzo -choked -Quarter -indie -##oll -loses -##prints -amendment -Adolf -scenario -similarities -##rade -##LC -technological -metric -Russians -thoroughly -##tead -cruiser -1806 -##nier -1823 -Teddy -##psy -au -progressed -exceptional -broadcaster -partnered -fitness -irregular -placement -mothers -unofficial -Garion -Johannes -1817 -regain -Solar -publishes -Gates -Broken -thirds -conversations -dive -Raj -contributor -quantities -Worcester -governance -##flow -generating -pretending -Belarus -##voy -radius -skating -Marathon -1819 -affection -undertook -##wright -los -##bro -locate -PS -excluded -recreation -tortured -jewelry -moaned -##logue -##cut -Complete -##rop -117 -##II -plantation -whipped -slower -crater -##drome -Volunteer -attributes -celebrations -regards -Publishers -oath -utilized -Robbie -Giuseppe -fiber -indication -melted -archives -Damien -storey -affecting -identifying -dances -alumni -comparable -upgrade -rented -sprint -##kle -Marty -##lous -treating -railways -Lebanese -erupted -occupy -sympathy -Jude -Darling -Qatar -drainage -McCarthy -heel -Klein -computing -wireless -flip -Du -Bella -##ast -##ssen -narrator -mist -sings -alignment -121 -2020 -securing -##rail -Progress -missionaries -brutal -mercy -##shing -Hip -##ache -##olo -switching -##here -Malay -##ob -constituted -Mohammed -Often -standings -surge -teachings -ink -detached -systematic -Trial -Myanmar -##wo -offs -Reyes -decoration -translations -wherever -reviewer -speculation -Bangkok -terminated -##ester -beard -RCA -Aidan -Associated -Emerson -Charity -1803 -generous -Dudley -ATP -##haven -prizes -toxic -gloves -##iles -##dos -Turning -myth -Parade -##building -Hits -##eva -teamed -Above -Duchess -Holt -##oth -Sub -Ace -atomic -inform -Ship -depend -Jun -##bes -Norwich -globe -Baroque -Christina -Cotton -Tunnel -kidding -Concerto -Brittany -tasted -phases -stems -angles -##TE -##nam -##40 -charted -Alison -intensive -Willis -glory -##lit -Bergen -est -taller -##dicate -labeled -##ido -commentator -Warrior -Viscount -shortened -aisle -Aria -Spike -spectators -goodbye -overlooking -mammals -##lude -wholly -Barrett -##gus -accompany -seventy -employ -##mb -ambitious -beloved -basket -##mma -##lding -halted -descendant -pad -exclaimed -cloak -##pet -Strait -Bang -Aviv -sadness -##ffer -Donovan -1880s -agenda -swinging -##quin -jerk -Boat -##rist -nervously -Silence -Echo -shout -implies -##iser -##cking -Shiva -Weston -damages -##tist -effectiveness -Horace -cycling -Rey -ache -Photography -PDF -Dear -leans -Lea -##vision -booth -attained -disbelief -##eus -##ution -Hop -pension -toys -Eurovision -faithful -##heads -Andre -owe -default -Atlas -Megan -highlights -lovers -Constantine -Sixth -masses -##garh -emerge -Auto -Slovak -##oa -##vert -Superintendent -flicked -inventor -Chambers -Frankie -Romeo -pottery -companions -Rudolf -##liers -diary -Unless -tap -alter -Randall -##ddle -##eal -limitations -##boards -utterly -knelt -guaranteed -Cowboys -Islander -horns -##ike -Wendy -sexually -Smart -breasts -##cian -compromise -Duchy -AT -Galaxy -analog -Style -##aking -weighed -Nigel -optional -Czechoslovakia -practicing -Ham -##0s -feedback -batted -uprising -operative -applicable -criminals -classrooms -Somehow -##ode -##OM -Naomi -Winchester -##pping -Bart -Regina -competitor -Recorded -Yuan -Vera -lust -Confederation -##test -suck -1809 -Lambert -175 -Friend -##ppa -Slowly -##⁺ -Wake -Dec -##aneous -chambers -Color -Gus -##site -Alternative -##world -Exeter -Omaha -celebrities -striker -210 -dwarf -meals -Oriental -Pearson -financing -revenues -underwater -Steele -screw -Feeling -Mt -acids -badge -swore -theaters -Moving -admired -lung -knot -penalties -116 -fork -##cribed -Afghan -outskirts -Cambodia -oval -wool -fossils -Ned -Countess -Darkness -delicious -##nica -Evelyn -Recordings -guidelines -##CP -Sandra -meantime -Antarctica -modeling -granddaughter -##rial -Roma -Seventh -Sunshine -Gabe -##nton -Shop -Turks -prolific -soup -parody -##nta -Judith -disciplines -resign -Companies -Libya -Jets -inserted -Mile -retrieve -filmmaker -##rand -realistic -unhappy -##30 -sandstone -##nas -##lent -##ush -##rous -Brent -trash -Rescue -##unted -Autumn -disgust -flexible -infinite -sideways -##oss -##vik -trailing -disturbed -50th -Newark -posthumously -##rol -Schmidt -Josef -##eous -determining -menu -Pole -Anita -Luc -peaks -118 -Yard -warrant -generic -deserted -Walking -stamp -tracked -##berger -paired -surveyed -sued -Rainbow -##isk -Carpenter -submarines -realization -touches -sweeping -Fritz -module -Whether -resembles -##form -##lop -unsure -hunters -Zagreb -unemployment -Senators -Georgetown -##onic -Barker -foul -commercials -Dresden -Words -collision -Carlton -Fashion -doubted -##ril -precision -MIT -Jacobs -mob -Monk -retaining -gotta -##rod -remake -Fast -chips -##pled -sufficiently -##lights -delivering -##enburg -Dancing -Barton -Officers -metals -##lake -religions -##ré -motivated -differs -dorsal -##birds -##rts -Priest -polished -##aling -Saxony -Wyatt -knockout -##hor -Lopez -RNA -##link -metallic -##kas -daylight -Montenegro -##lining -wrapping -resemble -Jam -Viking -uncertainty -angels -enables -##fy -Stuttgart -tricks -tattoo -127 -wicked -asset -breach -##yman -MW -breaths -Jung -im -1798 -noon -vowel -##qua -calmly -seasonal -chat -ingredients -cooled -Randolph -ensuring -##ib -##idal -flashing -1808 -Macedonian -Cool -councils -##lick -advantages -Immediately -Madras -##cked -Pain -fancy -chronic -Malayalam -begged -##nese -Inner -feathers -##vey -Names -dedication -Sing -pan -Fischer -nurses -Sharp -inning -stamps -Meg -##ello -edged -motioned -Jacksonville -##ffle -##dic -##US -divide -garnered -Ranking -chasing -modifications -##oc -clever -midst -flushed -##DP -void -##sby -ambulance -beaches -groan -isolation -strengthen -prevention -##ffs -Scouts -reformed -geographic -squadrons -Fiona -Kai -Consequently -##uss -overtime -##yas -Fr -##BL -Papua -Mixed -glances -Haiti -Sporting -sandy -confronted -René -Tanner -1811 -##IM -advisory -trim -##ibe -González -gambling -Jupiter -##ility -##owski -##nar -122 -apology -teased -Pool -feminine -wicket -eagle -shiny -##lator -blend -peaking -nasty -nodding -fraction -tech -Noble -Kuwait -brushing -Italia -Canberra -duet -Johan -1805 -Written -cameo -Stalin -pig -cord -##zio -Surely -SA -owing -holidays -123 -Ranger -lighthouse -##ige -miners -1804 -##ë -##gren -##ried -crashing -##atory -wartime -highlight -inclined -Torres -Tax -##zel -##oud -Own -##corn -Divine -EMI -Relief -Northwestern -ethics -BMW -click -plasma -Christie -coordinator -Shepherd -washing -cooked -##dio -##eat -Cerambycidae -algebra -Engine -costumes -Vampire -vault -submission -virtue -assumption -##rell -Toledo -##oting -##rva -crept -emphasized -##lton -##ood -Greeks -surgical -crest -Patrol -Beta -Tessa -##GS -pizza -traits -rats -Iris -spray -##GC -Lightning -binary -escapes -##take -Clary -crowds -##zong -hauled -maid -##fen -Manning -##yang -Nielsen -aesthetic -sympathetic -affiliation -soaked -Mozart -personalities -begging -##iga -clip -Raphael -yearly -Lima -abundant -##lm -1794 -strips -Initiative -reporters -##vsky -consolidated -##itated -Civic -rankings -mandate -symbolic -##ively -1807 -rental -duck -nave -complications -##nor -Irene -Nazis -haunted -scholarly -Pratt -Gran -Embassy -Wave -pity -genius -bats -canton -Tropical -marker -##cos -escorted -Climate -##posed -appreciation -freezing -puzzle -Internal -pools -Shawn -pathway -Daniels -Fitzgerald -extant -olive -Vanessa -marriages -cocked -##dging -prone -chemicals -doll -drawer -##HF -Stark -Property -##tai -flowed -Sheridan -##uated -Less -Omar -remarks -catalogue -Seymour -wreck -Carrie -##bby -Mercer -displaced -sovereignty -rip -Flynn -Archie -Quarterfinals -Hassan -##ards -vein -Osaka -pouring -wages -Romance -##cript -##phere -550 -##eil -##stown -Documentary -ancestor -CNN -Panthers -publishers -Rise -##mu -biting -Bright -String -succeeding -119 -loaned -Warwick -Sheikh -Von -Afterwards -Jax -Camden -helicopters -Hence -Laurel -##ddy -transaction -Corp -clause -##owing -##kel -Investment -cups -Lucia -Moss -Giles -chef -López -decisive -30th -distress -linguistic -surveys -Ready -maiden -Touch -frontier -incorporate -exotic -mollusk -Leopold -Ride -##wain -##ndo -teammates -tones -drift -ordering -Feb -Penny -Normandy -Present -Flag -pipes -##rro -delight -motto -Tibet -leap -Eliza -Produced -teenagers -sitcom -Try -Hansen -Cody -wandered -terrestrial -frog -scare -resisted -employers -coined -##DS -resistant -Fly -captive -dissolution -judged -associates -defining -##court -Hale -##mbo -raises -clusters -twelfth -##metric -Roads -##itude -satisfy -Android -Reds -Gloucester -Category -Valencia -Daemon -stabbed -Luna -Churches -Canton -##eller -Attack -Kashmir -annexed -grabs -asteroid -Hartford -recommendation -Rodriguez -handing -stressed -frequencies -delegate -Bones -Erie -Weber -Hands -Acts -millimetres -24th -Fat -Howe -casually -##SL -convent -1790 -IF -##sity -1795 -yelling -##ises -drain -addressing -amino -Marcel -Sylvia -Paramount -Gerard -Volleyball -butter -124 -Albion -##GB -triggered -1792 -folding -accepts -##ße -preparations -Wimbledon -dose -##grass -escaping -##tling -import -charging -##dation -280 -Nolan -##fried -Calcutta -##pool -Cove -examining -minded -heartbeat -twisting -domains -bush -Tunisia -Purple -Leone -##code -evacuated -battlefield -tiger -Electrical -##ared -chased -##cre -cultivated -Jet -solved -shrug -ringing -Impact -##iant -kilometre -##log -commemorate -migrated -singular -designing -promptly -Higgins -##own -##aves -freshwater -Marketing -Payne -beg -locker -pray -implied -AAA -corrected -Trans -Europeans -Ashe -acknowledge -Introduction -##writer -##llen -Munster -auxiliary -growl -Hours -Poems -##AT -reduces -Plain -plague -canceled -detention -polite -necklace -Gustav -##gu -##lance -En -Angola -##bb -dwelling -##hea -5000 -Qing -Dodgers -rim -##ored -##haus -spilled -Elisabeth -Viktor -backpack -1802 -amended -##worthy -Phantom -##ctive -keeper -##loom -Vikings -##gua -employs -Tehran -specialty -##bate -Marx -Mirror -Jenna -rides -needle -prayers -clarinet -forewings -##walk -Midlands -convincing -advocacy -Cao -Birds -cycles -Clement -Gil -bubble -Maximum -humanitarian -Tan -cries -##SI -Parsons -Trio -offshore -Innovation -clutched -260 -##mund -##duct -Prairie -relied -Falcon -##ste -Kolkata -Gill -Swift -Negro -Zoo -valleys -##OL -Opening -beams -MPs -outline -Bermuda -Personal -exceed -productive -##MT -republic -forum -##sty -tornado -Known -dipped -Edith -folks -mathematician -watershed -Ricardo -synthetic -##dication -deity -##₄ -gaming -subjected -suspects -Foot -swollen -Motors -##tty -##ý -aloud -ceremonial -es -nuts -intend -Carlisle -tasked -hesitation -sponsors -unified -inmates -##ctions -##stan -tiles -jokes -whereby -outcomes -Lights -scary -Stoke -Portrait -Blind -sergeant -violations -cultivation -fuselage -Mister -Alfonso -candy -sticks -teen -agony -Enough -invite -Perkins -Appeal -mapping -undergo -Glacier -Melanie -affects -incomplete -##dd -Colombian -##nate -CBC -purchasing -bypass -Drug -Electronics -Frontier -Coventry -##aan -autonomy -scrambled -Recent -bounced -cow -experiencing -Rouge -cuisine -Elite -disability -Ji -inheritance -wildly -Into -##wig -confrontation -Wheeler -shiver -Performing -aligned -consequently -Alexis -Sin -woodland -executives -Stevenson -Ferrari -inevitable -##cist -##dha -##base -Corner -comeback -León -##eck -##urus -MacDonald -pioneering -breakdown -landscapes -Veterans -Rican -Theological -stirred -participant -Credit -Hyderabad -snails -Claudia -##ocene -compliance -##MI -Flags -Middlesex -storms -winding -asserted -er -##ault -##kal -waking -##rates -abbey -Augusta -tooth -trustees -Commodore -##uded -Cunningham -NC -Witch -marching -Sword -Same -spiral -Harley -##ahan -Zack -Audio -1890s -##fit -Simmons -Kara -Veronica -negotiated -Speaking -FIBA -Conservatory -formations -constituencies -explicit -facial -eleventh -##ilt -villain -##dog -##case -##hol -armored -tin -hairs -##umi -##rai -mattress -Angus -cease -verbal -Recreation -savings -Aurora -peers -Monastery -Airways -drowned -additions -downstream -sticking -Shi -mice -skiing -##CD -Raw -Riverside -warming -hooked -boost -memorable -posed -treatments -320 -##dai -celebrating -blink -helpless -circa -Flowers -PM -uncommon -Oct -Hawks -overwhelmed -Sparhawk -repaired -Mercy -pose -counterpart -compare -survives -##½ -##eum -coordinate -Lil -grandchildren -notorious -Yi -Judaism -Juliet -accusations -1789 -floated -marathon -roar -fortified -reunion -145 -Nov -Paula -##fare -##toria -tearing -Cedar -disappearance -Si -gifted -scar -270 -PBS -Technologies -Marvin -650 -roller -cupped -negotiate -##erman -passport -tram -miracle -styled -##tier -necessity -Des -rehabilitation -Lara -USD -psychic -wipe -##lem -mistaken -##lov -charming -Rider -pageant -dynamics -Cassidy -##icus -defenses -##tadt -##vant -aging -##inal -declare -mistress -supervised -##alis -##rest -Ashton -submerged -sack -Dodge -grocery -ramp -Teacher -lineage -imagery -arrange -inscriptions -Organisation -Siege -combines -pounded -Fleming -legends -columnist -Apostolic -prose -insight -Arabian -expired -##uses -##nos -Alone -elbows -##asis -##adi -##combe -Step -Waterloo -Alternate -interval -Sonny -plains -Goals -incorporating -recruit -adjoining -Cheshire -excluding -marrying -ducked -Cherokee -par -##inate -hiking -Coal -##bow -natives -ribbon -Allies -con -descriptions -positively -##lal -defendant -22nd -Vivian -##beat -Weather -possessions -Date -sweetheart -inability -Salisbury -adviser -ideology -Nordic -##eu -Cubs -IP -Administrative -##nick -facto -liberation -Burnett -Javier -fashioned -Electoral -Turin -theft -unanimous -Per -1799 -Clan -Hawkins -Teachers -##wes -Cameroon -Parkway -##gment -demolition -atoms -nucleus -##thi -recovering -##yte -##vice -lifts -Must -deposit -Hancock -Semi -darkened -Declaration -moan -muscular -Myers -attractions -sauce -simulation -##weed -Alps -barriers -##baum -Barack -galleries -Min -holders -Greenwich -donation -Everybody -Wolfgang -sandwich -Kendra -Collegiate -casino -Slavic -ensuing -Porto -##grapher -Jesuit -suppressed -tires -Ibrahim -protesters -Ibn -Amos -1796 -phenomena -Hayden -Paraguay -Squad -Reilly -complement -aluminum -##eers -doubts -decay -demise -Practice -patience -fireplace -transparent -monarchy -##person -Rodney -mattered -rotating -Clifford -disposal -Standards -paced -##llie -arise -tallest -tug -documentation -node -freeway -Nikolai -##cite -clicked -imaging -Lorraine -Tactical -Different -Regular -Holding -165 -Pilot -guarded -##polis -Classics -Mongolia -Brock -monarch -cellular -receptors -Mini -Chandler -financed -financially -Lives -erection -Fuller -unnamed -Kannada -cc -passive -plateau -##arity -freak -##rde -retrieved -transactions -##sus -23rd -swimmer -beef -fulfill -Arlington -offspring -reasoning -Rhys -saves -pseudonym -centimetres -shivered -shuddered -##ME -Feel -##otic -professors -Blackburn -##eng -##life -##haw -interred -lodge -fragile -Della -guardian -##bbled -catalog -clad -observer -tract -declaring -##headed -Lok -dean -Isabelle -1776 -irrigation -spectacular -shuttle -mastering -##aro -Nathaniel -Retired -##lves -Brennan -##kha -dick -##dated -##hler -Rookie -leapt -televised -weekends -Baghdad -Yemen -##fo -factions -ion -Lab -mortality -passionate -Hammer -encompasses -confluence -demonstrations -Ki -derivative -soils -##unch -Ranch -Universities -conventions -outright -aiming -hierarchy -reside -illusion -graves -rituals -126 -Antwerp -Dover -##ema -campuses -Hobart -lifelong -aliens -##vity -Memory -coordination -alphabet -##mina -Titans -pushes -Flanders -##holder -Normal -excellence -capped -profound -Taipei -portrayal -sparked -scratch -se -##eas -##hir -Mackenzie -##cation -Neo -Shin -##lined -magnificent -poster -batsman -##rgent -persuade -##ement -Icelandic -miserable -collegiate -Feature -geography -##mura -Comic -Circus -processor -barracks -Tale -##11 -Bulls -##rap -strengthened -##bell -injection -miniature -broadly -Letter -fare -hostage -traders -##nium -##mere -Fortune -Rivera -Lu -triumph -Browns -Bangalore -cooperative -Basel -announcing -Sawyer -##him -##cco -##kara -darted -##AD -##nova -sucking -##position -perimeter -flung -Holdings -##NP -Basque -sketches -Augustine -Silk -Elijah -analyst -armour -riots -acquiring -ghosts -##ems -132 -Pioneer -Colleges -Simone -Economy -Author -semester -Soldier -il -##unting -##bid -freaking -Vista -tumor -##bat -murderer -##eda -unreleased -##grove -##sser -##té -edit -statute -sovereign -##gawa -Killer -stares -Fury -comply -##lord -##nant -barrels -Andhra -Maple -generator -mascot -unusually -eds -##ante -##runner -rod -##tles -Historically -Jennings -dumped -Established -resemblance -##lium -##cise -##body -##voke -Lydia -##hou -##iring -nonetheless -1797 -corrupt -patrons -physicist -sneak -Livingston -Citizens -Architects -Werner -trends -Melody -eighty -markings -brakes -##titled -oversaw -processed -mock -Midwest -intervals -##EF -stretches -werewolf -##MG -Pack -controller -##dition -Honours -cane -Griffith -vague -repertoire -Courtney -orgasm -Abdullah -dominance -occupies -Ya -introduces -Lester -instinct -collaborative -Indigenous -refusal -##rank -outlet -debts -spear -155 -##keeping -##ulu -Catalan -##osh -tensions -##OT -bred -crude -Dunn -abdomen -accurately -##fu -##lough -accidents -Row -Audrey -rude -Getting -promotes -replies -Paolo -merge -##nock -trans -Evangelical -automated -Canon -##wear -##ggy -##gma -Broncos -foolish -icy -Voices -knives -Aside -dreamed -generals -molecule -AG -rejection -insufficient -##nagar -deposited -sacked -Landing -arches -helpful -devotion -intake -Flower -PGA -dragons -evolutionary -##mail -330 -GM -tissues -##tree -arcade -composite -lid -Across -implications -lacks -theological -assessed -concentrations -Den -##mans -##ulous -Fu -homeland -##stream -Harriet -ecclesiastical -troop -ecological -winked -##xed -eighteenth -Casino -specializing -##sworth -unlocked -supreme -devastated -snatched -trauma -GDP -Nord -saddle -Wes -convenient -competes -##nu -##iss -Marian -subway -##rri -successes -umbrella -##far -##ually -Dundee -##cence -spark -##rix -##я -Quality -Geological -cockpit -rpm -Cam -Bucharest -riot -##PM -Leah -##dad -##pose -Ka -m³ -Bundesliga -Wolfe -grim -textile -quartet -expressing -fantastic -destroyers -eternal -picnic -##oro -contractor -1775 -spanning -declining -##cating -Lowe -Sutherland -Emirates -downward -nineteen -violently -scout -viral -melting -enterprises -##cer -Crosby -Jubilee -antenna -urgent -Rory -##uin -##sure -wandering -##gler -##vent -Suzuki -Lifetime -Dirty -occupying -##quent -Disc -Guru -mound -Lennon -Humanities -listeners -Walton -uh -Braves -Bologna -##bis -##gra -Dwight -crawl -flags -memoir -Thorne -Archdiocese -dairy -##uz -##tery -roared -adjust -patches -inn -Knowing -##bbed -##zan -scan -Papa -precipitation -angrily -passages -postal -Phi -embraced -blacks -economist -triangular -Sen -shooter -punished -Millennium -Swimming -confessed -Aston -defeats -Era -cousins -Williamson -##rer -daytime -dumb -##rek -underway -specification -Buchanan -prayed -concealed -activation -##issa -canon -awesome -Starr -plural -summers -##fields -Slam -unnecessary -1791 -resume -trilogy -compression -##rough -selective -dignity -Yan -##xton -immense -##yun -lone -seeded -hiatus -lightweight -summary -Yo -approve -Galway -rejoined -Elise -garbage -burns -speeches -129 -Honduras -##liness -inventory -jersey -FK -assure -slumped -Lionel -Suite -##sbury -Lena -continuation -##AN -brightly -##nti -GT -Knowledge -##park -##lius -lethal -##tribution -##sions -Certificate -Mara -##lby -algorithms -Jade -blows -pirates -fleeing -wheelchair -Stein -sophomore -Alt -Territorial -diploma -snakes -##olic -##tham -Tiffany -Pius -flush -urging -Hanover -Reich -##olate -Unity -Pike -collectively -Theme -ballad -kindergarten -rocked -zoo -##page -whip -Rodríguez -strokes -checks -Becky -Stern -upstream -##uta -Silent -volunteered -Sigma -##ingen -##tract -##ede -Gujarat -screwed -entertaining -##action -##ryn -defenders -innocence -lesbian -que -Richie -nodes -Lie -juvenile -Jakarta -safer -confront -Bert -breakthrough -gospel -Cable -##zie -institutional -Archive -brake -liquor -feeds -##iate -chancellor -Encyclopedia -Animation -scanning -teens -##mother -Core -Rear -Wine -##flower -reactor -Ave -cardinal -sodium -strands -Olivier -crouched -Vaughan -Sammy -Image -scars -Emmanuel -flour -bias -nipple -revelation -##ucci -Denny -##ssy -Form -Runners -admits -Rama -violated -Burmese -feud -underwear -Mohamed -Named -swift -statewide -Door -Recently -comparing -Hundred -##idge -##nity -##rds -Rally -Reginald -Auburn -solving -waitress -Treasurer -##ilization -Halloween -Ministers -Boss -Shut -##listic -Rahman -demonstrating -##pies -Gaza -Yuri -installations -Math -schooling -##bble -Bronx -exiled -gasoline -133 -bundle -humid -FCC -proportional -relate -VFL -##dez -continuity -##cene -syndicated -atmospheric -arrows -Wanderers -reinforcements -Willow -Lexington -Rotten -##yon -discovering -Serena -portable -##lysis -targeting -£1 -Goodman -Steam -sensors -detachment -Malik -##erie -attitudes -Goes -Kendall -Read -Sleep -beans -Nikki -modification -Jeanne -knuckles -Eleven -##iously -Gross -Jaime -dioxide -moisture -Stones -UCI -displacement -Metacritic -Jury -lace -rendering -elephant -Sergei -##quire -GP -Abbott -##type -projection -Mouse -Bishops -whispering -Kathleen -Rams -##jar -whites -##oran -assess -dispatched -##hire -kin -##mir -Nursing -advocates -tremendous -sweater -assisting -##bil -Farmer -prominently -reddish -Hague -cyclone -##SD -Sage -Lawson -Sanctuary -discharged -retains -##ube -shotgun -wilderness -Reformed -similarity -Entry -Watts -Bahá -Quest -Looks -visions -Reservoir -Arabs -curls -Blu -dripping -accomplish -Verlag -drill -sensor -Dillon -physicians -smashed -##dir -painters -Renault -straw -fading -Directorate -lounge -commissions -Brain -##graph -neo -##urg -plug -coordinated -##houses -Critical -lamps -illustrator -Returning -erosion -Crow -##ciation -blessing -Thought -Wife -medalist -synthesizer -Pam -Thornton -Esther -HBO -fond -Associates -##raz -pirate -permits -Wide -tire -##PC -Ernie -Nassau -transferring -RFC -##ntly -um -spit -AS -##mps -Mining -polar -villa -anchored -##zzi -embarrassment -relates -##ă -Rupert -counterparts -131 -Baxter -##18 -Igor -recognizes -Clive -##hane -##eries -##ibly -occurrence -##scope -fin -colorful -Rapids -banker -tile -##rative -##dus -delays -destinations -##llis -Pond -Dane -grandparents -rewarded -socially -motorway -##hof -##lying -##human -modeled -Dayton -Forward -conscience -Sharma -whistle -Mayer -Sasha -##pical -circuits -Zhou -##ça -Latvian -finalists -predators -Lafayette -closes -obligations -Resolution -##vier -Trustees -reminiscent -##hos -Highlands -Protected -asylum -evacuation -##acy -Chevrolet -confession -Somalia -emergence -separating -##rica -alright -calcium -Laurent -Welfare -Leonardo -ashes -dental -Deal -minerals -##lump -##mount -accounted -staggered -slogan -photographic -builder -##imes -##raft -tragic -144 -SEC -Hit -tailed -##ples -##rring -##rson -ethical -wrestlers -concludes -lunar -##ept -nitrogen -Aid -cyclist -quarterfinals -##ه -harvest -##hem -Pasha -IL -##mis -continually -##forth -Intel -bucket -##ended -witches -pretended -dresses -viewer -peculiar -lowering -volcano -Marilyn -Qualifier -clung -##sher -Cut -modules -Bowie -##lded -onset -transcription -residences -##pie -##itor -scrapped -##bic -Monaco -Mayo -eternity -Strike -uncovered -skeleton -##wicz -Isles -bug -Promoted -##rush -Mechanical -XII -##ivo -gripping -stubborn -velvet -TD -decommissioned -operas -spatial -unstable -Congressman -wasted -##aga -##ume -advertisements -##nya -obliged -Cannes -Conway -bricks -##gnant -##mity -##uise -jumps -Clear -##cine -##sche -chord -utter -Su -podium -spokesman -Royce -assassin -confirmation -licensing -liberty -##rata -Geographic -individually -detained -##ffe -Saturn -crushing -airplane -bushes -knights -##PD -Lilly -hurts -unexpectedly -Conservatives -pumping -Forty -candle -Pérez -peasants -supplement -Sundays -##ggs -##rries -risen -enthusiastic -corresponds -pending -##IF -Owens -floods -Painter -inflation -presumed -inscribed -Chamberlain -bizarre -1200 -liability -reacted -tub -Legacy -##eds -##pted -shone -##litz -##NC -Tiny -genome -bays -Eduardo -robbery -stall -hatch -Depot -Variety -Flora -reprinted -trembled -outlined -CR -Theresa -spans -##plication -Jensen -##eering -posting -##rky -pays -##ost -Marcos -fortifications -inferior -##ential -Devi -despair -Talbot -##chus -updates -ego -Booth -Darius -tops -##lau -Scene -##DC -Harlem -Trey -Generally -candles -##α -Neville -Admiralty -##hong -iconic -victorious -1600 -Rowan -abundance -miniseries -clutching -sanctioned -##words -obscure -##ision -##rle -##EM -disappearing -Resort -Obviously -##eb -exceeded -1870s -Adults -##cts -Cry -Kerr -ragged -selfish -##lson -circled -pillars -galaxy -##asco -##mental -rebuild -caution -Resistance -Start -bind -splitting -Baba -Hogan -ps -partnerships -slam -Peggy -courthouse -##OD -organizational -packages -Angie -##nds -possesses -##rp -Expressway -Gould -Terror -Him -Geoff -nobles -##ope -shark -##nh -identifies -##oor -testified -Playing -##ump -##isa -stool -Idol -##pice -##tana -Byrne -Gerry -grunted -26th -observing -habits -privilege -immortal -wagons -##thy -dot -Bring -##lian -##witz -newest -##uga -constraints -Screen -Issue -##RNA -##vil -reminder -##gles -addiction -piercing -stunning -var -##rita -Signal -accumulated -##wide -float -devastating -viable -cartoons -Uttar -flared -##encies -Theology -patents -##bahn -privileges -##ava -##CO -137 -##oped -##NT -orchestral -medication -225 -erect -Nadia -École -fried -Sales -scripts -##rease -airs -Cage -inadequate -structured -countless -Avengers -Kathy -disguise -mirrors -Investigation -reservation -##nson -Legends -humorous -Mona -decorations -attachment -Via -motivation -Browne -strangers -##ński -Shadows -Twins -##pressed -Alma -Nominated -##ott -Sergio -canopy -152 -Semifinals -devised -##irk -upwards -Traffic -Goddess -Move -beetles -138 -spat -##anne -holdings -##SP -tangled -Whilst -Fowler -anthem -##ING -##ogy -snarled -moonlight -songwriting -tolerance -Worlds -exams -##pia -notices -sensitivity -poetic -Stephens -Boone -insect -reconstructed -Fresh -27th -balloon -##ables -Brendan -mug -##gee -1780 -apex -exports -slides -Lahore -hiring -Shell -electorate -sexuality -poker -nonprofit -##imate -cone -##uce -Okinawa -superintendent -##HC -referenced -turret -Sprint -Citizen -equilibrium -Stafford -curb -Driver -Valerie -##rona -aching -impacts -##bol -observers -Downs -Shri -##uth -airports -##uda -assignments -curtains -solitary -icon -patrols -substances -Jasper -mountainous -Published -ached -##ingly -announce -dove -damaging -##tism -Primera -Dexter -limiting -batch -##uli -undergoing -refugee -Ye -admiral -pavement -##WR -##reed -pipeline -desires -Ramsey -Sheila -thickness -Brotherhood -Tea -instituted -Belt -Break -plots -##ais -masculine -##where -Theo -##aged -##mined -Experience -scratched -Ethiopian -Teaching -##nov -Aiden -Abe -Samoa -conditioning -##mous -Otherwise -fade -Jenks -##encing -Nat -##lain -Anyone -##kis -smirk -Riding -##nny -Bavarian -blessed -potatoes -Hook -##wise -likewise -hardened -Merry -amid -persecution -##sten -Elections -Hoffman -Pitt -##vering -distraction -exploitation -infamous -quote -averaging -healed -Rhythm -Germanic -Mormon -illuminated -guides -##ische -interfere -##ilized -rector -perennial -##ival -Everett -courtesy -##nham -Kirby -Mk -##vic -Medieval -##tale -Luigi -limp -##diction -Alive -greeting -shove -##force -##fly -Jasmine -Bend -Capt -Suzanne -ditch -134 -##nning -Host -fathers -rebuilding -Vocal -wires -##manship -tan -Factor -fixture -##LS -Māori -Plate -pyramid -##umble -slap -Schneider -yell -##ulture -##tional -Goodbye -sore -##pher -depressed -##dox -pitching -Find -Lotus -##wang -strand -Teen -debates -prevalent -##bilities -exposing -hears -billed -##rse -reorganized -compelled -disturbing -displaying -##tock -Clinical -emotionally -##iah -Derbyshire -grouped -##quel -Bahrain -Journalism -IN -persistent -blankets -Crane -camping -Direct -proving -Lola -##dding -Corporate -birthplace -##boats -##ender -Figure -dared -Assam -precursor -##nched -Tribe -Restoration -slate -Meyrick -hunted -stroking -Earlier -Kind -polls -appeals -monetary -##reate -Kira -Langdon -explores -GPS -extensions -squares -Results -draped -announcer -merit -##ennial -##tral -##roved -##cion -robots -supervisor -snorted -##group -Cannon -procession -monkey -freeze -sleeves -Nile -verdict -ropes -firearms -extraction -tensed -EC -Saunders -##tches -diamonds -Marriage -##amble -curling -Amazing -##haling -unrelated -##roads -Daughter -cum -discarded -kidney -cliffs -forested -Candy -##lap -authentic -tablet -notation -##nburg -Bulldogs -Callum -Meet -mouths -coated -##xe -Truman -combinations -##mation -Steelers -Fan -Than -paternal -##father -##uti -Rebellion -inviting -Fun -theatres -##ي -##rom -curator -##cision -networking -Oz -drought -##ssel -granting -MBA -Shelby -Elaine -jealousy -Kyoto -shores -signaling -tenants -debated -Intermediate -Wise -##hes -##pu -Havana -duke -vicious -exited -servers -Nonetheless -Reports -explode -##beth -Nationals -offerings -Oval -conferred -eponymous -folklore -##NR -Shire -planting -1783 -Zeus -accelerated -Constable -consuming -troubles -McCartney -texture -bust -Immigration -excavated -hopefully -##cession -##coe -##name -##ully -lining -Einstein -Venezuelan -reissued -minorities -Beatrice -crystals -##nies -circus -lava -Beirut -extinction -##shu -Becker -##uke -issuing -Zurich -extract -##esta -##rred -regulate -progression -hut -alcoholic -plea -AB -Norse -Hubert -Mansfield -ashamed -##put -Bombardment -stripes -electrons -Denise -horrified -Nor -arranger -Hay -Koch -##ddling -##iner -Birthday -Josie -deliberate -explorer -##jiang -##signed -Arrow -wiping -satellites -baritone -mobility -##rals -Dorset -turbine -Coffee -185 -##lder -Cara -Colts -pits -Crossing -coral -##birth -Tai -zombie -smoothly -##hp -mates -##ady -Marguerite -##tary -puzzled -tapes -overly -Sonic -Prayer -Thinking -##uf -IEEE -obligation -##cliffe -Basil -redesignated -##mmy -nostrils -Barney -XIII -##phones -vacated -unused -Berg -##roid -Towards -viola -136 -Event -subdivided -rabbit -recruiting -##nery -Namibia -##16 -##ilation -recruits -Famous -Francesca -##hari -Goa -##lat -Karachi -haul -biblical -##cible -MGM -##rta -horsepower -profitable -Grandma -importantly -Martinez -incoming -##kill -beneficial -nominal -praying -##isch -gable -nail -noises -##ttle -Polytechnic -rub -##cope -Thor -audition -erotic -##ending -##iano -Ultimately -armoured -##mum -presently -pedestrian -##tled -Ipswich -offence -##ffin -##borne -Flemish -##hman -echo -##cting -auditorium -gentlemen -winged -##tched -Nicaragua -Unknown -prosperity -exhaust -pie -Peruvian -compartment -heights -disabilities -##pole -Harding -Humphrey -postponed -moths -Mathematical -Mets -posters -axe -##nett -Nights -Typically -chuckle -councillors -alternating -141 -Norris -##ately -##etus -deficit -dreaming -cooler -oppose -Beethoven -##esis -Marquis -flashlight -headache -investor -responding -appointments -##shore -Elias -ideals -shades -torch -lingering -##real -pier -fertile -Diploma -currents -Snake -##horse -##15 -Briggs -##ota -##hima -##romatic -Coastal -Kuala -ankles -Rae -slice -Hilton -locking -Approximately -Workshop -Niagara -strangely -##scence -functionality -advertisement -Rapid -Anders -ho -Soviets -packing -basal -Sunderland -Permanent -##fting -rack -tying -Lowell -##ncing -Wizard -mighty -tertiary -pencil -dismissal -torso -grasped -##yev -Sand -gossip -##nae -Beer -implementing -##19 -##riya -Fork -Bee -##eria -Win -##cid -sailor -pressures -##oping -speculated -Freddie -originating -##DF -##SR -##outh -28th -melt -Brenda -lump -Burlington -USC -marginal -##bine -Dogs -swamp -cu -Ex -uranium -metro -spill -Pietro -seize -Chorus -partition -##dock -##media -engineered -##oria -conclusions -subdivision -##uid -Illustrated -Leading -##hora -Berkshire -definite -##books -##cin -##suke -noun -winced -Doris -dissertation -Wilderness -##quest -braced -arbitrary -kidnapping -Kurdish -##but -clearance -excavations -wanna -Allmusic -insult -presided -yacht -##SM -Honour -Tin -attracting -explosives -Gore -Bride -##ience -Packers -Devils -Observer -##course -Loser -##erry -##hardt -##mble -Cyrillic -undefeated -##stra -subordinate -##ame -Wigan -compulsory -Pauline -Cruise -Opposition -##ods -Period -dispersed -expose -##60 -##has -Certain -Clerk -Wolves -##hibition -apparatus -allegiance -orbital -justified -thanked -##ević -Biblical -Carolyn -Graves -##tton -Hercules -backgrounds -replica -1788 -aquatic -Mega -Stirling -obstacles -filing -Founder -vowels -Deborah -Rotterdam -surpassed -Belarusian -##ologists -Zambia -Ren -Olga -Alpine -bi -councillor -Oaks -Animals -eliminating -digit -Managing -##GE -laundry -##rdo -presses -slamming -Tudor -thief -posterior -##bas -Rodgers -smells -##ining -Hole -SUV -trombone -numbering -representations -Domingo -Paralympics -cartridge -##rash -Combined -shelves -Kraków -revision -##frame -Sánchez -##tracted -##bler -Alain -townships -sic -trousers -Gibbs -anterior -symmetry -vaguely -Castile -IRA -resembling -Penguin -##ulent -infections -##stant -raped -##pressive -worrying -brains -bending -JR -Evidence -Venetian -complexes -Jonah -850 -exported -Ambrose -Gap -philanthropist -##atus -Marxist -weighing -##KO -##nath -Soldiers -chiefs -reject -repeating -shaky -Zürich -preserving -##xin -cigarettes -##break -mortar -##fin -Already -reproduction -socks -Waiting -amazed -##aca -dash -##path -Airborne -##harf -##get -descending -OBE -Sant -Tess -Lucius -enjoys -##ttered -##ivation -##ete -Leinster -Phillies -execute -geological -unfinished -Courts -SP -Beaver -Duck -motions -Platinum -friction -##aud -##bet -Parts -Stade -entirety -sprang -Smithsonian -coffin -prolonged -Borneo -##vise -unanimously -##uchi -Cars -Cassandra -Australians -##CT -##rgen -Louisa -spur -Constance -##lities -Patent -racism -tempo -##ssion -##chard -##nology -##claim -Million -Nichols -##dah -Numerous -ing -Pure -plantations -donor -##EP -##rip -convenience -##plate -dots -indirect -##written -Dong -failures -adapt -wizard -unfortunately -##gion -practitioners -economically -Enrique -unchanged -kingdoms -refined -definitions -lazy -worries -railing -##nay -Kaiser -##lug -cracks -sells -ninety -##WC -Directed -denotes -developmental -papal -unfortunate -disappointing -sixteenth -Jen -##urier -NWA -drifting -Horror -##chemical -behaviors -bury -surfaced -foreigners -slick -AND -##rene -##ditions -##teral -scrap -kicks -comprise -buddy -##anda -Mental -##ype -Dom -wines -Limerick -Luca -Rand -##won -Tomatoes -homage -geometric -##nted -telescope -Shelley -poles -##fan -shareholders -Autonomous -cope -intensified -Genoa -Reformation -grazing -##tern -Zhao -provisional -##bies -Con -##riel -Cynthia -Raleigh -vivid -threaten -Length -subscription -roses -Müller -##isms -robin -##tial -Laos -Stanton -nationalism -##clave -##ND -##17 -##zz -staging -Busch -Cindy -relieve -##spective -packs -neglected -CBE -alpine -Evolution -uneasy -coastline -Destiny -Barber -Julio -##tted -informs -unprecedented -Pavilion -##bei -##ference -betrayal -awaiting -leaked -V8 -puppet -adverse -Bourne -Sunset -collectors -##glass -##sque -copied -Demon -conceded -resembled -Rafe -Levy -prosecutor -##ject -flora -manned -deaf -Mosque -reminds -Lizzie -Products -Funny -cassette -congress -##rong -Rover -tossing -prompting -chooses -Satellite -cautiously -Reese -##UT -Huang -Gloucestershire -giggled -Kitty -##å -Pleasant -Aye -##ond -judging -1860s -intentionally -Hurling -aggression -##xy -transfers -employing -##fies -##oda -Archibald -Blessed -Ski -flavor -Rosie -##burgh -sunset -Scholarship -WC -surround -ranged -##jay -Degree -Houses -squeezing -limb -premium -Leningrad -steals -##inated -##ssie -madness -vacancy -hydraulic -Northampton -##prise -Marks -Boxing -##fying -academics -##lich -##TY -CDs -##lma -hardcore -monitors -paperback -cables -Dimitri -upside -advent -Ra -##clusive -Aug -Christchurch -objected -stalked -Simple -colonists -##laid -CT -discusses -fellowship -Carnival -cares -Miracle -pastoral -rooted -shortage -borne -Quentin -meditation -tapping -Novel -##ades -Alicia -Burn -famed -residency -Fernández -Johannesburg -Zhu -offended -Mao -outward -##inas -XV -denial -noticing -##ís -quarry -##hound -##amo -Bernie -Bentley -Joanna -mortgage -##rdi -##sumption -lenses -extracted -depiction -##RE -Networks -Broad -Revenue -flickered -virgin -flanked -##о -Enterprises -probable -Liberals -Falcons -drowning -phrases -loads -assumes -inhaled -awe -logs -slightest -spiders -waterfall -##pate -rocking -shrub -##uil -roofs -##gard -prehistoric -wary -##rak -TO -clips -sustain -treason -microphone -voter -Lamb -psychologist -wrinkled -##ères -mating -Carrier -340 -##lbert -sensing -##rino -destiny -distract -weaker -UC -Nearly -neurons -spends -Apache -##rem -genuinely -wells -##lanted -stereo -##girl -Lois -Leaving -consul -fungi -Pier -Cyril -80s -Jungle -##tani -illustration -Split -##hana -Abigail -##patrick -1787 -diminished -Selected -packaging -##EG -Martínez -communal -Manufacturing -sentiment -143 -unwilling -praising -Citation -pills -##iti -##rax -muffled -neatly -workforce -Yep -leisure -Tu -##nding -Wakefield -ancestral -##uki -destructive -seas -Passion -showcase -##ceptive -heroic -142 -exhaustion -Customs -##aker -Scholar -sliced -##inian -Direction -##OW -Swansea -aluminium -##eep -ceramic -McCoy -Career -Sector -chartered -Damascus -pictured -Interest -stiffened -Plateau -obsolete -##tant -irritated -inappropriate -overs -##nko -bail -Talent -Sur -ours -##nah -barred -legged -sociology -Bud -dictionary -##luk -Cover -obey -##oring -annoying -##dong -apprentice -Cyrus -Role -##GP -##uns -##bag -Greenland -Porsche -Rocket -##32 -organism -##ntary -reliability -##vocation -##й -Found -##hine -motors -promoter -unfair -##oms -##note -distribute -eminent -rails -appealing -chiefly -meaningful -Stephan -##rehension -Consumer -psychiatric -bowler -saints -##iful -##н -1777 -Pol -Dorian -Townsend -hastily -##jima -Quincy -Sol -fascinated -Scarlet -alto -Avon -certainty -##eding -Keys -##chu -Chu -##VE -ions -tributaries -Thanksgiving -##fusion -astronomer -oxide -pavilion -Supply -Casa -Bollywood -sadly -mutations -Keller -##wave -nationals -##rgo -##ym -predict -Catholicism -Vega -##eration -##ums -Mali -tuned -Lankan -Plans -radial -Bosnian -Lexi -##14 -##ü -sacks -unpleasant -Empty -handles -##taking -Bon -switches -intently -tuition -antique -##jk -fraternity -notebook -Desmond -##sei -prostitution -##how -deed -##OP -501 -Somewhere -Rocks -##mons -campaigned -frigate -gases -suppress -##hang -Merlin -Northumberland -dominate -expeditions -thunder -##ups -##rical -Cap -thorough -Ariel -##kind -renewable -constructing -pacing -terrorists -Bowen -documentaries -westward -##lass -##nage -Merchant -##ued -Beaumont -Din -##hian -Danube -peasant -Garrison -encourages -gratitude -reminding -stormed -##ouse -pronunciation -##ailed -Weekend -suggestions -##ffing -##DI -Active -Colombo -##logists -Merrill -##cens -Archaeological -Medina -captained -##yk -duel -cracking -Wilkinson -Guam -pickup -renovations -##ël -##izer -delighted -##iri -Weaver -##ctional -tens -##hab -Clint -##usion -##each -petals -Farrell -##sable -caste -##will -Ezra -##qi -##standing -thrilled -ambush -exhaled -##SU -Resource -blur -forearm -specifications -contingent -cafe -##iology -Antony -fundraising -grape -##rgy -turnout -##udi -Clifton -laboratories -Irvine -##opus -##lid -Monthly -Bihar -statutory -Roses -Emil -##rig -lumber -optimal -##DR -pumps -plaster -Mozambique -##aco -nightclub -propelled -##hun -ked -surplus -wax -##urai -pioneered -Sunny -imprint -Forget -Eliot -approximate -patronage -##bek -##ely -##mbe -Partnership -curl -snapping -29th -Patriarch -##jord -seldom -##ature -astronomy -Bremen -XIV -airborne -205 -1778 -recognizing -stranded -arrogant -bombardment -destined -ensured -146 -robust -Davenport -Interactive -Offensive -Fi -prevents -probe -propeller -sorrow -Blade -mounting -automotive -##dged -wallet -201 -lashes -Forrest -##ift -Cell -Younger -shouts -##cki -folds -##chet -Epic -yields -homosexual -tunes -##minate -##text -Manny -chemist -hindwings -##urn -pilgrimage -##sfield -##riff -MLS -##rive -Huntington -translates -Path -slim -##ndra -##oz -climax -commuter -desperation -##reet -denying -##rious -daring -seminary -polo -##clamation -Teatro -Torah -Cats -identities -Poles -photographed -fiery -popularly -##cross -winters -Hesse -##vio -Nurse -Senegal -Salon -prescribed -justify -##gues -##и -##orted -HQ -##hiro -evaluated -momentarily -##unts -Debbie -##licity -##TP -Mighty -Rabbit -##chal -Events -Savoy -##ht -Brandenburg -Bordeaux -##laus -Release -##IE -##kowski -1900s -SK -Strauss -##aly -Sonia -Updated -synagogue -McKay -flattened -370 -clutch -contests -toast -evaluate -pope -heirs -jam -tutor -reverted -##ading -nonsense -hesitate -Lars -Ceylon -Laurie -##guchi -accordingly -customary -148 -Ethics -Multiple -instincts -IGN -##ä -bullshit -##hit -##par -desirable -##ducing -##yam -alias -ashore -licenses -##lification -misery -147 -Cola -assassinated -fiercely -##aft -las -goat -substrate -lords -Cass -Bridges -ICC -lasts -sights -reproductive -##asi -Ivory -Clean -fixing -##lace -seeming -aide -1850s -harassment -##FF -##LE -reasonably -##coat -##cano -NYC -1784 -Fifty -immunity -Canadians -Cheng -comforting -meanwhile -##tera -##blin -breeds -glowed -##vour -Aden -##verted -##aded -##oral -neat -enforced -poisoning -##ews -##hone -enforce -predecessors -survivor -Month -unfamiliar -pierced -waived -dump -responds -Mai -Declan -angular -Doesn -interpretations -##yar -invest -Dhaka -policeman -Congregation -Eighth -painfully -##este -##vior -Württemberg -##cles -blockade -encouragement -##fie -Caucasus -Malone -Universidad -utilize -Nissan -inherent -151 -agreeing -syllable -determines -Protocol -conclude -##gara -40th -Xu -Taiwanese -##ather -boiler -printer -Lacey -titular -Klaus -Fallon -Wembley -fox -Chandra -Governorate -obsessed -##Ps -micro -##25 -Cooke -gymnasium -weaving -Shall -Hussein -glaring -softball -Reader -Dominion -Trouble -varsity -Cooperation -Chaos -Kang -Kramer -Eisenhower -proves -Connie -consortium -governors -Bethany -opener -Normally -Willy -linebacker -Regent -Used -AllMusic -Twilight -##shaw -Companion -Tribunal -simpler -##gam -Experimental -Slovenian -cellar -deadline -trout -Hubbard -ads -idol -##hetto -Granada -clues -salmon -1700 -Omega -Caldwell -softened -Bills -Honolulu -##gn -Terrace -suitcase -##IL -frantic -##oons -Abbot -Sitting -Fortress -Riders -sickness -enzymes -trustee -Bern -forged -##13 -##ruff -##rl -##versity -inspector -champagne -##held -##FI -hereditary -Taliban -handball -##wine -Sioux -##dicated -honoured -139 -##tude -Skye -meanings -##rkin -cardiac -analyzed -vegetable -##FS -Royals -dial -freelance -##fest -partisan -petroleum -ridden -Lincolnshire -panting -##comb -presidents -Haley -##chs -contributes -Jew -discoveries -panicked -Woody -eyelids -Fate -Tulsa -mg -whiskey -zombies -Wii -##udge -investigators -##bull -centred -##screen -Bone -Lana -##oise -forts -##ske -Conan -Lyons -##writing -SH -##ride -rhythmic -154 -##llah -pioneers -##bright -captivity -Sanchez -Oman -##mith -Flint -Platform -##ioned -emission -packet -Persia -##formed -takeover -tempted -Vance -Few -Toni -receptions -##ن -exchanges -Camille -whale -Chronicles -##rent -##ushing -##rift -Alto -Genus -##asing -onward -foremost -longing -Rockefeller -containers -##cribe -intercepted -##olt -pleading -Bye -bee -##umbling -153 -undertake -Izzy -cheaper -Ultra -validity -##pse -Sa -hovering -##pert -vintage -engraved -##rise -farmland -##ever -##ifier -Atlantis -propose -Catalonia -plunged -##edly -demonstrates -gig -##cover -156 -Osborne -cowboy -herd -investigator -loops -Burning -rests -Instrumental -embarrassing -focal -install -readings -swirling -Chatham -parameter -##zin -##holders -Mandarin -Moody -converting -Escape -warnings -##chester -incarnation -##ophone -adopting -##lins -Cromwell -##laws -Axis -Verde -Kappa -Schwartz -Serbs -caliber -Wanna -Chung -##ality -nursery -principally -Bulletin -likelihood -logging -##erty -Boyle -supportive -twitched -##usive -builds -Marseille -omitted -motif -Lands -##lusion -##ssed -Barrow -Airfield -Harmony -WWF -endured -merging -convey -branding -examinations -167 -Italians -##dh -dude -1781 -##teau -crawling -thoughtful -clasped -concluding -brewery -Moldova -Wan -Towers -Heidelberg -202 -##ict -Lagos -imposing -##eval -##serve -Bacon -frowning -thirteenth -conception -calculations -##ович -##mile -##ivated -mutation -strap -##lund -demographic -nude -perfection -stocks -##renched -##dit -Alejandro -bites -fragment -##hack -##rchy -GB -Surgery -Berger -punish -boiling -consume -Elle -Sid -Dome -relies -Crescent -treasurer -Bloody -1758 -upheld -Guess -Restaurant -signatures -font -millennium -mural -stakes -Abel -hailed -insists -Alumni -Breton -##jun -digits -##FM -##thal -Talking -motive -reigning -babe -masks -##ø -Shaun -potato -sour -whitish -Somali -##derman -##rab -##wy -chancel -telecommunications -Noise -messenger -tidal -grinding -##ogenic -Rebel -constituent -peripheral -recruitment -##ograph -##tler -pumped -Ravi -poked -##gley -Olive -diabetes -discs -liking -sting -fits -stir -Mari -Sega -creativity -weights -Macau -mandated -Bohemia -disastrous -Katrina -Baku -Rajasthan -waiter -##psis -Siberia -verbs -##truction -patented -1782 -##ndon -Relegated -Hunters -Greenwood -Shock -accusing -skipped -Sessions -markers -subset -monumental -Viola -comparative -Alright -Barbados -setup -Session -standardized -##ík -##sket -appoint -AFB -Nationalist -##WS -Troop -leaped -Treasure -goodness -weary -originates -100th -compassion -expresses -recommend -168 -composing -seventeenth -Tex -Atlético -bald -Finding -Presidency -Sharks -favoured -inactive -##lter -suffix -princes -brighter -##ctus -classics -defendants -culminated -terribly -Strategy -evenings -##ção -##iver -##urance -absorb -##rner -Territories -RBI -soothing -Martín -concurrently -##tr -Nicholson -fibers -swam -##oney -Allie -Algerian -Dartmouth -Mafia -##bos -##tts -Councillor -vocabulary -##bla -##lé -intending -##dler -Guerrero -sunshine -pedal -##TO -administrators -periodic -scholarships -Loop -Madeline -exaggerated -##ressed -Regan -##cellular -Explorer -##oids -Alexandre -vows -Reporter -Unable -Average -absorption -##bedience -Fortunately -Auxiliary -Grandpa -##HP -##ovo -potent -temporal -adrenaline -##udo -confusing -guiding -Dry -qualifications -joking -wherein -heavyweight -##ices -nightmares -pharmaceutical -Commanding -##aled -##ove -Gregor -##UP -censorship -degradation -glorious -Austro -##rench -380 -Miriam -sped -##orous -offset -##KA -fined -specialists -Pune -João -##dina -propped -fungus -##ς -frantically -Gabrielle -Hare -committing -##plied -Ask -Wilmington -stunt -numb -warmer -preacher -earnings -##lating -integer -##ija -federation -homosexuality -##cademia -epidemic -grumbled -shoving -Milk -Satan -Tobias -innovations -##dington -geology -memoirs -##IR -spared -culminating -Daphne -Focus -severed -stricken -Paige -Mans -flats -Russo -communes -litigation -strengthening -##powered -Staffordshire -Wiltshire -Painting -Watkins -##د -specializes -Select -##rane -##aver -Fulton -playable -##VN -openings -sampling -##coon -##21 -Allah -travelers -allocation -##arily -Loch -##hm -commentators -fulfilled -##troke -Emeritus -Vanderbilt -Vijay -pledged -##tative -diagram -drilling -##MD -##plain -Edison -productivity -31st -##rying -##ption -##gano -##oration -##bara -posture -bothering -platoon -politely -##inating -redevelopment -Job -##vale -stark -incorrect -Mansion -renewal -threatens -Bahamas -fridge -##tata -Uzbekistan -##edia -Sainte -##mio -gaps -neural -##storm -overturned -Preservation -shields -##ngo -##physics -ah -gradual -killings -##anza -consultation -premiership -Felipe -coincidence -##ène -##any -Handbook -##loaded -Edit -Guns -arguably -##ş -compressed -depict -seller -##qui -Kilkenny -##kling -Olympia -librarian -##acles -dramas -JP -Kit -Maj -##lists -proprietary -##nged -##ettes -##tok -exceeding -Lock -induction -numerical -##vist -Straight -foyer -imaginary -##pop -violinist -Carla -bouncing -##ashi -abolition -##uction -restoring -scenic -##č -Doom -overthrow -para -##vid -##ughty -Concord -HC -cocaine -deputies -##aul -visibility -##wart -Kapoor -Hutchinson -##agan -flashes -kn -decreasing -##ronology -quotes -vain -satisfying -##iam -##linger -310 -Hanson -fauna -##zawa -##rrel -Trenton -##VB -Employment -vocational -Exactly -bartender -butterflies -tow -##chers -##ocks -pigs -merchandise -##game -##pine -Shea -##gration -Connell -Josephine -monopoly -##dled -Cobb -warships -cancellation -someday -stove -##Cs -candidacy -superhero -unrest -Toulouse -admiration -undergone -whirled -Reconnaissance -costly -##ships -290 -Cafe -amber -Tory -##mpt -definitive -##dress -proposes -redesigned -acceleration -##asa -##raphy -Presley -exits -Languages -##cel -Mode -spokesperson -##tius -Ban -forthcoming -grounded -ACC -compelling -logistics -retailers -abused -##gating -soda -##yland -##lution -Landmark -XVI -blush -##tem -hurling -dread -Tobago -Foley -##uad -scenarios -##mentation -##rks -Score -fatigue -hairy -correspond -##iard -defences -confiscated -##rudence -1785 -Formerly -Shot -advertised -460 -Text -ridges -Promise -Dev -exclusion -NHS -tuberculosis -rockets -##offs -sparkling -256 -disappears -mankind -##hore -HP -##omo -taxation -Multi -DS -Virgil -##ams -Dell -stacked -guessing -Jump -Nope -cheer -hates -ballots -overlooked -analyses -Prevention -maturity -dos -##cards -##lect -Mare -##yssa -Petty -##wning -differing -iOS -##ior -Joachim -Sentinel -##nstein -90s -Pamela -480 -Asher -##lary -Vicente -landings -portray -##rda -##xley -Virtual -##uary -finances -Jain -Somebody -Tri -behave -Michele -##ider -dwellings -FAA -Gallagher -##lide -Monkey -195 -aforementioned -##rism -##bey -##kim -##puted -Mesa -hopped -unopposed -recipients -Reality -Been -gritted -149 -playground -pillar -##rone -Guinness -##tad -Théâtre -depended -Tipperary -Reuben -frightening -wooded -Target -globally -##uted -Morales -Baptiste -drunken -Institut -characterised -##chemistry -Strip -discrete -Premiership -##zzling -gazing -Outer -##quisition -Sikh -Booker -##yal -contemporaries -Jericho -##chan -##physical -##witch -Militia -##rez -##zard -dangers -##utter -##₀ -Programs -darling -participates -railroads -##ienne -behavioral -bureau -##rook -161 -Hicks -##rises -Comes -inflicted -bees -kindness -norm -##ković -generators -##pard -##omy -##ili -methodology -Alvin -façade -latitude -##plified -DE -Morse -##mered -educate -intersects -##MF -##cz -##vated -AL -##graded -##fill -constitutes -artery -feudal -avant -cautious -##ogue -immigrated -##chenko -Saul -Clinic -Fang -choke -Cornelius -flexibility -temperate -pins -##erson -oddly -inequality -157 -Natasha -Sal -##uter -215 -aft -blinking -##ntino -northward -Exposition -cookies -Wedding -impulse -Overseas -terrifying -##ough -Mortimer -##see -440 -https -og -imagining -##cars -Nicola -exceptionally -threads -##cup -Oswald -Provisional -dismantled -deserves -1786 -Fairy -discourse -Counsel -departing -Arc -guarding -##orse -420 -alterations -vibrant -Em -squinted -terrace -rowing -Led -accessories -SF -Sgt -cheating -Atomic -##raj -Blackpool -##iary -boarded -substituted -bestowed -lime -kernel -##jah -Belmont -shaken -sticky -retrospective -Louie -migrants -weigh -sunglasses -thumbs -##hoff -excavation -##nks -Extra -Polo -motives -Drum -infrared -tastes -berth -verge -##stand -programmed -warmed -Shankar -Titan -chromosome -cafeteria -dividing -pepper -CPU -Stevie -satirical -Nagar -scowled -Died -backyard -##gata -##reath -##bir -Governors -portraying -##yah -Revenge -##acing -1772 -margins -Bahn -OH -lowland -##razed -catcher -replay -##yoshi -Seriously -##licit -Aristotle -##ald -Habsburg -weekday -Secretariat -CO -##dly -##joy -##stad -litre -ultra -##cke -Mongol -Tucson -correlation -compose -traps -Groups -Hai -Salvatore -##dea -cents -##eese -concession -clash -Trip -Panzer -Moroccan -cruisers -torque -Ba -grossed -##arate -restriction -concentrating -FDA -##Leod -##ones -Scholars -##esi -throbbing -specialised -##heses -Chicken -##fia -##ificant -Erich -Residence -##trate -manipulation -namesake -##tom -Hoover -cue -Lindsey -Lonely -275 -##HT -combustion -subscribers -Punjabi -respects -Jeremiah -penned -##gor -##rilla -suppression -##tration -Crimson -piston -Derry -crimson -lyrical -oversee -portrays -CF -Districts -Lenin -Cora -searches -clans -VHS -##hel -Jacqueline -Redskins -Clubs -desktop -indirectly -alternatives -marijuana -suffrage -##smos -Irwin -##liff -Process -##hawks -Sloane -##bson -Sonata -yielded -Flores -##ares -armament -adaptations -integrate -neighbours -shelters -##tour -Skinner -##jet -##tations -1774 -Peterborough -##elles -ripping -Liang -Dickinson -charities -Rwanda -monasteries -crossover -racist -barked -guerrilla -##ivate -Grayson -##iques -##vious -##got -Rolls -denominations -atom -affinity -##delity -Wish -##inted -##inae -interrogation -##cey -##erina -##lifting -192 -Sands -1779 -mast -Likewise -##hyl -##oft -contempt -##por -assaulted -fills -establishments -Mal -consulted -##omi -##sight -greet -##roma -##egan -Pulitzer -##rried -##dius -##ractical -##voked -Hasan -CB -##zzy -Romanesque -Panic -wheeled -recorder -##tters -##warm -##gly -botanist -Balkan -Lockheed -Polly -farewell -suffers -purchases -Eaton -##80 -Quick -commenting -Saga -beasts -hides -motifs -##icks -Alonso -Springer -Wikipedia -circulated -encoding -jurisdictions -snout -UAE -Integrated -unmarried -Heinz -##lein -##figured -deleted -##tley -Zen -Cycling -Fuel -Scandinavian -##rants -Conner -reef -Marino -curiously -lingered -Gina -manners -activism -Mines -Expo -Micah -promotions -Server -booked -derivatives -eastward -detailing -reelection -##chase -182 -Campeonato -Po -158 -Peel -winger -##itch -canyon -##pit -LDS -A1 -##shin -Giorgio -pathetic -##rga -##mist -Aren -##lag -confronts -motel -textbook -shine -turbines -1770 -Darcy -##cot -Southeastern -##lessness -Banner -recognise -stray -Kitchen -paperwork -realism -Chrysler -filmmakers -fishermen -##hetic -variously -Vishnu -fiddle -Eddy -Origin -##tec -##ulin -Flames -Rs -bankrupt -Extreme -Pomeranian -##emption -ratified -##iu -jockey -Stratford -##ivating -##oire -Babylon -pardon -AI -affordable -deities -disturbance -Trying -##sai -Ida -Papers -advancement -70s -archbishop -Luftwaffe -announces -tugging -##lphin -##sistence -##eel -##ishes -ambition -aura -##fled -##lected -##vue -Prasad -boiled -clarity -Violin -investigative -routing -Yankee -##uckle -McMahon -bugs -eruption -##rooms -Minutes -relics -##ckle -##nse -sipped -valves -weakly -##ital -Middleton -collided -##quer -bamboo -insignia -Tyne -exercised -Ninth -echoing -polynomial -considerations -lunged -##bius -objections -complain -disguised -plaza -##VC -institutes -Judicial -ascent -imminent -Waterford -hello -Lumpur -Niger -Goldman -vendors -Kensington -Wren -browser -##bner -##tri -##mize -##pis -##lea -Cheyenne -Bold -Settlement -Hollow -Paralympic -axle -##toire -##actic -impose -perched -utilizing -slips -Benz -Michaels -manipulate -Chiang -##mian -Dolphins -prohibition -attacker -ecology -Estadio -##SB -##uild -attracts -recalls -glacier -lad -##rima -Barlow -kHz -melodic -##aby -##iracy -assumptions -Cornish -##aru -DOS -Maddie -##mers -lyric -Luton -nm -##tron -Reno -Fin -YOU -Broadcast -Finch -sensory -##bent -Jeep -##uman -additionally -Buildings -businessmen -treaties -235 -Stranger -gateway -Charlton -accomplishments -Diary -apologized -zinc -histories -supplier -##tting -162 -asphalt -Treatment -Abbas -##pating -##yres -Bloom -sedan -soloist -##cum -antagonist -denounced -Fairfax -##aving -##enko -noticeable -Budget -Buckingham -Snyder -retreating -Jai -spoon -invading -giggle -woven -gunfire -arrests -##vered -##come -respiratory -violet -##aws -Byrd -shocking -tenant -Jamaican -Ottomans -Seal -theirs -##isse -##48 -cooperate -peering -##nius -163 -Composer -organist -Mongolian -Bauer -Spy -collects -prophecy -congregations -##moor -Brick -calculation -fixtures -exempt -##dden -Ada -Thousand -##lue -tracing -##achi -bodyguard -vicar -supplying -Łódź -interception -monitored -##heart -Paso -overlap -annoyance -##dice -yellowish -stables -elders -illegally -honesty -##oar -skinny -spinal -##puram -Bourbon -##cor -flourished -Medium -##stics -##aba -Follow -##ckey -stationary -##scription -dresser -scrutiny -Buckley -Clearly -##SF -Lyrics -##heimer -drying -Oracle -internally -rains -##last -Enemy -##oes -McLean -Ole -phosphate -Rosario -Rifles -##mium -battered -Pepper -Presidents -conquer -Château -castles -##aldo -##ulf -Depending -Lesser -Boom -trades -Peyton -164 -emphasize -accustomed -SM -Ai -Classification -##mins -##35 -##rons -leak -piled -deeds -lush -##self -beginnings -breathless -1660 -McGill -##ago -##chaft -##gies -humour -Bomb -securities -Might -##zone -##eves -Matthias -Movies -Levine -vengeance -##ads -Challenger -Misty -Traditionally -constellation -##rass -deepest -workplace -##oof -##vina -impatient -##ML -Mughal -Alessandro -scenery -Slater -postseason -troupe -##ń -Volunteers -Facility -militants -Reggie -sanctions -Expeditionary -Nam -countered -interpret -Basilica -coding -expectation -Duffy -def -Tong -wakes -Bowling -Vehicle -Adler -salad -intricate -stronghold -medley -##uries -##bur -joints -##rac -##yx -##IO -Ordnance -Welch -distributor -Ark -cavern -trench -Weiss -Mauritius -decreases -docks -eagerly -irritation -Matilda -biographer -Visiting -##marked -##iter -##ear -##gong -Moreno -attendant -Bury -instrumentation -theologian -clit -nuns -symphony -translate -375 -loser -##user -##VR -##meter -##orious -harmful -##yuki -Commissioners -Mendoza -sniffed -Hulk -##dded -##ulator -##nz -Donnell -##eka -deported -Met -SD -Aerospace -##cultural -##odes -Fantastic -cavity -remark -emblem -fearing -##iance -ICAO -Liberia -stab -##yd -Pac -Gymnasium -IS -Everton -##vanna -mantle -##ief -Ramon -##genic -Shooting -Smoke -Random -Africans -MB -tavern -bargain -voluntarily -Ion -Peoples -Rusty -attackers -Patton -sins -##cake -Hat -moderately -##hala -##alia -requesting -mechanic -##eae -Seine -Robbins -##ulum -susceptible -Bravo -Slade -Strasbourg -rubble -entrusted -Creation -##amp -smoothed -##uintet -evenly -reviewers -skip -Sculpture -177 -Rough -##rrie -Reeves -##cede -Administrator -garde -minus -carriages -grenade -Ninja -fuscous -##kley -Punk -contributors -Aragon -Tottenham -##cca -##sir -VA -laced -dealers -##sonic -crisp -harmonica -Artistic -Butch -Andes -Farmers -corridors -unseen -##tium -Countries -Lone -envisioned -Katy -##lang -##cc -Quarterly -##neck -consort -##aceae -bidding -Corey -concurrent -##acts -##gum -Highness -##lient -##rators -arising -##unta -pathways -49ers -bolted -complaining -ecosystem -libretto -Ser -narrated -212 -Soft -influx -##dder -incorporation -plagued -tents -##ddled -1750 -Risk -citation -Tomas -hostilities -seals -Bruins -Dominique -attic -competent -##UR -##cci -hugging -Breuning -bacterial -Shrewsbury -vowed -eh -elongated -hangs -render -centimeters -##ficient -Mu -turtle -besieged -##gaard -grapes -bravery -collaborations -deprived -##amine -##using -##gins -arid -##uve -coats -hanged -##sting -Pa -prefix -##ranged -Exit -Chain -Flood -Materials -suspicions -##ö -hovered -Hidden -##state -Malawi -##24 -Mandy -norms -fascinating -airlines -delivers -##rust -Cretaceous -spanned -pillows -##onomy -jar -##kka -regent -fireworks -morality -discomfort -lure -uneven -##jack -Lucian -171 -archaeology -##til -mornings -Billie -Marquess -impending -spilling -tombs -##volved -Celia -Coke -underside -##bation -Vaughn -Daytona -Godfrey -Pascal -Alien -##sign -172 -##lage -iPhone -Gonna -genocide -##rber -oven -endure -dashed -simultaneous -##phism -Wally -##rō -ants -predator -reissue -##aper -Speech -funk -Rudy -claw -Hindus -Numbers -Bing -lantern -##aurus -scattering -poisoned -##active -Andrei -algebraic -baseman -##ritz -Gregg -##cola -selections -##putation -lick -Laguna -##IX -Sumatra -Warning -turf -buyers -Burgess -Oldham -exploit -worm -initiate -strapped -tuning -filters -haze -##е -##ledge -##ydro -##culture -amendments -Promotion -##union -Clair -##uria -petty -shutting -##eveloped -Phoebe -Zeke -conducts -grains -clashes -##latter -illegitimate -willingly -Deer -Lakers -Reference -chaplain -commitments -interrupt -salvation -Panther -Qualifying -Assessment -cancel -efficiently -attorneys -Dynamo -impress -accession -clinging -randomly -reviewing -Romero -Cathy -charting -clapped -rebranded -Azerbaijani -coma -indicator -punches -##tons -Sami -monastic -prospects -Pastor -##rville -electrified -##CI -##utical -tumbled -Chef -muzzle -selecting -UP -Wheel -protocols -##tat -Extended -beautifully -nests -##stal -Andersen -##anu -##³ -##rini -kneeling -##reis -##xia -anatomy -dusty -Safe -turmoil -Bianca -##elo -analyze -##ر -##eran -podcast -Slovene -Locke -Rue -##retta -##uni -Person -Prophet -crooked -disagreed -Versailles -Sarajevo -Utrecht -##ogen -chewing -##ception -##iidae -Missile -attribute -majors -Arch -intellectuals -##andra -ideological -Cory -Salzburg -##fair -Lot -electromagnetic -Distribution -##oper -##pered -Russ -Terra -repeats -fluttered -Riga -##ific -##gt -cows -Hair -labelled -protects -Gale -Personnel -Düsseldorf -Moran -rematch -##OE -Slow -forgiveness -##ssi -proudly -Macmillan -insist -undoubtedly -Québec -Violence -##yuan -##aine -mourning -linen -accidental -##iol -##arium -grossing -lattice -maneuver -##marine -prestige -petrol -gradient -invasive -militant -Galerie -widening -##aman -##quist -disagreement -##ales -creepy -remembers -buzz -##erial -Exempt -Dirk -mon -Addison -##inen -deposed -##agon -fifteenth -Hang -ornate -slab -##lades -Fountain -contractors -das -Warwickshire -1763 -##rc -Carly -Essays -Indy -Ligue -greenhouse -slit -##sea -chewed -wink -##azi -Playhouse -##kon -Gram -Ko -Samson -creators -revive -##rians -spawned -seminars -Craft -Tall -diverted -assistants -computational -enclosure -##acity -Coca -##eve -databases -Drop -##loading -##hage -Greco -Privy -entrances -pork -prospective -Memories -robes -##market -transporting -##lik -Rudolph -Horton -visually -##uay -##nja -Centro -Tor -Howell -##rsey -admitting -postgraduate -herbs -##att -Chin -Rutherford -##bot -##etta -Seasons -explanations -##bery -Friedman -heap -##ryl -##sberg -jaws -##agh -Choi -Killing -Fanny -##suming -##hawk -hopeful -##aid -Monty -gum -remarkably -Secrets -disco -harp -advise -##avia -Marathi -##cycle -Truck -abbot -sincere -urine -##mology -masked -bathing -##tun -Fellows -##TM -##gnetic -owl -##jon -hymn -##leton -208 -hostility -##cée -baked -Bottom -##AB -shudder -##ater -##von -##hee -reorganization -Cycle -##phs -Lex -##style -##rms -Translation -##erick -##imeter -##ière -attested -Hillary -##DM -gal -wander -Salle -##laming -Perez -Pit -##LP -USAF -contexts -Disease -blazing -aroused -razor -walled -Danielle -Mont -Funk -royalty -thee -203 -donors -##erton -famously -processors -reassigned -welcoming -Goldberg -##quities -undisclosed -Orient -Patty -vaccine -refrigerator -Cypriot -consonant -##waters -176 -sober -##lement -Racecourse -##uate -Luckily -Selection -conceptual -vines -Breaking -wa -lions -oversight -sheltered -Dancer -ponds -borrow -##BB -##pulsion -Daly -##eek -fertility -spontaneous -Worldwide -gasping -##tino -169 -ABS -Vickers -ambient -energetic -prisons -##eson -Stacy -##roach -GmbH -Afro -Marin -farmhouse -pinched -##cursion -##sp -Sabine -##pire -181 -nak -swelling -humble -perfume -##balls -Rai -cannons -##taker -Married -Maltese -canals -interceptions -hats -lever -slowing -##ppy -Nike -Silas -Scarborough -skirts -166 -inauguration -Shuttle -alloy -beads -belts -Compton -Cause -battling -critique -surf -Dock -roommate -##ulet -invade -Garland -##slow -nutrition -persona -##zam -Wichita -acquaintance -coincided -##cate -Dracula -clamped -##gau -overhaul -##broken -##rrier -melodies -ventures -Paz -convex -Roots -##holding -Tribute -transgender -##ò -chimney -##riad -Ajax -Thereafter -messed -nowadays -pH -##100 -##alog -Pomerania -##yra -Rossi -glove -##TL -Races -##asily -tablets -Jase -##ttes -diner -##rns -Hu -Mohan -anytime -weighted -remixes -Dove -cherry -imports -##urity -GA -##TT -##iated -##sford -Clarkson -evidently -rugged -Dust -siding -##ometer -acquitted -choral -##mite -infants -Domenico -gallons -Atkinson -gestures -slated -##xa -Archaeology -unwanted -##ibes -##duced -premise -Colby -Geelong -disqualified -##pf -##voking -simplicity -Walkover -Qaeda -Warden -##bourg -##ān -Invasion -Babe -harness -183 -##tated -maze -Burt -bedrooms -##nsley -Horizon -##oast -minimize -peeked -MLA -Trains -tractor -nudged -##iform -Growth -Benton -separates -##about -##kari -buffer -anthropology -brigades -foil -##wu -Domain -licking -whore -##rage -##sham -Initial -Courthouse -Rutgers -dams -villains -supermarket -##brush -Brunei -Palermo -arises -Passenger -outreach -##gill -Labrador -McLaren -##uy -Lori -##fires -Heads -magistrate -¹⁄₂ -Weapons -##wai -##roke -projecting -##ulates -bordering -McKenzie -Pavel -midway -Guangzhou -streamed -racer -##lished -eccentric -spectral -206 -##mism -Wilde -Grange -preparatory -lent -##tam -starving -Gertrude -##cea -##ricted -Breakfast -Mira -blurted -derive -##lair -blunt -sob -Cheltenham -Henrik -reinstated -intends -##istan -unite -##ector -playful -sparks -mapped -Cadet -luggage -prosperous -##ein -salon -##utes -Biological -##rland -Tyrone -buyer -##lose -amounted -Saw -smirked -Ronan -Reviews -Adele -trait -##proof -Bhutan -Ginger -##junct -digitally -stirring -##isted -coconut -Hamlet -Dinner -Scale -pledge -##RP -Wrong -Goal -Panel -therapeutic -elevations -infectious -priesthood -##inda -Guyana -diagnostic -##mbre -Blackwell -sails -##arm -literal -periodically -gleaming -Robot -Rector -##abulous -##tres -Reaching -Romantic -CP -Wonderful -##tur -ornamental -##nges -traitor -##zilla -genetics -mentioning -##eim -resonance -Areas -Shopping -##nard -Gail -Solid -##rito -##mara -Willem -Chip -Matches -Volkswagen -obstacle -Organ -invites -Coral -attain -##anus -##dates -Midway -shuffled -Cecilia -dessert -Gateway -Ch -Napoleonic -Petroleum -jets -goose -striped -bowls -vibration -Sims -nickel -Thirteen -problematic -intervene -##grading -##unds -Mum -semifinal -Radical -##izations -refurbished -##sation -##harine -Maximilian -cites -Advocate -Potomac -surged -preserves -Curry -angled -ordination -##pad -Cade -##DE -##sko -researched -torpedoes -Resident -wetlands -hay -applicants -depart -Bernstein -##pic -##ario -##rae -favourable -##wari -##р -metabolism -nobleman -Defaulted -calculate -ignition -Celebrity -Belize -sulfur -Flat -Sc -USB -flicker -Hertfordshire -Sept -CFL -Pasadena -Saturdays -Titus -##nir -Canary -Computing -Isaiah -##mler -formidable -pulp -orchid -Called -Solutions -kilograms -steamer -##hil -Doncaster -successors -Stokes -Holstein -##sius -sperm -API -Rogue -instability -Acoustic -##rag -159 -undercover -Wouldn -##pra -##medical -Eliminated -honorable -##chel -denomination -abrupt -Buffy -blouse -fi -Regardless -Subsequent -##rdes -Lover -##tford -bacon -##emia -carving -##cripts -Massacre -Ramos -Latter -##ulp -ballroom -##gement -richest -bruises -Rest -Wiley -##aster -explosions -##lastic -Edo -##LD -Mir -choking -disgusted -faintly -Barracks -blasted -headlights -Tours -ensued -presentations -##cale -wrought -##oat -##coa -Quaker -##sdale -recipe -##gny -corpses -##liance -comfortably -##wat -Landscape -niche -catalyst -##leader -Securities -messy -##RL -Rodrigo -backdrop -##opping -treats -Emilio -Anand -bilateral -meadow -VC -socialism -##grad -clinics -##itating -##ppe -##ymphonic -seniors -Advisor -Armoured -Method -Alley -##orio -Sad -fueled -raided -Axel -NH -rushes -Dixie -Otis -wrecked -##22 -capitalism -café -##bbe -##pion -##forcing -Aubrey -Lublin -Whenever -Sears -Scheme -##lana -Meadows -treatise -##RI -##ustic -sacrifices -sustainability -Biography -mystical -Wanted -multiplayer -Applications -disliked -##tisfied -impaired -empirical -forgetting -Fairfield -Sunni -blurred -Growing -Avalon -coil -Camera -Skin -bruised -terminals -##fted -##roving -Commando -##hya -##sper -reservations -needles -dangling -##rsch -##rsten -##spect -##mbs -yoga -regretted -Bliss -Orion -Rufus -glucose -Olsen -autobiographical -##dened -222 -humidity -Shan -##ifiable -supper -##rou -flare -##MO -campaigning -descend -socio -declares -Mounted -Gracie -Arte -endurance -##ety -Copper -costa -airplay -##MB -Proceedings -dislike -grimaced -occupants -births -glacial -oblivious -cans -installment -muddy -##ł -captains -pneumonia -Quiet -Sloan -Excuse -##nine -Geography -gymnastics -multimedia -drains -Anthology -Gear -cylindrical -Fry -undertaking -##pler -##tility -Nan -##recht -Dub -philosophers -piss -Atari -##pha -Galicia -México -##nking -Continuing -bump -graveyard -persisted -Shrine -##erapy -defects -Advance -Bomber -##oil -##ffling -cheerful -##lix -scrub -##eto -awkwardly -collaborator -fencing -##alo -prophet -Croix -coughed -##lication -roadway -slaughter -elephants -##erated -Simpsons -vulnerability -ivory -Birth -lizard -scarce -cylinders -fortunes -##NL -Hate -Priory -##lai -McBride -##copy -Lenny -liaison -Triangle -coronation -sampled -savage -amidst -Grady -whatsoever -instinctively -Reconstruction -insides -seizure -Drawing -##rlin -Antioch -Gao -Díaz -1760 -Sparks -##tien -##bidae -rehearsal -##bbs -botanical -##hers -compensate -wholesale -Seville -shareholder -prediction -astronomical -Reddy -hardest -circling -whereabouts -termination -Rep -Assistance -Dramatic -Herb -##ghter -climbs -188 -Poole -301 -##pable -wit -##istice -Walters -relying -Jakob -##redo -proceeding -Langley -affiliates -ou -##allo -##holm -Samsung -##ishi -Missing -Xi -vertices -Claus -foam -restless -##uating -##sso -##ttering -Philips -delta -bombed -Catalogue -coaster -Ling -Willard -satire -410 -Composition -Net -Orioles -##ldon -fins -Palatinate -Woodward -tease -tilt -brightness -##70 -##bbling -##loss -##dhi -##uilt -Whoever -##yers -hitter -Elton -Extension -ace -Affair -restructuring -##loping -Paterson -hi -##rya -spouse -Shay -Himself -piles -preaching -##gical -bikes -Brave -expulsion -Mirza -stride -Trees -commemorated -famine -masonry -Selena -Watt -Banking -Rancho -Stockton -dip -tattoos -Vlad -acquainted -Flyers -ruthless -fourteenth -illustrate -##akes -EPA -##rows -##uiz -bumped -Designed -Leaders -mastered -Manfred -swirled -McCain -##rout -Artemis -rabbi -flinched -upgrades -penetrate -shipyard -transforming -caretaker -##eiro -Maureen -tightening -##founded -RAM -##icular -##mper -##rung -Fifteen -exploited -consistency -interstate -##ynn -Bridget -contamination -Mistress -##rup -coating -##FP -##jective -Libyan -211 -Gemma -dependence -shrubs -##ggled -Germain -retaliation -traction -##PP -Dangerous -terminology -psychiatrist -##garten -hurdles -Natal -wasting -Weir -revolves -stripe -##reased -preferences -##entation -##lde -##áil -##otherapy -Flame -##ologies -viruses -Label -Pandora -veil -##ogical -Coliseum -Cottage -creeping -Jong -lectured -##çaise -shoreline -##fference -##hra -Shade -Clock -Faye -bilingual -Humboldt -Operating -##fter -##was -algae -towed -amphibious -Parma -impacted -smacked -Piedmont -Monsters -##omb -Moor -##lberg -sinister -Postal -178 -Drummond -Sign -textbooks -hazardous -Brass -Rosemary -Pick -Sit -Architect -transverse -Centennial -confess -polling -##aia -Julien -##mand -consolidation -Ethel -##ulse -severity -Yorker -choreographer -1840s -##ltry -softer -versa -##geny -##quila -##jō -Caledonia -Friendship -Visa -rogue -##zzle -bait -feather -incidence -Foods -Ships -##uto -##stead -arousal -##rote -Hazel -##bolic -Swing -##ej -##cule -##jana -##metry -##uity -Valuable -##ₙ -Shropshire -##nect -365 -Ones -realise -Café -Albuquerque -##grown -##stadt -209 -##ᵢ -prefers -withstand -Lillian -MacArthur -Hara -##fulness -domination -##VO -##school -Freddy -ethnicity -##while -adorned -hormone -Calder -Domestic -Freud -Shields -##phus -##rgan -BP -Segunda -Mustang -##GI -Bonn -patiently -remarried -##umbria -Crete -Elephant -Nuremberg -tolerate -Tyson -##evich -Programming -##lander -Bethlehem -segregation -Constituency -quarterly -blushed -photographers -Sheldon -porcelain -Blanche -goddamn -lively -##fused -bumps -##eli -curated -coherent -provoked -##vet -Madeleine -##isco -rainy -Bethel -accusation -ponytail -gag -##lington -quicker -scroll -##vate -Bow -Gender -Ira -crashes -ACT -Maintenance -##aton -##ieu -bitterly -strains -rattled -vectors -##arina -##ishly -173 -parole -##nx -amusing -Gonzalez -##erative -Caucus -sensual -Penelope -coefficient -Mateo -##mani -proposition -Duty -lacrosse -proportions -Plato -profiles -Botswana -Brandt -reins -mandolin -encompassing -##gens -Kahn -prop -summon -##MR -##yrian -##zaki -Falling -conditional -thy -##bao -##ych -radioactive -##nics -Newspaper -##people -##nded -Gaming -sunny -##look -Sherwood -crafted -NJ -awoke -187 -timeline -giants -possessing -##ycle -Cheryl -ng -Ruiz -polymer -potassium -Ramsay -relocation -##leen -Sociology -##bana -Franciscan -propulsion -denote -##erjee -registers -headline -Tests -emerges -Articles -Mint -livery -breakup -kits -Rap -Browning -Bunny -##mington -##watch -Anastasia -Zachary -arranging -biographical -Erica -Nippon -##membrance -Carmel -##sport -##xes -Paddy -##holes -Issues -Spears -compliment -##stro -##graphs -Castillo -##MU -##space -Corporal -##nent -174 -Gentlemen -##ilize -##vage -convinces -Carmine -Crash -##hashi -Files -Doctors -brownish -sweating -goats -##conductor -rendition -##bt -NL -##spiration -generates -##cans -obsession -##noy -Danger -Diaz -heats -Realm -priorities -##phon -1300 -initiation -pagan -bursts -archipelago -chloride -Screenplay -Hewitt -Khmer -bang -judgement -negotiating -##ait -Mabel -densely -Boulder -knob -430 -Alfredo -##kt -pitches -##ées -##ان -Macdonald -##llum -imply -##mot -Smile -spherical -##tura -Derrick -Kelley -Nico -cortex -launches -differed -parallels -Navigation -##child -##rming -canoe -forestry -reinforce -##mote -confirming -tasting -scaled -##resh -##eting -Understanding -prevailing -Pearce -CW -earnest -Gaius -asserts -denoted -landmarks -Chargers -warns -##flies -Judges -jagged -##dain -tails -Historian -Millie -##sler -221 -##uard -absurd -Dion -##ially -makeshift -Specifically -ignorance -Eat -##ieri -comparisons -forensic -186 -Giro -skeptical -disciplinary -battleship -##45 -Libby -520 -Odyssey -ledge -##post -Eternal -Missionary -deficiency -settler -wonders -##gai -raging -##cis -Romney -Ulrich -annexation -boxers -sect -204 -ARIA -dei -Hitchcock -te -Varsity -##fic -CC -lending -##nial -##tag -##rdy -##obe -Defensive -##dson -##pore -stellar -Lam -Trials -contention -Sung -##uminous -Poe -superiority -##plicate -325 -bitten -conspicuous -##olly -Lila -Pub -Petit -distorted -ISIL -distinctly -##family -Cowboy -mutant -##cats -##week -Changes -Sinatra -epithet -neglect -Innocent -gamma -thrill -reggae -##adia -##ational -##due -landlord -##leaf -visibly -##ì -Darlington -Gomez -##iting -scarf -##lade -Hinduism -Fever -scouts -##roi -convened -##oki -184 -Lao -boycott -unemployed -##lore -##ß -##hammer -Curran -disciples -odor -##ygiene -Lighthouse -Played -whales -discretion -Yves -##ceived -pauses -coincide -##nji -dizzy -##scopic -routed -Guardians -Kellan -carnival -nasal -224 -##awed -Mitsubishi -640 -Cast -silky -Projects -joked -Huddersfield -Rothschild -zu -##olar -Divisions -mildly -##eni -##lge -Appalachian -Sahara -pinch -##roon -wardrobe -##dham -##etal -Bubba -##lini -##rumbling -Communities -Poznań -unification -Beau -Kris -SV -Rowing -Minh -reconciliation -##saki -##sor -taped -##reck -certificates -gubernatorial -rainbow -##uing -litter -##lique -##oted -Butterfly -benefited -Images -induce -Balkans -Velvet -##90 -##xon -Bowman -##breaker -penis -##nitz -##oint -##otive -crust -##pps -organizers -Outdoor -nominees -##rika -TX -##ucks -Protestants -##imation -appetite -Baja -awaited -##points -windshield -##igh -##zled -Brody -Buster -stylized -Bryce -##sz -Dollar -vest -mold -ounce -ok -receivers -##uza -Purdue -Harrington -Hodges -captures -##ggio -Reservation -##ssin -##tman -cosmic -straightforward -flipping -remixed -##athed -Gómez -Lim -motorcycles -economies -owning -Dani -##rosis -myths -sire -kindly -1768 -Bean -graphs -##mee -##RO -##geon -puppy -Stephenson -notified -##jer -Watching -##rama -Sino -urgency -Islanders -##mash -Plata -fumble -##chev -##stance -##rack -##she -facilitated -swings -akin -enduring -payload -##phine -Deputies -murals -##tooth -610 -Jays -eyeing -##quito -transparency -##cote -Timor -negatively -##isan -battled -##fected -thankful -Rage -hospitality -incorrectly -207 -entrepreneurs -##cula -##wley -hedge -##cratic -Corpus -Odessa -Whereas -##ln -fetch -happier -Amherst -bullying -graceful -Height -Bartholomew -willingness -qualifier -191 -Syed -Wesleyan -Layla -##rrence -Webber -##hum -Rat -##cket -##herence -Monterey -contaminated -Beside -Mustafa -Nana -213 -##pruce -Reason -##spense -spike -##gé -AU -disciple -charcoal -##lean -formulated -Diesel -Mariners -accreditation -glossy -1800s -##ih -Mainz -unison -Marianne -shear -overseeing -vernacular -bowled -##lett -unpopular -##ckoned -##monia -Gaston -##TI -##oters -Cups -##bones -##ports -Museo -minors -1773 -Dickens -##EL -##NBC -Presents -ambitions -axes -Río -Yukon -bedside -Ribbon -Units -faults -conceal -##lani -prevailed -214 -Goodwin -Jaguar -crumpled -Cullen -Wireless -ceded -remotely -Bin -mocking -straps -ceramics -##avi -##uding -##ader -Taft -twenties -##aked -Problem -quasi -Lamar -##ntes -##avan -Barr -##eral -hooks -sa -##ône -194 -##ross -Nero -Caine -trance -Homeland -benches -Guthrie -dismiss -##lex -César -foliage -##oot -##alty -Assyrian -Ahead -Murdoch -dictatorship -wraps -##ntal -Corridor -Mackay -respectable -jewels -understands -##pathic -Bryn -##tep -ON -capsule -intrigued -Sleeping -communists -##chayat -##current -##vez -doubling -booklet -##uche -Creed -##NU -spies -##sef -adjusting -197 -Imam -heaved -Tanya -canonical -restraint -senators -stainless -##gnate -Matter -cache -restrained -conflicting -stung -##ool -Sustainable -antiquity -193 -heavens -inclusive -##ador -fluent -303 -911 -archaeologist -superseded -##plex -Tammy -inspire -##passing -##lub -Lama -Mixing -##activated -##yote -parlor -tactic -198 -Stefano -prostitute -recycling -sorted -banana -Stacey -Musée -aristocratic -cough -##rting -authorised -gangs -runoff -thoughtfully -##nish -Fisheries -Provence -detector -hum -##zhen -pill -##árez -Map -Leaves -Peabody -skater -vent -##color -390 -cerebral -hostages -mare -Jurassic -swell -##isans -Knoxville -Naked -Malaya -scowl -Cobra -##anga -Sexual -##dron -##iae -196 -##drick -Ravens -Blaine -##throp -Ismail -symmetric -##lossom -Leicestershire -Sylvester -glazed -##tended -Radar -fused -Families -Blacks -Sale -Zion -foothills -microwave -slain -Collingwood -##pants -##dling -killers -routinely -Janice -hearings -##chanted -##ltration -continents -##iving -##yster -##shot -##yna -injected -Guillaume -##ibi -kinda -Confederacy -Barnett -disasters -incapable -##grating -rhythms -betting -draining -##hak -Callie -Glover -##iliated -Sherlock -hearted -punching -Wolverhampton -Leaf -Pi -builders -furnished -knighted -Photo -##zle -Touring -fumbled -pads -##ий -Bartlett -Gunner -eerie -Marius -Bonus -pots -##hino -##pta -Bray -Frey -Ortiz -stalls -belongings -Subway -fascination -metaphor -Bat -Boer -Colchester -sway -##gro -rhetoric -##dheim -Fool -PMID -admire -##hsil -Strand -TNA -##roth -Nottinghamshire -##mat -##yler -Oxfordshire -##nacle -##roner -BS -##nces -stimulus -transports -Sabbath -##postle -Richter -4000 -##grim -##shima -##lette -deteriorated -analogous -##ratic -UHF -energies -inspiring -Yiddish -Activities -##quential -##boe -Melville -##ilton -Judd -consonants -labs -smuggling -##fari -avid -##uc -truce -undead -##raith -Mostly -bracelet -Connection -Hussain -awhile -##UC -##vention -liable -genetically -##phic -Important -Wildcats -daddy -transmit -##cas -conserved -Yesterday -##lite -Nicky -Guys -Wilder -Lay -skinned -Communists -Garfield -Nearby -organizer -Loss -crafts -walkway -Chocolate -Sundance -Synod -##enham -modify -swayed -Surface -analysts -brackets -drone -parachute -smelling -Andrés -filthy -frogs -vertically -##OK -localities -marries -AHL -35th -##pian -Palazzo -cube -dismay -relocate -##на -Hear -##digo -##oxide -prefecture -converts -hangar -##oya -##ucking -Spectrum -deepened -spoiled -Keeping -##phobic -Verona -outrage -Improvement -##UI -masterpiece -slung -Calling -chant -Haute -mediated -manipulated -affirmed -##hesis -Hangul -skies -##llan -Worcestershire -##kos -mosaic -##bage -##wned -Putnam -folder -##LM -guts -noteworthy -##rada -AJ -sculpted -##iselle -##rang -recognizable -##pent -dolls -lobbying -impatiently -Se -staple -Serb -tandem -Hiroshima -thieves -##ynx -faculties -Norte -##alle -##trusion -chords -##ylon -Gareth -##lops -##escu -FIA -Levin -auspices -groin -Hui -nun -Listed -Honourable -Larsen -rigorous -##erer -Tonga -##pment -##rave -##track -##aa -##enary -540 -clone -sediment -esteem -sighted -cruelty -##boa -inverse -violating -Amtrak -Status -amalgamated -vertex -AR -harmless -Amir -mounts -Coronation -counseling -Audi -CO₂ -splits -##eyer -Humans -Salmon -##have -##rado -##čić -216 -takeoff -classmates -psychedelic -##gni -Gypsy -231 -Anger -GAA -ME -##nist -##tals -Lissa -Odd -baptized -Fiat -fringe -##hren -179 -elevators -perspectives -##TF -##ngle -Question -frontal -950 -thicker -Molecular -##nological -Sixteen -Baton -Hearing -commemorative -dorm -Architectural -purity -##erse -risky -Georgie -relaxing -##ugs -downed -##rar -Slim -##phy -IUCN -##thorpe -Parkinson -217 -Marley -Shipping -sweaty -Jesuits -Sindh -Janata -implying -Armenians -intercept -Ankara -commissioners -ascended -sniper -Grass -Walls -salvage -Dewey -generalized -learnt -PT -##fighter -##tech -DR -##itrus -##zza -mercenaries -slots -##burst -##finger -##nsky -Princes -Rhodesia -##munication -##strom -Fremantle -homework -ins -##Os -##hao -##uffed -Thorpe -Xiao -exquisite -firstly -liberated -technician -Oilers -Phyllis -herb -sharks -MBE -##stock -Product -banjo -##morandum -##than -Visitors -unavailable -unpublished -oxidation -Vogue -##copic -##etics -Yates -##ppard -Leiden -Trading -cottages -Principles -##Millan -##wife -##hiva -Vicar -nouns -strolled -##eorological -##eton -##science -precedent -Armand -Guido -rewards -##ilis -##tise -clipped -chick -##endra -averages -tentatively -1830s -##vos -Certainly -305 -Société -Commandant -##crats -##dified -##nka -marsh -angered -ventilation -Hutton -Ritchie -##having -Eclipse -flick -motionless -Amor -Fest -Loire -lays -##icit -##sband -Guggenheim -Luck -disrupted -##ncia -Disco -##vigator -criticisms -grins -##lons -##vial -##ody -salute -Coaches -junk -saxophonist -##eology -Uprising -Diet -##marks -chronicles -robbed -##iet -##ahi -Bohemian -magician -wavelength -Kenyan -augmented -fashionable -##ogies -Luce -F1 -Monmouth -##jos -##loop -enjoyment -exemption -Centers -##visor -Soundtrack -blinding -practitioner -solidarity -sacrificed -##oso -##cture -##riated -blended -Abd -Copyright -##nob -34th -##reak -Claudio -hectare -rotor -testify -##ends -##iably -##sume -landowner -##cess -##ckman -Eduard -Silesian -backseat -mutually -##abe -Mallory -bounds -Collective -Poet -Winkler -pertaining -scraped -Phelps -crane -flickering -Proto -bubbles -popularized -removes -##86 -Cadillac -Warfare -audible -rites -shivering -##sist -##nst -##biotic -Mon -fascist -Bali -Kathryn -ambiguous -furiously -morale -patio -Sang -inconsistent -topology -Greens -monkeys -Köppen -189 -Toy -vow -##ías -bombings -##culus -improvised -lodged -subsidiaries -garment -startling -practised -Hume -Thorn -categorized -Till -Eileen -wedge -##64 -Federico -patriotic -unlock -##oshi -badminton -Compared -Vilnius -##KE -Crimean -Kemp -decks -spaced -resolutions -sighs -##mind -Imagine -Cartoon -huddled -policemen -forwards -##rouch -equals -##nter -inspected -Charley -MG -##rte -pamphlet -Arturo -dans -scarcely -##ulton -##rvin -parental -unconstitutional -watts -Susannah -Dare -##sitive -Rowland -Valle -invalid -##ué -Detachment -acronym -Yokohama -verified -##lsson -groove -Liza -clarified -compromised -265 -##rgon -##orf -hesitant -Fruit -Application -Mathias -icons -##cell -Qin -interventions -##uron -punt -remnant -##rien -Ames -manifold -spines -floral -##zable -comrades -Fallen -orbits -Annals -hobby -Auditorium -implicated -researching -Pueblo -Ta -terminate -##pella -Rings -approximation -fuzzy -##ús -thriving -##ket -Conor -alarmed -etched -Cary -##rdon -Ally -##rington -Pay -mint -##hasa -##unity -##dman -##itate -Oceania -furrowed -trams -##aq -Wentworth -ventured -choreography -prototypes -Patel -mouthed -trenches -##licing -##yya -Lies -deception -##erve -##vations -Bertrand -earthquakes -##tography -Southwestern -##aja -token -Gupta -##yō -Beckett -initials -ironic -Tsar -subdued -shootout -sobbing -liar -Scandinavia -Souls -ch -therapist -trader -Regulation -Kali -busiest -##pation -32nd -Telephone -Vargas -##moky -##nose -##uge -Favorite -abducted -bonding -219 -255 -correction -mat -drown -fl -unbeaten -Pocket -Summers -Quite -rods -Percussion -##ndy -buzzing -cadet -Wilkes -attire -directory -utilities -naive -populous -Hendrix -##actor -disadvantage -1400 -Landon -Underworld -##ense -Occasionally -mercury -Davey -Morley -spa -wrestled -##vender -eclipse -Sienna -supplemented -thou -Stream -liturgical -##gall -##berries -##piration -1769 -Bucks -abandoning -##jutant -##nac -232 -venom -##31 -Roche -dotted -Currie -Córdoba -Milo -Sharif -divides -justification -prejudice -fortunate -##vide -##ābād -Rowe -inflammatory -##eld -avenue -Sources -##rimal -Messenger -Blanco -advocating -formulation -##pute -emphasizes -nut -Armored -##ented -nutrients -##tment -insistence -Martins -landowners -##RB -comparatively -headlines -snaps -##qing -Celebration -##mad -republican -##NE -Trace -##500 -1771 -proclamation -NRL -Rubin -Buzz -Weimar -##AG -199 -posthumous -##ental -##deacon -Distance -intensely -overheard -Arcade -diagonal -hazard -Giving -weekdays -##ù -Verdi -actresses -##hare -Pulling -##erries -##pores -catering -shortest -##ctors -##cure -##restle -##reta -##runch -##brecht -##uddin -Moments -senate -Feng -Prescott -##thest -218 -divisional -Bertie -sparse -surrounds -coupling -gravitational -werewolves -##lax -Rankings -##mated -##tries -Shia -##mart -##23 -##vocative -interfaces -morphology -newscast -##bide -inputs -solicitor -Olaf -cabinets -puzzles -##tains -Unified -##firmed -WA -solemn -##opy -Tito -Jaenelle -Neolithic -horseback -##ires -pharmacy -prevalence -##lint -Swami -##bush -##tudes -Philipp -mythical -divers -Scouting -aperture -progressively -##bay -##nio -bounce -Floor -##elf -Lucan -adulthood -helm -Bluff -Passage -Salvation -lemon -napkin -scheduling -##gets -Elements -Mina -Novak -stalled -##llister -Infrastructure -##nky -##tania -##uished -Katz -Norma -sucks -trusting -1765 -boilers -Accordingly -##hered -223 -Crowley -##fight -##ulo -Henrietta -##hani -pounder -surprises -##chor -##glia -Dukes -##cracy -##zier -##fs -Patriot -silicon -##VP -simulcast -telegraph -Mysore -cardboard -Len -##QL -Auguste -accordion -analytical -specify -ineffective -hunched -abnormal -Transylvania -##dn -##tending -Emilia -glittering -Maddy -##wana -1762 -External -Lecture -endorsement -Hernández -Anaheim -Ware -offences -##phorus -Plantation -popping -Bonaparte -disgusting -neared -##notes -Identity -heroin -nicely -##raverse -apron -congestion -##PR -padded -##fts -invaders -##came -freshly -Halle -endowed -fracture -ROM -##max -sediments -diffusion -dryly -##tara -Tam -Draw -Spin -Talon -Anthropology -##lify -nausea -##shirt -insert -Fresno -capitalist -indefinitely -apples -Gift -scooped -60s -Cooperative -mistakenly -##lover -murmur -##iger -Equipment -abusive -orphanage -##9th -##lterweight -##unda -Baird -ant -saloon -33rd -Chesapeake -##chair -##sound -##tend -chaotic -pornography -brace -##aret -heiress -SSR -resentment -Arbor -headmaster -##uren -unlimited -##with -##jn -Bram -Ely -Pokémon -pivotal -##guous -Database -Marta -Shine -stumbling -##ovsky -##skin -Henley -Polk -functioned -##layer -##pas -##udd -##MX -blackness -cadets -feral -Damian -##actions -2D -##yla -Apocalypse -##aic -inactivated -##china -##kovic -##bres -destroys -nap -Macy -sums -Madhya -Wisdom -rejects -##amel -60th -Cho -bandwidth -##sons -##obbing -##orama -Mutual -shafts -##estone -##rsen -accord -replaces -waterfront -##gonal -##rida -convictions -##ays -calmed -suppliers -Cummings -GMA -fearful -Scientist -Sinai -examines -experimented -Netflix -Enforcement -Scarlett -##lasia -Healthcare -##onte -Dude -inverted -##36 -##regation -##lidae -Munro -##angay -Airbus -overlapping -Drivers -lawsuits -bodily -##udder -Wanda -Effects -Fathers -##finery -##islav -Ridley -observatory -pod -##utrition -Electricity -landslide -##mable -##zoic -##imator -##uration -Estates -sleepy -Nickelodeon -steaming -irony -schedules -snack -spikes -Hmm -##nesia -##bella -##hibit -Greenville -plucked -Harald -##ono -Gamma -infringement -roaring -deposition -##pol -##orum -660 -seminal -passports -engagements -Akbar -rotated -##bina -##gart -Hartley -##lown -##truct -uttered -traumatic -Dex -##ôme -Holloway -MV -apartheid -##nee -Counter -Colton -OR -245 -Spaniards -Regency -Schedule -scratching -squads -verify -##alk -keyboardist -rotten -Forestry -aids -commemorating -##yed -##érie -Sting -##elly -Dai -##fers -##berley -##ducted -Melvin -cannabis -glider -##enbach -##rban -Costello -Skating -cartoonist -AN -audit -##pectator -distributing -226 -312 -interpreter -header -Alternatively -##ases -smug -##kumar -cabins -remastered -Connolly -Kelsey -LED -tentative -Check -Sichuan -shaved -##42 -Gerhard -Harvest -inward -##rque -Hopefully -hem -##34 -Typical -binds -wrath -Woodstock -forcibly -Fergus -##charged -##tured -prepares -amenities -penetration -##ghan -coarse -##oned -enthusiasts -##av -##twined -fielded -##cky -Kiel -##obia -470 -beers -tremble -youths -attendees -##cademies -##sex -Macon -communism -dir -##abi -Lennox -Wen -differentiate -jewel -##SO -activate -assert -laden -unto -Gillespie -Guillermo -accumulation -##GM -NGO -Rosenberg -calculating -drastically -##omorphic -peeled -Liège -insurgents -outdoors -##enia -Aspen -Sep -awakened -##eye -Consul -Maiden -insanity -##brian -furnace -Colours -distributions -longitudinal -syllables -##scent -Martian -accountant -Atkins -husbands -sewage -zur -collaborate -highlighting -##rites -##PI -colonization -nearer -##XT -dunes -positioning -Ku -multitude -luxurious -Volvo -linguistics -plotting -squared -##inder -outstretched -##uds -Fuji -ji -##feit -##ahu -##loat -##gado -##luster -##oku -América -##iza -Residents -vine -Pieces -DD -Vampires -##ová -smoked -harshly -spreads -##turn -##zhi -betray -electors -##settled -Considering -exploits -stamped -Dusty -enraged -Nairobi -##38 -intervened -##luck -orchestras -##lda -Hereford -Jarvis -calf -##itzer -##CH -salesman -Lovers -cigar -Angelica -doomed -heroine -##tible -Sanford -offenders -##ulously -articulated -##oam -Emanuel -Gardiner -Edna -Shu -gigantic -##stable -Tallinn -coasts -Maker -ale -stalking -##oga -##smus -lucrative -southbound -##changing -Reg -##lants -Schleswig -discount -grouping -physiological -##OH -##sun -Galen -assurance -reconcile -rib -scarlet -Thatcher -anarchist -##oom -Turnpike -##ceding -cocktail -Sweeney -Allegheny -concessions -oppression -reassuring -##poli -##ticus -##TR -##VI -##uca -##zione -directional -strikeouts -Beneath -Couldn -Kabul -##national -hydroelectric -##jit -Desire -##riot -enhancing -northbound -##PO -Ok -Routledge -volatile -Bernardo -Python -333 -ample -chestnut -automobiles -##innamon -##care -##hering -BWF -salaries -Turbo -acquisitions -##stituting -strengths -pilgrims -Ponce -Pig -Actors -Beard -sanitation -##RD -##mett -Telecommunications -worms -##idas -Juno -Larson -Ventura -Northeastern -weighs -Houghton -collaborating -lottery -##rano -Wonderland -gigs -##lmer -##zano -##edd -##nife -mixtape -predominant -tripped -##ruly -Alexei -investing -Belgarath -Brasil -hiss -##crat -##xham -Côte -560 -kilometer -##cological -analyzing -##As -engined -listener -##cakes -negotiation -##hisky -Santana -##lemma -IAAF -Seneca -skeletal -Covenant -Steiner -##lev -##uen -Neptune -retention -##upon -Closing -Czechoslovak -chalk -Navarre -NZ -##IG -##hop -##oly -##quatorial -##sad -Brewery -Conflict -Them -renew -turrets -disagree -Petra -Slave -##reole -adjustment -##dela -##regard -##sner -framing -stature -##rca -##sies -##46 -##mata -Logic -inadvertently -naturalist -spheres -towering -heightened -Dodd -rink -##fle -Keyboards -bulb -diver -ul -##tsk -Exodus -Deacon -España -Canadiens -oblique -thud -reigned -rug -Whitman -Dash -##iens -Haifa -pets -##arland -manually -dart -##bial -Sven -textiles -subgroup -Napier -graffiti -revolver -humming -Babu -protector -typed -Provinces -Sparta -Wills -subjective -##rella -temptation -##liest -FL -Sadie -manifest -Guangdong -Transfer -entertain -eve -recipes -##33 -Benedictine -retailer -##dence -establishes -##cluded -##rked -Ursula -##ltz -##lars -##rena -qualifiers -##curement -colt -depictions -##oit -Spiritual -differentiation -staffed -transitional -##lew -1761 -fatalities -##oan -Bayern -Northamptonshire -Weeks -##CU -Fife -capacities -hoarse -##latt -##ة -evidenced -##HD -##ographer -assessing -evolve -hints -42nd -streaked -##lve -Yahoo -##estive -##rned -##zas -baggage -Elected -secrecy -##champ -Character -Pen -Decca -cape -Bernardino -vapor -Dolly -counselor -##isers -Benin -##khar -##CR -notch -##thus -##racy -bounty -lend -grassland -##chtenstein -##dating -pseudo -golfer -simplest -##ceive -Lucivar -Triumph -dinosaur -dinosaurs -##šić -Seahawks -##nco -resorts -reelected -1766 -reproduce -universally -##OA -ER -tendencies -Consolidated -Massey -Tasmanian -reckless -##icz -##ricks -1755 -questionable -Audience -##lates -preseason -Quran -trivial -Haitian -Freeway -dialed -Appointed -Heard -ecosystems -##bula -hormones -Carbon -Rd -##arney -##working -Christoph -presiding -pu -##athy -Morrow -Dar -ensures -posing -remedy -EA -disclosed -##hui -##rten -rumours -surveying -##ficiency -Aziz -Jewel -Plays -##smatic -Bernhard -Christi -##eanut -##friend -jailed -##dr -govern -neighbour -butler -Acheron -murdering -oils -mac -Editorial -detectives -bolts -##ulon -Guitars -malaria -36th -Pembroke -Opened -##hium -harmonic -serum -##sio -Franks -fingernails -##gli -culturally -evolving -scalp -VP -deploy -uploaded -mater -##evo -Jammu -Spa -##icker -flirting -##cursions -Heidi -Majority -sprawled -##alytic -Zheng -bunker -##lena -ST -##tile -Jiang -ceilings -##ently -##ols -Recovery -dire -##good -Manson -Honestly -Montréal -1764 -227 -quota -Lakshmi -incentive -Accounting -##cilla -Eureka -Reaper -buzzed -##uh -courtroom -dub -##mberg -KC -Gong -Theodor -Académie -NPR -criticizing -protesting -##pired -##yric -abuses -fisheries -##minated -1767 -yd -Gemini -Subcommittee -##fuse -Duff -Wasn -Wight -cleaner -##tite -planetary -Survivor -Zionist -mounds -##rary -landfall -disruption -yielding -##yana -bids -unidentified -Garry -Ellison -Elmer -Fishing -Hayward -demos -modelling -##anche -##stick -caressed -entertained -##hesion -piers -Crimea -##mass -WHO -boulder -trunks -1640 -Biennale -Palestinians -Pursuit -##udes -Dora -contender -##dridge -Nanjing -##ezer -##former -##ibel -Whole -proliferation -##tide -##weiler -fuels -predictions -##ente -##onium -Filming -absorbing -Ramón -strangled -conveyed -inhabit -prostitutes -recession -bonded -clinched -##eak -##iji -##edar -Pleasure -Rite -Christy -Therapy -sarcasm -##collegiate -hilt -probation -Sarawak -coefficients -underworld -biodiversity -SBS -groom -brewing -dungeon -##claiming -Hari -turnover -##ntina -##omer -##opped -orthodox -styling -##tars -##ulata -priced -Marjorie -##eley -##abar -Yong -##tically -Crambidae -Hernandez -##ego -##rricular -##ark -##lamour -##llin -##augh -##tens -Advancement -Loyola -##4th -##hh -goin -marshes -Sardinia -##ša -Ljubljana -Singing -suspiciously -##hesive -Félix -Regarding -flap -stimulation -##raught -Apr -Yin -gaping -tighten -skier -##itas -##lad -##rani -264 -Ashes -Olson -Problems -Tabitha -##rading -balancing -sunrise -##ease -##iture -##ritic -Fringe -##iciency -Inspired -Linnaeus -PBA -disapproval -##kles -##rka -##tails -##urger -Disaster -Laboratories -apps -paradise -Aero -Came -sneaking -Gee -Beacon -ODI -commodity -Ellington -graphical -Gretchen -spire -##skaya -##trine -RTÉ -efficacy -plc -tribunal -##ytic -downhill -flu -medications -##kaya -widen -Sunrise -##nous -distinguishing -pawn -##BO -##irn -##ssing -##ν -Easton -##vila -Rhineland -##aque -defect -##saurus -Goose -Ju -##classified -Middlesbrough -shaping -preached -1759 -##erland -Ein -Hailey -musicals -##altered -Galileo -Hilda -Fighters -Lac -##ometric -295 -Leafs -Milano -##lta -##VD -##ivist -penetrated -Mask -Orchard -plaintiff -##icorn -Yvonne -##fred -outfielder -peek -Collier -Caracas -repealed -Bois -dell -restrict -Dolores -Hadley -peacefully -##LL -condom -Granny -Orders -sabotage -##toon -##rings -compass -marshal -gears -brigadier -dye -Yunnan -communicating -donate -emerald -vitamin -administer -Fulham -##classical -##llas -Buckinghamshire -Held -layered -disclosure -Akira -programmer -shrimp -Crusade -##ximal -Luzon -bakery -##cute -Garth -Citadel -uniquely -Curling -info -mum -Para -##ști -sleek -##ione -hey -Lantern -mesh -##lacing -##lizzard -##gade -prosecuted -Alba -Gilles -greedy -twists -##ogged -Viper -##kata -Appearances -Skyla -hymns -##pelled -curving -predictable -Grave -Watford -##dford -##liptic -##vary -Westwood -fluids -Models -statutes -##ynamite -1740 -##culate -Framework -Johanna -##gression -Vuelta -imp -##otion -##raga -##thouse -Ciudad -festivities -##love -Beyoncé -italics -##vance -DB -##haman -outs -Singers -##ueva -##urning -##51 -##ntiary -##mobile -285 -Mimi -emeritus -nesting -Keeper -Ways -##onal -##oux -Edmond -MMA -##bark -##oop -Hampson -##ñez -##rets -Gladstone -wreckage -Pont -Playboy -reluctance -##ná -apprenticeship -preferring -Value -originate -##wei -##olio -Alexia -##rog -Parachute -jammed -stud -Eton -vols -##ganized -1745 -straining -creep -indicators -##mán -humiliation -hinted -alma -tanker -##egation -Haynes -Penang -amazement -branched -rumble -##ddington -archaeologists -paranoid -expenditure -Absolutely -Musicians -banished -##fining -baptism -Joker -Persons -hemisphere -##tieth -##ück -flock -##xing -lbs -Kung -crab -##dak -##tinent -Regulations -barrage -parcel -##ós -Tanaka -##rsa -Natalia -Voyage -flaws -stepfather -##aven -##eological -Botanical -Minsk -##ckers -Cinderella -Feast -Loving -Previous -Shark -##took -barrister -collaborators -##nnes -Croydon -Graeme -Juniors -##7th -##formation -##ulos -##ák -£2 -##hwa -##rove -##ș -Whig -demeanor -Otago -##TH -##ooster -Faber -instructors -##ahl -##bha -emptied -##schen -saga -##lora -exploding -##rges -Crusaders -##caster -##uations -streaks -CBN -bows -insights -ka -1650 -diversion -LSU -Wingspan -##liva -Response -sanity -Producers -imitation -##fine -Lange -Spokane -splash -weed -Siberian -magnet -##rocodile -capitals -##rgus -swelled -Rani -Bells -Silesia -arithmetic -rumor -##hampton -favors -Weird -marketplace -##orm -tsunami -unpredictable -##citation -##ferno -Tradition -postwar -stench -succeeds -##roup -Anya -Users -oversized -totaling -pouch -##nat -Tripoli -leverage -satin -##cline -Bathurst -Lund -Niall -thereof -##quid -Bangor -barge -Animated -##53 -##alan -Ballard -utilizes -Done -ballistic -NDP -gatherings -##elin -##vening -Rockets -Sabrina -Tamara -Tribal -WTA -##citing -blinded -flux -Khalid -Una -prescription -##jee -Parents -##otics -##food -Silicon -cured -electro -perpendicular -intimacy -##rified -Lots -##ceiving -##powder -incentives -McKenna -##arma -##ounced -##rinkled -Alzheimer -##tarian -262 -Seas -##cam -Novi -##hout -##morphic -##hazar -##hul -##nington -Huron -Bahadur -Pirate -pursed -Griffiths -indicted -swap -refrain -##mulating -Lal -stomped -##Pad -##mamoto -Reef -disposed -plastered -weeping -##rato -Minas -hourly -tumors -##ruising -Lyle -##yper -##sol -Odisha -credibility -##Dowell -Braun -Graphic -lurched -muster -##nex -##ührer -##connected -##iek -##ruba -Carthage -Peck -maple -bursting -##lava -Enrico -rite -##jak -Moment -##skar -Styx -poking -Spartan -##urney -Hepburn -Mart -Titanic -newsletter -waits -Mecklenburg -agitated -eats -##dious -Chow -matrices -Maud -##sexual -sermon -234 -##sible -##lung -Qi -cemeteries -mined -sprinter -##ckett -coward -##gable -##hell -##thin -##FB -Contact -##hay -rainforest -238 -Hemisphere -boasts -##nders -##verance -##kat -Convent -Dunedin -Lecturer -lyricist -##bject -Iberian -comune -##pphire -chunk -##boo -thrusting -fore -informing -pistols -echoes -Tier -battleships -substitution -##belt -moniker -##charya -##lland -Thoroughbred -38th -##01 -##tah -parting -tongues -Cale -##seau -Unionist -modular -celebrates -preview -steamed -Bismarck -302 -737 -vamp -##finity -##nbridge -weaknesses -husky -##berman -absently -##icide -Craven -tailored -Tokugawa -VIP -syntax -Kazan -captives -doses -filtered -overview -Cleopatra -Conversely -stallion -Burger -Suez -Raoul -th -##reaves -Dickson -Nell -Rate -anal -colder -##sław -Arm -Semitic -##green -reflective -1100 -episcopal -journeys -##ours -##pository -##dering -residue -Gunn -##27 -##ntial -##crates -##zig -Astros -Renee -Emerald -##vili -connectivity -undrafted -Sampson -treasures -##kura -##theon -##vern -Destroyer -##iable -##ener -Frederic -briefcase -confinement -Bree -##WD -Athena -233 -Padres -Thom -speeding -##hali -Dental -ducks -Putin -##rcle -##lou -Asylum -##usk -dusk -pasture -Institutes -ONE -jack -##named -diplomacy -Intercontinental -Leagues -Towns -comedic -premature -##edic -##mona -##ories -trimmed -Charge -Cream -guarantees -Dmitry -splashed -Philosophical -tramway -##cape -Maynard -predatory -redundant -##gratory -##wry -sobs -Burgundy -edible -outfits -Handel -dazed -dangerously -idle -Operational -organizes -##sional -blackish -broker -weddings -##halt -Becca -McGee -##gman -protagonists -##pelling -Keynes -aux -stumble -##ordination -Nokia -reel -sexes -##woods -##pheric -##quished -##voc -##oir -##pathian -##ptus -##sma -##tating -##ê -fulfilling -sheath -##ayne -Mei -Ordinary -Collin -Sharpe -grasses -interdisciplinary -##OX -Background -##ignment -Assault -transforms -Hamas -Serge -ratios -##sik -swaying -##rcia -Rosen -##gant -##versible -cinematographer -curly -penny -Kamal -Mellon -Sailor -Spence -phased -Brewers -amassed -Societies -##ropriations -##buted -mythological -##SN -##byss -##ired -Sovereign -preface -Parry -##ife -altitudes -crossings -##28 -Crewe -southernmost -taut -McKinley -##owa -##tore -254 -##ckney -compiling -Shelton -##hiko -228 -Poll -Shepard -Labs -Pace -Carlson -grasping -##ов -Delaney -Winning -robotic -intentional -shattering -##boarding -##git -##grade -Editions -Reserves -ignorant -proposing -##hanna -cutter -Mongols -NW -##eux -Codex -Cristina -Daughters -Rees -forecast -##hita -NGOs -Stations -Beaux -Erwin -##jected -##EX -##trom -Schumacher -##hrill -##rophe -Maharaja -Oricon -##sul -##dynamic -##fighting -Ce -Ingrid -rumbled -Prospect -stairwell -Barnard -applause -complementary -##uba -grunt -##mented -Bloc -Carleton -loft -noisy -##hey -490 -contrasted -##inator -##rief -##centric -##fica -Cantonese -Blanc -Lausanne -License -artifact -##ddin -rot -Amongst -Prakash -RF -##topia -milestone -##vard -Winters -Mead -churchyard -Lulu -estuary -##ind -Cha -Infinity -Meadow -subsidies -##valent -CONCACAF -Ching -medicinal -navigate -Carver -Twice -abdominal -regulating -RB -toilets -Brewer -weakening -ambushed -##aut -##vignon -Lansing -unacceptable -reliance -stabbing -##mpo -##naire -Interview -##ested -##imed -bearings -##lts -Rashid -##iation -authenticity -vigorous -##frey -##uel -biologist -NFC -##rmaid -##wash -Makes -##aunt -##steries -withdrawing -##qa -Buccaneers -bleed -inclination -stain -##ilo -##ppel -Torre -privileged -cereal -trailers -alumnus -neon -Cochrane -Mariana -caress -##47 -##ients -experimentation -Window -convict -signaled -##YP -rower -Pharmacy -interacting -241 -Strings -dominating -kinase -Dinamo -Wire -pains -sensations -##suse -Twenty20 -##39 -spotlight -##hend -elemental -##pura -Jameson -Swindon -honoring -pained -##ediatric -##lux -Psychological -assemblies -ingredient -Martial -Penguins -beverage -Monitor -mysteries -##ION -emigration -mused -##sique -crore -AMC -Funding -Chinatown -Establishment -Finalist -enjoyable -1756 -##mada -##rams -NO -newborn -CS -comprehend -Invisible -Siemens -##acon -246 -contraction -##volving -##moration -##rok -montane -##ntation -Galloway -##llow -Verity -directorial -pearl -Leaning -##rase -Fernandez -swallowing -Automatic -Madness -haunting -paddle -##UE -##rrows -##vies -##zuki -##bolt -##iber -Fender -emails -paste -##lancing -hind -homestead -hopeless -##dles -Rockies -garlic -fatty -shrieked -##ismic -Gillian -Inquiry -Schultz -XML -##cius -##uld -Domesday -grenades -northernmost -##igi -Tbilisi -optimistic -##poon -Refuge -stacks -Bose -smash -surreal -Nah -Straits -Conquest -##roo -##weet -##kell -Gladys -CH -##lim -##vitation -Doctorate -NRHP -knocks -Bey -Romano -##pile -242 -Diamonds -strides -eclectic -Betsy -clade -##hady -##leashed -dissolve -moss -Suburban -silvery -##bria -tally -turtles -##uctive -finely -industrialist -##nary -Ernesto -oz -pact -loneliness -##hov -Tomb -multinational -risked -Layne -USL -ne -##quiries -Ad -Message -Kamen -Kristen -reefs -implements -##itative -educators -garments -gunshot -##essed -##rve -Montevideo -vigorously -Stamford -assemble -packaged -##same -état -Viva -paragraph -##eter -##wire -Stick -Navajo -MCA -##pressing -ensembles -ABA -##zor -##llus -Partner -raked -##BI -Iona -thump -Celeste -Kiran -##iscovered -##rith -inflammation -##arel -Features -loosened -##yclic -Deluxe -Speak -economical -Frankenstein -Picasso -showcased -##zad -##eira -##planes -##linear -##overs -monsoon -prosecutors -slack -Horses -##urers -Angry -coughing -##truder -Questions -##tō -##zak -challenger -clocks -##ieving -Newmarket -##acle -cursing -stimuli -##mming -##qualified -slapping -##vasive -narration -##kini -Advertising -CSI -alliances -mixes -##yes -covert -amalgamation -reproduced -##ardt -##gis -1648 -id -Annette -Boots -Champagne -Brest -Daryl -##emon -##jou -##llers -Mean -adaptive -technicians -##pair -##usal -Yoga -fronts -leaping -Jul -harvesting -keel -##44 -petitioned -##lved -yells -Endowment -proponent -##spur -##tised -##zal -Homes -Includes -##ifer -##oodoo -##rvette -awarding -mirrored -ransom -Flute -outlook -##ganj -DVDs -Sufi -frontman -Goddard -barren -##astic -Suicide -hillside -Harlow -Lau -notions -Amnesty -Homestead -##irt -GE -hooded -umpire -mustered -Catch -Masonic -##erd -Dynamics -Equity -Oro -Charts -Mussolini -populace -muted -accompaniment -##lour -##ndes -ignited -##iferous -##laced -##atch -anguish -registry -##tub -##hards -##neer -251 -Hooker -uncomfortably -##6th -##ivers -Catalina -MiG -giggling -1754 -Dietrich -Kaladin -pricing -##quence -Sabah -##lving -##nical -Gettysburg -Vita -Telecom -Worst -Palais -Pentagon -##brand -##chichte -Graf -unnatural -1715 -bio -##26 -Radcliffe -##utt -chatting -spices -##aus -untouched -##eper -Doll -turkey -Syndicate -##rlene -##JP -##roots -Como -clashed -modernization -1757 -fantasies -##iating -dissipated -Sicilian -inspect -sensible -reputed -##final -Milford -poised -RC -metabolic -Tobacco -Mecca -optimization -##heat -lobe -rabbits -NAS -geologist -##liner -Kilda -carpenter -nationalists -##brae -summarized -##venge -Designer -misleading -beamed -##meyer -Matrix -excuses -##aines -##biology -401 -Moose -drafting -Sai -##ggle -Comprehensive -dripped -skate -##WI -##enan -##ruk -narrower -outgoing -##enter -##nounce -overseen -##structure -travellers -banging -scarred -##thing -##arra -Ebert -Sometime -##nated -BAFTA -Hurricanes -configurations -##MLL -immortality -##heus -gothic -##mpest -clergyman -viewpoint -Maxim -Instituto -emitted -quantitative -1689 -Consortium -##rsk -Meat -Tao -swimmers -Shaking -Terence -mainline -##linity -Quantum -##rogate -Nair -banquet -39th -reprised -lagoon -subdivisions -synonymous -incurred -password -sprung -##vere -Credits -Petersen -Faces -##vu -statesman -Zombie -gesturing -##going -Sergey -dormant -possessive -totals -southward -Ángel -##odies -HM -Mariano -Ramirez -Wicked -impressions -##Net -##cap -##ème -Transformers -Poker -RIAA -Redesignated -##chuk -Harcourt -Peña -spacious -tinged -alternatively -narrowing -Brigham -authorization -Membership -Zeppelin -##amed -Handball -steer -##orium -##rnal -##rops -Committees -endings -##MM -##yung -ejected -grams -##relli -Birch -Hilary -Stadion -orphan -clawed -##kner -Motown -Wilkins -ballads -outspoken -##ancipation -##bankment -##cheng -Advances -harvested -novelty -ineligible -oversees -##´s -obeyed -inevitably -Kingdoms -burying -Fabian -relevance -Tatiana -##MCA -sarcastic -##onda -Akron -229 -sandwiches -Adobe -Maddox -##azar -Hunting -##onized -Smiling -##tology -Juventus -Leroy -Poets -attach -lo -##rly -##film -Structure -##igate -olds -projections -SMS -outnumbered -##tase -judiciary -paramilitary -playfully -##rsing -##tras -Chico -Vin -informally -abandonment -##russ -Baroness -injuring -octagonal -deciduous -##nea -##olm -Hz -Norwood -poses -Marissa -alerted -willed -##KS -Dino -##ddler -##vani -Barbie -Thankfully -625 -bicycles -shimmering -##tinuum -##wolf -Chesterfield -##idy -##urgency -Knowles -sweetly -Ventures -##ponents -##valence -Darryl -Powerplant -RAAF -##pec -Kingsley -Parramatta -penetrating -spectacle -##inia -Marlborough -residual -compatibility -hike -Underwood -depleted -ministries -##odus -##ropriation -rotting -Faso -##inn -Happiness -Lille -Suns -cookie -rift -warmly -##lvin -Bugs -Gotham -Gothenburg -Properties -##seller -##ubi -Created -MAC -Noelle -Requiem -Ulysses -##ails -franchises -##icious -##rwick -celestial -kinetic -720 -STS -transmissions -amplitude -forums -freeing -reptiles -tumbling -##continent -##rising -##tropy -physiology -##uster -Loves -bodied -neutrality -Neumann -assessments -Vicky -##hom -hampered -##uku -Custom -timed -##eville -##xious -elastic -##section -rig -stilled -shipment -243 -artworks -boulders -Bournemouth -##hly -##LF -##linary -rumored -##bino -##drum -Chun -Freiburg -##dges -Equality -252 -Guadalajara -##sors -##taire -Roach -cramped -##ultural -Logistics -Punch -fines -Lai -caravan -##55 -lame -Collector -pausing -315 -migrant -hawk -signalling -##erham -##oughs -Demons -surfing -Rana -insisting -Wien -adolescent -##jong -##rera -##umba -Regis -brushes -##iman -residues -storytelling -Consider -contrasting -regeneration -##elling -##hlete -afforded -reactors -costing -##biotics -##gat -##евич -chanting -secondly -confesses -##ikos -##uang -##ronological -##− -Giacomo -##eca -vaudeville -weeds -rejecting -revoked -affluent -fullback -progresses -geologic -proprietor -replication -gliding -recounted -##bah -##igma -Flow -ii -newcomer -##lasp -##miya -Candace -fractured -interiors -confidential -Inverness -footing -##robe -Coordinator -Westphalia -jumper -##chism -dormitory -##gno -281 -acknowledging -leveled -##éra -Algiers -migrate -Frog -Rare -##iovascular -##urous -DSO -nomadic -##iera -woken -lifeless -##graphical -##ifications -Dot -Sachs -crow -nmi -Tacoma -Weight -mushroom -RS -conditioned -##zine -Tunisian -altering -##mizing -Handicap -Patti -Monsieur -clicking -gorge -interrupting -##powerment -drawers -Serra -##icides -Specialist -##itte -connector -worshipped -##ask -consoles -tags -##iler -glued -##zac -fences -Bratislava -honeymoon -313 -A2 -disposition -Gentleman -Gilmore -glaciers -##scribed -Calhoun -convergence -Aleppo -shortages -##43 -##orax -##worm -##codes -##rmal -neutron -##ossa -Bloomberg -Salford -periodicals -##ryan -Slayer -##ynasties -credentials -##tista -surveyor -File -stinging -unnoticed -Medici -ecstasy -espionage -Jett -Leary -circulating -bargaining -concerto -serviced -37th -HK -##fueling -Delilah -Marcia -graded -##join -Kaplan -feasible -##nale -##yt -Burnley -dreadful -ministerial -Brewster -Judah -##ngled -##rrey -recycled -Iroquois -backstage -parchment -##numbered -Kern -Motorsports -Organizations -##mini -Seems -Warrington -Dunbar -Ezio -##eor -paralyzed -Ara -yeast -##olis -cheated -reappeared -banged -##ymph -##dick -Lyndon -glide -Mat -##natch -Hotels -Household -parasite -irrelevant -youthful -##smic -##tero -##anti -2d -Ignacio -squash -##nets -shale -##اد -Abrams -##oese -assaults -##dier -##otte -Swamp -287 -Spurs -##economic -Fargo -auditioned -##mé -Haas -une -abbreviation -Turkic -##tisfaction -favorites -specials -##lial -Enlightenment -Burkina -##vir -Comparative -Lacrosse -elves -##lerical -##pear -Borders -controllers -##villa -excelled -##acher -##varo -camouflage -perpetual -##ffles -devoid -schooner -##bered -##oris -Gibbons -Lia -discouraged -sue -##gnition -Excellent -Layton -noir -smack -##ivable -##evity -##lone -Myra -weaken -weaponry -##azza -Shake -backbone -Certified -clown -occupational -caller -enslaved -soaking -Wexford -perceive -shortlisted -##pid -feminism -Bari -Indie -##avelin -##ldo -Hellenic -Hundreds -Savings -comedies -Honors -Mohawk -Told -coded -Incorporated -hideous -trusts -hose -Calais -Forster -Gabon -Internationale -AK -Colour -##UM -##heist -McGregor -localized -##tronomy -Darrell -##iara -squirrel -freaked -##eking -##manned -##ungen -radiated -##dua -commence -Donaldson -##iddle -MR -SAS -Tavern -Teenage -admissions -Instruments -##ilizer -Konrad -contemplated -##ductor -Jing -Reacher -recalling -Dhabi -emphasizing -illumination -##tony -legitimacy -Goethe -Ritter -McDonnell -Polar -Seconds -aspiring -derby -tunic -##rmed -outlines -Changing -distortion -##cter -Mechanics -##urly -##vana -Egg -Wolverine -Stupid -centralized -knit -##Ms -Saratoga -Ogden -storylines -##vres -lavish -beverages -##grarian -Kyrgyzstan -forcefully -superb -Elm -Thessaloniki -follower -Plants -slang -trajectory -Nowadays -Bengals -Ingram -perch -coloring -carvings -doubtful -##aph -##gratulations -##41 -Curse -253 -nightstand -Campo -Meiji -decomposition -##giri -McCormick -Yours -##amon -##bang -Texans -injunction -organise -periodical -##peculative -oceans -##aley -Success -Lehigh -##guin -1730 -Davy -allowance -obituary -##tov -treasury -##wayne -euros -readiness -systematically -##stered -##igor -##xen -##cliff -##lya -Send -##umatic -Celtics -Judiciary -425 -propagation -rebellious -##ims -##lut -Dal -##ayman -##cloth -Boise -pairing -Waltz -torment -Hatch -aspirations -diaspora -##hame -Rank -237 -Including -Muir -chained -toxicity -Université -##aroo -Mathews -meadows -##bio -Editing -Khorasan -##them -##ahn -##bari -##umes -evacuate -##sium -gram -kidnap -pinning -##diation -##orms -beacon -organising -McGrath -##ogist -Qur -Tango -##ceptor -##rud -##cend -##cie -##jas -##sided -Tuscany -Venture -creations -exhibiting -##rcerer -##tten -Butcher -Divinity -Pet -Whitehead -falsely -perished -handy -Moines -cyclists -synthesizers -Mortal -notoriety -##ronic -Dialogue -expressive -uk -Nightingale -grimly -vineyards -Driving -relentless -compiler -##district -##tuated -Hades -medicines -objection -Answer -Soap -Chattanooga -##gogue -Haryana -Parties -Turtle -##ferred -explorers -stakeholders -##aar -##rbonne -tempered -conjecture -##tee -##hur -Reeve -bumper -stew -##church -##generate -##ilitating -##chanized -##elier -##enne -translucent -##lows -Publisher -evangelical -inherit -##rted -247 -SmackDown -bitterness -lesions -##worked -mosques -wed -##lashes -Ng -Rebels -booking -##nail -Incident -Sailing -yo -confirms -Chaplin -baths -##kled -modernist -pulsing -Cicero -slaughtered -boasted -##losure -zipper -##hales -aristocracy -halftime -jolt -unlawful -Marching -sustaining -Yerevan -bracket -ram -Markus -##zef -butcher -massage -##quisite -Leisure -Pizza -collapsing -##lante -commentaries -scripted -##disciplinary -##sused -eroded -alleging -vase -Chichester -Peacock -commencement -dice -hotter -poisonous -executions -##occo -frost -fielding -vendor -Counts -Troops -maize -Divisional -analogue -shadowy -Nuevo -Ville -radiating -worthless -Adriatic -Buy -blaze -brutally -horizontally -longed -##matical -federally -Rolf -Root -exclude -rag -agitation -Lounge -astonished -##wirl -Impossible -transformations -##IVE -##ceded -##slav -downloaded -fucked -Egyptians -Welles -##ffington -U2 -befriended -radios -##jid -archaic -compares -##ccelerator -##imated -##tosis -Hung -Scientists -Thousands -geographically -##LR -Macintosh -fluorescent -##ipur -Wehrmacht -##BR -##firmary -Chao -##ague -Boyer -##grounds -##hism -##mento -##taining -infancy -##cton -510 -Boca -##loy -1644 -ben -dong -stresses -Sweat -expressway -graders -ochreous -nets -Lawn -thirst -Uruguayan -satisfactory -##tracts -baroque -rusty -##ław -Shen -Gdańsk -chickens -##graving -Hodge -Papal -SAT -bearer -##ogo -##rger -merits -Calendar -Highest -Skills -##ortex -Roberta -paradigm -recounts -frigates -swamps -unitary -##oker -balloons -Hawthorne -Muse -spurred -advisors -reclaimed -stimulate -fibre -pat -repeal -##dgson -##iar -##rana -anthropologist -descends -flinch -reared -##chang -##eric -##lithic -commissioning -##cumenical -##lume -##rchen -Wolff -##tsky -Eurasian -Nepali -Nightmare -ZIP -playback -##latz -##vington -Warm -##75 -Martina -Rollins -Saetan -Variations -sorting -##م -530 -Joaquin -Ptolemy -thinner -##iator -##pticism -Cebu -Highlanders -Linden -Vanguard -##SV -##mor -##ulge -ISSN -cartridges -repression -Étienne -311 -Lauderdale -commodities -null -##rb -1720 -gearbox -##reator -Ang -Forgotten -dubious -##rls -##dicative -##phate -Groove -Herrera -##çais -Collections -Maximus -##published -Fell -Qualification -filtering -##tized -Roe -hazards -##37 -##lative -##tröm -Guadalupe -Tajikistan -Preliminary -fronted -glands -##paper -##iche -##iding -Cairns -rallies -Location -seduce -##mple -BYU -##itic -##FT -Carmichael -Prentice -songwriters -forefront -Physicians -##rille -##zee -Preparatory -##cherous -UV -##dized -Navarro -misses -##nney -Inland -resisting -##sect -Hurt -##lino -galaxies -##raze -Institutions -devote -##lamp -##ciating -baron -##bracing -Hess -operatic -##CL -##ος -Chevalier -Guiana -##lattered -Fed -##cuted -##smo -Skull -denies -236 -Waller -##mah -Sakura -mole -nominate -sermons -##bering -widowed -##röm -Cavendish -##struction -Nehru -Revelation -doom -Gala -baking -Nr -Yourself -banning -Individuals -Sykes -orchestrated -630 -Phone -steered -620 -specialising -starvation -##AV -##alet -##upation -seductive -##jects -##zure -Tolkien -Benito -Wizards -Submarine -dictator -Duo -Caden -approx -basins -##nc -shrink -##icles -##sponsible -249 -mit -outpost -##bayashi -##rouse -##tl -Jana -Lombard -RBIs -finalized -humanities -##function -Honorable -tomato -##iot -Pie -tee -##pect -Beaufort -Ferris -bucks -##graduate -##ocytes -Directory -anxiously -##nating -flanks -##Ds -virtues -##believable -Grades -criterion -manufactures -sourced -##balt -##dance -##tano -Ying -##BF -##sett -adequately -blacksmith -totaled -trapping -expanse -Historia -Worker -Sense -ascending -housekeeper -##oos -Crafts -Resurrection -##verty -encryption -##aris -##vat -##pox -##runk -##iability -gazes -spying -##ths -helmets -wired -##zophrenia -Cheung -WR -downloads -stereotypes -239 -Lucknow -bleak -Bragg -hauling -##haft -prohibit -##ermined -##castle -barony -##hta -Typhoon -antibodies -##ascism -Hawthorn -Kurdistan -Minority -Gorge -Herr -appliances -disrupt -Drugs -Lazarus -##ilia -##ryo -##tany -Gotta -Masovian -Roxy -choreographed -##rissa -turbulent -##listed -Anatomy -exiting -##det -##isław -580 -Kaufman -sage -##apa -Symposium -##rolls -Kaye -##ptera -##rocław -jerking -##menclature -Guo -M1 -resurrected -trophies -##lard -Gathering -nestled -serpent -Dow -reservoirs -Claremont -arbitration -chronicle -eki -##arded -##zers -##mmoth -Congregational -Astronomical -NE -RA -Robson -Scotch -modelled -slashed -##imus -exceeds -##roper -##utile -Laughing -vascular -superficial -##arians -Barclay -Caucasian -classmate -sibling -Kimberly -Shreveport -##ilde -##liche -Cheney -Deportivo -Veracruz -berries -##lase -Bed -MI -Anatolia -Mindanao -broadband -##olia -##arte -##wab -darts -##immer -##uze -believers -ordinance -violate -##wheel -##ynth -Alongside -Coupe -Hobbs -arrondissement -earl -townland -##dote -##lihood -##sla -Ghosts -midfield -pulmonary -##eno -cues -##gol -##zda -322 -Siena -Sultanate -Bradshaw -Pieter -##thical -Raceway -bared -competence -##ssent -Bet -##urer -##ła -Alistair -Göttingen -appropriately -forge -##osterone -##ugen -DL -345 -convoys -inventions -##resses -##cturnal -Fay -Integration -slash -##roats -Widow -barking -##fant -1A -Hooper -##cona -##runched -unreliable -##emont -##esign -##stabulary -##stop -Journalists -bony -##iba -##trata -##ège -horrific -##bish -Jocelyn -##rmon -##apon -##cier -trainers -##ulatory -1753 -BR -corpus -synthesized -##bidden -##rafford -Elgin -##entry -Doherty -clockwise -##played -spins -##ample -##bley -Cope -constructions -seater -warlord -Voyager -documenting -fairies -##viator -Lviv -jewellery -suites -##gold -Maia -NME -##eavor -##kus -Eugène -furnishings -##risto -MCC -Metropolis -Older -Telangana -##mpus -amplifier -supervising -1710 -buffalo -cushion -terminating -##powering -steak -Quickly -contracting -dem -sarcastically -Elsa -##hein -bastards -narratives -Takes -304 -composure -typing -variance -##ifice -Softball -##rations -McLaughlin -gaped -shrines -##hogany -Glamorgan -##icle -##nai -##ntin -Fleetwood -Woodland -##uxe -fictitious -shrugs -##iper -BWV -conform -##uckled -Launch -##ductory -##mized -Tad -##stituted -##free -Bel -Chávez -messing -quartz -##iculate -##folia -##lynn -ushered -##29 -##ailing -dictated -Pony -##opsis -precinct -802 -Plastic -##ughter -##uno -##porated -Denton -Matters -SPD -hating -##rogen -Essential -Deck -Dortmund -obscured -##maging -Earle -##bred -##ittle -##ropolis -saturated -##fiction -##ression -Pereira -Vinci -mute -warehouses -##ún -biographies -##icking -sealing -##dered -executing -pendant -##wives -murmurs -##oko -substrates -symmetrical -Susie -##mare -Yusuf -analogy -##urage -Lesley -limitation -##rby -##ío -disagreements -##mise -embroidered -nape -unarmed -Sumner -Stores -dwell -Wilcox -creditors -##rivatization -##shes -##amia -directs -recaptured -scouting -McGuire -cradle -##onnell -Sato -insulin -mercenary -tolerant -Macquarie -transitions -cradled -##berto -##ivism -##yotes -FF -Ke -Reach -##dbury -680 -##bill -##oja -##sui -prairie -##ogan -reactive -##icient -##rits -Cyclone -Sirius -Survival -Pak -##coach -##trar -halves -Agatha -Opus -contrasts -##jection -ominous -##iden -Baylor -Woodrow -duct -fortification -intercourse -##rois -Colbert -envy -##isi -Afterward -geared -##flections -accelerate -##lenching -Witness -##rrer -Angelina -Material -assertion -misconduct -Nix -cringed -tingling -##eti -##gned -Everest -disturb -sturdy -##keepers -##vied -Profile -heavenly -##kova -##victed -translating -##sses -316 -Invitational -Mention -martyr -##uristic -Barron -hardness -Nakamura -405 -Genevieve -reflections -##falls -jurist -##LT -Pyramid -##yme -Shoot -heck -linguist -##tower -Ives -superiors -##leo -Achilles -##phological -Christophe -Padma -precedence -grassy -Oral -resurrection -##itting -clumsy -##lten -##rue -huts -##stars -Equal -##queduct -Devin -Gaga -diocesan -##plating -##upe -##graphers -Patch -Scream -hail -moaning -tracts -##hdi -Examination -outsider -##ergic -##oter -Archipelago -Havilland -greenish -tilting -Aleksandr -Konstantin -warship -##emann -##gelist -##ought -billionaire -##blivion -321 -Hungarians -transplant -##jured -##fters -Corbin -autism -pitchers -Garner -thence -Scientology -transitioned -integrating -repetitive -##dant -Rene -vomit -##burne -1661 -Researchers -Wallis -insulted -wavy -##wati -Ewing -excitedly -##kor -frescoes -injustice -##achal -##lumber -##úl -novella -##sca -Liv -##enstein -##river -monstrous -topping -downfall -looming -sinks -trillion -##pont -Effect -##phi -##urley -Sites -catchment -##H1 -Hopper -##raiser -1642 -Maccabi -lance -##chia -##sboro -NSA -branching -retorted -tensor -Immaculate -drumming -feeder -##mony -Dyer -homicide -Temeraire -fishes -protruding -skins -orchards -##nso -inlet -ventral -##finder -Asiatic -Sul -1688 -Melinda -assigns -paranormal -gardening -Tau -calming -##inge -##crow -regimental -Nik -fastened -correlated -##gene -##rieve -Sick -##minster -##politan -hardwood -hurled -##ssler -Cinematography -rhyme -Montenegrin -Packard -debating -##itution -Helens -Trick -Museums -defiance -encompassed -##EE -##TU -##nees -##uben -##ünster -##nosis -435 -Hagen -cinemas -Corbett -commended -##fines -##oman -bosses -ripe -scraping -##loc -filly -Saddam -pointless -Faust -Orléans -Syriac -##♭ -longitude -##ropic -Alfa -bliss -gangster -##ckling -SL -blending -##eptide -##nner -bends -escorting -##bloid -##quis -burials -##sle -##è -Ambulance -insults -##gth -Antrim -unfolded -##missible -splendid -Cure -warily -Saigon -Waste -astonishment -boroughs -##VS -##dalgo -##reshing -##usage -rue -marital -versatile -unpaid -allotted -bacterium -##coil -##cue -Dorothea -IDF -##location -##yke -RPG -##tropical -devotees -liter -##pree -Johnstone -astronaut -attends -pollen -periphery -doctrines -meta -showered -##tyn -GO -Huh -laude -244 -Amar -Christensen -Ping -Pontifical -Austen -raiding -realities -##dric -urges -##dek -Cambridgeshire -##otype -Cascade -Greenberg -Pact -##cognition -##aran -##urion -Riot -mimic -Eastwood -##imating -reversal -##blast -##henian -Pitchfork -##sunderstanding -Staten -WCW -lieu -##bard -##sang -experimenting -Aquino -##lums -TNT -Hannibal -catastrophic -##lsive -272 -308 -##otypic -41st -Highways -aggregator -##fluenza -Featured -Reece -dispatch -simulated -##BE -Communion -Vinnie -hardcover -inexpensive -til -##adores -groundwater -kicker -blogs -frenzy -##wala -dealings -erase -Anglia -##umour -Hapoel -Marquette -##raphic -##tives -consult -atrocities -concussion -##érard -Decree -ethanol -##aen -Rooney -##chemist -##hoot -1620 -menacing -Schuster -##bearable -laborers -sultan -Juliana -erased -onstage -##ync -Eastman -##tick -hushed -##yrinth -Lexie -Wharton -Lev -##PL -Testing -Bangladeshi -##bba -##usions -communicated -integers -internship -societal -##odles -Loki -ET -Ghent -broadcasters -Unix -##auer -Kildare -Yamaha -##quencing -##zman -chilled -##rapped -##uant -Duval -sentiments -Oliveira -packets -Horne -##rient -Harlan -Mirage -invariant -##anger -##tensive -flexed -sweetness -##wson -alleviate -insulting -limo -Hahn -##llars -##hesia -##lapping -buys -##oaming -mocked -pursuits -scooted -##conscious -##ilian -Ballad -jackets -##kra -hilly -##cane -Scenic -McGraw -silhouette -whipping -##roduced -##wark -##chess -##rump -Lemon -calculus -demonic -##latine -Bharatiya -Govt -Que -Trilogy -Ducks -Suit -stairway -##ceipt -Isa -regulator -Automobile -flatly -##buster -##lank -Spartans -topography -Tavi -usable -Chartered -Fairchild -##sance -##vyn -Digest -nuclei -typhoon -##llon -Alvarez -DJs -Grimm -authoritative -firearm -##chschule -Origins -lair -unmistakable -##xial -##cribing -Mouth -##genesis -##shū -##gaon -##ulter -Jaya -Neck -##UN -##oing -##static -relativity -##mott -##utive -##esan -##uveau -BT -salts -##roa -Dustin -preoccupied -Novgorod -##asus -Magnum -tempting -##histling -##ilated -Musa -##ghty -Ashland -pubs -routines -##etto -Soto -257 -Featuring -Augsburg -##alaya -Bit -loomed -expects -##abby -##ooby -Auschwitz -Pendleton -vodka -##sent -rescuing -systemic -##inet -##leg -Yun -applicant -revered -##nacht -##ndas -Muller -characterization -##patient -##roft -Carole -##asperated -Amiga -disconnected -gel -##cologist -Patriotic -rallied -assign -veterinary -installing -##cedural -258 -Jang -Parisian -incarcerated -stalk -##iment -Jamal -McPherson -Palma -##oken -##viation -512 -Rourke -irrational -##rippled -Devlin -erratic -##NI -##payers -Ni -engages -Portal -aesthetics -##rrogance -Milne -assassins -##rots -335 -385 -Cambodian -Females -fellows -si -##block -##otes -Jayne -Toro -flutter -##eera -Burr -##lanche -relaxation -##fra -Fitzroy -##undy -1751 -261 -comb -conglomerate -ribbons -veto -##Es -casts -##ege -1748 -Ares -spears -spirituality -comet -##nado -##yeh -Veterinary -aquarium -yer -Councils -##oked -##ynamic -Malmö -remorse -auditions -drilled -Hoffmann -Moe -Nagoya -Yacht -##hakti -##race -##rrick -Talmud -coordinating -##EI -##bul -##his -##itors -##ligent -##uerra -Narayan -goaltender -taxa -##asures -Det -##mage -Infinite -Maid -bean -intriguing -##cription -gasps -socket -##mentary -##reus -sewing -transmitting -##different -##furbishment -##traction -Grimsby -sprawling -Shipyard -##destine -##hropic -##icked -trolley -##agi -##lesh -Josiah -invasions -Content -firefighters -intro -Lucifer -subunit -Sahib -Myrtle -inhibitor -maneuvers -##teca -Wrath -slippery -##versing -Shoes -##dial -##illiers -##luded -##mmal -##pack -handkerchief -##edestal -##stones -Fusion -cumulative -##mell -##cacia -##rudge -##utz -foe -storing -swiped -##meister -##orra -batter -strung -##venting -##kker -Doo -Taste -immensely -Fairbanks -Jarrett -Boogie -1746 -mage -Kick -legislators -medial -##ilon -##logies -##ranton -Hybrid -##uters -Tide -deportation -Metz -##secration -##virus -UFO -##fell -##orage -##raction -##rrigan -1747 -fabricated -##BM -##GR -##rter -muttering -theorist -##tamine -BMG -Kincaid -solvent -##azed -Thin -adorable -Wendell -ta -##viour -pulses -##pologies -counters -exposition -sewer -Luciano -Clancy -##angelo -##riars -Showtime -observes -frankly -##oppy -Bergman -lobes -timetable -##bri -##uest -FX -##dust -##genus -Glad -Helmut -Meridian -##besity -##ontaine -Revue -miracles -##titis -PP -bluff -syrup -307 -Messiah -##erne -interfering -picturesque -unconventional -dipping -hurriedly -Kerman -248 -Ethnic -Toward -acidic -Harrisburg -##65 -intimidating -##aal -Jed -Pontiac -munitions -##nchen -growling -mausoleum -##ération -##wami -Cy -aerospace -caucus -Doing -##around -##miring -Cuthbert -##poradic -##rovisation -##wth -evaluating -##scraper -Belinda -owes -##sitic -##thermal -##fast -economists -##lishing -##uerre -##ân -credible -##koto -Fourteen -cones -##ebrates -bookstore -towels -##phony -Appearance -newscasts -##olin -Karin -Bingham -##elves -1680 -306 -disks -##lston -##secutor -Levant -##vout -Micro -snuck -##ogel -##racker -Exploration -drastic -##kening -Elsie -endowment -##utnant -Blaze -##rrosion -leaking -45th -##rug -##uernsey -760 -Shapiro -cakes -##ehan -##mei -##ité -##kla -repetition -successively -Friendly -Île -Koreans -Au -Tirana -flourish -Spirits -Yao -reasoned -##leam -Consort -cater -marred -ordeal -supremacy -##ritable -Paisley -euro -healer -portico -wetland -##kman -restart -##habilitation -##zuka -##Script -emptiness -communion -##CF -##inhabited -##wamy -Casablanca -pulsed -##rrible -##safe -395 -Dual -Terrorism -##urge -##found -##gnolia -Courage -patriarch -segregated -intrinsic -##liography -##phe -PD -convection -##icidal -Dharma -Jimmie -texted -constituents -twitch -##calated -##mitage -##ringing -415 -milling -##geons -Armagh -Geometridae -evergreen -needy -reflex -template -##pina -Schubert -##bruck -##icted -##scher -##wildered -1749 -Joanne -clearer -##narl -278 -Print -automation -consciously -flashback -occupations -##ests -Casimir -differentiated -policing -repay -##aks -##gnesium -Evaluation -commotion -##CM -##smopolitan -Clapton -mitochondrial -Kobe -1752 -Ignoring -Vincenzo -Wet -bandage -##rassed -##unate -Maris -##eted -##hetical -figuring -##eit -##nap -leopard -strategically -##reer -Fen -Iain -##ggins -##pipe -Matteo -McIntyre -##chord -##feng -Romani -asshole -flopped -reassure -Founding -Styles -Torino -patrolling -##erging -##ibrating -##ructural -sincerity -##ät -##teacher -Juliette -##cé -##hog -##idated -##span -Winfield -##fender -##nast -##pliant -1690 -Bai -Je -Saharan -expands -Bolshevik -rotate -##root -Britannia -Severn -##cini -##gering -##say -sly -Steps -insertion -rooftop -Piece -cuffs -plausible -##zai -Provost -semantic -##data -##vade -##cimal -IPA -indictment -Libraries -flaming -highlands -liberties -##pio -Elders -aggressively -##pecific -Decision -pigeon -nominally -descriptive -adjustments -equestrian -heaving -##mour -##dives -##fty -##yton -intermittent -##naming -##sets -Calvert -Casper -Tarzan -##kot -Ramírez -##IB -##erus -Gustavo -Roller -vaulted -##solation -##formatics -##tip -Hunger -colloquially -handwriting -hearth -launcher -##idian -##ilities -##lind -##locating -Magdalena -Soo -clubhouse -##kushima -##ruit -Bogotá -Organic -Worship -##Vs -##wold -upbringing -##kick -groundbreaking -##urable -##ván -repulsed -##dira -##ditional -##ici -melancholy -##bodied -##cchi -404 -concurrency -H₂O -bouts -##gami -288 -Leto -troll -##lak -advising -bundled -##nden -lipstick -littered -##leading -##mogeneous -Experiment -Nikola -grove -##ogram -Mace -##jure -cheat -Annabelle -Tori -lurking -Emery -Walden -##riz -paints -Markets -brutality -overrun -##agu -##sat -din -ostensibly -Fielding -flees -##eron -Pound -ornaments -tornadoes -##nikov -##organisation -##reen -##Works -##ldred -##olten -##stillery -soluble -Mata -Grimes -Léon -##NF -coldly -permitting -##inga -##reaked -Agents -hostess -##dl -Dyke -Kota -avail -orderly -##saur -##sities -Arroyo -##ceps -##egro -Hawke -Noctuidae -html -seminar -##ggles -##wasaki -Clube -recited -##sace -Ascension -Fitness -dough -##ixel -Nationale -##solidate -pulpit -vassal -570 -Annapolis -bladder -phylogenetic -##iname -convertible -##ppan -Comet -paler -##definite -Spot -##dices -frequented -Apostles -slalom -##ivision -##mana -##runcated -Trojan -##agger -##iq -##league -Concept -Controller -##barian -##curate -##spersed -##tring -engulfed -inquired -##hmann -286 -##dict -##osy -##raw -MacKenzie -su -##ienced -##iggs -##quitaine -bisexual -##noon -runways -subsp -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##{ -##| -##} -##~ -##¡ -##¢ -##£ -##¥ -##§ -##¨ -##© -##ª -##« -##¬ -##® -##± -##´ -##µ -##¶ -##· -##¹ -##º -##» -##¼ -##¾ -##¿ -##À -##Á -## -##Ä -##Å -##Æ -##Ç -##È -##É -##Í -##Î -##Ñ -##Ó -##Ö -##× -##Ø -##Ú -##Ü -##Þ -##â -##ã -##æ -##ç -##î -##ï -##ð -##ñ -##ô -##õ -##÷ -##û -##þ -##ÿ -##Ā -##ą -##Ć -##Č -##ď -##Đ -##đ -##ē -##ė -##ę -##ě -##ğ -##ġ -##Ħ -##ħ -##ĩ -##Ī -##İ -##ļ -##Ľ -##ľ -##Ł -##ņ -##ň -##ŋ -##Ō -##ŏ -##ő -##Œ -##œ -##ř -##Ś -##ś -##Ş -##Š -##Ţ -##ţ -##ť -##ũ -##ŭ -##ů -##ű -##ų -##ŵ -##ŷ -##ź -##Ż -##ż -##Ž -##ž -##Ə -##ƒ -##ơ -##ư -##ǎ -##ǐ -##ǒ -##ǔ -##ǫ -##Ș -##Ț -##ț -##ɐ -##ɑ -##ɔ -##ɕ -##ə -##ɛ -##ɡ -##ɣ -##ɨ -##ɪ -##ɲ -##ɾ -##ʀ -##ʁ -##ʂ -##ʃ -##ʊ -##ʋ -##ʌ -##ʐ -##ʑ -##ʒ -##ʔ -##ʰ -##ʲ -##ʳ -##ʷ -##ʻ -##ʼ -##ʾ -##ʿ -##ˈ -##ː -##ˡ -##ˢ -##ˣ -##́ -##̃ -##̍ -##̯ -##͡ -##Α -##Β -##Γ -##Δ -##Ε -##Η -##Θ -##Ι -##Κ -##Λ -##Μ -##Ν -##Ο -##Π -##Σ -##Τ -##Φ -##Χ -##Ψ -##Ω -##ά -##έ -##ή -##ί -##β -##γ -##δ -##ε -##ζ -##η -##θ -##ι -##κ -##λ -##μ -##ξ -##ο -##π -##ρ -##σ -##τ -##υ -##φ -##χ -##ψ -##ω -##ό -##ύ -##ώ -##І -##Ј -##А -##Б -##В -##Г -##Д -##Е -##Ж -##З -##И -##К -##Л -##М -##Н -##О -##П -##Р -##С -##Т -##У -##Ф -##Х -##Ц -##Ч -##Ш -##Э -##Ю -##Я -##б -##в -##г -##д -##ж -##з -##к -##л -##м -##п -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##щ -##ъ -##ы -##ь -##э -##ю -##ё -##і -##ї -##ј -##њ -##ћ -##Ա -##Հ -##ա -##ե -##ի -##կ -##մ -##յ -##ն -##ո -##ս -##տ -##ր -##ւ -##ְ -##ִ -##ֵ -##ֶ -##ַ -##ָ -##ֹ -##ּ -##א -##ב -##ג -##ד -##ה -##ו -##ז -##ח -##ט -##י -##כ -##ל -##ם -##מ -##ן -##נ -##ס -##ע -##פ -##צ -##ק -##ר -##ש -##ת -##، -##ء -##آ -##أ -##إ -##ئ -##ا -##ب -##ت -##ث -##ج -##ح -##خ -##ذ -##ز -##س -##ش -##ص -##ض -##ط -##ظ -##ع -##غ -##ف -##ق -##ك -##ل -##و -##ى -##َ -##ِ -##ٹ -##پ -##چ -##ک -##گ -##ہ -##ی -##ے -##ं -##आ -##क -##ग -##च -##ज -##ण -##त -##द -##ध -##न -##प -##ब -##भ -##म -##य -##र -##ल -##व -##श -##ष -##स -##ह -##ा -##ि -##ी -##ु -##े -##ो -##् -##। -##॥ -##আ -##ই -##এ -##ও -##ক -##খ -##গ -##চ -##ছ -##জ -##ট -##ত -##থ -##দ -##ধ -##ন -##প -##ব -##ম -##য -##র -##ল -##শ -##স -##হ -##় -##া -##ি -##ী -##ু -##ে -##ো -##্ -##য় -##க -##த -##ப -##ம -##ய -##ர -##ல -##வ -##ா -##ி -##ு -##் -##ร -##་ -##ག -##ང -##ད -##ན -##བ -##མ -##ར -##ལ -##ས -##ི -##ུ -##ེ -##ོ -##ა -##ე -##ი -##ლ -##ნ -##ო -##რ -##ს -##ᴬ -##ᴵ -##ᵀ -##ᵃ -##ᵇ -##ᵈ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵖ -##ᵗ -##ᵘ -##ᵣ -##ᵤ -##ᵥ -##ᶜ -##ᶠ -##ḍ -##Ḥ -##ḥ -##Ḩ -##ḩ -##ḳ -##ṃ -##ṅ -##ṇ -##ṛ -##ṣ -##ṭ -##ạ -##ả -##ấ -##ầ -##ẩ -##ậ -##ắ -##ế -##ề -##ể -##ễ -##ệ -##ị -##ọ -##ố -##ồ -##ổ -##ộ -##ớ -##ờ -##ợ -##ụ -##ủ -##ứ -##ừ -##ử -##ữ -##ự -##ỳ -##ỹ -##ἀ -##ἐ -##ὁ -##ὐ -##ὰ -##ὶ -##ὸ -##ῆ -##ῖ -##ῦ -##ῶ -##‐ -##‑ -##‒ -##– -##— -##― -##‖ -##‘ -##’ -##‚ -##“ -##” -##„ -##† -##‡ -##• -##… -##‰ -##′ -##″ -##⁄ -##⁰ -##ⁱ -##⁴ -##⁵ -##⁶ -##⁷ -##⁸ -##⁹ -##⁻ -##ⁿ -##₅ -##₆ -##₇ -##₈ -##₉ -##₊ -##₍ -##₎ -##ₐ -##ₑ -##ₒ -##ₓ -##ₕ -##ₖ -##ₘ -##ₚ -##ₛ -##ₜ -##₤ -##€ -##₱ -##₹ -##ℓ -##№ -##ℝ -##⅓ -##← -##↑ -##→ -##↔ -##⇌ -##⇒ -##∂ -##∈ -##∗ -##∘ -##√ -##∞ -##∧ -##∨ -##∩ -##∪ -##≈ -##≠ -##≡ -##≤ -##≥ -##⊂ -##⊆ -##⊕ -##⋅ -##─ -##│ -##■ -##● -##★ -##☆ -##☉ -##♠ -##♣ -##♥ -##♦ -##♯ -##⟨ -##⟩ -##ⱼ -##、 -##。 -##《 -##》 -##「 -##」 -##『 -##』 -##〜 -##い -##う -##え -##お -##か -##き -##く -##け -##こ -##さ -##し -##す -##せ -##そ -##た -##ち -##つ -##て -##と -##な -##に -##の -##は -##ひ -##ま -##み -##む -##め -##も -##や -##ゆ -##よ -##ら -##り -##る -##れ -##ん -##ア -##ィ -##イ -##ウ -##エ -##オ -##カ -##ガ -##キ -##ク -##グ -##コ -##サ -##シ -##ジ -##ス -##ズ -##タ -##ダ -##ッ -##テ -##デ -##ト -##ド -##ナ -##ニ -##ハ -##バ -##パ -##フ -##ブ -##プ -##マ -##ミ -##ム -##ャ -##ュ -##ラ -##リ -##ル -##レ -##ロ -##ン -##・ -##ー -##一 -##三 -##上 -##下 -##中 -##事 -##二 -##井 -##京 -##人 -##亻 -##仁 -##佐 -##侍 -##光 -##公 -##力 -##北 -##十 -##南 -##原 -##口 -##史 -##司 -##吉 -##同 -##和 -##囗 -##国 -##國 -##土 -##城 -##士 -##大 -##天 -##太 -##夫 -##女 -##子 -##宀 -##安 -##宮 -##宿 -##小 -##尚 -##山 -##島 -##川 -##州 -##平 -##年 -##心 -##愛 -##戸 -##文 -##新 -##方 -##日 -##明 -##星 -##書 -##月 -##木 -##本 -##李 -##村 -##東 -##松 -##林 -##正 -##武 -##氏 -##水 -##氵 -##江 -##河 -##海 -##版 -##犬 -##王 -##生 -##田 -##白 -##皇 -##省 -##真 -##石 -##社 -##神 -##竹 -##美 -##義 -##花 -##藤 -##西 -##谷 -##車 -##辶 -##道 -##郎 -##郡 -##部 -##野 -##金 -##長 -##門 -##陽 -##青 -##食 -##馬 -##高 -##龍 -##龸 -##사 -##씨 -##의 -##이 -##한 -##fi -##fl -##! -##( -##) -##, -##- -##/ -##: diff --git a/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/output/result_dir/label_test.txt b/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/output/result_dir/label_test.txt deleted file mode 100644 index 6df8e0ffde20fe0043873f78adc543e0651a4b51..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/Bert-NER_ID0797_for_TensorFlow/output/result_dir/label_test.txt +++ /dev/null @@ -1,40610 +0,0 @@ -S O O -- O O -J B-PER B-LOC -GE O O -L B-ORG O -W O O -, O O -CH B-ORG B-PER -IN O O -S B-LOC O -DE O O -. O O -Na B-LOC B-PER -La I-PER I-PER -AL B-LOC B-LOC -, O O -United B-LOC B-LOC -Arab I-LOC I-LOC -Emirates I-LOC I-LOC -1996 O O -Japan B-LOC B-LOC -began O O -the O O -defence O O -of O O -their O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -title O O -with O O -a O O -lucky O O -2 O O -win O O -against O O -Syria B-LOC B-LOC -in O O -a O O -Group O O -C O O -championship O O -match O O -on O O -Friday O O -. O O -But O O -China B-LOC B-LOC -saw O O -their O O -luck O O -desert O O -them O O -in O O -the O O -second O O -match O O -of O O -the O O -group O O -, O O -crashing O O -to O O -a O O -surprise O O -2 O O -defeat O O -to O O -newcomer O O -Uzbekistan B-LOC B-LOC -. O O -China B-LOC B-LOC -controlled O O -most O O -of O O -the O O -match O O -and O O -saw O O -several O O -chances O O -missed O O -until O O -the O O -78 O O -minute O O -when O O -U B-MISC B-MISC -striker O O -Igor B-PER B-PER -S I-PER I-PER -took O O -advantage O O -of O O -a O O -mi O O -defensive O O -header O O -to O O -lo O O -the O O -ball O O -over O O -the O O -advancing O O -Chinese B-MISC B-MISC -keeper O O -and O O -into O O -an O O -empty O O -net O O -. O O -Ole B-PER B-PER -S I-PER I-PER -made O O -sure O O -of O O -the O O -win O O -in O O -injury O O -time O O -, O O -hitting O O -an O O -un O O -left O O -foot O O -shot O O -from O O -just O O -outside O O -the O O -area O O -. O O -The O O -former O O -Soviet B-MISC B-MISC -republic O O -was O O -playing O O -in O O -an O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -finals O O -tie O O -for O O -the O O -first O O -time O O -. O O -Despite O O -winning O O -the O O -Asian B-MISC B-MISC -Games I-MISC I-MISC -title O O -two O O -years O O -ago O O -, O O -Uzbekistan B-LOC B-LOC -are O O -in O O -the O O -finals O O -as O O -outsider O O -. O O -Two O O -goals O O -from O O -defensive O O -errors O O -in O O -the O O -last O O -six O O -minutes O O -allowed O O -Japan B-LOC B-LOC -to O O -come O O -from O O -behind O O -and O O -collect O O -all O O -three O O -points O O -from O O -their O O -opening O O -meeting O O -against O O -Syria B-LOC B-LOC -. O O -Ta B-PER B-PER -Ta I-PER I-PER -scored O O -the O O -winner O O -in O O -the O O -88 O O -minute O O -, O O -rising O O -to O O -head O O -a O O -Hi B-PER B-PER -Yan I-PER I-PER -cross O O -towards O O -the O O -Syrian B-MISC B-MISC -goal O O -which O O -goalkeeper O O -Salem B-PER B-PER -Bit I-PER I-PER -appeared O O -to O O -have O O -covered O O -but O O -then O O -allowed O O -to O O -slip O O -into O O -the O O -net O O -. O O -It O O -was O O -the O O -second O O -costly O O -b O O -by O O -Syria B-LOC B-LOC -in O O -four O O -minutes O O -. O O -De O O -Hassan B-PER B-PER -Abbas I-PER I-PER -rose O O -to O O -intercept O O -a O O -long O O -ball O O -into O O -the O O -area O O -in O O -the O O -84 O O -minute O O -but O O -only O O -managed O O -to O O -diver O O -it O O -into O O -the O O -top O O -corner O O -of O O -Bit B-ORG B-PER -' O O -goal O O -. O O -Na B-PER B-PER -Jo I-PER I-PER -had O O -given O O -Syria B-LOC B-LOC -the O O -lead O O -with O O -a O O -well O O -header O O -in O O -the O O -seventh O O -minute O O -. O O -Japan B-LOC B-LOC -then O O -laid O O -siege O O -to O O -the O O -Syrian B-MISC B-MISC -penalty O O -area O O -for O O -most O O -of O O -the O O -game O O -but O O -rarely O O -breach O O -the O O -Syrian B-MISC B-MISC -defence O O -. O O -Bit B-ORG B-PER -pulled O O -off O O -fine O O -saves O O -whenever O O -they O O -did O O -. O O -Japan B-LOC B-LOC -coach O O -Shu B-PER B-PER -Ka I-PER I-PER -said O O -: O O -' O O -' O O -The O O -Syrian B-MISC B-MISC -own O O -goal O O -proved O O -lucky O O -for O O -us O O -. O O -The O O -Syrian B-MISC B-MISC -scored O O -early O O -and O O -then O O -played O O -defensive O O -and O O -adopted O O -long O O -balls O O -which O O -made O O -it O O -hard O O -for O O -us O O -. O O -' O O -' O O -Japan B-LOC B-LOC -, O O -co O O -of O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -in O O -2002 O O -and O O -ranked O O -20th O O -in O O -the O O -world O O -by O O -FIFA B-ORG B-ORG -, O O -are O O -favourite O O -to O O -regain O O -their O O -title O O -here O O -. O O -Host O O -UAE B-LOC B-LOC -play O O -Kuwait B-LOC B-LOC -and O O -South B-LOC B-LOC -Korea I-LOC I-LOC -take O O -on O O -Indonesia B-LOC B-LOC -on O O -Saturday O O -in O O -Group O O -A O O -matches O O -. O O -All O O -four O O -teams O O -are O O -level O O -with O O -one O O -point O O -each O O -from O O -one O O -game O O -. O O -R B-ORG B-ORG -UN I-ORG I-ORG -- O O -C B-ORG B-PER -BA O O -F O O -IT O B-LOC -A O O -A O O -Y O O -. O O -ROM B-LOC B-LOC -1996 O O -Italy B-LOC B-LOC -recalled O O -Marcel B-PER B-PER -Cut I-PER I-PER -on O O -Friday O O -for O O -their O O -friendly O O -against O O -Scotland B-LOC B-LOC -at O O -Murray B-LOC B-LOC -more O O -than O O -a O O -year O O -after O O -the O O -30 O O -wing O O -announced O O -he O O -was O O -retiring O O -following O O -differences O O -over O O -selection O O -. O O -Cut B-PER B-PER -, O O -who O O -trainer O O -George B-PER B-PER -Co I-PER I-PER -said O O -was O O -certain O O -to O O -play O O -on O O -Saturday O O -week O O -, O O -was O O -named O O -in O O -a O O -21 O O -squad O O -lacking O O -only O O -two O O -of O O -the O O -team O O -beaten O O -54 O O -by O O -England B-LOC B-LOC -at O O -T B-LOC B-LOC -last O O -month O O -. O O -Stefano B-PER B-PER -Bo I-PER I-PER -is O O -out O O -through O O -illness O O -and O O -Co B-PER B-PER -said O O -he O O -had O O -dropped O O -back O O -row O O -Co B-PER B-PER -Co I-PER I-PER -, O O -who O O -had O O -been O O -recalled O O -for O O -the O O -England B-LOC B-LOC -game O O -after O O -five O O -years O O -out O O -of O O -the O O -national O O -team O O -. O O -Cut B-PER B-PER -announced O O -his O O -retirement O O -after O O -the O O -1995 O B-MISC -World B-MISC I-MISC -Cup I-MISC I-MISC -, O O -where O O -he O O -took O O -issue O O -with O O -being O O -dropped O O -from O O -the O O -Italy B-LOC B-LOC -side O O -that O O -faced O O -England B-LOC B-LOC -in O O -the O O -pool O O -stages O O -. O O -Co B-PER B-PER -said O O -he O O -had O O -approached O O -the O O -player O O -two O O -months O O -ago O O -about O O -a O O -comeback O O -. O O -" O O -He O O -ended O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -on O O -the O O -wrong O O -note O O -, O O -" O O -Co B-PER B-PER -said O O -. O O -" O O -I O O -thought O O -it O O -would O O -be O O -useful O O -to O O -have O O -him O O -back O O -and O O -he O O -said O O -he O O -would O O -be O O -available O O -. O O -I O O -think O O -now O O -is O O -the O O -right O O -time O O -for O O -him O O -to O O -return O O -. O O -" O O -Squad O O -: O O -Javier B-PER B-PER -Per I-PER I-PER -, O O -Paolo B-PER B-PER -V I-PER I-PER -, O O -Marcel B-PER B-PER -Cut I-PER I-PER -, O O -Ivan B-PER B-PER -Francesca I-PER I-PER -, O O -Lea B-PER B-PER -Man I-PER I-PER -, O O -Diego B-PER B-PER -Dom I-PER I-PER -, O O -Francesco B-PER B-PER -Ma I-PER I-PER -, O O -Alessandro B-PER B-PER -T I-PER I-PER -, O O -Or B-PER B-PER -Ara I-PER I-PER -, O O -Andrea B-PER B-PER -S I-PER I-PER -, O O -Mass B-PER B-PER -G I-PER I-PER -, O O -Carlo B-PER B-PER -Ch I-PER I-PER -, O O -Walter B-PER B-PER -C I-PER I-PER -, O O -Franco B-PER B-PER -Pro I-PER I-PER -C I-PER I-PER -, O O -Carlo B-PER B-PER -Or I-PER I-PER -, O O -Mass B-PER B-PER -Cut I-PER I-PER -, O O -G B-PER B-PER -C I-PER I-PER -, O O -G B-PER B-PER -G I-PER I-PER -, O O -Nicola B-PER B-PER -S O O -- O O -LA O O -GO O O -G O O -J B-PER B-LOC -W O O -O O O -S B-LOC B-LOC -. O O -AL B-LOC B-LOC -, O O -United B-LOC B-LOC -Arab I-LOC I-LOC -Emirates I-LOC I-LOC -1996 O O -Two O O -goals O O -in O O -the O O -last O O -six O O -minutes O O -gave O O -holders O O -Japan B-LOC B-LOC -an O O -un O O -2 O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -victory O O -over O O -Syria B-LOC B-LOC -on O O -Friday O O -. O O -Ta B-PER B-PER -Ta I-PER I-PER -headed O O -the O O -winner O O -in O O -the O O -88 O O -minute O O -of O O -the O O -group O O -C O O -game O O -after O O -goalkeeper O O -Salem B-PER B-PER -Bit I-PER I-PER -spoiled O O -a O O -mistake O O -display O O -by O O -allowing O O -the O O -ball O O -to O O -slip O O -under O O -his O O -body O O -. O O -It O O -was O O -the O O -second O O -Syrian B-MISC B-MISC -defensive O O -b O O -in O O -four O O -minutes O O -. O O -De O O -Hassan B-PER B-PER -Abbas I-PER I-PER -rose O O -to O O -intercept O O -a O O -long O O -ball O O -into O O -the O O -area O O -in O O -the O O -84 O O -minute O O -but O O -only O O -managed O O -to O O -diver O O -it O O -into O O -the O O -top O O -corner O O -of O O -Bit B-ORG B-PER -' O O -goal O O -. O O -Syria B-LOC B-LOC -had O O -taken O O -the O O -lead O O -from O O -their O O -first O O -serious O O -attack O O -in O O -the O O -seventh O O -minute O O -. O O -Na B-PER B-PER -Jo I-PER I-PER -headed O O -a O O -cross O O -from O O -the O O -right O O -by O O -Am B-PER B-PER -A I-PER I-PER -into O O -the O O -top O O -right O O -corner O O -of O O -Ken B-PER B-PER -Shi I-PER I-PER -' O O -goal O O -. O O -Japan B-LOC B-LOC -then O O -laid O O -siege O O -to O O -the O O -Syrian B-MISC B-MISC -penalty O O -area O O -and O O -had O O -a O O -goal O O -di O O -for O O -offs O O -in O O -the O O -16th O O -minute O O -. O O -A O O -minute O O -later O O -, O O -Bit B-ORG B-PER -produced O O -a O O -good O O -double O O -save O O -, O O -first O O -from O O -Ka B-PER B-PER -Mi I-PER I-PER -' O O -header O O -and O O -then O O -blocked O O -a O O -Ta B-PER B-PER -follow O O -shot O O -. O O -Bit B-PER B-PER -saved O O -well O O -again O O -from O O -Mi B-PER B-PER -in O O -the O O -37th O O -minute O O -, O O -par O O -away O O -his O O -header O O -from O O -a O O -corner O O -. O O -Japan B-LOC B-LOC -started O O -the O O -second O O -half O O -brightly O O -but O O -Bit B-ORG B-PER -denied O O -them O O -an O O -equal O O -when O O -he O O -dive O O -to O O -his O O -right O O -to O O -save O O -Na B-PER B-PER -So I-PER I-PER -' O O -low O O -drive O O -in O O -the O O -53 O O -minute O O -. O O -Japan B-LOC B-LOC -: O O -19 O O -- O O -Ken B-PER B-PER -Shi I-PER I-PER -, O O -2 O O -- O O -Hi B-PER B-PER -Yan I-PER I-PER -, O O -3 O O -- O O -Na B-PER B-PER -So I-PER I-PER -, O O -4 O O -- O O -Ma B-PER B-PER -I I-PER I-PER -, O O -5 O O -- O O -Nor B-PER B-PER -O I-PER I-PER -, O O -6 O O -- O O -Mo B-PER B-PER -Ya I-PER I-PER -, O O -8 O O -- O O -Ma B-PER B-PER -Mae I-PER I-PER -( O O -7 O O -- O O -Ya B-PER B-PER -Honda I-PER I-PER -71 O O -) O O -, O O -9 O O -- O O -Ta B-PER B-PER -Ta I-PER I-PER -, O O -10 O O -- O O -Hi B-PER B-PER -Nana I-PER I-PER -, O O -11 O O -- O O -Ka B-PER B-PER -Mi I-PER I-PER -, O O -15 O O -- O O -Hi B-PER B-PER -Mo I-PER I-PER -( O O -14 O O -- O O -Ma B-PER B-PER -Ok I-PER I-PER -75 O O -) O O -. O O -Syria B-LOC B-LOC -: O O -24 O O -- O O -Salem B-PER B-PER -Bit I-PER I-PER -, O O -3 O O -- O O -Bach B-PER B-PER -Sr I-PER I-PER -; O O -4 O O -- O O -Hassan B-PER B-PER -Abbas I-PER I-PER -, O O -5 O O -- O O -Ta B-PER B-PER -J I-PER I-PER -, O O -6 O O -- O O -Am B-PER B-PER -A I-PER I-PER -( O O -9 O O -- O O -Lou B-PER B-PER -Tale I-PER I-PER -69 O O -) O O -, O O -8 O O -- O O -Ni B-PER B-PER -al I-PER I-PER -, O O -10 O O -- O O -Mohammed B-PER B-PER -A I-PER I-PER -, O O -12 O O -- O O -Ali B-PER B-PER -Di I-PER I-PER -, O O -13 O O -- O O -Abdul B-PER B-PER -La I-PER I-PER -He I-PER I-PER -( O O -17 O O -- O O -Am B-PER B-PER -R I-PER I-PER -46 O O -) O O -, O O -14 O O -- O O -K B-PER B-PER -Z I-PER I-PER -; O O -16 O O -- O O -Na B-PER B-PER -Jo I-PER I-PER -. O O -F O O -SK O B-MISC -C I-MISC I-MISC -M O O -R O O -. O O -T B-LOC B-LOC -, O O -France B-LOC B-LOC -1996 O O -Results O O -of O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -freestyle O O -skiing O O -m O O -competition O O -on O O -Friday O O -: O O -Men O O -1 O O -Je B-PER B-PER -Ron I-PER I-PER -( O O -Sweden B-LOC B-LOC -) O O -25 O O -points O O -2 O O -Andrei B-PER B-PER -Ivan I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -24 O O -3 O O -Ryan B-PER B-PER -Johnson I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -24 O O -4 O O -Jean B-PER B-PER -Brass I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -24 O O -5 O O -Ko B-PER B-PER -Hole I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -23 O O -6 O O -Je B-PER B-PER -Col I-PER I-PER -( O O -France B-LOC B-LOC -) O O -23 O O -7 O O -Jim B-PER B-PER -Moran I-PER I-PER -( O O -U B-LOC B-LOC -) O O -23 O O -8 O O -Dominic B-PER B-PER -G I-PER I-PER -( O O -Canada B-LOC B-LOC -AL B-LOC B-LOC -, O O -United B-LOC B-LOC -Arab I-LOC I-LOC -Emirates I-LOC I-LOC -1996 O O -Results O O -of O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -group O O -C O O -matches O O -played O O -on O O -Friday O O -: O O -Japan B-LOC B-LOC -2 O O -Syria B-LOC B-LOC -1 O O -( O O -halftime O O -0 O O -) O O -Score O O -: O O -Japan B-LOC B-LOC -- O O -Hassan B-PER B-PER -Abbas I-PER I-PER -84 O O -own O O -goal O O -, O O -Ta B-PER B-PER -Ta I-PER I-PER -88 O O -. O O -Syria B-LOC B-LOC -- O O -Na B-PER B-PER -Jo I-PER I-PER -7 O O -Attendance O O -: O O -10 O O -. O O -China B-LOC B-LOC -0 O O -Uzbekistan B-LOC B-LOC -2 O O -( O O -halftime O O -0 O O -) O O -Score O O -: O O -S B-PER B-PER -Igor I-PER I-PER -78 O O -, O O -S B-PER B-PER -Ole B-PER I-PER -90 O O -At O O -: O O -3 O O -Standing O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -Uzbekistan B-LOC B-LOC -1 O O -1 O O -0 O O -0 O O -2 O O -0 O O -3 O O -Japan B-LOC B-LOC -1 O O -1 O O -0 O O -0 O O -2 O O -1 O O -3 O O -Syria B-LOC B-LOC -1 O O -0 O O -0 O O -1 O O -1 O O -2 O O -0 O O -China B-LOC B-LOC -1 O O -0 O O -0 O O -1 O O -0 O O -2 O O -0 O O -CR O O -- O O -PA B-LOC B-LOC -V O O -NE B-LOC B-LOC -Z I-LOC I-LOC -ONE O O -SC O O -. O O -[ O O -CO O O -14 O O -GM B-MISC B-MISC -] O O -S B-LOC B-LOC -, O O -Pakistan B-LOC B-LOC -1996 O O -Score O O -in O O -the O O -second O O -one O O -cricket O O -international O O -between O O -Pakistan B-LOC B-LOC -and O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -on O O -Friday O O -: O O -Pakistan B-LOC B-LOC -Sa B-PER B-PER -An I-PER I-PER -run O O -out O O -91 O O -( O O -correct O O -from O O -90 O O -) O O -Z B-PER B-PER -El I-PER I-PER -b O O -Cairns B-PER B-PER -86 O O -( O O -correct O O -from O O -87 O O -) O O -I B-PER B-PER -Ahmad I-PER I-PER -c O O -S B-PER B-PER -b O O -Vaughan B-PER B-PER -59 O O -In B-PER B-PER -Ha I-PER I-PER -s O O -G B-PER B-PER -b O O -As B-PER B-PER -2 O O -Was B-PER B-PER -A I-PER I-PER -b O O -Harris B-PER B-PER -4 O O -Shah B-PER B-PER -A I-PER I-PER -b O O -Harris B-PER B-PER -2 O O -Mo B-PER B-PER -Khan I-PER I-PER -c O O -As B-PER B-PER -b O O -Harris B-PER B-PER -1 O O -W B-PER B-PER -You I-PER I-PER -Bowling O O -: O O -Was B-PER B-PER -A I-PER I-PER -8 O O -( O O -9 O O -, O O -1 O O -) O O -, O O -W B-PER B-PER -You I-PER I-PER -6 O O -( O O -2 O O -, O O -1 O O -) O O -, O O -Sa B-PER B-PER -Mu I-PER I-PER -8 O O -, O O -Mu B-PER B-PER -Ahmad I-PER I-PER -10 O O -( O O -1 O O -) O O -, O O -Shah B-PER B-PER -A I-PER I-PER -7 O O -, O O -Sal B-PER B-PER -Malik I-PER I-PER -2 O O -, O O -I B-PER B-PER -Ahmad I-PER I-PER -0 O O -. O O -Re O O -: O O -Pakistan B-LOC B-LOC -won O O -by O O -46 O O -runs O O -. O O -Third O O -one O O -match O O -: O O -December O O -8 O O -, O O -in O O -Karachi B-LOC B-LOC -. O O -S O O -- O O -E B-MISC B-MISC -F B-MISC I-MISC -C I-MISC I-MISC -SEC O O -R O O -R O O -. O O -L B-LOC B-LOC -1996 O O -Re O O -of O O -an O O -English B-MISC B-MISC -F B-MISC I-MISC -Challenge I-MISC I-MISC -Cup I-MISC B-MISC -second O O -round O O -match O O -on O O -Friday O O -: O O -Plymouth B-ORG B-ORG -4 O O -Exeter B-ORG B-ORG -1 O O -S O O -- O O -B B-MISC B-PER -BA O O -L O O -. O O -L B-LOC B-LOC -1996 O O -Dutch B-MISC B-MISC -forward O O -Reggie B-PER B-PER -B I-PER I-PER -had O O -his O O -in O O -suspension O O -lifted O O -by O O -FIFA B-ORG B-ORG -on O O -Friday O O -and O O -was O O -set O O -to O O -make O O -his O O -Sheffield B-ORG B-ORG -Wednesday I-ORG I-ORG -comeback O O -against O O -Liverpool B-ORG B-ORG -on O O -Saturday O O -. O O -B B-PER B-PER -missed O O -his O O -club O O -' O O -last O O -two O O -games O O -after O O -FIFA B-ORG B-ORG -slapped O O -a O O -worldwide O O -ban O O -on O O -him O O -for O O -appearing O O -to O O -sign O O -contracts O O -for O O -both O O -Wednesday B-ORG B-ORG -and O O -U B-ORG B-ORG -while O O -he O O -was O O -playing O O -for O O -Fe B-ORG B-ORG -. O O -FIFA B-ORG B-ORG -' O O -players O O -' O O -status O O -committee O O -, O O -meeting O O -in O O -Barcelona B-LOC B-LOC -, O O -decided O O -that O O -although O O -the O O -U B-MISC B-ORG -document O O -was O O -basically O O -valid O O -, O O -it O O -could O O -not O O -be O O -legally O O -protected O O -. O O -The O O -committee O O -said O O -the O O -Italian B-MISC B-MISC -club O O -had O O -violated O O -regulations O O -by O O -failing O O -to O O -inform O O -Fe B-ORG B-ORG -, O O -with O O -whom O O -the O O -player O O -was O O -under O O -contract O O -. O O -B B-ORG B-PER -was O O -fined O O -75 O O -Swiss B-MISC B-MISC -f O O -( O O -$ O O -57 O O -) O O -for O O -failing O O -to O O -inform O O -the O O -En B-ORG B-MISC -club O O -of O O -his O O -previous O O -commitment O O -to O O -U B-ORG B-ORG -. O O -S O O -- O O -L O B-ORG -' O O -B B-PER B-PER -F O O -F O O -PA O O -IN O O -FA O O -F O O -. O O -L B-LOC B-LOC -1996 O O -Leeds B-ORG B-ORG -' O O -England B-LOC B-LOC -under O O -striker O O -Lee B-PER B-PER -Bow I-PER I-PER -was O O -fined O O -4 O O -pounds O O -( O O -$ O O -7 O O -) O O -on O O -Friday O O -for O O -hurling O O -chairs O O -at O O -restaurant O O -staff O O -during O O -a O O -disturbance O O -at O O -a O O -McDonald B-ORG B-ORG -' I-ORG I-ORG -fast O O -restaurant O O -. O O -Bow B-PER B-PER -, O O -19 O O -, O O -who O O -was O O -caught O O -in O O -the O O -act O O -by O O -security O O -cameras O O -, O O -pleaded O O -guilty O O -to O O -a O O -charge O O -of O O -a O O -at O O -a O O -court O O -in O O -London B-LOC B-LOC -. O O -He O O -was O O -fined O O -and O O -ordered O O -to O O -pay O O -a O O -total O O -of O O -175 O O -pounds O O -to O O -two O O -members O O -of O O -staff O O -injured O O -in O O -the O O -f O O -in O O -an O O -east O O -London I-LOC B-LOC -restaurant O O -in O O -October O O -. O O -Leeds B-ORG B-ORG -had O O -already O O -fined O O -Bow B-PER B-PER -4 O O -pounds O O -( O O -$ O O -6 O O -) O O -and O O -warned O O -him O O -a O O -repeat O O -of O O -his O O -criminal O O -behaviour O O -could O O -cost O O -him O O -his O O -place O O -in O O -the O O -side O O -. O O -Bow B-PER B-PER -, O O -who O O -moved O O -to O O -the O O -Yorkshire B-LOC B-LOC -club O O -in O O -August O O -for O O -3 O O -million O O -pounds O O -( O O -$ O O -5 O O -million O O -) O O -, O O -was O O -expected O O -to O O -play O O -against O O -Middlesbrough B-ORG B-ORG -on O O -Saturday O O -. O O -BA O O -- O O -EU B-MISC B-MISC -ST O O -. O O -L B-LOC B-LOC -1996 O O -Standing O O -in O O -the O O -men O O -' O O -Euro B-MISC B-MISC -basketball O O -championship O O -after O O -Thursday O O -' O O -matches O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -lost O O -, O O -points O O -) O O -: O O -Group O O -A O O -CS B-ORG B-ORG -Moscow I-ORG I-ORG -( O O -Russia B-LOC B-LOC -9 O O -6 O O -3 O O -15 O O -Stefan B-ORG B-ORG -Milan I-ORG I-ORG -( O O -Italy B-LOC B-LOC -) O O -9 O O -6 O O -3 O O -15 O O -Maccabi B-ORG B-ORG -Tel I-ORG I-ORG -Aviv I-ORG I-ORG -( O O -Israel B-LOC B-LOC -) O O -9 O O -5 O O -4 O O -14 O O -U B-ORG B-ORG -S I-ORG I-ORG -( O O -Turkey B-LOC B-LOC -) O O -9 O O -4 O O -5 O O -13 O O -Lim B-ORG B-ORG -( O O -France B-LOC B-LOC -) O O -9 O O -3 O O -6 O O -12 O O -Pan B-ORG B-ORG -( O O -Greece B-LOC B-LOC -) O O -9 O O -3 O O -6 O O -12 O O -Group O O -B O O -Teams B-ORG B-ORG -Bologna I-ORG I-ORG -( O O -Italy B-LOC B-LOC -) O O -9 O O -7 O O -2 O O -16 O O -Olympia B-ORG B-ORG -( O O -Greece B-LOC B-LOC -) O O -9 O O -5 O O -4 O O -14 O O -C B-ORG B-ORG -Robert B-PER B-PER -Kit I-PER I-PER -L B-LOC B-LOC -1996 O O -Centre O O -Jason B-PER B-PER -Little I-PER I-PER -will O O -miss O O -Australia B-LOC B-LOC -' O O -end O O -fixture O O -against O O -the O O -Bar B-ORG B-ORG -at O O -T B-LOC B-LOC -on O O -Saturday O O -. O O -Little B-PER B-PER -has O O -opted O O -not O O -to O O -risk O O -a O O -the O O -knee O O -injury O O -which O O -ruled O O -him O O -out O O -of O O -a O O -large O O -chunk O O -of O O -the O O -tour O O -and O O -is O O -replaced O O -by O O -fellow O O -Queensland B-MISC B-MISC -Daniel B-PER B-PER -Herbert I-PER I-PER -. O O -Owen B-PER B-PER -Fine I-PER I-PER -has O O -recovered O O -from O O -the O O -knocks O O -he O O -took O O -in O O -last O O -weekend O O -' O O -test O O -against O O -Wales B-LOC B-LOC -and O O -retains O O -his O O -place O O -in O O -the O O -back O O -ahead O O -of O O -Daniel B-PER B-PER -Man I-PER I-PER -. O O -The O O -Wall B-ORG B-ORG -have O O -their O O -sights O O -set O O -on O O -a O O -13th O O -successive O O -victory O O -to O O -end O O -their O O -European B-MISC B-MISC -tour O O -with O O -a O O -100 O O -percent O O -record O O -but O O -also O O -want O O -to O O -turn O O -on O O -the O O -style O O -and O O -provide O O -David B-PER B-PER -Camp I-PER I-PER -with O O -a O O -fitting O O -send O O -in O O -his O O -final O O -match O O -in O O -Australian B-MISC B-MISC -colours O O -. O O -The O O -Wall B-ORG B-ORG -currently O O -have O O -no O O -plans O O -to O O -make O O -any O O -special O O -presentation O O -to O O -the O O -34 O O -winger O O -but O O -a O O -full O O -house O O -of O O -75 O O -spectators O O -will O O -still O O -gather O O -in O O -the O O -hope O O -of O O -witness O O -one O O -last O O -moment O O -of O O -magic O O -. O O -Camp B-PER B-PER -will O O -be O O -up O O -against O O -a O O -familiar O O -foe O O -in O O -the O O -shape O O -of O O -Bar B-ORG B-ORG -captain O O -Rob B-PER B-PER -Andrew I-PER I-PER -, O O -the O O -man O O -who O O -kicked O O -Australia B-LOC B-LOC -to O O -defeat O O -with O O -a O O -last O O -drop O O -in O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -quarter O O -in O O -Cape B-LOC B-LOC -Town I-LOC I-LOC -. O O -" O O -Campo B-PER B-PER -has O O -a O O -massive O O -following O O -in O O -this O O -country O O -and O O -has O O -had O O -the O O -public O O -with O O -him O O -ever O O -since O O -he O O -first O O -played O O -here O O -in O O -1984 O O -, O O -" O O -said O O -Andrew B-PER B-PER -, O O -also O O -likely O O -to O O -be O O -making O O -his O O -final O O -T B-ORG B-LOC -appearance O O -. O O -On O O -tour O O -, O O -Australia B-LOC B-LOC -have O O -won O O -all O O -four O O -tests O O -against O O -Italy B-LOC B-LOC -, O O -Scotland B-LOC B-LOC -, O O -Ireland B-LOC B-LOC -and O O -Wales B-LOC B-LOC -, O O -and O O -scored O O -41 O O -points O O -at O O -an O O -average O O -of O O -almost O O -35 O O -points O O -a O O -game O O -. O O -League O O -duties O O -restricted O O -the O O -Bar B-ORG B-ORG -' O O -select O O -options O O -but O O -they O O -still O O -b O O -13 O O -international O O -including O O -England B-LOC B-LOC -full O O -Tim B-PER B-PER -St I-PER I-PER -and O O -recalled O O -wing O O -Tony B-PER B-PER -Underwood I-PER I-PER -, O O -plus O O -All B-ORG B-ORG -Black I-ORG I-ORG -forwards O O -Ian B-PER B-PER -Jones I-PER I-PER -and O O -Nor B-PER B-PER -Hewitt I-PER I-PER -. O O -Teams O O -: O O -Bar O B-ORG -- O O -15 O O -- O O -Tim B-PER B-PER -St I-PER I-PER -( O O -England B-LOC B-LOC -) O O -; O O -14 O O -- O O -Nigel B-PER B-PER -Walker I-PER I-PER -( O O -Wales B-LOC B-LOC -) O O -, O O -13 O O -- O O -Allan B-PER B-PER -Bat I-PER I-PER -( O O -Wales B-LOC B-LOC -) O O -, O O -12 O O -- O O -Gregor B-PER B-PER -Townsend I-PER I-PER -( O O -Scotland B-LOC B-LOC -) O O -, O O -11 O O -- O O -Tony B-PER B-PER -Underwood I-PER I-PER -( O O -England B-LOC B-LOC -) O O -; O O -10 O O -- O O -Rob B-PER B-PER -Andrew I-PER I-PER -( O O -England B-LOC B-LOC -) O O -, O O -9 O O -- O O -Rob B-PER B-PER -How I-PER I-PER -( O O -Wales B-LOC B-LOC -) O O -; O O -8 O O -- O O -Scott B-PER B-PER -Quinn I-PER I-PER -( O O -Wales B-LOC B-LOC -) O O -, O O -7 O O -- O O -Neil B-PER B-PER -Back I-PER I-PER -( O O -England B-LOC B-LOC -) O O -, O O -6 O O -- O O -Dale B-PER B-PER -M I-PER I-PER -( O O -Pont B-LOC B-LOC -) O O -, O O -5 O O -- O O -Ian B-PER B-PER -Jones I-PER I-PER -( O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -) O O -, O O -4 O O -- O O -Craig B-PER B-PER -Quinn I-PER I-PER -( O O -Wales B-LOC B-LOC -) O O -, O O -3 O O -- O O -Darren B-PER B-PER -G I-PER I-PER -( O O -Leicester B-LOC B-LOC -) O O -Australia B-LOC B-LOC -- O O -15 O O -- O O -Matthew B-PER B-PER -Burke I-PER I-PER -; O O -14 O O -- O O -Joe B-PER B-PER -R I-PER I-PER -, O O -13 O O -- O O -Daniel B-PER B-PER -Herbert I-PER I-PER -, O O -12 O O -- O O -Tim B-PER B-PER -Ho I-PER I-PER -( O O -captain O O -) O O -, O O -11 O O -- O O -David B-PER B-PER -Camp I-PER I-PER -; O O -10 O O -- O O -Pat B-PER B-PER -Howard I-PER I-PER -, O O -9 O O -- O O -Sam B-PER B-PER -Payne I-PER I-PER -; O O -8 O O -- O O -Michael B-PER B-PER -B I-PER I-PER -, O O -7 O O -- O O -David B-PER B-PER -Wilson I-PER I-PER -, O O -6 O O -- O O -Owen B-PER B-PER -Fine I-PER I-PER -, O O -5 O O -- O O -David B-PER B-PER -G I-PER I-PER -, O O -4 O O -- O O -Tim B-PER B-PER -Gavin I-PER I-PER -, O O -3 O O -- O O -Andrew B-PER B-PER -Blade I-PER I-PER -, O O -2 O O -- O O -Marco B-PER B-PER -Cap I-PER I-PER -, O O -1 O O -- O O -Dan B-PER B-PER -Crowley I-PER I-PER -. O O -GO O O -- O O -Z B-MISC B-MISC -O I-MISC I-MISC -SEC O O -R O O -SC O O -. O O -H B-LOC B-LOC -1996 O O -Leading O O -second O O -round O O -scores O O -in O O -the O O -Zimbabwe B-MISC B-MISC -Open I-MISC I-MISC -at O O -the O O -par O O -Chapman B-LOC B-LOC -Golf I-LOC I-LOC -Club I-LOC I-LOC -on O O -Friday O O -( O O -South B-MISC B-MISC -African I-MISC I-MISC -unless O O -stated O O -) O O -: O O -132 O O -Des B-PER B-PER -Te I-PER I-PER -65 O O -67 O O -133 O O -Mark B-PER B-PER -M I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -72 O O -61 O O -134 O O -Steve B-PER B-PER -van I-PER I-PER -V I-PER I-PER -65 O O -69 O O -136 O O -Nick B-PER B-PER -Price I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -68 O O -68 O O -, O O -Justin B-PER B-PER -Ho I-PER I-PER -71 O O -65 O O -, O O -Andrew B-PER B-PER -Pitt I-PER I-PER -( O O -U B-LOC B-LOC -) O O -69 O O -67 O O -138 O O -Mark B-PER B-PER -C I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -69 O O -69 O O -, O O -Mark B-PER B-PER -Mu I-PER I-PER -71 O O -67 O O -139 O O -He B-PER B-PER -S I-PER I-PER -75 O O -64 O O -, O O -Andrew B-PER B-PER -Park I-PER I-PER -72 O O -67 O O -140 O O -Sc B-PER B-PER -van I-PER I-PER -der I-PER I-PER -Me I-PER I-PER -B B-LOC B-LOC -1996 O O -Romania B-LOC B-LOC -trainer O O -Ang B-PER B-PER -I I-PER I-PER -called O O -up O O -three O O -un O O -players O O -on O O -Friday O O -in O O -his O O -squad O O -to O O -face O O -Macedonia B-LOC B-LOC -next O O -week O O -in O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -qualifier O O -. O O -Mid O O -Vale B-PER B-PER -Stefan I-PER I-PER -and O O -striker O O -V B-PER B-PER -Ion I-PER I-PER -of O O -O B-ORG B-ORG -Gala I-ORG I-ORG -and O O -defender O O -Liv B-PER B-PER -C I-PER I-PER -of O O -National B-ORG B-ORG -Bucharest I-ORG I-ORG -are O O -the O O -newcomer O O -for O O -the O O -European B-MISC B-MISC -group O O -eight O O -clash O O -in O O -Macedonia B-LOC B-LOC -on O O -December O O -14 O O -. O O -I B-PER B-PER -said O O -he O O -had O O -picked O O -them O O -because O O -of O O -their O O -good O O -performances O O -in O O -the O O -domestic O O -championship O O -in O O -which O O -National B-ORG B-ORG -Bucharest I-ORG I-ORG -are O O -top O O -and O O -O B-ORG B-ORG -Gala I-ORG I-ORG -third O O -. O O -" O O -I O O -think O O -it O O -' O O -fair O O -to O O -give O O -them O O -a O O -chance O O -, O O -" O O -he O O -told O O -reporters O O -. O O -League O O -title O O -St B-ORG B-ORG -Bucharest I-ORG I-ORG -, O O -who O O -finished O O -bottom O O -of O O -their O O -Champions B-MISC B-MISC -' I-MISC I-MISC -League I-MISC I-MISC -group O O -in O O -the O O -European B-MISC B-MISC -Cup I-MISC I-MISC -, O O -have O O -only O O -two O O -players O O -in O O -the O O -squad O O -. O O -Attack O O -midfielder O O -Adrian B-PER B-PER -Il I-PER I-PER -, O O -who O O -recently O O -moved O O -from O O -St B-ORG B-ORG -to O O -Turkish B-MISC B-MISC -club O O -Gala B-ORG B-ORG -, O O -is O O -ruled O O -out O O -after O O -two O O -yellow O O -offences O O -. O O -Squad O O -: O O -Goal O O -- O O -Bo B-PER B-PER -St I-PER I-PER -, O O -F B-PER B-PER -P I-PER I-PER -. O O -De O O -- O O -Dan B-PER B-PER -Pet I-PER I-PER -, O O -Daniel B-PER B-PER -Pro I-PER I-PER -, O O -Anton B-PER B-PER -Do I-PER I-PER -, O O -Co B-PER B-PER -Pa I-PER I-PER -, O O -Liv B-PER B-PER -C I-PER I-PER -, O O -T B-PER B-PER -Se I-PER I-PER -, O O -I B-PER B-PER -Fi I-PER I-PER -. O O -Mid O O -- O O -G B-PER B-PER -Ha I-PER I-PER -, O O -G B-PER B-PER -Pope I-PER I-PER -, O O -Con B-PER B-PER -G I-PER I-PER -, O O -Vale B-PER B-PER -Stefan I-PER I-PER -, O O -Ba B-PER B-PER -Pan I-PER I-PER -, O O -Do B-PER B-PER -Mu I-PER I-PER -, O O -O B-PER B-PER -Sting I-PER I-PER -. O O -Forward O O -- O O -I B-PER B-PER -Vlad I-PER I-PER -, O O -G B-PER B-PER -C I-PER I-PER -, O O -Ion B-PER B-PER -Dan I-PER I-PER -, O O -V B-PER B-PER -Ion I-PER I-PER -. O O -R O B-ORG -S O O -- O O -BR B-MISC B-MISC -CH O O -R O O -. O O -R B-LOC B-LOC -DE I-LOC I-LOC -J I-LOC I-LOC -1996 O O -Results O O -of O O -Brazilian B-MISC B-MISC -soccer O O -championship O O -semifinal O O -, O O -first O O -leg O O -matches O O -on O O -Thursday O O -. O O -Go B-ORG B-ORG -1 O O -G B-ORG B-ORG -3 O O -Port B-ORG B-ORG -1 O O -At B-ORG B-ORG -Mine I-ORG I-ORG -0 O O -CR O O -- O O -LA B-ORG B-PER -E O O -AN O O -MI O O -D O O -. O O -Robert B-PER B-PER -G I-PER I-PER -ME B-LOC B-LOC -1996 O O -Australia B-LOC B-LOC -gave O O -Brian B-PER B-PER -Lara I-PER I-PER -another O O -reason O O -to O O -be O O -miserable O O -when O O -they O O -beat O O -West B-LOC B-LOC -Indies I-LOC I-LOC -by O O -five O O -wickets O O -in O O -the O O -opening O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -match O O -on O O -Friday O O -. O O -Lara B-PER B-PER -, O O -discipline O O -for O O -misconduct O O -on O O -Wednesday O O -, O O -was O O -dismissed O O -for O O -five O O -to O O -extend O O -a O O -disappointing O O -run O O -of O O -form O O -on O O -tour O O -. O O -Australia B-LOC B-LOC -, O O -who O O -hold O O -a O O -2 O O -lead O O -in O O -the O O -five O O -test O O -series O O -, O O -overhaul O O -West B-LOC B-LOC -Indies I-LOC I-LOC -' O O -total O O -of O O -172 O O -all O O -out O O -with O O -eight O O -balls O O -to O O -spare O O -to O O -end O O -a O O -run O O -of O O -six O O -successive O O -one O O -defeats O O -. O O -All O O -Greg B-PER B-PER -B I-PER I-PER -steered O O -his O O -side O O -to O O -a O O -comfortable O O -victory O O -with O O -an O O -unbeaten O O -57 O O -in O O -90 O O -balls O O -to O O -the O O -delight O O -of O O -the O O -42 O O -crowd O O -. O O -Man O O -match O O -B B-PER B-PER -came O O -to O O -the O O -wicket O O -with O O -the O O -total O O -on O O -70 O O -for O O -two O O -and O O -hit O O -three O O -four O O -during O O -an O O -un O O -innings O O -lasting O O -129 O O -minutes O O -. O O -His O O -crucial O O -fifth O O -partnership O O -with O O -fellow O O -all O O -Stuart B-PER B-PER -Law I-PER I-PER -, O O -who O O -scored O O -21 O O -, O O -added O O -71 O O -off O O -85 O O -balls O O -. O O -Lara B-PER B-PER -looked O O -out O O -of O O -touch O O -during O O -his O O -brief O O -stay O O -at O O -the O O -c O O -before O O -chip O O -a O O -simple O O -catch O O -to O O -Shane B-PER B-PER -War I-PER I-PER -at O O -mid O O -. O O -West B-LOC B-LOC -Indies I-LOC I-LOC -tour O O -manager O O -Clive B-PER B-PER -Lloyd I-PER I-PER -has O O -a O O -for O O -Lara B-PER B-PER -' O O -behaviour O O -on O O -Tuesday O O -. O O -He O O -( O O -Lara B-PER B-PER -) O O -had O O -told O O -Australia B-LOC B-LOC -coach O O -Geoff B-PER B-PER -Marsh I-PER I-PER -that O O -wicket O O -Ian B-PER B-PER -He I-PER I-PER -was O O -un O O -in O O -the O O -visitors O O -' O O -dressing O O -room O O -. O O -The O O -Melbourne B-LOC B-LOC -crowd O O -were O O -clearly O O -angered O O -by O O -the O O -incident O O -, O O -loudly O O -j O O -the O O -West B-LOC B-LOC -Indies I-LOC I-LOC -vice O O -as O O -he O O -walked O O -to O O -the O O -middle O O -. O O -It O O -was O O -left O O -to O O -fellow O O -left O O -Shi B-PER B-PER -Chan I-PER I-PER -to O O -hold O O -the O O -innings O O -together O O -with O O -a O O -g O O -54 O O -despite O O -the O O -hand O O -of O O -an O O -injured O O -groin O O -. O O -Chan B-PER B-PER -was O O -forced O O -to O O -rely O O -on O O -a O O -runner O O -for O O -most O O -of O O -his O O -innings O O -after O O -hurting O O -himself O O -as O O -he O O -s O O -back O O -to O O -his O O -c O O -to O O -avoid O O -being O O -run O O -out O O -. O O -Pakistan B-LOC B-LOC -, O O -who O O -arrive O O -in O O -Australia B-LOC B-LOC -later O O -this O O -month O O -, O O -are O O -the O O -other O O -team O O -competing O O -in O O -the O O -World B-MISC B-MISC -Series I-MISC I-MISC -tournament O O -. O O -CR O O -- O O -AU B-LOC B-LOC -V O O -W O B-LOC -IN O I-LOC -W O B-MISC -SE O I-MISC -SC O O -. O O -ME B-LOC B-LOC -1996 O O -Score O O -in O O -the O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -match O O -between O O -Australia B-LOC B-LOC -and O O -West B-LOC B-LOC -Indies I-LOC I-LOC -on O O -Friday O O -: O O -West B-LOC B-LOC -Indies I-LOC I-LOC -S B-PER B-PER -Campbell I-PER I-PER -c O O -He B-PER B-PER -b O O -Gillespie B-PER B-PER -31 O O -R B-PER B-PER -Samuel I-PER I-PER -c O O -M B-PER B-PER -W I-PER I-PER -b O O -Gillespie B-PER B-PER -7 O O -B B-PER B-PER -Lara I-PER I-PER -c O O -War B-PER B-PER -b O O -Moody B-PER B-PER -5 O O -S B-PER B-PER -Chan I-PER I-PER -c O O -He B-PER B-PER -b O O -B B-PER B-PER -54 O O -C B-PER B-PER -Hooper I-PER I-PER -run O O -out O O -7 O O -J B-PER B-PER -Adams I-PER I-PER -lb O O -b O O -Moody B-PER B-PER -5 O O -J B-PER B-PER -Murray I-PER I-PER -c O O -B B-PER B-PER -b O O -War B-PER B-PER -24 O O -N B-PER B-PER -McLean I-PER I-PER -c O O -and O O -b O O -M B-PER B-PER -W I-PER I-PER -7 O O -K B-PER B-PER -Benjamin I-PER I-PER -b O O -War B-PER B-PER -8 O O -C B-PER B-PER -Ambrose I-PER I-PER -run O O -out O O -2 O O -C B-PER B-PER -Walsh I-PER I-PER -not O O -out O O -Bowling O O -: O O -Re B-PER B-PER -10 O O -( O O -n O O -) O O -, O O -Gillespie B-PER B-PER -10 O O -, O O -Moody B-PER B-PER -10 O O -, O O -B B-PER B-PER -6 O O -, O O -War B-PER B-PER -10 O O -( O O -w O O -) O O -, O O -M B-PER B-PER -W I-PER I-PER -3 O O -. O O -Australia B-LOC B-LOC -M B-PER B-PER -Taylor I-PER I-PER -b O O -McLean B-PER B-PER -29 O O -M B-PER B-PER -W I-PER I-PER -c O O -Murray B-PER B-PER -b O O -Benjamin B-PER B-PER -27 O O -R B-PER B-PER -Pont I-PER I-PER -lb O O -McLean B-PER B-PER -5 O O -G B-PER B-PER -B I-PER I-PER -not O O -out O O -57 O O -M B-PER B-PER -Be I-PER I-PER -s O O -Murray B-PER B-PER -b O O -Hooper B-PER B-PER -3 O O -S B-PER B-PER -Law I-PER I-PER -b O O -Hooper B-PER B-PER -21 O O -T B-PER B-PER -Moody I-PER I-PER -not O O -out O O -3 O O -Extra O O -( O O -lb O O -n O O -w O O -) O O -28 O O -Total O O -( O O -for O O -five O O -wickets O O -, O O -48 O O -overs O O -) O O -173 O O -Fall O O -of O O -wickets O O -: O O -1 O O -2 O O -3 O O -4 O O -5 O O -. O O -Did O O -not O O -bat O O -: O O -I B-PER B-PER -He I-PER I-PER -, O O -P B-PER B-PER -Re I-PER I-PER -, O O -S B-PER B-PER -War I-PER I-PER -, O O -J B-PER B-PER -Gillespie I-PER I-PER -. O O -Bowling O O -: O O -Ambrose B-PER B-PER -10 O O -( O O -2 O O -1 O O -) O O -, O O -Walsh B-PER B-PER -9 O O -( O O -4 O O -) O O -, O O -Benjamin B-PER B-PER -9 O O -( O O -1 O O -1 O O -) O O -, O O -Hooper B-PER B-PER -10 O O -( O O -1 O O -) O O -, O O -McLean B-PER B-PER -10 O O -( O O -1 O O -) O O -. O O -Re O O -: O O -Australia B-LOC B-LOC -won O O -by O O -five O O -wickets O O -. O O -CR O O -- O O -AU B-LOC B-LOC -B O O -W O B-LOC -IN O I-LOC -B O O -F O O -W O O -. O O -ME B-LOC B-LOC -1996 O O -Australia B-LOC B-LOC -beat O O -West B-LOC B-LOC -Indies I-LOC I-LOC -by O O -five O O -wickets O O -in O O -a O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -match O O -at O O -the O O -Melbourne B-LOC B-LOC -Cricket I-LOC I-LOC -Ground I-LOC I-LOC -on O O -Friday O O -. O O -Score O O -: O O -West B-LOC B-LOC -Indies I-LOC I-LOC -172 O O -all O O -out O O -in O O -49 O O -overs O O -( O O -Shi B-PER B-PER -Chan I-PER I-PER -54 O O -) O O -; O O -Australia B-LOC B-LOC -173 O O -in O O -48 O O -overs O O -( O O -Greg B-PER B-PER -B I-PER I-PER -57 O O -not O O -out O O -) O O -. O O -CR O O -- O O -W O B-LOC -IN O I-LOC -172 O O -AL O O -O O O -IN O O -49 O O -O O O -V O O -AU B-LOC B-LOC -. O O -ME B-LOC B-LOC -1996 O O -West B-LOC B-LOC -Indies I-LOC I-LOC -were O O -all O O -out O O -for O O -172 O O -off O O -49 O O -overs O O -in O O -the O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -match O O -against O O -Australia B-LOC B-LOC -on O O -Friday O O -. O O -CR O O -- O O -SH B-PER B-MISC -SH O I-MISC -SC O O -. O O -H B-LOC B-LOC -, O O -Australia B-LOC B-LOC -1996 O O -Score O O -on O O -the O O -first O O -day O O -of O O -the O O -four O O -Sheffield B-MISC B-MISC -Shield I-MISC I-MISC -match O O -between O O -Tasmania B-LOC B-LOC -and O O -Victoria B-LOC B-LOC -at O O -Belle B-LOC B-LOC -Oval I-LOC I-LOC -on O O -Friday O O -: O O -Tasmania B-LOC B-LOC -35 O O -for O O -three O O -( O O -David B-PER B-PER -Bo I-PER I-PER -106 O O -not O O -out O O -, O O -Shaun B-PER B-PER -Young I-PER I-PER -86 O O -not O O -out O O -, O O -Michael B-PER B-PER -Di I-PER I-PER -119 O O -) O O -v O O -Victoria B-LOC B-ORG -. O O -CR O O -- O O -LA B-ORG B-PER -S O O -M O O -AU B-MISC O -TO O O -MI O O -. O O -ME B-LOC B-LOC -1996 O O -West B-LOC B-LOC -Indies I-LOC I-LOC -batsman O O -Brian B-PER B-PER -Lara I-PER I-PER -suffered O O -another O O -blow O O -to O O -his O O -Australian B-MISC B-MISC -tour O O -, O O -after O O -already O O -being O O -discipline O O -for O O -misconduct O O -, O O -when O O -he O O -was O O -dismissed O O -cheap O O -in O O -the O O -first O O -limited O O -overs O O -match O O -against O O -Australia B-LOC B-LOC -on O O -Friday O O -. O O -Lara B-PER B-PER -, O O -who O O -earned O O -a O O -stern O O -re O O -from O O -his O O -own O O -tour O O -management O O -after O O -an O O -angry O O -out O O -against O O -Australia B-LOC B-LOC -wicket O O -Ian B-PER B-PER -He I-PER I-PER -, O O -scored O O -five O O -to O O -pro O O -a O O -run O O -of O O -poor O O -form O O -with O O -the O O -bat O O -. O O -The O O -West B-LOC B-LOC -Indies I-LOC I-LOC -vice O O -struggled O O -for O O -timing O O -during O O -his O O -36 O O -stay O O -at O O -the O O -c O O -before O O -chip O O -a O O -ball O O -from O O -medium O O -pace O O -Tom B-PER B-PER -Moody I-PER I-PER -straight O O -to O O -Shane B-PER B-PER -War I-PER I-PER -at O O -mid O O -. O O -West B-LOC B-LOC -Indies I-LOC I-LOC -were O O -53 O O -for O O -two O O -in O O -15 O O -overs O O -when O O -rain O O -stopped O O -play O O -at O O -the O O -Melbourne B-LOC B-LOC -Cricket I-LOC I-LOC -Ground I-LOC I-LOC -after O O -captain O O -Courtney B-PER B-PER -Walsh I-PER I-PER -won O O -the O O -toss O O -and O O -elected O O -to O O -bat O O -. O O -Lara B-PER B-PER -' O O -out O O -three O O -days O O -ago O O -has O O -clearly O O -turned O O -some O O -of O O -the O O -Australian B-MISC B-MISC -public O O -against O O -him O O -. O O -As O O -he O O -walked O O -to O O -the O O -wicket O O -he O O -was O O -greeted O O -by O O -loud O O -j O O -from O O -sections O O -of O O -the O O -crowd O O -. O O -On O O -several O O -occasions O O -during O O -his O O -innings O O -, O O -the O O -crowd O O -joined O O -together O O -in O O -a O O -series O O -of O O -o O O -chant O O -against O O -him O O -. O O -Tour B-MISC O -manager O O -Clive B-PER B-PER -Lloyd I-PER I-PER -on O O -Wednesday O O -a O O -for O O -Lara B-PER B-PER -' O O -behaviour O O -in O O -confront O O -Australia B-LOC B-LOC -coach O O -Geoff B-PER B-PER -Marsh I-PER I-PER -in O O -the O O -opposition O O -dressing O O -room O O -to O O -protest O O -against O O -his O O -dismissal O O -in O O -the O O -second O O -test O O -on O O -Tuesday O O -. O O -Lloyd B-PER B-PER -did O O -not O O -say O O -what O O -form O O -the O O -discipline O O -would O O -take O O -. O O -Lara B-PER B-PER -, O O -who O O -holds O O -the O O -record O O -for O O -the O O -highest O O -score O O -in O O -test O O -and O O -first O O -cricket O O -, O O -was O O -unhappy O O -about O O -He B-PER B-PER -' O O -role O O -in O O -the O O -incident O O -and O O -questioned O O -whether O O -the O O -ball O O -had O O -carried O O -to O O -the O O -Australia B-LOC B-LOC -keeper O O -. O O -Australia B-LOC B-LOC -went O O -on O O -to O O -win O O -the O O -match O O -at O O -the O O -Sydney B-LOC B-LOC -Cricket I-LOC I-LOC -Ground I-LOC I-LOC -by O O -124 O O -runs O O -to O O -take O O -a O O -two O O -lead O O -in O O -the O O -five O O -series O O -after O O -Lara B-PER B-PER -failed O O -in O O -both O O -innings O O -. O O -Lara B-PER B-PER -has O O -yet O O -to O O -score O O -a O O -century O O -since O O -West B-LOC B-LOC -Indies I-ORG I-LOC -arrived O O -in O O -Australia B-LOC B-LOC -five O O -weeks O O -ago O O -. O O -Both O O -West B-LOC B-LOC -Indies I-LOC I-LOC -and O O -Australia B-LOC B-LOC -team O O -management O O -have O O -played O O -down O O -the O O -incident O O -, O O -stress O O -that O O -relations O O -between O O -the O O -two O O -sides O O -have O O -not O O -been O O -adverse O O -affected O O -. O O -Pakistan B-LOC B-LOC -, O O -who O O -arrive O O -next O O -week O O -, O O -are O O -the O O -third O O -team O O -in O O -the O O -triangular O O -World B-MISC B-MISC -Series I-MISC I-MISC -tournament O O -. O O -CR O O -- O O -W O B-LOC -IN O I-LOC -TO O O -BA O O -A O O -W O O -THE O O -TO O O -. O O -ME B-LOC B-LOC -1996 O O -West B-LOC B-LOC -Indies I-LOC I-LOC -captain O O -Courtney B-PER B-PER -Walsh I-PER I-PER -elected O O -to O O -bat O O -after O O -winning O O -the O O -toss O O -in O O -the O O -first O O -match O O -in O O -the O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -competition O O -against O O -Australia B-LOC B-LOC -at O O -the O O -Melbourne B-LOC B-LOC -Cricket I-LOC O -Ground I-LOC O -on O O -Friday O O -. O O -Teams O O -: O O -Australia B-LOC B-LOC -- O O -Mark B-PER B-PER -Taylor I-PER I-PER -( O O -captain O O -) O O -, O O -Mark B-PER B-PER -W I-PER I-PER -, O O -Ricky B-PER B-PER -Pont I-PER I-PER -, O O -Greg B-PER B-PER -B I-PER I-PER -, O O -Michael B-PER B-PER -Be I-PER I-PER -, O O -Stuart B-PER B-PER -Law I-PER I-PER -, O O -Tom B-PER B-PER -Moody I-PER I-PER -, O O -Ian B-PER B-PER -He I-PER I-PER -, O O -Paul B-PER B-PER -Re I-PER I-PER -, O O -Shane B-PER B-PER -War I-PER I-PER -, O O -Jason B-PER B-PER -Gillespie I-PER I-PER -, O O -Glenn B-PER B-PER -McGrath I-PER I-PER -12th O O -man O O -. O O -West B-LOC B-LOC -Indies I-LOC I-LOC -- O O -She B-PER B-PER -Campbell I-PER I-PER -, O O -Robert B-PER B-PER -Samuel I-PER I-PER -, O O -Brian B-PER B-PER -Lara I-PER I-PER -, O O -Shi B-PER B-PER -Chan I-PER I-PER -, O O -Carl B-PER B-PER -Hooper I-PER I-PER -, O O -Jimmy B-PER B-PER -Adams I-PER I-PER -, O O -Junior B-PER B-PER -Murray I-PER I-PER -, O O -Nixon B-PER B-PER -McLean I-PER I-PER -, O O -Kenneth B-PER B-PER -Benjamin I-PER I-PER -, O O -C B-PER B-PER -Ambrose I-PER I-PER -, O O -Courtney B-PER B-PER -Walsh I-PER I-PER -( O O -captain O O -) O O -, O O -Roland B-PER B-PER -Hold I-PER I-PER -12th O O -man O O -. O O -BA O O -- O O -W B-MISC B-MISC -G B-MISC I-MISC -PR I-MISC I-MISC -R O O -. O O -BA B-LOC B-LOC -1996 O O -Results O O -in O O -last O O -of O O -the O O -group O O -matches O O -at O O -the O O -World B-MISC B-MISC -Grand B-MISC I-MISC -Prix I-MISC I-MISC -badminton O O -finals O O -on O O -Friday O O -: O O -Men O O -' O O -singles O O -Group O O -B O O -Chen B-PER B-PER -Gang I-PER I-PER -( O O -China B-LOC B-LOC -) O O -beat O O -Martin B-PER B-PER -Lo I-PER I-PER -Hansen I-PER I-PER -( O O -Denmark B-LOC B-LOC -) O O -15 O O -15 O O -Dong B-PER B-PER -Ji I-PER I-PER -( O O -China B-LOC B-LOC -) O O -beat O O -Thomas B-PER B-PER -St I-PER I-PER -( O O -Denmark B-LOC B-LOC -) O O -15 O O -15 O O -In B-PER B-PER -W I-PER I-PER -( O O -Indonesia B-LOC B-LOC -) O O -beat O O -On B-PER B-PER -E I-PER I-PER -Ho I-PER I-PER -( O O -Malaysia B-LOC B-LOC -) O O -5 O O -15 O O -15 O O -Group O O -C O O -Sun B-PER B-PER -Jun I-PER I-PER -( O O -China B-LOC B-LOC -) O O -beat O O -Rashid B-PER B-PER -Side I-PER I-PER -( O O -Malaysia B-LOC B-LOC -) O O -15 O O -17 O O -Her B-PER B-PER -Susan I-PER I-PER -( O O -Semifinals O O -( O O -on O O -Saturday O O -) O O -: O O -Su B-PER B-PER -Susan I-PER I-PER -( O O -Indonesia B-LOC B-LOC -) O O -v O O -Cam B-PER B-PER -Martin I-PER I-PER -( O O -Denmark B-LOC B-LOC -) O O -; O O -Ye B-PER B-PER -Zhao I-PER I-PER -( O O -China B-LOC B-LOC -) O O -v O O -Gong B-PER B-PER -Z I-PER I-PER -( O O -China B-LOC B-LOC -) O O -. O O -S O O -- O O -AR B-MISC B-MISC -CO O O -W O O -A B-MISC B-MISC -C I-MISC I-MISC -W O I-MISC -' O I-MISC -C I-MISC I-MISC -. O O -CA B-LOC B-LOC -1996 O O -Re O O -of O O -the O O -second O O -leg O O -of O O -the O O -African B-MISC B-MISC -Cup I-MISC I-MISC -Winners I-MISC I-MISC -' I-MISC I-MISC -Cup I-MISC I-MISC -final O O -at O O -the O O -National B-LOC B-LOC -stadium O I-LOC -on O O -Friday O O -: O O -Arab B-ORG B-ORG -Con I-ORG I-ORG -( O O -Egypt B-LOC B-LOC -) O O -4 O O -So B-ORG B-ORG -( O O -Z B-LOC B-LOC -) O O -0 O O -( O O -halftime O O -2 O O -) O O -Score O O -: O O -Al B-PER B-PER -Ash I-PER I-PER -7 O O -, O O -56 O O -penalty O O -, O O -Mohamed B-PER B-PER -O I-PER I-PER -24 O O -, O O -73 O O -Con O O -won O O -4 O O -on O O -aggregate O O -. O O -NHL B-ORG B-ORG -I I-MISC O -H O O -- O O -ST O O -A O O -T O O -' O O -GA O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Standing O O -of O O -National B-MISC B-ORG -Hockey I-MISC I-ORG -League I-MISC B-ORG -teams O O -after O O -games O O -played O O -on O O -Thursday O O -( O O -ta O O -under O O -won O O -, O O -lost O O -, O O -tied O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -EA B-MISC O -CO O O -NO O O -D O O -W O O -L O O -T O O -G O O -GA B-ORG O -PT I-ORG O -H I-ORG B-ORG -12 O O -7 O O -6 O O -77 O O -76 O O -30 O O -B B-ORG B-ORG -13 O O -12 O O -1 O O -77 O O -76 O O -27 O O -B B-ORG B-ORG -10 O O -11 O O -4 O O -74 O O -84 O O -24 O O -M B-ORG B-ORG -10 O O -14 O O -4 O O -96 O O -103 O O -24 O O -P B-ORG B-ORG -9 O O -13 O O -3 O O -81 O O -91 O O -21 O O -O B-ORG B-ORG -[ O O -CO O O -08 O O -GM B-MISC B-MISC -] O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -( O O -Co O O -headline O O -from O O -NBA B-ORG B-ORG -to O O -NHL B-ORG B-ORG -and O O -correct O O -team O O -name O O -in O O -second O O -result O O -from O O -La B-ORG B-ORG -C I-ORG I-ORG -to O O -N B-ORG B-ORG -Islanders I-ORG I-ORG -. O O -) O O -Results O O -of O O -National B-MISC B-ORG -Hockey I-MISC I-ORG -League I-MISC B-ORG -games O O -on O O -Thursday O O -( O O -home O O -team O O -in O O -CA O O -) O O -: O O -Hartford B-ORG B-ORG -4 O O -B B-ORG B-ORG -2 O O -FL B-ORG B-ORG -4 O O -N B-ORG B-ORG -Islanders I-ORG I-ORG -2 O O -NE B-ORG B-ORG -J I-ORG I-ORG -2 O O -Calgary B-ORG B-ORG -1 O O -Phoenix B-ORG B-ORG -3 O O -ST B-ORG B-ORG -L I-ORG I-ORG -0 O O -Tampa B-ORG B-ORG -Bay I-ORG I-ORG -2 O O -L B-ORG B-ORG -AN I-ORG I-ORG -1 O O -NFL B-ORG B-ORG -AM I-MISC O -F O O -C B-PER O -EA O B-ORG -TO O O -ST O O -IN O O -P B-MISC O -H O O -. O O -IN B-LOC B-LOC -1996 O O -The O O -injury O O -Indianapolis B-ORG B-ORG -Colts I-ORG I-ORG -lost O O -another O O -quarterback O O -on O O -Thursday O O -but O O -last O O -year O O -' O O -AFC B-MISC O -finalists O O -rallied O O -together O O -to O O -shoot O O -down O O -the O O -Philadelphia B-ORG B-ORG -Eagles I-ORG I-ORG -37 O O -in O O -a O O -show O O -of O O -playoff O O -contender O O -. O O -Marshall B-PER B-PER -F I-PER I-PER -rushed O O -for O O -101 O O -yards O O -and O O -two O O -touchdowns O O -and O O -Jason B-PER B-PER -Bel I-PER I-PER -returned O O -an O O -interception O O -44 O O -yards O O -for O O -a O O -score O O -as O O -the O O -Colts B-ORG B-ORG -improved O O -to O O -8 O O -, O O -the O O -same O O -mark O O -as O O -the O O -Eagles B-ORG B-ORG -, O O -who O O -lost O O -for O O -the O O -fourth O O -time O O -in O O -five O O -games O O -. O O -Paul B-PER B-PER -Justin I-PER I-PER -, O O -starting O O -for O O -the O O -side O O -Jim B-PER B-PER -Ha I-PER I-PER -, O O -was O O -14 O O -for O O -144 O O -yards O O -and O O -a O O -touchdown O O -for O O -the O O -the O O -Colts B-ORG B-ORG -, O O -who O O -played O O -their O O -last O O -home O O -game O O -of O O -the O O -season O O -. O O -Indianapolis B-LOC B-LOC -closes O O -with O O -games O O -at O O -Kansas B-LOC B-LOC -City I-LOC I-LOC -and O O -Cincinnati B-LOC B-LOC -. O O -The O O -Eagles B-ORG B-ORG -were O O -held O O -without O O -a O O -touchdown O O -until O O -the O O -final O O -five O O -seconds O O -. O O -Philadelphia B-LOC B-LOC -, O O -which O O -fell O O -from O O -an O O -NFC B-MISC O -East I-MISC O -tie O O -with O O -the O O -Dallas B-ORG B-ORG -Cowboys I-ORG I-ORG -and O O -Washington B-ORG B-ORG -Redskins I-ORG I-ORG -, O O -go O O -on O O -the O O -road O O -against O O -the O O -New B-ORG B-ORG -York I-ORG I-ORG -Jets I-ORG I-ORG -and O O -then O O -entertain O O -Arizona B-LOC B-ORG -. O O -The O O -loss O O -by O O -Philadelphia B-ORG B-ORG -allowed O O -the O O -idle O O -Green B-ORG B-ORG -Bay I-ORG I-ORG -Packers I-ORG I-ORG -( O O -10 O O -) O O -to O O -c O O -the O O -first O O -NFC B-MISC O -playoff O O -berth O O -. O O -The O O -Colts B-ORG B-ORG -won O O -despite O O -the O O -absence O O -of O O -injured O O -starting O O -defensive O O -tackle O O -Tony B-PER B-PER -Sir I-PER I-PER -, O O -corner O O -Ray B-PER B-PER -Buchanan I-PER I-PER -and O O -linebacker O O -Quentin B-PER B-PER -Cory I-PER I-PER -. O O -F B-PER B-PER -carried O O -16 O O -times O O -, O O -including O O -a O O -13 O O -TD O O -run O O -in O O -the O O -first O O -quarter O O -and O O -a O O -seven O O -score O O -early O O -in O O -the O O -final O O -period O O -. O O -Justin B-PER B-PER -made O O -his O O -second O O -straight O O -start O O -for O O -Ha B-PER B-PER -, O O -who O O -has O O -a O O -knee O O -injury O O -. O O -Justin B-PER B-PER -suffered O O -a O O -s O O -right O O -shoulder O O -in O O -the O O -third O O -quarter O O -and O O -did O O -not O O -return O O -. O O -Third O O -Ke B-PER B-PER -Bell I-PER I-PER -, O O -a O O -1988 O O -draft O O -choice O O -of O O -the O O -Miami B-ORG B-ORG -Dolphins I-ORG I-ORG -, O O -made O O -his O O -NFL B-ORG B-ORG -debut O O -and O O -was O O -5 O O -for O O -75 O O -yards O O -, O O -including O O -a O O -20 O O -scoring O O -strike O O -to O O -Marvin B-PER B-PER -Harrison I-PER I-PER -in O O -the O O -third O O -period O O -. O O -A O O -39 O O -interference O O -penalty O O -against O O -Philadelphia B-LOC B-LOC -' O O -Troy B-PER B-PER -Vincent I-PER I-PER -set O O -up O O -F B-PER B-PER -' O O -first O O -score O O -around O O -left O O -end O O -that O O -capped O O -an O O -80 O O -march O O -5 O O -into O O -the O O -game O O -and O O -the O O -r O O -was O O -on O O -. O O -Eagles B-ORG B-ORG -quarterback O O -Ty B-PER B-PER -Det I-PER I-PER -was O O -17 O O -for O O -182 O O -yards O O -before O O -he O O -was O O -bench O O -. O O -Ricky B-PER B-PER -Watt I-PER I-PER -, O O -who O O -leads O O -the O O -NFC B-ORG O -in O O -rushing O O -, O O -left O O -the O O -game O O -after O O -getting O O -knee O O -to O O -the O O -helmet O O -after O O -gaining O O -33 O O -yards O O -on O O -seven O O -carries O O -. O O -NBA B-ORG B-ORG -BA O O -- O O -ST O O -A O O -T O O -' O O -GA O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Standing O O -of O O -National B-MISC B-ORG -Basketball I-MISC B-ORG -Association I-MISC I-ORG -teams O O -after O O -games O O -played O O -on O O -Thursday O O -( O O -ta O O -under O O -won O O -, O O -lost O O -, O O -percentage O O -, O O -games O O -behind O O -) O O -: O O -EA B-MISC O -CO O O -AT B-ORG B-LOC -D O O -W O O -L O O -PC O O -GB O O -MI B-ORG B-ORG -14 O O -4 O O -. O O -- O O -NE B-ORG B-ORG -Y I-ORG I-ORG -10 O O -6 O O -. O O -3 O O -OR B-ORG B-ORG -8 O O -6 O O -. O O -4 O O -WA B-ORG B-ORG -7 O O -9 O O -. O O -6 O O -P B-ORG B-ORG -7 O O -10 O O -. O O -6 O O -1 O O -B B-ORG B-ORG -4 O O -12 O O -. O O -9 O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -National B-MISC B-ORG -Football I-MISC I-ORG -League I-MISC I-ORG -standings O O -after O O -Thursday O O -' O O -game O O -( O O -ta O O -under O O -won O O -, O O -lost O O -, O O -tied O O -, O O -points O O -for O O -and O O -points O O -against O O -) O O -: O O -AM B-MISC B-MISC -F I-MISC O -CO O O -EA B-ORG O -D I-MISC O -W O O -L O O -T O O -P O O -PA O O -NE B-ORG B-ORG -E I-ORG I-ORG -9 O O -4 O O -0 O O -35 O O -26 O O -B B-ORG B-ORG -9 O O -4 O O -0 O O -26 O O -215 O O -IN B-ORG B-ORG -8 O O -6 O O -0 O O -26 O O -28 O O -MI B-ORG B-ORG -6 O O -7 O O -0 O O -285 O O -26 O O -NY B-ORG B-ORG -J I-ORG I-ORG -1 O O -12 O O -0 O O -221 O O -36 O O -CE B-ORG O -D I-MISC O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Re O O -of O O -National B-MISC B-ORG -Football I-MISC B-LOC -League I-MISC B-LOC -game O O -on O O -Thursday O O -( O O -home O O -team O O -in O O -CA O O -) O O -: O O -IN B-ORG B-ORG -37 O O -Philadelphia B-ORG B-ORG -10 O O -NCAA B-MISC B-ORG -AM I-MISC O -F O B-MISC -ST O I-MISC -' O O -PA O B-PER -F O O -R O O -L B-ORG B-MISC -A O I-MISC -W O O -. O O -H B-LOC B-LOC -1996 O O -Ohio B-ORG B-ORG -State I-ORG I-ORG -left O O -tackle O O -Orlando B-PER B-PER -Pace I-PER I-PER -became O O -the O O -first O O -repeat O O -winner O O -of O O -the O O -Lombard B-MISC B-MISC -Award I-MISC I-MISC -Thursday O O -night O O -when O O -the O O -R B-ORG B-ORG -Club I-ORG I-ORG -of I-ORG O -Houston I-ORG B-LOC -again O O -honoured O O -him O O -as O O -college O O -football O O -' O O -line O O -of O O -the O O -year O O -. O O -Pace B-PER B-PER -, O O -a O O -junior O O -, O O -helped O O -Ohio B-ORG B-ORG -State I-ORG I-ORG -to O O -a O O -10 O O -record O O -and O O -a O O -berth O O -in O O -the O O -Rose B-MISC B-MISC -Bowl I-MISC I-MISC -against O O -Arizona B-ORG B-ORG -State I-ORG I-ORG -. O O -He O O -was O O -the O O -most O O -dominant O O -offensive O O -line O O -in O O -the O O -country O O -and O O -also O O -played O O -defensive O O -line O O -in O O -goal O O -situations O O -. O O -Last O O -year O O -, O O -Pace B-PER B-PER -became O O -the O O -first O O -sophomore O O -to O O -win O O -the O O -award O O -since O O -its O O -inception O O -in O O -1970 O O -. O O -Pace B-PER B-PER -out O O -three O O -senior O O -finalists O O -- O O -Virginia B-ORG B-ORG -Tech I-ORG I-ORG -defensive O O -end O O -Cornell B-PER B-PER -Brown I-PER I-PER -, O O -Arizona B-ORG B-ORG -State I-ORG I-ORG -offensive O O -tackle O O -Juan B-PER B-PER -R I-PER I-PER -and O O -defensive O O -end O O -Jared B-PER B-PER -Tom I-PER I-PER -of O O -Nebraska B-LOC B-ORG -. O O -The O O -Lombard B-MISC B-MISC -Award I-MISC I-MISC -is O O -presented O O -to O O -the O O -college O O -line O O -who O O -, O O -in O O -addition O O -to O O -outstanding O O -effort O O -on O O -the O O -field O O -, O O -best O O -ex O O -the O O -characteristics O O -and O O -discipline O O -of O O -Vince B-PER B-PER -Lombard I-PER I-PER -, O O -legendary O O -coach O O -of O O -the O O -Green B-ORG B-ORG -Bay I-ORG I-ORG -Packers I-ORG I-ORG -. O O -S O O -- O O -D B-MISC B-MISC -F O O -D O O -R O O -/ O O -ST O O -. O O -AM B-LOC B-LOC -1996 O O -Re O O -of O O -Dutch B-MISC B-MISC -first O O -division O O -soccer O O -match O O -played O O -on O O -Friday O O -: O O -R B-ORG B-ORG -W I-ORG I-ORG -1 O O -Willem B-ORG B-ORG -II I-ORG I-ORG -T I-ORG I-ORG -2 O O -Standing O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -PS B-ORG B-ORG -Ein I-ORG I-ORG -18 O O -13 O O -3 O O -2 O O -52 O O -14 O O -42 O O -Fe B-ORG B-ORG -17 O O -11 O O -3 O O -3 O O -29 O O -20 O O -36 O O -T B-ORG B-ORG -En I-ORG I-ORG -18 O O -10 O O -4 O O -4 O O -28 O O -15 O O -34 O O -G B-ORG B-ORG -Do I-ORG I-ORG -18 O O -9 O O -3 O O -6 O O -29 O O -22 O O -30 O O -V B-ORG B-ORG -A I-ORG I-ORG -18 O O -8 O O -5 O O -5 O O -29 O O -21 O O -29 O O -B B-LOC B-LOC -1996 O O -Results O O -of O O -German B-MISC B-MISC -first O O -division O O -soccer O O -matches O O -played O O -on O O -Friday O O -: O O -Bo B-ORG B-ORG -2 O O -Bay B-ORG B-ORG -Lev I-ORG I-ORG -2 O O -We B-ORG B-ORG -Bremen I-ORG I-ORG -1 O O -1860 B-ORG B-ORG -Munich I-ORG I-ORG -1 O O -Karl B-ORG B-ORG -3 O O -Freiburg B-ORG B-ORG -0 O O -Sc B-ORG B-ORG -2 O O -Hans B-ORG B-ORG -R I-ORG I-ORG -0 O O -Standing O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -goals O O -against O O -points O O -) O O -: O O -Bay B-ORG B-ORG -Lev I-ORG I-ORG -17 O O -10 O O -4 O O -3 O O -38 O O -22 O O -34 O O -Bayern B-ORG B-ORG -Munich I-ORG I-ORG -16 O O -9 O O -6 O O -1 O O -26 O O -14 O O -33 O O -V B-ORG B-ORG -Stuttgart I-ORG I-ORG -16 O O -9 O O -4 O O -3 O O -39 O O -17 O O -31 O O -Bo B-ORG B-ORG -Dortmund I-ORG I-ORG -16 O O -9 O O -4 O O -3 O O -33 O O -17 O O -31 O O -Karl B-ORG B-ORG -17 O O -8 O O -PA B-LOC B-LOC -1996 O O -Su O O -of O O -French B-MISC B-MISC -first O O -division O O -matches O O -on O O -Friday O O -: O O -Len B-ORG B-ORG -0 O O -Nan B-ORG B-ORG -4 O O -( O O -J B-PER B-PER -N I-PER I-PER -7 O O -, O O -Claude B-PER B-PER -Make I-PER I-PER -42 O O -, O O -Jocelyn B-PER B-PER -Go I-PER B-PER -67 O O -, O O -Christophe B-PER B-PER -Pig I-PER I-PER -72 O O -) O O -. O O -Half O O -0 O O -. O O -Attendance O O -: O O -15 O O -. O O -Paris B-ORG B-ORG -St I-ORG I-ORG -Germain I-ORG I-ORG -1 O O -( O O -Bruno B-PER B-PER -N I-PER I-PER -2 O O -) O O -Nancy B-ORG B-ORG -2 O O -( O O -Paul B-PER B-PER -Fischer I-PER I-PER -70 O O -, O O -Phil B-PER B-PER -Gray I-PER I-PER -89 O O -) O O -. O O -1 O O -. O O -30 O O -. O O -S O O -- O O -D B-MISC B-MISC -F O O -D O O -S O O -. O O -AM B-LOC B-LOC -1996 O O -Su O O -of O O -Dutch B-MISC B-MISC -first O O -division O O -soccer O O -match O O -played O O -on O O -Friday O O -: O O -R B-ORG B-ORG -W I-ORG I-ORG -1 O O -( O O -Star B-ORG O -76 O O -) O O -Willem B-ORG B-ORG -II I-ORG I-ORG -T I-ORG I-ORG -2 O O -( O O -Ko B-PER B-PER -45 O O -, O O -Van B-PER B-PER -der I-PER I-PER -V I-PER I-PER -77 O O -) O O -. O O -Half O O -0 O O -. O O -Attendance O O -5 O O -. O O -S O O -- O O -F B-MISC B-MISC -L O O -ST O O -. O O -PA B-LOC B-LOC -1996 O O -Standing O O -in O O -the O O -French B-MISC B-MISC -first O O -division O O -after O O -Friday O O -' O O -matches O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -against O O -, O O -points O O -) O O -: O O -Paris B-ORG B-ORG -Saint I-ORG I-ORG -21 O O -12 O O -6 O O -3 O O -34 O O -15 O O -42 O O -Monaco B-ORG B-ORG -20 O O -12 O O -5 O O -3 O O -36 O O -16 O O -41 O O -Bordeaux B-ORG B-ORG -20 O O -9 O O -7 O O -4 O O -29 O O -21 O O -34 O O -Strasbourg B-ORG B-ORG -20 O O -11 O O -1 O O -8 O O -27 O O -27 O O -34 O O -Ba B-ORG B-ORG -20 O O -9 O O -6 O O -5 O O -27 O O -22 O O -33 O O -Au B-ORG B-ORG -20 O O -8 O O -8 O O -4 O O -26 O O -12 O O -32 O O -Metz B-ORG B-ORG -20 O O -8 O O -7 O O -5 O O -21 O O -16 O O -31 O O -Nan B-ORG B-ORG -21 O O -7 O O -9 O O -5 O O -41 O O -25 O O -30 O O -G B-ORG B-ORG -20 O O -7 O O -7 O O -6 O O -18 O O -18 O O -28 O O -Lille B-ORG B-ORG -20 O O -7 O O -7 O O -PA B-LOC B-LOC -1996 O O -Results O O -of O O -French B-MISC B-MISC -first O O -division O O -matches O O -on O O -Friday O O -: O O -Len B-ORG B-ORG -0 O O -Nan B-ORG B-ORG -4 O O -Paris B-ORG B-ORG -St I-ORG I-ORG -Germain I-ORG I-ORG -1 O O -Nancy B-ORG B-ORG -2 O O -S O O -- O O -GE B-MISC B-MISC -F O O -D O O -S O O -. O O -B B-LOC B-LOC -1996 O O -Su O O -of O O -matches O O -played O O -in O O -the O O -German B-MISC B-MISC -first O O -division O O -on O O -Friday O O -: O O -Bo B-ORG B-ORG -2 O O -( O O -Stick B-PER B-PER -30th O O -pen O O -, O O -W B-PER B-PER -89 O O -) O O -Bay B-ORG B-ORG -Lev I-ORG I-ORG -2 O O -( O O -Ki B-PER B-PER -18th O O -, O O -Ram B-PER B-PER -56 O O -) O O -. O O -Half O O -1 O O -. O O -Attendance O O -: O O -24 O O -We B-ORG B-ORG -Bremen I-ORG I-ORG -1 O O -( O O -Bo B-PER B-PER -85 O O -) O O -1860 B-ORG B-ORG -Munich I-ORG I-ORG -1 O O -( O O -Bo B-PER B-PER -8th O O -) O O -. O O -Half O O -0 O O -. O O -Attendance O O -33 O O -Karl B-ORG B-LOC -3 O O -( O O -Reich B-PER B-PER -29th O O -, O O -Carl B-PER B-PER -44 O O -, O O -Dundee B-PER B-ORG -69 O O -) O O -Freiburg B-ORG B-LOC -0 O O -. O O -Half O O -2 O O -. O O -Attendance O O -33 O O -Sc B-ORG B-ORG -2 O O -( O O -Mu B-PER B-PER -2nd O O -and O O -27th O O -) O O -Hans B-ORG B-ORG -R I-ORG I-ORG -0 O O -. O O -Half O O -2 O O -. O O -Attendance O O -29 O O -T O O -- O O -G B-MISC B-MISC -SL I-MISC I-MISC -C I-MISC I-MISC -Q O O -R O O -. O O -M B-LOC B-LOC -, O O -Germany B-LOC B-LOC -1996 O O -Quarter O O -results O O -at O O -the O O -$ O O -6 O O -million O O -Grand B-MISC B-MISC -Slam I-MISC I-MISC -Cup I-MISC I-MISC -tennis O O -tournament O O -on O O -Friday O O -: O O -Go B-PER B-PER -Ivan I-PER I-PER -( O O -Croatia B-LOC B-LOC -) O O -beat O O -Mark B-PER B-PER -Wood I-PER I-PER -( O O -Australia B-LOC B-LOC -) O O -6 O O -6 O O -Ye B-PER B-PER -Ka I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -beat O O -Jim B-PER B-PER -Co I-PER I-PER -( O O -U B-LOC B-LOC -) O O -2 O O -6 O O -8 O O -S O O -- O O -W O B-PER -H O O -DE O O -P O B-LOC -OF O O -CO B-LOC B-PER -. O O -L B-LOC B-LOC -1996 O O -Portugal B-LOC B-LOC -called O O -up O O -Porto B-ORG B-ORG -central O O -defender O O -Jo B-PER B-PER -Manuel I-PER I-PER -Pi I-PER I-PER -on O O -Friday O O -to O O -face O O -Germany B-LOC B-LOC -in O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -qualifier O O -in O O -place O O -of O O -injured O O -club O O -colleague O O -Jorge B-PER B-PER -Costa I-PER I-PER -, O O -who O O -is O O -still O O -nursing O O -a O O -broken O O -nose O O -after O O -being O O -head O O -by O O -Liberia B-MISC B-MISC -striker O O -Georg B-PER B-PER -We I-PER I-PER -. O O -Costa B-PER B-PER -has O O -not O O -played O O -since O O -being O O -struck O O -by O O -the O O -AC B-ORG B-ORG -Milan I-ORG I-ORG -forward O O -after O O -a O O -bad O O -European B-MISC B-MISC -Champions I-MISC I-MISC -' I-MISC I-MISC -League I-MISC I-MISC -game O O -on O O -November O O -27 O O -. O O -Portugal B-LOC B-LOC -lead O O -European B-MISC B-MISC -qualifying O O -group O O -nine O O -with O O -seven O O -points O O -from O O -four O O -games O O -, O O -one O O -more O O -than O O -Ukraine B-LOC B-LOC -and O O -three O O -more O O -than O O -Germany B-LOC B-LOC -, O O -who O O -have O O -only O O -played O O -twice O O -. O O -The O O -Portuguese B-MISC B-MISC -host O O -Germany B-LOC B-LOC -on O O -December O O -14 O O -. O O -Squad O O -: O O -Goal O O -- O O -V B-PER B-PER -Bai I-PER I-PER -( O O -Barcelona B-ORG B-ORG -, O O -Spain B-LOC B-LOC -) O O -, O O -R B-PER B-PER -Co I-PER I-PER -( O O -B B-ORG B-ORG -) O O -: O O -De O O -- O O -Paul B-PER B-PER -Santos I-PER I-PER -( O O -Porto B-ORG B-ORG -) O O -, O O -Sergio B-PER B-PER -Con I-PER I-PER -( O O -Porto B-ORG B-ORG -) O O -, O O -Jo B-PER B-PER -Manuel I-PER I-PER -Pi I-PER I-PER -( O O -Porto B-ORG B-ORG -) O O -, O O -Ocean B-PER B-PER -Cruz I-PER I-PER -( O O -Sporting B-ORG B-ORG -) O O -, O O -Fernando B-PER B-PER -Co I-PER I-PER -( O O -Barcelona B-ORG B-ORG -) O O -, O O -Held B-PER B-PER -C I-PER I-PER -( O O -Deportivo B-ORG B-ORG -Co I-ORG I-ORG -, O O -Spain B-LOC B-LOC -) O O -, O O -Di B-PER B-PER -Te I-PER I-PER -( O O -Juventus B-ORG B-ORG -, O O -Italy B-LOC B-LOC -) O O -, O O -Carlos B-PER B-PER -Secret I-PER I-PER -( O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -, O O -Spain B-LOC B-LOC -) O O -: O O -Mid O O -- O O -R B-PER B-PER -Barr I-PER I-PER -( O O -Porto B-ORG B-ORG -) O O -, O O -Jose B-PER B-PER -Barr I-PER I-PER -( O O -Porto B-ORG B-ORG -) O O -, O O -Luis B-PER B-PER -Fi I-PER I-PER -S O O -SH O O -ON O O -R O B-ORG -MA O I-ORG -V O O -BA O B-ORG -. O O -MA B-LOC B-LOC -1996 O O -William B-PER B-PER -Hill I-PER I-PER -betting O O -on O O -Saturday O O -' O O -Spanish B-MISC B-MISC -first O O -division O O -match O O -between O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -and O O -Barcelona B-ORG B-ORG -: O O -To O O -win O O -: O O -6 O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -; O O -7 O O -Barcelona B-ORG B-ORG -Draw O O -: O O -9 O O -Co O O -score O O -: O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -to O O -win O O -Barcelona B-ORG B-ORG -to O O -win O O -1 O O -13 O O -1 O O -15 O O -2 O O -9 O O -2 O O -12 O O -2 O O -8 O O -2 O O -10 O O -3 O O -20 O O -3 O O -28 O O -3 O O -16 O O -3 O O -22 O O -3 O O -25 O O -3 O O -25 O O -MA B-LOC B-LOC -1996 O O -Spanish B-MISC B-MISC -police O O -will O O -breath O O -fans O O -at O O -the O O -gates O O -of O O -the O O -Santiago B-LOC B-LOC -Bern I-LOC I-LOC -stadium O I-LOC -and O O -ban O O -drunk O O -supporters O O -from O O -Saturday O O -' O O -big O O -Real B-ORG B-MISC -Madrid I-ORG I-MISC -game O O -, O O -the O O -Madrid B-ORG B-LOC -daily O O -El B-ORG B-ORG -Mu I-ORG I-ORG -said O O -on O O -Friday O O -. O O -Although O O -there O O -are O O -no O O -known O O -precedent O O -in O O -the O O -country O O -, O O -the O O -action O O -is O O -en O O -in O O -Spanish B-MISC B-MISC -legislation O O -governing O O -sports O O -events O O -. O O -T O O -for O O -the O O -game O O -s O O -that O O -supporters O O -will O O -be O O -barred O O -if O O -they O O -are O O -" O O -under O O -the O O -effects O O -of O O -alcohol O O -" O O -. O O -S O O -- O O -SP B-MISC B-MISC -F O O -D O O -ST O O -. O O -MA B-LOC B-LOC -1996 O O -Standing O O -in O O -the O O -Spanish B-MISC B-MISC -first O O -division O O -ahead O O -of O O -this O O -weekend O O -' O O -games O O -. O O -( O O -ta O O -under O O -games O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -against O O -, O O -points O O -) O O -: O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -15 O O -10 O O -5 O O -0 O O -31 O O -12 O O -35 O O -Barcelona B-ORG B-ORG -15 O O -10 O O -4 O O -1 O O -46 O O -19 O O -34 O O -Deportivo B-ORG B-ORG -Co I-ORG I-ORG -15 O O -9 O O -6 O O -0 O O -23 O O -7 O O -33 O O -Real B-ORG B-ORG -Bet I-ORG I-ORG -15 O O -8 O O -5 O O -2 O O -28 O O -13 O O -29 O O -At B-ORG B-ORG -Madrid I-ORG I-ORG -15 O O -8 O O -3 O O -4 O O -26 O O -17 O O -27 O O -Athletic B-ORG B-ORG -B I-ORG I-ORG -15 O O -7 O O -4 O O -4 O O -28 O O -22 O O -25 O O -Real B-ORG B-ORG -So I-ORG I-ORG -15 O O -7 O O -3 O O -5 O O -20 O O -18 O O -24 O O -Val B-ORG B-ORG -15 O O -7 O O -3 O O -5 O O -19 O O -18 O O -24 O O -Racing B-ORG B-ORG -Santa I-ORG I-ORG -15 O O -5 O O -7 O O -3 O O -15 O O -15 O O -22 O O -Ray B-ORG B-ORG -Valle I-ORG I-ORG -15 O O -5 O O -5 O O -5 O O -21 O O -19 O O -20 O O -Valencia B-ORG B-ORG -15 O O -MA B-LOC B-LOC -1996 O O -Spain B-LOC B-LOC -coach O O -Javier B-PER B-PER -Clement I-PER I-PER -has O O -added O O -un O O -Deportivo B-ORG B-ORG -Co I-ORG I-ORG -midfielder O O -Armand B-PER B-PER -Alvarez I-PER I-PER -to O O -his O O -squad O O -for O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -qualifier O O -against O O -Yugoslavia B-LOC B-LOC -on O O -December O O -14 O O -. O O -" O O -I O O -do O O -n O O -believe O O -it O O -. O O -I O O -thought O O -it O O -was O O -a O O -joke O O -, O O -" O O -said O O -Armand B-PER B-PER -who O O -replaces O O -injured O O -At B-ORG B-ORG -Madrid I-ORG I-ORG -play O O -Jose B-PER B-PER -Luis I-PER I-PER -Cam I-PER I-PER -. O O -S O O -- O O -FIFA B-ORG B-ORG -B O O -H B-PER B-PER -ST O O -B O O -W O B-PER -. O O -ROM B-LOC B-LOC -1996 O O -FIFA B-ORG B-ORG -chairman O O -Jo B-PER B-PER -Have I-PER I-PER -said O O -on O O -Friday O O -he O O -would O O -personally O O -present O O -AC B-ORG B-ORG -Milan I-ORG I-ORG -George I-PER B-PER -We I-PER I-PER -with O O -world O O -soccer O O -' O O -fair O O -play O O -award O O -despite O O -the O O -striker O O -' O O -attack O O -on O O -Porto B-ORG B-ORG -captain O O -Jorge B-PER B-PER -Costa I-PER I-PER -. O O -In O O -an O O -interview O O -with O O -the O O -Italian B-MISC B-MISC -newspaper O O -G B-ORG B-ORG -dell I-ORG I-ORG -Sport I-ORG I-ORG -, O O -he O O -was O O -quoted O O -as O O -saying O O -We B-PER B-PER -had O O -been O O -provoked O O -into O O -the O O -assault O O -which O O -left O O -Costa B-PER B-PER -with O O -a O O -broken O O -nose O O -. O O -" O O -FIFA B-ORG B-ORG -has O O -named O O -the O O -Liberia B-MISC B-MISC -for O O -its O O -1996 O O -Fair B-MISC O -Play I-MISC O -award O O -and O O -it O O -is O O -not O O -going O O -to O O -change O O -its O O -decision O O -, O O -" O O -Have B-PER B-PER -said O O -. O O -" O O -A O O -reaction O O -, O O -provoked O O -, O O -cannot O O -erase O O -10 O O -years O O -of O O -loyalty O O -everywhere O O -and O O -in O O -every O O -competition O O -. O O -" O O -I O O -will O O -be O O -happy O O -to O O -give O O -him O O -the O O -award O O -personally O O -on O O -January O O -20 O O -in O O -Lisbon B-LOC B-LOC -and O O -I O O -' O O -confident O O -that O O -Costa B-PER B-PER -himself O O -will O O -be O O -there O O -beside O O -me O O -on O O -that O O -day O O -to O O -shake O O -his O O -hand O O -. O O -" O O -We B-PER B-PER -was O O -suspended O O -for O O -one O O -match O O -by O O -UEFA B-ORG B-ORG -, O O -European B-MISC B-MISC -soccer O O -' O O -governing O O -body O O -, O O -pending O O -a O O -full O O -investigation O O -. O O -The O O -incident O O -took O O -place O O -in O O -the O O -players O O -' O O -tunnel O O -after O O -a O O -European B-MISC B-MISC -Champions I-MISC I-MISC -' I-MISC I-MISC -League I-MISC I-MISC -match O O -on O O -November O O -20 O O -. O O -We B-PER B-PER -has O O -admitted O O -head O O -butt O O -Costa B-PER B-PER -but O O -said O O -he O O -reacted O O -to O O -racist O O -ta O O -. O O -He O O -has O O -offered O O -to O O -a O O -if O O -Costa B-PER B-PER -acknowledge O O -the O O -pro O O -. O O -Costa B-PER B-PER -, O O -who O O -needed O O -surgery O O -on O O -his O O -nose O O -, O O -has O O -not O O -accepted O O -the O O -offer O O -and O O -was O O -reported O O -to O O -be O O -considering O O -su O O -We B-PER B-PER -. O O -We B-PER B-PER -served O O -out O O -his O O -suspension O O -during O O -Milan B-ORG B-ORG -' O O -2 O O -home O O -defeat O O -by O O -Rosen B-ORG B-ORG -of O O -Norway B-LOC B-LOC -on O O -Wednesday O O -. O O -The O O -defeat O O -put O O -the O O -Italians B-MISC B-MISC -out O O -of O O -the O O -Euro B-MISC B-MISC -Cup I-MISC I-MISC -. O O -G B-LOC O -W O O -T O O -MA O B-ORG -UN O I-ORG -FA O O -IN O O -AU B-LOC B-LOC -. O O -VI B-LOC B-LOC -1996 O O -Two O O -Manchester B-ORG B-ORG -United I-ORG I-ORG -soccer O O -fans O O -were O O -wounded O O -by O O -unidentified O O -gun O O -on O O -Friday O O -and O O -taken O O -to O O -hospital O O -in O O -the O O -Austrian B-MISC B-MISC -capital O O -, O O -police O O -said O O -. O O -" O O -The O O -four O O -B B-MISC B-MISC -were O O -shot O O -at O O -from O O -a O O -Mercedes B-MISC B-MISC -car O O -at O O -around O O -1 O O -a O O -, O O -" O O -a O O -spoke O O -told O O -Re B-ORG B-ORG -. O O -The O O -two O O -men O O -were O O -hit O O -in O O -the O O -p O O -and O O -leg O O -. O O -Police O O -said O O -their O O -lives O O -were O O -not O O -in O O -danger O O -. O O -The O O -fans O O -, O O -in O O -Austria B-LOC B-LOC -to O O -watch O O -their O O -team O O -play O O -Rapid B-ORG B-ORG -Vienna I-ORG I-ORG -last O O -Wednesday O O -, O O -may O O -have O O -been O O -involved O O -in O O -a O O -pub O O -bra O O -earlier O O -, O O -the O O -spoke O O -said O O -. O O -Manchester B-ORG B-ORG -United I-ORG I-ORG -won O O -2 O O -. O O -S O O -- O O -IT B-MISC B-MISC -F O O -D O O -MA O O -T O O -W O O -. O O -ROM B-LOC B-LOC -1996 O O -Italian B-MISC B-MISC -Serie I-MISC B-MISC -A I-MISC I-MISC -games O O -to O O -be O O -played O O -on O O -Sunday O O -( O O -league O O -positions O O -in O O -parent O O -, O O -all O O -kick O O -off O O -times O O -GM B-MISC B-MISC -) O O -: O O -Bologna B-ORG B-ORG -( O O -4 O O -) O O -v O O -Pi B-ORG B-ORG -( O O -13 O O -) O O -133 O O -Along O O -with O O -leaders O O -Vice B-ORG B-ORG -, O O -fourth O O -Bologna B-ORG B-ORG -represent O O -the O O -biggest O O -surprise O O -of O O -this O O -Italian B-MISC B-MISC -autumn O O -. O O -Led O O -as O O -usual O O -by O O -S B-MISC B-MISC -Ken B-PER B-PER -Anders I-PER I-PER -and O O -Russian B-MISC B-MISC -Igor B-PER B-PER -Ko I-PER I-PER -in O O -attack O O -, O O -Bologna B-ORG B-ORG -can O O -expect O O -a O O -tough O O -home O O -match O O -against O O -a O O -Pi B-ORG B-ORG -side O O -still O O -ex O O -after O O -a O O -3 O O -league O O -win O O -over O O -AC B-ORG B-ORG -Milan I-ORG I-ORG -last O O -Sunday O O -. O O -C B-ORG B-ORG -( O O -16 O O -) O O -v O O -Reg B-ORG B-ORG -( O O -18 O O -) O O -153 O O -C B-ORG B-ORG -start O O -favourite O O -in O O -this O O -relegation O O -scrap O O -following O O -draws O O -with O O -Na B-ORG B-ORG -and O O -Inter B-ORG B-ORG -in O O -last O O -two O O -out O O -but O O -will O O -be O O -without O O -suspended O O -Swiss B-MISC B-MISC -defender O O -Ramon B-PER B-PER -Vega I-PER I-PER -. O O -Bottom O O -team O O -Reg B-ORG B-ORG -are O O -also O O -without O O -a O O -suspended O O -defender O O -, O O -German B-MISC B-MISC -Diet B-PER B-PER -Be I-PER I-PER -. O O -Fi B-ORG B-ORG -( O O -10 O O -) O O -v O O -Peru B-ORG B-ORG -( O O -8 O O -) O O -133 O O -Fi B-ORG B-ORG -will O O -be O O -without O O -three O O -suspended O O -players O O -- O O -defenders O O -Daniel B-PER B-PER -Car I-PER I-PER -and O O -Lorenzo B-PER B-PER -Amor I-PER I-PER -and O O -midfielder O O -Emilia B-PER B-PER -Big I-PER I-PER -- O O -for O O -a O O -difficult O O -home O O -match O O -against O O -unpredictable O O -, O O -attack O O -Peru B-ORG B-ORG -led O O -by O O -in O O -C B-MISC B-MISC -striker O O -Milan B-PER B-PER -Rap I-PER I-PER -and O O -the O O -experienced O O -Faust B-PER B-PER -Pi I-PER I-PER -. O O -La B-ORG B-ORG -( O O -12 O O -) O O -v O O -AS B-ORG B-ORG -Roma I-ORG I-ORG -( O O -7 O O -) O O -1930 O O -Poor O O -man O O -' O O -Roman B-MISC B-MISC -derby O O -in O O -what O O -has O O -been O O -a O O -miserable O O -season O O -for O O -both O O -Rome B-LOC B-LOC -teams O O -, O O -already O O -eliminated O O -from O O -the O O -Italian B-MISC B-MISC -and O O -UEFA B-MISC B-MISC -Cups I-MISC I-MISC -. O O -La B-ORG B-ORG -have O O -injury O O -doubts O O -about O O -striker O O -Pier B-PER B-PER -C I-PER I-PER -, O O -Czech B-MISC B-LOC -midfielder O O -Pavel B-PER B-PER -Ned I-PER I-PER -and O O -defender O O -Paolo B-PER B-PER -Negro I-PER I-PER -, O O -while O O -Roma B-ORG B-ORG -present O O -a O O -full O O -strength O O -side O O -led O O -by O O -Argentine B-MISC B-MISC -Abel B-PER B-PER -Ba I-PER I-PER -, O O -Marco B-PER B-PER -Del I-PER I-PER -and O O -Francesco B-PER B-PER -To I-PER I-PER -in O O -attack O O -. O O -AC B-ORG B-ORG -Milan I-ORG I-ORG -( O O -9 O O -) O O -v O O -U B-ORG B-ORG -( O O -11 O O -) O O -133 O O -Can O O -Milan B-ORG B-ORG -sink O O -any O O -further O O -? O O -Following O O -their O O -mid O O -Champions B-MISC B-MISC -' I-MISC I-MISC -League I-MISC I-MISC -elimination O O -by O O -Norwegian B-MISC B-MISC -side O O -Rosen B-ORG B-ORG -, O O -a O O -morale O O -win O O -is O O -badly O O -needed O O -. O O -Liberia B-MISC B-MISC -striker O O -George B-PER B-PER -We I-PER I-PER -makes O O -a O O -welcome O O -return O O -for O O -Milan B-ORG B-ORG -alongside O O -Roberto B-PER B-PER -Ba I-PER I-PER -, O O -with O O -Montenegrin B-MISC B-MISC -De B-PER B-PER -Sa I-PER I-PER -in O O -midfield O O -. O O -Good O O -news O O -for O O -Milan B-ORG B-ORG -is O O -that O O -U B-ORG B-ORG -' O O -German B-MISC B-MISC -striker O O -Oliver B-PER B-PER -B I-PER I-PER -is O O -out O O -through O O -injury O O -. O O -Na B-ORG B-ORG -( O O -5 O O -) O O -v O O -Verona B-ORG B-ORG -( O O -17 O O -) O O -133 O O -In O O -Na B-ORG B-ORG -should O O -prove O O -too O O -strong O O -for O O -second O O -from O O -bottom O O -Verona B-ORG B-ORG -despite O O -the O O -absence O O -of O O -their O O -suspended O O -Argentine B-MISC B-MISC -defender O O -Roberto B-PER B-PER -A I-PER I-PER -. O O -Verona B-ORG B-ORG -' O O -slim O O -chances O O -have O O -been O O -further O O -reduced O O -by O O -a O O -knee O O -injury O O -to O O -their O O -experienced O O -midfielder O O -E B-PER B-PER -Co I-PER I-PER -. O O -Parma B-ORG B-ORG -( O O -14 O O -) O O -v O O -At B-ORG B-ORG -( O O -15 O O -) O O -133 O O -Parma B-ORG B-ORG -may O O -field O O -new O O -signing O O -, O O -C B-MISC B-MISC -midfielder O O -Mario B-PER B-PER -Stan I-PER I-PER -, O O -in O O -an O O -attempt O O -to O O -lift O O -a O O -miserable O O -season O O -which O O -has O O -seen O O -them O O -go O O -without O O -a O O -win O O -since O O -a O O -1 O O -triumph O O -over O O -C B-ORG B-ORG -eight O O -weeks O O -ago O O -. O O -Parma B-ORG B-ORG -' O O -French B-MISC B-MISC -midfielder O O -Daniel B-PER B-PER -Bravo I-PER I-PER -and O O -defender O O -F B-PER B-PER -Can I-PER I-PER -are O O -suspended O O -while O O -Argentine B-MISC B-MISC -N B-PER B-PER -Sen I-PER I-PER -is O O -out O O -through O O -injury O O -. O O -At B-ORG B-ORG -look O O -to O O -Fi B-PER B-PER -In I-PER I-PER -, O O -scorer O O -of O O -eight O O -goals O O -. O O -Sam B-ORG B-ORG -( O O -6 O O -) O O -v O O -Juventus B-ORG B-ORG -( O O -3 O O -) O O -133 O O -All O O -Juventus B-ORG B-ORG -field O O -their O O -most O O -recent O O -signing O O -, O O -Portuguese B-MISC B-MISC -defender O O -Di B-PER B-PER -, O O -while O O -Alessandro B-PER B-PER -Del I-PER I-PER -Pier I-PER I-PER -and O O -C B-PER B-MISC -Al B-PER B-PER -Bo I-PER I-PER -lead O O -the O O -attack O O -. O O -The O O -new O O -world O O -club O O -champions O O -may O O -prove O O -too O O -strong O O -for O O -a O O -Sam B-ORG B-ORG -side O O -led O O -by O O -captain O O -Roberto B-PER B-PER -Man I-PER I-PER -but O O -missing O O -injured O O -French B-MISC B-MISC -midfielder O O -Pierre B-PER B-PER -Lai I-PER I-PER -. O O -Vice B-ORG B-ORG -( O O -1 O O -) O O -v O O -Inter B-ORG B-ORG -( O O -2 O O -) O O -133 O O -Not O O -exactly O O -a O O -clash O O -of O O -the O O -t O O -but O O -an O O -in O O -match O O -nonetheless O O -. O O -Full O O -strength O O -Vice B-ORG B-ORG -, O O -led O O -by O O -Uruguayan B-MISC B-MISC -Marcel B-PER B-PER -O I-PER I-PER -, O O -may O O -continue O O -their O O -surprise O O -run O O -at O O -the O O -top O O -against O O -an O O -Inter B-ORG B-ORG -side O O -that O O -has O O -been O O -less O O -than O O -impressive O O -in O O -three O O -successive O O -home O O -draws O O -. O O -Inter B-ORG B-ORG -will O O -be O O -without O O -suspended O O -French B-MISC B-MISC -defender O O -Jo B-PER B-PER -Anglo I-PER I-PER -and O O -injured O O -Chilean B-MISC B-MISC -striker O O -Ivan B-PER B-PER -Z I-PER I-PER -. O O -BA O O -- O O -EU B-MISC B-MISC -R O O -. O O -BR B-LOC B-LOC -1996 O O -Re O O -of O O -a O O -Euro B-MISC B-MISC -basketball O O -match O O -on O O -Thursday O O -: O O -Group O O -B O O -In O O -Cha B-LOC B-LOC -: O O -Cha B-ORG B-ORG -( O O -Belgium B-LOC B-LOC -) O O -75 O O -E B-ORG B-ORG -Madrid I-ORG I-ORG -( O O -Spain B-LOC B-LOC -) O O -82 O O -( O O -34 O O -) O O -Leading O O -scorer O O -: O O -Cha B-ORG B-ORG -- O O -Eric B-PER B-PER -C I-PER I-PER -18 O O -, O O -Ron B-PER B-PER -Ellis I-PER I-PER -18 O O -, O O -Jacques B-PER B-PER -St I-PER I-PER -14 O O -E B-ORG B-ORG -- O O -Harper B-PER B-PER -Williams I-PER I-PER -20 O O -, O O -Chad B-PER B-PER -Thompson I-PER I-PER -17 O O -, O O -Juan B-PER B-PER -Ai I-PER I-PER -14 O O -Group O O -D O O -In O O -Belgrade B-LOC B-LOC -: O O -Part B-ORG B-ORG -Belgrade I-ORG I-ORG -( O O -Yugoslavia B-LOC B-LOC -) O O -78 O O -Kind B-ORG B-ORG -Bologna I-ORG I-ORG -( O O -Italy B-LOC B-LOC -) O O -70 O O -( O O -halftime O O -44 O O -) O O -Leading O O -scorer O O -: O O -Part B-ORG B-ORG -- O O -B B-LOC B-LOC -, O O -India B-LOC B-LOC -1996 O O -World O O -number O O -two O O -Rodney B-PER B-PER -E I-PER I-PER -moved O O -within O O -sight O O -of O O -his O O -fifth O O -title O O -of O O -the O O -year O O -on O O -Friday O O -when O O -he O O -hurried O O -in O O -only O O -40 O O -minutes O O -to O O -the O O -final O O -of O O -the O O -richest O O -squash O O -tournament O O -outside O O -the O O -World B-MISC B-MISC -Open I-MISC I-MISC -, O O -the O O -$ O O -105 O O -Ma B-MISC B-MISC -International I-MISC I-MISC -. O O -The O O -Australian B-MISC B-MISC -brushed O O -aside O O -un O O -English B-MISC B-MISC -Mark B-PER B-PER -Cairns I-PER I-PER -15 O O -15 O O -15 O O -. O O -Top O O -E B-PER B-PER -now O O -meets O O -title O O -Peter B-PER B-PER -Nico I-PER I-PER -of O O -Scotland B-LOC B-LOC -who O O -over O O -Simon B-PER B-PER -Park I-PER I-PER -of O O -England B-LOC B-LOC -15 O O -15 O O -15 O O -. O O -Nico B-PER B-PER -was O O -full O O -of O O -praise O O -for O O -his O O -opponent O O -who O O -has O O -battled O O -test O O -cancer O O -to O O -return O O -to O O -the O O -circuit O O -. O O -" O O -He O O -' O O -a O O -remarkably O O -courage O O -player O O -, O O -" O O -said O O -Nico B-PER B-PER -. O O -S O O -- O O -MA B-MISC B-MISC -IN O I-MISC -SE O O -R O O -. O O -B B-LOC B-LOC -, O O -India B-LOC B-LOC -1996 O O -Results O O -of O O -semifinals O O -in O O -the O O -Ma B-MISC B-MISC -International I-MISC I-MISC -squash O O -tournament O O -on O O -Friday O O -: O O -Peter B-PER B-PER -Nico I-PER I-PER -( O O -Scotland B-LOC B-LOC -) O O -beat O O -Simon B-PER B-PER -Park I-PER I-PER -( O O -England B-LOC B-LOC -) O O -15 O O -15 O O -15 O O -Rodney B-PER B-PER -E I-PER I-PER -( O O -Australia B-LOC B-LOC -) O O -beat O O -Mark B-PER B-PER -Cairns I-PER I-PER -( O O -England B-LOC B-LOC -) O O -15 O O -15 O O -15 O O -. O O -Final O O -: O O -Nico B-PER B-PER -v O O -E B-ORG B-PER -, O O -on O O -Saturday O O -. O O -G B-ORG O -K O O -F O O -IN O O -S B-ORG B-MISC -' O O -Z B-ORG B-MISC -PR O O -. O O -D B-LOC B-PER -, O O -South B-LOC B-LOC -Africa I-LOC I-LOC -1996 O O -At O O -least O O -four O O -people O O -have O O -been O O -shot O O -dead O O -in O O -two O O -suspected O O -political O O -attacks O O -in O O -South B-LOC B-LOC -Africa I-LOC I-LOC -' O O -volatile O O -Z B-MISC B-MISC -heart O O -, O O -police O O -said O O -on O O -Friday O O -. O O -A O O -police O O -spokesman O O -said O O -two O O -youths O O -believed O O -to O O -be O O -supporters O O -of O O -President O O -Nelson B-PER B-PER -Man I-PER I-PER -' O O -African B-ORG B-ORG -National I-ORG I-ORG -Congress I-ORG I-ORG -( O O -AN B-ORG B-ORG -) O O -had O O -been O O -killed O O -when O O -unknown O O -gun O O -opened O O -fire O O -at O O -the O O -rural O O -settlement O O -of O O -I B-LOC B-LOC -on O O -K B-LOC B-LOC -province O O -' O O -south O O -coast O O -on O O -Thursday O O -night O O -. O O -The O O -victims O O -were O O -18 O O -and O O -20 O O -, O O -he O O -said O O -, O O -adding O O -one O O -other O O -youth O O -had O O -been O O -wounded O O -in O O -the O O -shooting O O -. O O -In O O -another O O -attack O O -, O O -also O O -on O O -the O O -province O O -' O O -south O O -coast O O -on O O -Thursday O O -night O O -, O O -two O O -men O O -were O O -shot O O -dead O O -near O O -Um B-LOC B-LOC -. O O -" O O -We O O -suspect O O -that O O -these O O -killings O O -are O O -linked O O -to O O -politics O O -, O O -" O O -spokesman O O -Ba B-PER B-PER -Na I-PER I-PER -told O O -Re B-ORG B-ORG -. O O -There O O -had O O -been O O -no O O -arrests O O -. O O -The O O -killings O O -came O O -just O O -hours O O -after O O -violence O O -monitors O O -said O O -they O O -were O O -not O O -optimistic O O -of O O -a O O -peaceful O O -f O O -season O O -in O O -K B-LOC B-LOC -and O O -pointed O O -the O O -south O O -coast O O -region O O -where O O -18 O O -people O O -were O O -massacre O O -last O O -Christmas O O -as O O -one O O -of O O -potential O O -hot O O -spots O O -. O O -They O O -said O O -the O O -recent O O -l O O -in O O -political O O -feud O O -could O O -be O O -upset O O -as O O -thousands O O -of O O -migrant O O -workers O O -, O O -some O O -tense O O -with O O -g O O -br O O -in O O -the O O -cities O O -and O O -keen O O -to O O -settle O O -old O O -scores O O -, O O -flock O O -back O O -to O O -their O O -home O O -villages O O -. O O -More O O -than O O -14 O O -people O O -have O O -lost O O -their O O -lives O O -in O O -over O O -a O O -decade O O -of O O -political O O -turf O O -wars O O -between O O -the O O -AN B-ORG B-ORG -and O O -Z B-MISC B-MISC -Chief O O -Man B-PER B-PER -But I-PER I-PER -' O O -In B-ORG B-ORG -Freedom I-ORG I-ORG -Party I-ORG I-ORG -in O O -the O O -province O O -. O O -H B-PER B-PER -PR O O -C B-MISC B-MISC -N O O -AL O B-PER -AS O O -F O O -. O O -K B-PER B-PER -G I-PER I-PER -PR B-LOC B-LOC -1996 O O -Czech B-MISC B-LOC -President O O -V B-PER B-PER -Have I-PER I-PER -on O O -Friday O O -welcomed O O -the O O -appointment O O -of O O -Madeleine B-PER B-PER -Al I-PER I-PER -, O O -who O O -is O O -of O O -Czech B-MISC B-LOC -extraction O O -, O O -as O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -' O O -first O O -woman O O -Secretary O O -of O O -State O O -. O O -In O O -a O O -statement O O -Have B-PER B-PER -, O O -who O O -is O O -recovering O O -from O O -cancer O O -surgery O O -, O O -said O O -: O O -" O O -Madeleine B-PER B-PER -Al I-PER I-PER -is O O -a O O -distinguished O O -friend O O -, O O -a O O -tested O O -diplomat O O -, O O -and O O -a O O -true O O -American B-MISC B-MISC -of O O -fine O O -origins O O -. O O -" O O -" O O -I O O -look O O -forward O O -to O O -continuing O O -our O O -good O O -relations O O -. O O -with O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -and O O -with O O -the O O -first O O -woman O O -ever O O -to O O -hold O O -the O O -position O O -of O O -Secretary O O -of O O -State O O -. O O -I O O -wish O O -her O O -well O O -, O O -" O O -Have B-PER B-PER -said O O -in O O -a O O -statement O O -to O O -Re B-ORG B-ORG -. O O -Have B-PER B-PER -, O O -who O O -helped O O -lead O O -the O O -" O O -velvet O O -revolution O O -" O O -that O O -ou O O -the O O -Communist B-MISC B-MISC -regime O O -in O O -Prague B-LOC B-LOC -in O O -1989 O O -, O O -invited O O -Al B-PER B-PER -, O O -then O O -working O O -for O O -a O O -private O O -foreign O O -policy O O -think O O -tank O O -, O O -to O O -advise O O -his O O -new O O -democratic O O -government O O -in O O -1990 O O -. O O -Have B-PER B-PER -had O O -a O O -small O O -ma O O -t O O -removed O O -from O O -his O O -lung O O -on O O -Monday O O -and O O -is O O -recovering O O -in O O -hospital O O -. O O -Al B-PER B-PER -, O O -born O O -Marie B-PER B-PER -Ko I-PER I-PER -to O O -a O O -Czechoslovak B-MISC B-MISC -diplomat O O -in O O -1937 O O -, O O -fled O O -with O O -her O O -family O O -to O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -after O O -the O O -Communists B-MISC B-MISC -came O O -to O O -power O O -in O O -a O O -coup O O -in O O -1948 O O -. O O -As O O -an O O -academic O O -, O O -Al B-PER B-PER -studied O O -and O O -lectured O O -on O O -Europe B-LOC B-LOC -' O O -20th O O -century O O -problems O O -before O O -becoming O O -U B-LOC B-LOC -ambassador O O -to O O -the O O -United B-ORG B-ORG -Nations I-ORG I-ORG -. O O -Czech B-MISC B-LOC -diplomat O O -, O O -seeking O O -to O O -have O O -their O O -country O O -included O O -in O O -the O O -expected O O -expansion O O -of O O -NATO B-ORG B-ORG -, O O -praised O O -the O O -selection O O -of O O -Al B-PER B-PER -, O O -known O O -to O O -be O O -a O O -strong O O -supporter O O -of O O -alliance O O -' O O -integration O O -of O O -former O O -So B-MISC B-MISC -countries O O -. O O -" O O -The O O -nomination O O -. O O -is O O -a O O -clear O O -signal O O -that O O -one O O -key O O -of O O -the O O -lines O O -of O O -foreign O O -policy O O -will O O -be O O -the O O -strengthening O O -of O O -the O O -trans B-MISC B-MISC -cooperation O O -, O O -a O O -creation O O -of O O -strategic O O -partnership O O -between O O -Europe B-LOC B-LOC -and O O -the O O -US B-LOC B-LOC -, O O -" O O -Foreign O O -Minister O O -Josef B-PER B-PER -Z I-PER I-PER -told O O -Re B-ORG B-ORG -. O O -" O O -( O O -Al B-PER B-PER -) O O -is O O -a O O -convinced O O -advocate O O -of O O -NATO B-ORG B-ORG -en O O -and O O -of O O -stab O O -of O O -security O O -structures O O -. O O -" O O -Czech B-MISC B-LOC -ambassador O O -to O O -the O O -United B-ORG B-ORG -Nations I-ORG I-ORG -, O O -Ka B-PER B-PER -Ko I-PER I-PER -, O O -told O O -the O O -daily O O -M B-ORG B-ORG -Front I-ORG I-ORG -D I-ORG I-ORG -that O O -Al B-PER B-PER -" O O -is O O -a O O -little O O -light O O -in O O -our O O -diplomatic O O -heaven O O -, O O -" O O -but O O -warned O O -against O O -expecting O O -her O O -to O O -ex O O -any O O -influence O O -in O O -favour O O -of O O -the O O -Czech B-MISC B-MISC -. O O -RA B-PER B-ORG -ROM B-ORG I-ORG -A O O -H O O -AT O O -4 O O -PM O O -. O O -B B-LOC B-LOC -1996 O O -Radio B-ORG B-ORG -Romania I-ORG I-ORG -news O O -headlines O O -: O O -* O O -The O O -Democratic B-ORG B-MISC -Convention I-ORG I-MISC -signed O O -an O O -agreement O O -on O O -government O O -and O O -parliamentary O O -support O O -with O O -its O O -coalition O O -partners O O -the O O -Social B-ORG B-ORG -Democratic I-ORG I-ORG -Union I-ORG I-ORG -and O O -the O O -Hungarian B-ORG B-ORG -Democratic I-ORG I-ORG -Union I-ORG I-ORG -( O O -U B-ORG B-ORG -) O O -. O O -The O O -ceremony O O -was O O -attended O O -by O O -President O O -Emil B-PER B-PER -Constantine I-PER I-PER -. O O -* O O -The O O -three O O -parties O O -in O O -the O O -government O O -coalition O O -have O O -committed O O -themselves O O -to O O -a O O -real O O -reform O O -of O O -Romania B-LOC B-LOC -' O O -economy O O -, O O -Constantine B-PER B-PER -said O O -after O O -the O O -ceremony O O -. O O -* O O -The O O -U B-ORG B-ORG -wants O O -to O O -contribute O O -to O O -social O O -reform O O -and O O -economic O O -revival O O -in O O -Romania B-LOC B-LOC -, O O -union O O -leader O O -Mark B-PER B-PER -Bel I-PER I-PER -said O O -. O O -* O O -The O O -international O O -airport O O -in O O -Tim B-LOC B-LOC -and O O -the O O -domestic O O -airports O O -in O O -Ara B-LOC B-LOC -, O O -Or B-LOC B-LOC -and O O -Si B-LOC B-LOC -were O O -closed O O -due O O -to O O -fog O O -. O O -- O O -Bucharest B-ORG B-ORG -News I-ORG I-ORG -40 O O -312 O O -C B-MISC B-MISC -VI O O -SE O O -W O O -DE O O -AT O O -PA B-MISC O -CO O O -. O O -PR B-LOC B-LOC -1996 O O -Saturday O O -' O O -national O O -congress O O -of O O -the O O -ruling O O -Czech B-ORG B-ORG -Civic I-ORG I-ORG -Democratic I-ORG I-ORG -Party I-ORG I-ORG -( O O -O B-ORG B-ORG -) O O -will O O -discuss O O -making O O -the O O -party O O -more O O -efficient O O -and O O -transparent O O -, O O -Foreign O O -Minister O O -and O O -O B-ORG B-ORG -vice O O -Josef B-PER B-PER -Z I-PER I-PER -, O O -said O O -on O O -Friday O O -. O O -" O O -Modern O O -and O O -more O O -pro O O -of O O -the O O -party O O -' O O -structure O O -, O O -having O O -financing O O -of O O -the O O -party O O -be O O -more O O -transparent O O -. O O -are O O -absolutely O O -fundamental O O -, O O -" O O -Z B-PER B-PER -, O O -who O O -is O O -also O O -vice O O -in O O -the O O -government O O -, O O -told O O -Re B-ORG B-ORG -. O O -He O O -said O O -after O O -June O O -general O O -elections O O -in O O -which O O -the O O -ruling O O -three O O -coalition O O -lost O O -its O O -parliamentary O O -majority O O -, O O -the O O -O B-ORG B-ORG -executive O O -, O O -led O O -by O O -Prime O O -Minister O O -V B-PER B-PER -Klaus I-PER I-PER -, O O -had O O -developed O O -proposals O O -on O O -these O O -subjects O O -to O O -present O O -at O O -the O O -congress O O -on O O -Saturday O O -in O O -the O O -Czech B-MISC B-LOC -second O O -city O O -B B-LOC B-LOC -. O O -" O O -I O O -am O O -convinced O O -, O O -that O O -the O O -congress O O -will O O -tackle O O -these O O -proposals O O -, O O -" O O -he O O -said O O -. O O -The O O -O B-ORG B-ORG -, O O -a O O -party O O -in O O -which O O -Klaus B-PER B-PER -often O O -tries O O -to O O -em O O -the O O -style O O -of O O -former O O -British B-MISC B-MISC -Prime O O -Minister O O -Margaret B-PER B-PER -Thatcher I-PER I-PER -, O O -has O O -been O O -in O O -control O O -of O O -Czech B-MISC B-LOC -politics O O -since O O -winning O O -general O O -elections O O -in O O -1992 O O -. O O -Z B-ORG B-PER -in O O -the O O -summer O O -led O O -calls O O -for O O -the O O -party O O -and O O -its O O -leadership O O -to O O -listen O O -to O O -more O O -diverse O O -opinions O O -, O O -a O O -thin O O -criticism O O -of O O -Klaus B-PER B-PER -who O O -has O O -spear O O -the O O -country O O -' O O -post B-MISC B-MISC -economic O O -reforms O O -. O O -The O O -party O O -, O O -led O O -by O O -the O O -vigorously O O -Klaus B-PER B-PER -, O O -took O O -32 O O -of O O -81 O O -seats O O -after O O -late O O -November O O -runoff O O -elections O O -to O O -the O O -new O O -upper O O -house O O -of O O -Czech B-MISC B-LOC -parliament O O -. O O -But O O -after O O -the O O -first O O -round O O -vote O O -a O O -week O O -before O O -, O O -the O O -O B-ORG B-ORG -had O O -the O O -potential O O -to O O -win O O -as O O -many O O -79 O O -seats O O -. O O -Klaus B-PER B-PER -and O O -his O O -coalition O O -lost O O -its O O -majority O O -in O O -parliament O O -in O O -June O O -lower O O -house O O -elections O O -after O O -the O O -left O O -opposition O O -consolidated O O -, O O -putting O O -the O O -centre O O -Social B-ORG B-MISC -Democrats I-ORG I-MISC -in O O -a O O -strong O O -second O O -position O O -. O O -- O O -Prague B-ORG B-ORG -News I-ORG I-ORG -42 O O -P O B-LOC -GO O O -M O O -F O O -P O O -S O B-MISC -ACC O O -. O O -Marc B-PER B-PER -G I-PER I-PER -WA B-LOC B-LOC -1996 O O -Poland B-LOC B-LOC -said O O -on O O -Friday O O -that O O -Swiss B-MISC B-MISC -bank O O -accounts O O -, O O -which O O -in O O -many O O -cases O O -belonged O O -to O O -Polish B-MISC B-MISC -Jews I-MISC B-MISC -who O O -died O O -in O O -the O O -Holocaust B-MISC B-MISC -, O O -were O O -used O O -in O O -debt O O -settlements O O -between O O -the O O -two O O -countries O O -after O O -the O O -World B-MISC B-MISC -War I-MISC I-MISC -Two I-MISC I-MISC -. O O -Foreign O O -Minister O O -Darius B-PER B-PER -Rosa I-PER I-PER -, O O -un O O -first O O -findings O O -of O O -a O O -special O O -government O O -commission O O -, O O -said O O -that O O -in O O -1970s O O -the O O -then O O -communist O O -Poland B-LOC B-LOC -received O O -460 O O -Swiss B-MISC B-MISC -f O O -from O O -the O O -accounts O O -. O O -" O O -In O O -1970s O O -, O O -Poland B-LOC B-LOC -received O O -from O O -un O O -accounts O O -in O O -Switzerland B-LOC B-LOC -a O O -sum O O -of O O -460 O O -f O O -. O O -What O O -was O O -its O O -right O O -( O O -to O O -the O O -money O O -) O O -. O O -do O O -not O O -know O O -, O O -" O O -Rosa B-PER B-PER -told O O -a O O -news O O -conference O O -. O O -Switzerland B-LOC B-LOC -stands O O -accused O O -by O O -Senator O O -Al B-PER B-PER -D I-PER I-PER -, O O -chairman O O -of O O -the O O -powerful O O -U B-ORG B-ORG -Senate I-ORG I-ORG -Banking I-ORG I-ORG -Committee I-ORG I-ORG -, O O -of O O -agreeing O O -to O O -give O O -money O O -to O O -Poland B-LOC B-LOC -from O O -un O O -bank O O -accounts O O -of O O -Polish B-MISC B-MISC -citizens O O -, O O -as O O -part O O -of O O -an O O -accord O O -on O O -com O O -Swiss B-MISC B-MISC -nationals O O -whose O O -assets O O -had O O -been O O -seized O O -in O O -communist O O -Poland B-LOC B-LOC -. O O -Many O O -of O O -these O O -citizens O O -were O O -Jews B-MISC B-MISC -murdered O O -during O O -the O O -war O O -, O O -when O O -Nazi B-MISC B-MISC -German B-MISC B-MISC -invaders O O -killed O O -most O O -of O O -Poland B-LOC B-LOC -' O O -3 O O -million O O -Jews B-MISC B-MISC -. O O -Rosa B-PER B-PER -did O O -not O O -say O O -whether O O -the O O -payment O O -in O O -1970s O O -was O O -part O O -of O O -the O O -1949 O O -agreement O O -between O O -Warsaw B-LOC B-LOC -and O O -Switzerland B-LOC B-LOC -on O O -compensation O O -to O O -Swiss B-MISC B-MISC -citizens O O -whose O O -assets O O -were O O -seized O O -by O O -the O O -Soviet B-MISC B-MISC -communists O O -authorities O O -after O O -World B-MISC B-MISC -War I-MISC I-MISC -Two I-MISC I-MISC -. O O -" O O -I O O -expect O O -that O O -the O O -commission O O -will O O -finish O O -gathering O O -information O O -within O O -two O O -to O O -three O O -weeks O O -and O O -then O O -more O O -details O O -will O O -be O O -provided O O -, O O -" O O -Rosa B-PER B-PER -said O O -. O O -Rosa B-PER B-PER -confirmed O O -that O O -the O O -1949 O O -agreement O O -had O O -provided O O -for O O -granting O O -Switzerland B-LOC B-LOC -about O O -53 O O -million O O -f O O -and O O -most O O -of O O -this O O -sum O O -was O O -re O O -with O O -coal O O -exports O O -. O O -He O O -said O O -, O O -however O O -, O O -that O O -Switzerland B-LOC B-LOC -did O O -get O O -about O O -16 O O -f O O -from O O -the O O -so O O -" O O -dead O O -accounts O O -" O O -as O O -part O O -of O O -the O O -compensation O O -. O O -" O O -About O O -16 O O -f O O -were O O -seized O O -from O O -accounts O O -of O O -four O O -or O O -five O O -Polish B-MISC B-MISC -citizens O O -, O O -whose O O -data O O -we O O -do O O -not O O -precisely O O -know O O -. O O -The O O -issue O O -is O O -of O O -moral O O -and O O -legal O O -nature O O -, O O -because O O -its O O -financial O O -significance O O -is O O -small O O -, O O -" O O -Rosa B-PER B-PER -said O O -. O O -Under O O -pressure O O -from O O -international O O -Jewish B-MISC B-MISC -organisations O O -, O O -Swiss B-MISC B-MISC -government O O -has O O -devised O O -a O O -plan O O -to O O -pay O O -out O O -millions O O -of O O -dollars O O -in O O -un O O -bank O O -accounts O O -as O O -a O O -con O O -gesture O O -toward O O -Holocaust B-MISC B-MISC -victims O O -. O O -The O O -conservative O O -Radical B-MISC B-ORG -Democrats I-ORG I-ORG -( O O -F B-ORG B-ORG -) O O -have O O -said O O -they O O -would O O -ask O O -parliament O O -next O O -week O O -to O O -order O O -Swiss B-MISC B-MISC -banks O O -to O O -put O O -some O O -40 O O -million O O -Swiss B-MISC B-MISC -f O O -( O O -$ O O -31 O O -million O O -) O O -in O O -dormant O O -wealth O O -into O O -a O O -fund O O -ear O O -for O O -Jewish B-MISC B-MISC -groups O O -and O O -charitable O O -organisations O O -. O O -But O O -Swiss B-MISC B-MISC -banks O O -and O O -the O O -country O O -' O O -Jewish B-MISC B-MISC -community O O -voiced O O -doubts O O -whether O O -the O O -plan O O -would O O -work O O -. O O -IN O B-MISC -SE O O -NO O O -B O O -97 O O -NE O O -R O O -. O O -Steven B-PER B-PER -Si I-PER I-PER -WA B-LOC B-LOC -1996 O O -Polish B-MISC B-MISC -br O O -Z B-PER B-ORG -' O O -1996 O O -profit O O -s O O -may O O -last O O -into O O -next O O -year O O -due O O -in O O -part O O -to O O -he O O -de O O -charges O O -, O O -but O O -recent O O -high O O -investment O O -should O O -help O O -the O O -firm O O -defend O O -its O O -10 O O -market O O -share O O -, O O -the O O -firm O O -' O O -chief O O -executive O O -said O O -. O O -Company O O -President O O -Jean B-PER B-PER -van I-PER I-PER -Box I-PER I-PER -told O O -Re B-ORG B-ORG -in O O -an O O -interview O O -on O O -Friday O O -that O O -the O O -firm O O -, O O -whose O O -net O O -profit O O -fell O O -77 O O -percent O O -in O O -the O O -first O O -10 O O -months O O -of O O -1996 O O -despite O O -a O O -30 O O -rise O O -in O O -sales O O -, O O -might O O -only O O -post O O -slightly O O -better O O -profits O O -in O O -1997 O O -before O O -having O O -a O O -chance O O -to O O -make O O -a O O -more O O -significant O O -turn O O -. O O -So O O -far O O -this O O -year O O -Z B-ORG B-ORG -, O O -whose O O -full O O -name O O -is O O -Z B-ORG B-ORG -Pi I-ORG I-ORG -w I-ORG I-ORG -Z I-ORG I-ORG -SA I-ORG I-ORG -, O O -has O O -net O O -six O O -million O O -z O O -on O O -sales O O -of O O -224 O O -million O O -z O O -. O O -It O O -has O O -produced O O -1 O O -million O O -he O O -. O O -Van B-PER B-PER -Box I-ORG I-PER -would O O -not O O -say O O -how O O -much O O -higher O O -1997 O O -profits O O -or O O -market O O -share O O -could O O -be O O -but O O -said O O -sales O O -of O O -leading O O -Polish B-MISC B-MISC -br O O -should O O -rise O O -as O O -the O O -country O O -' O O -young O O -urban O O -professionals O O -gradually O O -switch O O -from O O -vodka O O -to O O -beer O O -. O O -" O O -The O O -perspective O O -on O O -growth O O -is O O -such O O -that O O -reasonably O O -we O O -can O O -think O O -that O O -somewhere O O -between O O -65 O O -and O O -80 O O -litre O O -per O O -year O O -is O O -certainly O O -reach O O -, O O -" O O -van B-PER O -Box I-PER B-PER -said O O -on O O -Polish B-MISC B-MISC -per O O -beer O O -consumption O O -, O O -currently O O -around O O -40 O O -litre O O -. O O -He O O -said O O -the O O -65 O O -level O O -could O O -be O O -reached O O -in O O -the O O -next O O -ten O O -years O O -and O O -make O O -Poland B-LOC B-LOC -, O O -with O O -its O O -40 O O -population O O -, O O -Europe B-LOC B-LOC -' O O -third O O -largest O O -beer O O -market O O -after O O -Germany B-LOC B-LOC -and O O -Britain B-LOC B-LOC -. O O -Van B-PER B-PER -Box I-PER I-PER -said O O -Poland B-LOC B-LOC -' O O -top O O -five O O -br O O -, O O -which O O -produce O O -about O O -55 O O -percent O O -of O O -the O O -country O O -' O O -beer O O -, O O -could O O -all O O -raise O O -market O O -share O O -as O O -some O O -of O O -the O O -numerous O O -small O O -br O O -fall O O -to O O -competition O O -from O O -the O O -large O O -br O O -with O O -foreign O O -investors O O -. O O -Z B-ORG B-ORG -is O O -31 O O -owned O O -by O O -He B-ORG B-ORG -while O O -Carl B-ORG B-ORG -has O O -the O O -same O O -amount O O -in O O -Ok B-LOC B-ORG -. O O -Earlier O O -this O O -year O O -South B-ORG B-ORG -African I-ORG I-ORG -Brewer I-ORG I-ORG -Ltd I-ORG I-ORG -( O O -SA B-ORG B-ORG -) O O -bought O O -strategic O O -stakes O O -in O O -the O O -un O O -Le B-ORG B-ORG -and O O -Ty B-ORG B-ORG -br O O -, O O -which O O -together O O -hold O O -more O O -than O O -20 O O -percent O O -of O O -the O O -market O O -, O O -and O O -Australia B-LOC B-LOC -' O O -B B-ORG B-ORG -B I-ORG I-ORG -has O O -a O O -controlling O O -stake O O -in O O -Poland B-LOC B-LOC -' O O -large O O -t O O -brewery O O -, O O -El B-ORG B-ORG -Company I-ORG I-ORG -Ltd I-ORG I-ORG -( O O -E B-ORG B-ORG -) O O -. O O -Van B-PER B-PER -Box I-PER I-PER -said O O -the O O -tough O O -competition O O -had O O -prevented O O -Z B-PER B-ORG -from O O -raising O O -prices O O -in O O -line O O -with O O -inflation O O -, O O -which O O -had O O -added O O -to O O -the O O -pressure O O -on O O -the O O -firm O O -' O O -margins O O -. O O -He O O -said O O -advertising O O -costs O O -would O O -also O O -increase O O -in O O -the O O -fight O O -for O O -market O O -share O O -. O O -But O O -he O O -said O O -the O O -company O O -' O O -investment O O -of O O -more O O -than O O -$ O O -100 O O -million O O -already O O -this O O -decade O O -, O O -largely O O -in O O -production O O -, O O -would O O -help O O -position O O -it O O -to O O -compete O O -with O O -such O O -competitors O O -as O O -br O O -from O O -the O O -neighbouring O O -Czech B-LOC B-LOC -Republic I-LOC I-LOC -. O O -Some O O -analysts O O -say O O -cheaper O O -but O O -high O O -Czech B-MISC B-LOC -imports O O -could O O -invade O O -Poland B-LOC B-LOC -once O O -ta O O -for O O -CE B-ORG B-ORG -countries O O -are O O -lifted O O -in O O -1998 O O -, O O -but O O -van B-PER O -Box I-PER B-PER -says O O -such O O -a O O -threat O O -might O O -be O O -exaggerated O O -despite O O -the O O -Czech B-MISC B-LOC -beer O O -market O O -' O O -over O O -. O O -" O O -I O O -think O O -Polish B-MISC B-MISC -consumers O O -in O O -general O O -are O O -quite O O -proud O O -of O O -their O O -beers O O -- O O -and O O -I O O -' O O -speaking O O -about O O -all O O -the O O -brands O O -- O O -and O O -as O O -we O O -make O O -good O O -beers O O -. O O -I O O -think O O -that O O -this O O -fi O O -to O O -our O O -beers O O -is O O -a O O -factor O O -which O O -can O O -limit O O -the O O -Czech B-MISC B-LOC -beers O O -, O O -" O O -he O O -said O O -. O O -Van B-PER B-PER -Box I-PER I-PER -said O O -Z B-ORG B-ORG -had O O -its O O -eye O O -on O O -Ok B-ORG B-ORG -, O O -which O O -has O O -said O O -it O O -would O O -start O O -producing O O -Carl B-ORG B-ORG -beer O O -next O O -year O O -, O O -but O O -that O O -Z B-ORG B-ORG -' O O -potential O O -production O O -of O O -He B-ORG B-ORG -was O O -a O O -medium O O -possibility O O -rather O O -than O O -a O O -short O O -one O O -. O O -He O O -said O O -his O O -firm O O -would O O -be O O -better O O -off O O -concentrating O O -on O O -its O O -leading O O -brand O O -, O O -Z B-MISC B-ORG -Full I-MISC B-MISC -Light I-MISC I-MISC -, O O -which O O -accounts O O -for O O -85 O O -percent O O -of O O -sales O O -and O O -is O O -the O O -country O O -' O O -largest O O -brand O O -. O O -" O O -You O O -will O O -not O O -win O O -the O O -war O O -of O O -the O O -Polish B-MISC B-MISC -beer O O -market O O -with O O -imported O O -international O O -brands O O -, O O -" O O -van B-PER O -Box I-PER B-PER -said O O -, O O -adding O O -that O O -He B-ORG B-ORG -would O O -remain O O -an O O -up O O -import O O -in O O -Poland B-LOC B-LOC -. O O -Van B-PER B-PER -Box I-PER I-PER -also O O -said O O -Z B-ORG B-ORG -would O O -be O O -boost O O -by O O -its O O -recent O O -shed O O -of O O -soft O O -drinks O O -which O O -only O O -accounted O O -for O O -about O O -three O O -percent O O -of O O -the O O -firm O O -' O O -overall O O -sales O O -and O O -for O O -which O O -7 O O -million O O -z O O -in O O -provisions O O -had O O -already O O -been O O -made O O -. O O -- O O -Warsaw B-ORG B-ORG -News I-ORG I-ORG -+ O O -22 O O -65 O O -97 O O -H B-ORG B-PER -H O O -T O O -A O O -CO O O -W O O -. O O -PR B-LOC B-LOC -1996 O O -Doctors O O -performed O O -an O O -emergency O O -t O O -to O O -help O O -Czech B-MISC B-LOC -President O O -V B-PER B-PER -Have I-PER I-PER -breathe O O -after O O -cancer O O -surgery O O -on O O -his O O -lungs O O -earlier O O -this O O -week O O -, O O -a O O -spokesman O O -said O O -on O O -Friday O O -. O O -He O O -said O O -that O O -the O O -procedure O O -to O O -insert O O -a O O -device O O -into O O -Have B-PER B-PER -' O O -throat O O -, O O -done O O -after O O -his O O -breathing O O -worse O O -on O O -Thursday O O -, O O -had O O -helped O O -, O O -and O O -the O O -president O O -' O O -condition O O -significantly O O -improved O O -. O O -" O O -A O O -worse O O -in O O -the O O -president O O -' O O -lung O O -functions O O -took O O -place O O -yesterday O O -, O O -" O O -presidential O O -spokesman O O -La B-PER B-PER -Space I-PER I-PER -said O O -in O O -a O O -statement O O -. O O -" O O -A O O -t O O -was O O -performed O O -and O O -supportive O O -breathing O O -was O O -installed O O -through O O -the O O -help O O -of O O -a O O -breathing O O -device O O -, O O -" O O -he O O -said O O -. O O -" O O -After O O -these O O -steps O O -, O O -the O O -president O O -' O O -condition O O -sign O O -improved O O -. O O -" O O -Have B-PER B-PER -has O O -been O O -recovering O O -from O O -surgery O O -on O O -Monday O O -which O O -removed O O -a O O -small O O -ma O O -t O O -and O O -half O O -of O O -his O O -right O O -lung O O -. O O -Doctors O O -after O O -the O O -operation O O -said O O -that O O -they O O -had O O -caught O O -the O O -cancer O O -early O O -, O O -and O O -that O O -Have B-PER B-PER -could O O -fully O O -recover O O -from O O -the O O -surgery O O -within O O -six O O -weeks O O -. O O -His O O -spokesman O O -said O O -on O O -Thursday O O -that O O -Have B-PER B-PER -, O O -60 O O -and O O -a O O -heavy O O -smoke O O -, O O -had O O -also O O -developed O O -a O O -slight O O -case O O -of O O -pneumonia O O -in O O -the O O -left O O -lung O O -. O O -UK B-LOC B-MISC -open O O -skies O O -talks O O -end O O -, O O -no O O -date O O -to O O -restart O O -. O O -L B-LOC B-LOC -1996 O O -The O O -UK B-ORG B-LOC -Department I-ORG B-ORG -of I-ORG I-ORG -Transport I-ORG I-ORG -on O O -Friday O O -said O O -that O O -the O O -latest O O -round O O -of O O -" O O -open O O -skies O O -" O O -talks O O -with O O -the O O -U B-LOC B-LOC -had O O -ended O O -with O O -no O O -deal O O -on O O -liberal O O -the O O -trans O O -flight O O -market O O -and O O -no O O -date O O -set O O -for O O -when O O -talks O O -would O O -restart O O -. O O -A O O -spokesman O O -for O O -the O O -D B-ORG B-ORG -told O O -Re B-ORG B-ORG -" O O -We O O -have O O -had O O -talks O O -towards O O -concluding O O -a O O -new O O -air O O -service O O -agreement O O -which O O -would O O -produce O O -liberal O O -. O O -useful O O -progress O O -was O O -made O O -on O O -a O O -number O O -of O O -issues O O -, O O -but O O -not O O -all O O -. O O -No O O -date O O -has O O -been O O -set O O -for O O -further O O -talks O O -. O O -" O O -Tam B-ORG B-ORG -Tim I-ORG I-ORG -at O O -$ O O -15 O O -in O O -London B-LOC B-LOC -. O O -L B-LOC B-LOC -1996 O O -PT B-ORG B-ORG -Tam I-ORG I-ORG -Tim I-ORG I-ORG -closed O O -at O O -$ O O -15 O O -per O O -G B-ORG O -in O O -London B-LOC B-LOC -on O O -Friday O O -. O O -It O O -recorded O O -the O O -day O O -' O O -low O O -of O O -$ O O -15 O O -and O O -the O O -day O O -' O O -high O O -of O O -$ O O -15 O O -. O O -It O O -closed O O -at O O -$ O O -15 O O -on O O -Thursday O O -. O O -One O O -Global B-ORG O -De I-ORG O -Re I-ORG O -represents O O -10 O O -common O O -shares O O -. O O -- O O -Jakarta B-LOC B-LOC -news O O -+ O O -38 O O -Tel B-ORG B-ORG -at O O -$ O O -35 O O -in O O -London B-LOC B-LOC -. O O -L B-LOC B-LOC -1996 O O -PT B-ORG B-ORG -Tel I-ORG I-ORG -Indonesia I-ORG I-ORG -( O O -Tel B-ORG B-ORG -) O O -closed O O -at O O -$ O O -35 O O -in O O -London B-LOC B-LOC -on O O -Friday O O -. O O -It O O -recorded O O -the O O -day O O -' O O -low O O -of O O -$ O O -34 O O -and O O -the O O -day O O -' O O -high O O -of O O -$ O O -35 O O -. O O -Its O O -previous O O -close O O -on O O -Thursday O O -as O O -$ O O -35 O O -. O O -One O O -AD B-ORG O -represents O O -20 O O -ordinary O O -shares O O -- O O -Jakarta B-LOC B-LOC -news O O -+ O O -38 O O -. O O -Woman O O -charged O O -over O O -N B-LOC B-LOC -Ireland I-LOC I-LOC -arms O O -find O O -. O O -B B-LOC B-LOC -1996 O O -A O O -woman O O -was O O -charged O O -on O O -Friday O O -with O O -terrorist O O -offences O O -after O O -three O O -Irish B-ORG B-ORG -Republican I-ORG I-ORG -Army I-ORG I-ORG -mortar O O -bombs O O -were O O -found O O -in O O -a O O -Belfast B-LOC B-LOC -house O O -, O O -police O O -said O O -. O O -Police O O -said O O -the O O -bombs O O -were O O -found O O -hidden O O -with O O -in O O -and O O -ammunition O O -that O O -were O O -blocked O O -up O O -behind O O -a O O -kitchen O O -wall O O -. O O -The O O -35 O O -woman O O -was O O -charged O O -with O O -possession O O -of O O -explosives O O -with O O -intent O O -to O O -end O O -life O O -and O O -making O O -a O O -house O O -available O O -for O O -the O O -purpose O O -of O O -terrorism O O -, O O -police O O -said O O -. O O -She O O -will O O -appear O O -in O O -court O O -on O O -Saturday O O -. O O -Her O O -name O O -was O O -not O O -released O O -. O O -Security O O -forces O O -said O O -the O O -bombs O O -may O O -have O O -been O O -intended O O -for O O -use O O -in O O -a O O -pre O O -bombing O O -campaign O O -by O O -the O O -guerrilla O O -group O O -that O O -is O O -battling O O -to O O -ou O O -Britain B-LOC B-LOC -from O O -Northern B-LOC B-LOC -Ireland I-LOC I-LOC -. O O -Britain B-LOC B-LOC -sets O O -conditions O O -to O O -clear O O -American B-MISC B-MISC -alliance O O -. O O -Edna B-PER B-PER -Fe I-PER I-PER -L B-LOC B-LOC -1996 O O -The O O -British B-MISC B-MISC -government O O -warned O O -Friday O O -that O O -it O O -would O O -refer O O -the O O -proposed O O -trans B-MISC B-MISC -alliance O O -between O O -British B-ORG B-ORG -Airways I-ORG I-ORG -P I-ORG I-ORG -and O O -American B-ORG B-ORG -Airlines I-ORG I-ORG -to O O -Britain B-LOC B-LOC -' O O -Mon B-ORG B-ORG -and I-ORG I-ORG -Me I-ORG I-ORG -Commission I-ORG I-ORG -unless O O -the O O -carriers O O -com O O -with O O -a O O -number O O -of O O -conditions O O -. O O -Trade O B-ORG -and I-ORG I-ORG -Industry I-ORG I-ORG -Secretary O O -Ian B-PER B-PER -Lang I-PER I-PER -added O O -that O O -even O O -if O O -the O O -conditions O O -were O O -met O O -by O O -both O O -airlines O O -, O O -final O O -clearance O O -would O O -hi O O -on O O -an O O -open O O -skies O O -deal O O -between O O -Britain B-LOC B-LOC -and O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -to O O -liberal O O -trans B-MISC B-MISC -air O O -traffic O O -, O O -which O O -would O O -create O O -greater O O -competition O O -on O O -the O O -routes O O -. O O -Lang B-PER B-PER -said O O -he O O -supported O O -conditions O O -proposed O O -by O O -Britain B-LOC B-LOC -' O O -Office B-ORG B-ORG -of I-ORG I-ORG -Fair I-ORG I-ORG -Trading I-ORG I-ORG -, O O -which O O -was O O -asked O O -to O O -examine O O -the O O -case O O -last O O -month O O -. O O -" O O -I O O -agree O O -. O O -that O O -without O O -suitable O O -undertaking O O -the O O -alliance O O -would O O -be O O -likely O O -to O O -lead O O -to O O -a O O -significant O O -loss O O -of O O -actual O O -and O O -potential O O -passengers O O -, O O -on O O -those O O -routes O O -where O O -BA B-ORG B-ORG -and O O -AA B-ORG B-ORG -currently O O -compete O O -and O O -for O O -all O O -passengers O O -on O O -the O O -trans B-MISC B-MISC -market O O -route O O -between O O -the O O -UK B-LOC B-LOC -and O O -U B-LOC B-LOC -, O O -" O O -he O O -said O O -. O O -His O O -comments O O -came O O -just O O -minutes O O -after O O -the O O -latest O O -set O O -of O O -open O O -skies O O -talks O O -ended O O -in O O -London B-LOC B-LOC -with O O -no O O -deal O O -signed O O -. O O -Industry O O -sources O O -said O O -there O O -was O O -no O O -new O O -date O O -for O O -fresh O O -talks O O -and O O -blamed O O -the O O -dead O O -on O O -uncertainty O O -over O O -whether O O -the O O -British B-MISC B-MISC -Airways I-MISC I-MISC -deal O O -would O O -be O O -cleared O O -. O O -The O O -conditions O O -for O O -clearance O O -of O O -the O O -alliance O O -were O O -that O O -British B-ORG B-ORG -Airways I-ORG I-ORG -and O O -American B-ORG B-ORG -drop O O -168 O O -slots O O -at O O -London B-LOC B-LOC -Heath I-LOC I-LOC -airport O O -, O O -the O O -busiest O O -in O O -Europe B-LOC B-LOC -. O O -American B-MISC B-ORG -' O O -parent O O -, O O -AM B-ORG B-ORG -Corp I-ORG I-ORG -, O O -said O O -it O O -did O O -not O O -view O O -the O O -terms O O -as O O -a O O -" O O -deal O O -break O O -. O O -" O O -However O O -, O O -it O O -called O O -the O O -conditions O O -" O O -more O O -severe O O -" O O -than O O -those O O -imposed O O -by O O -other O O -regulatory O O -authorities O O -on O O -similar O O -airline O O -alliances O O -. O O -British B-ORG B-ORG -Airways I-ORG I-ORG -' O O -initial O O -response O O -was O O -that O O -" O O -un O O -dive O O -of O O -slots O O -is O O -unprecedented O O -and O O -if O O -done O O -it O O -must O O -be O O -on O O -the O O -basis O O -of O O -fair O O -market O O -value O O -. O O -" O O -It O O -added O O -that O O -it O O -would O O -be O O -" O O -prepared O O -to O O -take O O -reasonable O O -steps O O -to O O -assist O O -the O O -introduction O O -of O O -additional O O -competition O O -. O O -" O O -The O O -government O O -also O O -wants O O -British B-ORG B-ORG -Airways I-ORG I-ORG -to O O -drop O O -a O O -clause O O -in O O -its O O -agreement O O -with O O -USA B-ORG B-ORG -that O O -bars O O -it O O -from O O -competing O O -on O O -trans B-MISC B-MISC -routes O O -, O O -and O O -said O O -both O O -British B-ORG B-ORG -Airways I-ORG I-ORG -and O O -American B-ORG B-ORG -should O O -be O O -prepared O O -to O O -reduce O O -services O O -on O O -the O O -London B-LOC B-LOC -to O O -Dallas B-LOC B-LOC -Worth O I-LOC -route O O -in O O -the O O -event O O -that O O -a O O -new O O -en O O -wishes O O -to O O -enter O O -. O O -It O O -also O O -suggested O O -losing O O -some O O -slots O O -on O O -the O O -London B-LOC B-MISC -route O O -. O O -The O O -Office B-ORG B-ORG -of I-ORG I-ORG -Fair I-ORG I-ORG -Trade I-ORG I-ORG -called O O -for O O -British B-ORG B-ORG -Airways I-ORG I-ORG -/ O O -American B-ORG B-ORG -to O O -allow O O -third O O -access O O -to O O -their O O -joint O O -frequent O O -fly O O -programme O O -where O O -the O O -applicant O O -does O O -not O O -have O O -access O O -to O O -an O O -equivalent O O -programme O O -. O O -Lang B-PER B-PER -said O O -responses O O -should O O -be O O -made O O -to O O -the O O -Office B-ORG B-ORG -of I-ORG I-ORG -Fair I-ORG I-ORG -Trading I-ORG I-ORG -by O O -Jan O O -10 O O -, O O -1997 O O -. O O -Me O O -oil O O -products O O -mostly O O -lower O O -as O O -El B-MISC B-ORG -strike O O -ends O O -. O O -L B-LOC B-LOC -1996 O O -Mediterranean B-MISC O -oil O O -products O O -were O O -steady O O -to O O -mostly O O -lower O O -on O O -Friday O O -after O O -El B-ORG B-ORG -re O O -workers O O -voted O O -to O O -end O O -their O O -nine O O -strike O O -. O O -Gas O O -oil O O -erased O O -Thursday O O -' O O -gains O O -, O O -p O O -$ O O -5 O O -a O O -ton O O -in O O -line O O -with O O -the O O -screen O O -. O O -Volume O O -was O O -very O O -thin O O -and O O -market O O -remained O O -long O O -, O O -with O O -premium O O -down O O -$ O O -1 O O -at O O -about O O -high O O -c O O -quotes O O -+ O O -basis O O -Genoa B-LOC B-ORG -. O O -" O O -The O O -sharp O O -moves O O -on O O -the O O -screen O O -make O O -everyone O O -nervous O O -, O O -" O O -a O O -trader O O -said O O -. O O -Trade O O -were O O -discussed O O -in O O -0 O O -, O O -0 O O -and O O -one O O -percent O O -heating O O -oil O O -into O O -Syria B-LOC B-LOC -and O O -Lebanon B-LOC B-LOC -and O O -there O O -were O O -fresh O O -in O O -from O O -France B-LOC B-LOC -and O O -Spain B-LOC B-LOC -for O O -low O O -su O O -diesel O O -. O O -Interest O O -remains O O -focus O O -on O O -a O O -tender O O -by O O -India B-LOC B-LOC -for O O -a O O -second O O -purchase O O -of O O -high O O -speed O O -diesel O O -for O O -January O O -delivery O O -. O O -Fuel O O -oil O O -lost O O -ground O O -sharply O O -with O O -weaker O O -crude O O -, O O -but O O -also O O -suffered O O -from O O -some O O -pricing O O -pressure O O -. O O -High O O -su O O -cracked O O -fuel O O -lost O O -about O O -$ O O -3 O O -to O O -$ O O -109 O O -f O O -Me B-ORG O -with O O -several O O -cargo O O -threatening O O -to O O -over O O -the O O -market O O -. O O -The O O -chance O O -of O O -material O O -heading O O -north O O -, O O -talked O O -earlier O O -this O O -week O O -, O O -may O O -be O O -in O O -j O O -now O O -since O O -American B-MISC B-MISC -fuel O O -oil O O -is O O -expected O O -to O O -head O O -trans O O -following O O -out O O -at O O -two O O -co O O -units O O -in O O -the O O -U B-LOC B-LOC -. O O -Up O O -to O O -165 O O -tonnes O O -of O O -fuel O O -will O O -have O O -to O O -find O O -a O O -new O O -home O O -and O O -with O O -the O O -a O O -from O O -the O O -U B-LOC B-LOC -to O O -Europe B-LOC B-LOC -open O O -Rotterdam B-LOC B-LOC -is O O -a O O -prime O O -candidate O O -. O O -Low O O -su O O -prices O O -were O O -lower O O -with O O -c O O -Me B-MISC O -p O O -in O O -the O O -mid O O -to O O -low O O -$ O O -140 O O -. O O -Gas O O -prices O O -fell O O -after O O -striking O O -El B-ORG B-ORG -re O O -workers O O -voted O O -to O O -go O O -back O O -to O O -work O O -, O O -traders O O -said O O -. O O -But O O -an O O -open O O -a O O -to O O -the O O -U B-LOC B-LOC -and O O -tight O O -Italian B-MISC B-MISC -supplies O O -after O O -El B-PER B-ORG -scooped O O -up O O -Me B-MISC O -material O O -over O O -the O O -last O O -week O O -, O O -continued O O -to O O -under O O -prices O O -into O O -next O O -week O O -. O O -New O O -men O O -scare O O -hits O O -Britain B-LOC B-LOC -. O O -L B-LOC B-LOC -1996 O O -A O O -boy O O -has O O -died O O -from O O -men O O -and O O -a O O -girl O O -from O O -the O O -same O O -school O O -has O O -contracted O O -the O O -disease O O -in O O -the O O -second O O -such O O -scare O O -to O O -hit O O -Britain B-LOC B-LOC -in O O -as O O -many O O -weeks O O -, O O -health O O -authorities O O -said O O -on O O -Friday O O -. O O -The O O -16 O O -who O O -attended O O -Sale B-LOC B-ORG -Grammar I-LOC I-ORG -School I-LOC I-ORG -in O O -the O O -northern O O -England B-LOC B-LOC -city O O -of O O -Manchester B-LOC B-LOC -died O O -less O O -than O O -a O O -day O O -after O O -becoming O O -ill O O -. O O -The O O -15 O O -girl O O -is O O -also O O -suffering O O -from O O -the O O -disease O O -and O O -hospital O O -officials O O -described O O -her O O -condition O O -as O O -serious O O -. O O -" O O -At O O -the O O -moment O O -there O O -is O O -no O O -evidence O O -the O O -two O O -cases O O -are O O -linked O O -. O O -However O O -, O O -we O O -are O O -assuming O O -they O O -are O O -as O O -a O O -pre O O -for O O -the O O -time O O -being O O -, O O -" O O -a O O -spoke O O -said O O -. O O -The O O -more O O -than O O -1 O O -students O O -at O O -the O O -school O O -are O O -being O O -given O O -anti O O -as O O -a O O -pre O O -. O O -Wales B-LOC B-LOC -g O O -with O O -its O O -own O O -cluster O O -of O O -men O O -cases O O -on O O -a O O -university O O -campus O O -in O O -Cardiff B-LOC B-LOC -. O O -At O O -least O O -two O O -people O O -have O O -died O O -and O O -hundreds O O -have O O -been O O -v O O -in O O -an O O -effort O O -to O O -contain O O -the O O -virus O O -. O O -In O O -Scotland B-LOC B-LOC -, O O -eight O O -people O O -have O O -died O O -and O O -hundreds O O -more O O -are O O -fighting O O -a O O -widespread O O -food O O -outbreak O O -. O O -A O O -health O O -authority O O -spoke O O -said O O -78 O O -people O O -suspected O O -of O O -having O O -the O O -disease O O -, O O -including O O -64 O O -confirmed O O -cases O O -, O O -were O O -still O O -being O O -treated O O -. O O -Three O O -were O O -listed O O -in O O -poor O O -condition O O -. O O -More O O -than O O -290 O O -people O O -have O O -reported O O -symptoms O O -in O O -Lana B-LOC B-LOC -county O O -, O O -the O O -worst O O -area O O -, O O -since O O -the O O -outbreak O O -first O O -came O O -to O O -light O O -after O O -people O O -ate O O -ta O O -meat O O -pie O O -at O O -a O O -pension O O -' O O -lunch O O -. O O -Major B-PER B-PER -' O O -office O B-MISC -still O O -have O O -majority O O -. O O -L B-LOC B-LOC -1996 O O -British B-MISC B-MISC -Prime O O -Minister O O -John B-PER B-PER -Major I-PER I-PER -' O O -office O O -said O O -on O O -Friday O O -that O O -rebel O O -Conservative B-MISC B-MISC -MP O O -Sir O O -John B-PER B-PER -Go I-PER I-PER -had O O -not O O -" O O -resigned O O -the O O -whip O O -" O O -( O O -quit O O -the O O -parliamentary O O -party O O -) O O -and O O -the O O -government O O -still O O -had O O -a O O -majority O O -in O O -the O O -65 O O -parliament O O -. O O -" O O -He O O -( O O -Go B-PER B-PER -) O O -is O O -the O O -right O O -not O O -to O O -cooperate O O -, O O -but O O -he O O -has O O -not O O -resigned O O -the O O -whip O O -. O O -The O O -government O O -still O O -has O O -a O O -majority O O -, O O -" O O -a O O -spokesman O O -from O O -Major B-PER B-PER -' O O -office O O -in O O -Down B-LOC B-LOC -Street I-LOC I-LOC -said O O -. O O -Go B-PER B-PER -' O O -office O O -said O O -later O O -the O O -MP O O -would O O -not O O -feel O O -himself O O -obliged O O -to O O -vote O O -with O O -the O O -government O O -. O O -He O O -said O O -at O O -one O O -point O O -during O O -a O O -press O O -conference O O -: O O -" O O -I O O -have O O -seen O O -my O O -whip O O -( O O -party O O -manager O O -) O O -for O O -next O O -week O O -which O O -, O O -of O O -course O O -, O O -does O O -n O O -mean O O -very O O -much O O -to O O -me O O -now O O -. O O -" O O -Before O O -Go B-PER B-PER -' O O -statement O O -, O O -Major B-PER B-PER -had O O -a O O -one O O -majority O O -in O O -the O O -65 O O -House B-ORG B-ORG -of I-ORG I-ORG -Commons I-ORG I-ORG -lower O O -house O O -of O O -parliament O O -. O O -In O O -his O O -formal O O -statement O O -, O O -Go B-PER B-PER -said O O -: O O -" O O -I O O -am O O -today O O -withdrawing O O -my O O -cooperation O O -from O O -the O O -government O O -and O O -shall O O -not O O -treat O O -the O O -" O O -whip O O -' O O -as O O -either O O -a O O -summon O O -to O O -attend O O -the O O -House B-ORG B-ORG -of I-ORG I-ORG -Commons I-ORG I-ORG -or O O -as O O -placing O O -me O O -under O O -any O O -obligation O O -to O O -vote O O -as O O -advised O O -. O O -" O O -Go B-PER B-PER -resigned O O -over O O -a O O -hospital O O -closure O O -in O O -his O O -constituency O O -. O O -Electronic B-ORG B-ORG -Data I-ORG I-ORG -bags O O -flight O O -data O O -contract O O -. O O -L B-LOC B-LOC -1996 O O -Information O O -technology O O -firm O O -Electronic B-ORG B-ORG -Data I-ORG I-ORG -Systems I-ORG I-ORG -said O O -on O O -Friday O O -it O O -had O O -bag O O -a O O -contract O O -for O O -the O O -first O O -air O O -traffic O O -control O O -project O O -being O O -funded O O -under O O -the O O -Private B-ORG O -Finance I-ORG O -Initiative I-ORG O -. O O -In O O -a O O -statement O O -, O O -E B-ORG B-ORG -said O O -the O O -contract O O -would O O -be O O -in O O -the O O -region O O -of O O -50 O O -million O O -s O O -. O O -The O O -contract O O -involved O O -up O O -the O O -flight O O -data O O -processing O O -system O O -at O O -the O O -Ocean B-LOC B-LOC -Control I-ORG I-LOC -Centre I-LOC I-LOC -in O O -Pre B-LOC B-LOC -in O O -south O O -west O O -Scotland B-LOC B-LOC -for O O -National B-ORG B-ORG -Air I-ORG I-ORG -Traffic I-ORG I-ORG -Services I-ORG I-ORG -Ltd I-ORG I-ORG -( O O -N B-ORG B-ORG -) O O -, O O -subsidiary O O -of O O -the O O -Civil B-ORG B-ORG -Aviation I-ORG I-ORG -Authority I-ORG I-ORG -. O O -The O O -system O O -is O O -responsible O O -for O O -the O O -control O O -of O O -aircraft O O -flying O O -trans O O -routes O O -from O O -Europe B-LOC B-LOC -and O O -North B-LOC B-LOC -America I-LOC I-LOC -. O O -The O O -system O O -, O O -which O O -would O O -use O O -satellite O O -technology O O -, O O -is O O -scheduled O O -to O O -enter O O -service O O -in O O -2000 O O -. O O -- O O -London B-ORG B-ORG -News I-ORG I-ORG -+ O O -77 O O -R B-ORG B-ORG -- O O -Cricket O O -- O O -Play O O -restart O O -in O O -Australia B-LOC B-MISC -Indies I-LOC I-MISC -match O O -. O O -ME B-LOC B-LOC -1996 O O -Play O O -restart O O -in O O -the O O -first O O -World B-MISC B-MISC -Series I-MISC I-MISC -limited O O -overs O O -match O O -between O O -West B-LOC B-LOC -Indies I-LOC I-LOC -and O O -Australia B-LOC B-LOC -after O O -a O O -rain O O -delay O O -of O O -50 O O -minutes O O -on O O -Friday O O -. O O -West B-LOC B-LOC -Indies I-LOC I-LOC -resumed O O -their O O -innings O O -on O O -53 O O -for O O -two O O -with O O -opener O O -She B-PER B-PER -Campbell I-PER I-PER -on O O -25 O O -and O O -Shi B-PER B-PER -Chan I-PER I-PER -10 O O -. O O -Rain O O -earlier O O -delayed O O -the O O -start O O -of O O -play O O -by O O -30 O O -minutes O O -. O O -- O O -Sydney B-ORG B-ORG -News I-ORG I-ORG -61 O O -93 O O -Cricket O O -- O O -Pakistan B-LOC B-LOC -beat O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -by O O -46 O O -runs O O -. O O -S B-LOC B-LOC -, O O -Pakistan B-LOC B-LOC -1996 O O -Pakistan B-LOC B-LOC -beat O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -by O O -46 O O -runs O O -on O O -Friday O O -to O O -take O O -an O O -un O O -2 O O -lead O O -in O O -the O O -three O O -one O O -series O O -. O O -Score O O -: O O -Pakistan B-LOC B-LOC -27 O O -, O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -231 O O -Manitoba B-ORG B-ORG -Po I-ORG I-ORG -forward O O -contract O O -PM O O -prices O O -- O O -Dec O O -6 O O -. O O -W B-LOC B-LOC -1996 O O -Manitoba B-ORG B-ORG -Po I-ORG I-ORG -closing O O -forward O O -contract O O -prices O O -in O O -Canadian B-MISC B-MISC -dollars O O -per O O -hundred O O -lbs O O -( O O -C B-MISC O -) O O -for O O -Dec O O -6 O O -including O O -minimum O O -guaranteed O O -price O O -- O O -CO O O -PR O O -C O O -PM O O -C O O -PM O O -C O O -RA O O -D O O -PM O O -C O O -F O O -MI O O -AT O O -123 O O -CS O O -Feb O O -97 O O -79 O O -79 O O -75 O O -77 O O -Mar O O -97 O O -76 O O -76 O O -72 O O -73 O O -Apr O O -97 O O -74 O O -74 O O -( O O -( O O -Winnipeg B-LOC B-LOC -bureau O O -204 O O -) O O -) O O -Canadian B-ORG B-MISC -West I-ORG O -Coast I-ORG O -V I-ORG O -Lo I-ORG O -- O O -CW B-ORG O -. O O -W B-LOC B-LOC -1996 O O -The O O -Canadian B-ORG B-ORG -W I-ORG I-ORG -Board I-ORG I-ORG -reported O O -six O O -ships O O -loading O O -, O O -10 O O -waiting O O -and O O -four O O -due O O -at O O -the O O -Canadian B-LOC B-MISC -West I-LOC O -Coast I-LOC O -, O O -as O O -of O O -Friday O O -. O O -The O O -longest O O -wait O O -to O O -load O O -on O O -the O O -West B-LOC O -Coast I-LOC O -was O O -13 O O -days O O -. O O -Two O O -ship O O -loaded O O -in O O -Thunder B-LOC B-LOC -Bay I-LOC I-LOC -, O O -one O O -waited O O -and O O -seven O O -were O O -due O O -. O O -Two O O -ships O O -loaded O O -on O O -the O O -East B-LOC O -Coast I-LOC O -, O O -three O O -waited O O -to O O -load O O -, O O -six O O -were O O -due O O -. O O -Port B-ORG O -Lo I-ORG O -Waiting O O -Vancouver B-ORG B-LOC -5 O O -7 O O -Prince B-ORG B-LOC -Rupert I-ORG I-LOC -1 O O -3 O O -( O O -( O O -Gilbert B-PER B-PER -Le I-PER I-PER -G I-PER I-PER -204 O O -94 O O -35 O O -) O O -) O O -New B-LOC B-LOC -York I-LOC I-LOC -time O O -fixtures O O -- O O -Dec O O -6 O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -No O O -new O O -fixtures O O -reported O O -from O O -New B-LOC B-LOC -York I-LOC I-LOC -. O O -- O O -New B-ORG B-ORG -York I-ORG I-ORG -Co I-ORG I-ORG -Des I-ORG I-ORG -+ O O -212 O O -85 O O -1640 O O -New B-LOC B-LOC -York I-LOC I-LOC -coal O O -/ O O -ore O O -/ O O -scrap O O -fixtures O O -- O O -Dec O O -6 O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -OR B-ORG O -- O O -Maritime B-ORG B-MISC -Queen I-ORG I-MISC -70 O O -tonnes O O -Dam B-ORG B-LOC -/ O O -Ka B-LOC B-LOC -20 O O -$ O O -5 O O -fi O O -35 O O -/ O O -30 O O -China B-ORG B-ORG -Steel I-ORG I-ORG -. O O -- O O -New B-ORG B-ORG -York I-ORG I-ORG -Co I-ORG I-ORG -Des I-ORG O -+ O O -212 O O -85 O O -1640 O O -Clean O O -tanker O O -fixtures O O -and O O -en O O -- O O -232 O O -GM B-ORG B-MISC -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -F O O -- O O -W B-LOC O -H O O -- O O -Dani B-PER B-MISC -28 O O -16 O O -Car B-ORG B-LOC -/ O O -up O O -W O O -Mo B-ORG B-ORG -. O O -- O O -New B-ORG B-ORG -York I-ORG I-ORG -Co I-ORG I-ORG -Des I-ORG O -, O O -212 O O -Dirty O O -tanker O O -fixtures O O -and O O -en O O -- O O -231 O O -GM B-ORG B-MISC -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -MI B-LOC O -/ O O -R B-LOC B-LOC -SE I-LOC I-LOC -- O O -Thai B-MISC B-MISC -Resource O I-MISC -264 O O -31 O O -Ra B-LOC B-LOC -Tan I-LOC I-LOC -/ O O -Red B-LOC B-LOC -Sea I-LOC I-LOC -W O O -Mo B-ORG B-ORG -. O O -ME O B-MISC -- O O -Lu B-ORG B-MISC -I I-ORG I-MISC -85 O O -25 O O -Sid B-ORG B-LOC -K I-LOC I-LOC -/ O O -Augusta B-LOC B-LOC -W O O -Ex B-ORG B-ORG -. O O -S B-ORG B-MISC -139 O O -17 O O -Sid B-ORG B-LOC -K I-LOC I-LOC -/ O O -Augusta B-LOC B-LOC -W O O -Ex B-ORG B-ORG -. O O -Me B-ORG B-MISC -77 O O -17 O O -Baja B-LOC B-LOC -/ O O -F B-LOC B-LOC -W O O -Ex B-ORG B-ORG -. O O -- O O -New B-ORG B-ORG -York I-ORG I-ORG -Co I-ORG I-ORG -Des I-ORG I-ORG -+ O O -212 O O -85 O O -1640 O O -NYC B-ORG B-MISC -Jan O O -re O O -has O O -its O O -1st O O -Euro B-MISC B-MISC -floating O O -rate O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -New B-LOC B-LOC -York I-LOC I-LOC -City I-LOC I-LOC -on O O -Friday O O -said O O -that O O -it O O -planned O O -a O O -$ O O -77 O O -million O O -re O O -for O O -January O O -that O O -will O O -include O O -its O O -first O O -floating O O -rate O O -issue O O -of O O -taxa O O -debt O O -for O O -European B-MISC B-MISC -investors O O -. O O -A O O -city O O -official O O -, O O -who O O -declined O O -to O O -be O O -named O O -, O O -explained O O -that O O -Goldman B-ORG B-ORG -, I-ORG I-ORG -Sachs B-ORG I-ORG -, O O -which O O -this O O -summer O O -was O O -demo O O -to O O -the O O -second O O -tier O O -of O O -the O O -s O O -, O O -proposed O O -the O O -floating O O -rate O O -issue O O -and O O -as O O -a O O -result O O -was O O -promoted O O -to O O -book O O -runner O O -for O O -this O O -offering O O -. O O -By O O -selling O O -the O O -floating O O -rate O O -debt O O -, O O -the O O -city O O -hopes O O -to O O -establish O O -a O O -bench O O -, O O -the O O -city O O -official O O -said O O -, O O -adding O O -that O O -it O O -needed O O -a O O -large O O -deal O O -to O O -accomplish O O -this O O -objective O O -. O O -The O O -city O O -in O O -late O O -June O O -sold O O -its O O -first O O -issue O O -of O O -Euro B-MISC B-MISC -, O O -a O O -strategy O O -that O O -it O O -says O O -saved O O -it O O -$ O O -500 O O -in O O -interest O O -costs O O -, O O -and O O -it O O -has O O -been O O -trying O O -to O O -build O O -on O O -this O O -strategy O O -of O O -expanding O O -the O O -pool O O -of O O -potential O O -investors O O -since O O -then O O -. O O -In O O -November O O -, O O -New B-LOC B-LOC -York I-LOC I-LOC -City I-LOC I-LOC -said O O -it O O -became O O -the O O -first O O -U B-LOC B-LOC -municipality O O -to O O -offer O O -bonds O O -for O O -sale O O -in O O -European B-MISC B-MISC -markets O O -by O O -competitive O O -bidding O O -as O O -it O O -listed O O -taxa O O -bonds O O -on O O -the O O -London B-ORG B-ORG -Stock I-ORG I-ORG -Exchange I-ORG I-ORG -. O O -The O O -re O O -planned O O -for O O -January O O -also O O -includes O O -a O O -$ O O -47 O O -million O O -tax O O -offering O O -. O O -No O O -specific O O -date O O -in O O -January O O -has O O -been O O -selected O O -for O O -the O O -debt O O -sale O O -, O O -the O O -official O O -added O O -. O O -- O O -Joan B-PER B-PER -G I-PER I-PER -, O O -212 O O -USD B-ORG B-ORG -gross O O -cut O O -hide O O -and O O -off O O -value O O -. O O -DE B-LOC B-LOC -M I-LOC I-LOC -1996 O O -The O O -hide O O -and O O -off O O -value O O -from O O -a O O -typical O O -slaughter O O -steer O O -for O O -Friday O O -was O O -estimated O O -at O O -$ O O -9 O O -per O O -c O O -live O O -, O O -d O O -0 O O -when O O -compared O O -to O O -Thursday O O -' O O -value O O -. O O -- O O -USD B-ORG B-ORG -Wall B-ORG B-LOC -St I-ORG I-LOC -s O O -about O O -Santa B-LOC B-LOC -Fe I-LOC I-LOC -sa O O -. O O -Brendan B-PER B-PER -In I-PER I-PER -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Homes B-ORG B-ORG -Mining I-ORG I-ORG -Co I-ORG I-ORG -tops O O -Wall B-LOC B-LOC -Street I-LOC I-LOC -' O O -list O O -as O O -the O O -most O O -likely O O -white O O -knight O O -buyer O O -for O O -Santa B-ORG B-ORG -Fe I-ORG I-ORG -Pacific I-ORG I-ORG -Gold I-ORG I-ORG -Corp I-ORG I-ORG -if O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -rejects O O -un O O -suit O O -New B-ORG B-ORG -Mining I-ORG I-ORG -Corp I-ORG I-ORG -. O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -is O O -so O O -far O O -mum O O -on O O -the O O -more O O -than O O -$ O O -2 O O -billion O O -stock O O -swap O O -takeover O O -proposal O O -from O O -New B-ORG B-ORG -, O O -announced O O -Thursday O O -. O O -Wall B-LOC B-LOC -Street I-LOC I-LOC -, O O -since O O -the O O -bid O O -, O O -has O O -speculated O O -that O O -any O O -deal O O -between O O -New B-LOC B-ORG -and O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -would O O -be O O -a O O -" O O -bear O O -hug O O -, O O -" O O -or O O -a O O -reluctantly O O -negotiated O O -agreement O O -where O O -the O O -buyer O O -is O O -not O O -necessarily O O -a O O -friendly O O -suit O O -. O O -New B-ORG B-ORG -said O O -the O O -companies O O -have O O -had O O -previous O O -contact O O -, O O -though O O -declined O O -to O O -detail O O -the O O -encounters O O -. O O -Ana O O -predict O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -will O O -go O O -to O O -the O O -highest O O -bid O O -, O O -and O O -that O O -if O O -a O O -rival O O -buyer O O -is O O -found O O -, O O -New B-ORG B-ORG -may O O -not O O -be O O -able O O -to O O -match O O -its O O -offer O O -. O O -They O O -said O O -the O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -deal O O -, O O -which O O -includes O O -desirable O O -Nevada B-LOC B-LOC -mining O O -territory O O -, O O -would O O -only O O -pay O O -for O O -New B-PER B-ORG -longer O O -term O O -. O O -New B-ORG B-ORG -, O O -in O O -fact O O -, O O -will O O -not O O -benefit O O -from O O -the O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -acquisition O O -on O O -an O O -earnings O O -basis O O -for O O -at O O -least O O -two O O -years O O -, O O -which O O -also O O -limits O O -its O O -capacity O O -to O O -raise O O -its O O -offer O O -. O O -Any O O -deal O O -, O O -friendly O O -or O O -hostile O O -, O O -would O O -almost O O -assured O O -be O O -a O O -stock O O -swap O O -, O O -which O O -is O O -necessary O O -to O O -preserve O O -the O O -tax O O -, O O -pool O O -accounting O O -, O O -they O O -said O O -. O O -Ana O O -and O O -a O O -immediately O O -ruled O O -out O O -Barr B-ORG B-ORG -Gold I-ORG I-ORG -Corp I-ORG I-ORG -and O O -B B-ORG B-ORG -Mine I-ORG I-ORG -Ltd I-ORG I-ORG -as O O -Santa B-MISC B-ORG -Fe I-ORG I-ORG -sa O O -because O O -they O O -are O O -locked O O -in O O -negotiations O O -over O O -their O O -splitting O O -Indonesia B-LOC B-LOC -' O O -Bus B-LOC B-ORG -vast O O -gold O O -deposit O O -. O O -Place B-ORG B-ORG -Dome I-ORG I-ORG -Inc I-ORG I-ORG -too O O -was O O -considered O O -un O O -because O O -it O O -is O O -focusing O O -on O O -geographic O O -expansion O O -in O O -areas O O -that O O -do O O -match O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -' O O -Nevada B-LOC B-LOC -, O O -South B-LOC B-LOC -America I-LOC I-LOC -and O O -Central B-LOC B-LOC -Asia I-LOC I-LOC -presence O O -, O O -they O O -said O O -. O O -A O O -Homes B-ORG B-ORG -spokesman O O -was O O -not O O -immediately O O -available O O -to O O -comment O O -on O O -speculation O O -that O O -it O O -tops O O -the O O -list O O -. O O -Homes B-ORG B-ORG -, O O -based O O -in O O -San B-LOC B-LOC -Francisco I-LOC I-LOC -, O O -operates O O -gold O O -mines O O -in O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -, O O -Australia B-LOC B-LOC -, O O -Chile B-LOC B-LOC -and O O -Canada B-LOC B-LOC -. O O -E O O -in O O -1995 O O -were O O -$ O O -0 O O -per O O -share O O -, O O -or O O -$ O O -30 O O -million O O -, O O -on O O -revenues O O -of O O -$ O O -74 O O -million O O -. O O -Santa B-ORG B-ORG -Fe I-ORG I-ORG -is O O -headquartered O O -Albuquerque B-LOC B-LOC -, O O -N B-LOC B-LOC -and O O -reported O O -1995 O O -earnings O O -of O O -$ O O -0 O O -per O O -share O O -, O O -or O O -$ O O -40 O O -million O O -, O O -on O O -revenues O O -of O O -$ O O -350 O O -million O O -. O O -Santa B-ORG B-ORG -Fe I-ORG I-ORG -has O O -mining O O -and O O -exploration O O -operations O O -in O O -Nevada B-LOC B-LOC -, O O -California B-LOC B-LOC -, O O -Montana B-LOC B-LOC -, O O -Canada B-LOC B-LOC -, O O -Brazil B-LOC B-LOC -, O O -Australia B-LOC B-LOC -, O O -Chile B-LOC B-LOC -, O O -Ka B-LOC B-LOC -, O O -Mexico B-LOC B-LOC -and O O -Ghana B-LOC B-LOC -. O O -Pain B-ORG B-ORG -analyst O O -Marc B-PER B-PER -Cohen I-PER I-PER -said O O -he O O -lowered O O -his O O -rating O O -on O O -New B-ORG B-ORG -to O O -neutral O O -from O O -attractive O O -today O O -because O O -if O O -New B-ORG B-ORG -merged O O -with O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -, O O -investors O O -would O O -have O O -to O O -wait O O -until O O -the O O -second O O -half O O -of O O -1998 O O -to O O -realize O O -earnings O O -a O O -. O O -" O O -I O O -think O O -Homes B-PER B-ORG -could O O -come O O -in O O -as O O -a O O -white O O -knight O O -, O O -but O O -how O O -much O O -is O O -someone O O -willing O O -to O O -come O O -in O O -above O O -the O O -New B-LOC B-ORG -number O O -. O O -One O O -would O O -have O O -to O O -out O O -by O O -at O O -least O O -15 O O -percent O O -, O O -but O O -there O O -is O O -going O O -to O O -be O O -a O O -( O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -) O O -deal O O -with O O -someone O O -, O O -" O O -he O O -said O O -. O O -" O O -Long O O -term O O -, O O -two O O -to O O -three O O -years O O -out O O -, O O -( O O -a O O -New B-ORG B-MISC -Fe O I-MISC -deal O O -) O O -is O O -positive O O -, O O -it O O -does O O -all O O -the O O -right O O -things O O -. O O -But O O -in O O -the O O -near O O -it O O -is O O -, O O -at O O -worst O O -, O O -neutral O O -, O O -" O O -the O O -analyst O O -added O O -. O O -New B-ORG B-ORG -proposed O O -to O O -Santa B-LOC B-LOC -Fe I-LOC I-LOC -a O O -stock O O -merger O O -at O O -a O O -ratio O O -of O O -0 O O -New B-ORG B-ORG -shares O O -for O O -each O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -shares O O -. O O -In O O -Friday O O -New B-ORG B-ORG -York I-ORG I-ORG -Stock I-ORG I-ORG -Exchange I-ORG I-ORG -trade O O -, O O -New B-PER B-ORG -was O O -off O O -1 O O -to O O -46 O O -while O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -added O O -1 O O -to O O -15 O O -. O O -" O O -New B-ORG B-ORG -said O O -it O O -wants O O -to O O -discuss O O -a O O -friendly O O -deal O O -with O O -Santa B-LOC B-ORG -Fe I-LOC I-ORG -, O O -which O O -is O O -almost O O -always O O -a O O -e O O -for O O -' O O -We O O -have O O -more O O -money O O -in O O -our O O -pocket O O -, O O -' O O -" O O -said O O -an O O -a O O -, O O -referring O O -to O O -a O O -possible O O -sweet O O -bid O O -from O O -New B-PER B-ORG -. O O -Two O O -other O O -a O O -called O O -New B-PER B-ORG -' O O -move O O -a O O -" O O -a O O -32 O O -cent O O -bid O O -" O O -because O O -there O O -is O O -no O O -formal O O -tender O O -offer O O -, O O -only O O -the O O -proposal O O -letter O O -" O O -mail O O -" O O -to O O -Santa B-ORG B-ORG -Fe I-LOC I-ORG -' O O -board O O -. O O -- O O -Wall B-ORG B-ORG -Street I-ORG I-ORG -Des I-ORG I-ORG -, O O -212 O O -. O O -Russ B-PER B-ORG -Be I-PER I-ORG -president O O -to O O -retire O O -in O O -July O O -. O O -O B-LOC B-LOC -, O O -N B-LOC B-LOC -1996 O O -Russ B-ORG B-ORG -Be I-ORG I-ORG -and I-ORG I-ORG -Co I-ORG I-ORG -Inc I-ORG I-ORG -said O O -on O O -Friday O O -that O O -A B-PER B-PER -C I-PER I-PER -Cooke I-PER I-PER -will O O -retire O O -as O O -president O O -and O O -chief O O -operating O O -officer O O -effective O O -July O O -1 O O -, O O -1997 O O -. O O -Cooke B-PER B-PER -will O O -provide O O -consulting O O -services O O -to O O -the O O -company O O -through O O -July O O -1 O O -, O O -1998 O O -, O O -and O O -will O O -continue O O -to O O -serve O O -as O O -a O O -director O O -, O O -the O O -toy O O -and O O -gift O O -maker O O -said O O -. O O -Zimbabwe B-LOC B-LOC -execute O O -convicted O O -murderer O O -. O O -H B-LOC B-LOC -1996 O O -Zimbabwe B-LOC B-LOC -hanged O O -a O O -convicted O O -murderer O O -on O O -Friday O O -, O O -bringing O O -to O O -eight O O -the O O -number O O -of O O -executions O O -carried O O -out O O -in O O -the O O -past O O -year O O -. O O -A O O -statement O O -said O O -Pi B-PER B-PER -Sin I-PER I-PER -N I-PER I-PER -was O O -hanged O O -at O O -dawn O O -. O O -President O O -Robert B-PER B-PER -Mu I-PER I-PER -' O O -government O O -has O O -resisted O O -pressure O O -from O O -local O O -and O O -international O O -human O O -rights O O -groups O O -to O O -a O O -the O O -death O O -sentence O O -. O O -Multi O O -commander O O -going O O -back O O -to O O -east O O -Z B-LOC B-LOC -. O O -Jonathan B-PER B-PER -Wright I-PER I-PER -N B-LOC B-LOC -1996 O O -The O O -Canadian B-MISC B-MISC -general O O -in O O -charge O O -of O O -a O O -multinational O O -force O O -for O O -eastern O O -Z B-LOC B-LOC -said O O -on O O -Friday O O -he O O -was O O -going O O -back O O -to O O -Z B-LOC B-LOC -for O O -more O O -information O O -about O O -the O O -p O O -of O O -about O O -165 O O -Rwanda B-MISC B-MISC -refugees O O -ad O O -in O O -the O O -countryside O O -. O O -Lieutenant O O -Maurice B-PER B-PER -Bari I-PER I-PER -told O O -a O O -news O O -conference O O -in O O -Nairobi B-LOC B-LOC -his O O -main O O -concern O O -was O O -for O O -a O O -large O O -group O O -of O O -about O O -150 O O -refugees O O -living O O -off O O -the O O -land O O -in O O -a O O -valley O O -about O O -65 O O -km O O -( O O -40 O O -miles O O -) O O -west O O -of O O -the O O -eastern O O -city O O -of O O -Go B-LOC B-LOC -. O O -If O O -he O O -decided O O -it O O -was O O -necessary O O -and O O -safe O O -for O O -the O O -air O O -, O O -he O O -would O O -not O O -hesitate O O -to O O -order O O -air O O -of O O -food O O -for O O -the O O -refugees O O -, O O -even O O -against O O -the O O -wishes O O -of O O -the O O -government O O -in O O -Ki B-LOC B-LOC -and O O -the O O -Z B-MISC B-MISC -rebels O O -who O O -control O O -much O O -of O O -eastern O O -Z B-LOC B-LOC -, O O -he O O -said O O -. O O -" O O -Tomorrow O O -I O O -' O O -going O O -into O O -Rwanda B-LOC B-LOC -and O O -my O O -intention O O -is O O -to O O -go O O -across O O -into O O -eastern O O -Z B-LOC B-LOC -and O O -try O O -to O O -find O O -out O O -for O O -the O O -second O O -time O O -what O O -the O O -situation O O -is O O -on O O -the O O -ground O O -, O O -" O O -he O O -said O O -. O O -General O O -Bari B-PER B-PER -saw O O -rebel O O -leader O O -Laurent B-PER B-PER -Ka I-PER I-PER -in O O -Go B-LOC B-LOC -last O O -week O O -but O O -the O O -rebels O O -told O O -him O O -the O O -crisis O O -was O O -over O O -because O O -most O O -of O O -the O O -Rwanda B-MISC B-MISC -refugees O O -have O O -already O O -gone O O -home O O -. O O -The O O -rebels O O -do O O -not O O -want O O -the O O -multinational O O -force O O -to O O -deploy O O -on O O -the O O -ground O O -, O O -for O O -fear O O -it O O -might O O -help O O -the O O -Z B-MISC B-MISC -army O O -regain O O -control O O -of O O -the O O -area O O -. O O -Ki B-LOC B-LOC -oppose O O -air O O -, O O -apparently O O -because O O -the O O -food O O -could O O -fall O O -into O O -the O O -hands O O -of O O -the O O -rebels O O -and O O -their O O -local O O -supporters O O -. O O -Canadian B-MISC B-MISC -Defence O O -Minister O O -Doug B-PER B-PER -Young I-PER I-PER -said O O -on O O -Thursday O O -that O O -the O O -multinational O O -force O O -would O O -probably O O -not O O -have O O -to O O -make O O -food O O -air O O -or O O -intervene O O -mi O O -in O O -any O O -major O O -way O O -. O O -" O O -It O O -does O O -n O O -look O O -as O O -though O O -they O O -( O O -air O O -) O O -are O O -going O O -to O O -be O O -required O O -in O O -any O O -significant O O -way O O -because O O -the O O -NGOs O O -( O O -non O O -organisations O O -) O O -are O O -in O O -that O O -area O O -on O O -the O O -border O O -between O O -Z B-LOC B-LOC -and O O -Rwanda B-LOC B-LOC -, O O -" O O -Young B-PER B-PER -told O O -reporters O O -. O O -But O O -General O O -Bari B-PER B-PER -said O O -it O O -would O O -be O O -premature O O -to O O -rule O O -out O O -any O O -course O O -of O O -action O O -until O O -he O O -had O O -more O O -information O O -. O O -" O O -We O O -hope O O -that O O -if O O -the O O -front O O -moves O O -forward O O -or O O -stab O O -then O O -we O O -will O O -have O O -access O O -( O O -to O O -the O O -large O O -group O O -of O O -refugees O O -) O O -with O O -reconnaissance O O -or O O -humanitarian O O -agencies O O -. O O -" O O -If O O -they O O -ca O O -n O O -move O O -because O O -they O O -are O O -too O O -weak O O -, O O -then O O -we O O -will O O -probably O O -consider O O -very O O -seriously O O -using O O -air O O -delivery O O -means O O -( O O -air O O -) O O -. O O -' O O -complex O O -, O O -it O O -' O O -dangerous O O -for O O -the O O -air O O -crew O O -that O O -fly O O -in O O -there O O -and O O -it O O -will O O -have O O -to O O -be O O -absolutely O O -necessary O O -. O O -If O O -it O O -is O O -necessary O O -, O O -I O O -w O O -n O O -hesitate O O -to O O -use O O -it O O -, O O -" O O -he O O -said O O -. O O -Ask O O -if O O -he O O -would O O -di O O -the O O -objections O O -of O O -the O O -Z B-MISC B-MISC -government O O -, O O -he O O -said O O -: O O -" O O -It O O -would O O -have O O -to O O -be O O -in O O -the O O -last O O -resort O O -. O O -It O O -would O O -have O O -to O O -mean O O -that O O -tens O O -of O O -thousands O O -of O O -lives O O -are O O -in O O -danger O O -. O O -Do O O -you O O -think O O -that O O -I O O -would O O -have O O -a O O -conscience O O -problem O O -doing O O -it O O -or O O -not O O -at O O -that O O -time O O -? O O -And O O -my O O -mandate O O -is O O -also O O -under O O -Chapter O O -Seven O O -to O O -operate O O -in O O -eastern O O -Z B-LOC B-LOC -. O O -" O O -Under O O -Chapter O O -Seven O O -of O O -the O O -U B-ORG B-ORG -charter O O -, O O -the O O -Security B-ORG B-ORG -Council I-ORG I-ORG -has O O -wide O O -powers O O -to O O -preserve O O -peace O O -and O O -security O O -. O O -" O O -I O O -know O O -their O O -( O O -the O O -Z B-MISC B-MISC -government O O -' O O -) O O -position O O -and O O -I O O -know O O -it O O -' O O -very O O -delicate O O -and O O -we O O -are O O -very O O -sensitive O O -to O O -their O O -position O O -also O O -, O O -" O O -the O O -general O O -added O O -. O O -He O O -denied O O -that O O -his O O -contacts O O -, O O -criticised O O -by O O -Ki B-LOC B-LOC -, O O -with O O -the O O -Z B-MISC B-MISC -rebels O O -amounted O O -to O O -negotiations O O -. O O -" O O -I O O -do O O -n O O -negotiate O O -, O O -" O O -he O O -said O O -. O O -" O O -I O O -coordinate O O -with O O -those O O -who O O -are O O -holding O O -ground O O -and O O -that O O -' O O -a O O -wise O O -thing O O -to O O -do O O -. O O -When O O -we O O -do O O -n O O -know O O -where O O -the O O -front O O -is O O -, O O -we O O -do O O -n O O -know O O -what O O -the O O -risk O O -is O O -. O O -" O O -Bari B-PER B-PER -said O O -that O O -apart O O -from O O -the O O -group O O -of O O -150 O O -, O O -U B-LOC B-LOC -and O O -British B-MISC B-MISC -reconnaissance O O -plans O O -had O O -tracked O O -two O O -much O O -smaller O O -groups O O -of O O -refugees O O -- O O -one O O -of O O -up O O -to O O -1 O O -north O O -of O O -the O O -town O O -of O O -Ma B-LOC O -and O O -one O O -of O O -up O O -to O O -8 O O -on O O -the O O -road O O -from O O -B B-LOC B-LOC -west O O -to O O -Kind B-LOC B-LOC -. O O -The O O -Ki B-LOC B-LOC -office O O -of O O -the O O -medical O O -charity O O -Me B-ORG B-ORG -sa I-ORG I-ORG -Frontier I-ORG I-ORG -said O O -on O O -Friday O O -that O O -more O O -than O O -100 O O -refugees O O -were O O -t O O -northwest O O -from O O -the O O -Go B-LOC B-LOC -area O O -and O O -many O O -of O O -them O O -were O O -now O O -in O O -the O O -town O O -of O O -W B-LOC B-LOC -. O O -The O O -general O O -did O O -not O O -mention O O -these O O -refugees O O -, O O -who O O -are O O -on O O -the O O -outer O O -limit O O -of O O -the O O -strip O O -the O O -planes O O -have O O -been O O -checking O O -. O O -Mauritius B-LOC B-LOC -put O O -on O O -cyclone O O -alert O O -. O O -P B-LOC B-LOC -L I-LOC I-LOC -1996 O O -Ma B-MISC B-MISC -authorities O O -put O O -the O O -Indian B-LOC B-LOC -Ocean I-LOC I-LOC -island O O -on O O -cyclone O O -alert O O -on O O -Friday O O -. O O -The O O -weather O O -services O O -office O O -said O O -the O O -centre O O -of O O -the O O -intense O O -tropical O O -cyclone O O -Daniel B-PER B-MISC -was O O -570 O O -km O O -( O O -310 O O -miles O O -) O O -north O O -by O O -northwest O O -of O O -the O O -island O O -on O O -Friday O O -afternoon O O -and O O -was O O -moving O O -south O O -by O O -southwest O O -at O O -eight O O -km O O -an O O -hour O O -( O O -four O O -knots O O -) O O -. O O -Although O O -not O O -threatening O O -Mauritius B-LOC B-LOC -directly O O -, O O -it O O -is O O -coming O O -closer O O -to O O -the O O -island O O -and O O -could O O -change O O -direction O O -, O O -it O O -added O O -. O O -Wind O O -up O O -to O O -75 O O -km O O -an O O -hour O O -( O O -40 O O -knots O O -) O O -could O O -blow O O -over O O -Mauritius B-LOC B-LOC -during O O -the O O -night O O -of O O -Friday O O -to O O -Saturday O O -, O O -it O O -said O O -. O O -The O O -weather O O -in O O -the O O -capital O O -Port B-LOC B-LOC -Louis I-LOC I-LOC -was O O -heavily O O -cloud O O -on O O -Friday O O -afternoon O O -with O O -occasional O O -shower O O -. O O -The O O -northeastern O O -coast O O -of O O -the O O -nearby O O -island O O -of O O -Madagascar B-LOC B-LOC -has O O -also O O -gone O O -on O O -alert O O -. O O -U B-ORG B-ORG -evacuate O O -staff O O -from O O -Central B-LOC B-LOC -African I-LOC I-LOC -Republic I-LOC I-LOC -. O O -AB B-LOC B-LOC -1996 O O -The O O -United B-ORG B-ORG -Nations I-ORG I-ORG -evacuated O O -its O O -staff O O -in O O -the O O -Central B-LOC B-LOC -African I-LOC I-LOC -Republic I-LOC I-LOC -on O O -Friday O O -because O O -of O O -mounting O O -violence O O -in O O -a O O -two O O -army O O -m O O -in O O -the O O -capital O O -, O O -a O O -U B-ORG B-ORG -official O O -said O O -. O O -The O O -official O O -from O O -the O O -U B-ORG B-ORG -refugee O O -agency O O -UN B-ORG B-ORG -said O O -a O O -chartered O O -plane O O -had O O -picked O O -up O O -the O O -staff O O -from O O -Bang B-LOC B-LOC -and O O -was O O -heading O O -for O O -A B-LOC B-LOC -, O O -Ivory B-LOC B-LOC -Coast I-LOC I-LOC -. O O -Senegal B-LOC B-LOC -proposes O O -foreign O O -minister O O -for O O -U B-ORG B-ORG -post O O -. O O -D B-LOC B-LOC -1996 O O -Senegal B-LOC B-LOC -' O O -President O O -Abd B-PER B-PER -Di I-PER I-PER -said O O -on O O -Friday O O -he O O -was O O -proposing O O -his O O -foreign O O -minister O O -Mo B-PER B-PER -Ni I-PER I-PER -for O O -the O O -post O O -of O O -United B-ORG B-ORG -Nations I-ORG I-ORG -secretary O O -. O O -Di B-PER B-PER -announced O O -his O O -intention O O -to O O -reporters O O -when O O -he O O -returned O O -from O O -the O O -Franco B-MISC B-MISC -summit O O -in O O -Burkina B-LOC B-LOC -Faso I-LOC I-LOC -where O O -an O O -African B-MISC B-MISC -successor O O -to O O -Secretary O O -Bo B-PER B-PER -Bo I-PER I-PER -was O O -discussed O O -. O O -The O O -United B-LOC B-LOC -States I-LOC I-LOC -has O O -veto O O -a O O -second O O -term O O -for O O -the O O -Egyptian B-MISC B-MISC -but O O -left O O -the O O -door O O -open O O -for O O -another O O -African B-MISC B-MISC -candidate O O -. O O -" O O -If O O -Africa B-LOC B-LOC -does O O -not O O -wish O O -to O O -lose O O -its O O -turn O O -we O O -have O O -to O O -act O O -fast O O -, O O -" O O -Di B-PER B-PER -said O O -. O O -" O O -Some O O -of O O -my O O -brother O O -heads O O -of O O -state O O -asked O O -me O O -if O O -I O O -would O O -n O O -nominate O O -Mo B-PER B-PER -Ni I-PER I-PER -. O O -I O O -see O O -in O O -him O O -the O O -profile O O -of O O -a O O -secret O O -of O O -the O O -United B-ORG B-ORG -Nations I-ORG I-ORG -and O O -I O O -have O O -given O O -my O O -endorsement O O -. O O -" O O -Ex O O -, O O -son O O -killed O O -in O O -Central B-LOC B-LOC -Africa I-LOC I-LOC -unrest O O -. O O -Raphael B-PER B-PER -Ko I-PER I-PER -BA B-LOC B-LOC -1996 O O -A O O -former O O -cabinet O O -minister O O -in O O -Central B-LOC B-LOC -African I-LOC I-LOC -Republic I-LOC I-LOC -and O O -his O O -son O O -were O O -abducted O O -from O O -their O O -home O O -and O O -murdered O O -in O O -growing O O -ethnic O O -violence O O -in O O -the O O -capital O O -Bang B-LOC B-LOC -, O O -a O O -government O O -minister O O -said O O -on O O -Friday O O -. O O -With O O -violence O O -spiral O O -out O O -of O O -control O O -, O O -France B-LOC B-LOC -voiced O O -backing O O -for O O -the O O -elected O O -Bang B-LOC B-LOC -government O O -but O O -said O O -its O O -troops O O -based O O -in O O -the O O -former O O -colony O O -under O O -defence O O -pact O O -would O O -not O O -help O O -it O O -combat O O -army O O -m O O -. O O -" O O -France B-LOC B-LOC -cannot O O -be O O -involved O O -in O O -the O O -domestic O O -political O O -debate O O -, O O -" O O -President O O -Jacques B-PER B-PER -Chi I-PER I-PER -told O O -a O O -news O O -conference O O -at O O -the O O -end O O -of O O -a O O -Franco B-MISC B-MISC -summit O O -in O O -Burkina B-LOC B-LOC -Faso I-LOC I-LOC -. O O -" O O -French B-MISC B-MISC -troops O O -may O O -only O O -take O O -part O O -in O O -maintaining O O -order O O -to O O -avoid O O -major O O -abuses O O -and O O -protect O O -foreign O O -communities O O -, O O -" O O -he O O -said O O -. O O -Public B-ORG O -Service I-ORG O -Minister O O -David B-PER B-PER -Do I-PER I-PER -, O O -who O O -is O O -the O O -head O O -of O O -the O O -national O O -Red B-ORG B-ORG -Cross I-ORG I-ORG -, O O -told O O -Re B-ORG B-ORG -he O O -had O O -seen O O -the O O -bodies O O -of O O -former O O -interior O O -minister O O -Christophe B-PER B-PER -G I-PER I-PER -and O O -his O O -son O O -, O O -who O O -was O O -not O O -named O O -. O O -Witness O O -said O O -they O O -had O O -been O O -seized O O -by O O -troops O O -loyal O O -to O O -President O O -Ang B-PER B-PER -Pat I-PER I-PER -at O O -dawn O O -on O O -Thursday O O -when O O -they O O -clashed O O -with O O -soldiers O O -staging O O -a O O -m O O -since O O -November O O -16 O O -. O O -G B-PER B-PER -is O O -from O O -the O O -Ya B-LOC B-MISC -tribe O O -to O O -which O O -most O O -of O O -the O O -rebel O O -soldiers O O -belong O O -. O O -The O O -uprising O O -began O O -over O O -pay O O -demands O O -but O O -has O O -turned O O -into O O -a O O -campaign O O -to O O -top O O -Pat B-PER B-PER -, O O -spark O O -ethnic O O -violence O O -and O O -dividing O O -the O O -capital O O -. O O -The O O -former O O -minister O O -and O O -his O O -son O O -had O O -been O O -taken O O -from O O -their O O -home O O -close O O -to O O -the O O -presidential O O -palace O O -, O O -which O O -is O O -guarded O O -by O O -loyal O O -soldiers O O -backed O O -by O O -French B-MISC B-MISC -troops O O -based O O -in O O -Bang B-LOC B-LOC -. O O -The O O -bodies O O -were O O -found O O -on O O -Thursday O O -in O O -an O O -open O O -field O O -about O O -two O O -km O O -( O O -one O O -mile O O -) O O -further O O -away O O -, O O -said O O -Do B-PER B-PER -and O O -other O O -witnesses O O -. O O -The O O -men O O -were O O -seized O O -as O O -loyal O O -forces O O -and O O -French B-MISC B-MISC -troops O O -fought O O -gun O O -with O O -m O O -who O O -fired O O -rockets O O -into O O -the O O -city O O -centre O O -. O O -A O O -French B-MISC B-MISC -hotel O O -was O O -slightly O O -damaged O O -. O O -Ya B-MISC B-MISC -are O O -ho O O -in O O -stronghold O O -districts O O -of O O -Pat B-LOC B-PER -' O O -Bay B-LOC B-MISC -people O O -while O O -other O O -tribes O O -have O O -fled O O -areas O O -in O O -rebel O O -hands O O -. O O -Road O O -have O O -been O O -erected O O -in O O -city O O -districts O O -while O O -central O O -Bang B-LOC B-LOC -, O O -which O O -is O O -patrol O O -by O O -French B-MISC B-MISC -troops O O -with O O -tanks O O -, O O -is O O -deserted O O -. O O -Shop O O -and O O -businesses O O -have O O -remained O O -shut O O -this O O -week O O -. O O -The O O -Franco B-MISC B-MISC -summit O O -decided O O -to O O -send O O -a O O -mission O O -Bang B-LOC B-LOC -to O O -seek O O -ways O O -of O O -containing O O -the O O -m O O -and O O -a O O -threat O O -of O O -civil O O -war O O -. O O -Chi B-PER B-PER -said O O -Burkina B-LOC B-LOC -Faso I-LOC I-LOC -President O O -B B-PER B-PER -Co I-PER I-PER -would O O -visit O O -Bang B-LOC B-LOC -" O O -in O O -the O O -coming O O -hours O O -" O O -with O O -the O O -heads O O -of O O -state O O -of O O -Gabon B-LOC B-LOC -, O O -Mali B-LOC B-LOC -and O O -Chad B-LOC B-LOC -to O O -try O O -and O O -establish O O -dialogue O O -between O O -authorities O O -and O O -rebels O O -. O O -The O O -m O O -forced O O -Pat B-PER B-PER -to O O -miss O O -the O O -summit O O -. O O -His O O -spokesman O O -had O O -predicted O O -the O O -meeting O O -to O O -send O O -an O O -assessment O O -mission O O -. O O -Pat B-PER B-PER -, O O -who O O -won O O -Central B-LOC B-LOC -Africa I-LOC I-LOC -' O O -first O O -multi O O -elections O O -, O O -refuses O O -to O O -resign O O -. O O -Church B-MISC O -me O O -attempts O O -hit O O -dead O O -over O O -rebel O O -demands O O -for O O -his O O -departure O O -. O O -Soldiers O O -staged O O -m O O -in O O -April O O -and O O -May O O -, O O -with O O -French B-MISC B-MISC -troops O O -stepping O O -in O O -with O O -tanks O O -and O O -helicopters O O -to O O -que O O -the O O -more O O -serious O O -second O O -uprising O O -. O O -Pat B-PER B-PER -offered O O -concessions O O -and O O -am O O -to O O -rebels O O -before O O -the O O -May O O -rebellion O O -ended O O -after O O -rebels O O -lo O O -the O O -city O O -centre O O -. O O -Rebels O O -a O O -Pat B-PER B-PER -of O O -tribal O O -and O O -of O O -arm O O -his O O -civilian O O -supporters O O -and O O -hired O O -guns O O -from O O -Sudan B-LOC B-LOC -and O O -Chad B-LOC B-LOC -. O O -Mu O O -have O O -vowed O O -to O O -di O O -all O O -civilians O O -and O O -to O O -chase O O -out O O -the O O -foreign O O -forces O O -kn O O -as O O -Co B-LOC B-MISC -. O O -Hospital O O -sources O O -and O O -witnesses O O -said O O -about O O -10 O O -people O O -were O O -known O O -to O O -have O O -been O O -killed O O -in O O -the O O -more O O -than O O -two O O -weeks O O -of O O -fighting O O -, O O -including O O -two O O -rebels O O -killed O O -in O O -Thursday O O -' O O -clashes O O -. O O -An O O -und O O -number O O -of O O -people O O -are O O -reported O O -to O O -have O O -been O O -abducted O O -and O O -killed O O -outside O O -the O O -town O O -by O O -tribal O O -v O O -groups O O -. O O -In O O -Thursday O O -' O O -fighting O O -, O O -French B-MISC B-MISC -troops O O -fired O O -back O O -as O O -m O O -trying O O -to O O -break O O -out O O -of O O -their O O -stronghold O O -rain O O -mortar O O -shells O O -on O O -the O O -city O O -centre O O -. O O -Five O O -die O O -as O O -SA B-MISC B-MISC -crop O O -plane O O -hits O O -pickup O O -. O O -J B-LOC B-LOC -1996 O O -Five O O -people O O -were O O -killed O O -when O O -a O O -crop O O -plane O O -preparing O O -for O O -takeoff O O -crashed O O -into O O -a O O -light O O -delivery O O -vehicle O O -in O O -South B-LOC B-LOC -Africa I-LOC I-LOC -' O O -North B-LOC B-LOC -West I-LOC I-LOC -region O O -, O O -state O O -radio O O -reported O O -on O O -Friday O O -. O O -The O O -freak O O -accident O O -occurred O O -in O O -Ma B-LOC B-LOC -on O O -Thursday O O -. O O -The O O -pilot O O -survived O O -the O O -crash O O -, O O -but O O -the O O -driver O O -and O O -passengers O O -of O O -the O O -van O O -were O O -killed O O -. O O -W O O -- O O -Con O O -at O O -C B-LOC B-LOC -airports O O -- O O -Dec O O -6 O O -. O O -M B-LOC B-LOC -1996 O O -No O O -weather O O -closure O O -of O O -C B-LOC B-LOC -airports O O -are O O -expected O O -on O O -December O O -7 O O -and O O -8 O O -, O O -the O O -Russian B-ORG B-ORG -Weather I-ORG I-ORG -Service I-ORG I-ORG -said O O -on O O -Friday O O -. O O -- O O -Moscow B-ORG B-ORG -News I-ORG I-ORG -+ O O -94 O O -85 O O -Skin O O -attack O O -Bratislava B-LOC B-LOC -Rabbi O O -- O O -police O O -. O O -BR B-LOC B-LOC -1996 O O -Four O O -skin O O -attacked O O -and O O -insulted O O -the O O -rabbi O O -of O O -Bratislava B-LOC B-LOC -, O O -Bar B-PER B-PER -Meyer I-PER I-PER -, O O -in O O -the O O -city O O -centre O O -on O O -Friday O O -, O O -but O O -he O O -escaped O O -un O O -, O O -a O O -police O O -spokesman O O -told O O -Re B-ORG B-ORG -. O O -" O O -A O O -group O O -of O O -four O O -skin O O -attacked O O -the O O -rabbi O O -, O O -one O O -kicked O O -him O O -in O O -the O O -hand O O -but O O -caused O O -no O O -injury O O -, O O -" O O -the O O -spokesman O O -said O O -. O O -" O O -All O O -four O O -attackers O O -were O O -app O O -and O O -two O O -have O O -been O O -detained O O -, O O -" O O -the O O -spokesman O O -added O O -He O O -was O O -unable O O -to O O -give O O -more O O -details O O -. O O -" O O -The O O -further O O -procedure O O -is O O -now O O -in O O -the O O -hands O O -of O O -the O O -local O O -police O O -investigator O O -, O O -" O O -the O O -spokesman O O -said O O -. O O -It O O -was O O -the O O -second O O -attack O O -by O O -skin O O -in O O -two O O -years O O -on O O -Meyer B-PER B-PER -, O O -an O O -American B-MISC B-MISC -. O O -Meyer B-PER B-PER -was O O -not O O -available O O -for O O -comment O O -. O O -Albanian B-MISC B-MISC -jailed O O -for O O -threat O O -of O O -bomb O O -suicide O O -. O O -T B-LOC B-LOC -1996 O O -An O O -Albanian B-MISC B-MISC -court O O -on O O -Friday O O -sentenced O O -a O O -man O O -who O O -threatened O O -to O O -blow O O -himself O O -up O O -outside O O -President O O -Sal B-PER B-PER -Be I-PER I-PER -' O O -office O O -to O O -13 O O -years O O -in O O -jail O O -for O O -guerrilla O O -action O O -and O O -illegal O O -possession O O -of O O -arms O O -. O O -B B-PER B-PER -last O O -April O O -said O O -he O O -would O O -blow O O -himself O O -up O O -outside O O -the O O -presidential O O -palace O O -unless O O -he O O -was O O -allowed O O -to O O -speak O O -to O O -Be B-PER B-PER -, O O -who O O -was O O -at O O -the O O -time O O -meeting O O -Italian B-MISC B-MISC -President O O -Oscar B-PER B-PER -Luigi I-PER I-PER -Sc I-PER I-PER -. O O -B B-PER B-PER -was O O -over O O -by O O -riot O O -police O O -less O O -than O O -one O O -hour O O -after O O -he O O -began O O -his O O -action O O -. O O -" O O -Eva O O -all O O -the O O -conditions O O -of O O -the O O -case O O -the O O -court O O -thinks O O -the O O -sentence O O -should O O -be O O -lower O O -than O O -the O O -minimum O O -( O O -15 O O -years O O -) O O -, O O -" O O -Tirana B-LOC B-LOC -judge O O -Q B-PER B-PER -G I-PER I-PER -added O O -. O O -The O O -defendant O O -denied O O -the O O -charges O O -, O O -saying O O -his O O -action O O -was O O -intended O O -to O O -urge O O -the O O -authorities O O -to O O -give O O -him O O -a O O -$ O O -20 O O -loan O O -. O O -Medical O O -experts O O -had O O -concluded O O -B B-PER B-PER -was O O -mentally O O -unstable O O -but O O -fully O O -responsible O O -for O O -the O O -act O O -he O O -had O O -committed O O -, O O -G B-PER B-PER -said O O -. O O -Polish B-MISC B-MISC -ex O O -president O O -to O O -visit O O -Pope B-PER O -. O O -WA B-LOC B-LOC -1996 O O -Poland B-LOC B-LOC -' O O -ex O O -President O O -Al B-PER B-PER -K I-PER I-PER -is O O -likely O O -to O O -visit O O -Polish B-MISC O -Pope O O -John B-PER B-PER -Paul I-PER I-PER -in O O -early O O -1997 O O -despite O O -uneasy O O -relations O O -between O O -the O O -Vatican B-LOC B-LOC -and O O -Warsaw B-LOC B-LOC -, O O -the O O -foreign O O -minister O O -said O O -on O O -Friday O O -. O O -" O O -President O O -K B-PER B-PER -plans O O -to O O -visit O O -Italy B-LOC B-LOC -on O O -a O O -invitation O O -from O O -President O O -Oscar B-PER B-PER -Sc I-PER I-PER -. O O -A O O -meeting O O -with O O -the O O -Pope B-MISC O -is O O -also O O -planned O O -, O O -" O O -Darius B-PER B-PER -Rosa I-PER I-PER -told O O -a O O -news O O -conference O O -. O O -Rosa B-PER B-PER -said O O -that O O -the O O -atmosphere O O -of O O -the O O -meeting O O -, O O -if O O -it O O -takes O O -place O O -, O O -would O O -largely O O -depend O O -on O O -the O O -progress O O -in O O -talks O O -on O O -rat O O -of O O -a O O -treaty O O -between O O -Warsaw B-LOC B-LOC -and O O -the O O -Vatican B-LOC B-LOC -. O O -@ O O -The O O -rat O O -of O O -the O O -treaty O O -, O O -which O O -was O O -signed O O -in O O -1993 O O -by O O -the O O -then O O -right O O -government O O -, O O -is O O -being O O -delayed O O -by O O -an O O -ex O O -party O O -, O O -which O O -won O O -parliamentary O O -elections O O -in O O -the O O -same O O -year O O -and O O -now O O -dominate O O -parliament O O -. O O -The O O -party O O -, O O -the O O -Democratic B-ORG B-ORG -Left I-ORG I-ORG -Alliance I-ORG I-ORG -, O O -says O O -the O O -agreement O O -would O O -give O O -the O O -Catholic B-ORG B-ORG -Church I-ORG I-ORG -too O O -much O O -influence O O -over O O -life O O -in O O -Poland B-LOC B-LOC -and O O -could O O -in O O -on O O -rights O O -of O O -other O O -religious O O -groups O O -and O O -non O O -. O O -The O O -relations O O -with O O -the O O -Vatican B-LOC B-LOC -have O O -also O O -been O O -sour O O -by O O -a O O -recent O O -relaxation O O -of O O -Poland B-LOC B-LOC -' O O -anti O O -rules O O -, O O -which O O -K B-PER B-PER -signed O O -into O O -law O O -last O O -month O O -. O O -Russia B-LOC B-LOC -warns O O -Nor B-PER B-ORG -, O O -not O O -expected O O -to O O -liquid O O -it O O -. O O -Lynn B-PER B-PER -Browning I-PER I-PER -M B-LOC B-LOC -1996 O O -Russian B-MISC B-MISC -Finance O O -Minister O O -Alexander B-PER B-PER -Liv I-PER I-PER -warned O O -financially O O -Nor B-ORG B-ORG -Nick I-ORG I-ORG -on O O -Friday O O -that O O -it O O -must O O -pay O O -over O O -taxes O O -, O O -but O O -analysts O O -said O O -the O O -firm O O -would O O -not O O -be O O -liquid O O -or O O -that O O -its O O -would O O -assets O O -would O O -be O O -frozen O O -. O O -" O O -Nor B-ORG B-ORG -really O O -is O O -a O O -big O O -debt O O -, O O -both O O -to O O -the O O -federal O O -and O O -regional O O -budget O O -, O O -" O O -said O O -Konstantin B-PER B-PER -Ch I-PER I-PER -, O O -e O O -analyst O O -at O O -Moscow B-LOC B-LOC -broker O O -R B-ORG B-ORG -Plus I-ORG I-ORG -and O O -a O O -Nor B-ORG B-ORG -watch O O -. O O -" O O -Liv B-PER B-PER -' O O -words O O -are O O -an O O -attempt O O -to O O -put O O -pressure O O -on O O -the O O -company O O -. O O -" O O -The O O -official O O -It B-ORG B-ORG -news O O -agency O O -quoted O O -Liv B-PER B-PER -as O O -telling O O -parliamentary O O -deputies O O -that O O -RA B-ORG B-ORG -Nor I-ORG I-ORG -Nike I-ORG I-ORG -0 O O -had O O -to O O -pay O O -its O O -tax O O -a O O -and O O -that O O -bankruptcy O O -procedures O O -applied O O -to O O -the O O -metals O O -group O O -. O O -" O O -If O O -it O O -was O O -an O O -un O O -statement O O -and O O -a O O -bolt O O -out O O -of O O -the O O -blue O O -, O O -then O O -it O O -obviously O O -means O O -something O O -, O O -" O O -said O O -Christopher B-PER B-PER -Gran I-PER I-PER -, O O -chief O O -economist O O -at O O -United B-ORG B-ORG -City I-ORG I-ORG -Bank I-ORG I-ORG -in O O -Moscow B-LOC B-LOC -. O O -" O O -But O O -if O O -it O O -was O O -a O O -response O O -to O O -a O O -deputy O O -' O O -question O O -that O O -was O O -essentially O O -loaded O O -, O O -then O O -it O O -was O O -the O O -only O O -answer O O -he O O -could O O -have O O -given O O -. O O -" O O -Russian B-MISC B-MISC -tax O O -and O O -cabinet O O -authorities O O -, O O -under O O -pressure O O -from O O -the O O -International B-ORG B-ORG -Mon I-ORG I-ORG -Fund I-ORG I-ORG -to O O -boost O O -tax O O -revenues O O -as O O -a O O -condition O O -for O O -receiving O O -payments O O -of O O -a O O -$ O O -10 O O -billion O O -, O O -three O O -loan O O -to O O -Moscow B-LOC B-LOC -, O O -have O O -been O O -striking O O -fear O O -into O O -the O O -hearts O O -of O O -some O O -of O O -Russia B-LOC B-LOC -' O O -most O O -prominent O O -industrial O O -firms O O -by O O -saying O O -they O O -must O O -pay O O -up O O -or O O -face O O -liquid O O -. O O -" O O -They O O -could O O -freeze O O -metal O O -, O O -but O O -it O O -' O O -not O O -a O O -long O O -solution O O -to O O -the O O -problem O O -and O O -would O O -n O O -put O O -money O O -in O O -the O O -budget O O -, O O -" O O -Ch B-PER B-PER -said O O -. O O -" O O -I O O -do O O -n O O -think O O -they O O -would O O -do O O -that O O -. O O -" O O -En O O -social O O -infrastructure O O -in O O -the O O -icy O O -Far B-LOC O -North I-LOC O -where O O -Nor B-ORG B-ORG -is O O -based O O -depend O O -on O O -the O O -company O O -, O O -and O O -Moscow B-LOC B-LOC -has O O -said O O -it O O -has O O -no O O -finances O O -to O O -re O O -hundreds O O -of O O -thousands O O -of O O -people O O -- O O -an O O -expenditure O O -which O O -could O O -far O O -outs O O -Nor B-ORG B-ORG -' O O -debts O O -. O O -Nor B-ORG B-ORG -officials O O -declined O O -to O O -comment O O -. O O -Ana O O -said O O -the O O -government O O -, O O -while O O -anxious O O -about O O -Nor B-ORG B-ORG -' O O -debts O O -, O O -is O O -highly O O -unlikely O O -to O O -bring O O -the O O -nickel O O -, O O -copper O O -, O O -co O O -, O O -platinum O O -and O O -platinum O O -group O O -metals O O -producer O O -to O O -its O O -knees O O -or O O -take O O -measures O O -that O O -could O O -significantly O O -affect O O -output O O -. O O -But O O -it O O -also O O -wants O O -Nor B-ORG B-ORG -, O O -the O O -world O O -' O O -second O O -nickel O O -producer O O -, O O -to O O -clean O O -up O O -its O O -act O O -. O O -" O O -The O O -procedure O O -of O O -bankruptcy O O -will O O -be O O -applied O O -, O O -" O O -Ta B-ORG B-ORG -quoted O O -Liv B-PER B-PER -as O O -telling O O -Du B-ORG B-ORG -deputies O O -about O O -Nor B-ORG B-ORG -. O O -It O O -indirectly O O -quoted O O -him O O -as O O -saying O O -Nor B-PER B-ORG -should O O -first O O -pay O O -salary O O -a O O -, O O -which O O -in O O -the O O -past O O -have O O -led O O -to O O -worker O O -strikes O O -. O O -" O O -It O O -is O O -unlikely O O -that O O -Nor B-ORG B-ORG -will O O -pay O O -these O O -debts O O -in O O -the O O -near O O -- O O -the O O -company O O -will O O -remain O O -a O O -debt O O -in O O -the O O -near O O -future O O -, O O -" O O -Ch B-PER B-PER -said O O -. O O -He O O -estimated O O -the O O -company O O -' O O -regional O O -debts O O -at O O -least O O -one O O -trillion O O -r O O -and O O -said O O -30 O O -percent O O -of O O -the O O -giant O O -K B-ORG B-LOC -regional O O -budget O O -was O O -fuel O O -by O O -Nor B-ORG B-ORG -money O O -. O O -Nor B-ORG B-ORG -' O O -new O O -majority O O -shareholder O O -, O O -Russian B-MISC B-MISC -com O O -bank O O -Un B-ORG B-ORG -, O O -has O O -said O O -it O O -is O O -re O O -metal O O -exports O O -through O O -Inter B-ORG B-ORG -in O O -order O O -to O O -boost O O -revenues O O -. O O -But O O -the O O -changes O O -have O O -yet O O -to O O -improve O O -significantly O O -Nor B-PER B-ORG -' O O -situation O O -. O O -" O O -Un B-ORG B-ORG -has O O -inherited O O -a O O -mountain O O -and O O -whether O O -or O O -not O O -they O O -climb O O -out O O -and O O -over O O -it O O -remains O O -to O O -be O O -seen O O -, O O -" O O -said O O -one O O -metals O O -source O O -. O O -Nor B-ORG B-ORG -said O O -in O O -September O O -that O O -it O O -total O O -debts O O -, O O -including O O -unpaid O O -salaries O O -to O O -workers O O -, O O -were O O -13 O O -trillion O O -r O O -. O O -The O O -company O O -said O O -last O O -month O O -that O O -it O O -had O O -worked O O -out O O -a O O -tax O O -payment O O -schedule O O -with O O -authorities O O -, O O -after O O -regional O O -tax O O -officials O O -threatened O O -to O O -seize O O -some O O -nickel O O -and O O -copper O O -assets O O -. O O -- O O -Moscow B-ORG B-ORG -News I-ORG I-ORG -, O O -+ O O -94 O O -85 O O -Estonian B-MISC B-MISC -Tallinn B-ORG B-ORG -Pan I-ORG I-ORG -11 O O -net O O -46 O O -m O O -k O O -. O O -T B-LOC B-LOC -1996 O O -Tallinn B-ORG B-ORG -Pan I-ORG I-ORG -, O O -one O O -of O O -the O O -largest O O -banks O O -in O O -Estonia B-LOC B-LOC -, O O -made O O -a O O -11 O O -1996 O O -net O O -profit O O -of O O -46 O O -million O O -k O O -, O O -the O O -bank O O -said O O -on O O -Friday O O -. O O -It O O -said O O -in O O -a O O -statement O O -that O O -it O O -made O O -profits O O -of O O -4 O O -million O O -k O O -in O O -November O O -. O O -The O O -bank O O -made O O -a O O -profit O O -of O O -20 O O -million O O -k O O -in O O -the O O -first O O -half O O -of O O -the O O -year O O -. O O -Tallinn B-ORG B-ORG -Pan I-ORG I-ORG -said O O -its O O -assets O O -rose O O -17 O O -million O O -k O O -to O O -1 O O -billion O O -k O O -. O O -De O O -deposits O O -rose O O -to O O -85 O O -million O O -k O O -from O O -83 O O -million O O -k O O -and O O -time O O -deposits O O -increased O O -to O O -295 O O -million O O -k O O -from O O -285 O O -million O O -k O O -. O O -- O O -Riga B-ORG B-ORG -News I-ORG I-ORG -, O O -+ O O -72 O O -52 O O -Russia B-LOC B-LOC -ready O O -for O O -construct O O -work O O -with O O -Al B-ORG B-PER -. O O -M B-LOC B-LOC -1996 O O -Russia B-LOC B-LOC -said O O -on O O -Friday O O -it O O -expected O O -a O O -construct O O -relationship O O -with O O -Madeleine B-PER B-PER -Al I-PER I-PER -, O O -nominated O O -by O O -U B-LOC B-LOC -President O O -Bill B-PER B-PER -Clinton I-PER I-PER -to O O -be O O -Secretary O O -of O O -State O O -. O O -Inter B-ORG B-ORG -news O O -agency O O -quoted O O -First O O -Deputy O O -Foreign O O -Minister O O -Igor B-PER B-PER -Ivan I-PER I-PER -as O O -saying O O -Moscow B-LOC B-LOC -was O O -ready O O -for O O -" O O -most O O -active O O -and O O -construct O O -" O O -work O O -with O O -Al B-ORG B-PER -. O O -But O O -he O O -noted O O -that O O -policy O O -would O O -be O O -shaped O O -by O O -Clinton B-PER B-PER -and O O -President O O -Boris B-PER B-PER -Ye I-PER I-PER -. O O -Clinton B-PER B-PER -and O O -Ye B-PER B-PER -are O O -due O O -to O O -meet O O -next O O -March O O -for O O -their O O -first O O -summit O O -since O O -both O O -were O O -re O O -. O O -" O O -Our O O -countries O O -' O O -leaders O O -have O O -agreed O O -to O O -meet O O -in O O -March O O -, O O -1997 O O -. O O -The O O -Russian B-MISC B-MISC -foreign O O -ministry O O -believes O O -the O O -new O O -directions O O -in O O -the O O -development O O -of O O -Russian B-MISC B-MISC -relations O O -will O O -be O O -worked O O -out O O -there O O -, O O -" O O -Ivan B-PER B-PER -told O O -Inter B-ORG B-ORG -. O O -Inter B-ORG B-ORG -, O O -out O O -Al B-PER B-PER -' O O -biography O O -, O O -pointed O O -out O O -that O O -she O O -had O O -defended O O -Washington B-LOC B-LOC -' O O -interests O O -fiercely O O -as O O -U B-LOC B-LOC -ambassador O O -to O O -the O O -United B-ORG B-ORG -Nations I-ORG I-ORG -and O O -that O O -this O O -had O O -included O O -actively O O -supporting O O -NATO B-ORG B-ORG -' O O -plans O O -to O O -expand O O -eastward O O -. O O -Russia B-LOC B-LOC -oppose O O -NATO B-ORG B-ORG -' O O -plans O O -to O O -take O O -in O O -countries O O -of O O -eastern O O -and O O -central O O -Europe B-LOC B-LOC -which O O -used O O -to O O -be O O -part O O -of O O -the O O -Soviet B-MISC B-MISC -Warsaw B-ORG B-MISC -Pact I-ORG I-MISC -, O O -saying O O -such O O -moves O O -would O O -threaten O O -its O O -security O O -. O O -Ye B-PER B-PER -plans O O -return O O -to O O -K B-LOC B-LOC -for O O -Dec O O -25 O O -- O O -speaker O O -. O O -M B-LOC B-LOC -1996 O O -Russian B-MISC B-MISC -President O O -Boris B-PER B-PER -Ye I-PER I-PER -, O O -who O O -had O O -heart O O -bypass O O -surgery O O -a O O -month O O -ago O O -, O O -plans O O -to O O -return O O -to O O -work O O -on O O -December O O -25 O O -, O O -the O O -head O O -of O O -the O O -upper O O -chamber O O -of O O -parliament O O -told O O -Inter B-ORG B-ORG -news O O -agency O O -on O O -Friday O O -. O O -" O O -Today O O -he O O -is O O -a O O -mobile O O -, O O -energetic O O -man O O -with O O -lots O O -of O O -colour O O -in O O -his O O -cheeks O O -, O O -" O O -said O O -Ye B-PER B-PER -St I-PER I-PER -who O O -met O O -Ye B-PER B-PER -, O O -65 O O -, O O -on O O -Friday O O -at O O -a O O -country O O -residence O O -. O O -" O O -He O O -told O O -me O O -that O O -he O O -had O O -lost O O -20 O O -kg O O -( O O -44 O O -lbs O O -) O O -which O O -is O O -natural O O -after O O -such O O -an O O -operation O O -. O O -" O O -December O O -25 O O -, O O -a O O -normal O O -working O O -day O O -in O O -Russia B-LOC B-LOC -, O O -is O O -the O O -fifth O O -anniversary O O -of O O -Ye B-PER B-PER -' O O -arrival O O -in O O -the O O -K B-LOC B-LOC -. O O -He O O -took O O -over O O -there O O -, O O -and O O -took O O -control O O -of O O -the O O -red O O -button O O -controlling O O -nuclear O O -arms O O -, O O -in O O -December O O -1991 O O -when O O -Mikhail B-PER B-PER -Go I-PER I-PER -resigned O O -, O O -marking O O -the O O -end O O -of O O -the O O -Soviet B-LOC B-LOC -Union I-LOC I-LOC -. O O -Ye B-PER B-PER -has O O -been O O -shown O O -a O O -few O O -times O O -on O O -television O O -since O O -his O O -q O O -bypass O O -on O O -November O O -5 O O -but O O -has O O -yet O O -to O O -deliver O O -any O O -major O O -television O O -or O O -radio O O -address O O -to O O -the O O -nation O O -. O O -Sur O O -Ren B-PER B-PER -A I-PER I-PER -who O O -led O O -the O O -operation O O -, O O -told O O -It B-ORG B-ORG -news O O -agency O O -Ye B-PER B-PER -was O O -working O O -up O O -to O O -four O O -hours O O -a O O -day O O -at O O -his O O -residence O O -. O O -Bomb O O -explode O O -outside O O -home O O -of O O -expelled O O -Slovak B-MISC B-MISC -MP O O -. O O -BR B-LOC B-LOC -1996 O O -A O O -bomb O O -exploded O O -on O O -Friday O O -outside O O -the O O -home O O -of O O -a O O -Slovak B-MISC B-MISC -politician O O -expelled O O -from O O -parliament O O -after O O -he O O -quit O O -the O O -ruling O O -party O O -, O O -complaining O O -of O O -a O O -lack O O -of O O -democracy O O -in O O -the O O -country O O -. O O -The O O -official O O -T B-ORG B-ORG -news O O -agency O O -said O O -the O O -explosion O O -blew O O -out O O -all O O -ground O O -floor O O -windows O O -of O O -Fr B-PER B-PER -G I-PER I-PER -' O O -family O O -home O O -in O O -Gala B-LOC B-LOC -, O O -western O O -Slovakia B-LOC B-LOC -, O O -and O O -damaged O O -the O O -main O O -entrance O O -, O O -but O O -no O O -was O O -injured O O -. O O -G B-PER B-PER -, O O -formerly O O -a O O -member O O -of O O -Prime O O -Minister O O -Vladimir B-PER B-PER -Me I-PER I-PER -' O O -ruling O O -Movement B-ORG B-ORG -for I-ORG I-ORG -a I-ORG I-ORG -Democratic I-ORG I-ORG -Slovakia I-ORG I-ORG -, O O -was O O -stripped O O -of O O -his O O -parliamentary O O -mandate O O -on O O -Wednesday O O -after O O -leaving O O -the O O -party O O -last O O -month O O -in O O -protest O O -over O O -what O O -he O O -said O O -was O O -a O O -lack O O -of O O -democracy O O -in O O -the O O -country O O -. O O -He O O -said O O -he O O -had O O -been O O -receiving O O -anonymous O O -death O O -threats O O -since O O -making O O -the O O -move O O -. O O -" O O -This O O -was O O -an O O -act O O -of O O -terrorism O O -and O O -now O O -I O O -fear O O -not O O -only O O -for O O -my O O -own O O -life O O -, O O -but O O -also O O -of O O -that O O -of O O -my O O -wife O O -and O O -children O O -, O O -" O O -he O O -told O O -T B-ORG B-ORG -. O O -G B-PER B-PER -' O O -family O O -was O O -sleeping O O -in O O -a O O -bedroom O O -at O O -the O O -back O O -of O O -the O O -house O O -and O O -were O O -un O O -by O O -the O O -blast O O -. O O -It O O -was O O -not O O -immediately O O -clear O O -who O O -was O O -behind O O -the O O -blast O O -. O O -Bomb O O -explode O O -at O O -mosque O O -in O O -central O O -Bulgaria B-LOC B-LOC -. O O -S B-LOC B-LOC -1996 O O -A O O -bomb O O -exploded O O -on O O -Friday O O -at O O -a O O -mosque O O -in O O -the O O -central O O -Bulgarian B-MISC B-MISC -town O O -of O O -Kazan B-LOC B-LOC -, O O -causing O O -damage O O -but O O -no O O -injuries O O -, O O -state O O -radio O O -said O O -. O O -V O O -crime O O -has O O -so O O -since O O -the O O -collapse O O -of O O -communism O O -in O O -1989 O O -as O O -Bulgaria B-LOC B-LOC -moves O O -to O O -a O O -market O O -economy O O -. O O -Bomb O O -are O O -often O O -carried O O -out O O -by O O -criminals O O -to O O -settle O O -scores O O -but O O -the O O -motive O O -in O O -this O O -case O O -was O O -not O O -immediately O O -clear O O -. O O -Some O O -residents O O -of O O -the O O -Kazan B-LOC B-LOC -area O O -are O O -Mo B-MISC B-MISC -who O O -converted O O -to O O -Islam B-MISC B-MISC -during O O -Ottoman B-MISC O -Turkish B-MISC B-MISC -rule O O -. O O -The O O -majority O O -in O O -Bulgaria B-LOC B-LOC -are O O -Christians O B-MISC -. O O -The O O -radio O O -quoted O O -police O O -as O O -saying O O -the O O -blast O O -broke O O -windows O O -and O O -shattered O O -the O O -door O O -of O O -the O O -mosque O O -. O O -Hungary B-LOC B-LOC -o O O -/ O O -n O O -rates O O -end O O -up O O -before O O -Dec O O -10 O O -tax O O -payment O O -. O O -B B-LOC B-LOC -1996 O O -Hungarian B-MISC B-MISC -overnight O O -interest O O -rates O O -closed O O -higher O O -on O O -Friday O O -as O O -market O O -liquid O O -tightened O O -before O O -the O O -December O O -10 O O -social O O -security O O -contribution O O -payment O O -deadline O O -, O O -dealers O O -said O O -. O O -" O O -The O O -banks O O -are O O -already O O -preparing O O -for O O -the O O -December O O -10 O O -tax O O -payment O O -, O O -" O O -said O O -Budapest B-ORG B-LOC -Bank I-ORG O -' O O -Sand B-PER B-PER -To I-PER I-PER -. O O -" O O -They O O -expect O O -a O O -larger O O -payment O O -. O O -" O O -The O O -overnight O O -market O O -opened O O -at O O -22 O O -/ O O -22 O O -percent O O -, O O -then O O -substantial O O -money O O -was O O -taken O O -up O O -at O O -22 O O -percent O O -. O O -But O O -later O O -, O O -rates O O -dropped O O -and O O -closed O O -at O O -22 O O -/ O O -22 O O -as O O -a O O -large O O -bank O O -finished O O -borrow O O -money O O -. O O -On O O -Thursday O O -, O O -overnight O O -rates O O -moved O O -between O O -21 O O -and O O -22 O O -. O O -Deal O O -said O O -liquid O O -could O O -tighten O O -further O O -early O O -next O O -week O O -as O O -the O O -social O O -security O O -contribution O O -payments O O -date O O -approaches O O -. O O -- O O -Sand B-PER B-PER -Pet I-PER I-PER -, O O -Budapest B-LOC B-LOC -news O O -( O O -36 O O -1 O O -) O O -32 O O -404 O O -Mexico B-LOC B-LOC -stocks O O -off O O -low O O -but O O -still O O -hit O O -by O O -Greens B-ORG B-PER -. O O -ME B-ORG B-LOC -C I-ORG I-LOC -Mexican B-MISC B-MISC -stocks O O -closed O O -sharply O O -lower O O -Friday O O -, O O -but O O -had O O -made O O -a O O -tentative O O -recovery O O -as O O -initial O O -panic O O -and O O -vol O O -a O O -. O O -" O O -It O O -was O O -Greens B-PER B-PER -at O O -first O O -. O O -Then O O -once O O -we O O -saw O O -the O O -Dow B-MISC B-MISC -( O O -Jones B-MISC B-MISC -industrial O O -average O O -) O O -was O O -not O O -about O O -to O O -crash O O -, O O -some O O -buyers O O -stepped O O -in O O -, O O -" O O -said O O -a O O -trader O O -, O O -referring O O -to O O -Federal B-ORG B-ORG -Reserve I-ORG I-ORG -Chairman O O -Alan B-PER B-PER -Greens I-PER I-PER -, O O -whose O O -comments O O -that O O -assets O O -were O O -" O O -irrational O O -ex O O -" O O -upset O O -financial O O -markets O O -worldwide O O -. O O -The O O -blue O O -IP B-MISC B-MISC -index O O -ended O O -down O O -1 O O -points O O -, O O -or O O -43 O O -percent O O -, O O -at O O -3 O O -. O O -Volume O O -was O O -regular O O -at O O -74 O O -million O O -shares O O -traded O O -. O O -Mexican B-MISC B-MISC -stocks O O -were O O -also O O -hurt O O -by O O -U B-LOC B-LOC -long O O -bond O O -rates O O -which O O -had O O -begun O O -to O O -rise O O -before O O -Greens B-PER B-PER -' O O -comments O O -and O O -were O O -in O O -by O O -employment O O -data O O -released O O -before O O -trade O O -began O O -in O O -Mexico B-LOC B-LOC -. O O -Yi O O -on O O -U B-LOC B-LOC -30 O O -Treasury B-ORG B-ORG -bonds O O -were O O -6 O O -percent O O -when O O -stock O O -trading O O -closed O O -in O O -Mexico B-LOC B-LOC -, O O -unchanged O O -from O O -Thursday O O -. O O -On O O -the O O -broad O O -market O O -, O O -107 O O -stocks O O -changed O O -hands O O -, O O -of O O -which O O -loser O O -well O O -outnumbered O O -winners O O -by O O -75 O O -to O O -13 O O -. O O -Trade O O -noted O O -the O O -lack O O -of O O -blue O O -chips O O -or O O -stocks O O -traded O O -at O O -significant O O -volume O O -among O O -the O O -gain O O -. O O -Si B-ORG B-ORG -, O O -the O O -steel O O -arm O O -of O O -the O O -debt O O -Side B-ORG B-ORG -group O O -headed O O -the O O -loser O O -, O O -off O O -7 O O -cent O O -( O O -1 O O -cent O O -) O O -at O O -1 O O -p O O -( O O -18 O O -cents O O -) O O -. O O -Side B-ORG B-ORG -fell O O -4 O O -cent O O -( O O -1 O O -cent O O -) O O -to O O -95 O O -cent O O -( O O -12 O O -cents O O -) O O -. O O -Trade O O -also O O -remarked O O -that O O -Mexican B-MISC B-MISC -AD B-MISC B-MISC -suffered O O -in O O -New B-LOC B-LOC -York I-LOC I-LOC -. O O -Heavyweight O O -Tel B-ORG B-ORG -and O O -Tel B-ORG B-ORG -ended O O -off O O -25 O O -cents O O -and O O -75 O O -cents O O -, O O -respectively O O -, O O -at O O -$ O O -31 O O -and O O -$ O O -25 O O -. O O -" O O -Falling O O -share O O -prices O O -in O O -New B-LOC B-LOC -York I-LOC I-LOC -do O O -n O O -hurt O O -Mexico B-LOC B-LOC -as O O -long O O -as O O -it O O -happens O O -gradually O O -, O O -as O O -earlier O O -this O O -week O O -. O O -It O O -' O O -a O O -sudden O O -p O O -that O O -takes O O -its O O -toll O O -, O O -" O O -said O O -Carlos B-PER B-PER -Ponce I-PER I-PER -, O O -research O O -director O O -at O O -Santa B-LOC B-LOC -. O O -Trade O O -and O O -analysts O O -differed O O -as O O -to O O -how O O -firm O O -the O O -relative O O -recovery O O -on O O -Friday O O -was O O -. O O -" O O -Some O O -buyers O O -stepped O O -in O O -, O O -but O O -the O O -market O O -was O O -not O O -very O O -convinced O O -. O O -Volume O O -was O O -lack O O -, O O -" O O -said O O -one O O -trader O O -. O O -" O O -The O O -market O O -' O O -very O O -healthy O O -, O O -we O O -' O O -buying O O -, O O -" O O -said O O -another O O -trader O O -. O O -Ponce B-PER B-PER -said O O -shares O O -were O O -certainly O O -attractive O O -priced O O -in O O -Mexico B-LOC B-LOC -, O O -but O O -would O O -not O O -appreciate O O -until O O -foreign O O -buyers O O -stepped O O -in O O -, O O -which O O -they O O -had O O -yet O O -to O O -do O O -. O O -' O O -Plastic O O -surgery O O -gets O O -boost O O -in O O -Brazil B-LOC B-LOC -. O O -Simon B-PER B-PER -de I-PER I-PER -Lo I-PER I-PER -R B-LOC B-LOC -DE I-LOC I-LOC -J I-LOC I-LOC -1996 O O -Plastic O O -surgery O O -is O O -boom O O -, O O -especially O O -among O O -men O O -, O O -as O O -Brazilian B-MISC B-MISC -spend O O -much O O -of O O -their O O -new O O -wealth O O -on O O -the O O -latest O O -beauty O O -treatments O O -, O O -said O O -the O O -organise O O -of O O -a O O -four O O -international O O -plastic O O -surgery O O -conference O O -that O O -opened O O -on O O -Friday O O -. O O -The O O -number O O -of O O -plastic O O -surge O O -in O O -Brazil B-LOC B-LOC -has O O -jumped O O -30 O O -percent O O -to O O -an O O -estimated O O -150 O O -this O O -year O O -since O O -an O O -anti O O -plan O O -was O O -introduced O O -in O O -July O O -1994 O O -, O O -Far B-PER B-PER -Ha I-PER I-PER -, O O -the O O -president O O -of O O -the O O -Brazilian B-ORG B-ORG -Plastic I-ORG I-ORG -Surgery I-ORG I-ORG -Society I-ORG I-ORG -( O O -S B-ORG B-ORG -) O O -, O O -said O O -. O O -The O O -number O O -of O O -operations O O -on O O -men O O -increased O O -even O O -more O O -- O O -by O O -80 O O -percent O O -, O O -from O O -8 O O -in O O -1994 O O -to O O -15 O O -in O O -1995 O O -, O O -he O O -said O O -. O O -" O O -Brazil B-LOC B-LOC -ranks O O -right O O -at O O -the O O -top O O -for O O -plastic O O -surgery O O -with O O -respect O O -to O O -the O O -number O O -of O O -surgeon O O -, O O -the O O -number O O -of O O -patients O O -, O O -number O O -of O O -operations O O -, O O -number O O -of O O -conferences O O -. O O -Our O O -statistics O O -are O O -the O O -highest O O -for O O -everything O O -, O O -" O O -Ha B-PER B-PER -said O O -. O O -" O O -We O O -believe O O -the O O -increase O O -in O O -plastic O O -surge O O -for O O -men O O -results O O -from O O -the O O -difficulties O O -in O O -the O O -job O O -market O O -. O O -People O O -need O O -to O O -have O O -a O O -more O O -youthful O O -look O O -to O O -compete O O -in O O -the O O -job O O -market O O -, O O -given O O -the O O -profound O O -changes O O -in O O -Latin B-LOC B-LOC -America I-LOC I-LOC -' O O -economy O O -. O O -" O O -A O O -controlled O O -exchange O O -rate O O -, O O -trade O O -liberal O O -and O O -tight O O -monetary O O -policies O O -have O O -also O O -dramatically O O -curb O O -inflation O O -, O O -making O O -more O O -money O O -available O O -for O O -co O O -surgery O O -. O O -Brazil B-LOC B-LOC -has O O -been O O -at O O -the O O -forefront O O -in O O -plastic O O -surgery O O -for O O -decades O O -and O O -is O O -home O O -to O O -one O O -of O O -the O O -most O O -famous O O -surgeon O O -, O O -I B-PER B-PER -Pit I-PER I-PER -. O O -There O O -are O O -6 O O -plastic O O -surgeon O O -there O O -, O O -of O O -which O O -4 O O -have O O -qualified O O -to O O -be O O -members O O -of O O -the O O -S B-ORG B-ORG -. O O -Every O O -year O O -, O O -500 O O -new O O -plastic O O -surgeon O O -graduate O O -in O O -Brazil B-LOC B-LOC -and O O -medical O O -students O O -from O O -all O O -over O O -the O O -world O O -come O O -to O O -study O O -there O O -. O O -Ha B-PER B-PER -attributes O O -Brazil B-LOC B-LOC -' O O -fascination O O -with O O -plastic O O -surgery O O -not O O -to O O -excessive O O -van O O -but O O -to O O -the O O -country O O -' O O -mix O O -and O O -match O O -of O O -different O O -races O O -, O O -which O O -can O O -create O O -physical O O -dish O O -. O O -" O O -What O O -happens O O -is O O -the O O -nose O O -sometimes O O -does O O -n O O -match O O -the O O -mouth O O -or O O -the O O -butt O O -do O O -n O O -match O O -with O O -the O O -legs O O -, O O -" O O -he O O -said O O -. O O -Brazil B-LOC B-LOC -' O O -most O O -sought O O -beauty O O -treatment O O -is O O -lip O O -in O O -which O O -fat O O -is O O -sucked O O -away O O -from O O -areas O O -of O O -the O O -body O O -, O O -with O O -about O O -30 O O -operations O O -a O O -year O O -at O O -a O O -cost O O -of O O -$ O O -3 O O -to O O -$ O O -4 O O -each O O -. O O -St O O -t O O -and O O -breast O O -operations O O -are O O -also O O -popular O O -since O O -the O O -tropical O O -climate O O -calls O O -for O O -flesh O O -fashion O O -, O O -but O O -unlike O O -women O O -elsewhere O O -Brazilian B-MISC B-MISC -tend O O -to O O -have O O -breast O O -reduction O O -and O O -butt O O -imp O O -. O O -" O O -The O O -women O O -who O O -want O O -to O O -reduce O O -their O O -breasts O O -here O O -would O O -probably O O -want O O -to O O -increase O O -them O O -in O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -, O O -" O O -S B-ORG B-ORG -Vice O O -Oswald B-PER B-PER -Sal I-PER I-PER -said O O -. O O -" O O -Beauty O O -ideals O O -and O O -cultures O O -are O O -different O O -in O O -every O O -country O O -. O O -" O O -Plastic O O -surgery O O -scare O O -like O O -the O O -case O O -in O O -which O O -Brazilian B-MISC B-MISC -model O O -Claudia B-PER B-PER -Liz I-PER I-PER -fell O O -into O O -a O O -coma O O -after O O -being O O -an O O -for O O -a O O -lip O O -in O O -October O O -are O O -not O O -much O O -of O O -a O O -de O O -. O O -Sal B-ORG B-PER -said O O -operations O O -fell O O -30 O O -percent O O -immediately O O -after O O -that O O -case O O -but O O -the O O -rate O O -was O O -back O O -to O O -normal O O -now O O -. O O -Daily O O -Argentine B-MISC B-MISC -grain O O -fixing O O -- O O -Cam B-ORG O -A I-ORG O -. O O -B B-LOC B-LOC -AI I-LOC I-LOC -1996 O O -A O O -December O O -5 O O -price O O -fix O O -: O O -Buenos B-LOC B-LOC -Aires I-LOC I-LOC -Que B-ORG B-LOC -Rosario I-ORG B-LOC -Ba I-ORG B-LOC -Blanc I-ORG I-LOC -O I-ORG O -un O O -un O O -un O O -un O O -W O O -121 O O -130 O O -121 O O -121 O O -Mai B-ORG O -( O O -Flint B-LOC O -) O O -113 O O -114 O O -113 O O -112 O O -Mai B-ORG O -( O O -Den B-ORG O -) O O -113 O O -114 O O -113 O O -112 O O -So B-ORG O -un O O -un O O -un O O -un O O -Mill B-ORG O -un O O -un O O -90 O O -un O O -So B-ORG O -28 O O -un O O -28 O O -un O O -Suns B-ORG O -219 O O -216 O O -220 O O -216 O O -- O O -Buenos B-ORG B-ORG -Aires I-ORG I-ORG -News I-ORG I-ORG -+ O O -31 O O -Mexican B-MISC B-MISC -daily O O -port O O -ME B-LOC B-LOC -C I-LOC I-LOC -1996 O O -All O O -major O O -ports O O -were O O -open O O -as O O -of O O -1000 O O -local O O -/ O O -1600 O O -GM B-MISC B-MISC -, O O -the O O -Communications B-ORG B-ORG -and I-ORG I-ORG -Transportation I-ORG I-ORG -Ministry I-ORG I-ORG -said O O -in O O -a O O -daily O O -update O O -. O O -Tam B-LOC B-LOC -port O O -authorities O O -said O O -fishing O O -restrictions O O -were O O -in O O -place O O -in O O -an O O -area O O -adjacent O O -to O O -the O O -port O O -because O O -of O O -a O O -g O O -study O O -being O O -carried O O -out O O -in O O -deep O O -waters O O -of O O -the O O -region O O -from O O -the O O -ship O O -Ken B-ORG B-MISC -. O O -The O O -ministry O O -updated O O -port O O -conditions O O -and O O -shipping O O -warnings O O -for O O -the O O -Gulf B-LOC B-LOC -of I-LOC I-LOC -Mexico I-LOC I-LOC -, O O -Caribbean B-LOC B-LOC -and O O -Pacific B-LOC B-LOC -Coast I-LOC I-LOC -. O O -- O O -Pacific B-LOC B-LOC -Coast I-LOC I-LOC -: O O -Light O O -rains O O -along O O -the O O -coast O O -of O O -southern O O -Baja B-LOC B-LOC -California I-LOC I-LOC -and O O -Sin B-LOC B-LOC -, O O -with O O -the O O -rest O O -of O O -the O O -coast O O -seeing O O -clear O O -skies O O -. O O -Wind O O -from O O -the O O -northeast O O -of O O -10 O O -to O O -15 O O -knots O O -( O O -19 O O -to O O -28 O O -kilometers O O -/ O O -11 O O -to O O -17 O O -miles O O -per O O -hour O O -) O O -. O O -A O O -new O O -front O O -is O O -seen O O -emerging O O -during O O -the O O -course O O -of O O -Friday O O -, O O -affecting O O -the O O -north O O -of O O -the O O -Baja B-LOC B-LOC -California I-LOC I-LOC -peninsula O O -and O O -Son B-LOC B-LOC -state O O -, O O -bringing O O -lower O O -temperatures O O -, O O -light O O -rains O O -and O O -waves O O -up O O -to O O -six O O -feet O O -. O O -- O O -Gulf B-LOC B-LOC -of I-LOC I-LOC -Mexico I-LOC I-LOC -: O O -Cold O O -front O O -bringing O O -light O O -rains O O -to O O -the O O -coast O O -of O O -Tam B-LOC B-LOC -, O O -but O O -with O O -the O O -rest O O -of O O -the O O -Gulf B-LOC B-LOC -in O O -clear O O -skies O O -. O O -Wind O O -from O O -the O O -northeast O O -at O O -10 O O -to O O -15 O O -knots O O -( O O -19 O O -to O O -28 O O -kilometers O O -/ O O -11 O O -to O O -17 O O -miles O O -per O O -hour O O -) O O -. O O -- O O -Caribbean B-LOC B-LOC -: O O -Tropical O O -air O O -carrying O O -s O O -light O O -rains O O -over O O -the O O -coast O O -of O O -Q B-LOC B-LOC -R I-LOC I-LOC -state O O -. O O -Wind O O -from O O -the O O -northeast O O -at O O -10 O O -to O O -15 O O -knots O O -with O O -waves O O -three O O -to O O -five O O -feet O O -high O O -. O O -- O O -Chris B-PER B-PER -As I-PER I-PER -, O O -Mexico B-LOC B-LOC -City I-LOC I-LOC -news O O -+ O O -72 O O -Brazil B-LOC B-LOC -exam O O -cheat O O -caught O O -using O O -" O O -page O O -" O O -watches O O -. O O -R B-LOC B-LOC -DE I-LOC I-LOC -J I-LOC I-LOC -1996 O O -Brazilian B-MISC B-MISC -students O O -have O O -been O O -caught O O -cheating O O -in O O -university O O -entrance O O -exams O O -by O O -using O O -digital O O -watches O O -which O O -gave O O -the O O -correct O O -answers O O -to O O -test O O -questions O O -, O O -a O O -newspaper O O -said O O -on O O -Friday O O -. O O -Rio B-LOC B-LOC -de I-LOC I-LOC -Janeiro I-LOC I-LOC -state O O -university O O -officials O O -discovered O O -students O O -were O O -paying O O -15 O O -re O O -( O O -$ O O -14 O O -) O O -for O O -the O O -special O O -watches O O -, O O -which O O -operated O O -like O O -a O O -telephone O O -page O O -to O O -receive O O -correct O O -answers O O -, O O -O B-ORG B-ORG -G I-ORG I-ORG -said O O -. O O -Seven O O -students O O -were O O -found O O -with O O -the O O -watches O O -and O O -disqualified O O -, O O -O B-ORG B-ORG -G I-ORG I-ORG -said O O -. O O -Chile B-LOC B-LOC -, O O -Mexico B-LOC B-LOC -to O O -seek O O -to O O -broad O O -trade O O -deal O O -. O O -SA B-LOC B-PER -1996 O O -Chile B-LOC B-LOC -and O O -Mexico B-LOC B-LOC -will O O -start O O -negotiations O O -next O O -year O O -to O O -broad O O -their O O -free O O -trade O O -agreement O O -to O O -include O O -services O O -and O O -investments O O -, O O -Finance O B-ORG -Minister O O -Eduardo B-PER B-PER -An I-PER I-PER -said O O -. O O -Chile B-LOC B-LOC -hopes O O -to O O -broad O O -the O O -treaty O O -signed O O -in O O -1994 O O -beyond O O -reduction O O -of O O -ta O O -on O O -imports O O -and O O -exports O O -and O O -add O O -provisions O O -covering O O -services O O -and O O -investment O O -codes O O -, O O -said O O -An B-PER B-PER -. O O -Both O O -areas O O -tend O O -to O O -more O O -laden O O -with O O -friction O O -in O O -free O O -trade O O -negotiations O O -than O O -ta O O -reduction O O -. O O -' O O -' O O -In O O -January O O -or O O -February O O -, O O -we O O -' O O -have O O -some O O -very O O -close O O -contacts O O -with O O -Mexico B-LOC B-LOC -to O O -add O O -the O O -issue O O -of O O -services O O -and O O -advance O O -on O O -the O O -issue O O -of O O -investments O O -, O O -' O O -' O O -An B-PER B-PER -told O O -reporters O O -after O O -signing O O -a O O -free O O -trade O O -deal O O -with O O -Canada B-LOC B-LOC -. O O -' O O -' O O -We O O -want O O -to O O -give O O -the O O -treaty O O -between O O -Mexico B-LOC B-LOC -and O O -Chile B-LOC B-LOC -greater O O -depth O O -and O O -coverage O O -than O O -it O O -has O O -now O O -. O O -It O O -' O O -very O O -good O O -now O O -, O O -but O O -it O O -practically O O -only O O -covers O O -trade O O -in O O -goods O O -, O O -' O O -' O O -he O O -said O O -. O O -An B-PER B-PER -also O O -said O O -he O O -was O O -confident O O -the O O -Chilean B-ORG B-MISC -Congress I-ORG O -would O O -rat O O -the O O -treaty O O -with O O -Congress B-ORG O -quickly O O -. O O -' O O -' O O -The O O -reactions O O -from O O -business O O -and O O -unions O O -which O O -I O O -have O O -seen O O -have O O -been O O -almost O O -unanimously O O -positive O O -, O O -so O O -I O O -do O O -n O O -see O O -any O O -problem O O -, O O -' O O -' O O -he O O -said O O -. O O -- O O -Roger B-PER B-PER -At I-PER I-PER -, O O -Santiago B-LOC B-LOC -news O O -+ O O -x O O -Indonesia B-LOC B-LOC -' O O -Bel B-PER B-PER -leaves O O -for O O -Nobel B-MISC B-MISC -award O O -ceremony O O -. O O -D B-LOC B-LOC -, O O -East B-LOC B-LOC -Timor I-LOC I-LOC -1996 O O -East B-MISC B-MISC -Timor I-MISC I-MISC -Roman B-MISC B-MISC -Catholic I-MISC I-MISC -Bishop O O -Carlos B-PER B-PER -Bel I-PER I-PER -left O O -Di B-LOC B-LOC -on O O -Friday O O -on O O -his O O -way O O -to O O -Norway B-LOC B-LOC -for O O -the O O -awards O O -ceremony O O -as O O -co O O -of O O -the O O -1996 O O -Nobel B-MISC B-MISC -Peace I-MISC I-MISC -Prize I-MISC I-MISC -. O O -Witness O O -said O O -Bel B-PER B-PER -left O O -the O O -territory O O -for O O -the O O -Indonesian B-MISC B-MISC -capital O O -Jakarta B-LOC B-LOC -accompanied O O -by O O -five O O -other O O -people O O -. O O -It O O -was O O -not O O -immediately O O -known O O -when O O -he O O -would O O -arrive O O -in O O -Oslo B-LOC B-LOC -. O O -The O O -bishop O O -will O O -jointly O O -receive O O -the O O -Nobel B-MISC B-MISC -award O O -next O O -Tuesday O O -with O O -East B-MISC B-MISC -Timor I-MISC I-MISC -activist O O -Jose B-PER B-PER -Ramos I-PER I-PER -Ho I-PER I-PER -, O O -who O O -lives O O -in O O -self O O -in O O -Australia B-LOC B-LOC -. O O -The O O -Indonesian B-MISC B-MISC -government O O -has O O -condemned O O -the O O -inclusion O O -of O O -Ramos B-PER B-PER -Ho I-PER I-PER -in O O -the O O -award O O -, O O -and O O -Foreign O O -Minister O O -Ali B-PER B-PER -Al I-PER I-PER -said O O -on O O -Friday O O -that O O -Indonesia B-LOC B-LOC -would O O -not O O -be O O -represented O O -officially O O -at O O -the O O -ceremony O O -in O O -the O O -Norwegian B-MISC B-MISC -capital O O -. O O -" O O -I O O -sincere O O -believe O O -that O O -this O O -unfortunate O O -choice O O -in O O -giving O O -the O O -honour O O -to O O -such O O -a O O -controversial O O -figure O O -as O O -Ramos B-PER B-PER -Ho I-PER I-PER -. O O -will O O -ex O O -the O O -problem O O -in O O -finding O O -a O O -solution O O -( O O -to O O -East B-LOC B-LOC -Timor I-LOC I-LOC -) O O -, O O -" O O -Al B-PER B-PER -said O O -on O O -Friday O O -. O O -He O O -was O O -responding O O -to O O -questions O O -at O O -a O O -news O O -conference O O -called O O -to O O -discuss O O -next O O -week O O -' O O -ministerial O O -meeting O O -of O O -the O O -Organisation B-ORG B-ORG -of I-ORG I-ORG -the I-ORG I-ORG -Islamic I-ORG I-ORG -Conference I-ORG I-ORG -( O O -O B-ORG B-ORG -) O O -in O O -Jakarta B-LOC B-LOC -. O O -Ramos B-PER B-PER -Ho I-PER I-PER -has O O -been O O -a O O -vocal O O -leader O O -of O O -the O O -opposition O O -to O O -Jakarta B-LOC B-LOC -' O O -rule O O -in O O -the O O -territory O O -. O O -Bel B-PER B-PER -and O O -Ramos B-PER B-PER -Ho I-PER I-PER -were O O -aware O O -the O O -prize O O -for O O -their O O -efforts O O -to O O -secure O O -a O O -peaceful O O -solution O O -to O O -the O O -issue O O -of O O -East B-LOC B-LOC -Timor I-LOC I-LOC -, O O -a O O -former O O -Portuguese B-MISC B-MISC -colony O O -which O O -Indonesia B-LOC B-LOC -invaded O O -in O O -1975 O O -and O O -annexed O O -the O O -following O O -year O O -. O O -The O O -United B-ORG B-ORG -Nations I-ORG I-ORG -has O O -never O O -recognised O O -Jakarta B-LOC B-LOC -' O O -move O O -. O O -Al B-PER B-PER -said O O -the O O -government O O -' O O -position O O -on O O -the O O -Nobel B-MISC B-MISC -Peace I-MISC I-MISC -Prize I-MISC I-MISC -would O O -have O O -been O O -different O O -if O O -it O O -had O O -been O O -awarded O O -solely O O -to O O -Bel B-PER B-PER -. O O -Ask O O -if O O -the O O -Indonesian B-MISC B-MISC -ambassador O O -to O O -Norway B-LOC B-LOC -would O O -have O O -attended O O -the O O -ceremony O O -if O O -only O O -Bel B-PER B-PER -had O O -been O O -involved O O -, O O -Al B-PER B-PER -replied O O -: O O -" O O -Probably O O -, O O -yes O O -, O O -but O O -that O O -is O O -a O O -h O O -question O O -. O O -" O O -Al B-PER B-PER -said O O -on O O -Tuesday O O -that O O -on O O -his O O -way O O -back O O -from O O -Oslo B-LOC B-LOC -, O O -Bel B-PER B-PER -would O O -visit O O -the O O -Vatican B-LOC B-LOC -to O O -see O O -the O O -Pope B-MISC O -, O O -and O O -would O O -also O O -meet O O -German B-MISC B-MISC -Chancellor O O -Helmut B-PER B-PER -Ko I-PER I-PER -in O O -Bonn B-LOC B-LOC -. O O -Ko B-PER B-PER -had O O -wanted O O -to O O -meet O O -Bel B-PER B-PER -during O O -the O O -chancellor O O -' O O -official O O -visit O O -to O O -Indonesia B-LOC B-LOC -last O O -month O O -, O O -but O O -the O O -bishop O O -was O O -too O O -busy O O -in O O -East B-LOC B-LOC -Timor I-LOC I-LOC -to O O -come O O -to O O -Jakarta B-LOC B-LOC -. O O -China B-LOC B-LOC -to O O -open O O -port O O -in O O -Hai B-LOC B-LOC -to O O -foreign O O -ships O O -. O O -B B-LOC B-LOC -1996 O O -China B-LOC B-LOC -' O O -State B-ORG B-ORG -Council I-ORG I-ORG -, O O -or O O -cabinet O O -, O O -has O O -given O O -a O O -port O O -in O O -the O O -southern O O -province O O -of O O -Hai B-LOC B-LOC -permission O O -to O O -open O O -to O O -foreign O O -vessels O O -, O O -the O O -Xi B-ORG B-ORG -news O O -agency O O -said O O -on O O -Friday O O -. O O -Xi B-PER B-ORG -did O O -not O O -say O O -when O O -Qing B-LOC B-LOC -port O O -in O O -Wen B-LOC B-LOC -city O O -would O O -be O O -opened O O -to O O -foreign O O -vessels O O -. O O -Wen B-LOC B-LOC -has O O -built O O -a O O -berth O O -for O O -5 O O -dead O O -container O O -ships O O -at O O -the O O -port O O -and O O -invested O O -34 O O -million O O -y O O -( O O -$ O O -4 O O -million O O -) O O -to O O -d O O -the O O -harbour O O -, O O -Xi B-PER B-ORG -said O O -. O O -It O O -gave O O -no O O -further O O -details O O -. O O -( O O -$ O O -1 O O -= O O -8 O O -y O O -) O O -Government O O -di O O -protest O O -with O O -water O O -cannons O O -. O O -RA B-LOC B-LOC -1996 O O -Burmese B-MISC B-MISC -troops O O -and O O -riot O O -police O O -moved O O -in O O -to O O -di O O -a O O -student O O -street O O -protest O O -at O O -a O O -suburban O O -road O O -junction O O -near O O -the O O -Ra B-ORG B-ORG -( I-LOC I-ORG -Ra B-LOC I-ORG -) I-ORG I-ORG -University I-ORG I-ORG -early O O -on O O -Saturday O O -, O O -witnesses O O -said O O -. O O -They O O -said O O -police O O -and O O -troops O O -used O O -water O O -cannons O O -from O O -fire O O -engines O O -to O O -sub O O -about O O -120 O O -university O O -students O O -sitting O O -in O O -at O O -the O O -centre O O -of O O -the O O -junction O O -at O O -about O O -3 O O -a O O -before O O -they O O -moved O O -in O O -to O O -round O O -them O O -up O O -. O O -The O O -students O O -, O O -who O O -had O O -staged O O -an O O -11 O O -protest O O -at O O -the O O -junction O O -in O O -northern O O -Ra B-LOC B-LOC -, O O -were O O -taken O O -away O O -in O O -three O O -vehicles O O -. O O -The O O -witnesses O O -said O O -some O O -of O O -the O O -students O O -were O O -hit O O -with O O -bat O O -while O O -they O O -were O O -herd O O -onto O O -the O O -vehicles O O -and O O -it O O -was O O -believed O O -they O O -were O O -taken O O -to O O -the O O -In B-LOC B-LOC -prison O O -in O O -suburban O O -Ra B-LOC B-LOC -. O O -The O O -protesting O O -students O O -, O O -mostly O O -from O O -Ra B-LOC B-ORG -University I-ORG I-ORG -, O O -were O O -demanding O O -the O O -right O O -to O O -organise O O -independent O O -unions O O -on O O -campuses O O -and O O -the O O -release O O -of O O -about O O -80 O O -student O O -leaders O O -currently O O -in O O -jail O O -. O O -They O O -were O O -among O O -500 O O -students O O -who O O -started O O -demonstrating O O -at O O -the O O -intersection O O -on O O -late O O -Friday O O -afternoon O O -. O O -The O O -protest O O -was O O -the O O -second O O -major O O -one O O -in O O -five O O -days O O -in O O -the O O -capital O O -. O O -Burmese B-MISC B-MISC -students O O -march O O -briefly O O -out O O -of O O -campus O O -. O O -V B-PER B-PER -Amor I-PER I-PER -RA B-LOC B-LOC -1996 O O -About O O -200 O O -Burmese B-MISC B-MISC -students O O -marched O O -briefly O O -from O O -troubled O O -Yang B-ORG B-ORG -Institute I-ORG I-ORG -of I-ORG I-ORG -Technology I-ORG I-ORG -in O O -northern O O -Ra B-LOC B-LOC -on O O -Friday O O -towards O O -the O O -University B-ORG B-ORG -of I-ORG I-ORG -Yang I-ORG I-ORG -six O O -km O O -( O O -four O O -miles O O -) O O -away O O -, O O -and O O -returned O O -to O O -their O O -campus O O -, O O -witnesses O O -said O O -. O O -Seven O O -truck O O -of O O -armed O O -riot O O -police O O -and O O -three O O -fire O O -engines O O -were O O -on O O -stand O O -at O O -one O O -of O O -the O O -junction O O -near O O -the O O -institute O O -. O O -There O O -were O O -no O O -clashes O O -. O O -" O O -They O O -are O O -now O O -back O O -in O O -the O O -Y B-LOC B-ORG -campus O O -, O O -" O O -an O O -institute O O -official O O -who O O -declined O O -to O O -be O O -identified O O -told O O -Re B-ORG B-ORG -by O O -telephone O O -. O O -One O O -of O O -two O O -roads O O -leading O O -to O O -the O O -University B-ORG B-ORG -of I-ORG I-ORG -Yang I-ORG I-ORG -from O O -the O O -institute O O -had O O -been O O -closed O O -by O O -authorities O O -. O O -But O O -about O O -300 O O -university O O -students O O -were O O -still O O -gathered O O -outside O O -the O O -gates O O -of O O -their O O -campus O O -, O O -witnesses O O -said O O -. O O -They O O -were O O -singing O O -peacefully O O -. O O -On O O -Monday O O -and O O -Tuesday O O -, O O -students O O -from O O -the O O -institute O O -and O O -the O O -university O O -launched O O -protests O O -against O O -what O O -they O O -said O O -was O O -unfair O O -handling O O -by O O -police O O -of O O -a O O -bra O O -between O O -some O O -of O O -their O O -colleagues O O -and O O -restaurant O O -owners O O -in O O -October O O -. O O -On O O -Tuesday O O -and O O -Wednesday O O -, O O -opposition O O -leader O O -Au B-PER B-PER -San I-PER I-PER -Su I-PER I-PER -K I-PER I-PER -was O O -restricted O O -to O O -her O O -home O O -by O O -the O O -military O O -government O O -to O O -prevent O O -her O O -from O O -being O O -drawn O O -into O O -the O O -protests O O -. O O -She O O -was O O -allowed O O -to O O -move O O -freely O O -on O O -Thursday O O -. O O -The O O -protest O O -culminated O O -at O O -dawn O O -on O O -Tuesday O O -with O O -several O O -hundred O O -students O O -being O O -detained O O -briefly O O -by O O -police O O -in O O -central O O -Ra B-LOC B-LOC -. O O -The O O -street O O -protests O O -were O O -the O O -biggest O O -seen O O -in O O -the O O -capital O O -since O O -the O O -student O O -pro O O -demonstrations O O -of O O -September O O -1988 O O -when O O -the O O -j O O -crushed O O -the O O -uprising O O -. O O -Thousands O O -were O O -killed O O -or O O -imprisoned O O -. O O -Earlier O O -on O O -Friday O O -some O O -of O O -the O O -students O O -, O O -who O O -were O O -held O O -briefly O O -by O O -police O O -during O O -the O O -protests O O -earlier O O -this O O -week O O -, O O -said O O -they O O -were O O -still O O -di O O -with O O -the O O -military O O -government O O -. O O -They O O -told O O -Re B-ORG B-ORG -they O O -were O O -unhappy O O -that O O -the O O -ruling O O -State B-ORG B-ORG -Law I-ORG I-ORG -and I-ORG I-ORG -Order I-ORG I-ORG -Restoration I-ORG I-ORG -Council I-ORG I-ORG -( O O -SL B-ORG B-ORG -) O O -had O O -not O O -he O O -their O O -calls O O -for O O -the O O -right O O -to O O -organise O O -independent O O -unions O O -on O O -campus O O -. O O -" O O -We O O -still O O -want O O -government O O -answers O O -to O O -our O O -demands O O -. O O -We O O -want O O -police O O -punishment O O -to O O -be O O -published O O -in O O -newspapers O O -, O O -" O O -one O O -student O O -said O O -. O O -But O O -the O O -students O O -stressed O O -their O O -protests O O -were O O -non O O -and O O -they O O -had O O -no O O -contact O O -with O O -Su B-PER B-PER -K I-PER I-PER -' O O -National B-ORG B-ORG -League I-ORG I-ORG -for I-ORG I-ORG -Democracy I-ORG I-ORG -( O O -NL B-ORG B-ORG -) O O -. O O -Su B-PER B-PER -K I-PER I-PER -, O O -a O O -Nobel B-MISC B-MISC -la O O -and O O -daughter O O -of O O -independence O O -hero O O -Au B-PER B-PER -San I-PER I-PER -, O O -and O O -key O O -NL B-ORG B-ORG -officials O O -have O O -also O O -denied O O -any O O -link O O -with O O -the O O -students O O -. O O -But O O -they O O -have O O -said O O -both O O -parties O O -had O O -a O O -" O O -moral O O -link O O -" O O -in O O -that O O -they O O -were O O -against O O -police O O -brutality O O -and O O -injustice O O -. O O -The O O -students O O -also O O -demanded O O -the O O -government O O -announce O O -punishment O O -met O O -out O O -to O O -policemen O O -who O O -they O O -said O O -had O O -man O O -students O O -involved O O -in O O -a O O -bra O O -with O O -some O O -restaurant O O -owners O O -near O O -the O O -Yang B-LOC B-LOC -institute O O -in O O -October O O -. O O -The O O -students O O -appealed O O -to O O -the O O -government O O -not O O -to O O -close O O -the O O -institute O O -because O O -of O O -their O O -latest O O -demonstration O O -. O O -The O O -institute O O -was O O -shut O O -for O O -nearly O O -two O O -years O O -after O O -the O O -1988 O O -uprising O O -. O O -On O O -Friday O O -, O O -the O O -road O O -leading O O -to O O -Su B-PER B-PER -K I-PER I-PER -' O O -lakes O O -residence O O -in O O -central O O -Ra B-LOC B-LOC -remained O O -closed O O -by O O -police O O -. O O -Union O O -leaders O O -outrage O O -by O O -W B-ORG B-ORG -s O O -to O O -IL B-ORG B-ORG -head O O -. O O -S B-LOC B-LOC -1996 O O -International O O -trade O O -union O O -leaders O O -on O O -Friday O O -expressed O O -outrage O O -that O O -the O O -head O O -of O O -the O O -International B-ORG B-ORG -Labour I-ORG I-ORG -Organisation I-ORG I-ORG -( O O -IL B-ORG B-ORG -) O O -had O O -been O O -barred O O -from O O -speaking O O -at O O -next O O -week O O -' O O -W B-ORG B-ORG -meeting O O -in O O -Singapore B-LOC B-LOC -. O O -Bill B-PER B-PER -Jordan I-PER I-PER -, O O -general O O -secretary O O -of O O -the O O -International B-ORG B-ORG -Confederation I-ORG I-ORG -of I-ORG I-ORG -Free I-ORG I-ORG -Trade I-ORG I-ORG -Union I-ORG I-ORG -( O O -I B-ORG B-ORG -) O O -, O O -told O O -a O O -news O O -conference O O -the O O -withdrawal O O -of O O -a O O -W B-ORG B-ORG -invitation O O -to O O -IL B-ORG B-ORG -director O O -general O O -Michel B-PER B-PER -Hansen I-PER I-PER -was O O -" O O -outrage O O -behaviour O O -on O O -the O O -part O O -of O O -an O O -organisation O O -that O O -wants O O -to O O -command O O -respect O O -in O O -the O O -world O O -" O O -. O O -Jordan B-LOC B-PER -said O O -a O O -small O O -group O O -of O O -developing O O -nations O O -that O O -oppose O O -linking O O -trade O O -talks O O -and O O -labour O O -conditions O O -had O O -pressure O O -World B-ORG B-ORG -Trade I-ORG I-ORG -Organisation I-ORG I-ORG -( O O -W B-ORG B-ORG -) O O -officials O O -to O O -prevent O O -Hansen B-PER O -from O O -taking O O -the O O -platform O O -to O O -urge O O -such O O -links O O -. O O -" O O -It O O -is O O -to O O -their O O -shame O O -that O O -those O O -who O O -are O O -responsible O O -for O O -encouraging O O -this O O -meeting O O -responded O O -( O O -to O O -the O O -pressure O O -) O O -in O O -si O O -him O O -, O O -" O O -Jordan B-LOC B-PER -said O O -after O O -the O O -opening O O -of O O -an O O -I B-ORG B-ORG -conference O O -on O O -international O O -labour O O -standards O O -and O O -trade O O -. O O -The O O -three O O -trade O O -union O O -conference O O -in O O -Singapore B-LOC B-LOC -hopes O O -to O O -push O O -labour O O -issues O O -onto O O -the O O -W B-ORG B-ORG -agenda O O -. O O -Jordan B-LOC B-PER -said O O -the O O -W B-ORG B-ORG -' O O -credibility O O -was O O -at O O -stake O O -over O O -the O O -issue O O -of O O -trade O O -and O O -labour O O -. O O -The O O -I B-ORG B-ORG -said O O -it O O -wanted O O -the O O -W B-ORG B-ORG -conference O O -beginning O O -on O O -Monday O O -to O O -out O O -forced O O -and O O -child O O -labour O O -, O O -end O O -discrimination O O -in O O -hiring O O -, O O -and O O -guarantee O O -the O O -right O O -to O O -join O O -a O O -union O O -. O O -Bill B-PER B-PER -Brett I-PER I-PER -, O O -chairman O O -of O O -the O O -IL B-ORG B-ORG -Workers I-ORG I-ORG -Group I-ORG I-ORG -, O O -told O O -Re B-ORG B-ORG -before O O -the O O -news O O -conference O O -he O O -was O O -" O O -not O O -too O O -surprised O O -, O O -but O O -very O O -disappointed O O -" O O -that O O -the O O -speaking O O -invitation O O -had O O -been O O -withdrawn O O -. O O -" O O -Some O O -governments O O -are O O -very O O -determined O O -to O O -stop O O -the O O -issue O O -( O O -of O O -trade O O -and O O -labour O O -rights O O -) O O -being O O -discussed O O -, O O -" O O -he O O -said O O -, O O -adding O O -that O O -the O O -Association B-ORG B-ORG -of I-ORG I-ORG -Southeast I-ORG I-ORG -Asian I-ORG I-ORG -Nations I-ORG I-ORG -( O O -AS B-ORG B-ORG -) O O -seemed O O -particularly O O -hostile O O -to O O -the O O -IL B-ORG B-ORG -agenda O O -. O O -AS B-ORG B-ORG -groups O O -Brunei B-LOC B-LOC -, O O -Indonesia B-LOC B-LOC -, O O -Malaysia B-LOC B-LOC -, O O -the O O -Philippines B-LOC B-LOC -, O O -Singapore B-LOC B-LOC -, O O -Thailand B-LOC B-LOC -and O O -Vietnam B-LOC B-LOC -. O O -The O O -IL B-ORG B-ORG -wants O O -a O O -trade O O -and O O -labour O O -rights O O -" O O -social O O -clause O O -" O O -included O O -in O O -the O O -final O O -ministerial O O -statement O O -issued O O -by O O -W B-ORG B-ORG -leaders O O -at O O -the O O -end O O -of O O -the O O -meeting O O -, O O -the O O -organization O O -' O O -first O O -ministerial O O -gathering O O -. O O -Speaking O O -to O O -I B-ORG B-ORG -delegates O O -, O O -Richard B-PER B-PER -E I-PER I-PER -, O O -director O O -of O O -the O O -W B-ORG B-ORG -secret O O -, O O -said O O -the O O -W B-ORG B-ORG -was O O -capable O O -of O O -making O O -a O O -significant O O -contribution O O -to O O -governmental O O -efforts O O -to O O -solve O O -social O O -problems O O -. O O -But O O -he O O -said O O -the O O -W B-ORG B-ORG -' O O -organisation O O -structure O O -made O O -it O O -difficult O O -to O O -impose O O -on O O -its O O -members O O -a O O -social O O -clause O O -such O O -as O O -that O O -called O O -for O O -by O O -the O O -IL B-ORG B-ORG -. O O -Indian B-MISC B-MISC -rubber O O -demand O O -seen O O -outs O O -production O O -. O O -S B-LOC B-LOC -1996 O O -Indian B-MISC B-MISC -rubber O O -demand O O -is O O -seen O O -out O O -local O O -production O O -in O O -the O O -1996 O O -April O O -/ O O -March O O -season O O -and O O -the O O -trend O O -will O O -per O O -way O O -into O O -the O O -next O O -century O O -, O O -the O O -chairman O O -of O O -the O O -R B-ORG B-ORG -Board I-ORG I-ORG -of I-ORG I-ORG -India I-ORG I-ORG -said O O -on O O -Friday O O -. O O -K B-PER B-PER -Matthew I-PER I-PER -said O O -at O O -the O O -Asia B-ORG B-MISC -R I-ORG I-MISC -Markets I-ORG I-MISC -meeting O I-MISC -here O O -Indian B-MISC B-MISC -production O O -of O O -natural O O -rubber O O -in O O -1996 O O -will O O -reach O O -54 O O -tonnes O O -against O O -projected O O -demand O O -of O O -57 O O -tonnes O O -, O O -a O O -gap O O -of O O -31 O O -tonnes O O -. O O -For O O -synthetic O O -rubber O O -, O O -production O O -reached O O -68 O O -tonnes O O -in O O -1995 O O -while O O -consumption O O -in O O -the O O -same O O -season O O -hit O O -134 O O -tonnes O O -, O O -Matthew B-PER B-PER -added O O -. O O -" O O -Though O O -schemes O O -designed O O -to O O -realise O O -further O O -increases O O -in O O -the O O -production O O -of O O -natural O O -rubber O O -are O O -being O O -operated O O -successfully O O -, O O -the O O -demand O O -gap O O -is O O -expected O O -to O O -widen O O -, O O -" O O -he O O -said O O -. O O -Indian B-MISC B-MISC -synthetic O O -rubber O O -output O O -is O O -not O O -expected O O -to O O -rise O O -significantly O O -in O O -the O O -next O O -season O O -but O O -demand O O -will O O -rise O O -to O O -145 O O -tonnes O O -. O O -Matthew B-PER B-PER -estimates O O -that O O -by O O -the O O -2000 O O -season O O -, O O -the O O -gap O O -between O O -natural O O -rubber O O -output O O -and O O -consumption O O -will O O -rise O O -to O O -51 O O -tonnes O O -and O O -31 O O -tonnes O O -in O O -2010 O O -. O O -Natural O O -rubber O O -production O O -will O O -go O O -up O O -to O O -69 O O -tonnes O O -in O O -2000 O O -against O O -consumption O O -of O O -74 O O -tonnes O O -. O O -In O O -2010 O O -, O O -domestic O O -demand O O -should O O -rise O O -further O O -to O O -1 O O -million O O -tonnes O O -while O O -production O O -will O O -only O O -reach O O -about O O -91 O O -tonnes O O -. O O -One O O -way O O -to O O -bridge O O -the O O -widening O O -gap O O -is O O -to O O -put O O -more O O -land O O -under O O -cultivation O O -which O O -the O O -R B-ORG B-ORG -Board I-ORG I-ORG -official O O -estimates O O -will O O -reach O O -220 O O -hectares O O -between O O -now O O -and O O -the O O -year O O -2003 O O -although O O -Matthew B-PER B-PER -said O O -this O O -may O O -not O O -be O O -possible O O -at O O -this O O -time O O -in O O -India B-LOC B-LOC -. O O -" O O -The O O -development O O -objective O O -for O O -the O O -rubber O O -plantation O O -industry O O -will O O -be O O -to O O -increase O O -production O O -to O O -the O O -best O O -extent O O -possibly O O -with O O -a O O -view O O -to O O -mini O O -imports O O -of O O -natural O O -rubber O O -, O O -" O O -he O O -said O O -. O O -- O O -Singapore B-ORG B-ORG -News I-ORG I-ORG -( O O -65 O O -) O O -Japan B-LOC B-LOC -' O O -authorities O O -seen O O -seeking O O -to O O -re O O -in O O -dollar O O -. O O -George B-PER B-PER -Ni I-PER I-PER -TO B-LOC B-LOC -1996 O O -Co O O -by O O -Japan B-LOC B-LOC -' O O -tight O O -central O O -bank O O -chief O O -and O O -an O O -influential O O -top O O -bureau O O -are O O -further O O -signs O O -that O O -the O O -nation O O -' O O -authorities O O -want O O -to O O -keep O O -the O O -dollar O O -at O O -current O O -levels O O -, O O -market O O -sources O O -said O O -on O O -Friday O O -. O O -In O O -a O O -rare O O -expression O O -of O O -a O O -view O O -on O O -cu O O -by O O -the O O -Bank B-ORG B-ORG -of I-ORG I-ORG -Japan I-ORG I-ORG -( O O -B B-ORG B-ORG -) O O -governor O O -, O O -Ya B-PER B-PER -Mat I-PER I-PER -was O O -quoted O O -in O O -Japan B-LOC B-LOC -' O O -leading O O -economic O O -daily O O -on O O -Friday O O -as O O -saying O O -that O O -he O O -sees O O -no O O -further O O -, O O -immediate O O -fall O O -in O O -the O O -ye O O -. O O -This O O -followed O O -a O O -widely O O -watched O O -television O O -appearance O O -late O O -on O O -Thursday O O -by O O -E B-PER B-PER -Sa I-PER I-PER -, O O -a O O -high O O -Finance B-ORG B-ORG -Ministry I-ORG I-ORG -official O O -, O O -who O O -denied O O -he O O -had O O -said O O -he O O -wants O O -to O O -guide O O -the O O -dollar O O -lower O O -to O O -between O O -108 O O -and O O -110 O O -ye O O -. O O -But O O -many O O -in O O -the O O -market O O -thought O O -Sa B-PER B-PER -' O O -real O O -intentions O O -lay O O -elsewhere O O -, O O -and O O -took O O -more O O -notice O O -of O O -his O O -comments O O -about O O -the O O -U B-LOC B-LOC -government O O -' O O -stance O O -on O O -the O O -dollar O O -, O O -dealers O O -said O O -. O O -" O O -I O O -think O O -his O O -views O O -on O O -( O O -U B-LOC B-ORG -Treasury O I-ORG -Secretary O O -Robert B-PER B-PER -) O O -Rubin B-PER B-PER -' O O -comments O O -were O O -indeed O O -what O O -he O O -himself O O -thinks O O -about O O -the O O -dollar O O -, O O -" O O -said O O -Hank B-PER B-PER -Note I-PER I-PER -, O O -chief O O -dealer O O -at O O -Su B-ORG B-ORG -Bank I-ORG I-ORG -. O O -Ask O O -about O O -Rubin B-PER B-PER -' O O -comment O O -that O O -a O O -strong O O -dollar O O -was O O -in O O -U B-LOC B-LOC -interests O O -, O O -Sa B-PER B-PER -said O O -the O O -remark O O -does O O -not O O -necessarily O O -mean O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -supports O O -a O O -stronger O O -dollar O O -. O O -" O O -It O O -' O O -a O O -strong O O -dollar O O -, O O -not O O -stronger O O -. O O -In O O -that O O -sense O O -, O O -the O O -comments O O -are O O -not O O -pointing O O -to O O -a O O -certain O O -direction O O -, O O -" O O -he O O -said O O -. O O -" O O -It O O -shows O O -that O O -Sa B-PER B-PER -is O O -not O O -for O O -a O O -stronger O O -dollar O O -either O O -, O O -" O O -said O O -Su B-PER B-ORG -' O O -Note B-MISC B-PER -. O O -Ta B-PER B-PER -Sa I-PER I-PER -, O O -first O O -vice O O -president O O -at O O -Union B-ORG B-ORG -Bank I-ORG I-ORG -of I-ORG I-ORG -Switzerland I-ORG I-ORG -in O O -Tokyo B-LOC B-LOC -, O O -said O O -: O O -" O O -Maybe O O -a O O -dollar O O -at O O -104 O O -ye O O -is O O -not O O -acceptable O O -( O O -to O O -Sa B-PER B-PER -) O O -, O O -but O O -it O O -may O O -be O O -okay O O -at O O -the O O -current O O -level O O -, O O -at O O -the O O -lower O O -end O O -of O O -112 O O -ye O O -. O O -" O O -Market O O -participants O O -have O O -kept O O -a O O -close O O -eye O O -on O O -Sa B-PER B-PER -, O O -chief O O -of O O -the O O -ministry O O -' O O -International B-ORG B-ORG -Finance I-ORG I-ORG -Bureau I-ORG I-ORG -, O O -as O O -a O O -comment O O -he O O -made O O -in O O -November O O -after O O -the O O -dollar O O -hit O O -this O O -year O O -' O O -high O O -of O O -114 O O -ye O O -pushed O O -the O O -currency O O -down O O -sharply O O -. O O -He O O -had O O -said O O -then O O -that O O -the O O -market O O -' O O -view O O -on O O -Japan B-LOC B-LOC -' O O -economy O O -was O O -too O O -p O O -and O O -that O O -he O O -believed O O -it O O -was O O -stronger O O -than O O -the O O -market O O -thought O O -. O O -Deal O O -have O O -come O O -to O O -refer O O -to O O -115 O O -ye O O -as O O -the O O -" O O -Sa B-MISC B-PER -ceiling O O -" O O -for O O -the O O -dollar O O -following O O -the O O -remark O O -. O O -Ad O O -to O O -the O O -comments O O -by O O -" O O -Mr O B-PER -Ye B-PER I-PER -" O O -, O O -as O O -Sa B-PER B-PER -is O O -known O O -for O O -his O O -prominence O O -in O O -the O O -currency O O -market O O -, O O -was O O -B B-ORG B-ORG -governor O O -Mat B-PER B-PER -' O O -remark O O -. O O -" O O -The O O -recent O O -level O O -of O O -the O O -ye O O -exchange O O -rate O O -has O O -been O O -stable O O -, O O -and O O -it O O -does O O -not O O -appear O O -to O O -be O O -moving O O -towards O O -a O O -further O O -de O O -of O O -the O O -ye O O -immediately O O -, O O -so O O -import O O -prices O O -are O O -likely O O -to O O -stab O O -at O O -current O O -levels O O -, O O -" O O -Mat B-PER B-PER -said O O -in O O -an O O -interview O O -with O O -the O O -Ni B-ORG B-ORG -Ke I-ORG I-ORG -Shi I-ORG I-ORG -. O O -" O O -The O O -fact O O -that O O -he O O -touched O O -on O O -the O O -issue O O -of O O -inflation O O -triggered O O -by O O -import O O -prices O O -shows O O -that O O -the O O -B B-ORG B-ORG -does O O -not O O -want O O -a O O -further O O -de O O -of O O -the O O -ye O O -, O O -past O O -115 O O -ye O O -, O O -" O O -said O O -Ya B-PER B-PER -Ka I-PER I-PER -, O O -chief O O -fore O O -manager O O -at O O -Toy B-ORG B-ORG -Trust I-ORG I-ORG -& I-ORG I-ORG -Banking I-ORG I-ORG -Co I-ORG I-ORG -. O O -Some O O -said O O -the O O -central O O -bank O O -may O O -have O O -been O O -concerned O O -a O O -weaker O O -ye O O -would O O -lead O O -to O O -un O O -p O O -about O O -Japan B-LOC B-LOC -' O O -economy O O -. O O -" O O -There O O -was O O -concern O O -that O O -foreign O O -investors O O -may O O -sell O O -Japanese B-MISC B-MISC -stocks O O -if O O -the O O -dollar O O -goes O O -above O O -115 O O -ye O O -. O O -The O O -B B-ORG B-ORG -does O O -not O O -want O O -the O O -ye O O -' O O -weakness O O -to O O -lead O O -to O O -p O O -over O O -the O O -economy O O -, O O -" O O -said O O -Tai B-PER B-PER -Tanaka I-PER I-PER -, O O -market O O -s O O -with O O -Credit B-ORG B-ORG -Su I-ORG I-ORG -in O O -Tokyo B-LOC B-LOC -. O O -Senior O O -B B-ORG B-ORG -officials O O -have O O -separately O O -said O O -financial O O -markets O O -' O O -views O O -on O O -the O O -economy O O -have O O -been O O -too O O -negative O O -. O O -" O O -I O O -realise O O -there O O -are O O -negative O O -views O O -in O O -the O O -markets O O -about O O -the O O -impact O O -of O O -the O O -consumption O O -tax O O -hike O O -and O O -drop O O -in O O -public O O -spending O O -, O O -but O O -the O O -markets O O -appear O O -to O O -be O O -ex O O -the O O -magnitude O O -of O O -the O O -negative O O -impact O O -, O O -" O O -a O O -senior O O -B B-ORG B-ORG -official O O -told O O -Re B-ORG B-ORG -on O O -Friday O O -. O O -The O O -consumption O O -tax O O -is O O -due O O -to O O -raised O O -in O O -April O O -from O O -three O O -to O O -five O O -percent O O -. O O -Lebanon B-LOC B-LOC -sentences O O -pro B-MISC B-MISC -warlord O O -to O O -death O O -. O O -Hai B-PER B-ORG -Had I-PER I-ORG -B B-LOC B-LOC -1996 O O -A O O -Lebanese B-MISC B-MISC -military O O -court O O -on O O -Friday O O -sentenced O O -to O O -death O O -in O O -absent O O -the O O -commander O O -of O O -Israel B-LOC B-LOC -' O O -sur O O -militia O O -in O O -south O O -Lebanon B-LOC B-LOC -on O O -treason O O -charges O O -. O O -The O O -court O O -convicted O O -General O O -Antoine B-PER B-PER -La I-PER I-PER -, O O -head O O -of O O -the O O -South B-ORG B-ORG -Lebanon I-ORG I-ORG -Army I-ORG I-ORG -( O O -SL B-ORG B-ORG -) O O -, O O -of O O -collaborating O O -with O O -Israel B-LOC B-LOC -with O O -which O O -Lebanon B-LOC B-LOC -is O O -officially O O -at O O -war O O -. O O -La B-PER B-PER -, O O -a O O -69 O O -former O O -Lebanese B-MISC B-MISC -army O O -major O O -, O O -heads O O -the O O -3 O O -SL B-ORG B-ORG -militia O O -which O O -helps O O -Israel B-LOC B-LOC -hold O O -a O O -border O O -zone O O -in O O -south O O -Lebanon B-LOC B-LOC -to O O -ward O O -off O O -cross O O -guerrilla O O -raids O O -on O O -northern O O -Israel B-LOC B-LOC -. O O -La B-PER B-PER -said O O -a O O -few O O -days O O -after O O -the O O -trial O O -began O O -on O O -February O O -16 O O -that O O -Lebanese B-MISC B-MISC -authorities O O -must O O -drop O O -the O O -charges O O -or O O -risk O O -blocking O O -any O O -peace O O -deal O O -with O O -the O O -Jewish B-MISC B-MISC -state O O -. O O -He O O -said O O -Israel B-LOC B-LOC -was O O -capable O O -of O O -press O O -Lebanon B-LOC B-LOC -' O O -Syrian B-MISC B-MISC -government O O -to O O -stop O O -the O O -legal O O -pursuit O O -. O O -The O O -charges O O -against O O -La B-PER B-PER -were O O -: O O -forming O O -a O O -hostile O O -army O O -, O O -carrying O O -weapons O O -on O O -Israel B-LOC B-LOC -' O O -side O O -, O O -helping O O -Israel B-LOC B-LOC -strip O O -off O O -a O O -part O O -of O O -Lebanese B-MISC B-MISC -territory O O -by O O -violence O O -, O O -forming O O -an O O -armed O O -gang O O -, O O -killing O O -or O O -trying O O -to O O -kill O O -Lebanese B-MISC B-MISC -civilians O O -by O O -artillery O O -shell O O -and O O -kidnapping O O -Lebanese B-MISC B-MISC -citizens O O -for O O -long O O -periods O O -. O O -Shortly O O -before O O -La B-PER B-PER -' O O -trial O O -began O O -, O O -a O O -Beirut B-LOC B-LOC -military O O -prosecutor O O -charged O O -another O O -89 O O -former O O -Lebanese B-MISC B-MISC -army O O -soldiers O O -with O O -collaborating O O -with O O -Israel B-LOC B-LOC -. O O -No O O -date O O -has O O -been O O -set O O -for O O -the O O -trial O O -of O O -the O O -men O O -, O O -all O O -members O O -of O O -the O O -SL B-ORG B-ORG -living O O -in O O -the O O -Israeli B-MISC B-MISC -zone O O -in O O -south O O -Lebanon B-LOC B-LOC -. O O -Israel B-LOC B-LOC -and O O -La B-LOC B-PER -have O O -repeatedly O O -demanded O O -safety O O -guarantees O O -for O O -the O O -SL B-ORG B-ORG -- O O -a O O -mixed O O -Christian B-MISC B-MISC -Mo B-MISC B-MISC -force O O -- O O -which O O -the O O -Jewish B-MISC B-MISC -states O O -regards O O -as O O -loyal O O -allies O O -. O O -Israel B-LOC B-LOC -has O O -said O O -the O O -Lebanese B-MISC B-MISC -army O O -must O O -incorporate O O -the O O -SL B-ORG B-ORG -fighters O O -into O O -its O O -ranks O O -as O O -an O O -army O O -brigade O O -as O O -a O O -condition O O -for O O -peace O O -. O O -But O O -Lebanese B-MISC B-MISC -political O O -analysts O O -have O O -said O O -that O O -would O O -be O O -out O O -of O O -the O O -question O O -and O O -Lebanese B-MISC B-MISC -authorities O O -pre O O -the O O -issue O O -by O O -taking O O -legal O O -action O O -against O O -La B-PER B-PER -. O O -Former O O -Israeli B-MISC B-MISC -Prime O O -Minister O O -Shi B-PER B-PER -Per I-PER I-PER -, O O -calling O O -La B-PER B-PER -" O O -a O O -great O O -Lebanese B-MISC B-MISC -pat O O -" O O -, O O -said O O -earlier O O -this O O -year O O -Lebanon B-LOC B-LOC -had O O -insulted O O -the O O -SL B-ORG B-ORG -commander O O -by O O -ordering O O -his O O -arrest O O -on O O -the O O -treason O O -charges O O -. O O -Per B-PER B-PER -, O O -who O O -was O O -ou O O -in O O -May O O -by O O -right O O -Israeli B-MISC B-MISC -leader O O -Benjamin B-PER B-PER -Net I-PER I-PER -, O O -said O O -there O O -could O O -not O O -be O O -real O O -negotiations O O -with O O -Lebanon B-LOC B-LOC -" O O -unless O O -it O O -will O O -stop O O -the O O -ma O O -of O O -the O O -SL B-ORG B-ORG -and O O -its O O -commanders O O -. O O -" O O -The O O -Beirut B-LOC B-LOC -military O O -court O O -also O O -sentenced O O -to O O -life O O -in O O -jail O O -in O O -absent O O -E B-PER B-PER -Sa I-PER I-PER -, O O -former O O -head O O -of O O -the O O -pro B-MISC B-MISC -Guardians I-ORG B-ORG -of I-ORG I-ORG -the I-ORG I-ORG -Cedar I-ORG I-ORG -, O O -a O O -small O O -right O O -Christian B-MISC B-MISC -civil O O -war O O -militia O O -. O O -Sa B-PER B-PER -, O O -whose O O -trial O O -was O O -concurrent O O -with O O -La B-PER B-PER -' O O -, O O -was O O -convicted O O -of O O -" O O -contact O O -the O O -Israeli B-MISC B-MISC -enemy O O -, O O -passing O O -information O O -to O O -Israel B-LOC B-LOC -and O O -undertaking O O -hostile O O -acts O O -against O O -Lebanon B-LOC B-LOC -" O O -. O O -Texas B-LOC B-LOC -/ O O -w O O -Ok B-LOC B-LOC -fed O O -cattle O O -market O O -thin O O -at O O -$ O O -67 O O -- O O -USD O B-ORG -. O O -AM B-LOC B-LOC -1996 O O -Trade O O -was O O -slow O O -in O O -the O O -Pan B-LOC B-LOC -area O O -Friday O O -, O O -USD B-ORG B-ORG -said O O -. O O -S O O -steer O O -and O O -he O O -were O O -$ O O -1 O O -per O O -c O O -lower O O -. O O -Fe O O -reporting O O -moderate O O -inquiry O O -. O O -Sales O O -reported O O -on O O -8 O O -head O O -slaughter O O -steer O O -and O O -1 O O -he O O -; O O -following O O -weekly O O -movement O O -of O O -71 O O -head O O -. O O -Note O O -- O O -all O O -cattle O O -prices O O -based O O -on O O -net O O -weights O O -F O O -the O O -feed O O -after O O -a O O -4 O O -percent O O -shrink O O -. O O -S B-ORG O -St I-ORG O -- O O -Select O O -and O O -Choice O O -2 O O -115 O O -lbs O O -67 O O -. O O -S B-ORG O -He I-ORG O -- O O -Select O O -and O O -Choice O O -2 O O -105 O O -lbs O O -67 O O -. O O -Con O O -- O O -9 O O -Week O O -A O O -- O O -None O O -Year O O -A O O -- O O -None O O -( O O -( O O -Chicago B-LOC B-LOC -news O O -312 O O -40 O O -87 O O -) O O -) O O -USD B-ORG B-ORG -daily O O -cattle O O -and O O -ho O O -slaughter O O -- O O -Dec O O -6 O O -. O O -E O O -daily O O -livestock O O -slaughter O O -under O O -Fed B-MISC B-ORG -inspection O O -- O O -USD B-ORG B-ORG -CA I-ORG O -CA O O -H O O -Friday O O -12 O O -( O O -est O O -) O O -132 O O -7 O O -35 O O -Week O O -ago O O -( O O -est O O -) O O -130 O O -6 O O -34 O O -Year O O -ago O O -( O O -act O O -) O O -132 O O -6 O O -33 O O -Saturday O O -12 O O -( O O -est O O -) O O -38 O O -0 O O -18 O O -Week O O -to O O -date O O -( O O -est O O -) O O -68 O O -31 O O -1 O O -Same O O -Period O O -Last O O -Week O O -( O O -est O O -) O O -60 O O -26 O O -1 O O -Same O O -Period O O -Previous O O -day O O -estimated O O -St B-ORG O -and O O -He B-ORG O -Co I-ORG O -and I-ORG O -Bull B-ORG O -Thursday O O -100 O O -33 O O -BA O O -- O O -Hartford B-LOC B-LOC -, O O -Con B-LOC B-LOC -. O O -, O O -$ O O -11 O O -m O O -. O O -C O O -OF I-ORG O -H I-ORG B-LOC -, O O -CO B-LOC B-LOC -R O O -: O O -$ O O -25 O O -GE O O -O O O -B O O -M O B-ORG -' O I-ORG -: O O -A O O -/ O O -A1 O O -S B-ORG B-ORG -: O O -AAA O O -/ O O -AA O O -Del O O -Date O O -: O O -12 O O -F O B-ORG -IN O O -Mat O O -Ba O O -Co O O -List O O -12 O O -1 O O -6 O O -4 O O -12 O O -57 O O -4 O O -4 O O -12 O O -265 O O -4 O O -4 O O -12 O O -625 O O -T B-LOC B-LOC -, O O -F B-LOC B-LOC -1996 O O -Fourteen O O -years O O -after O O -he O O -b O O -and O O -shot O O -a O O -man O O -whose O O -trailer O O -home O O -he O O -robbed O O -in O O -1982 O O -, O O -John B-PER B-PER -Mills I-PER I-PER -Jr I-PER O -. O O -, O O -41 O O -, O O -was O O -put O O -to O O -death O O -in O O -Florida B-LOC B-LOC -' O O -electric O O -chair O O -Friday O O -. O O -As O O -Glenn B-PER B-PER -Law I-PER I-PER -, O O -a O O -rural O O -Florida B-LOC B-LOC -minister O O -who O O -is O O -the O O -victim O O -' O O -father O O -, O O -looked O O -on O O -, O O -Mills B-PER B-PER -was O O -pronounced O O -dead O O -at O O -7 O O -a O O -E O O -( O O -121 O O -GM B-MISC B-MISC -) O O -for O O -the O O -murder O O -of O O -Lester B-PER B-PER -Law I-PER I-PER -. O O -Speaking O O -in O O -Arabic B-MISC B-MISC -, O O -Mills B-PER B-PER -made O O -a O O -final O O -statement O O -before O O -an O O -anonymous O O -citizen O O -flipped O O -the O O -switch O O -that O O -sent O O -2000 O O -vol O O -of O O -electricity O O -through O O -his O O -body O O -, O O -said O O -Department B-ORG B-ORG -of I-ORG I-ORG -Co I-ORG I-ORG -spokesman O O -Eugene B-PER B-PER -Morris I-PER I-PER -, O O -who O O -was O O -present O O -at O O -the O O -execution O O -. O O -" O O -I O O -bear O O -witness O O -that O O -there O O -is O O -no O O -God B-PER B-PER -but O O -Allah B-PER B-PER -and O O -I O O -bear O O -witness O O -that O O -the O O -prophet O O -Mohammed B-PER B-PER -is O O -the O O -messenger O O -of O O -God B-PER B-PER -, O O -" O O -he O O -quoted O O -Mills B-PER B-PER -as O O -saying O O -. O O -Prison O O -officials O O -said O O -they O O -had O O -no O O -record O O -of O O -Mills B-PER B-PER -' O O -official O O -conversion O O -, O O -but O O -they O O -said O O -that O O -, O O -on O O -May O O -14 O O -, O O -1991 O O -, O O -he O O -had O O -asked O O -that O O -a O O -new O O -name O O -, O O -Yu B-PER B-PER -Abdullah I-PER I-PER -Mu I-PER I-PER -, O O -be O O -added O O -to O O -his O O -prison O O -file O O -, O O -which O O -is O O -usually O O -an O O -indication O O -of O O -a O O -conversion O O -to O O -Islam B-MISC B-MISC -. O O -Mills B-PER B-PER -is O O -the O O -38th O O -person O O -to O O -die O O -in O O -Florida B-LOC B-LOC -' O O -electric O O -chair O O -since O O -the O O -U B-ORG B-ORG -Supreme I-ORG I-ORG -Court I-ORG I-ORG -reversed O O -itself O O -in O O -1976 O O -and O O -legal O O -the O O -death O O -penalty O O -. O O -Prison O O -officials O O -said O O -Mills B-PER B-PER -made O O -no O O -special O O -request O O -for O O -a O O -last O O -meal O O -and O O -did O O -not O O -eat O O -the O O -steak O O -, O O -fried O O -potatoes O O -and O O -orange O O -juice O O -offered O O -him O O -. O O -He O O -spent O O -Thursday O O -with O O -family O O -members O O -and O O -his O O -spiritual O O -adviser O O -, O O -Morris B-PER B-PER -said O O -. O O -Mills B-PER B-PER -was O O -scheduled O O -to O O -die O O -Wednesday O O -but O O -had O O -his O O -sentence O O -temporarily O O -postponed O O -by O O -the O O -Florida B-ORG B-ORG -Supreme I-ORG I-ORG -Court I-ORG I-ORG -. O O -On O O -Thursday O O -, O O -the O O -11th B-ORG O -Circuit B-ORG O -U I-ORG B-ORG -Court I-ORG I-ORG -of I-ORG I-ORG -Appeals I-ORG I-ORG -in O O -Atlanta B-LOC B-LOC -denied O O -his O O -appeal O O -in O O -federal O O -court O O -. O O -In O O -March O O -1982 O O -, O O -Mills B-PER B-PER -and O O -a O O -Michael B-PER B-PER -Frederick I-PER I-PER -knocked O O -on O O -the O O -door O O -of O O -Lester B-PER B-PER -Law I-PER I-PER -' O O -trailer O O -in O O -an O O -attempt O O -to O O -r O O -it O O -, O O -police O O -said O O -. O O -Lester B-PER B-PER -Law I-PER I-PER -was O O -taken O O -to O O -a O O -nearby O O -airs O O -where O O -he O O -was O O -b O O -with O O -a O O -tire O O -iron O O -. O O -Mills B-PER B-PER -then O O -fired O O -two O O -shots O O -that O O -killed O O -Law B-PER B-PER -as O O -the O O -victim O O -tried O O -to O O -run O O -away O O -. O O -Frederick B-PER B-PER -is O O -serving O O -a O O -34 O O -sentence O O -. O O -New B-LOC B-LOC -York I-LOC I-LOC -grain O O -freight O O -fixtures O O -- O O -Dec O O -5 O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Man B-ORG O -50 O O -tonnes O O -so O O -US B-LOC O -/ O O -China B-LOC B-LOC -10 O O -$ O O -23 O O -10 O O -/ O O -4 O O -Gee B-ORG O -. O O -- O O -New B-ORG B-ORG -York I-ORG I-ORG -Co I-ORG I-ORG -Des I-ORG I-ORG -+ O O -212 O O -85 O O -1640 O O -Iowa B-ORG B-LOC -Min I-ORG B-LOC -fed O O -cattle O O -market O O -quiet O O -, O O -no O O -sales O B-MISC -. O O -DE B-LOC B-LOC -M I-LOC I-LOC -1996 O O -S O O -steer O O -and O O -he O O -not O O -tested O O -, O O -compared O O -with O O -Thursday O O -' O O -close O O -, O O -USD B-ORG B-ORG -said O O -. O O -Trade O O -slow O O -. O O -De O O -and O O -seller O O -interest O O -light O O -. O O -Off O O -light O O -. O O -St B-ORG O -- O O -Select B-MISC O -and O O -Choice B-MISC O -2 O O -no O O -sales O O -. O O -He B-ORG O -- O O -Select B-MISC O -and O O -Choice O O -2 O O -no O O -sales O O -. O O -Car B-PER O -Ba I-ORG O -( O O -weight O O -only O O -) O O -Compared O O -Thursday O O -Close O O -- O O -S O O -steer O O -and O O -he O O -not O O -tested O O -. O O -St B-ORG O -- O O -Select B-MISC O -and O O -Choice B-MISC O -2 O O -no O O -sales O O -. O O -Holstein B-PER O -- O O -( O O -weight O O -only O O -) O O -Select O O -to O O -mostly O O -Choice B-MISC O -2 O O -125 O O -lbs O O -no O O -sales O O -. O O -Holstein B-MISC O -- O O -( O O -grade O O -and O O -weight O O -) O O -Choice O O -2 O O -125 O O -lbs O O -no O O -sales O O -Select O O -2 O O -125 O O -lbs O O -no O O -sales O O -. O O -He B-ORG O -- O O -Select B-MISC O -and O O -Choice O O -2 O O -no O O -sales O O -. O O -Con O O -- O O -None O O -Week O O -A O O -- O O -800 O O -Year O O -A O O -- O O -900 O O -W O O -to O O -Date O O -- O O -None O O -Week O O -A O O -- O O -800 O O -Year O O -A O O -- O O -900 O O -( O O -( O O -Chicago B-LOC B-LOC -news O O -312 O O -) O O -) O O -Man O O -stole O O -pigs O O -, O O -tipped O O -strip O O -, O O -gets O O -10 O O -years O O -. O O -AP B-LOC B-LOC -, O O -W B-LOC B-LOC -. O O -1996 O O -A O O -farm O O -used O O -the O O -proceeds O O -from O O -stolen O O -pigs O O -to O O -lavish O O -tips O O -on O O -dancers O O -at O O -strip O O -clubs O O -and O O -offered O O -one O O -$ O O -3 O O -to O O -pay O O -for O O -breast O O -imp O O -surgery O O -, O O -authorities O O -said O O -Friday O O -. O O -In O O -sent O O -Dar B-PER B-PER -V I-PER I-PER -, O O -38 O O -, O O -to O O -a O O -10 O O -prison O O -term O O -on O O -Thursday O O -, O O -Out B-LOC B-LOC -County I-ORG I-LOC -Circuit I-ORG O -Court I-ORG O -Judge O O -Dennis B-PER B-PER -Lu I-PER I-PER -said O O -he O O -was O O -" O O -a O O -thief O O -by O O -habit O O -. O O -" O O -" O O -You O O -are O O -self O O -. O O -You O O -are O O -na O O -, O O -" O O -Lu B-PER O -said O O -at O O -the O O -sent O O -, O O -adding O O -V B-PER B-PER -should O O -pay O O -rest O O -of O O -more O O -than O O -$ O O -100 O O -to O O -the O O -farming O O -family O O -who O O -had O O -hired O O -him O O -. O O -V B-PER B-PER -, O O -who O O -was O O -already O O -on O O -probation O O -for O O -prior O O -pig O O -theft O O -, O O -pleaded O O -that O O -he O O -was O O -trying O O -to O O -pay O O -bills O O -for O O -his O O -ex O O -and O O -children O O -. O O -But O O -the O O -court O O -heard O O -that O O -re O O -showed O O -much O O -of O O -the O O -money O O -went O O -to O O -dancers O O -at O O -strip O O -clubs O O -where O O -he O O -was O O -known O O -as O O -a O O -big O O -tip O O -. O O -One O O -strip O O -said O O -V B-PER B-PER -offered O O -to O O -give O O -her O O -$ O O -3 O O -for O O -breast O O -imp O O -surgery O O -. O O -Canadian B-MISC B-MISC -grain O O -statistics O O -weekly O O -. O O -CH B-ORG B-LOC -, O O -Dec O O -6 O O -( O O -Re B-ORG B-ORG -) O O -Statistics O O -for O O -the O O -week O O -ending O O -December O O -1 O O -in O O -000 O O -' O O -tonnes O O -. O O -- O O -Canadian B-ORG B-ORG -G I-ORG I-ORG -Commission I-ORG I-ORG -V O O -Su I-ORG O -Farmers I-ORG O -Del I-ORG O -C O O -W O O -Y O O -A O O -C O O -W O O -Y O O -to O O -Date O O -Y O O -A O O -W O O -43 O O -390 O O -288 O O -62 O O -55 O O -Du B-ORG O -116 O O -122 O O -44 O O -96 O O -106 O O -O B-ORG O -286 O O -28 O O -31 O O -93 O O -58 O O -Bar B-ORG O -107 O O -110 O O -178 O O -253 O O -1897 O O -R B-ORG O -44 O O -86 O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -NY B-ORG B-ORG -Henry B-ORG B-LOC -Hu I-ORG I-LOC -na O O -future O O -settled O O -significantly O O -lower O O -Friday O O -, O O -pressure O O -early O O -by O O -profit O O -taking O O -and O O -driven O O -even O O -lower O O -late O O -by O O -the O O -National B-ORG B-ORG -Weather I-ORG I-ORG -Service I-ORG I-ORG -' O O -bear O O -six O O -to O O -10 O O -day O O -forecast O O -, O O -sources O O -said O O -. O O -January O O -ended O O -29 O O -cents O O -lower O O -at O O -$ O O -3 O O -per O O -million O O -British B-MISC B-MISC -thermal O O -units O O -after O O -dipping O O -to O O -a O O -low O O -of O O -$ O O -3 O O -. O O -Feb O O -settled O O -down O O -22 O O -cents O O -at O O -$ O O -3 O O -. O O -Most O O -others O O -also O O -were O O -down O O -. O O -" O O -Weather O O -forecast O O -have O O -been O O -sketch O O -. O O -Now O O -the O O -National B-ORG B-ORG -Weather I-ORG I-ORG -Service I-ORG I-ORG -is O O -calling O O -for O O -above O O -temperatures O O -in O O -more O O -than O O -half O O -of O O -the O O -U B-LOC B-LOC -, O O -" O O -one O O -future O O -trader O O -said O O -. O O -In O O -its O O -forecast O O -, O O -the O O -NW B-ORG B-ORG -said O O -it O O -expects O O -above O O -temperatures O O -" O O -over O O -the O O -lower O O -48 O O -states O O -" O O -from O O -December O O -12 O O -through O O -December O O -16 O O -. O O -With O O -more O O -room O O -to O O -the O O -down O O -anticipated O O -early O O -next O O -week O O -, O O -traders O O -said O O -support O O -in O O -January O O -was O O -at O O -$ O O -3 O O -, O O -then O O -$ O O -3 O O -. O O -The O O -next O O -backs O O -were O O -seen O O -at O O -$ O O -3 O O -and O O -$ O O -3 O O -, O O -the O O -low O O -set O O -on O O -November O O -21 O O -. O O -Resistance O O -was O O -p O O -at O O -the O O -new O O -contract O O -high O O -of O O -$ O O -3 O O -. O O -In O O -the O O -cash O O -market O O -, O O -Gulf B-LOC B-LOC -Coast I-LOC I-LOC -prices O O -were O O -around O O -$ O O -3 O O -shortly O O -before O O -nomination O O -deadline O O -. O O -Mid B-MISC O -prices O O -were O O -similarly O O -lower O O -in O O -the O O -$ O O -3 O O -New B-LOC B-LOC -York I-LOC I-LOC -city O O -gate O O -gas O O -slipped O O -into O O -the O O -$ O O -4 O O -, O O -down O O -almost O O -15 O O -cents O O -. O O -NY B-ORG B-ORG -said O O -an O O -estimated O O -35 O O -Hu B-MISC O -contracts O O -traded O O -, O O -down O O -from O O -Thursday O O -' O O -revised O O -tally O O -of O O -43 O O -. O O -NY B-ORG B-ORG -Alberta I-ORG B-LOC -na O O -remained O O -un O O -, O O -with O O -January O O -settling O O -at O O -$ O O -1 O O -, O O -off O O -10 O O -cents O O -from O O -Thursday O O -. O O -Physical O O -prices O O -for O O -the O O -weekend O O -at O O -the O O -A B-ORG B-ORG -storage O O -hub O O -were O O -also O O -down O O -about O O -10 O O -cents O O -in O O -the O O -C B-MISC B-MISC -1 O O -per O O -gig O O -, O O -or O O -$ O O -1 O O -per O O -mm O O -range O O -, O O -pressure O O -by O O -un O O -mild O O -weather O O -in O O -western O O -Canada B-LOC B-LOC -. O O -NY B-MISC B-ORG -Per I-MISC B-MISC -na O O -, O O -also O O -un O O -, O O -ended O O -10 O O -cents O O -lower O O -at O O -$ O O -2 O O -. O O -In O O -con O O -with O O -future O O -, O O -Per B-MISC B-MISC -cash O O -prices O O -for O O -the O O -weekend O O -fell O O -more O O -than O O -10 O O -cents O O -to O O -the O O -high O O -- O O -$ O O -3 O O -On O O -the O O -KC B-MISC B-ORG -, O O -January O O -finished O O -26 O O -cents O O -lower O O -at O O -$ O O -3 O O -after O O -dipping O O -to O O -a O O -low O O -of O O -$ O O -3 O O -earlier O O -in O O -the O O -session O O -. O O -February O O -was O O -down O O -22 O O -cents O O -at O O -the O O -close O O -, O O -while O O -other O O -def O O -were O O -4 O O -to O O -nine O O -cents O O -lower O O -. O O -The O O -East B-MISC O -/ O O -West B-LOC O -spread O O -narrowed O O -by O O -3 O O -cents O O -to O O -13 O O -cents O O -( O O -NY B-MISC B-ORG -premium O O -) O O -. O O -Physical O O -prices O O -at O O -W B-LOC B-LOC -for O O -the O O -weekend O O -lost O O -more O O -than O O -15 O O -cents O O -to O O -the O O -low O O -$ O O -3 O O -as O O -mild O O -weather O O -moved O O -into O O -the O O -Southwest B-LOC O -. O O -- O O -H B-PER B-PER -M I-PER I-PER -, O O -New B-ORG B-ORG -York I-ORG I-ORG -Power I-ORG I-ORG -Des I-ORG I-ORG -+ O O -U B-LOC B-LOC -barge O O -lightly O O -quoted O O -on O O -call O O -session O O -. O O -ST B-LOC B-LOC -L O I-LOC -1996 O O -U B-LOC B-LOC -barge O O -rates O O -were O O -lightly O O -quoted O O -Friday O O -on O O -the O O -St B-ORG B-LOC -Louis I-ORG I-LOC -Merchant I-ORG O -Exchange I-ORG O -call O O -session O O -. O O -No O O -barge O O -traded O O -versus O O -no O O -trades O O -Thursday O O -. O O -- O O -Two O O -barge O O -next O O -week O O -Illinois B-LOC B-LOC -bid O O -at O O -a O O -steady O O -130 O O -percent O O -of O O -ta O O -, O O -offered O O -at O O -135 O O -percent O O -. O O -- O O -One O O -barge O O -, O O -week O O -of O O -December O O -15 O O -, O O -lower O O -Ohio B-LOC B-LOC -bid O O -2 O O -points O O -higher O O -at O O -105 O O -percent O O -, O O -no O O -offer O O -. O O -Two O O -barge O O -, O O -week O O -of O O -January O O -5 O O -, O O -Illinois B-LOC B-LOC -, O O -offered O O -five O O -points O O -lower O O -at O O -195 O O -percent O O -, O O -bid O O -at O O -150 O O -percent O O -. O O -- O O -Five O O -barge O O -, O O -30 O O -open O O -, O O -mid O B-MISC -( O O -McGregor B-LOC B-PER -and O O -south O O -) O O -bid O O -at O O -160 O O -percent O O -, O O -offered O O -at O O -170 O O -percent O O -, O O -no O O -comparisons O O -. O O -- O O -36 O O -barge O O -, O O -two O O -each O O -week O O -May O O -, O O -Illinois B-LOC B-LOC -, O O -offered O O -at O O -130 O O -percent O O -of O O -ta O O -, O O -no O O -bid O O -or O O -comparison O O -. O O -- O O -36 O O -barge O O -, O O -two O O -each O O -week O O -May O O -, O O -mid B-LOC B-MISC -offered O O -at O O -a O O -steady O O -135 O O -percent O O -, O O -bid O O -at O O -120 O O -percent O O -( O O -basis O O -one O O -each O O -week O O -) O O -. O O -- O O -Chicago B-LOC B-LOC -news O O -312 O O -87 O O -CB B-ORG B-ORG -grain O O -/ O O -oils O O -re O O -and O O -shipment O O -. O O -CH B-LOC B-LOC -1996 O O -G O O -and O O -so O O -re O O -and O O -shipment O O -, O O -in O O -bush O O -, O O -at O O -delivery O O -locations O O -for O O -the O O -previous O O -trading O O -day O O -, O O -according O O -to O O -the O O -Chicago B-ORG B-ORG -Board I-ORG I-ORG -of I-ORG I-ORG -Trade I-ORG I-ORG -- O O -Re O O -Ship I-ORG O -W I-ORG O -Chicago I-ORG B-LOC -0 O O -0 O O -St B-ORG B-LOC -Louis O I-LOC -21 O O -0 O O -Toledo B-ORG B-LOC -61 O O -0 O O -Co B-ORG O -Chicago I-ORG B-LOC -78 O O -0 O O -St B-ORG B-LOC -Louis O I-LOC -217 O O -75 O O -Toledo B-ORG B-LOC -285 O O -56 O O -O B-ORG O -Chicago I-ORG B-LOC -0 O O -0 O O -Minneapolis B-ORG B-LOC -306 O O -153 O O -So B-ORG O -Chicago I-ORG B-LOC -8 O O -48 O O -St B-ORG B-LOC -Louis I-ORG I-LOC -253 O O -WA B-LOC B-LOC -1996 O O -President O O -Clinton B-PER B-PER -aims O O -to O O -hold O O -more O O -news O O -conferences O O -in O O -his O O -second O O -term O O -and O O -will O O -have O O -one O O -Dec O O -13 O O -, O O -the O O -White B-LOC B-LOC -House I-LOC I-LOC -said O O -Friday O O -. O O -The O O -president O O -had O O -only O O -two O O -formal O O -, O O -full O O -news O O -conferences O O -last O O -year O O -, O O -one O O -in O O -January O O -and O O -one O O -after O O -he O O -won O O -re O O -in O O -November O O -, O O -although O O -he O O -had O O -various O O -other O O -limited O O -sessions O O -with O O -the O O -press O O -. O O -White B-LOC B-LOC -House I-LOC I-LOC -spokesman O O -Mike B-PER B-PER -M I-PER I-PER -said O O -Clinton B-PER B-PER -" O O -plans O O -to O O -have O O -regular O O -news O O -conferences O O -" O O -during O O -his O O -second O O -term O O -. O O -But O O -when O O -asked O O -how O O -frequent O O -these O O -would O O -be O O -, O O -he O O -was O O -e O O -, O O -saying O O -, O O -" O O -periodic O O -, O O -occasional O O -. O O -" O O -" O O -He O O -enjoys O O -the O O -give O O -and O O -take O O -" O O -with O O -reporters O O -, O O -the O O -spokesman O O -added O O -. O O -Action O O -Performance I-ORG O -to O O -acquire O O -firms O O -. O O -T B-LOC B-LOC -, O O -Ari B-LOC B-LOC -. O O -1996 O O -Action B-ORG B-ORG -Performance I-ORG I-ORG -Co I-ORG I-ORG -Inc I-ORG I-ORG -said O O -Friday O O -it O O -has O O -agreed O O -to O O -acquire O O -Motors B-ORG B-ORG -Tradition I-ORG I-ORG -Ltd I-ORG I-ORG -and O O -Creative B-ORG B-ORG -Marketing I-ORG I-ORG -& I-ORG I-ORG -Promotion I-ORG I-ORG -Inc I-ORG I-ORG -for O O -about O O -$ O O -13 O O -million O O -in O O -cash O O -and O O -stock O O -. O O -The O O -two O O -firms O O -to O O -be O O -acquired O O -have O O -about O O -$ O O -25 O O -million O O -in O O -annual O O -revenues O O -from O O -the O O -design O O -, O O -manufacture O O -and O O -sale O O -and O O -distribution O O -of O O -licensed O O -motors O O -products O O -. O O -The O O -deal O O -is O O -expected O O -to O O -close O O -by O O -the O O -end O O -of O O -the O O -year O O -subject O O -to O O -due O O -di O O -and O O -other O O -customary O O -closing O O -conditions O O -. O O -Half O O -of O O -dog O O -bites O O -provoked O O -, O O -says O O -American B-MISC B-MISC -ve O O -. O O -CH B-LOC B-LOC -1996 O O -As O O -many O O -as O O -1 O O -million O O -dog O O -bites O O -are O O -recorded O O -in O O -the O O -United B-LOC B-LOC -States I-LOC I-LOC -every O O -year O O -and O O -half O O -of O O -them O O -are O O -provoked O O -by O O -humans O O -, O O -a O O -ve O O -told O O -fellow O O -animal O O -doctors O O -on O O -Friday O O -. O O -The O O -Human B-ORG O -Society I-ORG O -of I-ORG O -the I-ORG O -United I-ORG B-LOC -States I-ORG I-LOC -estimates O O -that O O -between O O -500 O O -and O O -one O O -million O O -bites O O -are O O -delivered O O -by O O -dogs O O -each O O -year O O -, O O -more O O -than O O -half O O -of O O -which O O -are O O -suffered O O -by O O -children O O -. O O -" O O -Most O O -bites O O -can O O -be O O -prevented O O -by O O -teaching O O -children O O -how O O -to O O -respect O O -a O O -dog O O -, O O -" O O -Michael B-PER B-PER -Co I-PER I-PER -of O O -the O O -Glen B-LOC B-ORG -Animal I-LOC I-ORG -Hospital I-LOC I-ORG -in O O -Columbus B-LOC B-LOC -, O O -Ohio I-LOC B-LOC -, O O -told O O -the O O -annual O O -meeting O O -of O O -the O O -American B-ORG B-ORG -Veterinary I-ORG I-ORG -Medical I-ORG I-ORG -Association I-ORG I-ORG -. O O -" O O -Let O O -' O O -not O O -let O O -our O O -kids O O -jump O O -on O O -them O O -or O O -crawl O O -on O O -them O O -. O O -Dogs O O -and O O -children O O -do O O -n O O -have O O -to O O -have O O -an O O -interaction O O -. O O -Let O O -' O O -respect O O -their O O -territories O O -, O O -" O O -he O O -said O O -. O O -Co B-PER B-PER -said O O -50 O O -percent O O -of O O -reported O O -bites O O -were O O -provoked O O -by O O -a O O -person O O -and O O -60 O O -percent O O -were O O -suffered O O -by O O -children O O -. O O -He O O -also O O -estimated O O -that O O -only O O -25 O O -percent O O -of O O -bites O O -were O O -reported O O -because O O -medical O O -attention O O -was O O -not O O -needed O O -. O O -Don B-PER B-PER -R I-PER I-PER -, O O -president O O -of O O -the O O -National B-ORG B-ORG -Animal I-ORG I-ORG -Control I-ORG I-ORG -Association I-ORG I-ORG -, O O -said O O -aggressive O O -in O O -dogs O O -was O O -related O O -more O O -to O O -gender O O -than O O -breed O O -and O O -a O O -male O O -dog O O -that O O -had O O -not O O -been O O -ne O O -was O O -three O O -times O O -more O O -likely O O -to O O -bite O O -than O O -an O O -un O O -female O O -. O O -The O O -five O O -breeds O O -credited O O -with O O -the O O -most O O -incidents O O -were O O -ch O O -ch O O -, O O -R B-MISC B-MISC -, O O -German B-MISC B-MISC -she O I-MISC -, O O -cock O B-MISC -span O I-MISC -and O O -Dal B-MISC B-MISC -. O O -" O O -The O O -trends O O -in O O -dog O O -bites O O -by O O -particular O O -breeds O O -have O O -more O O -to O O -do O O -with O O -f O O -pets O O -owned O O -by O O -individuals O O -who O O -need O O -to O O -have O O -something O O -unique O O -. O O -Speaking O O -strictly O O -of O O -dogs O O -, O O -15 O O -years O O -ago O O -the O O -mac O O -f O O -pet O O -was O O -a O O -Do B-MISC B-MISC -. O O -Today O O -, O O -R B-MISC B-MISC -are O O -on O O -the O O -way O O -up O O -, O O -" O O -R B-PER B-PER -said O O -. O O -If O O -approached O O -by O O -a O O -stray O O -dog O O -, O O -children O O -should O O -be O O -taught O O -to O O -stand O O -still O O -with O O -fists O O -folded O O -underneath O O -the O O -neck O O -, O O -elbows O O -in O O -, O O -and O O -gaze O O -forward O O -until O O -the O O -dog O O -goes O O -away O O -. O O -Iowa B-MISC B-LOC -Min I-MISC B-LOC -feed O O -cattle O O -market O O -not O O -tested O O -USD B-ORG B-ORG -. O O -DE B-LOC B-LOC -M I-LOC I-LOC -1996 O O -St O O -and O O -he O O -were O O -not O O -tested O O -, O O -compared O O -with O O -Thursday O O -' O O -close O O -, O O -USD B-ORG B-ORG -said O O -. O O -Report O O -sales O O -for O O -Fr B-MISC O -None O O -. O O -Week O O -to O O -Date O O -- O O -None O O -. O O -( O O -( O O -Chicago B-LOC B-LOC -news O O -312 O O -) O O -) O O -Nebraska B-LOC B-LOC -fed O O -cattle O O -round O O -- O O -USD B-ORG B-ORG -. O O -O B-LOC B-LOC -1996 O O -S O O -steer O O -and O O -he O O -were O O -not O O -established O O -Thursday O O -. O O -De O O -limited O O -. O O -Se O O -interest O O -light O O -. O O -- O O -USD B-ORG B-ORG -Thursday O O -200 O O -Last O O -Week O O -Holiday O O -Last O O -Year O O -N O O -/ O O -A O O -Week O O -to O O -Date O O -3 O O -S B-MISC O -P O O -L O O -W O O -800 O O -S O O -P O O -L O O -Y O O -N O O -/ O O -A O O -Dr O O -Ba O O -Del O O -not O O -well O O -tested O O -. O O -Dr O O -Ba O O -St O O -: O O -Few O O -Select O O -and O O -Choice O O -2 O O -, O O -1200 O O -lbs O O -112 O O -; O O -load O O -early O O -114 O O -. O O -Dr O O -Ba O O -He O O -: O O -Few O O -Select O O -and O O -Choice O O -2 O O -, O O -1100 O O -lbs O O -112 O O -. O O -Four O O -Africans B-MISC B-MISC -said O O -to O O -v O O -for O O -top O O -U B-ORG B-ORG -post O O -. O O -Evelyn B-PER B-PER -Leopold I-PER I-PER -UN B-LOC B-ORG -N I-LOC I-ORG -1996 O O -Four O O -African B-MISC B-MISC -states O O -are O O -ready O O -to O O -nominate O O -candidates O O -for O O -the O O -post O O -of O O -U B-ORG B-ORG -secretary O O -on O O -Friday O O -now O O -that O O -Bo B-PER B-PER -Bo I-PER I-PER -has O O -temporarily O O -put O O -aside O O -his O O -bid O O -for O O -re O O -. O O -The O O -nominees O O -, O O -according O O -to O O -diplomat O O -, O O -are O O -: O O -Ko B-PER B-PER -Anna I-PER I-PER -of O O -Ghana B-LOC B-LOC -, O O -the O O -U B-ORG B-ORG -under O O -for O O -peace O O -; O O -Ahmed B-PER B-PER -O I-PER I-PER -Abd I-PER I-PER -of O O -Ma B-LOC B-LOC -, O O -the O O -former O O -U B-ORG B-ORG -special O O -en O O -for O O -B B-LOC B-LOC -; O O -Amar B-PER B-PER -E I-PER I-PER -of O O -the O O -Ivory B-LOC B-LOC -Coast I-LOC I-LOC -, O O -its O O -foreign O O -minister O O -and O O -the O O -U B-ORG B-ORG -General I-ORG I-ORG -Assembly I-ORG I-ORG -president O O -in O O -1994 O O -; O O -and O O -Ham B-PER B-PER -Al I-PER I-PER -of O O -Niger B-LOC B-LOC -, O O -the O O -secretary O O -of O O -the O O -Organisation B-ORG B-ORG -of I-ORG I-ORG -the I-ORG I-ORG -Islamic I-ORG I-ORG -Conference I-ORG I-ORG -. O O -Representatives O O -of O O -the O O -U B-ORG B-ORG -missions O O -of O O -Ghana B-LOC B-LOC -, O O -the O O -Ivory B-LOC B-LOC -Coast I-LOC I-LOC -, O O -Ma B-LOC B-LOC -and O O -Niger B-LOC B-LOC -have O O -scheduled O O -a O O -meeting O O -with O O -Security B-ORG B-ORG -Council I-ORG I-ORG -president O O -Paolo B-PER B-PER -Fu I-PER I-PER -of O O -Italy B-LOC B-LOC -to O O -hand O O -in O O -the O O -nominations O O -in O O -writing O O -, O O -the O O -en O O -said O O -. O O -It O O -was O O -not O O -known O O -if O O -other O O -candidates O O -would O O -step O O -forward O O -. O O -Diploma O O -said O O -General O O -Joseph B-PER B-PER -G I-PER I-PER -of O O -Nigeria B-LOC B-LOC -, O O -a O O -U B-ORG B-ORG -General I-ORG I-ORG -Assembly I-ORG I-ORG -president O O -in O O -1989 O O -, O O -was O O -putting O O -forth O O -his O O -own O O -candidacy O O -without O O -being O O -nominated O O -by O O -his O O -country O O -. O O -Bo B-PER B-PER -on O O -Wednesday O O -opened O O -the O O -door O O -for O O -other O O -Africans B-MISC B-MISC -to O O -contest O O -his O O -job O O -by O O -saying O O -he O O -was O O -su O O -temporarily O O -his O O -candidacy O O -but O O -was O O -not O O -withdrawing O O -completely O O -from O O -the O O -race O O -. O O -His O O -supporters O O -said O O -this O O -meant O O -he O O -remained O O -a O O -candidate O O -in O O -case O O -the O O -race O O -reached O O -an O O -imp O O -. O O -The O O -United B-LOC B-LOC -States I-LOC I-LOC -on O O -Nov O O -19 O O -veto O O -his O O -bid O O -for O O -re O O -while O O -the O O -other O O -14 O O -Security B-ORG B-ORG -Council I-ORG I-ORG -members O O -supported O O -him O O -. O O -The O O -move O O -by O O -the O O -African B-MISC B-MISC -states O O -means O O -that O O -the O O -council O O -could O O -begin O O -voting O O -on O O -candidates O O -next O O -week O O -, O O -a O O -procedure O O -that O O -could O O -either O O -result O O -in O O -a O O -decision O O -or O O -turn O O -into O O -a O O -bitter O O -fight O O -with O O -veto O O -against O O -each O O -nominee O O -. O O -The O O -Security B-ORG B-ORG -Council I-ORG I-ORG -has O O -to O O -vote O O -on O O -a O O -new O O -secretary O O -and O O -then O O -seek O O -the O O -endorsement O O -of O O -the O O -185 O O -General B-ORG B-ORG -Assembly I-ORG I-ORG -before O O -December O O -31 O O -when O O -Bo B-PER B-PER -' O O -term O O -ex O O -. O O -Spain B-LOC B-LOC -' O O -police O O -seize O O -petrol O O -bombs O O -, O O -arrest O O -five O O -. O O -MA B-LOC B-LOC -1996 O O -Spanish B-MISC B-MISC -police O O -said O O -on O O -Friday O O -they O O -had O O -arrested O O -five O O -people O O -and O O -seized O O -more O O -than O O -90 O O -petrol O O -bombs O O -during O O -disturbance O O -after O O -a O O -protest O O -in O O -the O O -Basque B-MISC B-MISC -country O O -against O O -Spain B-LOC B-LOC -' O O -constitution O O -. O O -Hood O O -protesters O O -threw O O -burning O O -bottles O O -and O O -other O O -objects O O -at O O -police O O -in O O -Pam B-LOC B-LOC -after O O -the O O -protest O O -organised O O -by O O -Herr B-PER B-ORG -Bat I-PER I-ORG -, O O -the O O -political O O -wing O O -of O O -Basque B-MISC B-MISC -se O O -group O O -ET B-ORG B-ORG -. O O -Police O O -also O O -confiscated O O -eight O O -kg O O -( O O -18 O O -lb O O -) O O -of O O -screw O O -, O O -b O O -and O O -spray O O -paint O O -cans O O -. O O -The O O -protest O O -, O O -which O O -attracted O O -several O O -thousand O O -supporters O O -, O O -coincided O O -with O O -the O O -18th O O -anniversary O O -of O O -Spain B-LOC B-LOC -' O O -constitution O O -. O O -Mussolini B-PER B-PER -' O O -granddaughter O O -re O O -far O O -party O O -. O O -ROM B-LOC B-LOC -1996 O O -Al B-PER B-PER -Mussolini I-PER I-PER -, O O -the O O -granddaughter O O -of O O -Italy B-LOC B-LOC -' O O -F B-MISC O -dictator O O -Benito B-PER B-PER -Mussolini I-PER I-PER -, O O -said O O -on O O -Friday O O -she O O -had O O -rejoined O O -the O O -far O O -National B-ORG B-ORG -Alliance I-ORG I-ORG -( O O -AN B-ORG B-ORG -) O O -party O O -she O O -quit O O -over O O -policy O O -differences O O -last O O -month O O -. O O -" O O -I O O -' O O -gone O O -back O O -, O O -" O O -she O O -told O O -a O O -radio O O -show O O -shortly O O -after O O -AN B-ORG B-ORG -leader O O -G B-PER B-PER -Fin I-PER I-PER -, O O -who O O -was O O -being O O -interviewed O O -on O O -the O O -programme O O -, O O -said O O -the O O -row O O -had O O -been O O -resolved O O -. O O -" O O -He O O -did O O -n O O -want O O -to O O -lose O O -me O O -and O O -I O O -did O O -n O O -want O O -to O O -lose O O -him O O -. O O -" O O -Fin B-PER B-PER -told O O -state O O -radio O O -RA B-ORG B-LOC -he O O -met O O -Mussolini B-PER B-PER -thanks O O -to O O -the O O -good O O -offices O O -of O O -Giuseppe B-PER B-PER -Ta I-PER I-PER -, O O -AN B-ORG B-ORG -' O O -leader O O -in O O -the O O -Chamber B-ORG B-ORG -of I-ORG I-ORG -Deputies I-ORG I-ORG -( O O -lower O O -house O O -) O O -, O O -and O O -had O O -overcome O O -their O O -differences O O -. O O -Mussolini B-PER B-PER -, O O -33 O O -, O O -resigned O O -from O O -the O O -parliamentary O O -party O O -group O O -for O O -what O O -she O O -said O O -were O O -strictly O O -political O O -reasons O O -. O O -The O O -fiery O O -politician O O -, O O -who O O -is O O -also O O -a O O -niece O O -of O O -screen O O -star O O -Sophia B-PER B-PER -Lo I-PER I-PER -, O O -had O O -accused O O -AN B-ORG B-ORG -leaders O O -of O O -s O O -internal O O -party O O -debate O O -. O O -Mussolini B-PER B-PER -, O O -who O O -sits O O -in O O -the O O -Chamber B-ORG B-ORG -, O O -told O O -La B-ORG B-ORG -St I-ORG I-ORG -newspaper O O -last O O -month O O -after O O -quit O O -AN B-ORG B-ORG -' O O -parliamentary O O -party O O -that O O -she O O -was O O -considering O O -joining O O -the O O -neo B-MISC O -Social B-ORG B-ORG -Movement I-ORG I-ORG -( O O -MS B-ORG B-ORG -) O O -formed O O -by O O -some O O -of O O -the O O -Du B-PER O -' O O -World B-MISC B-MISC -War I-MISC I-MISC -Two I-MISC I-MISC -followers O O -. O O -German B-MISC B-MISC -Santa B-PER B-PER -in O O -bank O O -nearly O O -gets O O -arrested O O -. O O -H B-LOC B-LOC -, O O -Germany B-LOC B-LOC -1996 O O -A O O -Santa B-MISC B-PER -Claus I-MISC I-PER -distributing O O -presents O O -to O O -workers O O -in O O -a O O -German B-MISC B-MISC -bank O O -on O O -Friday O O -nearly O O -ended O O -up O O -behind O O -bars O O -when O O -a O O -passing O O -police O O -patrol O O -thought O O -he O O -was O O -a O O -r O O -in O O -disguise O O -. O O -The O O -man O O -, O O -doing O O -his O O -rounds O O -in O O -the O O -northern O O -city O O -of O O -Hanover B-LOC B-LOC -on O O -the O O -day O O -when O O -German B-MISC B-MISC -children O O -traditionally O O -receive O O -small O O -presents O O -from O O -Saint B-PER B-PER -Nicholas I-PER I-PER -, O O -convinced O O -police O O -eventually O O -that O O -he O O -was O O -genuine O O -. O O -Italy B-LOC B-LOC -commission O O -concludes O O -1997 O O -budget O O -examination O O -. O O -ROM B-LOC B-LOC -1996 O O -The O O -Italian B-MISC B-MISC -upper O O -house O O -Senate B-ORG B-ORG -budget O O -commission O O -has O O -concluded O O -its O O -examination O O -of O O -Italy B-LOC B-LOC -' O O -1997 O O -budget O O -, O O -and O O -it O O -will O O -approve O O -the O O -measure O O -officially O O -by O O -Saturday O O -. O O -From O O -Tuesday O O -, O O -the O O -full O O -assembly O O -of O O -the O O -Senate B-ORG B-ORG -will O O -start O O -its O O -examination O O -of O O -the O O -financial O O -package O O -. O O -- O O -Milan B-LOC B-LOC -news O O -+ O O -66 O O -EU B-LOC B-ORG -, O O -Poland B-LOC B-LOC -agree O O -on O O -oil O O -import O O -ta O O -. O O -BR B-LOC B-LOC -1996 O O -The O O -European B-ORG B-ORG -Union I-ORG I-ORG -and O O -Poland B-LOC B-LOC -have O O -resolved O O -disagreements O O -over O O -a O O -new O O -Polish B-MISC B-MISC -oil O O -import O O -regime O O -, O O -the O O -European B-ORG B-ORG -Commission I-ORG I-ORG -said O O -on O O -Friday O O -. O O -The O O -EU B-ORG B-ORG -had O O -objected O O -to O O -increases O O -in O O -Polish B-MISC B-MISC -ta O O -on O O -imports O O -of O O -gasoline O O -and O O -gas O O -products O O -introduced O O -on O O -January O O -1 O O -, O O -1996 O O -, O O -saying O O -they O O -con O O -levels O O -en O O -in O O -the O O -so O O -Europe B-LOC B-LOC -Agreement I-MISC O -between O O -the O O -EU B-ORG B-ORG -and O O -Poland B-LOC B-LOC -. O O -The O O -increases O O -were O O -aimed O O -at O O -protecting O O -the O O -Polish B-MISC B-MISC -market O O -while O O -helping O O -to O O -modern O O -the O O -local O O -oil O O -industry O O -. O O -" O O -The O O -EU B-ORG B-ORG -and O O -Poland B-LOC B-LOC -have O O -now O O -reached O O -a O O -final O O -settlement O O -regarding O O -issues O O -related O O -to O O -the O O -Polish B-MISC B-MISC -import O O -regime O O -in O O -the O O -oils O O -sector O O -, O O -" O O -the O O -Commission B-ORG B-ORG -said O O -in O O -a O O -statement O O -. O O -Under O O -the O O -agreement O O -, O O -Poland B-LOC B-LOC -will O O -a O O -all O O -oil O O -import O O -ta O O -by O O -2001 O O -, O O -remove O O -all O O -oil O O -price O O -controls O O -and O O -end O O -quantitative O O -restrictions O O -on O O -imports O O -by O O -January O O -1 O O -, O O -1997 O O -. O O -The O O -agreement O O -includes O O -the O O -early O O -p O O -and O O -modern O O -of O O -Polish B-MISC B-MISC -oil O O -re O O -, O O -which O O -will O O -be O O -obliged O O -to O O -offer O O -equal O O -treatment O O -to O O -all O O -buyers O O -. O O -The O O -EU B-ORG B-ORG -and O O -Poland B-LOC B-LOC -will O O -monitor O O -the O O -settlement O O -at O O -six O O -meetings O O -. O O -Hindu B-MISC B-MISC -party O O -forces O O -India B-LOC B-LOC -parliament O O -to O O -ad O O -. O O -NE B-LOC B-LOC -DE I-LOC I-LOC -1996 O O -Hindu B-MISC B-MISC -nationalists O O -forced O O -ad O O -of O O -India B-LOC B-LOC -' O O -lower O O -house O O -of O O -parliament O O -on O O -Friday O O -, O O -in O O -protest O O -against O O -a O O -proposal O O -to O O -observe O O -a O O -minute O O -' O O -silence O O -over O O -the O O -destruction O O -of O O -a O O -mosque O O -by O O -a O O -Hindu B-MISC B-MISC -mob O O -in O O -1992 O O -. O O -Members O O -of O O -the O O -Hindu B-MISC B-MISC -nationalist O O -Bharatiya B-ORG B-ORG -Janata I-ORG I-ORG -Party I-ORG I-ORG -( O O -B B-ORG B-ORG -) O O -shouted O O -pro B-MISC B-MISC -slogan O O -in O O -the O O -house O O -after O O -a O O -communist O O -deputy O O -made O O -the O O -proposal O O -in O O -re O O -of O O -the O O -Ba B-LOC O -mosque O O -, O O -which O O -was O O -r O O -on O O -December O O -6 O O -, O O -1992 O O -. O O -The O O -house O O -was O O -first O O -ad O O -for O O -two O O -hours O O -. O O -When O O -it O O -re O O -, O O -B B-ORG B-ORG -deputies O O -resumed O O -the O O -slogan O O -, O O -and O O -deputy O O -speaker O O -Sur B-PER B-PER -B I-PER I-PER -suspended O O -work O O -until O O -Monday O O -. O O -The O O -destruction O O -of O O -the O O -16th O O -mosque O O -in O O -the O O -northern O O -Indian B-MISC B-MISC -town O O -of O O -A B-LOC B-LOC -triggered O O -nationwide O O -Hindu B-MISC B-MISC -violence O O -in O O -which O O -more O O -than O O -3 O O -people O O -were O O -killed O O -. O O -Indian B-MISC B-MISC -officials O O -blame O O -revenge O O -Mo B-MISC B-MISC -underworld O O -gangs O O -in O O -Bombay B-LOC B-LOC -for O O -a O O -string O O -of O O -bombings O O -in O O -the O O -city O O -three O O -months O O -later O O -that O O -killed O O -260 O O -people O O -. O O -The O O -B B-ORG B-ORG -backs O O -a O O -hard O O -Hindu B-MISC B-MISC -campaign O O -to O O -build O O -a O O -temple O O -at O O -the O O -site O O -of O O -the O O -mosque O O -, O O -which O O -Hindus B-MISC B-MISC -believe O O -was O O -the O O -birthplace O O -of O O -the O O -Lord O O -Rama B-PER B-PER -. O O -The O O -campaign O O -cat O O -B B-ORG B-ORG -from O O -the O O -political O O -fringe O O -to O O -become O O -India B-LOC B-LOC -' O O -main O O -opposition O O -party O O -in O O -1991 O O -. O O -Indian B-MISC B-MISC -Sept O O -crude O O -oil O O -output O O -falls O O -to O O -2 O O -m O O -T O O -. O O -NE B-LOC B-LOC -DE I-LOC I-LOC -1996 O O -India B-LOC B-LOC -' O O -crude O O -petroleum O O -output O O -fell O O -to O O -2 O O -million O O -tonnes O O -in O O -September O O -from O O -2 O O -million O O -in O O -the O O -same O O -month O O -in O O -1995 O O -, O O -the O O -government O O -said O O -on O O -Friday O O -. O O -ST O O -O I-ORG O -Sept O O -Sept O O -Apr O O -Apr O O -1996 O O -1995 O O -1996 O O -1995 O O -C O O -petroleum O O -2 O O -2 O O -15 O O -17 O O -Petroleum O O -products O O -4 O O -5 O O -30 O O -29 O O -Note O O -- O O -Figure O O -are O O -in O O -thousands O O -of O O -tonnes O O -and O O -preliminary O O -. O O -L B-MISC B-LOC -CH O O -MA O O -GO O O -ON O O -W O O -W O O -W O O -. O O -BR B-LOC B-LOC -1996 O O -Luxembourg B-LOC B-LOC -' O O -traditional O O -Christmas O O -market O O -, O O -which O O -starts O O -on O O -Saturday O O -and O O -runs O O -to O O -December O O -24 O O -, O O -has O O -taken O O -to O O -the O O -world O O -wide O O -web O O -as O O -a O O -way O O -of O O -public O O -its O O -activities O O -. O O -The O O -web O O -site O O -( O O -http O O -) O O -gives O O -details O O -of O O -the O O -market O O -' O O -concert O O -programme O O -as O O -well O O -as O O -its O O -various O O -retailers O O -. O O -- O O -Brussels B-ORG B-ORG -News I-ORG I-ORG -+ O O -2 O O -287 O O -68 O O -, O O -F O O -+ O O -2 O O -230 O O -77 O O -London B-LOC B-LOC -coal O O -/ O O -ore O O -fixtures O O -. O O -L B-LOC B-LOC -1996 O O -CO B-LOC O -- O O -La B-LOC B-MISC -Peak I-LOC I-MISC -- O O -120 O O -tones O O -coal O O -Hay B-LOC B-LOC -Point I-LOC I-LOC -or O O -Newcastle B-LOC B-LOC -/ O O -Ka B-LOC B-LOC -20 O O -$ O O -5 O O -and O O -$ O O -5 O O -fi O O -respectively O O -40 O O -/ O O -28 O O -s O O -China B-ORG B-ORG -Steel I-ORG I-ORG -. O O -Royal B-ORG B-MISC -C I-ORG I-MISC -- O O -77 O O -tonnes O O -coal O O -Mara B-LOC B-LOC -/ O O -F B-LOC B-LOC -19 O O -$ O O -9 O O -fi O O -20 O O -s O O -/ O O -25 O O -s O O -Co B-ORG B-ORG -and O I-ORG -C B-ORG I-ORG -. O O -OR B-ORG O -- O O -I B-ORG O -T I-ORG O -- O O -70 O O -tonnes O O -Dam B-ORG B-LOC -/ O O -Ka B-LOC B-LOC -20 O O -$ O O -5 O O -fi O O -35 O O -s O O -/ O O -30 O O -s O O -China B-ORG B-ORG -Steel I-ORG I-ORG -. O O -UK B-LOC B-LOC -book O O -length O O -Conservative B-MISC B-MISC -victory O O -odds O O -. O O -L B-LOC B-LOC -1996 O O -UK B-LOC B-LOC -book O O -William B-PER B-PER -Hill I-PER I-PER -said O O -on O O -Friday O O -they O O -have O O -length O O -the O O -odds O O -of O O -a O O -Conservative B-MISC B-MISC -victory O O -in O O -the O O -next O O -general O O -election O O -from O O -9 O O -to O O -5 O O -. O O -William B-PER B-PER -Hill I-PER I-PER -said O O -the O O -odds O O -were O O -the O O -longest O O -they O O -had O O -been O O -for O O -six O O -months O O -. O O -The O O -Labour B-ORG B-ORG -opposition O O -are O O -now O O -1 O O -favourite O O -, O O -it O O -said O O -. O O -The O O -election O O -must O O -be O O -held O O -by O O -May O O -. O O -- O O -London B-ORG B-ORG -News I-ORG I-ORG -+ O O -171 O O -54 O O -Italy B-LOC B-LOC -tops O O -week O O -of O O -me O O -bond O O -returns O O -- O O -Sal B-PER B-ORG -. O O -L B-LOC B-LOC -1996 O O -High O O -Italy B-LOC B-LOC -topped O O -the O O -league O O -in O O -a O O -week O O -of O O -me O O -returns O O -on O O -government O O -bonds O O -, O O -Sal B-ORG B-ORG -Brothers I-ORG I-ORG -said O O -on O O -Friday O O -. O O -In O O -local O O -currency O O -terms O O -, O O -Italian B-MISC B-MISC -BT B-ORG O -offered O O -returns O O -of O O -0 O O -percent O O -in O O -the O O -week O O -ended O O -on O O -Thursday O O -, O O -with O O -fellow O O -high O O -Sweden B-LOC B-LOC -close O O -behind O O -on O O -0 O O -percent O O -. O O -The O O -weekly O O -government O O -bond O O -index O O -rose O O -0 O O -percent O O -in O O -local O O -currency O O -terms O O -. O O -France B-LOC B-LOC -managed O O -third O O -place O O -with O O -0 O O -percent O O -in O O -the O O -16 O O -world O O -government O O -bond O O -index O O -. O O -Canada B-LOC B-LOC -' O O -were O O -the O O -worst O O -performing O O -bonds O O -. O O -They O O -lost O O -2 O O -percent O O -, O O -depressed O O -by O O -a O O -wave O O -of O O -new O O -Canadian B-MISC B-MISC -supply O O -. O O -Return O O -on O O -T B-ORG B-MISC -were O O -also O O -in O O -negative O O -territory O O -at O O -minus O O -0 O O -percent O O -, O O -the O O -poor O O -result O O -after O O -Canada B-LOC B-LOC -and O O -British B-MISC B-MISC -g O O -which O O -lost O O -0 O O -percent O O -. O O -Australia B-LOC B-LOC -was O O -the O O -only O O -dollar O O -country O O -in O O -the O O -table O O -to O O -e O O -out O O -a O O -positive O O -return O O -, O O -albeit O O -a O O -p O O -0 O O -percent O O -. O O -German B-MISC B-MISC -B I-MISC O -were O O -not O O -much O O -better O O -, O O -offering O O -returns O O -of O O -0 O O -percent O O -, O O -while O O -Japanese B-MISC B-MISC -government O O -bonds O O -managed O O -a O O -0 O O -percent O O -gain O O -. O O -Spanish B-MISC B-MISC -bonds O O -, O O -which O O -had O O -been O O -top O O -performers O O -in O O -Sal B-ORG B-ORG -Brothers I-ORG I-ORG -' O O -league O O -table O O -for O O -November O O -as O O -a O O -whole O O -, O O -turned O O -in O O -a O O -more O O -subdued O O -weekly O O -performance O O -with O O -a O O -return O O -of O O -only O O -0 O O -percent O O -. O O -In O O -U B-LOC B-LOC -dollar O O -terms O O -, O O -Japan B-LOC B-LOC -was O O -the O O -only O O -country O O -to O O -give O O -positive O O -returns O O -at O O -1 O O -percent O O -. O O -France B-LOC B-LOC -lost O O -0 O O -percent O O -, O O -followed O O -by O O -Italy B-LOC B-LOC -on O O -minus O O -0 O O -percent O O -. O O -The O O -biggest O O -loser O O -in O O -dollar O O -terms O O -were O O -British B-MISC B-MISC -g O O -, O O -which O O -shed O O -3 O O -percent O O -, O O -Canada B-LOC B-LOC -with O O -minus O O -3 O O -percent O O -and O O -Australia B-LOC B-LOC -at O O -minus O O -1 O O -percent O O -. O O -Sal B-ORG B-ORG -' O O -bond O O -index O O -is O O -calculated O O -using O O -all O O -government O O -bonds O O -with O O -over O O -one O O -year O O -to O O -maturity O O -, O O -weighted O O -for O O -market O O -capital O O -. O O -Only O O -bonds O O -freely O O -available O O -to O O -institutional O O -investors O O -and O O -with O O -a O O -certain O O -minimum O O -amount O O -outstanding O O -are O O -included O O -. O O -Return O O -take O O -account O O -of O O -price O O -moves O O -and O O -a O O -interest O O -. O O -- O O -Stephen B-PER B-PER -Ni I-PER I-PER -, O O -International B-ORG B-ORG -Bond I-ORG I-ORG -+ O O -171 O O -63 O O -O B-ORG B-ORG -basket O O -price O O -$ O O -24 O O -on O O -Thursday O O -. O O -L B-LOC B-LOC -1996 O O -The O O -price O O -of O O -the O O -O B-ORG B-ORG -basket O O -of O O -seven O O -crude O O -stood O O -at O O -$ O O -24 O O -a O O -barrel O O -on O O -Thursday O O -, O O -against O O -$ O O -23 O O -on O O -Wednesday O O -, O O -the O O -O B-ORG B-ORG -news O O -agency O O -said O O -, O O -q O O -the O O -O B-ORG B-ORG -secret O O -. O O -The O O -basket O O -comprises O O -Algeria B-LOC B-LOC -' O O -Saharan B-MISC B-MISC -B I-MISC I-MISC -, O O -Indonesia B-LOC B-LOC -' O O -Minas B-LOC B-MISC -, O O -Nigeria B-LOC B-LOC -' O O -Bonn B-ORG B-MISC -Light I-ORG I-MISC -, O O -Saudi B-LOC B-LOC -Arabia I-LOC I-LOC -' O O -Arabian B-ORG B-MISC -Light I-ORG I-MISC -, O O -Dubai B-LOC B-MISC -of O O -the O O -UAE B-LOC B-LOC -, O O -Venezuela B-LOC B-LOC -' O O -T B-PER B-MISC -Juan I-PER I-MISC -and O O -Mexico B-LOC B-LOC -' O O -Is B-LOC B-MISC -. O O -- O O -London B-ORG B-ORG -News I-ORG I-ORG -+ O O -171 O O -54 O O -76 O O -Relations O O -between O O -Clarke B-PER B-PER -, O O -Major O B-PER -good O O -- O O -spokesman O O -. O O -L B-LOC B-LOC -1996 O O -Relations O O -between O O -Chancellor O O -of O O -the O O -Ex B-ORG O -Kenneth B-PER B-PER -Clarke I-PER I-PER -and O O -Prime O O -Minister O O -John B-PER B-PER -Major I-PER I-PER -are O O -good O O -despite O O -media O O -reports O O -of O O -a O O -rift O O -over O O -European B-MISC B-MISC -policy O O -, O O -a O O -spokesman O O -for O O -Major B-PER B-PER -' O O -office O O -said O O -on O O -Friday O O -. O O -Ask O O -about O O -the O O -reports O O -, O O -the O O -spokesman O O -said O O -: O O -" O O -Relations O O -are O O -good O O -. O O -" O O -Ask O O -about O O -Major B-PER B-PER -' O O -mood O O -after O O -a O O -day O O -of O O -media O O -speculation O O -about O O -his O O -political O O -fortunes O O -, O O -the O O -spokesman O O -said O O -: O O -" O O -He O O -is O O -re O O -. O O -He O O -is O O -getting O O -on O O -with O O -the O O -job O O -. O O -" O O -The O O -spokesman O O -said O O -he O O -was O O -not O O -aware O O -of O O -any O O -meetings O O -overnight O O -between O O -Clarke B-PER B-PER -and O O -Major B-PER B-PER -, O O -nor O O -of O O -any O O -talks O O -between O O -the O O -prime O O -minister O O -and O O -parliamentary O O -business O O -managers O O -. O O -Both O O -Major B-PER B-PER -and O O -Clarke B-PER B-PER -were O O -in O O -their O O -constituencies O O -on O O -Friday O O -. O O -Two O O -dead O O -after O O -executive O O -jet O O -crashes O O -in O O -Newfoundland B-LOC B-LOC -. O O -ST B-LOC B-LOC -, O O -Newfoundland B-LOC B-LOC -1996 O O -Two O O -people O O -were O O -killed O O -when O O -an O O -executive O O -jet O O -en O O -route O O -to O O -Ireland B-LOC B-LOC -from O O -Michigan B-LOC B-LOC -crashed O O -on O O -approach O O -to O O -an O O -airport O O -in O O -Stephen B-LOC B-LOC -, O O -Newfoundland B-LOC B-LOC -, O O -on O O -Friday O O -, O O -authorities O O -said O O -. O O -The O O -pilot O O -and O O -co O O -, O O -the O O -only O O -two O O -aboard O O -, O O -were O O -killed O O -in O O -the O O -crash O O -of O O -the O O -Lea B-MISC B-MISC -36 I-MISC I-MISC -, O O -airport O O -manager O O -David B-PER B-PER -Snow I-PER I-PER -said O O -in O O -a O O -telephone O O -interview O O -. O O -Snow O B-PER -said O O -the O O -plane O O -last O O -reported O O -to O O -air O O -traffic O O -control O O -at O O -about O O -3 O O -A B-MISC O -local O O -time O O -/ O O -1 O O -A B-MISC O -E O O -( O O -06 O O -GM B-MISC B-MISC -) O O -when O O -it O O -began O O -its O O -final O O -approach O O -about O O -10 O O -miles O O -( O O -16 O O -km O O -) O O -from O O -the O O -airport O O -in O O -this O O -east O O -coast O O -Canadian B-MISC B-MISC -province O O -. O O -That O O -was O O -the O O -last O O -communication O O -the O O -aircraft O O -made O O -with O O -the O O -airport O O -, O O -he O O -added O O -. O O -" O O -We O O -considered O O -it O O -as O O -being O O -missing O O -until O O -about O O -06 O O -( O O -4 O O -A B-MISC O -E O O -) O O -( O O -09 O O -GM B-MISC B-MISC -) O O -. O O -That O O -' O O -when O O -the O O -wreckage O O -was O O -discovered O O -, O O -" O O -Snow B-PER B-PER -said O O -. O O -He O O -said O O -the O O -cargo O O -flight O O -originated O O -in O O -Grand B-LOC B-LOC -Rapids I-LOC I-LOC -, O O -Michigan B-LOC B-LOC -, O O -and O O -was O O -due O O -to O O -stop O O -at O O -Stephen B-LOC B-LOC -for O O -re O O -before O O -going O O -to O O -Shannon B-LOC B-LOC -, O O -Ireland B-LOC B-LOC -. O O -The O O -cause O O -of O O -the O O -crash O O -was O O -not O O -yet O O -known O O -. O O -In O O -were O O -due O O -to O O -fly O O -to O O -Stephen B-LOC B-LOC -later O O -on O O -Friday O O -. O O -P B-ORG B-ORG -says O O -Ara B-PER B-PER -, O O -Net B-PER B-PER -could O O -meet O O -Saturday O O -. O O -J B-LOC B-LOC -1996 O O -P B-ORG B-ORG -ne O O -said O O -on O O -Friday O O -Palestinian B-MISC B-MISC -President O O -Ya B-PER B-PER -Ara I-PER I-PER -, O O -Israeli B-MISC B-MISC -Prime O O -Minister O O -Benjamin B-PER B-PER -Net I-PER I-PER -and O O -Egyptian B-MISC B-MISC -President O O -Ho B-PER B-PER -Mu I-PER I-PER -might O O -all O O -meet O O -on O O -Saturday O O -to O O -try O O -to O O -c O O -a O O -deal O O -on O O -Israel B-LOC B-LOC -' O O -hand O O -of O O -He B-LOC B-LOC -to O O -the O O -P B-ORG B-ORG -. O O -" O O -It O O -is O O -very O O -possible O O -that O O -Ara B-PER B-PER -and O O -Net B-PER B-PER -will O O -meet O O -in O O -Cairo B-LOC B-LOC -on O O -Saturday O O -. O O -There O O -is O O -work O O -on O O -arranging O O -such O O -a O O -meeting O O -hosted O O -by O O -President O O -Mu B-PER B-PER -, O O -" O O -one O O -P B-ORG B-ORG -official O O -, O O -who O O -requested O O -an O O -, O O -told O O -Re B-ORG B-ORG -. O O -Israeli B-MISC B-MISC -officials O O -said O O -no O O -meeting O O -had O O -yet O O -been O O -set O O -. O O -Ara B-PER B-PER -' O O -adviser O O -Na B-PER B-PER -Abu I-PER I-PER -Rd I-PER I-PER -said O O -: O O -" O O -President O O -Ara B-PER B-PER -is O O -ready O O -to O O -meet O O -Prime O O -Minister O O -Net B-PER B-PER -but O O -no O O -time O O -or O O -date O O -has O O -been O O -set O O -for O O -such O O -a O O -meeting O O -yet O O -. O O -" O O -President O O -Ara B-PER B-PER -' O O -position O O -is O O -clear O O -that O O -such O O -a O O -meeting O O -should O O -come O O -after O O -successful O O -negotiations O O -so O O -that O O -the O O -meeting O O -would O O -have O O -positive O O -results O O -. O O -Especially O O -since O O -the O O -He B-LOC B-LOC -issue O O -has O O -not O O -been O O -agreed O O -yet O O -and O O -the O O -crucial O O -disputed O O -issues O O -have O O -not O O -been O O -resolved O O -. O O -" O O -But O O -Rd B-PER B-PER -said O O -Ara B-PER B-PER -would O O -go O O -to O O -Cairo B-LOC B-LOC -on O O -Saturday O O -for O O -talks O O -with O O -Mu B-PER B-PER -. O O -Both O O -Ara B-PER B-PER -and O O -Net B-PER B-PER -have O O -expressed O O -willingness O O -to O O -meet O O -. O O -They O O -last O O -met O O -in O O -Washington B-LOC B-LOC -after O O -clashes O O -in O O -September O O -that O O -killed O O -60 O O -Palestinians B-MISC B-MISC -and O O -15 O O -Israeli B-MISC B-MISC -. O O -The O O -violence O O -was O O -spurred O O -by O O -Israel B-LOC B-LOC -' O O -opening O O -an O O -entrance O O -to O O -a O O -tunnel O O -near O O -Mo B-MISC B-MISC -sites O O -in O O -Jerusalem B-LOC B-LOC -. O O -The O O -Palestine B-ORG B-ORG -Liberation I-ORG I-ORG -Organisation I-ORG I-ORG -( O O -P B-ORG B-ORG -) O O -ne O O -said O O -the O O -last O O -two O O -weeks O O -of O O -talks O O -with O O -Israel B-LOC B-LOC -on O O -implementing O O -the O O -long O O -hand O O -of O O -most O O -of O O -He B-LOC B-LOC -to O O -P B-ORG B-ORG -rule O O -had O O -been O O -" O O -meaning O O -" O O -, O O -ne O O -an O O -Ara B-PER O -meeting O O -. O O -Mu B-PER B-PER -' O O -adviser O O -O B-PER B-PER -el I-PER I-PER -said O O -on O O -Thursday O O -there O O -were O O -efforts O O -to O O -arrange O O -a O O -meeting O O -between O O -the O O -Israeli B-MISC B-MISC -and O O -Palestinian B-MISC B-MISC -leaders O O -. O O -Palestinian B-ORG B-ORG -Authority I-ORG I-ORG -Secretary O O -General O O -Ahmed B-PER B-PER -Abd I-PER I-PER -said O O -on O O -Thursday O O -he O O -understood O O -it O O -could O O -be O O -held O O -in O O -Cairo B-LOC B-LOC -either O O -on O O -Friday O O -or O O -Sunday O O -. O O -Abd B-PER B-PER -had O O -said O O -on O O -Thursday O O -he O O -did O O -not O O -think O O -Saturday O O -would O O -be O O -the O O -date O O -because O O -it O O -is O O -the O O -Jewish B-MISC B-MISC -sa O O -. O O -But O O -the O O -Jewish B-MISC B-MISC -sa O O -ends O O -at O O -sun O O -, O O -so O O -a O O -night O O -meeting O O -would O O -not O O -interfere O O -with O O -the O O -religious O O -o O O -. O O -Turkey B-LOC B-LOC -hind O O -by O O -own O O -land O O -on O O -Syrian B-MISC B-MISC -border O O -. O O -AN B-LOC B-LOC -1996 O O -Turkey B-LOC B-LOC -' O O -efforts O O -to O O -prevent O O -Kurdish B-MISC B-MISC -rebels O O -and O O -smug O O -in O O -from O O -Syria B-LOC B-LOC -are O O -being O O -badly O O -hind O O -because O O -the O O -military O O -does O O -not O O -have O O -a O O -map O O -of O O -its O O -own O O -mine O O -on O O -the O O -border O O -, O O -a O O -commission O O -of O O -parliament O O -said O O -. O O -" O O -It O O -is O O -not O O -known O O -exactly O O -where O O -the O O -mines O O -have O O -been O O -so O O -because O O -a O O -mine O O -chart O O -cannot O O -be O O -found O O -, O O -" O O -the O O -commission O O -said O O -in O O -a O O -report O O -on O O -border O O -protection O O -. O O -The O O -report O O -, O O -to O O -be O O -debated O O -in O O -parliament O O -in O O -coming O O -weeks O O -, O O -was O O -seen O O -by O O -Re B-ORG B-ORG -on O O -Friday O O -. O O -" O O -Official O O -say O O -the O O -mine O O -present O O -an O O -obstacle O O -to O O -the O O -security O O -forces O O -, O O -" O O -it O O -said O O -. O O -It O O -said O O -Kurdistan B-ORG B-ORG -Workers I-ORG I-ORG -Party I-ORG I-ORG -( O O -P B-ORG B-ORG -) O O -guerrilla O O -sometimes O O -know O O -the O O -layout O O -of O O -mined O O -areas O O -along O O -the O O -border O O -better O O -than O O -the O O -security O O -forces O O -. O O -" O O -Terror O O -and O O -smug O O -have O O -dug O O -up O O -the O O -mines O O -, O O -def O O -them O O -and O O -opened O O -up O O -wide O O -paths O O -in O O -some O O -areas O O -. O O -They O O -can O O -come O O -in O O -and O O -out O O -easily O O -as O O -the O O -mine O O -are O O -not O O -an O O -obstacle O O -, O O -" O O -it O O -said O O -. O O -An O O -armed O O -forces I-ORG O -spokesman O O -was O O -not O O -available O O -for O O -comment O O -. O O -Turkey B-LOC B-LOC -says O O -Syria B-LOC B-LOC -sponsors O O -the O O -P B-ORG B-ORG -, O O -fighting O O -for O O -Kurdish B-MISC B-MISC -self O O -in O O -southeast O O -Turkey B-LOC B-LOC -. O O -Damascus B-LOC B-LOC -denies O O -aid O O -the O O -rebels O O -. O O -The O O -P B-ORG B-ORG -also O O -crosses O O -into O O -Turkey B-LOC B-LOC -from O O -bases O O -in O O -the O O -mountains O O -of O O -northern O O -Iraq B-LOC B-LOC -. O O -More O O -than O O -21 O O -people O O -have O O -died O O -in O O -the O O -12 O O -conflict O O -. O O -Three O O -dead O O -in O O -Ku B-MISC B-MISC -militia O O -blood O O -feud O O -in O O -Turkey B-LOC B-LOC -. O O -D B-LOC B-LOC -, O O -Turkey B-LOC B-LOC -1996 O O -Three O O -people O O -were O O -killed O O -on O O -Friday O O -in O O -a O O -gun O O -battle O O -between O O -rival O O -groups O O -of O O -anti O O -militia O O -on O O -the O O -streets O O -of O O -this O O -southeastern O O -Turkish B-MISC B-MISC -city O O -, O O -police O O -said O O -. O O -Four O O -others O O -were O O -wounded O O -in O O -the O O -clash O O -, O O -caused O O -by O O -a O O -blood O O -feud O O -between O O -two O O -families O O -, O O -the O O -Ke B-PER B-PER -and O O -Kara B-PER B-PER -, O O -serving O O -as O O -state O O -village O O -guards O O -against O O -Kurdish B-MISC B-MISC -rebels O O -. O O -Police O O -said O O -the O O -guards O O -fired O O -automatic O O -weapons O O -at O O -each O O -other O O -. O O -One O O -of O O -the O O -dead O O -was O O -a O O -civilian O O -pass O O -. O O -The O O -role O O -of O O -the O O -70 O O -mainly O O -Kurdish B-MISC B-MISC -village O O -guards O O -who O O -fight O O -Kurdistan B-ORG B-ORG -Workers I-ORG I-ORG -Party I-ORG I-ORG -( O O -P B-ORG B-ORG -) O O -guerrilla O O -in O O -the O O -southeast O O -has O O -been O O -questioned O O -recently O O -after O O -media O O -allegations O O -that O O -many O O -of O O -them O O -are O O -involved O O -in O O -common O O -crime O O -. O O -The O O -head O O -of O O -the O O -region O O -' O O -main O O -pro O O -militia O O -is O O -at O O -the O O -centre O O -of O O -a O O -security O O -scandal O O -that O O -has O O -shaken O O -the O O -government O O -. O O -More O O -than O O -21 O O -people O O -have O O -been O O -killed O O -in O O -the O O -12 O O -conflict O O -between O O -Turkish B-MISC B-MISC -security O O -forces O O -and O O -the O O -P B-ORG B-ORG -, O O -fighting O O -for O O -Kurdish B-MISC B-MISC -autonomy O O -or O O -independence O O -. O O -Texas B-LOC B-LOC -/ O O -w O O -Ok B-LOC B-LOC -fed O O -cattle O O -round O O -- O O -USD B-ORG B-ORG -. O O -AM B-LOC B-LOC -1996 O O -Trade O O -very O O -slow O O -in O O -the O O -Pan B-LOC B-LOC -area O O -Thursday O O -. O O -S O O -steer O O -and O O -he O O -not O O -well O O -tested O O -. O O -Fe O O -reporting O O -light O O -inquiry O O -from O O -buyers O O -. O O -- O O -USD B-ORG B-ORG -Thursday O O -200 O O -Week O O -A O O -Holiday O O -Year O O -A O O -10 O O -W O O -to O O -Date O O -69 O O -Week O O -A O O -58 O O -Year O O -A O O -30 O O -Sales O O -reported O O -on O O -200 O O -head O O -steer O O -; O O -69 O O -head O O -confirmed O O -for O O -week O O -to O O -date O O -which O O -includes O O -14 O O -formulated O O -and O O -3 O O -contracted O O -cattle O O -to O O -be O O -shipped O O -this O O -week O O -. O O -S B-ORG O -St I-ORG O -: O O -Pen B-MISC O -Select O O -and O O -Choice O O -2 O O -, O O -115 O O -lbs O O -67 O O -. O O -Pen O O -Select O O -, O O -few O O -choice O O -2 O O -115 O O -lbs O O -66 O O -. O O -Kansas B-LOC B-LOC -feed O O -cattle O O -round O O -- O O -USD B-ORG B-ORG -. O O -D B-LOC B-LOC -C I-LOC I-LOC -1996 O O -Trade O O -slow O O -. O O -Not O O -enough O O -slaughter O O -steer O O -or O O -he O O -sales O O -confirmed O O -for O O -an O O -adequate O O -market O O -test O O -. O O -- O O -USD B-ORG B-ORG -Thursday O O -600 O O -week O O -ago O O -holiday O O -year O O -ago O O -14 O O -week O O -to O O -date O O -89 O O -week O O -ago O O -71 O O -year O O -ago O O -47 O O -Inquiry O O -good O O -, O O -demand O O -light O O -. O O -Sales O O -confirmed O O -on O O -500 O O -slaughter O O -steer O O -and O O -100 O O -slaughter O O -he O O -Thursday O O -. O O -For O O -the O O -week O O -to O O -date O O -89 O O -head O O -confirmed O O -including O O -30 O O -head O O -of O O -contracted O O -or O O -formulated O O -cattle O O -. O O -St B-ORG O -: O O -Select O O -and O O -Choice O O -2 O O -, O O -1200 O O -lbs O O -67 O O -. O O -He O O -: O O -Select O O -and O O -Choice O O -2 O O -, O O -115 O O -lbs O O -67 O O -. O O -Del B-ORG B-ORG -Hanover I-ORG I-ORG -weekly O O -municipal O O -bond O O -yields O O -. O O -Del B-ORG B-ORG -Hanover I-ORG I-ORG -weekly O O -m O O -bond O O -yields O O -calculated O O -Dec O O -5 O O -A B-ORG O -A I-ORG O -A I-ORG O -Ba I-ORG O -1997 O O -3 O O -3 O O -3 O O -3 O O -4 O O -4 O O -4 O O -4 O O -2001 O O -4 O O -4 O O -4 O O -4 O O -4 O O -4 O O -5 O O -5 O O -2006 O O -4 O O -4 O O -4 O O -4 O O -5 O O -5 O O -5 O O -5 O O -2011 O O -5 O O -5 O O -5 O O -5 O O -5 O O -5 O O -5 O O -5 O O -2016 O O -5 O O -5 O O -L B-LOC B-ORG -AN I-LOC I-ORG -1996 O O -U B-LOC B-LOC -energy O O -future O O -added O O -to O O -floor O O -session O O -gains O O -in O O -light O O -NY B-MISC B-MISC -ACC I-MISC I-MISC -trade O O -Thursday O O -, O O -as O O -forecast O O -for O O -colder O O -temperatures O O -in O O -di O O -Northeastern B-LOC O -markets O O -raised O O -supply O O -concerns O O -. O O -" O O -The O O -cold O O -weather O O -forecast O O -are O O -helping O O -right O O -now O O -, O O -" O O -a O O -trader O O -said O O -. O O -Earlier O O -, O O -NY B-ORG B-ORG -crude O O -ended O O -daytime O O -trade O O -78 O O -cents O O -higher O O -at O O -$ O O -25 O O -a O O -barrel O O -, O O -following O O -breakthrough O O -of O O -key O O -technical O O -levels O O -and O O -reports O O -of O O -tighter O O -supplies O O -. O O -Front O O -heating O O -oil O O -firm O O -0 O O -cents O O -a O O -gal O O -to O O -75 O O -cents O O -as O O -roughly O O -100 O O -lots O O -changed O O -hands O O -within O O -the O O -first O O -few O O -hours O O -of O O -ACC O B-MISC -. O O -About O O -112 O O -lots O O -were O O -exchanged O O -overall O O -, O O -traders O O -said O O -. O O -NY B-ORG B-ORG -gasoline O O -for O O -January O O -delivery O O -climbed O O -0 O O -cents O O -a O O -gal O O -to O O -69 O O -cents O O -as O O -a O O -light O O -33 O O -lots O O -traded O O -in O O -the O O -nearby O O -month O O -and O O -35 O O -moved O O -overall O O -. O O -January O O -crude O O -was O O -barely O O -changed O O -from O O -its O O -settlement O O -, O O -ed O O -up O O -one O O -cent O O -to O O -$ O O -25 O O -a O O -barrel O O -. O O -About O O -350 O O -lots O O -were O O -traded O O -for O O -January O O -and O O -87 O O -in O O -all O O -months O O -. O O -- O O -David B-PER B-PER -B I-PER I-PER -, O O -Los B-LOC B-LOC -Angeles I-LOC I-LOC -bureau O O -+ O O -213 O O -380 O O -2014 O O -U B-LOC B-LOC -blast O O -release O O -of O O -convicted O O -bomber O O -. O O -WA B-LOC B-LOC -1996 O O -The O O -United B-LOC B-LOC -States I-LOC I-LOC -Thursday O O -blasted O O -the O O -release O O -from O O -a O O -Greek B-MISC B-MISC -prison O O -of O O -a O O -Palestinian B-MISC B-MISC -guerrilla O O -convicted O O -of O O -bombing O O -an O O -airline O O -and O O -killing O O -a O O -teenager O O -in O O -1982 O O -, O O -saying O O -the O O -move O O -" O O -does O O -not O O -make O O -sense O O -. O O -" O O -" O O -All O O -of O O -us O O -who O O -have O O -been O O -victim O O -by O O -terrorists O O -. O O -need O O -to O O -stand O O -together O O -against O O -terrorists O O -. O O -We O O -ca O O -n O O -let O O -terrorists O O -out O O -of O O -jail O O -when O O -they O O -are O O -a O O -danger O O -to O O -civilians O O -all O O -around O O -the O O -world O O -, O O -" O O -State B-ORG B-ORG -Department I-ORG I-ORG -spokesman O O -Nicholas B-PER B-PER -Burns I-PER I-PER -said O O -. O O -' O O -Mohammed B-PER B-PER -Rashid I-PER I-PER -" O O -is O O -a O O -terrorist O O -who O O -deserves O O -to O O -be O O -behind O O -bars O O -. O O -It O O -is O O -in O O -to O O -us O O -why O O -he O O -would O O -have O O -been O O -allowed O O -to O O -leave O O -Greece B-LOC B-LOC -before O O -serving O O -his O O -just O O -sentence O O -. O O -This O O -is O O -an O O -in O O -move O O -. O O -It O O -does O O -not O O -make O O -sense O O -, O O -" O O -Burns B-PER B-PER -told O O -a O O -news O O -brief O O -. O O -He O O -spoke O O -after O O -Rashid B-PER B-PER -left O O -Greece B-LOC B-LOC -Thursday O O -on O O -being O O -freed O O -from O O -prison O O -early O O -for O O -good O O -behaviour O O -after O O -serving O O -8 O O -years O O -. O O -The O O -Clinton B-PER B-PER -administration O O -' O O -strong O O -views O O -on O O -this O O -subject O O -have O O -been O O -conveyed O O -to O O -the O O -Greek B-MISC B-MISC -government O O -, O O -Burns B-PER B-PER -said O O -. O O -Ma B-PER B-PER -Rashid I-PER I-PER -was O O -w O O -from O O -Ko B-LOC B-LOC -maximum O O -security O O -prison O O -just O O -outside O O -Athens B-LOC B-LOC -to O O -the O O -airport O O -where O O -he O O -boarded O O -a O O -regular O O -Olympic B-ORG B-ORG -Airways I-ORG I-ORG -flight O O -to O O -Cairo B-LOC B-LOC -where O O -he O O -would O O -transit O O -to O O -Tu B-LOC B-LOC -and O O -the O O -former O O -Palestine B-ORG B-ORG -Liberation I-ORG I-ORG -Organisation I-ORG I-ORG -headquarters O O -. O O -Rashid B-PER B-PER -, O O -46 O O -, O O -was O O -sentenced O O -to O O -18 O O -years O O -in O O -prison O O -by O O -a O O -Greek B-MISC B-MISC -court O O -in O O -1992 O O -after O O -being O O -convicted O O -of O O -pre O O -murder O O -in O O -the O O -mid O O -bombing O O -of O O -a O O -Pan B-MISC B-MISC -American I-MISC I-MISC -airline O O -in O O -1982 O O -. O O -His O O -sentence O O -had O O -been O O -reduced O O -to O O -15 O O -years O O -in O O -1993 O O -. O O -A O O -parole O O -court O O -ruled O O -recently O O -that O O -Rashid B-PER B-PER -could O O -be O O -freed O O -after O O -serving O O -8 O O -years O O -, O O -with O O -time O O -in O O -pre O O -detention O O -counted O O -towards O O -his O O -term O O -, O O -but O O -said O O -he O O -must O O -be O O -expelled O O -immediately O O -from O O -Greece B-LOC B-LOC -. O O -The O O -United B-LOC B-LOC -States I-LOC I-LOC -a O O -Rashid B-PER B-PER -of O O -belonging O O -to O O -the O O -May O O -15 O O -Palestinian B-MISC B-MISC -guerrilla O O -group O O -and O O -being O O -an O O -accomplished O O -student O O -of O O -master O O -Palestinian B-MISC B-MISC -bomb O O -Abu B-PER B-PER -Ibrahim I-PER I-PER -. O O -Three O O -FBI B-ORG B-ORG -agents O O -who O O -testified O O -against O O -Rashid B-PER B-PER -during O O -the O O -trial O O -, O O -held O O -at O O -Ko B-LOC B-LOC -prison O O -, O O -said O O -they O O -had O O -ample O O -evidence O O -against O O -Rashid B-PER B-PER -for O O -a O O -bomb O O -planted O O -on O O -a O O -Pan B-MISC B-MISC -American I-MISC I-MISC -plane O O -in O O -Brazil B-LOC B-LOC -in O O -1982 O O -and O O -a O O -mid O O -bomb O O -blast O O -on O O -a O O -T B-ORG B-ORG -airline O O -approaching O O -Athens B-LOC B-LOC -in O O -1986 O O -which O O -killed O O -four O O -U B-LOC B-LOC -citizens O O -. O O -School O O -football O O -player O O -banned O O -for O O -slash O O -opponents O O -. O O -AL B-LOC B-LOC -, O O -N B-LOC B-LOC -1996 O O -A O O -New B-LOC B-LOC -Mexico I-LOC I-LOC -high O O -school O O -football O O -player O O -who O O -used O O -razor O O -helmet O O -b O O -to O O -slash O O -opponents O O -and O O -a O O -referee O O -was O O -expelled O O -from O O -high O O -school O O -banned O O -Thursday O O -from O O -competition O O -for O O -one O O -year O O -. O O -Mike B-PER B-PER -C I-PER I-PER -, O O -17 O O -, O O -was O O -expelled O O -from O O -St B-LOC B-ORG -Pius I-LOC I-ORG -X I-LOC I-ORG -High I-LOC I-ORG -School I-LOC I-ORG -in O O -Albuquerque B-LOC B-LOC -after O O -an O O -October O O -game O O -in O O -which O O -he O O -used O O -the O O -sharp O O -chin O O -strap O O -b O O -to O O -in O O -two O O -opposing O O -players O O -and O O -the O O -referee O O -. O O -One O O -of O O -the O O -players O O -need O O -10 O O -s O O -to O O -a O O -cut O O -on O O -his O O -forearm O O -. O O -Official O O -said O O -the O O -New B-ORG B-ORG -Mexico I-ORG I-ORG -Activities I-ORG I-ORG -Association I-ORG I-ORG -decided O O -to O O -bar O O -C B-PER B-PER -from O O -any O O -inter O O -competition O O -until O O -next O O -October O O -, O O -regardless O O -of O O -the O O -school O O -he O O -attends O O -. O O -C B-PER B-PER -' O O -father O O -, O O -Stephen B-PER B-PER -C I-PER I-PER -, O O -had O O -admitted O O -filing O O -the O O -metal O O -b O O -to O O -a O O -fine O O -edge O O -, O O -saying O O -he O O -did O O -it O O -to O O -get O O -even O O -with O O -the O O -referee O O -and O O -with O O -players O O -who O O -had O O -rough O O -up O O -his O O -son O O -in O O -a O O -previous O O -game O O -. O O -Cy B-ORG O -sq O O -overs O O -copyright O O -talks O O -. O O -Eli B-PER B-PER -Ka I-PER I-PER -GE B-LOC B-LOC -1996 O O -In O O -a O O -g O O -Geneva B-LOC B-LOC -conference O O -centre O O -built O O -before O O -the O O -dawn O O -of O O -the O O -Internet B-MISC B-MISC -, O O -groups O O -of O O -s O O -officials O O -made O O -a O O -first O O -stab O O -on O O -Friday O O -at O O -re O O -copyright O O -laws O O -for O O -the O O -digital O O -age O O -. O O -But O O -critics O O -at O O -the O O -first O O -government O O -meeting O O -to O O -re O O -copyright O O -laws O O -in O O -25 O O -years O O -said O O -the O O -officials O O -and O O -legislators O O -might O O -as O O -well O O -be O O -trying O O -to O O -police O O -the O O -et O O -. O O -After O O -four O O -days O O -of O O -diplomatic O O -w O O -over O O -procedures O O -, O O -some O O -600 O O -delegates O O -from O O -nations O O -small O O -and O O -large O O -got O O -down O O -to O O -the O O -ni O O -of O O -setting O O -the O O -digital O O -agenda O O -for O O -the O O -first O O -time O O -. O O -Cy B-ORG O -sq O O -overs O O -the O O -debate O O -on O O -a O O -stack O O -of O O -proposals O O -covering O O -literary O O -and O O -artistic O O -works O O -, O O -the O O -rights O O -of O O -performers O O -and O O -producers O O -of O O -music O O -and O O -producers O O -of O O -databases O O -. O O -" O O -If O O -it O O -goes O O -on O O -like O O -this O O -, O O -we O O -w O O -n O O -have O O -enough O O -time O O -to O O -finish O O -all O O -the O O -discussions O O -, O O -" O O -a O O -frustrated O O -Western B-MISC O -delegate O O -said O O -. O O -" O O -They O O -announced O O -they O O -will O O -start O O -evening O O -sessions O O -next O O -week O O -. O O -" O O -At O O -by O O -copyright O O -industries O O -to O O -ensure O O -they O O -get O O -a O O -cut O O -from O O -online O O -works O O -led O O -to O O -a O O -storm O O -of O O -protests O O -by O O -Internet B-ORG B-MISC -companies O O -and O O -critics O O -who O O -say O O -the O O -pact O O -would O O -curb O O -public O O -access O O -to O O -online O O -information O O -from O O -soccer O O -results O O -to O O -stock O O -prices O O -. O O -" O O -It O O -' O O -not O O -illegal O O -to O O -make O O -photo O O -of O O -newspaper O O -articles O O -. O O -It O O -' O O -fair O O -use O O -. O O -We O O -can O O -read O O -sports O O -statistics O O -or O O -stock O O -prices O O -. O O -But O O -with O O -the O O -treaty O O -, O O -this O O -kind O O -of O O -fact O O -will O O -be O O -owned O O -and O O -subject O O -to O O -licensing O O -, O O -" O O -said O O -James B-PER B-PER -Love I-PER I-PER -, O O -a O O -consumer O O -lobby O O -heading O O -the O O -Washington B-MISC B-MISC -Consumer B-ORG B-PER -Project I-ORG I-PER -on I-ORG O -Technology I-ORG O -. O O -" O O -None O O -of O O -the O O -treaties O O -are O O -ready O O -to O O -move O O -. O O -These O O -people O O -do O O -n O O -understand O O -what O O -they O O -' O O -doing O O -. O O -" O O -At O O -stake O O -are O O -billion O O -of O O -dollars O O -and O O -the O O -future O O -of O O -the O O -electronic O O -information O O -industry O O -- O O -the O O -coming O O -medium O O -for O O -the O O -distribution O O -of O O -music O O -, O O -films O O -, O O -literature O O -, O O -software O O -and O O -commerce O O -. O O -Support O O -of O O -the O O -three O O -pact O O -say O O -they O O -are O O -only O O -an O O -extension O O -of O O -existing O O -intellectual O O -property O O -rights O O -, O O -covered O O -by O O -the O O -century O O -Bern B-MISC B-MISC -Convention I-MISC I-MISC -. O O -But O O -an O O -array O O -of O O -opponents O O -from O O -the O O -network O O -industry O O -to O O -consumer O O -, O O -scientific O O -and O O -academic O O -groups O O -say O O -the O O -pact O O -will O O -give O O -sweeping O O -powers O O -to O O -entertainment O O -and O O -copyright O O -industries O O -. O O -A O O -quick O O -survey O O -at O O -the O O -conference O O -centre O O -found O O -few O O -officials O O -who O O -had O O -actually O O -surf O O -the O O -Internet B-MISC B-MISC -. O O -Mongolia B-LOC B-LOC -' O O -state O O -copyright O O -official O O -, O O -Gun B-PER B-PER -J I-PER I-PER -, O O -said O O -a O O -that O O -he O O -had O O -just O O -arrived O O -from O O -U B-LOC B-LOC -Bat I-LOC I-LOC -and O O -was O O -not O O -aware O O -of O O -the O O -details O O -of O O -the O O -digital O O -agenda O O -. O O -" O O -We O O -do O O -n O O -have O O -money O O -for O O -Internet B-ORG B-MISC -in O O -Mongolia B-LOC B-LOC -, O O -" O O -he O O -added O O -. O O -Alexander B-PER B-PER -Ba I-PER I-PER -, O O -deputy O O -legal O O -chief O O -at O O -Russia B-LOC B-LOC -' O O -foreign O O -ministry O O -, O O -said O O -Moscow B-LOC B-LOC -had O O -yet O O -to O O -formula O O -a O O -policy O O -on O O -copyright O O -in O O -c O O -. O O -He O O -too O O -had O O -never O O -brows O O -the O O -Net B-MISC O -. O O -" O O -I O O -' O O -never O O -tried O O -it O O -and O O -why O O -should O O -I O O -? O O -There O O -are O O -lots O O -of O O -other O O -things O O -in O O -this O O -life O O -I O O -have O O -n O O -tried O O -either O O -, O O -" O O -he O O -said O O -. O O -A O O -visit O O -to O O -the O O -computer O O -centre O O -offering O O -Internet B-MISC B-MISC -services O O -found O O -a O O -lone O O -European B-MISC B-MISC -official O O -clicking O O -away O O -on O O -his O O -mouse O O -. O O -" O O -Internet B-MISC B-MISC -is O O -a O O -potential O O -cash O O -cow O O -for O O -copyright O O -industries O O -and O O -we O O -need O O -road O O -on O O -the O O -information O O -super O O -, O O -" O O -said O O -Marc B-PER B-PER -Pearl I-PER I-PER -, O O -vice O O -of O O -the O O -Information B-ORG B-ORG -Technology I-ORG I-ORG -Association I-ORG I-ORG -of I-ORG I-ORG -America I-ORG I-ORG -, O O -a O O -trade O O -association O O -of O O -U B-LOC B-LOC -network O O -companies O O -opposing O O -the O O -treaties O O -. O O -" O O -But O O -there O O -are O O -a O O -lot O O -of O O -dinosaurs O O -here O O -. O O -People O O -here O O -do O O -n O O -understand O O -Internet B-MISC B-MISC -technology O O -. O O -Because O O -they O O -do O O -n O O -understand O O -technology O O -, O O -they O O -fear O O -the O O -unknown O O -. O O -" O O -Before O O -the O O -Internet B-MISC B-MISC -, O O -those O O -whose O O -business O O -was O O -to O O -protect O O -copyright O O -knew O O -where O O -they O O -stood O O -. O O -Their O O -enemies O O -were O O -tan O O -if O O -el O O -, O O -such O O -as O O -the O O -people O O -who O O -pirate O O -music O O -cassette O O -. O O -But O O -the O O -Internet B-ORG B-MISC -, O O -a O O -global O O -computer O O -network O O -where O O -anything O O -from O O -music O O -to O O -software O O -can O O -be O O -du O O -and O O -distributed O O -at O O -the O O -click O O -of O O -a O O -computer O O -mouse O O -, O O -has O O -ripped O O -up O O -the O O -rule O O -. O O -Network O B-MISC -operators O O -said O O -the O O -draft O O -laws O O -would O O -hold O O -them O O -responsible O O -for O O -copyright O O -infringement O O -in O O -the O O -system O O -and O O -expose O O -them O O -to O O -multi O O -l O O -. O O -" O O -There O O -are O O -500 O O -million O O -messages O O -transmitted O O -through O O -the O O -Internet B-MISC B-MISC -everyday O O -, O O -" O O -said O O -Tim B-PER B-PER -Casey I-PER I-PER -of O O -the O O -U B-MISC B-MISC -MC B-ORG B-ORG -Communications I-ORG I-ORG -Corporation I-ORG I-ORG -. O O -" O O -How O O -can O O -we O O -control O O -them O O -all O O -? O O -" O O -Italy B-LOC B-LOC -evacuate O O -17 O O -nuns O O -and O O -priests O O -from O O -Z B-LOC B-LOC -. O O -ROM B-LOC B-LOC -1996 O O -Italy B-LOC B-LOC -said O O -on O O -Friday O O -it O O -had O O -evacuated O O -17 O O -Roman B-MISC B-MISC -Catholic I-MISC I-MISC -nuns O O -and O O -priests O O -from O O -Z B-LOC B-LOC -where O O -they O O -had O O -been O O -at O O -risk O O -from O O -fighting O O -between O O -government O O -troops O O -and O O -ethnic O O -Tu B-MISC B-MISC -rebels O O -. O O -The O O -Foreign B-ORG B-ORG -Ministry I-ORG I-ORG -said O O -the O O -10 O O -Europeans B-MISC B-MISC -and O O -seven O O -Africans B-MISC B-MISC -took O O -a O O -special O O -flight O O -from O O -the O O -G B-LOC B-LOC -national O O -park O O -in O O -northern O O -Z B-LOC B-LOC -to O O -the O O -Uganda B-MISC B-MISC -capital O O -Ka B-LOC B-LOC -where O O -they O O -were O O -being O O -looked O O -after O O -at O O -the O O -Italian B-MISC B-MISC -embassy O O -. O O -The O O -group O O -had O O -travelled O O -from O O -their O O -mission O O -on O O -the O O -edge O O -of O O -the O O -park O O -to O O -a O O -landing O O -strip O O -to O O -make O O -the O O -re O O -, O O -a O O -ministry O O -official O O -said O O -. O O -The O O -ministry O O -said O O -the O O -group O O -consisted O O -of O O -13 O O -nuns O O -, O O -seven O O -Italians B-MISC B-MISC -and O O -six O O -Z B-MISC B-MISC -, O O -and O O -four O O -priests O O -, O O -two O O -from O O -Belgium B-LOC B-LOC -, O O -one O O -from O O -Spain B-LOC B-LOC -and O O -one O O -from O O -Zambia B-LOC B-LOC -. O O -Third O O -Paris B-LOC B-LOC -blast O O -victim O O -was O O -Moroccan B-MISC B-MISC -student O O -. O O -PA B-LOC B-LOC -1996 O O -Moroccan B-MISC B-MISC -Mohamed B-PER B-PER -Ben I-PER I-PER -, O O -the O O -third O O -person O O -to O O -die O O -after O O -a O O -bombing O O -on O O -a O O -Paris B-LOC B-LOC -train O O -, O O -was O O -a O O -25 O O -student O O -about O O -to O O -submit O O -a O O -mathematics O O -doctorate O O -, O O -the O O -Moroccan B-MISC B-MISC -embassy O O -said O O -on O O -Friday O O -. O O -Ben B-PER B-PER -died O O -of O O -his O O -injuries O O -on O O -Thursday O O -night O O -, O O -two O O -days O O -after O O -the O O -blast O O -. O O -A O O -newly O O -Canadian B-MISC B-MISC -woman O O -and O O -a O O -man O O -from O O -New B-LOC B-LOC -Caledonia I-LOC I-LOC -died O O -instantly O O -in O O -the O O -bomb O O -that O O -injured O O -90 O O -others O O -in O O -the O O -rush O O -train O O -. O O -An O O -embassy O O -spokesman O O -said O O -Ben B-PER B-PER -, O O -the O O -son O O -of O O -a O O -Moroccan B-MISC B-MISC -army O O -colonel O O -, O O -had O O -been O O -due O O -to O O -take O O -his O O -doctorate O O -in O O -March O O -and O O -hoped O O -to O O -become O O -a O O -teacher O O -. O O -In O O -have O O -said O O -the O O -explosion O O -bore O O -the O O -hall O O -of O O -Algerian B-MISC B-MISC -Mo I-MISC B-MISC -fundamental O O -who O O -staged O O -a O O -series O O -of O O -bombings O O -last O O -year O O -which O O -killed O O -eight O O -people O O -and O O -injured O O -more O O -than O O -160 O O -. O O -Italian B-MISC B-MISC -President O O -urges O O -se O O -to O O -turn O O -back O O -. O O -MA B-LOC O -, O O -Italy B-LOC B-LOC -1996 O O -Italian B-MISC B-MISC -President O O -Oscar B-PER B-PER -Luigi I-PER I-PER -Sc I-PER I-PER -visited O O -the O O -symbolic O O -heart O O -of O O -the O O -se O O -Northern B-ORG B-ORG -League I-ORG I-ORG -on O O -Friday O O -and O O -appealed O O -to O O -its O O -supporters O O -to O O -drop O O -their O O -campaign O O -for O O -a O O -break O O -state O O -. O O -Ad O O -a O O -convention O O -on O O -Italian B-MISC B-MISC -unity O O -in O O -Man B-LOC O -, O O -where O O -the O O -party O O -has O O -set O O -up O O -its O O -own O O -" O O -parliament O O -of O O -the O O -north O O -" O O -, O O -Sc B-PER B-PER -made O O -a O O -direct O O -appeal O O -to O O -what O O -he O O -called O O -" O O -my O O -friends O O -from O O -the O O -League B-ORG B-ORG -" O O -to O O -work O O -instead O O -for O O -federal O O -reform O O -. O O -" O O -It O O -is O O -an O O -invitation O O -, O O -a O O -commitment O O -, O O -a O O -promise O O -. O O -Let O B-LOC -' O O -march O O -together O O -, O O -" O O -Sc B-PER B-PER -, O O -a O O -northern O O -himself O O -, O O -said O O -. O O -" O O -Help O O -Italy B-LOC B-LOC -to O O -teach O O -, O O -to O O -propose O O -a O O -capacity O O -for O O -strong O O -local O O -autonomy O O -, O O -for O O -the O O -federal O O -which O O -can O O -give O O -new O O -v O O -to O O -our O O -blood O O -. O O -But O O -turn O O -back O O -from O O -the O O -line O O -you O O -are O O -taking O O -now O O -, O O -" O O -he O O -said O O -. O O -Sc B-PER B-PER -was O O -in O O -Man B-LOC B-LOC -to O O -attend O O -a O O -ceremony O O -commemorating O O -the O O -executions O O -there O O -by O O -Austrian B-MISC B-MISC -rulers O O -in O O -1852 O O -and O O -1853 O O -of O O -a O O -group O O -of O O -Italians B-MISC B-MISC -who O O -had O O -campaigned O O -for O O -national O O -unity O O -. O O -He O O -was O O -j O O -and O O -whistle O O -at O O -by O O -a O O -small O O -group O O -of O O -League B-ORG B-LOC -supporters O O -when O O -he O O -arrived O O -for O O -a O O -visit O O -marked O O -by O O -heavy O O -security O O -. O O -Witness O O -said O O -the O O -protesters O O -were O O -outnumbered O O -by O O -other O O -Italians B-MISC B-MISC -who O O -waved O O -t O O -flags O O -in O O -the O O -national O O -red O O -, O O -white O O -and O O -green O O -or O O -shouted O O -" O O -Viva B-MISC O -Italia I-MISC B-LOC -" O O -. O O -The O O -League B-ORG B-ORG -won O O -more O O -than O O -eight O O -percent O O -of O O -votes O O -at O O -the O O -last O O -general O O -election O O -in O O -April O O -on O O -a O O -federal O O -platform O O -but O O -its O O -leader O O -Um B-PER B-PER -Boss I-PER I-PER -later O O -switched O O -to O O -a O O -se O O -agenda O O -. O O -A O O -three O O -" O O -independence O O -" O O -march O O -along O O -the O O -Po B-LOC B-LOC -River I-LOC O -in O O -September O O -, O O -culminating O O -in O O -a O O -declaration O O -in O O -Venice B-LOC B-LOC -of O O -a O O -self O O -" O O -Republic B-ORG B-LOC -of I-ORG I-LOC -Pa I-LOC I-LOC -" O O -, O O -flopped O O -badly O O -. O O -Denmark B-LOC B-LOC -' O O -Radio B-MISC O -H I-MISC O -result O O -seen O O -flat O O -. O O -CO B-LOC B-LOC -1996 O O -A O O -Re B-ORG B-ORG -consensus O O -survey O O -sees O O -medical O O -equipment O O -group O O -Radio B-ORG B-ORG -reporting O O -largely O O -unchanged O O -earnings O O -when O O -it O O -publishes O O -first O O -half O O -1999 O O -results O O -next O O -Wednesday O B-ORG -. O O -An O O -average O O -of O O -four O O -analysts O O -' O O -forecast O O -predicted O O -pre O O -profit O O -of O O -147 O O -million O O -crown O O -compared O O -to O O -144 O O -million O O -in O O -the O O -first O O -six O O -months O O -of O O -1995 O O -. O O -They O O -said O O -that O O -the O O -group O O -' O O -failure O O -to O O -introduce O O -new O O -products O O -was O O -behind O O -the O O -share O O -' O O -weak O O -performance O O -in O O -1996 O O -, O O -during O O -which O O -it O O -has O O -lost O O -seven O O -percent O O -so O O -far O O -. O O -- O O -So B-PER B-PER -Lin I-PER I-PER -Jakob I-PER I-PER -, O O -Copenhagen B-LOC B-LOC -news O O -+ O O -33 O O -Mo B-MISC B-MISC -fundamental O O -kill O O -19 O O -Algerian B-MISC B-MISC -- O O -agency O O -. O O -PA B-LOC B-LOC -1996 O O -Mo B-MISC B-MISC -fundamental O O -killed O O -19 O O -civilians O O -overnight O O -in O O -B B-LOC B-LOC -province O O -south O O -of O O -Algiers B-LOC B-LOC -, O O -Algerian B-MISC B-MISC -security O O -forces O O -said O O -on O O -Friday O O -. O O -In O O -a O O -statement O O -carried O O -on O O -the O O -official O O -Algerian B-MISC B-MISC -news O O -agency O O -AP B-ORG B-ORG -, O O -the O O -security O O -forces O O -said O O -the O O -19 O O -had O O -been O O -killed O O -by O O -" O O -a O O -group O O -of O O -terrorists O O -" O O -. O O -Belgian B-MISC B-MISC -police O O -smash O O -major O O -drugs O O -rings O O -, O O -30 O O -arrested O O -. O O -BR B-LOC B-LOC -1996 O O -Police O O -smashed O O -two O O -drugs O O -smuggling O O -rings O O -and O O -arrested O O -30 O O -people O O -after O O -a O O -taxi O O -in O O -Spain B-LOC B-LOC -alerted O O -them O O -to O O -a O O -suitcase O O -of O O -heroin O O -left O O -in O O -his O O -cab O O -, O O -Belgian B-MISC B-MISC -police O O -said O O -on O O -Friday O O -. O O -Police O O -seized O O -dozens O O -of O O -k O O -of O O -heroin O O -with O O -a O O -street O O -value O O -of O O -hundreds O O -of O O -millions O O -of O O -Belgian B-MISC B-MISC -f O O -, O O -a O O -public O O -prosecutor O O -' O O -office O O -spokesman O O -in O O -the O O -port O O -city O O -of O O -Antwerp B-LOC B-ORG -said O O -. O O -He O O -said O O -a O O -24 O O -Belgian B-MISC B-MISC -woman O O -left O O -a O O -suitcase O O -containing O O -13 O O -kg O O -( O O -29 O O -lb O O -) O O -of O O -heroin O O -in O O -a O O -taxi O O -in O O -Barcelona B-LOC B-LOC -. O O -The O O -taxi O O -alerted O O -police O O -who O O -arrested O O -a O O -33 O O -Turkish B-MISC B-MISC -man O O -when O O -he O O -came O O -to O O -pick O O -up O O -the O O -suitcase O O -at O O -a O O -lost O O -luggage O O -office O O -. O O -The O O -woman O O -was O O -later O O -arrested O O -in O O -Belgium B-LOC B-LOC -. O O -She O O -and O O -the O O -Turkish B-MISC B-MISC -man O O -smug O O -heroin O O -from O O -Turkey B-LOC B-LOC -to O O -Antwerp B-LOC B-ORG -from O O -where O O -it O O -was O O -taken O O -to O O -Spain B-LOC B-LOC -, O O -France B-LOC B-LOC -and O O -Germany B-LOC B-LOC -by O O -others O O -, O O -the O O -spokesman O O -said O O -. O O -He O O -said O O -14 O O -people O O -were O O -arrested O O -in O O -Belgium B-LOC B-LOC -and O O -16 O O -others O O -in O O -other O O -European B-MISC B-MISC -nations O O -after O O -an O O -investigation O O -lasting O O -nearly O O -a O O -year O O -. O O -( O O -$ O O -1 O O -Belgian B-MISC B-MISC -Fr I-ORG O -) O O -Port O O -conditions O O -update O O -- O O -Lloyd B-ORG B-ORG -Shipping I-ORG I-ORG -. O O -G B-LOC B-LOC -, O O -Dec O O -5 O O -- O O -Greek B-MISC B-MISC -port O O -workers O O -called O O -off O O -a O O -strike O O -which O O -had O O -kept O O -the O O -country O O -' O O -ports O O -closed O O -, O O -giving O O -the O O -government O O -until O O -Feb O O -1 O O -to O O -introduce O O -a O O -promised O O -bonus O O -scheme O O -. O O -German B-MISC B-MISC -Jan O O -coffee O O -imports O O -detailed O O -. O O -H B-LOC B-LOC -1996 O O -German B-MISC B-MISC -net O O -green O O -coffee O O -imports O O -from O O -outside O O -the O O -EU B-LOC B-ORG -total O O -7 O O -million O O -bags O O -in O O -January O O -compared O O -with O O -7 O O -million O O -in O O -the O O -year O O -period O O -, O O -the O O -D B-ORG B-ORG -coffee O O -association O O -said O O -. O O -I O O -of O O -1 O O -million O O -bags O O -in O O -August O O -were O O -down O O -from O O -1 O O -million O O -in O O -August O O -1995 O O -but O O -up O O -from O O -99 O O -bags O O -in O O -July O O -1996 O O -. O O -Colombia B-LOC B-LOC -shipped O O -198 O O -bags O O -in O O -August O O -after O O -164 O O -in O O -July O O -, O O -El B-LOC B-LOC -Salvador I-LOC I-LOC -160 O O -( O O -129 O O -) O O -, O O -Indonesia B-LOC B-LOC -72 O O -( O O -78 O O -) O O -, O O -Ethiopia B-LOC B-LOC -69 O O -( O O -60 O O -) O O -and O O -Kenya B-LOC B-LOC -63 O O -( O O -60 O O -) O O -. O O -Brazil B-LOC B-LOC -was O O -in O O -seventh O O -position O O -with O O -54 O O -bags O O -( O O -29 O O -) O O -. O O -- O O -Hamburg B-LOC B-LOC -news O O -+ O O -Munich B-ORG B-ORG -Re I-ORG I-ORG -says O O -to O O -split O O -stock O O -. O O -M B-LOC B-LOC -, O O -Germany B-LOC B-LOC -1996 O O -Mu B-ORG B-MISC -Rue I-ORG B-ORG -AG I-ORG I-ORG -, O O -the O O -world O O -' O O -largest O O -reins O O -, O O -said O O -on O O -Friday O O -it O O -expected O O -to O O -switch O O -its O O -shares O O -to O O -a O O -lower O O -par O O -value O O -by O O -September O O -1997 O O -at O O -the O O -earliest O O -. O O -The O O -group O O -, O O -known O O -as O O -Munich B-ORG B-ORG -Re I-ORG I-ORG -, O O -plans O O -to O O -seek O O -approval O O -for O O -the O O -move O O -at O O -its O O -shareholders O O -' O O -meeting O O -today O O -. O O -The O O -company O O -said O O -the O O -switch O O -would O O -probably O O -become O O -effective O O -in O O -September O O -. O O -The O O -planned O O -10 O O -stock O O -split O O -would O O -reduce O O -the O O -par O O -value O O -of O O -Munich B-ORG B-ORG -Re I-ORG I-ORG -' O O -shares O O -to O O -five O O -marks O O -from O O -50 O O -, O O -causing O O -their O O -price O O -to O O -drop O O -to O O -around O O -one O O -tenth O O -of O O -the O O -present O O -value O O -. O O -Munich B-ORG B-ORG -Re I-ORG I-ORG -' O O -registered O O -shares O O -, O O -part O O -of O O -the O O -blue O O -D B-MISC B-MISC -index O O -, O O -were O O -trading O O -at O O -3 O O -marks O O -on O O -Friday O O -. O O -- O O -Frankfurt B-ORG B-ORG -News I-ORG I-ORG -, O O -+ O O -69 O O -75 O O -EU B-ORG B-ORG -experts O O -post O O -talks O O -on O O -rice O O -area O O -aid O O -. O O -BR B-LOC B-LOC -1996 O O -European B-ORG B-ORG -Union I-ORG I-ORG -rice O O -experts O O -on O O -Thursday O O -postponed O O -discussion O O -on O O -area O O -aid O O -payments O O -to O O -rice O O -producers O O -because O O -the O O -documents O O -were O O -not O O -available O O -in O O -all O O -the O O -EU B-ORG B-ORG -languages O O -, O O -an O O -EU B-ORG B-ORG -off O O -said O O -on O O -Friday O O -. O O -" O O -The O O -discussion O O -in O O -the O O -experts O O -group O O -had O O -to O O -be O O -postponed O O -because O O -the O O -documents O O -needed O O -to O O -be O O -translated O O -into O O -the O O -official O O -languages O O -and O O -the O O -item O O -will O O -be O O -on O O -next O O -week O O -' O O -agenda O O -, O O -" O O -the O O -off O O -said O O -. O O -European B-MISC B-MISC -rice O O -producers O O -are O O -due O O -to O O -get O O -com O O -area O O -aid O O -payments O O -similar O O -to O O -those O O -paid O O -to O O -cereal O O -producers O O -because O O -of O O -cuts O O -in O O -intervention O O -prices O O -. O O -- O O -Brussels B-ORG B-ORG -News I-ORG I-ORG -32 O O -2 O O -287 O O -680 O O -Frankfurt B-LOC B-LOC -dollar O O -fix O O -1 O O -marks O O -. O O -F B-LOC B-LOC -1996 O O -The O O -dollar O O -was O O -fixed O O -at O O -1 O O -marks O O -in O O -Frankfurt B-LOC B-LOC -on O O -Friday O O -, O O -after O O -1 O O -marks O O -on O O -Thursday O O -. O O -There O O -was O O -no O O -B B-ORG B-ORG -intervention O O -. O O -John B-PER B-ORG -Lewis I-PER I-ORG -UK B-LOC I-ORG -store O O -sales O O -up O O -4 O O -% O O -in O O -week O O -. O O -L B-LOC B-LOC -1996 O O -The O O -John B-ORG B-PER -Lewis I-ORG I-PER -Partnership I-ORG O -said O O -its O O -UK B-LOC B-LOC -department O O -store O O -sales O O -rose O O -4 O O -percent O O -in O O -the O O -week O O -to O O -November O O -30 O O -compared O O -with O O -the O O -same O O -week O O -a O O -year O O -earlier O O -. O O -In O O -the O O -18 O O -weeks O O -to O O -November O O -30 O O -, O O -sales O O -were O O -up O O -13 O O -percent O O -year O O -. O O -Total O O -sales O O -, O O -including O O -the O O -Wait B-ORG B-ORG -supermarket O O -chain O O -, O O -rose O O -5 O O -percent O O -in O O -the O O -week O O -and O O -were O O -up O O -11 O O -percent O O -in O O -the O O -18 O O -period O O -. O O -- O O -Rosemary B-PER B-PER -Bennett I-PER I-PER -, O O -London B-ORG B-ORG -News I-ORG I-ORG -44 O O -171 O O -54 O O -27 O O -Tim B-PER B-ORG -at O O -15 O O -in O O -London B-LOC B-LOC -at O O -09 O O -GM B-MISC B-MISC -. O O -L B-LOC B-LOC -1996 O O -PT B-ORG B-ORG -Tam I-ORG I-ORG -Tim I-ORG I-ORG -was O O -traded O O -at O O -$ O O -15 O O -per O O -G B-MISC O -in O O -London B-LOC B-LOC -on O O -Friday O O -at O O -around O O -09 O O -GM B-MISC B-MISC -. O O -It O O -recorded O O -a O O -low O O -of O O -$ O O -15 O O -and O O -a O O -high O O -of O O -$ O O -15 O O -. O O -Its O O -previous O O -close O O -on O O -Thursday O O -was O O -$ O O -15 O O -. O O -One O O -Global B-ORG O -De I-ORG O -Re I-ORG O -represents O O -10 O O -common O O -shares O O -. O O -- O O -Jakarta B-LOC B-LOC -news O O -+ O O -38 O O -British B-MISC B-MISC -" O O -Euro B-MISC B-MISC -" O O -says O O -Clarke B-PER B-PER -should O O -resign O O -. O O -L B-LOC B-LOC -1996 O O -A O O -" O O -Euro B-MISC B-MISC -" O O -member O O -of O O -the O O -ruling O O -Conservative B-ORG B-MISC -party O O -said O O -on O O -Thursday O O -British B-MISC B-MISC -finance O O -minister O O -Kenneth B-PER B-PER -Clarke I-PER I-PER -had O O -to O O -resign O O -to O O -prevent O O -the O O -party O O -di O O -over O O -the O O -issue O O -of O O -a O O -single O O -European B-MISC B-MISC -currency O O -. O O -Member O O -of O O -Parliament O O -Tony B-PER B-PER -Mar I-PER I-PER -said O O -the O O -resignation O O -of O O -the O O -chancellor O O -of O O -the O O -ex O O -was O O -the O O -only O O -way O O -to O O -make O O -the O O -Conservatives B-MISC O -elect O O -in O O -a O O -general O O -election O O -which O O -must O O -take O O -place O O -by O O -May O O -next O O -year O O -. O O -" O O -We O O -have O O -a O O -divided O O -and O O -split O O -Cabinet B-ORG B-ORG -. O O -This O O -cannot O O -endure O O -, O O -" O O -Mar B-PER B-PER -told O O -BBC B-ORG B-ORG -television O O -' O O -News B-ORG B-MISC -programme O O -on O O -Thursday O O -. O O -" O O -It O O -is O O -not O O -sustainable O O -. O O -Kenneth B-PER B-PER -Clarke I-PER I-PER -has O O -to O O -go O O -. O O -If O O -he O O -does O O -n O O -resign O O -, O O -the O O -prime O O -minister O O -has O O -got O O -to O O -fire O O -him O O -. O O -" O O -Mar B-PER B-PER -' O O -comment O O -come O O -on O O -the O O -heels O O -of O O -speculation O O -that O O -Clarke B-PER B-PER -had O O -threatened O O -to O O -resign O O -if O O -the O O -government O O -changed O O -its O O -" O O -wait O O -and O O -see O O -" O O -policy O O -on O O -a O O -single O O -currency O O -and O O -declared O O -it O O -would O O -not O O -sign O O -up O O -for O O -the O O -currency O O -in O O -the O O -next O O -Parliament B-ORG O -. O O -Clarke B-PER B-PER -denied O O -on O O -Thursday O O -he O O -had O O -threatened O O -to O O -resign O O -and O O -said O O -his O O -position O O -on O O -the O O -single O O -currency O O -was O O -in O O -tune O O -with O O -that O O -of O O -Prime O O -Minister O O -John B-PER B-PER -Major I-PER I-PER -. O O -Major B-PER B-PER -told O O -parliament O O -on O O -Thursday O O -he O O -would O O -keep O O -his O O -options O O -open O O -on O O -single O O -membership O O -. O O -His O O -statement O O -was O O -interpreted O O -as O O -a O O -significant O O -victory O O -for O O -Clarke B-PER B-PER -and O O -fellow O O -pro B-MISC B-MISC -Michael B-PER B-PER -He I-PER I-PER -, O O -deputy O O -prime O O -minister O O -. O O -Pro B-MISC B-MISC -Conservative B-MISC B-MISC -MP O O -Edwin B-PER B-PER -Currie I-PER I-PER -told O O -the O O -BBC B-ORG B-ORG -that O O -if O O -Clarke B-PER B-PER -resigned O O -, O O -other O O -ministers O O -would O O -go O O -with O O -him O O -. O O -Court B-ORG O -e O O -head O O -of O O -Australian B-MISC B-MISC -child O O -inquiry O O -. O O -CA B-LOC B-LOC -1996 O O -The O O -Australian B-MISC B-MISC -opposition O O -on O O -Friday O O -demanded O O -a O O -high O O -investigation O O -into O O -p O O -in O O -the O O -Australian B-MISC B-MISC -diplomatic O O -service O O -after O O -the O O -federal O O -court O O -forced O O -the O O -head O O -of O O -the O O -existing O O -inquiry O O -to O O -stand O O -aside O O -. O O -The O O -court O O -said O O -inquiry O O -head O O -Chris B-PER B-PER -Hunt I-PER I-PER -might O O -be O O -bias O O -, O O -since O O -he O O -privately O O -told O O -a O O -newspaper O O -he O O -had O O -turned O O -up O O -no O O -major O O -evidence O O -of O O -p O O -activity O O -, O O -even O O -though O O -he O O -still O O -had O O -months O O -' O O -of O O -investigation O O -before O O -him O O -. O O -" O O -Today O O -we O O -are O O -left O O -with O O -a O O -ruin O O -wreck O O -beyond O O -salvage O O -and O O -a O O -continuing O O -p O O -of O O -doubt O O -and O O -suspicion O O -hanging O O -over O O -our O O -diplomatic O O -service O O -, O O -" O O -opposition O O -foreign O O -affairs O O -spokesman O O -Laurie B-PER B-PER -B I-PER I-PER -said O O -. O O -But O O -the O O -government O O -responded O O -by O O -pressing O O -ahead O O -with O O -the O O -original O O -inquiry O O -, O O -established O O -in O O -May O O -, O O -appoint O O -a O O -new O O -head O O -to O O -lead O O -it O O -. O O -Critics O O -say O O -that O O -if O O -there O O -were O O -many O O -p O O -in O O -senior O O -posts O O -in O O -the O O -Foreign B-ORG B-ORG -Affairs I-ORG I-ORG -Department I-ORG I-ORG -then O O -a O O -secret O O -inquiry O O -would O O -be O O -open O O -to O O -internal O O -influence O O -and O O -would O O -become O O -a O O -public O O -service O O -white O O -. O O -Accordingly O O -, O O -they O O -demand O O -an O O -open O O -investigation O O -. O O -A O O -spokesman O O -for O O -Foreign B-ORG B-ORG -Affairs O I-ORG -Minister O O -Alexander B-PER B-PER -Down I-PER I-PER -said O O -the O O -appointment O O -of O O -a O O -new O O -inquiry O O -head O O -, O O -administrative O O -law O O -expert O O -Pamela B-PER B-PER -O I-PER I-PER -, O O -showed O O -the O O -government O O -' O O -commitment O O -to O O -pursue O O -the O O -matter O O -. O O -A O O -report O O -is O O -due O O -in O O -May O O -next O O -year O O -. O O -One O O -Australian B-MISC B-MISC -diplomat O O -has O O -been O O -prosecuted O O -this O O -year O O -for O O -having O O -sex O O -with O O -a O O -Cambodian B-MISC B-MISC -boy O O -under O O -16 O O -but O O -was O O -acquitted O O -. O O -Police O O -have O O -investigated O O -others O O -. O O -A O O -newspaper O O -reported O O -allegations O O -in O O -April O O -that O O -diplomat O O -had O O -directed O O -Australian B-MISC B-MISC -government O O -aid O O -to O O -certain O O -foreign O O -orphanage O O -to O O -secure O O -sex O O -with O O -children O O -. O O -Australian B-MISC B-MISC -hit O O -killed O O -wrong O O -victim O O -. O O -S B-LOC B-LOC -1996 O O -An O O -Australian B-MISC B-MISC -hit O O -who O O -went O O -to O O -the O O -wrong O O -house O O -and O O -killed O O -the O O -wrong O O -man O O -was O O -sentenced O O -to O O -20 O O -years O O -jail O O -on O O -Friday O O -. O O -Paul B-PER B-PER -C I-PER I-PER -, O O -33 O O -, O O -and O O -an O O -a O O -were O O -contracted O O -to O O -shoot O O -a O O -man O O -, O O -identified O O -only O O -as O O -Tony B-PER B-PER -, O O -in O O -the O O -leg O O -to O O -punish O O -him O O -for O O -his O O -misconduct O O -with O O -a O O -female O O -friend O O -of O O -the O O -contractor O O -, O O -the O O -New B-ORG B-ORG -South I-ORG I-ORG -Wales I-ORG I-ORG -Supreme I-ORG I-ORG -Court I-ORG I-ORG -was O O -told O O -. O O -But O O -in O O -February O O -1993 O O -Les B-PER B-PER -Bet I-PER I-PER -, O O -was O O -shot O O -and O O -killed O O -after O O -answering O O -a O O -knock O O -at O O -the O O -door O O -of O O -his O O -Sydney B-LOC B-LOC -home O O -. O O -" O O -The O O -in O O -from O O -all O O -the O O -material O O -is O O -that O O -the O O -ma O O -had O O -come O O -to O O -the O O -wrong O O -house O O -, O O -" O O -Judge O O -Michael B-PER B-PER -Grove I-PER I-PER -said O O -. O O -In O O -sent O O -C B-PER B-PER -, O O -who O O -pleaded O O -guilty O O -, O O -Grove B-PER B-PER -took O O -into O O -account O O -his O O -" O O -mildly O O -re O O -" O O -intellectual O O -state O O -, O O -which O O -placed O O -him O O -in O O -the O O -lowest O O -two O O -percent O O -of O O -the O O -population O O -. O O -Grove B-PER B-PER -said O O -Bet B-PER B-PER -was O O -" O O -not O O -only O O -the O O -victim O O -of O O -a O O -ho O O -crime O O -, O O -but O O -his O O -death O O -was O O -brought O O -about O O -in O O -circumstances O O -of O O -an O O -equally O O -g O O -error O O -on O O -the O O -part O O -of O O -the O O -prisoner O O -and O O -his O O -a O O -" O O -. O O -The O O -unnamed O O -a O O -was O O -earlier O O -sentenced O O -to O O -20 O O -years O O -in O O -prison O O -. O O -NZ B-LOC B-LOC -' O O -Bo B-PER B-PER -says O O -Nat B-PER B-PER -to O O -meet O O -NZ B-ORG B-LOC -First I-ORG O -on O O -Sunday O O -. O O -W B-LOC B-LOC -1996 O O -New B-LOC B-LOC -Zealand I-LOC I-LOC -Prime O O -Minister O O -Jim B-PER B-PER -Bo I-PER I-PER -, O O -emerging O O -from O O -coalition O O -talks O O -with O O -the O O -nationalist O O -New B-ORG B-ORG -Zealand I-ORG I-ORG -First I-ORG I-ORG -party O O -on O O -Friday O O -afternoon O O -, O O -said O O -National B-ORG B-ORG -and O O -NZ B-ORG B-ORG -First I-ORG I-ORG -would O O -meet O O -again O O -on O O -Sunday O O -. O O -Bo B-PER B-PER -said O O -he O O -expected O O -a O O -government O O -to O O -be O O -formed O O -by O O -Thursday O O -. O O -NZ B-LOC B-LOC -' O O -Peters B-PER B-PER -says O O -Nat B-PER B-PER -, O O -Lab B-ORG B-PER -talks O O -at O O -similar O O -stage O O -. O O -W B-LOC B-LOC -1996 O O -New B-ORG B-ORG -Zealand I-ORG I-ORG -First I-ORG I-ORG -leader O O -Winston B-PER B-PER -Peters I-PER I-PER -on O O -Friday O O -said O O -coalition O O -talks O O -with O O -the O O -National B-ORG B-ORG -and O O -Labour B-ORG B-ORG -parties O O -were O O -at O O -a O O -similar O O -level O O -of O O -completion O O -. O O -Peters B-PER B-PER -left O O -a O O -meeting O O -between O O -NZ B-ORG B-ORG -First I-ORG I-ORG -and O O -National B-ORG B-ORG -ne O O -to O O -spend O O -20 O O -minutes O O -speaking O O -to O O -Labour B-ORG B-ORG -leader O O -Helen B-PER B-PER -Clark I-PER I-PER -. O O -He O O -told O O -Re B-ORG B-ORG -he O O -had O O -needed O O -to O O -speak O O -to O O -her O O -before O O -she O O -left O O -Wellington B-LOC B-LOC -later O O -on O O -Friday O O -. O O -Peters B-PER B-PER -said O O -the O O -talks O O -with O O -Labour B-ORG B-ORG -and O O -National B-ORG B-ORG -had O O -reached O O -" O O -about O O -the O O -same O O -level O O -of O O -completion O O -, O O -and O O -that O O -' O O -good O O -" O O -. O O -R B-ORG B-ORG -- O O -Australian B-MISC B-MISC -MP O O -John B-PER B-PER -Lang I-PER I-PER -formally O O -resign O O -. O O -CA B-LOC B-LOC -1996 O O -Australian B-MISC B-MISC -parliament O O -John B-PER B-PER -Lang I-PER I-PER -has O O -formally O O -resigned O O -from O O -his O O -lower O O -house O O -seat O O -, O O -the O O -office O O -of O O -House B-ORG B-ORG -of I-ORG I-ORG -Representatives I-ORG I-ORG -speaker O O -Bob B-PER B-PER -Hal I-PER I-PER -said O O -on O O -Friday O O -. O O -" O O -Hal B-PER B-PER -announced O O -that O O -he O O -had O O -received O O -today O O -from O O -Mr O O -John B-PER B-PER -Vance I-PER I-PER -Lang I-PER I-PER -, O O -a O O -letter O O -resign O O -his O O -place O O -as O O -member O O -of O O -the O O -House B-ORG B-ORG -of I-ORG I-ORG -Representatives I-ORG I-ORG -for O O -the O O -electoral O O -division O O -of O O -Fraser B-LOC B-PER -in O O -the O O -Australian B-LOC B-MISC -Capital I-LOC I-MISC -Territory I-LOC I-MISC -, O O -" O O -his O O -office O O -said O O -in O O -a O O -statement O O -. O O -Hal B-PER B-PER -was O O -considering O O -possible O O -dates O O -for O O -the O O -by O O -, O O -his O O -office O O -said O O -. O O -Lang B-PER B-PER -, O O -57 O O -, O O -announced O O -in O O -November O O -that O O -he O O -intended O O -to O O -resign O O -from O O -parliament O O -to O O -take O O -up O O -a O O -position O O -as O O -Australia B-LOC B-LOC -' O O -senior O O -representative O O -at O O -the O O -United B-ORG B-ORG -Nations I-ORG I-ORG -headquarters O O -in O O -New B-LOC B-LOC -York I-LOC I-LOC -. O O -He O O -played O O -an O O -active O O -role O O -at O O -the O O -U B-ORG B-ORG -social O O -development O O -conference O O -in O O -Copenhagen B-LOC B-LOC -last O O -year O O -and O O -has O O -co O O -articles O O -with O O -U B-ORG B-ORG -development O O -programme O O -officer O O -In B-PER B-PER -Ka I-PER I-PER -. O O -Lang B-PER B-PER -, O O -a O O -persistent O O -campaign O O -for O O -intervention O O -economic O O -policy O O -, O O -has O O -been O O -Labor B-ORG O -member O O -for O O -Fraser B-LOC B-PER -since O O -1984 O O -. O O -He O O -was O O -senior O O -private O O -secretary O O -to O O -the O O -employment O O -and O O -industrial O O -relations O O -minister O O -from O O -1983 O O -to O O -1984 O O -and O O -was O O -economic O O -advisor O O -to O O -then O O -treasurer O O -Paul B-PER B-PER -Ke I-PER I-PER -in O O -1983 O O -. O O -His O O -previous O O -posts O O -include O O -assistant O O -director O O -of O O -the O O -national O O -planning O O -office O O -of O O -Papua B-LOC B-LOC -New I-LOC I-LOC -Guinea I-LOC I-LOC -from O O -1969 O O -to O O -1973 O O -. O O -- O O -Canberra B-ORG B-LOC -Bureau I-ORG O -61 O O -27 O O -Burmese B-MISC B-MISC -students O O -march O O -out O O -of O O -campus O O -again O O -. O O -RA B-LOC B-LOC -1996 O O -A O O -group O O -of O O -Burmese B-MISC B-MISC -students O O -on O O -Friday O O -marched O O -out O O -of O O -the O O -Yang B-ORG B-ORG -Institute I-ORG I-ORG -of I-ORG I-ORG -Technology I-ORG I-ORG -( O O -Y B-ORG B-ORG -) O O -in O O -the O O -northern O O -outskirts O O -of O O -Ra B-LOC B-LOC -and O O -moved O O -toward O O -the O O -University B-ORG B-ORG -of I-ORG I-ORG -Yang I-ORG I-ORG -about O O -six O O -km O O -( O O -four O O -miles O O -) O O -away O O -, O O -witnesses O O -said O O -. O O -The O O -witnesses O O -could O O -not O O -give O O -exact O O -numbers O O -of O O -those O O -taking O O -part O O -in O O -the O O -march O O -or O O -any O O -other O O -details O O -immediately O O -. O O -On O O -Monday O O -and O O -Tuesday O O -, O O -students O O -from O O -the O O -Y B-ORG B-ORG -and O O -the O O -university O O -launched O O -street O O -protests O O -against O O -what O O -they O O -called O O -unfair O O -handling O O -by O O -police O O -of O O -a O O -bra O O -between O O -some O O -of O O -their O O -colleagues O O -and O O -restaurant O O -owners O O -in O O -October O O -. O O -The O O -protests O O -culminated O O -at O O -dawn O O -on O O -Tuesday O O -with O O -several O O -hundred O O -of O O -the O O -student O O -protesters O O -being O O -detained O O -briefly O O -by O O -police O O -near O O -the O O -central O O -S B-LOC B-LOC -Da I-LOC I-LOC -p O O -in O O -Ra B-LOC B-LOC -. O O -They O O -were O O -later O O -released O O -. O O -On O O -Friday O O -, O O -some O O -students O O -told O O -Re B-ORG B-ORG -that O O -they O O -were O O -still O O -di O O -with O O -the O O -ruling O O -State B-ORG B-ORG -Law I-ORG I-ORG -and I-ORG I-ORG -Order I-ORG I-ORG -Restoration I-ORG I-ORG -Council I-ORG I-ORG -' O O -( O O -SL B-ORG B-ORG -) O O -handling O O -of O O -their O O -demands O O -. O O -They O O -said O O -they O O -wanted O O -to O O -organise O O -independent O O -unions O O -on O O -university O O -campuses O O -and O O -demanded O O -that O O -details O O -of O O -the O O -punishment O O -of O O -policemen O O -who O O -allegedly O O -man O O -some O O -students O O -at O O -the O O -October O O -bra O O -be O O -published O O -in O O -newspapers O O -. O O -Thai B-MISC B-MISC -rice O O -vessels O O -loading O O -and O O -movements O O -at O O -Dec O O -06 O O -. O O -BA B-LOC B-LOC -1996 O O -The O O -Thai B-MISC B-MISC -Commerce I-ORG B-ORG -Ministry I-ORG I-ORG -detailed O O -rice O O -loading O O -at O O -Thai B-MISC B-MISC -ports O O -as O O -follows O O -( O O -in O O -tonnes O O -) O O -: O O -V O O -Date O O -of O O -A O O -Q O O -Des O O -Iran B-LOC B-MISC -Sa O I-MISC -19 O O -9 O O -Iran B-LOC B-LOC -Princess O B-MISC -of O I-MISC -Lo B-LOC I-MISC -19 O O -10 O O -Philippines B-LOC B-LOC -Del O B-MISC -20 O O -5 O O -Indonesia B-LOC B-LOC -Sea B-ORG B-MISC -ace O O -20 O O -5 O O -Japan B-LOC B-LOC -Lucky B-ORG B-MISC -Em I-ORG I-MISC -20 O O -5 O O -Japan B-LOC B-LOC -Al B-LOC B-MISC -Day O I-MISC -21 O O -6 O O -Africa B-LOC B-LOC -Sang B-ORG B-MISC -Glory I-ORG I-MISC -22 O O -SH B-LOC B-LOC -1996 O O -A O O -five O O -girl O O -in O O -the O O -east O O -China B-LOC B-LOC -city O O -of O O -T B-LOC B-LOC -choked O O -and O O -almost O O -died O O -from O O -cigarette O O -smoke O O -at O O -her O O -grandfather O O -' O O -birthday O O -with O O -relatives O O -smoking O O -for O O -hours O O -in O O -a O O -small O O -room O O -, O O -the O O -Wen B-ORG B-ORG -Hui I-ORG I-ORG -Ba I-ORG I-ORG -newspaper O O -said O O -on O O -Friday O O -. O O -The O O -newspaper O O -said O O -the O O -girl O O -was O O -rushed O O -to O O -hospital O O -and O O -found O O -to O O -be O O -having O O -extreme O O -difficulty O O -breathing O O -. O O -It O O -said O O -eight O O -of O O -the O O -people O O -at O O -the O O -party O O -, O O -including O O -the O O -girl O O -' O O -father O O -, O O -immediately O O -announced O O -they O O -would O O -give O O -up O O -smoking O O -. O O -South B-MISC B-MISC -Korean I-MISC I-MISC -won O O -closes O O -down O O -on O O -import O O -settlements O O -. O O -SE B-LOC B-LOC -1996 O O -The O O -won O O -slid O O -against O O -the O O -U B-LOC B-LOC -unit O O -on O O -Friday O O -as O O -players O O -prepared O O -for O O -Monday O O -' O O -import O O -settlement O O -needs O O -, O O -traders O O -said O O -. O O -The O O -won O O -ended O O -at O O -83 O O -, O O -slightly O O -down O O -from O O -an O O -opening O O -of O O -83 O O -. O O -It O O -ranged O O -between O O -83 O O -and O O -83 O O -. O O -" O O -A O O -sale O O -of O O -about O O -$ O O -60 O O -million O O -by O O -H B-ORG B-ORG -Heavy I-ORG I-ORG -pushed O O -the O O -dollar O O -down O O -earlier O O -in O O -the O O -day O O -, O O -but O O -Monday O O -' O O -import O O -needs O O -helped O O -it O O -recover O O -, O O -" O O -said O O -a O O -Ko B-ORG B-ORG -Bank I-ORG I-ORG -dealer O O -. O O -Deal O O -said O O -the O O -dollar O O -/ O O -ye O O -' O O -movement O O -on O O -the O O -world O O -market O O -would O O -continue O O -to O O -set O O -the O O -trend O O -for O O -the O O -dollar O O -/ O O -won O O -next O O -week O O -. O O -Foreign O O -planes O O -to O O -land O O -in O O -China B-LOC B-LOC -' O O -popular O O -G B-LOC B-LOC -. O O -B B-LOC B-LOC -1996 O O -China B-LOC B-LOC -' O O -tourist O O -spot O O -of O O -G B-LOC B-LOC -in O O -the O O -southern O O -region O O -of O O -G B-LOC B-LOC -will O O -open O O -its O O -airport O O -to O O -foreign O O -aircraft O O -, O O -the O O -Xi B-ORG B-ORG -news O O -agency O O -said O O -on O O -Friday O O -. O O -An O O -assessment O O -group O O -made O O -up O O -of O O -the O O -State B-ORG B-ORG -Council I-ORG I-ORG -' O O -Port B-ORG O -Office I-ORG O -, O O -the O O -Civil B-ORG B-ORG -Aviation I-ORG I-ORG -Administration I-ORG I-ORG -of I-ORG I-ORG -China I-ORG I-ORG -, O O -the O O -General B-ORG B-ORG -Administration I-ORG I-ORG -of I-ORG I-ORG -Customs I-ORG I-ORG -and O O -other O O -authorities O O -had O O -granted O O -the O O -airport O O -permission O O -to O O -handle O O -foreign O O -aircraft O O -, O O -Xi B-PER B-ORG -said O O -. O O -" O O -The O O -move O O -is O O -expected O O -to O O -give O O -a O O -shot O O -in O O -the O O -arm O O -to O O -the O O -economic O O -expansion O O -of O O -G B-LOC B-LOC -and O O -southwest O O -China B-LOC B-LOC -as O O -a O O -whole O O -, O O -" O O -the O O -agency O O -said O O -but O O -gave O O -no O O -further O O -details O O -. O O -G B-LOC B-LOC -is O O -well O O -known O O -for O O -its O O -mountain O O -and O O -river O O -scenery O O -and O O -is O O -one O O -of O O -China B-LOC B-LOC -' O O -most O O -popular O O -tourist O O -destinations O O -. O O -EPA B-ORG B-ORG -says O O -economic O O -assessment O O -unchanged O O -by O O -GDP O O -data O O -. O O -TO B-LOC B-LOC -1996 O O -Japan B-LOC B-LOC -' O O -Economic B-ORG B-ORG -Planning I-ORG I-ORG -Agency I-ORG I-ORG -has O O -not O O -changed O O -its O O -view O O -that O O -the O O -economy O O -is O O -gradually O O -recovering O O -, O O -despite O O -relatively O O -weak O O -gross O O -domestic O O -product O O -figures O O -released O O -on O O -Tuesday O O -, O O -EPA B-ORG B-ORG -Vice O O -Minister O O -Shi B-PER B-PER -N I-PER I-PER -told O O -reporters O O -on O O -Friday O O -. O O -He O O -said O O -the O O -GDP O O -growth O O -was O O -weak O O -but O O -that O O -this O O -reflected O O -the O O -economy O O -between O O -July O O -and O O -September O O -and O O -did O O -not O O -take O O -into O O -account O O -more O O -recent O O -data O O -. O O -When O O -asked O O -about O O -the O O -outlook O O -for O O -the O O -fiscal O O -year O O -beginning O O -in O O -April O O -, O O -N B-ORG B-PER -said O O -the O O -economy O O -may O O -slow O O -down O O -in O O -the O O -early O O -part O O -of O O -the O O -fiscal O O -year O O -due O O -to O O -a O O -planned O O -consumption O O -tax O O -hike O O -, O O -but O O -that O O -would O O -be O O -only O O -temporary O O -. O O -The O O -consumption O O -tax O O -will O O -be O O -raised O O -to O O -five O O -percent O O -from O O -three O O -percent O O -from O O -April O O -1 O O -. O O -Sang B-ORG B-ORG -- O O -96 O O -parent O O -forecast O O -. O O -TO B-LOC B-LOC -1996 O O -Year O O -to O O -March O O -31 O O -, O O -1997 O O -( O O -in O O -billion O O -of O O -ye O O -unless O O -specified O O -) O O -LA O O -ACT O O -( O O -Pa O O -) O O -F O O -Y O O -Sales O O -128 O O -117 O O -Current O O -12 O O -9 O O -Net O O -6 O O -5 O O -EP O O -143 O O -ye O O -127 O O -ye O O -Or B-MISC O -di O O -30 O O -ye O O -30 O O -ye O O -NO O O -- O O -Sang B-ORG B-ORG -Co I-ORG I-ORG -Ltd I-ORG I-ORG -is O O -a O O -trader O O -specialising O O -in O O -interiors O O -. O O -B B-ORG B-ORG -, O O -Barr B-PER B-ORG -said O O -to O O -continue O O -Bus B-LOC B-LOC -talks O O -. O O -K B-LOC B-LOC -Ara I-ORG I-LOC -J B-LOC B-LOC -1996 O O -Canada B-LOC B-LOC -' O O -B B-ORG B-ORG -Mine I-ORG I-ORG -Ltd I-ORG I-ORG -and O O -Barr B-ORG B-ORG -Gold I-ORG I-ORG -Corp I-ORG I-ORG -are O O -to O O -continue O O -negotiations O O -to O O -hammer O O -out O O -a O O -partnership O O -agreement O O -to O O -develop O O -the O O -spectacular O O -Bus B-LOC B-LOC -gold O O -find O O -in O O -Indonesia B-LOC B-LOC -, O O -sources O O -close O O -to O O -the O O -talks O O -said O O -on O O -Friday O O -. O O -" O O -The O O -negotiations O O -will O O -be O O -held O O -both O O -in O O -Toronto B-LOC B-LOC -and O O -in O O -Jakarta B-LOC B-LOC -, O O -" O O -one O O -source O O -, O O -speaking O O -on O O -condition O O -of O O -an O O -, O O -told O O -Re B-ORG B-ORG -. O O -Another O O -source O O -said O O -most O O -of O O -the O O -key O O -ne O O -from O O -both O O -B B-ORG B-ORG -and O O -Barr B-ORG B-ORG -had O O -returned O O -to O O -Toronto B-LOC B-LOC -, O O -but O O -declined O O -to O O -say O O -if O O -there O O -had O O -been O O -any O O -progress O O -in O O -their O O -negotiations O O -. O O -Both O O -sources O O -said O O -B B-ORG B-ORG -and O O -Barr B-PER B-ORG -did O O -not O O -hold O O -talks O O -on O O -Thursday O O -with O O -Mines B-ORG B-ORG -and I-ORG I-ORG -Energy I-ORG I-ORG -Ministry I-ORG I-ORG -Secretary O O -Um B-PER B-PER -Said I-PER I-PER -, O O -who O O -is O O -coordinating O O -the O O -negotiations O O -over O O -the O O -Bus B-MISC B-LOC -find O O -in O O -East B-LOC B-LOC -Kali I-LOC I-LOC -. O O -The O O -first O O -source O O -also O O -said O O -B B-ORG B-ORG -had O O -until O O -December O O -21 O O -to O O -submit O O -to O O -the O O -Indonesian B-ORG B-ORG -Mines I-ORG I-ORG -and I-ORG I-ORG -Energy I-ORG I-ORG -Ministry I-ORG I-ORG -a O O -f O O -study O O -on O O -the O O -central O O -region O O -of O O -the O O -Bus B-LOC B-LOC -property O O -, O O -estimated O O -to O O -contain O O -2 O O -million O O -ounce O O -of O O -gold O O -. O O -The O O -richest O O -parts O O -of O O -the O O -property O O -to O O -the O O -north O O -and O O -south O O -of O O -the O O -central O O -region O O -have O O -been O O -estimated O O -by O O -B B-ORG B-ORG -to O O -contain O O -57 O O -million O O -ounce O O -of O O -gold O O -. O O -" O O -B B-ORG B-ORG -is O O -expected O O -to O O -complete O O -the O O -f O O -report O O -by O O -December O O -16 O O -and O O -submit O O -it O O -to O O -the O O -government O O -before O O -the O O -December O O -21 O O -deadline O O -, O O -" O O -the O O -source O O -said O O -. O O -He O O -said O O -B B-ORG B-ORG -would O O -then O O -formally O O -seek O O -the O O -permission O O -of O O -the O O -Indonesian B-MISC B-MISC -government O O -to O O -begin O O -construction O O -to O O -develop O O -Bus B-LOC B-LOC -' O O -central O O -region O O -, O O -which O O -might O O -take O O -up O O -to O O -two O O -years O O -. O O -The O O -source O O -declined O O -to O O -say O O -if O O -there O O -had O O -been O O -any O O -progress O O -in O O -the O O -talks O O -between O O -B B-ORG B-ORG -and O O -Barr B-ORG B-ORG -. O O -" O O -This O O -is O O -a O O -huge O O -project O O -. O O -we O O -are O O -not O O -selling O O -furniture O O -, O O -and O O -B B-ORG B-ORG -has O O -13 O O -shareholders O O -to O O -answer O O -to O O -, O O -" O O -the O O -source O O -said O O -. O O -" O O -While O O -there O O -has O O -been O O -some O O -agreement O O -in O O -principle O O -on O O -some O O -issues O O -, O O -there O O -are O O -still O O -others O O -such O O -as O O -procedures O O -and O O -mechanisms O O -that O O -needed O O -to O O -be O O -sorted O O -out O O -, O O -" O O -he O O -added O O -. O O -The O O -source O O -said O O -no O O -new O O -deadline O O -had O O -been O O -set O O -by O O -the O O -Mines B-ORG B-ORG -and I-ORG I-ORG -Energy I-ORG I-ORG -Ministry I-ORG I-ORG -for O O -B B-ORG B-ORG -and O O -Barr B-ORG B-ORG -to O O -strike O O -a O O -deal O O -. O O -The O O -Ministry B-ORG O -had O O -given O O -the O O -companies O O -until O O -December O O -4 O O -to O O -complete O O -a O O -partnership O O -deal O O -, O O -and O O -advised O O -B B-ORG B-ORG -to O O -take O O -a O O -25 O O -percent O O -stake O O -and O O -Barr B-ORG B-ORG -75 O O -percent O O -to O O -develop O O -the O O -property O O -. O O -" O O -As O O -far O O -as O O -I O O -am O O -aware O O -, O O -there O O -' O O -been O O -no O O -new O O -deadline O O -, O O -" O O -the O O -source O O -said O O -. O O -The O O -Ministry B-ORG O -' O O -Um B-PER B-PER -said O O -on O O -Thursday O O -that O O -both O O -B B-ORG B-ORG -and O O -Barr B-ORG B-ORG -had O O -responded O O -positively O O -to O O -a O O -government O O -letter O O -recommend O O -a O O -25 O O -split O O -in O O -the O O -Bus B-LOC B-ORG -gold O O -property O O -. O O -The O O -government O O -also O O -wants O O -10 O O -percent O O -of O O -the O O -property O O -. O O -Um B-PER B-PER -said O O -the O O -government O O -had O O -yet O O -to O O -receive O O -a O O -formal O O -reply O O -from O O -the O O -companies O O -. O O -He O O -had O O -said O O -earlier O O -that O O -if O O -the O O -two O O -companies O O -failed O O -to O O -reach O O -a O O -partnership O O -agreement O O -, O O -the O O -government O O -would O O -explore O O -other O O -ways O O -to O O -ex O O -development O O -of O O -the O O -Bus B-LOC B-ORG -find O O -. O O -B B-ORG B-ORG -has O O -a O O -partnership O O -deal O O -with O O -PT B-ORG B-PER -Pan I-ORG I-PER -Du I-ORG I-PER -of O O -the O O -Pan B-ORG B-ORG -Group I-ORG I-ORG -run O O -by O O -President O O -Su B-PER B-PER -' O O -eldest O O -son O O -, O O -Si B-PER B-PER -Ha I-PER I-PER -, O O -under O O -which O O -Pan B-ORG B-PER -would O O -receive O O -$ O O -40 O O -million O O -over O O -40 O O -months O O -plus O O -a O O -10 O O -percent O O -stake O O -Bus B-ORG B-ORG -' O O -richest O O -parts O O -. O O -Barr B-ORG B-ORG -has O O -teamed O O -up O O -with O O -a O O -construction O O -company O O -in O O -the O O -C B-ORG B-ORG -Group I-ORG I-ORG -of O O -Su B-LOC B-PER -' O O -eldest O O -daughter O O -, O O -Sit B-PER B-PER -Hard I-PER I-PER -R I-PER I-PER -, O O -in O O -what O O -Barr B-PER B-ORG -had O O -said O O -was O O -a O O -partnership O O -" O O -to O O -prepare O O -us O O -for O O -a O O -potential O O -mining O O -development O O -project O O -" O O -. O O -Honda B-ORG B-MISC -R I-ORG I-MISC -exceeds O O -sales O O -target O O -. O O -TO B-LOC B-LOC -1996 O O -Honda B-ORG B-ORG -Motor I-ORG I-ORG -Co I-ORG I-ORG -Ltd I-ORG I-ORG -said O O -on O O -Friday O O -that O O -it O O -had O O -received O O -15 O O -domestic O O -orders O O -for O O -its O O -S B-MISC B-MISC -recreational O O -vehicle O O -in O O -the O O -first O O -two O O -weeks O O -after O O -its O O -launch O O -. O O -Honda B-ORG B-ORG -launched O O -the O O -S B-MISC B-MISC -light O O -mini O O -, O O -featuring O O -cubic O O -body O O -styling O O -, O O -on O O -November O O -22 O O -with O O -a O O -monthly O O -sales O O -target O O -of O O -5 O O -units O O -. O O -A O O -version O O -with O O -lower O O -road O O -clearance O O -and O O -front O O -and O O -rear O O -s O O -accounted O O -for O O -two O O -of O O -the O O -sales O O -. O O -F O O -- O O -Singapore B-LOC B-LOC -sees O O -prestige O O -in O O -hosting O O -W B-ORG B-ORG -. O O -Ram B-PER B-PER -Hussain I-PER I-PER -S B-LOC B-LOC -1996 O O -Singapore B-LOC B-LOC -' O O -winning O O -campaign O O -to O O -host O O -the O O -World B-ORG B-ORG -Trade I-ORG I-ORG -Organisation I-ORG I-ORG -( O O -W B-ORG B-ORG -) O O -' O O -first O O -ministerial O O -meeting O O -reflected O O -its O O -ambition O O -to O O -play O O -a O O -key O O -role O O -in O O -shaping O O -global O O -free O O -trade O O -, O O -the O O -life O O -of O O -its O O -economy O O -, O O -analysts O O -said O O -. O O -" O O -As O O -one O O -of O O -the O O -world O O -' O O -most O O -external O O -oriented O O -economies O O -, O O -Singapore B-LOC B-LOC -has O O -a O O -di O O -large O O -stake O O -in O O -the O O -W B-ORG B-ORG -, O O -" O O -said O O -Desmond B-PER B-PER -Su I-PER I-PER -, O O -economist O O -at O O -research O O -house O O -I B-ORG B-ORG -. O O -" O O -Singapore B-LOC B-LOC -stands O O -to O O -benefit O O -more O O -than O O -most O O -from O O -continued O O -global O O -trade O O -liberal O O -as O O -trade O O -is O O -the O O -engine O O -of O O -its O O -growth O O -, O O -accounting O O -for O O -nearly O O -three O O -times O O -its O O -gross O O -domestic O O -product O O -. O O -" O O -The O O -city O O -met O O -U B-LOC B-LOC -opposition O O -two O O -years O O -ago O O -in O O -its O O -bid O O -to O O -host O O -the O O -meeting O O -, O O -expected O O -to O O -gather O O -4 O O -officials O O -from O O -160 O O -countries O O -from O O -December O O -9 O O -to O O -13 O O -. O O -In O O -a O O -stand O O -some O O -analysts O O -linked O O -to O O -controversy O O -over O O -Singapore B-LOC B-LOC -' O O -can O O -of O O -an O O -American B-MISC B-MISC -teenager O O -for O O -van O O -, O O -then O B-MISC -Trade O O -Representative O O -Mickey B-PER B-PER -Ka I-PER I-PER -had O O -said O O -the O O -meeting O O -ought O O -to O O -be O O -held O O -where O O -the O O -W B-ORG B-ORG -was O O -going O O -to O O -be O O -headquartered O O -. O O -That O O -would O O -have O O -meant O O -Geneva B-LOC B-LOC -. O O -But O O -Singapore B-LOC B-LOC -had O O -the O O -support O O -of O O -other O O -W B-ORG B-ORG -members O O -. O O -Derek B-PER B-PER -da I-PER I-PER -C I-PER I-PER -, O O -senior O O -fellow O O -at O O -the O O -Institute B-ORG B-ORG -of I-ORG I-ORG -Policy I-ORG I-ORG -Studies I-ORG I-ORG -( O O -IS B-ORG B-ORG -) O O -, O O -said O O -Singapore B-LOC B-LOC -' O O -hosting O O -of O O -the O O -conference O O -" O O -carries O O -a O O -great O O -deal O O -of O O -symbol O O -for O O -the O O -city O O -, O O -under O O -its O O -commitment O O -to O O -free O O -trade O O -and O O -its O O -trading O O -links O O -across O O -the O O -globe O O -. O O -" O O -There O O -is O O -the O O -international O O -prestige O O -Singapore B-LOC B-LOC -would O O -enjoy O O -, O O -but O O -" O O -more O O -importantly O O -there O O -is O O -a O O -genuine O O -national O O -interest O O -in O O -foster O O -better O O -global O O -free O O -trade O O -and O O -an O O -open O O -market O O -" O O -, O O -said O O -Tan B-PER B-PER -Kong I-PER I-PER -Ya I-PER I-PER -, O O -head O O -of O O -Business B-ORG O -Policy I-ORG O -at O O -the O O -National B-ORG B-ORG -University I-ORG I-ORG -of I-ORG I-ORG -Singapore I-ORG I-ORG -. O O -At O O -the O O -ministerial O O -meeting O O -, O O -trade O O -ministers O O -will O O -review O O -the O O -work O O -of O O -the O O -W B-ORG B-ORG -and O O -the O O -implementation O O -of O O -the O O -Uruguay B-MISC B-LOC -Round I-MISC O -free O O -trade O O -commitments O O -under O O -its O O -predecessor O O -the O O -General B-MISC B-MISC -Agreement I-MISC I-MISC -on I-MISC I-MISC -Ta I-ORG I-MISC -and I-ORG I-MISC -Trade I-ORG I-MISC -( O O -GA B-ORG B-MISC -) O O -. O O -In O O -June O O -, O O -the O O -W B-ORG B-ORG -hailed O O -Singapore B-LOC B-LOC -for O O -its O O -open O O -market O O -policies O O -but O O -the O O -European B-ORG B-ORG -Union I-ORG I-ORG -and O O -other O O -trading O O -powers O O -called O O -on O O -Singapore B-LOC B-LOC -to O O -speed O O -up O O -the O O -opening O O -of O O -its O O -services O O -sector O O -. O O -Su B-PER B-PER -said O O -the O O -struggle O O -that O O -Singapore B-LOC B-LOC -had O O -to O O -wage O O -in O O -v O O -to O O -host O O -the O O -meeting O O -would O O -be O O -repeated O O -during O O -the O O -talks O O -. O O -" O O -There O O -is O O -tension O O -at O O -every O O -step O O -of O O -the O O -way O O -, O O -" O O -since O O -a O O -battle O O -line O O -between O O -the O O -West B-MISC O -and O O -developing O O -countries O O -has O O -been O O -drawn O O -over O O -the O O -issue O O -of O O -linking O O -trade O O -liberal O O -with O O -labour O O -rights O O -, O O -he O O -said O O -. O O -Su B-PER B-PER -said O O -hosting O O -the O O -meeting O O -carried O O -prestige O O -for O O -Singapore B-LOC B-LOC -, O O -" O O -however O O -, O O -this O O -is O O -quite O O -in O O -as O O -the O O -prestige O O -factor O O -may O O -not O O -necessarily O O -lead O O -to O O -any O O -additional O O -investment O O -and O O -trade O O -flows O O -to O O -this O O -region O O -. O O -" O O -From O O -a O O -commercial O O -point O O -of O O -view O O -, O O -the O O -meeting O O -would O O -be O O -good O O -for O O -Singapore B-LOC B-LOC -' O O -tourism O O -industry O O -, O O -Tan B-PER B-PER -said O O -. O O -A O O -large O O -part O O -of O O -Singapore B-LOC B-LOC -' O O -workforce O O -would O O -be O O -mob O O -to O O -ensure O O -the O O -meeting O O -would O O -run O O -without O O -a O O -g O O -but O O -the O O -average O O -Singapore B-MISC B-MISC -" O O -would O O -probably O O -not O O -be O O -too O O -concerned O O -about O O -some O O -of O O -the O O -issues O O -, O O -" O O -Tan B-PER B-PER -said O O -. O O -" O O -But O O -the O O -more O O -educated O O -public O O -will O O -realise O O -that O O -these O O -kind O O -of O O -things O O -are O O -important O O -for O O -Singapore B-LOC B-LOC -as O O -a O O -small O O -economy O O -. O O -" O O -Su B-PER B-PER -said O O -any O O -political O O -gains O O -the O O -Singapore B-LOC B-LOC -government O O -would O O -get O O -from O O -the O O -W B-ORG B-ORG -meeting O O -- O O -ahead O O -of O O -a O O -general O O -election O O -due O O -by O O -April O O -1997 O O -- O O -would O O -depend O O -on O O -how O O -successful O O -it O O -was O O -in O O -pushing O O -its O O -economic O O -agenda O O -. O O -" O O -If O O -there O O -are O O -any O O -movements O O -toward O O -free O O -trade O O -, O O -then O O -Singapore B-LOC B-LOC -' O O -economy O O -and O O -the O O -electorate O O -would O O -gain O O -, O O -" O O -he O O -said O O -. O O -" O O -But O O -I O O -do O O -n O O -think O O -it O O -would O O -be O O -wise O O -to O O -play O O -up O O -the O O -political O O -aspect O O -of O O -this O O -. O O -I O O -think O O -political O O -issues O O -will O O -take O O -secondary O O -importance O O -to O O -all O O -these O O -economic O O -issues O O -that O O -will O O -be O O -displayed O O -. O O -" O O -Japan B-LOC B-LOC -N B-ORG B-ORG -says O O -hopes O O -to O O -start O O -in O O -business O O -soon O O -. O O -TO B-LOC B-LOC -1996 O O -Nippon B-ORG B-ORG -Telegraph I-ORG I-ORG -and I-ORG I-ORG -Telephone I-ORG I-ORG -Corp I-ORG I-ORG -( O O -N B-ORG B-ORG -) O O -said O O -on O O -Friday O O -that O O -it O O -hopes O O -to O O -move O O -into O O -the O O -international O O -telecommunications O O -business O O -as O O -soon O O -as O O -possible O O -following O O -the O O -government O O -' O O -decision O O -to O O -split O O -N B-ORG B-ORG -into O O -three O O -firms O O -under O O -a O O -holding O O -company O O -. O O -" O O -We O O -hope O O -to O O -start O O -international O O -telephone O O -business O O -as O O -soon O O -as O O -possible O O -, O O -" O O -a O O -company O O -official O O -told O O -Re B-ORG B-ORG -. O O -The O O -official O O -said O O -the O O -latest O O -government O O -decision O O -to O O -split O O -the O O -company O O -under O O -a O O -holding O O -company O O -would O O -allow O O -flexibility O O -in O O -N B-ORG B-ORG -' O O -international O O -phone O O -business O O -. O O -Earlier O O -, O O -Post B-ORG O -and I-ORG O -Telecommunications I-ORG O -Minister O O -His B-PER B-PER -Ho I-PER I-PER -told O O -a O O -news O O -conference O O -the O O -government O O -plans O O -to O O -split O O -N B-ORG B-ORG -into O O -three O O -firms O O -under O O -a O O -holding O O -company O O -, O O -but O O -did O O -not O O -specify O O -when O O -the O O -restructuring O O -would O O -likely O O -take O O -effect O O -. O O -One O O -of O O -the O O -three O O -new O O -companies O O -will O O -be O O -a O O -long O O -operator O O -and O O -the O O -other O O -two O O -will O O -be O O -local O O -operators O O -, O O -Ho B-ORG B-PER -said O O -. O O -One O O -of O O -the O O -local O O -firms O O -will O O -operate O O -in O O -west O O -Japan B-LOC B-LOC -and O O -the O O -other O O -in O O -east O O -Japan B-LOC B-LOC -, O O -he O O -added O O -. O O -The O O -long O O -operator O O -will O O -offer O O -international O O -services O O -, O O -Ho B-ORG B-PER -said O O -. O O -The O O -N B-ORG B-ORG -official O O -said O O -the O O -timing O O -of O O -the O O -planned O O -split O O -was O O -uncertain O O -because O O -more O O -discussions O O -by O O -government O O -officials O O -were O O -required O O -. O O -Ah B-ORG B-ORG -launches O O -Asian B-MISC B-MISC -food O O -discount O O -stores O O -. O O -Z B-LOC B-LOC -, O O -Netherlands B-LOC B-LOC -1996 O O -Dutch B-MISC B-MISC -supermarket O O -group O O -Ah B-ORG B-ORG -N I-ORG I-ORG -said O O -on O O -Friday O O -it O O -had O O -launched O O -a O O -second O O -food O O -store O O -format O O -for O O -Asian B-MISC B-MISC -consumers O O -today O O -, O O -opening O O -16 O O -B B-MISC B-MISC -food O O -discount O O -stores O O -in O O -Malaysia B-LOC B-LOC -. O O -The O O -B B-ORG B-MISC -stores O O -are O O -located O O -in O O -Mal B-ORG B-LOC -' O O -capital O O -Kuala B-LOC B-LOC -Lumpur O I-LOC -and O O -in O O -the O O -country O O -' O O -second O O -city O O -Jo B-LOC B-LOC -Ba I-LOC I-LOC -. O O -The O O -discount O O -price O O -format O O -store O O -B B-ORG B-MISC -is O O -to O O -complement O O -Ah B-ORG B-ORG -' O O -full O O -service O O -supermarket O O -TO B-ORG B-MISC -, O O -recently O O -launched O O -in O O -Asia B-LOC B-LOC -. O O -" O O -In O O -the O O -coming O O -five O O -to O O -ten O O -years O O -, O O -Ah B-ORG B-ORG -plans O O -to O O -open O O -many O O -more O O -stores O O -of O O -both O O -formats O O -, O O -making O O -TO B-MISC B-MISC -and O O -B B-MISC B-MISC -household O O -names O O -in O O -the O O -region O O -, O O -" O O -Ah B-ORG B-ORG -said O O -in O O -a O O -statement O O -. O O -As O O -well O O -as O O -its O O -activities O O -in O O -Asia B-LOC B-LOC -, O O -Dutch B-MISC B-MISC -retail O O -group O O -Ah B-ORG B-ORG -has O O -a O O -strong O O -presence O O -in O O -Europe B-LOC B-LOC -, O O -in O O -the O O -U B-LOC B-LOC -and O O -the O O -company O O -recently O O -announced O O -a O O -joint O O -venture O O -agreement O O -in O O -Brazil B-LOC B-LOC -. O O -Ah B-ORG B-ORG -has O O -annual O O -sales O O -of O O -approximately O O -US B-MISC B-MISC -24 O O -billion O O -, O O -and O O -employs O O -180 O O -people O O -worldwide O O -. O O -- O O -Amsterdam B-LOC B-LOC -news O O -+ O O -20 O O -50 O O -5000 O O -, O O -F O O -+ O O -20 O O -50 O O -50 O O -AL B-ORG O -SK O O -' O O -W O B-MISC -C I-MISC I-MISC -S O O -G O O -W O O -PR O O -. O O -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Profile O O -of O O -the O O -winner O O -of O O -Saturday O O -' O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -super O O -G O O -race O O -: O O -Name O O -: O O -S B-PER B-PER -Glad I-PER I-PER -Age O O -: O O -25 O O -Nation O O -: O O -Russia B-LOC B-LOC -Previous O O -World B-MISC B-MISC -Cup I-MISC I-MISC -victories O O -: O O -None O O -Other O O -F O O -: O O -Glad B-PER B-PER -won O O -a O O -silver O O -medal O O -in O O -super O O -G I-MISC O -at O O -the O O -1994 O O -Lille B-MISC B-LOC -Winter I-MISC B-MISC -Olympics I-MISC I-MISC -and O O -a O O -bronze O O -medal O O -in O O -downhill O O -at O O -the O O -1991 O O -World B-MISC B-MISC -Championships I-MISC I-MISC -. O O -AL B-MISC O -SK O O -' O O -W B-MISC B-MISC -C I-MISC I-MISC -S O O -G O O -R O O -. O O -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Provisional O O -results O O -from O O -Saturday O O -' O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -super O O -G O O -race O O -: O O -1 O O -S B-PER B-PER -Glad I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -one O O -minute O O -17 O O -seconds O O -2 O O -Per B-PER B-PER -W I-PER I-PER -( O O -Sweden B-LOC B-LOC -) O O -1 O O -3 O O -Carole B-PER B-PER -Mont I-PER I-PER -( O O -France B-LOC B-LOC -) O O -1 O O -4 O O -Hi B-PER B-PER -G I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -1 O O -5 O O -Is B-PER B-PER -Ko I-PER I-PER -( O O -Italy B-LOC B-LOC -) O O -1 O O -6 O O -War B-PER B-PER -Z I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -1 O O -7 O O -Mad B-PER B-PER -B I-PER I-PER -AL B-ORG O -SK O B-MISC -W O O -W O B-MISC -C I-MISC I-MISC -S O O -G O O -. O O -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -S B-PER B-PER -Glad I-PER I-PER -of O O -Russia B-LOC B-LOC -won O O -the O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -Super B-MISC O -G I-MISC O -race O O -on O O -Saturday O O -. O O -Per B-PER B-PER -W I-PER I-PER -of O O -Sweden B-LOC B-LOC -finished O O -second O O -and O O -Carole B-PER B-PER -Mont I-PER I-PER -of O O -France B-LOC B-LOC -came O O -in O O -third O O -, O O -according O O -to O O -provisional O O -results O O -. O O -GO O O -- O O -T O O -R O O -OF O O -J B-MISC B-MISC -C I-MISC I-MISC -WA O O -O O O -. O O -T B-LOC B-LOC -SP I-LOC I-LOC -, O O -Florida B-LOC B-LOC -1996 O O -Heavy O O -rains O O -on O O -Saturday O O -washed O O -out O O -the O O -third O O -round O O -of O O -the O O -$ O O -1 O O -million O O -J B-MISC B-MISC -Classic I-MISC I-MISC -at O O -the O O -Inn B-LOC B-LOC -Hilton I-LOC I-LOC -Resort I-LOC I-LOC -. O O -Official O O -said O O -the O O -tournament O O -would O O -be O O -reduced O O -to O O -54 O O -holes O O -for O O -the O O -first O O -time O O -in O O -its O O -37 O O -history O O -. O O -The O O -final O O -round O O -of O O -the O O -special O O -event O O -, O O -which O O -pairs O O -players O O -from O O -the O O -PGA B-MISC B-ORG -and O O -LP B-MISC B-ORG -Tours I-MISC O -, O O -will O O -be O O -played O O -in O O -the O O -alternate O O -shot O O -format O O -on O O -Sunday O O -. O O -The O O -duo O O -of O O -Pat B-PER B-PER -Hu I-PER I-PER -and O O -Scott B-PER B-PER -M I-PER I-PER -were O O -tied O O -for O O -the O O -lead O O -with O O -the O O -team O O -of O O -Donna B-PER B-PER -Andrews I-PER I-PER -and O O -Mike B-PER B-PER -Hu I-PER I-PER -at O O -13 O O -129 O O -through O O -36 O O -holes O O -. O O -The O O -tandem O O -of O O -reigning O O -U B-MISC B-LOC -Amateur I-MISC O -champions O O -Ke B-PER B-PER -Ku I-PER I-PER -and O O -Tiger B-PER B-PER -Woods I-PER I-PER -were O O -another O O -shot O O -back O O -at O O -12 O O -130 O O -. O O -De O O -champions O O -Beth B-PER B-PER -Daniel I-PER I-PER -and O O -Davis B-PER B-PER -Love I-PER I-PER -will O O -start O O -the O O -final O O -round O O -six O O -shots O O -off O O -the O O -pace O O -. O O -AL B-ORG O -SK O O -' O O -D O O -W O O -PR O O -. O O -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Profile O O -of O O -the O O -winner O O -of O O -Saturday O O -' O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -downhill O O -race O O -: O O -Name O O -: O O -Ren B-PER B-PER -Go I-PER I-PER -Age O O -: O O -20 O O -Nation O O -: O O -Austria B-LOC B-LOC -Previous O O -victories O O -( O O -two O O -) O O -: O O -slalom O O -, O O -Lille B-LOC B-LOC -Norway I-LOC B-LOC -, O O -1993 O O -; O O -super O O -G O O -, O O -F B-LOC B-LOC -, O O -Austria B-LOC B-LOC -, O O -1995 O O -. O O -Other O O -facts O O -: O O -As O O -a O O -qualifier O O -for O O -the O O -1993 O B-MISC -World B-MISC I-MISC -Cup I-MISC I-MISC -finals O O -through O O -Europa B-MISC B-MISC -Cup I-MISC I-MISC -results O O -, O O -16 O O -Go B-PER B-PER -won O O -the O O -slalom O O -to O O -become O O -history O O -' O O -youngest O O -World B-MISC B-MISC -Cup I-MISC I-MISC -v O O -. O O -AL B-MISC O -SK O O -' O O -W B-MISC B-MISC -C I-MISC I-MISC -ST O O -. O O -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -standings O O -after O O -Saturday O O -' O O -downhill O O -race O O -: O O -Down O O -Standing O O -1 O O -Kat B-PER B-PER -Se I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -180 O O -points O O -2 O O -Ren B-PER B-PER -Go I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -132 O O -3 O O -Carole B-PER B-PER -Mont I-PER I-PER -( O O -France B-LOC B-LOC -) O O -86 O O -4 O O -Per B-PER B-PER -W I-PER I-PER -( O O -Sweden B-LOC B-LOC -) O O -75 O O -5 O O -Heidi B-PER B-PER -Z I-PER I-PER -( O O -Switzerland B-LOC B-LOC -) O O -69 O O -6 O O -Regina B-PER B-PER -Ha I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -66 O O -7 O O -Alexandra B-PER B-PER -Mei I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -65 O O -8 O O -Is B-PER B-PER -Ko I-PER I-PER -( O O -Italy B-LOC B-LOC -) O O -60 O O -9 O O -In B-PER B-PER -Helen I-PER I-PER -Mark I-PER O -( O O -Norway B-LOC B-LOC -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Provisional O O -results O O -from O O -Saturday O O -' O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -downhill O O -race O O -: O O -1 O O -Ren B-PER B-PER -Go I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -one O O -minute O O -47 O O -seconds O O -2 O O -Kat B-PER B-PER -Se I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -1 O O -3 O O -Is B-PER B-PER -Ko I-PER I-PER -( O O -Italy B-LOC B-LOC -) O O -1 O O -4 O O -Alexandra B-PER B-PER -Mei I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -1 O O -5 O O -Megan B-PER B-PER -G I-PER I-PER -( O O -U B-LOC B-LOC -) O O -1 O O -6 O O -Miriam B-PER B-PER -V I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -1 O O -7 O O -Stefan B-PER B-PER -Schuster I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -1 O O -NO B-MISC O -SK O B-MISC -C I-MISC I-MISC -B O O -R O O -. O O -O B-LOC B-LOC -, O O -Sweden B-LOC B-LOC -1996 O O -Results O O -of O O -Saturday O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -bi O O -races O O -: O O -Men O O -' O O -10 O O -km O O -1 O O -V B-PER B-PER -Sa I-PER I-PER -( O O -Belarus B-LOC B-LOC -) O O -26 O O -minutes O O -17 O O -seconds O O -( O O -no O O -penalty O O -rounds O O -) O O -2 O O -Fr B-PER B-PER -Andre I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -26 O O -( O O -2 O O -) O O -3 O O -Ole B-PER B-PER -Ein I-PER I-PER -B I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -26 O O -( O O -2 O O -) O O -4 O O -Sven B-PER B-PER -Fischer I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -26 O O -( O O -1 O O -) O O -5 O O -R B-PER B-PER -Gross I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -26 O O -( O O -1 O O -) O O -World B-MISC B-MISC -Cup I-MISC I-MISC -standings O O -1 O O -Women O O -' O O -7 O O -km O O -1 O O -Olga B-PER B-PER -Mel I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -23 O O -( O O -0 O O -) O O -2 O O -S B-PER B-PER -Para I-PER I-PER -( O O -Bel B-LOC B-LOC -) O O -23 O O -( O O -0 O O -) O O -3 O O -Gunn B-PER B-PER -Mar I-PER I-PER -Andreas I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -24 O O -( O O -0 O O -) O O -4 O O -Simone B-PER B-PER -G I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -24 O O -( O O -1 O O -) O O -5 O O -Petra B-PER B-PER -Be I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -24 O O -( O O -2 O O -) O O -World B-MISC B-MISC -Cup I-MISC I-MISC -standings O O -1 O O -Be B-PER B-PER -89 O O -2 O O -Para B-PER B-PER -79 O O -3 O O -G B-PER B-PER -VA B-LOC B-LOC -, O O -Colorado B-LOC B-LOC -1996 O O -Ren B-PER B-PER -Go I-PER I-PER -of O O -Austria B-LOC B-LOC -won O O -the O O -women O O -' O O -World B-MISC B-MISC -Cup I-MISC I-MISC -downhill O O -race O O -on O O -Saturday O O -, O O -according O O -to O O -provisional O O -results O O -. O O -Kat B-PER B-PER -Se I-PER I-PER -of O O -Germany B-LOC B-LOC -finished O O -second O O -and O O -Is B-PER B-PER -Ko I-PER I-PER -of O O -Italy B-LOC B-LOC -took O O -third O O -. O O -B O B-MISC -P O O -USA B-LOC B-ORG -III O I-ORG -TO O O -S O O -W O O -. O O -I B-LOC B-LOC -, O O -Austria B-LOC B-LOC -1996 O O -Brian B-PER B-PER -Shi I-PER I-PER -pilot O O -USA B-LOC B-ORG -III I-MISC I-ORG -to O O -a O O -surprise O O -victory O O -in O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -two O O -b O O -race O O -on O O -Saturday O O -. O O -L O O -fifth O O -after O O -the O O -first O O -run O O -, O O -Shi B-PER B-PER -and O O -break O O -Randy B-PER B-PER -Jones I-PER I-PER -delivered O O -a O O -near O O -second O O -trip O O -down O O -the O O -1976 B-MISC O -Olympic B-MISC B-MISC -course O O -for O O -an O O -aggregate O O -time O O -of O O -one O O -minute O O -45 O O -seconds O O -. O O -First O O -run O O -leaders O O -G B-PER B-PER -Hu I-PER I-PER -and O O -break O O -Antonio B-PER B-PER -Ta I-PER I-PER -in O O -the O O -Italy B-LOC B-LOC -I O O -s O O -finished O O -second O O -two O O -of O O -a O O -second O O -behind O O -the O O -Americans B-MISC B-MISC -. O O -Canada B-LOC B-ORG -I O I-ORG -, O O -represented O O -by O O -Pierre B-PER B-PER -Lu I-PER I-PER -and O O -break O O -Dave B-PER B-PER -Mac I-PER I-PER -, O O -completed O O -the O O -third O O -World B-MISC B-MISC -cup O I-MISC -event O O -of O O -the O O -winter O O -a O O -further O O -one O O -of O O -a O O -second O O -behind O O -the O O -Italians B-MISC B-MISC -. O O -The O O -Canadians B-MISC B-MISC -, O O -winners O O -of O O -the O O -opening O O -two O O -events O O -in O O -Alt B-LOC B-LOC -, O O -Germany B-LOC B-LOC -, O O -and O O -La B-LOC B-LOC -P I-LOC I-LOC -, O O -France B-LOC B-LOC -, O O -increased O O -their O O -lead O O -in O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -standings O O -. O O -They O O -have O O -104 O O -points O O -, O O -15 O O -ahead O O -of O O -USA B-LOC B-ORG -I I-MISC I-ORG -' O O -Jim B-PER B-PER -Herb I-PER I-PER -and O O -break O O -Garrett B-PER B-PER -Hi I-PER I-PER -who O O -managed O O -only O O -10th O O -place O O -on O O -Saturday O O -. O O -SK O B-MISC -MA O O -PR O O -F O O -SK O O -DE O O -. O O -T B-LOC B-LOC -, O O -France B-LOC B-LOC -1996 O O -China B-LOC B-LOC -made O O -a O O -promising O O -debut O O -on O O -the O O -freestyle O O -skiing O O -world O O -cup O O -circuit O O -in O O -an O O -aerial O O -event O O -in O O -the O O -French B-MISC B-MISC -resort O O -of O O -T B-LOC B-LOC -on O O -Saturday O O -. O O -While O O -the O O -Chinese B-MISC B-MISC -failed O O -to O O -gain O O -a O O -place O O -in O O -the O O -men O O -' O O -final O O -, O O -they O O -had O O -two O O -in O O -the O O -top O O -10 O O -of O O -the O O -women O O -' O O -competition O O -, O O -C B-PER B-PER -Dan I-PER I-PER -finishing O O -a O O -respectable O O -seventh O O -and O O -Xu B-PER B-PER -Nan I-PER I-PER -ninth O O -. O O -But O O -overall O O -, O O -it O O -was O O -France B-LOC B-LOC -and O O -Canada B-LOC B-LOC -who O O -dominated O O -the O O -day O O -. O O -Alexis B-PER B-PER -Blanc I-PER I-PER -and O O -Se B-PER B-PER -F I-PER I-PER -gave O O -France B-LOC B-LOC -a O O -one O O -finish O O -in O O -the O O -first O O -aerial O O -competition O O -of O O -the O O -season O O -. O O -Blanc B-PER B-PER -collected O O -his O O -seventh O O -career O O -World B-MISC B-MISC -Cup I-MISC I-MISC -win O O -with O O -a O O -two O O -jump O O -combined O O -score O O -of O O -238 O O -points O O -, O O -easily O O -beating O O -F B-PER B-PER -, O O -the O O -overall O O -World B-MISC B-MISC -Cup I-MISC I-MISC -aerial O O -champion O O -, O O -who O O -was O O -a O O -distant O O -second O O -with O O -223 O O -. O O -Canada B-LOC B-LOC -' O O -Jeff B-PER B-PER -Bean I-PER I-PER -, O O -who O O -had O O -never O O -finished O O -higher O O -than O O -ninth O O -in O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -event O O -, O O -made O O -his O O -first O O -trip O O -to O O -the O O -podium O O -taking O O -third O O -place O O -with O O -a O O -mark O O -of O O -209 O O -. O O -Veronica B-PER B-PER -B I-PER I-PER -of O O -Canada B-LOC B-LOC -, O O -who O O -picked O O -up O O -her O O -first O O -career O O -victory O O -at O O -T B-LOC B-LOC -last O O -year O O -, O O -made O O -it O O -two O O -wins O O -in O O -a O O -row O O -at O O -the O O -French B-MISC B-MISC -resort O O -taking O O -first O O -in O O -the O O -women O O -' O O -competition O O -with O O -a O O -score O O -of O O -170 O O -. O O -Swiss B-MISC B-MISC -skier O O -occupied O O -the O O -other O O -two O O -places O O -on O O -the O O -podium O O -, O O -Karin B-PER B-PER -Ku I-PER I-PER -taking O O -second O O -with O O -160 O O -narrowly O O -ahead O O -of O O -Evelyn B-PER B-PER -Le I-PER I-PER -with O O -160 O O -. O O -B O B-MISC -C I-MISC I-MISC -T O O -R O O -. O O -I B-LOC B-LOC -, O O -Austria B-LOC B-LOC -1996 O O -Results O O -of O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -two O O -b O O -event O O -on O O -Saturday O O -: O O -1 O O -United B-LOC B-ORG -States I-LOC I-ORG -III O I-ORG -( O O -Brian B-PER B-PER -Shi I-PER I-PER -, O O -Randy B-PER B-PER -Jones I-PER I-PER -) O O -one O O -minute O O -45 O O -seconds O O -( O O -52 O O -/ O O -53 O O -) O O -2 O O -Italy B-LOC B-ORG -I O I-ORG -( O O -G B-PER B-PER -Hu I-PER I-PER -, O O -Antonio B-PER B-PER -Ta I-PER I-PER -) O O -1 O O -( O O -52 O O -/ O O -53 O O -) O O -3 O O -Canada B-LOC B-ORG -I O I-ORG -( O O -Pierre B-PER B-PER -Lu I-PER I-PER -, O O -Dave B-PER B-PER -Mac I-PER I-PER -) O O -1 O O -( O O -52 O O -/ O O -53 O O -) O O -4 O O -German B-MISC B-ORG -I O I-ORG -( O O -Sep B-PER B-PER -Do I-PER I-PER -, O O -Thomas B-PER B-PER -United B-LOC B-ORG -States I-LOC I-ORG -I O I-ORG -( O O -Jim B-PER B-PER -Herb I-PER I-PER -, O O -Garrett B-PER B-PER -Hi I-PER B-PER -) O O -1 O O -( O O -53 O O -/ O O -53 O O -) O O -and O O -Austria B-LOC B-ORG -III O I-ORG -( O O -Han B-PER B-PER -Con I-PER I-PER -, O O -Georg B-PER B-PER -Ku I-PER I-PER -) O O -1 O O -( O O -53 O O -53 O O -CR O O -- O O -W O B-PER -MA O O -SE O O -R O O -TO O O -K B-LOC B-LOC -. O O -K B-LOC B-LOC -, O O -India B-LOC B-LOC -1996 O O -South B-LOC B-LOC -Africa I-LOC I-LOC -' O O -trip O O -to O O -Ka B-LOC B-LOC -for O O -the O O -third O O -test O O -against O O -India B-LOC B-LOC -has O O -given O O -former O O -England B-LOC B-LOC -test O O -cricketer O O -Bob B-PER B-PER -W I-PER I-PER -the O O -chance O O -of O O -a O O -sentiment O O -return O O -to O O -his O O -birthplace O O -. O O -W B-PER B-PER -was O O -born O O -in O O -the O O -northern O O -city O O -of O O -Ka B-LOC B-LOC -when O O -his O O -father O O -worked O O -there O O -for O O -an O O -insurance O O -com O O -and O O -was O O -himself O O -an O O -active O O -cricketer O O -. O O -" O O -It O O -' O O -been O O -a O O -sentiment O O -journey O O -. O O -A O O -visit O O -to O O -India B-LOC B-LOC -is O O -always O O -an O O -intriguing O O -experience O O -, O O -" O O -W B-PER B-PER -, O O -now O O -the O O -South B-MISC B-MISC -African I-MISC I-MISC -coach O O -, O O -said O O -on O O -Saturday O O -. O O -W B-PER B-PER -, O O -48 O O -, O O -played O O -19 O O -tests O O -for O O -England B-LOC B-LOC -between O O -1975 O O -and O O -1981 O O -. O O -His O O -first O O -cricket O O -so O O -to O O -India B-LOC B-LOC -was O O -as O O -a O O -member O O -of O O -Tony B-PER B-PER -G I-PER I-PER -' O O -England B-LOC B-LOC -side O O -in O O -1976 O O -. O O -His O O -father O O -Clarence B-PER B-PER -W I-PER I-PER -represented O O -United B-ORG B-LOC -Province I-ORG I-LOC -, O O -now O O -renamed O O -Uttar B-LOC B-LOC -Pradesh I-LOC I-LOC -, O O -in O O -India B-LOC B-LOC -' O O -Ra B-MISC B-MISC -Trophy I-MISC I-MISC -national O O -championship O O -and O O -captained O O -the O O -state O O -during O O -1949 O O -. O O -Now O O -aged O O -86 O O -, O O -W B-PER B-PER -senior O O -lives O O -with O O -his O O -son O O -in O O -Cape B-LOC B-LOC -Town I-LOC I-LOC -. O O -W B-PER B-PER -' O O -memories O O -of O O -Ka B-LOC B-LOC -are O O -few O O -and O O -blurred O O -. O O -" O O -I O O -do O O -n O O -remember O O -much O O -of O O -the O O -place O O -, O O -" O O -he O O -said O O -. O O -" O O -I O O -came O O -here O O -on O O -zero O O -and O O -left O O -at O O -three O O -( O O -aged O O -three O O -) O O -when O O -my O O -father O O -was O O -transferred O O -to O O -Calcutta B-LOC B-LOC -where O O -I O O -spent O O -another O O -four O O -and O O -half O O -years O O -. O O -" O O -But O O -I O O -do O O -remember O O -we O O -had O O -a O O -co O O -snake O O -in O O -the O O -basement O O -of O O -our O O -house O O -. O O -Also O O -that O O -my O O -father O O -bought O O -a O O -bicycle O O -and O O -when O O -we O O -rode O O -over O O -a O O -hose O O -pipe O O -it O O -broke O O -into O O -two O O -. O O -" O O -W B-PER B-PER -said O O -the O O -hospital O O -where O O -he O O -was O O -born O O -is O O -close O O -to O O -the O O -stadium O O -where O O -the O O -India B-LOC B-MISC -Africa I-MISC I-MISC -test O O -will O O -be O O -played O O -. O O -F O O -SK O B-MISC -C I-MISC I-MISC -A I-MISC O -R O O -. O O -T B-LOC B-LOC -, O O -France B-LOC B-LOC -1996 O O -Results O O -of O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -freestyle O O -skiing O O -aerial O O -competition O O -on O O -Saturday O O -: O O -Men O O -: O O -1 O O -Alexis B-PER B-PER -Blanc I-PER I-PER -( O O -France B-LOC B-LOC -) O O -238 O O -points O O -2 O O -Se B-PER B-PER -F I-PER I-PER -( O O -France B-LOC B-LOC -) O O -223 O O -3 O O -Jeff B-PER B-PER -Bean I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -209 O O -4 O O -Eric B-PER B-PER -Berg I-PER I-PER -( O O -U B-LOC B-LOC -) O O -207 O O -5 O O -Christian B-PER B-PER -R I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -204 O O -6 O O -Alexandre B-PER B-PER -Mikhail I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -202 O O -7 O O -Al B-PER B-PER -Vale I-PER I-PER -( O O -Czech B-LOC B-LOC -Republic I-LOC I-LOC -) O O -194 O O -8 O O -Andy B-PER B-PER -Cap I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -193 O O -9 O O -K B-LOC B-LOC -, O O -Finland B-LOC B-LOC -1996 O O -Leading O O -results O O -in O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -high O O -hill O O -( O O -120 O O -) O O -ski O O -jumping O O -event O O -on O O -Saturday O O -: O O -1 O O -Ta B-PER B-PER -Ok I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -303 O O -points O O -( O O -first O O -jump O O -145 O O -/ O O -second O O -jump O O -158 O O -) O O -2 O O -Ka B-PER B-PER -Fun I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -295 O O -( O O -151 O O -/ O O -143 O O -) O O -3 O O -Andreas B-PER B-PER -Goldberg I-PER I-PER -( O O -Austria B-LOC B-LOC -) O O -27 O O -( O O -144 O O -/ O O -130 O O -) O O -4 O O -Diet B-PER B-PER -Thom I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -26 O O -( O O -141 O O -/ O O -124 O O -) O O -5 O O -Ari B-PER B-PER -Nik I-PER I-PER -T B-LOC B-LOC -DE I-LOC I-LOC -, O O -Bali B-LOC B-LOC -1996 O O -Results O O -of O O -semifinals O O -at O O -the O O -World B-MISC B-MISC -Grand B-MISC I-MISC -Prix I-MISC I-MISC -finals O O -on O O -Saturday O O -: O O -Men O O -' O O -singles O O -Fun B-PER B-PER -Per I-PER I-PER -( O O -Taiwan B-LOC B-LOC -) O O -beat O O -In B-PER B-PER -W I-PER I-PER -( O O -Indonesia B-LOC B-LOC -) O O -15 O O -15 O O -Sun B-PER B-PER -Jun I-PER I-PER -( O O -China B-LOC B-LOC -) O O -beat O O -Allan B-PER B-PER -Bud I-PER I-PER -Ku I-PER I-PER -( O O -Indonesia B-LOC B-LOC -) O O -15 O O -15 O O -Women O O -' O O -singles O O -Su B-PER B-PER -Susan I-PER I-PER -( O O -Indonesia B-LOC B-LOC -) O O -beat O O -Cam B-PER B-PER -Martin I-PER I-PER -( O O -Denmark B-LOC B-LOC -) O O -11 O O -11 O O -Ye B-PER B-PER -Zhao I-PER I-PER -( O O -China B-LOC B-LOC -) O O -beat O O -Gong B-PER B-PER -Z I-PER I-PER -( O O -China B-LOC B-LOC -) O O -11 O O -11 O O -SP O O -SK O O -CH B-LOC B-LOC -, O O -South B-LOC B-LOC -Korea I-LOC I-LOC -1996 O O -Results O O -on O O -the O O -first O O -day O O -of O O -the O O -World B-MISC B-MISC -Cup I-MISC I-MISC -speed O O -skating O O -races O O -here O O -on O O -Saturday O O -. O O -Men O O -' O O -500 O O -metres O O -first O O -round O O -: O O -1 O O -. O O -Ho B-PER B-PER -Man I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -37 O O -seconds O O -; O O -2 O O -. O O -J B-PER B-PER -Sung I-PER I-PER -( O O -South B-LOC B-LOC -Korea I-LOC I-LOC -) O O -37 O O -; O O -3 O O -. O O -G B-PER B-PER -N I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -37 O O -; O O -4 O O -. O O -Shi B-PER B-PER -Hi I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -37 O O -; O O -5 O O -. O O -Sergey B-PER B-PER -K I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -37 O O -; O O -6 O O -. O O -Ya B-PER B-PER -Hi I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -37 O O -; O O -7 O O -. O O -Casey B-PER B-PER -Fi I-PER I-PER -( O O -US B-LOC B-LOC -) O O -37 O O -; O O -8 O O -. O O -S B-PER B-PER -Bo I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -38 O O -; O O -9 O O -. O O -Kim B-PER B-PER -Yo I-PER I-PER -( O O -South B-LOC B-LOC -Korea I-LOC I-LOC -) O O -38 O O -; O O -10 O O -. O O -In B-PER B-PER -Jun I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -38 O O -. O O -Women O O -' O O -500 O O -metres O O -first O O -round O O -: O O -1 O O -. O O -Xu B-PER B-PER -R I-PER I-PER -( O O -China B-LOC B-LOC -) O O -40 O O -; O O -2 O O -. O O -S B-PER B-PER -J I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -41 O O -; O O -3 O O -. O O -Franz B-PER B-PER -Sc I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -41 O O -; O O -4 O O -. O O -Ok B-PER B-PER -Tom I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -41 O O -; O O -5 O O -. O O -Shi B-PER B-PER -K B-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -41 O O -; O O -6 O O -. O O -Marianne B-PER B-PER -Tim I-PER I-PER -( O O -Netherlands B-LOC B-LOC -) O O -41 O O -; O O -7 O O -. O O -Jin B-PER B-PER -Hu I-PER I-PER -( O O -China B-LOC B-LOC -) O O -41 O O -; O O -8 O O -. O O -Al B-PER B-PER -Ko I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -41 O O -; O O -9 O O -. O O -Chris B-PER B-PER -W I-PER I-PER -( O O -US B-LOC B-LOC -) O O -41 O O -; O O -10 O O -. O O -An B-PER B-PER -Ba I-PER I-PER -( O O -Germany B-LOC B-LOC -) O O -41 O O -. O O -Men O O -' O O -1 O O -metres O O -first O O -round O O -: O O -1 O O -S B-PER B-PER -Bo I-PER I-PER -( O O -Canada B-LOC B-LOC -) O O -1 O O -minute O O -16 O O -seconds O O -2 O O -Sergey B-PER B-PER -K I-PER I-PER -( O O -Russia B-LOC B-LOC -) O O -1 O O -3 O O -Jan B-PER B-PER -Bo I-PER I-PER -( O O -Netherlands B-LOC B-LOC -) O O -1 O O -4 O O -G B-PER B-PER -N I-PER I-PER -( O O -Norway B-LOC B-LOC -) O O -1 O O -5 O O -Lee B-PER B-PER -K I-PER I-PER -( O O -South B-LOC B-LOC -Korea I-LOC I-LOC -) O O -1 O O -6 O O -In B-PER B-PER -Jun I-PER I-PER -( O O -Japan B-LOC B-LOC -) O O -1 O O -7 O O -Gerard B-PER B-PER -Van I-PER I-PER -V I-PER I-PER -( O O -Netherlands B-LOC B-LOC -) O O -1 O O -8 O O -Kim B-PER B-PER -Yo I-PER I-PER -W B-LOC B-LOC -, O O -British B-LOC B-LOC -Columbia I-LOC I-LOC -1996 O O -World B-MISC B-MISC -Cup I-MISC I-MISC -ski O O -officials O O -hope O O -to O O -be O O -able O O -to O O -get O O -in O O -at O O -least O O -one O O -men O O -' O O -downhill O O -training O O -run O O -on O O -Saturday O O -in O O -an O O -effort O O -to O O -salvage O O -the O O -weekend O O -racing O O -programme O O -. O O -For O O -the O O -third O O -consecutive O O -day O O -, O O -Friday O O -' O O -scheduled O O -training O O -runs O O -were O O -cancelled O O -due O O -to O O -heavy O O -wet O O -snow O O -and O O -fog O O -on O O -W B-LOC B-LOC -Mountain I-LOC I-LOC -, O O -leaving O O -the O O -scheduled O O -World B-MISC B-MISC -Cup I-MISC I-MISC -events O O -in O O -j O O -. O O -Rules O O -call O O -for O O -at O O -least O O -one O O -training O O -run O O -to O O -be O O -completed O O -before O O -a O O -World B-MISC B-MISC -Cup I-MISC I-MISC -downhill O O -race O O -can O O -be O O -staged O O -. O O -Organ O O -hope O O -to O O -get O O -that O O -run O O -in O O -on O O -Saturday O O -morning O O -, O O -conditions O O -permitting O O -, O O -and O O -stage O O -the O O -race O O -later O O -in O O -the O O -day O O -or O O -on O O -Sunday O O -. O O -" O O -There O O -was O O -no O O -possibility O O -today O O -to O O -make O O -a O O -training O O -run O O -, O O -" O O -said O O -Bern B-PER B-PER -Z I-PER I-PER -, O O -the O O -Canadian B-MISC B-MISC -men O O -' O O -national O O -coach O O -, O O -citing O O -too O O -much O O -new O O -snow O O -and O O -poor O O -visibility O O -. O O -If O O -organise O O -are O O -forced O O -to O O -run O O -the O O -downhill O O -on O O -Sunday O O -, O O -the O O -super O O -slalom O O -originally O O -scheduled O O -for O O -Sunday O O -would O O -likely O O -be O O -abandoned O O -. O O -S O O -- O O -L O O -SC B-MISC B-MISC -PR O I-MISC -D O I-MISC -SC O O -. O O -G B-LOC B-LOC -1996 O O -Leading O O -goals O O -in O O -the O O -Scottish B-MISC B-MISC -premier O I-MISC -division O O -after O O -Saturday O O -' O O -matches O O -: O O -10 O O -- O O -Billy B-PER B-PER -Dodd I-PER I-PER -( O O -Aberdeen B-ORG B-ORG -) O O -, O O -Pierre B-PER B-PER -Van I-PER I-PER -Ho I-PER I-PER -( O O -Celtic B-ORG B-ORG -) O O -9 O O -- O O -Paul B-PER B-PER -Gas I-PER I-PER -( O O -Rangers B-ORG B-ORG -) O O -7 O O -- O O -Paul B-PER B-PER -Wright I-PER I-PER -( O O -Ki B-ORG B-ORG -) O O -, O O -Ally B-PER B-PER -M I-PER I-PER -( O O -Rangers B-ORG B-ORG -) O O -6 O O -- O O -Andreas B-PER B-PER -Thom I-PER I-PER -( O O -Celtic B-ORG B-ORG -) O O -, O O -Dean B-PER B-PER -Wind I-PER I-PER -( O O -Aberdeen B-ORG B-ORG -) O O -, O O -Brian B-PER B-PER -Lau I-PER I-PER -( O O -Rangers B-ORG B-ORG -) O O -, O O -Darren B-PER B-PER -Jackson I-PER I-PER -( O O -Hi B-ORG B-ORG -) O O -5 O O -- O O -Peter B-PER B-PER -van I-PER I-PER -V I-PER I-PER -( O O -Rangers B-ORG B-ORG -) O O -, O O -Gerry B-PER B-PER -B I-PER I-PER -( O O -Du B-ORG B-ORG -) O O -, O O -Colin B-PER B-PER -S O O -- O O -L O O -E B-MISC B-MISC -GO O O -. O O -L B-LOC B-LOC -1996 O O -Leading O O -goals O O -in O O -the O O -English B-MISC B-MISC -premier O O -league O O -after O O -Saturday O O -' O O -matches O O -: O O -13 O O -- O O -Ian B-PER B-PER -Wright I-PER I-PER -( O O -Arsenal B-ORG B-ORG -) O O -9 O O -- O O -F B-PER B-PER -Ra I-PER I-PER -( O O -Middlesbrough B-ORG B-ORG -) O O -, O O -Alan B-PER B-PER -Shea I-PER I-PER -( O O -Newcastle B-ORG B-ORG -) O O -8 O O -- O O -Matthew B-PER B-PER -Le I-PER I-PER -T I-PER I-PER -( O O -Southampton B-ORG B-ORG -) O O -, O O -Dwight B-PER B-PER -York I-PER I-PER -( O O -Aston B-ORG B-ORG -Villa I-ORG B-ORG -) O O -, O O -Les B-PER B-PER -Ferdinand I-PER I-PER -( O O -Newcastle B-ORG B-ORG -) O O -, O O -E B-PER B-PER -E I-PER I-PER -( O O -Wimbledon B-ORG B-LOC -) O O -, O O -G B-PER B-PER -Via I-PER I-PER -( O O -Chelsea B-ORG B-ORG -) O O -7 O O -- O O -Robbie B-PER B-PER -Earle I-PER I-PER -( O O -Wimbledon B-ORG B-LOC -) O O -, O O -Les B-PER B-PER -Ferdinand I-PER I-PER -( O O -Newcastle B-ORG B-ORG -) O O -6 O O -- O O -Marcus B-PER B-PER -Gay I-PER I-PER -( O O -Wimbledon B-ORG B-LOC -) O O -, O O -Gary B-PER B-PER -Speed I-PER I-PER -( O O -Everton B-ORG B-ORG -) O O -, O O -Chris B-PER B-PER -Sutton I-PER B-PER -( O O -Blackburn B-ORG B-ORG -) O O -5 O O -S O O -- O O -NO B-MISC B-LOC -I B-MISC I-LOC -PR O O -D O O -R O O -/ O O -ST O O -. O O -L B-LOC B-LOC -1996 O O -Results O O -of O O -Northern B-LOC B-LOC -Ireland I-LOC I-LOC -premier O O -division O O -matches O O -on O O -Saturday O O -: O O -A B-ORG B-ORG -0 O O -Crusaders B-ORG B-ORG -0 O O -Clifton B-ORG B-ORG -1 O O -Port B-ORG B-ORG -1 O O -Glen B-ORG B-ORG -2 O O -Lin B-ORG B-ORG -1 O O -Glen B-ORG B-ORG -1 O O -Cole B-ORG B-ORG -0 O O -Standing O O -( O O -ta O O -- O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -Cole B-ORG B-ORG -10 O O -7 O O -1 O O -2 O O -18 O O -11 O O -22 O O -Lin B-ORG B-ORG -10 O O -4 O O -3 O O -3 O O -13 O O -10 O O -15 O O -Crusaders B-ORG B-ORG -10 O O -3 O O -4 O O -3 O O -11 O O -9 O O -13 O O -Glen B-ORG B-ORG -10 O O -3 O O -4 O O -3 O O -15 O O -14 O O -13 O O -Glen B-ORG B-ORG -10 O O -3 O O -3 O O -4 O O -18 O O -18 O O -12 O O -Port B-ORG B-ORG -9 O O -3 O O -3 O O -3 O O -11 O O -12 O O -12 O O -L B-LOC B-LOC -1996 O O -Results O O -of O O -British B-MISC B-MISC -rugby O O -union O O -matches O O -on O O -Saturday O O -: O O -Pi B-MISC B-MISC -Cup I-MISC I-MISC -fourth O O -round O O -Reading B-ORG B-ORG -50 O O -W B-ORG B-ORG -3 O O -English B-MISC B-MISC -division O O -one O O -Bath B-ORG B-ORG -35 O O -Ha B-ORG B-ORG -20 O O -Gloucester B-ORG B-ORG -29 O O -London B-ORG B-ORG -Irish I-ORG I-ORG -19 O O -Or B-ORG B-ORG -22 O O -West B-ORG B-ORG -Hart I-ORG I-ORG -15 O O -Was B-ORG B-ORG -15 O O -Bristol B-ORG B-ORG -13 O O -Welsh B-MISC B-MISC -division O O -one O O -C B-ORG B-ORG -20 O O -Cardiff B-ORG B-ORG -34 O O -L B-ORG B-ORG -97 O O -New B-ORG B-ORG -10 O O -Newport B-ORG B-ORG -45 O O -Du B-ORG B-ORG -22 O O -Pont B-ORG B-ORG -53 O O -Bridge B-ORG B-ORG -9 O O -Swansea B-ORG B-ORG -49 O O -N B-ORG B-ORG -10 O O -T B-ORG B-ORG -13 O O -E B-ORG B-ORG -Vale I-ORG I-ORG -17 O O -Scottish B-MISC B-MISC -division O O -one O O -Borough B-ORG B-ORG -31 O O -Watson B-ORG B-ORG -35 O O -S O O -- O O -SC B-ORG B-MISC -G B-LOC B-LOC -1996 O O -Su O O -of O O -Scottish B-MISC B-MISC -premier O O -division O O -matches O O -played O O -on O O -Saturday O O -: O O -Du B-ORG B-ORG -2 O O -( O O -Mill B-PER B-PER -43 O O -, O O -46 O O -penalty O O -) O O -Aberdeen B-ORG B-ORG -3 O O -( O O -Miller B-PER B-PER -10 O O -, O O -Row B-PER B-PER -55 O O -, O O -Wind B-PER O -78 O O -) O O -. O O -Half O O -1 O O -. O O -Attendance O O -: O O -5 O O -Hearts B-ORG B-ORG -0 O O -Rai B-ORG B-ORG -0 O O -. O O -10 O O -Ki B-ORG B-ORG -0 O O -Dundee B-ORG B-ORG -United I-ORG I-ORG -2 O O -( O O -Olaf B-PER B-PER -22 O O -, O O -51 O O -) O O -. O O -0 O O -. O O -5 O O -Mother B-ORG B-ORG -2 O O -( O O -Davies B-PER B-PER -39 O O -, O O -Ross B-PER B-PER -89 O O -) O O -Celtic B-ORG B-ORG -1 O O -( O O -Hay B-PER B-PER -83 O O -) O O -. O O -1 O O -. O O -11 O O -Rangers B-ORG B-ORG -4 O O -( O O -Ferguson B-PER B-PER -34 O O -, O O -M B-PER B-PER -71 O O -74 O O -, O O -Lau B-PER B-PER -83 O O -) O O -Hi B-ORG B-ORG -3 O O -( O O -Wright B-PER B-PER -21 O O -, O O -Jackson B-PER B-PER -41 O O -, O O -M B-PER B-PER -86 O O -) O O -. O O -1 O O -. O O -48 O O -. O O -R B-ORG B-ORG -UN I-ORG I-ORG -- O O -R B-PER O -CA O B-PER -W O O -UP O O -O O O -. O O -L B-LOC B-LOC -1996 O O -David B-PER B-PER -Camp I-PER I-PER -will O O -consider O O -offers O O -to O O -play O O -club O O -rugby O O -in O O -England B-LOC B-LOC -but O O -looks O O -more O O -likely O O -to O O -spend O O -the O O -next O O -year O O -chasing O O -business O O -opportunities O O -in O O -Australia B-LOC B-LOC -. O O -The O O -34 O O -winger O O -played O O -his O O -final O O -game O O -in O O -a O O -Wall B-MISC B-ORG -jersey O O -on O O -Saturday O O -but O O -is O O -currently O O -a O O -target O O -for O O -clubs O O -eager O O -to O O -match O O -London B-LOC B-LOC -side O O -Sara B-ORG B-ORG -who O O -have O O -already O O -snapped O O -up O O -Franco B-PER B-PER -Pie I-PER I-PER -, O O -Michael B-PER B-PER -L I-PER I-PER -and O O -Philippe B-PER B-PER -Se I-PER I-PER -. O O -" O O -If O O -the O O -opportunity O O -is O O -there O O -I O O -' O O -obviously O O -think O O -about O O -it O O -but O O -the O O -thing O O -that O O -holds O O -me O O -back O O -is O O -business O O -, O O -" O O -said O O -Camp B-PER B-PER -. O O -" O O -I O O -' O O -like O O -to O O -come O O -over O O -but O O -there O O -are O O -a O O -lot O O -of O O -things O O -happening O O -at O O -home O O -. O O -I O O -' O O -also O O -got O O -a O O -contract O O -to O O -play O O -for O O -New B-LOC B-ORG -South I-LOC I-ORG -Wales I-LOC I-ORG -in O O -the O O -Super B-MISC O -12 I-MISC O -next O O -year O O -. O O -" O O -Former O O -Wall B-MISC B-ORG -captain O O -Nick B-PER B-PER -Far I-PER I-PER -believes O O -Camp B-PER B-PER -may O O -yet O O -be O O -tempted O O -to O O -England B-LOC B-LOC -. O O -" O O -I O O -' O O -sure O O -there O O -are O O -a O O -few O O -people O O -in O O -England B-LOC B-LOC -who O O -' O O -be O O -delighted O O -to O O -have O O -David B-PER B-PER -Camp I-PER I-PER -in O O -their O O -club O O -' O O -jersey O O -, O O -" O O -he O O -said O O -. O O -S O O -- O O -E B-MISC B-MISC -PR O O -L O O -S O O -. O O -L B-LOC B-LOC -1996 O O -Su O O -of O O -English B-MISC B-MISC -premier O O -le O O -matches O O -on O O -Saturday O O -: O O -Arsenal B-ORG B-ORG -2 O O -( O O -Adams B-PER B-PER -45 O O -, O O -V B-PER B-PER -90 O O -) O O -Derby B-ORG B-ORG -2 O O -( O O -St B-PER B-PER -62 O O -, O O -Powell B-PER B-PER -71 O O -) O O -. O O -Half O O -1 O O -. O O -Attendance O O -: O O -38 O O -Chelsea B-ORG B-ORG -2 O O -( O O -Z B-PER B-PER -12 O O -, O O -Via B-PER B-PER -55 O O -) O O -Everton B-ORG B-ORG -2 O O -( O O -Branch B-PER B-PER -17 O O -, O O -Ka B-PER B-PER -28 O O -) O O -. O O -1 O O -. O O -28 O O -Coventry B-ORG B-ORG -1 O O -( O O -W B-PER B-PER -60 O O -) O O -Tottenham B-ORG B-ORG -2 O O -( O O -She B-PER B-PER -27 O O -, O O -Sin B-ORG B-PER -75 O O -) O O -. O O -0 O O -. O O -19 O O -Leicester B-ORG B-ORG -1 O O -( O O -Marshall B-PER B-PER -78 O O -) O O -Blackburn B-ORG B-ORG -1 O O -( O O -Sutton B-PER B-PER -34 O O -) O O -. O O -0 O O -. O O -19 O O -Liverpool B-ORG B-ORG -0 O O -Sheffield B-ORG B-ORG -Wednesday I-ORG I-ORG -1 O O -( O O -W B-PER B-PER -22 O O -) O O -. O O -0 O O -. O O -39 O O -Middlesbrough B-ORG B-ORG -0 O O -Leeds B-ORG B-ORG -0 O O -. O O -30 O O -Southampton B-ORG B-ORG -0 O O -Aston B-ORG B-ORG -Villa I-ORG I-ORG -1 O O -( O O -Townsend B-PER B-PER -34 O O -) O O -. O O -0 O O -. O O -15 O O -Sunderland B-ORG B-ORG -1 O O -( O O -Melville B-PER B-PER -83 O O -) O O -Wimbledon B-ORG B-LOC -3 O O -( O O -E B-PER B-PER -8 O O -, O O -29 O O -, O O -Hold B-PER B-PER -89 O O -) O O -. O O -0 O O -. O O -19 O O -. O O -S O O -- O O -SC B-MISC B-MISC -L O O -ST O O -. O O -G B-LOC B-LOC -1996 O O -Scottish B-MISC B-MISC -league O O -standings O O -after O O -Saturday O O -' O O -matches O O -( O O -ta O O -- O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -Premier O O -division O O -Rangers B-ORG B-ORG -14 O O -11 O O -2 O O -1 O O -35 O O -12 O O -35 O O -Celtic B-ORG B-ORG -14 O O -8 O O -3 O O -3 O O -32 O O -15 O O -27 O O -Aberdeen B-ORG B-ORG -15 O O -7 O O -4 O O -4 O O -28 O O -19 O O -25 O O -Hearts B-ORG B-ORG -15 O O -5 O O -6 O O -4 O O -18 O O -19 O O -21 O O -Hi B-ORG B-ORG -15 O O -5 O O -3 O O -7 O O -16 O O -25 O O -18 O O -Dundee B-ORG B-ORG -United I-ORG I-ORG -15 O O -4 O O -5 O O -6 O O -17 O O -17 O O -17 O O -Mother B-ORG B-ORG -15 O O -4 O O -5 O O -6 O O -17 O O -23 O O -17 O O -Du B-ORG B-ORG -14 O O -4 O O -5 O O -5 O O -19 O O -27 O O -17 O O -Rai B-ORG B-ORG -15 O O -3 O O -3 O O -9 O O -14 O O -27 O O -12 O O -Ki B-ORG B-ORG -L B-LOC B-LOC -1996 O O -Standing O O -in O O -English B-MISC B-MISC -league O O -soccer O O -after O O -Saturday O O -' O O -matches O O -( O O -ta O O -- O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -Premier O B-MISC -league O I-MISC -Arsenal B-ORG B-ORG -17 O O -10 O O -5 O O -2 O O -34 O O -16 O O -35 O O -Wimbledon B-ORG B-ORG -16 O O -9 O O -4 O O -3 O O -29 O O -17 O O -31 O O -Liverpool B-ORG B-ORG -16 O O -9 O O -4 O O -3 O O -26 O O -14 O O -31 O O -Aston B-ORG B-ORG -Villa I-ORG I-ORG -17 O O -9 O O -3 O O -5 O O -22 O O -15 O O -30 O O -Newcastle B-ORG B-ORG -15 O O -9 O O -2 O O -4 O O -26 O O -17 O O -29 O O -Manchester B-ORG B-ORG -United I-ORG I-ORG -15 O O -7 O O -5 O O -3 O O -29 O O -22 O O -26 O O -Chelsea B-ORG B-ORG -16 O O -6 O O -7 O O -3 O O -25 O O -23 O O -25 O O -Everton B-ORG B-ORG -16 O O -6 O O -6 O O -4 O O -25 O O -20 O O -24 O O -Sheffield B-ORG B-ORG -Wednesday I-ORG I-ORG -16 O O -6 O O -6 O O -4 O O -17 O O -18 O O -24 O O -Tottenham B-ORG B-ORG -16 O O -7 O O -2 O O -7 O O -17 O O -17 O O -23 O O -L B-LOC B-LOC -1996 O O -French B-MISC B-MISC -Patrick B-PER B-PER -V I-PER I-PER -blasted O O -a O O -last O O -goal O O -to O O -salvage O O -a O O -2 O O -draw O O -for O O -English B-MISC B-MISC -premier O O -league O O -leaders O O -Arsenal B-ORG B-ORG -at O O -home O O -to O O -Derby B-ORG B-ORG -on O O -Saturday O O -. O O -The O O -London B-LOC B-LOC -club O O -had O O -been O O -rocked O O -by O O -a O O -two O O -burst O O -from O O -forwards O O -Dean B-PER B-PER -St I-PER I-PER -and O O -Darryl B-PER B-PER -Powell I-PER I-PER -in O O -the O O -62 O O -and O O -71 O O -minutes O O -which O O -overturned O O -Arsenal B-ORG B-ORG -' O O -1 O O -lead O O -from O O -a O O -diving O O -header O O -by O O -captain O O -Tony B-PER B-PER -Adams I-PER I-PER -on O O -the O O -stroke O O -of O O -halftime O O -. O O -Liverpool B-ORG B-ORG -suffered O O -an O O -upset O O -first O O -home O O -league O O -defeat O O -of O O -the O O -season O O -, O O -beaten O O -1 O O -by O O -a O O -Guy B-PER B-PER -W I-PER I-PER -goal O O -for O O -Sheffield B-ORG B-ORG -Wednesday I-ORG I-ORG -. O O -Wimbledon B-ORG B-ORG -leap O O -over O O -Liverpool B-ORG B-ORG -into O O -second O O -place O O -by O O -winning O O -3 O O -at O O -Sunderland B-ORG B-ORG -to O O -extend O O -their O O -unbeaten O O -league O O -and O O -cup O O -run O O -to O O -18 O O -games O O -. O O -Two O O -strikes O O -by O O -E B-PER B-PER -E I-PER I-PER -in O O -the O O -first O O -half O O -and O O -a O O -late O O -goal O O -from O O -fellow O O -forward O O -Dean B-PER B-PER -Hold I-PER I-PER -secured O O -victory O O -for O O -Wimbledon B-ORG B-ORG -, O O -who O O -trail O O -pace O O -Arsenal B-ORG B-ORG -by O O -four O O -points O O -. O O -S O O -- O O -SC B-MISC B-MISC -L O O -AND O O -C B-MISC O -R O O -. O O -G B-LOC B-LOC -1996 O O -Results O O -of O O -Scottish B-MISC B-MISC -league O O -and O O -cup O O -matches O O -played O O -on O O -Saturday O O -: O O -Premier O O -division O O -Du B-ORG B-ORG -2 O O -Aberdeen B-ORG B-ORG -3 O O -Hearts B-ORG B-ORG -0 O O -Rai B-ORG B-ORG -0 O O -Ki B-ORG B-ORG -0 O O -Dundee B-ORG B-ORG -United I-ORG I-ORG -2 O O -Mother B-ORG B-ORG -2 O O -Celtic B-ORG B-ORG -1 O O -Rangers B-ORG B-ORG -4 O O -Hi B-ORG B-ORG -3 O O -Division O O -one O O -Dundee B-ORG B-ORG -2 O O -F B-ORG B-ORG -0 O O -Green B-ORG B-ORG -Morton I-ORG I-ORG -0 O O -St B-ORG B-ORG -Johnstone I-ORG I-ORG -2 O O -Post O O -: O O -Air B-ORG B-ORG -v O O -Clyde B-ORG B-ORG -( O O -to O O -Wednesday O O -) O O -, O O -East B-ORG B-ORG -Fife I-ORG B-ORG -v O O -Part B-ORG B-ORG -, O O -Stirling B-ORG B-ORG -v O O -St B-ORG B-ORG -Mir I-ORG I-ORG -( O O -to O O -Tuesday O O -) O O -Division O O -two O O -Livingston B-ORG B-ORG -2 O O -St B-ORG B-ORG -1 O O -St B-ORG B-ORG -0 O O -B B-ORG B-ORG -1 O O -Division O O -three O O -Ross B-ORG B-ORG -County I-ORG I-ORG -4 O O -Mont B-ORG B-ORG -L B-LOC B-LOC -1996 O O -Results O O -of O O -English B-MISC B-MISC -league O O -and O O -cup O O -matches O O -on O O -Saturday O O -: O O -Premier O B-MISC -league O I-MISC -Arsenal B-ORG B-ORG -2 O O -Derby B-ORG B-ORG -2 O O -Chelsea B-ORG B-ORG -2 O O -Everton B-ORG B-ORG -2 O O -Coventry B-ORG B-ORG -1 O O -Tottenham B-ORG B-ORG -2 O O -Leicester B-ORG B-ORG -1 O O -Blackburn B-ORG B-ORG -1 O O -Liverpool B-ORG B-ORG -0 O O -Sheffield B-ORG B-ORG -Wednesday I-ORG I-ORG -1 O O -Middlesbrough B-ORG B-ORG -0 O O -Leeds B-ORG B-ORG -0 O O -Southampton B-ORG B-ORG -0 O O -Aston B-ORG B-ORG -Villa I-ORG I-ORG -1 O O -Sunderland B-ORG B-ORG -1 O O -Wimbledon B-ORG B-ORG -3 O O -Division O O -one O O -Bar B-ORG B-ORG -3 O O -South B-ORG B-ORG -0 O O -Birmingham B-ORG B-ORG -0 O O -Grimsby B-ORG B-ORG -0 O O -Charlton B-ORG B-ORG -2 O O -Swindon B-ORG B-ORG -0 O O -Crystal B-ORG B-ORG -Palace I-ORG I-ORG -2 O O -Oxford B-ORG B-ORG -2 O O -Huddersfield B-ORG B-ORG -2 O O -Norwich B-ORG B-ORG -0 O O -Ipswich B-ORG B-ORG -0 O O -Wolverhampton B-ORG B-ORG -0 O O -Manchester B-ORG B-ORG -City I-ORG I-ORG -3 O O -Bradford B-ORG B-ORG -2 O O -Oldham B-ORG B-ORG -0 O O -Queens B-ORG B-ORG -Park I-ORG I-ORG -Rangers I-ORG I-ORG -2 O O -Reading B-ORG B-ORG -0 O O -Port B-ORG B-ORG -Vale I-ORG I-ORG -1 O O -Sheffield B-ORG B-ORG -United I-ORG I-ORG -1 O O -Portsmouth B-ORG B-ORG -0 O O -Stoke B-ORG B-ORG -2 O O -T B-ORG B-ORG -0 O O -Playing O O -Sunday O O -: O O -West B-ORG B-ORG -B I-ORG I-ORG -v O O -Bolton B-ORG B-ORG -F B-ORG B-MISC -Challenge B-MISC I-MISC -Cup I-MISC I-MISC -second O O -L B-LOC B-LOC -1996 O O -Australia B-LOC B-LOC -bad O O -farewell O O -to O O -David B-PER B-PER -Camp I-PER I-PER -in O O -spectacular O O -fashion O O -by O O -overwhelming O O -the O O -Bar B-ORG B-ORG -39 O O -in O O -the O O -final O O -match O O -of O O -their O O -European B-MISC B-MISC -tour O O -at O O -T B-LOC B-LOC -on O O -Saturday O O -. O O -The O O -Wall B-ORG B-ORG -ran O O -in O O -five O O -tries O O -with O O -Camp B-PER B-PER -, O O -who O O -has O O -retired O O -from O O -test O O -rugby O O -after O O -collecting O O -101 O O -caps O O -and O O -a O O -world O O -record O O -64 O O -tries O O -, O O -adding O O -one O O -last O O -touchdown O O -in O O -a O O -Wall B-MISC B-ORG -jersey O O -before O O -departing O O -the O O -international O O -game O O -. O O -The O O -Bar B-ORG B-ORG -included O O -14 O O -international O O -but O O -, O O -with O O -only O O -two O O -pre O O -practice O O -sessions O O -behind O O -them O O -, O O -proved O O -no O O -real O O -match O O -for O O -a O O -Wall B-MISC B-ORG -side O O -determined O O -to O O -finish O O -their O O -12 O O -tour O O -unbeaten O O -. O O -The O O -touring O O -team O O -were O O -27 O O -ahead O O -by O O -half O O -before O O -e O O -up O O -in O O -the O O -second O O -. O O -Full O O -Matthew B-PER B-PER -Burke I-PER I-PER -finished O O -with O O -a O O -personal O O -haul O O -of O O -24 O O -points O O -to O O -take O O -his O O -tour O O -aggregate O O -to O O -136 O O -. O O -R B-ORG B-ORG -UN I-ORG I-ORG -- O O -AU B-ORG B-LOC -B O O -BA B-LOC B-ORG -39 O O -. O O -L B-LOC B-LOC -1996 O O -Australia B-LOC B-LOC -beat O O -the O O -Bar B-ORG B-ORG -39 O O -( O O -halftime O O -27 O O -) O O -in O O -the O O -final O O -match O O -of O O -their O O -European B-MISC B-MISC -tour O O -on O O -Saturday O O -: O O -Score O O -: O O -Australia B-LOC B-LOC -- O O -Tri O O -: O O -Matthew B-PER B-PER -Burke I-PER I-PER -( O O -2 O O -) O O -, O O -Joe B-PER B-PER -R I-PER I-PER -, O O -David B-PER B-PER -Camp I-PER I-PER -, O O -Tim B-PER B-PER -Ho I-PER I-PER -. O O -Pen O O -: O O -Burke B-PER B-PER -( O O -2 O O -) O O -. O O -Con O O -: O O -Burke B-PER B-PER -( O O -4 O O -) O O -. O O -Bar O B-ORG -- O O -Tri O O -: O O -Alan B-PER B-PER -Bat I-PER I-PER -, O O -Scott B-PER B-PER -Quinn I-PER I-PER -. O O -Con O O -: O O -Rob B-PER B-PER -Andrew I-PER I-PER -. O O -GO O O -- O O -Z B-LOC B-MISC -O I-MISC I-MISC -T O O -R O O -SC O O -. O O -H B-LOC B-LOC -1996 O O -Leading O O -third O O -round O O -scores O O -in O O -the O O -Zimbabwe B-MISC B-MISC -Open I-MISC I-MISC -on O O -Saturday O O -( O O -South B-MISC B-MISC -African I-MISC I-MISC -unless O O -stated O O -) O O -: O O -201 O O -Mark B-PER B-PER -M I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -72 O O -61 O O -68 O O -205 O O -Des B-PER B-PER -Te I-PER I-PER -65 O O -67 O O -73 O O -206 O O -Nick B-PER B-PER -Price I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -68 O O -68 O O -70 O O -207 O O -Clinton B-PER B-PER -White I-PER I-PER -70 O O -70 O O -67 O O -, O O -Mark B-PER B-PER -C I-PER I-PER -( O O -Zimbabwe B-LOC B-LOC -) O O -69 O O -69 O O -69 O O -, O O -Justin B-PER B-PER -Ho I-PER I-PER -71 O O -65 O O -71 O O -209 O O -Steve B-PER B-PER -van I-PER I-PER -V I-PER I-PER -65 O O -69 O O -75 O O -210 O O -Brett B-PER B-PER -Li I-PER I-PER -75 O O -65 O O -70 O O -211 O O -Hugh B-PER B-PER -Bai I-PER I-PER -73 O O -67 O O -71 O O -, O O -Greg B-PER B-PER -Reid I-PER I-PER -72 O O -68 O O -71 O O -, O O -Mark B-PER B-PER -Mu I-PER B-PER -71 O O -67 O O -73 O O -212 O O -Trevor B-PER B-PER -Dodd I-PER I-PER -( O O -Namibia B-LOC B-LOC -) O O -S O O -- O O -R B-MISC O -AL B-MISC B-LOC -N O O -S O O -TO O O -P O O -N B-ORG B-LOC -. O O -T B-LOC B-LOC -1996 O O -Albanian B-MISC B-MISC -coach O O -As B-PER B-PER -Ha I-PER I-PER -said O O -on O O -Saturday O O -it O O -was O O -important O O -that O O -his O O -players O O -brush O O -aside O O -the O O -country O O -' O O -short O O -ban O O -by O O -FIFA B-ORG B-ORG -in O O -order O O -to O O -concentrate O O -on O O -next O O -Saturday O B-MISC -Cup I-MISC I-MISC -group O O -nine O O -qualifier O O -against O O -Northern B-LOC B-LOC -Ireland I-LOC I-LOC -. O O -World O O -soccer O O -' O O -governing O O -body O O -reinstated O O -Albania B-LOC B-LOC -last O O -Tuesday O O -after O O -the O O -Balkan B-LOC B-LOC -country O O -' O O -government O O -lifted O O -suspension O O -on O O -various O O -soccer O O -officials O O -. O O -FIFA B-ORG B-ORG -had O O -banned O O -Albania B-LOC B-LOC -indefinitely O O -after O O -its O O -sports O O -ministry O O -had O O -ordered O O -the O O -suspension O O -of O O -Albanian B-ORG B-ORG -Football I-ORG I-ORG -Association I-ORG I-ORG -general O O -secretary O O -Eduard B-PER B-PER -Der I-PER I-PER -and O O -dissolved O O -the O O -executive O O -committee O O -. O O -" O O -We O O -would O O -be O O -very O O -happy O O -with O O -a O O -draw O O -in O O -Belfast B-LOC B-LOC -, O O -" O O -said O O -Ha B-PER B-PER -. O O -" O O -Especially O O -if O O -one O O -takes O O -into O O -consideration O O -our O O -difficult O O -post O O -situation O O -and O O -the O O -fact O O -Northern B-LOC B-LOC -Ireland I-LOC I-LOC -is O O -very O O -keen O O -to O O -win O O -. O O -" O O -Regular O O -defender O O -Art B-PER B-PER -Le I-PER I-PER -, O O -who O O -is O O -injured O O -, O O -was O O -missing O O -from O O -Ha B-PER B-PER -' O O -squad O O -named O O -on O O -Saturday O O -for O O -the O O -Belfast B-LOC B-LOC -match O O -. O O -Squad O O -: O O -Goal O O -- O O -B B-PER B-PER -Na I-PER I-PER -, O O -Arm B-PER B-PER -G I-PER I-PER -De O O -- O O -R B-PER B-PER -V I-PER I-PER -, O O -Sai B-PER B-PER -Mal I-PER I-PER -, O O -A B-PER B-PER -X I-PER I-PER -, O O -Il B-PER B-PER -Shu I-PER I-PER -, O O -A B-PER B-PER -To I-PER I-PER -, O O -N B-PER B-PER -De I-PER I-PER -, O O -A B-PER B-PER -Bella I-PER I-PER -Mid O O -- O O -B B-PER B-PER -Ko I-PER I-PER -, O O -Alt B-PER B-PER -Ha I-PER I-PER -, O O -So B-PER B-PER -Pre I-PER I-PER -, O O -E B-PER B-PER -F I-PER I-PER -Forward O O -- O O -Alt B-PER B-PER -R I-PER I-PER -, O O -Viktor B-PER B-PER -Pac I-PER I-PER -, O O -Fat B-PER B-PER -V I-PER I-PER -, O O -E B-PER B-PER -Bo I-PER I-PER -. O O -CR O O -- O O -J B-PER B-PER -H O O -CE O O -AS O O -VI B-MISC B-ORG -F O O -BA O O -. O O -H B-LOC B-LOC -, O O -Australia B-LOC B-LOC -1996 O O -Former O O -Australia B-LOC B-LOC -test O O -batsman O O -Dean B-PER B-PER -Jones I-PER I-PER -hit O O -an O O -unbeaten O O -130 O O -to O O -lead O O -Victoria B-LOC B-LOC -' O O -fight O O -in O O -their O O -Sheffield B-MISC B-MISC -Shield I-MISC I-MISC -match O O -against O O -Tasmania B-LOC B-ORG -on O O -Saturday O O -. O O -Rep O O -to O O -the O O -home O O -side O O -' O O -first O O -innings O O -48 O O -for O O -eight O O -declared O O -, O O -Victoria B-ORG B-LOC -reached O O -220 O O -for O O -three O O -at O O -close O O -of O O -play O O -on O O -the O O -second O O -day O O -of O O -the O O -four O O -match O O -at O O -Hobart B-LOC B-LOC -' O O -Belle B-LOC B-LOC -Oval I-LOC I-LOC -. O O -Jones B-PER B-PER -became O O -the O O -fourth O O -century O O -of O O -the O O -match O O -, O O -equal O O -the O O -feat O O -of O O -Tasmanian B-MISC B-MISC -trio O O -David B-PER B-PER -Bo I-PER I-PER -, O O -Shaun B-PER B-PER -Young I-PER I-PER -and O O -Michael B-PER B-PER -Di I-PER I-PER -. O O -Jones B-PER B-PER -, O O -who O O -took O O -over O O -as O O -captain O O -for O O -the O O -match O O -in O O -the O O -absence O O -of O O -Australia B-LOC B-LOC -test O O -leg O O -Shane B-PER B-PER -War I-PER I-PER -, O O -added O O -195 O O -runs O O -for O O -the O O -third O O -wicket O O -with O O -left O O -Laurie B-PER B-PER -Harper I-PER I-PER -. O O -Harper B-PER B-PER -was O O -eventually O O -dismissed O O -for O O -77 O O -after O O -the O O -pair O O -joined O O -forces O O -with O O -their O O -side O O -reel O O -on O O -nine O O -for O O -two O O -. O O -Earlier O O -, O O -former O O -Australia B-LOC B-LOC -test O O -batsman O O -David B-PER B-PER -Bo I-PER I-PER -scored O O -118 O O -and O O -all O O -Shaun B-PER B-PER -Young I-PER I-PER -hit O O -113 O O -. O O -The O O -pair O O -hammer O O -36 O O -boundaries O O -between O O -them O O -. O O -Pace O B-PER -bowler O O -Ian B-PER B-PER -Harvey I-PER I-PER -claimed O O -three O O -for O O -81 O O -for O O -Victoria B-LOC B-LOC -. O O -CR O O -- O O -SH B-PER B-MISC -SH O I-MISC -SC O O -. O O -H B-LOC B-LOC -, O O -Australia B-LOC B-LOC -1996 O O -Close O O -of O O -play O O -score O O -on O O -the O O -second O O -day O O -of O O -the O O -four O O -Sheffield B-MISC B-MISC -Shield I-MISC I-MISC -cricket O O -match O O -between O O -Tasmania B-LOC B-ORG -and O O -Victoria B-LOC B-ORG -at O O -Belle B-LOC B-LOC -Oval I-LOC I-LOC -on O O -Saturday O O -: O O -Tasmania B-LOC B-ORG -48 O O -for O O -eight O O -declared O O -( O O -Michael B-PER B-PER -Di I-PER I-PER -119 O O -, O O -David B-PER B-PER -Bo I-PER I-PER -118 O O -, O O -Shaun B-PER B-PER -Young I-PER I-PER -113 O O -) O O -; O O -Victoria B-ORG B-ORG -220 O O -for O O -three O O -( O O -Dean B-PER B-PER -Jones I-PER I-PER -130 O O -not O O -out O O -) O O -. O O -S O O -- O O -S B-PER B-LOC -K B-PER I-LOC -M O O -C O O -TO O O -Q O O -B O O -. O O -AB B-LOC B-LOC -D I-LOC I-LOC -1996 O O -South B-LOC B-LOC -Korea I-LOC I-LOC -made O O -virtually O O -certain O O -of O O -an O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -quarter O O -spot O O -with O O -a O O -4 O O -win O O -over O O -Indonesia B-LOC B-LOC -in O O -a O O -Group O O -A O O -match O O -on O O -Saturday O O -. O O -After O O -going O O -four O O -up O O -in O O -the O O -first O O -55 O O -minutes O O -South B-LOC B-LOC -Korea I-LOC I-LOC -allowed O O -Indonesia B-LOC B-LOC -, O O -newcomer O O -to O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -finals O O -, O O -back O O -into O O -the O O -match O O -, O O -con O O -two O O -goals O O -from O O -rare O O -counter O O -attacks O O -. O O -Kim B-PER B-PER -Do I-PER I-PER -Ho I-PER I-PER -opened O O -the O O -scoring O O -for O O -South B-LOC B-LOC -Korea I-LOC I-LOC -in O O -only O O -the O O -fifth O O -minute O O -, O O -turning O O -un O O -on O O -the O O -penalty O O -spot O O -to O O -fire O O -a O O -shot O O -into O O -the O O -top O O -corner O O -. O O -It O O -looked O O -like O O -turning O O -into O O -a O O -r O O -as O O -H B-PER B-PER -Sun I-PER I-PER -Hong I-PER I-PER -rapidly O O -added O O -two O O -more O O -in O O -the O O -seventh O O -and O O -15th O O -minutes O O -but O O -although O O -the O O -Koreans B-MISC B-MISC -continued O O -to O O -dominate O O -they O O -failed O O -to O O -add O O -to O O -the O O -score O O -before O O -the O O -interval O O -. O O -But O O -they O O -started O O -the O O -second O O -half O O -where O O -they O O -had O O -left O O -off O O -and O O -it O O -was O O -not O O -long O O -before O O -they O O -went O O -four O O -up O O -, O O -Ko B-PER B-PER -Je I-PER I-PER -W I-PER I-PER -heading O O -in O O -from O O -a O O -free O O -kick O O -in O O -the O O -55 O O -minute O O -. O O -The O O -Koreans B-MISC B-MISC -then O O -appeared O O -to O O -relax O O -, O O -allowing O O -the O O -Indonesian B-MISC B-MISC -to O O -get O O -back O O -into O O -the O O -match O O -. O O -Ron B-PER B-PER -W I-PER I-PER -scored O O -for O O -Indonesia B-LOC B-LOC -three O O -minutes O O -later O O -direct O O -from O O -a O O -a O O -corner O O -kick O O -that O O -Korean B-MISC B-MISC -goalkeeper O O -Kim B-PER B-PER -By I-PER I-PER -reached O O -with O O -one O O -hand O O -but O O -failed O O -to O O -keep O O -out O O -. O O -With O O -65 O O -minutes O O -gone O O -Indonesia B-LOC B-LOC -' O O -W B-PER B-PER -Put I-PER I-PER -, O O -who O O -scored O O -a O O -spectacular O O -goal O O -against O O -Kuwait B-LOC B-LOC -on O O -Wednesday O O -, O O -was O O -again O O -on O O -target O O -, O O -breaking O O -through O O -the O O -Korean B-MISC B-MISC -defence O O -to O O -beat O O -the O O -keeper O O -with O O -a O O -low O O -shot O O -. O O -Indonesian B-MISC B-MISC -keeper O O -He B-PER B-PER -Ka I-PER I-PER -produced O O -a O O -string O O -of O O -fine O O -saves O O -to O O -prevent O O -the O O -Koreans B-MISC B-MISC -increasing O O -their O O -lead O O -. O O -Teams O O -: O O -Indonesia B-LOC B-LOC -: O O -20 O O -- O O -He B-PER B-PER -Ka I-PER I-PER -; O O -2 O O -- O O -A B-PER B-PER -Set I-PER I-PER -; O O -3 O O -- O O -Su B-PER B-PER -Si I-PER I-PER -; O O -4 O O -- O O -Ye B-PER B-PER -Tu I-PER I-PER -; O O -5 O O -- O O -A B-PER B-PER -Te I-PER I-PER -; O O -6 O O -- O O -Su B-PER B-PER -; O O -7 O O -- O O -W B-PER B-PER -G I-PER I-PER -P I-PER I-PER -; O O -8 O O -- O O -Ron B-PER B-PER -W I-PER I-PER -; O O -11 O O -- O O -B B-PER B-PER -Sa I-PER I-PER -; O O -12 O O -- O O -Chris B-PER B-PER -Ya I-PER I-PER -( O O -15 O O -- O O -Francis B-PER B-PER -We I-PER I-PER -36 O O -) O O -; O O -16 O O -- O O -Mar B-PER B-PER -Bad I-PER I-PER -. O O -South B-LOC B-LOC -Korea I-LOC I-LOC -: O O -1 O O -- O O -Kim B-PER B-PER -By I-PER I-PER -Ji I-PER I-PER -; O O -2 O O -- O O -Kim B-PER B-PER -Pan I-PER I-PER -Ke I-PER I-PER -; O O -5 O O -- O O -Huh B-PER B-PER -Ki I-PER I-PER -Ta I-PER I-PER -; O O -8 O O -- O O -R B-PER B-PER -Sang I-PER I-PER -Rae I-PER I-PER -( O O -7 O O -- O O -Sin B-PER B-PER -Ta I-PER I-PER -Yong I-PER I-PER -33 O O -) O O -; O O -9 O O -- O O -Kim B-PER B-PER -Do I-PER I-PER -Ho I-PER I-PER -; O O -11 O O -- O O -Ko B-PER B-PER -Je I-PER I-PER -W I-PER I-PER -; O O -17 O O -- O O -Ha B-PER B-PER -Se I-PER I-PER -Ju I-PER I-PER -; O O -18 O O -- O O -H B-PER B-PER -Sun I-PER I-PER -Hong I-PER I-PER -; O O -22 O O -- O O -Lee B-PER B-PER -Young I-PER I-PER -Jin I-PER I-PER -; O O -23 O O -- O O -Yo B-PER B-PER -Sang I-PER I-PER -Chu I-PER I-PER -; O O -24 O O -- O O -Kim B-PER B-PER -Jo I-PER I-PER -Sung I-PER I-PER -. O O -S O O -- O O -IS B-MISC B-MISC -F O O -D O O -R O O -/ O O -ST O O -. O O -J B-LOC B-LOC -1996 O O -Results O O -of O O -first O O -division O O -soccer O O -matches O O -played O O -over O O -the O O -weekend O O -: O O -Z B-ORG B-ORG -Ho I-ORG I-ORG -1 O O -Hapoel B-ORG B-ORG -Pet I-ORG I-ORG -T I-ORG I-ORG -1 O O -Maccabi B-ORG B-ORG -Haifa I-ORG I-ORG -1 O O -Hapoel B-ORG B-ORG -Tai I-ORG I-ORG -1 O O -Hapoel B-ORG B-ORG -K I-ORG I-ORG -Sa I-ORG I-ORG -1 O O -B B-ORG B-ORG -Ye I-ORG I-ORG -0 O O -Hapoel B-ORG B-ORG -Tel I-ORG I-ORG -Aviv I-ORG I-ORG -1 O O -Beta B-ORG B-ORG -Jerusalem I-ORG I-ORG -4 O O -Hapoel B-ORG B-ORG -Jerusalem I-ORG I-ORG -0 O O -Maccabi B-ORG B-ORG -Tel I-ORG I-ORG -Aviv I-ORG I-ORG -4 O O -Iron B-ORG B-ORG -R I-ORG I-ORG -Le I-ORG I-ORG -1 O O -Maccabi B-ORG B-ORG -Her I-ORG I-ORG -0 O O -Hapoel B-ORG B-ORG -Be I-ORG I-ORG -She I-ORG I-ORG -2 O O -Hapoel B-ORG B-ORG -Beer I-ORG I-ORG -1 O O -Maccabi B-ORG B-ORG -Pet I-ORG I-ORG -T I-ORG I-ORG -0 O O -Hapoel B-ORG B-ORG -Haifa I-ORG I-ORG -2 O O -Standing O O -( O O -ta O O -under O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -against O O -, O O -AB B-LOC B-LOC -D I-LOC I-LOC -1996 O O -Results O O -of O O -Asian B-MISC B-MISC -Cup I-MISC I-MISC -group O O -A O O -matches O O -on O O -Saturday O O -: O O -United B-ORG B-LOC -Arab I-ORG I-LOC -Emirates I-ORG I-LOC -3 O O -Kuwait B-LOC B-LOC -2 O O -( O O -halftime O O -0 O O -) O O -Score O O -: O O -UAE B-LOC B-LOC -- O O -Hassan B-PER B-PER -Ahmed I-PER I-PER -53 O O -, O O -Ad B-PER B-PER -Al I-PER I-PER -Ta I-PER I-PER -55 O O -, O O -Ba B-PER B-PER -Sa I-PER I-PER -80 O O -Kuwait B-LOC B-LOC -- O O -J B-PER B-PER -Al I-PER I-PER -9 O O -, O O -44 O O -Attendance O O -: O O -15 O O -South B-LOC B-LOC -Korea I-LOC I-LOC -4 O O -Indonesia B-LOC B-LOC -2 O O -( O O -3 O O -) O O -Score O O -: O O -South B-LOC B-LOC -Korea I-LOC I-LOC -- O O -Kim B-PER B-PER -Do I-PER I-PER -Ho I-PER I-PER -5 O O -, O O -H B-PER B-PER -Sun I-PER I-PER -Hong I-PER I-PER -7 O O -and O O -15 O O -, O O -Ko B-PER B-PER -Je I-PER B-PER -W I-PER I-PER -55 O O -Indonesia B-LOC B-LOC -- O O -Ron B-PER B-PER -W I-PER I-PER -58 O O -, O O -W B-PER B-PER -Put I-ORG I-PER -65 O O -Attendance O O -: O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Standing O O -of O O -National B-MISC B-ORG -Basketball I-MISC B-ORG -Association I-MISC I-ORG -teams O O -after O O -games O O -played O O -on O O -Friday O O -( O O -ta O O -under O O -won O O -, O O -lost O O -, O O -percentage O O -, O O -games O O -behind O O -) O O -: O O -EA B-MISC O -CO O O -AT B-ORG B-LOC -D O O -W O O -L O O -PC O O -GB O O -MI B-ORG B-ORG -14 O O -5 O O -. O O -- O O -NE B-ORG B-ORG -Y I-ORG I-ORG -11 O O -6 O O -. O O -2 O O -OR B-ORG B-ORG -8 O O -7 O O -. O O -4 O O -WA B-ORG B-ORG -7 O O -9 O O -. O O -5 O O -1 O O -P B-ORG B-ORG -7 O O -10 O O -. O O -6 O O -NE B-ORG B-ORG -J I-ORG I-ORG -4 O O -10 O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Results O O -of O O -National B-MISC B-ORG -Basketball I-MISC I-ORG -Association I-MISC B-ORG -games O O -on O O -Friday O O -( O O -home O O -team O O -in O O -CA O O -) O O -: O O -New B-ORG B-ORG -Jersey I-ORG I-ORG -110 O O -B B-ORG B-ORG -108 O O -( O O -O O O -) O O -DE B-ORG B-ORG -93 O O -Cleveland B-ORG B-ORG -81 O O -New B-ORG B-ORG -York I-ORG I-ORG -103 O O -MI B-ORG B-ORG -85 O O -Phoenix B-ORG B-ORG -101 O O -SA B-ORG B-ORG -95 O O -Vancouver B-ORG B-ORG -105 O O -SA B-ORG B-ORG -AN I-ORG I-ORG -89 O O -U B-ORG B-ORG -106 O O -Minnesota B-ORG B-ORG -95 O O -P B-ORG B-ORG -97 O O -Charlotte B-ORG B-ORG -93 O O -Indiana B-ORG B-ORG -86 O O -GO B-ORG B-ORG -ST I-ORG I-ORG -71 O O -LA B-ORG B-ORG -LA I-ORG I-ORG -92 O O -Orlando B-ORG B-ORG -81 O O -NHL B-ORG B-ORG -I I-MISC O -H O O -- O O -ST O O -A O O -F O O -' O O -GA O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Standing O O -of O O -National B-MISC B-ORG -Hockey I-MISC I-ORG -League I-MISC B-ORG -teams O O -after O O -games O O -played O O -on O O -Friday O O -( O O -ta O O -under O O -won O O -, O O -lost O O -, O O -tied O O -, O O -goals O O -for O O -, O O -goals O O -against O O -, O O -points O O -) O O -: O O -EA B-MISC O -CO O O -NO O O -D O O -W O O -L O O -T O O -G O O -GA B-ORG O -PT I-ORG O -H I-ORG B-ORG -12 O O -7 O O -6 O O -77 O O -76 O O -30 O O -B B-ORG B-ORG -13 O O -12 O O -2 O O -78 O O -77 O O -28 O O -M B-ORG B-ORG -11 O O -14 O O -4 O O -99 O O -104 O O -26 O O -B B-ORG B-ORG -10 O O -11 O O -4 O O -74 O O -84 O O -24 O O -P B-ORG B-ORG -10 O O -13 O O -3 O O -86 O O -94 O O -23 O O -O B-ORG B-ORG -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Results O O -of O O -National B-MISC B-ORG -Hockey I-MISC I-ORG -League I-MISC B-ORG -games O O -on O O -Friday O O -( O O -home O O -team O O -in O O -CA O O -) O O -: O O -NY B-ORG B-ORG -RA I-ORG I-ORG -6 O O -Toronto B-ORG B-ORG -5 O O -B B-ORG B-ORG -1 O O -Anaheim B-ORG B-ORG -1 O O -( O O -O O O -) O O -Pittsburgh B-ORG B-ORG -5 O O -WA B-ORG B-ORG -3 O O -Montreal B-ORG B-ORG -3 O O -CH B-ORG B-ORG -1 O O -Philadelphia B-ORG B-LOC -6 O O -D B-ORG B-LOC -3 O O -St B-ORG B-LOC -Louis I-ORG I-LOC -4 O O -CO B-ORG B-LOC -3 O O -E B-ORG B-LOC -5 O O -Ottawa B-ORG B-LOC -2 O O -NHL B-ORG B-ORG -I O O -H O O -- O O -CA B-LOC B-ORG -R B-LOC O -B O B-PER -S O O -F O O -ONE O O -GA O O -. O O -NE B-LOC B-LOC -Y I-LOC I-LOC -1996 O O -Vancouver B-ORG B-ORG -Can I-ORG I-ORG -star O O -right O O -wing O O -Pavel B-PER B-PER -B I-PER I-PER -was O O -suspended O O -for O O -one O O -game O O -by O O -the O O -National B-MISC B-ORG -Hockey I-MISC I-ORG -League I-MISC I-ORG -and O O -fined O O -$ O O -1 O O -Friday O O -for O O -his O O -hit O O -on O O -Buffalo B-ORG B-ORG -Sa I-ORG I-ORG -defence O O -Garry B-PER B-PER -G I-PER I-PER -on O O -Wednesday O O -. O O -B B-PER B-PER -received O O -a O O -double O O -penalty O O -for O O -high O O -with O O -2 O O -left O O -in O O -the O O -first O O -period O O -of O O -Wednesday O O -' O O -7 O O -overtime O O -win O O -by O O -Vancouver B-ORG B-ORG -after O O -co O O -with O O -G B-PER B-PER -in O O -Buffalo B-LOC B-ORG -zone O O -. O O -G B-PER B-PER -suffered O O -a O O -concussion O O -and O O -did O O -not O O -return O O -to O O -the O O -game O O -. O O -" O O -Mr O O -B B-PER B-PER -left O O -his O O -feet O O -to O O -deliver O O -a O O -forearm O O -blow O O -to O O -Mr O O -G B-PER B-PER -as O O -he O O -was O O -about O O -to O O -be O O -checked O O -legally O O -by O O -his O O -opponent O O -, O O -" O O -said O O -NHL B-ORG B-ORG -discipline O O -chief O O -Brian B-PER B-PER -Burke I-PER I-PER -in O O -handing O O -out O O -the O O -suspension O O -. O O -" O O -Although O O -it O O -is O O -clear O O -from O O -the O O -video O O -that O O -Mr O O -B B-PER B-PER -' O O -actions O O -were O O -a O O -reaction O O -to O O -the O O -impending O O -hit O O -and O O -there O O -was O O -no O O -intent O O -to O O -in O O -his O O -opponent O O -, O O -there O O -can O O -be O O -no O O -excuse O O -for O O -this O O -type O O -of O O -conduct O O -, O O -" O O -Burke B-PER B-PER -said O O -. O O -B B-PER B-PER -, O O -who O O -is O O -struggling O O -with O O -only O O -nine O O -goals O O -and O O -12 O O -assists O O -in O O -26 O O -games O O -, O O -will O O -miss O O -Saturday O O -' O O -home O O -game O O -against O O -Ottawa B-ORG B-ORG -. O O -B O O -- O O -SC B-PER B-PER -DE O O -R B-LOC B-PER -IN O O -I B-ORG B-ORG -H O O -F O O -. O O -VI B-LOC B-LOC -1996 O O -German B-MISC B-MISC -Axel B-PER B-PER -Sc I-PER I-PER -out O O -Cuba B-LOC B-LOC -' O O -Jose B-PER B-PER -R I-PER I-PER -in O O -their O O -International B-ORG B-ORG -Boxing I-ORG I-ORG -Federation I-ORG I-ORG -non O O -10 O O -heavyweight O O -fight O O -on O O -Saturday O O -. O O -S O O -- O O -SP B-MISC B-MISC -F O O -D O O -S O O -. O O -MA B-LOC B-LOC -1996 O O -Su O O -of O O -Saturday O O -' O O -Spanish B-MISC B-MISC -first O O -division O O -match O O -: O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -2 O O -( O O -Da B-PER B-PER -Su I-PER I-PER -24 O O -, O O -Pre B-PER B-PER -Mi I-PER I-PER -48 O O -) O O -Barcelona B-ORG B-ORG -0 O O -. O O -Half O O -1 O O -. O O -Attendance O O -106 O O -. O O -S O O -- O O -BA B-PER B-LOC -ST O O -F O O -W O O -O O O -F O O -GA O O -F O O -R O B-ORG -. O O -MA B-LOC B-LOC -1996 O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -' O O -Balkan B-LOC B-LOC -strike O O -force O O -of O O -Da B-PER B-PER -Su I-PER I-PER -and O O -Pre B-PER B-PER -Mi I-PER I-PER -shot O O -their O O -side O O -to O O -a O O -2 O O -win O O -over O O -Barcelona B-ORG B-ORG -in O O -Spain B-LOC B-LOC -' O O -old O O -firm O O -game O O -on O O -Saturday O O -. O O -The O O -result O O -leaves O O -Real B-ORG B-ORG -on O O -38 O O -points O O -after O O -16 O O -games O O -, O O -four O O -ahead O O -of O O -Barcelona B-ORG B-ORG -. O O -With O O -just O O -one O O -league O O -match O O -scheduled O O -before O O -the O O -New O O -Year I-MISC O -break O O -, O O -Real B-ORG B-ORG -are O O -also O O -assured O O -of O O -spending O O -Christmas O O -ahead O O -of O O -their O O -arch O O -. O O -A O O -mix O O -in O O -the O O -Barcelona B-ORG B-ORG -defence O O -let O O -Croatian B-MISC B-MISC -international O O -Su B-PER B-PER -in O O -midway O O -through O O -the O O -first O O -half O O -, O O -and O O -Montenegrin B-MISC B-MISC -striker O O -Mi B-PER B-PER -made O O -it O O -2 O O -after O O -fine O O -work O O -by O O -Clarence B-PER B-PER -See I-PER I-PER -just O O -after O O -the O O -break O O -. O O -Barcelona B-ORG B-ORG -fought O O -back O O -strongly O O -but O O -were O O -twice O O -denied O O -by O O -the O O -wood O O -on O O -an O O -unusually O O -quiet O O -night O O -for O O -Brazilian B-MISC B-MISC -striker O O -Ronald B-PER B-PER -. O O -S O O -- O O -PS B-PER B-ORG -H O O -V O B-ORG -F O O -S O O -. O O -AM B-LOC B-LOC -1996 O O -Brazilian B-MISC B-MISC -striker O O -Marcel B-PER B-PER -and O O -Yugoslav B-MISC B-MISC -midfielder O O -Z B-PER B-PER -Pet I-PER I-PER -each O O -scored O O -twice O O -as O O -Dutch B-MISC B-MISC -first O O -division O O -leaders O O -PS B-ORG B-ORG -Ein I-ORG I-ORG -r O O -to O O -a O O -6 O O -win O O -over O O -Vol B-ORG B-ORG -on O O -Saturday O O -. O O -Their O O -other O O -marks O O -were O O -Brazilian B-MISC B-MISC -defender O O -V B-PER B-PER -and O O -Belgian B-MISC B-MISC -striker O O -Luc B-PER B-PER -Ni I-PER I-PER -, O O -his O O -14th O O -of O O -the O O -season O O -. O O -PS B-ORG B-ORG -, O O -well O O -on O O -the O O -way O O -to O O -their O O -14th O O -league O O -title O O -, O O -out O O -Vol B-ORG B-ORG -in O O -every O O -department O O -of O O -the O O -game O O -. O O -They O O -b O O -a O O -nine O O -lead O O -over O O -Fe B-ORG B-ORG -, O O -who O O -have O O -two O O -games O O -in O O -hand O O -, O O -and O O -are O O -16 O O -points O O -clear O O -of O O -champions O O -Ajax B-ORG B-ORG -Amsterdam I-ORG I-ORG -, O O -who O O -have O O -played O O -18 O O -matches O O -compared O O -to O O -PS B-ORG B-ORG -' O O -19 O O -. O O -Ajax B-ORG B-ORG -face O O -A B-ORG B-ORG -Al I-ORG I-ORG -away O O -on O O -Sunday O O -and O O -Fe B-ORG B-ORG -, O O -eliminated O O -from O O -the O O -UEFA B-MISC B-MISC -Cup I-MISC I-MISC -after O O -losing O O -4 O O -on O O -aggregate O O -to O O -Ten B-ORG B-ORG -on O O -Tuesday O O -, O O -travel O O -to O O -De B-ORG B-ORG -G I-ORG I-ORG -Do I-ORG I-ORG -. O O -The O O -Do B-ORG B-ORG -side O O -, O O -dubbed O O -" O O -The B-ORG B-ORG -Super B-ORG I-ORG -P I-ORG I-ORG -" O O -, O O -are O O -one O O -of O O -the O O -surprise O O -packages O O -of O O -the O O -season O O -. O O -They O O -are O O -fourth O O -in O O -the O O -table O O -. O O -S O O -- O O -SP B-MISC B-MISC -F O O -D O O -R O O -/ O O -ST O O -. O O -MA B-LOC B-LOC -1996 O O -Re O O -of O O -Saturday O O -' O O -only O O -Spanish B-MISC B-MISC -first O O -division O O -match O O -: O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -2 O O -Barcelona B-ORG B-ORG -0 O O -Standing O O -( O O -ta O O -under O O -games O O -played O O -, O O -won O O -, O O -drawn O O -, O O -lost O O -, O O -goals O O -for O O -, O O -against O O -, O O -points O O -) O O -: O O -Real B-ORG B-ORG -Madrid I-ORG I-ORG -16 O O -11 O O -5 O O -0 O O -32 O O -12 O O -38 O O -Barcelona B-ORG B-ORG -16 O O -10 O O -4 O O -2 O O -46 O O -21 O O -34 O O -Deportivo B-ORG B-ORG -Co I-ORG I-ORG -15 O O -9 O O -6 O O -0 O O -23 O O -7 O O -33 O O -Real B-ORG B-ORG -Bet I-ORG I-ORG -15 O O -8 O O -5 O O -2 O O -28 O O -13 O O -29 O O -At B-ORG B-ORG -Madrid I-ORG I-ORG -15 O O -8 O O -3 O O -4 O O -26 O O -17 O O -27 O O -Athletic B-ORG B-ORG -B I-ORG I-ORG -15 O O -7 O O -4 O O -4 O O -28 O O -22 O O -25 O O -Real B-ORG B-ORG -So I-ORG I-ORG -15 O O -7 O O -3 O O -5 O O -20 O O -18 O O -24 O O -Val B-ORG B-ORG -15 O O -7 O O -D B-LOC B-LOC -1996 O O -Jack B-PER B-PER -Charlton I-PER I-PER -' O O -relationship O O -with O O -the O O -people O O -of O O -Ireland B-LOC B-LOC -was O O -cement O O -on O O -Saturday O O -when O O -the O O -English B-MISC B-MISC -was O O -officially O O -declared O O -one O O -of O O -their O O -own O O -. O O -Charlton B-PER B-PER -, O O -61 O O -, O O -and O O -his O O -wife O O -, O O -Peggy B-PER B-PER -, O O -became O O -citizens O O -of O O -Ireland B-LOC B-LOC -when O O -they O O -formally O O -received O O -Irish B-MISC B-MISC -passports O O -from O O -deputy O O -Prime O O -Minister O O -Dick B-PER B-PER -Spring I-PER I-PER -who O O -said O O -the O O -honour O O -had O O -been O O -made O O -in O O -recognition O O -of O O -Charlton B-PER B-PER -' O O -achievements O O -as O O -the O O -national O O -soccer O O -manager O O -. O O -" O O -The O O -years O O -I O O -spent O O -as O O -manager O O -of O O -the O O -Republic B-LOC B-LOC -of I-LOC I-LOC -Ireland I-LOC I-LOC -were O O -the O O -best O O -years O O -of O O -my O O -life O O -. O O -It O O -all O O -culminated O O -in O O -the O O -fact O O -that O O -I O O -now O O -have O O -lots O O -of O O -great O O -, O O -great O O -friends O O -in O O -Ireland B-LOC B-LOC -. O O -That O O -is O O -why O O -this O O -is O O -so O O -emotional O O -a O O -night O O -for O O -me O O -, O O -" O O -Charlton B-PER B-PER -said O O -. O O -" O O -It O O -was O O -the O O -joy O O -that O O -we O O -all O O -had O O -over O O -the O O -period O O -, O O -that O O -I O O -shared O O -with O O -people O O -that O O -I O O -grew O O -to O O -love O O -, O O -that O O -I O O -treasure O O -most O O -, O O -" O O -he O O -added O O -. O O -Charlton B-PER B-PER -managed O O -Ireland B-LOC B-LOC -for O O -93 O O -matches O O -, O O -during O O -which O O -time O O -they O O -lost O O -only O O -17 O O -times O O -in O O -almost O O -10 O O -years O O -until O O -he O O -resigned O O -in O O -December O O -1995 O O -. O O -He O O -guided O O -Ireland B-LOC B-LOC -to O O -two O O -successive O O -World B-MISC B-MISC -Cup I-MISC I-MISC -finals O O -tournaments O O -and O O -to O O -the O O -1988 O O -European B-MISC B-MISC -championship I-MISC O -finals O O -in O O -Germany B-LOC B-LOC -, O O -after O O -the O O -Irish B-MISC B-MISC -beat O O -a O O -well O O -England B-LOC B-LOC -team O O -1 O O -in O O -their O O -group O O -qualifier O O -. O O -The O O -la O O -former O O -Leeds B-ORG B-ORG -United I-ORG I-ORG -defender O O -did O O -not O O -make O O -his O O -England B-LOC B-LOC -debut O O -until O O -the O O -age O O -of O O -30 O O -but O O -eventually O O -won O O -35 O O -caps O O -and O O -was O O -a O O -key O O -member O O -of O O -the O O -1966 B-MISC B-MISC -World B-MISC I-MISC -Cup I-MISC I-MISC -winning O O -team O O -with O O -his O O -younger O O -brother O O -, O O -Bobby B-PER B-PER -. O O diff --git a/TensorFlow/built-in/nlp/Bert-base_ID0060_for_TensorFlow/configs/bert_base_vocab.txt b/TensorFlow/built-in/nlp/Bert-base_ID0060_for_TensorFlow/configs/bert_base_vocab.txt deleted file mode 100644 index ca4f9781030019ab9b253c6dcb8c7878b6dc87a5..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/Bert-base_ID0060_for_TensorFlow/configs/bert_base_vocab.txt +++ /dev/null @@ -1,21128 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] - - -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -£ -¤ -¥ -§ -© -« -® -° -± -² -³ -µ -· -¹ -º -» -¼ -× -ß -æ -÷ -ø -đ -ŋ -ɔ -ə -ɡ -ʰ -ˇ -ˈ -ˊ -ˋ -ˍ -ː -˙ -˚ -ˢ -α -β -γ -δ -ε -η -θ -ι -κ -λ -μ -ν -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -а -б -в -г -д -е -ж -з -и -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -ы -ь -я -і -ا -ب -ة -ت -د -ر -س -ع -ل -م -ن -ه -و -ي -۩ -ก -ง -น -ม -ย -ร -อ -า -เ -๑ -་ -ღ -ᄀ -ᄁ -ᄂ -ᄃ -ᄅ -ᄆ -ᄇ -ᄈ -ᄉ -ᄋ -ᄌ -ᄎ -ᄏ -ᄐ -ᄑ -ᄒ -ᅡ -ᅢ -ᅣ -ᅥ -ᅦ -ᅧ -ᅨ -ᅩ -ᅪ -ᅬ -ᅭ -ᅮ -ᅯ -ᅲ -ᅳ -ᅴ -ᅵ -ᆨ -ᆫ -ᆯ -ᆷ -ᆸ -ᆺ -ᆻ -ᆼ -ᗜ -ᵃ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵘ -‖ -„ -† -• -‥ -‧ -
 -‰ -′ -″ -‹ -› -※ -‿ -⁄ -ⁱ -⁺ -ⁿ -₁ -₂ -₃ -₄ -€ -℃ -№ -™ -ⅰ -ⅱ -ⅲ -ⅳ -ⅴ -← -↑ -→ -↓ -↔ -↗ -↘ -⇒ -∀ -− -∕ -∙ -√ -∞ -∟ -∠ -∣ -∥ -∩ -∮ -∶ -∼ -∽ -≈ -≒ -≡ -≤ -≥ -≦ -≧ -≪ -≫ -⊙ -⋅ -⋈ -⋯ -⌒ -① -② -③ -④ -⑤ -⑥ -⑦ -⑧ -⑨ -⑩ -⑴ -⑵ -⑶ -⑷ -⑸ -⒈ -⒉ -⒊ -⒋ -ⓒ -ⓔ -ⓘ -─ -━ -│ -┃ -┅ -┆ -┊ -┌ -└ -├ -┣ -═ -║ -╚ -╞ -╠ -╭ -╮ -╯ -╰ -╱ -╳ -▂ -▃ -▅ -▇ -█ -▉ -▋ -▌ -▍ -▎ -■ -□ -▪ -▫ -▬ -▲ -△ -▶ -► -▼ -▽ -◆ -◇ -○ -◎ -● -◕ -◠ -◢ -◤ -☀ -★ -☆ -☕ -☞ -☺ -☼ -♀ -♂ -♠ -♡ -♣ -♥ -♦ -♪ -♫ -♬ -✈ -✔ -✕ -✖ -✦ -✨ -✪ -✰ -✿ -❀ -❤ -➜ -➤ -⦿ -、 -。 -〃 -々 -〇 -〈 -〉 -《 -》 -「 -」 -『 -』 -【 -】 -〓 -〔 -〕 -〖 -〗 -〜 -〝 -〞 -ぁ -あ -ぃ -い -う -ぇ -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -っ -つ -て -と -な -に -ぬ -ね -の -は -ひ -ふ -へ -ほ -ま -み -む -め -も -ゃ -や -ゅ -ゆ -ょ -よ -ら -り -る -れ -ろ -わ -を -ん -゜ -ゝ -ァ -ア -ィ -イ -ゥ -ウ -ェ -エ -ォ -オ -カ -キ -ク -ケ -コ -サ -シ -ス -セ -ソ -タ -チ -ッ -ツ -テ -ト -ナ -ニ -ヌ -ネ -ノ -ハ -ヒ -フ -ヘ -ホ -マ -ミ -ム -メ -モ -ャ -ヤ -ュ -ユ -ョ -ヨ -ラ -リ -ル -レ -ロ -ワ -ヲ -ン -ヶ -・ -ー -ヽ -ㄅ -ㄆ -ㄇ -ㄉ -ㄋ -ㄌ -ㄍ -ㄎ -ㄏ -ㄒ -ㄚ -ㄛ -ㄞ -ㄟ -ㄢ -ㄤ -ㄥ -ㄧ -ㄨ -ㆍ -㈦ -㊣ -㎡ -㗎 -一 -丁 -七 -万 -丈 -三 -上 -下 -不 -与 -丐 -丑 -专 -且 -丕 -世 -丘 -丙 -业 -丛 -东 -丝 -丞 -丟 -両 -丢 -两 -严 -並 -丧 -丨 -个 -丫 -中 -丰 -串 -临 -丶 -丸 -丹 -为 -主 -丼 -丽 -举 -丿 -乂 -乃 -久 -么 -义 -之 -乌 -乍 -乎 -乏 -乐 -乒 -乓 -乔 -乖 -乗 -乘 -乙 -乜 -九 -乞 -也 -习 -乡 -书 -乩 -买 -乱 -乳 -乾 -亀 -亂 -了 -予 -争 -事 -二 -于 -亏 -云 -互 -五 -井 -亘 -亙 -亚 -些 -亜 -亞 -亟 -亡 -亢 -交 -亥 -亦 -产 -亨 -亩 -享 -京 -亭 -亮 -亲 -亳 -亵 -人 -亿 -什 -仁 -仃 -仄 -仅 -仆 -仇 -今 -介 -仍 -从 -仏 -仑 -仓 -仔 -仕 -他 -仗 -付 -仙 -仝 -仞 -仟 -代 -令 -以 -仨 -仪 -们 -仮 -仰 -仲 -件 -价 -任 -份 -仿 -企 -伉 -伊 -伍 -伎 -伏 -伐 -休 -伕 -众 -优 -伙 -会 -伝 -伞 -伟 -传 -伢 -伤 -伦 -伪 -伫 -伯 -估 -伴 -伶 -伸 -伺 -似 -伽 -佃 -但 -佇 -佈 -位 -低 -住 -佐 -佑 -体 -佔 -何 -佗 -佘 -余 -佚 -佛 -作 -佝 -佞 -佟 -你 -佢 -佣 -佤 -佥 -佩 -佬 -佯 -佰 -佳 -併 -佶 -佻 -佼 -使 -侃 -侄 -來 -侈 -例 -侍 -侏 -侑 -侖 -侗 -供 -依 -侠 -価 -侣 -侥 -侦 -侧 -侨 -侬 -侮 -侯 -侵 -侶 -侷 -便 -係 -促 -俄 -俊 -俎 -俏 -俐 -俑 -俗 -俘 -俚 -保 -俞 -俟 -俠 -信 -俨 -俩 -俪 -俬 -俭 -修 -俯 -俱 -俳 -俸 -俺 -俾 -倆 -倉 -個 -倌 -倍 -倏 -們 -倒 -倔 -倖 -倘 -候 -倚 -倜 -借 -倡 -値 -倦 -倩 -倪 -倫 -倬 -倭 -倶 -债 -值 -倾 -偃 -假 -偈 -偉 -偌 -偎 -偏 -偕 -做 -停 -健 -側 -偵 -偶 -偷 -偻 -偽 -偿 -傀 -傅 -傍 -傑 -傘 -備 -傚 -傢 -傣 -傥 -储 -傩 -催 -傭 -傲 -傳 -債 -傷 -傻 -傾 -僅 -働 -像 -僑 -僕 -僖 -僚 -僥 -僧 -僭 -僮 -僱 -僵 -價 -僻 -儀 -儂 -億 -儆 -儉 -儋 -儒 -儕 -儘 -償 -儡 -優 -儲 -儷 -儼 -儿 -兀 -允 -元 -兄 -充 -兆 -兇 -先 -光 -克 -兌 -免 -児 -兑 -兒 -兔 -兖 -党 -兜 -兢 -入 -內 -全 -兩 -八 -公 -六 -兮 -兰 -共 -兲 -关 -兴 -兵 -其 -具 -典 -兹 -养 -兼 -兽 -冀 -内 -円 -冇 -冈 -冉 -冊 -册 -再 -冏 -冒 -冕 -冗 -写 -军 -农 -冠 -冢 -冤 -冥 -冨 -冪 -冬 -冯 -冰 -冲 -决 -况 -冶 -冷 -冻 -冼 -冽 -冾 -净 -凄 -准 -凇 -凈 -凉 -凋 -凌 -凍 -减 -凑 -凛 -凜 -凝 -几 -凡 -凤 -処 -凪 -凭 -凯 -凰 -凱 -凳 -凶 -凸 -凹 -出 -击 -函 -凿 -刀 -刁 -刃 -分 -切 -刈 -刊 -刍 -刎 -刑 -划 -列 -刘 -则 -刚 -创 -初 -删 -判 -別 -刨 -利 -刪 -别 -刮 -到 -制 -刷 -券 -刹 -刺 -刻 -刽 -剁 -剂 -剃 -則 -剉 -削 -剋 -剌 -前 -剎 -剐 -剑 -剔 -剖 -剛 -剜 -剝 -剣 -剤 -剥 -剧 -剩 -剪 -副 -割 -創 -剷 -剽 -剿 -劃 -劇 -劈 -劉 -劊 -劍 -劏 -劑 -力 -劝 -办 -功 -加 -务 -劣 -动 -助 -努 -劫 -劭 -励 -劲 -劳 -労 -劵 -効 -劾 -势 -勁 -勃 -勇 -勉 -勋 -勐 -勒 -動 -勖 -勘 -務 -勛 -勝 -勞 -募 -勢 -勤 -勧 -勳 -勵 -勸 -勺 -勻 -勾 -勿 -匀 -包 -匆 -匈 -匍 -匐 -匕 -化 -北 -匙 -匝 -匠 -匡 -匣 -匪 -匮 -匯 -匱 -匹 -区 -医 -匾 -匿 -區 -十 -千 -卅 -升 -午 -卉 -半 -卍 -华 -协 -卑 -卒 -卓 -協 -单 -卖 -南 -単 -博 -卜 -卞 -卟 -占 -卡 -卢 -卤 -卦 -卧 -卫 -卮 -卯 -印 -危 -即 -却 -卵 -卷 -卸 -卻 -卿 -厂 -厄 -厅 -历 -厉 -压 -厌 -厕 -厘 -厚 -厝 -原 -厢 -厥 -厦 -厨 -厩 -厭 -厮 -厲 -厳 -去 -县 -叁 -参 -參 -又 -叉 -及 -友 -双 -反 -収 -发 -叔 -取 -受 -变 -叙 -叛 -叟 -叠 -叡 -叢 -口 -古 -句 -另 -叨 -叩 -只 -叫 -召 -叭 -叮 -可 -台 -叱 -史 -右 -叵 -叶 -号 -司 -叹 -叻 -叼 -叽 -吁 -吃 -各 -吆 -合 -吉 -吊 -吋 -同 -名 -后 -吏 -吐 -向 -吒 -吓 -吕 -吖 -吗 -君 -吝 -吞 -吟 -吠 -吡 -否 -吧 -吨 -吩 -含 -听 -吭 -吮 -启 -吱 -吳 -吴 -吵 -吶 -吸 -吹 -吻 -吼 -吽 -吾 -呀 -呂 -呃 -呆 -呈 -告 -呋 -呎 -呐 -呓 -呕 -呗 -员 -呛 -呜 -呢 -呤 -呦 -周 -呱 -呲 -味 -呵 -呷 -呸 -呻 -呼 -命 -咀 -咁 -咂 -咄 -咆 -咋 -和 -咎 -咏 -咐 -咒 -咔 -咕 -咖 -咗 -咘 -咙 -咚 -咛 -咣 -咤 -咦 -咧 -咨 -咩 -咪 -咫 -咬 -咭 -咯 -咱 -咲 -咳 -咸 -咻 -咽 -咿 -哀 -品 -哂 -哄 -哆 -哇 -哈 -哉 -哋 -哌 -响 -哎 -哏 -哐 -哑 -哒 -哔 -哗 -哟 -員 -哥 -哦 -哧 -哨 -哩 -哪 -哭 -哮 -哲 -哺 -哼 -哽 -唁 -唄 -唆 -唇 -唉 -唏 -唐 -唑 -唔 -唠 -唤 -唧 -唬 -售 -唯 -唰 -唱 -唳 -唷 -唸 -唾 -啃 -啄 -商 -啉 -啊 -問 -啓 -啕 -啖 -啜 -啞 -啟 -啡 -啤 -啥 -啦 -啧 -啪 -啫 -啬 -啮 -啰 -啱 -啲 -啵 -啶 -啷 -啸 -啻 -啼 -啾 -喀 -喂 -喃 -善 -喆 -喇 -喉 -喊 -喋 -喎 -喏 -喔 -喘 -喙 -喚 -喜 -喝 -喟 -喧 -喪 -喫 -喬 -單 -喰 -喱 -喲 -喳 -喵 -営 -喷 -喹 -喺 -喻 -喽 -嗅 -嗆 -嗇 -嗎 -嗑 -嗒 -嗓 -嗔 -嗖 -嗚 -嗜 -嗝 -嗟 -嗡 -嗣 -嗤 -嗦 -嗨 -嗪 -嗬 -嗯 -嗰 -嗲 -嗳 -嗶 -嗷 -嗽 -嘀 -嘅 -嘆 -嘈 -嘉 -嘌 -嘍 -嘎 -嘔 -嘖 -嘗 -嘘 -嘚 -嘛 -嘜 -嘞 -嘟 -嘢 -嘣 -嘤 -嘧 -嘩 -嘭 -嘮 -嘯 -嘰 -嘱 -嘲 -嘴 -嘶 -嘸 -嘹 -嘻 -嘿 -噁 -噌 -噎 -噓 -噔 -噗 -噙 -噜 -噠 -噢 -噤 -器 -噩 -噪 -噬 -噱 -噴 -噶 -噸 -噹 -噻 -噼 -嚀 -嚇 -嚎 -嚏 -嚐 -嚓 -嚕 -嚟 -嚣 -嚥 -嚨 -嚮 -嚴 -嚷 -嚼 -囂 -囉 -囊 -囍 -囑 -囔 -囗 -囚 -四 -囝 -回 -囟 -因 -囡 -团 -団 -囤 -囧 -囪 -囫 -园 -困 -囱 -囲 -図 -围 -囹 -固 -国 -图 -囿 -圃 -圄 -圆 -圈 -國 -圍 -圏 -園 -圓 -圖 -團 -圜 -土 -圣 -圧 -在 -圩 -圭 -地 -圳 -场 -圻 -圾 -址 -坂 -均 -坊 -坍 -坎 -坏 -坐 -坑 -块 -坚 -坛 -坝 -坞 -坟 -坠 -坡 -坤 -坦 -坨 -坪 -坯 -坳 -坵 -坷 -垂 -垃 -垄 -型 -垒 -垚 -垛 -垠 -垢 -垣 -垦 -垩 -垫 -垭 -垮 -垵 -埂 -埃 -埋 -城 -埔 -埕 -埗 -域 -埠 -埤 -埵 -執 -埸 -培 -基 -埼 -堀 -堂 -堃 -堅 -堆 -堇 -堑 -堕 -堙 -堡 -堤 -堪 -堯 -堰 -報 -場 -堵 -堺 -堿 -塊 -塌 -塑 -塔 -塗 -塘 -塚 -塞 -塢 -塩 -填 -塬 -塭 -塵 -塾 -墀 -境 -墅 -墉 -墊 -墒 -墓 -増 -墘 -墙 -墜 -增 -墟 -墨 -墩 -墮 -墳 -墻 -墾 -壁 -壅 -壆 -壇 -壊 -壑 -壓 -壕 -壘 -壞 -壟 -壢 -壤 -壩 -士 -壬 -壮 -壯 -声 -売 -壳 -壶 -壹 -壺 -壽 -处 -备 -変 -复 -夏 -夔 -夕 -外 -夙 -多 -夜 -够 -夠 -夢 -夥 -大 -天 -太 -夫 -夭 -央 -夯 -失 -头 -夷 -夸 -夹 -夺 -夾 -奂 -奄 -奇 -奈 -奉 -奋 -奎 -奏 -奐 -契 -奔 -奕 -奖 -套 -奘 -奚 -奠 -奢 -奥 -奧 -奪 -奬 -奮 -女 -奴 -奶 -奸 -她 -好 -如 -妃 -妄 -妆 -妇 -妈 -妊 -妍 -妒 -妓 -妖 -妘 -妙 -妝 -妞 -妣 -妤 -妥 -妨 -妩 -妪 -妮 -妲 -妳 -妹 -妻 -妾 -姆 -姉 -姊 -始 -姍 -姐 -姑 -姒 -姓 -委 -姗 -姚 -姜 -姝 -姣 -姥 -姦 -姨 -姪 -姫 -姬 -姹 -姻 -姿 -威 -娃 -娄 -娅 -娆 -娇 -娉 -娑 -娓 -娘 -娛 -娜 -娟 -娠 -娣 -娥 -娩 -娱 -娲 -娴 -娶 -娼 -婀 -婁 -婆 -婉 -婊 -婕 -婚 -婢 -婦 -婧 -婪 -婭 -婴 -婵 -婶 -婷 -婺 -婿 -媒 -媚 -媛 -媞 -媧 -媲 -媳 -媽 -媾 -嫁 -嫂 -嫉 -嫌 -嫑 -嫔 -嫖 -嫘 -嫚 -嫡 -嫣 -嫦 -嫩 -嫲 -嫵 -嫻 -嬅 -嬉 -嬌 -嬗 -嬛 -嬢 -嬤 -嬪 -嬰 -嬴 -嬷 -嬸 -嬿 -孀 -孃 -子 -孑 -孔 -孕 -孖 -字 -存 -孙 -孚 -孛 -孜 -孝 -孟 -孢 -季 -孤 -学 -孩 -孪 -孫 -孬 -孰 -孱 -孳 -孵 -學 -孺 -孽 -孿 -宁 -它 -宅 -宇 -守 -安 -宋 -完 -宏 -宓 -宕 -宗 -官 -宙 -定 -宛 -宜 -宝 -实 -実 -宠 -审 -客 -宣 -室 -宥 -宦 -宪 -宫 -宮 -宰 -害 -宴 -宵 -家 -宸 -容 -宽 -宾 -宿 -寂 -寄 -寅 -密 -寇 -富 -寐 -寒 -寓 -寛 -寝 -寞 -察 -寡 -寢 -寥 -實 -寧 -寨 -審 -寫 -寬 -寮 -寰 -寵 -寶 -寸 -对 -寺 -寻 -导 -対 -寿 -封 -専 -射 -将 -將 -專 -尉 -尊 -尋 -對 -導 -小 -少 -尔 -尕 -尖 -尘 -尚 -尝 -尤 -尧 -尬 -就 -尴 -尷 -尸 -尹 -尺 -尻 -尼 -尽 -尾 -尿 -局 -屁 -层 -屄 -居 -屆 -屈 -屉 -届 -屋 -屌 -屍 -屎 -屏 -屐 -屑 -展 -屜 -属 -屠 -屡 -屢 -層 -履 -屬 -屯 -山 -屹 -屿 -岀 -岁 -岂 -岌 -岐 -岑 -岔 -岖 -岗 -岘 -岙 -岚 -岛 -岡 -岩 -岫 -岬 -岭 -岱 -岳 -岷 -岸 -峇 -峋 -峒 -峙 -峡 -峤 -峥 -峦 -峨 -峪 -峭 -峯 -峰 -峴 -島 -峻 -峽 -崁 -崂 -崆 -崇 -崎 -崑 -崔 -崖 -崗 -崙 -崛 -崧 -崩 -崭 -崴 -崽 -嵇 -嵊 -嵋 -嵌 -嵐 -嵘 -嵩 -嵬 -嵯 -嶂 -嶄 -嶇 -嶋 -嶙 -嶺 -嶼 -嶽 -巅 -巍 -巒 -巔 -巖 -川 -州 -巡 -巢 -工 -左 -巧 -巨 -巩 -巫 -差 -己 -已 -巳 -巴 -巷 -巻 -巽 -巾 -巿 -币 -市 -布 -帅 -帆 -师 -希 -帐 -帑 -帕 -帖 -帘 -帚 -帛 -帜 -帝 -帥 -带 -帧 -師 -席 -帮 -帯 -帰 -帳 -帶 -帷 -常 -帼 -帽 -幀 -幂 -幄 -幅 -幌 -幔 -幕 -幟 -幡 -幢 -幣 -幫 -干 -平 -年 -并 -幸 -幹 -幺 -幻 -幼 -幽 -幾 -广 -庁 -広 -庄 -庆 -庇 -床 -序 -庐 -库 -应 -底 -庖 -店 -庙 -庚 -府 -庞 -废 -庠 -度 -座 -庫 -庭 -庵 -庶 -康 -庸 -庹 -庾 -廁 -廂 -廃 -廈 -廉 -廊 -廓 -廖 -廚 -廝 -廟 -廠 -廢 -廣 -廬 -廳 -延 -廷 -建 -廿 -开 -弁 -异 -弃 -弄 -弈 -弊 -弋 -式 -弑 -弒 -弓 -弔 -引 -弗 -弘 -弛 -弟 -张 -弥 -弦 -弧 -弩 -弭 -弯 -弱 -張 -強 -弹 -强 -弼 -弾 -彅 -彆 -彈 -彌 -彎 -归 -当 -录 -彗 -彙 -彝 -形 -彤 -彥 -彦 -彧 -彩 -彪 -彫 -彬 -彭 -彰 -影 -彷 -役 -彻 -彼 -彿 -往 -征 -径 -待 -徇 -很 -徉 -徊 -律 -後 -徐 -徑 -徒 -従 -徕 -得 -徘 -徙 -徜 -從 -徠 -御 -徨 -復 -循 -徬 -微 -徳 -徴 -徵 -德 -徹 -徼 -徽 -心 -必 -忆 -忌 -忍 -忏 -忐 -忑 -忒 -忖 -志 -忘 -忙 -応 -忠 -忡 -忤 -忧 -忪 -快 -忱 -念 -忻 -忽 -忿 -怀 -态 -怂 -怅 -怆 -怎 -怏 -怒 -怔 -怕 -怖 -怙 -怜 -思 -怠 -怡 -急 -怦 -性 -怨 -怪 -怯 -怵 -总 -怼 -恁 -恃 -恆 -恋 -恍 -恐 -恒 -恕 -恙 -恚 -恢 -恣 -恤 -恥 -恨 -恩 -恪 -恫 -恬 -恭 -息 -恰 -恳 -恵 -恶 -恸 -恺 -恻 -恼 -恿 -悄 -悅 -悉 -悌 -悍 -悔 -悖 -悚 -悟 -悠 -患 -悦 -您 -悩 -悪 -悬 -悯 -悱 -悲 -悴 -悵 -悶 -悸 -悻 -悼 -悽 -情 -惆 -惇 -惊 -惋 -惑 -惕 -惘 -惚 -惜 -惟 -惠 -惡 -惦 -惧 -惨 -惩 -惫 -惬 -惭 -惮 -惯 -惰 -惱 -想 -惴 -惶 -惹 -惺 -愁 -愆 -愈 -愉 -愍 -意 -愕 -愚 -愛 -愜 -感 -愣 -愤 -愧 -愫 -愷 -愿 -慄 -慈 -態 -慌 -慎 -慑 -慕 -慘 -慚 -慟 -慢 -慣 -慧 -慨 -慫 -慮 -慰 -慳 -慵 -慶 -慷 -慾 -憂 -憊 -憋 -憎 -憐 -憑 -憔 -憚 -憤 -憧 -憨 -憩 -憫 -憬 -憲 -憶 -憾 -懂 -懇 -懈 -應 -懊 -懋 -懑 -懒 -懦 -懲 -懵 -懶 -懷 -懸 -懺 -懼 -懾 -懿 -戀 -戈 -戊 -戌 -戍 -戎 -戏 -成 -我 -戒 -戕 -或 -战 -戚 -戛 -戟 -戡 -戦 -截 -戬 -戮 -戰 -戲 -戳 -戴 -戶 -户 -戸 -戻 -戾 -房 -所 -扁 -扇 -扈 -扉 -手 -才 -扎 -扑 -扒 -打 -扔 -払 -托 -扛 -扣 -扦 -执 -扩 -扪 -扫 -扬 -扭 -扮 -扯 -扰 -扱 -扳 -扶 -批 -扼 -找 -承 -技 -抄 -抉 -把 -抑 -抒 -抓 -投 -抖 -抗 -折 -抚 -抛 -抜 -択 -抟 -抠 -抡 -抢 -护 -报 -抨 -披 -抬 -抱 -抵 -抹 -押 -抽 -抿 -拂 -拄 -担 -拆 -拇 -拈 -拉 -拋 -拌 -拍 -拎 -拐 -拒 -拓 -拔 -拖 -拗 -拘 -拙 -拚 -招 -拜 -拟 -拡 -拢 -拣 -拥 -拦 -拧 -拨 -择 -括 -拭 -拮 -拯 -拱 -拳 -拴 -拷 -拼 -拽 -拾 -拿 -持 -挂 -指 -挈 -按 -挎 -挑 -挖 -挙 -挚 -挛 -挝 -挞 -挟 -挠 -挡 -挣 -挤 -挥 -挨 -挪 -挫 -振 -挲 -挹 -挺 -挽 -挾 -捂 -捅 -捆 -捉 -捋 -捌 -捍 -捎 -捏 -捐 -捕 -捞 -损 -捡 -换 -捣 -捧 -捨 -捩 -据 -捱 -捲 -捶 -捷 -捺 -捻 -掀 -掂 -掃 -掇 -授 -掉 -掌 -掏 -掐 -排 -掖 -掘 -掙 -掛 -掠 -採 -探 -掣 -接 -控 -推 -掩 -措 -掬 -掰 -掲 -掳 -掴 -掷 -掸 -掺 -揀 -揃 -揄 -揆 -揉 -揍 -描 -提 -插 -揖 -揚 -換 -握 -揣 -揩 -揪 -揭 -揮 -援 -揶 -揸 -揹 -揽 -搀 -搁 -搂 -搅 -損 -搏 -搐 -搓 -搔 -搖 -搗 -搜 -搞 -搡 -搪 -搬 -搭 -搵 -搶 -携 -搽 -摀 -摁 -摄 -摆 -摇 -摈 -摊 -摒 -摔 -摘 -摞 -摟 -摧 -摩 -摯 -摳 -摸 -摹 -摺 -摻 -撂 -撃 -撅 -撇 -撈 -撐 -撑 -撒 -撓 -撕 -撚 -撞 -撤 -撥 -撩 -撫 -撬 -播 -撮 -撰 -撲 -撵 -撷 -撸 -撻 -撼 -撿 -擀 -擁 -擂 -擄 -擅 -擇 -擊 -擋 -操 -擎 -擒 -擔 -擘 -據 -擞 -擠 -擡 -擢 -擦 -擬 -擰 -擱 -擲 -擴 -擷 -擺 -擼 -擾 -攀 -攏 -攒 -攔 -攘 -攙 -攜 -攝 -攞 -攢 -攣 -攤 -攥 -攪 -攫 -攬 -支 -收 -攸 -改 -攻 -放 -政 -故 -效 -敌 -敍 -敎 -敏 -救 -敕 -敖 -敗 -敘 -教 -敛 -敝 -敞 -敢 -散 -敦 -敬 -数 -敲 -整 -敵 -敷 -數 -斂 -斃 -文 -斋 -斌 -斎 -斐 -斑 -斓 -斗 -料 -斛 -斜 -斟 -斡 -斤 -斥 -斧 -斩 -斫 -斬 -断 -斯 -新 -斷 -方 -於 -施 -旁 -旃 -旅 -旋 -旌 -旎 -族 -旖 -旗 -无 -既 -日 -旦 -旧 -旨 -早 -旬 -旭 -旮 -旱 -时 -旷 -旺 -旻 -昀 -昂 -昆 -昇 -昉 -昊 -昌 -明 -昏 -易 -昔 -昕 -昙 -星 -映 -春 -昧 -昨 -昭 -是 -昱 -昴 -昵 -昶 -昼 -显 -晁 -時 -晃 -晉 -晋 -晌 -晏 -晒 -晓 -晔 -晕 -晖 -晗 -晚 -晝 -晞 -晟 -晤 -晦 -晨 -晩 -普 -景 -晰 -晴 -晶 -晷 -智 -晾 -暂 -暄 -暇 -暈 -暉 -暌 -暐 -暑 -暖 -暗 -暝 -暢 -暧 -暨 -暫 -暮 -暱 -暴 -暸 -暹 -曄 -曆 -曇 -曉 -曖 -曙 -曜 -曝 -曠 -曦 -曬 -曰 -曲 -曳 -更 -書 -曹 -曼 -曾 -替 -最 -會 -月 -有 -朋 -服 -朐 -朔 -朕 -朗 -望 -朝 -期 -朦 -朧 -木 -未 -末 -本 -札 -朮 -术 -朱 -朴 -朵 -机 -朽 -杀 -杂 -权 -杆 -杈 -杉 -李 -杏 -材 -村 -杓 -杖 -杜 -杞 -束 -杠 -条 -来 -杨 -杭 -杯 -杰 -東 -杳 -杵 -杷 -杼 -松 -板 -极 -构 -枇 -枉 -枋 -析 -枕 -林 -枚 -果 -枝 -枢 -枣 -枪 -枫 -枭 -枯 -枰 -枱 -枳 -架 -枷 -枸 -柄 -柏 -某 -柑 -柒 -染 -柔 -柘 -柚 -柜 -柞 -柠 -柢 -查 -柩 -柬 -柯 -柱 -柳 -柴 -柵 -査 -柿 -栀 -栃 -栄 -栅 -标 -栈 -栉 -栋 -栎 -栏 -树 -栓 -栖 -栗 -校 -栩 -株 -样 -核 -根 -格 -栽 -栾 -桀 -桁 -桂 -桃 -桅 -框 -案 -桉 -桌 -桎 -桐 -桑 -桓 -桔 -桜 -桠 -桡 -桢 -档 -桥 -桦 -桧 -桨 -桩 -桶 -桿 -梁 -梅 -梆 -梏 -梓 -梗 -條 -梟 -梢 -梦 -梧 -梨 -梭 -梯 -械 -梳 -梵 -梶 -检 -棂 -棄 -棉 -棋 -棍 -棒 -棕 -棗 -棘 -棚 -棟 -棠 -棣 -棧 -森 -棱 -棲 -棵 -棹 -棺 -椁 -椅 -椋 -植 -椎 -椒 -検 -椪 -椭 -椰 -椹 -椽 -椿 -楂 -楊 -楓 -楔 -楚 -楝 -楞 -楠 -楣 -楨 -楫 -業 -楮 -極 -楷 -楸 -楹 -楼 -楽 -概 -榄 -榆 -榈 -榉 -榔 -榕 -榖 -榛 -榜 -榨 -榫 -榭 -榮 -榱 -榴 -榷 -榻 -槁 -槃 -構 -槌 -槍 -槎 -槐 -槓 -様 -槛 -槟 -槤 -槭 -槲 -槳 -槻 -槽 -槿 -樁 -樂 -樊 -樑 -樓 -標 -樞 -樟 -模 -樣 -権 -横 -樫 -樯 -樱 -樵 -樸 -樹 -樺 -樽 -樾 -橄 -橇 -橋 -橐 -橘 -橙 -機 -橡 -橢 -橫 -橱 -橹 -橼 -檀 -檄 -檎 -檐 -檔 -檗 -檜 -檢 -檬 -檯 -檳 -檸 -檻 -櫃 -櫚 -櫛 -櫥 -櫸 -櫻 -欄 -權 -欒 -欖 -欠 -次 -欢 -欣 -欧 -欲 -欸 -欺 -欽 -款 -歆 -歇 -歉 -歌 -歎 -歐 -歓 -歙 -歛 -歡 -止 -正 -此 -步 -武 -歧 -歩 -歪 -歯 -歲 -歳 -歴 -歷 -歸 -歹 -死 -歼 -殁 -殃 -殆 -殇 -殉 -殊 -残 -殒 -殓 -殖 -殘 -殞 -殡 -殤 -殭 -殯 -殲 -殴 -段 -殷 -殺 -殼 -殿 -毀 -毁 -毂 -毅 -毆 -毋 -母 -毎 -每 -毒 -毓 -比 -毕 -毗 -毘 -毙 -毛 -毡 -毫 -毯 -毽 -氈 -氏 -氐 -民 -氓 -气 -氖 -気 -氙 -氛 -氟 -氡 -氢 -氣 -氤 -氦 -氧 -氨 -氪 -氫 -氮 -氯 -氰 -氲 -水 -氷 -永 -氹 -氾 -汀 -汁 -求 -汆 -汇 -汉 -汎 -汐 -汕 -汗 -汙 -汛 -汝 -汞 -江 -池 -污 -汤 -汨 -汩 -汪 -汰 -汲 -汴 -汶 -汹 -決 -汽 -汾 -沁 -沂 -沃 -沅 -沈 -沉 -沌 -沏 -沐 -沒 -沓 -沖 -沙 -沛 -沟 -没 -沢 -沣 -沥 -沦 -沧 -沪 -沫 -沭 -沮 -沱 -河 -沸 -油 -治 -沼 -沽 -沾 -沿 -況 -泄 -泉 -泊 -泌 -泓 -法 -泗 -泛 -泞 -泠 -泡 -波 -泣 -泥 -注 -泪 -泫 -泮 -泯 -泰 -泱 -泳 -泵 -泷 -泸 -泻 -泼 -泽 -泾 -洁 -洄 -洋 -洒 -洗 -洙 -洛 -洞 -津 -洩 -洪 -洮 -洱 -洲 -洵 -洶 -洸 -洹 -活 -洼 -洽 -派 -流 -浃 -浄 -浅 -浆 -浇 -浊 -测 -济 -浏 -浑 -浒 -浓 -浔 -浙 -浚 -浜 -浣 -浦 -浩 -浪 -浬 -浮 -浯 -浴 -海 -浸 -涂 -涅 -涇 -消 -涉 -涌 -涎 -涓 -涔 -涕 -涙 -涛 -涝 -涞 -涟 -涠 -涡 -涣 -涤 -润 -涧 -涨 -涩 -涪 -涮 -涯 -液 -涵 -涸 -涼 -涿 -淀 -淄 -淅 -淆 -淇 -淋 -淌 -淑 -淒 -淖 -淘 -淙 -淚 -淞 -淡 -淤 -淦 -淨 -淩 -淪 -淫 -淬 -淮 -深 -淳 -淵 -混 -淹 -淺 -添 -淼 -清 -済 -渉 -渊 -渋 -渍 -渎 -渐 -渔 -渗 -渙 -渚 -減 -渝 -渠 -渡 -渣 -渤 -渥 -渦 -温 -測 -渭 -港 -渲 -渴 -游 -渺 -渾 -湃 -湄 -湊 -湍 -湖 -湘 -湛 -湟 -湧 -湫 -湮 -湯 -湳 -湾 -湿 -満 -溃 -溅 -溉 -溏 -源 -準 -溜 -溝 -溟 -溢 -溥 -溧 -溪 -溫 -溯 -溱 -溴 -溶 -溺 -溼 -滁 -滂 -滄 -滅 -滇 -滋 -滌 -滑 -滓 -滔 -滕 -滙 -滚 -滝 -滞 -滟 -满 -滢 -滤 -滥 -滦 -滨 -滩 -滬 -滯 -滲 -滴 -滷 -滸 -滾 -滿 -漁 -漂 -漆 -漉 -漏 -漓 -演 -漕 -漠 -漢 -漣 -漩 -漪 -漫 -漬 -漯 -漱 -漲 -漳 -漸 -漾 -漿 -潆 -潇 -潋 -潍 -潑 -潔 -潘 -潛 -潜 -潞 -潟 -潢 -潤 -潦 -潧 -潭 -潮 -潰 -潴 -潸 -潺 -潼 -澀 -澄 -澆 -澈 -澍 -澎 -澗 -澜 -澡 -澤 -澧 -澱 -澳 -澹 -激 -濁 -濂 -濃 -濑 -濒 -濕 -濘 -濛 -濟 -濠 -濡 -濤 -濫 -濬 -濮 -濯 -濱 -濺 -濾 -瀅 -瀆 -瀉 -瀋 -瀏 -瀑 -瀕 -瀘 -瀚 -瀛 -瀝 -瀞 -瀟 -瀧 -瀨 -瀬 -瀰 -瀾 -灌 -灏 -灑 -灘 -灝 -灞 -灣 -火 -灬 -灭 -灯 -灰 -灵 -灶 -灸 -灼 -災 -灾 -灿 -炀 -炁 -炅 -炉 -炊 -炎 -炒 -炔 -炕 -炖 -炙 -炜 -炫 -炬 -炭 -炮 -炯 -炳 -炷 -炸 -点 -為 -炼 -炽 -烁 -烂 -烃 -烈 -烊 -烏 -烘 -烙 -烛 -烟 -烤 -烦 -烧 -烨 -烩 -烫 -烬 -热 -烯 -烷 -烹 -烽 -焉 -焊 -焕 -焖 -焗 -焘 -焙 -焚 -焜 -無 -焦 -焯 -焰 -焱 -然 -焼 -煅 -煉 -煊 -煌 -煎 -煒 -煖 -煙 -煜 -煞 -煤 -煥 -煦 -照 -煨 -煩 -煮 -煲 -煸 -煽 -熄 -熊 -熏 -熒 -熔 -熙 -熟 -熠 -熨 -熬 -熱 -熵 -熹 -熾 -燁 -燃 -燄 -燈 -燉 -燊 -燎 -燒 -燔 -燕 -燙 -燜 -營 -燥 -燦 -燧 -燭 -燮 -燴 -燻 -燼 -燿 -爆 -爍 -爐 -爛 -爪 -爬 -爭 -爰 -爱 -爲 -爵 -父 -爷 -爸 -爹 -爺 -爻 -爽 -爾 -牆 -片 -版 -牌 -牍 -牒 -牙 -牛 -牝 -牟 -牠 -牡 -牢 -牦 -牧 -物 -牯 -牲 -牴 -牵 -特 -牺 -牽 -犀 -犁 -犄 -犊 -犍 -犒 -犢 -犧 -犬 -犯 -状 -犷 -犸 -犹 -狀 -狂 -狄 -狈 -狎 -狐 -狒 -狗 -狙 -狞 -狠 -狡 -狩 -独 -狭 -狮 -狰 -狱 -狸 -狹 -狼 -狽 -猎 -猕 -猖 -猗 -猙 -猛 -猜 -猝 -猥 -猩 -猪 -猫 -猬 -献 -猴 -猶 -猷 -猾 -猿 -獄 -獅 -獎 -獐 -獒 -獗 -獠 -獣 -獨 -獭 -獰 -獲 -獵 -獷 -獸 -獺 -獻 -獼 -獾 -玄 -率 -玉 -王 -玑 -玖 -玛 -玟 -玠 -玥 -玩 -玫 -玮 -环 -现 -玲 -玳 -玷 -玺 -玻 -珀 -珂 -珅 -珈 -珉 -珊 -珍 -珏 -珐 -珑 -珙 -珞 -珠 -珣 -珥 -珩 -珪 -班 -珮 -珲 -珺 -現 -球 -琅 -理 -琇 -琉 -琊 -琍 -琏 -琐 -琛 -琢 -琥 -琦 -琨 -琪 -琬 -琮 -琰 -琲 -琳 -琴 -琵 -琶 -琺 -琼 -瑀 -瑁 -瑄 -瑋 -瑕 -瑗 -瑙 -瑚 -瑛 -瑜 -瑞 -瑟 -瑠 -瑣 -瑤 -瑩 -瑪 -瑯 -瑰 -瑶 -瑾 -璀 -璁 -璃 -璇 -璉 -璋 -璎 -璐 -璜 -璞 -璟 -璧 -璨 -環 -璽 -璿 -瓊 -瓏 -瓒 -瓜 -瓢 -瓣 -瓤 -瓦 -瓮 -瓯 -瓴 -瓶 -瓷 -甄 -甌 -甕 -甘 -甙 -甚 -甜 -生 -產 -産 -甥 -甦 -用 -甩 -甫 -甬 -甭 -甯 -田 -由 -甲 -申 -电 -男 -甸 -町 -画 -甾 -畀 -畅 -界 -畏 -畑 -畔 -留 -畜 -畝 -畢 -略 -畦 -番 -畫 -異 -畲 -畳 -畴 -當 -畸 -畹 -畿 -疆 -疇 -疊 -疏 -疑 -疔 -疖 -疗 -疙 -疚 -疝 -疟 -疡 -疣 -疤 -疥 -疫 -疮 -疯 -疱 -疲 -疳 -疵 -疸 -疹 -疼 -疽 -疾 -痂 -病 -症 -痈 -痉 -痊 -痍 -痒 -痔 -痕 -痘 -痙 -痛 -痞 -痠 -痢 -痣 -痤 -痧 -痨 -痪 -痫 -痰 -痱 -痴 -痹 -痺 -痼 -痿 -瘀 -瘁 -瘋 -瘍 -瘓 -瘘 -瘙 -瘟 -瘠 -瘡 -瘢 -瘤 -瘦 -瘧 -瘩 -瘪 -瘫 -瘴 -瘸 -瘾 -療 -癇 -癌 -癒 -癖 -癜 -癞 -癡 -癢 -癣 -癥 -癫 -癬 -癮 -癱 -癲 -癸 -発 -登 -發 -白 -百 -皂 -的 -皆 -皇 -皈 -皋 -皎 -皑 -皓 -皖 -皙 -皚 -皮 -皰 -皱 -皴 -皺 -皿 -盂 -盃 -盅 -盆 -盈 -益 -盎 -盏 -盐 -监 -盒 -盔 -盖 -盗 -盘 -盛 -盜 -盞 -盟 -盡 -監 -盤 -盥 -盧 -盪 -目 -盯 -盱 -盲 -直 -相 -盹 -盼 -盾 -省 -眈 -眉 -看 -県 -眙 -眞 -真 -眠 -眦 -眨 -眩 -眯 -眶 -眷 -眸 -眺 -眼 -眾 -着 -睁 -睇 -睏 -睐 -睑 -睛 -睜 -睞 -睡 -睢 -督 -睥 -睦 -睨 -睪 -睫 -睬 -睹 -睽 -睾 -睿 -瞄 -瞅 -瞇 -瞋 -瞌 -瞎 -瞑 -瞒 -瞓 -瞞 -瞟 -瞠 -瞥 -瞧 -瞩 -瞪 -瞬 -瞭 -瞰 -瞳 -瞻 -瞼 -瞿 -矇 -矍 -矗 -矚 -矛 -矜 -矢 -矣 -知 -矩 -矫 -短 -矮 -矯 -石 -矶 -矽 -矾 -矿 -码 -砂 -砌 -砍 -砒 -研 -砖 -砗 -砚 -砝 -砣 -砥 -砧 -砭 -砰 -砲 -破 -砷 -砸 -砺 -砼 -砾 -础 -硅 -硐 -硒 -硕 -硝 -硫 -硬 -确 -硯 -硼 -碁 -碇 -碉 -碌 -碍 -碎 -碑 -碓 -碗 -碘 -碚 -碛 -碟 -碣 -碧 -碩 -碰 -碱 -碳 -碴 -確 -碼 -碾 -磁 -磅 -磊 -磋 -磐 -磕 -磚 -磡 -磨 -磬 -磯 -磲 -磷 -磺 -礁 -礎 -礙 -礡 -礦 -礪 -礫 -礴 -示 -礼 -社 -祀 -祁 -祂 -祇 -祈 -祉 -祎 -祐 -祕 -祖 -祗 -祚 -祛 -祜 -祝 -神 -祟 -祠 -祢 -祥 -票 -祭 -祯 -祷 -祸 -祺 -祿 -禀 -禁 -禄 -禅 -禍 -禎 -福 -禛 -禦 -禧 -禪 -禮 -禱 -禹 -禺 -离 -禽 -禾 -禿 -秀 -私 -秃 -秆 -秉 -秋 -种 -科 -秒 -秘 -租 -秣 -秤 -秦 -秧 -秩 -秭 -积 -称 -秸 -移 -秽 -稀 -稅 -程 -稍 -税 -稔 -稗 -稚 -稜 -稞 -稟 -稠 -稣 -種 -稱 -稲 -稳 -稷 -稹 -稻 -稼 -稽 -稿 -穀 -穂 -穆 -穌 -積 -穎 -穗 -穢 -穩 -穫 -穴 -究 -穷 -穹 -空 -穿 -突 -窃 -窄 -窈 -窍 -窑 -窒 -窓 -窕 -窖 -窗 -窘 -窜 -窝 -窟 -窠 -窥 -窦 -窨 -窩 -窪 -窮 -窯 -窺 -窿 -竄 -竅 -竇 -竊 -立 -竖 -站 -竜 -竞 -竟 -章 -竣 -童 -竭 -端 -競 -竹 -竺 -竽 -竿 -笃 -笆 -笈 -笋 -笏 -笑 -笔 -笙 -笛 -笞 -笠 -符 -笨 -第 -笹 -笺 -笼 -筆 -等 -筊 -筋 -筍 -筏 -筐 -筑 -筒 -答 -策 -筛 -筝 -筠 -筱 -筲 -筵 -筷 -筹 -签 -简 -箇 -箋 -箍 -箏 -箐 -箔 -箕 -算 -箝 -管 -箩 -箫 -箭 -箱 -箴 -箸 -節 -篁 -範 -篆 -篇 -築 -篑 -篓 -篙 -篝 -篠 -篡 -篤 -篩 -篪 -篮 -篱 -篷 -簇 -簌 -簍 -簡 -簦 -簧 -簪 -簫 -簷 -簸 -簽 -簾 -簿 -籁 -籃 -籌 -籍 -籐 -籟 -籠 -籤 -籬 -籮 -籲 -米 -类 -籼 -籽 -粄 -粉 -粑 -粒 -粕 -粗 -粘 -粟 -粤 -粥 -粧 -粪 -粮 -粱 -粲 -粳 -粵 -粹 -粼 -粽 -精 -粿 -糅 -糊 -糍 -糕 -糖 -糗 -糙 -糜 -糞 -糟 -糠 -糧 -糬 -糯 -糰 -糸 -系 -糾 -紀 -紂 -約 -紅 -紉 -紊 -紋 -納 -紐 -紓 -純 -紗 -紘 -紙 -級 -紛 -紜 -素 -紡 -索 -紧 -紫 -紮 -累 -細 -紳 -紹 -紺 -終 -絃 -組 -絆 -経 -結 -絕 -絞 -絡 -絢 -給 -絨 -絮 -統 -絲 -絳 -絵 -絶 -絹 -綁 -綏 -綑 -經 -継 -続 -綜 -綠 -綢 -綦 -綫 -綬 -維 -綱 -網 -綴 -綵 -綸 -綺 -綻 -綽 -綾 -綿 -緊 -緋 -総 -緑 -緒 -緘 -線 -緝 -緞 -締 -緣 -編 -緩 -緬 -緯 -練 -緹 -緻 -縁 -縄 -縈 -縛 -縝 -縣 -縫 -縮 -縱 -縴 -縷 -總 -績 -繁 -繃 -繆 -繇 -繋 -織 -繕 -繚 -繞 -繡 -繩 -繪 -繫 -繭 -繳 -繹 -繼 -繽 -纂 -續 -纍 -纏 -纓 -纔 -纖 -纜 -纠 -红 -纣 -纤 -约 -级 -纨 -纪 -纫 -纬 -纭 -纯 -纰 -纱 -纲 -纳 -纵 -纶 -纷 -纸 -纹 -纺 -纽 -纾 -线 -绀 -练 -组 -绅 -细 -织 -终 -绊 -绍 -绎 -经 -绑 -绒 -结 -绔 -绕 -绘 -给 -绚 -绛 -络 -绝 -绞 -统 -绡 -绢 -绣 -绥 -绦 -继 -绩 -绪 -绫 -续 -绮 -绯 -绰 -绳 -维 -绵 -绶 -绷 -绸 -绻 -综 -绽 -绾 -绿 -缀 -缄 -缅 -缆 -缇 -缈 -缉 -缎 -缓 -缔 -缕 -编 -缘 -缙 -缚 -缜 -缝 -缠 -缢 -缤 -缥 -缨 -缩 -缪 -缭 -缮 -缰 -缱 -缴 -缸 -缺 -缽 -罂 -罄 -罌 -罐 -网 -罔 -罕 -罗 -罚 -罡 -罢 -罩 -罪 -置 -罰 -署 -罵 -罷 -罹 -羁 -羅 -羈 -羊 -羌 -美 -羔 -羚 -羞 -羟 -羡 -羣 -群 -羥 -羧 -羨 -義 -羯 -羲 -羸 -羹 -羽 -羿 -翁 -翅 -翊 -翌 -翎 -習 -翔 -翘 -翟 -翠 -翡 -翦 -翩 -翰 -翱 -翳 -翹 -翻 -翼 -耀 -老 -考 -耄 -者 -耆 -耋 -而 -耍 -耐 -耒 -耕 -耗 -耘 -耙 -耦 -耨 -耳 -耶 -耷 -耸 -耻 -耽 -耿 -聂 -聆 -聊 -聋 -职 -聒 -联 -聖 -聘 -聚 -聞 -聪 -聯 -聰 -聲 -聳 -聴 -聶 -職 -聽 -聾 -聿 -肃 -肄 -肅 -肆 -肇 -肉 -肋 -肌 -肏 -肓 -肖 -肘 -肚 -肛 -肝 -肠 -股 -肢 -肤 -肥 -肩 -肪 -肮 -肯 -肱 -育 -肴 -肺 -肽 -肾 -肿 -胀 -胁 -胃 -胄 -胆 -背 -胍 -胎 -胖 -胚 -胛 -胜 -胝 -胞 -胡 -胤 -胥 -胧 -胫 -胭 -胯 -胰 -胱 -胳 -胴 -胶 -胸 -胺 -能 -脂 -脅 -脆 -脇 -脈 -脉 -脊 -脍 -脏 -脐 -脑 -脓 -脖 -脘 -脚 -脛 -脣 -脩 -脫 -脯 -脱 -脲 -脳 -脸 -脹 -脾 -腆 -腈 -腊 -腋 -腌 -腎 -腐 -腑 -腓 -腔 -腕 -腥 -腦 -腩 -腫 -腭 -腮 -腰 -腱 -腳 -腴 -腸 -腹 -腺 -腻 -腼 -腾 -腿 -膀 -膈 -膊 -膏 -膑 -膘 -膚 -膛 -膜 -膝 -膠 -膦 -膨 -膩 -膳 -膺 -膻 -膽 -膾 -膿 -臀 -臂 -臃 -臆 -臉 -臊 -臍 -臓 -臘 -臟 -臣 -臥 -臧 -臨 -自 -臬 -臭 -至 -致 -臺 -臻 -臼 -臾 -舀 -舂 -舅 -舆 -與 -興 -舉 -舊 -舌 -舍 -舎 -舐 -舒 -舔 -舖 -舗 -舛 -舜 -舞 -舟 -航 -舫 -般 -舰 -舱 -舵 -舶 -舷 -舸 -船 -舺 -舾 -艇 -艋 -艘 -艙 -艦 -艮 -良 -艰 -艱 -色 -艳 -艷 -艹 -艺 -艾 -节 -芃 -芈 -芊 -芋 -芍 -芎 -芒 -芙 -芜 -芝 -芡 -芥 -芦 -芩 -芪 -芫 -芬 -芭 -芮 -芯 -花 -芳 -芷 -芸 -芹 -芻 -芽 -芾 -苁 -苄 -苇 -苋 -苍 -苏 -苑 -苒 -苓 -苔 -苕 -苗 -苛 -苜 -苞 -苟 -苡 -苣 -若 -苦 -苫 -苯 -英 -苷 -苹 -苻 -茁 -茂 -范 -茄 -茅 -茉 -茎 -茏 -茗 -茜 -茧 -茨 -茫 -茬 -茭 -茯 -茱 -茲 -茴 -茵 -茶 -茸 -茹 -茼 -荀 -荃 -荆 -草 -荊 -荏 -荐 -荒 -荔 -荖 -荘 -荚 -荞 -荟 -荠 -荡 -荣 -荤 -荥 -荧 -荨 -荪 -荫 -药 -荳 -荷 -荸 -荻 -荼 -荽 -莅 -莆 -莉 -莊 -莎 -莒 -莓 -莖 -莘 -莞 -莠 -莢 -莧 -莪 -莫 -莱 -莲 -莴 -获 -莹 -莺 -莽 -莿 -菀 -菁 -菅 -菇 -菈 -菊 -菌 -菏 -菓 -菖 -菘 -菜 -菟 -菠 -菡 -菩 -華 -菱 -菲 -菸 -菽 -萁 -萃 -萄 -萊 -萋 -萌 -萍 -萎 -萘 -萝 -萤 -营 -萦 -萧 -萨 -萩 -萬 -萱 -萵 -萸 -萼 -落 -葆 -葉 -著 -葚 -葛 -葡 -董 -葦 -葩 -葫 -葬 -葭 -葯 -葱 -葳 -葵 -葷 -葺 -蒂 -蒋 -蒐 -蒔 -蒙 -蒜 -蒞 -蒟 -蒡 -蒨 -蒲 -蒸 -蒹 -蒻 -蒼 -蒿 -蓁 -蓄 -蓆 -蓉 -蓋 -蓑 -蓓 -蓖 -蓝 -蓟 -蓦 -蓬 -蓮 -蓼 -蓿 -蔑 -蔓 -蔔 -蔗 -蔘 -蔚 -蔡 -蔣 -蔥 -蔫 -蔬 -蔭 -蔵 -蔷 -蔺 -蔻 -蔼 -蔽 -蕁 -蕃 -蕈 -蕉 -蕊 -蕎 -蕙 -蕤 -蕨 -蕩 -蕪 -蕭 -蕲 -蕴 -蕻 -蕾 -薄 -薅 -薇 -薈 -薊 -薏 -薑 -薔 -薙 -薛 -薦 -薨 -薩 -薪 -薬 -薯 -薰 -薹 -藉 -藍 -藏 -藐 -藓 -藕 -藜 -藝 -藤 -藥 -藩 -藹 -藻 -藿 -蘆 -蘇 -蘊 -蘋 -蘑 -蘚 -蘭 -蘸 -蘼 -蘿 -虎 -虏 -虐 -虑 -虔 -處 -虚 -虛 -虜 -虞 -號 -虢 -虧 -虫 -虬 -虱 -虹 -虻 -虽 -虾 -蚀 -蚁 -蚂 -蚊 -蚌 -蚓 -蚕 -蚜 -蚝 -蚣 -蚤 -蚩 -蚪 -蚯 -蚱 -蚵 -蛀 -蛆 -蛇 -蛊 -蛋 -蛎 -蛐 -蛔 -蛙 -蛛 -蛟 -蛤 -蛭 -蛮 -蛰 -蛳 -蛹 -蛻 -蛾 -蜀 -蜂 -蜃 -蜆 -蜇 -蜈 -蜊 -蜍 -蜒 -蜓 -蜕 -蜗 -蜘 -蜚 -蜜 -蜡 -蜢 -蜥 -蜱 -蜴 -蜷 -蜻 -蜿 -蝇 -蝈 -蝉 -蝌 -蝎 -蝕 -蝗 -蝙 -蝟 -蝠 -蝦 -蝨 -蝴 -蝶 -蝸 -蝼 -螂 -螃 -融 -螞 -螢 -螨 -螯 -螳 -螺 -蟀 -蟄 -蟆 -蟋 -蟎 -蟑 -蟒 -蟠 -蟬 -蟲 -蟹 -蟻 -蟾 -蠅 -蠍 -蠔 -蠕 -蠛 -蠟 -蠡 -蠢 -蠣 -蠱 -蠶 -蠹 -蠻 -血 -衄 -衅 -衆 -行 -衍 -術 -衔 -街 -衙 -衛 -衝 -衞 -衡 -衢 -衣 -补 -表 -衩 -衫 -衬 -衮 -衰 -衲 -衷 -衹 -衾 -衿 -袁 -袂 -袄 -袅 -袈 -袋 -袍 -袒 -袖 -袜 -袞 -袤 -袪 -被 -袭 -袱 -裁 -裂 -装 -裆 -裊 -裏 -裔 -裕 -裘 -裙 -補 -裝 -裟 -裡 -裤 -裨 -裱 -裳 -裴 -裸 -裹 -製 -裾 -褂 -複 -褐 -褒 -褓 -褔 -褚 -褥 -褪 -褫 -褲 -褶 -褻 -襁 -襄 -襟 -襠 -襪 -襬 -襯 -襲 -西 -要 -覃 -覆 -覇 -見 -規 -覓 -視 -覚 -覦 -覧 -親 -覬 -観 -覷 -覺 -覽 -觀 -见 -观 -规 -觅 -视 -览 -觉 -觊 -觎 -觐 -觑 -角 -觞 -解 -觥 -触 -觸 -言 -訂 -計 -訊 -討 -訓 -訕 -訖 -託 -記 -訛 -訝 -訟 -訣 -訥 -訪 -設 -許 -訳 -訴 -訶 -診 -註 -証 -詆 -詐 -詔 -評 -詛 -詞 -詠 -詡 -詢 -詣 -試 -詩 -詫 -詬 -詭 -詮 -詰 -話 -該 -詳 -詹 -詼 -誅 -誇 -誉 -誌 -認 -誓 -誕 -誘 -語 -誠 -誡 -誣 -誤 -誥 -誦 -誨 -說 -説 -読 -誰 -課 -誹 -誼 -調 -諄 -談 -請 -諏 -諒 -論 -諗 -諜 -諡 -諦 -諧 -諫 -諭 -諮 -諱 -諳 -諷 -諸 -諺 -諾 -謀 -謁 -謂 -謄 -謊 -謎 -謐 -謔 -謗 -謙 -講 -謝 -謠 -謨 -謬 -謹 -謾 -譁 -證 -譎 -譏 -識 -譙 -譚 -譜 -警 -譬 -譯 -議 -譲 -譴 -護 -譽 -讀 -變 -讓 -讚 -讞 -计 -订 -认 -讥 -讧 -讨 -让 -讪 -讫 -训 -议 -讯 -记 -讲 -讳 -讴 -讶 -讷 -许 -讹 -论 -讼 -讽 -设 -访 -诀 -证 -诃 -评 -诅 -识 -诈 -诉 -诊 -诋 -词 -诏 -译 -试 -诗 -诘 -诙 -诚 -诛 -话 -诞 -诟 -诠 -诡 -询 -诣 -诤 -该 -详 -诧 -诩 -诫 -诬 -语 -误 -诰 -诱 -诲 -说 -诵 -诶 -请 -诸 -诺 -读 -诽 -课 -诿 -谀 -谁 -调 -谄 -谅 -谆 -谈 -谊 -谋 -谌 -谍 -谎 -谏 -谐 -谑 -谒 -谓 -谔 -谕 -谗 -谘 -谙 -谚 -谛 -谜 -谟 -谢 -谣 -谤 -谥 -谦 -谧 -谨 -谩 -谪 -谬 -谭 -谯 -谱 -谲 -谴 -谶 -谷 -豁 -豆 -豇 -豈 -豉 -豊 -豌 -豎 -豐 -豔 -豚 -象 -豢 -豪 -豫 -豬 -豹 -豺 -貂 -貅 -貌 -貓 -貔 -貘 -貝 -貞 -負 -財 -貢 -貧 -貨 -販 -貪 -貫 -責 -貯 -貰 -貳 -貴 -貶 -買 -貸 -費 -貼 -貽 -貿 -賀 -賁 -賂 -賃 -賄 -資 -賈 -賊 -賑 -賓 -賜 -賞 -賠 -賡 -賢 -賣 -賤 -賦 -質 -賬 -賭 -賴 -賺 -購 -賽 -贅 -贈 -贊 -贍 -贏 -贓 -贖 -贛 -贝 -贞 -负 -贡 -财 -责 -贤 -败 -账 -货 -质 -贩 -贪 -贫 -贬 -购 -贮 -贯 -贰 -贱 -贲 -贴 -贵 -贷 -贸 -费 -贺 -贻 -贼 -贾 -贿 -赁 -赂 -赃 -资 -赅 -赈 -赊 -赋 -赌 -赎 -赏 -赐 -赓 -赔 -赖 -赘 -赚 -赛 -赝 -赞 -赠 -赡 -赢 -赣 -赤 -赦 -赧 -赫 -赭 -走 -赳 -赴 -赵 -赶 -起 -趁 -超 -越 -趋 -趕 -趙 -趟 -趣 -趨 -足 -趴 -趵 -趸 -趺 -趾 -跃 -跄 -跆 -跋 -跌 -跎 -跑 -跖 -跚 -跛 -距 -跟 -跡 -跤 -跨 -跩 -跪 -路 -跳 -践 -跷 -跹 -跺 -跻 -踉 -踊 -踌 -踏 -踐 -踝 -踞 -踟 -踢 -踩 -踪 -踮 -踱 -踴 -踵 -踹 -蹂 -蹄 -蹇 -蹈 -蹉 -蹊 -蹋 -蹑 -蹒 -蹙 -蹟 -蹣 -蹤 -蹦 -蹩 -蹬 -蹭 -蹲 -蹴 -蹶 -蹺 -蹼 -蹿 -躁 -躇 -躉 -躊 -躋 -躍 -躏 -躪 -身 -躬 -躯 -躲 -躺 -軀 -車 -軋 -軌 -軍 -軒 -軟 -転 -軸 -軼 -軽 -軾 -較 -載 -輒 -輓 -輔 -輕 -輛 -輝 -輟 -輩 -輪 -輯 -輸 -輻 -輾 -輿 -轄 -轅 -轆 -轉 -轍 -轎 -轟 -车 -轧 -轨 -轩 -转 -轭 -轮 -软 -轰 -轲 -轴 -轶 -轻 -轼 -载 -轿 -较 -辄 -辅 -辆 -辇 -辈 -辉 -辊 -辍 -辐 -辑 -输 -辕 -辖 -辗 -辘 -辙 -辛 -辜 -辞 -辟 -辣 -辦 -辨 -辩 -辫 -辭 -辮 -辯 -辰 -辱 -農 -边 -辺 -辻 -込 -辽 -达 -迁 -迂 -迄 -迅 -过 -迈 -迎 -运 -近 -返 -还 -这 -进 -远 -违 -连 -迟 -迢 -迤 -迥 -迦 -迩 -迪 -迫 -迭 -述 -迴 -迷 -迸 -迹 -迺 -追 -退 -送 -适 -逃 -逅 -逆 -选 -逊 -逍 -透 -逐 -递 -途 -逕 -逗 -這 -通 -逛 -逝 -逞 -速 -造 -逢 -連 -逮 -週 -進 -逵 -逶 -逸 -逻 -逼 -逾 -遁 -遂 -遅 -遇 -遊 -運 -遍 -過 -遏 -遐 -遑 -遒 -道 -達 -違 -遗 -遙 -遛 -遜 -遞 -遠 -遢 -遣 -遥 -遨 -適 -遭 -遮 -遲 -遴 -遵 -遶 -遷 -選 -遺 -遼 -遽 -避 -邀 -邁 -邂 -邃 -還 -邇 -邈 -邊 -邋 -邏 -邑 -邓 -邕 -邛 -邝 -邢 -那 -邦 -邨 -邪 -邬 -邮 -邯 -邰 -邱 -邳 -邵 -邸 -邹 -邺 -邻 -郁 -郅 -郊 -郎 -郑 -郜 -郝 -郡 -郢 -郤 -郦 -郧 -部 -郫 -郭 -郴 -郵 -郷 -郸 -都 -鄂 -鄉 -鄒 -鄔 -鄙 -鄞 -鄢 -鄧 -鄭 -鄰 -鄱 -鄲 -鄺 -酉 -酊 -酋 -酌 -配 -酐 -酒 -酗 -酚 -酝 -酢 -酣 -酥 -酩 -酪 -酬 -酮 -酯 -酰 -酱 -酵 -酶 -酷 -酸 -酿 -醃 -醇 -醉 -醋 -醍 -醐 -醒 -醚 -醛 -醜 -醞 -醣 -醪 -醫 -醬 -醮 -醯 -醴 -醺 -釀 -釁 -采 -釉 -释 -釋 -里 -重 -野 -量 -釐 -金 -釗 -釘 -釜 -針 -釣 -釦 -釧 -釵 -鈀 -鈉 -鈍 -鈎 -鈔 -鈕 -鈞 -鈣 -鈦 -鈪 -鈴 -鈺 -鈾 -鉀 -鉄 -鉅 -鉉 -鉑 -鉗 -鉚 -鉛 -鉤 -鉴 -鉻 -銀 -銃 -銅 -銑 -銓 -銖 -銘 -銜 -銬 -銭 -銮 -銳 -銷 -銹 -鋁 -鋅 -鋒 -鋤 -鋪 -鋰 -鋸 -鋼 -錄 -錐 -錘 -錚 -錠 -錢 -錦 -錨 -錫 -錮 -錯 -録 -錳 -錶 -鍊 -鍋 -鍍 -鍛 -鍥 -鍰 -鍵 -鍺 -鍾 -鎂 -鎊 -鎌 -鎏 -鎔 -鎖 -鎗 -鎚 -鎧 -鎬 -鎮 -鎳 -鏈 -鏖 -鏗 -鏘 -鏞 -鏟 -鏡 -鏢 -鏤 -鏽 -鐘 -鐮 -鐲 -鐳 -鐵 -鐸 -鐺 -鑄 -鑊 -鑑 -鑒 -鑣 -鑫 -鑰 -鑲 -鑼 -鑽 -鑾 -鑿 -针 -钉 -钊 -钎 -钏 -钒 -钓 -钗 -钙 -钛 -钜 -钝 -钞 -钟 -钠 -钡 -钢 -钣 -钤 -钥 -钦 -钧 -钨 -钩 -钮 -钯 -钰 -钱 -钳 -钴 -钵 -钺 -钻 -钼 -钾 -钿 -铀 -铁 -铂 -铃 -铄 -铅 -铆 -铉 -铎 -铐 -铛 -铜 -铝 -铠 -铡 -铢 -铣 -铤 -铨 -铩 -铬 -铭 -铮 -铰 -铲 -铵 -银 -铸 -铺 -链 -铿 -销 -锁 -锂 -锄 -锅 -锆 -锈 -锉 -锋 -锌 -锏 -锐 -锑 -错 -锚 -锟 -锡 -锢 -锣 -锤 -锥 -锦 -锭 -键 -锯 -锰 -锲 -锵 -锹 -锺 -锻 -镀 -镁 -镂 -镇 -镉 -镌 -镍 -镐 -镑 -镕 -镖 -镗 -镛 -镜 -镣 -镭 -镯 -镰 -镳 -镶 -長 -长 -門 -閃 -閉 -開 -閎 -閏 -閑 -閒 -間 -閔 -閘 -閡 -関 -閣 -閥 -閨 -閩 -閱 -閲 -閹 -閻 -閾 -闆 -闇 -闊 -闌 -闍 -闔 -闕 -闖 -闘 -關 -闡 -闢 -门 -闪 -闫 -闭 -问 -闯 -闰 -闲 -间 -闵 -闷 -闸 -闹 -闺 -闻 -闽 -闾 -阀 -阁 -阂 -阅 -阆 -阇 -阈 -阉 -阎 -阐 -阑 -阔 -阕 -阖 -阙 -阚 -阜 -队 -阡 -阪 -阮 -阱 -防 -阳 -阴 -阵 -阶 -阻 -阿 -陀 -陂 -附 -际 -陆 -陇 -陈 -陋 -陌 -降 -限 -陕 -陛 -陝 -陞 -陟 -陡 -院 -陣 -除 -陨 -险 -陪 -陰 -陲 -陳 -陵 -陶 -陷 -陸 -険 -陽 -隅 -隆 -隈 -隊 -隋 -隍 -階 -随 -隐 -隔 -隕 -隘 -隙 -際 -障 -隠 -隣 -隧 -隨 -險 -隱 -隴 -隶 -隸 -隻 -隼 -隽 -难 -雀 -雁 -雄 -雅 -集 -雇 -雉 -雋 -雌 -雍 -雎 -雏 -雑 -雒 -雕 -雖 -雙 -雛 -雜 -雞 -離 -難 -雨 -雪 -雯 -雰 -雲 -雳 -零 -雷 -雹 -電 -雾 -需 -霁 -霄 -霆 -震 -霈 -霉 -霊 -霍 -霎 -霏 -霑 -霓 -霖 -霜 -霞 -霧 -霭 -霰 -露 -霸 -霹 -霽 -霾 -靂 -靄 -靈 -青 -靓 -靖 -静 -靚 -靛 -靜 -非 -靠 -靡 -面 -靥 -靦 -革 -靳 -靴 -靶 -靼 -鞅 -鞋 -鞍 -鞏 -鞑 -鞘 -鞠 -鞣 -鞦 -鞭 -韆 -韋 -韌 -韓 -韜 -韦 -韧 -韩 -韬 -韭 -音 -韵 -韶 -韻 -響 -頁 -頂 -頃 -項 -順 -須 -頌 -預 -頑 -頒 -頓 -頗 -領 -頜 -頡 -頤 -頫 -頭 -頰 -頷 -頸 -頹 -頻 -頼 -顆 -題 -額 -顎 -顏 -顔 -願 -顛 -類 -顧 -顫 -顯 -顱 -顴 -页 -顶 -顷 -项 -顺 -须 -顼 -顽 -顾 -顿 -颁 -颂 -预 -颅 -领 -颇 -颈 -颉 -颊 -颌 -颍 -颐 -频 -颓 -颔 -颖 -颗 -题 -颚 -颛 -颜 -额 -颞 -颠 -颡 -颢 -颤 -颦 -颧 -風 -颯 -颱 -颳 -颶 -颼 -飄 -飆 -风 -飒 -飓 -飕 -飘 -飙 -飚 -飛 -飞 -食 -飢 -飨 -飩 -飪 -飯 -飲 -飼 -飽 -飾 -餃 -餅 -餉 -養 -餌 -餐 -餒 -餓 -餘 -餚 -餛 -餞 -餡 -館 -餮 -餵 -餾 -饅 -饈 -饋 -饌 -饍 -饑 -饒 -饕 -饗 -饞 -饥 -饨 -饪 -饬 -饭 -饮 -饯 -饰 -饱 -饲 -饴 -饵 -饶 -饷 -饺 -饼 -饽 -饿 -馀 -馁 -馄 -馅 -馆 -馈 -馋 -馍 -馏 -馒 -馔 -首 -馗 -香 -馥 -馨 -馬 -馭 -馮 -馳 -馴 -駁 -駄 -駅 -駆 -駐 -駒 -駕 -駛 -駝 -駭 -駱 -駿 -騁 -騎 -騏 -験 -騙 -騨 -騰 -騷 -驀 -驅 -驊 -驍 -驒 -驕 -驗 -驚 -驛 -驟 -驢 -驥 -马 -驭 -驮 -驯 -驰 -驱 -驳 -驴 -驶 -驷 -驸 -驹 -驻 -驼 -驾 -驿 -骁 -骂 -骄 -骅 -骆 -骇 -骈 -骊 -骋 -验 -骏 -骐 -骑 -骗 -骚 -骛 -骜 -骞 -骠 -骡 -骤 -骥 -骧 -骨 -骯 -骰 -骶 -骷 -骸 -骼 -髂 -髅 -髋 -髏 -髒 -髓 -體 -髖 -高 -髦 -髪 -髮 -髯 -髻 -鬃 -鬆 -鬍 -鬓 -鬚 -鬟 -鬢 -鬣 -鬥 -鬧 -鬱 -鬼 -魁 -魂 -魄 -魅 -魇 -魍 -魏 -魔 -魘 -魚 -魯 -魷 -鮑 -鮨 -鮪 -鮭 -鮮 -鯉 -鯊 -鯖 -鯛 -鯨 -鯰 -鯽 -鰍 -鰓 -鰭 -鰲 -鰻 -鰾 -鱈 -鱉 -鱔 -鱗 -鱷 -鱸 -鱼 -鱿 -鲁 -鲈 -鲍 -鲑 -鲛 -鲜 -鲟 -鲢 -鲤 -鲨 -鲫 -鲱 -鲲 -鲶 -鲷 -鲸 -鳃 -鳄 -鳅 -鳌 -鳍 -鳕 -鳖 -鳗 -鳝 -鳞 -鳥 -鳩 -鳳 -鳴 -鳶 -鴉 -鴕 -鴛 -鴦 -鴨 -鴻 -鴿 -鵑 -鵜 -鵝 -鵡 -鵬 -鵰 -鵲 -鶘 -鶩 -鶯 -鶴 -鷗 -鷲 -鷹 -鷺 -鸚 -鸞 -鸟 -鸠 -鸡 -鸢 -鸣 -鸥 -鸦 -鸨 -鸪 -鸭 -鸯 -鸳 -鸵 -鸽 -鸾 -鸿 -鹂 -鹃 -鹄 -鹅 -鹈 -鹉 -鹊 -鹌 -鹏 -鹑 -鹕 -鹘 -鹜 -鹞 -鹤 -鹦 -鹧 -鹫 -鹭 -鹰 -鹳 -鹵 -鹹 -鹼 -鹽 -鹿 -麂 -麋 -麒 -麓 -麗 -麝 -麟 -麥 -麦 -麩 -麴 -麵 -麸 -麺 -麻 -麼 -麽 -麾 -黃 -黄 -黍 -黎 -黏 -黑 -黒 -黔 -默 -黛 -黜 -黝 -點 -黠 -黨 -黯 -黴 -鼋 -鼎 -鼐 -鼓 -鼠 -鼬 -鼹 -鼻 -鼾 -齁 -齊 -齋 -齐 -齒 -齡 -齢 -齣 -齦 -齿 -龄 -龅 -龈 -龊 -龋 -龌 -龍 -龐 -龔 -龕 -龙 -龚 -龛 -龜 -龟 -︰ -︱ -︶ -︿ -﹁ -﹂ -﹍ -﹏ -﹐ -﹑ -﹒ -﹔ -﹕ -﹖ -﹗ -﹙ -﹚ -﹝ -﹞ -﹡ -﹣ -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -。 -「 -」 -、 -・ -ッ -ー -イ -ク -シ -ス -ト -ノ -フ -ラ -ル -ン -゙ -゚ - ̄ -¥ -👍 -🔥 -😂 -😎 -... -yam -10 -2017 -12 -11 -2016 -20 -30 -15 -06 -lofter -##s -2015 -by -16 -14 -18 -13 -24 -17 -2014 -21 -##0 -22 -19 -25 -23 -com -100 -00 -05 -2013 -##a -03 -09 -08 -28 -##2 -50 -01 -04 -##1 -27 -02 -2012 -##3 -26 -##e -07 -##8 -##5 -##6 -##4 -##9 -##7 -29 -2011 -40 -##t -2010 -##o -##d -##i -2009 -##n -app -www -the -##m -31 -##c -##l -##y -##r -##g -2008 -60 -http -200 -qq -##p -80 -##f -google -pixnet -90 -cookies -tripadvisor -500 -##er -##k -35 -##h -facebook -2007 -2000 -70 -##b -of -##x -##u -45 -300 -iphone -32 -1000 -2006 -48 -ip -36 -in -38 -3d -##w -##ing -55 -ctrip -##on -##v -33 -##の -to -34 -400 -id -2005 -it -37 -windows -llc -top -99 -42 -39 -000 -led -at -##an -41 -51 -52 -46 -49 -43 -53 -44 -##z -android -58 -and -59 -2004 -56 -vr -##か -5000 -2003 -47 -blogthis -twitter -54 -##le -150 -ok -2018 -57 -75 -cn -no -ios -##in -##mm -##00 -800 -on -te -3000 -65 -2001 -360 -95 -ig -lv -120 -##ng -##を -##us -##に -pc -てす -── -600 -##te -85 -2002 -88 -##ed -html -ncc -wifi -email -64 -blog -is -##10 -##て -mail -online -##al -dvd -##ic -studio -##は -##℃ -##ia -##と -line -vip -72 -##q -98 -##ce -##en -for -##is -##ra -##es -##j -usb -net -cp -1999 -asia -4g -##cm -diy -new -3c -##お -ta -66 -language -vs -apple -tw -86 -web -##ne -ipad -62 -you -##re -101 -68 -##tion -ps -de -bt -pony -atm -##2017 -1998 -67 -##ch -ceo -##or -go -##na -av -pro -cafe -96 -pinterest -97 -63 -pixstyleme3c -##ta -more -said -##2016 -1997 -mp3 -700 -##ll -nba -jun -##20 -92 -tv -1995 -pm -61 -76 -nbsp -250 -##ie -linux -##ma -cd -110 -hd -##17 -78 -##ion -77 -6000 -am -##th -##st -94 -##se -##et -69 -180 -gdp -my -105 -81 -abc -89 -flash -79 -one -93 -1990 -1996 -##ck -gps -##も -##ly -web885 -106 -2020 -91 -##ge -4000 -1500 -xd -boss -isbn -1994 -org -##ry -me -love -##11 -0fork -73 -##12 -3g -##ter -##ar -71 -82 -##la -hotel -130 -1970 -pk -83 -87 -140 -ie -##os -##30 -##el -74 -##50 -seo -cpu -##ml -p2p -84 -may -##る -sun -tue -internet -cc -posted -youtube -##at -##ン -##man -ii -##ル -##15 -abs -nt -pdf -yahoo -ago -1980 -##it -news -mac -104 -##てす -##me -##り -java -1992 -spa -##de -##nt -hk -all -plus -la -1993 -##mb -##16 -##ve -west -##da -160 -air -##い -##ps -から -##to -1989 -logo -htc -php -https -fi -momo -##son -sat -##ke -##80 -ebd -suv -wi -day -apk -##88 -##um -mv -galaxy -wiki -or -brake -##ス -1200 -する -this -1991 -mon -##こ -❤2017 -po -##ない -javascript -life -home -june -##ss -system -900 -##ー -##0 -pp -1988 -world -fb -4k -br -##as -ic -ai -leonardo -safari -##60 -live -free -xx -wed -win7 -kiehl -##co -lg -o2o -##go -us -235 -1949 -mm -しい -vfm -kanye -##90 -##2015 -##id -jr -##ey -123 -rss -##sa -##ro -##am -##no -thu -fri -350 -##sh -##ki -103 -comments -name -##のて -##pe -##ine -max -1987 -8000 -uber -##mi -##ton -wordpress -office -1986 -1985 -##ment -107 -bd -win10 -##ld -##li -gmail -bb -dior -##rs -##ri -##rd -##ます -up -cad -##® -dr -して -read -##21 -をお -##io -##99 -url -1984 -pvc -paypal -show -policy -##40 -##ty -##18 -with -##★ -##01 -txt -102 -##ba -dna -from -post -mini -ar -taiwan -john -##ga -privacy -agoda -##13 -##ny -word -##24 -##22 -##by -##ur -##hz -1982 -##ang -265 -cookie -netscape -108 -##ka -##~ -##ad -house -share -note -ibm -code -hello -nike -sim -survey -##016 -1979 -1950 -wikia -##32 -##017 -5g -cbc -##tor -##kg -1983 -##rt -##14 -campaign -store -2500 -os -##ct -##ts -##° -170 -api -##ns -365 -excel -##な -##ao -##ら -##し -~~ -##nd -university -163 -には -518 -##70 -##ya -##il -##25 -pierre -ipo -0020 -897 -##23 -hotels -##ian -のお -125 -years -6606 -##ers -##26 -high -##day -time -##ay -bug -##line -##く -##す -##be -xp -talk2yam -yamservice -10000 -coco -##dy -sony -##ies -1978 -microsoft -david -people -##ha -1960 -instagram -intel -その -##ot -iso -1981 -##va -115 -##mo -##land -xxx -man -co -ltxsw -##ation -baby -220 -##pa -##ol -1945 -7000 -tag -450 -##ue -msn -##31 -oppo -##ト -##ca -control -##om -st -chrome -##ure -##ん -be -##き -lol -##19 -した -##bo -240 -lady -##100 -##way -##から -4600 -##ko -##do -##un -4s -corporation -168 -##ni -herme -##28 -cp -978 -##up -##06 -ui -##ds -ppt -admin -three -します -bbc -re -128 -##48 -ca -##015 -##35 -hp -##ee -tpp -##た -##ive -×× -root -##cc -##ました -##ble -##ity -adobe -park -114 -et -oled -city -##ex -##ler -##ap -china -##book -20000 -view -##ice -global -##km -your -hong -##mg -out -##ms -ng -ebay -##29 -menu -ubuntu -##cy -rom -##view -open -ktv -do -server -##lo -if -english -##ね -##5 -##oo -1600 -##02 -step1 -kong -club -135 -july -inc -1976 -mr -hi -##net -touch -##ls -##ii -michael -lcd -##05 -##33 -phone -james -step2 -1300 -ios9 -##box -dc -##2 -##ley -samsung -111 -280 -pokemon -css -##ent -##les -いいえ -##1 -s8 -atom -play -bmw -##said -sa -etf -ctrl -♥yoyo♥ -##55 -2025 -##2014 -##66 -adidas -amazon -1958 -##ber -##ner -visa -##77 -##der -1800 -connectivity -##hi -firefox -109 -118 -hr -so -style -mark -pop -ol -skip -1975 -as -##27 -##ir -##61 -190 -mba -##う -##ai -le -##ver -1900 -cafe2017 -lte -super -113 -129 -##ron -amd -like -##☆ -are -##ster -we -##sk -paul -data -international -##ft -longchamp -ssd -good -##ート -##ti -reply -##my -↓↓↓ -apr -star -##ker -source -136 -js -112 -get -force -photo -##one -126 -##2013 -##ow -link -bbs -1972 -goods -##lin -python -119 -##ip -game -##ics -##ません -blue -##● -520 -##45 -page -itunes -##03 -1955 -260 -1968 -gt -gif -618 -##ff -##47 -group -くたさい -about -bar -ganji -##nce -music -lee -not -1977 -1971 -1973 -##per -an -faq -comment -##って -days -##ock -116 -##bs -1974 -1969 -v1 -player -1956 -xbox -sql -fm -f1 -139 -##ah -210 -##lv -##mp -##000 -melody -1957 -##3 -550 -17life -199 -1966 -xml -market -##au -##71 -999 -##04 -what -gl -##95 -##age -tips -##68 -book -##ting -mysql -can -1959 -230 -##ung -wonderland -watch -10℃ -##ction -9000 -mar -mobile -1946 -1962 -article -##db -part -▲top -party -って -1967 -1964 -1948 -##07 -##ore -##op -この -dj -##78 -##38 -010 -main -225 -1965 -##ong -art -320 -ad -134 -020 -##73 -117 -pm2 -japan -228 -##08 -ts -1963 -##ica -der -sm -##36 -2019 -##wa -ct -##7 -##や -##64 -1937 -homemesh -search -##85 -##れは -##tv -##di -macbook -##9 -##くたさい -service -##♥ -type -った -750 -##ier -##si -##75 -##います -##ok -best -##ット -goris -lock -##った -cf -3m -big -##ut -ftp -carol -##vi -10 -1961 -happy -sd -##ac -122 -anti -pe -cnn -iii -1920 -138 -##ラ -1940 -esp -jan -tags -##98 -##51 -august -vol -##86 -154 -##™ -##fs -##れ -##sion -design -ac -##ム -press -jordan -ppp -that -key -check -##6 -##tt -##㎡ -1080p -##lt -power -##42 -1952 -##bc -vivi -##ック -he -133 -121 -jpg -##rry -201 -175 -3500 -1947 -nb -##ted -##rn -しています -1954 -usd -##t00 -master -##ンク -001 -model -##58 -al -##09 -1953 -##34 -ram -goo -ても -##ui -127 -1930 -red -##ary -rpg -item -##pm -##41 -270 -##za -project -##2012 -hot -td -blogabstract -##ger -##62 -650 -##44 -gr2 -##します -##m -black -electronic -nfc -year -asus -また -html5 -cindy -##hd -m3 -132 -esc -##od -booking -##53 -fed -tvb -##81 -##ina -mit -165 -##いる -chan -192 -distribution -next -になる -peter -bios -steam -cm -1941 -にも -pk10 -##ix -##65 -##91 -dec -nasa -##ana -icecat -00z -b1 -will -##46 -li -se -##ji -##み -##ard -oct -##ain -jp -##ze -##bi -cio -##56 -smart -h5 -##39 -##port -curve -vpn -##nm -##dia -utc -##あり -12345678910 -##52 -rmvb -chanel -a4 -miss -##and -##im -media -who -##63 -she -girl -5s -124 -vera -##して -class -vivo -king -##フ -##ei -national -ab -1951 -5cm -888 -145 -ipod -ap -1100 -5mm -211 -ms -2756 -##69 -mp4 -msci -##po -##89 -131 -mg -index -380 -##bit -##out -##zz -##97 -##67 -158 -apec -##8 -photoshop -opec -¥799 -ては -##96 -##tes -##ast -2g -○○ -##ール -¥2899 -##ling -##よ -##ory -1938 -##ical -kitty -content -##43 -step3 -##cn -win8 -155 -vc -1400 -iphone7 -robert -##した -tcl -137 -beauty -##87 -en -dollars -##ys -##oc -step -pay -yy -a1 -##2011 -##lly -##ks -##♪ -1939 -188 -download -1944 -sep -exe -ph -います -school -gb -center -pr -street -##board -uv -##37 -##lan -winrar -##que -##ua -##com -1942 -1936 -480 -gpu -##4 -ettoday -fu -tom -##54 -##ren -##via -149 -##72 -b2b -144 -##79 -##tch -rose -arm -mb -##49 -##ial -##nn -nvidia -step4 -mvp -00㎡ -york -156 -##イ -how -cpi -591 -2765 -gov -kg -joe -##xx -mandy -pa -##ser -copyright -fashion -1935 -don -##け -ecu -##ist -##art -erp -wap -have -##lm -talk -##ek -##ning -##if -ch -##ite -video -1943 -cs -san -iot -look -##84 -##2010 -##ku -october -##ux -trump -##hs -##ide -box -141 -first -##ins -april -##ight -##83 -185 -angel -protected -aa -151 -162 -x1 -m2 -##fe -##× -##ho -size -143 -min -ofo -fun -gomaji -ex -hdmi -food -dns -march -chris -kevin -##のか -##lla -##pp -##ec -ag -ems -6s -720p -##rm -##ham -off -##92 -asp -team -fandom -ed -299 -▌♥ -##ell -info -されています -##82 -sina -4066 -161 -##able -##ctor -330 -399 -315 -dll -rights -ltd -idc -jul -3kg -1927 -142 -ma -surface -##76 -##ク -~~~ -304 -mall -eps -146 -green -##59 -map -space -donald -v2 -sodu -##light -1931 -148 -1700 -まて -310 -reserved -htm -##han -##57 -2d -178 -mod -##ise -##tions -152 -ti -##shi -doc -1933 -icp -055 -wang -##ram -shopping -aug -##pi -##well -now -wam -b2 -からお -##hu -236 -1928 -##gb -266 -f2 -##93 -153 -mix -##ef -##uan -bwl -##plus -##res -core -##ess -tea -5℃ -hktvmall -nhk -##ate -list -##ese -301 -feb -4m -inn -ての -nov -159 -12345 -daniel -##ci -pass -##bet -##nk -coffee -202 -ssl -airbnb -##ute -fbi -woshipm -skype -ea -cg -sp -##fc -##www -yes -edge -alt -007 -##94 -fpga -##ght -##gs -iso9001 -さい -##ile -##wood -##uo -image -lin -icon -american -##em -1932 -set -says -##king -##tive -blogger -##74 -なと -256 -147 -##ox -##zy -##red -##ium -##lf -nokia -claire -##リ -##ding -november -lohas -##500 -##tic -##マ -##cs -##ある -##che -##ire -##gy -##ult -db -january -win -##カ -166 -road -ptt -##ま -##つ -198 -##fa -##mer -anna -pchome -はい -udn -ef -420 -##time -##tte -2030 -##ア -g20 -white -かかります -1929 -308 -garden -eleven -di -##おります -chen -309b -777 -172 -young -cosplay -ちてない -4500 -bat -##123 -##tra -##ては -kindle -npc -steve -etc -##ern -##| -call -xperia -ces -travel -sk -s7 -##ous -1934 -##int -みいたたけます -183 -edu -file -cho -qr -##car -##our -186 -##ant -##d -eric -1914 -rends -##jo -##する -mastercard -##2000 -kb -##min -290 -##ino -vista -##ris -##ud -jack -2400 -##set -169 -pos -1912 -##her -##ou -taipei -しく -205 -beta -##ませんか -232 -##fi -express -255 -body -##ill -aphojoy -user -december -meiki -##ick -tweet -richard -##av -##ᆫ -iphone6 -##dd -ちてすか -views -##mark -321 -pd -##00 -times -##▲ -level -##ash -10g -point -5l -##ome -208 -koreanmall -##ak -george -q2 -206 -wma -tcp -##200 -スタッフ -full -mlb -##lle -##watch -tm -run -179 -911 -smith -business -##und -1919 -color -##tal -222 -171 -##less -moon -4399 -##rl -update -pcb -shop -499 -157 -little -なし -end -##mhz -van -dsp -easy -660 -##house -##key -history -##o -oh -##001 -##hy -##web -oem -let -was -##2009 -##gg -review -##wan -182 -##°c -203 -uc -title -##val -united -233 -2021 -##ons -doi -trivago -overdope -sbs -##ance -##ち -grand -special -573032185 -imf -216 -wx17house -##so -##ーム -audi -##he -london -william -##rp -##ake -science -beach -cfa -amp -ps4 -880 -##800 -##link -##hp -crm -ferragamo -bell -make -##eng -195 -under -zh -photos -2300 -##style -##ント -via -176 -da -##gi -company -i7 -##ray -thomas -370 -ufo -i5 -##max -plc -ben -back -research -8g -173 -mike -##pc -##ッフ -september -189 -##ace -vps -february -167 -pantos -wp -lisa -1921 -★★ -jquery -night -long -offer -##berg -##news -1911 -##いて -ray -fks -wto -せます -over -164 -340 -##all -##rus -1924 -##888 -##works -blogtitle -loftpermalink -##→ -187 -martin -test -ling -km -##め -15000 -fda -v3 -##ja -##ロ -wedding -かある -outlet -family -##ea -をこ -##top -story -##ness -salvatore -##lu -204 -swift -215 -room -している -oracle -##ul -1925 -sam -b2c -week -pi -rock -##のは -##a -##けと -##ean -##300 -##gle -cctv -after -chinese -##back -powered -x2 -##tan -1918 -##nes -##イン -canon -only -181 -##zi -##las -say -##oe -184 -##sd -221 -##bot -##world -##zo -sky -made -top100 -just -1926 -pmi -802 -234 -gap -##vr -177 -les -174 -▲topoct -ball -vogue -vi -ing -ofweek -cos -##list -##ort -▲topmay -##なら -##lon -として -last -##tc -##of -##bus -##gen -real -eva -##コ -a3 -nas -##lie -##ria -##coin -##bt -▲topapr -his -212 -cat -nata -vive -health -⋯⋯ -drive -sir -▲topmar -du -cup -##カー -##ook -##よう -##sy -alex -msg -tour -しました -3ce -##word -193 -ebooks -r8 -block -318 -##より -2200 -nice -pvp -207 -months -1905 -rewards -##ther -1917 -0800 -##xi -##チ -##sc -micro -850 -gg -blogfp -op -1922 -daily -m1 -264 -true -##bb -ml -##tar -##のお -##ky -anthony -196 -253 -##yo -state -218 -##ara -##aa -##rc -##tz -##ston -より -gear -##eo -##ade -ge -see -1923 -##win -##ura -ss -heart -##den -##ita -down -##sm -el -png -2100 -610 -rakuten -whatsapp -bay -dream -add -##use -680 -311 -pad -gucci -mpv -##ode -##fo -island -▲topjun -##▼ -223 -jason -214 -chicago -##❤ -しの -##hone -io -##れる -##ことか -sogo -be2 -##ology -990 -cloud -vcd -##con -2~3 -##ford -##joy -##kb -##こさいます -##rade -but -##ach -docker -##ful -rfid -ul -##ase -hit -ford -##star -580 -##○ -11 -a2 -sdk -reading -edited -##are -cmos -##mc -238 -siri -light -##ella -##ため -bloomberg -##read -pizza -##ison -jimmy -##vm -college -node -journal -ba -18k -##play -245 -##cer -20 -magic -##yu -191 -jump -288 -tt -##ings -asr -##lia -3200 -step5 -network -##cd -mc -いします -1234 -pixstyleme -273 -##600 -2800 -money -★★★★★ -1280 -12 -430 -bl -みの -act -##tus -tokyo -##rial -##life -emba -##ae -saas -tcs -##rk -##wang -summer -##sp -ko -##ving -390 -premium -##その -netflix -##ヒ -uk -mt -##lton -right -frank -two -209 -える -##ple -##cal -021 -##んな -##sen -##ville -hold -nexus -dd -##ius -てお -##mah -##なく -tila -zero -820 -ce -##tin -resort -##ws -charles -old -p10 -5d -report -##360 -##ru -##には -bus -vans -lt -##est -pv -##レ -links -rebecca -##ツ -##dm -azure -##365 -きな -limited -bit -4gb -##mon -1910 -moto -##eam -213 -1913 -var -eos -なとの -226 -blogspot -された -699 -e3 -dos -dm -fc -##ments -##ik -##kw -boy -##bin -##ata -960 -er -##せ -219 -##vin -##tu -##ula -194 -##∥ -station -##ろ -##ature -835 -files -zara -hdr -top10 -nature -950 -magazine -s6 -marriott -##シ -avira -case -##っと -tab -##ran -tony -##home -oculus -im -##ral -jean -saint -cry -307 -rosie -##force -##ini -ice -##bert -のある -##nder -##mber -pet -2600 -##◆ -plurk -▲topdec -##sis -00kg -▲topnov -720 -##ence -tim -##ω -##nc -##ても -##name -log -ips -great -ikea -malaysia -unix -##イト -3600 -##ncy -##nie -12000 -akb48 -##ye -##oid -404 -##chi -##いた -oa -xuehai -##1000 -##orm -##rf -275 -さん -##ware -##リー -980 -ho -##pro -text -##era -560 -bob -227 -##ub -##2008 -8891 -scp -avi -##zen -2022 -mi -wu -museum -qvod -apache -lake -jcb -▲topaug -★★★ -ni -##hr -hill -302 -ne -weibo -490 -ruby -##ーシ -##ヶ -##row -4d -▲topjul -iv -##ish -github -306 -mate -312 -##スト -##lot -##ane -andrew -のハイト -##tina -t1 -rf -ed2k -##vel -##900 -way -final -りの -ns -5a -705 -197 -##メ -sweet -bytes -##ene -▲topjan -231 -##cker -##2007 -##px -100g -topapp -229 -helpapp -rs -low -14k -g4g -care -630 -ldquo -あり -##fork -leave -rm -edition -##gan -##zon -##qq -▲topsep -##google -##ism -gold -224 -explorer -##zer -toyota -category -select -visual -##labels -restaurant -##md -posts -s1 -##ico -もっと -angelababy -123456 -217 -sports -s3 -mbc -1915 -してくたさい -shell -x86 -candy -##new -kbs -face -xl -470 -##here -4a -swissinfo -v8 -▲topfeb -dram -##ual -##vice -3a -##wer -sport -q1 -ios10 -public -int -card -##c -ep -au -rt -##れた -1080 -bill -##mll -kim -30 -460 -wan -##uk -##ミ -x3 -298 -0t -scott -##ming -239 -e5 -##3d -h7n9 -worldcat -brown -##あります -##vo -##led -##580 -##ax -249 -410 -##ert -paris -##~6 -polo -925 -##lr -599 -##ナ -capital -##hing -bank -cv -1g -##chat -##s -##たい -adc -##ule -2m -##e -digital -hotmail -268 -##pad -870 -bbq -quot -##ring -before -wali -##まて -mcu -2k -2b -という -costco -316 -north -333 -switch -##city -##p -philips -##mann -management -panasonic -##cl -##vd -##ping -##rge -alice -##lk -##ましょう -css3 -##ney -vision -alpha -##ular -##400 -##tter -lz -にお -##ありません -mode -gre -1916 -pci -##tm -237 -1~2 -##yan -##そ -について -##let -##キ -work -war -coach -ah -mary -##ᅵ -huang -##pt -a8 -pt -follow -##berry -1895 -##ew -a5 -ghost -##ション -##wn -##og -south -##code -girls -##rid -action -villa -git -r11 -table -games -##cket -error -##anonymoussaid -##ag -here -##ame -##gc -qa -##■ -##lis -gmp -##gin -vmalife -##cher -yu -wedding -##tis -demo -dragon -530 -soho -social -bye -##rant -river -orz -acer -325 -##↑ -##ース -##ats -261 -del -##ven -440 -ups -##ように -##ター -305 -value -macd -yougou -##dn -661 -##ano -ll -##urt -##rent -continue -script -##wen -##ect -paper -263 -319 -shift -##chel -##フト -##cat -258 -x5 -fox -243 -##さん -car -aaa -##blog -loading -##yn -##tp -kuso -799 -si -sns -イカせるテンマ -ヒンクテンマ3 -rmb -vdc -forest -central -prime -help -ultra -##rmb -##ような -241 -square -688 -##しい -のないフロクに -##field -##reen -##ors -##ju -c1 -start -510 -##air -##map -cdn -##wo -cba -stephen -m8 -100km -##get -opera -##base -##ood -vsa -com™ -##aw -##ail -251 -なのて -count -t2 -##ᅡ -##een -2700 -hop -##gp -vsc -tree -##eg -##ose -816 -285 -##ories -##shop -alphago -v4 -1909 -simon -##ᆼ -fluke62max -zip -スホンサー -##sta -louis -cr -bas -##~10 -bc -##yer -hadoop -##ube -##wi -1906 -0755 -hola -##low -place -centre -5v -d3 -##fer -252 -##750 -##media -281 -540 -0l -exchange -262 -series -##ハー -##san -eb -##bank -##k -q3 -##nge -##mail -take -##lp -259 -1888 -client -east -cache -event -vincent -##ールを -きを -##nse -sui -855 -adchoice -##и -##stry -##なたの -246 -##zone -ga -apps -sea -##ab -248 -cisco -##タ -##rner -kymco -##care -dha -##pu -##yi -minkoff -royal -p1 -への -annie -269 -collection -kpi -playstation -257 -になります -866 -bh -##bar -queen -505 -radio -1904 -andy -armani -##xy -manager -iherb -##ery -##share -spring -raid -johnson -1908 -##ob -volvo -hall -##ball -v6 -our -taylor -##hk -bi -242 -##cp -kate -bo -water -technology -##rie -サイトは -277 -##ona -##sl -hpv -303 -gtx -hip -rdquo -jayz -stone -##lex -##rum -namespace -##やり -620 -##ale -##atic -des -##erson -##ql -##ves -##type -enter -##この -##てきます -d2 -##168 -##mix -##bian -との -a9 -jj -ky -##lc -access -movie -##hc -リストに -tower -##ration -##mit -ます -##nch -ua -tel -prefix -##o2 -1907 -##point -1901 -ott -~10 -##http -##ury -baidu -##ink -member -##logy -bigbang -nownews -##js -##shot -##tb -##こと -247 -eba -##tics -##lus -ける -v5 -spark -##ama -there -##ions -god -##lls -##down -hiv -##ress -burberry -day2 -##kv -◆◆ -jeff -related -film -edit -joseph -283 -##ark -cx -32gb -order -g9 -30000 -##ans -##tty -s5 -##bee -かあります -thread -xr -buy -sh -005 -land -spotify -mx -##ari -276 -##verse -×email -sf -why -##ことて -244 -7headlines -nego -sunny -dom -exo -401 -666 -positioning -fit -rgb -##tton -278 -kiss -alexa -adam -lp -みリストを -##g -mp -##ties -##llow -amy -##du -np -002 -institute -271 -##rth -##lar -2345 -590 -##des -sidebar -15 -imax -site -##cky -##kit -##ime -##009 -season -323 -##fun -##ンター -##ひ -gogoro -a7 -pu -lily -fire -twd600 -##ッセーシを -いて -##vis -30ml -##cture -##をお -information -##オ -close -friday -##くれる -yi -nick -てすか -##tta -##tel -6500 -##lock -cbd -economy -254 -かお -267 -tinker -double -375 -8gb -voice -##app -oops -channel -today -985 -##right -raw -xyz -##+ -jim -edm -##cent -7500 -supreme -814 -ds -##its -##asia -dropbox -##てすか -##tti -books -272 -100ml -##tle -##ller -##ken -##more -##boy -sex -309 -##dom -t3 -##ider -##なります -##unch -1903 -810 -feel -5500 -##かった -##put -により -s2 -mo -##gh -men -ka -amoled -div -##tr -##n1 -port -howard -##tags -ken -dnf -##nus -adsense -##а -ide -##へ -buff -thunder -##town -##ique -has -##body -auto -pin -##erry -tee -てした -295 -number -##the -##013 -object -psp -cool -udnbkk -16gb -##mic -miui -##tro -most -r2 -##alk -##nity -1880 -±0 -##いました -428 -s4 -law -version -##oa -n1 -sgs -docomo -##tf -##ack -henry -fc2 -##ded -##sco -##014 -##rite -286 -0mm -linkedin -##ada -##now -wii -##ndy -ucbug -##◎ -sputniknews -legalminer -##ika -##xp -2gb -##bu -q10 -oo -b6 -come -##rman -cheese -ming -maker -##gm -nikon -##fig -ppi -kelly -##ります -jchere -てきます -ted -md -003 -fgo -tech -##tto -dan -soc -##gl -##len -hair -earth -640 -521 -img -##pper -##a1 -##てきる -##ロク -acca -##ition -##ference -suite -##ig -outlook -##mond -##cation -398 -##pr -279 -101vip -358 -##999 -282 -64gb -3800 -345 -airport -##over -284 -##おり -jones -##ith -lab -##su -##いるのて -co2 -town -piece -##llo -no1 -vmware -24h -##qi -focus -reader -##admin -##ora -tb -false -##log -1898 -know -lan -838 -##ces -f4 -##ume -motel -stop -##oper -na -flickr -netcomponents -##af -##─ -pose -williams -local -##ound -##cg -##site -##iko -いお -274 -5m -gsm -con -##ath -1902 -friends -##hip -cell -317 -##rey -780 -cream -##cks -012 -##dp -facebooktwitterpinterestgoogle -sso -324 -shtml -song -swiss -##mw -##キンク -lumia -xdd -string -tiffany -522 -marc -られた -insee -russell -sc -dell -##ations -ok -camera -289 -##vs -##flow -##late -classic -287 -##nter -stay -g1 -mtv -512 -##ever -##lab -##nger -qe -sata -ryan -d1 -50ml -cms -##cing -su -292 -3300 -editor -296 -##nap -security -sunday -association -##ens -##700 -##bra -acg -##かり -sofascore -とは -mkv -##ign -jonathan -gary -build -labels -##oto -tesla -moba -qi -gohappy -general -ajax -1024 -##かる -サイト -society -##test -##urs -wps -fedora -##ich -mozilla -328 -##480 -##dr -usa -urn -##lina -##r -grace -##die -##try -##ader -1250 -##なり -elle -570 -##chen -##ᆯ -price -##ten -uhz -##ough -eq -##hen -states -push -session -balance -wow -506 -##cus -##py -when -##ward -##ep -34e -wong -library -prada -##サイト -##cle -running -##ree -313 -ck -date -q4 -##ctive -##ool -##> -mk -##ira -##163 -388 -die -secret -rq -dota -buffet -は1ヶ -e6 -##ez -pan -368 -ha -##card -##cha -2a -##さ -alan -day3 -eye -f3 -##end -france -keep -adi -rna -tvbs -##ala -solo -nova -##え -##tail -##ょう -support -##ries -##なる -##ved -base -copy -iis -fps -##ways -hero -hgih -profile -fish -mu -ssh -entertainment -chang -##wd -click -cake -##ond -pre -##tom -kic -pixel -##ov -##fl -product -6a -##pd -dear -##gate -es -yumi -audio -##² -##sky -echo -bin -where -##ture -329 -##ape -find -sap -isis -##なと -nand -##101 -##load -##ream -band -a6 -525 -never -##post -festival -50cm -##we -555 -guide -314 -zenfone -##ike -335 -gd -forum -jessica -strong -alexander -##ould -software -allen -##ious -program -360° -else -lohasthree -##gar -することかてきます -please -##れます -rc -##ggle -##ric -bim -50000 -##own -eclipse -355 -brian -3ds -##side -061 -361 -##other -##ける -##tech -##ator -485 -engine -##ged -##t -plaza -##fit -cia -ngo -westbrook -shi -tbs -50mm -##みませんか -sci -291 -reuters -##ily -contextlink -##hn -af -##cil -bridge -very -##cel -1890 -cambridge -##ize -15g -##aid -##data -790 -frm -##head -award -butler -##sun -meta -##mar -america -ps3 -puma -pmid -##すか -lc -670 -kitchen -##lic -オーフン5 -きなしソフトサーヒス -そして -day1 -future -★★★★ -##text -##page -##rris -pm1 -##ket -fans -##っています -1001 -christian -bot -kids -trackback -##hai -c3 -display -##hl -n2 -1896 -idea -さんも -##sent -airmail -##ug -##men -pwm -けます -028 -##lution -369 -852 -awards -schemas -354 -asics -wikipedia -font -##tional -##vy -c2 -293 -##れている -##dget -##ein -っている -contact -pepper -スキル -339 -##~5 -294 -##uel -##ument -730 -##hang -みてす -q5 -##sue -rain -##ndi -wei -swatch -##cept -わせ -331 -popular -##ste -##tag -p2 -501 -trc -1899 -##west -##live -justin -honda -ping -messenger -##rap -v9 -543 -##とは -unity -appqq -はすへて -025 -leo -##tone -##テ -##ass -uniqlo -##010 -502 -her -jane -memory -moneydj -##tical -human -12306 -していると -##m2 -coc -miacare -##mn -tmt -##core -vim -kk -##may -fan -target -use -too -338 -435 -2050 -867 -737 -fast -##2c -services -##ope -omega -energy -##わ -pinkoi -1a -##なから -##rain -jackson -##ement -##シャンルの -374 -366 -そんな -p9 -rd -##ᆨ -1111 -##tier -##vic -zone -##│ -385 -690 -dl -isofix -cpa -m4 -322 -kimi -めて -davis -##lay -lulu -##uck -050 -weeks -qs -##hop -920 -##n -ae -##ear -~5 -eia -405 -##fly -korea -jpeg -boost -##ship -small -##リア -1860 -eur -297 -425 -valley -##iel -simple -##ude -rn -k2 -##ena -されます -non -patrick -しているから -##ナー -feed -5757 -30g -process -well -qqmei -##thing -they -aws -lu -pink -##ters -##kin -または -board -##vertisement -wine -##ien -unicode -##dge -r1 -359 -##tant -いを -##twitter -##3c -cool1 -される -##れて -##l -isp -##012 -standard -45㎡2 -402 -##150 -matt -##fu -326 -##iner -googlemsn -pixnetfacebookyahoo -##ラン -x7 -886 -##uce -メーカー -sao -##ev -##きました -##file -9678 -403 -xddd -shirt -6l -##rio -##hat -3mm -givenchy -ya -bang -##lio -monday -crystal -ロクイン -##abc -336 -head -890 -ubuntuforumwikilinuxpastechat -##vc -##~20 -##rity -cnc -7866 -ipv6 -null -1897 -##ost -yang -imsean -tiger -##fet -##ンス -352 -##= -dji -327 -ji -maria -##come -##んて -foundation -3100 -##beth -##なった -1m -601 -active -##aft -##don -3p -sr -349 -emma -##khz -living -415 -353 -1889 -341 -709 -457 -sas -x6 -##face -pptv -x4 -##mate -han -sophie -##jing -337 -fifa -##mand -other -sale -inwedding -##gn -てきちゃいます -##mmy -##pmlast -bad -nana -nbc -してみてくたさいね -なとはお -##wu -##かあります -##あ -note7 -single -##340 -せからこ -してくたさい♪この -しにはとんとんワークケートを -するとあなたにもっとマッチした -ならワークケートへ -もみつかっちゃうかも -ワークケートの -##bel -window -##dio -##ht -union -age -382 -14 -##ivity -##y -コメント -domain -neo -##isa -##lter -5k -f5 -steven -##cts -powerpoint -tft -self -g2 -ft -##テル -zol -##act -mwc -381 -343 -もう -nbapop -408 -てある -eds -ace -##room -previous -author -tomtom -il -##ets -hu -financial -☆☆☆ -っています -bp -5t -chi -1gb -##hg -fairmont -cross -008 -gay -h2 -function -##けて -356 -also -1b -625 -##ータ -##raph -1894 -3~5 -##ils -i3 -334 -avenue -##host -による -##bon -##tsu -message -navigation -50g -fintech -h6 -##ことを -8cm -##ject -##vas -##firm -credit -##wf -xxxx -form -##nor -##space -huawei -plan -json -sbl -##dc -machine -921 -392 -wish -##120 -##sol -windows7 -edward -##ために -development -washington -##nsis -lo -818 -##sio -##ym -##bor -planet -##~8 -##wt -ieee -gpa -##めて -camp -ann -gm -##tw -##oka -connect -##rss -##work -##atus -wall -chicken -soul -2mm -##times -fa -##ather -##cord -009 -##eep -hitachi -gui -harry -##pan -e1 -disney -##press -##ーション -wind -386 -frigidaire -##tl -liu -hsu -332 -basic -von -ev -いた -てきる -スホンサーサイト -learning -##ull -expedia -archives -change -##wei -santa -cut -ins -6gb -turbo -brand -cf1 -508 -004 -return -747 -##rip -h1 -##nis -##をこ -128gb -##にお -3t -application -しており -emc -rx -##oon -384 -quick -412 -15058 -wilson -wing -chapter -##bug -beyond -##cms -##dar -##oh -zoom -e2 -trip -sb -##nba -rcep -342 -aspx -ci -080 -gc -gnu -める -##count -advanced -dance -dv -##url -##ging -367 -8591 -am09 -shadow -battle -346 -##i -##cia -##という -emily -##のてす -##tation -host -ff -techorz -sars -##mini -##mporary -##ering -nc -4200 -798 -##next -cma -##mbps -##gas -##ift -##dot -##ィ -455 -##~17 -amana -##りの -426 -##ros -ir -00㎡1 -##eet -##ible -##↓ -710 -ˋ▽ˊ -##aka -dcs -iq -##v -l1 -##lor -maggie -##011 -##iu -588 -##~1 -830 -##gt -1tb -articles -create -##burg -##iki -database -fantasy -##rex -##cam -dlc -dean -##you -hard -path -gaming -victoria -maps -cb -##lee -##itor -overchicstoretvhome -systems -##xt -416 -p3 -sarah -760 -##nan -407 -486 -x9 -install -second -626 -##ann -##ph -##rcle -##nic -860 -##nar -ec -##とう -768 -metro -chocolate -##rian -~4 -##table -##しています -skin -##sn -395 -mountain -##0mm -inparadise -6m -7x24 -ib -4800 -##jia -eeworld -creative -g5 -g3 -357 -parker -ecfa -village -からの -18000 -sylvia -サーヒス -hbl -##ques -##onsored -##x2 -##きます -##v4 -##tein -ie6 -383 -##stack -389 -ver -##ads -##baby -sound -bbe -##110 -##lone -##uid -ads -022 -gundam -351 -thinkpad -006 -scrum -match -##ave -mems -##470 -##oy -##なりました -##talk -glass -lamigo -span -##eme -job -##a5 -jay -wade -kde -498 -##lace -ocean -tvg -##covery -##r3 -##ners -##rea -junior -think -##aine -cover -##ision -##sia -↓↓ -##bow -msi -413 -458 -406 -##love -711 -801 -soft -z2 -##pl -456 -1840 -mobil -mind -##uy -427 -nginx -##oi -めた -##rr -6221 -##mple -##sson -##ーシてす -371 -##nts -91tv -comhd -crv3000 -##uard -1868 -397 -deep -lost -field -gallery -##bia -rate -spf -redis -traction -930 -icloud -011 -なら -fe -jose -372 -##tory -into -sohu -fx -899 -379 -kicstart2 -##hia -すく -##~3 -##sit -ra -24 -##walk -##xure -500g -##pact -pacific -xa -natural -carlo -##250 -##walker -1850 -##can -cto -gigi -516 -##サー -pen -##hoo -ob -matlab -##b -##yy -13913459 -##iti -mango -##bbs -sense -c5 -oxford -##ニア -walker -jennifer -##ola -course -##bre -701 -##pus -##rder -lucky -075 -##ぁ -ivy -なお -##nia -sotheby -side -##ugh -joy -##orage -##ush -##bat -##dt -364 -r9 -##2d -##gio -511 -country -wear -##lax -##~7 -##moon -393 -seven -study -411 -348 -lonzo -8k -##ェ -evolution -##イフ -##kk -gs -kd -##レス -arduino -344 -b12 -##lux -arpg -##rdon -cook -##x5 -dark -five -##als -##ida -とても -sign -362 -##ちの -something -20mm -##nda -387 -##posted -fresh -tf -1870 -422 -cam -##mine -##skip -##form -##ssion -education -394 -##tee -dyson -stage -##jie -want -##night -epson -pack -あります -##ppy -テリヘル -##█ -wd -##eh -##rence -left -##lvin -golden -mhz -discovery -##trix -##n2 -loft -##uch -##dra -##sse -speed -~1 -1mdb -sorry -welcome -##urn -wave -gaga -##lmer -teddy -##160 -トラックハック -せよ -611 -##f2016 -378 -rp -##sha -rar -##あなたに -##きた -840 -holiday -##ュー -373 -074 -##vg -##nos -##rail -gartner -gi -6p -##dium -kit -488 -b3 -eco -##ろう -20g -sean -##stone -autocad -nu -##np -f16 -write -029 -m5 -##ias -images -atp -##dk -fsm -504 -1350 -ve -52kb -##xxx -##のに -##cake -414 -unit -lim -ru -1v -##ification -published -angela -16g -analytics -ak -##q -##nel -gmt -##icon -again -##₂ -##bby -ios11 -445 -かこさいます -waze -いてす -##ハ -9985 -##ust -##ティー -framework -##007 -iptv -delete -52sykb -cl -wwdc -027 -30cm -##fw -##ての -1389 -##xon -brandt -##ses -##dragon -tc -vetements -anne -monte -modern -official -##へて -##ere -##nne -##oud -もちろん -50 -etnews -##a2 -##graphy -421 -863 -##ちゃん -444 -##rtex -##てお -l2 -##gma -mount -ccd -たと -archive -morning -tan -ddos -e7 -##ホ -day4 -##ウ -gis -453 -its -495 -factory -bruce -pg -##ito -ってくたさい -guest -cdma -##lling -536 -n3 -しかし -3~4 -mega -eyes -ro -13 -women -dac -church -##jun -singapore -##facebook -6991 -starbucks -##tos -##stin -##shine -zen -##mu -tina -20℃ -1893 -##たけて -503 -465 -request -##gence -qt -##っ -1886 -347 -363 -q7 -##zzi -diary -##tore -409 -##ead -468 -cst -##osa -canada -agent -va -##jiang -##ちは -##ーク -##lam -sg -##nix -##sday -##よって -g6 -##master -bing -##zl -charlie -16 -8mm -nb40 -##ーン -thai -##ルフ -ln284ct -##itz -##2f -bonnie -##food -##lent -originals -##stro -##lts -418 -∟∣ -##bscribe -children -ntd -yesstyle -##かも -hmv -##tment -d5 -2cm -arts -sms -##pn -##я -##いい -topios9 -539 -lifestyle -virtual -##ague -xz -##deo -muji -024 -unt -##nnis -##ᅩ -faq1 -1884 -396 -##ette -fly -64㎡ -はしめまして -441 -curry -##pop -のこ -release -##← -##◆◆ -##cast -073 -ありな -500ml -##ews -5c -##stle -ios7 -##ima -787 -dog -lenovo -##r4 -roger -013 -cbs -vornado -100m -417 -##desk -##クok -##ald -1867 -9595 -2900 -##van -oil -##x -some -break -common -##jy -##lines -g7 -twice -419 -ella -nano -belle -にこ -##mes -##self -##note -jb -##ことかてきます -benz -##との -##ova -451 -save -##wing -##ますのて -kai -りは -##hua -##rect -rainer -##unge -448 -##0m -adsl -##かな -guestname -##uma -##kins -##zu -tokichoi -##price -county -##med -##mus -rmk -391 -address -vm -えて -openload -##group -##hin -##iginal -amg -urban -##oz -jobs -emi -##public -beautiful -##sch -album -##dden -##bell -jerry -works -hostel -miller -##drive -##rmin -##10 -376 -boot -828 -##370 -##fx -##cm~ -1885 -##nome -##ctionary -##oman -##lish -##cr -##hm -433 -##how -432 -francis -xi -c919 -b5 -evernote -##uc -vga -##3000 -coupe -##urg -##cca -##uality -019 -6g -れる -multi -##また -##ett -em -hey -##ani -##tax -##rma -inside -than -740 -leonnhurt -##jin -ict -れた -bird -notes -200mm -くの -##dical -##lli -result -442 -iu -ee -438 -smap -gopro -##last -yin -pure -998 -32g -けた -5kg -##dan -##rame -mama -##oot -bean -marketing -##hur -2l -bella -sync -xuite -##ground -515 -discuz -##getrelax -##ince -##bay -##5s -cj -##イス -gmat -apt -##pass -jing -##rix -c4 -rich -##とても -niusnews -##ello -bag -770 -##eting -##mobile -18 -culture -015 -##のてすか -377 -1020 -area -##ience -616 -details -gp -universal -silver -dit -はお -private -ddd -u11 -kanshu -##ified -fung -##nny -dx -##520 -tai -475 -023 -##fr -##lean -3s -##pin -429 -##rin -25000 -ly -rick -##bility -usb3 -banner -##baru -##gion -metal -dt -vdf -1871 -karl -qualcomm -bear -1010 -oldid -ian -jo -##tors -population -##ernel -1882 -mmorpg -##mv -##bike -603 -##© -ww -friend -##ager -exhibition -##del -##pods -fpx -structure -##free -##tings -kl -##rley -##copyright -##mma -california -3400 -orange -yoga -4l -canmake -honey -##anda -##コメント -595 -nikkie -##ルハイト -dhl -publishing -##mall -##gnet -20cm -513 -##クセス -##┅ -e88 -970 -##dog -fishbase -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##{ -##| -##} -##~ -##£ -##¤ -##¥ -##§ -##« -##± -##³ -##µ -##· -##¹ -##º -##» -##¼ -##ß -##æ -##÷ -##ø -##đ -##ŋ -##ɔ -##ə -##ɡ -##ʰ -##ˇ -##ˈ -##ˊ -##ˋ -##ˍ -##ː -##˙ -##˚ -##ˢ -##α -##β -##γ -##δ -##ε -##η -##θ -##ι -##κ -##λ -##μ -##ν -##ο -##π -##ρ -##ς -##σ -##τ -##υ -##φ -##χ -##ψ -##б -##в -##г -##д -##е -##ж -##з -##к -##л -##м -##н -##о -##п -##р -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##ы -##ь -##і -##ا -##ب -##ة -##ت -##د -##ر -##س -##ع -##ل -##م -##ن -##ه -##و -##ي -##۩ -##ก -##ง -##น -##ม -##ย -##ร -##อ -##า -##เ -##๑ -##་ -##ღ -##ᄀ -##ᄁ -##ᄂ -##ᄃ -##ᄅ -##ᄆ -##ᄇ -##ᄈ -##ᄉ -##ᄋ -##ᄌ -##ᄎ -##ᄏ -##ᄐ -##ᄑ -##ᄒ -##ᅢ -##ᅣ -##ᅥ -##ᅦ -##ᅧ -##ᅨ -##ᅪ -##ᅬ -##ᅭ -##ᅮ -##ᅯ -##ᅲ -##ᅳ -##ᅴ -##ᆷ -##ᆸ -##ᆺ -##ᆻ -##ᗜ -##ᵃ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵘ -##‖ -##„ -##† -##• -##‥ -##‧ -##
 -##‰ -##′ -##″ -##‹ -##› -##※ -##‿ -##⁄ -##ⁱ -##⁺ -##ⁿ -##₁ -##₃ -##₄ -##€ -##№ -##ⅰ -##ⅱ -##ⅲ -##ⅳ -##ⅴ -##↔ -##↗ -##↘ -##⇒ -##∀ -##− -##∕ -##∙ -##√ -##∞ -##∟ -##∠ -##∣ -##∩ -##∮ -##∶ -##∼ -##∽ -##≈ -##≒ -##≡ -##≤ -##≥ -##≦ -##≧ -##≪ -##≫ -##⊙ -##⋅ -##⋈ -##⋯ -##⌒ -##① -##② -##③ -##④ -##⑤ -##⑥ -##⑦ -##⑧ -##⑨ -##⑩ -##⑴ -##⑵ -##⑶ -##⑷ -##⑸ -##⒈ -##⒉ -##⒊ -##⒋ -##ⓒ -##ⓔ -##ⓘ -##━ -##┃ -##┆ -##┊ -##┌ -##└ -##├ -##┣ -##═ -##║ -##╚ -##╞ -##╠ -##╭ -##╮ -##╯ -##╰ -##╱ -##╳ -##▂ -##▃ -##▅ -##▇ -##▉ -##▋ -##▌ -##▍ -##▎ -##□ -##▪ -##▫ -##▬ -##△ -##▶ -##► -##▽ -##◇ -##◕ -##◠ -##◢ -##◤ -##☀ -##☕ -##☞ -##☺ -##☼ -##♀ -##♂ -##♠ -##♡ -##♣ -##♦ -##♫ -##♬ -##✈ -##✔ -##✕ -##✖ -##✦ -##✨ -##✪ -##✰ -##✿ -##❀ -##➜ -##➤ -##⦿ -##、 -##。 -##〃 -##々 -##〇 -##〈 -##〉 -##《 -##》 -##「 -##」 -##『 -##』 -##【 -##】 -##〓 -##〔 -##〕 -##〖 -##〗 -##〜 -##〝 -##〞 -##ぃ -##ぇ -##ぬ -##ふ -##ほ -##む -##ゃ -##ゅ -##ゆ -##ょ -##゜ -##ゝ -##ァ -##ゥ -##エ -##ォ -##ケ -##サ -##セ -##ソ -##ッ -##ニ -##ヌ -##ネ -##ノ -##ヘ -##モ -##ャ -##ヤ -##ュ -##ユ -##ョ -##ヨ -##ワ -##ヲ -##・ -##ヽ -##ㄅ -##ㄆ -##ㄇ -##ㄉ -##ㄋ -##ㄌ -##ㄍ -##ㄎ -##ㄏ -##ㄒ -##ㄚ -##ㄛ -##ㄞ -##ㄟ -##ㄢ -##ㄤ -##ㄥ -##ㄧ -##ㄨ -##ㆍ -##㈦ -##㊣ -##㗎 -##一 -##丁 -##七 -##万 -##丈 -##三 -##上 -##下 -##不 -##与 -##丐 -##丑 -##专 -##且 -##丕 -##世 -##丘 -##丙 -##业 -##丛 -##东 -##丝 -##丞 -##丟 -##両 -##丢 -##两 -##严 -##並 -##丧 -##丨 -##个 -##丫 -##中 -##丰 -##串 -##临 -##丶 -##丸 -##丹 -##为 -##主 -##丼 -##丽 -##举 -##丿 -##乂 -##乃 -##久 -##么 -##义 -##之 -##乌 -##乍 -##乎 -##乏 -##乐 -##乒 -##乓 -##乔 -##乖 -##乗 -##乘 -##乙 -##乜 -##九 -##乞 -##也 -##习 -##乡 -##书 -##乩 -##买 -##乱 -##乳 -##乾 -##亀 -##亂 -##了 -##予 -##争 -##事 -##二 -##于 -##亏 -##云 -##互 -##五 -##井 -##亘 -##亙 -##亚 -##些 -##亜 -##亞 -##亟 -##亡 -##亢 -##交 -##亥 -##亦 -##产 -##亨 -##亩 -##享 -##京 -##亭 -##亮 -##亲 -##亳 -##亵 -##人 -##亿 -##什 -##仁 -##仃 -##仄 -##仅 -##仆 -##仇 -##今 -##介 -##仍 -##从 -##仏 -##仑 -##仓 -##仔 -##仕 -##他 -##仗 -##付 -##仙 -##仝 -##仞 -##仟 -##代 -##令 -##以 -##仨 -##仪 -##们 -##仮 -##仰 -##仲 -##件 -##价 -##任 -##份 -##仿 -##企 -##伉 -##伊 -##伍 -##伎 -##伏 -##伐 -##休 -##伕 -##众 -##优 -##伙 -##会 -##伝 -##伞 -##伟 -##传 -##伢 -##伤 -##伦 -##伪 -##伫 -##伯 -##估 -##伴 -##伶 -##伸 -##伺 -##似 -##伽 -##佃 -##但 -##佇 -##佈 -##位 -##低 -##住 -##佐 -##佑 -##体 -##佔 -##何 -##佗 -##佘 -##余 -##佚 -##佛 -##作 -##佝 -##佞 -##佟 -##你 -##佢 -##佣 -##佤 -##佥 -##佩 -##佬 -##佯 -##佰 -##佳 -##併 -##佶 -##佻 -##佼 -##使 -##侃 -##侄 -##來 -##侈 -##例 -##侍 -##侏 -##侑 -##侖 -##侗 -##供 -##依 -##侠 -##価 -##侣 -##侥 -##侦 -##侧 -##侨 -##侬 -##侮 -##侯 -##侵 -##侶 -##侷 -##便 -##係 -##促 -##俄 -##俊 -##俎 -##俏 -##俐 -##俑 -##俗 -##俘 -##俚 -##保 -##俞 -##俟 -##俠 -##信 -##俨 -##俩 -##俪 -##俬 -##俭 -##修 -##俯 -##俱 -##俳 -##俸 -##俺 -##俾 -##倆 -##倉 -##個 -##倌 -##倍 -##倏 -##們 -##倒 -##倔 -##倖 -##倘 -##候 -##倚 -##倜 -##借 -##倡 -##値 -##倦 -##倩 -##倪 -##倫 -##倬 -##倭 -##倶 -##债 -##值 -##倾 -##偃 -##假 -##偈 -##偉 -##偌 -##偎 -##偏 -##偕 -##做 -##停 -##健 -##側 -##偵 -##偶 -##偷 -##偻 -##偽 -##偿 -##傀 -##傅 -##傍 -##傑 -##傘 -##備 -##傚 -##傢 -##傣 -##傥 -##储 -##傩 -##催 -##傭 -##傲 -##傳 -##債 -##傷 -##傻 -##傾 -##僅 -##働 -##像 -##僑 -##僕 -##僖 -##僚 -##僥 -##僧 -##僭 -##僮 -##僱 -##僵 -##價 -##僻 -##儀 -##儂 -##億 -##儆 -##儉 -##儋 -##儒 -##儕 -##儘 -##償 -##儡 -##優 -##儲 -##儷 -##儼 -##儿 -##兀 -##允 -##元 -##兄 -##充 -##兆 -##兇 -##先 -##光 -##克 -##兌 -##免 -##児 -##兑 -##兒 -##兔 -##兖 -##党 -##兜 -##兢 -##入 -##內 -##全 -##兩 -##八 -##公 -##六 -##兮 -##兰 -##共 -##兲 -##关 -##兴 -##兵 -##其 -##具 -##典 -##兹 -##养 -##兼 -##兽 -##冀 -##内 -##円 -##冇 -##冈 -##冉 -##冊 -##册 -##再 -##冏 -##冒 -##冕 -##冗 -##写 -##军 -##农 -##冠 -##冢 -##冤 -##冥 -##冨 -##冪 -##冬 -##冯 -##冰 -##冲 -##决 -##况 -##冶 -##冷 -##冻 -##冼 -##冽 -##冾 -##净 -##凄 -##准 -##凇 -##凈 -##凉 -##凋 -##凌 -##凍 -##减 -##凑 -##凛 -##凜 -##凝 -##几 -##凡 -##凤 -##処 -##凪 -##凭 -##凯 -##凰 -##凱 -##凳 -##凶 -##凸 -##凹 -##出 -##击 -##函 -##凿 -##刀 -##刁 -##刃 -##分 -##切 -##刈 -##刊 -##刍 -##刎 -##刑 -##划 -##列 -##刘 -##则 -##刚 -##创 -##初 -##删 -##判 -##別 -##刨 -##利 -##刪 -##别 -##刮 -##到 -##制 -##刷 -##券 -##刹 -##刺 -##刻 -##刽 -##剁 -##剂 -##剃 -##則 -##剉 -##削 -##剋 -##剌 -##前 -##剎 -##剐 -##剑 -##剔 -##剖 -##剛 -##剜 -##剝 -##剣 -##剤 -##剥 -##剧 -##剩 -##剪 -##副 -##割 -##創 -##剷 -##剽 -##剿 -##劃 -##劇 -##劈 -##劉 -##劊 -##劍 -##劏 -##劑 -##力 -##劝 -##办 -##功 -##加 -##务 -##劣 -##动 -##助 -##努 -##劫 -##劭 -##励 -##劲 -##劳 -##労 -##劵 -##効 -##劾 -##势 -##勁 -##勃 -##勇 -##勉 -##勋 -##勐 -##勒 -##動 -##勖 -##勘 -##務 -##勛 -##勝 -##勞 -##募 -##勢 -##勤 -##勧 -##勳 -##勵 -##勸 -##勺 -##勻 -##勾 -##勿 -##匀 -##包 -##匆 -##匈 -##匍 -##匐 -##匕 -##化 -##北 -##匙 -##匝 -##匠 -##匡 -##匣 -##匪 -##匮 -##匯 -##匱 -##匹 -##区 -##医 -##匾 -##匿 -##區 -##十 -##千 -##卅 -##升 -##午 -##卉 -##半 -##卍 -##华 -##协 -##卑 -##卒 -##卓 -##協 -##单 -##卖 -##南 -##単 -##博 -##卜 -##卞 -##卟 -##占 -##卡 -##卢 -##卤 -##卦 -##卧 -##卫 -##卮 -##卯 -##印 -##危 -##即 -##却 -##卵 -##卷 -##卸 -##卻 -##卿 -##厂 -##厄 -##厅 -##历 -##厉 -##压 -##厌 -##厕 -##厘 -##厚 -##厝 -##原 -##厢 -##厥 -##厦 -##厨 -##厩 -##厭 -##厮 -##厲 -##厳 -##去 -##县 -##叁 -##参 -##參 -##又 -##叉 -##及 -##友 -##双 -##反 -##収 -##发 -##叔 -##取 -##受 -##变 -##叙 -##叛 -##叟 -##叠 -##叡 -##叢 -##口 -##古 -##句 -##另 -##叨 -##叩 -##只 -##叫 -##召 -##叭 -##叮 -##可 -##台 -##叱 -##史 -##右 -##叵 -##叶 -##号 -##司 -##叹 -##叻 -##叼 -##叽 -##吁 -##吃 -##各 -##吆 -##合 -##吉 -##吊 -##吋 -##同 -##名 -##后 -##吏 -##吐 -##向 -##吒 -##吓 -##吕 -##吖 -##吗 -##君 -##吝 -##吞 -##吟 -##吠 -##吡 -##否 -##吧 -##吨 -##吩 -##含 -##听 -##吭 -##吮 -##启 -##吱 -##吳 -##吴 -##吵 -##吶 -##吸 -##吹 -##吻 -##吼 -##吽 -##吾 -##呀 -##呂 -##呃 -##呆 -##呈 -##告 -##呋 -##呎 -##呐 -##呓 -##呕 -##呗 -##员 -##呛 -##呜 -##呢 -##呤 -##呦 -##周 -##呱 -##呲 -##味 -##呵 -##呷 -##呸 -##呻 -##呼 -##命 -##咀 -##咁 -##咂 -##咄 -##咆 -##咋 -##和 -##咎 -##咏 -##咐 -##咒 -##咔 -##咕 -##咖 -##咗 -##咘 -##咙 -##咚 -##咛 -##咣 -##咤 -##咦 -##咧 -##咨 -##咩 -##咪 -##咫 -##咬 -##咭 -##咯 -##咱 -##咲 -##咳 -##咸 -##咻 -##咽 -##咿 -##哀 -##品 -##哂 -##哄 -##哆 -##哇 -##哈 -##哉 -##哋 -##哌 -##响 -##哎 -##哏 -##哐 -##哑 -##哒 -##哔 -##哗 -##哟 -##員 -##哥 -##哦 -##哧 -##哨 -##哩 -##哪 -##哭 -##哮 -##哲 -##哺 -##哼 -##哽 -##唁 -##唄 -##唆 -##唇 -##唉 -##唏 -##唐 -##唑 -##唔 -##唠 -##唤 -##唧 -##唬 -##售 -##唯 -##唰 -##唱 -##唳 -##唷 -##唸 -##唾 -##啃 -##啄 -##商 -##啉 -##啊 -##問 -##啓 -##啕 -##啖 -##啜 -##啞 -##啟 -##啡 -##啤 -##啥 -##啦 -##啧 -##啪 -##啫 -##啬 -##啮 -##啰 -##啱 -##啲 -##啵 -##啶 -##啷 -##啸 -##啻 -##啼 -##啾 -##喀 -##喂 -##喃 -##善 -##喆 -##喇 -##喉 -##喊 -##喋 -##喎 -##喏 -##喔 -##喘 -##喙 -##喚 -##喜 -##喝 -##喟 -##喧 -##喪 -##喫 -##喬 -##單 -##喰 -##喱 -##喲 -##喳 -##喵 -##営 -##喷 -##喹 -##喺 -##喻 -##喽 -##嗅 -##嗆 -##嗇 -##嗎 -##嗑 -##嗒 -##嗓 -##嗔 -##嗖 -##嗚 -##嗜 -##嗝 -##嗟 -##嗡 -##嗣 -##嗤 -##嗦 -##嗨 -##嗪 -##嗬 -##嗯 -##嗰 -##嗲 -##嗳 -##嗶 -##嗷 -##嗽 -##嘀 -##嘅 -##嘆 -##嘈 -##嘉 -##嘌 -##嘍 -##嘎 -##嘔 -##嘖 -##嘗 -##嘘 -##嘚 -##嘛 -##嘜 -##嘞 -##嘟 -##嘢 -##嘣 -##嘤 -##嘧 -##嘩 -##嘭 -##嘮 -##嘯 -##嘰 -##嘱 -##嘲 -##嘴 -##嘶 -##嘸 -##嘹 -##嘻 -##嘿 -##噁 -##噌 -##噎 -##噓 -##噔 -##噗 -##噙 -##噜 -##噠 -##噢 -##噤 -##器 -##噩 -##噪 -##噬 -##噱 -##噴 -##噶 -##噸 -##噹 -##噻 -##噼 -##嚀 -##嚇 -##嚎 -##嚏 -##嚐 -##嚓 -##嚕 -##嚟 -##嚣 -##嚥 -##嚨 -##嚮 -##嚴 -##嚷 -##嚼 -##囂 -##囉 -##囊 -##囍 -##囑 -##囔 -##囗 -##囚 -##四 -##囝 -##回 -##囟 -##因 -##囡 -##团 -##団 -##囤 -##囧 -##囪 -##囫 -##园 -##困 -##囱 -##囲 -##図 -##围 -##囹 -##固 -##国 -##图 -##囿 -##圃 -##圄 -##圆 -##圈 -##國 -##圍 -##圏 -##園 -##圓 -##圖 -##團 -##圜 -##土 -##圣 -##圧 -##在 -##圩 -##圭 -##地 -##圳 -##场 -##圻 -##圾 -##址 -##坂 -##均 -##坊 -##坍 -##坎 -##坏 -##坐 -##坑 -##块 -##坚 -##坛 -##坝 -##坞 -##坟 -##坠 -##坡 -##坤 -##坦 -##坨 -##坪 -##坯 -##坳 -##坵 -##坷 -##垂 -##垃 -##垄 -##型 -##垒 -##垚 -##垛 -##垠 -##垢 -##垣 -##垦 -##垩 -##垫 -##垭 -##垮 -##垵 -##埂 -##埃 -##埋 -##城 -##埔 -##埕 -##埗 -##域 -##埠 -##埤 -##埵 -##執 -##埸 -##培 -##基 -##埼 -##堀 -##堂 -##堃 -##堅 -##堆 -##堇 -##堑 -##堕 -##堙 -##堡 -##堤 -##堪 -##堯 -##堰 -##報 -##場 -##堵 -##堺 -##堿 -##塊 -##塌 -##塑 -##塔 -##塗 -##塘 -##塚 -##塞 -##塢 -##塩 -##填 -##塬 -##塭 -##塵 -##塾 -##墀 -##境 -##墅 -##墉 -##墊 -##墒 -##墓 -##増 -##墘 -##墙 -##墜 -##增 -##墟 -##墨 -##墩 -##墮 -##墳 -##墻 -##墾 -##壁 -##壅 -##壆 -##壇 -##壊 -##壑 -##壓 -##壕 -##壘 -##壞 -##壟 -##壢 -##壤 -##壩 -##士 -##壬 -##壮 -##壯 -##声 -##売 -##壳 -##壶 -##壹 -##壺 -##壽 -##处 -##备 -##変 -##复 -##夏 -##夔 -##夕 -##外 -##夙 -##多 -##夜 -##够 -##夠 -##夢 -##夥 -##大 -##天 -##太 -##夫 -##夭 -##央 -##夯 -##失 -##头 -##夷 -##夸 -##夹 -##夺 -##夾 -##奂 -##奄 -##奇 -##奈 -##奉 -##奋 -##奎 -##奏 -##奐 -##契 -##奔 -##奕 -##奖 -##套 -##奘 -##奚 -##奠 -##奢 -##奥 -##奧 -##奪 -##奬 -##奮 -##女 -##奴 -##奶 -##奸 -##她 -##好 -##如 -##妃 -##妄 -##妆 -##妇 -##妈 -##妊 -##妍 -##妒 -##妓 -##妖 -##妘 -##妙 -##妝 -##妞 -##妣 -##妤 -##妥 -##妨 -##妩 -##妪 -##妮 -##妲 -##妳 -##妹 -##妻 -##妾 -##姆 -##姉 -##姊 -##始 -##姍 -##姐 -##姑 -##姒 -##姓 -##委 -##姗 -##姚 -##姜 -##姝 -##姣 -##姥 -##姦 -##姨 -##姪 -##姫 -##姬 -##姹 -##姻 -##姿 -##威 -##娃 -##娄 -##娅 -##娆 -##娇 -##娉 -##娑 -##娓 -##娘 -##娛 -##娜 -##娟 -##娠 -##娣 -##娥 -##娩 -##娱 -##娲 -##娴 -##娶 -##娼 -##婀 -##婁 -##婆 -##婉 -##婊 -##婕 -##婚 -##婢 -##婦 -##婧 -##婪 -##婭 -##婴 -##婵 -##婶 -##婷 -##婺 -##婿 -##媒 -##媚 -##媛 -##媞 -##媧 -##媲 -##媳 -##媽 -##媾 -##嫁 -##嫂 -##嫉 -##嫌 -##嫑 -##嫔 -##嫖 -##嫘 -##嫚 -##嫡 -##嫣 -##嫦 -##嫩 -##嫲 -##嫵 -##嫻 -##嬅 -##嬉 -##嬌 -##嬗 -##嬛 -##嬢 -##嬤 -##嬪 -##嬰 -##嬴 -##嬷 -##嬸 -##嬿 -##孀 -##孃 -##子 -##孑 -##孔 -##孕 -##孖 -##字 -##存 -##孙 -##孚 -##孛 -##孜 -##孝 -##孟 -##孢 -##季 -##孤 -##学 -##孩 -##孪 -##孫 -##孬 -##孰 -##孱 -##孳 -##孵 -##學 -##孺 -##孽 -##孿 -##宁 -##它 -##宅 -##宇 -##守 -##安 -##宋 -##完 -##宏 -##宓 -##宕 -##宗 -##官 -##宙 -##定 -##宛 -##宜 -##宝 -##实 -##実 -##宠 -##审 -##客 -##宣 -##室 -##宥 -##宦 -##宪 -##宫 -##宮 -##宰 -##害 -##宴 -##宵 -##家 -##宸 -##容 -##宽 -##宾 -##宿 -##寂 -##寄 -##寅 -##密 -##寇 -##富 -##寐 -##寒 -##寓 -##寛 -##寝 -##寞 -##察 -##寡 -##寢 -##寥 -##實 -##寧 -##寨 -##審 -##寫 -##寬 -##寮 -##寰 -##寵 -##寶 -##寸 -##对 -##寺 -##寻 -##导 -##対 -##寿 -##封 -##専 -##射 -##将 -##將 -##專 -##尉 -##尊 -##尋 -##對 -##導 -##小 -##少 -##尔 -##尕 -##尖 -##尘 -##尚 -##尝 -##尤 -##尧 -##尬 -##就 -##尴 -##尷 -##尸 -##尹 -##尺 -##尻 -##尼 -##尽 -##尾 -##尿 -##局 -##屁 -##层 -##屄 -##居 -##屆 -##屈 -##屉 -##届 -##屋 -##屌 -##屍 -##屎 -##屏 -##屐 -##屑 -##展 -##屜 -##属 -##屠 -##屡 -##屢 -##層 -##履 -##屬 -##屯 -##山 -##屹 -##屿 -##岀 -##岁 -##岂 -##岌 -##岐 -##岑 -##岔 -##岖 -##岗 -##岘 -##岙 -##岚 -##岛 -##岡 -##岩 -##岫 -##岬 -##岭 -##岱 -##岳 -##岷 -##岸 -##峇 -##峋 -##峒 -##峙 -##峡 -##峤 -##峥 -##峦 -##峨 -##峪 -##峭 -##峯 -##峰 -##峴 -##島 -##峻 -##峽 -##崁 -##崂 -##崆 -##崇 -##崎 -##崑 -##崔 -##崖 -##崗 -##崙 -##崛 -##崧 -##崩 -##崭 -##崴 -##崽 -##嵇 -##嵊 -##嵋 -##嵌 -##嵐 -##嵘 -##嵩 -##嵬 -##嵯 -##嶂 -##嶄 -##嶇 -##嶋 -##嶙 -##嶺 -##嶼 -##嶽 -##巅 -##巍 -##巒 -##巔 -##巖 -##川 -##州 -##巡 -##巢 -##工 -##左 -##巧 -##巨 -##巩 -##巫 -##差 -##己 -##已 -##巳 -##巴 -##巷 -##巻 -##巽 -##巾 -##巿 -##币 -##市 -##布 -##帅 -##帆 -##师 -##希 -##帐 -##帑 -##帕 -##帖 -##帘 -##帚 -##帛 -##帜 -##帝 -##帥 -##带 -##帧 -##師 -##席 -##帮 -##帯 -##帰 -##帳 -##帶 -##帷 -##常 -##帼 -##帽 -##幀 -##幂 -##幄 -##幅 -##幌 -##幔 -##幕 -##幟 -##幡 -##幢 -##幣 -##幫 -##干 -##平 -##年 -##并 -##幸 -##幹 -##幺 -##幻 -##幼 -##幽 -##幾 -##广 -##庁 -##広 -##庄 -##庆 -##庇 -##床 -##序 -##庐 -##库 -##应 -##底 -##庖 -##店 -##庙 -##庚 -##府 -##庞 -##废 -##庠 -##度 -##座 -##庫 -##庭 -##庵 -##庶 -##康 -##庸 -##庹 -##庾 -##廁 -##廂 -##廃 -##廈 -##廉 -##廊 -##廓 -##廖 -##廚 -##廝 -##廟 -##廠 -##廢 -##廣 -##廬 -##廳 -##延 -##廷 -##建 -##廿 -##开 -##弁 -##异 -##弃 -##弄 -##弈 -##弊 -##弋 -##式 -##弑 -##弒 -##弓 -##弔 -##引 -##弗 -##弘 -##弛 -##弟 -##张 -##弥 -##弦 -##弧 -##弩 -##弭 -##弯 -##弱 -##張 -##強 -##弹 -##强 -##弼 -##弾 -##彅 -##彆 -##彈 -##彌 -##彎 -##归 -##当 -##录 -##彗 -##彙 -##彝 -##形 -##彤 -##彥 -##彦 -##彧 -##彩 -##彪 -##彫 -##彬 -##彭 -##彰 -##影 -##彷 -##役 -##彻 -##彼 -##彿 -##往 -##征 -##径 -##待 -##徇 -##很 -##徉 -##徊 -##律 -##後 -##徐 -##徑 -##徒 -##従 -##徕 -##得 -##徘 -##徙 -##徜 -##從 -##徠 -##御 -##徨 -##復 -##循 -##徬 -##微 -##徳 -##徴 -##徵 -##德 -##徹 -##徼 -##徽 -##心 -##必 -##忆 -##忌 -##忍 -##忏 -##忐 -##忑 -##忒 -##忖 -##志 -##忘 -##忙 -##応 -##忠 -##忡 -##忤 -##忧 -##忪 -##快 -##忱 -##念 -##忻 -##忽 -##忿 -##怀 -##态 -##怂 -##怅 -##怆 -##怎 -##怏 -##怒 -##怔 -##怕 -##怖 -##怙 -##怜 -##思 -##怠 -##怡 -##急 -##怦 -##性 -##怨 -##怪 -##怯 -##怵 -##总 -##怼 -##恁 -##恃 -##恆 -##恋 -##恍 -##恐 -##恒 -##恕 -##恙 -##恚 -##恢 -##恣 -##恤 -##恥 -##恨 -##恩 -##恪 -##恫 -##恬 -##恭 -##息 -##恰 -##恳 -##恵 -##恶 -##恸 -##恺 -##恻 -##恼 -##恿 -##悄 -##悅 -##悉 -##悌 -##悍 -##悔 -##悖 -##悚 -##悟 -##悠 -##患 -##悦 -##您 -##悩 -##悪 -##悬 -##悯 -##悱 -##悲 -##悴 -##悵 -##悶 -##悸 -##悻 -##悼 -##悽 -##情 -##惆 -##惇 -##惊 -##惋 -##惑 -##惕 -##惘 -##惚 -##惜 -##惟 -##惠 -##惡 -##惦 -##惧 -##惨 -##惩 -##惫 -##惬 -##惭 -##惮 -##惯 -##惰 -##惱 -##想 -##惴 -##惶 -##惹 -##惺 -##愁 -##愆 -##愈 -##愉 -##愍 -##意 -##愕 -##愚 -##愛 -##愜 -##感 -##愣 -##愤 -##愧 -##愫 -##愷 -##愿 -##慄 -##慈 -##態 -##慌 -##慎 -##慑 -##慕 -##慘 -##慚 -##慟 -##慢 -##慣 -##慧 -##慨 -##慫 -##慮 -##慰 -##慳 -##慵 -##慶 -##慷 -##慾 -##憂 -##憊 -##憋 -##憎 -##憐 -##憑 -##憔 -##憚 -##憤 -##憧 -##憨 -##憩 -##憫 -##憬 -##憲 -##憶 -##憾 -##懂 -##懇 -##懈 -##應 -##懊 -##懋 -##懑 -##懒 -##懦 -##懲 -##懵 -##懶 -##懷 -##懸 -##懺 -##懼 -##懾 -##懿 -##戀 -##戈 -##戊 -##戌 -##戍 -##戎 -##戏 -##成 -##我 -##戒 -##戕 -##或 -##战 -##戚 -##戛 -##戟 -##戡 -##戦 -##截 -##戬 -##戮 -##戰 -##戲 -##戳 -##戴 -##戶 -##户 -##戸 -##戻 -##戾 -##房 -##所 -##扁 -##扇 -##扈 -##扉 -##手 -##才 -##扎 -##扑 -##扒 -##打 -##扔 -##払 -##托 -##扛 -##扣 -##扦 -##执 -##扩 -##扪 -##扫 -##扬 -##扭 -##扮 -##扯 -##扰 -##扱 -##扳 -##扶 -##批 -##扼 -##找 -##承 -##技 -##抄 -##抉 -##把 -##抑 -##抒 -##抓 -##投 -##抖 -##抗 -##折 -##抚 -##抛 -##抜 -##択 -##抟 -##抠 -##抡 -##抢 -##护 -##报 -##抨 -##披 -##抬 -##抱 -##抵 -##抹 -##押 -##抽 -##抿 -##拂 -##拄 -##担 -##拆 -##拇 -##拈 -##拉 -##拋 -##拌 -##拍 -##拎 -##拐 -##拒 -##拓 -##拔 -##拖 -##拗 -##拘 -##拙 -##拚 -##招 -##拜 -##拟 -##拡 -##拢 -##拣 -##拥 -##拦 -##拧 -##拨 -##择 -##括 -##拭 -##拮 -##拯 -##拱 -##拳 -##拴 -##拷 -##拼 -##拽 -##拾 -##拿 -##持 -##挂 -##指 -##挈 -##按 -##挎 -##挑 -##挖 -##挙 -##挚 -##挛 -##挝 -##挞 -##挟 -##挠 -##挡 -##挣 -##挤 -##挥 -##挨 -##挪 -##挫 -##振 -##挲 -##挹 -##挺 -##挽 -##挾 -##捂 -##捅 -##捆 -##捉 -##捋 -##捌 -##捍 -##捎 -##捏 -##捐 -##捕 -##捞 -##损 -##捡 -##换 -##捣 -##捧 -##捨 -##捩 -##据 -##捱 -##捲 -##捶 -##捷 -##捺 -##捻 -##掀 -##掂 -##掃 -##掇 -##授 -##掉 -##掌 -##掏 -##掐 -##排 -##掖 -##掘 -##掙 -##掛 -##掠 -##採 -##探 -##掣 -##接 -##控 -##推 -##掩 -##措 -##掬 -##掰 -##掲 -##掳 -##掴 -##掷 -##掸 -##掺 -##揀 -##揃 -##揄 -##揆 -##揉 -##揍 -##描 -##提 -##插 -##揖 -##揚 -##換 -##握 -##揣 -##揩 -##揪 -##揭 -##揮 -##援 -##揶 -##揸 -##揹 -##揽 -##搀 -##搁 -##搂 -##搅 -##損 -##搏 -##搐 -##搓 -##搔 -##搖 -##搗 -##搜 -##搞 -##搡 -##搪 -##搬 -##搭 -##搵 -##搶 -##携 -##搽 -##摀 -##摁 -##摄 -##摆 -##摇 -##摈 -##摊 -##摒 -##摔 -##摘 -##摞 -##摟 -##摧 -##摩 -##摯 -##摳 -##摸 -##摹 -##摺 -##摻 -##撂 -##撃 -##撅 -##撇 -##撈 -##撐 -##撑 -##撒 -##撓 -##撕 -##撚 -##撞 -##撤 -##撥 -##撩 -##撫 -##撬 -##播 -##撮 -##撰 -##撲 -##撵 -##撷 -##撸 -##撻 -##撼 -##撿 -##擀 -##擁 -##擂 -##擄 -##擅 -##擇 -##擊 -##擋 -##操 -##擎 -##擒 -##擔 -##擘 -##據 -##擞 -##擠 -##擡 -##擢 -##擦 -##擬 -##擰 -##擱 -##擲 -##擴 -##擷 -##擺 -##擼 -##擾 -##攀 -##攏 -##攒 -##攔 -##攘 -##攙 -##攜 -##攝 -##攞 -##攢 -##攣 -##攤 -##攥 -##攪 -##攫 -##攬 -##支 -##收 -##攸 -##改 -##攻 -##放 -##政 -##故 -##效 -##敌 -##敍 -##敎 -##敏 -##救 -##敕 -##敖 -##敗 -##敘 -##教 -##敛 -##敝 -##敞 -##敢 -##散 -##敦 -##敬 -##数 -##敲 -##整 -##敵 -##敷 -##數 -##斂 -##斃 -##文 -##斋 -##斌 -##斎 -##斐 -##斑 -##斓 -##斗 -##料 -##斛 -##斜 -##斟 -##斡 -##斤 -##斥 -##斧 -##斩 -##斫 -##斬 -##断 -##斯 -##新 -##斷 -##方 -##於 -##施 -##旁 -##旃 -##旅 -##旋 -##旌 -##旎 -##族 -##旖 -##旗 -##无 -##既 -##日 -##旦 -##旧 -##旨 -##早 -##旬 -##旭 -##旮 -##旱 -##时 -##旷 -##旺 -##旻 -##昀 -##昂 -##昆 -##昇 -##昉 -##昊 -##昌 -##明 -##昏 -##易 -##昔 -##昕 -##昙 -##星 -##映 -##春 -##昧 -##昨 -##昭 -##是 -##昱 -##昴 -##昵 -##昶 -##昼 -##显 -##晁 -##時 -##晃 -##晉 -##晋 -##晌 -##晏 -##晒 -##晓 -##晔 -##晕 -##晖 -##晗 -##晚 -##晝 -##晞 -##晟 -##晤 -##晦 -##晨 -##晩 -##普 -##景 -##晰 -##晴 -##晶 -##晷 -##智 -##晾 -##暂 -##暄 -##暇 -##暈 -##暉 -##暌 -##暐 -##暑 -##暖 -##暗 -##暝 -##暢 -##暧 -##暨 -##暫 -##暮 -##暱 -##暴 -##暸 -##暹 -##曄 -##曆 -##曇 -##曉 -##曖 -##曙 -##曜 -##曝 -##曠 -##曦 -##曬 -##曰 -##曲 -##曳 -##更 -##書 -##曹 -##曼 -##曾 -##替 -##最 -##會 -##月 -##有 -##朋 -##服 -##朐 -##朔 -##朕 -##朗 -##望 -##朝 -##期 -##朦 -##朧 -##木 -##未 -##末 -##本 -##札 -##朮 -##术 -##朱 -##朴 -##朵 -##机 -##朽 -##杀 -##杂 -##权 -##杆 -##杈 -##杉 -##李 -##杏 -##材 -##村 -##杓 -##杖 -##杜 -##杞 -##束 -##杠 -##条 -##来 -##杨 -##杭 -##杯 -##杰 -##東 -##杳 -##杵 -##杷 -##杼 -##松 -##板 -##极 -##构 -##枇 -##枉 -##枋 -##析 -##枕 -##林 -##枚 -##果 -##枝 -##枢 -##枣 -##枪 -##枫 -##枭 -##枯 -##枰 -##枱 -##枳 -##架 -##枷 -##枸 -##柄 -##柏 -##某 -##柑 -##柒 -##染 -##柔 -##柘 -##柚 -##柜 -##柞 -##柠 -##柢 -##查 -##柩 -##柬 -##柯 -##柱 -##柳 -##柴 -##柵 -##査 -##柿 -##栀 -##栃 -##栄 -##栅 -##标 -##栈 -##栉 -##栋 -##栎 -##栏 -##树 -##栓 -##栖 -##栗 -##校 -##栩 -##株 -##样 -##核 -##根 -##格 -##栽 -##栾 -##桀 -##桁 -##桂 -##桃 -##桅 -##框 -##案 -##桉 -##桌 -##桎 -##桐 -##桑 -##桓 -##桔 -##桜 -##桠 -##桡 -##桢 -##档 -##桥 -##桦 -##桧 -##桨 -##桩 -##桶 -##桿 -##梁 -##梅 -##梆 -##梏 -##梓 -##梗 -##條 -##梟 -##梢 -##梦 -##梧 -##梨 -##梭 -##梯 -##械 -##梳 -##梵 -##梶 -##检 -##棂 -##棄 -##棉 -##棋 -##棍 -##棒 -##棕 -##棗 -##棘 -##棚 -##棟 -##棠 -##棣 -##棧 -##森 -##棱 -##棲 -##棵 -##棹 -##棺 -##椁 -##椅 -##椋 -##植 -##椎 -##椒 -##検 -##椪 -##椭 -##椰 -##椹 -##椽 -##椿 -##楂 -##楊 -##楓 -##楔 -##楚 -##楝 -##楞 -##楠 -##楣 -##楨 -##楫 -##業 -##楮 -##極 -##楷 -##楸 -##楹 -##楼 -##楽 -##概 -##榄 -##榆 -##榈 -##榉 -##榔 -##榕 -##榖 -##榛 -##榜 -##榨 -##榫 -##榭 -##榮 -##榱 -##榴 -##榷 -##榻 -##槁 -##槃 -##構 -##槌 -##槍 -##槎 -##槐 -##槓 -##様 -##槛 -##槟 -##槤 -##槭 -##槲 -##槳 -##槻 -##槽 -##槿 -##樁 -##樂 -##樊 -##樑 -##樓 -##標 -##樞 -##樟 -##模 -##樣 -##権 -##横 -##樫 -##樯 -##樱 -##樵 -##樸 -##樹 -##樺 -##樽 -##樾 -##橄 -##橇 -##橋 -##橐 -##橘 -##橙 -##機 -##橡 -##橢 -##橫 -##橱 -##橹 -##橼 -##檀 -##檄 -##檎 -##檐 -##檔 -##檗 -##檜 -##檢 -##檬 -##檯 -##檳 -##檸 -##檻 -##櫃 -##櫚 -##櫛 -##櫥 -##櫸 -##櫻 -##欄 -##權 -##欒 -##欖 -##欠 -##次 -##欢 -##欣 -##欧 -##欲 -##欸 -##欺 -##欽 -##款 -##歆 -##歇 -##歉 -##歌 -##歎 -##歐 -##歓 -##歙 -##歛 -##歡 -##止 -##正 -##此 -##步 -##武 -##歧 -##歩 -##歪 -##歯 -##歲 -##歳 -##歴 -##歷 -##歸 -##歹 -##死 -##歼 -##殁 -##殃 -##殆 -##殇 -##殉 -##殊 -##残 -##殒 -##殓 -##殖 -##殘 -##殞 -##殡 -##殤 -##殭 -##殯 -##殲 -##殴 -##段 -##殷 -##殺 -##殼 -##殿 -##毀 -##毁 -##毂 -##毅 -##毆 -##毋 -##母 -##毎 -##每 -##毒 -##毓 -##比 -##毕 -##毗 -##毘 -##毙 -##毛 -##毡 -##毫 -##毯 -##毽 -##氈 -##氏 -##氐 -##民 -##氓 -##气 -##氖 -##気 -##氙 -##氛 -##氟 -##氡 -##氢 -##氣 -##氤 -##氦 -##氧 -##氨 -##氪 -##氫 -##氮 -##氯 -##氰 -##氲 -##水 -##氷 -##永 -##氹 -##氾 -##汀 -##汁 -##求 -##汆 -##汇 -##汉 -##汎 -##汐 -##汕 -##汗 -##汙 -##汛 -##汝 -##汞 -##江 -##池 -##污 -##汤 -##汨 -##汩 -##汪 -##汰 -##汲 -##汴 -##汶 -##汹 -##決 -##汽 -##汾 -##沁 -##沂 -##沃 -##沅 -##沈 -##沉 -##沌 -##沏 -##沐 -##沒 -##沓 -##沖 -##沙 -##沛 -##沟 -##没 -##沢 -##沣 -##沥 -##沦 -##沧 -##沪 -##沫 -##沭 -##沮 -##沱 -##河 -##沸 -##油 -##治 -##沼 -##沽 -##沾 -##沿 -##況 -##泄 -##泉 -##泊 -##泌 -##泓 -##法 -##泗 -##泛 -##泞 -##泠 -##泡 -##波 -##泣 -##泥 -##注 -##泪 -##泫 -##泮 -##泯 -##泰 -##泱 -##泳 -##泵 -##泷 -##泸 -##泻 -##泼 -##泽 -##泾 -##洁 -##洄 -##洋 -##洒 -##洗 -##洙 -##洛 -##洞 -##津 -##洩 -##洪 -##洮 -##洱 -##洲 -##洵 -##洶 -##洸 -##洹 -##活 -##洼 -##洽 -##派 -##流 -##浃 -##浄 -##浅 -##浆 -##浇 -##浊 -##测 -##济 -##浏 -##浑 -##浒 -##浓 -##浔 -##浙 -##浚 -##浜 -##浣 -##浦 -##浩 -##浪 -##浬 -##浮 -##浯 -##浴 -##海 -##浸 -##涂 -##涅 -##涇 -##消 -##涉 -##涌 -##涎 -##涓 -##涔 -##涕 -##涙 -##涛 -##涝 -##涞 -##涟 -##涠 -##涡 -##涣 -##涤 -##润 -##涧 -##涨 -##涩 -##涪 -##涮 -##涯 -##液 -##涵 -##涸 -##涼 -##涿 -##淀 -##淄 -##淅 -##淆 -##淇 -##淋 -##淌 -##淑 -##淒 -##淖 -##淘 -##淙 -##淚 -##淞 -##淡 -##淤 -##淦 -##淨 -##淩 -##淪 -##淫 -##淬 -##淮 -##深 -##淳 -##淵 -##混 -##淹 -##淺 -##添 -##淼 -##清 -##済 -##渉 -##渊 -##渋 -##渍 -##渎 -##渐 -##渔 -##渗 -##渙 -##渚 -##減 -##渝 -##渠 -##渡 -##渣 -##渤 -##渥 -##渦 -##温 -##測 -##渭 -##港 -##渲 -##渴 -##游 -##渺 -##渾 -##湃 -##湄 -##湊 -##湍 -##湖 -##湘 -##湛 -##湟 -##湧 -##湫 -##湮 -##湯 -##湳 -##湾 -##湿 -##満 -##溃 -##溅 -##溉 -##溏 -##源 -##準 -##溜 -##溝 -##溟 -##溢 -##溥 -##溧 -##溪 -##溫 -##溯 -##溱 -##溴 -##溶 -##溺 -##溼 -##滁 -##滂 -##滄 -##滅 -##滇 -##滋 -##滌 -##滑 -##滓 -##滔 -##滕 -##滙 -##滚 -##滝 -##滞 -##滟 -##满 -##滢 -##滤 -##滥 -##滦 -##滨 -##滩 -##滬 -##滯 -##滲 -##滴 -##滷 -##滸 -##滾 -##滿 -##漁 -##漂 -##漆 -##漉 -##漏 -##漓 -##演 -##漕 -##漠 -##漢 -##漣 -##漩 -##漪 -##漫 -##漬 -##漯 -##漱 -##漲 -##漳 -##漸 -##漾 -##漿 -##潆 -##潇 -##潋 -##潍 -##潑 -##潔 -##潘 -##潛 -##潜 -##潞 -##潟 -##潢 -##潤 -##潦 -##潧 -##潭 -##潮 -##潰 -##潴 -##潸 -##潺 -##潼 -##澀 -##澄 -##澆 -##澈 -##澍 -##澎 -##澗 -##澜 -##澡 -##澤 -##澧 -##澱 -##澳 -##澹 -##激 -##濁 -##濂 -##濃 -##濑 -##濒 -##濕 -##濘 -##濛 -##濟 -##濠 -##濡 -##濤 -##濫 -##濬 -##濮 -##濯 -##濱 -##濺 -##濾 -##瀅 -##瀆 -##瀉 -##瀋 -##瀏 -##瀑 -##瀕 -##瀘 -##瀚 -##瀛 -##瀝 -##瀞 -##瀟 -##瀧 -##瀨 -##瀬 -##瀰 -##瀾 -##灌 -##灏 -##灑 -##灘 -##灝 -##灞 -##灣 -##火 -##灬 -##灭 -##灯 -##灰 -##灵 -##灶 -##灸 -##灼 -##災 -##灾 -##灿 -##炀 -##炁 -##炅 -##炉 -##炊 -##炎 -##炒 -##炔 -##炕 -##炖 -##炙 -##炜 -##炫 -##炬 -##炭 -##炮 -##炯 -##炳 -##炷 -##炸 -##点 -##為 -##炼 -##炽 -##烁 -##烂 -##烃 -##烈 -##烊 -##烏 -##烘 -##烙 -##烛 -##烟 -##烤 -##烦 -##烧 -##烨 -##烩 -##烫 -##烬 -##热 -##烯 -##烷 -##烹 -##烽 -##焉 -##焊 -##焕 -##焖 -##焗 -##焘 -##焙 -##焚 -##焜 -##無 -##焦 -##焯 -##焰 -##焱 -##然 -##焼 -##煅 -##煉 -##煊 -##煌 -##煎 -##煒 -##煖 -##煙 -##煜 -##煞 -##煤 -##煥 -##煦 -##照 -##煨 -##煩 -##煮 -##煲 -##煸 -##煽 -##熄 -##熊 -##熏 -##熒 -##熔 -##熙 -##熟 -##熠 -##熨 -##熬 -##熱 -##熵 -##熹 -##熾 -##燁 -##燃 -##燄 -##燈 -##燉 -##燊 -##燎 -##燒 -##燔 -##燕 -##燙 -##燜 -##營 -##燥 -##燦 -##燧 -##燭 -##燮 -##燴 -##燻 -##燼 -##燿 -##爆 -##爍 -##爐 -##爛 -##爪 -##爬 -##爭 -##爰 -##爱 -##爲 -##爵 -##父 -##爷 -##爸 -##爹 -##爺 -##爻 -##爽 -##爾 -##牆 -##片 -##版 -##牌 -##牍 -##牒 -##牙 -##牛 -##牝 -##牟 -##牠 -##牡 -##牢 -##牦 -##牧 -##物 -##牯 -##牲 -##牴 -##牵 -##特 -##牺 -##牽 -##犀 -##犁 -##犄 -##犊 -##犍 -##犒 -##犢 -##犧 -##犬 -##犯 -##状 -##犷 -##犸 -##犹 -##狀 -##狂 -##狄 -##狈 -##狎 -##狐 -##狒 -##狗 -##狙 -##狞 -##狠 -##狡 -##狩 -##独 -##狭 -##狮 -##狰 -##狱 -##狸 -##狹 -##狼 -##狽 -##猎 -##猕 -##猖 -##猗 -##猙 -##猛 -##猜 -##猝 -##猥 -##猩 -##猪 -##猫 -##猬 -##献 -##猴 -##猶 -##猷 -##猾 -##猿 -##獄 -##獅 -##獎 -##獐 -##獒 -##獗 -##獠 -##獣 -##獨 -##獭 -##獰 -##獲 -##獵 -##獷 -##獸 -##獺 -##獻 -##獼 -##獾 -##玄 -##率 -##玉 -##王 -##玑 -##玖 -##玛 -##玟 -##玠 -##玥 -##玩 -##玫 -##玮 -##环 -##现 -##玲 -##玳 -##玷 -##玺 -##玻 -##珀 -##珂 -##珅 -##珈 -##珉 -##珊 -##珍 -##珏 -##珐 -##珑 -##珙 -##珞 -##珠 -##珣 -##珥 -##珩 -##珪 -##班 -##珮 -##珲 -##珺 -##現 -##球 -##琅 -##理 -##琇 -##琉 -##琊 -##琍 -##琏 -##琐 -##琛 -##琢 -##琥 -##琦 -##琨 -##琪 -##琬 -##琮 -##琰 -##琲 -##琳 -##琴 -##琵 -##琶 -##琺 -##琼 -##瑀 -##瑁 -##瑄 -##瑋 -##瑕 -##瑗 -##瑙 -##瑚 -##瑛 -##瑜 -##瑞 -##瑟 -##瑠 -##瑣 -##瑤 -##瑩 -##瑪 -##瑯 -##瑰 -##瑶 -##瑾 -##璀 -##璁 -##璃 -##璇 -##璉 -##璋 -##璎 -##璐 -##璜 -##璞 -##璟 -##璧 -##璨 -##環 -##璽 -##璿 -##瓊 -##瓏 -##瓒 -##瓜 -##瓢 -##瓣 -##瓤 -##瓦 -##瓮 -##瓯 -##瓴 -##瓶 -##瓷 -##甄 -##甌 -##甕 -##甘 -##甙 -##甚 -##甜 -##生 -##產 -##産 -##甥 -##甦 -##用 -##甩 -##甫 -##甬 -##甭 -##甯 -##田 -##由 -##甲 -##申 -##电 -##男 -##甸 -##町 -##画 -##甾 -##畀 -##畅 -##界 -##畏 -##畑 -##畔 -##留 -##畜 -##畝 -##畢 -##略 -##畦 -##番 -##畫 -##異 -##畲 -##畳 -##畴 -##當 -##畸 -##畹 -##畿 -##疆 -##疇 -##疊 -##疏 -##疑 -##疔 -##疖 -##疗 -##疙 -##疚 -##疝 -##疟 -##疡 -##疣 -##疤 -##疥 -##疫 -##疮 -##疯 -##疱 -##疲 -##疳 -##疵 -##疸 -##疹 -##疼 -##疽 -##疾 -##痂 -##病 -##症 -##痈 -##痉 -##痊 -##痍 -##痒 -##痔 -##痕 -##痘 -##痙 -##痛 -##痞 -##痠 -##痢 -##痣 -##痤 -##痧 -##痨 -##痪 -##痫 -##痰 -##痱 -##痴 -##痹 -##痺 -##痼 -##痿 -##瘀 -##瘁 -##瘋 -##瘍 -##瘓 -##瘘 -##瘙 -##瘟 -##瘠 -##瘡 -##瘢 -##瘤 -##瘦 -##瘧 -##瘩 -##瘪 -##瘫 -##瘴 -##瘸 -##瘾 -##療 -##癇 -##癌 -##癒 -##癖 -##癜 -##癞 -##癡 -##癢 -##癣 -##癥 -##癫 -##癬 -##癮 -##癱 -##癲 -##癸 -##発 -##登 -##發 -##白 -##百 -##皂 -##的 -##皆 -##皇 -##皈 -##皋 -##皎 -##皑 -##皓 -##皖 -##皙 -##皚 -##皮 -##皰 -##皱 -##皴 -##皺 -##皿 -##盂 -##盃 -##盅 -##盆 -##盈 -##益 -##盎 -##盏 -##盐 -##监 -##盒 -##盔 -##盖 -##盗 -##盘 -##盛 -##盜 -##盞 -##盟 -##盡 -##監 -##盤 -##盥 -##盧 -##盪 -##目 -##盯 -##盱 -##盲 -##直 -##相 -##盹 -##盼 -##盾 -##省 -##眈 -##眉 -##看 -##県 -##眙 -##眞 -##真 -##眠 -##眦 -##眨 -##眩 -##眯 -##眶 -##眷 -##眸 -##眺 -##眼 -##眾 -##着 -##睁 -##睇 -##睏 -##睐 -##睑 -##睛 -##睜 -##睞 -##睡 -##睢 -##督 -##睥 -##睦 -##睨 -##睪 -##睫 -##睬 -##睹 -##睽 -##睾 -##睿 -##瞄 -##瞅 -##瞇 -##瞋 -##瞌 -##瞎 -##瞑 -##瞒 -##瞓 -##瞞 -##瞟 -##瞠 -##瞥 -##瞧 -##瞩 -##瞪 -##瞬 -##瞭 -##瞰 -##瞳 -##瞻 -##瞼 -##瞿 -##矇 -##矍 -##矗 -##矚 -##矛 -##矜 -##矢 -##矣 -##知 -##矩 -##矫 -##短 -##矮 -##矯 -##石 -##矶 -##矽 -##矾 -##矿 -##码 -##砂 -##砌 -##砍 -##砒 -##研 -##砖 -##砗 -##砚 -##砝 -##砣 -##砥 -##砧 -##砭 -##砰 -##砲 -##破 -##砷 -##砸 -##砺 -##砼 -##砾 -##础 -##硅 -##硐 -##硒 -##硕 -##硝 -##硫 -##硬 -##确 -##硯 -##硼 -##碁 -##碇 -##碉 -##碌 -##碍 -##碎 -##碑 -##碓 -##碗 -##碘 -##碚 -##碛 -##碟 -##碣 -##碧 -##碩 -##碰 -##碱 -##碳 -##碴 -##確 -##碼 -##碾 -##磁 -##磅 -##磊 -##磋 -##磐 -##磕 -##磚 -##磡 -##磨 -##磬 -##磯 -##磲 -##磷 -##磺 -##礁 -##礎 -##礙 -##礡 -##礦 -##礪 -##礫 -##礴 -##示 -##礼 -##社 -##祀 -##祁 -##祂 -##祇 -##祈 -##祉 -##祎 -##祐 -##祕 -##祖 -##祗 -##祚 -##祛 -##祜 -##祝 -##神 -##祟 -##祠 -##祢 -##祥 -##票 -##祭 -##祯 -##祷 -##祸 -##祺 -##祿 -##禀 -##禁 -##禄 -##禅 -##禍 -##禎 -##福 -##禛 -##禦 -##禧 -##禪 -##禮 -##禱 -##禹 -##禺 -##离 -##禽 -##禾 -##禿 -##秀 -##私 -##秃 -##秆 -##秉 -##秋 -##种 -##科 -##秒 -##秘 -##租 -##秣 -##秤 -##秦 -##秧 -##秩 -##秭 -##积 -##称 -##秸 -##移 -##秽 -##稀 -##稅 -##程 -##稍 -##税 -##稔 -##稗 -##稚 -##稜 -##稞 -##稟 -##稠 -##稣 -##種 -##稱 -##稲 -##稳 -##稷 -##稹 -##稻 -##稼 -##稽 -##稿 -##穀 -##穂 -##穆 -##穌 -##積 -##穎 -##穗 -##穢 -##穩 -##穫 -##穴 -##究 -##穷 -##穹 -##空 -##穿 -##突 -##窃 -##窄 -##窈 -##窍 -##窑 -##窒 -##窓 -##窕 -##窖 -##窗 -##窘 -##窜 -##窝 -##窟 -##窠 -##窥 -##窦 -##窨 -##窩 -##窪 -##窮 -##窯 -##窺 -##窿 -##竄 -##竅 -##竇 -##竊 -##立 -##竖 -##站 -##竜 -##竞 -##竟 -##章 -##竣 -##童 -##竭 -##端 -##競 -##竹 -##竺 -##竽 -##竿 -##笃 -##笆 -##笈 -##笋 -##笏 -##笑 -##笔 -##笙 -##笛 -##笞 -##笠 -##符 -##笨 -##第 -##笹 -##笺 -##笼 -##筆 -##等 -##筊 -##筋 -##筍 -##筏 -##筐 -##筑 -##筒 -##答 -##策 -##筛 -##筝 -##筠 -##筱 -##筲 -##筵 -##筷 -##筹 -##签 -##简 -##箇 -##箋 -##箍 -##箏 -##箐 -##箔 -##箕 -##算 -##箝 -##管 -##箩 -##箫 -##箭 -##箱 -##箴 -##箸 -##節 -##篁 -##範 -##篆 -##篇 -##築 -##篑 -##篓 -##篙 -##篝 -##篠 -##篡 -##篤 -##篩 -##篪 -##篮 -##篱 -##篷 -##簇 -##簌 -##簍 -##簡 -##簦 -##簧 -##簪 -##簫 -##簷 -##簸 -##簽 -##簾 -##簿 -##籁 -##籃 -##籌 -##籍 -##籐 -##籟 -##籠 -##籤 -##籬 -##籮 -##籲 -##米 -##类 -##籼 -##籽 -##粄 -##粉 -##粑 -##粒 -##粕 -##粗 -##粘 -##粟 -##粤 -##粥 -##粧 -##粪 -##粮 -##粱 -##粲 -##粳 -##粵 -##粹 -##粼 -##粽 -##精 -##粿 -##糅 -##糊 -##糍 -##糕 -##糖 -##糗 -##糙 -##糜 -##糞 -##糟 -##糠 -##糧 -##糬 -##糯 -##糰 -##糸 -##系 -##糾 -##紀 -##紂 -##約 -##紅 -##紉 -##紊 -##紋 -##納 -##紐 -##紓 -##純 -##紗 -##紘 -##紙 -##級 -##紛 -##紜 -##素 -##紡 -##索 -##紧 -##紫 -##紮 -##累 -##細 -##紳 -##紹 -##紺 -##終 -##絃 -##組 -##絆 -##経 -##結 -##絕 -##絞 -##絡 -##絢 -##給 -##絨 -##絮 -##統 -##絲 -##絳 -##絵 -##絶 -##絹 -##綁 -##綏 -##綑 -##經 -##継 -##続 -##綜 -##綠 -##綢 -##綦 -##綫 -##綬 -##維 -##綱 -##網 -##綴 -##綵 -##綸 -##綺 -##綻 -##綽 -##綾 -##綿 -##緊 -##緋 -##総 -##緑 -##緒 -##緘 -##線 -##緝 -##緞 -##締 -##緣 -##編 -##緩 -##緬 -##緯 -##練 -##緹 -##緻 -##縁 -##縄 -##縈 -##縛 -##縝 -##縣 -##縫 -##縮 -##縱 -##縴 -##縷 -##總 -##績 -##繁 -##繃 -##繆 -##繇 -##繋 -##織 -##繕 -##繚 -##繞 -##繡 -##繩 -##繪 -##繫 -##繭 -##繳 -##繹 -##繼 -##繽 -##纂 -##續 -##纍 -##纏 -##纓 -##纔 -##纖 -##纜 -##纠 -##红 -##纣 -##纤 -##约 -##级 -##纨 -##纪 -##纫 -##纬 -##纭 -##纯 -##纰 -##纱 -##纲 -##纳 -##纵 -##纶 -##纷 -##纸 -##纹 -##纺 -##纽 -##纾 -##线 -##绀 -##练 -##组 -##绅 -##细 -##织 -##终 -##绊 -##绍 -##绎 -##经 -##绑 -##绒 -##结 -##绔 -##绕 -##绘 -##给 -##绚 -##绛 -##络 -##绝 -##绞 -##统 -##绡 -##绢 -##绣 -##绥 -##绦 -##继 -##绩 -##绪 -##绫 -##续 -##绮 -##绯 -##绰 -##绳 -##维 -##绵 -##绶 -##绷 -##绸 -##绻 -##综 -##绽 -##绾 -##绿 -##缀 -##缄 -##缅 -##缆 -##缇 -##缈 -##缉 -##缎 -##缓 -##缔 -##缕 -##编 -##缘 -##缙 -##缚 -##缜 -##缝 -##缠 -##缢 -##缤 -##缥 -##缨 -##缩 -##缪 -##缭 -##缮 -##缰 -##缱 -##缴 -##缸 -##缺 -##缽 -##罂 -##罄 -##罌 -##罐 -##网 -##罔 -##罕 -##罗 -##罚 -##罡 -##罢 -##罩 -##罪 -##置 -##罰 -##署 -##罵 -##罷 -##罹 -##羁 -##羅 -##羈 -##羊 -##羌 -##美 -##羔 -##羚 -##羞 -##羟 -##羡 -##羣 -##群 -##羥 -##羧 -##羨 -##義 -##羯 -##羲 -##羸 -##羹 -##羽 -##羿 -##翁 -##翅 -##翊 -##翌 -##翎 -##習 -##翔 -##翘 -##翟 -##翠 -##翡 -##翦 -##翩 -##翰 -##翱 -##翳 -##翹 -##翻 -##翼 -##耀 -##老 -##考 -##耄 -##者 -##耆 -##耋 -##而 -##耍 -##耐 -##耒 -##耕 -##耗 -##耘 -##耙 -##耦 -##耨 -##耳 -##耶 -##耷 -##耸 -##耻 -##耽 -##耿 -##聂 -##聆 -##聊 -##聋 -##职 -##聒 -##联 -##聖 -##聘 -##聚 -##聞 -##聪 -##聯 -##聰 -##聲 -##聳 -##聴 -##聶 -##職 -##聽 -##聾 -##聿 -##肃 -##肄 -##肅 -##肆 -##肇 -##肉 -##肋 -##肌 -##肏 -##肓 -##肖 -##肘 -##肚 -##肛 -##肝 -##肠 -##股 -##肢 -##肤 -##肥 -##肩 -##肪 -##肮 -##肯 -##肱 -##育 -##肴 -##肺 -##肽 -##肾 -##肿 -##胀 -##胁 -##胃 -##胄 -##胆 -##背 -##胍 -##胎 -##胖 -##胚 -##胛 -##胜 -##胝 -##胞 -##胡 -##胤 -##胥 -##胧 -##胫 -##胭 -##胯 -##胰 -##胱 -##胳 -##胴 -##胶 -##胸 -##胺 -##能 -##脂 -##脅 -##脆 -##脇 -##脈 -##脉 -##脊 -##脍 -##脏 -##脐 -##脑 -##脓 -##脖 -##脘 -##脚 -##脛 -##脣 -##脩 -##脫 -##脯 -##脱 -##脲 -##脳 -##脸 -##脹 -##脾 -##腆 -##腈 -##腊 -##腋 -##腌 -##腎 -##腐 -##腑 -##腓 -##腔 -##腕 -##腥 -##腦 -##腩 -##腫 -##腭 -##腮 -##腰 -##腱 -##腳 -##腴 -##腸 -##腹 -##腺 -##腻 -##腼 -##腾 -##腿 -##膀 -##膈 -##膊 -##膏 -##膑 -##膘 -##膚 -##膛 -##膜 -##膝 -##膠 -##膦 -##膨 -##膩 -##膳 -##膺 -##膻 -##膽 -##膾 -##膿 -##臀 -##臂 -##臃 -##臆 -##臉 -##臊 -##臍 -##臓 -##臘 -##臟 -##臣 -##臥 -##臧 -##臨 -##自 -##臬 -##臭 -##至 -##致 -##臺 -##臻 -##臼 -##臾 -##舀 -##舂 -##舅 -##舆 -##與 -##興 -##舉 -##舊 -##舌 -##舍 -##舎 -##舐 -##舒 -##舔 -##舖 -##舗 -##舛 -##舜 -##舞 -##舟 -##航 -##舫 -##般 -##舰 -##舱 -##舵 -##舶 -##舷 -##舸 -##船 -##舺 -##舾 -##艇 -##艋 -##艘 -##艙 -##艦 -##艮 -##良 -##艰 -##艱 -##色 -##艳 -##艷 -##艹 -##艺 -##艾 -##节 -##芃 -##芈 -##芊 -##芋 -##芍 -##芎 -##芒 -##芙 -##芜 -##芝 -##芡 -##芥 -##芦 -##芩 -##芪 -##芫 -##芬 -##芭 -##芮 -##芯 -##花 -##芳 -##芷 -##芸 -##芹 -##芻 -##芽 -##芾 -##苁 -##苄 -##苇 -##苋 -##苍 -##苏 -##苑 -##苒 -##苓 -##苔 -##苕 -##苗 -##苛 -##苜 -##苞 -##苟 -##苡 -##苣 -##若 -##苦 -##苫 -##苯 -##英 -##苷 -##苹 -##苻 -##茁 -##茂 -##范 -##茄 -##茅 -##茉 -##茎 -##茏 -##茗 -##茜 -##茧 -##茨 -##茫 -##茬 -##茭 -##茯 -##茱 -##茲 -##茴 -##茵 -##茶 -##茸 -##茹 -##茼 -##荀 -##荃 -##荆 -##草 -##荊 -##荏 -##荐 -##荒 -##荔 -##荖 -##荘 -##荚 -##荞 -##荟 -##荠 -##荡 -##荣 -##荤 -##荥 -##荧 -##荨 -##荪 -##荫 -##药 -##荳 -##荷 -##荸 -##荻 -##荼 -##荽 -##莅 -##莆 -##莉 -##莊 -##莎 -##莒 -##莓 -##莖 -##莘 -##莞 -##莠 -##莢 -##莧 -##莪 -##莫 -##莱 -##莲 -##莴 -##获 -##莹 -##莺 -##莽 -##莿 -##菀 -##菁 -##菅 -##菇 -##菈 -##菊 -##菌 -##菏 -##菓 -##菖 -##菘 -##菜 -##菟 -##菠 -##菡 -##菩 -##華 -##菱 -##菲 -##菸 -##菽 -##萁 -##萃 -##萄 -##萊 -##萋 -##萌 -##萍 -##萎 -##萘 -##萝 -##萤 -##营 -##萦 -##萧 -##萨 -##萩 -##萬 -##萱 -##萵 -##萸 -##萼 -##落 -##葆 -##葉 -##著 -##葚 -##葛 -##葡 -##董 -##葦 -##葩 -##葫 -##葬 -##葭 -##葯 -##葱 -##葳 -##葵 -##葷 -##葺 -##蒂 -##蒋 -##蒐 -##蒔 -##蒙 -##蒜 -##蒞 -##蒟 -##蒡 -##蒨 -##蒲 -##蒸 -##蒹 -##蒻 -##蒼 -##蒿 -##蓁 -##蓄 -##蓆 -##蓉 -##蓋 -##蓑 -##蓓 -##蓖 -##蓝 -##蓟 -##蓦 -##蓬 -##蓮 -##蓼 -##蓿 -##蔑 -##蔓 -##蔔 -##蔗 -##蔘 -##蔚 -##蔡 -##蔣 -##蔥 -##蔫 -##蔬 -##蔭 -##蔵 -##蔷 -##蔺 -##蔻 -##蔼 -##蔽 -##蕁 -##蕃 -##蕈 -##蕉 -##蕊 -##蕎 -##蕙 -##蕤 -##蕨 -##蕩 -##蕪 -##蕭 -##蕲 -##蕴 -##蕻 -##蕾 -##薄 -##薅 -##薇 -##薈 -##薊 -##薏 -##薑 -##薔 -##薙 -##薛 -##薦 -##薨 -##薩 -##薪 -##薬 -##薯 -##薰 -##薹 -##藉 -##藍 -##藏 -##藐 -##藓 -##藕 -##藜 -##藝 -##藤 -##藥 -##藩 -##藹 -##藻 -##藿 -##蘆 -##蘇 -##蘊 -##蘋 -##蘑 -##蘚 -##蘭 -##蘸 -##蘼 -##蘿 -##虎 -##虏 -##虐 -##虑 -##虔 -##處 -##虚 -##虛 -##虜 -##虞 -##號 -##虢 -##虧 -##虫 -##虬 -##虱 -##虹 -##虻 -##虽 -##虾 -##蚀 -##蚁 -##蚂 -##蚊 -##蚌 -##蚓 -##蚕 -##蚜 -##蚝 -##蚣 -##蚤 -##蚩 -##蚪 -##蚯 -##蚱 -##蚵 -##蛀 -##蛆 -##蛇 -##蛊 -##蛋 -##蛎 -##蛐 -##蛔 -##蛙 -##蛛 -##蛟 -##蛤 -##蛭 -##蛮 -##蛰 -##蛳 -##蛹 -##蛻 -##蛾 -##蜀 -##蜂 -##蜃 -##蜆 -##蜇 -##蜈 -##蜊 -##蜍 -##蜒 -##蜓 -##蜕 -##蜗 -##蜘 -##蜚 -##蜜 -##蜡 -##蜢 -##蜥 -##蜱 -##蜴 -##蜷 -##蜻 -##蜿 -##蝇 -##蝈 -##蝉 -##蝌 -##蝎 -##蝕 -##蝗 -##蝙 -##蝟 -##蝠 -##蝦 -##蝨 -##蝴 -##蝶 -##蝸 -##蝼 -##螂 -##螃 -##融 -##螞 -##螢 -##螨 -##螯 -##螳 -##螺 -##蟀 -##蟄 -##蟆 -##蟋 -##蟎 -##蟑 -##蟒 -##蟠 -##蟬 -##蟲 -##蟹 -##蟻 -##蟾 -##蠅 -##蠍 -##蠔 -##蠕 -##蠛 -##蠟 -##蠡 -##蠢 -##蠣 -##蠱 -##蠶 -##蠹 -##蠻 -##血 -##衄 -##衅 -##衆 -##行 -##衍 -##術 -##衔 -##街 -##衙 -##衛 -##衝 -##衞 -##衡 -##衢 -##衣 -##补 -##表 -##衩 -##衫 -##衬 -##衮 -##衰 -##衲 -##衷 -##衹 -##衾 -##衿 -##袁 -##袂 -##袄 -##袅 -##袈 -##袋 -##袍 -##袒 -##袖 -##袜 -##袞 -##袤 -##袪 -##被 -##袭 -##袱 -##裁 -##裂 -##装 -##裆 -##裊 -##裏 -##裔 -##裕 -##裘 -##裙 -##補 -##裝 -##裟 -##裡 -##裤 -##裨 -##裱 -##裳 -##裴 -##裸 -##裹 -##製 -##裾 -##褂 -##複 -##褐 -##褒 -##褓 -##褔 -##褚 -##褥 -##褪 -##褫 -##褲 -##褶 -##褻 -##襁 -##襄 -##襟 -##襠 -##襪 -##襬 -##襯 -##襲 -##西 -##要 -##覃 -##覆 -##覇 -##見 -##規 -##覓 -##視 -##覚 -##覦 -##覧 -##親 -##覬 -##観 -##覷 -##覺 -##覽 -##觀 -##见 -##观 -##规 -##觅 -##视 -##览 -##觉 -##觊 -##觎 -##觐 -##觑 -##角 -##觞 -##解 -##觥 -##触 -##觸 -##言 -##訂 -##計 -##訊 -##討 -##訓 -##訕 -##訖 -##託 -##記 -##訛 -##訝 -##訟 -##訣 -##訥 -##訪 -##設 -##許 -##訳 -##訴 -##訶 -##診 -##註 -##証 -##詆 -##詐 -##詔 -##評 -##詛 -##詞 -##詠 -##詡 -##詢 -##詣 -##試 -##詩 -##詫 -##詬 -##詭 -##詮 -##詰 -##話 -##該 -##詳 -##詹 -##詼 -##誅 -##誇 -##誉 -##誌 -##認 -##誓 -##誕 -##誘 -##語 -##誠 -##誡 -##誣 -##誤 -##誥 -##誦 -##誨 -##說 -##説 -##読 -##誰 -##課 -##誹 -##誼 -##調 -##諄 -##談 -##請 -##諏 -##諒 -##論 -##諗 -##諜 -##諡 -##諦 -##諧 -##諫 -##諭 -##諮 -##諱 -##諳 -##諷 -##諸 -##諺 -##諾 -##謀 -##謁 -##謂 -##謄 -##謊 -##謎 -##謐 -##謔 -##謗 -##謙 -##講 -##謝 -##謠 -##謨 -##謬 -##謹 -##謾 -##譁 -##證 -##譎 -##譏 -##識 -##譙 -##譚 -##譜 -##警 -##譬 -##譯 -##議 -##譲 -##譴 -##護 -##譽 -##讀 -##變 -##讓 -##讚 -##讞 -##计 -##订 -##认 -##讥 -##讧 -##讨 -##让 -##讪 -##讫 -##训 -##议 -##讯 -##记 -##讲 -##讳 -##讴 -##讶 -##讷 -##许 -##讹 -##论 -##讼 -##讽 -##设 -##访 -##诀 -##证 -##诃 -##评 -##诅 -##识 -##诈 -##诉 -##诊 -##诋 -##词 -##诏 -##译 -##试 -##诗 -##诘 -##诙 -##诚 -##诛 -##话 -##诞 -##诟 -##诠 -##诡 -##询 -##诣 -##诤 -##该 -##详 -##诧 -##诩 -##诫 -##诬 -##语 -##误 -##诰 -##诱 -##诲 -##说 -##诵 -##诶 -##请 -##诸 -##诺 -##读 -##诽 -##课 -##诿 -##谀 -##谁 -##调 -##谄 -##谅 -##谆 -##谈 -##谊 -##谋 -##谌 -##谍 -##谎 -##谏 -##谐 -##谑 -##谒 -##谓 -##谔 -##谕 -##谗 -##谘 -##谙 -##谚 -##谛 -##谜 -##谟 -##谢 -##谣 -##谤 -##谥 -##谦 -##谧 -##谨 -##谩 -##谪 -##谬 -##谭 -##谯 -##谱 -##谲 -##谴 -##谶 -##谷 -##豁 -##豆 -##豇 -##豈 -##豉 -##豊 -##豌 -##豎 -##豐 -##豔 -##豚 -##象 -##豢 -##豪 -##豫 -##豬 -##豹 -##豺 -##貂 -##貅 -##貌 -##貓 -##貔 -##貘 -##貝 -##貞 -##負 -##財 -##貢 -##貧 -##貨 -##販 -##貪 -##貫 -##責 -##貯 -##貰 -##貳 -##貴 -##貶 -##買 -##貸 -##費 -##貼 -##貽 -##貿 -##賀 -##賁 -##賂 -##賃 -##賄 -##資 -##賈 -##賊 -##賑 -##賓 -##賜 -##賞 -##賠 -##賡 -##賢 -##賣 -##賤 -##賦 -##質 -##賬 -##賭 -##賴 -##賺 -##購 -##賽 -##贅 -##贈 -##贊 -##贍 -##贏 -##贓 -##贖 -##贛 -##贝 -##贞 -##负 -##贡 -##财 -##责 -##贤 -##败 -##账 -##货 -##质 -##贩 -##贪 -##贫 -##贬 -##购 -##贮 -##贯 -##贰 -##贱 -##贲 -##贴 -##贵 -##贷 -##贸 -##费 -##贺 -##贻 -##贼 -##贾 -##贿 -##赁 -##赂 -##赃 -##资 -##赅 -##赈 -##赊 -##赋 -##赌 -##赎 -##赏 -##赐 -##赓 -##赔 -##赖 -##赘 -##赚 -##赛 -##赝 -##赞 -##赠 -##赡 -##赢 -##赣 -##赤 -##赦 -##赧 -##赫 -##赭 -##走 -##赳 -##赴 -##赵 -##赶 -##起 -##趁 -##超 -##越 -##趋 -##趕 -##趙 -##趟 -##趣 -##趨 -##足 -##趴 -##趵 -##趸 -##趺 -##趾 -##跃 -##跄 -##跆 -##跋 -##跌 -##跎 -##跑 -##跖 -##跚 -##跛 -##距 -##跟 -##跡 -##跤 -##跨 -##跩 -##跪 -##路 -##跳 -##践 -##跷 -##跹 -##跺 -##跻 -##踉 -##踊 -##踌 -##踏 -##踐 -##踝 -##踞 -##踟 -##踢 -##踩 -##踪 -##踮 -##踱 -##踴 -##踵 -##踹 -##蹂 -##蹄 -##蹇 -##蹈 -##蹉 -##蹊 -##蹋 -##蹑 -##蹒 -##蹙 -##蹟 -##蹣 -##蹤 -##蹦 -##蹩 -##蹬 -##蹭 -##蹲 -##蹴 -##蹶 -##蹺 -##蹼 -##蹿 -##躁 -##躇 -##躉 -##躊 -##躋 -##躍 -##躏 -##躪 -##身 -##躬 -##躯 -##躲 -##躺 -##軀 -##車 -##軋 -##軌 -##軍 -##軒 -##軟 -##転 -##軸 -##軼 -##軽 -##軾 -##較 -##載 -##輒 -##輓 -##輔 -##輕 -##輛 -##輝 -##輟 -##輩 -##輪 -##輯 -##輸 -##輻 -##輾 -##輿 -##轄 -##轅 -##轆 -##轉 -##轍 -##轎 -##轟 -##车 -##轧 -##轨 -##轩 -##转 -##轭 -##轮 -##软 -##轰 -##轲 -##轴 -##轶 -##轻 -##轼 -##载 -##轿 -##较 -##辄 -##辅 -##辆 -##辇 -##辈 -##辉 -##辊 -##辍 -##辐 -##辑 -##输 -##辕 -##辖 -##辗 -##辘 -##辙 -##辛 -##辜 -##辞 -##辟 -##辣 -##辦 -##辨 -##辩 -##辫 -##辭 -##辮 -##辯 -##辰 -##辱 -##農 -##边 -##辺 -##辻 -##込 -##辽 -##达 -##迁 -##迂 -##迄 -##迅 -##过 -##迈 -##迎 -##运 -##近 -##返 -##还 -##这 -##进 -##远 -##违 -##连 -##迟 -##迢 -##迤 -##迥 -##迦 -##迩 -##迪 -##迫 -##迭 -##述 -##迴 -##迷 -##迸 -##迹 -##迺 -##追 -##退 -##送 -##适 -##逃 -##逅 -##逆 -##选 -##逊 -##逍 -##透 -##逐 -##递 -##途 -##逕 -##逗 -##這 -##通 -##逛 -##逝 -##逞 -##速 -##造 -##逢 -##連 -##逮 -##週 -##進 -##逵 -##逶 -##逸 -##逻 -##逼 -##逾 -##遁 -##遂 -##遅 -##遇 -##遊 -##運 -##遍 -##過 -##遏 -##遐 -##遑 -##遒 -##道 -##達 -##違 -##遗 -##遙 -##遛 -##遜 -##遞 -##遠 -##遢 -##遣 -##遥 -##遨 -##適 -##遭 -##遮 -##遲 -##遴 -##遵 -##遶 -##遷 -##選 -##遺 -##遼 -##遽 -##避 -##邀 -##邁 -##邂 -##邃 -##還 -##邇 -##邈 -##邊 -##邋 -##邏 -##邑 -##邓 -##邕 -##邛 -##邝 -##邢 -##那 -##邦 -##邨 -##邪 -##邬 -##邮 -##邯 -##邰 -##邱 -##邳 -##邵 -##邸 -##邹 -##邺 -##邻 -##郁 -##郅 -##郊 -##郎 -##郑 -##郜 -##郝 -##郡 -##郢 -##郤 -##郦 -##郧 -##部 -##郫 -##郭 -##郴 -##郵 -##郷 -##郸 -##都 -##鄂 -##鄉 -##鄒 -##鄔 -##鄙 -##鄞 -##鄢 -##鄧 -##鄭 -##鄰 -##鄱 -##鄲 -##鄺 -##酉 -##酊 -##酋 -##酌 -##配 -##酐 -##酒 -##酗 -##酚 -##酝 -##酢 -##酣 -##酥 -##酩 -##酪 -##酬 -##酮 -##酯 -##酰 -##酱 -##酵 -##酶 -##酷 -##酸 -##酿 -##醃 -##醇 -##醉 -##醋 -##醍 -##醐 -##醒 -##醚 -##醛 -##醜 -##醞 -##醣 -##醪 -##醫 -##醬 -##醮 -##醯 -##醴 -##醺 -##釀 -##釁 -##采 -##釉 -##释 -##釋 -##里 -##重 -##野 -##量 -##釐 -##金 -##釗 -##釘 -##釜 -##針 -##釣 -##釦 -##釧 -##釵 -##鈀 -##鈉 -##鈍 -##鈎 -##鈔 -##鈕 -##鈞 -##鈣 -##鈦 -##鈪 -##鈴 -##鈺 -##鈾 -##鉀 -##鉄 -##鉅 -##鉉 -##鉑 -##鉗 -##鉚 -##鉛 -##鉤 -##鉴 -##鉻 -##銀 -##銃 -##銅 -##銑 -##銓 -##銖 -##銘 -##銜 -##銬 -##銭 -##銮 -##銳 -##銷 -##銹 -##鋁 -##鋅 -##鋒 -##鋤 -##鋪 -##鋰 -##鋸 -##鋼 -##錄 -##錐 -##錘 -##錚 -##錠 -##錢 -##錦 -##錨 -##錫 -##錮 -##錯 -##録 -##錳 -##錶 -##鍊 -##鍋 -##鍍 -##鍛 -##鍥 -##鍰 -##鍵 -##鍺 -##鍾 -##鎂 -##鎊 -##鎌 -##鎏 -##鎔 -##鎖 -##鎗 -##鎚 -##鎧 -##鎬 -##鎮 -##鎳 -##鏈 -##鏖 -##鏗 -##鏘 -##鏞 -##鏟 -##鏡 -##鏢 -##鏤 -##鏽 -##鐘 -##鐮 -##鐲 -##鐳 -##鐵 -##鐸 -##鐺 -##鑄 -##鑊 -##鑑 -##鑒 -##鑣 -##鑫 -##鑰 -##鑲 -##鑼 -##鑽 -##鑾 -##鑿 -##针 -##钉 -##钊 -##钎 -##钏 -##钒 -##钓 -##钗 -##钙 -##钛 -##钜 -##钝 -##钞 -##钟 -##钠 -##钡 -##钢 -##钣 -##钤 -##钥 -##钦 -##钧 -##钨 -##钩 -##钮 -##钯 -##钰 -##钱 -##钳 -##钴 -##钵 -##钺 -##钻 -##钼 -##钾 -##钿 -##铀 -##铁 -##铂 -##铃 -##铄 -##铅 -##铆 -##铉 -##铎 -##铐 -##铛 -##铜 -##铝 -##铠 -##铡 -##铢 -##铣 -##铤 -##铨 -##铩 -##铬 -##铭 -##铮 -##铰 -##铲 -##铵 -##银 -##铸 -##铺 -##链 -##铿 -##销 -##锁 -##锂 -##锄 -##锅 -##锆 -##锈 -##锉 -##锋 -##锌 -##锏 -##锐 -##锑 -##错 -##锚 -##锟 -##锡 -##锢 -##锣 -##锤 -##锥 -##锦 -##锭 -##键 -##锯 -##锰 -##锲 -##锵 -##锹 -##锺 -##锻 -##镀 -##镁 -##镂 -##镇 -##镉 -##镌 -##镍 -##镐 -##镑 -##镕 -##镖 -##镗 -##镛 -##镜 -##镣 -##镭 -##镯 -##镰 -##镳 -##镶 -##長 -##长 -##門 -##閃 -##閉 -##開 -##閎 -##閏 -##閑 -##閒 -##間 -##閔 -##閘 -##閡 -##関 -##閣 -##閥 -##閨 -##閩 -##閱 -##閲 -##閹 -##閻 -##閾 -##闆 -##闇 -##闊 -##闌 -##闍 -##闔 -##闕 -##闖 -##闘 -##關 -##闡 -##闢 -##门 -##闪 -##闫 -##闭 -##问 -##闯 -##闰 -##闲 -##间 -##闵 -##闷 -##闸 -##闹 -##闺 -##闻 -##闽 -##闾 -##阀 -##阁 -##阂 -##阅 -##阆 -##阇 -##阈 -##阉 -##阎 -##阐 -##阑 -##阔 -##阕 -##阖 -##阙 -##阚 -##阜 -##队 -##阡 -##阪 -##阮 -##阱 -##防 -##阳 -##阴 -##阵 -##阶 -##阻 -##阿 -##陀 -##陂 -##附 -##际 -##陆 -##陇 -##陈 -##陋 -##陌 -##降 -##限 -##陕 -##陛 -##陝 -##陞 -##陟 -##陡 -##院 -##陣 -##除 -##陨 -##险 -##陪 -##陰 -##陲 -##陳 -##陵 -##陶 -##陷 -##陸 -##険 -##陽 -##隅 -##隆 -##隈 -##隊 -##隋 -##隍 -##階 -##随 -##隐 -##隔 -##隕 -##隘 -##隙 -##際 -##障 -##隠 -##隣 -##隧 -##隨 -##險 -##隱 -##隴 -##隶 -##隸 -##隻 -##隼 -##隽 -##难 -##雀 -##雁 -##雄 -##雅 -##集 -##雇 -##雉 -##雋 -##雌 -##雍 -##雎 -##雏 -##雑 -##雒 -##雕 -##雖 -##雙 -##雛 -##雜 -##雞 -##離 -##難 -##雨 -##雪 -##雯 -##雰 -##雲 -##雳 -##零 -##雷 -##雹 -##電 -##雾 -##需 -##霁 -##霄 -##霆 -##震 -##霈 -##霉 -##霊 -##霍 -##霎 -##霏 -##霑 -##霓 -##霖 -##霜 -##霞 -##霧 -##霭 -##霰 -##露 -##霸 -##霹 -##霽 -##霾 -##靂 -##靄 -##靈 -##青 -##靓 -##靖 -##静 -##靚 -##靛 -##靜 -##非 -##靠 -##靡 -##面 -##靥 -##靦 -##革 -##靳 -##靴 -##靶 -##靼 -##鞅 -##鞋 -##鞍 -##鞏 -##鞑 -##鞘 -##鞠 -##鞣 -##鞦 -##鞭 -##韆 -##韋 -##韌 -##韓 -##韜 -##韦 -##韧 -##韩 -##韬 -##韭 -##音 -##韵 -##韶 -##韻 -##響 -##頁 -##頂 -##頃 -##項 -##順 -##須 -##頌 -##預 -##頑 -##頒 -##頓 -##頗 -##領 -##頜 -##頡 -##頤 -##頫 -##頭 -##頰 -##頷 -##頸 -##頹 -##頻 -##頼 -##顆 -##題 -##額 -##顎 -##顏 -##顔 -##願 -##顛 -##類 -##顧 -##顫 -##顯 -##顱 -##顴 -##页 -##顶 -##顷 -##项 -##顺 -##须 -##顼 -##顽 -##顾 -##顿 -##颁 -##颂 -##预 -##颅 -##领 -##颇 -##颈 -##颉 -##颊 -##颌 -##颍 -##颐 -##频 -##颓 -##颔 -##颖 -##颗 -##题 -##颚 -##颛 -##颜 -##额 -##颞 -##颠 -##颡 -##颢 -##颤 -##颦 -##颧 -##風 -##颯 -##颱 -##颳 -##颶 -##颼 -##飄 -##飆 -##风 -##飒 -##飓 -##飕 -##飘 -##飙 -##飚 -##飛 -##飞 -##食 -##飢 -##飨 -##飩 -##飪 -##飯 -##飲 -##飼 -##飽 -##飾 -##餃 -##餅 -##餉 -##養 -##餌 -##餐 -##餒 -##餓 -##餘 -##餚 -##餛 -##餞 -##餡 -##館 -##餮 -##餵 -##餾 -##饅 -##饈 -##饋 -##饌 -##饍 -##饑 -##饒 -##饕 -##饗 -##饞 -##饥 -##饨 -##饪 -##饬 -##饭 -##饮 -##饯 -##饰 -##饱 -##饲 -##饴 -##饵 -##饶 -##饷 -##饺 -##饼 -##饽 -##饿 -##馀 -##馁 -##馄 -##馅 -##馆 -##馈 -##馋 -##馍 -##馏 -##馒 -##馔 -##首 -##馗 -##香 -##馥 -##馨 -##馬 -##馭 -##馮 -##馳 -##馴 -##駁 -##駄 -##駅 -##駆 -##駐 -##駒 -##駕 -##駛 -##駝 -##駭 -##駱 -##駿 -##騁 -##騎 -##騏 -##験 -##騙 -##騨 -##騰 -##騷 -##驀 -##驅 -##驊 -##驍 -##驒 -##驕 -##驗 -##驚 -##驛 -##驟 -##驢 -##驥 -##马 -##驭 -##驮 -##驯 -##驰 -##驱 -##驳 -##驴 -##驶 -##驷 -##驸 -##驹 -##驻 -##驼 -##驾 -##驿 -##骁 -##骂 -##骄 -##骅 -##骆 -##骇 -##骈 -##骊 -##骋 -##验 -##骏 -##骐 -##骑 -##骗 -##骚 -##骛 -##骜 -##骞 -##骠 -##骡 -##骤 -##骥 -##骧 -##骨 -##骯 -##骰 -##骶 -##骷 -##骸 -##骼 -##髂 -##髅 -##髋 -##髏 -##髒 -##髓 -##體 -##髖 -##高 -##髦 -##髪 -##髮 -##髯 -##髻 -##鬃 -##鬆 -##鬍 -##鬓 -##鬚 -##鬟 -##鬢 -##鬣 -##鬥 -##鬧 -##鬱 -##鬼 -##魁 -##魂 -##魄 -##魅 -##魇 -##魍 -##魏 -##魔 -##魘 -##魚 -##魯 -##魷 -##鮑 -##鮨 -##鮪 -##鮭 -##鮮 -##鯉 -##鯊 -##鯖 -##鯛 -##鯨 -##鯰 -##鯽 -##鰍 -##鰓 -##鰭 -##鰲 -##鰻 -##鰾 -##鱈 -##鱉 -##鱔 -##鱗 -##鱷 -##鱸 -##鱼 -##鱿 -##鲁 -##鲈 -##鲍 -##鲑 -##鲛 -##鲜 -##鲟 -##鲢 -##鲤 -##鲨 -##鲫 -##鲱 -##鲲 -##鲶 -##鲷 -##鲸 -##鳃 -##鳄 -##鳅 -##鳌 -##鳍 -##鳕 -##鳖 -##鳗 -##鳝 -##鳞 -##鳥 -##鳩 -##鳳 -##鳴 -##鳶 -##鴉 -##鴕 -##鴛 -##鴦 -##鴨 -##鴻 -##鴿 -##鵑 -##鵜 -##鵝 -##鵡 -##鵬 -##鵰 -##鵲 -##鶘 -##鶩 -##鶯 -##鶴 -##鷗 -##鷲 -##鷹 -##鷺 -##鸚 -##鸞 -##鸟 -##鸠 -##鸡 -##鸢 -##鸣 -##鸥 -##鸦 -##鸨 -##鸪 -##鸭 -##鸯 -##鸳 -##鸵 -##鸽 -##鸾 -##鸿 -##鹂 -##鹃 -##鹄 -##鹅 -##鹈 -##鹉 -##鹊 -##鹌 -##鹏 -##鹑 -##鹕 -##鹘 -##鹜 -##鹞 -##鹤 -##鹦 -##鹧 -##鹫 -##鹭 -##鹰 -##鹳 -##鹵 -##鹹 -##鹼 -##鹽 -##鹿 -##麂 -##麋 -##麒 -##麓 -##麗 -##麝 -##麟 -##麥 -##麦 -##麩 -##麴 -##麵 -##麸 -##麺 -##麻 -##麼 -##麽 -##麾 -##黃 -##黄 -##黍 -##黎 -##黏 -##黑 -##黒 -##黔 -##默 -##黛 -##黜 -##黝 -##點 -##黠 -##黨 -##黯 -##黴 -##鼋 -##鼎 -##鼐 -##鼓 -##鼠 -##鼬 -##鼹 -##鼻 -##鼾 -##齁 -##齊 -##齋 -##齐 -##齒 -##齡 -##齢 -##齣 -##齦 -##齿 -##龄 -##龅 -##龈 -##龊 -##龋 -##龌 -##龍 -##龐 -##龔 -##龕 -##龙 -##龚 -##龛 -##龜 -##龟 -##︰ -##︱ -##︶ -##︿ -##﹁ -##﹂ -##﹍ -##﹏ -##﹐ -##﹑ -##﹒ -##﹔ -##﹕ -##﹖ -##﹗ -##﹙ -##﹚ -##﹝ -##﹞ -##﹡ -##﹣ -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##, -##- -##. -##/ -##: -##; -##< -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##f -##h -##j -##u -##w -##z -##{ -##} -##。 -##「 -##」 -##、 -##・ -##ッ -##ー -##イ -##ク -##シ -##ス -##ト -##ノ -##フ -##ラ -##ル -##ン -##゙ -##゚ -## ̄ -##¥ -##👍 -##🔥 -##😂 -##😎 diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_1p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_1p.sh index ff70a546a5c55fdee7ed394da559b91cfa09b37a..771488ea15bc6699199b550c8a6f682f8c4fe7c8 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_1p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_1p.sh @@ -105,8 +105,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=32 \ - --num_train_epochs=2 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --learning_rate=3e-5 \ --max_seq_length=384 \ --doc_stride=128 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_8p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_8p.sh index 40a41dc7c2cc1f04971cea46a06458a061c29e34..a12eeef6d5f5d1c2f593e65235c7de3686d35d10 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_full_8p.sh @@ -107,8 +107,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=32 \ - --num_train_epochs=2 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --learning_rate=3e-5 \ --max_seq_length=384 \ --doc_stride=128 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_1p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_1p.sh index b11e96d6a07b00abf03721f947ecd89cd256d4ef..0d67fba344620ab05afedff404e4acbe7f2869e6 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_1p.sh @@ -105,8 +105,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=32 \ - --num_train_epochs=1 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --num_train_steps=1000 \ --learning_rate=3e-5 \ --max_seq_length=384 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_8p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_8p.sh index 55f784e2491f1563e089ad33796b6a2cfc346ebf..c13ecf75593eb3f23e3c3ac5523ba4dca3226426 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID0495_Bert-Squad_performance_8p.sh @@ -107,8 +107,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=32 \ - --num_train_epochs=1 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --num_train_steps=1000 \ --learning_rate=3e-5 \ --max_seq_length=384 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_1p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_1p.sh index a41c04a3c36ab0824140f851d6f931836aaa4f1c..0fc7048a3bacbe715583d1d2c1e6615cd280d035 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_1p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_1p.sh @@ -15,7 +15,7 @@ data_path="" #基础参数 需要模型审视修改 #网络名称,同目录名称 Network="BertLarge-Squad_ID3082_for_TensorFlow" -batch_size=24 +batch_size=32 epoch=2 #维持参数,不需要修改 @@ -104,8 +104,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=24 \ - --num_train_epochs=2 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --learning_rate=3e-5 \ --max_seq_length=384 \ --doc_stride=128 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_8p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_8p.sh index 943c52c52dacbf40f1dcb7d9ae5287514e1097bd..4e53b8c0c86c5c45f30c8bc26965f2c3cd04308e 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_full_8p.sh @@ -16,7 +16,7 @@ data_path="" #基础参数 需要模型审视修改 #网络名称,同目录名称 Network="BertLarge-Squad_ID3082_for_TensorFlow" -batch_size=24 +batch_size=32 epoch=2 #维持参数,不需要修改 @@ -106,8 +106,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=24 \ - --num_train_epochs=2 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --learning_rate=3e-5 \ --max_seq_length=384 \ --doc_stride=128 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_1p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_1p.sh index ef213866b21021eaec6769f97d28e8d9effaecd6..25c14fab37aa242a15ba09fb3878389539eb9ac1 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_1p.sh @@ -15,7 +15,7 @@ data_path="" #基础参数 需要模型审视修改 #网络名称,同目录名称 Network="BertLarge-Squad_ID3082_for_TensorFlow" -batch_size=24 +batch_size=32 epoch=1 @@ -105,8 +105,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=24 \ - --num_train_epochs=1 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --num_train_steps=1000 \ --learning_rate=3e-5 \ --max_seq_length=384 \ diff --git a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_8p.sh b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_8p.sh index 28c3e9bf564244e3c3c682e2de59d579bd269b60..7634bcad70fc146c04c165a8682f8638f3f17f99 100644 --- a/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertGoogle_Series_for_TensorFlow/test/train_ID3082_BertLarge-Squad_performance_8p.sh @@ -16,7 +16,7 @@ data_path="" #基础参数 需要模型审视修改 #网络名称,同目录名称 Network="BertLarge-Squad_ID3082_for_TensorFlow" -batch_size=24 +batch_size=32 epoch=1 #维持参数,不需要修改 @@ -106,8 +106,8 @@ do --do_predict=True \ --do_train=True \ --predict_file=$predict_file \ - --train_batch_size=24 \ - --num_train_epochs=1 \ + --train_batch_size=${batch_size} \ + --num_train_epochs=${epoch} \ --num_train_steps=1000 \ --learning_rate=3e-5 \ --max_seq_length=384 \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/create_pretraining_data.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/create_pretraining_data.py deleted file mode 100644 index ec94c765bde139fe6826f1b37236aa7950c05544..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/create_pretraining_data.py +++ /dev/null @@ -1,457 +0,0 @@ -# coding=utf-8 -# Copyright 2018 The Google AI Language Team Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -============================================================================== -# -# Copyright 2020 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Create masked LM/next sentence masked_lm TF examples for BERT.""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import collections -import random -import tokenization -import tensorflow as tf - -flags = tf.flags - -FLAGS = flags.FLAGS - -flags.DEFINE_string("input_file", None, - "Input raw text file (or comma-separated list of files).") - -flags.DEFINE_string( - "output_file", None, - "Output TF example file (or comma-separated list of files).") - -flags.DEFINE_string("vocab_file", None, - "The vocabulary file that the BERT model was trained on.") - -flags.DEFINE_bool( - "do_lower_case", True, - "Whether to lower case the input text. Should be True for uncased " - "models and False for cased models.") - -flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") - -flags.DEFINE_integer("max_predictions_per_seq", 20, - "Maximum number of masked LM predictions per sequence.") - -flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") - -flags.DEFINE_integer( - "dupe_factor", 10, - "Number of times to duplicate the input data (with different masks).") - -flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") - -flags.DEFINE_float( - "short_seq_prob", 0.1, - "Probability of creating sequences which are shorter than the " - "maximum length.") - - -class TrainingInstance(object): - """A single training instance (sentence pair).""" - - def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, - is_random_next): - self.tokens = tokens - self.segment_ids = segment_ids - self.is_random_next = is_random_next - self.masked_lm_positions = masked_lm_positions - self.masked_lm_labels = masked_lm_labels - - def __str__(self): - s = "" - s += "tokens: %s\n" % (" ".join( - [tokenization.printable_text(x) for x in self.tokens])) - s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) - s += "is_random_next: %s\n" % self.is_random_next - s += "masked_lm_positions: %s\n" % (" ".join( - [str(x) for x in self.masked_lm_positions])) - s += "masked_lm_labels: %s\n" % (" ".join( - [tokenization.printable_text(x) for x in self.masked_lm_labels])) - s += "\n" - return s - - def __repr__(self): - return self.__str__() - - -def write_instance_to_example_files(instances, tokenizer, max_seq_length, - max_predictions_per_seq, output_files): - """Create TF example files from `TrainingInstance`s.""" - writers = [] - for output_file in output_files: - writers.append(tf.python_io.TFRecordWriter(output_file)) - - writer_index = 0 - - total_written = 0 - for (inst_index, instance) in enumerate(instances): - input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) - input_mask = [1] * len(input_ids) - segment_ids = list(instance.segment_ids) - assert len(input_ids) <= max_seq_length - - while len(input_ids) < max_seq_length: - input_ids.append(0) - input_mask.append(0) - segment_ids.append(0) - - assert len(input_ids) == max_seq_length - assert len(input_mask) == max_seq_length - assert len(segment_ids) == max_seq_length - - masked_lm_positions = list(instance.masked_lm_positions) - masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) - masked_lm_weights = [1.0] * len(masked_lm_ids) - - while len(masked_lm_positions) < max_predictions_per_seq: - masked_lm_positions.append(0) - masked_lm_ids.append(0) - masked_lm_weights.append(0.0) - - next_sentence_label = 1 if instance.is_random_next else 0 - - features = collections.OrderedDict() - features["input_ids"] = create_int_feature(input_ids) - features["input_mask"] = create_int_feature(input_mask) - features["segment_ids"] = create_int_feature(segment_ids) - features["masked_lm_positions"] = create_int_feature(masked_lm_positions) - features["masked_lm_ids"] = create_int_feature(masked_lm_ids) - features["masked_lm_weights"] = create_float_feature(masked_lm_weights) - features["next_sentence_labels"] = create_int_feature([next_sentence_label]) - - tf_example = tf.train.Example(features=tf.train.Features(feature=features)) - - writers[writer_index].write(tf_example.SerializeToString()) - writer_index = (writer_index + 1) % len(writers) - - total_written += 1 - - if inst_index < 20: - tf.logging.info("*** Example ***") - tf.logging.info("tokens: %s" % " ".join( - [tokenization.printable_text(x) for x in instance.tokens])) - - for feature_name in features.keys(): - feature = features[feature_name] - values = [] - if feature.int64_list.value: - values = feature.int64_list.value - elif feature.float_list.value: - values = feature.float_list.value - tf.logging.info( - "%s: %s" % (feature_name, " ".join([str(x) for x in values]))) - - for writer in writers: - writer.close() - - tf.logging.info("Wrote %d total instances", total_written) - - -def create_int_feature(values): - feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) - return feature - - -def create_float_feature(values): - feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) - return feature - - -def create_training_instances(input_files, tokenizer, max_seq_length, - dupe_factor, short_seq_prob, masked_lm_prob, - max_predictions_per_seq, rng): - """Create `TrainingInstance`s from raw text.""" - all_documents = [[]] - - # Input file format: - # (1) One sentence per line. These should ideally be actual sentences, not - # entire paragraphs or arbitrary spans of text. (Because we use the - # sentence boundaries for the "next sentence prediction" task). - # (2) Blank lines between documents. Document boundaries are needed so - # that the "next sentence prediction" task doesn't span between documents. - for input_file in input_files: - with tf.gfile.GFile(input_file, "r") as reader: - while True: - line = tokenization.convert_to_unicode(reader.readline()) - if not line: - break - line = line.strip() - - # Empty lines are used as document delimiters - if not line: - all_documents.append([]) - tokens = tokenizer.tokenize(line) - if tokens: - all_documents[-1].append(tokens) - - # Remove empty documents - all_documents = [x for x in all_documents if x] - rng.shuffle(all_documents) - - vocab_words = list(tokenizer.vocab.keys()) - instances = [] - for _ in range(dupe_factor): - for document_index in range(len(all_documents)): - instances.extend( - create_instances_from_document( - all_documents, document_index, max_seq_length, short_seq_prob, - masked_lm_prob, max_predictions_per_seq, vocab_words, rng)) - - rng.shuffle(instances) - return instances - - -def create_instances_from_document( - all_documents, document_index, max_seq_length, short_seq_prob, - masked_lm_prob, max_predictions_per_seq, vocab_words, rng): - """Creates `TrainingInstance`s for a single document.""" - document = all_documents[document_index] - - # Account for [CLS], [SEP], [SEP] - max_num_tokens = max_seq_length - 3 - - # We *usually* want to fill up the entire sequence since we are padding - # to `max_seq_length` anyways, so short sequences are generally wasted - # computation. However, we *sometimes* - # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter - # sequences to minimize the mismatch between pre-training and fine-tuning. - # The `target_seq_length` is just a rough target however, whereas - # `max_seq_length` is a hard limit. - target_seq_length = max_num_tokens - if rng.random() < short_seq_prob: - target_seq_length = rng.randint(2, max_num_tokens) - - # We DON'T just concatenate all of the tokens from a document into a long - # sequence and choose an arbitrary split point because this would make the - # next sentence prediction task too easy. Instead, we split the input into - # segments "A" and "B" based on the actual "sentences" provided by the user - # input. - instances = [] - current_chunk = [] - current_length = 0 - i = 0 - while i < len(document): - segment = document[i] - current_chunk.append(segment) - current_length += len(segment) - if i == len(document) - 1 or current_length >= target_seq_length: - if current_chunk: - # `a_end` is how many segments from `current_chunk` go into the `A` - # (first) sentence. - a_end = 1 - if len(current_chunk) >= 2: - a_end = rng.randint(1, len(current_chunk) - 1) - - tokens_a = [] - for j in range(a_end): - tokens_a.extend(current_chunk[j]) - - tokens_b = [] - # Random next - is_random_next = False - if len(current_chunk) == 1 or rng.random() < 0.5: - is_random_next = True - target_b_length = target_seq_length - len(tokens_a) - - # This should rarely go for more than one iteration for large - # corpora. However, just to be careful, we try to make sure that - # the random document is not the same as the document - # we're processing. - for _ in range(10): - random_document_index = rng.randint(0, len(all_documents) - 1) - if random_document_index != document_index: - break - - random_document = all_documents[random_document_index] - random_start = rng.randint(0, len(random_document) - 1) - for j in range(random_start, len(random_document)): - tokens_b.extend(random_document[j]) - if len(tokens_b) >= target_b_length: - break - # We didn't actually use these segments so we "put them back" so - # they don't go to waste. - num_unused_segments = len(current_chunk) - a_end - i -= num_unused_segments - # Actual next - else: - is_random_next = False - for j in range(a_end, len(current_chunk)): - tokens_b.extend(current_chunk[j]) - truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) - - assert len(tokens_a) >= 1 - assert len(tokens_b) >= 1 - - tokens = [] - segment_ids = [] - tokens.append("[CLS]") - segment_ids.append(0) - for token in tokens_a: - tokens.append(token) - segment_ids.append(0) - - tokens.append("[SEP]") - segment_ids.append(0) - - for token in tokens_b: - tokens.append(token) - segment_ids.append(1) - tokens.append("[SEP]") - segment_ids.append(1) - - (tokens, masked_lm_positions, - masked_lm_labels) = create_masked_lm_predictions( - tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng) - instance = TrainingInstance( - tokens=tokens, - segment_ids=segment_ids, - is_random_next=is_random_next, - masked_lm_positions=masked_lm_positions, - masked_lm_labels=masked_lm_labels) - instances.append(instance) - current_chunk = [] - current_length = 0 - i += 1 - - return instances - - -MaskedLmInstance = collections.namedtuple("MaskedLmInstance", - ["index", "label"]) - - -def create_masked_lm_predictions(tokens, masked_lm_prob, - max_predictions_per_seq, vocab_words, rng): - """Creates the predictions for the masked LM objective.""" - - cand_indexes = [] - for (i, token) in enumerate(tokens): - if token == "[CLS]" or token == "[SEP]": - continue - cand_indexes.append(i) - - rng.shuffle(cand_indexes) - - output_tokens = list(tokens) - - num_to_predict = min(max_predictions_per_seq, - max(1, int(round(len(tokens) * masked_lm_prob)))) - - masked_lms = [] - covered_indexes = set() - for index in cand_indexes: - if len(masked_lms) >= num_to_predict: - break - if index in covered_indexes: - continue - covered_indexes.add(index) - - masked_token = None - # 80% of the time, replace with [MASK] - if rng.random() < 0.8: - masked_token = "[MASK]" - else: - # 10% of the time, keep original - if rng.random() < 0.5: - masked_token = tokens[index] - # 10% of the time, replace with random word - else: - masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] - - output_tokens[index] = masked_token - - masked_lms.append(MaskedLmInstance(index=index, label=tokens[index])) - - masked_lms = sorted(masked_lms, key=lambda x: x.index) - - masked_lm_positions = [] - masked_lm_labels = [] - for p in masked_lms: - masked_lm_positions.append(p.index) - masked_lm_labels.append(p.label) - - return (output_tokens, masked_lm_positions, masked_lm_labels) - - -def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): - """Truncates a pair of sequences to a maximum sequence length.""" - while True: - total_length = len(tokens_a) + len(tokens_b) - if total_length <= max_num_tokens: - break - - trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b - assert len(trunc_tokens) >= 1 - - # We want to sometimes truncate from the front and sometimes from the - # back to add more randomness and avoid biases. - if rng.random() < 0.5: - del trunc_tokens[0] - else: - trunc_tokens.pop() - - -def main(_): - tf.logging.set_verbosity(tf.logging.INFO) - - tokenizer = tokenization.FullTokenizer( - vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) - - input_files = [] - for input_pattern in FLAGS.input_file.split(","): - input_files.extend(tf.gfile.Glob(input_pattern)) - - tf.logging.info("*** Reading from input files ***") - for input_file in input_files: - tf.logging.info(" %s", input_file) - - rng = random.Random(FLAGS.random_seed) - instances = create_training_instances( - input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, - FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, - rng) - - output_files = FLAGS.output_file.split(",") - tf.logging.info("*** Writing to output files ***") - for output_file in output_files: - tf.logging.info(" %s", output_file) - - write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, - FLAGS.max_predictions_per_seq, output_files) - - -if __name__ == "__main__": - flags.mark_flag_as_required("input_file") - flags.mark_flag_as_required("output_file") - flags.mark_flag_as_required("vocab_file") - tf.app.run() diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_pretraining.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_pretraining.py index fdb3eda48c3e6c5c8d8f1153766fdb0ed7d02bd8..b6f357138343571869e6ac2d5fb3b5f56b2d8c88 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_pretraining.py +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_pretraining.py @@ -26,7 +26,7 @@ import modeling import optimization import tensorflow as tf import glob -from utils import LogEvalRunHook +from utils.utils import LogEvalRunHook from tensorflow.core.protobuf import rewriter_config_pb2 from gpu_environment import get_custom_getter @@ -37,6 +37,9 @@ from npu_bridge.estimator.npu.npu_estimator import NPUEstimator os.environ['GE_USE_STATIC_MEMORY'] = '1' +rank_size = int(os.getenv('RANK_SIZE')) +rank_id = int(os.getenv('RANK_ID')) + flags = tf.flags FLAGS = flags.FLAGS @@ -290,7 +293,7 @@ def model_fn_builder(bert_config, init_checkpoint, learning_rate, tvars = tf.trainable_variables() initialized_variable_names = {} - if init_checkpoint and (hvd is None or hvd.rank() == 0): + if init_checkpoint and (rank_id == 0): print("Loading checkpoint", init_checkpoint) (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) @@ -500,9 +503,7 @@ def input_fn_builder(input_files, # For eval, we want no shuffling and parallel reading doesn't matter. if is_training: d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files)) - if FLAGS.distributed: - rank_size = int(os.getenv('RANK_SIZE')) - rank_id = int(os.getenv('RANK_ID')) + if FLAGS.distributed: print('RANK_SIZE=', rank_size, ' RANK_ID=', rank_id) d = d.shard(rank_size, rank_id) d = d.repeat() @@ -633,7 +634,7 @@ def main(_): model_dir=FLAGS.output_dir, save_summary_steps=0, session_config=config, - save_checkpoints_steps=FLAGS.save_checkpoints_steps if not FLAGS.horovod or hvd.rank() == 0 else None, + save_checkpoints_steps=FLAGS.save_checkpoints_steps if rank_id == 0 else 0, # This variable controls how often estimator reports examples/sec. # Default value is every 100 steps. # When --report_loss is True, we set to very large value to prevent @@ -645,12 +646,10 @@ def main(_): is_tailing_optimization=FLAGS.npu_bert_tail_optimize, hcom_parallel=FLAGS.hcom_parallel) - if FLAGS.distributed: - rank_size = int(os.getenv('RANK_SIZE')) model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=FLAGS.init_checkpoint, - learning_rate=FLAGS.learning_rate * rank_size if FLAGS.distributed else FLAGS.learning_rate, + learning_rate=FLAGS.learning_rate, num_train_steps=FLAGS.num_train_steps, num_warmup_steps=FLAGS.num_warmup_steps, use_one_hot_embeddings=False, @@ -688,7 +687,7 @@ def main(_): estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=FLAGS.num_train_steps) - if FLAGS.do_eval and (not FLAGS.horovod or hvd.rank() == 0): + if FLAGS.do_eval and (rank_id == 0): tf.logging.info("***** Running evaluation *****") tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) @@ -710,9 +709,10 @@ def main(_): input_fn=eval_input_fn, steps=FLAGS.max_eval_steps, hooks=eval_hooks) eval_time_elapsed = time.time() - eval_start_time - eval_time_wo_overhead = eval_hooks[-1].total_time - - num_sentences = (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.eval_batch_size + time_list = eval_hooks[-1].time_list + time_list.sort() + eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) + num_sentences = (int(len(time_list) * 0.99)) * FLAGS.eval_batch_size ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead @@ -720,7 +720,7 @@ def main(_): tf.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, eval_hooks[-1].count * FLAGS.eval_batch_size) tf.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, - (eval_hooks[-1].count - eval_hooks[-1].skipped) * FLAGS.eval_batch_size) + num_sentences) tf.logging.info("Summary Inference Statistics on EVAL set") tf.logging.info("Batch size = %d", FLAGS.eval_batch_size) tf.logging.info("Sequence Length = %d", FLAGS.max_seq_length) diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_squad.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_squad.py new file mode 100644 index 0000000000000000000000000000000000000000..56815803e955ee20039632a1b328797c951b1890 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/run_squad.py @@ -0,0 +1,1327 @@ +# coding=utf-8 +# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. +# Copyright 2018 The Google AI Language Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +"""Run BERT on SQuAD 1.1 and SQuAD 2.0.""" + +from __future__ import absolute_import, division, print_function +from npu_bridge.npu_init import * + +import collections +import json +import math +import os +import random +import shutil +import time + +#import horovod.tensorflow as hvd +import numpy as np +import six +import tensorflow as tf +from tensorflow.python.client import device_lib + +import modeling +import optimization +import tokenization +from utils.create_squad_data import * +from utils.utils import LogEvalRunHook, LogTrainRunHook, ExamplesPerSecondHook +#from utils.gpu_affinity import set_affinity +# import utils.dllogger_class +# from dllogger import Verbosity + +flags = tf.flags +FLAGS = None + +rank_size = int(os.getenv('RANK_SIZE')) +rank_id = int(os.getenv('RANK_ID')) + +def extract_run_squad_flags(): + + ## Required parameters + flags.DEFINE_string( + "bert_config_file", None, + "The config json file corresponding to the pre-trained BERT model. " + "This specifies the model architecture.") + + flags.DEFINE_string("vocab_file", None, + "The vocabulary file that the BERT model was trained on.") + + flags.DEFINE_string( + "output_dir", None, + "The output directory where the model checkpoints will be written.") + + ## Other parameters + + flags.DEFINE_string( + "dllog_path", "/results/bert_dllog.json", + "filename where dllogger writes to") + + flags.DEFINE_string("train_file", None, + "SQuAD json for training. E.g., train-v1.1.json") + + flags.DEFINE_string( + "predict_file", None, + "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") + flags.DEFINE_string( + "eval_script", None, + "SQuAD evaluate.py file to compute f1 and exact_match E.g., evaluate-v1.1.py") + + flags.DEFINE_string( + "init_checkpoint", None, + "Initial checkpoint (usually from a pre-trained BERT model).") + + flags.DEFINE_bool( + "do_lower_case", True, + "Whether to lower case the input text. Should be True for uncased " + "models and False for cased models.") + + flags.DEFINE_integer( + "max_seq_length", 384, + "The maximum total input sequence length after WordPiece tokenization. " + "Sequences longer than this will be truncated, and sequences shorter " + "than this will be padded.") + + flags.DEFINE_integer( + "doc_stride", 128, + "When splitting up a long document into chunks, how much stride to " + "take between chunks.") + + flags.DEFINE_integer( + "max_query_length", 64, + "The maximum number of tokens for the question. Questions longer than " + "this will be truncated to this length.") + + flags.DEFINE_bool("do_train", False, "Whether to run training.") + + flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.") + + flags.DEFINE_integer("train_batch_size", 8, "Total batch size for training.") + + flags.DEFINE_integer("predict_batch_size", 8, + "Total batch size for predictions.") + + flags.DEFINE_float("learning_rate", 5e-6, "The initial learning rate for Adam.") + + flags.DEFINE_bool("use_trt", False, "Whether to use TF-TRT") + + flags.DEFINE_bool("horovod", False, "Whether to use Horovod for multi-gpu runs") + + flags.DEFINE_float("num_train_epochs", 3.0, + "Total number of training epochs to perform.") + + flags.DEFINE_integer("num_train_steps", 0, + "How many steps to train.") + + flags.DEFINE_float( + "warmup_proportion", 0.1, + "Proportion of training to perform linear learning rate warmup for. " + "E.g., 0.1 = 10% of training.") + + flags.DEFINE_integer("save_checkpoints_steps", 5000, + "How often to save the model checkpoint.") + flags.DEFINE_integer("display_loss_steps", 100, + "How often to print loss from estimator") + + flags.DEFINE_integer("num_accumulation_steps", 1, + "Number of accumulation steps before gradient update" + "Global batch size = num_accumulation_steps * train_batch_size") + + flags.DEFINE_integer( + "n_best_size", 20, + "The total number of n-best predictions to generate in the " + "nbest_predictions.json output file.") + + flags.DEFINE_integer( + "max_answer_length", 30, + "The maximum length of an answer that can be generated. This is needed " + "because the start and end predictions are not conditioned on one another.") + + + flags.DEFINE_bool( + "verbose_logging", False, + "If true, all of the warnings related to data processing will be printed. " + "A number of warnings are expected for a normal SQuAD evaluation.") + + flags.DEFINE_bool( + "version_2_with_negative", False, + "If true, the SQuAD examples contain some that do not have an answer.") + + flags.DEFINE_float( + "null_score_diff_threshold", 0.0, + "If null_score - best_non_null is greater than the threshold predict null.") + + flags.DEFINE_bool("amp", True, "Whether to enable AMP ops. When false, uses TF32 on A100 and FP32 on V100 GPUS.") + flags.DEFINE_bool("use_xla", False, "Whether to enable XLA JIT compilation.") + flags.DEFINE_integer("num_eval_iterations", None, + "How many eval iterations to run - performs inference on subset") + # npu parameter + flags.DEFINE_bool('npu_bert_debug', False, 'If True, dropout and shuffle is disabled.') + flags.DEFINE_integer('init_loss_scale_value', 2 ** 32, 'Initial loss scale value for loss scale optimizer') + flags.DEFINE_integer("iterations_per_loop", 100, "How many steps to make in each estimator call.") + flags.DEFINE_bool("use_fp16_cls", False, "Whether to use fp16 in cls and pooler.") + flags.DEFINE_bool('npu_bert_fused_gelu', True, 'Whether to use npu defined gelu op') + flags.DEFINE_integer("npu_bert_loss_scale", 0, + "Whether to use loss scale, -1 is disable, 0 is dynamic loss scale, >=1 is static loss scale") + flags.DEFINE_bool("npu_bert_clip_by_global_norm", False, + "Use clip_by_global_norm if True, or use clip_by_norm for each gradient") + + flags.DEFINE_bool('npu_bert_npu_dropout', True, 'Whether to use npu defined dropout op') + + flags.DEFINE_bool('npu_bert_npu_dropout_v3', False, 'Whether to use npu defined dropout_v3 op') + + flags.DEFINE_bool('npu_bert_tail_optimize', False, 'Whether to use npu allreduce tail optimization') + + flags.DEFINE_bool('npu_gather', True, 'Whether to use gather_npu whose backward propagation avoids IndexedSlices') + flags.DEFINE_bool("distributed", False, "Whether to train for multi-npu runs") + flags.DEFINE_bool('hcom_parallel', True, 'Whether to use parallel allreduce') + + flags.DEFINE_bool('use_fast_gelu', True, 'use fast gelu instead gelu') + + flags.DEFINE_bool('npu_bert_use_fused_adam_momentum', False, 'Whether to use fused apply and assign in adam') + + flags.DEFINE_bool('npu_bert_use_fused_lamb_momentum', False, 'Whether to use fused apply and assign in lamb') + flags.DEFINE_string("precision_mode", "allow_mix_precision", "Npu Precision Mode") + flags.DEFINE_bool("enable_exception_dump", False, "Whether to enable excepttion dump.") + flags.DEFINE_bool("data_dump_flag", False, "Whether to dump data.") + flags.DEFINE_string("data_dump_step", "0", "How many steps to dump data.") + flags.DEFINE_string("data_dump_path", "./output/data_dump", "path to dump data.") + flags.DEFINE_bool("over_dump", False, "Whether to over_dump.") + flags.DEFINE_string("over_dump_path", "./output/doverflow_dump", "path to dump overflow data.") + # Triton Specific flags + flags.DEFINE_bool("export_triton", False, "Whether to export saved model or run inference with Triton") + flags.DEFINE_string("triton_model_name", "bert", "exports to appropriate directory for Triton") + flags.DEFINE_integer("triton_model_version", 1, "exports to appropriate directory for Triton") + flags.DEFINE_string("triton_server_url", "localhost:8001", "exports to appropriate directory for Triton") + flags.DEFINE_bool("triton_model_overwrite", False, "If True, will overwrite an existing directory with the specified 'model_name' and 'version_name'") + flags.DEFINE_integer("triton_max_batch_size", 8, "Specifies the 'max_batch_size' in the Triton model config. See the Triton documentation for more info.") + flags.DEFINE_float("triton_dyn_batching_delay", 0, "Determines the dynamic_batching queue delay in milliseconds(ms) for the Triton model config. Use '0' or '-1' to specify static batching. See the Triton documentation for more info.") + flags.DEFINE_integer("triton_engine_count", 1, "Specifies the 'instance_group' count value in the Triton model config. See the Triton documentation for more info.") + flags.mark_flag_as_required("vocab_file") + flags.mark_flag_as_required("bert_config_file") + flags.mark_flag_as_required("output_dir") + + return flags.FLAGS + +def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, + use_one_hot_embeddings): + """Creates a classification model.""" + model = modeling.BertModel( + config=bert_config, + is_training=is_training, + input_ids=input_ids, + input_mask=input_mask, + token_type_ids=segment_ids, + use_one_hot_embeddings=use_one_hot_embeddings, + compute_type=tf.float32) + + final_hidden = model.get_sequence_output() + + final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3) + batch_size = final_hidden_shape[0] + seq_length = final_hidden_shape[1] + hidden_size = final_hidden_shape[2] + + output_weights = tf.get_variable( + "cls/squad/output_weights", [2, hidden_size], + initializer=tf.truncated_normal_initializer(stddev=0.02)) + + output_bias = tf.get_variable( + "cls/squad/output_bias", [2], initializer=tf.zeros_initializer()) + + final_hidden_matrix = tf.reshape(final_hidden, + [batch_size * seq_length, hidden_size]) + logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True) + logits = tf.nn.bias_add(logits, output_bias) + + logits = tf.reshape(logits, [batch_size, seq_length, 2]) + logits = tf.transpose(logits, [2, 0, 1]) + + unstacked_logits = tf.unstack(logits, axis=0, name='unstack') + + (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1]) + + return (start_logits, end_logits) + +def get_frozen_tftrt_model(bert_config, shape, use_one_hot_embeddings, init_checkpoint): + tf_config = tf.compat.v1.ConfigProto() + tf_config.gpu_options.allow_growth = True + output_node_names = ['unstack'] + + with tf.Session(config=tf_config) as tf_sess: + input_ids = tf.placeholder(tf.int32, shape, 'input_ids') + input_mask = tf.placeholder(tf.int32, shape, 'input_mask') + segment_ids = tf.placeholder(tf.int32, shape, 'segment_ids') + + (start_logits, end_logits) = create_model(bert_config=bert_config, + is_training=False, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + use_one_hot_embeddings=use_one_hot_embeddings) + + + tvars = tf.trainable_variables() + (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) + tf.train.init_from_checkpoint(init_checkpoint, assignment_map) + tf_sess.run(tf.global_variables_initializer()) + print("LOADED!") + tf.compat.v1.logging.info("**** Trainable Variables ****") + for var in tvars: + init_string = "" + if var.name in initialized_variable_names: + init_string = ", *INIT_FROM_CKPT*" + else: + init_string = ", *NOTTTTTTTTTTTTTTTTTTTTT" + tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) + + frozen_graph = tf.graph_util.convert_variables_to_constants(tf_sess, + tf_sess.graph.as_graph_def(), output_node_names) + + num_nodes = len(frozen_graph.node) + print('Converting graph using TensorFlow-TensorRT...') + from tensorflow.python.compiler.tensorrt import trt_convert as trt + converter = trt.TrtGraphConverter( + input_graph_def=frozen_graph, + nodes_blacklist=output_node_names, + max_workspace_size_bytes=(4096 << 20) - 1000, + precision_mode="FP16" if FLAGS.amp else "FP32", + minimum_segment_size=4, + is_dynamic_op=True, + maximum_cached_engines=1000 + ) + frozen_graph = converter.convert() + + print('Total node count before and after TF-TRT conversion:', + num_nodes, '->', len(frozen_graph.node)) + print('TRT node count:', + len([1 for n in frozen_graph.node if str(n.op) == 'TRTEngineOp'])) + + with tf.io.gfile.GFile("frozen_modelTRT.pb", "wb") as f: + f.write(frozen_graph.SerializeToString()) + + return frozen_graph + + +def model_fn_builder(bert_config, init_checkpoint, learning_rate, + num_train_steps, num_warmup_steps, + hvd=None, amp=False, use_one_hot_embeddings=False): + """Returns `model_fn` closure for Estimator.""" + + def model_fn(features, labels, mode, params): # pylint: disable=unused-argument + """The `model_fn` for Estimator.""" + if FLAGS.verbose_logging: + tf.compat.v1.logging.info("*** Features ***") + for name in sorted(features.keys()): + tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) + + unique_ids = features["unique_ids"] + input_ids = features["input_ids"] + input_mask = features["input_mask"] + segment_ids = features["segment_ids"] + + is_training = (mode == tf.estimator.ModeKeys.TRAIN) + + if not is_training and FLAGS.use_trt: + trt_graph = get_frozen_tftrt_model(bert_config, input_ids.shape, use_one_hot_embeddings, init_checkpoint) + (start_logits, end_logits) = tf.import_graph_def(trt_graph, + input_map={'input_ids':input_ids, 'input_mask':input_mask, 'segment_ids':segment_ids}, + return_elements=['unstack:0', 'unstack:1'], + name='') + predictions = { + "unique_ids": unique_ids, + "start_logits": start_logits, + "end_logits": end_logits, + } + output_spec = tf.estimator.EstimatorSpec( + mode=mode, predictions=predictions) + return output_spec + + (start_logits, end_logits) = create_model( + bert_config=bert_config, + is_training=is_training, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + use_one_hot_embeddings=use_one_hot_embeddings) + + tvars = tf.trainable_variables() + + initialized_variable_names = {} + if init_checkpoint and (rank_id == 0): + (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) + + tf.train.init_from_checkpoint(init_checkpoint, assignment_map) + + if FLAGS.verbose_logging: + tf.compat.v1.logging.info("**** Trainable Variables ****") + for var in tvars: + init_string = "" + if var.name in initialized_variable_names: + init_string = ", *INIT_FROM_CKPT*" + tf.compat.v1.logging.info(" %d name = %s, shape = %s%s", rank_id, var.name, var.shape, + init_string) + + if mode == tf.estimator.ModeKeys.TRAIN: + seq_length = modeling.get_shape_list(input_ids)[1] + + def compute_loss(logits, positions): + one_hot_positions = tf.one_hot( + positions, depth=seq_length, dtype=tf.float32) + log_probs = tf.nn.log_softmax(logits, axis=-1) + loss = -tf.reduce_mean( + tf.reduce_sum(one_hot_positions * log_probs, axis=-1)) + return loss + + start_positions = features["start_positions"] + end_positions = features["end_positions"] + + start_loss = compute_loss(start_logits, start_positions) + end_loss = compute_loss(end_logits, end_positions) + + total_loss = (start_loss + end_loss) / 2.0 + + total_loss = tf.identity(total_loss, name='total_loss') + + train_op = optimization.create_optimizer( + total_loss, learning_rate, num_train_steps, num_warmup_steps, hvd, False, amp, FLAGS.num_accumulation_steps) + + output_spec = NPUEstimatorSpec( + mode=mode, + loss=total_loss, + train_op=train_op) + # output_spec = tf.estimator.EstimatorSpec( + # mode=mode, + # loss=total_loss, + # train_op=train_op) + elif mode == tf.estimator.ModeKeys.PREDICT: + + # dummy_op = tf.no_op() + # # Need to call mixed precision graph rewrite if fp16 to enable graph rewrite + # if amp: + # loss_scaler = FixedLossScaleManager(1) + # dummy_op = tf.train.experimental.enable_mixed_precision_graph_rewrite( + # optimization.LAMBOptimizer(learning_rate=0.0), loss_scaler) + + predictions = { + "unique_ids": tf.identity(unique_ids), + "start_logits": start_logits, + "end_logits": end_logits, + } + output_spec = NPUEstimatorSpec( + mode=mode, predictions=predictions) + # output_spec = tf.estimator.EstimatorSpec( + # mode=mode, predictions=predictions) + else: + raise ValueError( + "Only TRAIN and PREDICT modes are supported: %s" % (mode)) + + return output_spec + + return model_fn + + +def input_fn_builder(input_file, batch_size, seq_length, is_training, drop_remainder, hvd=None): + """Creates an `input_fn` closure to be passed to Estimator.""" + + name_to_features = { + "unique_ids": tf.io.FixedLenFeature([], tf.int64), + "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64), + "input_mask": tf.io.FixedLenFeature([seq_length], tf.int64), + "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64), + } + + if is_training: + name_to_features["start_positions"] = tf.io.FixedLenFeature([], tf.int64) + name_to_features["end_positions"] = tf.io.FixedLenFeature([], tf.int64) + + def _decode_record(record, name_to_features): + """Decodes a record to a TensorFlow example.""" + example = tf.parse_single_example(record, name_to_features) + + # tf.Example only supports tf.int64, but the TPU only supports tf.int32. + # So cast all int64 to int32. + for name in list(example.keys()): + t = example[name] + if t.dtype == tf.int64: + t = tf.to_int32(t) + example[name] = t + + return example + + def input_fn(): + """The actual input function.""" + + # For training, we want a lot of parallel reading and shuffling. + # For eval, we want no shuffling and parallel reading doesn't matter. + if is_training: + d = tf.data.TFRecordDataset(input_file, num_parallel_reads=4) + if rank_size > 1: + d = d.shard(rank_size, rank_id) + d = d.apply(tf.data.experimental.ignore_errors()) + if not FLAGS.npu_bert_debug: + d = d.shuffle(buffer_size=100) + d = d.repeat() + else: + d = tf.data.TFRecordDataset(input_file) + + d = d.apply( + tf.contrib.data.map_and_batch( + lambda record: _decode_record(record, name_to_features), + batch_size=batch_size, + drop_remainder=True)) + + return d + + return input_fn + + + +RawResult = collections.namedtuple("RawResult", + ["unique_id", "start_logits", "end_logits"]) + + +def get_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, + do_lower_case, version_2_with_negative, verbose_logging): + """Get final predictions""" + + example_index_to_features = collections.defaultdict(list) + for feature in all_features: + example_index_to_features[feature.example_index].append(feature) + + unique_id_to_result = {} + for result in all_results: + unique_id_to_result[result.unique_id] = result + + # process unique id issue + max_unique_id = all_results[-1].unique_id + print("max_unique_id=%d" % max_unique_id) + + _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name + "PrelimPrediction", + ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) + + all_predictions = collections.OrderedDict() + all_nbest_json = collections.OrderedDict() + scores_diff_json = collections.OrderedDict() + + for (example_index, example) in enumerate(all_examples): + features = example_index_to_features[example_index] + + prelim_predictions = [] + # keep track of the minimum score of null start+end of position 0 + score_null = 1000000 # large and positive + min_null_feature_index = 0 # the paragraph slice with min mull score + null_start_logit = 0 # the start logit at the slice with min null score + null_end_logit = 0 # the end logit at the slice with min null score + for (feature_index, feature) in enumerate(features): + if feature.unique_id > max_unique_id: + continue + result = unique_id_to_result[feature.unique_id] + start_indexes = _get_best_indexes(result.start_logits, n_best_size) + end_indexes = _get_best_indexes(result.end_logits, n_best_size) + # if we could have irrelevant answers, get the min score of irrelevant + if version_2_with_negative: + feature_null_score = result.start_logits[0] + result.end_logits[0] + if feature_null_score < score_null: + score_null = feature_null_score + min_null_feature_index = feature_index + null_start_logit = result.start_logits[0] + null_end_logit = result.end_logits[0] + for start_index in start_indexes: + for end_index in end_indexes: + # We could hypothetically create invalid predictions, e.g., predict + # that the start of the span is in the question. We throw out all + # invalid predictions. + if start_index >= len(feature.tokens): + continue + if end_index >= len(feature.tokens): + continue + if start_index not in feature.token_to_orig_map: + continue + if end_index not in feature.token_to_orig_map: + continue + if not feature.token_is_max_context.get(start_index, False): + continue + if end_index < start_index: + continue + length = end_index - start_index + 1 + if length > max_answer_length: + continue + prelim_predictions.append( + _PrelimPrediction( + feature_index=feature_index, + start_index=start_index, + end_index=end_index, + start_logit=result.start_logits[start_index], + end_logit=result.end_logits[end_index])) + + if version_2_with_negative: + prelim_predictions.append( + _PrelimPrediction( + feature_index=min_null_feature_index, + start_index=0, + end_index=0, + start_logit=null_start_logit, + end_logit=null_end_logit)) + prelim_predictions = sorted( + prelim_predictions, + key=lambda x: (x.start_logit + x.end_logit), + reverse=True) + + _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name + "NbestPrediction", ["text", "start_logit", "end_logit"]) + + seen_predictions = {} + nbest = [] + for pred in prelim_predictions: + if len(nbest) >= n_best_size: + break + feature = features[pred.feature_index] + if pred.start_index > 0: # this is a non-null prediction + tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] + orig_doc_start = feature.token_to_orig_map[pred.start_index] + orig_doc_end = feature.token_to_orig_map[pred.end_index] + orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] + tok_text = " ".join(tok_tokens) + + # De-tokenize WordPieces that have been split off. + tok_text = tok_text.replace(" ##", "") + tok_text = tok_text.replace("##", "") + + # Clean whitespace + tok_text = tok_text.strip() + tok_text = " ".join(tok_text.split()) + orig_text = " ".join(orig_tokens) + + final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) + if final_text in seen_predictions: + continue + + seen_predictions[final_text] = True + else: + final_text = "" + seen_predictions[final_text] = True + nbest.append( + _NbestPrediction( + text=final_text, + start_logit=pred.start_logit, + end_logit=pred.end_logit)) + + # if we didn't inlude the empty option in the n-best, inlcude it + if version_2_with_negative: + if "" not in seen_predictions: + nbest.append( + _NbestPrediction( + text="", start_logit=null_start_logit, + end_logit=null_end_logit)) + # In very rare edge cases we could have no valid predictions. So we + # just create a nonce prediction in this case to avoid failure. + if not nbest: + nbest.append( + _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) + + assert len(nbest) >= 1 + + total_scores = [] + best_non_null_entry = None + for entry in nbest: + total_scores.append(entry.start_logit + entry.end_logit) + if not best_non_null_entry: + if entry.text: + best_non_null_entry = entry + + probs = _compute_softmax(total_scores) + + nbest_json = [] + for (i, entry) in enumerate(nbest): + output = collections.OrderedDict() + output["text"] = entry.text + output["probability"] = probs[i] + output["start_logit"] = entry.start_logit + output["end_logit"] = entry.end_logit + nbest_json.append(output) + + assert len(nbest_json) >= 1 + + if not version_2_with_negative: + all_predictions[example.qas_id] = nbest_json[0]["text"] + else: + # predict "" iff the null score - the score of best non-null > threshold + score_diff = score_null - best_non_null_entry.start_logit - ( + best_non_null_entry.end_logit) + scores_diff_json[example.qas_id] = score_diff + + try: + null_score_diff_threshold = FLAGS.null_score_diff_threshold + except: + null_score_diff_threshold = 0.0 + if score_diff > null_score_diff_threshold: + all_predictions[example.qas_id] = "" + else: + all_predictions[example.qas_id] = best_non_null_entry.text + + all_nbest_json[example.qas_id] = nbest_json + return all_predictions, all_nbest_json, scores_diff_json + +def write_predictions(all_examples, all_features, all_results, n_best_size, + max_answer_length, do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, + version_2_with_negative, verbose_logging): + """Write final predictions to the json file and log-odds of null if needed.""" + + tf.compat.v1.logging.info("Writing predictions to: %s" % (output_prediction_file)) + tf.compat.v1.logging.info("Writing nbest to: %s" % (output_nbest_file)) + + all_predictions, all_nbest_json, scores_diff_json = get_predictions(all_examples, all_features, + all_results, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, verbose_logging) + + with tf.io.gfile.GFile(output_prediction_file, "w") as writer: + writer.write(json.dumps(all_predictions, indent=4) + "\n") + + with tf.io.gfile.GFile(output_nbest_file, "w") as writer: + writer.write(json.dumps(all_nbest_json, indent=4) + "\n") + + if version_2_with_negative: + with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: + writer.write(json.dumps(scores_diff_json, indent=4) + "\n") + + +def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging): + """Project the tokenized prediction back to the original text.""" + + # When we created the data, we kept track of the alignment between original + # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So + # now `orig_text` contains the span of our original text corresponding to the + # span that we predicted. + # + # However, `orig_text` may contain extra characters that we don't want in + # our prediction. + # + # For example, let's say: + # pred_text = steve smith + # orig_text = Steve Smith's + # + # We don't want to return `orig_text` because it contains the extra "'s". + # + # We don't want to return `pred_text` because it's already been normalized + # (the SQuAD eval script also does punctuation stripping/lower casing but + # our tokenizer does additional normalization like stripping accent + # characters). + # + # What we really want to return is "Steve Smith". + # + # Therefore, we have to apply a semi-complicated alignment heruistic between + # `pred_text` and `orig_text` to get a character-to-charcter alignment. This + # can fail in certain cases in which case we just return `orig_text`. + + def _strip_spaces(text): + ns_chars = [] + ns_to_s_map = collections.OrderedDict() + for (i, c) in enumerate(text): + if c == " ": + continue + ns_to_s_map[len(ns_chars)] = i + ns_chars.append(c) + ns_text = "".join(ns_chars) + return (ns_text, ns_to_s_map) + + # We first tokenize `orig_text`, strip whitespace from the result + # and `pred_text`, and check if they are the same length. If they are + # NOT the same length, the heuristic has failed. If they are the same + # length, we assume the characters are one-to-one aligned. + tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) + + tok_text = " ".join(tokenizer.tokenize(orig_text)) + + start_position = tok_text.find(pred_text) + if start_position == -1: + if verbose_logging: + tf.compat.v1.logging.info( + "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) + return orig_text + end_position = start_position + len(pred_text) - 1 + + (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) + (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) + + if len(orig_ns_text) != len(tok_ns_text): + if verbose_logging: + tf.compat.v1.logging.info("Length not equal after stripping spaces: '%s' vs '%s'", + orig_ns_text, tok_ns_text) + return orig_text + + # We then project the characters in `pred_text` back to `orig_text` using + # the character-to-character alignment. + tok_s_to_ns_map = {} + for (i, tok_index) in six.iteritems(tok_ns_to_s_map): + tok_s_to_ns_map[tok_index] = i + + orig_start_position = None + if start_position in tok_s_to_ns_map: + ns_start_position = tok_s_to_ns_map[start_position] + if ns_start_position in orig_ns_to_s_map: + orig_start_position = orig_ns_to_s_map[ns_start_position] + + if orig_start_position is None: + if verbose_logging: + tf.compat.v1.logging.info("Couldn't map start position") + return orig_text + + orig_end_position = None + if end_position in tok_s_to_ns_map: + ns_end_position = tok_s_to_ns_map[end_position] + if ns_end_position in orig_ns_to_s_map: + orig_end_position = orig_ns_to_s_map[ns_end_position] + + if orig_end_position is None: + if verbose_logging: + tf.compat.v1.logging.info("Couldn't map end position") + return orig_text + + output_text = orig_text[orig_start_position:(orig_end_position + 1)] + return output_text + + +def _get_best_indexes(logits, n_best_size): + """Get the n-best logits from a list.""" + index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) + + best_indexes = [] + for i in range(len(index_and_score)): + if i >= n_best_size: + break + best_indexes.append(index_and_score[i][0]) + return best_indexes + + +def _compute_softmax(scores): + """Compute softmax probability over raw logits.""" + if not scores: + return [] + + max_score = None + for score in scores: + if max_score is None or score > max_score: + max_score = score + + exp_scores = [] + total_sum = 0.0 + for score in scores: + x = math.exp(score - max_score) + exp_scores.append(x) + total_sum += x + + probs = [] + for score in exp_scores: + probs.append(score / total_sum) + return probs + + + +def validate_flags_or_throw(bert_config): + """Validate the input FLAGS or throw an exception.""" + tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, + FLAGS.init_checkpoint) + + if not FLAGS.do_train and not FLAGS.do_predict and not FLAGS.export_triton: + raise ValueError("At least one of `do_train` or `do_predict` or `export_SavedModel` must be True.") + + if FLAGS.do_train: + if not FLAGS.train_file: + raise ValueError( + "If `do_train` is True, then `train_file` must be specified.") + if FLAGS.do_predict: + if not FLAGS.predict_file: + raise ValueError( + "If `do_predict` is True, then `predict_file` must be specified.") + + if FLAGS.max_seq_length > bert_config.max_position_embeddings: + raise ValueError( + "Cannot use sequence length %d because the BERT model " + "was only trained up to sequence length %d" % + (FLAGS.max_seq_length, bert_config.max_position_embeddings)) + + if FLAGS.max_seq_length <= FLAGS.max_query_length + 3: + raise ValueError( + "The max_seq_length (%d) must be greater than max_query_length " + "(%d) + 3" % (FLAGS.max_seq_length, FLAGS.max_query_length)) + + +def export_model(estimator, export_dir, init_checkpoint): + """Exports a checkpoint in SavedModel format in a directory structure compatible with Triton.""" + def serving_input_fn(): + label_ids = tf.placeholder(tf.int32, [None,], name='unique_ids') + input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids') + input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask') + segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids') + input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({ + 'unique_ids': label_ids, + 'input_ids': input_ids, + 'input_mask': input_mask, + 'segment_ids': segment_ids, + })() + return input_fn + + saved_dir = estimator.export_savedmodel( + export_dir, + serving_input_fn, + assets_extra=None, + as_text=False, + checkpoint_path=init_checkpoint, + strip_default_attrs=False) + + model_name = FLAGS.triton_model_name + + model_folder = export_dir + "/triton_models/" + model_name + version_folder = model_folder + "/" + str(FLAGS.triton_model_version) + final_model_folder = version_folder + "/model.savedmodel" + + if not os.path.exists(version_folder): + os.makedirs(version_folder) + + if (not os.path.exists(final_model_folder)): + os.rename(saved_dir, final_model_folder) + print("Model saved to dir", final_model_folder) + else: + if (FLAGS.triton_model_overwrite): + shutil.rmtree(final_model_folder) + os.rename(saved_dir, final_model_folder) + print("WARNING: Existing model was overwritten. Model dir: {}".format(final_model_folder)) + else: + print("ERROR: Could not save Triton model. Folder already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model. Model dir: {}".format(final_model_folder)) + return + + # Now build the config for Triton. Check to make sure we can overwrite it, if it exists + config_filename = os.path.join(model_folder, "config.pbtxt") + + optimization_str = "" + if FLAGS.amp: + optimization_str = r""" +optimization { + execution_accelerators + { + gpu_execution_accelerator : + [ { + name : "auto_mixed_precision" + } ] + } +}""" + + if (os.path.exists(config_filename) and not FLAGS.triton_model_overwrite): + print("ERROR: Could not save Triton model config. Config file already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model config. Model config: {}".format(config_filename)) + return + + config_template = r""" +name: "{model_name}" +platform: "tensorflow_savedmodel" +max_batch_size: {max_batch_size} +{optimization_str} +input [ + {{ + name: "unique_ids" + data_type: TYPE_INT32 + dims: [ 1 ] + reshape: {{ shape: [ ] }} + }}, + {{ + name: "segment_ids" + data_type: TYPE_INT32 + dims: {seq_length} + }}, + {{ + name: "input_ids" + data_type: TYPE_INT32 + dims: {seq_length} + }}, + {{ + name: "input_mask" + data_type: TYPE_INT32 + dims: {seq_length} + }} + ] + output [ + {{ + name: "end_logits" + data_type: TYPE_FP32 + dims: {seq_length} + }}, + {{ + name: "start_logits" + data_type: TYPE_FP32 + dims: {seq_length} + }} +] +{dynamic_batching} +instance_group [ + {{ + count: {engine_count} + }} +]""" + + batching_str = "" + max_batch_size = FLAGS.triton_max_batch_size + + if (FLAGS.triton_dyn_batching_delay > 0): + + # Use only full and half full batches + pref_batch_size = [int(max_batch_size / 2.0), max_batch_size] + + batching_str = r""" +dynamic_batching {{ + preferred_batch_size: [{0}] + max_queue_delay_microseconds: {1} +}}""".format(", ".join([str(x) for x in pref_batch_size]), int(FLAGS.triton_dyn_batching_delay * 1000.0)) + + config_values = { + "model_name": model_name, + "max_batch_size": max_batch_size, + "seq_length": FLAGS.max_seq_length, + "dynamic_batching": batching_str, + "engine_count": FLAGS.triton_engine_count, + "optimization_str":optimization_str, + } + + with open(model_folder + "/config.pbtxt", "w") as file: + + final_config_str = config_template.format_map(config_values) + file.write(final_config_str) + +def main(_): + # setup_xla_flags() + + tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) + # dllogging = utils.dllogger_class.dllogger_class(FLAGS.dllog_path) + + # if FLAGS.horovod: + # hvd.init() + + bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) + + validate_flags_or_throw(bert_config) + + tf.io.gfile.makedirs(FLAGS.output_dir) + + tokenizer = tokenization.FullTokenizer( + vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) + + master_process = True + training_hooks = [] + global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps + # hvd_rank = 0 + + config = tf.ConfigProto( + inter_op_parallelism_threads=0, + intra_op_parallelism_threads=0, + allow_soft_placement=True) + + learning_rate = FLAGS.learning_rate + # if FLAGS.horovod: + if FLAGS.distributed: + tf.compat.v1.logging.info("Multi-NPU training...") + tf.compat.v1.logging.info("rank_size = %d rank_id = %d", rank_size, rank_id) + global_batch_size = FLAGS.train_batch_size * rank_size * FLAGS.num_accumulation_steps + learning_rate = learning_rate * rank_size + master_process = (rank_id == 0) + # hvd_rank = rank_id + # config.gpu_options.visible_device_list = str(hvd.local_rank()) + #set_affinity(hvd.local_rank()) + # if rank_size > 1: + # training_hooks.append(hvd.BroadcastGlobalVariablesHook(0)) + if FLAGS.use_xla: + config.graph_options.optimizer_options.global_jit_level = tf.compat.v1.OptimizerOptions.ON_1 + if FLAGS.amp: + tf.enable_resource_variables() + # run_config = tf.estimator.RunConfig( + # model_dir=FLAGS.output_dir if master_process else None, + # session_config=config, + # save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else 0, + # save_summary_steps=FLAGS.save_checkpoints_steps if master_process else 0, + # log_step_count_steps=FLAGS.display_loss_steps, + # keep_checkpoint_max=1) + + run_config = NPURunConfig( + model_dir=FLAGS.output_dir if master_process else None, + save_checkpoints_steps=FLAGS.save_checkpoints_steps if master_process else 0, + save_summary_steps=0, + iterations_per_loop=FLAGS.iterations_per_loop, + session_config=config, + precision_mode=FLAGS.precision_mode, + log_step_count_steps=None, + is_tailing_optimization=FLAGS.npu_bert_tail_optimize, + hcom_parallel=FLAGS.hcom_parallel) + + if master_process: + tf.compat.v1.logging.info("***** Configuaration *****") + for key in FLAGS.__flags.keys(): + tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) + tf.compat.v1.logging.info("**************************") + + # train_examples = None + num_train_steps = FLAGS.num_train_steps + num_warmup_steps = None + training_hooks.append(ExamplesPerSecondHook(global_batch_size, FLAGS.iterations_per_loop)) + + # Prepare Training Data + if FLAGS.do_train: + # train_examples = read_squad_examples( + # input_file=FLAGS.train_file, is_training=True, + # version_2_with_negative=FLAGS.version_2_with_negative) + # Squad_V1.1 train_examples = 87599 + # Squad_V2.0 train_examples = 130319 + if num_train_steps == 0: + if FLAGS.version_2_with_negative: + num_train_steps = int(130319 / global_batch_size * FLAGS.num_train_epochs) + else: + num_train_steps = int(87599 / global_batch_size * FLAGS.num_train_epochs) + num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) + + # Pre-shuffle the input to avoid having to make a very large shuffle + # buffer in in the `input_fn`. + # rng = random.Random(12345) + # rng.shuffle(train_examples) + # + # start_index = 0 + # end_index = len(train_examples) + # tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record")] + + # if FLAGS.horovod: + # if FLAGS.distributed: + # tmp_filenames = [os.path.join(FLAGS.output_dir, "train.tf_record{}".format(i)) for i in range(rank_size)] + # num_examples_per_rank = len(train_examples) // rank_size + # remainder = len(train_examples) % rank_size + # if rank_id < remainder: + # start_index = rank_id * (num_examples_per_rank + 1) + # end_index = start_index + num_examples_per_rank + 1 + # else: + # start_index = rank_id * num_examples_per_rank + remainder + # end_index = start_index + num_examples_per_rank + + + model_fn = model_fn_builder( + bert_config=bert_config, + init_checkpoint=FLAGS.init_checkpoint, + learning_rate=learning_rate, + num_train_steps=num_train_steps, + num_warmup_steps=num_warmup_steps, + hvd=None if not FLAGS.horovod else hvd, + amp=FLAGS.amp) + + # estimator = tf.estimator.Estimator( + # model_fn=model_fn, + # config=npu_run_config_init(run_config=run_config)) + + estimator = NPUEstimator( + model_fn=model_fn, + config=run_config, + model_dir=FLAGS.output_dir, + params={"batch_size": FLAGS.train_batch_size, "predict_batch_size": FLAGS.predict_batch_size}) + + if FLAGS.do_train: + + # We write to a temporary file to avoid storing very large constant tensors + # in memory. + # train_writer = FeatureWriter( + # filename=tmp_filenames[hvd_rank], + # is_training=True) + # convert_examples_to_features( + # examples=train_examples[start_index:end_index], + # tokenizer=tokenizer, + # max_seq_length=FLAGS.max_seq_length, + # doc_stride=FLAGS.doc_stride, + # max_query_length=FLAGS.max_query_length, + # is_training=True, + # output_fn=train_writer.process_feature, + # verbose_logging=FLAGS.verbose_logging) + # train_writer.close() + + tf.compat.v1.logging.info("***** Running training *****") + # tf.compat.v1.logging.info(" Num orig examples = %d", end_index - start_index) + # tf.compat.v1.logging.info(" Num split examples = %d", train_writer.num_features) + tf.compat.v1.logging.info(" Batch size = %d", FLAGS.train_batch_size) + tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) + tf.compat.v1.logging.info(" LR = %f", learning_rate) + # del train_examples + + train_input_fn = input_fn_builder( + # input_file=tmp_filenames, + input_file=FLAGS.train_file, + batch_size=FLAGS.train_batch_size, + seq_length=FLAGS.max_seq_length, + is_training=True, + drop_remainder=True, + hvd=None if not FLAGS.horovod else hvd) + + # train_start_time = time.time() + estimator.train(input_fn=train_input_fn, hooks=training_hooks, max_steps=num_train_steps) + # train_time_elapsed = time.time() - train_start_time + # train_time_wo_overhead = training_hooks[-1].total_time + # avg_sentences_per_second = num_train_steps * global_batch_size * 1.0 / train_time_elapsed + # ss_sentences_per_second = (num_train_steps - training_hooks[-1].skipped) * global_batch_size * 1.0 / train_time_wo_overhead + + # if master_process: + # tf.compat.v1.logging.info("-----------------------------") + # tf.compat.v1.logging.info("Total Training Time = %0.2f for Sentences = %d", train_time_elapsed, + # num_train_steps * global_batch_size) + # tf.compat.v1.logging.info("Total Training Time W/O Overhead = %0.2f for Sentences = %d", train_time_wo_overhead, + # (num_train_steps - training_hooks[-1].skipped) * global_batch_size) + # tf.compat.v1.logging.info("Throughput Average (sentences/sec) with overhead = %0.2f", avg_sentences_per_second) + # tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) + # # dllogging.logger.log(step=(), data={"throughput_train": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) + # tf.compat.v1.logging.info("-----------------------------") + + + if FLAGS.export_triton and master_process: + export_model(estimator, FLAGS.output_dir, FLAGS.init_checkpoint) + + if FLAGS.do_predict and master_process: + eval_examples = read_squad_examples( + input_file=FLAGS.predict_file, is_training=False, + version_2_with_negative=FLAGS.version_2_with_negative) + + # Perform evaluation on subset, useful for profiling + if FLAGS.num_eval_iterations is not None: + eval_examples = eval_examples[:FLAGS.num_eval_iterations*FLAGS.predict_batch_size] + + eval_writer = FeatureWriter( + filename=os.path.join(FLAGS.output_dir, "eval.tf_record"), + is_training=False) + eval_features = [] + + def append_feature(feature): + eval_features.append(feature) + eval_writer.process_feature(feature) + + convert_examples_to_features( + examples=eval_examples, + tokenizer=tokenizer, + max_seq_length=FLAGS.max_seq_length, + doc_stride=FLAGS.doc_stride, + max_query_length=FLAGS.max_query_length, + is_training=False, + output_fn=append_feature, + verbose_logging=FLAGS.verbose_logging) + eval_writer.close() + + tf.compat.v1.logging.info("***** Running predictions *****") + tf.compat.v1.logging.info(" Num orig examples = %d", len(eval_examples)) + tf.compat.v1.logging.info(" Num split examples = %d", len(eval_features)) + tf.compat.v1.logging.info(" Batch size = %d", FLAGS.predict_batch_size) + + predict_input_fn = input_fn_builder( + input_file=eval_writer.filename, + batch_size=FLAGS.predict_batch_size, + seq_length=FLAGS.max_seq_length, + is_training=False, + drop_remainder=False) + + all_results = [] + eval_hooks = [LogEvalRunHook(FLAGS.predict_batch_size)] + eval_start_time = time.time() + for result in estimator.predict( + predict_input_fn, yield_single_examples=True, hooks=eval_hooks): + if len(all_results) % 1000 == 0: + tf.compat.v1.logging.info("Processing example: %d" % (len(all_results))) + unique_id = int(result["unique_ids"]) + start_logits = [float(x) for x in result["start_logits"].flat] + end_logits = [float(x) for x in result["end_logits"].flat] + all_results.append( + RawResult( + unique_id=unique_id, + start_logits=start_logits, + end_logits=end_logits)) + + eval_time_elapsed = time.time() - eval_start_time + + time_list = eval_hooks[-1].time_list + time_list.sort() + # Removing outliers (init/warmup) in throughput computation. + eval_time_wo_overhead = sum(time_list[:int(len(time_list) * 0.99)]) + num_sentences = (int(len(time_list) * 0.99)) * FLAGS.predict_batch_size + + avg = np.mean(time_list) + cf_50 = max(time_list[:int(len(time_list) * 0.50)]) + cf_90 = max(time_list[:int(len(time_list) * 0.90)]) + cf_95 = max(time_list[:int(len(time_list) * 0.95)]) + cf_99 = max(time_list[:int(len(time_list) * 0.99)]) + cf_100 = max(time_list[:int(len(time_list) * 1)]) + ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead + + tf.compat.v1.logging.info("-----------------------------") + tf.compat.v1.logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, + eval_hooks[-1].count * FLAGS.predict_batch_size) + tf.compat.v1.logging.info("Total Inference Time W/O Overhead = %0.2f for Sentences = %d", eval_time_wo_overhead, + num_sentences) + tf.compat.v1.logging.info("Summary Inference Statistics") + tf.compat.v1.logging.info("Batch size = %d", FLAGS.predict_batch_size) + tf.compat.v1.logging.info("Sequence Length = %d", FLAGS.max_seq_length) + tf.compat.v1.logging.info("Precision = %s", "fp16" if FLAGS.amp else "fp32") + tf.compat.v1.logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) + tf.compat.v1.logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) + tf.compat.v1.logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) + tf.compat.v1.logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) + tf.compat.v1.logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) + tf.compat.v1.logging.info("Latency Average (ms) = %0.2f", avg * 1000) + tf.compat.v1.logging.info("Throughput Average (sentences/sec) = %0.2f", ss_sentences_per_second) + # dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) + tf.compat.v1.logging.info("-----------------------------") + + output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") + output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") + output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") + + write_predictions(eval_examples, eval_features, all_results, + FLAGS.n_best_size, FLAGS.max_answer_length, + FLAGS.do_lower_case, output_prediction_file, + output_nbest_file, output_null_log_odds_file, + FLAGS.version_2_with_negative, FLAGS.verbose_logging) + + if FLAGS.eval_script: + import sys + import subprocess + eval_out = subprocess.check_output([sys.executable, FLAGS.eval_script, + FLAGS.predict_file, output_prediction_file]) + scores = str(eval_out).strip() + print(str(eval_out)) + exact_match = float(scores.split(":")[1].split(",")[0]) + if FLAGS.version_2_with_negative: + f1 = float(scores.split(":")[2].split(",")[0]) + else: + f1 = float(scores.split(":")[2].split("}")[0]) + tf.compat.v1.logging.info("f1 = %2.7f", f1) + tf.compat.v1.logging.info("exact_match = %2.7f", exact_match) + # dllogging.logger.log(step=(), data={"f1": f1}, verbosity=Verbosity.DEFAULT) + # dllogging.logger.log(step=(), data={"exact_match": exact_match}, verbosity=Verbosity.DEFAULT) + + +if __name__ == "__main__": + FLAGS = extract_run_squad_flags() + tf.app.run() diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/__init__.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..effb57b1e893fc03b3782961deb060749083c696 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/__init__.py @@ -0,0 +1,15 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_glue_data.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_glue_data.py new file mode 100644 index 0000000000000000000000000000000000000000..99b70f2a7d7a0878676dd1e06043693d08f278b2 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_glue_data.py @@ -0,0 +1,531 @@ +# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import json +import math +import os +import random +import modeling +import optimization +import tokenization +import six +import tensorflow as tf +#import horovod.tensorflow as hvd +import time +import csv + +flags = tf.flags +FLAGS = None + +def extract_flags(): + + ## Required parameters + flags.DEFINE_string( + "data_dir", None, + "The input data dir. Should contain the .tsv files (or other data files) " + "for the task.") + + flags.DEFINE_string("task_name", None, "The name of the task to train.") + + flags.DEFINE_string("vocab_file", None, + "The vocabulary file that the BERT model was trained on.") + + flags.DEFINE_bool( + "do_lower_case", True, + "Whether to lower case the input text. Should be True for uncased " + "models and False for cased models.") + + flags.DEFINE_integer( + "max_seq_length", 128, + "The maximum total input sequence length after WordPiece tokenization. " + "Sequences longer than this will be truncated, and sequences shorter " + "than this will be padded.") + + flags.DEFINE_bool( + "verbose_logging", False, + "If true, all of the warnings related to data processing will be printed. " + "A number of warnings are expected for a normal SQuAD evaluation.") + flags.mark_flag_as_required("data_dir") + flags.mark_flag_as_required("task_name") + flags.mark_flag_as_required("vocab_file") + return flags.FLAGS + + +class InputExample(object): + """A single training/test example for simple sequence classification.""" + + def __init__(self, guid, text_a, text_b=None, label=None): + """Constructs a InputExample. + Args: + guid: Unique id for the example. + text_a: string. The untokenized text of the first sequence. For single + sequence tasks, only this sequence must be specified. + text_b: (Optional) string. The untokenized text of the second sequence. + Only must be specified for sequence pair tasks. + label: (Optional) string. The label of the example. This should be + specified for train and dev examples, but not for test examples. + """ + self.guid = guid + self.text_a = text_a + self.text_b = text_b + self.label = label + +class PaddingInputExample(object): + """Fake example so the num input examples is a multiple of the batch size. + + When running eval/predict on the TPU, we need to pad the number of examples + to be a multiple of the batch size, because the TPU requires a fixed batch + size. The alternative is to drop the last batch, which is bad because it means + the entire output data won't be generated. + + We use this class instead of `None` because treating `None` as padding + battches could cause silent errors. + """ + +class InputFeatures(object): + """A single set of features of data.""" + + def __init__(self, + input_ids, + input_mask, + segment_ids, + label_id, + is_real_example=True): + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.label_id = label_id + self.is_real_example = is_real_example + + +class DataProcessor(object): + """Base class for data converters for sequence classification data sets.""" + + def get_train_examples(self, data_dir): + """Gets a collection of `InputExample`s for the train set.""" + raise NotImplementedError() + + def get_dev_examples(self, data_dir): + """Gets a collection of `InputExample`s for the dev set.""" + raise NotImplementedError() + + def get_test_examples(self, data_dir): + """Gets a collection of `InputExample`s for prediction.""" + raise NotImplementedError() + + def get_labels(self): + """Gets the list of labels for this data set.""" + raise NotImplementedError() + + @classmethod + def _read_tsv(cls, input_file, quotechar=None): + """Reads a tab separated value file.""" + with tf.gfile.Open(input_file, "r") as f: + reader = csv.reader(f, delimiter="\t", quotechar=quotechar) + lines = [] + for line in reader: + lines.append(line) + return lines + + +class XnliProcessor(DataProcessor): + """Processor for the XNLI data set.""" + + def __init__(self): + self.language = "zh" + + def get_train_examples(self, data_dir): + """See base class.""" + lines = self._read_tsv( + os.path.join(data_dir, "multinli", + "multinli.train.%s.tsv" % self.language)) + examples = [] + for (i, line) in enumerate(lines): + if i == 0: + continue + guid = "train-%d" % (i) + text_a = tokenization.convert_to_unicode(line[0]) + text_b = tokenization.convert_to_unicode(line[1]) + label = tokenization.convert_to_unicode(line[2]) + if label == tokenization.convert_to_unicode("contradictory"): + label = tokenization.convert_to_unicode("contradiction") + examples.append( + InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) + return examples + + def get_dev_examples(self, data_dir): + """See base class.""" + lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) + examples = [] + for (i, line) in enumerate(lines): + if i == 0: + continue + guid = "dev-%d" % (i) + language = tokenization.convert_to_unicode(line[0]) + if language != tokenization.convert_to_unicode(self.language): + continue + text_a = tokenization.convert_to_unicode(line[6]) + text_b = tokenization.convert_to_unicode(line[7]) + label = tokenization.convert_to_unicode(line[1]) + examples.append( + InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) + return examples + + def get_labels(self): + """See base class.""" + return ["contradiction", "entailment", "neutral"] + + +class MnliProcessor(DataProcessor): + """Processor for the MultiNLI data set (GLUE version).""" + + def get_train_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") + + def get_dev_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), + "dev_matched") + + def get_test_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") + + def get_labels(self): + """See base class.""" + return ["contradiction", "entailment", "neutral"] + + def _create_examples(self, lines, set_type): + """Creates examples for the training and dev sets.""" + examples = [] + for (i, line) in enumerate(lines): + if i == 0: + continue + guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) + text_a = tokenization.convert_to_unicode(line[8]) + text_b = tokenization.convert_to_unicode(line[9]) + if set_type == "test": + label = "contradiction" + else: + label = tokenization.convert_to_unicode(line[-1]) + examples.append( + InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) + return examples + + +class MrpcProcessor(DataProcessor): + """Processor for the MRPC data set (GLUE version).""" + + def get_train_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") + + def get_dev_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") + + def get_test_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") + + def get_labels(self): + """See base class.""" + return ["0", "1"] + + def _create_examples(self, lines, set_type): + """Creates examples for the training and dev sets.""" + examples = [] + for (i, line) in enumerate(lines): + if i == 0: + continue + guid = "%s-%s" % (set_type, i) + text_a = tokenization.convert_to_unicode(line[3]) + text_b = tokenization.convert_to_unicode(line[4]) + if set_type == "test": + label = "0" + else: + label = tokenization.convert_to_unicode(line[0]) + examples.append( + InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) + return examples + + +class ColaProcessor(DataProcessor): + """Processor for the CoLA data set (GLUE version).""" + + def get_train_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") + + def get_dev_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") + + def get_test_examples(self, data_dir): + """See base class.""" + return self._create_examples( + self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") + + def get_labels(self): + """See base class.""" + return ["0", "1"] + + def _create_examples(self, lines, set_type): + """Creates examples for the training and dev sets.""" + examples = [] + for (i, line) in enumerate(lines): + # Only the test set has a header + if set_type == "test" and i == 0: + continue + guid = "%s-%s" % (set_type, i) + if set_type == "test": + text_a = tokenization.convert_to_unicode(line[1]) + label = "0" + else: + text_a = tokenization.convert_to_unicode(line[3]) + label = tokenization.convert_to_unicode(line[1]) + examples.append( + InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) + return examples + + +def _truncate_seq_pair(tokens_a, tokens_b, max_length): + """Truncates a sequence pair in place to the maximum length.""" + + # This is a simple heuristic which will always truncate the longer sequence + # one token at a time. This makes more sense than truncating an equal percent + # of tokens from each, since if one sequence is very short then each token + # that's truncated likely contains more information than a longer sequence. + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_length: + break + if len(tokens_a) > len(tokens_b): + tokens_a.pop() + else: + tokens_b.pop() + +def convert_single_example(ex_index, example, label_list, max_seq_length, + tokenizer, verbose_logging=False): + """Converts a single `InputExample` into a single `InputFeatures`.""" + + if isinstance(example, PaddingInputExample): + return InputFeatures( + input_ids=[0] * max_seq_length, + input_mask=[0] * max_seq_length, + segment_ids=[0] * max_seq_length, + label_id=0, + is_real_example=False) + + label_map = {} + for (i, label) in enumerate(label_list): + label_map[label] = i + + tokens_a = tokenizer.tokenize(example.text_a) + tokens_b = None + if example.text_b: + tokens_b = tokenizer.tokenize(example.text_b) + + if tokens_b: + # Modifies `tokens_a` and `tokens_b` in place so that the total + # length is less than the specified length. + # Account for [CLS], [SEP], [SEP] with "- 3" + _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) + else: + # Account for [CLS] and [SEP] with "- 2" + if len(tokens_a) > max_seq_length - 2: + tokens_a = tokens_a[0:(max_seq_length - 2)] + + # The convention in BERT is: + # (a) For sequence pairs: + # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] + # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 + # (b) For single sequences: + # tokens: [CLS] the dog is hairy . [SEP] + # type_ids: 0 0 0 0 0 0 0 + # + # Where "type_ids" are used to indicate whether this is the first + # sequence or the second sequence. The embedding vectors for `type=0` and + # `type=1` were learned during pre-training and are added to the wordpiece + # embedding vector (and position vector). This is not *strictly* necessary + # since the [SEP] token unambiguously separates the sequences, but it makes + # it easier for the model to learn the concept of sequences. + # + # For classification tasks, the first vector (corresponding to [CLS]) is + # used as the "sentence vector". Note that this only makes sense because + # the entire model is fine-tuned. + tokens = [] + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in tokens_a: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + if tokens_b: + for token in tokens_b: + tokens.append(token) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + label_id = label_map[example.label] + if ex_index < 5 and verbose_logging: + tf.compat.v1.logging.info("*** Example ***") + tf.compat.v1.logging.info("guid: %s" % (example.guid)) + tf.compat.v1.logging.info("tokens: %s" % " ".join( + [tokenization.printable_text(x) for x in tokens])) + tf.compat.v1.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) + tf.compat.v1.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) + tf.compat.v1.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) + tf.compat.v1.logging.info("label: %s (id = %d)" % (example.label, label_id)) + + feature = InputFeatures( + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + label_id=label_id, + is_real_example=True) + return feature + +# This function is not used by this file but is still used by the Colab and +# people who depend on it. +def convert_examples_to_features(examples, label_list, max_seq_length, + tokenizer): + """Convert a set of `InputExample`s to a list of `InputFeatures`.""" + + features = [] + for (ex_index, example) in enumerate(examples): + if ex_index % 10000 == 0: + tf.compat.v1.logging.info("Writing example %d of %d" % (ex_index, len(examples))) + + feature = convert_single_example(ex_index, example, label_list, + max_seq_length, tokenizer, FLAGS.verbose_logging) + + features.append(feature) + return features + +def file_based_convert_examples_to_features( + examples, label_list, max_seq_length, tokenizer, output_file): + """Convert a set of `InputExample`s to a TFRecord file.""" + + writer = tf.python_io.TFRecordWriter(output_file) + + for (ex_index, example) in enumerate(examples): + if ex_index % 10000 == 0: + tf.compat.v1.logging.info("Writing example %d of %d" % (ex_index, len(examples))) + + feature = convert_single_example(ex_index, example, label_list, + max_seq_length, tokenizer) + + def create_int_feature(values): + f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) + return f + + features = collections.OrderedDict() + features["input_ids"] = create_int_feature(feature.input_ids) + features["input_mask"] = create_int_feature(feature.input_mask) + features["segment_ids"] = create_int_feature(feature.segment_ids) + features["label_ids"] = create_int_feature([feature.label_id]) + features["is_real_example"] = create_int_feature( + [int(feature.is_real_example)]) + + tf_example = tf.train.Example(features=tf.train.Features(feature=features)) + writer.write(tf_example.SerializeToString()) + writer.close() + +def main(): + processors = { + "cola": ColaProcessor, + "mnli": MnliProcessor, + "mrpc": MrpcProcessor, + "xnli": XnliProcessor, + } + task_name = FLAGS.task_name.lower() + if task_name not in processors: + raise ValueError("Task not found: %s" % (task_name)) + processor = processors[task_name]() + label_list = processor.get_labels() + + tokenizer = tokenization.FullTokenizer( + vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) + tf.gfile.MakeDirs(FLAGS.data_dir + "final_tfrecords_sharded") + train_examples = processor.get_train_examples(FLAGS.data_dir) + train_file = os.path.join(FLAGS.data_dir, "final_tfrecords_sharded/" + task_name + "train.tf_record") + file_based_convert_examples_to_features( + train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) + + eval_examples = processor.get_dev_examples(FLAGS.data_dir) + eval_file = os.path.join(FLAGS.data_dir, "final_tfrecords_sharded/" + task_name + "eval.tf_record") + file_based_convert_examples_to_features( + eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) + + predict_examples = processor.get_test_examples(FLAGS.data_dir) + predict_file = os.path.join(FLAGS.data_dir, "final_tfrecords_sharded/" + task_name + "predict.tf_record") + file_based_convert_examples_to_features(predict_examples, label_list, + FLAGS.max_seq_length, tokenizer, + predict_file) + +if __name__ == "__main__": + (npu_sess, npu_shutdown) = init_resource() + main() + shutdown_resource(npu_sess, npu_shutdown) + close_session(npu_sess) diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_pretraining_data.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_pretraining_data.py new file mode 100644 index 0000000000000000000000000000000000000000..79bfc5940e3e253a664472f243ad015a1c6aee38 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_pretraining_data.py @@ -0,0 +1,522 @@ +# coding=utf-8 +# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. +# Copyright 2018 The Google AI Language Team Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +"""Create masked LM/next sentence masked_lm TF examples for BERT.""" + +from __future__ import absolute_import, division, print_function, unicode_literals + +import argparse +import logging +import os +import random +from io import open +import h5py +import tensorflow as tf +import numpy as np +from tqdm import tqdm, trange + +from tokenization import BertTokenizer +import tokenization as tokenization + +import random +import collections + +class TrainingInstance(object): + """A single training instance (sentence pair).""" + + def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, + is_random_next): + self.tokens = tokens + self.segment_ids = segment_ids + self.is_random_next = is_random_next + self.masked_lm_positions = masked_lm_positions + self.masked_lm_labels = masked_lm_labels + + def __str__(self): + s = "" + s += "tokens: %s\n" % (" ".join( + [tokenization.printable_text(x) for x in self.tokens])) + s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) + s += "is_random_next: %s\n" % self.is_random_next + s += "masked_lm_positions: %s\n" % (" ".join( + [str(x) for x in self.masked_lm_positions])) + s += "masked_lm_labels: %s\n" % (" ".join( + [tokenization.printable_text(x) for x in self.masked_lm_labels])) + s += "\n" + return s + + def __repr__(self): + return self.__str__() + + +def write_instance_to_example_files(instances, tokenizer, max_seq_length, + max_predictions_per_seq, output_files, output_formats="tfrecord"): + """Create TF example files from `TrainingInstance`s.""" + writers = [] + for output_file in output_files: + writers.append(tf.python_io.TFRecordWriter(output_file)) + + writer_index = 0 + + total_written = 0 + if 'hdf5' in output_formats: + features_hdf5 = collections.OrderedDict() + num_instances = len(instances) + features_hdf5["input_ids"] = np.zeros([num_instances, max_seq_length], dtype="int32") + features_hdf5["input_mask"] = np.zeros([num_instances, max_seq_length], dtype="int32") + features_hdf5["segment_ids"] = np.zeros([num_instances, max_seq_length], dtype="int32") + features_hdf5["masked_lm_positions"] = np.zeros([num_instances, max_predictions_per_seq], dtype="int32") + features_hdf5["masked_lm_ids"] = np.zeros([num_instances, max_predictions_per_seq], dtype="int32") + features_hdf5["next_sentence_labels"] = np.zeros(num_instances, dtype="int32") + + for (inst_index, instance) in enumerate(instances): + input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) + input_mask = [1] * len(input_ids) + segment_ids = list(instance.segment_ids) + assert len(input_ids) <= max_seq_length + + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + masked_lm_positions = list(instance.masked_lm_positions) + masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) + masked_lm_weights = [1.0] * len(masked_lm_ids) + + while len(masked_lm_positions) < max_predictions_per_seq: + masked_lm_positions.append(0) + masked_lm_ids.append(0) + masked_lm_weights.append(0.0) + + next_sentence_label = 1 if instance.is_random_next else 0 + + features = collections.OrderedDict() + features["input_ids"] = create_int_feature(input_ids) + features["input_mask"] = create_int_feature(input_mask) + features["segment_ids"] = create_int_feature(segment_ids) + features["masked_lm_positions"] = create_int_feature(masked_lm_positions) + features["masked_lm_ids"] = create_int_feature(masked_lm_ids) + features["masked_lm_weights"] = create_float_feature(masked_lm_weights) + features["next_sentence_labels"] = create_int_feature([next_sentence_label]) + + if 'tfrecord' in output_formats: + tf_example = tf.train.Example(features=tf.train.Features(feature=features)) + writers[writer_index].write(tf_example.SerializeToString()) + if 'hdf5' in output_formats: + features_hdf5["input_ids"][inst_index] = input_ids + features_hdf5["input_mask"][inst_index] = input_mask + features_hdf5["segment_ids"][inst_index] = segment_ids + features_hdf5["masked_lm_positions"][inst_index] = masked_lm_positions + features_hdf5["masked_lm_ids"][inst_index] = masked_lm_ids + features_hdf5["next_sentence_labels"][inst_index] = next_sentence_label + if 'tfrecord' not in output_formats and 'hdf5' not in output_formats: + assert False, 'Either empty output_formats list or unsupported type specified. Try: tfrecord or hdf5' + + writer_index = (writer_index + 1) % len(writers) + + total_written += 1 + + if inst_index < 20: + tf.compat.v1.logging.info("*** Example ***") + tf.compat.v1.logging.info("tokens: %s" % " ".join( + [tokenization.printable_text(x) for x in instance.tokens])) + + for feature_name in features.keys(): + feature = features[feature_name] + values = [] + if feature.int64_list.value: + values = feature.int64_list.value + elif feature.float_list.value: + values = feature.float_list.value + tf.compat.v1.logging.info( + "%s: %s" % (feature_name, " ".join([str(x) for x in values]))) + + for writer in writers: + writer.close() + + if 'hdf5' in output_formats: + f = h5py.File(output_file, 'w') + f.create_dataset("input_ids", data=features_hdf5["input_ids"], dtype='i4', compression='gzip') + f.create_dataset("input_mask", data=features_hdf5["input_mask"], dtype='i1', compression='gzip') + f.create_dataset("segment_ids", data=features_hdf5["segment_ids"], dtype='i1', compression='gzip') + f.create_dataset("masked_lm_positions", data=features_hdf5["masked_lm_positions"], dtype='i4', compression='gzip') + f.create_dataset("masked_lm_ids", data=features_hdf5["masked_lm_ids"], dtype='i4', compression='gzip') + f.create_dataset("next_sentence_labels", data=features_hdf5["next_sentence_labels"], dtype='i1', compression='gzip') + f.flush() + f.close() + + tf.compat.v1.logging.info("Wrote %d total instances", total_written) + + +def create_int_feature(values): + feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) + return feature + + +def create_float_feature(values): + feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) + return feature + + +def create_training_instances(input_files, tokenizer, max_seq_length, + dupe_factor, short_seq_prob, masked_lm_prob, + max_predictions_per_seq, rng): + """Create `TrainingInstance`s from raw text.""" + all_documents = [[]] + + # Input file format: + # (1) One sentence per line. These should ideally be actual sentences, not + # entire paragraphs or arbitrary spans of text. (Because we use the + # sentence boundaries for the "next sentence prediction" task). + # (2) Blank lines between documents. Document boundaries are needed so + # that the "next sentence prediction" task doesn't span between documents. + for input_file in input_files: + print("creating instance from {}".format(input_file)) + with open(input_file, "r") as reader: + while True: + line = tokenization.convert_to_unicode(reader.readline()) + if not line: + break + line = line.strip() + + # Empty lines are used as document delimiters + if not line: + all_documents.append([]) + tokens = tokenizer.tokenize(line) + if tokens: + all_documents[-1].append(tokens) + + # Remove empty documents + all_documents = [x for x in all_documents if x] + rng.shuffle(all_documents) + + vocab_words = list(tokenizer.vocab.keys()) + instances = [] + for _ in range(dupe_factor): + for document_index in range(len(all_documents)): + instances.extend( + create_instances_from_document( + all_documents, document_index, max_seq_length, short_seq_prob, + masked_lm_prob, max_predictions_per_seq, vocab_words, rng)) + + rng.shuffle(instances) + return instances + + +def create_instances_from_document( + all_documents, document_index, max_seq_length, short_seq_prob, + masked_lm_prob, max_predictions_per_seq, vocab_words, rng): + """Creates `TrainingInstance`s for a single document.""" + document = all_documents[document_index] + + # Account for [CLS], [SEP], [SEP] + max_num_tokens = max_seq_length - 3 + + # We *usually* want to fill up the entire sequence since we are padding + # to `max_seq_length` anyways, so short sequences are generally wasted + # computation. However, we *sometimes* + # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter + # sequences to minimize the mismatch between pre-training and fine-tuning. + # The `target_seq_length` is just a rough target however, whereas + # `max_seq_length` is a hard limit. + target_seq_length = max_num_tokens + if rng.random() < short_seq_prob: + target_seq_length = rng.randint(2, max_num_tokens) + + # We DON'T just concatenate all of the tokens from a document into a long + # sequence and choose an arbitrary split point because this would make the + # next sentence prediction task too easy. Instead, we split the input into + # segments "A" and "B" based on the actual "sentences" provided by the user + # input. + instances = [] + current_chunk = [] + current_length = 0 + i = 0 + while i < len(document): + segment = document[i] + current_chunk.append(segment) + current_length += len(segment) + if i == len(document) - 1 or current_length >= target_seq_length: + if current_chunk: + # `a_end` is how many segments from `current_chunk` go into the `A` + # (first) sentence. + a_end = 1 + if len(current_chunk) >= 2: + a_end = rng.randint(1, len(current_chunk) - 1) + + tokens_a = [] + for j in range(a_end): + tokens_a.extend(current_chunk[j]) + + tokens_b = [] + # Random next + is_random_next = False + if len(current_chunk) == 1 or rng.random() < 0.5: + is_random_next = True + target_b_length = target_seq_length - len(tokens_a) + + # This should rarely go for more than one iteration for large + # corpora. However, just to be careful, we try to make sure that + # the random document is not the same as the document + # we're processing. + for _ in range(10): + random_document_index = rng.randint(0, len(all_documents) - 1) + if random_document_index != document_index: + break + + #If picked random document is the same as the current document + if random_document_index == document_index: + is_random_next = False + + random_document = all_documents[random_document_index] + random_start = rng.randint(0, len(random_document) - 1) + for j in range(random_start, len(random_document)): + tokens_b.extend(random_document[j]) + if len(tokens_b) >= target_b_length: + break + # We didn't actually use these segments so we "put them back" so + # they don't go to waste. + num_unused_segments = len(current_chunk) - a_end + i -= num_unused_segments + # Actual next + else: + is_random_next = False + for j in range(a_end, len(current_chunk)): + tokens_b.extend(current_chunk[j]) + truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) + + assert len(tokens_a) >= 1 + assert len(tokens_b) >= 1 + + tokens = [] + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in tokens_a: + tokens.append(token) + segment_ids.append(0) + + tokens.append("[SEP]") + segment_ids.append(0) + + for token in tokens_b: + tokens.append(token) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + (tokens, masked_lm_positions, + masked_lm_labels) = create_masked_lm_predictions( + tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng) + instance = TrainingInstance( + tokens=tokens, + segment_ids=segment_ids, + is_random_next=is_random_next, + masked_lm_positions=masked_lm_positions, + masked_lm_labels=masked_lm_labels) + instances.append(instance) + current_chunk = [] + current_length = 0 + i += 1 + + return instances + + +MaskedLmInstance = collections.namedtuple("MaskedLmInstance", + ["index", "label"]) + + +def create_masked_lm_predictions(tokens, masked_lm_prob, + max_predictions_per_seq, vocab_words, rng): + """Creates the predictions for the masked LM objective.""" + + cand_indexes = [] + for (i, token) in enumerate(tokens): + if token == "[CLS]" or token == "[SEP]": + continue + cand_indexes.append(i) + + rng.shuffle(cand_indexes) + + output_tokens = list(tokens) + + num_to_predict = min(max_predictions_per_seq, + max(1, int(round(len(tokens) * masked_lm_prob)))) + + masked_lms = [] + covered_indexes = set() + for index in cand_indexes: + if len(masked_lms) >= num_to_predict: + break + if index in covered_indexes: + continue + covered_indexes.add(index) + + masked_token = None + # 80% of the time, replace with [MASK] + if rng.random() < 0.8: + masked_token = "[MASK]" + else: + # 10% of the time, keep original + if rng.random() < 0.5: + masked_token = tokens[index] + # 10% of the time, replace with random word + else: + masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)] + + output_tokens[index] = masked_token + + masked_lms.append(MaskedLmInstance(index=index, label=tokens[index])) + + masked_lms = sorted(masked_lms, key=lambda x: x.index) + + masked_lm_positions = [] + masked_lm_labels = [] + for p in masked_lms: + masked_lm_positions.append(p.index) + masked_lm_labels.append(p.label) + + return (output_tokens, masked_lm_positions, masked_lm_labels) + + +def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): + """Truncates a pair of sequences to a maximum sequence length.""" + while True: + total_length = len(tokens_a) + len(tokens_b) + if total_length <= max_num_tokens: + break + + trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b + assert len(trunc_tokens) >= 1 + + # We want to sometimes truncate from the front and sometimes from the + # back to add more randomness and avoid biases. + if rng.random() < 0.5: + del trunc_tokens[0] + else: + trunc_tokens.pop() + + +def main(): + parser = argparse.ArgumentParser() + ## Required parameters + parser.add_argument("--vocab_file", + default=None, + type=str, + required=True, + help="The vocabulary the BERT model will train on.") + parser.add_argument("--input_file", + default=None, + type=str, + required=True, + help="The input train corpus. can be directory with .txt files or a path to a single file") + parser.add_argument("--output_file", + default=None, + type=str, + required=True, + help="The output file where the model checkpoints will be written.") + + ## Other parameters + # int + parser.add_argument("--max_seq_length", + default=128, + type=int, + help="The maximum total input sequence length after WordPiece tokenization. \n" + "Sequences longer than this will be truncated, and sequences shorter \n" + "than this will be padded.") + parser.add_argument("--dupe_factor", + default=10, + type=int, + help="Number of times to duplicate the input data (with different masks).") + parser.add_argument("--max_predictions_per_seq", + default=20, + type=int, + help="Maximum sequence length.") + + # floats + + parser.add_argument("--masked_lm_prob", + default=0.15, + type=float, + help="Masked LM probability.") + + parser.add_argument("--short_seq_prob", + default=0.1, + type=float, + help="Probability to create a sequence shorter than maximum sequence length") + + parser.add_argument("--do_lower_case", + action='store_true', + default=True, + help="Whether to lower case the input text. True for uncased models, False for cased models.") + parser.add_argument('--random_seed', + type=int, + default=12345, + help="random seed for initialization") + + args = parser.parse_args() + + tokenizer = BertTokenizer(args.vocab_file, do_lower_case=args.do_lower_case) + + input_files = [] + if os.path.isfile(args.input_file): + input_files.append(args.input_file) + elif os.path.isdir(args.input_file): + input_files = [os.path.join(args.input_file, f) for f in os.listdir(args.input_file) if + (os.path.isfile(os.path.join(args.input_file, f)) and f.endswith('.txt'))] + else: + raise ValueError("{} is not a valid path".format(args.input_file)) + + rng = random.Random(args.random_seed) + instances = create_training_instances( + input_files, tokenizer, args.max_seq_length, args.dupe_factor, + args.short_seq_prob, args.masked_lm_prob, args.max_predictions_per_seq, + rng) + + output_files = args.output_file.split(",") + print("*** Writing to output files ***") + for output_file in output_files: + print(output_file) + + + write_instance_to_example_files(instances, tokenizer, args.max_seq_length, + args.max_predictions_per_seq, output_files) + + +if __name__ == "__main__": + main() + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_squad_data.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_squad_data.py new file mode 100644 index 0000000000000000000000000000000000000000..a65748c0ebaca5dea6ca79acb038dc70288d37ab --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/create_squad_data.py @@ -0,0 +1,581 @@ +# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import collections +import json +import math +import os +import random +import modeling +import optimization +import tokenization +import six +import tensorflow as tf +#import horovod.tensorflow as hvd +import time + +flags = tf.flags +FLAGS = None + +def extract_flags(): + flags.DEFINE_integer( + "max_seq_length", 384, + "The maximum total input sequence length after WordPiece tokenization. " + "Sequences longer than this will be truncated, and sequences shorter " + "than this will be padded.") + + flags.DEFINE_integer( + "doc_stride", 128, + "When splitting up a long document into chunks, how much stride to " + "take between chunks.") + + flags.DEFINE_integer( + "max_query_length", 64, + "The maximum number of tokens for the question. Questions longer than " + "this will be truncated to this length.") + + flags.DEFINE_bool( + "version_2_with_negative", False, + "If true, the SQuAD examples contain some that do not have an answer.") + + flags.DEFINE_string("train_file", None, + "SQuAD json for training. E.g., train-v1.1.json") + + flags.DEFINE_string( + "predict_file", None, + "SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") + + flags.DEFINE_string( + "squad_dir", None, + "The output directory where the model checkpoints will be written.") + + flags.DEFINE_string("vocab_file", None, + "The vocabulary file that the BERT model was trained on.") + + flags.DEFINE_bool( + "do_lower_case", True, + "Whether to lower case the input text. Should be True for uncased " + "models and False for cased models.") + + flags.DEFINE_bool( + "verbose_logging", False, + "If true, all of the warnings related to data processing will be printed. " + "A number of warnings are expected for a normal SQuAD evaluation.") + flags.mark_flag_as_required("train_file") + flags.mark_flag_as_required("predict_file") + flags.mark_flag_as_required("squad_dir") + flags.mark_flag_as_required("vocab_file") + return flags.FLAGS + +class SquadExample(object): + """A single training/test example for simple sequence classification. + + For examples without an answer, the start and end position are -1. + """ + + def __init__(self, + qas_id, + question_text, + doc_tokens, + orig_answer_text=None, + start_position=None, + end_position=None, + is_impossible=False): + self.qas_id = qas_id + self.question_text = question_text + self.doc_tokens = doc_tokens + self.orig_answer_text = orig_answer_text + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + + def __str__(self): + return self.__repr__() + + def __repr__(self): + s = "" + s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) + s += ", question_text: %s" % ( + tokenization.printable_text(self.question_text)) + s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) + if self.start_position: + s += ", start_position: %d" % (self.start_position) + if self.start_position: + s += ", end_position: %d" % (self.end_position) + if self.start_position: + s += ", is_impossible: %r" % (self.is_impossible) + return s + +class InputFeatures(object): + """A single set of features of data.""" + + def __init__(self, + unique_id, + example_index, + doc_span_index, + tokens, + token_to_orig_map, + token_is_max_context, + input_ids, + input_mask, + segment_ids, + start_position=None, + end_position=None, + is_impossible=None): + self.unique_id = unique_id + self.example_index = example_index + self.doc_span_index = doc_span_index + self.tokens = tokens + self.token_to_orig_map = token_to_orig_map + self.token_is_max_context = token_is_max_context + self.input_ids = input_ids + self.input_mask = input_mask + self.segment_ids = segment_ids + self.start_position = start_position + self.end_position = end_position + self.is_impossible = is_impossible + +def read_squad_examples(input_file, is_training, version_2_with_negative=False, input_data=None): + """Return list of SquadExample from input_data or input_file (SQuAD json file)""" + if input_data is None: + with tf.gfile.Open(input_file, "r") as reader: + input_data = json.load(reader)["data"] + + def is_whitespace(c): + if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: + return True + return False + + examples = [] + for entry in input_data: + for paragraph in entry["paragraphs"]: + paragraph_text = paragraph["context"] + doc_tokens = [] + char_to_word_offset = [] + prev_is_whitespace = True + for c in paragraph_text: + if is_whitespace(c): + prev_is_whitespace = True + else: + if prev_is_whitespace: + doc_tokens.append(c) + else: + doc_tokens[-1] += c + prev_is_whitespace = False + char_to_word_offset.append(len(doc_tokens) - 1) + + for qa in paragraph["qas"]: + qas_id = qa["id"] + question_text = qa["question"] + start_position = None + end_position = None + orig_answer_text = None + is_impossible = False + if is_training: + + if version_2_with_negative: + is_impossible = qa["is_impossible"] + if (len(qa["answers"]) != 1) and (not is_impossible): + raise ValueError( + "For training, each question should have exactly 1 answer.") + if not is_impossible: + answer = qa["answers"][0] + orig_answer_text = answer["text"] + answer_offset = answer["answer_start"] + answer_length = len(orig_answer_text) + start_position = char_to_word_offset[answer_offset] + end_position = char_to_word_offset[answer_offset + answer_length - + 1] + # Only add answers where the text can be exactly recovered from the + # document. If this CAN'T happen it's likely due to weird Unicode + # stuff so we will just skip the example. + # + # Note that this means for training mode, every example is NOT + # guaranteed to be preserved. + actual_text = " ".join( + doc_tokens[start_position:(end_position + 1)]) + cleaned_answer_text = " ".join( + tokenization.whitespace_tokenize(orig_answer_text)) + if actual_text.find(cleaned_answer_text) == -1: + tf.logging.warning("Could not find answer: '%s' vs. '%s'", + actual_text, cleaned_answer_text) + continue + else: + start_position = -1 + end_position = -1 + orig_answer_text = "" + + example = SquadExample( + qas_id=qas_id, + question_text=question_text, + doc_tokens=doc_tokens, + orig_answer_text=orig_answer_text, + start_position=start_position, + end_position=end_position, + is_impossible=is_impossible) + examples.append(example) + + return examples + +def _check_is_max_context(doc_spans, cur_span_index, position): + """Check if this is the 'max context' doc span for the token.""" + + # Because of the sliding window approach taken to scoring documents, a single + # token can appear in multiple documents. E.g. + # Doc: the man went to the store and bought a gallon of milk + # Span A: the man went to the + # Span B: to the store and bought + # Span C: and bought a gallon of + # ... + # + # Now the word 'bought' will have two scores from spans B and C. We only + # want to consider the score with "maximum context", which we define as + # the *minimum* of its left and right context (the *sum* of left and + # right context will always be the same, of course). + # + # In the example the maximum context for 'bought' would be span C since + # it has 1 left context and 3 right context, while span B has 4 left context + # and 0 right context. + best_score = None + best_span_index = None + for (span_index, doc_span) in enumerate(doc_spans): + end = doc_span.start + doc_span.length - 1 + if position < doc_span.start: + continue + if position > end: + continue + num_left_context = position - doc_span.start + num_right_context = end - position + score = min(num_left_context, num_right_context) + 0.01 * doc_span.length + if best_score is None or score > best_score: + best_score = score + best_span_index = span_index + + return cur_span_index == best_span_index + +def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, + orig_answer_text): + """Returns tokenized answer spans that better match the annotated answer.""" + + # The SQuAD annotations are character based. We first project them to + # whitespace-tokenized words. But then after WordPiece tokenization, we can + # often find a "better match". For example: + # + # Question: What year was John Smith born? + # Context: The leader was John Smith (1895-1943). + # Answer: 1895 + # + # The original whitespace-tokenized answer will be "(1895-1943).". However + # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match + # the exact answer, 1895. + # + # However, this is not always possible. Consider the following: + # + # Question: What country is the top exporter of electornics? + # Context: The Japanese electronics industry is the lagest in the world. + # Answer: Japan + # + # In this case, the annotator chose "Japan" as a character sub-span of + # the word "Japanese". Since our WordPiece tokenizer does not split + # "Japanese", we just use "Japanese" as the annotation. This is fairly rare + # in SQuAD, but does happen. + tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) + + for new_start in range(input_start, input_end + 1): + for new_end in range(input_end, new_start - 1, -1): + text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) + if text_span == tok_answer_text: + return (new_start, new_end) + + return (input_start, input_end) + + +def convert_examples_to_features(examples, tokenizer, max_seq_length, + doc_stride, max_query_length, is_training, + output_fn, verbose_logging=False): + """Loads a data file into a list of `InputBatch`s.""" + + unique_id = 1000000000 + + for (example_index, example) in enumerate(examples): + query_tokens = tokenizer.tokenize(example.question_text) + + if len(query_tokens) > max_query_length: + query_tokens = query_tokens[0:max_query_length] + + tok_to_orig_index = [] + orig_to_tok_index = [] + all_doc_tokens = [] + for (i, token) in enumerate(example.doc_tokens): + orig_to_tok_index.append(len(all_doc_tokens)) + sub_tokens = tokenizer.tokenize(token) + for sub_token in sub_tokens: + tok_to_orig_index.append(i) + all_doc_tokens.append(sub_token) + + tok_start_position = None + tok_end_position = None + if is_training and example.is_impossible: + tok_start_position = -1 + tok_end_position = -1 + if is_training and not example.is_impossible: + tok_start_position = orig_to_tok_index[example.start_position] + if example.end_position < len(example.doc_tokens) - 1: + tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 + else: + tok_end_position = len(all_doc_tokens) - 1 + (tok_start_position, tok_end_position) = _improve_answer_span( + all_doc_tokens, tok_start_position, tok_end_position, tokenizer, + example.orig_answer_text) + + # The -3 accounts for [CLS], [SEP] and [SEP] + max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 + + # We can have documents that are longer than the maximum sequence length. + # To deal with this we do a sliding window approach, where we take chunks + # of the up to our max length with a stride of `doc_stride`. + _DocSpan = collections.namedtuple( # pylint: disable=invalid-name + "DocSpan", ["start", "length"]) + doc_spans = [] + start_offset = 0 + while start_offset < len(all_doc_tokens): + length = len(all_doc_tokens) - start_offset + if length > max_tokens_for_doc: + length = max_tokens_for_doc + doc_spans.append(_DocSpan(start=start_offset, length=length)) + if start_offset + length == len(all_doc_tokens): + break + start_offset += min(length, doc_stride) + + for (doc_span_index, doc_span) in enumerate(doc_spans): + tokens = [] + token_to_orig_map = {} + token_is_max_context = {} + segment_ids = [] + tokens.append("[CLS]") + segment_ids.append(0) + for token in query_tokens: + tokens.append(token) + segment_ids.append(0) + tokens.append("[SEP]") + segment_ids.append(0) + + for i in range(doc_span.length): + split_token_index = doc_span.start + i + token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] + + is_max_context = _check_is_max_context(doc_spans, doc_span_index, + split_token_index) + token_is_max_context[len(tokens)] = is_max_context + tokens.append(all_doc_tokens[split_token_index]) + segment_ids.append(1) + tokens.append("[SEP]") + segment_ids.append(1) + + input_ids = tokenizer.convert_tokens_to_ids(tokens) + + # The mask has 1 for real tokens and 0 for padding tokens. Only real + # tokens are attended to. + input_mask = [1] * len(input_ids) + + # Zero-pad up to the sequence length. + while len(input_ids) < max_seq_length: + input_ids.append(0) + input_mask.append(0) + segment_ids.append(0) + + assert len(input_ids) == max_seq_length + assert len(input_mask) == max_seq_length + assert len(segment_ids) == max_seq_length + + start_position = None + end_position = None + if is_training and not example.is_impossible: + # For training, if our document chunk does not contain an annotation + # we throw it out, since there is nothing to predict. + doc_start = doc_span.start + doc_end = doc_span.start + doc_span.length - 1 + out_of_span = False + if not (tok_start_position >= doc_start and + tok_end_position <= doc_end): + out_of_span = True + if out_of_span: + start_position = 0 + end_position = 0 + else: + doc_offset = len(query_tokens) + 2 + start_position = tok_start_position - doc_start + doc_offset + end_position = tok_end_position - doc_start + doc_offset + + if is_training and example.is_impossible: + start_position = 0 + end_position = 0 + + if verbose_logging and example_index < 20: + tf.compat.v1.logging.info("*** Example ***") + tf.compat.v1.logging.info("unique_id: %s" % (unique_id)) + tf.compat.v1.logging.info("example_index: %s" % (example_index)) + tf.compat.v1.logging.info("doc_span_index: %s" % (doc_span_index)) + tf.compat.v1.logging.info("tokens: %s" % " ".join( + [tokenization.printable_text(x) for x in tokens])) + tf.compat.v1.logging.info("token_to_orig_map: %s" % " ".join( + ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) + tf.compat.v1.logging.info("token_is_max_context: %s" % " ".join([ + "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) + ])) + tf.compat.v1.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) + tf.compat.v1.logging.info( + "input_mask: %s" % " ".join([str(x) for x in input_mask])) + tf.compat.v1.logging.info( + "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) + if is_training and example.is_impossible: + tf.compat.v1.logging.info("impossible example") + if is_training and not example.is_impossible: + answer_text = " ".join(tokens[start_position:(end_position + 1)]) + tf.compat.v1.logging.info("start_position: %d" % (start_position)) + tf.compat.v1.logging.info("end_position: %d" % (end_position)) + tf.compat.v1.logging.info( + "answer: %s" % (tokenization.printable_text(answer_text))) + + feature = InputFeatures( + unique_id=unique_id, + example_index=example_index, + doc_span_index=doc_span_index, + tokens=tokens, + token_to_orig_map=token_to_orig_map, + token_is_max_context=token_is_max_context, + input_ids=input_ids, + input_mask=input_mask, + segment_ids=segment_ids, + start_position=start_position, + end_position=end_position, + is_impossible=example.is_impossible) + + # Run callback + output_fn(feature) + + unique_id += 1 + +class FeatureWriter(object): + """Writes InputFeature to TF example file.""" + + def __init__(self, filename, is_training): + self.filename = filename + self.is_training = is_training + self.num_features = 0 + self._writer = tf.python_io.TFRecordWriter(filename) + + def process_feature(self, feature): + """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" + self.num_features += 1 + + def create_int_feature(values): + feature = tf.train.Feature( + int64_list=tf.train.Int64List(value=list(values))) + return feature + + features = collections.OrderedDict() + features["unique_ids"] = create_int_feature([feature.unique_id]) + features["input_ids"] = create_int_feature(feature.input_ids) + features["input_mask"] = create_int_feature(feature.input_mask) + features["segment_ids"] = create_int_feature(feature.segment_ids) + + if self.is_training: + features["start_positions"] = create_int_feature([feature.start_position]) + features["end_positions"] = create_int_feature([feature.end_position]) + impossible = 0 + if feature.is_impossible: + impossible = 1 + features["is_impossible"] = create_int_feature([impossible]) + + tf_example = tf.train.Example(features=tf.train.Features(feature=features)) + self._writer.write(tf_example.SerializeToString()) + + def close(self): + self._writer.close() + +def main(): + + FLAGS = extract_flags() + tokenizer = tokenization.FullTokenizer( + vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) + tf.gfile.MakeDirs(FLAGS.squad_dir + "/final_tfrecords_sharded") + # We write to a temporary file to avoid storing very large constant tensors + # in memory. + train_examples = read_squad_examples( + input_file=FLAGS.train_file, is_training=True, + version_2_with_negative=FLAGS.version_2_with_negative) + train_writer = FeatureWriter( + filename=os.path.join(FLAGS.squad_dir, "final_tfrecords_sharded/train.tf_record"), + is_training=True) + convert_examples_to_features( + examples=train_examples, + tokenizer=tokenizer, + max_seq_length=FLAGS.max_seq_length, + doc_stride=FLAGS.doc_stride, + max_query_length=FLAGS.max_query_length, + is_training=True, + output_fn=train_writer.process_feature, + verbose_logging=FLAGS.verbose_logging) + train_writer.close() + + + eval_examples = read_squad_examples( + input_file=FLAGS.predict_file, is_training=False, + version_2_with_negative=FLAGS.version_2_with_negative) + + eval_writer = FeatureWriter( + filename=os.path.join(FLAGS.squad_dir, "final_tfrecords_sharded/eval.tf_record"), + is_training=False) + eval_features = [] + + def append_feature(feature): + eval_features.append(feature) + eval_writer.process_feature(feature) + + convert_examples_to_features( + examples=eval_examples, + tokenizer=tokenizer, + max_seq_length=FLAGS.max_seq_length, + doc_stride=FLAGS.doc_stride, + max_query_length=FLAGS.max_query_length, + is_training=False, + output_fn=append_feature, + verbose_logging=FLAGS.verbose_logging) + eval_writer.close() + +if __name__ == "__main__": + (npu_sess, npu_shutdown) = init_resource() + main() + shutdown_resource(npu_sess, npu_shutdown) + close_session(npu_sess) diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/dllogger_class.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/dllogger_class.py new file mode 100644 index 0000000000000000000000000000000000000000..57b693bbe68b9f3f2e50b5a81f52a617fb498c88 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/dllogger_class.py @@ -0,0 +1,72 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from dllogger import Logger, StdOutBackend, JSONStreamBackend, Verbosity +import numpy + +class dllogger_class(): + + def format_step(self, step): + if isinstance(step, str): + return step + elif isinstance(step, int): + return "Iteration: {} ".format(step) + elif len(step) > 0: + return "Iteration: {} ".format(step[0]) + else: + return "" + + def __init__(self, log_path="bert_dllog.json"): + self.logger = Logger([ + StdOutBackend(Verbosity.DEFAULT, step_format=self.format_step), + JSONStreamBackend(Verbosity.VERBOSE, log_path), + ]) + self.logger.metadata("mlm_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) + self.logger.metadata("nsp_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) + self.logger.metadata("avg_loss_step", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) + self.logger.metadata("total_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) + self.logger.metadata("loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) + self.logger.metadata("f1", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) + self.logger.metadata("precision", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) + self.logger.metadata("recall", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) + self.logger.metadata("mcc", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) + self.logger.metadata("exact_match", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) + self.logger.metadata( + "throughput_train", + {"unit": "seq/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "TRAIN"}, + ) + self.logger.metadata( + "throughput_inf", + {"unit": "seq/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "VAL"}, + ) + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/gpu_affinity.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/gpu_affinity.py new file mode 100644 index 0000000000000000000000000000000000000000..01bd3475b80dab20587048116af0287fbd532a90 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/gpu_affinity.py @@ -0,0 +1,80 @@ +# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import math +import os + +import pynvml + +pynvml.nvmlInit() + + +def systemGetDriverVersion(): + return pynvml.nvmlSystemGetDriverVersion() + + +def deviceGetCount(): + return pynvml.nvmlDeviceGetCount() + + +class device: + # assume nvml returns list of 64 bit ints + _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) + + def __init__(self, device_idx): + super().__init__() + self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) + + def getName(self): + return pynvml.nvmlDeviceGetName(self.handle) + + def getCpuAffinity(self): + affinity_string = '' + for j in pynvml.nvmlDeviceGetCpuAffinity( + self.handle, device._nvml_affinity_elements + ): + # assume nvml returns list of 64 bit ints + affinity_string = '{:064b}'.format(j) + affinity_string + affinity_list = [int(x) for x in affinity_string] + affinity_list.reverse() # so core 0 is in 0th element of list + + return [i for i, e in enumerate(affinity_list) if e != 0] + + +def set_affinity(gpu_id=None): + if gpu_id is None: + gpu_id = int(os.getenv('LOCAL_RANK', 0)) + + dev = device(gpu_id) + os.sched_setaffinity(0, dev.getCpuAffinity()) + + # list of ints representing the logical cores this process is now affinitied with + return os.sched_getaffinity(0) + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils.py b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/utils.py similarity index 40% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils.py rename to TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/utils.py index 56aa173a4054706da7e7064fe7f08336ba5892d7..ef32a31cfd754ed93e563291d149822e281aa2ab 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils.py +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/src/utils/utils.py @@ -1,5 +1,18 @@ -# coding=utf-8 -# Copyright 2018 The TensorFlow Authors. All Rights Reserved. +# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -12,17 +25,31 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +# + import tensorflow as tf import time +import os + +def setup_xla_flags(): + # causes memory fragmentation for bert leading to OOM + if os.environ.get("TF_XLA_FLAGS", None) is not None: + try: + os.environ["TF_XLA_FLAGS"] += " --tf_xla_enable_lazy_compilation=false" + except: #mpi 4.0.2 causes syntax error for = + os.environ["TF_XLA_FLAGS"] += " --tf_xla_enable_lazy_compilation false" + else: + try: + os.environ["TF_XLA_FLAGS"] = " --tf_xla_enable_lazy_compilation=false" + except: + os.environ["TF_XLA_FLAGS"] = " --tf_xla_enable_lazy_compilation false" # report latency and throughput during eval -class LogEvalRunHook(tf.train.SessionRunHook): +class LogEvalRunHook(tf.estimator.SessionRunHook): def __init__(self, global_batch_size, hvd_rank=-1): self.global_batch_size = global_batch_size self.hvd_rank = hvd_rank - self.total_time = 0.0 self.count = 0 - self.skipped = 0 self.time_list = [] def before_run(self, run_context): @@ -31,31 +58,27 @@ class LogEvalRunHook(tf.train.SessionRunHook): def after_run(self, run_context, run_values): elapsed_secs = time.time() - self.t0 self.count += 1 - - # Removing first 2 (arbitrary) number of startup iterations from perf evaluations - if self.count <= 2: - print("Skipping time record for ", self.count, " due to overhead") - self.skipped += 1 - else: - self.time_list.append(elapsed_secs) - self.total_time += elapsed_secs + self.time_list.append(elapsed_secs) # report throughput during training -class LogTrainRunHook(tf.train.SessionRunHook): - def __init__(self, global_batch_size, hvd_rank=-1, save_checkpoints_steps=1000): +class LogTrainRunHook(tf.estimator.SessionRunHook): + def __init__(self, global_batch_size, hvd_rank=-1, save_checkpoints_steps=1000, num_steps_ignore_xla=100): self.global_batch_size = global_batch_size self.hvd_rank = hvd_rank self.save_checkpoints_steps = save_checkpoints_steps self.total_time = 0.0 self.count = 0 # Holds number of iterations, including skipped iterations for fp16 loss scaling + self.skipped = 0 + self.num_steps_ignore_xla = num_steps_ignore_xla + #initial steps while xla is still compilingneed to be ignored from throughput computation def after_create_session(self, session, coord): self.init_global_step = session.run(tf.train.get_global_step()) def before_run(self, run_context): self.t0 = time.time() - return tf.train.SessionRunArgs( + return tf.estimator.SessionRunArgs( fetches=['step_update:0']) def after_run(self, run_context, run_values): @@ -63,14 +86,31 @@ class LogTrainRunHook(tf.train.SessionRunHook): self.global_step = run_values.results[0] self.count += 1 - # Removing first step + first two steps after every checkpoint save - if (self.global_step - self.init_global_step) % self.save_checkpoints_steps <= 1: + # Removing first 100 step + first five steps after every checkpoint save + if (self.global_step - self.init_global_step) <= self.num_steps_ignore_xla or (self.global_step - self.init_global_step) % self.save_checkpoints_steps < 5: print("Skipping time record for ", self.global_step, " due to checkpoint-saving/warmup overhead") + self.skipped += 1 else: self.total_time += elapsed_secs - def end(self, session): - num_global_steps = self.global_step - self.init_global_step +class ExamplesPerSecondHook(tf.estimator.SessionRunHook): + def __init__(self, batch_size, iterations_per_loop=1): + self._batch_size = batch_size + self._iter_per_loop = iterations_per_loop + self.start_time = 0 + self.end_time = 0 + + def before_run(self, run_context): # pylint: disable=unused-argument + self.start_time = time.time() + return tf.estimator.SessionRunArgs(fetches=[tf.compat.v1.train.get_global_step(), 'total_loss:0']) + + def after_run(self, run_context, run_values): + self.end_time = time.time() + elapsed_time = self.end_time - self.start_time + global_step, total_loss = run_values.results + global_step_per_sec = self._iter_per_loop / elapsed_time + examples_per_sec = self._batch_size * global_step_per_sec + tf.compat.v1.logging.info('loss = %.7f', total_loss) + tf.compat.v1.logging.info('global_step/sec: %g', global_step_per_sec) + tf.compat.v1.logging.info('examples/sec: %g', examples_per_sec) - self.skipped = (num_global_steps // self.save_checkpoints_steps) * 2 + \ - min(2, num_global_steps % self.save_checkpoints_steps) - 1 \ No newline at end of file diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_8p.sh index 22c6d2c0c807eabf73361a5da501a1faad2ae38f..969311af6d4e42b7683517785d9a6278d8a00926 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_8p.sh @@ -19,8 +19,10 @@ Network="Bert-base_ID0060_for_TensorFlow" train_epochs= #训练batch_size batch_size=128 -#训练step -train_steps=500000 +#训练step 1140000 / (128*8/256) +# warmup step 10000 / (128*8/256) +# lr = 1e-4 * (128*8/256) +train_steps=286000 #学习率 learning_rate= @@ -115,20 +117,21 @@ do --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --num_warmup_steps=2500 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=100 \ - --save_checkpoints_steps=1000 \ + --iterations_per_loop=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ @@ -150,7 +153,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +train_accuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_1p.sh index 186d04e022b2c0caecae8c3c47a0966191fcf4b6..7aad180ab0d2b3b4d3f6f62bbf87e9739a6c2766 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_1p.sh @@ -103,13 +103,13 @@ do --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_8p.sh index bbf3fa24c21ce1358d45f27bc9275efee869645d..fe7f8a287cdfff7ce257f1ba569e64fca4533eca 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_performance_8p.sh @@ -115,13 +115,13 @@ do --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ @@ -163,7 +163,7 @@ CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "] loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_8p.sh index 6bd45a8f17431dc892bfb8a26dee2dd5497e23ef..a1fc1f5d2c503ca96bd5de14848cd4e42445df0e 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_8p.sh @@ -18,9 +18,10 @@ Network="BertLarge-128_ID3067_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 -#训练step -train_steps=32000 +batch_size=128 +#训练step 1140000 / (128*8/256) +# warmup step 10000 / (128*8/256) +train_steps=286000 #学习率 learning_rate= @@ -113,26 +114,26 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=1000 \ + --learning_rate=5e-5 \ + --num_warmup_steps=2500 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & @@ -152,7 +153,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_1p.sh index 94281301911bd64cb7f906bc27567a437663f8d7..422f2a8abd7af4bd77de6533971e1ee9821779ea 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_1p.sh @@ -17,9 +17,9 @@ Network="BertLarge-128_ID3067_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 +batch_size=128 #训练step -train_steps=100 +train_steps=1000 #学习率 learning_rate= @@ -102,25 +102,24 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ + --learning_rate=5e-5 \ --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=1000 \ --npu_bert_clip_by_global_norm=False \ --distributed=False \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_8p.sh index eaf3efa0848298b46b2e75f77632e802e47f8a56..e0113d2fc722d29cab9daf9322183d80edb6a06a 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_performance_8p.sh @@ -18,7 +18,7 @@ Network="BertLarge-128_ID3067_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 +batch_size=128 #训练step train_steps=1000 #学习率 @@ -113,14 +113,14 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --learning_rate=5e-5 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ @@ -132,7 +132,6 @@ do --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_8p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_8p_lamb_phase2.sh index bbd7ab172323decd0044080e173448a5e8efa658..b7672b0a752ba7a83bcf262d2e247ce860b11b65 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_8p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_8p_lamb_phase2.sh @@ -20,7 +20,7 @@ train_epochs=1 #训练batch_size batch_size=24 #训练step -train_steps=32000 +train_steps=50000 #学习率 learning_rate= @@ -111,28 +111,28 @@ do fi nohup python3.7 ${cur_path}/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ + --learning_rate=7e-4 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & @@ -152,7 +152,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_1p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_1p_lamb_phase2.sh index b443d8f9e1d3ad02f5b33bc1b499ae56937e35a7..76e171c0c327f8f0929473a5dbf344374696b128 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_1p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_1p_lamb_phase2.sh @@ -19,7 +19,7 @@ train_epochs=1 #训练batch_size batch_size=24 #训练step -train_steps=100 +train_steps=200 #学习率 learning_rate= @@ -100,7 +100,7 @@ do #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ --num_warmup_steps=0 \ @@ -108,15 +108,15 @@ do --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=200 \ --npu_bert_clip_by_global_norm=False \ --distributed=False \ --npu_bert_loss_scale=0 \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_8p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_8p_lamb_phase2.sh index 052606c33900ae44598ac9f1342a12bfd6622b24..ff3afe2aa352229c48afd1d621e6e2d70e1a323d 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_8p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_performance_8p_lamb_phase2.sh @@ -20,7 +20,7 @@ train_epochs=1 #训练batch_size batch_size=24 #训练step -train_steps=100 +train_steps=200 #学习率 learning_rate= @@ -111,23 +111,23 @@ do fi nohup ${bind_core} python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ + --learning_rate=7e-4 \ --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=200 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_8p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_8p_lamb_phase2.sh index 71b9cc9758999bacaab1c57de8f9398730e49625..dd52a3b4b9f7e077368f03ba15074709748be2f5 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_8p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_8p_lamb_phase2.sh @@ -20,7 +20,7 @@ train_epochs= #训练batch_size batch_size=64 #训练step -train_steps=32000 +train_steps=50000 #学习率 learning_rate= @@ -111,23 +111,24 @@ do fi nohup python3.7 ${cur_path}/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ + --learning_rate=7e-4 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ @@ -151,7 +152,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_1p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_1p_lamb_phase2.sh index c4211aa680962e4a6397800fdc8947eeb950daca..7edd3382a576e0dd4e383800b7b91786b6229fa3 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_1p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_1p_lamb_phase2.sh @@ -100,16 +100,16 @@ do #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ - --num_warmup_steps=100 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_8p_lamb_phase2.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_8p_lamb_phase2.sh index c46b250a81e04c8721eec06edd11a27e0a1238b1..8786d384f2be2c5815091f6c677b27b818eb6b9e 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_8p_lamb_phase2.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_performance_8p_lamb_phase2.sh @@ -111,16 +111,16 @@ do fi nohup ${bind_core} python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=100 \ + --learning_rate=7e-4 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_8p.sh index 2da89be7d8602e38a7c3a1e70d3fa50ceda5a4d3..74fc8a03cd5d7124e40be1e676816d406a71d17f 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_8p.sh @@ -19,8 +19,9 @@ Network="BertBase-512_ID3206_for_TensorFlow" train_epochs= #训练batch_size batch_size=64 -#训练step -train_steps=32000 +#训练step 1144000 / (64*8/256) +# warmup step 10000 / (64*8/256) +train_steps=572000 #学习率 learning_rate= @@ -111,23 +112,24 @@ do fi nohup python3.7 ${cur_path}/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ + --num_warmup_steps=5000 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ @@ -151,7 +153,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_1p.sh index 5174684914cc707ec2f2550f4800b6ee19339f4d..5710366a9016ed7bfac0dc5276b3205830cace45 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_1p.sh @@ -100,16 +100,16 @@ do #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ - --num_warmup_steps=100 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_8p.sh index ae232a8bb20a6c4d0ea0981bf68a05cc3d01fc35..8b77a39c814e91f595a8dc0f1f5428e508cb19ef 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_performance_8p.sh @@ -111,16 +111,16 @@ do fi nohup ${bind_core} python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ - --num_warmup_steps=100 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_8p.sh index 34219b6ed76322d1158c08d180afb6f21ff67faf..21850e4c44c969dc58a5d629ed44665f458bfc2f 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_8p.sh @@ -19,8 +19,9 @@ Network="BertLarge-512_ID3207_for_TensorFlow" train_epochs=1 #训练batch_size batch_size=24 -#训练step -train_steps=32000 +#训练step 1144000 / (24*8/256) +# warmup step 10000 / (24*8/256) +train_steps=1144000 #学习率 learning_rate= @@ -111,28 +112,28 @@ do fi nohup python3.7 ${cur_path}/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ + --num_warmup_steps=10000 \ --num_train_steps=${train_steps} \ --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & @@ -152,7 +153,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_1p.sh index c6d99dbfc186c7368f55d9921b774afb9cac7150..5cb0aaaff4b4c33f8e1e016465b4337b5e128c52 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_1p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_1p.sh @@ -19,7 +19,7 @@ train_epochs=1 #训练batch_size batch_size=24 #训练step -train_steps=100 +train_steps=200 #学习率 learning_rate= @@ -100,7 +100,7 @@ do #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ --num_warmup_steps=0 \ @@ -108,19 +108,18 @@ do --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=200 \ --npu_bert_clip_by_global_norm=False \ --distributed=False \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_8p.sh index 413222136ed0b8bd761eabd3c31c6fbb612d9184..885c2bb10f31a23ae1a5c8c8bd1f47f9aea9e904 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_8p.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_performance_8p.sh @@ -20,7 +20,7 @@ train_epochs=1 #训练batch_size batch_size=24 #训练step -train_steps=100 +train_steps=200 #学习率 learning_rate= @@ -111,7 +111,7 @@ do fi nohup ${bind_core} python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ --max_seq_length=512 \ - --max_predictions_per_seq=76 \ + --max_predictions_per_seq=80 \ --train_batch_size=${batch_size} \ --learning_rate=5e-5 \ --num_warmup_steps=0 \ @@ -119,20 +119,19 @@ do --optimizer_type=adam \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ + --input_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_512_max_pred_80/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=200 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_8p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_8p_lamb_phase1.sh index 140a44570e3ac90a1338d7f656319818aec9b3ed..669bab2a1cb1a17901680505e5ecd0f4eaa1dc11 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_8p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_8p_lamb_phase1.sh @@ -19,8 +19,10 @@ Network="BertBase-128_ID3208_for_TensorFlow" train_epochs= #训练batch_size batch_size=128 -#训练step -train_steps=500000 +#训练step 1140000 / (128*8/256) +# warmup step 10000 / (128*8/256) +# lr = 1e-4 * (128*8/256) +train_steps=286000 #学习率 learning_rate= @@ -114,21 +116,22 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --learning_rate=5e-4 \ + --num_warmup_steps=2500 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=100 \ - --save_checkpoints_steps=1000 \ + --iterations_per_loop=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ @@ -150,7 +153,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +train_accuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_1p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_1p_lamb_phase1.sh index 852c9164a61fb63c4fcafe3a2bf64db31832bc4d..1d2bad58ea09856c3f4f93be4f53847ec2f5b42d 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_1p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_1p_lamb_phase1.sh @@ -102,14 +102,14 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --learning_rate=5e-4 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_8p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_8p_lamb_phase1.sh index a7270327ad511ea6ec94e9f1ca81bf88ba53e1ed..0dab73c7c101eb1517dc6752bf3d70c5d3497557 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_8p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_performance_8p_lamb_phase1.sh @@ -114,14 +114,14 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --learning_rate=5e-4 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ @@ -163,7 +163,7 @@ CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "] loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_1p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_1p_lamb_phase1.sh deleted file mode 100644 index 6e6b4f2b5067773a2c24d3447ff6f2ec49aeea35..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_1p_lamb_phase1.sh +++ /dev/null @@ -1,171 +0,0 @@ -#!/bin/bash - -#当前路径,不需要修改 -cur_path=`pwd` - -#集合通信参数,不需要修改 -export RANK_SIZE=1 -export JOB_ID=99990001 -RANK_ID_START=0 - -# 数据集路径,保持为空,不需要修改 -data_path="" - -#基础参数,需要模型审视修改 -#网络名称,同目录名称 -Network="BertLarge-128_ID3209_for_TensorFlow" -#训练epoch -train_epochs=1 -#训练batch_size -batch_size=24 -#训练step -train_steps=100000 -#学习率 -learning_rate= - -#维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" -#维持参数,以下不需要修改 -over_dump=False -data_dump_flag=False -data_dump_step="10" -profiling=False -autotune=False - -# 帮助信息,不需要修改 -if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " - echo " " - echo "parameter explain: - --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message - " - exit 1 -fi - -#参数校验,不需要修改 -for para in $* -do - if [[ $para == --precision_mode* ]];then - precision_mode=`echo ${para#*=}` - elif [[ $para == --over_dump* ]];then - over_dump=`echo ${para#*=}` - over_dump_path=${cur_path}/output/overflow_dump - mkdir -p ${over_dump_path} - elif [[ $para == --data_dump_flag* ]];then - data_dump_flag=`echo ${para#*=}` - data_dump_path=${cur_path}/output/data_dump - mkdir -p ${data_dump_path} - elif [[ $para == --data_dump_step* ]];then - data_dump_step=`echo ${para#*=}` - elif [[ $para == --profiling* ]];then - profiling=`echo ${para#*=}` - profiling_dump_path=${cur_path}/output/profiling - mkdir -p ${profiling_dump_path} - elif [[ $para == --data_path* ]];then - data_path=`echo ${para#*=}` - fi -done - -#校验是否传入data_path,不需要修改 -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path\" must be confing" - exit 1 -fi - -#训练开始时间,不需要修改 -start_time=$(date +%s) -#进入训练脚本目录,需要模型审视修改 -for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); -do - #设置环境变量,不需要修改 - echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$RANK_ID - - #创建DeviceID输出目录,不需要修改 - if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then - rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - fi - - #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ - --max_seq_length=128 \ - --max_predictions_per_seq=20 \ - --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=10000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=lamb \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -done -wait - -#训练结束时间,不需要修改 -end_time=$(date +%s) -e2e_time=$(( $end_time - $start_time )) - -#结果打印,不需要修改 -echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" - -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` -#打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" -echo "E2E Training Duration sec : $e2e_time" - -#稳定性精度看护结果汇总 -#训练用例信息,不需要修改 -BatchSize=${batch_size} -DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' - - -#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt - -#最后一个迭代loss值,不需要修改 -ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` - -#关键信息打印到${CaseName}.log中,不需要修改 -echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_8p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_8p_lamb_phase1.sh index e3a80ebb0f2207a3d1a3855af29d4b9d6407b1a1..06442a11f4536e46f56d3bfb85b1033ab1a42614 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_8p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_full_8p_lamb_phase1.sh @@ -18,9 +18,11 @@ Network="BertLarge-128_ID3209_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 -#训练step -train_steps=32000 +batch_size=128 +#训练step 1140000 / (128*8/256) +# warmup step 10000 / (128*8/256) +# lr = 1e-4 * (128*8/256) +train_steps=286000 #学习率 learning_rate= @@ -113,26 +115,26 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=1000 \ + --learning_rate=4e-4 \ + --num_warmup_steps=2500 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ + --do_eval=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ + --save_checkpoints_steps=10000 \ --npu_bert_clip_by_global_norm=False \ --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & @@ -152,7 +154,7 @@ TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ echo "Final Performance images/sec : $ActualFPS" #输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +TrainAccuracy=`grep "tensorflow: masked_lm_accuracy" $cur_path/output/0/train_0.log|awk 'END {print $4}'` #打印,不需要修改 echo "Final Train Accuracy : ${TrainAccuracy}" echo "E2E Training Duration sec : $e2e_time" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_1p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_1p_lamb_phase1.sh index 5127e43ddcc0b12879d8baf6ea7c7e1efc4a698c..7efe7affe36ca6967bc82a65c1982583904f66a2 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_1p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_1p_lamb_phase1.sh @@ -17,9 +17,9 @@ Network="BertLarge-128_ID3209_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 +batch_size=128 #训练step -train_steps=100 +train_steps=1000 #学习率 learning_rate= @@ -102,25 +102,24 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ + --learning_rate=5e-5 \ --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ --num_accumulation_steps=1 \ --npu_bert_job_start_file= \ - --iterations_per_loop=10 \ - --save_checkpoints_steps=100 \ + --iterations_per_loop=100 \ + --save_checkpoints_steps=1000 \ --npu_bert_clip_by_global_norm=False \ --distributed=False \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_8p_lamb_phase1.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_8p_lamb_phase1.sh index c0bfb6b7b04686e98cb18c3706406550d79726ee..8b6c7930f03310a420863a3f9307c7b5ab1d0d04 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_8p_lamb_phase1.sh +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3209_BertLarge-128_performance_8p_lamb_phase1.sh @@ -14,11 +14,11 @@ data_path="" #基础参数,需要模型审视修改 #网络名称,同目录名称 -Network="BertLarge-128_ID3067_for_TensorFlow" +Network="BertLarge-128_ID3209_for_TensorFlow" #训练epoch train_epochs=1 #训练batch_size -batch_size=24 +batch_size=128 #训练step train_steps=1000 #学习率 @@ -113,14 +113,14 @@ do --max_seq_length=128 \ --max_predictions_per_seq=20 \ --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ + --learning_rate=5e-5 \ + --num_warmup_steps=0 \ --num_train_steps=${train_steps} \ --optimizer_type=lamb \ --manual_fp16=True \ --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ + --input_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/training \ + --eval_files_dir=${data_path}/tfrecord/seq_len_128_max_pred_20/wikicorpus_en/test \ --npu_bert_debug=False \ --npu_bert_use_tdt=True \ --do_train=True \ @@ -132,7 +132,6 @@ do --distributed=True \ --npu_bert_tail_optimize=True \ --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ --over_dump=${over_dump} \ --over_dump_path=${over_dump_path} \ --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_full_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..98922c52a5f6173a4763268a47581b268ba4be2d --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_full_8p.sh @@ -0,0 +1,204 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad1.1_ID3217_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=2.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/model + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=True \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep "tensorflow:f1 =" $cur_path/output/0/train_0.log|awk 'END {print $3}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..98f551f0177d02dcd470d3fc1773ea9abae9b64e --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_1p.sh @@ -0,0 +1,200 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad1.1_ID3217_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/model + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --npu_bert_loss_scale=0 \ + --num_train_steps=1000 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..4501084fc3cd0f2b93aaa5d2d52ccb2865562914 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3217_BertBase-Squad1.1_performance_8p.sh @@ -0,0 +1,204 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad1.1_ID3217_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/model + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=${train_batch_size} \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_full_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..42d0cc1724ad00cf29859b4388425a016eb8a3f4 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_full_8p.sh @@ -0,0 +1,205 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad1.1_ID3218_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=2.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=True \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep "tensorflow:f1 =" $cur_path/output/0/train_0.log|awk 'END {print $3}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..ea4dd35628554658afffa06f06ec3149e5f346f5 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_1p.sh @@ -0,0 +1,201 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad1.1_ID3218_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=True \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --npu_bert_loss_scale=0 \ + --num_train_steps=1000 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..853d6af544efada28636bad191429f7e56b3f1d7 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3218_BertLarge-Squad1.1_performance_8p.sh @@ -0,0 +1,205 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad1.1_ID3218_for_TensorFlow" +#训练batch_size +train_batch_size=32 +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v1.1_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v1.1.json \ + --eval_script=${data_path}/dataset/evaluate-v1.1.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_full_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..1a0ad760ad3bb0b246b8d68420297def625bf41c --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_full_8p.sh @@ -0,0 +1,206 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad2.0_ID3219_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=2.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/uncased_L-12_H-768_A-12 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=True \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep "tensorflow:f1 =" $cur_path/output/0/train_0.log|awk 'END {print $3}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..0af37e1b1d0cfaec2aaafa066493ab21ec8649fa --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_1p.sh @@ -0,0 +1,203 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad2.0_ID3219_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/uncased_L-12_H-768_A-12 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --npu_bert_loss_scale=0 \ + --num_train_steps=1000 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..4c3f6bd28281dfeb42f76c4bf0b66e0c23674288 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3219_BertBase-Squad2.0_performance_8p.sh @@ -0,0 +1,206 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertBase-Squad2.0_ID3219_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +model_path=${data_path}/uncased_L-12_H-768_A-12 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/bert_model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_full_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_full_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..d179d620316be3902847e4f8b4ead3795e7c54c9 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_full_8p.sh @@ -0,0 +1,207 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad2.0_ID3220_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=2.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=True \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep "tensorflow:f1 =" $cur_path/output/0/train_0.log|awk 'END {print $3}'` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_1p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..5a5a0d949a346bef275426d697027ca70de471e8 --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_1p.sh @@ -0,0 +1,204 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad2.0_ID3220_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --npu_bert_loss_scale=0 \ + --num_train_steps=1000 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_8p.sh b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_8p.sh new file mode 100644 index 0000000000000000000000000000000000000000..5f4d3604f069f4f0e0c3d307cd9aa019b613553b --- /dev/null +++ b/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3220_BertLarge-Squad2.0_performance_8p.sh @@ -0,0 +1,207 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +export RANK_SIZE=8 +export JOB_ID=99990001 +export RANK_TABLE_FILE=${cur_path}/../configs/8p.json +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge-Squad2.0_ID3220_for_TensorFlow" +#训练batch_size +train_batch_size=32 + +#训练ephch +num_train_epochs=1.0 +#学习率 +learning_rate=5e-6 +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +over_dump_path=${cur_path}/output/overflow_dump +data_dump_flag=False +data_dump_path=${cur_path}/output/data_dump +enable_exception_dump=False +data_dump_step="0" +profiling=False +autotune=False + +if [[ $1 == --help || $1 == -h ]];then + echo "usage: ./train_full_1p.sh " + + echo "" + echo "parameter explain: + --task_name finetune dataset + --data_path source data of training + --train_batch_size training batch + --learning_rate learning_rate + --enable_exception_dump enable_exception_dump + --num_train_epochs epochs + --output_dir output dir + -h/--help Show help message + " + exit 1 +fi + +for para in $* +do + if [[ $para == --task_name* ]];then + task_name=`echo ${para#*=}` + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --squad_version* ]];then + squad_version=`echo ${para#*=}` + elif [[ $para == --ckpt_path* ]];then + ckpt_path=`echo ${para#*=}` + elif [[ $para == --train_batch_size* ]];then + train_batch_size=`echo ${para#*=}` + elif [[ $para == --learning_rate* ]];then + learning_rate=`echo ${para#*=}` + elif [[ $para == --num_train_epochs* ]];then + num_train_epochs=`echo ${para#*=}` + elif [[ $para == --output_dir* ]];then + output_dir=`echo ${para#*=}` + elif [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + elif [[ $para == --data_dump_path* ]];then + data_dump_path=`echo ${para#*=}` + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --enable_exception_dump* ]];then + enable_exception_dump=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + fi +done + +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi +#model_path=${data_path}/uncased_L-24_H-1024_A-16 +model_path=${data_path}/bert_tf_ckpt_large_pretraining_amp_lamb_19.03.1 + +#训练开始时间,不需要修改 +start_time=$(date +%s) +#进入训练脚本目录,需要模型审视修改 +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + fi + + nohup python3.7 ${cur_path}/../src/run_squad.py \ + --precision_mode=$precision_mode \ + --vocab_file=${model_path}/vocab.txt \ + --bert_config_file=${model_path}/bert_config.json \ + --init_checkpoint=${model_path}/model.ckpt \ + --do_train=True \ + --train_file=${data_path}/dataset/squad_v2.0_train.tf_record \ + --do_predict=False \ + --predict_file=${data_path}/dataset/dev-v2.0.json \ + --eval_script=${data_path}/dataset/evaluate-v2.0.py \ + --train_batch_size=$train_batch_size \ + --learning_rate=$learning_rate \ + --num_train_epochs=$num_train_epochs \ + --save_checkpoints_steps=1000 \ + --distributed=True \ + --npu_bert_tail_optimize=True \ + --npu_bert_loss_scale=0 \ + --output_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} \ + --version_2_with_negative=True \ + --enable_exception_dump=$enable_exception_dump\ + --data_dump_flag=$data_dump_flag \ + --data_dump_step=$data_dump_step\ + --data_dump_path=$data_dump_path\ + --over_dump=$over_dump \ + --over_dump_path=$over_dump_path > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +#输出性能FPS,需要模型审视修改 +FPS=`grep "tensorflow:examples/sec" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk 'END {print $2}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +#train_accuracy=`grep "f1 =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk 'END {print $3}'` +#打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" + +##获取性能数据 +#吞吐量 +ActualFPS=$FPS +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${train_batch_size}'*1000/'${FPS}'}'` + +##冒烟看护字段 +BatchSize=${train_batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 +grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F " " '{print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改' +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt`) + +#关键性息打印到CaseName.log中 +echo "Network = ${Network}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${Accuracy}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}">>$cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + + + + + + + + + + + + + + + + + + + + + diff --git a/TensorFlow/built-in/nlp/GRU4Rec_ID0128_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/nlp/GRU4Rec_ID0128_for_TensorFlow/test/train_full_1p.sh index c6b78abc7224cdf86e594512cfe915b9937a21bb..1d9183f5326395d4301ff2a8a165b4c47529692c 100644 --- a/TensorFlow/built-in/nlp/GRU4Rec_ID0128_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/nlp/GRU4Rec_ID0128_for_TensorFlow/test/train_full_1p.sh @@ -7,13 +7,14 @@ export JOB_ID=10087 RANK_ID_START=0 # 数据集路径,保持为空,不需要修改 data_path="" +data_file="/rsc15_train_full.txt" #设置默认日志级别,不需要修改 -export ASCEND_GLOBAL_LOG_LEVEL=3 +export ASCEND_GLOBAL_LOG_LEVEL_ETP=3 #基础参数,需要模型审视修改 #网络名称,同目录名称 Network="GRU4Rec_for_TensorFlow" #训练epoch -train_epochs=1 +train_epochs=10 #TF2.X独有,不需要修改 #export NPU_LOOP_SIZE=${train_steps} #维测参数,precision_mode需要模型审视修改 @@ -30,18 +31,18 @@ if [[ $1 == --help || $1 == -h ]];then echo " " echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message + --data_path source data of training + -h/--help show help message " exit 1 fi #参数校验,不需要修改 -for para in $* +for para in $* do if [[ $para == --precision_mode* ]];then precision_mode=`echo ${para#*=}` @@ -78,6 +79,7 @@ if [[ $data_path == "" ]];then exit 1 fi BatchSize=50 +`sed -i 's/batch_size = 4096/batch_size = 50/g' ${cur_path}/../gru4rec_BP/main.py` CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' #训练开始时间,不需要修改 start_time=$(date +%s) @@ -87,8 +89,8 @@ for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$RANK_ID - + export RANK_ID=$RANK_ID + #创建DeviceID输出目录,不需要修改 if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} @@ -101,7 +103,7 @@ do # let a=RANK_ID*12 # let b=RANK_ID+1 # let c=b*12-1 - + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune nohup python3 main.py \ @@ -109,13 +111,13 @@ do --path_to_test=${data_path} \ --train=1 \ --epoch=${train_epochs} \ - > ${cur_path}/output/${ASCEND_DEVICE_ID}/train.log \ - 2>&1 & + --train_dataset_file=${data_file} \ + > ${cur_path}/output/${ASCEND_DEVICE_ID}/train.log 2>&1 & #python3 main.py --train=1 --epoch=${train_epochs} \ # --over_dump=${over_dump} \ - # --over_dump_path=${over_dump_path} -done + # --over_dump_path=${over_dump_path} +done wait #训练结束时间,不需要修改 @@ -149,7 +151,7 @@ ActualFPS=${FPS} grep Each $cur_path/output/${ASCEND_DEVICE_ID}/train.log|awk '{print $6}'>>$cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_time.txt TrainingTime=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_time.txt` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep Epoch $cur_path/output/$ASCEND_DEVICE_ID/train.log|awk '{print $8}'>> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep Epoch $cur_path/output/$ASCEND_DEVICE_ID/train.log|awk '{print $8}'> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` @@ -166,4 +168,4 @@ echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/albert_config/vocab.txt b/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/albert_config/vocab.txt deleted file mode 100644 index ca4f9781030019ab9b253c6dcb8c7878b6dc87a5..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/nlp/albert_xlarge_zh_ID2348_for_TensorFlow/albert_config/vocab.txt +++ /dev/null @@ -1,21128 +0,0 @@ -[PAD] -[unused1] -[unused2] -[unused3] -[unused4] -[unused5] -[unused6] -[unused7] -[unused8] -[unused9] -[unused10] -[unused11] -[unused12] -[unused13] -[unused14] -[unused15] -[unused16] -[unused17] -[unused18] -[unused19] -[unused20] -[unused21] -[unused22] -[unused23] -[unused24] -[unused25] -[unused26] -[unused27] -[unused28] -[unused29] -[unused30] -[unused31] -[unused32] -[unused33] -[unused34] -[unused35] -[unused36] -[unused37] -[unused38] -[unused39] -[unused40] -[unused41] -[unused42] -[unused43] -[unused44] -[unused45] -[unused46] -[unused47] -[unused48] -[unused49] -[unused50] -[unused51] -[unused52] -[unused53] -[unused54] -[unused55] -[unused56] -[unused57] -[unused58] -[unused59] -[unused60] -[unused61] -[unused62] -[unused63] -[unused64] -[unused65] -[unused66] -[unused67] -[unused68] -[unused69] -[unused70] -[unused71] -[unused72] -[unused73] -[unused74] -[unused75] -[unused76] -[unused77] -[unused78] -[unused79] -[unused80] -[unused81] -[unused82] -[unused83] -[unused84] -[unused85] -[unused86] -[unused87] -[unused88] -[unused89] -[unused90] -[unused91] -[unused92] -[unused93] -[unused94] -[unused95] -[unused96] -[unused97] -[unused98] -[unused99] -[UNK] -[CLS] -[SEP] -[MASK] - - -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -£ -¤ -¥ -§ -© -« -® -° -± -² -³ -µ -· -¹ -º -» -¼ -× -ß -æ -÷ -ø -đ -ŋ -ɔ -ə -ɡ -ʰ -ˇ -ˈ -ˊ -ˋ -ˍ -ː -˙ -˚ -ˢ -α -β -γ -δ -ε -η -θ -ι -κ -λ -μ -ν -ο -π -ρ -ς -σ -τ -υ -φ -χ -ψ -ω -а -б -в -г -д -е -ж -з -и -к -л -м -н -о -п -р -с -т -у -ф -х -ц -ч -ш -ы -ь -я -і -ا -ب -ة -ت -د -ر -س -ع -ل -م -ن -ه -و -ي -۩ -ก -ง -น -ม -ย -ร -อ -า -เ -๑ -་ -ღ -ᄀ -ᄁ -ᄂ -ᄃ -ᄅ -ᄆ -ᄇ -ᄈ -ᄉ -ᄋ -ᄌ -ᄎ -ᄏ -ᄐ -ᄑ -ᄒ -ᅡ -ᅢ -ᅣ -ᅥ -ᅦ -ᅧ -ᅨ -ᅩ -ᅪ -ᅬ -ᅭ -ᅮ -ᅯ -ᅲ -ᅳ -ᅴ -ᅵ -ᆨ -ᆫ -ᆯ -ᆷ -ᆸ -ᆺ -ᆻ -ᆼ -ᗜ -ᵃ -ᵉ -ᵍ -ᵏ -ᵐ -ᵒ -ᵘ -‖ -„ -† -• -‥ -‧ -
 -‰ -′ -″ -‹ -› -※ -‿ -⁄ -ⁱ -⁺ -ⁿ -₁ -₂ -₃ -₄ -€ -℃ -№ -™ -ⅰ -ⅱ -ⅲ -ⅳ -ⅴ -← -↑ -→ -↓ -↔ -↗ -↘ -⇒ -∀ -− -∕ -∙ -√ -∞ -∟ -∠ -∣ -∥ -∩ -∮ -∶ -∼ -∽ -≈ -≒ -≡ -≤ -≥ -≦ -≧ -≪ -≫ -⊙ -⋅ -⋈ -⋯ -⌒ -① -② -③ -④ -⑤ -⑥ -⑦ -⑧ -⑨ -⑩ -⑴ -⑵ -⑶ -⑷ -⑸ -⒈ -⒉ -⒊ -⒋ -ⓒ -ⓔ -ⓘ -─ -━ -│ -┃ -┅ -┆ -┊ -┌ -└ -├ -┣ -═ -║ -╚ -╞ -╠ -╭ -╮ -╯ -╰ -╱ -╳ -▂ -▃ -▅ -▇ -█ -▉ -▋ -▌ -▍ -▎ -■ -□ -▪ -▫ -▬ -▲ -△ -▶ -► -▼ -▽ -◆ -◇ -○ -◎ -● -◕ -◠ -◢ -◤ -☀ -★ -☆ -☕ -☞ -☺ -☼ -♀ -♂ -♠ -♡ -♣ -♥ -♦ -♪ -♫ -♬ -✈ -✔ -✕ -✖ -✦ -✨ -✪ -✰ -✿ -❀ -❤ -➜ -➤ -⦿ -、 -。 -〃 -々 -〇 -〈 -〉 -《 -》 -「 -」 -『 -』 -【 -】 -〓 -〔 -〕 -〖 -〗 -〜 -〝 -〞 -ぁ -あ -ぃ -い -う -ぇ -え -お -か -き -く -け -こ -さ -し -す -せ -そ -た -ち -っ -つ -て -と -な -に -ぬ -ね -の -は -ひ -ふ -へ -ほ -ま -み -む -め -も -ゃ -や -ゅ -ゆ -ょ -よ -ら -り -る -れ -ろ -わ -を -ん -゜ -ゝ -ァ -ア -ィ -イ -ゥ -ウ -ェ -エ -ォ -オ -カ -キ -ク -ケ -コ -サ -シ -ス -セ -ソ -タ -チ -ッ -ツ -テ -ト -ナ -ニ -ヌ -ネ -ノ -ハ -ヒ -フ -ヘ -ホ -マ -ミ -ム -メ -モ -ャ -ヤ -ュ -ユ -ョ -ヨ -ラ -リ -ル -レ -ロ -ワ -ヲ -ン -ヶ -・ -ー -ヽ -ㄅ -ㄆ -ㄇ -ㄉ -ㄋ -ㄌ -ㄍ -ㄎ -ㄏ -ㄒ -ㄚ -ㄛ -ㄞ -ㄟ -ㄢ -ㄤ -ㄥ -ㄧ -ㄨ -ㆍ -㈦ -㊣ -㎡ -㗎 -一 -丁 -七 -万 -丈 -三 -上 -下 -不 -与 -丐 -丑 -专 -且 -丕 -世 -丘 -丙 -业 -丛 -东 -丝 -丞 -丟 -両 -丢 -两 -严 -並 -丧 -丨 -个 -丫 -中 -丰 -串 -临 -丶 -丸 -丹 -为 -主 -丼 -丽 -举 -丿 -乂 -乃 -久 -么 -义 -之 -乌 -乍 -乎 -乏 -乐 -乒 -乓 -乔 -乖 -乗 -乘 -乙 -乜 -九 -乞 -也 -习 -乡 -书 -乩 -买 -乱 -乳 -乾 -亀 -亂 -了 -予 -争 -事 -二 -于 -亏 -云 -互 -五 -井 -亘 -亙 -亚 -些 -亜 -亞 -亟 -亡 -亢 -交 -亥 -亦 -产 -亨 -亩 -享 -京 -亭 -亮 -亲 -亳 -亵 -人 -亿 -什 -仁 -仃 -仄 -仅 -仆 -仇 -今 -介 -仍 -从 -仏 -仑 -仓 -仔 -仕 -他 -仗 -付 -仙 -仝 -仞 -仟 -代 -令 -以 -仨 -仪 -们 -仮 -仰 -仲 -件 -价 -任 -份 -仿 -企 -伉 -伊 -伍 -伎 -伏 -伐 -休 -伕 -众 -优 -伙 -会 -伝 -伞 -伟 -传 -伢 -伤 -伦 -伪 -伫 -伯 -估 -伴 -伶 -伸 -伺 -似 -伽 -佃 -但 -佇 -佈 -位 -低 -住 -佐 -佑 -体 -佔 -何 -佗 -佘 -余 -佚 -佛 -作 -佝 -佞 -佟 -你 -佢 -佣 -佤 -佥 -佩 -佬 -佯 -佰 -佳 -併 -佶 -佻 -佼 -使 -侃 -侄 -來 -侈 -例 -侍 -侏 -侑 -侖 -侗 -供 -依 -侠 -価 -侣 -侥 -侦 -侧 -侨 -侬 -侮 -侯 -侵 -侶 -侷 -便 -係 -促 -俄 -俊 -俎 -俏 -俐 -俑 -俗 -俘 -俚 -保 -俞 -俟 -俠 -信 -俨 -俩 -俪 -俬 -俭 -修 -俯 -俱 -俳 -俸 -俺 -俾 -倆 -倉 -個 -倌 -倍 -倏 -們 -倒 -倔 -倖 -倘 -候 -倚 -倜 -借 -倡 -値 -倦 -倩 -倪 -倫 -倬 -倭 -倶 -债 -值 -倾 -偃 -假 -偈 -偉 -偌 -偎 -偏 -偕 -做 -停 -健 -側 -偵 -偶 -偷 -偻 -偽 -偿 -傀 -傅 -傍 -傑 -傘 -備 -傚 -傢 -傣 -傥 -储 -傩 -催 -傭 -傲 -傳 -債 -傷 -傻 -傾 -僅 -働 -像 -僑 -僕 -僖 -僚 -僥 -僧 -僭 -僮 -僱 -僵 -價 -僻 -儀 -儂 -億 -儆 -儉 -儋 -儒 -儕 -儘 -償 -儡 -優 -儲 -儷 -儼 -儿 -兀 -允 -元 -兄 -充 -兆 -兇 -先 -光 -克 -兌 -免 -児 -兑 -兒 -兔 -兖 -党 -兜 -兢 -入 -內 -全 -兩 -八 -公 -六 -兮 -兰 -共 -兲 -关 -兴 -兵 -其 -具 -典 -兹 -养 -兼 -兽 -冀 -内 -円 -冇 -冈 -冉 -冊 -册 -再 -冏 -冒 -冕 -冗 -写 -军 -农 -冠 -冢 -冤 -冥 -冨 -冪 -冬 -冯 -冰 -冲 -决 -况 -冶 -冷 -冻 -冼 -冽 -冾 -净 -凄 -准 -凇 -凈 -凉 -凋 -凌 -凍 -减 -凑 -凛 -凜 -凝 -几 -凡 -凤 -処 -凪 -凭 -凯 -凰 -凱 -凳 -凶 -凸 -凹 -出 -击 -函 -凿 -刀 -刁 -刃 -分 -切 -刈 -刊 -刍 -刎 -刑 -划 -列 -刘 -则 -刚 -创 -初 -删 -判 -別 -刨 -利 -刪 -别 -刮 -到 -制 -刷 -券 -刹 -刺 -刻 -刽 -剁 -剂 -剃 -則 -剉 -削 -剋 -剌 -前 -剎 -剐 -剑 -剔 -剖 -剛 -剜 -剝 -剣 -剤 -剥 -剧 -剩 -剪 -副 -割 -創 -剷 -剽 -剿 -劃 -劇 -劈 -劉 -劊 -劍 -劏 -劑 -力 -劝 -办 -功 -加 -务 -劣 -动 -助 -努 -劫 -劭 -励 -劲 -劳 -労 -劵 -効 -劾 -势 -勁 -勃 -勇 -勉 -勋 -勐 -勒 -動 -勖 -勘 -務 -勛 -勝 -勞 -募 -勢 -勤 -勧 -勳 -勵 -勸 -勺 -勻 -勾 -勿 -匀 -包 -匆 -匈 -匍 -匐 -匕 -化 -北 -匙 -匝 -匠 -匡 -匣 -匪 -匮 -匯 -匱 -匹 -区 -医 -匾 -匿 -區 -十 -千 -卅 -升 -午 -卉 -半 -卍 -华 -协 -卑 -卒 -卓 -協 -单 -卖 -南 -単 -博 -卜 -卞 -卟 -占 -卡 -卢 -卤 -卦 -卧 -卫 -卮 -卯 -印 -危 -即 -却 -卵 -卷 -卸 -卻 -卿 -厂 -厄 -厅 -历 -厉 -压 -厌 -厕 -厘 -厚 -厝 -原 -厢 -厥 -厦 -厨 -厩 -厭 -厮 -厲 -厳 -去 -县 -叁 -参 -參 -又 -叉 -及 -友 -双 -反 -収 -发 -叔 -取 -受 -变 -叙 -叛 -叟 -叠 -叡 -叢 -口 -古 -句 -另 -叨 -叩 -只 -叫 -召 -叭 -叮 -可 -台 -叱 -史 -右 -叵 -叶 -号 -司 -叹 -叻 -叼 -叽 -吁 -吃 -各 -吆 -合 -吉 -吊 -吋 -同 -名 -后 -吏 -吐 -向 -吒 -吓 -吕 -吖 -吗 -君 -吝 -吞 -吟 -吠 -吡 -否 -吧 -吨 -吩 -含 -听 -吭 -吮 -启 -吱 -吳 -吴 -吵 -吶 -吸 -吹 -吻 -吼 -吽 -吾 -呀 -呂 -呃 -呆 -呈 -告 -呋 -呎 -呐 -呓 -呕 -呗 -员 -呛 -呜 -呢 -呤 -呦 -周 -呱 -呲 -味 -呵 -呷 -呸 -呻 -呼 -命 -咀 -咁 -咂 -咄 -咆 -咋 -和 -咎 -咏 -咐 -咒 -咔 -咕 -咖 -咗 -咘 -咙 -咚 -咛 -咣 -咤 -咦 -咧 -咨 -咩 -咪 -咫 -咬 -咭 -咯 -咱 -咲 -咳 -咸 -咻 -咽 -咿 -哀 -品 -哂 -哄 -哆 -哇 -哈 -哉 -哋 -哌 -响 -哎 -哏 -哐 -哑 -哒 -哔 -哗 -哟 -員 -哥 -哦 -哧 -哨 -哩 -哪 -哭 -哮 -哲 -哺 -哼 -哽 -唁 -唄 -唆 -唇 -唉 -唏 -唐 -唑 -唔 -唠 -唤 -唧 -唬 -售 -唯 -唰 -唱 -唳 -唷 -唸 -唾 -啃 -啄 -商 -啉 -啊 -問 -啓 -啕 -啖 -啜 -啞 -啟 -啡 -啤 -啥 -啦 -啧 -啪 -啫 -啬 -啮 -啰 -啱 -啲 -啵 -啶 -啷 -啸 -啻 -啼 -啾 -喀 -喂 -喃 -善 -喆 -喇 -喉 -喊 -喋 -喎 -喏 -喔 -喘 -喙 -喚 -喜 -喝 -喟 -喧 -喪 -喫 -喬 -單 -喰 -喱 -喲 -喳 -喵 -営 -喷 -喹 -喺 -喻 -喽 -嗅 -嗆 -嗇 -嗎 -嗑 -嗒 -嗓 -嗔 -嗖 -嗚 -嗜 -嗝 -嗟 -嗡 -嗣 -嗤 -嗦 -嗨 -嗪 -嗬 -嗯 -嗰 -嗲 -嗳 -嗶 -嗷 -嗽 -嘀 -嘅 -嘆 -嘈 -嘉 -嘌 -嘍 -嘎 -嘔 -嘖 -嘗 -嘘 -嘚 -嘛 -嘜 -嘞 -嘟 -嘢 -嘣 -嘤 -嘧 -嘩 -嘭 -嘮 -嘯 -嘰 -嘱 -嘲 -嘴 -嘶 -嘸 -嘹 -嘻 -嘿 -噁 -噌 -噎 -噓 -噔 -噗 -噙 -噜 -噠 -噢 -噤 -器 -噩 -噪 -噬 -噱 -噴 -噶 -噸 -噹 -噻 -噼 -嚀 -嚇 -嚎 -嚏 -嚐 -嚓 -嚕 -嚟 -嚣 -嚥 -嚨 -嚮 -嚴 -嚷 -嚼 -囂 -囉 -囊 -囍 -囑 -囔 -囗 -囚 -四 -囝 -回 -囟 -因 -囡 -团 -団 -囤 -囧 -囪 -囫 -园 -困 -囱 -囲 -図 -围 -囹 -固 -国 -图 -囿 -圃 -圄 -圆 -圈 -國 -圍 -圏 -園 -圓 -圖 -團 -圜 -土 -圣 -圧 -在 -圩 -圭 -地 -圳 -场 -圻 -圾 -址 -坂 -均 -坊 -坍 -坎 -坏 -坐 -坑 -块 -坚 -坛 -坝 -坞 -坟 -坠 -坡 -坤 -坦 -坨 -坪 -坯 -坳 -坵 -坷 -垂 -垃 -垄 -型 -垒 -垚 -垛 -垠 -垢 -垣 -垦 -垩 -垫 -垭 -垮 -垵 -埂 -埃 -埋 -城 -埔 -埕 -埗 -域 -埠 -埤 -埵 -執 -埸 -培 -基 -埼 -堀 -堂 -堃 -堅 -堆 -堇 -堑 -堕 -堙 -堡 -堤 -堪 -堯 -堰 -報 -場 -堵 -堺 -堿 -塊 -塌 -塑 -塔 -塗 -塘 -塚 -塞 -塢 -塩 -填 -塬 -塭 -塵 -塾 -墀 -境 -墅 -墉 -墊 -墒 -墓 -増 -墘 -墙 -墜 -增 -墟 -墨 -墩 -墮 -墳 -墻 -墾 -壁 -壅 -壆 -壇 -壊 -壑 -壓 -壕 -壘 -壞 -壟 -壢 -壤 -壩 -士 -壬 -壮 -壯 -声 -売 -壳 -壶 -壹 -壺 -壽 -处 -备 -変 -复 -夏 -夔 -夕 -外 -夙 -多 -夜 -够 -夠 -夢 -夥 -大 -天 -太 -夫 -夭 -央 -夯 -失 -头 -夷 -夸 -夹 -夺 -夾 -奂 -奄 -奇 -奈 -奉 -奋 -奎 -奏 -奐 -契 -奔 -奕 -奖 -套 -奘 -奚 -奠 -奢 -奥 -奧 -奪 -奬 -奮 -女 -奴 -奶 -奸 -她 -好 -如 -妃 -妄 -妆 -妇 -妈 -妊 -妍 -妒 -妓 -妖 -妘 -妙 -妝 -妞 -妣 -妤 -妥 -妨 -妩 -妪 -妮 -妲 -妳 -妹 -妻 -妾 -姆 -姉 -姊 -始 -姍 -姐 -姑 -姒 -姓 -委 -姗 -姚 -姜 -姝 -姣 -姥 -姦 -姨 -姪 -姫 -姬 -姹 -姻 -姿 -威 -娃 -娄 -娅 -娆 -娇 -娉 -娑 -娓 -娘 -娛 -娜 -娟 -娠 -娣 -娥 -娩 -娱 -娲 -娴 -娶 -娼 -婀 -婁 -婆 -婉 -婊 -婕 -婚 -婢 -婦 -婧 -婪 -婭 -婴 -婵 -婶 -婷 -婺 -婿 -媒 -媚 -媛 -媞 -媧 -媲 -媳 -媽 -媾 -嫁 -嫂 -嫉 -嫌 -嫑 -嫔 -嫖 -嫘 -嫚 -嫡 -嫣 -嫦 -嫩 -嫲 -嫵 -嫻 -嬅 -嬉 -嬌 -嬗 -嬛 -嬢 -嬤 -嬪 -嬰 -嬴 -嬷 -嬸 -嬿 -孀 -孃 -子 -孑 -孔 -孕 -孖 -字 -存 -孙 -孚 -孛 -孜 -孝 -孟 -孢 -季 -孤 -学 -孩 -孪 -孫 -孬 -孰 -孱 -孳 -孵 -學 -孺 -孽 -孿 -宁 -它 -宅 -宇 -守 -安 -宋 -完 -宏 -宓 -宕 -宗 -官 -宙 -定 -宛 -宜 -宝 -实 -実 -宠 -审 -客 -宣 -室 -宥 -宦 -宪 -宫 -宮 -宰 -害 -宴 -宵 -家 -宸 -容 -宽 -宾 -宿 -寂 -寄 -寅 -密 -寇 -富 -寐 -寒 -寓 -寛 -寝 -寞 -察 -寡 -寢 -寥 -實 -寧 -寨 -審 -寫 -寬 -寮 -寰 -寵 -寶 -寸 -对 -寺 -寻 -导 -対 -寿 -封 -専 -射 -将 -將 -專 -尉 -尊 -尋 -對 -導 -小 -少 -尔 -尕 -尖 -尘 -尚 -尝 -尤 -尧 -尬 -就 -尴 -尷 -尸 -尹 -尺 -尻 -尼 -尽 -尾 -尿 -局 -屁 -层 -屄 -居 -屆 -屈 -屉 -届 -屋 -屌 -屍 -屎 -屏 -屐 -屑 -展 -屜 -属 -屠 -屡 -屢 -層 -履 -屬 -屯 -山 -屹 -屿 -岀 -岁 -岂 -岌 -岐 -岑 -岔 -岖 -岗 -岘 -岙 -岚 -岛 -岡 -岩 -岫 -岬 -岭 -岱 -岳 -岷 -岸 -峇 -峋 -峒 -峙 -峡 -峤 -峥 -峦 -峨 -峪 -峭 -峯 -峰 -峴 -島 -峻 -峽 -崁 -崂 -崆 -崇 -崎 -崑 -崔 -崖 -崗 -崙 -崛 -崧 -崩 -崭 -崴 -崽 -嵇 -嵊 -嵋 -嵌 -嵐 -嵘 -嵩 -嵬 -嵯 -嶂 -嶄 -嶇 -嶋 -嶙 -嶺 -嶼 -嶽 -巅 -巍 -巒 -巔 -巖 -川 -州 -巡 -巢 -工 -左 -巧 -巨 -巩 -巫 -差 -己 -已 -巳 -巴 -巷 -巻 -巽 -巾 -巿 -币 -市 -布 -帅 -帆 -师 -希 -帐 -帑 -帕 -帖 -帘 -帚 -帛 -帜 -帝 -帥 -带 -帧 -師 -席 -帮 -帯 -帰 -帳 -帶 -帷 -常 -帼 -帽 -幀 -幂 -幄 -幅 -幌 -幔 -幕 -幟 -幡 -幢 -幣 -幫 -干 -平 -年 -并 -幸 -幹 -幺 -幻 -幼 -幽 -幾 -广 -庁 -広 -庄 -庆 -庇 -床 -序 -庐 -库 -应 -底 -庖 -店 -庙 -庚 -府 -庞 -废 -庠 -度 -座 -庫 -庭 -庵 -庶 -康 -庸 -庹 -庾 -廁 -廂 -廃 -廈 -廉 -廊 -廓 -廖 -廚 -廝 -廟 -廠 -廢 -廣 -廬 -廳 -延 -廷 -建 -廿 -开 -弁 -异 -弃 -弄 -弈 -弊 -弋 -式 -弑 -弒 -弓 -弔 -引 -弗 -弘 -弛 -弟 -张 -弥 -弦 -弧 -弩 -弭 -弯 -弱 -張 -強 -弹 -强 -弼 -弾 -彅 -彆 -彈 -彌 -彎 -归 -当 -录 -彗 -彙 -彝 -形 -彤 -彥 -彦 -彧 -彩 -彪 -彫 -彬 -彭 -彰 -影 -彷 -役 -彻 -彼 -彿 -往 -征 -径 -待 -徇 -很 -徉 -徊 -律 -後 -徐 -徑 -徒 -従 -徕 -得 -徘 -徙 -徜 -從 -徠 -御 -徨 -復 -循 -徬 -微 -徳 -徴 -徵 -德 -徹 -徼 -徽 -心 -必 -忆 -忌 -忍 -忏 -忐 -忑 -忒 -忖 -志 -忘 -忙 -応 -忠 -忡 -忤 -忧 -忪 -快 -忱 -念 -忻 -忽 -忿 -怀 -态 -怂 -怅 -怆 -怎 -怏 -怒 -怔 -怕 -怖 -怙 -怜 -思 -怠 -怡 -急 -怦 -性 -怨 -怪 -怯 -怵 -总 -怼 -恁 -恃 -恆 -恋 -恍 -恐 -恒 -恕 -恙 -恚 -恢 -恣 -恤 -恥 -恨 -恩 -恪 -恫 -恬 -恭 -息 -恰 -恳 -恵 -恶 -恸 -恺 -恻 -恼 -恿 -悄 -悅 -悉 -悌 -悍 -悔 -悖 -悚 -悟 -悠 -患 -悦 -您 -悩 -悪 -悬 -悯 -悱 -悲 -悴 -悵 -悶 -悸 -悻 -悼 -悽 -情 -惆 -惇 -惊 -惋 -惑 -惕 -惘 -惚 -惜 -惟 -惠 -惡 -惦 -惧 -惨 -惩 -惫 -惬 -惭 -惮 -惯 -惰 -惱 -想 -惴 -惶 -惹 -惺 -愁 -愆 -愈 -愉 -愍 -意 -愕 -愚 -愛 -愜 -感 -愣 -愤 -愧 -愫 -愷 -愿 -慄 -慈 -態 -慌 -慎 -慑 -慕 -慘 -慚 -慟 -慢 -慣 -慧 -慨 -慫 -慮 -慰 -慳 -慵 -慶 -慷 -慾 -憂 -憊 -憋 -憎 -憐 -憑 -憔 -憚 -憤 -憧 -憨 -憩 -憫 -憬 -憲 -憶 -憾 -懂 -懇 -懈 -應 -懊 -懋 -懑 -懒 -懦 -懲 -懵 -懶 -懷 -懸 -懺 -懼 -懾 -懿 -戀 -戈 -戊 -戌 -戍 -戎 -戏 -成 -我 -戒 -戕 -或 -战 -戚 -戛 -戟 -戡 -戦 -截 -戬 -戮 -戰 -戲 -戳 -戴 -戶 -户 -戸 -戻 -戾 -房 -所 -扁 -扇 -扈 -扉 -手 -才 -扎 -扑 -扒 -打 -扔 -払 -托 -扛 -扣 -扦 -执 -扩 -扪 -扫 -扬 -扭 -扮 -扯 -扰 -扱 -扳 -扶 -批 -扼 -找 -承 -技 -抄 -抉 -把 -抑 -抒 -抓 -投 -抖 -抗 -折 -抚 -抛 -抜 -択 -抟 -抠 -抡 -抢 -护 -报 -抨 -披 -抬 -抱 -抵 -抹 -押 -抽 -抿 -拂 -拄 -担 -拆 -拇 -拈 -拉 -拋 -拌 -拍 -拎 -拐 -拒 -拓 -拔 -拖 -拗 -拘 -拙 -拚 -招 -拜 -拟 -拡 -拢 -拣 -拥 -拦 -拧 -拨 -择 -括 -拭 -拮 -拯 -拱 -拳 -拴 -拷 -拼 -拽 -拾 -拿 -持 -挂 -指 -挈 -按 -挎 -挑 -挖 -挙 -挚 -挛 -挝 -挞 -挟 -挠 -挡 -挣 -挤 -挥 -挨 -挪 -挫 -振 -挲 -挹 -挺 -挽 -挾 -捂 -捅 -捆 -捉 -捋 -捌 -捍 -捎 -捏 -捐 -捕 -捞 -损 -捡 -换 -捣 -捧 -捨 -捩 -据 -捱 -捲 -捶 -捷 -捺 -捻 -掀 -掂 -掃 -掇 -授 -掉 -掌 -掏 -掐 -排 -掖 -掘 -掙 -掛 -掠 -採 -探 -掣 -接 -控 -推 -掩 -措 -掬 -掰 -掲 -掳 -掴 -掷 -掸 -掺 -揀 -揃 -揄 -揆 -揉 -揍 -描 -提 -插 -揖 -揚 -換 -握 -揣 -揩 -揪 -揭 -揮 -援 -揶 -揸 -揹 -揽 -搀 -搁 -搂 -搅 -損 -搏 -搐 -搓 -搔 -搖 -搗 -搜 -搞 -搡 -搪 -搬 -搭 -搵 -搶 -携 -搽 -摀 -摁 -摄 -摆 -摇 -摈 -摊 -摒 -摔 -摘 -摞 -摟 -摧 -摩 -摯 -摳 -摸 -摹 -摺 -摻 -撂 -撃 -撅 -撇 -撈 -撐 -撑 -撒 -撓 -撕 -撚 -撞 -撤 -撥 -撩 -撫 -撬 -播 -撮 -撰 -撲 -撵 -撷 -撸 -撻 -撼 -撿 -擀 -擁 -擂 -擄 -擅 -擇 -擊 -擋 -操 -擎 -擒 -擔 -擘 -據 -擞 -擠 -擡 -擢 -擦 -擬 -擰 -擱 -擲 -擴 -擷 -擺 -擼 -擾 -攀 -攏 -攒 -攔 -攘 -攙 -攜 -攝 -攞 -攢 -攣 -攤 -攥 -攪 -攫 -攬 -支 -收 -攸 -改 -攻 -放 -政 -故 -效 -敌 -敍 -敎 -敏 -救 -敕 -敖 -敗 -敘 -教 -敛 -敝 -敞 -敢 -散 -敦 -敬 -数 -敲 -整 -敵 -敷 -數 -斂 -斃 -文 -斋 -斌 -斎 -斐 -斑 -斓 -斗 -料 -斛 -斜 -斟 -斡 -斤 -斥 -斧 -斩 -斫 -斬 -断 -斯 -新 -斷 -方 -於 -施 -旁 -旃 -旅 -旋 -旌 -旎 -族 -旖 -旗 -无 -既 -日 -旦 -旧 -旨 -早 -旬 -旭 -旮 -旱 -时 -旷 -旺 -旻 -昀 -昂 -昆 -昇 -昉 -昊 -昌 -明 -昏 -易 -昔 -昕 -昙 -星 -映 -春 -昧 -昨 -昭 -是 -昱 -昴 -昵 -昶 -昼 -显 -晁 -時 -晃 -晉 -晋 -晌 -晏 -晒 -晓 -晔 -晕 -晖 -晗 -晚 -晝 -晞 -晟 -晤 -晦 -晨 -晩 -普 -景 -晰 -晴 -晶 -晷 -智 -晾 -暂 -暄 -暇 -暈 -暉 -暌 -暐 -暑 -暖 -暗 -暝 -暢 -暧 -暨 -暫 -暮 -暱 -暴 -暸 -暹 -曄 -曆 -曇 -曉 -曖 -曙 -曜 -曝 -曠 -曦 -曬 -曰 -曲 -曳 -更 -書 -曹 -曼 -曾 -替 -最 -會 -月 -有 -朋 -服 -朐 -朔 -朕 -朗 -望 -朝 -期 -朦 -朧 -木 -未 -末 -本 -札 -朮 -术 -朱 -朴 -朵 -机 -朽 -杀 -杂 -权 -杆 -杈 -杉 -李 -杏 -材 -村 -杓 -杖 -杜 -杞 -束 -杠 -条 -来 -杨 -杭 -杯 -杰 -東 -杳 -杵 -杷 -杼 -松 -板 -极 -构 -枇 -枉 -枋 -析 -枕 -林 -枚 -果 -枝 -枢 -枣 -枪 -枫 -枭 -枯 -枰 -枱 -枳 -架 -枷 -枸 -柄 -柏 -某 -柑 -柒 -染 -柔 -柘 -柚 -柜 -柞 -柠 -柢 -查 -柩 -柬 -柯 -柱 -柳 -柴 -柵 -査 -柿 -栀 -栃 -栄 -栅 -标 -栈 -栉 -栋 -栎 -栏 -树 -栓 -栖 -栗 -校 -栩 -株 -样 -核 -根 -格 -栽 -栾 -桀 -桁 -桂 -桃 -桅 -框 -案 -桉 -桌 -桎 -桐 -桑 -桓 -桔 -桜 -桠 -桡 -桢 -档 -桥 -桦 -桧 -桨 -桩 -桶 -桿 -梁 -梅 -梆 -梏 -梓 -梗 -條 -梟 -梢 -梦 -梧 -梨 -梭 -梯 -械 -梳 -梵 -梶 -检 -棂 -棄 -棉 -棋 -棍 -棒 -棕 -棗 -棘 -棚 -棟 -棠 -棣 -棧 -森 -棱 -棲 -棵 -棹 -棺 -椁 -椅 -椋 -植 -椎 -椒 -検 -椪 -椭 -椰 -椹 -椽 -椿 -楂 -楊 -楓 -楔 -楚 -楝 -楞 -楠 -楣 -楨 -楫 -業 -楮 -極 -楷 -楸 -楹 -楼 -楽 -概 -榄 -榆 -榈 -榉 -榔 -榕 -榖 -榛 -榜 -榨 -榫 -榭 -榮 -榱 -榴 -榷 -榻 -槁 -槃 -構 -槌 -槍 -槎 -槐 -槓 -様 -槛 -槟 -槤 -槭 -槲 -槳 -槻 -槽 -槿 -樁 -樂 -樊 -樑 -樓 -標 -樞 -樟 -模 -樣 -権 -横 -樫 -樯 -樱 -樵 -樸 -樹 -樺 -樽 -樾 -橄 -橇 -橋 -橐 -橘 -橙 -機 -橡 -橢 -橫 -橱 -橹 -橼 -檀 -檄 -檎 -檐 -檔 -檗 -檜 -檢 -檬 -檯 -檳 -檸 -檻 -櫃 -櫚 -櫛 -櫥 -櫸 -櫻 -欄 -權 -欒 -欖 -欠 -次 -欢 -欣 -欧 -欲 -欸 -欺 -欽 -款 -歆 -歇 -歉 -歌 -歎 -歐 -歓 -歙 -歛 -歡 -止 -正 -此 -步 -武 -歧 -歩 -歪 -歯 -歲 -歳 -歴 -歷 -歸 -歹 -死 -歼 -殁 -殃 -殆 -殇 -殉 -殊 -残 -殒 -殓 -殖 -殘 -殞 -殡 -殤 -殭 -殯 -殲 -殴 -段 -殷 -殺 -殼 -殿 -毀 -毁 -毂 -毅 -毆 -毋 -母 -毎 -每 -毒 -毓 -比 -毕 -毗 -毘 -毙 -毛 -毡 -毫 -毯 -毽 -氈 -氏 -氐 -民 -氓 -气 -氖 -気 -氙 -氛 -氟 -氡 -氢 -氣 -氤 -氦 -氧 -氨 -氪 -氫 -氮 -氯 -氰 -氲 -水 -氷 -永 -氹 -氾 -汀 -汁 -求 -汆 -汇 -汉 -汎 -汐 -汕 -汗 -汙 -汛 -汝 -汞 -江 -池 -污 -汤 -汨 -汩 -汪 -汰 -汲 -汴 -汶 -汹 -決 -汽 -汾 -沁 -沂 -沃 -沅 -沈 -沉 -沌 -沏 -沐 -沒 -沓 -沖 -沙 -沛 -沟 -没 -沢 -沣 -沥 -沦 -沧 -沪 -沫 -沭 -沮 -沱 -河 -沸 -油 -治 -沼 -沽 -沾 -沿 -況 -泄 -泉 -泊 -泌 -泓 -法 -泗 -泛 -泞 -泠 -泡 -波 -泣 -泥 -注 -泪 -泫 -泮 -泯 -泰 -泱 -泳 -泵 -泷 -泸 -泻 -泼 -泽 -泾 -洁 -洄 -洋 -洒 -洗 -洙 -洛 -洞 -津 -洩 -洪 -洮 -洱 -洲 -洵 -洶 -洸 -洹 -活 -洼 -洽 -派 -流 -浃 -浄 -浅 -浆 -浇 -浊 -测 -济 -浏 -浑 -浒 -浓 -浔 -浙 -浚 -浜 -浣 -浦 -浩 -浪 -浬 -浮 -浯 -浴 -海 -浸 -涂 -涅 -涇 -消 -涉 -涌 -涎 -涓 -涔 -涕 -涙 -涛 -涝 -涞 -涟 -涠 -涡 -涣 -涤 -润 -涧 -涨 -涩 -涪 -涮 -涯 -液 -涵 -涸 -涼 -涿 -淀 -淄 -淅 -淆 -淇 -淋 -淌 -淑 -淒 -淖 -淘 -淙 -淚 -淞 -淡 -淤 -淦 -淨 -淩 -淪 -淫 -淬 -淮 -深 -淳 -淵 -混 -淹 -淺 -添 -淼 -清 -済 -渉 -渊 -渋 -渍 -渎 -渐 -渔 -渗 -渙 -渚 -減 -渝 -渠 -渡 -渣 -渤 -渥 -渦 -温 -測 -渭 -港 -渲 -渴 -游 -渺 -渾 -湃 -湄 -湊 -湍 -湖 -湘 -湛 -湟 -湧 -湫 -湮 -湯 -湳 -湾 -湿 -満 -溃 -溅 -溉 -溏 -源 -準 -溜 -溝 -溟 -溢 -溥 -溧 -溪 -溫 -溯 -溱 -溴 -溶 -溺 -溼 -滁 -滂 -滄 -滅 -滇 -滋 -滌 -滑 -滓 -滔 -滕 -滙 -滚 -滝 -滞 -滟 -满 -滢 -滤 -滥 -滦 -滨 -滩 -滬 -滯 -滲 -滴 -滷 -滸 -滾 -滿 -漁 -漂 -漆 -漉 -漏 -漓 -演 -漕 -漠 -漢 -漣 -漩 -漪 -漫 -漬 -漯 -漱 -漲 -漳 -漸 -漾 -漿 -潆 -潇 -潋 -潍 -潑 -潔 -潘 -潛 -潜 -潞 -潟 -潢 -潤 -潦 -潧 -潭 -潮 -潰 -潴 -潸 -潺 -潼 -澀 -澄 -澆 -澈 -澍 -澎 -澗 -澜 -澡 -澤 -澧 -澱 -澳 -澹 -激 -濁 -濂 -濃 -濑 -濒 -濕 -濘 -濛 -濟 -濠 -濡 -濤 -濫 -濬 -濮 -濯 -濱 -濺 -濾 -瀅 -瀆 -瀉 -瀋 -瀏 -瀑 -瀕 -瀘 -瀚 -瀛 -瀝 -瀞 -瀟 -瀧 -瀨 -瀬 -瀰 -瀾 -灌 -灏 -灑 -灘 -灝 -灞 -灣 -火 -灬 -灭 -灯 -灰 -灵 -灶 -灸 -灼 -災 -灾 -灿 -炀 -炁 -炅 -炉 -炊 -炎 -炒 -炔 -炕 -炖 -炙 -炜 -炫 -炬 -炭 -炮 -炯 -炳 -炷 -炸 -点 -為 -炼 -炽 -烁 -烂 -烃 -烈 -烊 -烏 -烘 -烙 -烛 -烟 -烤 -烦 -烧 -烨 -烩 -烫 -烬 -热 -烯 -烷 -烹 -烽 -焉 -焊 -焕 -焖 -焗 -焘 -焙 -焚 -焜 -無 -焦 -焯 -焰 -焱 -然 -焼 -煅 -煉 -煊 -煌 -煎 -煒 -煖 -煙 -煜 -煞 -煤 -煥 -煦 -照 -煨 -煩 -煮 -煲 -煸 -煽 -熄 -熊 -熏 -熒 -熔 -熙 -熟 -熠 -熨 -熬 -熱 -熵 -熹 -熾 -燁 -燃 -燄 -燈 -燉 -燊 -燎 -燒 -燔 -燕 -燙 -燜 -營 -燥 -燦 -燧 -燭 -燮 -燴 -燻 -燼 -燿 -爆 -爍 -爐 -爛 -爪 -爬 -爭 -爰 -爱 -爲 -爵 -父 -爷 -爸 -爹 -爺 -爻 -爽 -爾 -牆 -片 -版 -牌 -牍 -牒 -牙 -牛 -牝 -牟 -牠 -牡 -牢 -牦 -牧 -物 -牯 -牲 -牴 -牵 -特 -牺 -牽 -犀 -犁 -犄 -犊 -犍 -犒 -犢 -犧 -犬 -犯 -状 -犷 -犸 -犹 -狀 -狂 -狄 -狈 -狎 -狐 -狒 -狗 -狙 -狞 -狠 -狡 -狩 -独 -狭 -狮 -狰 -狱 -狸 -狹 -狼 -狽 -猎 -猕 -猖 -猗 -猙 -猛 -猜 -猝 -猥 -猩 -猪 -猫 -猬 -献 -猴 -猶 -猷 -猾 -猿 -獄 -獅 -獎 -獐 -獒 -獗 -獠 -獣 -獨 -獭 -獰 -獲 -獵 -獷 -獸 -獺 -獻 -獼 -獾 -玄 -率 -玉 -王 -玑 -玖 -玛 -玟 -玠 -玥 -玩 -玫 -玮 -环 -现 -玲 -玳 -玷 -玺 -玻 -珀 -珂 -珅 -珈 -珉 -珊 -珍 -珏 -珐 -珑 -珙 -珞 -珠 -珣 -珥 -珩 -珪 -班 -珮 -珲 -珺 -現 -球 -琅 -理 -琇 -琉 -琊 -琍 -琏 -琐 -琛 -琢 -琥 -琦 -琨 -琪 -琬 -琮 -琰 -琲 -琳 -琴 -琵 -琶 -琺 -琼 -瑀 -瑁 -瑄 -瑋 -瑕 -瑗 -瑙 -瑚 -瑛 -瑜 -瑞 -瑟 -瑠 -瑣 -瑤 -瑩 -瑪 -瑯 -瑰 -瑶 -瑾 -璀 -璁 -璃 -璇 -璉 -璋 -璎 -璐 -璜 -璞 -璟 -璧 -璨 -環 -璽 -璿 -瓊 -瓏 -瓒 -瓜 -瓢 -瓣 -瓤 -瓦 -瓮 -瓯 -瓴 -瓶 -瓷 -甄 -甌 -甕 -甘 -甙 -甚 -甜 -生 -產 -産 -甥 -甦 -用 -甩 -甫 -甬 -甭 -甯 -田 -由 -甲 -申 -电 -男 -甸 -町 -画 -甾 -畀 -畅 -界 -畏 -畑 -畔 -留 -畜 -畝 -畢 -略 -畦 -番 -畫 -異 -畲 -畳 -畴 -當 -畸 -畹 -畿 -疆 -疇 -疊 -疏 -疑 -疔 -疖 -疗 -疙 -疚 -疝 -疟 -疡 -疣 -疤 -疥 -疫 -疮 -疯 -疱 -疲 -疳 -疵 -疸 -疹 -疼 -疽 -疾 -痂 -病 -症 -痈 -痉 -痊 -痍 -痒 -痔 -痕 -痘 -痙 -痛 -痞 -痠 -痢 -痣 -痤 -痧 -痨 -痪 -痫 -痰 -痱 -痴 -痹 -痺 -痼 -痿 -瘀 -瘁 -瘋 -瘍 -瘓 -瘘 -瘙 -瘟 -瘠 -瘡 -瘢 -瘤 -瘦 -瘧 -瘩 -瘪 -瘫 -瘴 -瘸 -瘾 -療 -癇 -癌 -癒 -癖 -癜 -癞 -癡 -癢 -癣 -癥 -癫 -癬 -癮 -癱 -癲 -癸 -発 -登 -發 -白 -百 -皂 -的 -皆 -皇 -皈 -皋 -皎 -皑 -皓 -皖 -皙 -皚 -皮 -皰 -皱 -皴 -皺 -皿 -盂 -盃 -盅 -盆 -盈 -益 -盎 -盏 -盐 -监 -盒 -盔 -盖 -盗 -盘 -盛 -盜 -盞 -盟 -盡 -監 -盤 -盥 -盧 -盪 -目 -盯 -盱 -盲 -直 -相 -盹 -盼 -盾 -省 -眈 -眉 -看 -県 -眙 -眞 -真 -眠 -眦 -眨 -眩 -眯 -眶 -眷 -眸 -眺 -眼 -眾 -着 -睁 -睇 -睏 -睐 -睑 -睛 -睜 -睞 -睡 -睢 -督 -睥 -睦 -睨 -睪 -睫 -睬 -睹 -睽 -睾 -睿 -瞄 -瞅 -瞇 -瞋 -瞌 -瞎 -瞑 -瞒 -瞓 -瞞 -瞟 -瞠 -瞥 -瞧 -瞩 -瞪 -瞬 -瞭 -瞰 -瞳 -瞻 -瞼 -瞿 -矇 -矍 -矗 -矚 -矛 -矜 -矢 -矣 -知 -矩 -矫 -短 -矮 -矯 -石 -矶 -矽 -矾 -矿 -码 -砂 -砌 -砍 -砒 -研 -砖 -砗 -砚 -砝 -砣 -砥 -砧 -砭 -砰 -砲 -破 -砷 -砸 -砺 -砼 -砾 -础 -硅 -硐 -硒 -硕 -硝 -硫 -硬 -确 -硯 -硼 -碁 -碇 -碉 -碌 -碍 -碎 -碑 -碓 -碗 -碘 -碚 -碛 -碟 -碣 -碧 -碩 -碰 -碱 -碳 -碴 -確 -碼 -碾 -磁 -磅 -磊 -磋 -磐 -磕 -磚 -磡 -磨 -磬 -磯 -磲 -磷 -磺 -礁 -礎 -礙 -礡 -礦 -礪 -礫 -礴 -示 -礼 -社 -祀 -祁 -祂 -祇 -祈 -祉 -祎 -祐 -祕 -祖 -祗 -祚 -祛 -祜 -祝 -神 -祟 -祠 -祢 -祥 -票 -祭 -祯 -祷 -祸 -祺 -祿 -禀 -禁 -禄 -禅 -禍 -禎 -福 -禛 -禦 -禧 -禪 -禮 -禱 -禹 -禺 -离 -禽 -禾 -禿 -秀 -私 -秃 -秆 -秉 -秋 -种 -科 -秒 -秘 -租 -秣 -秤 -秦 -秧 -秩 -秭 -积 -称 -秸 -移 -秽 -稀 -稅 -程 -稍 -税 -稔 -稗 -稚 -稜 -稞 -稟 -稠 -稣 -種 -稱 -稲 -稳 -稷 -稹 -稻 -稼 -稽 -稿 -穀 -穂 -穆 -穌 -積 -穎 -穗 -穢 -穩 -穫 -穴 -究 -穷 -穹 -空 -穿 -突 -窃 -窄 -窈 -窍 -窑 -窒 -窓 -窕 -窖 -窗 -窘 -窜 -窝 -窟 -窠 -窥 -窦 -窨 -窩 -窪 -窮 -窯 -窺 -窿 -竄 -竅 -竇 -竊 -立 -竖 -站 -竜 -竞 -竟 -章 -竣 -童 -竭 -端 -競 -竹 -竺 -竽 -竿 -笃 -笆 -笈 -笋 -笏 -笑 -笔 -笙 -笛 -笞 -笠 -符 -笨 -第 -笹 -笺 -笼 -筆 -等 -筊 -筋 -筍 -筏 -筐 -筑 -筒 -答 -策 -筛 -筝 -筠 -筱 -筲 -筵 -筷 -筹 -签 -简 -箇 -箋 -箍 -箏 -箐 -箔 -箕 -算 -箝 -管 -箩 -箫 -箭 -箱 -箴 -箸 -節 -篁 -範 -篆 -篇 -築 -篑 -篓 -篙 -篝 -篠 -篡 -篤 -篩 -篪 -篮 -篱 -篷 -簇 -簌 -簍 -簡 -簦 -簧 -簪 -簫 -簷 -簸 -簽 -簾 -簿 -籁 -籃 -籌 -籍 -籐 -籟 -籠 -籤 -籬 -籮 -籲 -米 -类 -籼 -籽 -粄 -粉 -粑 -粒 -粕 -粗 -粘 -粟 -粤 -粥 -粧 -粪 -粮 -粱 -粲 -粳 -粵 -粹 -粼 -粽 -精 -粿 -糅 -糊 -糍 -糕 -糖 -糗 -糙 -糜 -糞 -糟 -糠 -糧 -糬 -糯 -糰 -糸 -系 -糾 -紀 -紂 -約 -紅 -紉 -紊 -紋 -納 -紐 -紓 -純 -紗 -紘 -紙 -級 -紛 -紜 -素 -紡 -索 -紧 -紫 -紮 -累 -細 -紳 -紹 -紺 -終 -絃 -組 -絆 -経 -結 -絕 -絞 -絡 -絢 -給 -絨 -絮 -統 -絲 -絳 -絵 -絶 -絹 -綁 -綏 -綑 -經 -継 -続 -綜 -綠 -綢 -綦 -綫 -綬 -維 -綱 -網 -綴 -綵 -綸 -綺 -綻 -綽 -綾 -綿 -緊 -緋 -総 -緑 -緒 -緘 -線 -緝 -緞 -締 -緣 -編 -緩 -緬 -緯 -練 -緹 -緻 -縁 -縄 -縈 -縛 -縝 -縣 -縫 -縮 -縱 -縴 -縷 -總 -績 -繁 -繃 -繆 -繇 -繋 -織 -繕 -繚 -繞 -繡 -繩 -繪 -繫 -繭 -繳 -繹 -繼 -繽 -纂 -續 -纍 -纏 -纓 -纔 -纖 -纜 -纠 -红 -纣 -纤 -约 -级 -纨 -纪 -纫 -纬 -纭 -纯 -纰 -纱 -纲 -纳 -纵 -纶 -纷 -纸 -纹 -纺 -纽 -纾 -线 -绀 -练 -组 -绅 -细 -织 -终 -绊 -绍 -绎 -经 -绑 -绒 -结 -绔 -绕 -绘 -给 -绚 -绛 -络 -绝 -绞 -统 -绡 -绢 -绣 -绥 -绦 -继 -绩 -绪 -绫 -续 -绮 -绯 -绰 -绳 -维 -绵 -绶 -绷 -绸 -绻 -综 -绽 -绾 -绿 -缀 -缄 -缅 -缆 -缇 -缈 -缉 -缎 -缓 -缔 -缕 -编 -缘 -缙 -缚 -缜 -缝 -缠 -缢 -缤 -缥 -缨 -缩 -缪 -缭 -缮 -缰 -缱 -缴 -缸 -缺 -缽 -罂 -罄 -罌 -罐 -网 -罔 -罕 -罗 -罚 -罡 -罢 -罩 -罪 -置 -罰 -署 -罵 -罷 -罹 -羁 -羅 -羈 -羊 -羌 -美 -羔 -羚 -羞 -羟 -羡 -羣 -群 -羥 -羧 -羨 -義 -羯 -羲 -羸 -羹 -羽 -羿 -翁 -翅 -翊 -翌 -翎 -習 -翔 -翘 -翟 -翠 -翡 -翦 -翩 -翰 -翱 -翳 -翹 -翻 -翼 -耀 -老 -考 -耄 -者 -耆 -耋 -而 -耍 -耐 -耒 -耕 -耗 -耘 -耙 -耦 -耨 -耳 -耶 -耷 -耸 -耻 -耽 -耿 -聂 -聆 -聊 -聋 -职 -聒 -联 -聖 -聘 -聚 -聞 -聪 -聯 -聰 -聲 -聳 -聴 -聶 -職 -聽 -聾 -聿 -肃 -肄 -肅 -肆 -肇 -肉 -肋 -肌 -肏 -肓 -肖 -肘 -肚 -肛 -肝 -肠 -股 -肢 -肤 -肥 -肩 -肪 -肮 -肯 -肱 -育 -肴 -肺 -肽 -肾 -肿 -胀 -胁 -胃 -胄 -胆 -背 -胍 -胎 -胖 -胚 -胛 -胜 -胝 -胞 -胡 -胤 -胥 -胧 -胫 -胭 -胯 -胰 -胱 -胳 -胴 -胶 -胸 -胺 -能 -脂 -脅 -脆 -脇 -脈 -脉 -脊 -脍 -脏 -脐 -脑 -脓 -脖 -脘 -脚 -脛 -脣 -脩 -脫 -脯 -脱 -脲 -脳 -脸 -脹 -脾 -腆 -腈 -腊 -腋 -腌 -腎 -腐 -腑 -腓 -腔 -腕 -腥 -腦 -腩 -腫 -腭 -腮 -腰 -腱 -腳 -腴 -腸 -腹 -腺 -腻 -腼 -腾 -腿 -膀 -膈 -膊 -膏 -膑 -膘 -膚 -膛 -膜 -膝 -膠 -膦 -膨 -膩 -膳 -膺 -膻 -膽 -膾 -膿 -臀 -臂 -臃 -臆 -臉 -臊 -臍 -臓 -臘 -臟 -臣 -臥 -臧 -臨 -自 -臬 -臭 -至 -致 -臺 -臻 -臼 -臾 -舀 -舂 -舅 -舆 -與 -興 -舉 -舊 -舌 -舍 -舎 -舐 -舒 -舔 -舖 -舗 -舛 -舜 -舞 -舟 -航 -舫 -般 -舰 -舱 -舵 -舶 -舷 -舸 -船 -舺 -舾 -艇 -艋 -艘 -艙 -艦 -艮 -良 -艰 -艱 -色 -艳 -艷 -艹 -艺 -艾 -节 -芃 -芈 -芊 -芋 -芍 -芎 -芒 -芙 -芜 -芝 -芡 -芥 -芦 -芩 -芪 -芫 -芬 -芭 -芮 -芯 -花 -芳 -芷 -芸 -芹 -芻 -芽 -芾 -苁 -苄 -苇 -苋 -苍 -苏 -苑 -苒 -苓 -苔 -苕 -苗 -苛 -苜 -苞 -苟 -苡 -苣 -若 -苦 -苫 -苯 -英 -苷 -苹 -苻 -茁 -茂 -范 -茄 -茅 -茉 -茎 -茏 -茗 -茜 -茧 -茨 -茫 -茬 -茭 -茯 -茱 -茲 -茴 -茵 -茶 -茸 -茹 -茼 -荀 -荃 -荆 -草 -荊 -荏 -荐 -荒 -荔 -荖 -荘 -荚 -荞 -荟 -荠 -荡 -荣 -荤 -荥 -荧 -荨 -荪 -荫 -药 -荳 -荷 -荸 -荻 -荼 -荽 -莅 -莆 -莉 -莊 -莎 -莒 -莓 -莖 -莘 -莞 -莠 -莢 -莧 -莪 -莫 -莱 -莲 -莴 -获 -莹 -莺 -莽 -莿 -菀 -菁 -菅 -菇 -菈 -菊 -菌 -菏 -菓 -菖 -菘 -菜 -菟 -菠 -菡 -菩 -華 -菱 -菲 -菸 -菽 -萁 -萃 -萄 -萊 -萋 -萌 -萍 -萎 -萘 -萝 -萤 -营 -萦 -萧 -萨 -萩 -萬 -萱 -萵 -萸 -萼 -落 -葆 -葉 -著 -葚 -葛 -葡 -董 -葦 -葩 -葫 -葬 -葭 -葯 -葱 -葳 -葵 -葷 -葺 -蒂 -蒋 -蒐 -蒔 -蒙 -蒜 -蒞 -蒟 -蒡 -蒨 -蒲 -蒸 -蒹 -蒻 -蒼 -蒿 -蓁 -蓄 -蓆 -蓉 -蓋 -蓑 -蓓 -蓖 -蓝 -蓟 -蓦 -蓬 -蓮 -蓼 -蓿 -蔑 -蔓 -蔔 -蔗 -蔘 -蔚 -蔡 -蔣 -蔥 -蔫 -蔬 -蔭 -蔵 -蔷 -蔺 -蔻 -蔼 -蔽 -蕁 -蕃 -蕈 -蕉 -蕊 -蕎 -蕙 -蕤 -蕨 -蕩 -蕪 -蕭 -蕲 -蕴 -蕻 -蕾 -薄 -薅 -薇 -薈 -薊 -薏 -薑 -薔 -薙 -薛 -薦 -薨 -薩 -薪 -薬 -薯 -薰 -薹 -藉 -藍 -藏 -藐 -藓 -藕 -藜 -藝 -藤 -藥 -藩 -藹 -藻 -藿 -蘆 -蘇 -蘊 -蘋 -蘑 -蘚 -蘭 -蘸 -蘼 -蘿 -虎 -虏 -虐 -虑 -虔 -處 -虚 -虛 -虜 -虞 -號 -虢 -虧 -虫 -虬 -虱 -虹 -虻 -虽 -虾 -蚀 -蚁 -蚂 -蚊 -蚌 -蚓 -蚕 -蚜 -蚝 -蚣 -蚤 -蚩 -蚪 -蚯 -蚱 -蚵 -蛀 -蛆 -蛇 -蛊 -蛋 -蛎 -蛐 -蛔 -蛙 -蛛 -蛟 -蛤 -蛭 -蛮 -蛰 -蛳 -蛹 -蛻 -蛾 -蜀 -蜂 -蜃 -蜆 -蜇 -蜈 -蜊 -蜍 -蜒 -蜓 -蜕 -蜗 -蜘 -蜚 -蜜 -蜡 -蜢 -蜥 -蜱 -蜴 -蜷 -蜻 -蜿 -蝇 -蝈 -蝉 -蝌 -蝎 -蝕 -蝗 -蝙 -蝟 -蝠 -蝦 -蝨 -蝴 -蝶 -蝸 -蝼 -螂 -螃 -融 -螞 -螢 -螨 -螯 -螳 -螺 -蟀 -蟄 -蟆 -蟋 -蟎 -蟑 -蟒 -蟠 -蟬 -蟲 -蟹 -蟻 -蟾 -蠅 -蠍 -蠔 -蠕 -蠛 -蠟 -蠡 -蠢 -蠣 -蠱 -蠶 -蠹 -蠻 -血 -衄 -衅 -衆 -行 -衍 -術 -衔 -街 -衙 -衛 -衝 -衞 -衡 -衢 -衣 -补 -表 -衩 -衫 -衬 -衮 -衰 -衲 -衷 -衹 -衾 -衿 -袁 -袂 -袄 -袅 -袈 -袋 -袍 -袒 -袖 -袜 -袞 -袤 -袪 -被 -袭 -袱 -裁 -裂 -装 -裆 -裊 -裏 -裔 -裕 -裘 -裙 -補 -裝 -裟 -裡 -裤 -裨 -裱 -裳 -裴 -裸 -裹 -製 -裾 -褂 -複 -褐 -褒 -褓 -褔 -褚 -褥 -褪 -褫 -褲 -褶 -褻 -襁 -襄 -襟 -襠 -襪 -襬 -襯 -襲 -西 -要 -覃 -覆 -覇 -見 -規 -覓 -視 -覚 -覦 -覧 -親 -覬 -観 -覷 -覺 -覽 -觀 -见 -观 -规 -觅 -视 -览 -觉 -觊 -觎 -觐 -觑 -角 -觞 -解 -觥 -触 -觸 -言 -訂 -計 -訊 -討 -訓 -訕 -訖 -託 -記 -訛 -訝 -訟 -訣 -訥 -訪 -設 -許 -訳 -訴 -訶 -診 -註 -証 -詆 -詐 -詔 -評 -詛 -詞 -詠 -詡 -詢 -詣 -試 -詩 -詫 -詬 -詭 -詮 -詰 -話 -該 -詳 -詹 -詼 -誅 -誇 -誉 -誌 -認 -誓 -誕 -誘 -語 -誠 -誡 -誣 -誤 -誥 -誦 -誨 -說 -説 -読 -誰 -課 -誹 -誼 -調 -諄 -談 -請 -諏 -諒 -論 -諗 -諜 -諡 -諦 -諧 -諫 -諭 -諮 -諱 -諳 -諷 -諸 -諺 -諾 -謀 -謁 -謂 -謄 -謊 -謎 -謐 -謔 -謗 -謙 -講 -謝 -謠 -謨 -謬 -謹 -謾 -譁 -證 -譎 -譏 -識 -譙 -譚 -譜 -警 -譬 -譯 -議 -譲 -譴 -護 -譽 -讀 -變 -讓 -讚 -讞 -计 -订 -认 -讥 -讧 -讨 -让 -讪 -讫 -训 -议 -讯 -记 -讲 -讳 -讴 -讶 -讷 -许 -讹 -论 -讼 -讽 -设 -访 -诀 -证 -诃 -评 -诅 -识 -诈 -诉 -诊 -诋 -词 -诏 -译 -试 -诗 -诘 -诙 -诚 -诛 -话 -诞 -诟 -诠 -诡 -询 -诣 -诤 -该 -详 -诧 -诩 -诫 -诬 -语 -误 -诰 -诱 -诲 -说 -诵 -诶 -请 -诸 -诺 -读 -诽 -课 -诿 -谀 -谁 -调 -谄 -谅 -谆 -谈 -谊 -谋 -谌 -谍 -谎 -谏 -谐 -谑 -谒 -谓 -谔 -谕 -谗 -谘 -谙 -谚 -谛 -谜 -谟 -谢 -谣 -谤 -谥 -谦 -谧 -谨 -谩 -谪 -谬 -谭 -谯 -谱 -谲 -谴 -谶 -谷 -豁 -豆 -豇 -豈 -豉 -豊 -豌 -豎 -豐 -豔 -豚 -象 -豢 -豪 -豫 -豬 -豹 -豺 -貂 -貅 -貌 -貓 -貔 -貘 -貝 -貞 -負 -財 -貢 -貧 -貨 -販 -貪 -貫 -責 -貯 -貰 -貳 -貴 -貶 -買 -貸 -費 -貼 -貽 -貿 -賀 -賁 -賂 -賃 -賄 -資 -賈 -賊 -賑 -賓 -賜 -賞 -賠 -賡 -賢 -賣 -賤 -賦 -質 -賬 -賭 -賴 -賺 -購 -賽 -贅 -贈 -贊 -贍 -贏 -贓 -贖 -贛 -贝 -贞 -负 -贡 -财 -责 -贤 -败 -账 -货 -质 -贩 -贪 -贫 -贬 -购 -贮 -贯 -贰 -贱 -贲 -贴 -贵 -贷 -贸 -费 -贺 -贻 -贼 -贾 -贿 -赁 -赂 -赃 -资 -赅 -赈 -赊 -赋 -赌 -赎 -赏 -赐 -赓 -赔 -赖 -赘 -赚 -赛 -赝 -赞 -赠 -赡 -赢 -赣 -赤 -赦 -赧 -赫 -赭 -走 -赳 -赴 -赵 -赶 -起 -趁 -超 -越 -趋 -趕 -趙 -趟 -趣 -趨 -足 -趴 -趵 -趸 -趺 -趾 -跃 -跄 -跆 -跋 -跌 -跎 -跑 -跖 -跚 -跛 -距 -跟 -跡 -跤 -跨 -跩 -跪 -路 -跳 -践 -跷 -跹 -跺 -跻 -踉 -踊 -踌 -踏 -踐 -踝 -踞 -踟 -踢 -踩 -踪 -踮 -踱 -踴 -踵 -踹 -蹂 -蹄 -蹇 -蹈 -蹉 -蹊 -蹋 -蹑 -蹒 -蹙 -蹟 -蹣 -蹤 -蹦 -蹩 -蹬 -蹭 -蹲 -蹴 -蹶 -蹺 -蹼 -蹿 -躁 -躇 -躉 -躊 -躋 -躍 -躏 -躪 -身 -躬 -躯 -躲 -躺 -軀 -車 -軋 -軌 -軍 -軒 -軟 -転 -軸 -軼 -軽 -軾 -較 -載 -輒 -輓 -輔 -輕 -輛 -輝 -輟 -輩 -輪 -輯 -輸 -輻 -輾 -輿 -轄 -轅 -轆 -轉 -轍 -轎 -轟 -车 -轧 -轨 -轩 -转 -轭 -轮 -软 -轰 -轲 -轴 -轶 -轻 -轼 -载 -轿 -较 -辄 -辅 -辆 -辇 -辈 -辉 -辊 -辍 -辐 -辑 -输 -辕 -辖 -辗 -辘 -辙 -辛 -辜 -辞 -辟 -辣 -辦 -辨 -辩 -辫 -辭 -辮 -辯 -辰 -辱 -農 -边 -辺 -辻 -込 -辽 -达 -迁 -迂 -迄 -迅 -过 -迈 -迎 -运 -近 -返 -还 -这 -进 -远 -违 -连 -迟 -迢 -迤 -迥 -迦 -迩 -迪 -迫 -迭 -述 -迴 -迷 -迸 -迹 -迺 -追 -退 -送 -适 -逃 -逅 -逆 -选 -逊 -逍 -透 -逐 -递 -途 -逕 -逗 -這 -通 -逛 -逝 -逞 -速 -造 -逢 -連 -逮 -週 -進 -逵 -逶 -逸 -逻 -逼 -逾 -遁 -遂 -遅 -遇 -遊 -運 -遍 -過 -遏 -遐 -遑 -遒 -道 -達 -違 -遗 -遙 -遛 -遜 -遞 -遠 -遢 -遣 -遥 -遨 -適 -遭 -遮 -遲 -遴 -遵 -遶 -遷 -選 -遺 -遼 -遽 -避 -邀 -邁 -邂 -邃 -還 -邇 -邈 -邊 -邋 -邏 -邑 -邓 -邕 -邛 -邝 -邢 -那 -邦 -邨 -邪 -邬 -邮 -邯 -邰 -邱 -邳 -邵 -邸 -邹 -邺 -邻 -郁 -郅 -郊 -郎 -郑 -郜 -郝 -郡 -郢 -郤 -郦 -郧 -部 -郫 -郭 -郴 -郵 -郷 -郸 -都 -鄂 -鄉 -鄒 -鄔 -鄙 -鄞 -鄢 -鄧 -鄭 -鄰 -鄱 -鄲 -鄺 -酉 -酊 -酋 -酌 -配 -酐 -酒 -酗 -酚 -酝 -酢 -酣 -酥 -酩 -酪 -酬 -酮 -酯 -酰 -酱 -酵 -酶 -酷 -酸 -酿 -醃 -醇 -醉 -醋 -醍 -醐 -醒 -醚 -醛 -醜 -醞 -醣 -醪 -醫 -醬 -醮 -醯 -醴 -醺 -釀 -釁 -采 -釉 -释 -釋 -里 -重 -野 -量 -釐 -金 -釗 -釘 -釜 -針 -釣 -釦 -釧 -釵 -鈀 -鈉 -鈍 -鈎 -鈔 -鈕 -鈞 -鈣 -鈦 -鈪 -鈴 -鈺 -鈾 -鉀 -鉄 -鉅 -鉉 -鉑 -鉗 -鉚 -鉛 -鉤 -鉴 -鉻 -銀 -銃 -銅 -銑 -銓 -銖 -銘 -銜 -銬 -銭 -銮 -銳 -銷 -銹 -鋁 -鋅 -鋒 -鋤 -鋪 -鋰 -鋸 -鋼 -錄 -錐 -錘 -錚 -錠 -錢 -錦 -錨 -錫 -錮 -錯 -録 -錳 -錶 -鍊 -鍋 -鍍 -鍛 -鍥 -鍰 -鍵 -鍺 -鍾 -鎂 -鎊 -鎌 -鎏 -鎔 -鎖 -鎗 -鎚 -鎧 -鎬 -鎮 -鎳 -鏈 -鏖 -鏗 -鏘 -鏞 -鏟 -鏡 -鏢 -鏤 -鏽 -鐘 -鐮 -鐲 -鐳 -鐵 -鐸 -鐺 -鑄 -鑊 -鑑 -鑒 -鑣 -鑫 -鑰 -鑲 -鑼 -鑽 -鑾 -鑿 -针 -钉 -钊 -钎 -钏 -钒 -钓 -钗 -钙 -钛 -钜 -钝 -钞 -钟 -钠 -钡 -钢 -钣 -钤 -钥 -钦 -钧 -钨 -钩 -钮 -钯 -钰 -钱 -钳 -钴 -钵 -钺 -钻 -钼 -钾 -钿 -铀 -铁 -铂 -铃 -铄 -铅 -铆 -铉 -铎 -铐 -铛 -铜 -铝 -铠 -铡 -铢 -铣 -铤 -铨 -铩 -铬 -铭 -铮 -铰 -铲 -铵 -银 -铸 -铺 -链 -铿 -销 -锁 -锂 -锄 -锅 -锆 -锈 -锉 -锋 -锌 -锏 -锐 -锑 -错 -锚 -锟 -锡 -锢 -锣 -锤 -锥 -锦 -锭 -键 -锯 -锰 -锲 -锵 -锹 -锺 -锻 -镀 -镁 -镂 -镇 -镉 -镌 -镍 -镐 -镑 -镕 -镖 -镗 -镛 -镜 -镣 -镭 -镯 -镰 -镳 -镶 -長 -长 -門 -閃 -閉 -開 -閎 -閏 -閑 -閒 -間 -閔 -閘 -閡 -関 -閣 -閥 -閨 -閩 -閱 -閲 -閹 -閻 -閾 -闆 -闇 -闊 -闌 -闍 -闔 -闕 -闖 -闘 -關 -闡 -闢 -门 -闪 -闫 -闭 -问 -闯 -闰 -闲 -间 -闵 -闷 -闸 -闹 -闺 -闻 -闽 -闾 -阀 -阁 -阂 -阅 -阆 -阇 -阈 -阉 -阎 -阐 -阑 -阔 -阕 -阖 -阙 -阚 -阜 -队 -阡 -阪 -阮 -阱 -防 -阳 -阴 -阵 -阶 -阻 -阿 -陀 -陂 -附 -际 -陆 -陇 -陈 -陋 -陌 -降 -限 -陕 -陛 -陝 -陞 -陟 -陡 -院 -陣 -除 -陨 -险 -陪 -陰 -陲 -陳 -陵 -陶 -陷 -陸 -険 -陽 -隅 -隆 -隈 -隊 -隋 -隍 -階 -随 -隐 -隔 -隕 -隘 -隙 -際 -障 -隠 -隣 -隧 -隨 -險 -隱 -隴 -隶 -隸 -隻 -隼 -隽 -难 -雀 -雁 -雄 -雅 -集 -雇 -雉 -雋 -雌 -雍 -雎 -雏 -雑 -雒 -雕 -雖 -雙 -雛 -雜 -雞 -離 -難 -雨 -雪 -雯 -雰 -雲 -雳 -零 -雷 -雹 -電 -雾 -需 -霁 -霄 -霆 -震 -霈 -霉 -霊 -霍 -霎 -霏 -霑 -霓 -霖 -霜 -霞 -霧 -霭 -霰 -露 -霸 -霹 -霽 -霾 -靂 -靄 -靈 -青 -靓 -靖 -静 -靚 -靛 -靜 -非 -靠 -靡 -面 -靥 -靦 -革 -靳 -靴 -靶 -靼 -鞅 -鞋 -鞍 -鞏 -鞑 -鞘 -鞠 -鞣 -鞦 -鞭 -韆 -韋 -韌 -韓 -韜 -韦 -韧 -韩 -韬 -韭 -音 -韵 -韶 -韻 -響 -頁 -頂 -頃 -項 -順 -須 -頌 -預 -頑 -頒 -頓 -頗 -領 -頜 -頡 -頤 -頫 -頭 -頰 -頷 -頸 -頹 -頻 -頼 -顆 -題 -額 -顎 -顏 -顔 -願 -顛 -類 -顧 -顫 -顯 -顱 -顴 -页 -顶 -顷 -项 -顺 -须 -顼 -顽 -顾 -顿 -颁 -颂 -预 -颅 -领 -颇 -颈 -颉 -颊 -颌 -颍 -颐 -频 -颓 -颔 -颖 -颗 -题 -颚 -颛 -颜 -额 -颞 -颠 -颡 -颢 -颤 -颦 -颧 -風 -颯 -颱 -颳 -颶 -颼 -飄 -飆 -风 -飒 -飓 -飕 -飘 -飙 -飚 -飛 -飞 -食 -飢 -飨 -飩 -飪 -飯 -飲 -飼 -飽 -飾 -餃 -餅 -餉 -養 -餌 -餐 -餒 -餓 -餘 -餚 -餛 -餞 -餡 -館 -餮 -餵 -餾 -饅 -饈 -饋 -饌 -饍 -饑 -饒 -饕 -饗 -饞 -饥 -饨 -饪 -饬 -饭 -饮 -饯 -饰 -饱 -饲 -饴 -饵 -饶 -饷 -饺 -饼 -饽 -饿 -馀 -馁 -馄 -馅 -馆 -馈 -馋 -馍 -馏 -馒 -馔 -首 -馗 -香 -馥 -馨 -馬 -馭 -馮 -馳 -馴 -駁 -駄 -駅 -駆 -駐 -駒 -駕 -駛 -駝 -駭 -駱 -駿 -騁 -騎 -騏 -験 -騙 -騨 -騰 -騷 -驀 -驅 -驊 -驍 -驒 -驕 -驗 -驚 -驛 -驟 -驢 -驥 -马 -驭 -驮 -驯 -驰 -驱 -驳 -驴 -驶 -驷 -驸 -驹 -驻 -驼 -驾 -驿 -骁 -骂 -骄 -骅 -骆 -骇 -骈 -骊 -骋 -验 -骏 -骐 -骑 -骗 -骚 -骛 -骜 -骞 -骠 -骡 -骤 -骥 -骧 -骨 -骯 -骰 -骶 -骷 -骸 -骼 -髂 -髅 -髋 -髏 -髒 -髓 -體 -髖 -高 -髦 -髪 -髮 -髯 -髻 -鬃 -鬆 -鬍 -鬓 -鬚 -鬟 -鬢 -鬣 -鬥 -鬧 -鬱 -鬼 -魁 -魂 -魄 -魅 -魇 -魍 -魏 -魔 -魘 -魚 -魯 -魷 -鮑 -鮨 -鮪 -鮭 -鮮 -鯉 -鯊 -鯖 -鯛 -鯨 -鯰 -鯽 -鰍 -鰓 -鰭 -鰲 -鰻 -鰾 -鱈 -鱉 -鱔 -鱗 -鱷 -鱸 -鱼 -鱿 -鲁 -鲈 -鲍 -鲑 -鲛 -鲜 -鲟 -鲢 -鲤 -鲨 -鲫 -鲱 -鲲 -鲶 -鲷 -鲸 -鳃 -鳄 -鳅 -鳌 -鳍 -鳕 -鳖 -鳗 -鳝 -鳞 -鳥 -鳩 -鳳 -鳴 -鳶 -鴉 -鴕 -鴛 -鴦 -鴨 -鴻 -鴿 -鵑 -鵜 -鵝 -鵡 -鵬 -鵰 -鵲 -鶘 -鶩 -鶯 -鶴 -鷗 -鷲 -鷹 -鷺 -鸚 -鸞 -鸟 -鸠 -鸡 -鸢 -鸣 -鸥 -鸦 -鸨 -鸪 -鸭 -鸯 -鸳 -鸵 -鸽 -鸾 -鸿 -鹂 -鹃 -鹄 -鹅 -鹈 -鹉 -鹊 -鹌 -鹏 -鹑 -鹕 -鹘 -鹜 -鹞 -鹤 -鹦 -鹧 -鹫 -鹭 -鹰 -鹳 -鹵 -鹹 -鹼 -鹽 -鹿 -麂 -麋 -麒 -麓 -麗 -麝 -麟 -麥 -麦 -麩 -麴 -麵 -麸 -麺 -麻 -麼 -麽 -麾 -黃 -黄 -黍 -黎 -黏 -黑 -黒 -黔 -默 -黛 -黜 -黝 -點 -黠 -黨 -黯 -黴 -鼋 -鼎 -鼐 -鼓 -鼠 -鼬 -鼹 -鼻 -鼾 -齁 -齊 -齋 -齐 -齒 -齡 -齢 -齣 -齦 -齿 -龄 -龅 -龈 -龊 -龋 -龌 -龍 -龐 -龔 -龕 -龙 -龚 -龛 -龜 -龟 -︰ -︱ -︶ -︿ -﹁ -﹂ -﹍ -﹏ -﹐ -﹑ -﹒ -﹔ -﹕ -﹖ -﹗ -﹙ -﹚ -﹝ -﹞ -﹡ -﹣ -! -" -# -$ -% -& -' -( -) -* -+ -, -- -. -/ -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -: -; -< -= -> -? -@ -[ -\ -] -^ -_ -` -a -b -c -d -e -f -g -h -i -j -k -l -m -n -o -p -q -r -s -t -u -v -w -x -y -z -{ -| -} -~ -。 -「 -」 -、 -・ -ッ -ー -イ -ク -シ -ス -ト -ノ -フ -ラ -ル -ン -゙ -゚ - ̄ -¥ -👍 -🔥 -😂 -😎 -... -yam -10 -2017 -12 -11 -2016 -20 -30 -15 -06 -lofter -##s -2015 -by -16 -14 -18 -13 -24 -17 -2014 -21 -##0 -22 -19 -25 -23 -com -100 -00 -05 -2013 -##a -03 -09 -08 -28 -##2 -50 -01 -04 -##1 -27 -02 -2012 -##3 -26 -##e -07 -##8 -##5 -##6 -##4 -##9 -##7 -29 -2011 -40 -##t -2010 -##o -##d -##i -2009 -##n -app -www -the -##m -31 -##c -##l -##y -##r -##g -2008 -60 -http -200 -qq -##p -80 -##f -google -pixnet -90 -cookies -tripadvisor -500 -##er -##k -35 -##h -facebook -2007 -2000 -70 -##b -of -##x -##u -45 -300 -iphone -32 -1000 -2006 -48 -ip -36 -in -38 -3d -##w -##ing -55 -ctrip -##on -##v -33 -##の -to -34 -400 -id -2005 -it -37 -windows -llc -top -99 -42 -39 -000 -led -at -##an -41 -51 -52 -46 -49 -43 -53 -44 -##z -android -58 -and -59 -2004 -56 -vr -##か -5000 -2003 -47 -blogthis -twitter -54 -##le -150 -ok -2018 -57 -75 -cn -no -ios -##in -##mm -##00 -800 -on -te -3000 -65 -2001 -360 -95 -ig -lv -120 -##ng -##を -##us -##に -pc -てす -── -600 -##te -85 -2002 -88 -##ed -html -ncc -wifi -email -64 -blog -is -##10 -##て -mail -online -##al -dvd -##ic -studio -##は -##℃ -##ia -##と -line -vip -72 -##q -98 -##ce -##en -for -##is -##ra -##es -##j -usb -net -cp -1999 -asia -4g -##cm -diy -new -3c -##お -ta -66 -language -vs -apple -tw -86 -web -##ne -ipad -62 -you -##re -101 -68 -##tion -ps -de -bt -pony -atm -##2017 -1998 -67 -##ch -ceo -##or -go -##na -av -pro -cafe -96 -pinterest -97 -63 -pixstyleme3c -##ta -more -said -##2016 -1997 -mp3 -700 -##ll -nba -jun -##20 -92 -tv -1995 -pm -61 -76 -nbsp -250 -##ie -linux -##ma -cd -110 -hd -##17 -78 -##ion -77 -6000 -am -##th -##st -94 -##se -##et -69 -180 -gdp -my -105 -81 -abc -89 -flash -79 -one -93 -1990 -1996 -##ck -gps -##も -##ly -web885 -106 -2020 -91 -##ge -4000 -1500 -xd -boss -isbn -1994 -org -##ry -me -love -##11 -0fork -73 -##12 -3g -##ter -##ar -71 -82 -##la -hotel -130 -1970 -pk -83 -87 -140 -ie -##os -##30 -##el -74 -##50 -seo -cpu -##ml -p2p -84 -may -##る -sun -tue -internet -cc -posted -youtube -##at -##ン -##man -ii -##ル -##15 -abs -nt -pdf -yahoo -ago -1980 -##it -news -mac -104 -##てす -##me -##り -java -1992 -spa -##de -##nt -hk -all -plus -la -1993 -##mb -##16 -##ve -west -##da -160 -air -##い -##ps -から -##to -1989 -logo -htc -php -https -fi -momo -##son -sat -##ke -##80 -ebd -suv -wi -day -apk -##88 -##um -mv -galaxy -wiki -or -brake -##ス -1200 -する -this -1991 -mon -##こ -❤2017 -po -##ない -javascript -life -home -june -##ss -system -900 -##ー -##0 -pp -1988 -world -fb -4k -br -##as -ic -ai -leonardo -safari -##60 -live -free -xx -wed -win7 -kiehl -##co -lg -o2o -##go -us -235 -1949 -mm -しい -vfm -kanye -##90 -##2015 -##id -jr -##ey -123 -rss -##sa -##ro -##am -##no -thu -fri -350 -##sh -##ki -103 -comments -name -##のて -##pe -##ine -max -1987 -8000 -uber -##mi -##ton -wordpress -office -1986 -1985 -##ment -107 -bd -win10 -##ld -##li -gmail -bb -dior -##rs -##ri -##rd -##ます -up -cad -##® -dr -して -read -##21 -をお -##io -##99 -url -1984 -pvc -paypal -show -policy -##40 -##ty -##18 -with -##★ -##01 -txt -102 -##ba -dna -from -post -mini -ar -taiwan -john -##ga -privacy -agoda -##13 -##ny -word -##24 -##22 -##by -##ur -##hz -1982 -##ang -265 -cookie -netscape -108 -##ka -##~ -##ad -house -share -note -ibm -code -hello -nike -sim -survey -##016 -1979 -1950 -wikia -##32 -##017 -5g -cbc -##tor -##kg -1983 -##rt -##14 -campaign -store -2500 -os -##ct -##ts -##° -170 -api -##ns -365 -excel -##な -##ao -##ら -##し -~~ -##nd -university -163 -には -518 -##70 -##ya -##il -##25 -pierre -ipo -0020 -897 -##23 -hotels -##ian -のお -125 -years -6606 -##ers -##26 -high -##day -time -##ay -bug -##line -##く -##す -##be -xp -talk2yam -yamservice -10000 -coco -##dy -sony -##ies -1978 -microsoft -david -people -##ha -1960 -instagram -intel -その -##ot -iso -1981 -##va -115 -##mo -##land -xxx -man -co -ltxsw -##ation -baby -220 -##pa -##ol -1945 -7000 -tag -450 -##ue -msn -##31 -oppo -##ト -##ca -control -##om -st -chrome -##ure -##ん -be -##き -lol -##19 -した -##bo -240 -lady -##100 -##way -##から -4600 -##ko -##do -##un -4s -corporation -168 -##ni -herme -##28 -cp -978 -##up -##06 -ui -##ds -ppt -admin -three -します -bbc -re -128 -##48 -ca -##015 -##35 -hp -##ee -tpp -##た -##ive -×× -root -##cc -##ました -##ble -##ity -adobe -park -114 -et -oled -city -##ex -##ler -##ap -china -##book -20000 -view -##ice -global -##km -your -hong -##mg -out -##ms -ng -ebay -##29 -menu -ubuntu -##cy -rom -##view -open -ktv -do -server -##lo -if -english -##ね -##5 -##oo -1600 -##02 -step1 -kong -club -135 -july -inc -1976 -mr -hi -##net -touch -##ls -##ii -michael -lcd -##05 -##33 -phone -james -step2 -1300 -ios9 -##box -dc -##2 -##ley -samsung -111 -280 -pokemon -css -##ent -##les -いいえ -##1 -s8 -atom -play -bmw -##said -sa -etf -ctrl -♥yoyo♥ -##55 -2025 -##2014 -##66 -adidas -amazon -1958 -##ber -##ner -visa -##77 -##der -1800 -connectivity -##hi -firefox -109 -118 -hr -so -style -mark -pop -ol -skip -1975 -as -##27 -##ir -##61 -190 -mba -##う -##ai -le -##ver -1900 -cafe2017 -lte -super -113 -129 -##ron -amd -like -##☆ -are -##ster -we -##sk -paul -data -international -##ft -longchamp -ssd -good -##ート -##ti -reply -##my -↓↓↓ -apr -star -##ker -source -136 -js -112 -get -force -photo -##one -126 -##2013 -##ow -link -bbs -1972 -goods -##lin -python -119 -##ip -game -##ics -##ません -blue -##● -520 -##45 -page -itunes -##03 -1955 -260 -1968 -gt -gif -618 -##ff -##47 -group -くたさい -about -bar -ganji -##nce -music -lee -not -1977 -1971 -1973 -##per -an -faq -comment -##って -days -##ock -116 -##bs -1974 -1969 -v1 -player -1956 -xbox -sql -fm -f1 -139 -##ah -210 -##lv -##mp -##000 -melody -1957 -##3 -550 -17life -199 -1966 -xml -market -##au -##71 -999 -##04 -what -gl -##95 -##age -tips -##68 -book -##ting -mysql -can -1959 -230 -##ung -wonderland -watch -10℃ -##ction -9000 -mar -mobile -1946 -1962 -article -##db -part -▲top -party -って -1967 -1964 -1948 -##07 -##ore -##op -この -dj -##78 -##38 -010 -main -225 -1965 -##ong -art -320 -ad -134 -020 -##73 -117 -pm2 -japan -228 -##08 -ts -1963 -##ica -der -sm -##36 -2019 -##wa -ct -##7 -##や -##64 -1937 -homemesh -search -##85 -##れは -##tv -##di -macbook -##9 -##くたさい -service -##♥ -type -った -750 -##ier -##si -##75 -##います -##ok -best -##ット -goris -lock -##った -cf -3m -big -##ut -ftp -carol -##vi -10 -1961 -happy -sd -##ac -122 -anti -pe -cnn -iii -1920 -138 -##ラ -1940 -esp -jan -tags -##98 -##51 -august -vol -##86 -154 -##™ -##fs -##れ -##sion -design -ac -##ム -press -jordan -ppp -that -key -check -##6 -##tt -##㎡ -1080p -##lt -power -##42 -1952 -##bc -vivi -##ック -he -133 -121 -jpg -##rry -201 -175 -3500 -1947 -nb -##ted -##rn -しています -1954 -usd -##t00 -master -##ンク -001 -model -##58 -al -##09 -1953 -##34 -ram -goo -ても -##ui -127 -1930 -red -##ary -rpg -item -##pm -##41 -270 -##za -project -##2012 -hot -td -blogabstract -##ger -##62 -650 -##44 -gr2 -##します -##m -black -electronic -nfc -year -asus -また -html5 -cindy -##hd -m3 -132 -esc -##od -booking -##53 -fed -tvb -##81 -##ina -mit -165 -##いる -chan -192 -distribution -next -になる -peter -bios -steam -cm -1941 -にも -pk10 -##ix -##65 -##91 -dec -nasa -##ana -icecat -00z -b1 -will -##46 -li -se -##ji -##み -##ard -oct -##ain -jp -##ze -##bi -cio -##56 -smart -h5 -##39 -##port -curve -vpn -##nm -##dia -utc -##あり -12345678910 -##52 -rmvb -chanel -a4 -miss -##and -##im -media -who -##63 -she -girl -5s -124 -vera -##して -class -vivo -king -##フ -##ei -national -ab -1951 -5cm -888 -145 -ipod -ap -1100 -5mm -211 -ms -2756 -##69 -mp4 -msci -##po -##89 -131 -mg -index -380 -##bit -##out -##zz -##97 -##67 -158 -apec -##8 -photoshop -opec -¥799 -ては -##96 -##tes -##ast -2g -○○ -##ール -¥2899 -##ling -##よ -##ory -1938 -##ical -kitty -content -##43 -step3 -##cn -win8 -155 -vc -1400 -iphone7 -robert -##した -tcl -137 -beauty -##87 -en -dollars -##ys -##oc -step -pay -yy -a1 -##2011 -##lly -##ks -##♪ -1939 -188 -download -1944 -sep -exe -ph -います -school -gb -center -pr -street -##board -uv -##37 -##lan -winrar -##que -##ua -##com -1942 -1936 -480 -gpu -##4 -ettoday -fu -tom -##54 -##ren -##via -149 -##72 -b2b -144 -##79 -##tch -rose -arm -mb -##49 -##ial -##nn -nvidia -step4 -mvp -00㎡ -york -156 -##イ -how -cpi -591 -2765 -gov -kg -joe -##xx -mandy -pa -##ser -copyright -fashion -1935 -don -##け -ecu -##ist -##art -erp -wap -have -##lm -talk -##ek -##ning -##if -ch -##ite -video -1943 -cs -san -iot -look -##84 -##2010 -##ku -october -##ux -trump -##hs -##ide -box -141 -first -##ins -april -##ight -##83 -185 -angel -protected -aa -151 -162 -x1 -m2 -##fe -##× -##ho -size -143 -min -ofo -fun -gomaji -ex -hdmi -food -dns -march -chris -kevin -##のか -##lla -##pp -##ec -ag -ems -6s -720p -##rm -##ham -off -##92 -asp -team -fandom -ed -299 -▌♥ -##ell -info -されています -##82 -sina -4066 -161 -##able -##ctor -330 -399 -315 -dll -rights -ltd -idc -jul -3kg -1927 -142 -ma -surface -##76 -##ク -~~~ -304 -mall -eps -146 -green -##59 -map -space -donald -v2 -sodu -##light -1931 -148 -1700 -まて -310 -reserved -htm -##han -##57 -2d -178 -mod -##ise -##tions -152 -ti -##shi -doc -1933 -icp -055 -wang -##ram -shopping -aug -##pi -##well -now -wam -b2 -からお -##hu -236 -1928 -##gb -266 -f2 -##93 -153 -mix -##ef -##uan -bwl -##plus -##res -core -##ess -tea -5℃ -hktvmall -nhk -##ate -list -##ese -301 -feb -4m -inn -ての -nov -159 -12345 -daniel -##ci -pass -##bet -##nk -coffee -202 -ssl -airbnb -##ute -fbi -woshipm -skype -ea -cg -sp -##fc -##www -yes -edge -alt -007 -##94 -fpga -##ght -##gs -iso9001 -さい -##ile -##wood -##uo -image -lin -icon -american -##em -1932 -set -says -##king -##tive -blogger -##74 -なと -256 -147 -##ox -##zy -##red -##ium -##lf -nokia -claire -##リ -##ding -november -lohas -##500 -##tic -##マ -##cs -##ある -##che -##ire -##gy -##ult -db -january -win -##カ -166 -road -ptt -##ま -##つ -198 -##fa -##mer -anna -pchome -はい -udn -ef -420 -##time -##tte -2030 -##ア -g20 -white -かかります -1929 -308 -garden -eleven -di -##おります -chen -309b -777 -172 -young -cosplay -ちてない -4500 -bat -##123 -##tra -##ては -kindle -npc -steve -etc -##ern -##| -call -xperia -ces -travel -sk -s7 -##ous -1934 -##int -みいたたけます -183 -edu -file -cho -qr -##car -##our -186 -##ant -##d -eric -1914 -rends -##jo -##する -mastercard -##2000 -kb -##min -290 -##ino -vista -##ris -##ud -jack -2400 -##set -169 -pos -1912 -##her -##ou -taipei -しく -205 -beta -##ませんか -232 -##fi -express -255 -body -##ill -aphojoy -user -december -meiki -##ick -tweet -richard -##av -##ᆫ -iphone6 -##dd -ちてすか -views -##mark -321 -pd -##00 -times -##▲ -level -##ash -10g -point -5l -##ome -208 -koreanmall -##ak -george -q2 -206 -wma -tcp -##200 -スタッフ -full -mlb -##lle -##watch -tm -run -179 -911 -smith -business -##und -1919 -color -##tal -222 -171 -##less -moon -4399 -##rl -update -pcb -shop -499 -157 -little -なし -end -##mhz -van -dsp -easy -660 -##house -##key -history -##o -oh -##001 -##hy -##web -oem -let -was -##2009 -##gg -review -##wan -182 -##°c -203 -uc -title -##val -united -233 -2021 -##ons -doi -trivago -overdope -sbs -##ance -##ち -grand -special -573032185 -imf -216 -wx17house -##so -##ーム -audi -##he -london -william -##rp -##ake -science -beach -cfa -amp -ps4 -880 -##800 -##link -##hp -crm -ferragamo -bell -make -##eng -195 -under -zh -photos -2300 -##style -##ント -via -176 -da -##gi -company -i7 -##ray -thomas -370 -ufo -i5 -##max -plc -ben -back -research -8g -173 -mike -##pc -##ッフ -september -189 -##ace -vps -february -167 -pantos -wp -lisa -1921 -★★ -jquery -night -long -offer -##berg -##news -1911 -##いて -ray -fks -wto -せます -over -164 -340 -##all -##rus -1924 -##888 -##works -blogtitle -loftpermalink -##→ -187 -martin -test -ling -km -##め -15000 -fda -v3 -##ja -##ロ -wedding -かある -outlet -family -##ea -をこ -##top -story -##ness -salvatore -##lu -204 -swift -215 -room -している -oracle -##ul -1925 -sam -b2c -week -pi -rock -##のは -##a -##けと -##ean -##300 -##gle -cctv -after -chinese -##back -powered -x2 -##tan -1918 -##nes -##イン -canon -only -181 -##zi -##las -say -##oe -184 -##sd -221 -##bot -##world -##zo -sky -made -top100 -just -1926 -pmi -802 -234 -gap -##vr -177 -les -174 -▲topoct -ball -vogue -vi -ing -ofweek -cos -##list -##ort -▲topmay -##なら -##lon -として -last -##tc -##of -##bus -##gen -real -eva -##コ -a3 -nas -##lie -##ria -##coin -##bt -▲topapr -his -212 -cat -nata -vive -health -⋯⋯ -drive -sir -▲topmar -du -cup -##カー -##ook -##よう -##sy -alex -msg -tour -しました -3ce -##word -193 -ebooks -r8 -block -318 -##より -2200 -nice -pvp -207 -months -1905 -rewards -##ther -1917 -0800 -##xi -##チ -##sc -micro -850 -gg -blogfp -op -1922 -daily -m1 -264 -true -##bb -ml -##tar -##のお -##ky -anthony -196 -253 -##yo -state -218 -##ara -##aa -##rc -##tz -##ston -より -gear -##eo -##ade -ge -see -1923 -##win -##ura -ss -heart -##den -##ita -down -##sm -el -png -2100 -610 -rakuten -whatsapp -bay -dream -add -##use -680 -311 -pad -gucci -mpv -##ode -##fo -island -▲topjun -##▼ -223 -jason -214 -chicago -##❤ -しの -##hone -io -##れる -##ことか -sogo -be2 -##ology -990 -cloud -vcd -##con -2~3 -##ford -##joy -##kb -##こさいます -##rade -but -##ach -docker -##ful -rfid -ul -##ase -hit -ford -##star -580 -##○ -11 -a2 -sdk -reading -edited -##are -cmos -##mc -238 -siri -light -##ella -##ため -bloomberg -##read -pizza -##ison -jimmy -##vm -college -node -journal -ba -18k -##play -245 -##cer -20 -magic -##yu -191 -jump -288 -tt -##ings -asr -##lia -3200 -step5 -network -##cd -mc -いします -1234 -pixstyleme -273 -##600 -2800 -money -★★★★★ -1280 -12 -430 -bl -みの -act -##tus -tokyo -##rial -##life -emba -##ae -saas -tcs -##rk -##wang -summer -##sp -ko -##ving -390 -premium -##その -netflix -##ヒ -uk -mt -##lton -right -frank -two -209 -える -##ple -##cal -021 -##んな -##sen -##ville -hold -nexus -dd -##ius -てお -##mah -##なく -tila -zero -820 -ce -##tin -resort -##ws -charles -old -p10 -5d -report -##360 -##ru -##には -bus -vans -lt -##est -pv -##レ -links -rebecca -##ツ -##dm -azure -##365 -きな -limited -bit -4gb -##mon -1910 -moto -##eam -213 -1913 -var -eos -なとの -226 -blogspot -された -699 -e3 -dos -dm -fc -##ments -##ik -##kw -boy -##bin -##ata -960 -er -##せ -219 -##vin -##tu -##ula -194 -##∥ -station -##ろ -##ature -835 -files -zara -hdr -top10 -nature -950 -magazine -s6 -marriott -##シ -avira -case -##っと -tab -##ran -tony -##home -oculus -im -##ral -jean -saint -cry -307 -rosie -##force -##ini -ice -##bert -のある -##nder -##mber -pet -2600 -##◆ -plurk -▲topdec -##sis -00kg -▲topnov -720 -##ence -tim -##ω -##nc -##ても -##name -log -ips -great -ikea -malaysia -unix -##イト -3600 -##ncy -##nie -12000 -akb48 -##ye -##oid -404 -##chi -##いた -oa -xuehai -##1000 -##orm -##rf -275 -さん -##ware -##リー -980 -ho -##pro -text -##era -560 -bob -227 -##ub -##2008 -8891 -scp -avi -##zen -2022 -mi -wu -museum -qvod -apache -lake -jcb -▲topaug -★★★ -ni -##hr -hill -302 -ne -weibo -490 -ruby -##ーシ -##ヶ -##row -4d -▲topjul -iv -##ish -github -306 -mate -312 -##スト -##lot -##ane -andrew -のハイト -##tina -t1 -rf -ed2k -##vel -##900 -way -final -りの -ns -5a -705 -197 -##メ -sweet -bytes -##ene -▲topjan -231 -##cker -##2007 -##px -100g -topapp -229 -helpapp -rs -low -14k -g4g -care -630 -ldquo -あり -##fork -leave -rm -edition -##gan -##zon -##qq -▲topsep -##google -##ism -gold -224 -explorer -##zer -toyota -category -select -visual -##labels -restaurant -##md -posts -s1 -##ico -もっと -angelababy -123456 -217 -sports -s3 -mbc -1915 -してくたさい -shell -x86 -candy -##new -kbs -face -xl -470 -##here -4a -swissinfo -v8 -▲topfeb -dram -##ual -##vice -3a -##wer -sport -q1 -ios10 -public -int -card -##c -ep -au -rt -##れた -1080 -bill -##mll -kim -30 -460 -wan -##uk -##ミ -x3 -298 -0t -scott -##ming -239 -e5 -##3d -h7n9 -worldcat -brown -##あります -##vo -##led -##580 -##ax -249 -410 -##ert -paris -##~6 -polo -925 -##lr -599 -##ナ -capital -##hing -bank -cv -1g -##chat -##s -##たい -adc -##ule -2m -##e -digital -hotmail -268 -##pad -870 -bbq -quot -##ring -before -wali -##まて -mcu -2k -2b -という -costco -316 -north -333 -switch -##city -##p -philips -##mann -management -panasonic -##cl -##vd -##ping -##rge -alice -##lk -##ましょう -css3 -##ney -vision -alpha -##ular -##400 -##tter -lz -にお -##ありません -mode -gre -1916 -pci -##tm -237 -1~2 -##yan -##そ -について -##let -##キ -work -war -coach -ah -mary -##ᅵ -huang -##pt -a8 -pt -follow -##berry -1895 -##ew -a5 -ghost -##ション -##wn -##og -south -##code -girls -##rid -action -villa -git -r11 -table -games -##cket -error -##anonymoussaid -##ag -here -##ame -##gc -qa -##■ -##lis -gmp -##gin -vmalife -##cher -yu -wedding -##tis -demo -dragon -530 -soho -social -bye -##rant -river -orz -acer -325 -##↑ -##ース -##ats -261 -del -##ven -440 -ups -##ように -##ター -305 -value -macd -yougou -##dn -661 -##ano -ll -##urt -##rent -continue -script -##wen -##ect -paper -263 -319 -shift -##chel -##フト -##cat -258 -x5 -fox -243 -##さん -car -aaa -##blog -loading -##yn -##tp -kuso -799 -si -sns -イカせるテンマ -ヒンクテンマ3 -rmb -vdc -forest -central -prime -help -ultra -##rmb -##ような -241 -square -688 -##しい -のないフロクに -##field -##reen -##ors -##ju -c1 -start -510 -##air -##map -cdn -##wo -cba -stephen -m8 -100km -##get -opera -##base -##ood -vsa -com™ -##aw -##ail -251 -なのて -count -t2 -##ᅡ -##een -2700 -hop -##gp -vsc -tree -##eg -##ose -816 -285 -##ories -##shop -alphago -v4 -1909 -simon -##ᆼ -fluke62max -zip -スホンサー -##sta -louis -cr -bas -##~10 -bc -##yer -hadoop -##ube -##wi -1906 -0755 -hola -##low -place -centre -5v -d3 -##fer -252 -##750 -##media -281 -540 -0l -exchange -262 -series -##ハー -##san -eb -##bank -##k -q3 -##nge -##mail -take -##lp -259 -1888 -client -east -cache -event -vincent -##ールを -きを -##nse -sui -855 -adchoice -##и -##stry -##なたの -246 -##zone -ga -apps -sea -##ab -248 -cisco -##タ -##rner -kymco -##care -dha -##pu -##yi -minkoff -royal -p1 -への -annie -269 -collection -kpi -playstation -257 -になります -866 -bh -##bar -queen -505 -radio -1904 -andy -armani -##xy -manager -iherb -##ery -##share -spring -raid -johnson -1908 -##ob -volvo -hall -##ball -v6 -our -taylor -##hk -bi -242 -##cp -kate -bo -water -technology -##rie -サイトは -277 -##ona -##sl -hpv -303 -gtx -hip -rdquo -jayz -stone -##lex -##rum -namespace -##やり -620 -##ale -##atic -des -##erson -##ql -##ves -##type -enter -##この -##てきます -d2 -##168 -##mix -##bian -との -a9 -jj -ky -##lc -access -movie -##hc -リストに -tower -##ration -##mit -ます -##nch -ua -tel -prefix -##o2 -1907 -##point -1901 -ott -~10 -##http -##ury -baidu -##ink -member -##logy -bigbang -nownews -##js -##shot -##tb -##こと -247 -eba -##tics -##lus -ける -v5 -spark -##ama -there -##ions -god -##lls -##down -hiv -##ress -burberry -day2 -##kv -◆◆ -jeff -related -film -edit -joseph -283 -##ark -cx -32gb -order -g9 -30000 -##ans -##tty -s5 -##bee -かあります -thread -xr -buy -sh -005 -land -spotify -mx -##ari -276 -##verse -×email -sf -why -##ことて -244 -7headlines -nego -sunny -dom -exo -401 -666 -positioning -fit -rgb -##tton -278 -kiss -alexa -adam -lp -みリストを -##g -mp -##ties -##llow -amy -##du -np -002 -institute -271 -##rth -##lar -2345 -590 -##des -sidebar -15 -imax -site -##cky -##kit -##ime -##009 -season -323 -##fun -##ンター -##ひ -gogoro -a7 -pu -lily -fire -twd600 -##ッセーシを -いて -##vis -30ml -##cture -##をお -information -##オ -close -friday -##くれる -yi -nick -てすか -##tta -##tel -6500 -##lock -cbd -economy -254 -かお -267 -tinker -double -375 -8gb -voice -##app -oops -channel -today -985 -##right -raw -xyz -##+ -jim -edm -##cent -7500 -supreme -814 -ds -##its -##asia -dropbox -##てすか -##tti -books -272 -100ml -##tle -##ller -##ken -##more -##boy -sex -309 -##dom -t3 -##ider -##なります -##unch -1903 -810 -feel -5500 -##かった -##put -により -s2 -mo -##gh -men -ka -amoled -div -##tr -##n1 -port -howard -##tags -ken -dnf -##nus -adsense -##а -ide -##へ -buff -thunder -##town -##ique -has -##body -auto -pin -##erry -tee -てした -295 -number -##the -##013 -object -psp -cool -udnbkk -16gb -##mic -miui -##tro -most -r2 -##alk -##nity -1880 -±0 -##いました -428 -s4 -law -version -##oa -n1 -sgs -docomo -##tf -##ack -henry -fc2 -##ded -##sco -##014 -##rite -286 -0mm -linkedin -##ada -##now -wii -##ndy -ucbug -##◎ -sputniknews -legalminer -##ika -##xp -2gb -##bu -q10 -oo -b6 -come -##rman -cheese -ming -maker -##gm -nikon -##fig -ppi -kelly -##ります -jchere -てきます -ted -md -003 -fgo -tech -##tto -dan -soc -##gl -##len -hair -earth -640 -521 -img -##pper -##a1 -##てきる -##ロク -acca -##ition -##ference -suite -##ig -outlook -##mond -##cation -398 -##pr -279 -101vip -358 -##999 -282 -64gb -3800 -345 -airport -##over -284 -##おり -jones -##ith -lab -##su -##いるのて -co2 -town -piece -##llo -no1 -vmware -24h -##qi -focus -reader -##admin -##ora -tb -false -##log -1898 -know -lan -838 -##ces -f4 -##ume -motel -stop -##oper -na -flickr -netcomponents -##af -##─ -pose -williams -local -##ound -##cg -##site -##iko -いお -274 -5m -gsm -con -##ath -1902 -friends -##hip -cell -317 -##rey -780 -cream -##cks -012 -##dp -facebooktwitterpinterestgoogle -sso -324 -shtml -song -swiss -##mw -##キンク -lumia -xdd -string -tiffany -522 -marc -られた -insee -russell -sc -dell -##ations -ok -camera -289 -##vs -##flow -##late -classic -287 -##nter -stay -g1 -mtv -512 -##ever -##lab -##nger -qe -sata -ryan -d1 -50ml -cms -##cing -su -292 -3300 -editor -296 -##nap -security -sunday -association -##ens -##700 -##bra -acg -##かり -sofascore -とは -mkv -##ign -jonathan -gary -build -labels -##oto -tesla -moba -qi -gohappy -general -ajax -1024 -##かる -サイト -society -##test -##urs -wps -fedora -##ich -mozilla -328 -##480 -##dr -usa -urn -##lina -##r -grace -##die -##try -##ader -1250 -##なり -elle -570 -##chen -##ᆯ -price -##ten -uhz -##ough -eq -##hen -states -push -session -balance -wow -506 -##cus -##py -when -##ward -##ep -34e -wong -library -prada -##サイト -##cle -running -##ree -313 -ck -date -q4 -##ctive -##ool -##> -mk -##ira -##163 -388 -die -secret -rq -dota -buffet -は1ヶ -e6 -##ez -pan -368 -ha -##card -##cha -2a -##さ -alan -day3 -eye -f3 -##end -france -keep -adi -rna -tvbs -##ala -solo -nova -##え -##tail -##ょう -support -##ries -##なる -##ved -base -copy -iis -fps -##ways -hero -hgih -profile -fish -mu -ssh -entertainment -chang -##wd -click -cake -##ond -pre -##tom -kic -pixel -##ov -##fl -product -6a -##pd -dear -##gate -es -yumi -audio -##² -##sky -echo -bin -where -##ture -329 -##ape -find -sap -isis -##なと -nand -##101 -##load -##ream -band -a6 -525 -never -##post -festival -50cm -##we -555 -guide -314 -zenfone -##ike -335 -gd -forum -jessica -strong -alexander -##ould -software -allen -##ious -program -360° -else -lohasthree -##gar -することかてきます -please -##れます -rc -##ggle -##ric -bim -50000 -##own -eclipse -355 -brian -3ds -##side -061 -361 -##other -##ける -##tech -##ator -485 -engine -##ged -##t -plaza -##fit -cia -ngo -westbrook -shi -tbs -50mm -##みませんか -sci -291 -reuters -##ily -contextlink -##hn -af -##cil -bridge -very -##cel -1890 -cambridge -##ize -15g -##aid -##data -790 -frm -##head -award -butler -##sun -meta -##mar -america -ps3 -puma -pmid -##すか -lc -670 -kitchen -##lic -オーフン5 -きなしソフトサーヒス -そして -day1 -future -★★★★ -##text -##page -##rris -pm1 -##ket -fans -##っています -1001 -christian -bot -kids -trackback -##hai -c3 -display -##hl -n2 -1896 -idea -さんも -##sent -airmail -##ug -##men -pwm -けます -028 -##lution -369 -852 -awards -schemas -354 -asics -wikipedia -font -##tional -##vy -c2 -293 -##れている -##dget -##ein -っている -contact -pepper -スキル -339 -##~5 -294 -##uel -##ument -730 -##hang -みてす -q5 -##sue -rain -##ndi -wei -swatch -##cept -わせ -331 -popular -##ste -##tag -p2 -501 -trc -1899 -##west -##live -justin -honda -ping -messenger -##rap -v9 -543 -##とは -unity -appqq -はすへて -025 -leo -##tone -##テ -##ass -uniqlo -##010 -502 -her -jane -memory -moneydj -##tical -human -12306 -していると -##m2 -coc -miacare -##mn -tmt -##core -vim -kk -##may -fan -target -use -too -338 -435 -2050 -867 -737 -fast -##2c -services -##ope -omega -energy -##わ -pinkoi -1a -##なから -##rain -jackson -##ement -##シャンルの -374 -366 -そんな -p9 -rd -##ᆨ -1111 -##tier -##vic -zone -##│ -385 -690 -dl -isofix -cpa -m4 -322 -kimi -めて -davis -##lay -lulu -##uck -050 -weeks -qs -##hop -920 -##n -ae -##ear -~5 -eia -405 -##fly -korea -jpeg -boost -##ship -small -##リア -1860 -eur -297 -425 -valley -##iel -simple -##ude -rn -k2 -##ena -されます -non -patrick -しているから -##ナー -feed -5757 -30g -process -well -qqmei -##thing -they -aws -lu -pink -##ters -##kin -または -board -##vertisement -wine -##ien -unicode -##dge -r1 -359 -##tant -いを -##twitter -##3c -cool1 -される -##れて -##l -isp -##012 -standard -45㎡2 -402 -##150 -matt -##fu -326 -##iner -googlemsn -pixnetfacebookyahoo -##ラン -x7 -886 -##uce -メーカー -sao -##ev -##きました -##file -9678 -403 -xddd -shirt -6l -##rio -##hat -3mm -givenchy -ya -bang -##lio -monday -crystal -ロクイン -##abc -336 -head -890 -ubuntuforumwikilinuxpastechat -##vc -##~20 -##rity -cnc -7866 -ipv6 -null -1897 -##ost -yang -imsean -tiger -##fet -##ンス -352 -##= -dji -327 -ji -maria -##come -##んて -foundation -3100 -##beth -##なった -1m -601 -active -##aft -##don -3p -sr -349 -emma -##khz -living -415 -353 -1889 -341 -709 -457 -sas -x6 -##face -pptv -x4 -##mate -han -sophie -##jing -337 -fifa -##mand -other -sale -inwedding -##gn -てきちゃいます -##mmy -##pmlast -bad -nana -nbc -してみてくたさいね -なとはお -##wu -##かあります -##あ -note7 -single -##340 -せからこ -してくたさい♪この -しにはとんとんワークケートを -するとあなたにもっとマッチした -ならワークケートへ -もみつかっちゃうかも -ワークケートの -##bel -window -##dio -##ht -union -age -382 -14 -##ivity -##y -コメント -domain -neo -##isa -##lter -5k -f5 -steven -##cts -powerpoint -tft -self -g2 -ft -##テル -zol -##act -mwc -381 -343 -もう -nbapop -408 -てある -eds -ace -##room -previous -author -tomtom -il -##ets -hu -financial -☆☆☆ -っています -bp -5t -chi -1gb -##hg -fairmont -cross -008 -gay -h2 -function -##けて -356 -also -1b -625 -##ータ -##raph -1894 -3~5 -##ils -i3 -334 -avenue -##host -による -##bon -##tsu -message -navigation -50g -fintech -h6 -##ことを -8cm -##ject -##vas -##firm -credit -##wf -xxxx -form -##nor -##space -huawei -plan -json -sbl -##dc -machine -921 -392 -wish -##120 -##sol -windows7 -edward -##ために -development -washington -##nsis -lo -818 -##sio -##ym -##bor -planet -##~8 -##wt -ieee -gpa -##めて -camp -ann -gm -##tw -##oka -connect -##rss -##work -##atus -wall -chicken -soul -2mm -##times -fa -##ather -##cord -009 -##eep -hitachi -gui -harry -##pan -e1 -disney -##press -##ーション -wind -386 -frigidaire -##tl -liu -hsu -332 -basic -von -ev -いた -てきる -スホンサーサイト -learning -##ull -expedia -archives -change -##wei -santa -cut -ins -6gb -turbo -brand -cf1 -508 -004 -return -747 -##rip -h1 -##nis -##をこ -128gb -##にお -3t -application -しており -emc -rx -##oon -384 -quick -412 -15058 -wilson -wing -chapter -##bug -beyond -##cms -##dar -##oh -zoom -e2 -trip -sb -##nba -rcep -342 -aspx -ci -080 -gc -gnu -める -##count -advanced -dance -dv -##url -##ging -367 -8591 -am09 -shadow -battle -346 -##i -##cia -##という -emily -##のてす -##tation -host -ff -techorz -sars -##mini -##mporary -##ering -nc -4200 -798 -##next -cma -##mbps -##gas -##ift -##dot -##ィ -455 -##~17 -amana -##りの -426 -##ros -ir -00㎡1 -##eet -##ible -##↓ -710 -ˋ▽ˊ -##aka -dcs -iq -##v -l1 -##lor -maggie -##011 -##iu -588 -##~1 -830 -##gt -1tb -articles -create -##burg -##iki -database -fantasy -##rex -##cam -dlc -dean -##you -hard -path -gaming -victoria -maps -cb -##lee -##itor -overchicstoretvhome -systems -##xt -416 -p3 -sarah -760 -##nan -407 -486 -x9 -install -second -626 -##ann -##ph -##rcle -##nic -860 -##nar -ec -##とう -768 -metro -chocolate -##rian -~4 -##table -##しています -skin -##sn -395 -mountain -##0mm -inparadise -6m -7x24 -ib -4800 -##jia -eeworld -creative -g5 -g3 -357 -parker -ecfa -village -からの -18000 -sylvia -サーヒス -hbl -##ques -##onsored -##x2 -##きます -##v4 -##tein -ie6 -383 -##stack -389 -ver -##ads -##baby -sound -bbe -##110 -##lone -##uid -ads -022 -gundam -351 -thinkpad -006 -scrum -match -##ave -mems -##470 -##oy -##なりました -##talk -glass -lamigo -span -##eme -job -##a5 -jay -wade -kde -498 -##lace -ocean -tvg -##covery -##r3 -##ners -##rea -junior -think -##aine -cover -##ision -##sia -↓↓ -##bow -msi -413 -458 -406 -##love -711 -801 -soft -z2 -##pl -456 -1840 -mobil -mind -##uy -427 -nginx -##oi -めた -##rr -6221 -##mple -##sson -##ーシてす -371 -##nts -91tv -comhd -crv3000 -##uard -1868 -397 -deep -lost -field -gallery -##bia -rate -spf -redis -traction -930 -icloud -011 -なら -fe -jose -372 -##tory -into -sohu -fx -899 -379 -kicstart2 -##hia -すく -##~3 -##sit -ra -24 -##walk -##xure -500g -##pact -pacific -xa -natural -carlo -##250 -##walker -1850 -##can -cto -gigi -516 -##サー -pen -##hoo -ob -matlab -##b -##yy -13913459 -##iti -mango -##bbs -sense -c5 -oxford -##ニア -walker -jennifer -##ola -course -##bre -701 -##pus -##rder -lucky -075 -##ぁ -ivy -なお -##nia -sotheby -side -##ugh -joy -##orage -##ush -##bat -##dt -364 -r9 -##2d -##gio -511 -country -wear -##lax -##~7 -##moon -393 -seven -study -411 -348 -lonzo -8k -##ェ -evolution -##イフ -##kk -gs -kd -##レス -arduino -344 -b12 -##lux -arpg -##rdon -cook -##x5 -dark -five -##als -##ida -とても -sign -362 -##ちの -something -20mm -##nda -387 -##posted -fresh -tf -1870 -422 -cam -##mine -##skip -##form -##ssion -education -394 -##tee -dyson -stage -##jie -want -##night -epson -pack -あります -##ppy -テリヘル -##█ -wd -##eh -##rence -left -##lvin -golden -mhz -discovery -##trix -##n2 -loft -##uch -##dra -##sse -speed -~1 -1mdb -sorry -welcome -##urn -wave -gaga -##lmer -teddy -##160 -トラックハック -せよ -611 -##f2016 -378 -rp -##sha -rar -##あなたに -##きた -840 -holiday -##ュー -373 -074 -##vg -##nos -##rail -gartner -gi -6p -##dium -kit -488 -b3 -eco -##ろう -20g -sean -##stone -autocad -nu -##np -f16 -write -029 -m5 -##ias -images -atp -##dk -fsm -504 -1350 -ve -52kb -##xxx -##のに -##cake -414 -unit -lim -ru -1v -##ification -published -angela -16g -analytics -ak -##q -##nel -gmt -##icon -again -##₂ -##bby -ios11 -445 -かこさいます -waze -いてす -##ハ -9985 -##ust -##ティー -framework -##007 -iptv -delete -52sykb -cl -wwdc -027 -30cm -##fw -##ての -1389 -##xon -brandt -##ses -##dragon -tc -vetements -anne -monte -modern -official -##へて -##ere -##nne -##oud -もちろん -50 -etnews -##a2 -##graphy -421 -863 -##ちゃん -444 -##rtex -##てお -l2 -##gma -mount -ccd -たと -archive -morning -tan -ddos -e7 -##ホ -day4 -##ウ -gis -453 -its -495 -factory -bruce -pg -##ito -ってくたさい -guest -cdma -##lling -536 -n3 -しかし -3~4 -mega -eyes -ro -13 -women -dac -church -##jun -singapore -##facebook -6991 -starbucks -##tos -##stin -##shine -zen -##mu -tina -20℃ -1893 -##たけて -503 -465 -request -##gence -qt -##っ -1886 -347 -363 -q7 -##zzi -diary -##tore -409 -##ead -468 -cst -##osa -canada -agent -va -##jiang -##ちは -##ーク -##lam -sg -##nix -##sday -##よって -g6 -##master -bing -##zl -charlie -16 -8mm -nb40 -##ーン -thai -##ルフ -ln284ct -##itz -##2f -bonnie -##food -##lent -originals -##stro -##lts -418 -∟∣ -##bscribe -children -ntd -yesstyle -##かも -hmv -##tment -d5 -2cm -arts -sms -##pn -##я -##いい -topios9 -539 -lifestyle -virtual -##ague -xz -##deo -muji -024 -unt -##nnis -##ᅩ -faq1 -1884 -396 -##ette -fly -64㎡ -はしめまして -441 -curry -##pop -のこ -release -##← -##◆◆ -##cast -073 -ありな -500ml -##ews -5c -##stle -ios7 -##ima -787 -dog -lenovo -##r4 -roger -013 -cbs -vornado -100m -417 -##desk -##クok -##ald -1867 -9595 -2900 -##van -oil -##x -some -break -common -##jy -##lines -g7 -twice -419 -ella -nano -belle -にこ -##mes -##self -##note -jb -##ことかてきます -benz -##との -##ova -451 -save -##wing -##ますのて -kai -りは -##hua -##rect -rainer -##unge -448 -##0m -adsl -##かな -guestname -##uma -##kins -##zu -tokichoi -##price -county -##med -##mus -rmk -391 -address -vm -えて -openload -##group -##hin -##iginal -amg -urban -##oz -jobs -emi -##public -beautiful -##sch -album -##dden -##bell -jerry -works -hostel -miller -##drive -##rmin -##10 -376 -boot -828 -##370 -##fx -##cm~ -1885 -##nome -##ctionary -##oman -##lish -##cr -##hm -433 -##how -432 -francis -xi -c919 -b5 -evernote -##uc -vga -##3000 -coupe -##urg -##cca -##uality -019 -6g -れる -multi -##また -##ett -em -hey -##ani -##tax -##rma -inside -than -740 -leonnhurt -##jin -ict -れた -bird -notes -200mm -くの -##dical -##lli -result -442 -iu -ee -438 -smap -gopro -##last -yin -pure -998 -32g -けた -5kg -##dan -##rame -mama -##oot -bean -marketing -##hur -2l -bella -sync -xuite -##ground -515 -discuz -##getrelax -##ince -##bay -##5s -cj -##イス -gmat -apt -##pass -jing -##rix -c4 -rich -##とても -niusnews -##ello -bag -770 -##eting -##mobile -18 -culture -015 -##のてすか -377 -1020 -area -##ience -616 -details -gp -universal -silver -dit -はお -private -ddd -u11 -kanshu -##ified -fung -##nny -dx -##520 -tai -475 -023 -##fr -##lean -3s -##pin -429 -##rin -25000 -ly -rick -##bility -usb3 -banner -##baru -##gion -metal -dt -vdf -1871 -karl -qualcomm -bear -1010 -oldid -ian -jo -##tors -population -##ernel -1882 -mmorpg -##mv -##bike -603 -##© -ww -friend -##ager -exhibition -##del -##pods -fpx -structure -##free -##tings -kl -##rley -##copyright -##mma -california -3400 -orange -yoga -4l -canmake -honey -##anda -##コメント -595 -nikkie -##ルハイト -dhl -publishing -##mall -##gnet -20cm -513 -##クセス -##┅ -e88 -970 -##dog -fishbase -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##+ -##, -##- -##. -##/ -##: -##; -##< -##= -##> -##? -##@ -##[ -##\ -##] -##^ -##_ -##{ -##| -##} -##~ -##£ -##¤ -##¥ -##§ -##« -##± -##³ -##µ -##· -##¹ -##º -##» -##¼ -##ß -##æ -##÷ -##ø -##đ -##ŋ -##ɔ -##ə -##ɡ -##ʰ -##ˇ -##ˈ -##ˊ -##ˋ -##ˍ -##ː -##˙ -##˚ -##ˢ -##α -##β -##γ -##δ -##ε -##η -##θ -##ι -##κ -##λ -##μ -##ν -##ο -##π -##ρ -##ς -##σ -##τ -##υ -##φ -##χ -##ψ -##б -##в -##г -##д -##е -##ж -##з -##к -##л -##м -##н -##о -##п -##р -##с -##т -##у -##ф -##х -##ц -##ч -##ш -##ы -##ь -##і -##ا -##ب -##ة -##ت -##د -##ر -##س -##ع -##ل -##م -##ن -##ه -##و -##ي -##۩ -##ก -##ง -##น -##ม -##ย -##ร -##อ -##า -##เ -##๑ -##་ -##ღ -##ᄀ -##ᄁ -##ᄂ -##ᄃ -##ᄅ -##ᄆ -##ᄇ -##ᄈ -##ᄉ -##ᄋ -##ᄌ -##ᄎ -##ᄏ -##ᄐ -##ᄑ -##ᄒ -##ᅢ -##ᅣ -##ᅥ -##ᅦ -##ᅧ -##ᅨ -##ᅪ -##ᅬ -##ᅭ -##ᅮ -##ᅯ -##ᅲ -##ᅳ -##ᅴ -##ᆷ -##ᆸ -##ᆺ -##ᆻ -##ᗜ -##ᵃ -##ᵉ -##ᵍ -##ᵏ -##ᵐ -##ᵒ -##ᵘ -##‖ -##„ -##† -##• -##‥ -##‧ -##
 -##‰ -##′ -##″ -##‹ -##› -##※ -##‿ -##⁄ -##ⁱ -##⁺ -##ⁿ -##₁ -##₃ -##₄ -##€ -##№ -##ⅰ -##ⅱ -##ⅲ -##ⅳ -##ⅴ -##↔ -##↗ -##↘ -##⇒ -##∀ -##− -##∕ -##∙ -##√ -##∞ -##∟ -##∠ -##∣ -##∩ -##∮ -##∶ -##∼ -##∽ -##≈ -##≒ -##≡ -##≤ -##≥ -##≦ -##≧ -##≪ -##≫ -##⊙ -##⋅ -##⋈ -##⋯ -##⌒ -##① -##② -##③ -##④ -##⑤ -##⑥ -##⑦ -##⑧ -##⑨ -##⑩ -##⑴ -##⑵ -##⑶ -##⑷ -##⑸ -##⒈ -##⒉ -##⒊ -##⒋ -##ⓒ -##ⓔ -##ⓘ -##━ -##┃ -##┆ -##┊ -##┌ -##└ -##├ -##┣ -##═ -##║ -##╚ -##╞ -##╠ -##╭ -##╮ -##╯ -##╰ -##╱ -##╳ -##▂ -##▃ -##▅ -##▇ -##▉ -##▋ -##▌ -##▍ -##▎ -##□ -##▪ -##▫ -##▬ -##△ -##▶ -##► -##▽ -##◇ -##◕ -##◠ -##◢ -##◤ -##☀ -##☕ -##☞ -##☺ -##☼ -##♀ -##♂ -##♠ -##♡ -##♣ -##♦ -##♫ -##♬ -##✈ -##✔ -##✕ -##✖ -##✦ -##✨ -##✪ -##✰ -##✿ -##❀ -##➜ -##➤ -##⦿ -##、 -##。 -##〃 -##々 -##〇 -##〈 -##〉 -##《 -##》 -##「 -##」 -##『 -##』 -##【 -##】 -##〓 -##〔 -##〕 -##〖 -##〗 -##〜 -##〝 -##〞 -##ぃ -##ぇ -##ぬ -##ふ -##ほ -##む -##ゃ -##ゅ -##ゆ -##ょ -##゜ -##ゝ -##ァ -##ゥ -##エ -##ォ -##ケ -##サ -##セ -##ソ -##ッ -##ニ -##ヌ -##ネ -##ノ -##ヘ -##モ -##ャ -##ヤ -##ュ -##ユ -##ョ -##ヨ -##ワ -##ヲ -##・ -##ヽ -##ㄅ -##ㄆ -##ㄇ -##ㄉ -##ㄋ -##ㄌ -##ㄍ -##ㄎ -##ㄏ -##ㄒ -##ㄚ -##ㄛ -##ㄞ -##ㄟ -##ㄢ -##ㄤ -##ㄥ -##ㄧ -##ㄨ -##ㆍ -##㈦ -##㊣ -##㗎 -##一 -##丁 -##七 -##万 -##丈 -##三 -##上 -##下 -##不 -##与 -##丐 -##丑 -##专 -##且 -##丕 -##世 -##丘 -##丙 -##业 -##丛 -##东 -##丝 -##丞 -##丟 -##両 -##丢 -##两 -##严 -##並 -##丧 -##丨 -##个 -##丫 -##中 -##丰 -##串 -##临 -##丶 -##丸 -##丹 -##为 -##主 -##丼 -##丽 -##举 -##丿 -##乂 -##乃 -##久 -##么 -##义 -##之 -##乌 -##乍 -##乎 -##乏 -##乐 -##乒 -##乓 -##乔 -##乖 -##乗 -##乘 -##乙 -##乜 -##九 -##乞 -##也 -##习 -##乡 -##书 -##乩 -##买 -##乱 -##乳 -##乾 -##亀 -##亂 -##了 -##予 -##争 -##事 -##二 -##于 -##亏 -##云 -##互 -##五 -##井 -##亘 -##亙 -##亚 -##些 -##亜 -##亞 -##亟 -##亡 -##亢 -##交 -##亥 -##亦 -##产 -##亨 -##亩 -##享 -##京 -##亭 -##亮 -##亲 -##亳 -##亵 -##人 -##亿 -##什 -##仁 -##仃 -##仄 -##仅 -##仆 -##仇 -##今 -##介 -##仍 -##从 -##仏 -##仑 -##仓 -##仔 -##仕 -##他 -##仗 -##付 -##仙 -##仝 -##仞 -##仟 -##代 -##令 -##以 -##仨 -##仪 -##们 -##仮 -##仰 -##仲 -##件 -##价 -##任 -##份 -##仿 -##企 -##伉 -##伊 -##伍 -##伎 -##伏 -##伐 -##休 -##伕 -##众 -##优 -##伙 -##会 -##伝 -##伞 -##伟 -##传 -##伢 -##伤 -##伦 -##伪 -##伫 -##伯 -##估 -##伴 -##伶 -##伸 -##伺 -##似 -##伽 -##佃 -##但 -##佇 -##佈 -##位 -##低 -##住 -##佐 -##佑 -##体 -##佔 -##何 -##佗 -##佘 -##余 -##佚 -##佛 -##作 -##佝 -##佞 -##佟 -##你 -##佢 -##佣 -##佤 -##佥 -##佩 -##佬 -##佯 -##佰 -##佳 -##併 -##佶 -##佻 -##佼 -##使 -##侃 -##侄 -##來 -##侈 -##例 -##侍 -##侏 -##侑 -##侖 -##侗 -##供 -##依 -##侠 -##価 -##侣 -##侥 -##侦 -##侧 -##侨 -##侬 -##侮 -##侯 -##侵 -##侶 -##侷 -##便 -##係 -##促 -##俄 -##俊 -##俎 -##俏 -##俐 -##俑 -##俗 -##俘 -##俚 -##保 -##俞 -##俟 -##俠 -##信 -##俨 -##俩 -##俪 -##俬 -##俭 -##修 -##俯 -##俱 -##俳 -##俸 -##俺 -##俾 -##倆 -##倉 -##個 -##倌 -##倍 -##倏 -##們 -##倒 -##倔 -##倖 -##倘 -##候 -##倚 -##倜 -##借 -##倡 -##値 -##倦 -##倩 -##倪 -##倫 -##倬 -##倭 -##倶 -##债 -##值 -##倾 -##偃 -##假 -##偈 -##偉 -##偌 -##偎 -##偏 -##偕 -##做 -##停 -##健 -##側 -##偵 -##偶 -##偷 -##偻 -##偽 -##偿 -##傀 -##傅 -##傍 -##傑 -##傘 -##備 -##傚 -##傢 -##傣 -##傥 -##储 -##傩 -##催 -##傭 -##傲 -##傳 -##債 -##傷 -##傻 -##傾 -##僅 -##働 -##像 -##僑 -##僕 -##僖 -##僚 -##僥 -##僧 -##僭 -##僮 -##僱 -##僵 -##價 -##僻 -##儀 -##儂 -##億 -##儆 -##儉 -##儋 -##儒 -##儕 -##儘 -##償 -##儡 -##優 -##儲 -##儷 -##儼 -##儿 -##兀 -##允 -##元 -##兄 -##充 -##兆 -##兇 -##先 -##光 -##克 -##兌 -##免 -##児 -##兑 -##兒 -##兔 -##兖 -##党 -##兜 -##兢 -##入 -##內 -##全 -##兩 -##八 -##公 -##六 -##兮 -##兰 -##共 -##兲 -##关 -##兴 -##兵 -##其 -##具 -##典 -##兹 -##养 -##兼 -##兽 -##冀 -##内 -##円 -##冇 -##冈 -##冉 -##冊 -##册 -##再 -##冏 -##冒 -##冕 -##冗 -##写 -##军 -##农 -##冠 -##冢 -##冤 -##冥 -##冨 -##冪 -##冬 -##冯 -##冰 -##冲 -##决 -##况 -##冶 -##冷 -##冻 -##冼 -##冽 -##冾 -##净 -##凄 -##准 -##凇 -##凈 -##凉 -##凋 -##凌 -##凍 -##减 -##凑 -##凛 -##凜 -##凝 -##几 -##凡 -##凤 -##処 -##凪 -##凭 -##凯 -##凰 -##凱 -##凳 -##凶 -##凸 -##凹 -##出 -##击 -##函 -##凿 -##刀 -##刁 -##刃 -##分 -##切 -##刈 -##刊 -##刍 -##刎 -##刑 -##划 -##列 -##刘 -##则 -##刚 -##创 -##初 -##删 -##判 -##別 -##刨 -##利 -##刪 -##别 -##刮 -##到 -##制 -##刷 -##券 -##刹 -##刺 -##刻 -##刽 -##剁 -##剂 -##剃 -##則 -##剉 -##削 -##剋 -##剌 -##前 -##剎 -##剐 -##剑 -##剔 -##剖 -##剛 -##剜 -##剝 -##剣 -##剤 -##剥 -##剧 -##剩 -##剪 -##副 -##割 -##創 -##剷 -##剽 -##剿 -##劃 -##劇 -##劈 -##劉 -##劊 -##劍 -##劏 -##劑 -##力 -##劝 -##办 -##功 -##加 -##务 -##劣 -##动 -##助 -##努 -##劫 -##劭 -##励 -##劲 -##劳 -##労 -##劵 -##効 -##劾 -##势 -##勁 -##勃 -##勇 -##勉 -##勋 -##勐 -##勒 -##動 -##勖 -##勘 -##務 -##勛 -##勝 -##勞 -##募 -##勢 -##勤 -##勧 -##勳 -##勵 -##勸 -##勺 -##勻 -##勾 -##勿 -##匀 -##包 -##匆 -##匈 -##匍 -##匐 -##匕 -##化 -##北 -##匙 -##匝 -##匠 -##匡 -##匣 -##匪 -##匮 -##匯 -##匱 -##匹 -##区 -##医 -##匾 -##匿 -##區 -##十 -##千 -##卅 -##升 -##午 -##卉 -##半 -##卍 -##华 -##协 -##卑 -##卒 -##卓 -##協 -##单 -##卖 -##南 -##単 -##博 -##卜 -##卞 -##卟 -##占 -##卡 -##卢 -##卤 -##卦 -##卧 -##卫 -##卮 -##卯 -##印 -##危 -##即 -##却 -##卵 -##卷 -##卸 -##卻 -##卿 -##厂 -##厄 -##厅 -##历 -##厉 -##压 -##厌 -##厕 -##厘 -##厚 -##厝 -##原 -##厢 -##厥 -##厦 -##厨 -##厩 -##厭 -##厮 -##厲 -##厳 -##去 -##县 -##叁 -##参 -##參 -##又 -##叉 -##及 -##友 -##双 -##反 -##収 -##发 -##叔 -##取 -##受 -##变 -##叙 -##叛 -##叟 -##叠 -##叡 -##叢 -##口 -##古 -##句 -##另 -##叨 -##叩 -##只 -##叫 -##召 -##叭 -##叮 -##可 -##台 -##叱 -##史 -##右 -##叵 -##叶 -##号 -##司 -##叹 -##叻 -##叼 -##叽 -##吁 -##吃 -##各 -##吆 -##合 -##吉 -##吊 -##吋 -##同 -##名 -##后 -##吏 -##吐 -##向 -##吒 -##吓 -##吕 -##吖 -##吗 -##君 -##吝 -##吞 -##吟 -##吠 -##吡 -##否 -##吧 -##吨 -##吩 -##含 -##听 -##吭 -##吮 -##启 -##吱 -##吳 -##吴 -##吵 -##吶 -##吸 -##吹 -##吻 -##吼 -##吽 -##吾 -##呀 -##呂 -##呃 -##呆 -##呈 -##告 -##呋 -##呎 -##呐 -##呓 -##呕 -##呗 -##员 -##呛 -##呜 -##呢 -##呤 -##呦 -##周 -##呱 -##呲 -##味 -##呵 -##呷 -##呸 -##呻 -##呼 -##命 -##咀 -##咁 -##咂 -##咄 -##咆 -##咋 -##和 -##咎 -##咏 -##咐 -##咒 -##咔 -##咕 -##咖 -##咗 -##咘 -##咙 -##咚 -##咛 -##咣 -##咤 -##咦 -##咧 -##咨 -##咩 -##咪 -##咫 -##咬 -##咭 -##咯 -##咱 -##咲 -##咳 -##咸 -##咻 -##咽 -##咿 -##哀 -##品 -##哂 -##哄 -##哆 -##哇 -##哈 -##哉 -##哋 -##哌 -##响 -##哎 -##哏 -##哐 -##哑 -##哒 -##哔 -##哗 -##哟 -##員 -##哥 -##哦 -##哧 -##哨 -##哩 -##哪 -##哭 -##哮 -##哲 -##哺 -##哼 -##哽 -##唁 -##唄 -##唆 -##唇 -##唉 -##唏 -##唐 -##唑 -##唔 -##唠 -##唤 -##唧 -##唬 -##售 -##唯 -##唰 -##唱 -##唳 -##唷 -##唸 -##唾 -##啃 -##啄 -##商 -##啉 -##啊 -##問 -##啓 -##啕 -##啖 -##啜 -##啞 -##啟 -##啡 -##啤 -##啥 -##啦 -##啧 -##啪 -##啫 -##啬 -##啮 -##啰 -##啱 -##啲 -##啵 -##啶 -##啷 -##啸 -##啻 -##啼 -##啾 -##喀 -##喂 -##喃 -##善 -##喆 -##喇 -##喉 -##喊 -##喋 -##喎 -##喏 -##喔 -##喘 -##喙 -##喚 -##喜 -##喝 -##喟 -##喧 -##喪 -##喫 -##喬 -##單 -##喰 -##喱 -##喲 -##喳 -##喵 -##営 -##喷 -##喹 -##喺 -##喻 -##喽 -##嗅 -##嗆 -##嗇 -##嗎 -##嗑 -##嗒 -##嗓 -##嗔 -##嗖 -##嗚 -##嗜 -##嗝 -##嗟 -##嗡 -##嗣 -##嗤 -##嗦 -##嗨 -##嗪 -##嗬 -##嗯 -##嗰 -##嗲 -##嗳 -##嗶 -##嗷 -##嗽 -##嘀 -##嘅 -##嘆 -##嘈 -##嘉 -##嘌 -##嘍 -##嘎 -##嘔 -##嘖 -##嘗 -##嘘 -##嘚 -##嘛 -##嘜 -##嘞 -##嘟 -##嘢 -##嘣 -##嘤 -##嘧 -##嘩 -##嘭 -##嘮 -##嘯 -##嘰 -##嘱 -##嘲 -##嘴 -##嘶 -##嘸 -##嘹 -##嘻 -##嘿 -##噁 -##噌 -##噎 -##噓 -##噔 -##噗 -##噙 -##噜 -##噠 -##噢 -##噤 -##器 -##噩 -##噪 -##噬 -##噱 -##噴 -##噶 -##噸 -##噹 -##噻 -##噼 -##嚀 -##嚇 -##嚎 -##嚏 -##嚐 -##嚓 -##嚕 -##嚟 -##嚣 -##嚥 -##嚨 -##嚮 -##嚴 -##嚷 -##嚼 -##囂 -##囉 -##囊 -##囍 -##囑 -##囔 -##囗 -##囚 -##四 -##囝 -##回 -##囟 -##因 -##囡 -##团 -##団 -##囤 -##囧 -##囪 -##囫 -##园 -##困 -##囱 -##囲 -##図 -##围 -##囹 -##固 -##国 -##图 -##囿 -##圃 -##圄 -##圆 -##圈 -##國 -##圍 -##圏 -##園 -##圓 -##圖 -##團 -##圜 -##土 -##圣 -##圧 -##在 -##圩 -##圭 -##地 -##圳 -##场 -##圻 -##圾 -##址 -##坂 -##均 -##坊 -##坍 -##坎 -##坏 -##坐 -##坑 -##块 -##坚 -##坛 -##坝 -##坞 -##坟 -##坠 -##坡 -##坤 -##坦 -##坨 -##坪 -##坯 -##坳 -##坵 -##坷 -##垂 -##垃 -##垄 -##型 -##垒 -##垚 -##垛 -##垠 -##垢 -##垣 -##垦 -##垩 -##垫 -##垭 -##垮 -##垵 -##埂 -##埃 -##埋 -##城 -##埔 -##埕 -##埗 -##域 -##埠 -##埤 -##埵 -##執 -##埸 -##培 -##基 -##埼 -##堀 -##堂 -##堃 -##堅 -##堆 -##堇 -##堑 -##堕 -##堙 -##堡 -##堤 -##堪 -##堯 -##堰 -##報 -##場 -##堵 -##堺 -##堿 -##塊 -##塌 -##塑 -##塔 -##塗 -##塘 -##塚 -##塞 -##塢 -##塩 -##填 -##塬 -##塭 -##塵 -##塾 -##墀 -##境 -##墅 -##墉 -##墊 -##墒 -##墓 -##増 -##墘 -##墙 -##墜 -##增 -##墟 -##墨 -##墩 -##墮 -##墳 -##墻 -##墾 -##壁 -##壅 -##壆 -##壇 -##壊 -##壑 -##壓 -##壕 -##壘 -##壞 -##壟 -##壢 -##壤 -##壩 -##士 -##壬 -##壮 -##壯 -##声 -##売 -##壳 -##壶 -##壹 -##壺 -##壽 -##处 -##备 -##変 -##复 -##夏 -##夔 -##夕 -##外 -##夙 -##多 -##夜 -##够 -##夠 -##夢 -##夥 -##大 -##天 -##太 -##夫 -##夭 -##央 -##夯 -##失 -##头 -##夷 -##夸 -##夹 -##夺 -##夾 -##奂 -##奄 -##奇 -##奈 -##奉 -##奋 -##奎 -##奏 -##奐 -##契 -##奔 -##奕 -##奖 -##套 -##奘 -##奚 -##奠 -##奢 -##奥 -##奧 -##奪 -##奬 -##奮 -##女 -##奴 -##奶 -##奸 -##她 -##好 -##如 -##妃 -##妄 -##妆 -##妇 -##妈 -##妊 -##妍 -##妒 -##妓 -##妖 -##妘 -##妙 -##妝 -##妞 -##妣 -##妤 -##妥 -##妨 -##妩 -##妪 -##妮 -##妲 -##妳 -##妹 -##妻 -##妾 -##姆 -##姉 -##姊 -##始 -##姍 -##姐 -##姑 -##姒 -##姓 -##委 -##姗 -##姚 -##姜 -##姝 -##姣 -##姥 -##姦 -##姨 -##姪 -##姫 -##姬 -##姹 -##姻 -##姿 -##威 -##娃 -##娄 -##娅 -##娆 -##娇 -##娉 -##娑 -##娓 -##娘 -##娛 -##娜 -##娟 -##娠 -##娣 -##娥 -##娩 -##娱 -##娲 -##娴 -##娶 -##娼 -##婀 -##婁 -##婆 -##婉 -##婊 -##婕 -##婚 -##婢 -##婦 -##婧 -##婪 -##婭 -##婴 -##婵 -##婶 -##婷 -##婺 -##婿 -##媒 -##媚 -##媛 -##媞 -##媧 -##媲 -##媳 -##媽 -##媾 -##嫁 -##嫂 -##嫉 -##嫌 -##嫑 -##嫔 -##嫖 -##嫘 -##嫚 -##嫡 -##嫣 -##嫦 -##嫩 -##嫲 -##嫵 -##嫻 -##嬅 -##嬉 -##嬌 -##嬗 -##嬛 -##嬢 -##嬤 -##嬪 -##嬰 -##嬴 -##嬷 -##嬸 -##嬿 -##孀 -##孃 -##子 -##孑 -##孔 -##孕 -##孖 -##字 -##存 -##孙 -##孚 -##孛 -##孜 -##孝 -##孟 -##孢 -##季 -##孤 -##学 -##孩 -##孪 -##孫 -##孬 -##孰 -##孱 -##孳 -##孵 -##學 -##孺 -##孽 -##孿 -##宁 -##它 -##宅 -##宇 -##守 -##安 -##宋 -##完 -##宏 -##宓 -##宕 -##宗 -##官 -##宙 -##定 -##宛 -##宜 -##宝 -##实 -##実 -##宠 -##审 -##客 -##宣 -##室 -##宥 -##宦 -##宪 -##宫 -##宮 -##宰 -##害 -##宴 -##宵 -##家 -##宸 -##容 -##宽 -##宾 -##宿 -##寂 -##寄 -##寅 -##密 -##寇 -##富 -##寐 -##寒 -##寓 -##寛 -##寝 -##寞 -##察 -##寡 -##寢 -##寥 -##實 -##寧 -##寨 -##審 -##寫 -##寬 -##寮 -##寰 -##寵 -##寶 -##寸 -##对 -##寺 -##寻 -##导 -##対 -##寿 -##封 -##専 -##射 -##将 -##將 -##專 -##尉 -##尊 -##尋 -##對 -##導 -##小 -##少 -##尔 -##尕 -##尖 -##尘 -##尚 -##尝 -##尤 -##尧 -##尬 -##就 -##尴 -##尷 -##尸 -##尹 -##尺 -##尻 -##尼 -##尽 -##尾 -##尿 -##局 -##屁 -##层 -##屄 -##居 -##屆 -##屈 -##屉 -##届 -##屋 -##屌 -##屍 -##屎 -##屏 -##屐 -##屑 -##展 -##屜 -##属 -##屠 -##屡 -##屢 -##層 -##履 -##屬 -##屯 -##山 -##屹 -##屿 -##岀 -##岁 -##岂 -##岌 -##岐 -##岑 -##岔 -##岖 -##岗 -##岘 -##岙 -##岚 -##岛 -##岡 -##岩 -##岫 -##岬 -##岭 -##岱 -##岳 -##岷 -##岸 -##峇 -##峋 -##峒 -##峙 -##峡 -##峤 -##峥 -##峦 -##峨 -##峪 -##峭 -##峯 -##峰 -##峴 -##島 -##峻 -##峽 -##崁 -##崂 -##崆 -##崇 -##崎 -##崑 -##崔 -##崖 -##崗 -##崙 -##崛 -##崧 -##崩 -##崭 -##崴 -##崽 -##嵇 -##嵊 -##嵋 -##嵌 -##嵐 -##嵘 -##嵩 -##嵬 -##嵯 -##嶂 -##嶄 -##嶇 -##嶋 -##嶙 -##嶺 -##嶼 -##嶽 -##巅 -##巍 -##巒 -##巔 -##巖 -##川 -##州 -##巡 -##巢 -##工 -##左 -##巧 -##巨 -##巩 -##巫 -##差 -##己 -##已 -##巳 -##巴 -##巷 -##巻 -##巽 -##巾 -##巿 -##币 -##市 -##布 -##帅 -##帆 -##师 -##希 -##帐 -##帑 -##帕 -##帖 -##帘 -##帚 -##帛 -##帜 -##帝 -##帥 -##带 -##帧 -##師 -##席 -##帮 -##帯 -##帰 -##帳 -##帶 -##帷 -##常 -##帼 -##帽 -##幀 -##幂 -##幄 -##幅 -##幌 -##幔 -##幕 -##幟 -##幡 -##幢 -##幣 -##幫 -##干 -##平 -##年 -##并 -##幸 -##幹 -##幺 -##幻 -##幼 -##幽 -##幾 -##广 -##庁 -##広 -##庄 -##庆 -##庇 -##床 -##序 -##庐 -##库 -##应 -##底 -##庖 -##店 -##庙 -##庚 -##府 -##庞 -##废 -##庠 -##度 -##座 -##庫 -##庭 -##庵 -##庶 -##康 -##庸 -##庹 -##庾 -##廁 -##廂 -##廃 -##廈 -##廉 -##廊 -##廓 -##廖 -##廚 -##廝 -##廟 -##廠 -##廢 -##廣 -##廬 -##廳 -##延 -##廷 -##建 -##廿 -##开 -##弁 -##异 -##弃 -##弄 -##弈 -##弊 -##弋 -##式 -##弑 -##弒 -##弓 -##弔 -##引 -##弗 -##弘 -##弛 -##弟 -##张 -##弥 -##弦 -##弧 -##弩 -##弭 -##弯 -##弱 -##張 -##強 -##弹 -##强 -##弼 -##弾 -##彅 -##彆 -##彈 -##彌 -##彎 -##归 -##当 -##录 -##彗 -##彙 -##彝 -##形 -##彤 -##彥 -##彦 -##彧 -##彩 -##彪 -##彫 -##彬 -##彭 -##彰 -##影 -##彷 -##役 -##彻 -##彼 -##彿 -##往 -##征 -##径 -##待 -##徇 -##很 -##徉 -##徊 -##律 -##後 -##徐 -##徑 -##徒 -##従 -##徕 -##得 -##徘 -##徙 -##徜 -##從 -##徠 -##御 -##徨 -##復 -##循 -##徬 -##微 -##徳 -##徴 -##徵 -##德 -##徹 -##徼 -##徽 -##心 -##必 -##忆 -##忌 -##忍 -##忏 -##忐 -##忑 -##忒 -##忖 -##志 -##忘 -##忙 -##応 -##忠 -##忡 -##忤 -##忧 -##忪 -##快 -##忱 -##念 -##忻 -##忽 -##忿 -##怀 -##态 -##怂 -##怅 -##怆 -##怎 -##怏 -##怒 -##怔 -##怕 -##怖 -##怙 -##怜 -##思 -##怠 -##怡 -##急 -##怦 -##性 -##怨 -##怪 -##怯 -##怵 -##总 -##怼 -##恁 -##恃 -##恆 -##恋 -##恍 -##恐 -##恒 -##恕 -##恙 -##恚 -##恢 -##恣 -##恤 -##恥 -##恨 -##恩 -##恪 -##恫 -##恬 -##恭 -##息 -##恰 -##恳 -##恵 -##恶 -##恸 -##恺 -##恻 -##恼 -##恿 -##悄 -##悅 -##悉 -##悌 -##悍 -##悔 -##悖 -##悚 -##悟 -##悠 -##患 -##悦 -##您 -##悩 -##悪 -##悬 -##悯 -##悱 -##悲 -##悴 -##悵 -##悶 -##悸 -##悻 -##悼 -##悽 -##情 -##惆 -##惇 -##惊 -##惋 -##惑 -##惕 -##惘 -##惚 -##惜 -##惟 -##惠 -##惡 -##惦 -##惧 -##惨 -##惩 -##惫 -##惬 -##惭 -##惮 -##惯 -##惰 -##惱 -##想 -##惴 -##惶 -##惹 -##惺 -##愁 -##愆 -##愈 -##愉 -##愍 -##意 -##愕 -##愚 -##愛 -##愜 -##感 -##愣 -##愤 -##愧 -##愫 -##愷 -##愿 -##慄 -##慈 -##態 -##慌 -##慎 -##慑 -##慕 -##慘 -##慚 -##慟 -##慢 -##慣 -##慧 -##慨 -##慫 -##慮 -##慰 -##慳 -##慵 -##慶 -##慷 -##慾 -##憂 -##憊 -##憋 -##憎 -##憐 -##憑 -##憔 -##憚 -##憤 -##憧 -##憨 -##憩 -##憫 -##憬 -##憲 -##憶 -##憾 -##懂 -##懇 -##懈 -##應 -##懊 -##懋 -##懑 -##懒 -##懦 -##懲 -##懵 -##懶 -##懷 -##懸 -##懺 -##懼 -##懾 -##懿 -##戀 -##戈 -##戊 -##戌 -##戍 -##戎 -##戏 -##成 -##我 -##戒 -##戕 -##或 -##战 -##戚 -##戛 -##戟 -##戡 -##戦 -##截 -##戬 -##戮 -##戰 -##戲 -##戳 -##戴 -##戶 -##户 -##戸 -##戻 -##戾 -##房 -##所 -##扁 -##扇 -##扈 -##扉 -##手 -##才 -##扎 -##扑 -##扒 -##打 -##扔 -##払 -##托 -##扛 -##扣 -##扦 -##执 -##扩 -##扪 -##扫 -##扬 -##扭 -##扮 -##扯 -##扰 -##扱 -##扳 -##扶 -##批 -##扼 -##找 -##承 -##技 -##抄 -##抉 -##把 -##抑 -##抒 -##抓 -##投 -##抖 -##抗 -##折 -##抚 -##抛 -##抜 -##択 -##抟 -##抠 -##抡 -##抢 -##护 -##报 -##抨 -##披 -##抬 -##抱 -##抵 -##抹 -##押 -##抽 -##抿 -##拂 -##拄 -##担 -##拆 -##拇 -##拈 -##拉 -##拋 -##拌 -##拍 -##拎 -##拐 -##拒 -##拓 -##拔 -##拖 -##拗 -##拘 -##拙 -##拚 -##招 -##拜 -##拟 -##拡 -##拢 -##拣 -##拥 -##拦 -##拧 -##拨 -##择 -##括 -##拭 -##拮 -##拯 -##拱 -##拳 -##拴 -##拷 -##拼 -##拽 -##拾 -##拿 -##持 -##挂 -##指 -##挈 -##按 -##挎 -##挑 -##挖 -##挙 -##挚 -##挛 -##挝 -##挞 -##挟 -##挠 -##挡 -##挣 -##挤 -##挥 -##挨 -##挪 -##挫 -##振 -##挲 -##挹 -##挺 -##挽 -##挾 -##捂 -##捅 -##捆 -##捉 -##捋 -##捌 -##捍 -##捎 -##捏 -##捐 -##捕 -##捞 -##损 -##捡 -##换 -##捣 -##捧 -##捨 -##捩 -##据 -##捱 -##捲 -##捶 -##捷 -##捺 -##捻 -##掀 -##掂 -##掃 -##掇 -##授 -##掉 -##掌 -##掏 -##掐 -##排 -##掖 -##掘 -##掙 -##掛 -##掠 -##採 -##探 -##掣 -##接 -##控 -##推 -##掩 -##措 -##掬 -##掰 -##掲 -##掳 -##掴 -##掷 -##掸 -##掺 -##揀 -##揃 -##揄 -##揆 -##揉 -##揍 -##描 -##提 -##插 -##揖 -##揚 -##換 -##握 -##揣 -##揩 -##揪 -##揭 -##揮 -##援 -##揶 -##揸 -##揹 -##揽 -##搀 -##搁 -##搂 -##搅 -##損 -##搏 -##搐 -##搓 -##搔 -##搖 -##搗 -##搜 -##搞 -##搡 -##搪 -##搬 -##搭 -##搵 -##搶 -##携 -##搽 -##摀 -##摁 -##摄 -##摆 -##摇 -##摈 -##摊 -##摒 -##摔 -##摘 -##摞 -##摟 -##摧 -##摩 -##摯 -##摳 -##摸 -##摹 -##摺 -##摻 -##撂 -##撃 -##撅 -##撇 -##撈 -##撐 -##撑 -##撒 -##撓 -##撕 -##撚 -##撞 -##撤 -##撥 -##撩 -##撫 -##撬 -##播 -##撮 -##撰 -##撲 -##撵 -##撷 -##撸 -##撻 -##撼 -##撿 -##擀 -##擁 -##擂 -##擄 -##擅 -##擇 -##擊 -##擋 -##操 -##擎 -##擒 -##擔 -##擘 -##據 -##擞 -##擠 -##擡 -##擢 -##擦 -##擬 -##擰 -##擱 -##擲 -##擴 -##擷 -##擺 -##擼 -##擾 -##攀 -##攏 -##攒 -##攔 -##攘 -##攙 -##攜 -##攝 -##攞 -##攢 -##攣 -##攤 -##攥 -##攪 -##攫 -##攬 -##支 -##收 -##攸 -##改 -##攻 -##放 -##政 -##故 -##效 -##敌 -##敍 -##敎 -##敏 -##救 -##敕 -##敖 -##敗 -##敘 -##教 -##敛 -##敝 -##敞 -##敢 -##散 -##敦 -##敬 -##数 -##敲 -##整 -##敵 -##敷 -##數 -##斂 -##斃 -##文 -##斋 -##斌 -##斎 -##斐 -##斑 -##斓 -##斗 -##料 -##斛 -##斜 -##斟 -##斡 -##斤 -##斥 -##斧 -##斩 -##斫 -##斬 -##断 -##斯 -##新 -##斷 -##方 -##於 -##施 -##旁 -##旃 -##旅 -##旋 -##旌 -##旎 -##族 -##旖 -##旗 -##无 -##既 -##日 -##旦 -##旧 -##旨 -##早 -##旬 -##旭 -##旮 -##旱 -##时 -##旷 -##旺 -##旻 -##昀 -##昂 -##昆 -##昇 -##昉 -##昊 -##昌 -##明 -##昏 -##易 -##昔 -##昕 -##昙 -##星 -##映 -##春 -##昧 -##昨 -##昭 -##是 -##昱 -##昴 -##昵 -##昶 -##昼 -##显 -##晁 -##時 -##晃 -##晉 -##晋 -##晌 -##晏 -##晒 -##晓 -##晔 -##晕 -##晖 -##晗 -##晚 -##晝 -##晞 -##晟 -##晤 -##晦 -##晨 -##晩 -##普 -##景 -##晰 -##晴 -##晶 -##晷 -##智 -##晾 -##暂 -##暄 -##暇 -##暈 -##暉 -##暌 -##暐 -##暑 -##暖 -##暗 -##暝 -##暢 -##暧 -##暨 -##暫 -##暮 -##暱 -##暴 -##暸 -##暹 -##曄 -##曆 -##曇 -##曉 -##曖 -##曙 -##曜 -##曝 -##曠 -##曦 -##曬 -##曰 -##曲 -##曳 -##更 -##書 -##曹 -##曼 -##曾 -##替 -##最 -##會 -##月 -##有 -##朋 -##服 -##朐 -##朔 -##朕 -##朗 -##望 -##朝 -##期 -##朦 -##朧 -##木 -##未 -##末 -##本 -##札 -##朮 -##术 -##朱 -##朴 -##朵 -##机 -##朽 -##杀 -##杂 -##权 -##杆 -##杈 -##杉 -##李 -##杏 -##材 -##村 -##杓 -##杖 -##杜 -##杞 -##束 -##杠 -##条 -##来 -##杨 -##杭 -##杯 -##杰 -##東 -##杳 -##杵 -##杷 -##杼 -##松 -##板 -##极 -##构 -##枇 -##枉 -##枋 -##析 -##枕 -##林 -##枚 -##果 -##枝 -##枢 -##枣 -##枪 -##枫 -##枭 -##枯 -##枰 -##枱 -##枳 -##架 -##枷 -##枸 -##柄 -##柏 -##某 -##柑 -##柒 -##染 -##柔 -##柘 -##柚 -##柜 -##柞 -##柠 -##柢 -##查 -##柩 -##柬 -##柯 -##柱 -##柳 -##柴 -##柵 -##査 -##柿 -##栀 -##栃 -##栄 -##栅 -##标 -##栈 -##栉 -##栋 -##栎 -##栏 -##树 -##栓 -##栖 -##栗 -##校 -##栩 -##株 -##样 -##核 -##根 -##格 -##栽 -##栾 -##桀 -##桁 -##桂 -##桃 -##桅 -##框 -##案 -##桉 -##桌 -##桎 -##桐 -##桑 -##桓 -##桔 -##桜 -##桠 -##桡 -##桢 -##档 -##桥 -##桦 -##桧 -##桨 -##桩 -##桶 -##桿 -##梁 -##梅 -##梆 -##梏 -##梓 -##梗 -##條 -##梟 -##梢 -##梦 -##梧 -##梨 -##梭 -##梯 -##械 -##梳 -##梵 -##梶 -##检 -##棂 -##棄 -##棉 -##棋 -##棍 -##棒 -##棕 -##棗 -##棘 -##棚 -##棟 -##棠 -##棣 -##棧 -##森 -##棱 -##棲 -##棵 -##棹 -##棺 -##椁 -##椅 -##椋 -##植 -##椎 -##椒 -##検 -##椪 -##椭 -##椰 -##椹 -##椽 -##椿 -##楂 -##楊 -##楓 -##楔 -##楚 -##楝 -##楞 -##楠 -##楣 -##楨 -##楫 -##業 -##楮 -##極 -##楷 -##楸 -##楹 -##楼 -##楽 -##概 -##榄 -##榆 -##榈 -##榉 -##榔 -##榕 -##榖 -##榛 -##榜 -##榨 -##榫 -##榭 -##榮 -##榱 -##榴 -##榷 -##榻 -##槁 -##槃 -##構 -##槌 -##槍 -##槎 -##槐 -##槓 -##様 -##槛 -##槟 -##槤 -##槭 -##槲 -##槳 -##槻 -##槽 -##槿 -##樁 -##樂 -##樊 -##樑 -##樓 -##標 -##樞 -##樟 -##模 -##樣 -##権 -##横 -##樫 -##樯 -##樱 -##樵 -##樸 -##樹 -##樺 -##樽 -##樾 -##橄 -##橇 -##橋 -##橐 -##橘 -##橙 -##機 -##橡 -##橢 -##橫 -##橱 -##橹 -##橼 -##檀 -##檄 -##檎 -##檐 -##檔 -##檗 -##檜 -##檢 -##檬 -##檯 -##檳 -##檸 -##檻 -##櫃 -##櫚 -##櫛 -##櫥 -##櫸 -##櫻 -##欄 -##權 -##欒 -##欖 -##欠 -##次 -##欢 -##欣 -##欧 -##欲 -##欸 -##欺 -##欽 -##款 -##歆 -##歇 -##歉 -##歌 -##歎 -##歐 -##歓 -##歙 -##歛 -##歡 -##止 -##正 -##此 -##步 -##武 -##歧 -##歩 -##歪 -##歯 -##歲 -##歳 -##歴 -##歷 -##歸 -##歹 -##死 -##歼 -##殁 -##殃 -##殆 -##殇 -##殉 -##殊 -##残 -##殒 -##殓 -##殖 -##殘 -##殞 -##殡 -##殤 -##殭 -##殯 -##殲 -##殴 -##段 -##殷 -##殺 -##殼 -##殿 -##毀 -##毁 -##毂 -##毅 -##毆 -##毋 -##母 -##毎 -##每 -##毒 -##毓 -##比 -##毕 -##毗 -##毘 -##毙 -##毛 -##毡 -##毫 -##毯 -##毽 -##氈 -##氏 -##氐 -##民 -##氓 -##气 -##氖 -##気 -##氙 -##氛 -##氟 -##氡 -##氢 -##氣 -##氤 -##氦 -##氧 -##氨 -##氪 -##氫 -##氮 -##氯 -##氰 -##氲 -##水 -##氷 -##永 -##氹 -##氾 -##汀 -##汁 -##求 -##汆 -##汇 -##汉 -##汎 -##汐 -##汕 -##汗 -##汙 -##汛 -##汝 -##汞 -##江 -##池 -##污 -##汤 -##汨 -##汩 -##汪 -##汰 -##汲 -##汴 -##汶 -##汹 -##決 -##汽 -##汾 -##沁 -##沂 -##沃 -##沅 -##沈 -##沉 -##沌 -##沏 -##沐 -##沒 -##沓 -##沖 -##沙 -##沛 -##沟 -##没 -##沢 -##沣 -##沥 -##沦 -##沧 -##沪 -##沫 -##沭 -##沮 -##沱 -##河 -##沸 -##油 -##治 -##沼 -##沽 -##沾 -##沿 -##況 -##泄 -##泉 -##泊 -##泌 -##泓 -##法 -##泗 -##泛 -##泞 -##泠 -##泡 -##波 -##泣 -##泥 -##注 -##泪 -##泫 -##泮 -##泯 -##泰 -##泱 -##泳 -##泵 -##泷 -##泸 -##泻 -##泼 -##泽 -##泾 -##洁 -##洄 -##洋 -##洒 -##洗 -##洙 -##洛 -##洞 -##津 -##洩 -##洪 -##洮 -##洱 -##洲 -##洵 -##洶 -##洸 -##洹 -##活 -##洼 -##洽 -##派 -##流 -##浃 -##浄 -##浅 -##浆 -##浇 -##浊 -##测 -##济 -##浏 -##浑 -##浒 -##浓 -##浔 -##浙 -##浚 -##浜 -##浣 -##浦 -##浩 -##浪 -##浬 -##浮 -##浯 -##浴 -##海 -##浸 -##涂 -##涅 -##涇 -##消 -##涉 -##涌 -##涎 -##涓 -##涔 -##涕 -##涙 -##涛 -##涝 -##涞 -##涟 -##涠 -##涡 -##涣 -##涤 -##润 -##涧 -##涨 -##涩 -##涪 -##涮 -##涯 -##液 -##涵 -##涸 -##涼 -##涿 -##淀 -##淄 -##淅 -##淆 -##淇 -##淋 -##淌 -##淑 -##淒 -##淖 -##淘 -##淙 -##淚 -##淞 -##淡 -##淤 -##淦 -##淨 -##淩 -##淪 -##淫 -##淬 -##淮 -##深 -##淳 -##淵 -##混 -##淹 -##淺 -##添 -##淼 -##清 -##済 -##渉 -##渊 -##渋 -##渍 -##渎 -##渐 -##渔 -##渗 -##渙 -##渚 -##減 -##渝 -##渠 -##渡 -##渣 -##渤 -##渥 -##渦 -##温 -##測 -##渭 -##港 -##渲 -##渴 -##游 -##渺 -##渾 -##湃 -##湄 -##湊 -##湍 -##湖 -##湘 -##湛 -##湟 -##湧 -##湫 -##湮 -##湯 -##湳 -##湾 -##湿 -##満 -##溃 -##溅 -##溉 -##溏 -##源 -##準 -##溜 -##溝 -##溟 -##溢 -##溥 -##溧 -##溪 -##溫 -##溯 -##溱 -##溴 -##溶 -##溺 -##溼 -##滁 -##滂 -##滄 -##滅 -##滇 -##滋 -##滌 -##滑 -##滓 -##滔 -##滕 -##滙 -##滚 -##滝 -##滞 -##滟 -##满 -##滢 -##滤 -##滥 -##滦 -##滨 -##滩 -##滬 -##滯 -##滲 -##滴 -##滷 -##滸 -##滾 -##滿 -##漁 -##漂 -##漆 -##漉 -##漏 -##漓 -##演 -##漕 -##漠 -##漢 -##漣 -##漩 -##漪 -##漫 -##漬 -##漯 -##漱 -##漲 -##漳 -##漸 -##漾 -##漿 -##潆 -##潇 -##潋 -##潍 -##潑 -##潔 -##潘 -##潛 -##潜 -##潞 -##潟 -##潢 -##潤 -##潦 -##潧 -##潭 -##潮 -##潰 -##潴 -##潸 -##潺 -##潼 -##澀 -##澄 -##澆 -##澈 -##澍 -##澎 -##澗 -##澜 -##澡 -##澤 -##澧 -##澱 -##澳 -##澹 -##激 -##濁 -##濂 -##濃 -##濑 -##濒 -##濕 -##濘 -##濛 -##濟 -##濠 -##濡 -##濤 -##濫 -##濬 -##濮 -##濯 -##濱 -##濺 -##濾 -##瀅 -##瀆 -##瀉 -##瀋 -##瀏 -##瀑 -##瀕 -##瀘 -##瀚 -##瀛 -##瀝 -##瀞 -##瀟 -##瀧 -##瀨 -##瀬 -##瀰 -##瀾 -##灌 -##灏 -##灑 -##灘 -##灝 -##灞 -##灣 -##火 -##灬 -##灭 -##灯 -##灰 -##灵 -##灶 -##灸 -##灼 -##災 -##灾 -##灿 -##炀 -##炁 -##炅 -##炉 -##炊 -##炎 -##炒 -##炔 -##炕 -##炖 -##炙 -##炜 -##炫 -##炬 -##炭 -##炮 -##炯 -##炳 -##炷 -##炸 -##点 -##為 -##炼 -##炽 -##烁 -##烂 -##烃 -##烈 -##烊 -##烏 -##烘 -##烙 -##烛 -##烟 -##烤 -##烦 -##烧 -##烨 -##烩 -##烫 -##烬 -##热 -##烯 -##烷 -##烹 -##烽 -##焉 -##焊 -##焕 -##焖 -##焗 -##焘 -##焙 -##焚 -##焜 -##無 -##焦 -##焯 -##焰 -##焱 -##然 -##焼 -##煅 -##煉 -##煊 -##煌 -##煎 -##煒 -##煖 -##煙 -##煜 -##煞 -##煤 -##煥 -##煦 -##照 -##煨 -##煩 -##煮 -##煲 -##煸 -##煽 -##熄 -##熊 -##熏 -##熒 -##熔 -##熙 -##熟 -##熠 -##熨 -##熬 -##熱 -##熵 -##熹 -##熾 -##燁 -##燃 -##燄 -##燈 -##燉 -##燊 -##燎 -##燒 -##燔 -##燕 -##燙 -##燜 -##營 -##燥 -##燦 -##燧 -##燭 -##燮 -##燴 -##燻 -##燼 -##燿 -##爆 -##爍 -##爐 -##爛 -##爪 -##爬 -##爭 -##爰 -##爱 -##爲 -##爵 -##父 -##爷 -##爸 -##爹 -##爺 -##爻 -##爽 -##爾 -##牆 -##片 -##版 -##牌 -##牍 -##牒 -##牙 -##牛 -##牝 -##牟 -##牠 -##牡 -##牢 -##牦 -##牧 -##物 -##牯 -##牲 -##牴 -##牵 -##特 -##牺 -##牽 -##犀 -##犁 -##犄 -##犊 -##犍 -##犒 -##犢 -##犧 -##犬 -##犯 -##状 -##犷 -##犸 -##犹 -##狀 -##狂 -##狄 -##狈 -##狎 -##狐 -##狒 -##狗 -##狙 -##狞 -##狠 -##狡 -##狩 -##独 -##狭 -##狮 -##狰 -##狱 -##狸 -##狹 -##狼 -##狽 -##猎 -##猕 -##猖 -##猗 -##猙 -##猛 -##猜 -##猝 -##猥 -##猩 -##猪 -##猫 -##猬 -##献 -##猴 -##猶 -##猷 -##猾 -##猿 -##獄 -##獅 -##獎 -##獐 -##獒 -##獗 -##獠 -##獣 -##獨 -##獭 -##獰 -##獲 -##獵 -##獷 -##獸 -##獺 -##獻 -##獼 -##獾 -##玄 -##率 -##玉 -##王 -##玑 -##玖 -##玛 -##玟 -##玠 -##玥 -##玩 -##玫 -##玮 -##环 -##现 -##玲 -##玳 -##玷 -##玺 -##玻 -##珀 -##珂 -##珅 -##珈 -##珉 -##珊 -##珍 -##珏 -##珐 -##珑 -##珙 -##珞 -##珠 -##珣 -##珥 -##珩 -##珪 -##班 -##珮 -##珲 -##珺 -##現 -##球 -##琅 -##理 -##琇 -##琉 -##琊 -##琍 -##琏 -##琐 -##琛 -##琢 -##琥 -##琦 -##琨 -##琪 -##琬 -##琮 -##琰 -##琲 -##琳 -##琴 -##琵 -##琶 -##琺 -##琼 -##瑀 -##瑁 -##瑄 -##瑋 -##瑕 -##瑗 -##瑙 -##瑚 -##瑛 -##瑜 -##瑞 -##瑟 -##瑠 -##瑣 -##瑤 -##瑩 -##瑪 -##瑯 -##瑰 -##瑶 -##瑾 -##璀 -##璁 -##璃 -##璇 -##璉 -##璋 -##璎 -##璐 -##璜 -##璞 -##璟 -##璧 -##璨 -##環 -##璽 -##璿 -##瓊 -##瓏 -##瓒 -##瓜 -##瓢 -##瓣 -##瓤 -##瓦 -##瓮 -##瓯 -##瓴 -##瓶 -##瓷 -##甄 -##甌 -##甕 -##甘 -##甙 -##甚 -##甜 -##生 -##產 -##産 -##甥 -##甦 -##用 -##甩 -##甫 -##甬 -##甭 -##甯 -##田 -##由 -##甲 -##申 -##电 -##男 -##甸 -##町 -##画 -##甾 -##畀 -##畅 -##界 -##畏 -##畑 -##畔 -##留 -##畜 -##畝 -##畢 -##略 -##畦 -##番 -##畫 -##異 -##畲 -##畳 -##畴 -##當 -##畸 -##畹 -##畿 -##疆 -##疇 -##疊 -##疏 -##疑 -##疔 -##疖 -##疗 -##疙 -##疚 -##疝 -##疟 -##疡 -##疣 -##疤 -##疥 -##疫 -##疮 -##疯 -##疱 -##疲 -##疳 -##疵 -##疸 -##疹 -##疼 -##疽 -##疾 -##痂 -##病 -##症 -##痈 -##痉 -##痊 -##痍 -##痒 -##痔 -##痕 -##痘 -##痙 -##痛 -##痞 -##痠 -##痢 -##痣 -##痤 -##痧 -##痨 -##痪 -##痫 -##痰 -##痱 -##痴 -##痹 -##痺 -##痼 -##痿 -##瘀 -##瘁 -##瘋 -##瘍 -##瘓 -##瘘 -##瘙 -##瘟 -##瘠 -##瘡 -##瘢 -##瘤 -##瘦 -##瘧 -##瘩 -##瘪 -##瘫 -##瘴 -##瘸 -##瘾 -##療 -##癇 -##癌 -##癒 -##癖 -##癜 -##癞 -##癡 -##癢 -##癣 -##癥 -##癫 -##癬 -##癮 -##癱 -##癲 -##癸 -##発 -##登 -##發 -##白 -##百 -##皂 -##的 -##皆 -##皇 -##皈 -##皋 -##皎 -##皑 -##皓 -##皖 -##皙 -##皚 -##皮 -##皰 -##皱 -##皴 -##皺 -##皿 -##盂 -##盃 -##盅 -##盆 -##盈 -##益 -##盎 -##盏 -##盐 -##监 -##盒 -##盔 -##盖 -##盗 -##盘 -##盛 -##盜 -##盞 -##盟 -##盡 -##監 -##盤 -##盥 -##盧 -##盪 -##目 -##盯 -##盱 -##盲 -##直 -##相 -##盹 -##盼 -##盾 -##省 -##眈 -##眉 -##看 -##県 -##眙 -##眞 -##真 -##眠 -##眦 -##眨 -##眩 -##眯 -##眶 -##眷 -##眸 -##眺 -##眼 -##眾 -##着 -##睁 -##睇 -##睏 -##睐 -##睑 -##睛 -##睜 -##睞 -##睡 -##睢 -##督 -##睥 -##睦 -##睨 -##睪 -##睫 -##睬 -##睹 -##睽 -##睾 -##睿 -##瞄 -##瞅 -##瞇 -##瞋 -##瞌 -##瞎 -##瞑 -##瞒 -##瞓 -##瞞 -##瞟 -##瞠 -##瞥 -##瞧 -##瞩 -##瞪 -##瞬 -##瞭 -##瞰 -##瞳 -##瞻 -##瞼 -##瞿 -##矇 -##矍 -##矗 -##矚 -##矛 -##矜 -##矢 -##矣 -##知 -##矩 -##矫 -##短 -##矮 -##矯 -##石 -##矶 -##矽 -##矾 -##矿 -##码 -##砂 -##砌 -##砍 -##砒 -##研 -##砖 -##砗 -##砚 -##砝 -##砣 -##砥 -##砧 -##砭 -##砰 -##砲 -##破 -##砷 -##砸 -##砺 -##砼 -##砾 -##础 -##硅 -##硐 -##硒 -##硕 -##硝 -##硫 -##硬 -##确 -##硯 -##硼 -##碁 -##碇 -##碉 -##碌 -##碍 -##碎 -##碑 -##碓 -##碗 -##碘 -##碚 -##碛 -##碟 -##碣 -##碧 -##碩 -##碰 -##碱 -##碳 -##碴 -##確 -##碼 -##碾 -##磁 -##磅 -##磊 -##磋 -##磐 -##磕 -##磚 -##磡 -##磨 -##磬 -##磯 -##磲 -##磷 -##磺 -##礁 -##礎 -##礙 -##礡 -##礦 -##礪 -##礫 -##礴 -##示 -##礼 -##社 -##祀 -##祁 -##祂 -##祇 -##祈 -##祉 -##祎 -##祐 -##祕 -##祖 -##祗 -##祚 -##祛 -##祜 -##祝 -##神 -##祟 -##祠 -##祢 -##祥 -##票 -##祭 -##祯 -##祷 -##祸 -##祺 -##祿 -##禀 -##禁 -##禄 -##禅 -##禍 -##禎 -##福 -##禛 -##禦 -##禧 -##禪 -##禮 -##禱 -##禹 -##禺 -##离 -##禽 -##禾 -##禿 -##秀 -##私 -##秃 -##秆 -##秉 -##秋 -##种 -##科 -##秒 -##秘 -##租 -##秣 -##秤 -##秦 -##秧 -##秩 -##秭 -##积 -##称 -##秸 -##移 -##秽 -##稀 -##稅 -##程 -##稍 -##税 -##稔 -##稗 -##稚 -##稜 -##稞 -##稟 -##稠 -##稣 -##種 -##稱 -##稲 -##稳 -##稷 -##稹 -##稻 -##稼 -##稽 -##稿 -##穀 -##穂 -##穆 -##穌 -##積 -##穎 -##穗 -##穢 -##穩 -##穫 -##穴 -##究 -##穷 -##穹 -##空 -##穿 -##突 -##窃 -##窄 -##窈 -##窍 -##窑 -##窒 -##窓 -##窕 -##窖 -##窗 -##窘 -##窜 -##窝 -##窟 -##窠 -##窥 -##窦 -##窨 -##窩 -##窪 -##窮 -##窯 -##窺 -##窿 -##竄 -##竅 -##竇 -##竊 -##立 -##竖 -##站 -##竜 -##竞 -##竟 -##章 -##竣 -##童 -##竭 -##端 -##競 -##竹 -##竺 -##竽 -##竿 -##笃 -##笆 -##笈 -##笋 -##笏 -##笑 -##笔 -##笙 -##笛 -##笞 -##笠 -##符 -##笨 -##第 -##笹 -##笺 -##笼 -##筆 -##等 -##筊 -##筋 -##筍 -##筏 -##筐 -##筑 -##筒 -##答 -##策 -##筛 -##筝 -##筠 -##筱 -##筲 -##筵 -##筷 -##筹 -##签 -##简 -##箇 -##箋 -##箍 -##箏 -##箐 -##箔 -##箕 -##算 -##箝 -##管 -##箩 -##箫 -##箭 -##箱 -##箴 -##箸 -##節 -##篁 -##範 -##篆 -##篇 -##築 -##篑 -##篓 -##篙 -##篝 -##篠 -##篡 -##篤 -##篩 -##篪 -##篮 -##篱 -##篷 -##簇 -##簌 -##簍 -##簡 -##簦 -##簧 -##簪 -##簫 -##簷 -##簸 -##簽 -##簾 -##簿 -##籁 -##籃 -##籌 -##籍 -##籐 -##籟 -##籠 -##籤 -##籬 -##籮 -##籲 -##米 -##类 -##籼 -##籽 -##粄 -##粉 -##粑 -##粒 -##粕 -##粗 -##粘 -##粟 -##粤 -##粥 -##粧 -##粪 -##粮 -##粱 -##粲 -##粳 -##粵 -##粹 -##粼 -##粽 -##精 -##粿 -##糅 -##糊 -##糍 -##糕 -##糖 -##糗 -##糙 -##糜 -##糞 -##糟 -##糠 -##糧 -##糬 -##糯 -##糰 -##糸 -##系 -##糾 -##紀 -##紂 -##約 -##紅 -##紉 -##紊 -##紋 -##納 -##紐 -##紓 -##純 -##紗 -##紘 -##紙 -##級 -##紛 -##紜 -##素 -##紡 -##索 -##紧 -##紫 -##紮 -##累 -##細 -##紳 -##紹 -##紺 -##終 -##絃 -##組 -##絆 -##経 -##結 -##絕 -##絞 -##絡 -##絢 -##給 -##絨 -##絮 -##統 -##絲 -##絳 -##絵 -##絶 -##絹 -##綁 -##綏 -##綑 -##經 -##継 -##続 -##綜 -##綠 -##綢 -##綦 -##綫 -##綬 -##維 -##綱 -##網 -##綴 -##綵 -##綸 -##綺 -##綻 -##綽 -##綾 -##綿 -##緊 -##緋 -##総 -##緑 -##緒 -##緘 -##線 -##緝 -##緞 -##締 -##緣 -##編 -##緩 -##緬 -##緯 -##練 -##緹 -##緻 -##縁 -##縄 -##縈 -##縛 -##縝 -##縣 -##縫 -##縮 -##縱 -##縴 -##縷 -##總 -##績 -##繁 -##繃 -##繆 -##繇 -##繋 -##織 -##繕 -##繚 -##繞 -##繡 -##繩 -##繪 -##繫 -##繭 -##繳 -##繹 -##繼 -##繽 -##纂 -##續 -##纍 -##纏 -##纓 -##纔 -##纖 -##纜 -##纠 -##红 -##纣 -##纤 -##约 -##级 -##纨 -##纪 -##纫 -##纬 -##纭 -##纯 -##纰 -##纱 -##纲 -##纳 -##纵 -##纶 -##纷 -##纸 -##纹 -##纺 -##纽 -##纾 -##线 -##绀 -##练 -##组 -##绅 -##细 -##织 -##终 -##绊 -##绍 -##绎 -##经 -##绑 -##绒 -##结 -##绔 -##绕 -##绘 -##给 -##绚 -##绛 -##络 -##绝 -##绞 -##统 -##绡 -##绢 -##绣 -##绥 -##绦 -##继 -##绩 -##绪 -##绫 -##续 -##绮 -##绯 -##绰 -##绳 -##维 -##绵 -##绶 -##绷 -##绸 -##绻 -##综 -##绽 -##绾 -##绿 -##缀 -##缄 -##缅 -##缆 -##缇 -##缈 -##缉 -##缎 -##缓 -##缔 -##缕 -##编 -##缘 -##缙 -##缚 -##缜 -##缝 -##缠 -##缢 -##缤 -##缥 -##缨 -##缩 -##缪 -##缭 -##缮 -##缰 -##缱 -##缴 -##缸 -##缺 -##缽 -##罂 -##罄 -##罌 -##罐 -##网 -##罔 -##罕 -##罗 -##罚 -##罡 -##罢 -##罩 -##罪 -##置 -##罰 -##署 -##罵 -##罷 -##罹 -##羁 -##羅 -##羈 -##羊 -##羌 -##美 -##羔 -##羚 -##羞 -##羟 -##羡 -##羣 -##群 -##羥 -##羧 -##羨 -##義 -##羯 -##羲 -##羸 -##羹 -##羽 -##羿 -##翁 -##翅 -##翊 -##翌 -##翎 -##習 -##翔 -##翘 -##翟 -##翠 -##翡 -##翦 -##翩 -##翰 -##翱 -##翳 -##翹 -##翻 -##翼 -##耀 -##老 -##考 -##耄 -##者 -##耆 -##耋 -##而 -##耍 -##耐 -##耒 -##耕 -##耗 -##耘 -##耙 -##耦 -##耨 -##耳 -##耶 -##耷 -##耸 -##耻 -##耽 -##耿 -##聂 -##聆 -##聊 -##聋 -##职 -##聒 -##联 -##聖 -##聘 -##聚 -##聞 -##聪 -##聯 -##聰 -##聲 -##聳 -##聴 -##聶 -##職 -##聽 -##聾 -##聿 -##肃 -##肄 -##肅 -##肆 -##肇 -##肉 -##肋 -##肌 -##肏 -##肓 -##肖 -##肘 -##肚 -##肛 -##肝 -##肠 -##股 -##肢 -##肤 -##肥 -##肩 -##肪 -##肮 -##肯 -##肱 -##育 -##肴 -##肺 -##肽 -##肾 -##肿 -##胀 -##胁 -##胃 -##胄 -##胆 -##背 -##胍 -##胎 -##胖 -##胚 -##胛 -##胜 -##胝 -##胞 -##胡 -##胤 -##胥 -##胧 -##胫 -##胭 -##胯 -##胰 -##胱 -##胳 -##胴 -##胶 -##胸 -##胺 -##能 -##脂 -##脅 -##脆 -##脇 -##脈 -##脉 -##脊 -##脍 -##脏 -##脐 -##脑 -##脓 -##脖 -##脘 -##脚 -##脛 -##脣 -##脩 -##脫 -##脯 -##脱 -##脲 -##脳 -##脸 -##脹 -##脾 -##腆 -##腈 -##腊 -##腋 -##腌 -##腎 -##腐 -##腑 -##腓 -##腔 -##腕 -##腥 -##腦 -##腩 -##腫 -##腭 -##腮 -##腰 -##腱 -##腳 -##腴 -##腸 -##腹 -##腺 -##腻 -##腼 -##腾 -##腿 -##膀 -##膈 -##膊 -##膏 -##膑 -##膘 -##膚 -##膛 -##膜 -##膝 -##膠 -##膦 -##膨 -##膩 -##膳 -##膺 -##膻 -##膽 -##膾 -##膿 -##臀 -##臂 -##臃 -##臆 -##臉 -##臊 -##臍 -##臓 -##臘 -##臟 -##臣 -##臥 -##臧 -##臨 -##自 -##臬 -##臭 -##至 -##致 -##臺 -##臻 -##臼 -##臾 -##舀 -##舂 -##舅 -##舆 -##與 -##興 -##舉 -##舊 -##舌 -##舍 -##舎 -##舐 -##舒 -##舔 -##舖 -##舗 -##舛 -##舜 -##舞 -##舟 -##航 -##舫 -##般 -##舰 -##舱 -##舵 -##舶 -##舷 -##舸 -##船 -##舺 -##舾 -##艇 -##艋 -##艘 -##艙 -##艦 -##艮 -##良 -##艰 -##艱 -##色 -##艳 -##艷 -##艹 -##艺 -##艾 -##节 -##芃 -##芈 -##芊 -##芋 -##芍 -##芎 -##芒 -##芙 -##芜 -##芝 -##芡 -##芥 -##芦 -##芩 -##芪 -##芫 -##芬 -##芭 -##芮 -##芯 -##花 -##芳 -##芷 -##芸 -##芹 -##芻 -##芽 -##芾 -##苁 -##苄 -##苇 -##苋 -##苍 -##苏 -##苑 -##苒 -##苓 -##苔 -##苕 -##苗 -##苛 -##苜 -##苞 -##苟 -##苡 -##苣 -##若 -##苦 -##苫 -##苯 -##英 -##苷 -##苹 -##苻 -##茁 -##茂 -##范 -##茄 -##茅 -##茉 -##茎 -##茏 -##茗 -##茜 -##茧 -##茨 -##茫 -##茬 -##茭 -##茯 -##茱 -##茲 -##茴 -##茵 -##茶 -##茸 -##茹 -##茼 -##荀 -##荃 -##荆 -##草 -##荊 -##荏 -##荐 -##荒 -##荔 -##荖 -##荘 -##荚 -##荞 -##荟 -##荠 -##荡 -##荣 -##荤 -##荥 -##荧 -##荨 -##荪 -##荫 -##药 -##荳 -##荷 -##荸 -##荻 -##荼 -##荽 -##莅 -##莆 -##莉 -##莊 -##莎 -##莒 -##莓 -##莖 -##莘 -##莞 -##莠 -##莢 -##莧 -##莪 -##莫 -##莱 -##莲 -##莴 -##获 -##莹 -##莺 -##莽 -##莿 -##菀 -##菁 -##菅 -##菇 -##菈 -##菊 -##菌 -##菏 -##菓 -##菖 -##菘 -##菜 -##菟 -##菠 -##菡 -##菩 -##華 -##菱 -##菲 -##菸 -##菽 -##萁 -##萃 -##萄 -##萊 -##萋 -##萌 -##萍 -##萎 -##萘 -##萝 -##萤 -##营 -##萦 -##萧 -##萨 -##萩 -##萬 -##萱 -##萵 -##萸 -##萼 -##落 -##葆 -##葉 -##著 -##葚 -##葛 -##葡 -##董 -##葦 -##葩 -##葫 -##葬 -##葭 -##葯 -##葱 -##葳 -##葵 -##葷 -##葺 -##蒂 -##蒋 -##蒐 -##蒔 -##蒙 -##蒜 -##蒞 -##蒟 -##蒡 -##蒨 -##蒲 -##蒸 -##蒹 -##蒻 -##蒼 -##蒿 -##蓁 -##蓄 -##蓆 -##蓉 -##蓋 -##蓑 -##蓓 -##蓖 -##蓝 -##蓟 -##蓦 -##蓬 -##蓮 -##蓼 -##蓿 -##蔑 -##蔓 -##蔔 -##蔗 -##蔘 -##蔚 -##蔡 -##蔣 -##蔥 -##蔫 -##蔬 -##蔭 -##蔵 -##蔷 -##蔺 -##蔻 -##蔼 -##蔽 -##蕁 -##蕃 -##蕈 -##蕉 -##蕊 -##蕎 -##蕙 -##蕤 -##蕨 -##蕩 -##蕪 -##蕭 -##蕲 -##蕴 -##蕻 -##蕾 -##薄 -##薅 -##薇 -##薈 -##薊 -##薏 -##薑 -##薔 -##薙 -##薛 -##薦 -##薨 -##薩 -##薪 -##薬 -##薯 -##薰 -##薹 -##藉 -##藍 -##藏 -##藐 -##藓 -##藕 -##藜 -##藝 -##藤 -##藥 -##藩 -##藹 -##藻 -##藿 -##蘆 -##蘇 -##蘊 -##蘋 -##蘑 -##蘚 -##蘭 -##蘸 -##蘼 -##蘿 -##虎 -##虏 -##虐 -##虑 -##虔 -##處 -##虚 -##虛 -##虜 -##虞 -##號 -##虢 -##虧 -##虫 -##虬 -##虱 -##虹 -##虻 -##虽 -##虾 -##蚀 -##蚁 -##蚂 -##蚊 -##蚌 -##蚓 -##蚕 -##蚜 -##蚝 -##蚣 -##蚤 -##蚩 -##蚪 -##蚯 -##蚱 -##蚵 -##蛀 -##蛆 -##蛇 -##蛊 -##蛋 -##蛎 -##蛐 -##蛔 -##蛙 -##蛛 -##蛟 -##蛤 -##蛭 -##蛮 -##蛰 -##蛳 -##蛹 -##蛻 -##蛾 -##蜀 -##蜂 -##蜃 -##蜆 -##蜇 -##蜈 -##蜊 -##蜍 -##蜒 -##蜓 -##蜕 -##蜗 -##蜘 -##蜚 -##蜜 -##蜡 -##蜢 -##蜥 -##蜱 -##蜴 -##蜷 -##蜻 -##蜿 -##蝇 -##蝈 -##蝉 -##蝌 -##蝎 -##蝕 -##蝗 -##蝙 -##蝟 -##蝠 -##蝦 -##蝨 -##蝴 -##蝶 -##蝸 -##蝼 -##螂 -##螃 -##融 -##螞 -##螢 -##螨 -##螯 -##螳 -##螺 -##蟀 -##蟄 -##蟆 -##蟋 -##蟎 -##蟑 -##蟒 -##蟠 -##蟬 -##蟲 -##蟹 -##蟻 -##蟾 -##蠅 -##蠍 -##蠔 -##蠕 -##蠛 -##蠟 -##蠡 -##蠢 -##蠣 -##蠱 -##蠶 -##蠹 -##蠻 -##血 -##衄 -##衅 -##衆 -##行 -##衍 -##術 -##衔 -##街 -##衙 -##衛 -##衝 -##衞 -##衡 -##衢 -##衣 -##补 -##表 -##衩 -##衫 -##衬 -##衮 -##衰 -##衲 -##衷 -##衹 -##衾 -##衿 -##袁 -##袂 -##袄 -##袅 -##袈 -##袋 -##袍 -##袒 -##袖 -##袜 -##袞 -##袤 -##袪 -##被 -##袭 -##袱 -##裁 -##裂 -##装 -##裆 -##裊 -##裏 -##裔 -##裕 -##裘 -##裙 -##補 -##裝 -##裟 -##裡 -##裤 -##裨 -##裱 -##裳 -##裴 -##裸 -##裹 -##製 -##裾 -##褂 -##複 -##褐 -##褒 -##褓 -##褔 -##褚 -##褥 -##褪 -##褫 -##褲 -##褶 -##褻 -##襁 -##襄 -##襟 -##襠 -##襪 -##襬 -##襯 -##襲 -##西 -##要 -##覃 -##覆 -##覇 -##見 -##規 -##覓 -##視 -##覚 -##覦 -##覧 -##親 -##覬 -##観 -##覷 -##覺 -##覽 -##觀 -##见 -##观 -##规 -##觅 -##视 -##览 -##觉 -##觊 -##觎 -##觐 -##觑 -##角 -##觞 -##解 -##觥 -##触 -##觸 -##言 -##訂 -##計 -##訊 -##討 -##訓 -##訕 -##訖 -##託 -##記 -##訛 -##訝 -##訟 -##訣 -##訥 -##訪 -##設 -##許 -##訳 -##訴 -##訶 -##診 -##註 -##証 -##詆 -##詐 -##詔 -##評 -##詛 -##詞 -##詠 -##詡 -##詢 -##詣 -##試 -##詩 -##詫 -##詬 -##詭 -##詮 -##詰 -##話 -##該 -##詳 -##詹 -##詼 -##誅 -##誇 -##誉 -##誌 -##認 -##誓 -##誕 -##誘 -##語 -##誠 -##誡 -##誣 -##誤 -##誥 -##誦 -##誨 -##說 -##説 -##読 -##誰 -##課 -##誹 -##誼 -##調 -##諄 -##談 -##請 -##諏 -##諒 -##論 -##諗 -##諜 -##諡 -##諦 -##諧 -##諫 -##諭 -##諮 -##諱 -##諳 -##諷 -##諸 -##諺 -##諾 -##謀 -##謁 -##謂 -##謄 -##謊 -##謎 -##謐 -##謔 -##謗 -##謙 -##講 -##謝 -##謠 -##謨 -##謬 -##謹 -##謾 -##譁 -##證 -##譎 -##譏 -##識 -##譙 -##譚 -##譜 -##警 -##譬 -##譯 -##議 -##譲 -##譴 -##護 -##譽 -##讀 -##變 -##讓 -##讚 -##讞 -##计 -##订 -##认 -##讥 -##讧 -##讨 -##让 -##讪 -##讫 -##训 -##议 -##讯 -##记 -##讲 -##讳 -##讴 -##讶 -##讷 -##许 -##讹 -##论 -##讼 -##讽 -##设 -##访 -##诀 -##证 -##诃 -##评 -##诅 -##识 -##诈 -##诉 -##诊 -##诋 -##词 -##诏 -##译 -##试 -##诗 -##诘 -##诙 -##诚 -##诛 -##话 -##诞 -##诟 -##诠 -##诡 -##询 -##诣 -##诤 -##该 -##详 -##诧 -##诩 -##诫 -##诬 -##语 -##误 -##诰 -##诱 -##诲 -##说 -##诵 -##诶 -##请 -##诸 -##诺 -##读 -##诽 -##课 -##诿 -##谀 -##谁 -##调 -##谄 -##谅 -##谆 -##谈 -##谊 -##谋 -##谌 -##谍 -##谎 -##谏 -##谐 -##谑 -##谒 -##谓 -##谔 -##谕 -##谗 -##谘 -##谙 -##谚 -##谛 -##谜 -##谟 -##谢 -##谣 -##谤 -##谥 -##谦 -##谧 -##谨 -##谩 -##谪 -##谬 -##谭 -##谯 -##谱 -##谲 -##谴 -##谶 -##谷 -##豁 -##豆 -##豇 -##豈 -##豉 -##豊 -##豌 -##豎 -##豐 -##豔 -##豚 -##象 -##豢 -##豪 -##豫 -##豬 -##豹 -##豺 -##貂 -##貅 -##貌 -##貓 -##貔 -##貘 -##貝 -##貞 -##負 -##財 -##貢 -##貧 -##貨 -##販 -##貪 -##貫 -##責 -##貯 -##貰 -##貳 -##貴 -##貶 -##買 -##貸 -##費 -##貼 -##貽 -##貿 -##賀 -##賁 -##賂 -##賃 -##賄 -##資 -##賈 -##賊 -##賑 -##賓 -##賜 -##賞 -##賠 -##賡 -##賢 -##賣 -##賤 -##賦 -##質 -##賬 -##賭 -##賴 -##賺 -##購 -##賽 -##贅 -##贈 -##贊 -##贍 -##贏 -##贓 -##贖 -##贛 -##贝 -##贞 -##负 -##贡 -##财 -##责 -##贤 -##败 -##账 -##货 -##质 -##贩 -##贪 -##贫 -##贬 -##购 -##贮 -##贯 -##贰 -##贱 -##贲 -##贴 -##贵 -##贷 -##贸 -##费 -##贺 -##贻 -##贼 -##贾 -##贿 -##赁 -##赂 -##赃 -##资 -##赅 -##赈 -##赊 -##赋 -##赌 -##赎 -##赏 -##赐 -##赓 -##赔 -##赖 -##赘 -##赚 -##赛 -##赝 -##赞 -##赠 -##赡 -##赢 -##赣 -##赤 -##赦 -##赧 -##赫 -##赭 -##走 -##赳 -##赴 -##赵 -##赶 -##起 -##趁 -##超 -##越 -##趋 -##趕 -##趙 -##趟 -##趣 -##趨 -##足 -##趴 -##趵 -##趸 -##趺 -##趾 -##跃 -##跄 -##跆 -##跋 -##跌 -##跎 -##跑 -##跖 -##跚 -##跛 -##距 -##跟 -##跡 -##跤 -##跨 -##跩 -##跪 -##路 -##跳 -##践 -##跷 -##跹 -##跺 -##跻 -##踉 -##踊 -##踌 -##踏 -##踐 -##踝 -##踞 -##踟 -##踢 -##踩 -##踪 -##踮 -##踱 -##踴 -##踵 -##踹 -##蹂 -##蹄 -##蹇 -##蹈 -##蹉 -##蹊 -##蹋 -##蹑 -##蹒 -##蹙 -##蹟 -##蹣 -##蹤 -##蹦 -##蹩 -##蹬 -##蹭 -##蹲 -##蹴 -##蹶 -##蹺 -##蹼 -##蹿 -##躁 -##躇 -##躉 -##躊 -##躋 -##躍 -##躏 -##躪 -##身 -##躬 -##躯 -##躲 -##躺 -##軀 -##車 -##軋 -##軌 -##軍 -##軒 -##軟 -##転 -##軸 -##軼 -##軽 -##軾 -##較 -##載 -##輒 -##輓 -##輔 -##輕 -##輛 -##輝 -##輟 -##輩 -##輪 -##輯 -##輸 -##輻 -##輾 -##輿 -##轄 -##轅 -##轆 -##轉 -##轍 -##轎 -##轟 -##车 -##轧 -##轨 -##轩 -##转 -##轭 -##轮 -##软 -##轰 -##轲 -##轴 -##轶 -##轻 -##轼 -##载 -##轿 -##较 -##辄 -##辅 -##辆 -##辇 -##辈 -##辉 -##辊 -##辍 -##辐 -##辑 -##输 -##辕 -##辖 -##辗 -##辘 -##辙 -##辛 -##辜 -##辞 -##辟 -##辣 -##辦 -##辨 -##辩 -##辫 -##辭 -##辮 -##辯 -##辰 -##辱 -##農 -##边 -##辺 -##辻 -##込 -##辽 -##达 -##迁 -##迂 -##迄 -##迅 -##过 -##迈 -##迎 -##运 -##近 -##返 -##还 -##这 -##进 -##远 -##违 -##连 -##迟 -##迢 -##迤 -##迥 -##迦 -##迩 -##迪 -##迫 -##迭 -##述 -##迴 -##迷 -##迸 -##迹 -##迺 -##追 -##退 -##送 -##适 -##逃 -##逅 -##逆 -##选 -##逊 -##逍 -##透 -##逐 -##递 -##途 -##逕 -##逗 -##這 -##通 -##逛 -##逝 -##逞 -##速 -##造 -##逢 -##連 -##逮 -##週 -##進 -##逵 -##逶 -##逸 -##逻 -##逼 -##逾 -##遁 -##遂 -##遅 -##遇 -##遊 -##運 -##遍 -##過 -##遏 -##遐 -##遑 -##遒 -##道 -##達 -##違 -##遗 -##遙 -##遛 -##遜 -##遞 -##遠 -##遢 -##遣 -##遥 -##遨 -##適 -##遭 -##遮 -##遲 -##遴 -##遵 -##遶 -##遷 -##選 -##遺 -##遼 -##遽 -##避 -##邀 -##邁 -##邂 -##邃 -##還 -##邇 -##邈 -##邊 -##邋 -##邏 -##邑 -##邓 -##邕 -##邛 -##邝 -##邢 -##那 -##邦 -##邨 -##邪 -##邬 -##邮 -##邯 -##邰 -##邱 -##邳 -##邵 -##邸 -##邹 -##邺 -##邻 -##郁 -##郅 -##郊 -##郎 -##郑 -##郜 -##郝 -##郡 -##郢 -##郤 -##郦 -##郧 -##部 -##郫 -##郭 -##郴 -##郵 -##郷 -##郸 -##都 -##鄂 -##鄉 -##鄒 -##鄔 -##鄙 -##鄞 -##鄢 -##鄧 -##鄭 -##鄰 -##鄱 -##鄲 -##鄺 -##酉 -##酊 -##酋 -##酌 -##配 -##酐 -##酒 -##酗 -##酚 -##酝 -##酢 -##酣 -##酥 -##酩 -##酪 -##酬 -##酮 -##酯 -##酰 -##酱 -##酵 -##酶 -##酷 -##酸 -##酿 -##醃 -##醇 -##醉 -##醋 -##醍 -##醐 -##醒 -##醚 -##醛 -##醜 -##醞 -##醣 -##醪 -##醫 -##醬 -##醮 -##醯 -##醴 -##醺 -##釀 -##釁 -##采 -##釉 -##释 -##釋 -##里 -##重 -##野 -##量 -##釐 -##金 -##釗 -##釘 -##釜 -##針 -##釣 -##釦 -##釧 -##釵 -##鈀 -##鈉 -##鈍 -##鈎 -##鈔 -##鈕 -##鈞 -##鈣 -##鈦 -##鈪 -##鈴 -##鈺 -##鈾 -##鉀 -##鉄 -##鉅 -##鉉 -##鉑 -##鉗 -##鉚 -##鉛 -##鉤 -##鉴 -##鉻 -##銀 -##銃 -##銅 -##銑 -##銓 -##銖 -##銘 -##銜 -##銬 -##銭 -##銮 -##銳 -##銷 -##銹 -##鋁 -##鋅 -##鋒 -##鋤 -##鋪 -##鋰 -##鋸 -##鋼 -##錄 -##錐 -##錘 -##錚 -##錠 -##錢 -##錦 -##錨 -##錫 -##錮 -##錯 -##録 -##錳 -##錶 -##鍊 -##鍋 -##鍍 -##鍛 -##鍥 -##鍰 -##鍵 -##鍺 -##鍾 -##鎂 -##鎊 -##鎌 -##鎏 -##鎔 -##鎖 -##鎗 -##鎚 -##鎧 -##鎬 -##鎮 -##鎳 -##鏈 -##鏖 -##鏗 -##鏘 -##鏞 -##鏟 -##鏡 -##鏢 -##鏤 -##鏽 -##鐘 -##鐮 -##鐲 -##鐳 -##鐵 -##鐸 -##鐺 -##鑄 -##鑊 -##鑑 -##鑒 -##鑣 -##鑫 -##鑰 -##鑲 -##鑼 -##鑽 -##鑾 -##鑿 -##针 -##钉 -##钊 -##钎 -##钏 -##钒 -##钓 -##钗 -##钙 -##钛 -##钜 -##钝 -##钞 -##钟 -##钠 -##钡 -##钢 -##钣 -##钤 -##钥 -##钦 -##钧 -##钨 -##钩 -##钮 -##钯 -##钰 -##钱 -##钳 -##钴 -##钵 -##钺 -##钻 -##钼 -##钾 -##钿 -##铀 -##铁 -##铂 -##铃 -##铄 -##铅 -##铆 -##铉 -##铎 -##铐 -##铛 -##铜 -##铝 -##铠 -##铡 -##铢 -##铣 -##铤 -##铨 -##铩 -##铬 -##铭 -##铮 -##铰 -##铲 -##铵 -##银 -##铸 -##铺 -##链 -##铿 -##销 -##锁 -##锂 -##锄 -##锅 -##锆 -##锈 -##锉 -##锋 -##锌 -##锏 -##锐 -##锑 -##错 -##锚 -##锟 -##锡 -##锢 -##锣 -##锤 -##锥 -##锦 -##锭 -##键 -##锯 -##锰 -##锲 -##锵 -##锹 -##锺 -##锻 -##镀 -##镁 -##镂 -##镇 -##镉 -##镌 -##镍 -##镐 -##镑 -##镕 -##镖 -##镗 -##镛 -##镜 -##镣 -##镭 -##镯 -##镰 -##镳 -##镶 -##長 -##长 -##門 -##閃 -##閉 -##開 -##閎 -##閏 -##閑 -##閒 -##間 -##閔 -##閘 -##閡 -##関 -##閣 -##閥 -##閨 -##閩 -##閱 -##閲 -##閹 -##閻 -##閾 -##闆 -##闇 -##闊 -##闌 -##闍 -##闔 -##闕 -##闖 -##闘 -##關 -##闡 -##闢 -##门 -##闪 -##闫 -##闭 -##问 -##闯 -##闰 -##闲 -##间 -##闵 -##闷 -##闸 -##闹 -##闺 -##闻 -##闽 -##闾 -##阀 -##阁 -##阂 -##阅 -##阆 -##阇 -##阈 -##阉 -##阎 -##阐 -##阑 -##阔 -##阕 -##阖 -##阙 -##阚 -##阜 -##队 -##阡 -##阪 -##阮 -##阱 -##防 -##阳 -##阴 -##阵 -##阶 -##阻 -##阿 -##陀 -##陂 -##附 -##际 -##陆 -##陇 -##陈 -##陋 -##陌 -##降 -##限 -##陕 -##陛 -##陝 -##陞 -##陟 -##陡 -##院 -##陣 -##除 -##陨 -##险 -##陪 -##陰 -##陲 -##陳 -##陵 -##陶 -##陷 -##陸 -##険 -##陽 -##隅 -##隆 -##隈 -##隊 -##隋 -##隍 -##階 -##随 -##隐 -##隔 -##隕 -##隘 -##隙 -##際 -##障 -##隠 -##隣 -##隧 -##隨 -##險 -##隱 -##隴 -##隶 -##隸 -##隻 -##隼 -##隽 -##难 -##雀 -##雁 -##雄 -##雅 -##集 -##雇 -##雉 -##雋 -##雌 -##雍 -##雎 -##雏 -##雑 -##雒 -##雕 -##雖 -##雙 -##雛 -##雜 -##雞 -##離 -##難 -##雨 -##雪 -##雯 -##雰 -##雲 -##雳 -##零 -##雷 -##雹 -##電 -##雾 -##需 -##霁 -##霄 -##霆 -##震 -##霈 -##霉 -##霊 -##霍 -##霎 -##霏 -##霑 -##霓 -##霖 -##霜 -##霞 -##霧 -##霭 -##霰 -##露 -##霸 -##霹 -##霽 -##霾 -##靂 -##靄 -##靈 -##青 -##靓 -##靖 -##静 -##靚 -##靛 -##靜 -##非 -##靠 -##靡 -##面 -##靥 -##靦 -##革 -##靳 -##靴 -##靶 -##靼 -##鞅 -##鞋 -##鞍 -##鞏 -##鞑 -##鞘 -##鞠 -##鞣 -##鞦 -##鞭 -##韆 -##韋 -##韌 -##韓 -##韜 -##韦 -##韧 -##韩 -##韬 -##韭 -##音 -##韵 -##韶 -##韻 -##響 -##頁 -##頂 -##頃 -##項 -##順 -##須 -##頌 -##預 -##頑 -##頒 -##頓 -##頗 -##領 -##頜 -##頡 -##頤 -##頫 -##頭 -##頰 -##頷 -##頸 -##頹 -##頻 -##頼 -##顆 -##題 -##額 -##顎 -##顏 -##顔 -##願 -##顛 -##類 -##顧 -##顫 -##顯 -##顱 -##顴 -##页 -##顶 -##顷 -##项 -##顺 -##须 -##顼 -##顽 -##顾 -##顿 -##颁 -##颂 -##预 -##颅 -##领 -##颇 -##颈 -##颉 -##颊 -##颌 -##颍 -##颐 -##频 -##颓 -##颔 -##颖 -##颗 -##题 -##颚 -##颛 -##颜 -##额 -##颞 -##颠 -##颡 -##颢 -##颤 -##颦 -##颧 -##風 -##颯 -##颱 -##颳 -##颶 -##颼 -##飄 -##飆 -##风 -##飒 -##飓 -##飕 -##飘 -##飙 -##飚 -##飛 -##飞 -##食 -##飢 -##飨 -##飩 -##飪 -##飯 -##飲 -##飼 -##飽 -##飾 -##餃 -##餅 -##餉 -##養 -##餌 -##餐 -##餒 -##餓 -##餘 -##餚 -##餛 -##餞 -##餡 -##館 -##餮 -##餵 -##餾 -##饅 -##饈 -##饋 -##饌 -##饍 -##饑 -##饒 -##饕 -##饗 -##饞 -##饥 -##饨 -##饪 -##饬 -##饭 -##饮 -##饯 -##饰 -##饱 -##饲 -##饴 -##饵 -##饶 -##饷 -##饺 -##饼 -##饽 -##饿 -##馀 -##馁 -##馄 -##馅 -##馆 -##馈 -##馋 -##馍 -##馏 -##馒 -##馔 -##首 -##馗 -##香 -##馥 -##馨 -##馬 -##馭 -##馮 -##馳 -##馴 -##駁 -##駄 -##駅 -##駆 -##駐 -##駒 -##駕 -##駛 -##駝 -##駭 -##駱 -##駿 -##騁 -##騎 -##騏 -##験 -##騙 -##騨 -##騰 -##騷 -##驀 -##驅 -##驊 -##驍 -##驒 -##驕 -##驗 -##驚 -##驛 -##驟 -##驢 -##驥 -##马 -##驭 -##驮 -##驯 -##驰 -##驱 -##驳 -##驴 -##驶 -##驷 -##驸 -##驹 -##驻 -##驼 -##驾 -##驿 -##骁 -##骂 -##骄 -##骅 -##骆 -##骇 -##骈 -##骊 -##骋 -##验 -##骏 -##骐 -##骑 -##骗 -##骚 -##骛 -##骜 -##骞 -##骠 -##骡 -##骤 -##骥 -##骧 -##骨 -##骯 -##骰 -##骶 -##骷 -##骸 -##骼 -##髂 -##髅 -##髋 -##髏 -##髒 -##髓 -##體 -##髖 -##高 -##髦 -##髪 -##髮 -##髯 -##髻 -##鬃 -##鬆 -##鬍 -##鬓 -##鬚 -##鬟 -##鬢 -##鬣 -##鬥 -##鬧 -##鬱 -##鬼 -##魁 -##魂 -##魄 -##魅 -##魇 -##魍 -##魏 -##魔 -##魘 -##魚 -##魯 -##魷 -##鮑 -##鮨 -##鮪 -##鮭 -##鮮 -##鯉 -##鯊 -##鯖 -##鯛 -##鯨 -##鯰 -##鯽 -##鰍 -##鰓 -##鰭 -##鰲 -##鰻 -##鰾 -##鱈 -##鱉 -##鱔 -##鱗 -##鱷 -##鱸 -##鱼 -##鱿 -##鲁 -##鲈 -##鲍 -##鲑 -##鲛 -##鲜 -##鲟 -##鲢 -##鲤 -##鲨 -##鲫 -##鲱 -##鲲 -##鲶 -##鲷 -##鲸 -##鳃 -##鳄 -##鳅 -##鳌 -##鳍 -##鳕 -##鳖 -##鳗 -##鳝 -##鳞 -##鳥 -##鳩 -##鳳 -##鳴 -##鳶 -##鴉 -##鴕 -##鴛 -##鴦 -##鴨 -##鴻 -##鴿 -##鵑 -##鵜 -##鵝 -##鵡 -##鵬 -##鵰 -##鵲 -##鶘 -##鶩 -##鶯 -##鶴 -##鷗 -##鷲 -##鷹 -##鷺 -##鸚 -##鸞 -##鸟 -##鸠 -##鸡 -##鸢 -##鸣 -##鸥 -##鸦 -##鸨 -##鸪 -##鸭 -##鸯 -##鸳 -##鸵 -##鸽 -##鸾 -##鸿 -##鹂 -##鹃 -##鹄 -##鹅 -##鹈 -##鹉 -##鹊 -##鹌 -##鹏 -##鹑 -##鹕 -##鹘 -##鹜 -##鹞 -##鹤 -##鹦 -##鹧 -##鹫 -##鹭 -##鹰 -##鹳 -##鹵 -##鹹 -##鹼 -##鹽 -##鹿 -##麂 -##麋 -##麒 -##麓 -##麗 -##麝 -##麟 -##麥 -##麦 -##麩 -##麴 -##麵 -##麸 -##麺 -##麻 -##麼 -##麽 -##麾 -##黃 -##黄 -##黍 -##黎 -##黏 -##黑 -##黒 -##黔 -##默 -##黛 -##黜 -##黝 -##點 -##黠 -##黨 -##黯 -##黴 -##鼋 -##鼎 -##鼐 -##鼓 -##鼠 -##鼬 -##鼹 -##鼻 -##鼾 -##齁 -##齊 -##齋 -##齐 -##齒 -##齡 -##齢 -##齣 -##齦 -##齿 -##龄 -##龅 -##龈 -##龊 -##龋 -##龌 -##龍 -##龐 -##龔 -##龕 -##龙 -##龚 -##龛 -##龜 -##龟 -##︰ -##︱ -##︶ -##︿ -##﹁ -##﹂ -##﹍ -##﹏ -##﹐ -##﹑ -##﹒ -##﹔ -##﹕ -##﹖ -##﹗ -##﹙ -##﹚ -##﹝ -##﹞ -##﹡ -##﹣ -##! -##" -### -##$ -##% -##& -##' -##( -##) -##* -##, -##- -##. -##/ -##: -##; -##< -##? -##@ -##[ -##\ -##] -##^ -##_ -##` -##f -##h -##j -##u -##w -##z -##{ -##} -##。 -##「 -##」 -##、 -##・ -##ッ -##ー -##イ -##ク -##シ -##ス -##ト -##ノ -##フ -##ラ -##ル -##ン -##゙ -##゚ -## ̄ -##¥ -##👍 -##🔥 -##😂 -##😎 diff --git a/TensorFlow/built-in/recommendation/DIEN_ID0109_for_TensorFlow/script/model.py b/TensorFlow/built-in/recommendation/DIEN_ID0109_for_TensorFlow/script/model.py index f1ce1624351d27b8268344d25e812f9be01700f3..6a1d9fea62436f6707c2f2a5343b8d5054fc5d74 100644 --- a/TensorFlow/built-in/recommendation/DIEN_ID0109_for_TensorFlow/script/model.py +++ b/TensorFlow/built-in/recommendation/DIEN_ID0109_for_TensorFlow/script/model.py @@ -111,7 +111,10 @@ class Model(object): if self.use_negsampling: self.loss += self.aux_loss tf.summary.scalar('loss', self.loss) - self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr).minimize(self.loss) + self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) + loss_scale_manager = ExponentialUpdateLossScaleManager(init_loss_scale=2**32, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, decr_ratio=0.5) + self.optimizer = NPULossScaleOptimizer(self.optimizer, loss_scale_manager) + self.optimizer = self.optimizer.minimize(self.loss) # Accuracy metric self.accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(self.y_hat), self.target_ph), tf.float32)) diff --git a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/script/train.py b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/script/train.py index b2cc74f593dc4b65adc90774015b560aea69b212..1bdcadb6c0e4ca909200451ebe002e3d3e2951a2 100644 --- a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/script/train.py +++ b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/script/train.py @@ -200,7 +200,6 @@ def train( uids, mids, cats, mid_his, cat_his, mid_mask, target, sl, noclk_mids, noclk_cats = prepare_data(src, tgt, maxlen, return_neg=True) loss, acc, aux_loss = model.train(sess, [uids, mids, cats, mid_his, cat_his, mid_mask, target, sl, lr, noclk_mids, noclk_cats]) end_time = time.time() - print("step_time:", end_time - start_time) # tf.io.write_graph(sess.graph_def, '/data1/d00564369/dien-npu', 'train_graph.pbtxt') loss_sum += loss accuracy_sum += acc @@ -213,7 +212,6 @@ def train( avg_examples_per_second = batch_size/(end_time - start_time) print("avg_time_per_step: ", avg_time_per_step) print("avg_examples_per_second: ", avg_examples_per_second) - print("step_time:", end_time - start_time) print('[epoch: %d, iter: %d] ----> train_loss: %.4f ---- train_accuracy: %.4f ---- train_aux_loss: %.4f' % \ (itr, iter, loss_sum / test_iter, accuracy_sum / test_iter, aux_loss_sum / test_iter)) diff --git a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_full_1p.sh index ecbd254578c47a73f2f127a173e509ffad884af4..81b63f390314053587c00bb31270fd67647b31b6 100644 --- a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_full_1p.sh @@ -125,13 +125,12 @@ e2e_time=$(( $end_time - $start_time )) #结果打印,不需要修改 echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 -Time=`grep perf $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $14}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'}'` +FPS=`grep avg_examples_per_second $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F ":" 'END{print $2}'|sed s/[[:space:]]//g` #打印,不需要修改 echo "Final Performance item/sec : $FPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep "train_accuracy" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +train_accuracy=`grep "train_accuracy" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "train_accuracy:" 'END{print $2}' | awk -F ' ' '{print $1}' |sed s/[[:space:]]//g` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" @@ -149,7 +148,7 @@ ActualFPS=${FPS} TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep train_loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print $5}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep "train_loss" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "train_loss:" '{print $2}' | awk -F ' ' '{print $1}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` diff --git a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_performance_1p.sh index c9355df632285401a50ef3dcf58b08874b6f678f..bfc9a75e275ec7849269e3a67f98497511b6b9e4 100644 --- a/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/built-in/recommendation/DIEN_ID3065_for_TensorFlow/test/train_performance_1p.sh @@ -128,13 +128,12 @@ sed -i "s|break|pass|g" train.py #结果打印,不需要修改 echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 -Time=`grep perf $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $14}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'}'` +FPS=`grep avg_examples_per_second $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F ":" 'END{print $2}' |sed s/[[:space:]]//g` #打印,不需要修改 echo "Final Performance item/sec : $FPS" #输出训练精度,需要模型审视修改 -train_accuracy=`grep "train_accuracy" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +train_accuracy=`grep "train_accuracy" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "train_accuracy:" 'END{print $2}' | awk -F ' ' '{print $1}'|sed s/[[:space:]]//g` #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" @@ -152,46 +151,20 @@ ActualFPS=${FPS} TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep train_loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print $5}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +grep "train_loss" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "train_loss:" '{print $2}' | awk -F ' ' '{print $1}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` #关键信息打印到${CaseName}.log中,不需要修改 -#echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log - -##获取错误信息 -#系统错误信息 -error_msg="cannot import name 'DynamicAUGRU' from 'npu_bridge.estimator.npu.npu_dynamic_rnn'" -#判断错误信息是否和历史状态一致,此处无需修改 -Status=`grep "${error_msg}" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | wc -l` -#失败阶段,枚举值图准备FAIL/图拆分FAIL/图优化FAIL/图编译FAIL/图执行FAIL/流程OK -ModelStatus="图执行FAIL" -#DTS单号或者issue链接 -DTS_Number="AR0001TRFQ Florence V100R001C25_SF_02_020_SR_0800_AR_0001 -AR0001TRFR Florence V100R001C25_SF_02_020_SR_0800_AR_0002 -AR0001TRFS Florence V100R001C25_SF_02_020_SR_0800_AR_0003 -AR0001TRFT Florence V100R001C25_SF_02_020_SR_0801_AR_0001 -AR0001TRFU Florence V100R001C25_SF_02_020_SR_0801_AR_0002" - -#关键信息打印到CaseName.log中,此处无需修改 echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RankSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ModelStatus = ${ModelStatus}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DTS_Number = ${DTS_Number}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "Status = ${Status}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "error_msg = ${error_msg}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file + diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/rnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/rnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/rnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/rnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/rnn_v2.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/rnn_v2.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/rnn_v2.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/rnn_v2.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/utils.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/utils.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/contrib/utils.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/contrib/utils.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/feature_column.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/feature_column.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/feature_column.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/feature_column.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/inputs.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/inputs.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/inputs.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/inputs.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/afm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/afm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/afm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/afm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/autoint.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/autoint.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/autoint.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/autoint.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/ccpm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/ccpm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/ccpm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/ccpm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/dcn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/dcn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/dcn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/dcn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/deepfefm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/deepfefm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/deepfefm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/deepfefm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/deepfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/deepfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/deepfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/deepfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fibinet.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fibinet.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fibinet.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fibinet.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fwfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fwfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/fwfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/fwfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/nfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/nfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/nfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/nfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/pnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/pnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/pnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/pnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/wdl.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/wdl.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/wdl.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/wdl.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/xdeepfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/xdeepfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/models/xdeepfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/models/xdeepfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/utils.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/utils.py similarity index 98% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/utils.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/utils.py index 187354dd58ea20dc10819c825b047677dd920aab..639622f731b9f80c3b9e6922ae1e0c75bcab62a7 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/estimator/utils.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/estimator/utils.py @@ -138,12 +138,13 @@ class Head(_Head): training_loss = loss + reg_loss eval_metric_ops = self._eval_metric_ops(labels, logits, pred, unweighted_loss) - + training_Hook=tf.train.LoggingTensorHook({"loss":training_loss}, every_n_iter=1) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=training_loss, train_op=train_op_fn(training_loss), + training_hooks=[training_Hook], eval_metric_ops=eval_metric_ops, training_chief_hooks=training_chief_hooks) diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/feature_column.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/feature_column.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/feature_column.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/feature_column.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/inputs.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/inputs.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/inputs.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/inputs.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/activation.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/activation.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/activation.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/activation.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/core.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/core.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/core.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/core.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/interaction.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/interaction.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/interaction.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/interaction.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/normalization.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/normalization.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/normalization.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/normalization.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/sequence.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/sequence.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/sequence.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/sequence.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/utils.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/utils.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/layers/utils.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/layers/utils.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/afm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/afm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/afm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/afm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/autoint.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/autoint.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/autoint.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/autoint.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/ccpm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/ccpm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/ccpm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/ccpm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/dcn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/dcn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/dcn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/dcn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/dcnmix.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/dcnmix.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/dcnmix.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/dcnmix.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/deepfefm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/deepfefm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/deepfefm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/deepfefm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/deepfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/deepfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/deepfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/deepfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/difm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/difm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/difm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/difm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fgcnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fgcnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fgcnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fgcnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fibinet.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fibinet.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fibinet.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fibinet.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/flen.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/flen.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/flen.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/flen.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fwfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fwfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/fwfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/fwfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/ifm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/ifm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/ifm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/ifm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/mlr.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/mlr.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/mlr.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/mlr.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/esmm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/esmm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/esmm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/esmm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/mmoe.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/mmoe.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/mmoe.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/mmoe.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/ple.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/ple.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/ple.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/ple.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/sharedbottom.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/sharedbottom.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/multitask/sharedbottom.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/multitask/sharedbottom.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/nfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/nfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/nfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/nfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/onn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/onn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/onn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/onn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/pnn.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/pnn.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/pnn.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/pnn.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/__init__.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/__init__.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/__init__.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/__init__.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/bst.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/bst.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/bst.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/bst.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/dien.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/dien.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/dien.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/dien.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/din.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/din.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/din.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/din.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/dsin.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/dsin.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/sequence/dsin.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/sequence/dsin.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/wdl.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/wdl.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/wdl.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/wdl.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/xdeepfm.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/xdeepfm.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/models/xdeepfm.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/models/xdeepfm.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/utils.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/utils.py similarity index 100% rename from TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/deepctr/utils.py rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/deepctr/utils.py diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/movielens_sample.txt b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/movielens_sample.txt deleted file mode 100644 index 9ffa14824b834e57a9aed7e616a2a3fc8785c734..0000000000000000000000000000000000000000 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/movielens_sample.txt +++ /dev/null @@ -1,201 +0,0 @@ -user_id,movie_id,rating,timestamp,title,genres,gender,age,occupation,zip -3299,235,4,968035345,Ed Wood (1994),Comedy|Drama,F,25,4,19119 -3630,3256,3,966536874,Patriot Games (1992),Action|Thriller,M,18,4,77005 -517,105,4,976203603,"Bridges of Madison County, The (1995)",Drama|Romance,F,25,14,55408 -785,2115,3,975430389,Indiana Jones and the Temple of Doom (1984),Action|Adventure,M,18,19,29307 -5848,909,5,957782527,"Apartment, The (1960)",Comedy|Drama,M,50,20,20009 -2996,2799,1,972769867,Problem Child 2 (1991),Comedy,M,18,0,63011 -3087,837,5,969738869,Matilda (1996),Children's|Comedy,F,1,1,90802 -872,3092,5,975273310,Chushingura (1962),Drama,M,50,1,20815 -4094,529,5,966223349,Searching for Bobby Fischer (1993),Drama,M,25,17,49017 -1868,3508,3,974694703,"Outlaw Josey Wales, The (1976)",Western,M,50,11,92346 -2913,1387,5,971769808,Jaws (1975),Action|Horror,F,35,20,98119 -380,3481,5,976316283,High Fidelity (2000),Comedy,M,25,2,92024 -2073,1784,5,974759084,As Good As It Gets (1997),Comedy|Drama,F,18,4,13148 -80,2059,3,977788576,"Parent Trap, The (1998)",Children's|Drama,M,56,1,49327 -3679,2557,1,976298130,I Stand Alone (Seul contre tous) (1998),Drama,M,25,4,68108 -2077,788,3,980013556,"Nutty Professor, The (1996)",Comedy|Fantasy|Romance|Sci-Fi,M,18,0,55112 -6036,2085,4,956716684,101 Dalmatians (1961),Animation|Children's,F,25,15,32603 -3675,532,3,966363610,Serial Mom (1994),Comedy|Crime|Horror,M,35,7,06680 -4566,3683,4,964489599,Blood Simple (1984),Drama|Film-Noir,M,35,17,19473 -2996,3763,3,972413564,F/X (1986),Action|Crime|Thriller,M,18,0,63011 -5831,2458,1,957898337,Armed and Dangerous (1986),Comedy|Crime,M,25,1,92120 -1869,1244,2,974695654,Manhattan (1979),Comedy|Drama|Romance,M,45,14,95148 -5389,2657,3,960328279,"Rocky Horror Picture Show, The (1975)",Comedy|Horror|Musical|Sci-Fi,M,45,7,01905 -1391,1535,3,974851275,Love! Valour! Compassion! (1997),Drama|Romance,M,35,15,20723 -3123,2407,3,969324381,Cocoon (1985),Comedy|Sci-Fi,M,25,2,90401 -4694,159,3,963602574,Clockers (1995),Drama,M,56,7,40505 -1680,1988,3,974709821,Hello Mary Lou: Prom Night II (1987),Horror,M,25,20,95380 -2002,1945,4,974677761,On the Waterfront (1954),Crime|Drama,F,56,13,02136-1522 -3430,2690,4,979949863,"Ideal Husband, An (1999)",Comedy,F,45,1,15208 -425,471,4,976284972,"Hudsucker Proxy, The (1994)",Comedy|Romance,M,25,12,55303 -1841,2289,2,974699637,"Player, The (1992)",Comedy|Drama,M,18,0,95037 -4964,2348,4,962619587,Sid and Nancy (1986),Drama,M,35,0,94110 -4520,2160,4,964883648,Rosemary's Baby (1968),Horror|Thriller,M,25,4,45810 -1265,2396,4,1011716691,Shakespeare in Love (1998),Comedy|Romance,F,18,20,49321 -2496,1278,5,974435324,Young Frankenstein (1974),Comedy|Horror,M,50,1,37932 -5511,2174,4,959787754,Beetlejuice (1988),Comedy|Fantasy,M,45,1,92407 -621,833,1,975799925,High School High (1996),Comedy,M,18,4,93560 -3045,2762,5,970189524,"Sixth Sense, The (1999)",Thriller,M,45,1,90631 -2050,2546,4,975522689,"Deep End of the Ocean, The (1999)",Drama,F,35,3,99504 -613,32,4,975812238,Twelve Monkeys (1995),Drama|Sci-Fi,M,35,20,10562 -366,1077,5,978471241,Sleeper (1973),Comedy|Sci-Fi,M,50,15,55126 -5108,367,4,962338215,"Mask, The (1994)",Comedy|Crime|Fantasy,F,25,9,93940 -4502,1960,4,965094644,"Last Emperor, The (1987)",Drama|War,M,50,0,01379 -5512,1801,5,959713840,"Man in the Iron Mask, The (1998)",Action|Drama|Romance,F,25,17,01701 -1861,2642,2,974699627,Superman III (1983),Action|Adventure|Sci-Fi,M,50,16,92129 -1667,1240,4,975016698,"Terminator, The (1984)",Action|Sci-Fi|Thriller,M,50,16,98516 -753,434,3,975460449,Cliffhanger (1993),Action|Adventure|Crime,M,1,10,42754 -1836,2736,5,974826228,Brighton Beach Memoirs (1986),Comedy,M,25,0,10016 -5626,474,5,959052158,In the Line of Fire (1993),Action|Thriller,M,56,16,32043 -1601,1396,4,978576948,Sneakers (1992),Crime|Drama|Sci-Fi,M,25,12,83001 -4725,1100,4,963369546,Days of Thunder (1990),Action|Romance,M,35,5,96707-1321 -2837,2396,5,972571456,Shakespeare in Love (1998),Comedy|Romance,M,18,0,49506 -1776,3882,4,1001558470,Bring It On (2000),Comedy,M,25,0,45801 -2820,457,2,972662398,"Fugitive, The (1993)",Action|Thriller,F,35,0,02138 -1834,2288,3,1038179198,"Thing, The (1982)",Action|Horror|Sci-Fi|Thriller,M,35,5,10990 -284,2716,4,976570902,Ghostbusters (1984),Comedy|Horror,M,25,12,91910 -2744,588,1,973215985,Aladdin (1992),Animation|Children's|Comedy|Musical,M,18,17,53818 -881,4,2,975264028,Waiting to Exhale (1995),Comedy|Drama,M,18,14,76401 -2211,916,3,974607067,Roman Holiday (1953),Comedy|Romance,M,45,6,01950 -2271,2671,4,1007158806,Notting Hill (1999),Comedy|Romance,M,50,14,13210 -1010,2953,1,975222613,Home Alone 2: Lost in New York (1992),Children's|Comedy,M,25,0,10310 -1589,2594,4,974735454,Open Your Eyes (Abre los ojos) (1997),Drama|Romance|Sci-Fi,M,25,0,95136 -1724,597,5,976441106,Pretty Woman (1990),Comedy|Romance,M,18,4,00961 -2590,2097,3,973840056,Something Wicked This Way Comes (1983),Children's|Horror,M,18,4,94044 -1717,1352,3,1009256707,Albino Alligator (1996),Crime|Thriller,F,50,6,30307 -1391,3160,2,974850796,Magnolia (1999),Drama,M,35,15,20723 -1941,1263,3,974954220,"Deer Hunter, The (1978)",Drama|War,M,35,17,94550 -3526,2867,4,966906064,Fright Night (1985),Comedy|Horror,M,35,2,62263-3004 -5767,198,3,958192148,Strange Days (1995),Action|Crime|Sci-Fi,M,25,2,75287 -5355,590,4,960596927,Dances with Wolves (1990),Adventure|Drama|Western,M,56,0,78232 -5788,156,4,958108785,Blue in the Face (1995),Comedy,M,25,0,92646 -1078,1307,4,974938851,When Harry Met Sally... (1989),Comedy|Romance,F,45,9,95661 -3808,61,2,965973222,Eye for an Eye (1996),Drama|Thriller,M,25,7,60010 -974,3897,4,975106398,Almost Famous (2000),Comedy|Drama,M,35,19,94930 -5153,1290,4,961972292,Some Kind of Wonderful (1987),Drama|Romance,M,25,7,60046 -5732,2115,3,958434069,Indiana Jones and the Temple of Doom (1984),Action|Adventure,F,25,11,02111 -4627,2478,3,964110136,Three Amigos! (1986),Comedy|Western,M,56,1,45224 -1884,1831,2,975648062,Lost in Space (1998),Action|Sci-Fi|Thriller,M,45,20,93108 -4284,517,4,965277546,Rising Sun (1993),Action|Drama|Mystery,M,50,7,40601 -1383,468,2,975979732,"Englishman Who Went Up a Hill, But Came Down a Mountain, The (1995)",Comedy|Romance,F,25,7,19806 -2230,2873,3,974599097,Lulu on the Bridge (1998),Drama|Mystery|Romance,F,45,1,60302 -2533,2266,4,974055724,"Butcher's Wife, The (1991)",Comedy|Romance,F,25,3,49423 -6040,3224,5,956716750,Woman in the Dunes (Suna no onna) (1964),Drama,M,25,6,11106 -4384,2918,5,965171739,Ferris Bueller's Day Off (1986),Comedy,M,25,0,43623 -5156,3688,3,961946487,Porky's (1981),Comedy,M,18,14,10024 -615,296,3,975805801,Pulp Fiction (1994),Crime|Drama,M,50,17,32951 -2753,3045,3,973198964,Peter's Friends (1992),Comedy|Drama,F,50,20,27516 -2438,1125,5,974259943,"Return of the Pink Panther, The (1974)",Comedy,M,35,1,22903 -5746,1242,4,958354460,Glory (1989),Action|Drama|War,M,18,15,94061 -5157,3462,5,961944604,Modern Times (1936),Comedy,M,35,1,74012 -3402,1252,5,967433929,Chinatown (1974),Film-Noir|Mystery|Thriller,M,35,20,30306 -76,593,5,977847255,"Silence of the Lambs, The (1991)",Drama|Thriller,M,35,7,55413 -2067,1019,3,974658834,"20,000 Leagues Under the Sea (1954)",Adventure|Children's|Fantasy|Sci-Fi,M,50,16,06430 -2181,2020,3,979353437,Dangerous Liaisons (1988),Drama|Romance,M,25,0,45245 -3947,593,5,965691680,"Silence of the Lambs, The (1991)",Drama|Thriller,M,25,0,90019 -546,218,4,976069421,Boys on the Side (1995),Comedy|Drama,F,25,0,37211 -1246,3030,5,1032056405,Yojimbo (1961),Comedy|Drama|Western,M,18,4,98225 -4214,3186,5,965319143,"Girl, Interrupted (1999)",Drama,F,25,0,20121 -2841,680,3,982805796,Alphaville (1965),Sci-Fi,M,50,12,98056 -4205,3175,4,965321085,Galaxy Quest (1999),Adventure|Comedy|Sci-Fi,F,25,15,87801 -1120,1097,4,974911354,E.T. the Extra-Terrestrial (1982),Children's|Drama|Fantasy|Sci-Fi,M,18,4,95616 -5371,3194,3,960481000,"Way We Were, The (1973)",Drama,M,25,11,55408 -2695,1278,5,973310827,Young Frankenstein (1974),Comedy|Horror,M,35,11,46033 -3312,520,2,976673070,Robin Hood: Men in Tights (1993),Comedy,F,18,4,90039 -5039,1792,1,962513044,U.S. Marshalls (1998),Action|Thriller,F,35,4,97068 -4655,2146,3,963903103,St. Elmo's Fire (1985),Drama|Romance,F,25,1,92037 -3558,1580,5,966802528,Men in Black (1997),Action|Adventure|Comedy|Sci-Fi,M,18,17,66044 -506,3354,1,976208080,Mission to Mars (2000),Sci-Fi,M,25,16,55103-1006 -3568,1230,3,966745594,Annie Hall (1977),Comedy|Romance,M,25,0,98503 -2943,1197,5,971319983,"Princess Bride, The (1987)",Action|Adventure|Comedy|Romance,M,35,12,95864 -716,737,3,982881364,Barb Wire (1996),Action|Sci-Fi,M,18,4,98188 -5964,454,3,956999469,"Firm, The (1993)",Drama|Thriller,M,18,5,97202 -4802,1208,4,996034747,Apocalypse Now (1979),Drama|War,M,56,1,40601 -1106,3624,4,974920622,Shanghai Noon (2000),Action,M,18,4,90241 -3410,2565,3,967419652,"King and I, The (1956)",Musical,M,35,1,20653 -1273,3095,5,974814536,"Grapes of Wrath, The (1940)",Drama,M,35,2,19123 -1706,1916,4,974709448,Buffalo 66 (1998),Action|Comedy|Drama,M,25,20,19134 -4889,590,5,962909224,Dances with Wolves (1990),Adventure|Drama|Western,M,18,4,63108 -4966,2100,3,962609782,Splash (1984),Comedy|Fantasy|Romance,M,50,14,55407 -4238,1884,4,965343416,Fear and Loathing in Las Vegas (1998),Comedy|Drama,M,35,16,44691 -5365,1042,3,960502974,That Thing You Do! (1996),Comedy,M,18,12,90250 -415,1302,3,977501743,Field of Dreams (1989),Drama,F,35,0,55406 -4658,1009,5,963966553,Escape to Witch Mountain (1975),Adventure|Children's|Fantasy,M,25,4,99163 -854,345,3,975357801,"Adventures of Priscilla, Queen of the Desert, The (1994)",Comedy|Drama,F,25,16,44092 -2857,436,4,972509362,Color of Night (1994),Drama|Thriller,M,25,0,10469 -1835,1330,4,974878241,April Fool's Day (1986),Comedy|Horror,M,25,19,11501 -1321,2240,3,974778494,My Bodyguard (1980),Drama,F,25,14,34639 -3274,3698,2,979767184,"Running Man, The (1987)",Action|Adventure|Sci-Fi,M,25,20,02062 -5893,2144,3,957470619,Sixteen Candles (1984),Comedy,M,25,7,02139 -3436,2724,3,967328026,Runaway Bride (1999),Comedy|Romance,M,35,0,98503 -3315,2918,5,967942960,Ferris Bueller's Day Off (1986),Comedy,M,25,12,78731 -5056,2700,5,962488280,"South Park: Bigger, Longer and Uncut (1999)",Animation|Comedy,M,45,1,16673 -5256,208,2,961271616,Waterworld (1995),Action|Adventure,M,25,16,30269 -4290,1193,4,965274348,One Flew Over the Cuckoo's Nest (1975),Drama,M,25,17,98661 -1010,1379,2,975220259,Young Guns II (1990),Action|Comedy|Western,M,25,0,10310 -829,904,4,975368038,Rear Window (1954),Mystery|Thriller,M,1,19,53711 -5953,480,4,957143581,Jurassic Park (1993),Action|Adventure|Sci-Fi,M,1,10,21030 -4732,3016,4,963332896,Creepshow (1982),Horror,M,25,14,24450 -4815,3181,5,972240802,Titus (1999),Drama,F,50,18,04849 -1164,1894,2,1004486985,Six Days Seven Nights (1998),Adventure|Comedy|Romance,F,25,19,90020 -4373,3167,5,965180829,Carnal Knowledge (1971),Drama,M,50,12,32920 -5293,1374,4,961055887,Star Trek: The Wrath of Khan (1982),Action|Adventure|Sci-Fi,M,25,12,95030 -1579,3101,4,981272057,Fatal Attraction (1987),Thriller,M,25,0,60201 -2600,3147,5,973804787,"Green Mile, The (1999)",Drama|Thriller,M,25,14,19312 -1283,480,4,974793389,Jurassic Park (1993),Action|Adventure|Sci-Fi,F,18,1,94607 -3242,3062,5,968341175,"Longest Day, The (1962)",Action|Drama|War,M,50,13,94089 -3618,3374,3,967116272,Daughters of the Dust (1992),Drama,M,56,17,22657 -3762,1337,4,966434517,"Body Snatcher, The (1945)",Horror,M,50,6,11746 -1015,1184,3,975018699,Mediterraneo (1991),Comedy|War,M,35,3,11220 -4645,2344,5,963976808,Runaway Train (1985),Action|Adventure|Drama|Thriller,F,50,6,48094 -3184,1397,4,968709039,Bastard Out of Carolina (1996),Drama,F,25,18,21214 -1285,1794,4,974833328,Love and Death on Long Island (1997),Comedy|Drama,M,35,4,98125 -5521,3354,2,959833154,Mission to Mars (2000),Sci-Fi,F,25,6,02118 -1472,2278,3,974767792,Ronin (1998),Action|Crime|Thriller,M,25,7,90248 -5630,21,4,980085414,Get Shorty (1995),Action|Comedy|Drama,M,35,17,06854 -3710,3033,5,966272980,Spaceballs (1987),Comedy|Sci-Fi,M,1,10,02818 -192,761,1,977028390,"Phantom, The (1996)",Adventure,M,18,1,10977 -1285,1198,5,974880310,Raiders of the Lost Ark (1981),Action|Adventure,M,35,4,98125 -2174,1046,4,974613044,Beautiful Thing (1996),Drama|Romance,M,50,12,87505 -635,1270,4,975768106,Back to the Future (1985),Comedy|Sci-Fi,M,56,17,33785 -910,412,5,975207742,"Age of Innocence, The (1993)",Drama,F,50,0,98226 -1752,2021,4,975729332,Dune (1984),Fantasy|Sci-Fi,M,25,3,96813 -1408,198,4,974762924,Strange Days (1995),Action|Crime|Sci-Fi,M,25,0,90046 -4738,1242,4,963279051,Glory (1989),Action|Drama|War,M,56,1,23608 -1503,1971,2,974748897,"Nightmare on Elm Street 4: The Dream Master, A (1988)",Horror,M,25,12,92688 -3053,1296,3,970601837,"Room with a View, A (1986)",Drama|Romance,F,25,3,55102 -3471,3614,2,973297828,Honeymoon in Vegas (1992),Comedy|Romance,M,18,4,80302 -678,1972,3,988638700,"Nightmare on Elm Street 5: The Dream Child, A (1989)",Horror,M,25,0,34952 -3483,2561,3,986327282,True Crime (1999),Crime|Thriller,F,45,7,30260 -3910,3108,5,965756244,"Fisher King, The (1991)",Comedy|Drama|Romance,M,25,20,91505 -182,1089,1,977085647,Reservoir Dogs (1992),Crime|Thriller,M,18,4,03052 -1755,1653,3,1036917836,Gattaca (1997),Drama|Sci-Fi|Thriller,F,18,4,77005 -3589,70,2,966658567,From Dusk Till Dawn (1996),Action|Comedy|Crime|Horror|Thriller,F,45,0,80010 -471,3481,4,976222483,High Fidelity (2000),Comedy,M,35,7,08904 -1141,813,2,974878678,Larger Than Life (1996),Comedy,F,25,3,84770 -5227,1196,2,961476022,Star Wars: Episode V - The Empire Strikes Back (1980),Action|Adventure|Drama|Sci-Fi|War,M,18,10,64050 -1303,2344,2,974837844,Runaway Train (1985),Action|Adventure|Drama|Thriller,M,25,19,94111 -5080,3102,5,962412804,Jagged Edge (1985),Thriller,F,50,12,95472 -2023,1012,4,1006290836,Old Yeller (1957),Children's|Drama,M,18,4,56001 -3759,2151,5,966094413,"Gods Must Be Crazy II, The (1989)",Comedy,M,35,6,54751 -1685,2664,2,974709721,Invasion of the Body Snatchers (1956),Horror|Sci-Fi,M,35,12,95833 -4715,1221,4,963508830,"Godfather: Part II, The (1974)",Action|Crime|Drama,M,25,2,97205 -1591,350,5,974742941,"Client, The (1994)",Drama|Mystery|Thriller,M,50,7,26501 -4227,3635,3,965411938,"Spy Who Loved Me, The (1977)",Action,M,25,19,11414-2520 -1908,36,5,974697744,Dead Man Walking (1995),Drama,M,56,13,95129 -5365,1892,4,960503255,"Perfect Murder, A (1998)",Mystery|Thriller,M,18,12,90250 -1579,2420,4,981272235,"Karate Kid, The (1984)",Drama,M,25,0,60201 -1866,3948,5,974753321,Meet the Parents (2000),Comedy,M,25,7,94043 -4238,3543,4,965415533,Diner (1982),Comedy|Drama,M,35,16,44691 -3590,2000,5,966657892,Lethal Weapon (1987),Action|Comedy|Crime|Drama,F,18,15,02115 -3401,3256,5,980115327,Patriot Games (1992),Action|Thriller,M,35,7,76109 -3705,540,2,966287116,Sliver (1993),Thriller,M,45,7,30076 -4973,1246,3,962607149,Dead Poets Society (1989),Drama,F,56,2,949702 -4947,380,4,962651180,True Lies (1994),Action|Adventure|Comedy|Romance,M,35,17,90035 -2346,1416,4,974413811,Evita (1996),Drama|Musical,F,1,10,48105 -1427,3596,3,974840560,Screwed (2000),Comedy,M,25,12,21401 -3868,1626,3,965855033,Fire Down Below (1997),Action|Drama|Thriller,M,18,12,73112 -249,2369,3,976730191,Desperately Seeking Susan (1985),Comedy|Romance,F,18,14,48126 -5720,349,4,958503395,Clear and Present Danger (1994),Action|Adventure|Thriller,M,25,0,60610 -877,1485,3,975270899,Liar Liar (1997),Comedy,M,25,0,90631 diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_classification_criteo.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_classification_criteo.py index 6462f295838e969ecd7a3f015298a68d1a50d9f0..877c0a1397535bf9d18c3f09497ec40a7ba81928 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_classification_criteo.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_classification_criteo.py @@ -36,10 +36,39 @@ from sklearn.preprocessing import LabelEncoder, MinMaxScaler from deepctr.models import DeepFM from deepctr.feature_column import SparseFeat, DenseFeat, get_feature_names +import argparse if __name__ == "__main__": - npu_keras_sess = set_keras_session_npu_config() - data = pd.read_csv('./criteo_sample.txt') + + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', default="./", + help='data path for train') + parser.add_argument('--precision_mode', default='allow_fp32_to_fp16', + help='allow_fp32_to_fp16/force_fp16/ ' + 'must_keep_origin_dtype/allow_mix_precision.') + parser.add_argument('--data_dump_flag', action="store_true", + help='whether to enable dump data') + parser.add_argument('--data_dump_path', default="/home/data", + help='the path to save dump data') + parser.add_argument('--data_dump_step', default="0", + help='the step to dump') + args = parser.parse_args() + + sess_config = tf.ConfigProto() + custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() + sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + sess_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) + if args.data_dump_flag: + print("start to config data dump...{}", args.data_dump_flag) + custom_op.parameter_map["enable_dump"].b = True + custom_op.parameter_map["dump_path"].s = tf.compat.as_bytes(args.data_dump_path) + custom_op.parameter_map["dump_step"].s = tf.compat.as_bytes(args.data_dump_step) + custom_op.parameter_map["dump_mode"].s = tf.compat.as_bytes("all") + + npu_keras_sess = set_keras_session_npu_config(config=sess_config) + data = pd.read_csv(os.path.join(args.data_dir, 'criteo_sample.txt')) sparse_features = ['C' + str(i) for i in range(1, 27)] dense_features = ['I' + str(i) for i in range(1, 14)] diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_estimator_tfrecord_classification.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_estimator_tfrecord_classification.py index 1ce5fac75631b9fdae6a883575115e20825ca08c..9ead9c2cde12c4f0cf2a046eea3a02192a9c1c47 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_estimator_tfrecord_classification.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_estimator_tfrecord_classification.py @@ -29,13 +29,45 @@ # from npu_bridge.npu_init import * import tensorflow as tf - +from tensorflow import keras from tensorflow.python.ops.parsing_ops import FixedLenFeature from deepctr.estimator import DeepFMEstimator from deepctr.estimator.inputs import input_fn_tfrecord +import argparse +import os +def main(): -if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', default="./", + help='data path for train') + parser.add_argument('--precision_mode', default='allow_fp32_to_fp16', + help='allow_fp32_to_fp16/force_fp16/ ' + 'must_keep_origin_dtype/allow_mix_precision.') + parser.add_argument('--profiling', default=False, + help='if or not profiling for performance debug, default is False') + parser.add_argument('--profiling_dump_path', default="/home/data", + help='the path to save profiling data') + args = parser.parse_args() + + sess_config = tf.ConfigProto() + custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() + sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + sess_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) + + if args.profiling: + custom_op.parameter_map["profiling_mode"].b = True + custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + '{"output":"' + args.profiling_dump_path + '", \ + "training_trace":"on", \ + "task_trace":"on", \ + "aicpu":"on", \ + "aic_metrics":"PipeUtilization",\ + "fp_point":"concatenate_1/concat", \ + "bp_point":"training/Adam/gradients/gradients/AddN_38"}') + npu_keras_sess = set_keras_session_npu_config(config=sess_config) # 1.generate feature_column for linear part and dnn part sparse_features = ['C' + str(i) for i in range(1, 27)] @@ -59,17 +91,22 @@ if __name__ == "__main__": {k: FixedLenFeature(dtype=tf.float32, shape=1) for k in dense_features}) feature_description['label'] = FixedLenFeature(dtype=tf.float32, shape=1) - train_model_input = input_fn_tfrecord('./criteo_sample.tr.tfrecords', feature_description, 'label', batch_size=256, - num_epochs=1, shuffle_factor=10) + train_model_input = input_fn_tfrecord('./criteo_sample.tr.tfrecords', feature_description, 'label', batch_size=162, + num_epochs=5, shuffle_factor=10) test_model_input = input_fn_tfrecord('./criteo_sample.te.tfrecords', feature_description, 'label', batch_size=2 ** 14, num_epochs=1, shuffle_factor=0) # 3.Define Model,train,predict and evaluate model = DeepFMEstimator(linear_feature_columns, dnn_feature_columns, task='binary', config=tf.estimator.RunConfig(tf_random_seed=2021, save_summary_steps=0)) - + tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) model.train(train_model_input) eval_result = model.evaluate(test_model_input) print(eval_result) + close_session(npu_keras_sess) + +if __name__ == "__main__": + main() + diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_flen.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_flen.py index e083ffaf75cdc07cbaef58f34973ee9eb1b039f9..6373b34841a92f88aec2761cfe9a7c38890d528f 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_flen.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_flen.py @@ -28,6 +28,7 @@ # limitations under the License. # from npu_bridge.npu_init import * +from tensorflow import keras import pandas as pd from sklearn.metrics import log_loss, roc_auc_score from sklearn.model_selection import train_test_split @@ -35,9 +36,42 @@ from sklearn.preprocessing import LabelEncoder from deepctr.feature_column import SparseFeat,get_feature_names from deepctr.models import FLEN +import argparse +import os -if __name__ == "__main__": - data = pd.read_csv('./avazu_sample.txt') +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', default="./", + help='data path for train') + parser.add_argument('--precision_mode', default='allow_fp32_to_fp16', + help='allow_fp32_to_fp16/force_fp16/ ' + 'must_keep_origin_dtype/allow_mix_precision.') + parser.add_argument('--profiling', default=False, + help='if or not profiling for performance debug, default is False') + parser.add_argument('--profiling_dump_path', default="/home/data", + help='the path to save profiling data') + args = parser.parse_args() + + sess_config = tf.ConfigProto() + custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() + sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + sess_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) + + if args.profiling: + custom_op.parameter_map["profiling_mode"].b = True + custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + '{"output":"' + args.profiling_dump_path + '", \ + "training_trace":"on", \ + "task_trace":"on", \ + "aicpu":"on", \ + "aic_metrics":"PipeUtilization",\ + "fp_point":"concatenate_1/concat", \ + "bp_point":"training/Adam/gradients/gradients/AddN_38"}') + + npu_keras_sess = set_keras_session_npu_config(config=sess_config) + data = pd.read_csv(os.path.join(args.data_dir,'./avazu_sample.txt')) data['day'] = data['hour'].apply(lambda x: str(x)[4:6]) data['hour'] = data['hour'].apply(lambda x: str(x)[6:]) @@ -88,8 +122,11 @@ if __name__ == "__main__": metrics=['binary_crossentropy'], ) history = model.fit(train_model_input, train[target].values, - batch_size=256, epochs=10, verbose=2, validation_split=0.2, ) - pred_ans = model.predict(test_model_input, batch_size=256) + batch_size=64, epochs=10, verbose=1, validation_split=0.2, ) + pred_ans = model.predict(test_model_input, batch_size=4) print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4)) print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4)) +if __name__ == "__main__": + main() + diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_multivalue_movielens.py b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_multivalue_movielens.py index a54fd6c851cd994d270d27961bf385b4d527e79c..9e61c348a04fd2d226455806a45ce231ff652cd8 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_multivalue_movielens.py +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/examples/run_multivalue_movielens.py @@ -28,6 +28,7 @@ # limitations under the License. # from npu_bridge.npu_init import * +from tensorflow import keras import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder @@ -35,6 +36,8 @@ from tensorflow.python.keras.preprocessing.sequence import pad_sequences from deepctr.feature_column import SparseFeat, VarLenSparseFeat,get_feature_names from deepctr.models import DeepFM +import argparse +import os def split(x): @@ -45,10 +48,39 @@ def split(x): key2index[key] = len(key2index) + 1 return list(map(lambda x: key2index[x], key_ans)) - if __name__ == "__main__": - npu_keras_sess = set_keras_session_npu_config() - data = pd.read_csv("./movielens_sample.txt") + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', default="./", + help='data path for train') + parser.add_argument('--precision_mode', default='allow_fp32_to_fp16', + help='allow_fp32_to_fp16/force_fp16/ ' + 'must_keep_origin_dtype/allow_mix_precision.') + parser.add_argument('--profiling', default=False, + help='if or not profiling for performance debug, default is False') + parser.add_argument('--profiling_dump_path', default="/home/data", + help='the path to save profiling data') + args = parser.parse_args() + + sess_config = tf.ConfigProto() + custom_op = sess_config.graph_options.rewrite_options.custom_optimizers.add() + sess_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + sess_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF + custom_op.name = "NpuOptimizer" + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(args.precision_mode) + + if args.profiling: + custom_op.parameter_map["profiling_mode"].b = True + custom_op.parameter_map["profiling_options"].s = tf.compat.as_bytes( + '{"output":"' + args.profiling_dump_path + '", \ + "training_trace":"on", \ + "task_trace":"on", \ + "aicpu":"on", \ + "aic_metrics":"PipeUtilization",\ + "fp_point":"concatenate_1/concat", \ + "bp_point":"training/Adam/gradients/gradients/AddN_38"}') + + npu_keras_sess = set_keras_session_npu_config(config=sess_config) + data = pd.read_csv(os.path.join(args.data_dir,"./movielens_sample.txt")) sparse_features = ["movie_id", "user_id", "gender", "age", "occupation", "zip", ] target = ['rating'] @@ -96,6 +128,6 @@ if __name__ == "__main__": model.compile("adam", "mse", metrics=['mse'], ) history = model.fit(model_input, data[target].values, - batch_size=256, epochs=10, verbose=2, validation_split=0.2, ) + batch_size=160, epochs=10, verbose=1, validation_split=0.2, ) close_session(npu_keras_sess) diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_full_1p.sh index 133ee0476685c328f1ae95a480d3064bc2138723..a6c8057d2bc0881b306c953a3361df3baba690d5 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_full_1p.sh @@ -120,7 +120,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_performance_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_performance_1p.sh index 198e11fdf71d6d01f0e9a8ee9343b155fe8546bc..f192262101cc2881d480bfb3f5ac3a28ff13a438 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_performance_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3057_FwFM_performance_1p.sh @@ -122,7 +122,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_full_1p.sh index f99ec75a9fe14f4df80a8c29056ca5aabcd9560f..57eb2a9c552ab9a9aa81d34d0137c52a05a34b57 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_full_1p.sh @@ -120,7 +120,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" '{print $1}'|awk '{sum+=$1} END {print"",sum/NR}'|awk '{print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_performance_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_performance_1p.sh index a32f77fe128c32dde7c384cda8b2cd9cc921627d..77cce685ce5e0535792db212b895eaae27c87df5 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_performance_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3058_MMoE_performance_1p.sh @@ -118,7 +118,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" '{print $1}'|awk '{sum+=$1} END {print"",sum/NR}'|awk '{print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_full_1p.sh index 8fb69eea2430c7aa0076fc011035289eef58cbe8..3340bf02547b0826fed5b695432b1448a95a9353 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_full_1p.sh @@ -29,8 +29,8 @@ learning_rate= precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False -data_dump_flag=False -data_dump_step="10" +data_dump_flag="" +data_dump_step="1" profiling=False # 帮助信息,不需要修改 @@ -40,8 +40,8 @@ if [[ $1 == --help || $1 == -h ]];then echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 + --data_dump_flag data dump flag, default is "" + --data_dump_step data dump step, default is 1 --profiling if or not profiling for performance debug, default is False --data_path source data of training -h/--help show help message @@ -101,7 +101,11 @@ do #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path - nohup python3 run_classification_criteo.py > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + nohup python3 run_classification_criteo.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + ${data_dump_flag} --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -114,7 +118,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END{print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_performance_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_performance_1p.sh index 5af0754d360311aedd96924580ae477cc3450fd3..53fdf2d0970dd0e4d3362181cda056b79aca5c44 100644 --- a/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_performance_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3062_DeepFM_performance_1p.sh @@ -29,8 +29,8 @@ learning_rate= precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False -data_dump_flag=False -data_dump_step="10" +data_dump_flag="" +data_dump_step="1" profiling=False # 帮助信息,不需要修改 @@ -40,8 +40,8 @@ if [[ $1 == --help || $1 == -h ]];then echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 + --data_dump_flag data dump flag, default is "" + --data_dump_step data dump step, default is 1 --profiling if or not profiling for performance debug, default is False --data_path source data of training -h/--help show help message @@ -59,7 +59,8 @@ do over_dump_path=${cur_path}/output/overflow_dump mkdir -p ${over_dump_path} elif [[ $para == --data_dump_flag* ]];then - data_dump_flag=`echo ${para#*=}` + # data_dump_flag=`echo ${para#*=}` + data_dump_flag="--data_dump_flag" data_dump_path=${cur_path}/output/data_dump mkdir -p ${data_dump_path} elif [[ $para == --data_dump_step* ]];then @@ -101,7 +102,11 @@ do #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path - nohup python3 run_classification_criteo.py > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + nohup python3 run_classification_criteo.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + ${data_dump_flag} --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait sed -i "s|epochs=5|epochs=10|g" run_classification_criteo.py @@ -114,7 +119,7 @@ echo "------------------ Final result ------------------" # #输出性能FPS,需要模型审视修改 Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END{print $1}'` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'*1000000}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 echo "Final Performance item/sec : $FPS" diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_1p_lamb_phase2.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_full_1p.sh similarity index 55% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_1p_lamb_phase2.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_full_1p.sh index 33aded8415373db9243b5768552f29ef05c7093f..dd228ad5143e65cda8db2de44feabc28f64242d5 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3068_BertLarge-512_full_1p_lamb_phase2.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_full_1p.sh @@ -1,171 +1,164 @@ -#!/bin/bash - -#当前路径,不需要修改 -cur_path=`pwd` - -#集合通信参数,不需要修改 -export RANK_SIZE=1 -export JOB_ID=99990001 -RANK_ID_START=0 - -# 数据集路径,保持为空,不需要修改 -data_path="" - -#基础参数,需要模型审视修改 -#网络名称,同目录名称 -Network="BertLarge-512_ID3068_for_TensorFlow" -#训练epoch -train_epochs=1 -#训练batch_size -batch_size=24 -#训练step -train_steps=100000 -#学习率 -learning_rate= - -#维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" -#维持参数,以下不需要修改 -over_dump=False -data_dump_flag=False -data_dump_step="10" -profiling=False -autotune=False - -# 帮助信息,不需要修改 -if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " - echo " " - echo "parameter explain: - --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message - " - exit 1 -fi - -#参数校验,不需要修改 -for para in $* -do - if [[ $para == --precision_mode* ]];then - precision_mode=`echo ${para#*=}` - elif [[ $para == --over_dump* ]];then - over_dump=`echo ${para#*=}` - over_dump_path=${cur_path}/output/overflow_dump - mkdir -p ${over_dump_path} - elif [[ $para == --data_dump_flag* ]];then - data_dump_flag=`echo ${para#*=}` - data_dump_path=${cur_path}/output/data_dump - mkdir -p ${data_dump_path} - elif [[ $para == --data_dump_step* ]];then - data_dump_step=`echo ${para#*=}` - elif [[ $para == --profiling* ]];then - profiling=`echo ${para#*=}` - profiling_dump_path=${cur_path}/output/profiling - mkdir -p ${profiling_dump_path} - elif [[ $para == --data_path* ]];then - data_path=`echo ${para#*=}` - fi -done - -#校验是否传入data_path,不需要修改 -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path\" must be confing" - exit 1 -fi - -#训练开始时间,不需要修改 -start_time=$(date +%s) -#进入训练脚本目录,需要模型审视修改 -for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); -do - #设置环境变量,不需要修改 - echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$RANK_ID - - #创建DeviceID输出目录,不需要修改 - if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then - rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - fi - - #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ - --max_seq_length=512 \ - --max_predictions_per_seq=76 \ - --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=lamb \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -done -wait - -#训练结束时间,不需要修改 -end_time=$(date +%s) -e2e_time=$(( $end_time - $start_time )) - -#结果打印,不需要修改 -echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" - -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` -#打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" -echo "E2E Training Duration sec : $e2e_time" - -#稳定性精度看护结果汇总 -#训练用例信息,不需要修改 -BatchSize=${batch_size} -DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' - - -#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt - -#最后一个迭代loss值,不需要修改 -ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` - -#关键信息打印到${CaseName}.log中,不需要修改 -echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 +RankSize=1 +# 数据集路径,保持为空,不需要修改 +data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="DeepFM_ID3202_for_TensorFlow" +#训练epoch +train_epochs=5 +#训练batch_size +batch_size=162 +#训练step +train_steps= +#学习率 +learning_rate= + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + +sed -i "s|epochs=10|epochs=5|g" run_multivalue_movielens.py + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_estimator_tfrecord_classification.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +# #输出性能FPS,需要模型审视修改 +Time=`grep ":loss =" $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk '{ print $4}'| awk -F "(" '{print $2}'|tail -n 2|awk '{sum+=$1} END {print"",sum/NR}'|awk '{print $1}' +` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'}'` +# #打印,不需要修改 +echo "Final Performance item/sec : $FPS" + +# #输出训练精度,需要模型审视修改 +train_accuracy=`grep "AUC = " $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log |awk '{print $9}'|awk -F "," '{print $1}'` + + + +# #输出训练精度,需要模型审视修改 + +# #打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#性能看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'accu' + +##获取性能数据,不需要修改 +#吞吐量 +TrainingTime=`awk 'BEGIN{printf "%.6f\n",'${BatchSize}'/'${FPS}'}'` + +ActualFPS=${FPS} +grep ":loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log| awk '{ print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_performance_1p.sh similarity index 55% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_1p.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_performance_1p.sh index 13bcf4fcd178e644c01f00d86c76080cd8b50258..4fc7f9bb29fc5a75df32334133d684646da3cc78 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3207_BertLarge-512_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3202_DeepFM_performance_1p.sh @@ -1,171 +1,164 @@ -#!/bin/bash - -#当前路径,不需要修改 -cur_path=`pwd` - -#集合通信参数,不需要修改 -export RANK_SIZE=1 -export JOB_ID=99990001 -RANK_ID_START=0 - -# 数据集路径,保持为空,不需要修改 -data_path="" - -#基础参数,需要模型审视修改 -#网络名称,同目录名称 -Network="BertLarge-512_ID3207_for_TensorFlow" -#训练epoch -train_epochs=1 -#训练batch_size -batch_size=24 -#训练step -train_steps=100000 -#学习率 -learning_rate= - -#维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" -#维持参数,以下不需要修改 -over_dump=False -data_dump_flag=False -data_dump_step="10" -profiling=False -autotune=False - -# 帮助信息,不需要修改 -if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " - echo " " - echo "parameter explain: - --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message - " - exit 1 -fi - -#参数校验,不需要修改 -for para in $* -do - if [[ $para == --precision_mode* ]];then - precision_mode=`echo ${para#*=}` - elif [[ $para == --over_dump* ]];then - over_dump=`echo ${para#*=}` - over_dump_path=${cur_path}/output/overflow_dump - mkdir -p ${over_dump_path} - elif [[ $para == --data_dump_flag* ]];then - data_dump_flag=`echo ${para#*=}` - data_dump_path=${cur_path}/output/data_dump - mkdir -p ${data_dump_path} - elif [[ $para == --data_dump_step* ]];then - data_dump_step=`echo ${para#*=}` - elif [[ $para == --profiling* ]];then - profiling=`echo ${para#*=}` - profiling_dump_path=${cur_path}/output/profiling - mkdir -p ${profiling_dump_path} - elif [[ $para == --data_path* ]];then - data_path=`echo ${para#*=}` - fi -done - -#校验是否传入data_path,不需要修改 -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path\" must be confing" - exit 1 -fi - -#训练开始时间,不需要修改 -start_time=$(date +%s) -#进入训练脚本目录,需要模型审视修改 -for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); -do - #设置环境变量,不需要修改 - echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$RANK_ID - - #创建DeviceID输出目录,不需要修改 - if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then - rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - fi - - #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ - --max_seq_length=512 \ - --max_predictions_per_seq=76 \ - --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=adam \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -done -wait - -#训练结束时间,不需要修改 -end_time=$(date +%s) -e2e_time=$(( $end_time - $start_time )) - -#结果打印,不需要修改 -echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" - -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` -#打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" -echo "E2E Training Duration sec : $e2e_time" - -#稳定性精度看护结果汇总 -#训练用例信息,不需要修改 -BatchSize=${batch_size} -DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' - - -#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt - -#最后一个迭代loss值,不需要修改 -ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` - -#关键信息打印到${CaseName}.log中,不需要修改 -echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 +RankSize=1 +# 数据集路径,保持为空,不需要修改 +data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="DeepFM_ID3202_for_TensorFlow" +#训练epoch +train_epochs=5 +#训练batch_size +batch_size=162 +#训练step +train_steps= +#学习率 +learning_rate= + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + +sed -i "s|epochs=10|epochs=5|g" run_multivalue_movielens.py + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt + fi + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_estimator_tfrecord_classification.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +# #输出性能FPS,需要模型审视修改 +Time=`grep ":loss =" $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk '{ print $4}'| awk -F "(" '{print $2}'|tail -n 2|awk '{sum+=$1} END {print"",sum/NR}'|awk '{print $1}' +` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${Time}'}'` +# #打印,不需要修改 +echo "Final Performance item/sec : $FPS" + +# #输出训练精度,需要模型审视修改 +train_accuracy=`grep "AUC = " $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log |awk '{print $9}'|awk -F "," '{print $1}'` + + + +# #输出训练精度,需要模型审视修改 + +# #打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#性能看护结果汇总 +#训练用例信息,不需要修改 +BatchSize=${batch_size} +DeviceType=`uname -m` +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据,不需要修改 +#吞吐量 +TrainingTime=`awk 'BEGIN{printf "%.6f\n",'${BatchSize}'/'${FPS}'}'` + +ActualFPS=${FPS} +grep ":loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log| awk '{ print $3}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +#最后一个迭代loss值,不需要修改 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_1p_lamb_phase2.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_full_1p.sh similarity index 58% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_1p_lamb_phase2.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_full_1p.sh index 29a38da1f88ccf21ec184b03366decf0b26bd7e6..c180165beb55d300753d44d50a5aefe1278da1df 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3069_BertBase-512_full_1p_lamb_phase2.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_full_1p.sh @@ -4,47 +4,47 @@ cur_path=`pwd` #集合通信参数,不需要修改 + export RANK_SIZE=1 -export JOB_ID=99990001 +export JOB_ID=10087 RANK_ID_START=0 - +RankSize=1 # 数据集路径,保持为空,不需要修改 data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 #基础参数,需要模型审视修改 #网络名称,同目录名称 -Network="BertBase-512_ID3069_for_TensorFlow" +Network="DeepFM_ID3203_for_TensorFlow" #训练epoch -train_epochs=1 +train_epochs=10 #训练batch_size -batch_size=64 +batch_size=160 #训练step -train_steps=100000 +train_steps= #学习率 learning_rate= #维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" +precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False data_dump_flag=False data_dump_step="10" profiling=False -autotune=False # 帮助信息,不需要修改 if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " + echo"usage:./train_full_1P.sh " echo " " echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message " exit 1 fi @@ -81,48 +81,31 @@ fi #训练开始时间,不需要修改 start_time=$(date +%s) + #进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" export RANK_ID=$RANK_ID - + #创建DeviceID输出目录,不需要修改 if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt fi - + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ - --max_seq_length=512 \ - --max_predictions_per_seq=76 \ - --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=lamb \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_multivalue_movielens.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -132,27 +115,35 @@ e2e_time=$(( $end_time - $start_time )) #结果打印,不需要修改 echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" +# #输出性能FPS,需要模型审视修改 -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" +echo "Final Performance item/sec : $FPS" + + +# #输出训练精度,需要模型审视修改 +#train_accuracy=`grep "test AUC" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk '{print $3}'` +# #打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" -#稳定性精度看护结果汇总 +#性能看护结果汇总 #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' +##获取性能数据,不需要修改 +#吞吐量 + +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +cat $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tr -d '\b\r'|grep -Eo " loss: [0-9]*\.[0-9]*"|awk -F " " '{print $2}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` @@ -164,7 +155,8 @@ echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = None" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_performance_1p.sh similarity index 57% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_1p.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_performance_1p.sh index 3238c377e44b8feffea4a142fb8dbeb3dbca4a05..f432f21ac4a6396ad97637534e4c6688c3f6ec69 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3206_BertBase-512_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3203_DeepFM_performance_1p.sh @@ -4,47 +4,47 @@ cur_path=`pwd` #集合通信参数,不需要修改 + export RANK_SIZE=1 -export JOB_ID=99990001 +export JOB_ID=10087 RANK_ID_START=0 - +RankSize=1 # 数据集路径,保持为空,不需要修改 data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 #基础参数,需要模型审视修改 #网络名称,同目录名称 -Network="BertBase-512_ID3206_for_TensorFlow" +Network="DeepFM_ID3203_for_TensorFlow" #训练epoch -train_epochs=1 +train_epochs=5 #训练batch_size -batch_size=64 +batch_size=160 #训练step -train_steps=100000 +train_steps= #学习率 learning_rate= #维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" +precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False data_dump_flag=False data_dump_step="10" profiling=False -autotune=False # 帮助信息,不需要修改 if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " + echo"usage:./train_performance_1P.sh " echo " " echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message " exit 1 fi @@ -81,48 +81,33 @@ fi #训练开始时间,不需要修改 start_time=$(date +%s) + #进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + +sed -i "s|epochs=10|epochs=5|g" run_multivalue_movielens.py + for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" export RANK_ID=$RANK_ID - + #创建DeviceID输出目录,不需要修改 if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt fi - + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ - --max_seq_length=512 \ - --max_predictions_per_seq=76 \ - --train_batch_size=${batch_size} \ - --learning_rate=5e-5 \ - --num_warmup_steps=1000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=adam \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train \ - --eval_files_dir=${data_path}/eval \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_multivalue_movielens.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -130,29 +115,39 @@ wait end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) +sed -i "s|epochs=5|epochs=10|g" run_multivalue_movielens.py + #结果打印,不需要修改 echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" +# #输出性能FPS,需要模型审视修改 -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" +echo "Final Performance item/sec : $FPS" + + +# #输出训练精度,需要模型审视修改 +#train_accuracy=`grep "test AUC" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk '{print $3}'` +# #打印,不需要修改 +#echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" -#稳定性精度看护结果汇总 +#性能看护结果汇总 #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据,不需要修改 +#吞吐量 +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +cat $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tr -d '\b\r'|grep -Eo " loss: [0-9]*\.[0-9]*"|awk -F " " '{print $2}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` @@ -164,7 +159,8 @@ echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = None" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_1p.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_full_1p.sh similarity index 58% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_1p.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_full_1p.sh index 4e44bd480cfcef3b21fadb801c104eada561ca22..54d6021648f9e103a566525bf567678976bea124 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID0060_BertBase_full_1p.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_full_1p.sh @@ -4,47 +4,47 @@ cur_path=`pwd` #集合通信参数,不需要修改 + export RANK_SIZE=1 -export JOB_ID=99990001 +export JOB_ID=10087 RANK_ID_START=0 - +RankSize=1 # 数据集路径,保持为空,不需要修改 data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 #基础参数,需要模型审视修改 #网络名称,同目录名称 -Network="Bert-base_ID0060_for_TensorFlow" +Network="FLEN_ID3204_for_TensorFlow" #训练epoch -train_epochs=1 +train_epochs=10 #训练batch_size -batch_size=128 +batch_size=64 #训练step -train_steps=1000 +train_steps= #学习率 learning_rate= #维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" +precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False data_dump_flag=False data_dump_step="10" profiling=False -autotune=False # 帮助信息,不需要修改 if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " + echo"usage:./train_full_1P.sh " echo " " echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message " exit 1 fi @@ -81,48 +81,32 @@ fi #训练开始时间,不需要修改 start_time=$(date +%s) + #进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + + for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" export RANK_ID=$RANK_ID - + #创建DeviceID输出目录,不需要修改 if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt fi - + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ - --max_seq_length=128 \ - --max_predictions_per_seq=20 \ - --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ - --num_train_steps=${train_steps} \ - --optimizer_type=adam \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=100 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_flen.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -130,33 +114,42 @@ wait end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) + #结果打印,不需要修改 echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" +# #输出性能FPS,需要模型审视修改 -#输出训练精度,需要模型审视修改 -train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 +echo "Final Performance item/sec : $FPS" + + +# #输出训练精度,需要模型审视修改 +train_accuracy=`grep "test AUC" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk '{print $3}'` +# #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" -#稳定性精度看护结果汇总 +#性能看护结果汇总 #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' +##获取性能数据,不需要修改 +#吞吐量 + +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +cat $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tr -d '\b\r'|grep -Eo " loss: [0-9]*\.[0-9]*"|awk -F " " '{print $2}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` -TrainAccuracy=${train_accuracy} + #关键信息打印到${CaseName}.log中,不需要修改 echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log @@ -164,7 +157,8 @@ echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_1p_lamb_phase1.sh b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_performance_1p.sh similarity index 57% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_1p_lamb_phase1.sh rename to TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_performance_1p.sh index f79248aa2dedc2ec5a6cec48ba428d0d0996b45d..a90a4f4399f9b000ea8d495517696c7a07e9f606 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3208_BertBase-128_full_1p_lamb_phase1.sh +++ b/TensorFlow/built-in/recommendation/DeepCTR_Series_for_TensorFlow/test/train_ID3204_FLEN_performance_1p.sh @@ -4,47 +4,47 @@ cur_path=`pwd` #集合通信参数,不需要修改 + export RANK_SIZE=1 -export JOB_ID=99990001 +export JOB_ID=10087 RANK_ID_START=0 - +RankSize=1 # 数据集路径,保持为空,不需要修改 data_path="" +#export ASCEND_SLOG_PRINT_TO_STDOUT=1 #基础参数,需要模型审视修改 #网络名称,同目录名称 -Network="BertBase-128_ID3208_for_TensorFlow" +Network="FLEN_ID3204_for_TensorFlow" #训练epoch -train_epochs=1 +train_epochs=5 #训练batch_size -batch_size=128 +batch_size=64 #训练step -train_steps=1000 +train_steps= #学习率 learning_rate= #维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" +precision_mode="allow_fp32_to_fp16" #维持参数,以下不需要修改 over_dump=False data_dump_flag=False data_dump_step="10" profiling=False -autotune=False # 帮助信息,不需要修改 if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " + echo"usage:./train_performance_1P.sh " echo " " echo "parameter explain: --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message " exit 1 fi @@ -81,48 +81,33 @@ fi #训练开始时间,不需要修改 start_time=$(date +%s) + #进入训练脚本目录,需要模型审视修改 +cd $cur_path/../examples + +sed -i "s|epochs=10|epochs=5|g" run_flen.py + for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" export RANK_ID=$RANK_ID - + #创建DeviceID输出目录,不需要修改 if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt fi - + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_base_config.json \ - --max_seq_length=128 \ - --max_predictions_per_seq=20 \ - --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=100 \ - --num_train_steps=${train_steps} \ - --optimizer_type=lamb \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=100 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path + nohup python3 run_flen.py \ + --data_dir=${data_path} \ + --precision_mode=${precision_mode} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & done wait @@ -130,33 +115,43 @@ wait end_time=$(date +%s) e2e_time=$(( $end_time - $start_time )) +sed -i "s|epochs=5|epochs=10|g" run_flen.py + #结果打印,不需要修改 echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" +# #输出性能FPS,需要模型审视修改 -#输出训练精度,需要模型审视修改 -train_accuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` +Time=`cat $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|tr -d '\b\r'|grep -Eo "[0-9]*us/sample"|awk -F "us/sample" 'END {print $1}'` +FPS=`awk 'BEGIN{printf "%.2f\n", 1 /'${Time}'*1000000}'` #打印,不需要修改 +echo "Final Performance item/sec : $FPS" + + +# #输出训练精度,需要模型审视修改 +train_accuracy=`grep "test AUC" ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk '{print $3}'` +# #打印,不需要修改 echo "Final Train Accuracy : ${train_accuracy}" echo "E2E Training Duration sec : $e2e_time" -#稳定性精度看护结果汇总 +#性能看护结果汇总 #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据,不需要修改 +#吞吐量 +ActualFPS=${FPS} +#单迭代训练时长 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +cat $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tr -d '\b\r'|grep -Eo " loss: [0-9]*\.[0-9]*"|awk -F " " '{print $2}' > $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt #最后一个迭代loss值,不需要修改 ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` -TrainAccuracy=${train_accuracy} + #关键信息打印到${CaseName}.log中,不需要修改 echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log @@ -164,7 +159,8 @@ echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/configs/config.py b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/configs/config.py index d2cd1a0f13cb7d3c8d2b4d03fdfb4bf93da3c920..aceafd8d3ecabd7f96ce940ac936349cae79302a 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/configs/config.py +++ b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/configs/config.py @@ -40,9 +40,9 @@ multi_hot_flags = [False] multi_hot_len = 1 ### #n_epoches =50 -#iterations_per_loop = 10 +iterations_per_loop = 10 n_epoches = 1 -iterations_per_loop = 1 +# iterations_per_loop = 1 #one_step = 50/iterations_per_loop # for one step debug one_step = 0 line_per_sample = 1000 diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/test/train_full_8p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/test/train_full_8p.sh index d83ef0dd5a3ce601505e87ebd03fe12c487e1045..81ff7c389e571bd87b0930259ec132d57af31165 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/test/train_full_8p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/test/train_full_8p.sh @@ -14,7 +14,7 @@ RANK_ID_START=0 data_path="" sed -i "s/n_epoches = 1/n_epoches = 50/g" `grep -rl "n_epoches = 1" ${cur_path}/../configs/config.py` -sed -i "s/iterations_per_loop = 1/iterations_per_loop = 10/g" `grep -rl "iterations_per_loop = 1" ${cur_path}/../configs/config.py` +#sed -i "s/iterations_per_loop = 1/iterations_per_loop = 10/g" `grep -rl "iterations_per_loop = 1" ${cur_path}/../configs/config.py` #基础参数 需要模型审视修改 #网络名称,同目录名称 Network="WideDeep_ID0028_for_TensorFlow" diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/train.py b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/train.py index 6852b54388f51c8d6e4b3347ebd381fdc23ee41e..c7c74ab324475a23d804c64111402acda4c281ce 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/train.py +++ b/TensorFlow/built-in/recommendation/WideDeep_ID0028_for_TensorFlow/train.py @@ -91,7 +91,7 @@ train_para = { 'test_per_epoch': config.test_size, 'batch_size': data_para['batch_size'], 'early_stop_epochs': 50, - # 'iterations_per_loop': config.iterations_per_loop + 'iterations_per_loop': config.iterations_per_loop } # set PIN model param @@ -383,6 +383,7 @@ if __name__ == '__main__': custom_op.parameter_map["min_group_size"].b = 1 custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") custom_op.parameter_map["hcom_parallel"].b = True + custom_op.parameter_map["iterations_per_loop"].i = config.iterations_per_loop if args.over_dump is True: print("NPU overflow dump is enabled") diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_4p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_4p.sh index 5b740ba40a1ad42b66cbbeac00cce9bbf50ab0f4..330625a23c667c976aa4e606aaa93a805611b478 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_4p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_4p.sh @@ -6,7 +6,7 @@ cur_path=`pwd` #集合通信参数,不需要修改 -export HCCL_CONNECT_TIMEOUT=300 +export HCCL_CONNECT_TIMEOUT=1200 #集合通信参数,不需要修改 export RANK_SIZE=4 diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_8p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_8p.sh index 953c6a895c34a662e9bd5145413209f1c228195b..a577a9e1e8eaa998f7f8014e48ca70dfc2400ed7 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_8p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_full_8p.sh @@ -6,7 +6,7 @@ cur_path=`pwd` #集合通信参数,不需要修改 -export HCCL_CONNECT_TIMEOUT=300 +export HCCL_CONNECT_TIMEOUT=1200 #集合通信参数,不需要修改 export RANK_SIZE=8 diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_4p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_4p.sh index be35617020cbb16f85e21961533089b5dd0d6c51..8296478223a22d687cde6e67747bab12d72d0946 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_4p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_4p.sh @@ -5,7 +5,7 @@ cur_path=`pwd` #export ASCEND_SLOG_PRINT_TO_STDOUT=1 #export GE_USE_STATIC_MEMORY=1 -export HCCL_CONNECT_TIMEOUT=300 +export HCCL_CONNECT_TIMEOUT=1200 #集合通信参数,不需要修改 export RANK_SIZE=4 @@ -24,8 +24,8 @@ RankSize=1 #参数配置 data_path="/npu/traindata/ID2940_CarPeting_TF_WideDeep_TF" -train_size=13107200 -display_step=1 +train_size=52428800 +display_step=10 n_epoches=4 #维持参数,以下不需要修改 diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_8p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_8p.sh index 55f195dd29fb41a89944b3bd9a63fc3663d1c2c5..bb0e0a8447cf22315bfaecd5e471ff866e14643e 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_8p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2712_for_TensorFlow/test/train_performance_8p.sh @@ -5,7 +5,7 @@ cur_path=`pwd` #export ASCEND_SLOG_PRINT_TO_STDOUT=1 #export GE_USE_STATIC_MEMORY=1 -export HCCL_CONNECT_TIMEOUT=300 +export HCCL_CONNECT_TIMEOUT=1200 #集合通信参数,不需要修改 export RANK_SIZE=8 @@ -24,8 +24,8 @@ RankSize=1 #参数配置 data_path="/npu/traindata/ID2940_CarPeting_TF_WideDeep_TF" -train_size=13107200 -display_step=1 +train_size=52428800 +display_step=10 n_epoches=4 #维持参数,以下不需要修改 diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p.json index 96078ec8d6a851ca15a96cf8b68938913cf9c798..28426dea5096e8246f782ac2e253794aadbb79a6 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "0", - "device_ip": "192.1.2.8", - "rank_id": "0", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"0","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_0.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_0.json index 96078ec8d6a851ca15a96cf8b68938913cf9c798..28426dea5096e8246f782ac2e253794aadbb79a6 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_0.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_0.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "0", - "device_ip": "192.1.2.8", - "rank_id": "0", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"0","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_1.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_1.json index 8270cbe0e347f7e644c199804764a52690d8a456..d3e1c570bc4f79bcecbbfde405107a021be18098 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_1.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_1.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "1", - "device_ip": "192.1.2.8", - "rank_id": "1", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"1","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_2.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_2.json index 0438819ddf1e1c1425f5f3a706a5e5f7e9da0746..93c4a960c311ffba53d679224927aa01043e2328 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_2.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_2.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "2", - "device_ip": "192.1.2.8", - "rank_id": "2", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"2","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_3.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_3.json index ca9a5ff4ecdf11d5bed59358ccfeea9850d56697..4ed1fcf81f66bb111c3970bd91ee6358806eebe3 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_3.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_3.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "3", - "device_ip": "192.1.2.8", - "rank_id": "3", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"3","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_4.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_4.json index 90872c5e1a567ef0ba4145e9644005f87d4c1174..cdde74396d0e2ebb40ab88e835e0b60b4a713434 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_4.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_4.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "4", - "device_ip": "192.4.2.9", - "rank_id": "4", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"4","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_5.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_5.json index 1b1322f115c2a3dae81f85e46565068e87c8e50f..c0a7890298636b6b73b3f065dafff4c8602b5719 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_5.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_5.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "5", - "device_ip": "192.4.2.9", - "rank_id": "5", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"5","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_6.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_6.json index ea26227f6d4e233f61c3471a6b773f4ac432f4af..2c4b3211286d0efa409e74db5b2447ac23a79e36 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_6.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_6.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "6", - "device_ip": "192.4.2.9", - "rank_id": "6", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"6","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_7.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_7.json index 1ccc40abf4265a459877b44705d097bc9ab3db21..01399b72c57294348981db482d9e621f68669d77 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_7.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/1p_7.json @@ -1,18 +1,8 @@ { - "group_count": "1", - "group_list": - [ - { - "devices": [ - { - "device_id": "7", - "device_ip": "192.4.2.9", - "rank_id": "7", - } - ], - "server_id": "10.155.111.118" - } - ], - "status": "completed", - "version":"1.0" -} \ No newline at end of file +"server_count":"1", +"server_list":[{ + "device":[{"device_id":"7","device_ip":"192.168.1.195","rank_id":"0"}], + "server_id":"127.0.0.1"}], +"status":"completed", +"version":"1.0" +} diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/8p.json b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/8p.json index d13441e11288704f3e3ad5087dadd019d5481a15..3c329456ba1da36824150806dfbaae1b7beffa20 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/8p.json +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/config/8p.json @@ -11,10 +11,10 @@ {"device_id":"4","device_ip":"192.4.2.9","rank_id":"4"}, {"device_id":"5","device_ip":"192.4.2.9","rank_id":"5"}, {"device_id":"6","device_ip":"192.4.2.9","rank_id":"6"}, - {"device_id":"7","device_ip":"192.4.2.9","rank_id":"7"}, + {"device_id":"7","device_ip":"192.4.2.9","rank_id":"7"} ], - "server_id":"10.155.111.118" + "server_id":"127.0.0.1" } ], "status":"completed", diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/test/train_performance_1p.sh index 64ab2617e0318fcc0494239c6617026099635949..e5db039a1b812fe9099f2c8ccf020cbe280b16ea 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/test/train_performance_1p.sh @@ -27,6 +27,9 @@ RankSize=1 #训练epoch,可选 train_epochs=1 +#迭代下沉循环次数 +iteration_per_loop=0 + #参数配置 data_path="" @@ -93,36 +96,40 @@ else mkdir -p $cur_path/output/$ASCEND_DEVICE_ID/ckpt fi -if [ -d $cur_path/../config/1p_$ASCEND_DEVICE.json ];then - export RANK_TABLE_FILE=$cur_path/../config/1p_$ASCEND_DEVICE.json - export RANK_ID=$ASCEND_DEVICE_ID +if [ -f $cur_path/../config/1p_$ASCEND_DEVICE_ID.json ];then + export RANK_TABLE_FILE=$cur_path/../config/1p_$ASCEND_DEVICE_ID.json + export RANK_ID=0 else export RANK_TABLE_FILE=$cur_path/../config/1p_0.json export RANK_ID=0 fi + wait cd $cur_path/../ start=$(date +%s) -python3 -m trainer.task --gpu \ +python3 -m trainer.task \ --Adam \ + --iteration_per_loop=$iteration_per_loop \ --train_data_pattern=$data_path/outbrain/tfrecords/train/part* \ --eval_data_pattern=$data_path/outbrain/tfrecords/eval/part* \ --model_dir=$cur_path/output/$ASCEND_DEVICE_ID/ckpt \ --transformed_metadata_path=$data_path/outbrain/tfrecords \ - --num_epochs=$train_epochs > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & + --num_epochs=$train_epochs \ + --benchmark \ + --global_batch_size=$batch_size > $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log 2>&1 & wait end=$(date +%s) -e2etime=$(( $end - $start )) +e2e_time=$(( $end - $start )) #结果打印,不需要修改 echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 -Time=`grep "INFO:tensorflow:global_step/sec: " $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log| awk -F' ' '{print $2}' | tail -n 2 | head -n +1` -FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*'${Time}'}'` - +#Time=`grep "INFO:tensorflow:global_step/sec: " $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log| awk -F' ' '{print $2}' | tail -n 2 | head -n +1` +#FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'*'${Time}'}'` +FPS=`grep train_throughput $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk -F "train_throughput :" '{print $2}' | sed s/[[:space:]]//g` #打印,不需要修改 echo "Final Performance images/sec : $FPS" @@ -143,7 +150,7 @@ CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' #吞吐量,不需要修改 ActualFPS=${FPS} #单迭代训练时长,不需要修改 -TrainingTime=`awk -v x=320 -v y="$FPS" 'BECIN{printf "%3.f\n",y/x}'` +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'/'${FPS}'}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 loss=`grep 'INFO:tensorflow:loss' $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | tr -d '\b\r' | grep -Eo "INFO:tensorflow:loss = [0-9]*\.[0-9]*" | awk -F' = ' '{print $2}'` diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/trainer/task.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/trainer/task.py index c22742f76797eca15694dd5b3995a332513e198b..dc8bc7bbc2038d522b28f696bc560f80135859ce 100644 --- a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/trainer/task.py +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/trainer/task.py @@ -27,11 +27,11 @@ import tensorflow as tf import tensorflow_transform as tft from tensorflow.core.protobuf import rewriter_config_pb2 from trainer import features -from utils.dataloader import separate_input_fn -from utils.hooks.benchmark_hooks import BenchmarkLoggingHook -from utils.metrics import map_custom_metric, map_custom_metric_with_leak -from utils.schedulers import learning_rate_scheduler - +from util.dataloader import separate_input_fn +from util.hooks.benchmark_hooks import BenchmarkLoggingHook +from util.metrics import map_custom_metric, map_custom_metric_with_leak +from util.schedulers import learning_rate_scheduler +from util.dnn_linear_combined import DNNLinearCombinedClassifier MODEL_TYPES = ['wide', 'deep', 'wide_n_deep'] WIDE, DEEP, WIDE_N_DEEP = MODEL_TYPES @@ -239,6 +239,11 @@ def create_parser(): help='Number of steps for train performance benchmark', type=int, default=100) + parser.add_argument( + '--iteration_per_loop', + help='Number of iters per loop', + type=int, + default=0) return parser @@ -262,7 +267,7 @@ def construct_estimator(model_type, run_config, optimizer=deep_optimizer) elif model_type == WIDE_N_DEEP: - estimator = tf.estimator.DNNLinearCombinedClassifier( + estimator = DNNLinearCombinedClassifier( config=npu_run_config_init(run_config=run_config), linear_feature_columns=wide_columns, linear_optimizer=wide_optimizer, @@ -329,15 +334,14 @@ def main(FLAGS): log_device_placement=FLAGS.log_device_placement ) else: - #session_config = tf.compat.v1.ConfigProto( - # device_count={'GPU': 0}, - # log_device_placement=FLAGS.log_device_placement - #) session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") + if FLAGS.iteration_per_loop: + custom_op.parameter_map["enable_data_pre_proc"].b = True + custom_op.parameter_map["iterations_per_loop"].i = FLAGS.iteration_per_loop session_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF session_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF @@ -361,12 +365,7 @@ def main(FLAGS): int(FLAGS.eval_epoch_interval * steps_per_epoch) count_steps = FLAGS.benchmark_steps + 1 if FLAGS.benchmark else 100 - run_config = tf.estimator.RunConfig(model_dir=model_dir, save_summary_steps=0) \ - .replace(session_config=session_config, - save_checkpoints_steps=save_checkpoints_steps, - save_summary_steps=count_steps, - log_step_count_steps=count_steps, - keep_checkpoint_max=1) + run_config = tf.estimator.RunConfig(model_dir=model_dir, save_summary_steps=0, session_config=session_config, save_checkpoints_steps=save_checkpoints_steps, log_step_count_steps=count_steps, keep_checkpoint_max=1) def wide_optimizer(): opt = tf.compat.v1.train.FtrlOptimizer( @@ -431,6 +430,8 @@ def main(FLAGS): estimator = tf.estimator.add_metrics(estimator, map_custom_metric_with_leak) hooks = [] + if FLAGS.iteration_per_loop: + hooks.append(npu_hook.SetIterationsVarHook(FLAGS.iteration_per_loop)) if FLAGS.hvd: hooks.append(NPUBroadcastGlobalVariablesHook(0, int(os.getenv('RANK_ID', '0')))) @@ -475,6 +476,7 @@ def main(FLAGS): else: # training if FLAGS.benchmark: + print("================is benchmark, not eval") benchmark_hook = BenchmarkLoggingHook(global_batch_size=FLAGS.global_batch_size, warmup_steps=FLAGS.benchmark_warmup_steps) hooks.append(benchmark_hook) @@ -482,6 +484,7 @@ def main(FLAGS): train_throughput = benchmark_hook.mean_throughput.value() dllogger.log(data={'train_throughput': train_throughput}, step=tuple()) else: + print('train and eval') train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=max_steps, hooks=hooks) @@ -498,18 +501,20 @@ def main(FLAGS): if __name__ == '__main__': + FLAGS = create_parser().parse_args() session_config = tf.ConfigProto() custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") - custom_op.parameter_map["graph_memory_max_size"].s= tf.compat.as_bytes(str(16 * 1024 * 1024 * 1024)) - custom_op.parameter_map["variable_memory_max_size"].s = tf.compat.as_bytes(str(15 * 1024 * 1024 * 1024)) + if FLAGS.iteration_per_loop: + print('>>>>>>>>> iteration per loop var: %d'%(FLAGS.iteration_per_loop)) + custom_op.parameter_map["enable_data_pre_proc"].b = True + custom_op.parameter_map["iterations_per_loop"].i = FLAGS.iteration_per_loop session_config.graph_options.rewrite_options.remapping = RewriterConfig.OFF session_config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF (npu_sess, npu_shutdown) = init_resource(config=session_config) - FLAGS = create_parser().parse_args() main(FLAGS) shutdown_resource(npu_sess, npu_shutdown) close_session(npu_sess) diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/dataloader.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/dataloader.py similarity index 100% rename from TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/dataloader.py rename to TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/dataloader.py diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/dnn_linear_combined.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/dnn_linear_combined.py new file mode 100644 index 0000000000000000000000000000000000000000..08b0e2d88ef25cb41e67c05eaaa7eb5f531b8d50 --- /dev/null +++ b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/dnn_linear_combined.py @@ -0,0 +1,1152 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +"""TensorFlow estimators for Linear and DNN joined training models.""" + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import math + +import six + +from tensorflow.python.framework import ops +from tensorflow.python.keras.utils import losses_utils +from tensorflow.python.ops import control_flow_ops +from tensorflow.python.ops import nn +from tensorflow.python.ops import partitioned_variables +from tensorflow.python.ops import state_ops +from tensorflow.python.ops import variable_scope +from tensorflow.python.ops.losses import losses +from tensorflow.python.summary import summary +from tensorflow.python.training import sync_replicas_optimizer +from tensorflow.python.training import training_util +from tensorflow.python.util.tf_export import estimator_export +from tensorflow_estimator.python.estimator import estimator +from tensorflow_estimator.python.estimator.canned import dnn +from tensorflow_estimator.python.estimator.canned import head as head_lib +from tensorflow_estimator.python.estimator.canned import linear +from tensorflow_estimator.python.estimator.canned import optimizers +from tensorflow_estimator.python.estimator.head import head_utils +from tensorflow_estimator.python.estimator.head import regression_head +from tensorflow_estimator.python.estimator.mode_keys import ModeKeys + +# The default learning rates are a historical artifact of the initial +# implementation. +_DNN_LEARNING_RATE = 0.001 +_LINEAR_LEARNING_RATE = 0.005 + + +def _check_no_sync_replicas_optimizer(optimizer): + if isinstance(optimizer, sync_replicas_optimizer.SyncReplicasOptimizer): + raise ValueError( + 'SyncReplicasOptimizer does not support multi optimizers case. ' + 'Therefore, it is not supported in DNNLinearCombined model. ' + 'If you want to use this optimizer, please use either DNN or Linear ' + 'model.') + + +def _linear_learning_rate(num_linear_feature_columns): + """Returns the default learning rate of the linear model. + + The calculation is a historical artifact of this initial implementation, but + has proven a reasonable choice. + + Args: + num_linear_feature_columns: The number of feature columns of the linear + model. + + Returns: + A float. + """ + default_learning_rate = 1. / math.sqrt(num_linear_feature_columns) + return min(_LINEAR_LEARNING_RATE, default_learning_rate) + + +def _add_layer_summary(value, tag): + summary.scalar('%s/fraction_of_zero_values' % tag, nn.zero_fraction(value)) + summary.histogram('%s/activation' % tag, value) + + +def _validate_feature_columns(linear_feature_columns, dnn_feature_columns): + """Validates feature columns DNNLinearCombinedRegressor.""" + linear_feature_columns = linear_feature_columns or [] + dnn_feature_columns = dnn_feature_columns or [] + feature_columns = ( + list(linear_feature_columns) + list(dnn_feature_columns)) + if not feature_columns: + raise ValueError('Either linear_feature_columns or dnn_feature_columns ' + 'must be defined.') + return feature_columns + + +def _dnn_linear_combined_model_fn_v2( + features, + labels, + mode, + head, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + config=None, + batch_norm=False, + linear_sparse_combiner='sum', + loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE): + """Deep Neural Net and Linear combined model_fn. + + Args: + features: dict of `Tensor`. + labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype + `int32` or `int64` in the range `[0, n_classes)`. + mode: Defines whether this is training, evaluation or prediction. See + `ModeKeys`. + head: A `Head` instance. + linear_feature_columns: An iterable containing all the feature columns used + by the Linear model. + linear_optimizer: string, `Optimizer` object, or callable that defines the + optimizer to use for training the Linear model. Defaults to the Ftrl + optimizer. + dnn_feature_columns: An iterable containing all the feature columns used by + the DNN model. + dnn_optimizer: string, `Optimizer` object, or callable that defines the + optimizer to use for training the DNN model. Defaults to the Adagrad + optimizer. + dnn_hidden_units: List of hidden units per DNN layer. + dnn_activation_fn: Activation function applied to each DNN layer. If `None`, + will use `tf.nn.relu`. + dnn_dropout: When not `None`, the probability we will drop out a given DNN + coordinate. + config: `RunConfig` object to configure the runtime settings. + batch_norm: Whether to use batch normalization after each hidden layer. + linear_sparse_combiner: A string specifying how to reduce the linear model + if a categorical column is multivalent. One of "mean", "sqrtn", and + "sum". + loss_reduction: One of `tf.keras.losses.Reduction` except `NONE`. Describes + how to reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`. + + Returns: + An `EstimatorSpec` instance. + + Raises: + ValueError: If both `linear_feature_columns` and `dnn_features_columns` + are empty at the same time, or `input_layer_partitioner` is missing, + or features has the wrong type. + """ + if not isinstance(features, dict): + raise ValueError('features should be a dictionary of `Tensor`s. ' + 'Given type: {}'.format(type(features))) + if not linear_feature_columns and not dnn_feature_columns: + raise ValueError( + 'Either linear_feature_columns or dnn_feature_columns must be defined.') + + del config + + # Build DNN Logits. + if not dnn_feature_columns: + dnn_logits = None + else: + if mode == ModeKeys.TRAIN: + dnn_optimizer = optimizers.get_optimizer_instance_v2( + dnn_optimizer, learning_rate=_DNN_LEARNING_RATE) + _check_no_sync_replicas_optimizer(dnn_optimizer) + + if not dnn_hidden_units: + raise ValueError( + 'dnn_hidden_units must be defined when dnn_feature_columns is ' + 'specified.') + dnn_logits, dnn_trainable_variables, dnn_update_ops = ( + dnn._dnn_model_fn_builder_v2( # pylint: disable=protected-access + units=head.logits_dimension, + hidden_units=dnn_hidden_units, + feature_columns=dnn_feature_columns, + activation_fn=dnn_activation_fn, + dropout=dnn_dropout, + batch_norm=batch_norm, + features=features, + mode=mode)) + + if not linear_feature_columns: + linear_logits = None + else: + if mode == ModeKeys.TRAIN: + linear_optimizer = optimizers.get_optimizer_instance_v2( + linear_optimizer, + learning_rate=_linear_learning_rate(len(linear_feature_columns))) + _check_no_sync_replicas_optimizer(linear_optimizer) + + linear_logits, linear_trainable_variables = ( + linear._linear_model_fn_builder_v2( # pylint: disable=protected-access + units=head.logits_dimension, + feature_columns=linear_feature_columns, + sparse_combiner=linear_sparse_combiner, + features=features)) + _add_layer_summary(linear_logits, 'linear') + + # Combine logits and build full model. + if dnn_logits is not None and linear_logits is not None: + logits = dnn_logits + linear_logits + elif dnn_logits is not None: + logits = dnn_logits + else: + logits = linear_logits + + def _train_op_fn(loss): + """Returns the op to optimize the loss.""" + train_ops = [] + # Scale loss by number of replicas. + if loss_reduction == losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE: + loss = losses_utils.scale_loss_for_distribution(loss) + + if dnn_logits is not None: + train_ops.extend( + dnn_optimizer.get_updates( + loss, + dnn_trainable_variables)) + if dnn_update_ops is not None: + train_ops.extend(dnn_update_ops) + if linear_logits is not None: + train_ops.extend( + linear_optimizer.get_updates( + loss, + linear_trainable_variables)) + train_op = control_flow_ops.group(*train_ops) + return train_op + + # In TRAIN mode, asssign global_step variable to optimizer.iterations to + # make global_step increased correctly, as Hooks relies on global step as + # step counter. Note that, Only one model's optimizer needs this assignment. + if mode == ModeKeys.TRAIN: + if dnn_logits is not None: + dnn_optimizer.iterations = training_util.get_or_create_global_step() + else: + linear_optimizer.iterations = training_util.get_or_create_global_step() + + return head.create_estimator_spec( + features=features, + mode=mode, + labels=labels, + train_op_fn=_train_op_fn, + logits=logits) + + +def _dnn_linear_combined_model_fn(features, + labels, + mode, + head, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + input_layer_partitioner=None, + config=None, + batch_norm=False, + linear_sparse_combiner='sum'): + """Deep Neural Net and Linear combined model_fn. + + Args: + features: dict of `Tensor`. + labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype + `int32` or `int64` in the range `[0, n_classes)`. + mode: Defines whether this is training, evaluation or prediction. + See `ModeKeys`. + head: A `Head` instance. + linear_feature_columns: An iterable containing all the feature columns used + by the Linear model. + linear_optimizer: string, `Optimizer` object, or callable that defines the + optimizer to use for training the Linear model. Defaults to the Ftrl + optimizer. + dnn_feature_columns: An iterable containing all the feature columns used by + the DNN model. + dnn_optimizer: string, `Optimizer` object, or callable that defines the + optimizer to use for training the DNN model. Defaults to the Adagrad + optimizer. + dnn_hidden_units: List of hidden units per DNN layer. + dnn_activation_fn: Activation function applied to each DNN layer. If `None`, + will use `tf.nn.relu`. + dnn_dropout: When not `None`, the probability we will drop out a given DNN + coordinate. + input_layer_partitioner: Partitioner for input layer. + config: `RunConfig` object to configure the runtime settings. + batch_norm: Whether to use batch normalization after each hidden layer. + linear_sparse_combiner: A string specifying how to reduce the linear model + if a categorical column is multivalent. One of "mean", "sqrtn", and + "sum". + Returns: + An `EstimatorSpec` instance. + + Raises: + ValueError: If both `linear_feature_columns` and `dnn_features_columns` + are empty at the same time, or `input_layer_partitioner` is missing, + or features has the wrong type. + """ + if not isinstance(features, dict): + raise ValueError('features should be a dictionary of `Tensor`s. ' + 'Given type: {}'.format(type(features))) + if not linear_feature_columns and not dnn_feature_columns: + raise ValueError( + 'Either linear_feature_columns or dnn_feature_columns must be defined.') + + num_ps_replicas = config.num_ps_replicas if config else 0 + input_layer_partitioner = input_layer_partitioner or ( + partitioned_variables.min_max_variable_partitioner( + max_partitions=num_ps_replicas, + min_slice_size=64 << 20)) + + # Build DNN Logits. + dnn_parent_scope = 'dnn' + + if not dnn_feature_columns: + dnn_logits = None + else: + dnn_optimizer = optimizers.get_optimizer_instance( + dnn_optimizer, learning_rate=_DNN_LEARNING_RATE) + _check_no_sync_replicas_optimizer(dnn_optimizer) + if not dnn_hidden_units: + raise ValueError( + 'dnn_hidden_units must be defined when dnn_feature_columns is ' + 'specified.') + dnn_partitioner = ( + partitioned_variables.min_max_variable_partitioner( + max_partitions=num_ps_replicas)) + with variable_scope.variable_scope( + dnn_parent_scope, + values=tuple(six.itervalues(features)), + partitioner=dnn_partitioner) as scope: + dnn_absolute_scope = scope.name + dnn_logit_fn = dnn.dnn_logit_fn_builder( + units=head.logits_dimension, + hidden_units=dnn_hidden_units, + feature_columns=dnn_feature_columns, + activation_fn=dnn_activation_fn, + dropout=dnn_dropout, + batch_norm=batch_norm, + input_layer_partitioner=input_layer_partitioner) + dnn_logits = dnn_logit_fn(features=features, mode=mode) + + linear_parent_scope = 'linear' + + if not linear_feature_columns: + linear_logits = None + else: + linear_optimizer = optimizers.get_optimizer_instance( + linear_optimizer, + learning_rate=_linear_learning_rate(len(linear_feature_columns))) + _check_no_sync_replicas_optimizer(linear_optimizer) + with variable_scope.variable_scope( + linear_parent_scope, + values=tuple(six.itervalues(features)), + partitioner=input_layer_partitioner) as scope: + linear_absolute_scope = scope.name + logit_fn = linear.linear_logit_fn_builder( + units=head.logits_dimension, + feature_columns=linear_feature_columns, + sparse_combiner=linear_sparse_combiner) + linear_logits = logit_fn(features=features) + _add_layer_summary(linear_logits, scope.name) + + # Combine logits and build full model. + if dnn_logits is not None and linear_logits is not None: + logits = dnn_logits + linear_logits + elif dnn_logits is not None: + logits = dnn_logits + else: + logits = linear_logits + + def _train_op_fn(loss): + """Returns the op to optimize the loss.""" + train_ops = [] + global_step = training_util.get_global_step() + if dnn_logits is not None: + train_ops.append( + dnn_optimizer.minimize( + loss, + var_list=ops.get_collection( + ops.GraphKeys.TRAINABLE_VARIABLES, + scope=dnn_absolute_scope))) + if linear_logits is not None: + train_ops.append( + linear_optimizer.minimize( + loss, + var_list=ops.get_collection( + ops.GraphKeys.TRAINABLE_VARIABLES, + scope=linear_absolute_scope))) + + train_op = control_flow_ops.group(*train_ops, name='IterationOp') + with ops.control_dependencies([train_op]): + return state_ops.assign_add(global_step, 1).op + + return head.create_estimator_spec( + features=features, + mode=mode, + labels=labels, + train_op_fn=_train_op_fn, + logits=logits) + + +@estimator_export('estimator.DNNLinearCombinedClassifier', v1=[]) +class DNNLinearCombinedClassifierV2(estimator.EstimatorV2): + """An estimator for TensorFlow Linear and DNN joined classification models. + + Note: This estimator is also known as wide-n-deep. + + Example: + + ```python + numeric_feature = numeric_column(...) + categorical_column_a = categorical_column_with_hash_bucket(...) + categorical_column_b = categorical_column_with_hash_bucket(...) + + categorical_feature_a_x_categorical_feature_b = crossed_column(...) + categorical_feature_a_emb = embedding_column( + categorical_column=categorical_feature_a, ...) + categorical_feature_b_emb = embedding_column( + categorical_id_column=categorical_feature_b, ...) + + estimator = DNNLinearCombinedClassifier( + # wide settings + linear_feature_columns=[categorical_feature_a_x_categorical_feature_b], + linear_optimizer=tf.train.FtrlOptimizer(...), + # deep settings + dnn_feature_columns=[ + categorical_feature_a_emb, categorical_feature_b_emb, + numeric_feature], + dnn_hidden_units=[1000, 500, 100], + dnn_optimizer=tf.train.ProximalAdagradOptimizer(...), + # warm-start settings + warm_start_from="/path/to/checkpoint/dir") + + # To apply L1 and L2 regularization, you can set dnn_optimizer to: + tf.train.ProximalAdagradOptimizer( + learning_rate=0.1, + l1_regularization_strength=0.001, + l2_regularization_strength=0.001) + # To apply learning rate decay, you can set dnn_optimizer to a callable: + lambda: tf.AdamOptimizer( + learning_rate=tf.exponential_decay( + learning_rate=0.1, + global_step=tf.get_global_step(), + decay_steps=10000, + decay_rate=0.96) + # It is the same for linear_optimizer. + + # Input builders + def input_fn_train: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_eval: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_predict: + # Returns tf.data.Dataset of (x, None) tuple. + pass + estimator.train(input_fn=input_fn_train, steps=100) + metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10) + predictions = estimator.predict(input_fn=input_fn_predict) + ``` + + Input of `train` and `evaluate` should have following features, + otherwise there will be a `KeyError`: + + * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: + - if `column` is a `_CategoricalColumn`, a feature with `key=column.name` + whose `value` is a `SparseTensor`. + - if `column` is a `_WeightedCategoricalColumn`, two features: the first + with `key` the id column name, the second with `key` the weight column + name. Both features' `value` must be a `SparseTensor`. + - if `column` is a `_DenseColumn`, a feature with `key=column.name` + whose `value` is a `Tensor`. + + Loss is calculated by using softmax cross entropy. + + @compatibility(eager) + Estimators can be used while eager execution is enabled. Note that `input_fn` + and all hooks are executed inside a graph context, so they have to be written + to be compatible with graph mode. Note that `input_fn` code using `tf.data` + generally works in both graph and eager modes. + @end_compatibility + """ + + def __init__(self, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + n_classes=2, + weight_column=None, + label_vocabulary=None, + config=None, + warm_start_from=None, + loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, + batch_norm=False, + linear_sparse_combiner='sum'): + """Initializes a DNNLinearCombinedClassifier instance. + + Args: + model_dir: Directory to save model parameters, graph and etc. This can + also be used to load checkpoints from the directory into a estimator + to continue training a previously saved model. + linear_feature_columns: An iterable containing all the feature columns + used by linear part of the model. All items in the set must be + instances of classes derived from `FeatureColumn`. + linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the linear part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL + optimizer. + dnn_feature_columns: An iterable containing all the feature columns used + by deep part of the model. All items in the set must be instances of + classes derived from `FeatureColumn`. + dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the deep part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to Adagrad + optimizer. + dnn_hidden_units: List of hidden units per layer. All layers are fully + connected. + dnn_activation_fn: Activation function applied to each layer. If None, + will use `tf.nn.relu`. + dnn_dropout: When not None, the probability we will drop out + a given coordinate. + n_classes: Number of label classes. Defaults to 2, namely binary + classification. Must be > 1. + weight_column: A string or a `_NumericColumn` created by + `tf.feature_column.numeric_column` defining feature column representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. If it is a string, it is + used as a key to fetch weight tensor from the `features`. If it is a + `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, + then weight_column.normalizer_fn is applied on it to get weight tensor. + label_vocabulary: A list of strings represents possible label values. If + given, labels must be string type and have any value in + `label_vocabulary`. If it is not given, that means labels are + already encoded as integer or float within [0, 1] for `n_classes=2` and + encoded as integer values in {0, 1,..., n_classes-1} for `n_classes`>2 . + Also there will be errors if vocabulary is not provided and labels are + string. + config: RunConfig object to configure the runtime settings. + warm_start_from: A string filepath to a checkpoint to warm-start from, or + a `WarmStartSettings` object to fully configure warm-starting. If the + string filepath is provided instead of a `WarmStartSettings`, then all + weights are warm-started, and it is assumed that vocabularies and Tensor + names are unchanged. + loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how + to reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`. + batch_norm: Whether to use batch normalization after each hidden layer. + linear_sparse_combiner: A string specifying how to reduce the linear model + if a categorical column is multivalent. One of "mean", "sqrtn", and + "sum" -- these are effectively different ways to do example-level + normalization, which can be useful for bag-of-words features. For more + details, see `tf.feature_column.linear_model`. + + Raises: + ValueError: If both linear_feature_columns and dnn_features_columns are + empty at the same time. + """ + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + head = head_utils.binary_or_multi_class_head( + n_classes, weight_column=weight_column, + label_vocabulary=label_vocabulary, + loss_reduction=loss_reduction) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn_v2( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + config=config, + batch_norm=batch_norm, + linear_sparse_combiner=linear_sparse_combiner, + loss_reduction=loss_reduction) + + super(DNNLinearCombinedClassifierV2, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config, + warm_start_from=warm_start_from) + + +#@estimator_export(v1=['estimator.DNNLinearCombinedClassifier']) # pylint: disable=missing-docstring +class DNNLinearCombinedClassifier(estimator.Estimator): + __doc__ = DNNLinearCombinedClassifierV2.__doc__.replace( + 'SUM_OVER_BATCH_SIZE', 'SUM') + + def __init__(self, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + n_classes=2, + weight_column=None, + label_vocabulary=None, + input_layer_partitioner=None, + config=None, + warm_start_from=None, + loss_reduction=losses.Reduction.SUM, + batch_norm=False, + linear_sparse_combiner='sum'): + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + head = head_lib._binary_logistic_or_multi_class_head( # pylint: disable=protected-access + n_classes, weight_column, label_vocabulary, loss_reduction) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + input_layer_partitioner=input_layer_partitioner, + config=config, + batch_norm=batch_norm, + linear_sparse_combiner=linear_sparse_combiner) + + super(DNNLinearCombinedClassifier, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config, + warm_start_from=warm_start_from) + + +def _init_dnn_linear_combined_estimator( + head, + linear_feature_columns, + linear_optimizer, + dnn_feature_columns, + dnn_optimizer, + dnn_hidden_units, + dnn_activation_fn, + dnn_dropout, + input_layer_partitioner, + linear_sparse_combiner): + """Helper function for the initialization of DNNLinearCombinedEstimator.""" + linear_feature_columns = linear_feature_columns or [] + dnn_feature_columns = dnn_feature_columns or [] + feature_columns = ( + list(linear_feature_columns) + list(dnn_feature_columns)) + if not feature_columns: + raise ValueError('Either linear_feature_columns or dnn_feature_columns ' + 'must be defined.') + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + input_layer_partitioner=input_layer_partitioner, + config=config, + linear_sparse_combiner=linear_sparse_combiner) + return feature_columns, _model_fn + + +# TODO(b/117517419): Update these contrib references once head moves to core. +# Also references to the "_Head" class need to be replaced with "Head". +@estimator_export('estimator.DNNLinearCombinedEstimator', v1=[]) +class DNNLinearCombinedEstimatorV2(estimator.EstimatorV2): + """An estimator for TensorFlow Linear and DNN joined models with custom head. + + Note: This estimator is also known as wide-n-deep. + + Example: + + ```python + numeric_feature = numeric_column(...) + categorical_column_a = categorical_column_with_hash_bucket(...) + categorical_column_b = categorical_column_with_hash_bucket(...) + + categorical_feature_a_x_categorical_feature_b = crossed_column(...) + categorical_feature_a_emb = embedding_column( + categorical_column=categorical_feature_a, ...) + categorical_feature_b_emb = embedding_column( + categorical_column=categorical_feature_b, ...) + + estimator = DNNLinearCombinedEstimator( + head=tf.contrib.estimator.multi_label_head(n_classes=3), + # wide settings + linear_feature_columns=[categorical_feature_a_x_categorical_feature_b], + linear_optimizer=tf.train.FtrlOptimizer(...), + # deep settings + dnn_feature_columns=[ + categorical_feature_a_emb, categorical_feature_b_emb, + numeric_feature], + dnn_hidden_units=[1000, 500, 100], + dnn_optimizer=tf.train.ProximalAdagradOptimizer(...)) + + # To apply L1 and L2 regularization, you can set dnn_optimizer to: + tf.train.ProximalAdagradOptimizer( + learning_rate=0.1, + l1_regularization_strength=0.001, + l2_regularization_strength=0.001) + # To apply learning rate decay, you can set dnn_optimizer to a callable: + lambda: tf.AdamOptimizer( + learning_rate=tf.exponential_decay( + learning_rate=0.1, + global_step=tf.get_global_step(), + decay_steps=10000, + decay_rate=0.96) + # It is the same for linear_optimizer. + + # Input builders + def input_fn_train: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_eval: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_predict: + # Returns tf.data.Dataset of (x, None) tuple. + pass + estimator.train(input_fn=input_fn_train, steps=100) + metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10) + predictions = estimator.predict(input_fn=input_fn_predict) + ``` + + Input of `train` and `evaluate` should have following features, + otherwise there will be a `KeyError`: + + * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: + - if `column` is a `_CategoricalColumn`, a feature with `key=column.name` + whose `value` is a `SparseTensor`. + - if `column` is a `_WeightedCategoricalColumn`, two features: the first + with `key` the id column name, the second with `key` the weight column + name. Both features' `value` must be a `SparseTensor`. + - if `column` is a `_DenseColumn`, a feature with `key=column.name` + whose `value` is a `Tensor`. + + Loss is calculated by using mean squared error. + + @compatibility(eager) + Estimators can be used while eager execution is enabled. Note that `input_fn` + and all hooks are executed inside a graph context, so they have to be written + to be compatible with graph mode. Note that `input_fn` code using `tf.data` + generally works in both graph and eager modes. + @end_compatibility + """ + + def __init__(self, + head, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + config=None, + linear_sparse_combiner='sum'): + """Initializes a DNNLinearCombinedEstimator instance. + + Args: + head: A `_Head` instance constructed with a method such as + `tf.contrib.estimator.multi_label_head`. + model_dir: Directory to save model parameters, graph and etc. This can + also be used to load checkpoints from the directory into an estimator + to continue training a previously saved model. + linear_feature_columns: An iterable containing all the feature columns + used by linear part of the model. All items in the set must be + instances of classes derived from `FeatureColumn`. + linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the linear part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL + optimizer. + dnn_feature_columns: An iterable containing all the feature columns used + by deep part of the model. All items in the set must be instances of + classes derived from `FeatureColumn`. + dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the deep part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to Adagrad + optimizer. + dnn_hidden_units: List of hidden units per layer. All layers are fully + connected. + dnn_activation_fn: Activation function applied to each layer. If None, + will use `tf.nn.relu`. + dnn_dropout: When not None, the probability we will drop out + a given coordinate. + config: RunConfig object to configure the runtime settings. + linear_sparse_combiner: A string specifying how to reduce the linear model + if a categorical column is multivalent. One of "mean", "sqrtn", and + "sum" -- these are effectively different ways to do example-level + normalization, which can be useful for bag-of-words features. For more + details, see `tf.feature_column.linear_model`. + + Raises: + ValueError: If both linear_feature_columns and dnn_features_columns are + empty at the same time. + """ + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn_v2( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + config=config, + linear_sparse_combiner=linear_sparse_combiner) + + super(DNNLinearCombinedEstimatorV2, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config) + + +@estimator_export(v1=['estimator.DNNLinearCombinedEstimator']) # pylint: disable=missing-docstring +class DNNLinearCombinedEstimator(estimator.Estimator): + __doc__ = DNNLinearCombinedEstimatorV2.__doc__ + + def __init__(self, + head, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + input_layer_partitioner=None, + config=None, + linear_sparse_combiner='sum'): + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + input_layer_partitioner=input_layer_partitioner, + config=config, + linear_sparse_combiner=linear_sparse_combiner) + + super(DNNLinearCombinedEstimator, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config) + + +@estimator_export('estimator.DNNLinearCombinedRegressor', v1=[]) +class DNNLinearCombinedRegressorV2(estimator.EstimatorV2): + """An estimator for TensorFlow Linear and DNN joined models for regression. + + Note: This estimator is also known as wide-n-deep. + + Example: + + ```python + numeric_feature = numeric_column(...) + categorical_column_a = categorical_column_with_hash_bucket(...) + categorical_column_b = categorical_column_with_hash_bucket(...) + + categorical_feature_a_x_categorical_feature_b = crossed_column(...) + categorical_feature_a_emb = embedding_column( + categorical_column=categorical_feature_a, ...) + categorical_feature_b_emb = embedding_column( + categorical_column=categorical_feature_b, ...) + + estimator = DNNLinearCombinedRegressor( + # wide settings + linear_feature_columns=[categorical_feature_a_x_categorical_feature_b], + linear_optimizer=tf.train.FtrlOptimizer(...), + # deep settings + dnn_feature_columns=[ + categorical_feature_a_emb, categorical_feature_b_emb, + numeric_feature], + dnn_hidden_units=[1000, 500, 100], + dnn_optimizer=tf.train.ProximalAdagradOptimizer(...), + # warm-start settings + warm_start_from="/path/to/checkpoint/dir") + + # To apply L1 and L2 regularization, you can set dnn_optimizer to: + tf.train.ProximalAdagradOptimizer( + learning_rate=0.1, + l1_regularization_strength=0.001, + l2_regularization_strength=0.001) + # To apply learning rate decay, you can set dnn_optimizer to a callable: + lambda: tf.AdamOptimizer( + learning_rate=tf.exponential_decay( + learning_rate=0.1, + global_step=tf.get_global_step(), + decay_steps=10000, + decay_rate=0.96) + # It is the same for linear_optimizer. + + # Input builders + def input_fn_train: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_eval: + # Returns tf.data.Dataset of (x, y) tuple where y represents label's class + # index. + pass + def input_fn_predict: + # Returns tf.data.Dataset of (x, None) tuple. + pass + estimator.train(input_fn=input_fn_train, steps=100) + metrics = estimator.evaluate(input_fn=input_fn_eval, steps=10) + predictions = estimator.predict(input_fn=input_fn_predict) + ``` + + Input of `train` and `evaluate` should have following features, + otherwise there will be a `KeyError`: + + * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: + - if `column` is a `_CategoricalColumn`, a feature with `key=column.name` + whose `value` is a `SparseTensor`. + - if `column` is a `_WeightedCategoricalColumn`, two features: the first + with `key` the id column name, the second with `key` the weight column + name. Both features' `value` must be a `SparseTensor`. + - if `column` is a `_DenseColumn`, a feature with `key=column.name` + whose `value` is a `Tensor`. + + Loss is calculated by using mean squared error. + + @compatibility(eager) + Estimators can be used while eager execution is enabled. Note that `input_fn` + and all hooks are executed inside a graph context, so they have to be written + to be compatible with graph mode. Note that `input_fn` code using `tf.data` + generally works in both graph and eager modes. + @end_compatibility + """ + + def __init__(self, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + label_dimension=1, + weight_column=None, + config=None, + warm_start_from=None, + loss_reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, + batch_norm=False, + linear_sparse_combiner='sum'): + """Initializes a DNNLinearCombinedRegressor instance. + + Args: + model_dir: Directory to save model parameters, graph and etc. This can + also be used to load checkpoints from the directory into a estimator + to continue training a previously saved model. + linear_feature_columns: An iterable containing all the feature columns + used by linear part of the model. All items in the set must be + instances of classes derived from `FeatureColumn`. + linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the linear part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to FTRL + optimizer. + dnn_feature_columns: An iterable containing all the feature columns used + by deep part of the model. All items in the set must be instances of + classes derived from `FeatureColumn`. + dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to + the deep part of the model. Can also be a string (one of 'Adagrad', + 'Adam', 'Ftrl', 'RMSProp', 'SGD'), or callable. Defaults to Adagrad + optimizer. + dnn_hidden_units: List of hidden units per layer. All layers are fully + connected. + dnn_activation_fn: Activation function applied to each layer. If None, + will use `tf.nn.relu`. + dnn_dropout: When not None, the probability we will drop out + a given coordinate. + label_dimension: Number of regression targets per example. This is the + size of the last dimension of the labels and logits `Tensor` objects + (typically, these have shape `[batch_size, label_dimension]`). + weight_column: A string or a `_NumericColumn` created by + `tf.feature_column.numeric_column` defining feature column representing + weights. It is used to down weight or boost examples during training. It + will be multiplied by the loss of the example. If it is a string, it is + used as a key to fetch weight tensor from the `features`. If it is a + `_NumericColumn`, raw tensor is fetched by key `weight_column.key`, + then weight_column.normalizer_fn is applied on it to get weight tensor. + config: RunConfig object to configure the runtime settings. + warm_start_from: A string filepath to a checkpoint to warm-start from, or + a `WarmStartSettings` object to fully configure warm-starting. If the + string filepath is provided instead of a `WarmStartSettings`, then all + weights are warm-started, and it is assumed that vocabularies and Tensor + names are unchanged. + loss_reduction: One of `tf.losses.Reduction` except `NONE`. Describes how + to reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`. + batch_norm: Whether to use batch normalization after each hidden layer. + linear_sparse_combiner: A string specifying how to reduce the linear model + if a categorical column is multivalent. One of "mean", "sqrtn", and + "sum" -- these are effectively different ways to do example-level + normalization, which can be useful for bag-of-words features. For more + details, see `tf.feature_column.linear_model`. + + Raises: + ValueError: If both linear_feature_columns and dnn_features_columns are + empty at the same time. + """ + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + head = regression_head.RegressionHead( + label_dimension=label_dimension, + weight_column=weight_column, + loss_reduction=loss_reduction) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn_v2( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + config=config, + batch_norm=batch_norm, + linear_sparse_combiner=linear_sparse_combiner) + + super(DNNLinearCombinedRegressorV2, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config, + warm_start_from=warm_start_from) + + +@estimator_export(v1=['estimator.DNNLinearCombinedRegressor']) # pylint: disable=missing-docstring +class DNNLinearCombinedRegressor(estimator.Estimator): + __doc__ = DNNLinearCombinedRegressorV2.__doc__.replace( + 'SUM_OVER_BATCH_SIZE', 'SUM') + + def __init__(self, + model_dir=None, + linear_feature_columns=None, + linear_optimizer='Ftrl', + dnn_feature_columns=None, + dnn_optimizer='Adagrad', + dnn_hidden_units=None, + dnn_activation_fn=nn.relu, + dnn_dropout=None, + label_dimension=1, + weight_column=None, + input_layer_partitioner=None, + config=None, + warm_start_from=None, + loss_reduction=losses.Reduction.SUM, + batch_norm=False, + linear_sparse_combiner='sum'): + self._feature_columns = _validate_feature_columns( + linear_feature_columns=linear_feature_columns, + dnn_feature_columns=dnn_feature_columns) + + head = head_lib._regression_head( # pylint: disable=protected-access + label_dimension=label_dimension, + weight_column=weight_column, + loss_reduction=loss_reduction) + + def _model_fn(features, labels, mode, config): + """Call the _dnn_linear_combined_model_fn.""" + return _dnn_linear_combined_model_fn( + features=features, + labels=labels, + mode=mode, + head=head, + linear_feature_columns=linear_feature_columns, + linear_optimizer=linear_optimizer, + dnn_feature_columns=dnn_feature_columns, + dnn_optimizer=dnn_optimizer, + dnn_hidden_units=dnn_hidden_units, + dnn_activation_fn=dnn_activation_fn, + dnn_dropout=dnn_dropout, + input_layer_partitioner=input_layer_partitioner, + config=config, + batch_norm=batch_norm, + linear_sparse_combiner=linear_sparse_combiner) + + super(DNNLinearCombinedRegressor, self).__init__( + model_fn=_model_fn, + model_dir=model_dir, + config=config, + warm_start_from=warm_start_from) diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/hooks/benchmark_hooks.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/hooks/benchmark_hooks.py similarity index 100% rename from TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/hooks/benchmark_hooks.py rename to TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/hooks/benchmark_hooks.py diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/hooks/training_hooks.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/hooks/training_hooks.py similarity index 100% rename from TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/hooks/training_hooks.py rename to TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/hooks/training_hooks.py diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/metrics.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/metrics.py similarity index 100% rename from TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/metrics.py rename to TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/metrics.py diff --git a/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/schedulers.py b/TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/schedulers.py similarity index 100% rename from TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/utils/schedulers.py rename to TensorFlow/built-in/recommendation/WideDeep_ID2940_for_TensorFlow/util/schedulers.py diff --git a/TensorFlow/built-in/recommendation/deepFM_unkownshape_ID0091_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/built-in/recommendation/deepFM_unkownshape_ID0091_for_TensorFlow/test/train_full_1p.sh index 81e47ad1016826a6bc2f92ba1d6a182fa4da476f..21a0df2a07b3d4693cebb762edd70db7aafaa101 100644 --- a/TensorFlow/built-in/recommendation/deepFM_unkownshape_ID0091_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/built-in/recommendation/deepFM_unkownshape_ID0091_for_TensorFlow/test/train_full_1p.sh @@ -102,7 +102,9 @@ fi - +#参数修改 +sed -i 's|"device\_id"\:"0"|"device_\id"\:"'$ASCEND_DEVICE_ID'"|g' $cur_path/../configs/hccl.json +wait #训练开始时间,不需要修改 @@ -114,7 +116,7 @@ for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); do #设置环境变量,不需要修改 echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$ASCEND_DEVICE_ID + export RANK_ID=$RANK_ID_START #自行设置变量 export RANK_TABLE_FILE=$cur_path/../configs/hccl.json diff --git a/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/README.md b/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/README.md index aff092c78f1ab1e0cb6bdf942db6799bc5a120c1..3ad066c0956ca2d105868d70ef5848c00aa8b501 100644 --- a/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/README.md @@ -141,24 +141,7 @@ Epoch 1/15: 0%| | 0/1000 [00:00性能指标 + +| gpu | npu | +|-----------|-------------| +|92.4 (it/s)|125.51 (it/s)| diff --git a/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/test/train_performance_1p.sh index 1bbb9a1daff5ad772f5af0dfb7a8db6980d01130..163217427d76372c3aa213224cb7f77631d6611d 100644 --- a/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/ADAGAN_ID2115_for_TensorFlow/test/train_performance_1p.sh @@ -125,9 +125,11 @@ e2e_time=$(( $end_time - $start_time )) #结果打印,不需要修改 echo "------------------ Final result ------------------" +##获取性能数据,不需要修改 +#吞吐量 +ActualFPS=`cat ${cur_path}test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | grep -Eo "[0-9]*\.[0-9]*it/s" | tail -n 10 | awk -F "i" '{print $1}' | awk '{sum+=$1} END {print "", sum/NR}' | awk '{print $1}'` #输出性能FPS,需要模型审视修改 -TrainingTime1=`grep "Perf: " $cur_path/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log |awk 'END {print $2}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${TrainingTime1}'/'3'}'` +TrainingTime=`awk 'BEGIN{printf "%.2f\n", '1'/'${ActualFPS}'}'` #性能看护结果汇总 #训练用例信息,不需要修改 @@ -135,10 +137,6 @@ BatchSize=${batch_size} DeviceType=`uname -m` CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' -##获取性能数据,不需要修改 -#吞吐量 -ActualFPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${TrainingTime}'}'` - #获取模型精度 train_accuracy=`grep "C= " $cur_path/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log |awk 'END {print $8}'` diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/README.md b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/README.md index a6c4f49874e549c640a839502ad6b2004512370d..68fdd45c69f8fc6458cec5845ee4cb97e25296fe 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/README.md @@ -1,65 +1,239 @@ -### **BicycleGAN** +

基本信息

+ +**发布者(Publisher):Huawei** + +**应用领域(Application Domain):** ImageGeneration + +**版本(Version):1.1** + +**修改时间(Modified) :2022.04.21** + +**大小(Size):** + +**框架(Framework):TensorFlow 1.15.0** + +**模型格式(Model Format):** + +**精度(Precision):** + +**处理器(Processor):昇腾910** + +**应用级别(Categories):Research** + +**描述(Description):基于TensorFlow框架的BicycleGAN图像生成网络训练代码** + +

概述

+ BicycleGAN模型是Toward Multimodal Image-to-Image Translation论文的Tensorflow的实现,该论文的核心思想体现在确保输入噪声向量与输出图像的双向映射一致性。BicycleGAN通过结合cVAE-GAN和cLR-GAN这两个方法来共同地促进隐层向量和输出图像在两个方向上的连接。通过BicycleGAN生成的图像多样性更好,且更具有视觉上的真实性。 +- 参考论文: + + [Zhu, Jun-Yan, et al. "Toward multimodal image-to-image translation." Advances in neural information processing systems 30 (2017).] + - arXiv:1711.11586(https://arxiv.org/pdf/arXiv:1711.11586.pdf) + +- 参考实现: + + https://github.com/prakashpandey9/BicycleGAN + +- 适配昇腾 AI 处理器的实现: + + + https://gitee.com/ascend/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow + + + +- 通过Git获取对应commit\_id的代码方法如下: + + ``` + git clone {repository_url} # 克隆仓库的代码 + cd {repository_name} # 切换到模型的代码仓目录 + git checkout {branch} # 切换到对应分支 + git reset --hard {commit_id} # 代码设置到对应的commit_id + cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换 + ``` + +- 精度 + +| | GPU | NPU | +|-------|-------|-------| +| LPIPS | 0.412 | 0.392 | + +- 性能 + +| batchsize | image_size | GPU (v100) | NPU | +|-----------|------------|---|---| +| 1 | 256 x 256 | | | + + +## 默认配置 + +- 训练数据集预处理(以原论文的maps训练集为例,仅作为用户参考示例): + + - 图像的输入尺寸为256*256 + - 图像输入格式:JEPG + - 输入图像进行归一化至[-1,1] + +- 测试数据集预处理(以原论文的maps验证集为例,仅作为用户参考示例) + + - 图像的输入尺寸为256*256 + - 图像输入格式:JEPG + - 输入图像进行归一化至[-1,1] + +- 训练超参 + + - Batch size: 1 + - Learning rate(LR): 0.0002 + - Optimizer: Adam + - Train epoch: 20 + +## 支持特性 + +| 特性列表 | 是否支持 | +|-------|------| +| 分布式训练 | 否 | +| 混合精度 | 否 | +| 并行数据 | 否 | + + -### **概述** +

训练环境准备

-迁移NIMA到ascend910平台 -将结果与原论文进行比较 +1. 硬件环境准备请参见各硬件产品文档"[驱动和固件安装升级指南]( https://support.huawei.com/enterprise/zh/category/ai-computing-platform-pid-1557196528909)"。需要在硬件设备上安装与CANN版本配套的固件与驱动。 +2. 宿主机上需要安装Docker并登录[Ascend Hub中心](https://ascendhub.huawei.com/#/detail?name=ascend-tensorflow-arm)获取镜像。 - | | 论文 | ascend | -|----------------|------|--------| -| LIPIS Distance | 0.110±0.002 | 待测 | + 当前模型支持的镜像列表如[表1](#zh-cn_topic_0000001074498056_table1519011227314)所示。 + **表 1** 镜像列表 -### Requirements + + + + + + + + + + + +

镜像名称

+

镜像版本

+

配套CANN版本

+
+

20.2.0

+

20.2

+
-1. Tensorflow 1.15 -### **代码及路径解释** +

快速上手

+- 数据集准备 +1. 模型训练使用原论文提供的maps数据集,数据集请用户自行获取。 +2. 获得数据集后,放入模型目录下,在训练脚本中指定数据集路径,可正常使用。 + + +## 模型训练 + +- 单击“立即下载”,并选择合适的下载方式下载源码包。 + +- 启动训练之前,首先要配置程序运行相关环境变量。 + + 环境变量配置信息参见: + + [Ascend 910训练平台环境变量设置](https://gitee.com/ascend/modelzoo/wikis/Ascend%20910%E8%AE%AD%E7%BB%83%E5%B9%B3%E5%8F%B0%E7%8E%AF%E5%A2%83%E5%8F%98%E9%87%8F%E8%AE%BE%E7%BD%AE?sort_id=3148819) + +- 单卡训练 + + 1. 配置训练参数。 + + 首先在脚本test/train_full_1p.sh中,配置训练数据集路径,请用户根据实际路径配置,数据集参数如下所示: + + ``` + --data_path ./dataset + ``` + + 2. 启动训练。 + + 启动单卡训练 (脚本为modelarts_entry_acc.py) + + ``` + python3 modelarts_entry_acc.py + ``` + + + +

迁移学习指导

+ +- 数据集准备。 + + 数据集要求如下: + + 1. 获取数据。 + + 如果要使用自己的数据集,需要将数据集放到脚本参数data_path对应目录下。参考代码中的数据集存放路径如下: + + - 训练集: ./dataset/train + - 测试集: ./dataset/val + + 数据集也可以放在其它目录,则修改对应的脚本入参data_path即可。 + + +- 模型训练。 + + 参考“模型训练”中训练步骤。 + +- 模型评估。 + + 参考“模型训练”中验证步骤。 + +

高级参考

+ +## 脚本和示例代码 ``` -BicycleGAN +BicycyeGAN └─ ├─README.md - ├─folder_npu.py 用于检查文件夹结构 - ├─layers.py 用于创建基础的神经层 - ├─load_data_npu.py 用于创建数据流 - ├─log.py 用于创建训练日志 - ├─model_npu_tmp.py 用于定义模型结构 - ├─main_npu.py 用于启动训练和测试过程 - ├─maps 用于存放训练数据集 obs://bicyclegan/BicycleGAN2/maps/ + ├─dataset用于存放训练数据集 ├─train - └─... - ├─val - └─... - ├─checkpoints 用于存放训练好的模型文件 - ├─logs 用于存放训练日志 - ├─results 用于存放训练集和测试集的测试的结果 - ├─train_1p.sh 模型的启动脚本, - ├─test_1p.sh 模型的启动测试脚本 + └─val + ├─logs 用于存放日志文件 + ├─... + └─... + ├─weights 用于存放预训练模型 + ├─net-lin_alex_v0.1.pb + └─... + ├─results 用于模型生成的图片 + ├─net-lin_alex_v0.1.pb + └─... ``` -### **数据集和模型** -BicycleGAN模型所使用的数据集为Google maps-satellites,是一个pixel to pixel的风格迁移数据集,其中包括1096张实际街景图片和与之对应的地图标签。 +## 脚本参数 +``` + +--Z_dim Decoder后向量的维度,默认是8 +--reconst_coeff Reconstruction的系数,默认是10 +--latent_coeff Latent的系数,默认是0.5 +--kl_coeff KL的系数,默认是0.01 +--learning_rate 学习率,默认是0.0002 +--image_size 输入的图片大小,默认是256 +--batch_size 训练的batch大小,默认是1 +--epoch 训练的epoch数,默认是20 +--data_path 训练集文件路径 +--output_path 日志,模型文件等存放的路径 +``` -### 训练过程及结果 -epoch=200 \ -batch_size=1 \ -lr=0.0002 \ -耗费近1小时 +## 训练过程 -### 数据集百度云链接及提取码 -链接:https://pan.baidu.com/s/17rKdfkp_8_pvn89nII13fg -提取码:zdx1 +1. 通过“模型训练”中的训练指令启动单卡训练。 + +2. 参考脚本的模型存储路径为./checkpoint。 + + + +## 推理/验证过程 - **启动训练和测试过程** -执行shell脚本: -``` -bash train_1p.sh -``` \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/eval.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/eval.py new file mode 100644 index 0000000000000000000000000000000000000000..73f2c567162854e2e12bdd8501861ddf529f7061 --- /dev/null +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/eval.py @@ -0,0 +1,77 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import numpy as np +from tqdm import tqdm +import tensorflow as tf +import lpips_tf +from PIL import Image +from npu_bridge.npu_init import * +from tensorflow_core.core.protobuf.rewriter_config_pb2 import RewriterConfig + + +def eval_tf(basedir): + # NPU config + config = tf.ConfigProto() + custom_op = config.graph_options.rewrite_options.custom_optimizers.add() + custom_op.name = "NpuOptimizer" + config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显式关闭 + config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF # 必须显式关闭 + + with tf.Session(config=config) as sess: + image_dirs = [] + for root, dirs, files in os.walk(basedir): # find all dirs + if dirs != []: + for dirname in dirs: + full_dirname = os.path.join(root, dirname) + image_dirs.append(full_dirname) + + dist_consecutive = [] + image0_ph = tf.placeholder(tf.float32) + image1_ph = tf.placeholder(tf.float32) + dist_t = lpips_tf.lpips(image0_ph, image1_ph) + + for dir in tqdm(image_dirs): # find all pictures of the dir + lpips_pairs = [] + files = os.listdir(dir) + for file in files: + if file.startswith('random'): + path = os.path.join(dir, file) + image = Image.open(path) + image = np.asarray(image.resize((256, 256), Image.BICUBIC)) + # when evaluating,the image is normalized to [0,1], + # because the lpips will do the work that transforms [0,1] to [-1,1] + image = image.astype(np.float32) / 255.0 + lpips_pairs.append(image) + + for i in range(0, len(lpips_pairs) - 1): # consecutive test,computing (N-1) pairs + dist = sess.run(dist_t, feed_dict={image0_ph: lpips_pairs[i], image1_ph: lpips_pairs[i + 1]}) + dist_consecutive.append(dist) + + print('Final Average Distances : {}'.format(sum(dist_consecutive) / len(dist_consecutive))) diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder_npu.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder.py similarity index 96% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder_npu.py rename to TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder.py index 5c68ac5282cf60884ffee6af5d5d9f16cb94f618..8ebbc72083636f07eeecc0b144ff1678e57bcd7e 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder_npu.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/folder.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -28,11 +27,10 @@ # limitations under the License. import os -# import moxing as mox def check_folder(log_dir): if not os.path.exists(log_dir): - os.mkdir(log_dir) + os.makedirs(log_dir) # print (log_dir) return log_dir diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/layers.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/layers.py index 5fa36fb343798195e158ee050f9dea9b905e6153..40e780535ca73d35229f78cb1f5adb1cfa7859a8 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/layers.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/layers.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -104,8 +103,8 @@ def deconv2d_layer(x, out_channel, filter_height, filter_width, stride_height, s # Function for Residual Blocks def residual_block1(input, num_filters, filter_size, is_training, name="res_block"): with tf.variable_scope(name): - x_shortcut = input - x = lrelu_layer(bn_layer(conv2d_layer(input, num_filters, filter_size, filter_size, 2, 2, name='res_convd1'), + x_shortcut = x + x = lrelu_layer(bn_layer(conv2d_layer(x, num_filters, filter_size, filter_size, 2, 2, name='res_convd1'), is_training=is_training, scope='ebn_1')) x = bn_layer(conv2d_layer(x, num_filters, 1, 1, 1, 1, name='res_convd2'), is_training=is_training, scope='ebn_2') diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data_npu.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data.py similarity index 30% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data_npu.py rename to TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data.py index 08686cb8b9ee64b1106afaa5099cb134849070ff..12d148f10c189dd0fb26fef5246c1059656f4b7b 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data_npu.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/load_data.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -28,108 +27,36 @@ # limitations under the License. import numpy as np -import os -import h5py import glob -# import scipy.misc -# from scipy.misc import imread, imresize +import os from PIL import Image -# import moxing as mox -import matplotlib.image as mp - -imread = Image.open - - -def load_images(maps_dir): - train_all = glob.glob(maps_dir + "/train/*.jpg") - train_img_A = [] - train_img_B = [] - - for file in train_all: - full_image = np.array(imread(file).resize((512, 256), Image.ANTIALIAS)) - img_B = full_image[:, full_image.shape[1] // 2:, :] - img_A = full_image[:, :full_image.shape[1] // 2, :] - train_img_A.append(img_A) - train_img_B.append(img_B) - - train_A = np.asarray(train_img_A) - train_B = np.asarray(train_img_B) - print (train_A.shape) - print (train_B.shape) - - test_all = glob.glob(maps_dir + "/val/*.jpg") - test_img_A = [] - test_img_B = [] - - for file in test_all: - full_image = np.array(imread(file).resize((512, 256), Image.ANTIALIAS)) - img_B = full_image[:, full_image.shape[1] // 2:, :] - img_A = full_image[:, :full_image.shape[1] // 2, :] - test_img_A.append(img_A) - test_img_B.append(img_B) - - test_A = np.asarray(test_img_A) - test_B = np.asarray(test_img_B) - print (test_A.shape) - print (test_B.shape) - - return train_A, train_B, test_A, test_B - - -# train_all = glob.glob(maps_dir + "/train/*.jpg") -batch_size = 1 - - -def load_batch_image(idx, maps_dir): - train_all = glob.glob(maps_dir + "/train/*.jpg") - full_image = np.array(imread(train_all[idx]).resize((512,256), Image.ANTIALIAS)) - img_B = full_image[:, full_image.shape[1] // 2:, :] - img_A = full_image[:, :full_image.shape[1] // 2, :] - - return img_A, img_B - - -# test_all = glob.glob("maps/val/*.jpg") - - -def load_test_image(idx, maps_dir): - test_all = glob.glob(maps_dir + "/val/*.jpg") - full_image = np.array(imread(test_all[idx]).resize((512, 256), Image.ANTIALIAS)) - img_A = full_image[:, :full_image.shape[1] // 2, :] / 255. - - return img_A -def save_images(image, size, img_path): - return imsave(image, size, img_path) +def load_images(path, image_size): + train_all = sorted(glob.glob(os.path.join(path, "train/*.jpg"))) + test_all = sorted(glob.glob(os.path.join(path, "val/*.jpg"))) + train_input = [] + test_input = [] + train_output = [] + test_output = [] -def imsave(image, img_size, img_path): - # image = Image.fromarray(np.squeeze(image * 255.).astype(np.uint8)) - return Image.fromarray(np.squeeze(image * 255.).astype(np.uint8)).save(img_path) - # return mp.imsave(np.squeeze(img_path), image) + for img in train_all: + full_image = Image.open(img) + full_image = np.asarray(full_image.resize((2 * image_size, image_size), Image.BICUBIC)) + # in maps dataset,the input and output merge to one image + # and the output is the left part + train_output.append(full_image[:, :full_image.shape[1] // 2, :] / 255.) + train_input.append(full_image[:, full_image.shape[1] // 2:, :] / 255.) -def inverse_transform(image): - return (image + 1.) / 2. + for img in test_all: + full_image = Image.open(img) + full_image = np.asarray(full_image.resize((2 * image_size, image_size), Image.BICUBIC)) + test_output.append(full_image[:, :full_image.shape[1] // 2, :] / 255.) + test_input.append(full_image[:, full_image.shape[1] // 2:, :] / 255.) -def merge(images, size): - h, w = images.shape[1], images.shape[2] - if (images.shape[3] in (3, 4)): - c = images.shape[3] - img = np.zeros((h * size[0], w * size[1], c)) - for idx, image in enumerate(images): - i = idx % size[1] - j = idx // size[1] - img[j * h:j * h + h, i * w:i * w + w, :] = image - return img - elif images.shape[3] == 1: - img = np.zeros((h * size[0], w * size[1])) - for idx, image in enumerate(images): - i = idx % size[1] - j = idx // size[1] - img[j * h:j * h + h, i * w:i * w + w] = image[:, :, 0] - return img - else: - raise ValueError('In merge function, the first argument must have dimensions: HxW or HxWx3 or HxWx4') + # need to normalize to [-1,1] + return np.asarray(train_input) * 2 - 1, np.asarray(train_output) * 2 - 1, \ + np.asarray(test_input) * 2 - 1, np.asarray(test_output) * 2 - 1 diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/log.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/log.py index c3c36238be376cde2ea80305d7d7048bd6e62e30..c24ddf6c139127fe2d292dc0c40f0b90da045015 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/log.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/log.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -35,6 +34,7 @@ logging.info("Start BicycleGAN") logger = logging.getLogger('BicycleGAN') logger.setLevel(logging.INFO) + def makedirs(path): if not os.path.exists(path): - os.makedirs(path) + os.makedirs(path) diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/lpips_tf.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/lpips_tf.py new file mode 100644 index 0000000000000000000000000000000000000000..98d5d8991cd8d30e0840eeeb2acc1185dc030f3f --- /dev/null +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/lpips_tf.py @@ -0,0 +1,118 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import sys + +import tensorflow as tf +from six.moves import urllib + +_URL = 'http://rail.eecs.berkeley.edu/models/lpips' + + +def _download(url, output_dir): + """Downloads the `url` file into `output_dir`. + + Modified from https://github.com/tensorflow/models/blob/master/research/slim/datasets/dataset_utils.py + """ + filename = url.split('/')[-1] + filepath = os.path.join(output_dir, filename) + + def _progress(count, block_size, total_size): + sys.stdout.write('\r>> Downloading %s %.1f%%' % ( + filename, float(count * block_size) / float(total_size) * 100.0)) + sys.stdout.flush() + + filepath, _ = urllib.request.urlretrieve(url, filepath, _progress) + print() + statinfo = os.stat(filepath) + print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') + + +def lpips(input0, input1, model='net-lin', net='alex', version=0.1): + """ + Learned Perceptual Image Patch Similarity (LPIPS) metric. + + Args: + input0: An image tensor of shape `[..., height, width, channels]`, + with values in [0, 1]. + input1: An image tensor of shape `[..., height, width, channels]`, + with values in [0, 1]. + + Returns: + The Learned Perceptual Image Patch Similarity (LPIPS) distance. + + Reference: + Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang. + The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. + In CVPR, 2018. + """ + # flatten the leading dimensions + batch_shape = tf.shape(input0)[:-3] + input0 = tf.reshape(input0, tf.concat([[-1], tf.shape(input0)[-3:]], axis=0)) + input1 = tf.reshape(input1, tf.concat([[-1], tf.shape(input1)[-3:]], axis=0)) + # NHWC to NCHW + input0 = tf.transpose(input0, [0, 3, 1, 2]) + input1 = tf.transpose(input1, [0, 3, 1, 2]) + # normalize to [-1, 1] + input0 = input0 * 2.0 - 1.0 + input1 = input1 * 2.0 - 1.0 + + input0_name, input1_name = '0:0', '1:0' + + default_graph = tf.get_default_graph() + # producer_version = default_graph.graph_def_versions.producer + producer_version = 27 + cache_dir = './weights' + os.makedirs(cache_dir, exist_ok=True) + # files to try. try a specific producer version, but fallback to the version-less version (latest). + pb_fnames = [ + '%s_%s_v%s.pb' % (model, net, version), + '%s_%s_v%s_%d.pb' % (model, net, version, producer_version) + ] + for pb_fname in pb_fnames: + if not os.path.isfile(os.path.join(cache_dir, pb_fname)): + try: + _download(os.path.join(_URL, pb_fname), cache_dir) + except urllib.error.HTTPError: + pass + if os.path.isfile(os.path.join(cache_dir, pb_fname)): + break + + with open(os.path.join(cache_dir, pb_fname), 'rb') as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + _ = tf.import_graph_def(graph_def, + input_map={input0_name: input0, input1_name: input1}) + distance, = default_graph.get_operations()[-1].outputs + + if distance.shape.ndims == 4: + distance = tf.squeeze(distance, axis=[-3, -2, -1]) + # reshape the leading dimensions + distance = tf.reshape(distance, batch_shape) + return distance diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main_npu.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main.py similarity index 43% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main_npu.py rename to TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main.py index 9e34fa655591d191a7080d9a8c11278069bd3cab..6216ef54a7d66ea2e863f33cb07ce51da6bd55c4 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main_npu.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/main.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -30,63 +29,41 @@ from __future__ import division from __future__ import print_function from __future__ import absolute_import -import sys import argparse -import numpy as np -import tensorflow as tf -from model_npu_tmp import BicycleGAN -from folder_npu import check_folder -# from load_data import load_images import os -# import moxing as mox -from npu_bridge.estimator import npu_ops -from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig -from tensorflow.python.framework import graph_util -from tensorflow.python import pywrap_tensorflow - -os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' -os.environ['ASCEND_SLOG_PRINT_TO_STDOUT'] = "3" +import tensorflow as tf +from load_data import load_images +from model import BicycleGAN +from folder import check_folder +from eval import eval_tf +from npu_bridge.npu_init import * +from tensorflow_core.core.protobuf.rewriter_config_pb2 import RewriterConfig def parse_args(): - desc = "Tensorflow implementation of BicycleGAN" - parser = argparse.ArgumentParser(description=desc) + parser = argparse.ArgumentParser() parser.add_argument('--Z_dim', type=int, default=8, help='Size of latent vector') parser.add_argument('--reconst_coeff', type=float, default=10, help='Reconstruction Coefficient') parser.add_argument('--latent_coeff', type=float, default=0.5, help='Latent Coefficient') parser.add_argument('--kl_coeff', type=float, default=0.01, help='KL Coefficient') parser.add_argument('--learning_rate', type=float, default=0.0002, help='Learning Rate') parser.add_argument('--image_size', type=int, default=256, help='Image Size') - parser.add_argument('--batch_size', type=int, default=1, help='Size of the minibatch') - parser.add_argument('--gan_type', type=str, default='BicycleGAN', help='Type of GAN') - parser.add_argument('--dataset', type=str, default='./maps', help='The name of dataset') - parser.add_argument('--epoch', type=int, default=200, help='The number of epochs to run') - parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', - help='Directory name to save the checkpoints') - parser.add_argument('--train_url', type=str, default=None, help='train_url') - parser.add_argument('--data_url', type=str, default=None, help='data_url') - parser.add_argument('--result_dir', type=str, default='./results', help='Directory name to save the generated images') - parser.add_argument('--log_dir', type=str, default='./logs', help='Directory name to save training logs') + parser.add_argument('--batch_size', type=int, default=1, help='number of images in one minibatch') + parser.add_argument('--epoch', type=int, default=20, help='The number of epochs to run') + parser.add_argument('--data_path', type=str, default='', help='Datasets location') + parser.add_argument('--output_path', type=str, default='', help='Output location') return check_args(parser.parse_args()) -"""checking arguments""" - - def check_args(args): - # --checkpoint_dir - check_folder(args.checkpoint_dir) - - # --result_dir - check_folder(args.result_dir) - # --result_dir - check_folder(args.log_dir) + check_folder(args.output_path) # --epoch assert args.epoch > 0, 'Totral number of epochs must be greater than zero' # --batch_size + # Due to the limit of the network,the batch_size must be set to 1 currently assert args.batch_size > 0, 'Batch size must be greater than zero' # --z_dim @@ -95,76 +72,36 @@ def check_args(args): return args -"""main function""" - - def main(): # parse arguments args = parse_args() if args is None: exit() - # Open New Tensorflow Session - model = BicycleGAN - #add - # TMP_DATA_PATH = './' + args.dataset - # TMP_RESULTS_PATH = '.' + args.result_dir - # TMP_CHECKPOINT_PATH = './' + args.checkpoint_dir - # TMP_LOGS_PATH = './' + args.log_dir - - # OBS_DATA_PATH = 'obs://bicyclegan/BicycleGAN2/' + args.dataset - # OBS_RESULTS_PATH = 'obs://bicyclegan/BicycleGAN2/' + args.result_dir - # OBS_CHECKPOINT_DIR = 'obs://bicyclegan/BicycleGAN2/' + args.checkpoint_dir - # OBS_LOG_PATH = 'obs://bicyclegan/BicycleGAN2/' + args.log_dir - # mox.file.make_dirs(TMP_DATA_PATH) - # mox.file.make_dirs(TMP_RESULTS_PATH) - # mox.file.make_dirs(TMP_CHECKPOINT_PATH) - # mox.file.make_dirs(TMP_LOGS_PATH) - # mox.file.copy_parallel(OBS_RESULTS_PATH, TMP_RESULTS_PATH) - # mox.file.copy_parallel(OBS_DATA_PATH, TMP_DATA_PATH) - # mox.file.copy_parallel(OBS_LOG_PATH, TMP_LOGS_PATH) - # mox.file.copy_parallel(OBS_CHECKPOINT_DIR, TMP_CHECKPOINT_PATH) - config = tf.ConfigProto(allow_soft_placement=True) + # NPU config + config = tf.ConfigProto() custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" - custom_op.parameter_map["use_off_line"].b = True - config.graph_options.rewrite_options.remapping = RewriterConfig.OFF + config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显式关闭 + config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF # 必须显式关闭 - config.gpu_options.allow_growth = True + # Open New Tensorflow Session + model = BicycleGAN with tf.Session(config=config) as sess: - # Declare instance for GAN - - gan = None - if args.gan_type == model.model_name: - gan = model(sess, - epoch=args.epoch, - batch_size=args.batch_size, - Z_dim=args.Z_dim, - image_size=args.image_size, - dataset_name=args.dataset, - checkpoint_dir=args.checkpoint_dir, - result_dir=args.result_dir, - log_dir=args.log_dir) - if gan is None: - raise Exception("[!] There is no option for " + args.gan_type) - - # Build Tesnorflow Graph - gan.build_model() - - # show network architecture - # show_all_variables() - - # Launch the graph in a session - gan.train() + gan = model(sess=sess, args=args) + + train_A, train_B, test_A, test_B = load_images(args.data_path, args.image_size) + assert len(test_A) == len(test_B) + assert len(train_A) == len(train_B) + + gan.train(train_A=train_A, train_B=train_B) print(" [*] Training finished!") - # visualize learned generator - gan.test() + gan.test(test_A=test_A, test_B=test_B) print(" [*] Testing finished!") - # mox.file.copy_parallel(TMP_RESULTS_PATH, OBS_RESULTS_PATH) - # mox.file.copy_parallel(TMP_DATA_PATH, OBS_DATA_PATH) - # mox.file.copy_parallel(TMP_LOGS_PATH, OBS_LOG_PATH) - # mox.file.copy_parallel(TMP_CHECKPOINT_PATH, OBS_CHECKPOINT_DIR) + + path = os.path.join(args.output_path, "results", "test_results") + eval_tf(path) if __name__ == '__main__': diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model_npu_tmp.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model.py similarity index 69% rename from TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model_npu_tmp.py rename to TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model.py index dbbc737a1489382d43f32372fa77ea3ecbbd953d..e11930396c568016218246d68bf286f9c407ceb1 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model_npu_tmp.py +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/model.py @@ -1,4 +1,3 @@ - # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -27,69 +26,106 @@ # See the License for the specific language governing permissions and # limitations under the License. -# -*- coding: utf-8 -*- from __future__ import division import os import time -import glob -import tensorflow as tf -import numpy as np -# import scipy.misc -from PIL import Image +from tqdm import trange from layers import * -# from tensorflow.contrib import layers -from folder_npu import check_folder -from load_data_npu import load_images, save_images, imsave, load_batch_image, load_test_image -import matplotlib - -matplotlib.use('Tkagg') -#import matplotlib.pyplot as plt -#import moxing as mox - -os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" +from folder import check_folder +from imageio import imwrite +import random class BicycleGAN(object): - model_name = "BicycleGAN" - def __init__(self, sess, epoch, batch_size, Z_dim, image_size, dataset_name, checkpoint_dir, result_dir, log_dir): - self.TMP_DATA_PATH = dataset_name - self.TMP_RESULTS_PATH = result_dir - self.TMP_CHECKPOINT_PATH = checkpoint_dir - self.TMP_LOGS_PATH = log_dir + def __init__(self, sess, args): self.sess = sess - self.dataset_name = dataset_name - self.checkpoint_dir = checkpoint_dir - self.result_dir = result_dir - self.log_dir = log_dir - self.epoch = epoch - self.batch_size = batch_size - self.image_size = image_size - - self.input_width = 256 - self.input_height = 256 - self.output_width = 256 - self.output_height = 256 - self.channels = 3 - - self.Z_dim = Z_dim + self.data_path = args.data_path + self.checkpoint_dir = os.path.join(args.output_path, 'checkpoints') + self.result_dir = os.path.join(args.output_path, 'results') + self.log_dir = os.path.join(args.output_path, 'logs') + self.epoch = args.epoch + self.batch_size = args.batch_size + self.image_size = args.image_size # train - self.learning_rate = 0.0002 - self.beta1 = 0.5 - self.beta2 = 0.999 - self.reconst_coeff = 10 - self.latent_coeff = 0.5 - self.kl_coeff = 0.01 + self.Z_dim = args.Z_dim + self.learning_rate = args.learning_rate + self.reconst_coeff = args.reconst_coeff + self.latent_coeff = args.latent_coeff + self.kl_coeff = args.kl_coeff # test - self.sample_num = 64 + self.sample_num = 20 # how many images will model generates for one input + + # Input Image A + self.image_A = tf.placeholder(tf.float32, [self.batch_size] + [self.image_size, self.image_size, 3], + name='input_images') + + # Output Image B + self.image_B = tf.placeholder(tf.float32, [self.batch_size] + [self.image_size, self.image_size, 3], + name='output_images') + + # Noise z + self.z = tf.placeholder(tf.float32, [self.batch_size, self.Z_dim], name='latent_vector') - # load data - # self.train_A, self.train_B, self.test_A, self.test_B = load_images() - #self.train_A = mox.file.glob(dataset_name + "/train/*.jpg") - self.train_A = glob.glob(dataset_name + "/train/*.jpg") - self.num_batches = len(self.train_A) // self.batch_size + ''' Implementation of cVAE-GAN: B -> z -> B' ''' + # Encoder is fed the correct output image B for encding it to the latent representation z to learn the distribution of z + # It outputs 3 things: Enocded value z as Q(z|B), mu of Q(z|B), log_sigma of Q(z|B) + self.encoded_true_img, self.encoded_mu, self.encoded_log_sigma = self.Encoder(self.image_B) + + # This encoded representation z along with the input image A is then fed to the Generator to output the image B' + self.desired_gen_img = self.Generator(self.image_A, self.encoded_true_img) # Image B_cap + + ''' Implementation of cLR-GAN: z -> B' -> z' ''' + # Now, z is sampled from a normal distribution N(z) which in addition to the input image A is fed to the Generator to output B' + self.LR_desired_img = self.Generator(self.image_A, self.z) # Generated Image B' + + # B' is then fed to the Encoder to output z' which we try to be close to N(z). + self.reconst_z, self.reconst_mu, self.reconst_log_sigma = self.Encoder(self.LR_desired_img) # Encoded z' + + self.P_real = self.Discriminator(self.image_B) # Probability of ground_truth/real image (B) as real/fake + self.P_fake = self.Discriminator( + self.LR_desired_img) # Probability of generated output images (G(A, N(z)) as real/fake + self.P_fake_encoded = self.Discriminator( + self.desired_gen_img) # Probability of generated output images (G(A, Q(z|B)) as real/fake + + self.loss_vae_gan_D = (tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) + tf.reduce_mean( + tf.square(self.P_fake_encoded))) + + self.loss_lr_gan_D = ( + tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) + tf.reduce_mean(tf.square(self.P_fake))) + + self.loss_vae_gan_GE = tf.reduce_mean(tf.squared_difference(self.P_fake_encoded, 0.9)) # G + + self.loss_gan_G = tf.reduce_mean(tf.squared_difference(self.P_fake, 0.9)) + + self.loss_vae_GE = tf.reduce_mean(tf.abs(self.image_B - self.desired_gen_img)) # G + + self.loss_latent_GE = tf.reduce_mean(tf.abs(self.z - self.reconst_z)) # G + + self.loss_kl_E = 0.5 * tf.reduce_mean( + -1 - self.encoded_log_sigma + self.encoded_mu ** 2 + tf.exp(self.encoded_log_sigma)) + + self.loss_D = self.loss_vae_gan_D + self.loss_lr_gan_D - tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) + self.loss_G = self.loss_vae_gan_GE + self.loss_gan_G + self.reconst_coeff * self.loss_vae_GE + self.latent_coeff * self.loss_latent_GE + self.loss_E = self.loss_vae_gan_GE + self.reconst_coeff * self.loss_vae_GE + self.latent_coeff * self.loss_latent_GE + self.kl_coeff * self.loss_kl_E + + # Optimizer + self.dis_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Discriminator") + self.gen_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Generator") + self.enc_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Encoder") + opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.5) + + with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): + self.D_solver = opt.minimize(self.loss_D, var_list=self.dis_var) + self.G_solver = opt.minimize(self.loss_G, var_list=self.gen_var) + self.E_solver = opt.minimize(self.loss_E, var_list=self.enc_var) + + """ Summary """ + self.d_loss_sum = tf.summary.scalar("d_loss", self.loss_D) + self.g_loss_sum = tf.summary.scalar("g_loss", self.loss_G) + self.e_loss_sum = tf.summary.scalar("e_loss", self.loss_E) def Discriminator(self, x, is_training=True, reuse=True): with tf.variable_scope("Discriminator", reuse=tf.AUTO_REUSE): @@ -197,201 +233,108 @@ class BicycleGAN(object): return z, mu, log_sigma - def build_model(self): - image_dims = [self.input_width, self.input_height, self.channels] - - ''' Graph input ''' - # Input Image A - self.image_A = tf.placeholder(tf.float32, [self.batch_size] + image_dims, name='input_images') - - # Output Image B - self.image_B = tf.placeholder(tf.float32, [self.batch_size] + image_dims, name='output_images') - - # Noise z - self.z = tf.placeholder(tf.float32, [self.batch_size, self.Z_dim], name='latent_vector') - - ''' Implementation of cVAE-GAN: B -> z -> B' ''' - # Encoder is fed the correct output image B for encding it to the latent representation z to learn the distribution of z - # It outputs 3 things: Enocded value z as Q(z|B), mu of Q(z|B), log_sigma of Q(z|B) - self.encoded_true_img, self.encoded_mu, self.encoded_log_sigma = self.Encoder(self.image_B) - - # This encoded representation z along with the input image A is then fed to the Generator to output the image B' - self.desired_gen_img = self.Generator(self.image_A, self.encoded_true_img) # Image B_cap - - ''' Implementation of cLR-GAN: z -> B' -> z' ''' - # Now, z is sampled from a normal distribution N(z) which in addition to the input image A is fed to the Generator to output B' - self.LR_desired_img = self.Generator(self.image_A, self.z) # Generated Image B' - - # B' is then fed to the Encoder to output z' which we try to be close to N(z). - self.reconst_z, self.reconst_mu, self.reconst_log_sigma = self.Encoder(self.LR_desired_img) # Encoded z' - - self.P_real = self.Discriminator(self.image_B) # Probability of ground_truth/real image (B) as real/fake - self.P_fake = self.Discriminator( - self.LR_desired_img) # Probability of generated output images (G(A, N(z)) as real/fake - self.P_fake_encoded = self.Discriminator( - self.desired_gen_img) # Probability of generated output images (G(A, Q(z|B)) as real/fake - - self.loss_vae_gan_D = (tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) + tf.reduce_mean( - tf.square(self.P_fake_encoded))) - - self.loss_lr_gan_D = ( - tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) + tf.reduce_mean(tf.square(self.P_fake))) - - self.loss_vae_gan_GE = tf.reduce_mean(tf.squared_difference(self.P_fake_encoded, 0.9)) # G - - self.loss_gan_G = tf.reduce_mean(tf.squared_difference(self.P_fake, 0.9)) - - self.loss_vae_GE = tf.reduce_mean(tf.abs(self.image_B - self.desired_gen_img)) # G - - self.loss_latent_GE = tf.reduce_mean(tf.abs(self.z - self.reconst_z)) # G - - self.loss_kl_E = 0.5 * tf.reduce_mean( - -1 - self.encoded_log_sigma + self.encoded_mu ** 2 + tf.exp(self.encoded_log_sigma)) - - self.loss_D = self.loss_vae_gan_D + self.loss_lr_gan_D - tf.reduce_mean(tf.squared_difference(self.P_real, 0.9)) - self.loss_G = self.loss_vae_gan_GE + self.loss_gan_G + self.reconst_coeff * self.loss_vae_GE + self.latent_coeff * self.loss_latent_GE - self.loss_E = self.loss_vae_gan_GE + self.reconst_coeff * self.loss_vae_GE + self.latent_coeff * self.loss_latent_GE + self.kl_coeff * self.loss_kl_E - - # Optimizer - self.dis_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Discriminator") - self.gen_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Generator") - self.enc_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Encoder") - opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.5) - - with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)): - self.D_solver = opt.minimize(self.loss_D, var_list=self.dis_var) - self.G_solver = opt.minimize(self.loss_G, var_list=self.gen_var) - self.E_solver = opt.minimize(self.loss_E, var_list=self.enc_var) - - """ Testing """ - # self.fake_images = self.Generator(self.image_A, self.z, is_training=False, reuse=True) - - """ Summary """ - - self.d_loss_sum = tf.summary.scalar("d_loss", self.loss_D) - self.g_loss_sum = tf.summary.scalar("g_loss", self.loss_G) - self.e_loss_sum = tf.summary.scalar("e_loss", self.loss_E) - - # final summary operations - # self.g_sum = tf.summary.merge([d_loss_fake_sum, g_loss_sum]) - # self.d_sum = tf.summary.merge([d_loss_real_sum, d_loss_sum]) - # self.q_sum = tf.summary.merge([q_loss_sum, q_disc_sum, q_cont_sum]) - - def train(self): - - # include code for logger.info() - + def train(self, train_A, train_B): # First initialize all variables tf.global_variables_initializer().run() - # Input to graph from training data - self.z_sample = np.random.normal(size=(self.batch_size, self.Z_dim)) - input_img1, batch_imagesB = load_batch_image(0, self.dataset_name) - self.input_img1 = np.expand_dims(input_img1, axis=0) - # self.input_img1 = self.train_A[0:self.batch_size] # training results for a single image # saving the model self.saver = tf.train.Saver() # summary writer - self.writer = tf.summary.FileWriter(self.log_dir + '/' + self.model_name, self.sess.graph) + self.writer = tf.summary.FileWriter(self.log_dir, self.sess.graph) + + self.num_batches = len(train_A) // self.batch_size + # restore check-point if it exits could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: start_epoch = (int)(checkpoint_counter / self.num_batches) - start_batch_id = checkpoint_counter - start_epoch * self.num_batches counter = checkpoint_counter print(" [*] Load SUCCESS") else: start_epoch = 0 - start_batch_id = 0 counter = 1 print(" [!] Load failed...") + # for generating temporary images during training + self.img_sample = np.expand_dims(train_A[0], axis=0) + # loop for epoch - for epoch in range(start_epoch, self.epoch): - - # get batch data - for idx in range(len(self.train_A)): + for idx in range(len(train_A)): start_time = time.time() - batch_imagesA, batch_imagesB = load_batch_image(idx, self.dataset_name) - batch_imagesA = np.expand_dims(batch_imagesA, axis=0) - batch_imagesB = np.expand_dims(batch_imagesB, axis=0) - batch_z = np.random.normal(size=(self.batch_size, self.Z_dim)) + + # get data + image_A = np.expand_dims(train_A[idx], axis=0) + image_B = np.expand_dims(train_B[idx], axis=0) + random_z = np.random.normal(size=(self.batch_size, self.Z_dim)) _, summary_str_d, D_loss_curr = self.sess.run([self.D_solver, self.d_loss_sum, self.loss_D], - feed_dict={self.image_A: batch_imagesA, - self.image_B: batch_imagesB, self.z: batch_z}) + feed_dict={self.image_A: image_A, self.image_B: image_B, + self.z: random_z}) self.writer.add_summary(summary_str_d, counter) _, summary_str_g, G_loss_curr = self.sess.run([self.G_solver, self.g_loss_sum, self.loss_G], - feed_dict={self.image_A: batch_imagesA, - self.image_B: batch_imagesB, self.z: batch_z}) + feed_dict={self.image_A: image_A, self.image_B: image_B, + self.z: random_z}) self.writer.add_summary(summary_str_g, counter) _, summary_str_e, E_loss_curr = self.sess.run([self.E_solver, self.e_loss_sum, self.loss_E], - feed_dict={self.image_A: batch_imagesA, - self.image_B: batch_imagesB, self.z: batch_z}) + feed_dict={self.image_A: image_A, self.image_B: image_B, + self.z: random_z}) self.writer.add_summary(summary_str_e, counter) - # display training status - counter += 1 - print("Epoch: [%2d] [%4d/%4d] time: %4.4f d_loss: %.8f g_loss: %.8f e_loss: %.8f" % ( - epoch, idx, self.num_batches, time.time() - start_time, D_loss_curr, G_loss_curr, E_loss_curr)) - # Saving training results for every 100 examples + temp_dir = check_folder(os.path.join(self.result_dir, 'temps')) if counter % 100 == 0: + z_sample = np.random.normal(size=(1, self.Z_dim)) samples = self.sess.run(self.LR_desired_img, - feed_dict={self.image_A: self.input_img1, self.z: self.z_sample}) - tot_num_samples = min(self.sample_num, self.batch_size) - manifold_h = int(np.floor(np.sqrt(tot_num_samples))) - manifold_w = int(np.floor(np.sqrt(tot_num_samples))) - save_images(samples[:manifold_h * manifold_w, :, :, :], [manifold_h, manifold_w], check_folder( - self.result_dir + '/' + self.model_dir) + '/' + self.model_name + '_train_{:02d}_{:04d}.png'.format( - epoch, idx)) - # mox.file.copy_parallel(self.TMP_RESULTS_PATH, self.OBS_RESULTS_PATH) - # mox.file.copy_parallel(self.TMP_DATA_PATH, self.OBS_DATA_PATH) - # mox.file.copy_parallel(self.TMP_LOGS_PATH, self.OBS_LOG_PATH) - # mox.file.copy_parallel(self.TMP_CHECKPOINT_PATH, self.OBS_CHECKPOINT_DIR) - # After an epoch, start_batch_id is set to zero - start_batch_id = 0 - # non-zero value is only for the first epoch after loading pre-trained model + feed_dict={self.image_A: self.img_sample, self.z: z_sample}) + # transform from [-1,1] to [0,255] + samples = (np.asarray(samples + 1) / 2 * 255).astype(np.uint8) + imwrite(os.path.join(temp_dir, f'train_{epoch}_{idx}.jpg'), + np.squeeze(samples)) + + # display training status + counter += 1 + cost_time = time.time() - start_time + print("epoch : {}----step : {}----|d_loss : {}----g_loss : {}----e_loss : {}|----sec/step : {}" + .format(epoch, counter, D_loss_curr, G_loss_curr, E_loss_curr, cost_time)) + # save model self.save(self.checkpoint_dir, counter) # save model for final step self.save(self.checkpoint_dir, counter) - def test(self): + def test(self, test_A, test_B): # generate images self.step = 0 - base_dir = os.path.join('test_results') - check_folder(os.path.join(self.result_dir, base_dir)) - #test_all = mox.file.glob(self.dataset_name + "/val/*.jpg") - test_all = glob.glob(self.dataset_name + "/val/*.jpg") - for idx in range(len(test_all)): - self.step += 1 - img_A = load_test_image(idx, self.dataset_name) - input_img = np.expand_dims(img_A, axis=0) - z = np.random.normal(size=(self.batch_size, self.Z_dim)) - LR_desired_img = self.sess.run(self.LR_desired_img, feed_dict={self.image_A: input_img, self.z: z}) - image = LR_desired_img[0] - image = Image.fromarray(np.uint8((np.concatenate((img_A * 255., image * 255.), axis=1)))) - image.save(os.path.join(self.result_dir, base_dir, 'random_{}.jpg'.format(self.step))) - - @property - def model_dir(self): - return "{}_{}_{}_{}".format(self.model_name, (self.dataset_name).split("/")[-1], self.batch_size, self.Z_dim) - - def save(self, checkpoint_dir, step): - checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) + for idx in trange(len(test_A)): + self.step += 1 + save_dir = check_folder(os.path.join(self.result_dir, "test_results", str(self.step))) + + # get input and save groundtruth + image_A = np.expand_dims(test_A[idx], axis=0) + imwrite(os.path.join(save_dir, f'ground_truth.jpg'), + (np.asarray(test_B[idx] + 1) / 2 * 255).astype(np.uint8)) + + # generate images + for i in range(0, self.sample_num): + z = np.random.normal(size=(1, self.Z_dim)) + LR_desired_img = self.sess.run(self.LR_desired_img, + feed_dict={self.image_A: image_A, self.z: z}) + # transform from [-1,1] to [0,255] + LR_desired_img = (np.asarray(LR_desired_img + 1) / 2 * 255).astype(np.uint8) + imwrite(os.path.join(save_dir, f'random_{i + 1}.jpg'), + np.squeeze(LR_desired_img)) + + def save(self, checkpoint_dir, step): # save checkpoints if not os.path.exists(checkpoint_dir): - #mox.file.make_dirs(checkpoint_dir) - os.mkdir(checkpoint_dir) - self.saver.save(self.sess, os.path.join(checkpoint_dir, self.model_name + '.model'), global_step=step) + os.makedirs(checkpoint_dir) + self.saver.save(self.sess, os.path.join(checkpoint_dir, 'BicycleGAN.model'), global_step=step) - def load(self, checkpoint_dir): + def load(self, checkpoint_dir): # load checkpoint if it exits import re print(" [*] Reading checkpoints...") - checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_acc.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_acc.py new file mode 100644 index 0000000000000000000000000000000000000000..13077b10e660de32d6f7861257a50e1a01ede9ba --- /dev/null +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_acc.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import sys + +# 解析输入参数data_url +parser = argparse.ArgumentParser() +parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") +parser.add_argument("--train_url", type=str, default="/home/ma-user/modelarts/outputs/train_url_0/") +config = parser.parse_args() + +print("[CANN-Modelzoo] code_dir path is [%s]" % (sys.path[0])) +code_dir = sys.path[0] +os.chdir(code_dir) +print("[CANN-Modelzoo] work_dir path is [%s]" % (os.getcwd())) + +print("[CANN-Modelzoo] before train - list my run files:") +os.system("ls -al /usr/local/Ascend/ascend-toolkit/") + +print("[CANN-Modelzoo] before train - list my dataset files:") +os.system("ls -al %s" % config.data_url) + +print("[CANN-Modelzoo] start run train shell") +# 设置sh文件格式为linux可执行 +os.system("dos2unix ./test/*") + +# 执行train_full_1p.sh或者train_performance_1p.sh,需要用户自己指定 +# full和performance的差异,performance只需要执行很少的step,控制在15分钟以内,主要关注性能FPS +os.system("bash ./test/train_full_1p.sh --data_path=%s --output_path=%s " % (config.data_url, config.train_url)) + +print("[CANN-Modelzoo] finish run train shell") + +# 将当前执行目录所有文件拷贝到obs的output进行备份 +print("[CANN-Modelzoo] after train - list my output files:") +os.system("cp -r %s %s " % (code_dir, config.train_url)) +os.system("ls -al %s" % config.train_url) diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_perf.py b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_perf.py new file mode 100644 index 0000000000000000000000000000000000000000..14384e227a0fa90a514254590aef5078c62ff700 --- /dev/null +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/modelarts_entry_perf.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import sys + +# 解析输入参数data_url +parser = argparse.ArgumentParser() +parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") +parser.add_argument("--train_url", type=str, default="/home/ma-user/modelarts/outputs/train_url_0/") +config = parser.parse_args() + +print("[CANN-Modelzoo] code_dir path is [%s]" % (sys.path[0])) +code_dir = sys.path[0] +os.chdir(code_dir) +print("[CANN-Modelzoo] work_dir path is [%s]" % (os.getcwd())) + +print("[CANN-Modelzoo] before train - list my run files:") +os.system("ls -al /usr/local/Ascend/ascend-toolkit/") + +print("[CANN-Modelzoo] before train - list my dataset files:") +os.system("ls -al %s" % config.data_url) + +print("[CANN-Modelzoo] start run train shell") +# 设置sh文件格式为linux可执行 +os.system("dos2unix ./test/*") + +# 执行train_full_1p.sh或者train_performance_1p.sh,需要用户自己指定 +# full和performance的差异,performance只需要执行很少的step,控制在15分钟以内,主要关注性能FPS +os.system("bash ./test/train_performance_1p.sh --data_path=%s --output_path=%s " % (config.data_url, config.train_url)) + +print("[CANN-Modelzoo] finish run train shell") + +# 将当前执行目录所有文件拷贝到obs的output进行备份 +print("[CANN-Modelzoo] after train - list my output files:") +os.system("cp -r %s %s " % (code_dir, config.train_url)) +os.system("ls -al %s" % config.train_url) diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_full_1p.sh index a6b1b1f81516e54b703287701c163c04f59c44dd..60e2f4fd0414e5512f33377f1f5397b5de2e089a 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_full_1p.sh @@ -1,203 +1,184 @@ -Copyright 2019 The TensorFlow Authors. All rights reserved. - - Apache License - Version 2.0, January 2004 - http://www.apache.org/licenses/ - - TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION - - 1. Definitions. - - "License" shall mean the terms and conditions for use, reproduction, - and distribution as defined by Sections 1 through 9 of this document. - - "Licensor" shall mean the copyright owner or entity authorized by - the copyright owner that is granting the License. - - "Legal Entity" shall mean the union of the acting entity and all - other entities that control, are controlled by, or are under common - control with that entity. For the purposes of this definition, - "control" means (i) the power, direct or indirect, to cause the - direction or management of such entity, whether by contract or - otherwise, or (ii) ownership of fifty percent (50%) or more of the - outstanding shares, or (iii) beneficial ownership of such entity. - - "You" (or "Your") shall mean an individual or Legal Entity - exercising permissions granted by this License. - - "Source" form shall mean the preferred form for making modifications, - including but not limited to software source code, documentation - source, and configuration files. - - "Object" form shall mean any form resulting from mechanical - transformation or translation of a Source form, including but - not limited to compiled object code, generated documentation, - and conversions to other media types. - - "Work" shall mean the work of authorship, whether in Source or - Object form, made available under the License, as indicated by a - copyright notice that is included in or attached to the work - (an example is provided in the Appendix below). - - "Derivative Works" shall mean any work, whether in Source or Object - form, that is based on (or derived from) the Work and for which the - editorial revisions, annotations, elaborations, or other modifications - represent, as a whole, an original work of authorship. For the purposes - of this License, Derivative Works shall not include works that remain - separable from, or merely link (or bind by name) to the interfaces of, - the Work and Derivative Works thereof. - - "Contribution" shall mean any work of authorship, including - the original version of the Work and any modifications or additions - to that Work or Derivative Works thereof, that is intentionally - submitted to Licensor for inclusion in the Work by the copyright owner - or by an individual or Legal Entity authorized to submit on behalf of - the copyright owner. For the purposes of this definition, "submitted" - means any form of electronic, verbal, or written communication sent - to the Licensor or its representatives, including but not limited to - communication on electronic mailing lists, source code control systems, - and issue tracking systems that are managed by, or on behalf of, the - Licensor for the purpose of discussing and improving the Work, but - excluding communication that is conspicuously marked or otherwise - designated in writing by the copyright owner as "Not a Contribution." - - "Contributor" shall mean Licensor and any individual or Legal Entity - on behalf of whom a Contribution has been received by Licensor and - subsequently incorporated within the Work. - - 2. Grant of Copyright License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - copyright license to reproduce, prepare Derivative Works of, - publicly display, publicly perform, sublicense, and distribute the - Work and such Derivative Works in Source or Object form. - - 3. Grant of Patent License. Subject to the terms and conditions of - this License, each Contributor hereby grants to You a perpetual, - worldwide, non-exclusive, no-charge, royalty-free, irrevocable - (except as stated in this section) patent license to make, have made, - use, offer to sell, sell, import, and otherwise transfer the Work, - where such license applies only to those patent claims licensable - by such Contributor that are necessarily infringed by their - Contribution(s) alone or by combination of their Contribution(s) - with the Work to which such Contribution(s) was submitted. If You - institute patent litigation against any entity (including a - cross-claim or counterclaim in a lawsuit) alleging that the Work - or a Contribution incorporated within the Work constitutes direct - or contributory patent infringement, then any patent licenses - granted to You under this License for that Work shall terminate - as of the date such litigation is filed. - - 4. Redistribution. You may reproduce and distribute copies of the - Work or Derivative Works thereof in any medium, with or without - modifications, and in Source or Object form, provided that You - meet the following conditions: - - (a) You must give any other recipients of the Work or - Derivative Works a copy of this License; and - - (b) You must cause any modified files to carry prominent notices - stating that You changed the files; and - - (c) You must retain, in the Source form of any Derivative Works - that You distribute, all copyright, patent, trademark, and - attribution notices from the Source form of the Work, - excluding those notices that do not pertain to any part of - the Derivative Works; and - - (d) If the Work includes a "NOTICE" text file as part of its - distribution, then any Derivative Works that You distribute must - include a readable copy of the attribution notices contained - within such NOTICE file, excluding those notices that do not - pertain to any part of the Derivative Works, in at least one - of the following places: within a NOTICE text file distributed - as part of the Derivative Works; within the Source form or - documentation, if provided along with the Derivative Works; or, - within a display generated by the Derivative Works, if and - wherever such third-party notices normally appear. The contents - of the NOTICE file are for informational purposes only and - do not modify the License. You may add Your own attribution - notices within Derivative Works that You distribute, alongside - or as an addendum to the NOTICE text from the Work, provided - that such additional attribution notices cannot be construed - as modifying the License. - - You may add Your own copyright statement to Your modifications and - may provide additional or different license terms and conditions - for use, reproduction, or distribution of Your modifications, or - for any such Derivative Works as a whole, provided Your use, - reproduction, and distribution of the Work otherwise complies with - the conditions stated in this License. - - 5. Submission of Contributions. Unless You explicitly state otherwise, - any Contribution intentionally submitted for inclusion in the Work - by You to the Licensor shall be under the terms and conditions of - this License, without any additional terms or conditions. - Notwithstanding the above, nothing herein shall supersede or modify - the terms of any separate license agreement you may have executed - with Licensor regarding such Contributions. - - 6. Trademarks. This License does not grant permission to use the trade - names, trademarks, service marks, or product names of the Licensor, - except as required for reasonable and customary use in describing the - origin of the Work and reproducing the content of the NOTICE file. - - 7. Disclaimer of Warranty. Unless required by applicable law or - agreed to in writing, Licensor provides the Work (and each - Contributor provides its Contributions) on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or - implied, including, without limitation, any warranties or conditions - of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A - PARTICULAR PURPOSE. You are solely responsible for determining the - appropriateness of using or redistributing the Work and assume any - risks associated with Your exercise of permissions under this License. - - 8. Limitation of Liability. In no event and under no legal theory, - whether in tort (including negligence), contract, or otherwise, - unless required by applicable law (such as deliberate and grossly - negligent acts) or agreed to in writing, shall any Contributor be - liable to You for damages, including any direct, indirect, special, - incidental, or consequential damages of any character arising as a - result of this License or out of the use or inability to use the - Work (including but not limited to damages for loss of goodwill, - work stoppage, computer failure or malfunction, or any and all - other commercial damages or losses), even if such Contributor - has been advised of the possibility of such damages. - - 9. Accepting Warranty or Additional Liability. While redistributing - the Work or Derivative Works thereof, You may choose to offer, - and charge a fee for, acceptance of support, warranty, indemnity, - or other liability obligations and/or rights consistent with this - License. However, in accepting such obligations, You may act only - on Your own behalf and on Your sole responsibility, not on behalf - of any other Contributor, and only if You agree to indemnify, - defend, and hold each Contributor harmless for any liability - incurred by, or claims asserted against, such Contributor by reason - of your accepting any such warranty or additional liability. - - END OF TERMS AND CONDITIONS - - APPENDIX: How to apply the Apache License to your work. - - To apply the Apache License to your work, attach the following - boilerplate notice, with the fields enclosed by brackets "[]" - replaced with your own identifying information. (Don't include - the brackets!) The text should be enclosed in the appropriate - comment syntax for the file format. We also recommend that a - file or class name and description of purpose be included on the - same "printed page" as the copyright notice for easier - identification within third-party archives. - - Copyright [yyyy] [name of copyright owner] - - Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. - You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - - Unless required by applicable law or agreed to in writing, software - distributed under the License is distributed on an "AS IS" BASIS, - WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - See the License for the specific language governing permissions and - limitations under the License. \ No newline at end of file +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +modelarts_flag=${MODELARTS_MODEL_PATH} +if [ x"${modelarts_flag}" != x ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo "### get your log here : ${print_log}" + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 基础参数,需要模型审视修改 +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=1 + +if [ x"${modelarts_flag}" != x ]; +then + python3.7 ./main.py --data_path=${data_path}/maps --output_path=${output_path} +else + python3.7 ./main.py --data_path=${data_path}/maps --output_path=${output_path} > ${print_log} 2>&1 +fi + +# 性能相关数据计算 +StepTime=`grep "sec/step :" ${print_log} | tail -n 7 | awk '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 精度相关数据计算 +train_accuracy=`grep "Final Average Distances :" ${print_log} | awk '{print $NF}'` +# 提取所有loss打印信息 +#grep "loss :" ${print_log} | awk -F ":" '{print $4}' | awk -F "-" '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt +grep "d_loss :" ${print_log} | awk -F "|" '{print $2}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +echo "Final Performance images/sec : $FPS" +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_performance_1p.sh index 613238bc25aa2b5c68efb2b7de41c8fd08b04445..e7b4b0ec33976f3904379eba15a771389d21eec7 100644 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/test/train_performance_1p.sh @@ -1,129 +1,184 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# !/bin/bash -cur_path=`pwd`/.. -echo $cur_path +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + export RANK_SIZE=1 +export RANK_ID=0 export JOB_ID=10087 -#export ASCEND_DEVICE_ID=0 -#模型训练参数 -Network="BicycleGAN_ID1287_for_TensorFlow" -data_path='' -result_path=${cur_path}/test/output/$ASCEND_DEVICE_ID/ckpt/ -batch_size=1 -epochs=2 +# 路径参数初始化 +data_path="" +output_path="" -# 帮助信息, +# 帮助信息,不需要修改 if [[ $1 == --help || $1 == -h ]];then echo"usage:./train_performance_1P.sh " echo " " echo "parameter explain: - --Network name of the network will be trained - --data_path source data of training , default is ${cur_path}/MNIST_data/ - --result_path output path, default is ${cur_path}/test/output/$ASCEND_DEVICE_ID/ckpt/ - --batch_size batchsize of input per step, default is 256 - --epochs num of epochs, default is 1 - -h/--help show help message + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message " exit 1 fi -#参数校验,不需要修改 +# 参数校验,不需要修改 for para in $* do if [[ $para == --data_path* ]];then data_path=`echo ${para#*=}` - elif [[ $para == --result_path* ]];then - result_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` elif [[ $para == --batch_size* ]];then batch_size=`echo ${para#*=}` - elif [[ $para == --epochs* ]];then - epochs=`echo ${para#*=}` fi done -#检查data_path -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path \" must be config" - exit 1 +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +modelarts_flag=${MODELARTS_MODEL_PATH} +if [ x"${modelarts_flag}" != x ]; +then + echo "running with modelarts..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" fi +echo "### get your log here : ${print_log}" -#训练过程 -cd ${cur_path} +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} -start=$(date +%s) +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 基础参数,需要模型审视修改 +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=1 +epoch=1 -if [ -d ${cur_path}/test/output/${ASCEND_DEVICE_ID} ];then - rm -rf ${cur_path}/test/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/test/output/$ASCEND_DEVICE_ID/ckpt - else - mkdir -p ${cur_path}/test/output/$ASCEND_DEVICE_ID/ckpt +if [ x"${modelarts_flag}" != x ]; +then + python3.7 ./main.py --data_path=${data_path}/maps --output_path=${output_path} --epoch=${epoch} +else + python3.7 ./main.py --data_path=${data_path}/maps --output_path=${output_path} --epoch=${epoch} > ${print_log} 2>&1 fi -python3 main_npu.py \ - --dataset=${data_path}/maps/ \ - --checkpoint_dir=${result_path} \ - --epoch=${epochs} \ - --batch_size=${batch_size} > ${cur_path}/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -wait - -end=$(date +%s) -e2e_time=$(( $end - $start )) -echo "Final Training Duration sec : $e2e_time" - -#结果打印 + +# 性能相关数据计算 +StepTime=`grep "sec/step :" ${print_log} | tail -n 7 | awk '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 精度相关数据计算 +train_accuracy=`grep "Final Average Distances :" ${print_log} | awk '{print $NF}'` +# 提取所有loss打印信息 +#grep "loss :" ${print_log} | awk -F ":" '{print $4}' | awk -F "-" '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt +grep "d_loss :" ${print_log} | awk -F "|" '{print $2}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + echo "------------------ Final result ------------------" -#输出性能 -TrainingTime=`grep "time" ${cur_path}/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $6*1000}'` -FPS=`awk 'BEGIN{printf "%.2f\n",'${batch_size}'*1000/'${TrainingTime}'}'` -#accuracy=`grep "accuracy" ${cur_path}/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $2}'| sed 's/,//g'` -##打印 -echo "Final Performance TrainingTime : $TrainingTime" +# 输出性能FPS/单step耗时/端到端耗时 echo "Final Performance images/sec : $FPS" -#echo "Final Accuracy : ${accuracy}" - -BatchSize=${batch_size} -DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' - -#train_loss -grep "d_loss:" ${cur_path}/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk '{print $8}' >> $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt -#最后一个迭代loss值,不需要修改 -ActualLoss=`awk 'END {print $1}' $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` - -echo "Network = ${Network}" > $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = ${DeviceType}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${FPS}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${TrainingTime}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -#echo "Accuracy = ${accuracy}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/test/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/train_1p.sh b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/train_1p.sh deleted file mode 100644 index 3f71b5f474747f973a4e45862c9e1fb816aad7d5..0000000000000000000000000000000000000000 --- a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/train_1p.sh +++ /dev/null @@ -1 +0,0 @@ -python main_npu.py \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1.pb b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1.pb new file mode 100644 index 0000000000000000000000000000000000000000..c8ec4cc41e4090f3957f157a2d7fb236f7e21f2d Binary files /dev/null and b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1.pb differ diff --git a/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1_27.pb b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1_27.pb new file mode 100644 index 0000000000000000000000000000000000000000..c8ec4cc41e4090f3957f157a2d7fb236f7e21f2d Binary files /dev/null and b/TensorFlow/contrib/cv/BicycleGAN_ID1287_for_TensorFlow/weights/net-lin_alex_v0.1_27.pb differ diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/README.md b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/README.md index 4e3f0e500eece353e7187effff822b7b5a921534..81df7f3663fe0bfccb554e12a7f181a7a035193a 100644 --- a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/README.md @@ -118,10 +118,11 @@ BlitzNet在一次前向传递中联合执行对象检测和语义分割,从而

快速上手

-- 数据集准备 - +- 训练数据集准备 + OBS下载地址:(下载的数据集为处理完的tf数据集) https://blitznets.obs.myhuaweicloud.com:443/Datasets/voc12-train-seg?AccessKeyId=UC40X3U4Z2RUPSTV8ADH&Expires=1661686224&Signature=QkWct66ZOwIUfNOYeoWFFZ/FTsk%3D + - ResNet预训练模型准备 OBS下载地址:(将下载的resnet50_full.ckpt文件置于Weights_imagenet中) @@ -140,26 +141,41 @@ BlitzNet在一次前向传递中联合执行对象检测和语义分割,从而 - 单卡训练 - 1. 配置训练参数。 + 1. 单卡性能训练。 - 首先在脚本run_1p.sh中,配置训练数据集路径,请用户根据实际路径配置,数据集参数如下所示: + 用户可以执行test/train_performance_1p.sh脚本执行少量step获取性能信息: ``` - - python3 ${code_dir}/train_1p.py --obs_dir=${obs_url} --run_name=BlitzNet300_x4_VOC12_detsegaug --dataset=voc12-train --trunk=resnet50 --x4 --batch_size=32 --optimizer=adam --detect --segment --max_iterations=40000 --lr_decay 25000 35000 + cd test + bash train_performance_1p.sh --data_path=数据集路径 + + train_performance_1p.sh中调用的训练命令示例如下: + python3 train_1p.py --obs_dir=${obs_url} --run_name=BlitzNet300_x4_VOC12_detsegaug --dataset=voc12-train --trunk=resnet50 --x4 --batch_size=16 --optimizer=adam --detect --segment --max_iterations=10 --lr_decay 25000 35000 ``` - 2. 启动训练。 + 2. 单卡精度训练。 - 启动单卡精度训练 (脚本为BlitzNet_ID0948_for_Tensorflow/train_testcase.sh) + 用户可以执行test/train_full_1p.sh脚本执行少量step获取性能信息: ``` - bash train_testcase.sh --code_url=/npu/traindata/cnews --data_url=/npu/traindata/cnews --result_url=/npu/traindata/cnews - ``` + cd test + bash train_full_1p.sh --data_path=数据集路径 -

高级参考

+ train_performance_1p.sh中调用的训练命令示例如下: + python3 train_1p.py --obs_dir=${obs_url} --run_name=BlitzNet300_x4_VOC12_detsegaug --dataset=voc12-train --trunk=resnet50 --x4 --batch_size=16 --optimizer=adam --detect --segment --max_iterations=40000 --lr_decay 25000 35000 + 3. 执行结果。 + |精度指标项|论文发布|GPU实测|NPU实测| + |---|---|---|---| + |ACC|xxx|0.88|0.88| + + |性能指标项|论文发布|GPU实测|NPU实测| + |---|---|---|---| + |FPS|XXX|0.35 sec/batch|0.23 sec/batch| + + +

高级参考

## 脚本和示例代码 @@ -174,39 +190,3 @@ BlitzNet在一次前向传递中联合执行对象检测和语义分割,从而 │ ├──train_testcase.sh //自测试用例脚本 ``` -## 脚本参数 - -``` -data_input_test.py ---obs_dir=${obs_url} ---run_name=BlitzNet300_x4_VOC12_detsegaug ---dataset=voc12-train ---trunk=resnet50 ---x4 ---batch_size=32 ---optimizer=adam ---detect ---segment ---max_iterations=40000 ---lr_decay 25000 35000 -``` - - -## 训练过程 - -1. 通过“模型训练”中的训练指令启动性能或者精度训练。性能和精度通过运行不同脚本,支持性能、精度网络训练。 - -2. 参考脚本的模型存储路径为test/output/*,训练脚本train_*.log中可查看性能、精度的相关运行状态。 - - -

精度测试

- -训练集:VOC12 train-seg-aug - -测试集:VOC12 val - -| | mIoU | mAP | -| ---------- | -------- | -------- | -| 论文精度 | 72.8 | 80.0 | -| GPU精度 | 72.8 | 80.0 | -| NPU精度 | 待测 | 待测 | \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/freeze_graph.py b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/freeze_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..775d0e09f523b9fd28f7e965d696ff8d98d6fc62 --- /dev/null +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/freeze_graph.py @@ -0,0 +1,90 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from npu_bridge.npu_init import * +import tensorflow as tf +from tensorflow.python.tools import freeze_graph +import os +from Train.config import args +from help_modelarts import modelarts_result2obs + +from Train.resnet import ResNet +from Train.config import config as net_config + +INIT_CKPT_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'checkpoint65') +ckpt_path = os.path.join(INIT_CKPT_DIR, 'model.ckpt-65000') + +def main(): + print("start ckpt To pb") + print("ckpt_path") + tf.reset_default_graph() + img_ph = tf.placeholder(tf.float32, shape=[1, 300, 300, 3], name="input") + dataset_num_classes = 21 + + net = ResNet + depth = 50 + net = net(config=net_config, depth=depth, training=False) + + net.create_trunk(img_ph) + + if args.detect: + net.create_multibox_head(dataset_num_classes) + confidence = net.outputs['confidence'] + location = net.outputs['location'] + else: + location, confidence = None, None + + if args.segment: + net.create_segmentation_head(dataset_num_classes) + seg_logits = net.outputs['segmentation'] + else: + seg_logits = None + + print("confidence = ", confidence) + print("location = ", location) + print("seg_logits = ", seg_logits) + + with tf.Session() as sess: + tf.train.write_graph(sess.graph_def, args.result_dir, 'model.pb') + modelarts_result2obs(args) + freeze_graph.freeze_graph( + input_graph=os.path.join(args.result_dir, 'model.pb'), + input_saver='', + input_binary=False, + input_checkpoint=ckpt_path, + output_node_names="concat_1, concat_2, ssd_2/Conv_7/BiasAdd", # graph outputs node + restore_op_name='save/restore_all', + filename_tensor_name='save/Const:0', + output_graph=os.path.join(args.result_dir, 'bliznet_tf_310.pb'), # graph outputs name + clear_devices=False, + initializer_nodes="") + print("done") + + modelarts_result2obs(args) + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_full_1p.sh index 5c7f983fdf736ff28c7884434e1d81ca88f5e22d..dae392c7169767e77e2b1b4f41cf561762367928 100644 --- a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_full_1p.sh @@ -24,9 +24,9 @@ Network="BlitzNet_ID0948_for_TensorFlow" #训练epoch train_epochs= #训练batch_size -batch_size=32 +batch_size=16 #训练step -train_steps=1000 +train_steps=40000 #学习率 learning_rate= @@ -129,7 +129,7 @@ do --dataset=voc12-train \ --trunk=resnet50 \ --x4 \ - --batch_size=32 \ + --batch_size=16 \ --optimizer=adam \ --detect \ --segment \ @@ -161,7 +161,7 @@ CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' ActualFPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${TrainingTime}'}'` #获取模型精度 -train_accuracy=`grep "acc =" $cur_path/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log |awk 'END {print $12}'|sed 's/,//g'` +train_accuracy=`grep "acc =" $cur_path/test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | tail -n 10 | awk '{print $12}' | awk -F"," '{print $1}' | awk '{sum+=$1} END {print sum/NR}'` #从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 grep 'loss =' $cur_path/test/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print $9}'|sed 's/,//g' > $cur_path/test/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_performance_1p.sh index fde86eb992fe0340df09bf596a2b2405d71bcd01..75cb8fede09eab7520ca6fc15daf13f5007f9246 100644 --- a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/test/train_performance_1p.sh @@ -24,7 +24,7 @@ Network="BlitzNet_ID0948_for_TensorFlow" #训练epoch train_epochs= #训练batch_size -batch_size=32 +batch_size=16 #训练step train_steps=10 #学习率 @@ -130,7 +130,7 @@ do --dataset=voc12-train \ --trunk=resnet50 \ --x4 \ - --batch_size=32 \ + --batch_size=16 \ --optimizer=adam \ --detect \ --segment \ diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/testBliznetPb_OM_Data.py b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/testBliznetPb_OM_Data.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9564af69a2a3d5cb8a83dc74fe53a79d99a885 --- /dev/null +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/testBliznetPb_OM_Data.py @@ -0,0 +1,233 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf +from config import args +from getData.voc_loader import VOCLoader + +from tensorflow.python.ops.metrics_impl import mean_iou as streaming_mean_iou +from utils import decode_bboxes +from getData.boxer import PriorBoxGrid +from config import config as net_config +from detector import Detector +from tabulate import tabulate +import progressbar +import numpy as np +import logging +log = logging.getLogger() + +def eval_category(gt, dets, cid): + """Computes average precision for one category""" + cgt = gt[cid] + cdets = np.array(dets[cid]) + if (cdets.shape == (0, )): + return None, None + scores = cdets[:, 1] + sorted_inds = np.argsort(-scores) + image_ids = cdets[sorted_inds, 0].astype(int) + BB = cdets[sorted_inds] + + npos = 0 + for img_gt in cgt.values(): + img_gt['ignored'] = np.array(img_gt['difficult']) + img_gt['det'] = np.zeros(len(img_gt['difficult']), dtype=np.bool) + npos += np.sum(~img_gt['ignored']) + + nd = len(image_ids) + tp = np.zeros(nd) + fp = np.zeros(nd) + for d in range(nd): + ovmax = -np.inf + if image_ids[d] in cgt: + R = cgt[image_ids[d]] + bb = BB[d, 2:].astype(float) + + BBGT = R['bbox'].astype(float) + + # compute overlaps + # intersection + ixmin = np.maximum(BBGT[:, 0], bb[0]) + iymin = np.maximum(BBGT[:, 1], bb[1]) + ixmax = np.minimum(BBGT[:, 0] + BBGT[:, 2], bb[0] + bb[2]) + iymax = np.minimum(BBGT[:, 1] + BBGT[:, 3], bb[1] + bb[3]) + iw = np.maximum(ixmax - ixmin, 0.) + ih = np.maximum(iymax - iymin, 0.) + inters = iw * ih + + # union + uni = (bb[2] * bb[3] + BBGT[:, 2] * BBGT[:, 3] - inters) + + overlaps = inters / uni + ovmax = np.max(overlaps) + jmax = np.argmax(overlaps) + + if ovmax > args.voc_iou_thresh: + if not R['ignored'][jmax]: + if not R['det'][jmax]: + tp[d] = 1. + R['det'][jmax] = True + else: + fp[d] = 1. + else: + fp[d] = 1. + + # compute precision recall + fp = np.cumsum(fp) + tp = np.cumsum(tp) + rec = tp / float(npos) + N = float(npos) + # avoid divide by zero in case the first detection matches a difficult + # ground truth + prec = rec * N / np.maximum(rec * N + fp, np.finfo(np.float32).eps) + return rec, prec + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + p = 0 if np.sum(rec >= t) == 0 else np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap + +def compute_ap(gt, dets, loader): + """computes average precision for all categories""" + aps = {} + for cid in range(1, loader.num_classes): + cat_name = loader.ids_to_cats[cid] + rec, prec = eval_category(gt, dets, cid) + ap = voc_ap(rec, prec, loader.year == '07') + aps[loader.ids_to_cats[cid]] = ap + return aps + +def make_detection_table(gt, dets, loader): + """creates a table with AP per category and mean AP""" + aps = compute_ap(gt, dets, loader) + print("ap = ", aps) + eval_cache = [aps] + + table = [] + for cid in range(1, loader.num_classes): + cat_name = loader.ids_to_cats[cid] + table.append((cat_name, ) + tuple(aps.get(cat_name, 'N/A') for aps in eval_cache)) + mean_ap = np.mean([a for a in list(aps.values()) if a >= 0]) + table.append(("AVERAGE", ) + tuple(np.mean(list(aps.values())) for aps in eval_cache)) + x = tabulate(table, headers=(["Category", "mAP (all)"]), + tablefmt='orgtbl', floatfmt=".3f") + log.info("Eval results:\n%s", x) + return table + +def compute_mean_iou(detector): + iou = detector.get_mean_iou() + print(iou) + log.info("\n Mean IoU is %f", iou) + return iou + +def main(argv=None): + if args.dataset == 'voc07' or args.dataset == 'voc07+12': + loader = VOCLoader('07', 'test') + if args.dataset == 'voc12-val': + loader = VOCLoader('12', 'val', segmentation=args.segment) + + with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, + log_device_placement=False)) as sess: + detector = Detector(sess, loader, net_config, no_gt=args.no_seg_gt) + + filenames = loader.get_filenames() + gt = {cid: {} for cid in range(1, loader.num_classes)} + dets = {cid: [] for cid in range(1, loader.num_classes)} + + bar = progressbar.ProgressBar()# 显示进度条 + # print("filenames = ", filenames) + + init_op = tf.group(tf.local_variables_initializer(), tf.global_variables_initializer()) + sess.run(init_op) + for i in bar(range(len(filenames))): + name = filenames[i] + # print("name = ", name) + img_id = i + img = loader.load_image(name) # 获取图片 + # img = np.fromfile("./binFile/img/{0:05d}.bin".format(i), dtype=np.float32) + # img.shape = 1, 300, 300, 3 + gt_bboxes, seg_gt, gt_cats, w, h, difficulty = loader.read_annotations(name) # 获取图片信息 + + confidence = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_0.txt".format(i)) + location = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_1.txt".format(i)) + seg_logits = np.loadtxt("./binFile/test/2021118_18_51_25_234650/{0:05d}_output_2.txt".format(i)) + confidence.shape = 1, 45390, 21 + location.shape = 1, 45390, 4 + seg_logits.shape = 1, 75, 75, 21 + + for cid in np.unique(gt_cats): + mask = (gt_cats == cid) + bbox = gt_bboxes[mask] + diff = difficulty[mask] + det = np.zeros(len(diff), dtype=np.bool) + gt[cid][img_id] = {'bbox': bbox, 'difficult': diff, 'det': det} + + confidence1 = confidence + location1 = location + seg_logits1 = seg_logits + output = detector.feed_forward(img, seg_gt, confidence1, location1, seg_logits1, + w, h, name, gt_bboxes, gt_cats) # result + + if args.detect: + det_bboxes, det_probs, det_cats = output[:3] + for i in range(len(det_cats)): + dets[det_cats[i]].append((img_id, det_probs[i]) + tuple(det_bboxes[i])) + + # print("gt = ", gt) + # print("dets = ", dets) + print("table result:") + table = make_detection_table(gt, dets, loader) if args.detect else None + print("iou result:") + iou = compute_mean_iou(detector) if args.segment else None + + +if __name__ == '__main__': + tf.app.run() \ No newline at end of file diff --git a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/train_1p.py b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/train_1p.py index 3b46c37d3452f92268f832bd7727b14aa8a0f149..a44a8bba02b1ec2fea648409bfde09e7cd39b629 100644 --- a/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/train_1p.py +++ b/TensorFlow/contrib/cv/BlitzNet_ID0948_for_TensorFlow/train_1p.py @@ -54,9 +54,9 @@ log = logging.getLogger() dataset_num_classes = len(VOC_CATS) -def npu_tf_optimizer(opt): - npu_opt = NPUDistributedOptimizer(opt) - return npu_opt +#def npu_tf_optimizer(opt): +# npu_opt = NPUDistributedOptimizer(opt) +# return npu_opt def objective(location, confidence, refine_ph, classes_ph, @@ -271,9 +271,11 @@ def train(net, config): learning_rate = cosine_decay(tf.to_int32(global_step), steps, learning_rates) if args.optimizer == 'adam': - opt = npu_tf_optimizer(tf.train.AdamOptimizer(learning_rate=learning_rate)) + # opt = npu_tf_optimizer(tf.train.AdamOptimizer(learning_rate=learning_rate)) + opt = tf.train.AdamOptimizer(learning_rate=learning_rate) elif args.optimizer == 'nesterov': - opt = npu_tf_optimizer(tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9, use_nesterov=True)) + # opt = npu_tf_optimizer(tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9, use_nesterov=True)) + opt = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.9, use_nesterov=True) else: raise ValueError @@ -292,7 +294,7 @@ def train(net, config): custom_op = config_npu.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True - # custom_op.parameter_map["mix_compile_mode"].b = True + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") config_npu.graph_options.rewrite_options.remapping = RewriterConfig.OFF with tf.Session(config=config_npu) as sess: diff --git a/TensorFlow/contrib/cv/CFL_ID1230_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/CFL_ID1230_for_TensorFlow/test/train_full_1p.sh index f85b93576acf9888c68abfe822c316ca49d2930a..898fc05da046dfb148bc057ad3952d00f907e6f2 100644 --- a/TensorFlow/contrib/cv/CFL_ID1230_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/contrib/cv/CFL_ID1230_for_TensorFlow/test/train_full_1p.sh @@ -130,7 +130,7 @@ StepTime=`grep "sec/step :" ${print_log} | tail -n 10 | awk '{print $NF}' | awk FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` # 精度相关数据计算 -train_accuracy=`grep "Final Accuracy accuracy" ${print_log} | awk '{print $NF}' | awk -F ";" '{print $2}' | awk -F ":" '{print $2}'` +train_accuracy=`grep "Final Accuracy accuracy" ${print_log} | awk '{print $NF}' | tr -d ":"` # 提取所有loss打印信息 #grep "loss :" ${print_log} | awk -F ":" '{print $4}' | awk -F "-" '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt diff --git a/TensorFlow/contrib/cv/DeltaEncoder_ID1273_for_TensorFlow/README.md b/TensorFlow/contrib/cv/DeltaEncoder_ID1273_for_TensorFlow/README.md index bd461c583ae922d4952505ba31c9cdcde775b6be..4d9d28737828f1fac692f364bfdea7e2e9d542f0 100644 --- a/TensorFlow/contrib/cv/DeltaEncoder_ID1273_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/DeltaEncoder_ID1273_for_TensorFlow/README.md @@ -99,6 +99,9 @@ num_ways: ways number. In the original paper, it was 5 |--|--| | GPU(V100)| 5.18s/epoch | | NPU(Ascend910)| 10s/epoch | +| NPU(Ascend910)-开启混合精度| 7s/epoch | +| NPU(Ascend910)-关闭日志| 3.5s/epoch | + #### 1-shot 5-way 精度结果 ##### GPU结果 ``` diff --git a/TensorFlow/contrib/cv/EfficientNet/EfficientNet_V2_ID1220_for_TensorFlow/efficientnet_model.py b/TensorFlow/contrib/cv/EfficientNet/EfficientNet_V2_ID1220_for_TensorFlow/efficientnet_model.py index 569e02c0190f07f2bd76e0b68a315104ac49bbd2..c653e87884793fb54f716fdda3abb5665333f2a0 100644 --- a/TensorFlow/contrib/cv/EfficientNet/EfficientNet_V2_ID1220_for_TensorFlow/efficientnet_model.py +++ b/TensorFlow/contrib/cv/EfficientNet/EfficientNet_V2_ID1220_for_TensorFlow/efficientnet_model.py @@ -367,6 +367,7 @@ class Model(tf.keras.Model): kernel_initializer=dense_kernel_initializer) if self._global_params.dropout_rate > 0: + from npu_bridge.estimator.npu import npu_convert_dropout self._dropout = tf.keras.layers.Dropout(self._global_params.dropout_rate) else: self._dropout = None diff --git a/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/freeze_graph.py b/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/freeze_graph.py new file mode 100644 index 0000000000000000000000000000000000000000..6ff8ed5112d25410cd6d3612d6bd9af22b2e8acb --- /dev/null +++ b/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/freeze_graph.py @@ -0,0 +1,81 @@ +# coding=utf-8 +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from tensorflow.python.tools import freeze_graph +import argparse +import logging +import tensorflow as tf + +from maml_freeze import MAML + +logging.basicConfig(level=logging.INFO) +LOG = logging.getLogger('main') +parser = argparse.ArgumentParser() +parser.add_argument('--ckpt_path',type=str, default='/npu/ID1283/task00613907/MT-NET_ID1283_for_TensorFlow/mt-net-0419/ckpt/model59999',help='The path of checkpoint') + +#running function +def run(args): + ckpt_path = args.ckpt_path + + tf.reset_default_graph() + + inputa = tf.placeholder(tf.float32, shape=(4, 5, 1), name="inputa") + inputb = tf.placeholder(tf.float32, shape=(4, 5, 1), name="inputb") + labela = tf.placeholder(tf.float32, shape=(4, 5, 1), name="inputc") + labelb = tf.placeholder(tf.float32, shape=(4, 5, 1), name="inputd") + metaval_input_tensors = {'inputa': inputa, 'inputb': inputb, 'labela': labela, 'labelb': labelb} + + model = MAML(dim_input=1, dim_output=1, test_num_updates=1) + model.construct_model(input_tensors=metaval_input_tensors, prefix='metaval_') + + logits = model.metaval_total_loss1 + tf.identity(logits, name="output") + + with tf.Session() as sess: + tf.train.write_graph(sess.graph_def, './pb_model', 'output.pb') # save pb file with output node + freeze_graph.freeze_graph( + input_graph='./pb_model/output.pb', # the pb file with output node + input_saver='', + input_binary=False, + input_checkpoint=ckpt_path, # input checkpoint file path + output_node_names='output', # the name of output node in pb file + restore_op_name='save/restore_all', + filename_tensor_name='save/Const:0', + output_graph='./pb_model/mt-net.pb', # path of output graph + clear_devices=False, + initializer_nodes='') + logging.info('done') + + +if __name__ == "__main__": + args = parser.parse_args() + run(args) + + + diff --git a/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/maml_freeze.py b/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/maml_freeze.py new file mode 100644 index 0000000000000000000000000000000000000000..62a245d094f8c9e002c03ed52654c99bd5940e7d --- /dev/null +++ b/TensorFlow/contrib/cv/MT-NET_ID1283_for_TensorFlow/maml_freeze.py @@ -0,0 +1,531 @@ +# +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +""" Code for the MAML algorithm and network definitions. """ +from npu_bridge.npu_init import * +import numpy as np + +try: + import special_grads +except KeyError as e: + print ('WARNING: Cannot define MaxPoolGrad, likely already defined for this version of TensorFlow:', e) +import tensorflow as tf + +from tensorflow.python.platform import flags +from utils import mse, xent, conv_block, normalize + +FLAGS = flags.FLAGS + +## chip options +flags.DEFINE_string('chip', 'npu', "run on which chip, (npu or gpu or cpu)") +flags.DEFINE_string('platform', 'linux', 'runtime platform, linux or modelarts') +flags.DEFINE_string("obs_dir", '', 'obs result path, not need on gpu and apulis platform') +flags.DEFINE_boolean("profiling", False, "profiling for performance or not") + +## Dataset/method options + +flags.DEFINE_string('datasource', 'sinusoid', 'sinusoid or omniglot or miniimagenet') +flags.DEFINE_integer('num_classes', 5, 'number of classes used in classification (e.g. 5-way classification).') +flags.DEFINE_integer('num_train_classes', -1, 'number of classes to train on (-1 for all).') +# oracle means task id is input (only suitable for sinusoid) +flags.DEFINE_string('baseline', None, 'oracle, or None') + +## Training options +flags.DEFINE_integer('pretrain_iterations', 0, 'number of pre-training iterations.') +flags.DEFINE_integer('metatrain_iterations', 40000, 'number of metatraining iterations.') # 15k for omniglot, 50k for sinusoid +flags.DEFINE_integer('meta_batch_size', 1, 'number of tasks sampled per meta-update') +flags.DEFINE_float('meta_lr', 0.001, 'the base learning rate of the generator') +flags.DEFINE_integer('update_batch_size', 1, 'number of examples used for inner gradient update (K for K-shot learning).') +flags.DEFINE_float('update_lr', .01, 'step size alpha for inner gradient update.') # 0.1 for omniglot +flags.DEFINE_integer('num_updates', 1, 'number of inner gradient updates during training.') +flags.DEFINE_integer('poly_order', 1, 'order of polynomial to generate') + +## Model options +#flags.DEFINE_string('mod', '', 'modifications to original paper. None, split, both') +flags.DEFINE_bool('use_T', True, 'whether or not to use transformation matrix T') +flags.DEFINE_bool('use_M', True, 'whether or not to use mask M') +flags.DEFINE_bool('share_M', True, 'only effective if use_M is true, whether or not to ' + 'share masks between weights' + 'that contribute to the same activation') +flags.DEFINE_float('temp', 1, 'temperature for gumbel-softmax') +flags.DEFINE_float('logit_init', 0, 'initial logit') +flags.DEFINE_string('norm', 'None', 'batch_norm, layer_norm, or None') +flags.DEFINE_integer('dim_hidden', 40, 'dimension of fc layer') +flags.DEFINE_integer('num_filters', 64, 'number of filters for conv nets -- use 32 for ' + 'miniimagenet, 64 for omiglot.') +flags.DEFINE_bool('conv', True, 'whether or not to use a convolutional network, only applicable in some cases') +flags.DEFINE_bool('max_pool', True, 'Whether or not to use max pooling rather than strided convolutions') +flags.DEFINE_bool('stop_grad', False, 'if True, do not use second derivatives in meta-optimization (for speed)') + +## Logging, saving, and testing options +flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.') +flags.DEFINE_string('logdir', 'logs/omniglot20way', 'directory for summaries and checkpoints.') +flags.DEFINE_bool('debug', False, 'debug mode. uses less data for fast evaluation.') +flags.DEFINE_bool('resume', True, 'resume training if there is a model available') +flags.DEFINE_bool('train', False, 'True to train, False to test.') +flags.DEFINE_integer('test_iter', -1, 'iteration to load model (-1 for latest model)') +flags.DEFINE_bool('test_set', False, 'Set to true to test on the the test set, False for the validation set.') +flags.DEFINE_integer('train_update_batch_size', -1, 'number of examples used for gradient update during training (use if you want to test with a different number).') +flags.DEFINE_float('train_update_lr', -1, 'value of inner gradient step step during training. (use if you want to test with a different value)') # 0.1 for omniglot + + +class MAML: + def __init__(self, dim_input=1, dim_output=1, test_num_updates=5): + """ must call construct_model() after initializing MAML! """ + self.dim_input = dim_input + self.dim_output = dim_output + self.update_lr = FLAGS.update_lr + self.meta_lr = tf.placeholder_with_default(FLAGS.meta_lr, ()) + self.classification = False + self.test_num_updates = test_num_updates + if FLAGS.datasource in ['sinusoid', 'polynomial']: + self.dim_hidden = [FLAGS.dim_hidden, FLAGS.dim_hidden] + if FLAGS.use_T: + self.forward = self.forward_fc_withT + else: + self.forward = self.forward_fc + self.construct_weights = self.construct_fc_weights + self.loss_func = mse + elif FLAGS.datasource == 'omniglot' or FLAGS.datasource == 'miniimagenet': + self.loss_func = xent + self.classification = True + if FLAGS.conv: + self.dim_hidden = FLAGS.num_filters + if FLAGS.use_T: + self.forward = self.forward_conv_withT + else: + self.forward = self.forward_conv + self.construct_weights = self.construct_conv_weights + else: + self.dim_hidden = [256, 128, 64, 64] + self.forward = self.forward_fc + self.construct_weights = self.construct_fc_weights + if FLAGS.datasource == 'miniimagenet': + self.channels = 3 + else: + self.channels = 1 + self.img_size = int(np.sqrt(self.dim_input / self.channels)) + else: + raise ValueError('Unrecognized data source.') + + def construct_model(self, input_tensors=None, prefix='metatrain_'): + # a: training data for inner gradient, b: test data for meta gradient + self.inputa = input_tensors['inputa'] + self.inputb = input_tensors['inputb'] + self.labela = input_tensors['labela'] + self.labelb = input_tensors['labelb'] + + with tf.variable_scope('model', reuse=None) as training_scope: + self.dropout_probs = {} + if 'weights' in dir(self): + training_scope.reuse_variables() + weights = self.weights + else: + # Define the weights + self.weights = weights = self.construct_weights() + + # outputbs[i] and lossesb[i] is the output and loss after i+1 gradient updates + lossesa, outputas, lossesb, outputbs = [], [], [], [] + accuraciesa, accuraciesb = [], [] + num_updates = max(self.test_num_updates, FLAGS.num_updates) + outputbs = [[]] * num_updates + lossesb = [[]] * num_updates + accuraciesb = [[]] * num_updates + + def task_metalearn(inp, reuse=True): + """ Perform gradient descent for one task in the meta-batch. """ + inputa, inputb, labela, labelb = inp + task_outputbs, task_lossesb = [], [] + mse_lossesb = [] + + if self.classification: + task_accuraciesb = [] + + train_keys = list(weights.keys()) + if FLAGS.use_M and FLAGS.share_M: + def make_shared_mask(key): + temperature = FLAGS.temp + logits = weights[key+'_prob'] + logits = tf.stack([logits, tf.zeros(logits.shape)], 1) + U = tf.random_uniform(logits.shape, minval=0, maxval=1) + gumbel = -tf.log(-tf.log(U + 1e-20) + 1e-20) + y = logits + gumbel + gumbel_softmax = tf.nn.softmax(y / temperature) + gumbel_hard = tf.cast(tf.equal(gumbel_softmax, tf.reduce_max(gumbel_softmax, 1, keep_dims=True)), tf.float32) + mask = tf.stop_gradient(gumbel_hard - gumbel_softmax) + gumbel_softmax + return mask[:, 0] + + def get_mask(masks, name): + mask = masks[[k for k in masks.keys() if name[-1] in k][0]] + if 'conv' in name: # Conv + mask = tf.reshape(mask, [1, 1, 1, -1]) + tile_size = weights[name].shape.as_list()[:3] + [1] + mask = tf.tile(mask, tile_size) + elif 'w' in name: # FC + mask = tf.reshape(mask, [1, -1]) + tile_size = weights[name].shape.as_list()[:1] + [1] + mask = tf.tile(mask, tile_size) + elif 'b' in name: # Bias + mask = tf.reshape(mask, [-1]) + return mask + if self.classification: + masks = {k: make_shared_mask(k) for k in ['conv1', 'conv2', 'conv3', 'conv4', 'w5']} + else: + masks = {k: make_shared_mask(k) for k in ['w1', 'w2', 'w3']} + + if FLAGS.use_M and not FLAGS.share_M: + def get_mask_noshare(key): + temperature = FLAGS.temp + logits = weights[key + '_prob'] + logits = tf.stack([logits, tf.zeros(logits.shape)], 1) + U = tf.random_uniform(logits.shape, minval=0, maxval=1) + gumbel = -tf.log(-tf.log(U + 1e-20) + 1e-20) + y = logits + gumbel + gumbel_softmax = tf.nn.softmax(y / temperature) + gumbel_hard = tf.cast(tf.equal(gumbel_softmax, tf.reduce_max(gumbel_softmax, 1, keep_dims=True)), tf.float32) + out = tf.stop_gradient(gumbel_hard - gumbel_softmax) + gumbel_softmax + return tf.reshape(out[:, 0], weights[key].shape) + + train_keys = [k for k in weights.keys() if 'prob' not in k and 'f' not in k] + train_weights = [weights[k] for k in train_keys] + task_outputa = self.forward(inputa, weights, reuse=reuse) # only reuse on the first iter + self.task_outputa = task_outputa + task_lossa = self.loss_func(task_outputa, labela) + grads = tf.gradients(task_lossa, train_weights) + if FLAGS.stop_grad: + grads = [tf.stop_gradient(grad) for grad in grads] + gradients = dict(zip(train_keys, grads)) + + fast_weights = dict(zip(weights.keys(), [weights[key] for key in weights.keys()])) + + def compute_weights(key): + prev_weights = fast_weights[key] + if key not in train_keys: + return prev_weights + if FLAGS.use_M and FLAGS.share_M: + mask = get_mask(masks, key) + new_weights = prev_weights - self.update_lr * mask * gradients[key] + elif FLAGS.use_M and not FLAGS.share_M: + mask = get_mask_noshare(key) + new_weights = prev_weights - self.update_lr * mask * gradients[key] + else: + new_weights = prev_weights - self.update_lr * gradients[key] + return new_weights + + fast_weights = dict(zip( + weights.keys(), [compute_weights(key) for key in weights.keys()])) + + output = self.forward(inputb, fast_weights, reuse=True) + task_outputbs.append(output) + loss = self.loss_func(output, labelb) + task_lossesb.append(loss) + + for j in range(num_updates - 1): + output = self.forward(inputa, fast_weights, reuse=True) + loss = self.loss_func(output, labela) + train_weights = [fast_weights[k] for k in train_keys] + grads = tf.gradients(loss, train_weights) + if FLAGS.stop_grad: + grads = [tf.stop_gradient(grad) for grad in grads] + gradients = dict(zip(train_keys, grads)) + + fast_weights = dict(zip( + weights.keys(), [compute_weights(key) for key in weights.keys()])) + + output = self.forward(inputb, fast_weights, reuse=True) + task_outputbs.append(output) + loss = self.loss_func(output, labelb) + task_lossesb.append(loss) + + task_output = [task_outputa, task_outputbs, task_lossa, task_lossesb] + + if self.classification: + task_accuracya = tf.contrib.metrics.accuracy(tf.argmax(tf.nn.softmax(task_outputa), 1), + tf.argmax(labela, 1)) + for j in range(num_updates): + task_accuraciesb.append( + tf.contrib.metrics.accuracy(tf.argmax(tf.nn.softmax(task_outputbs[j]), 1), + tf.argmax(labelb, 1))) + task_output.extend([task_accuracya, task_accuraciesb]) + + return task_output + + out_dtype = [tf.float32, [tf.float32] * num_updates, tf.float32, [tf.float32] * num_updates] + if self.classification: + out_dtype.extend([tf.float32, [tf.float32] * num_updates]) + + if FLAGS.chip == 'npu': + if self.classification: + outputas, outputbs, lossesa, lossesb, accuraciesa, accuraciesb = [], [], [], [], [], [] + for i in range(FLAGS.meta_batch_size): + each_input = self.inputa[i], self.inputb[i], self.labela[i], self.labelb[i] + each_outputas, each_outputbs, each_lossesa, each_lossesb, each_accuraciesa, each_accuraciesb = task_metalearn( + each_input) + outputas.append(each_outputas) + outputbs.append(each_outputbs) + lossesa.append(each_lossesa) + lossesb.append(each_lossesb) + accuraciesa.append(each_accuraciesa) + accuraciesb.append(each_accuraciesb) + outputas = tf.stack(outputas) + outputbs = tf.unstack(tf.stack(outputbs), axis=1) + lossesa = tf.stack(lossesa) + lossesb = tf.unstack(tf.stack(lossesb), axis=1) + accuraciesa = tf.stack(accuraciesa) + accuraciesb = tf.unstack(tf.stack(accuraciesb), axis=1) + else: + outputas, outputbs, lossesa, lossesb = [], [], [], [] + for i in range(FLAGS.meta_batch_size): + each_input = self.inputa[i], self.inputb[i], self.labela[i], self.labelb[i] + each_outputas, each_outputbs, each_lossesa, each_lossesb = task_metalearn( + each_input) + outputas.append(each_outputas) + outputbs.append(each_outputbs) + lossesa.append(each_lossesa) + lossesb.append(each_lossesb) + outputas = tf.stack(outputas) + tmp = [] + for i in outputbs: + for j in i: + outputbs = tmp.append(i) + lossesa = tf.stack(lossesa) + lossesb = tf.unstack(tf.stack(lossesb), axis=1) + + logit_keys = sorted([k for k in weights.keys() if 'prob' in k]) + logit_weights = [-weights[k] for k in logit_keys] + probs = [tf.exp(w) / (1 + tf.exp(w)) for w in logit_weights] + self.total_probs = [tf.reduce_mean(p) for p in probs] + + ## Performance & Optimization + self.metaval_total_loss1 = total_loss1 = tf.reduce_sum(lossesa) / tf.to_float(FLAGS.meta_batch_size) + self.metaval_total_losses2 = total_losses2 = [tf.reduce_sum(lossesb[j]) / tf.to_float(FLAGS.meta_batch_size) + for j in range(num_updates)] + if self.classification: + self.metaval_total_accuracy1 = total_accuracy1 = tf.reduce_sum(accuraciesa) / tf.to_float( + FLAGS.meta_batch_size) + self.metaval_total_accuracies2 = total_accuracies2 = [ + tf.reduce_sum(accuraciesb[j]) / tf.to_float(FLAGS.meta_batch_size) for j in range(num_updates)] + + ## Summaries + tf.summary.scalar(prefix + 'change probs', tf.reduce_mean(self.total_probs)) + tf.summary.scalar(prefix + 'Pre-update loss', total_loss1) + if self.classification: + tf.summary.scalar(prefix + 'Pre-update accuracy', total_accuracy1) + + for j in range(num_updates): + tf.summary.scalar(prefix + 'Post-update loss, step ' + str(j + 1), total_losses2[j]) + if self.classification: + tf.summary.scalar(prefix + 'Post-update accuracy, step ' + str(j + 1), total_accuracies2[j]) + + for k, v in weights.items(): + tf.summary.histogram(k, v) + if 'prob' in k: + tf.summary.histogram('prob_'+k, tf.nn.softmax(tf.stack([v, tf.zeros(v.shape)], 1))[:, 0]) + + ### Network construction functions (fc networks and conv networks) + def construct_fc_weights(self): + weights = {} + weights['w1'] = tf.Variable(tf.truncated_normal([self.dim_input, self.dim_hidden[0]], stddev=0.01)) + weights['b1'] = tf.Variable(tf.zeros([self.dim_hidden[0]])) + for i in range(1, len(self.dim_hidden)): + weights['w' + str(i + 1)] = tf.Variable( + tf.truncated_normal([self.dim_hidden[i - 1], self.dim_hidden[i]], stddev=0.01)) + weights['b' + str(i + 1)] = tf.Variable(tf.zeros([self.dim_hidden[i]])) + weights['w' + str(len(self.dim_hidden) + 1)] = tf.Variable( + tf.truncated_normal([self.dim_hidden[-1], self.dim_output], stddev=0.01)) + weights['b' + str(len(self.dim_hidden) + 1)] = tf.Variable(tf.zeros([self.dim_output])) + + if FLAGS.use_M and not FLAGS.share_M: + weights['w1_prob'] = tf.Variable(tf.truncated_normal([self.dim_input * self.dim_hidden[0]], stddev=.1)) + weights['b1_prob'] = tf.Variable(tf.truncated_normal([self.dim_hidden[0]], stddev=.1)) + for i in range(1, len(self.dim_hidden)): + weights['w' + str(i + 1) + '_prob'] = tf.Variable( + tf.truncated_normal([self.dim_hidden[i - 1] * self.dim_hidden[i]], stddev=.1)) + weights['b' + str(i + 1) + '_prob'] = tf.Variable( + tf.truncated_normal([self.dim_hidden[i]], stddev=.1)) + weights['w' + str(len(self.dim_hidden) + 1) + '_prob'] = tf.Variable( + tf.truncated_normal([self.dim_hidden[-1] * self.dim_output], stddev=0.1)) + weights['b' + str(len(self.dim_hidden) + 1) + '_prob'] = tf.Variable( + tf.truncated_normal([self.dim_output], stddev=.1)) + elif FLAGS.use_M and FLAGS.share_M: + weights['w1_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden[0]])) + for i in range(1, len(self.dim_hidden)): + weights['w' + str(i + 1) + '_prob'] = tf.Variable( + FLAGS.logit_init * tf.ones([self.dim_hidden[i]])) + weights['w' + str(len(self.dim_hidden) + 1) + '_prob'] = tf.Variable( + FLAGS.logit_init * tf.ones([self.dim_output])) + + if FLAGS.use_T: + weights['w1_f'] = tf.Variable(tf.eye(self.dim_hidden[0])) + weights['w2_f'] = tf.Variable(tf.eye(self.dim_hidden[1])) + weights['w3_f'] = tf.Variable(tf.eye(self.dim_output)) + return weights + + def forward_fc(self, inp, weights, reuse=False): + hidden = normalize(tf.matmul(inp, weights['w1']) + weights['b1'], + activation=tf.nn.relu, reuse=reuse, scope='0') + for i in range(1, len(self.dim_hidden)): + hidden = normalize(tf.matmul(hidden, weights['w' + str(i + 1)]) + weights['b' + str(i + 1)], + activation=tf.nn.relu, reuse=reuse, scope=str(i + 1)) + return tf.matmul(hidden, weights['w' + str(len(self.dim_hidden) + 1)]) + \ + weights['b' + str(len(self.dim_hidden) + 1)] + + def forward_fc_withT(self, inp, weights, reuse=False): + hidden = tf.matmul(tf.matmul(inp, weights['w1']) + weights['b1'], weights['w1_f']) + hidden = normalize(hidden, activation=tf.nn.relu, reuse=reuse, scope='1') + hidden = tf.matmul(tf.matmul(hidden, weights['w2']) + weights['b2'], weights['w2_f']) + hidden = normalize(hidden, activation=tf.nn.relu, reuse=reuse, scope='2') + hidden = tf.matmul(tf.matmul(hidden, weights['w3']) + weights['b3'], weights['w3_f']) + return hidden + + def construct_conv_weights(self): + weights = {} + dtype = tf.float32 + conv_initializer = tf.contrib.layers.xavier_initializer_conv2d(dtype=dtype) + fc_initializer = tf.contrib.layers.xavier_initializer(dtype=dtype) + k = 3 + channels = self.channels + dim_hidden = self.dim_hidden + + def get_conv(name, shape): + return tf.get_variable(name, shape, initializer=conv_initializer, dtype=dtype) + + def get_identity(dim, conv=True): + return tf.Variable(tf.eye(dim, batch_shape=[1,1])) if conv \ + else tf.Variable(tf.eye(dim)) + + weights['conv1'] = get_conv('conv1', [k, k, channels, self.dim_hidden]) + weights['b1'] = tf.Variable(tf.zeros([self.dim_hidden])) + weights['conv2'] = get_conv('conv2', [k, k, dim_hidden, self.dim_hidden]) + weights['b2'] = tf.Variable(tf.zeros([self.dim_hidden])) + weights['conv3'] = get_conv('conv3', [k, k, dim_hidden, self.dim_hidden]) + weights['b3'] = tf.Variable(tf.zeros([self.dim_hidden])) + weights['conv4'] = get_conv('conv4', [k, k, dim_hidden, self.dim_hidden]) + weights['b4'] = tf.Variable(tf.zeros([self.dim_hidden])) + if FLAGS.datasource == 'miniimagenet': + # assumes max pooling + assert FLAGS.max_pool + weights['w5'] = tf.get_variable('w5', [self.dim_hidden * 5 * 5, self.dim_output], + initializer=fc_initializer) + weights['b5'] = tf.Variable(tf.zeros([self.dim_output]), name='b5') + + if FLAGS.use_M and not FLAGS.share_M: + weights['conv1_prob'] = tf.Variable(tf.truncated_normal([k * k * channels * self.dim_hidden], stddev=.01)) + weights['b1_prob'] = tf.Variable(tf.truncated_normal([self.dim_hidden], stddev=.01)) + weights['conv2_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['b2_prob'] = tf.Variable(tf.truncated_normal([self.dim_hidden], stddev=.01)) + weights['conv3_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['b3_prob'] = tf.Variable(tf.truncated_normal([self.dim_hidden], stddev=.01)) + weights['conv4_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['b4_prob'] = tf.Variable(tf.truncated_normal([self.dim_hidden], stddev=.01)) + weights['w5_prob'] = tf.Variable(tf.truncated_normal([dim_hidden *5*5* self.dim_output], stddev=.01)) + weights['b5_prob'] = tf.Variable(tf.truncated_normal([self.dim_output], stddev=.01)) + if FLAGS.use_M and FLAGS.share_M: + weights['conv1_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv2_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv3_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv4_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['w5_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_output])) + + if FLAGS.use_T: + weights['conv1_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv2_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv3_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv4_f'] = get_identity(self.dim_hidden, conv=True) + weights['w5_f'] = get_identity(self.dim_output, conv=False) + else: + weights['w5'] = tf.Variable(tf.random_normal([dim_hidden, self.dim_output]), name='w5') + weights['b5'] = tf.Variable(tf.zeros([self.dim_output]), name='b5') + if FLAGS.use_M and not FLAGS.share_M: + weights['conv1_prob'] = tf.Variable(tf.truncated_normal([k * k * channels * self.dim_hidden], stddev=.01)) + weights['conv2_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['conv3_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['conv4_prob'] = tf.Variable(tf.truncated_normal([k * k * dim_hidden * self.dim_hidden], stddev=.01)) + weights['w5_prob'] = tf.Variable(tf.truncated_normal([dim_hidden * self.dim_output], stddev=.01)) + if FLAGS.use_M and FLAGS.share_M: + weights['conv1_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv2_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv3_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['conv4_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_hidden])) + weights['w5_prob'] = tf.Variable(FLAGS.logit_init * tf.ones([self.dim_output])) + + if FLAGS.use_T: + weights['conv1_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv2_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv3_f'] = get_identity(self.dim_hidden, conv=True) + weights['conv4_f'] = get_identity(self.dim_hidden, conv=True) + weights['w5_f'] = get_identity(self.dim_output, conv=False) + return weights + + def forward_conv(self, inp, weights, reuse=False, scope=''): + # reuse is for the normalization parameters. + channels = self.channels + inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels]) + hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope + '0') + hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope + '1') + hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope + '2') + hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope + '3') + + if FLAGS.datasource == 'miniimagenet': + # last hidden layer is 6x6x64-ish, reshape to a vector + hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])]) + else: + hidden4 = tf.reduce_mean(hidden4, [1, 2]) + return tf.matmul(hidden4, weights['w5']) + weights['b5'] + + def forward_conv_withT(self, inp, weights, reuse=False, scope=''): + # reuse is for the normalization parameters. + def conv_tout(inp, cweight, bweight, rweight, reuse, scope, activation=tf.nn.relu, max_pool_pad='VALID', + residual=False): + stride, no_stride = [1, 2, 2, 1], [1, 1, 1, 1] + if FLAGS.max_pool: + conv_output = tf.nn.conv2d(inp, cweight, no_stride, 'SAME') + bweight + else: + conv_output = tf.nn.conv2d(inp, cweight, stride, 'SAME') + bweight + conv_output = tf.nn.conv2d(conv_output, rweight, no_stride, 'SAME') + normed = normalize(conv_output, activation, reuse, scope) + if FLAGS.max_pool: + normed = tf.nn.max_pool(normed, stride, stride, max_pool_pad) + return normed + + channels = self.channels + inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels]) + hidden1 = conv_tout(inp, weights['conv1'], weights['b1'], weights['conv1_f'], reuse, scope + '0') + hidden2 = conv_tout(hidden1, weights['conv2'], weights['b2'], weights['conv2_f'], reuse, scope + '1') + hidden3 = conv_tout(hidden2, weights['conv3'], weights['b3'], weights['conv3_f'], reuse, scope + '2') + hidden4 = conv_tout(hidden3, weights['conv4'], weights['b4'], weights['conv4_f'], reuse, scope + '3') + + if FLAGS.datasource == 'miniimagenet': + # last hidden layer is 6x6x64-ish, reshape to a vector + hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])]) + else: + hidden4 = tf.reduce_mean(hidden4, [1, 2]) + hidden5 = tf.matmul(hidden4, weights['w5']) + weights['b5'] + return tf.matmul(hidden5, weights['w5_f']) + diff --git a/TensorFlow/contrib/cv/RANDLA-NET_ID0850_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/RANDLA-NET_ID0850_for_TensorFlow/test/train_full_1p.sh index d89e020bbdebe9be2fbc66566b953c5344e85637..31c24b677841c564ecdcffa533984c0b9f112277 100644 --- a/TensorFlow/contrib/cv/RANDLA-NET_ID0850_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/contrib/cv/RANDLA-NET_ID0850_for_TensorFlow/test/train_full_1p.sh @@ -160,7 +160,7 @@ echo "E2E Training Duration sec : $e2e_time" #训练用例信息,不需要修改 BatchSize=${batch_size} DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' ##获取性能数据,不需要修改 #吞吐量 diff --git a/TensorFlow/contrib/cv/STNet_ID2360_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/STNet_ID2360_for_TensorFlow/test/train_performance_1p.sh index 408baf968c3a49ab59f2759daf07c25905428bae..68b7a0d5da9d16e59d3232ca82350cbe825dd9a7 100644 --- a/TensorFlow/contrib/cv/STNet_ID2360_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/STNet_ID2360_for_TensorFlow/test/train_performance_1p.sh @@ -120,7 +120,7 @@ else fi # 性能相关数据计算 -StepTime=`grep "sec/step :" ${print_log} | tail -n 10 | awk '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` +StepTime=`grep "sec/step :" ${print_log} | tail -n 10 | awk -F':' '{print $5}' |cut -b -15 | awk '{sum+=$1} END {print sum/NR}'` FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` # 精度相关数据计算 diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/.keep b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/.keep new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/LICENSE b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..5ea8a5f7b6ae91ebb12b7f2fa71a5432bb89de63 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/LICENSE @@ -0,0 +1,284 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + +------------------ +Files: third_party/compute_library/... + +MIT License + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. + +------------------ +Files: ACKNOWLEDGEMENTS +LICENSE + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +------------------ +Files: third_party/hexagon + +Copyright (c) 2016-2019, The Linux Foundation. All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted (subject to the limitations in the +disclaimer below) provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + + * Neither the name of The Linux Foundation nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE +GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT +HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED +WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. +IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER +IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR +OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN +IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/README.md b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/README.md new file mode 100644 index 0000000000000000000000000000000000000000..4306edd106e8cbbd614223f790a65d3a1ec68fd6 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/README.md @@ -0,0 +1,165 @@ +- [基本信息](#基本信息.md) +- [概述](#概述.md) +- [训练环境准备](#训练环境准备.md) +- [快速上手](#快速上手.md) +- [迁移学习指导](#迁移学习指导.md) +- [高级参考](#高级参考.md) +

基本信息

+ +**发布者(Publisher):Huawei** + +**应用领域(Application Domain):Image Processing** + +**框架(Framework):TensorFlow 1.15.0** + +**模型格式(Model Format):ckpt** + +**精度(Precision):Mixed** + +**处理器(Processor):昇腾910** + +**应用级别(Categories):Research** + +**描述(Description): The paper propose +TVNet, a novel end-to-end trainable neural network, to learn +optical-flow-like features from data.** +

概述

+ + Despite the recent success of end-to-end learned representations, hand-crafted optical flow features are still widelyused in video analysis tasks. To fill this gap, we proposeTVNet, a novel end-to-end trainable neural network, to learnoptical-flow-like features from data + +- 参考论文: + + https://openaccess.thecvf.com/content_cvpr_2018/papers/Fan_End-to-End_Learning_of_CVPR_2018_paper.pdf + + +- 适配昇腾 AI 处理器的实现: + + https://gitee.com/myd-git/ModelZoo-TensorFlow/tree/master/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow + +- 通过Git获取对应commit\_id的代码方法如下: + + ``` + git clone {repository_url} # 克隆仓库的代码 + cd {repository_name} # 切换到模型的代码仓目录 + git checkout {branch} # 切换到对应分支 + git reset --hard {commit_id} # 代码设置到对应的commit_id + cd {code_path} # 切换到模型代码所在路径,若仓库下只有该模型,则无需切换 + ``` + +## 默认配置 + +- 训练数据集预处理: + + - 图像的输入尺寸为1024*436 + - 图像输入格式:png + +- 测试数据集预处理 + + - 图像的输入尺寸为1024*436 + - 图像输入格式:png + +- 训练超参 + + - scale: Number of scales in TVNet (default: 1) + - warp: Number of warppings in TVNet (default: 1) + - iteration: Number of iterations in TVNet(default: 50) + - Train step: 10000 + - gpu: the gpu to run on (0-indexed, -1 for CPU) + +## 支持特性 + +| 特性列表 | 是否支持 | +|-------|------| +| 分布式训练 | 否 | +| 混合精度 | 是 | +| 并行数据 | 否 | + + +## 混合精度训练 + +昇腾910 AI处理器提供自动混合精度功能,可以针对全网中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。 + +## 开启混合精度 + +脚本已默认开启混合精度,设置precision_mode参数的脚本参考如下。 + + ``` + custom_op = session_config.graph_options.rewrite_options.custom_optimizers.add() + custom_op.name = 'NpuOptimizer' + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes(str(args.precision_mode)) + ``` + + +

快速上手

+ +- 数据集准备 +1. 数据集下载链接:obs://cann-id0951/dataset/ + + +## 模型训练 + +- 单卡训练 + +单卡训练 + +1. 配置训练参数 +2. 启动训练 +``` +bash train_full_1p.sh +``` + +

训练结果

+ + +- 精度结果比对 + +|精度指标项|GPU实测|NPU实测| +|---|---|---| +|LOSS|8.7241955|8.390178| + +- 性能结果比对 + +|性能指标项|GPU实测|NPU实测| +|---|---|---| +|FPS|0.9856|1.0684| + +

结果测试

+- 在test_sintel.py文件中修改测试的图片和指定模型的路径,然后运行该文件。 +``` +python test_sintel.py +``` +- 用visualize(可视化脚本集合)执行得到的.mat文件,得到如下的结果: +![输入图片说明](Result.png) + +

高级参考

+ +## 脚本和示例代码 + +``` +├── tvnet.py //模型搭建文件 +├── train_epe_sintel.py //读取数据进行训练 +├── test_sintel.py //测试模型结果 +├── spatial_transformer.py //Spatial Transformer Layer +├── template.py //一些模板参数的设置 +├── README.md //代码说明文档 +``` + +## 脚本参数 + + + + +``` +--data_path +--output_path +--Batch size: 1 +--Learning rate(LR): 1e-4 +--Optimizer: Adam +--Train steps:10000 +``` + +## 训练过程 + +1. 通过“模型训练”中的训练指令启动单卡卡训练。 + +2. 参考脚本的模型存储路径为train_url diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/Result.png b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/Result.png new file mode 100644 index 0000000000000000000000000000000000000000..7f8d8e7dc41b7b071ca1ce48ac17566640c20e21 Binary files /dev/null and b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/Result.png differ diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/loss perf_npu.txt b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/loss perf_npu.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_acc.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_acc.py new file mode 100644 index 0000000000000000000000000000000000000000..13077b10e660de32d6f7861257a50e1a01ede9ba --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_acc.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import sys + +# 解析输入参数data_url +parser = argparse.ArgumentParser() +parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") +parser.add_argument("--train_url", type=str, default="/home/ma-user/modelarts/outputs/train_url_0/") +config = parser.parse_args() + +print("[CANN-Modelzoo] code_dir path is [%s]" % (sys.path[0])) +code_dir = sys.path[0] +os.chdir(code_dir) +print("[CANN-Modelzoo] work_dir path is [%s]" % (os.getcwd())) + +print("[CANN-Modelzoo] before train - list my run files:") +os.system("ls -al /usr/local/Ascend/ascend-toolkit/") + +print("[CANN-Modelzoo] before train - list my dataset files:") +os.system("ls -al %s" % config.data_url) + +print("[CANN-Modelzoo] start run train shell") +# 设置sh文件格式为linux可执行 +os.system("dos2unix ./test/*") + +# 执行train_full_1p.sh或者train_performance_1p.sh,需要用户自己指定 +# full和performance的差异,performance只需要执行很少的step,控制在15分钟以内,主要关注性能FPS +os.system("bash ./test/train_full_1p.sh --data_path=%s --output_path=%s " % (config.data_url, config.train_url)) + +print("[CANN-Modelzoo] finish run train shell") + +# 将当前执行目录所有文件拷贝到obs的output进行备份 +print("[CANN-Modelzoo] after train - list my output files:") +os.system("cp -r %s %s " % (code_dir, config.train_url)) +os.system("ls -al %s" % config.train_url) diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_perf.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_perf.py new file mode 100644 index 0000000000000000000000000000000000000000..14384e227a0fa90a514254590aef5078c62ff700 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelarts_entry_perf.py @@ -0,0 +1,63 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import argparse +import sys + +# 解析输入参数data_url +parser = argparse.ArgumentParser() +parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") +parser.add_argument("--train_url", type=str, default="/home/ma-user/modelarts/outputs/train_url_0/") +config = parser.parse_args() + +print("[CANN-Modelzoo] code_dir path is [%s]" % (sys.path[0])) +code_dir = sys.path[0] +os.chdir(code_dir) +print("[CANN-Modelzoo] work_dir path is [%s]" % (os.getcwd())) + +print("[CANN-Modelzoo] before train - list my run files:") +os.system("ls -al /usr/local/Ascend/ascend-toolkit/") + +print("[CANN-Modelzoo] before train - list my dataset files:") +os.system("ls -al %s" % config.data_url) + +print("[CANN-Modelzoo] start run train shell") +# 设置sh文件格式为linux可执行 +os.system("dos2unix ./test/*") + +# 执行train_full_1p.sh或者train_performance_1p.sh,需要用户自己指定 +# full和performance的差异,performance只需要执行很少的step,控制在15分钟以内,主要关注性能FPS +os.system("bash ./test/train_performance_1p.sh --data_path=%s --output_path=%s " % (config.data_url, config.train_url)) + +print("[CANN-Modelzoo] finish run train shell") + +# 将当前执行目录所有文件拷贝到obs的output进行备份 +print("[CANN-Modelzoo] after train - list my output files:") +os.system("cp -r %s %s " % (code_dir, config.train_url)) +os.system("ls -al %s" % config.train_url) diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelzoo_level.txt b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelzoo_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..012b8ef4f5a74d86a8555d86dacf4b10f807e129 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/modelzoo_level.txt @@ -0,0 +1,5 @@ +GPUStatus:OK +NPUMigrationStatus:OK +FuncStatus:OK +PerfStatus:OK +PrecisionStatus:OK \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/requirements.txt b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ea314a5fa4a9e9a0a14b65d1dbb78d1412cae422 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/requirements.txt @@ -0,0 +1,8 @@ +python==3.6.0 +tensorflow==1.15.0 +scikit-learn==0.20 +matplotlib=3.3.4 +pandas==0.20.2 +numpy=1.19.2 +h5py +scipy=1.5.2 \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/spatial_transformer.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/spatial_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f06b514cac283ec58225945d3c32c57e995f8fbb --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/spatial_transformer.py @@ -0,0 +1,220 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import tensorflow as tf + + +def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs): + """Spatial Transformer Layer + + Implements a spatial transformer layer as described in [1]_. + Based on [2]_ and edited by David Dao for Tensorflow. + + Parameters + ---------- + U : float + The output of a convolutional net should have the + shape [num_batch, height, width, num_channels]. + theta: float + The output of the + localisation network should be [num_batch, 6]. + out_size: tuple of two ints + The size of the output of the network (height, width) + + References + ---------- + .. [1] Spatial Transformer Networks + Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu + Submitted on 5 Jun 2015 + .. [2] https://github.com/skaae/transformer_network/blob/master/transformerlayer.py + + Notes + ----- + To initialize the network to the identity transform init + ``theta`` to : + identity = np.array([[1., 0., 0.], + [0., 1., 0.]]) + identity = identity.flatten() + theta = tf.Variable(initial_value=identity) + + """ + + def _repeat(x, n_repeats): + with tf.variable_scope('_repeat'): + rep = tf.transpose( + tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0]) + rep = tf.cast(rep, 'int32') + x = tf.matmul(tf.reshape(x, (-1, 1)), rep) + return tf.reshape(x, [-1]) + + def _interpolate(im, x, y, out_size): + with tf.variable_scope('_interpolate'): + # constants + num_batch = tf.shape(im)[0] + height = tf.shape(im)[1] + width = tf.shape(im)[2] + channels = tf.shape(im)[3] + + x = tf.cast(x, 'float32') + y = tf.cast(y, 'float32') + height_f = tf.cast(height, 'float32') + width_f = tf.cast(width, 'float32') + out_height = out_size[0] + out_width = out_size[1] + zero = tf.zeros([], dtype='int32') + max_y = tf.cast(tf.shape(im)[1] - 1, 'int32') + max_x = tf.cast(tf.shape(im)[2] - 1, 'int32') + + # scale indices from [-1, 1] to [0, width/height-1] + x = (x + 1.0) * (width_f - 1) / 2.0 + y = (y + 1.0) * (height_f - 1) / 2.0 + + # do sampling + x0 = tf.cast(tf.floor(x), 'int32') + x1 = x0 + 1 + y0 = tf.cast(tf.floor(y), 'int32') + y1 = y0 + 1 + + x0 = tf.clip_by_value(x0, zero, max_x - 1) + x1 = tf.clip_by_value(x1, zero, max_x) + y0 = tf.clip_by_value(y0, zero, max_y - 1) + y1 = tf.clip_by_value(y1, zero, max_y) + dim2 = width + dim1 = width * height + base = _repeat(tf.range(num_batch) * dim1, out_height * out_width) + base_y0 = base + y0 * dim2 + base_y1 = base + y1 * dim2 + idx_a = base_y0 + x0 + idx_b = base_y1 + x0 + idx_c = base_y0 + x1 + idx_d = base_y1 + x1 + + # use indices to lookup pixels in the flat image and restore + # channels dim + im_flat = tf.reshape(im, tf.stack([-1, channels])) + im_flat = tf.cast(im_flat, 'float32') + Ia = tf.gather(im_flat, idx_a) + Ib = tf.gather(im_flat, idx_b) + Ic = tf.gather(im_flat, idx_c) + Id = tf.gather(im_flat, idx_d) + + # and finally calculate interpolated values + x0_f = tf.cast(x0, 'float32') + x1_f = tf.cast(x1, 'float32') + y0_f = tf.cast(y0, 'float32') + y1_f = tf.cast(y1, 'float32') + wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1) + wb = tf.expand_dims(((x1_f - x) * (y - y0_f)), 1) + wc = tf.expand_dims(((x - x0_f) * (y1_f - y)), 1) + wd = tf.expand_dims(((x - x0_f) * (y - y0_f)), 1) + output = tf.add_n([wa * Ia, wb * Ib, wc * Ic, wd * Id]) + return output + + def _meshgrid(height, width): + with tf.variable_scope('_meshgrid'): + # This should be equivalent to: + # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), + # np.linspace(-1, 1, height)) + # ones = np.ones(np.prod(x_t.shape)) + # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) + x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), + tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) + y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), + tf.ones(shape=tf.stack([1, width]))) + + x_t_flat = tf.reshape(x_t, (1, -1)) + y_t_flat = tf.reshape(y_t, (1, -1)) + + # ones = tf.ones_like(x_t_flat) + # grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) + grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat]) + return grid + + def _transform(theta, input_dim, out_size): + with tf.variable_scope('_transform'): + num_batch = tf.shape(input_dim)[0] + height = tf.shape(input_dim)[1] + width = tf.shape(input_dim)[2] + num_channels = tf.shape(input_dim)[3] + # theta = tf.reshape(theta, (-1, 2, 3)) + theta = tf.cast(theta, 'float32') + + # grid of (x_t, y_t, 1), eq (1) in ref [1] + height_f = tf.cast(height, 'float32') + width_f = tf.cast(width, 'float32') + out_height = out_size[0] + out_width = out_size[1] + grid = _meshgrid(out_height, out_width) + grid = tf.expand_dims(grid, 0) + grid = tf.reshape(grid, [-1]) + grid = tf.tile(grid, tf.stack([num_batch])) + # grid = tf.reshape(grid, tf.stack([num_batch, 3, -1])) + grid = tf.reshape(grid, tf.stack([num_batch, 2, -1])) + + # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) + # T_g = tf.matmul(theta, grid) + T_g = theta + grid + x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1]) + y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1]) + x_s_flat = tf.reshape(x_s, [-1]) + y_s_flat = tf.reshape(y_s, [-1]) + + input_transformed = _interpolate( + input_dim, x_s_flat, y_s_flat, + out_size) + + output = tf.reshape( + input_transformed, tf.stack([num_batch, out_height, out_width, num_channels])) + + return output + + with tf.variable_scope(name): + output = _transform(theta, U, out_size) + return output + + +def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'): + """Batch Spatial Transformer Layer + + Parameters + ---------- + + U : float + tensor of inputs [num_batch,height,width,num_channels] + thetas : float + a set of transformations for each input [num_batch,num_transforms,6] + out_size : int + the size of the output [out_height,out_width] + + Returns: float + Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels] + """ + with tf.variable_scope(name): + num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2]) + indices = [[i] * num_transforms for i in range(num_batch)] + input_repeated = tf.gather(U, tf.reshape(indices, [-1])) + return transformer(input_repeated, thetas, out_size) diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_full_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..8917afd3cdf2778761304d2d822544867643f218 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_full_1p.sh @@ -0,0 +1,183 @@ +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +etp_flag=${etp_running_flag} +if [ x"${etp_flag}" != xtrue ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo ${print_log} + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=1 + +if [ x"${etp_flag}" != xtrue ]; +then + python3.7 ./train_epe_sintel.py --data_path=${data_path}/dataset --output_path=${output_path} +else + python3.7 ./train_epe_sintel.py --data_path=${data_path}/dataset --output_path=${output_path} > ${print_log} 2>&1 +fi + +# 性能相关数据计算 +StepTime=`grep "sec/step :" ${print_log} | awk '{print $3}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}' ` + +# 精度相关数据计算 +train_accuracy='' +# 提取所有loss打印信息 +grep " loss =" ${print_log} | awk '{print $5}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +echo "Final Performance images/sec : $FPS" +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=`grep "Average epeLoss:" ${print_log} | awk '{print $3}' | tr -d ';'` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..214a6728a0685e7bd249f6bb6cae33839fd63358 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test/train_performance_1p.sh @@ -0,0 +1,184 @@ +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +etp_flag=${etp_running_flag} +if [ x"${etp_flag}" != xtrue ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo ${print_log} + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=1 +train_epochs=2 +train_steps=100 + +if [ x"${etp_flag}" != xtrue ]; +then + python3.7 ./train_epe_sintel.py --data_path=${data_path}/dataset --output_path=${output_path} --steps=${train_steps} +else + python3.7 ./train_epe_sintel.py --data_path=${data_path}/dataset --output_path=${output_path} --steps=${train_steps} > ${print_log} 2>&1 +fi + +# 性能相关数据计算 +StepTime=`cat ${print_log} | grep "sec/batch" | tail -n +2 | awk '{print $8}' | awk '{sum+=$1} END {print sum/NR}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 精度相关数据计算 +train_accuracy='' +# 提取所有loss打印信息 +grep " loss =" ${print_log} | awk '{print $5}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +echo "Final Performance images/sec : $FPS" +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=`grep "Average epeLoss:" ${print_log} | awk '{print $3}' | tr -d ';'` + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test_sintel.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test_sintel.py new file mode 100644 index 0000000000000000000000000000000000000000..e307efb48e4dfef873bbb7251aa62bb9dc0cd21a --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/test_sintel.py @@ -0,0 +1,102 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os + +import cv2 +import numpy as np +import scipy.io as sio +import tensorflow as tf +from npu_bridge.npu_init import * + +from tvnet import TVNet + +flags = tf.app.flags +scale = 1 +warp = 1 +iteration = 50 + +# 设置npu服务器上的路径 +data_path = '/home/ma-user/modelarts/inputs/data_url_0/' +output_path = '/home/ma-user/modelarts/outputs/train_url_0/' +print('data_url :' + data_path) +print('output_url :' + output_path) + + +eval_data = os.listdir(output_path) # 返回data_path下包含的文件或文件夹的名字的列表 +print('输出目录下的文件:') +for name in eval_data: + print(name) + +# load image ,指定测试的图片对 +img1 = cv2.imread(data_path + 'MPISintel_test/temple_2/frame_0001.png') +img2 = cv2.imread(data_path + 'MPISintel_test/temple_2/frame_0002.png') + +h, w, c = img1.shape + +# model construct +x1 = tf.placeholder(shape=[1, h, w, 3], dtype=tf.float32) +x2 = tf.placeholder(shape=[1, h, w, 3], dtype=tf.float32) +tvnet = TVNet() +u1, u2, rho = tvnet.tvnet_flow(x1, x2, max_scales=scale, + warps=warp, + max_iterations=iteration) +# init npu +# 变量初始化 +init = tf.global_variables_initializer() +# 创建session +config = tf.ConfigProto() +custom_op = config.graph_options.rewrite_options.custom_optimizers.add() +custom_op.name = "NpuOptimizer" +config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显式关闭 +config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF # 必须显式关闭 +sess = tf.Session(config=config) + +saver = tf.train.Saver() +saver = tf.train.import_meta_graph(output_path + 'ckpt_gpu_epe1/nn_model_gpu_epe.ckpt.meta') # 加载模型结构 +saver.restore(sess, tf.train.latest_checkpoint(output_path + 'ckpt_gpu_epe1/')) # 只需要指定目录就可以恢复所有变量信息 +all_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # 从一个集合中取出变量 +# run model +u1_np, u2_np = sess.run([u1, u2], feed_dict={x1: img1[np.newaxis, ...], x2: img2[np.newaxis, ...]}) + +u1_np = np.squeeze(u1_np) +u2_np = np.squeeze(u2_np) +flow_mat = np.zeros([h, w, 2]) +flow_mat[:, :, 0] = u1_np +flow_mat[:, :, 1] = u2_np + + + +if not os.path.exists(output_path + 'result'): + os.mkdir(output_path + 'result') +res_path = os.path.join(output_path + 'result', '1.mat') +sio.savemat(res_path, {'flow': flow_mat}) +print("Extracting Flow finished!") + +# 关闭sess +sess.close() + diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/train_epe_sintel.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/train_epe_sintel.py new file mode 100644 index 0000000000000000000000000000000000000000..b025c3c63df26205a3b29f7e9eb0b2e73d584536 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/train_epe_sintel.py @@ -0,0 +1,211 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import datetime +import os +import time +import cv2 +import numpy as np +import tensorflow as tf +from npu_bridge.npu_init import * +import random +from tvnet import TVNet, batch_size +import argparse +import sys + +flags = tf.app.flags +scale = 1 +warp = 1 +iteration = 50 +print('TVNet Params:\n scale: %d\n warp: %d\n iteration: %d' \ + % (scale, warp, iteration)) + + +def get_config(args): + parser = argparse.ArgumentParser(description='Experiment parameters') + parser.add_argument('--data_path', default='./dataset', help='training input data path.') + parser.add_argument('--output_path', default='./output', help='prepocess result path.') + parser.add_argument('--steps', default='10000', help='train steps.') + parsed_args, unknown_args = parser.parse_known_args(args) + return parsed_args + + +def readflo(file_name): # 读取光流文件 + with open(file_name, 'rb') as f: + magic = np.fromfile(f, np.float32, count=1) + if 202021.25 != magic: + print('Magic number incorrect. Invalid .flo file') + else: + w = np.fromfile(f, np.int32, count=1) + h = np.fromfile(f, np.int32, count=1) + # print 'Reading %d x %d flo file' % (w, h) + data = np.array(np.fromfile(f, np.float32, count=2 * int(w) * int(h))) + # Reshape data into 3D array (columns, rows, bands) + # data2D = np.ndarray.reshape(data, (w, h, 2)) + data2D = data.reshape(int(h), int(w), 2) + return data2D + + +# other_data = os.listdir("./other_data/") + +def loadSintelData(data_url): # 加载训练数据 + data_path = os.path.join(data_url, "MPISintel_train/") + # print(data_url + '\n') + eval_data = os.listdir(data_path) # 返回data_path下包含的文件或文件夹的名字的列表 + # for name in eval_data: + # print(name + '/n') + img1 = np.zeros((batch_size, 436, 1024, 3)) + img2 = np.zeros((batch_size, 436, 1024, 3)) + label = np.zeros((batch_size, 436, 1024, 2)) + lod_folder = random.sample(eval_data, 1)[0] + train_dir = data_path + lod_folder + for j in range(batch_size): + i = random.randint(1, 49) + img1[j, :] = cv2.imread(train_dir + "/frame_" + str(i).zfill(4) + ".png") + img2[j, :] = cv2.imread(train_dir + "/frame_" + str(i + 1).zfill(4) + ".png") + label[j, :] = readflo(train_dir + "/frame_" + str(i).zfill(4) + ".flo") + # print("===>>>Flow File: "+ train_dir + "/frame_" + str(i).zfill(4) + ".flo") + return img1, img2, label + + +def calculate_epe(pr_u1, pr_u2, gt_u): + pr_u1 = tf.squeeze(pr_u1) + pr_u2 = tf.squeeze(pr_u2) + return tf.reduce_mean(tf.sqrt(tf.square(pr_u1 - gt_u[:, :, 0]) + tf.square(pr_u2 - gt_u[:, :, 1]))) + + +def calculate_loss(u1, u2, y): + loss = 0 + for j in range(batch_size): + y_1 = u1[j, :] + + y_2 = u2[j, :] + + gt = y[j, :] + + loss += calculate_epe(y_1, y_2, gt) + + return loss / batch_size + + +x1 = tf.placeholder(shape=[batch_size, 436, 1024, 3], dtype=tf.float32) # 函数作为一种占位符用于定义过程,可以理解为形参,在执行的时候再赋具体的值 +x2 = tf.placeholder(shape=[batch_size, 436, 1024, 3], dtype=tf.float32) +y = tf.placeholder(shape=[batch_size, 436, 1024, 2], dtype=tf.float32) +tf.summary.image('input', [x1, x2]) # 形成一张名为input的图像 + +loss_list = [] + +tvnet = TVNet() # 初始化TVnet类 + +u1_p, u2_p, rho = tvnet.tvnet_flow(x1, x2, max_scales=scale, + warps=warp, + max_iterations=iteration) + +loss = calculate_loss(u1_p, u2_p, y) # 计算loss +train_op = tf.train.AdamOptimizer(1e-4).minimize(loss) # 设置优化器 + +# 设置npu服务器上的路径 +args = get_config(sys.argv[1:]) +max_steps = int(args.steps) +print('data_url :' + args.data_path) +print('output_url :' + args.output_path) +print('steps:' + args.steps) +eval_data = os.listdir(args.data_path) # 返回data_url下包含的文件或文件夹的名字的列表 +for name in eval_data: + print(name) + +# init npu +# 变量初始化 +init = tf.global_variables_initializer() +# 创建session +config = tf.ConfigProto() +custom_op = config.graph_options.rewrite_options.custom_optimizers.add() +custom_op.name = "NpuOptimizer" +config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 必须显式关闭 +config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF # 必须显式关闭 +sess = tf.Session(config=config) +sess.run(init) + +saver = tf.train.Saver(tf.global_variables()) # 模型的保存和加载 + +start = datetime.datetime.now() +for step in range(max_steps): # 开始训练 + start_time = time.time() + img1, img2, label = loadSintelData(args.data_path) + # img1, img2 = loadData(batch_size) + _, loss_value = sess.run([train_op, loss], feed_dict={x1: img1, x2: img2, y: label}) # 带入具体的值 + duration = time.time() - start_time + loss_list.append(loss_value) + if step % 5 == 0: + examples_per_sec = batch_size / duration + sec_per_batch = float(duration) + format_str = 'step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)' + print(format_str % (step, loss_value, examples_per_sec, sec_per_batch)) +# Total time +# 按照格式输出单步训练的时间 +end = datetime.datetime.now() +timefortrain = (end - start).total_seconds() +cost_time = timefortrain / max_steps +print("sec/step : {}".format(cost_time)) +print("use second") +print(timefortrain) +strtime = '%dh%dm%ds' % (timefortrain / 3600, timefortrain % 3600 / 60, timefortrain % 3600 % 60) +print("===>>>Total train Time: " + strtime) # 输出训练时间 + +ckpt_path = os.path.join(args.output_path, 'ckpt_gpu_epe1') # 模型最终保存路径:./output/ckpt_gpu_epe1/ +if not os.path.exists(ckpt_path): # 判断模型保存的路径是否存在 + os.mkdir(ckpt_path) +checkpoint_path = os.path.join(ckpt_path, "nn_model_gpu_epe.ckpt") +print("===>>>checkpoint_path: " + checkpoint_path) +saver.save(sess, checkpoint_path) # 保存模型 +# 关闭sess +sess.close() + +loss_path = os.path.join(args.output_path, "loss_Sintel_gpu.log") # loss_log最终保存路径:./output +print("===>>>loss_path: " + loss_path) + +# Average and minal value of loss list +avg_loss = np.mean(loss_list) +min_loss = np.min(loss_list) +print("Average epeLoss: " + str(avg_loss) + "; Minimam Loss: " + str(min_loss)) + +# 开始写入loss +loss_list1 = [] +file = open(loss_path, 'w') +file.write("Total_train_Time: " + strtime) +file.write("Average_epeLoss: " + str(avg_loss) + "; Minimam_Loss: " + str(min_loss)) +for i in range(len(loss_list)): + loss_list1.append(np.mean(loss_list[0:i])) + file.write(str(loss_list[i])) + file.write("\n") +file.close() +loss_path1 = os.path.join(args.output_path, "epeloss1_Sintel_gpu.log") +print("===>>>loss1_path: " + loss_path1) + + + + diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/tvnet.py b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/tvnet.py new file mode 100644 index 0000000000000000000000000000000000000000..96d6fdce11581efd5de9c2deeae5ff7c197ecfae --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/tvnet.py @@ -0,0 +1,360 @@ +# Copyright 2017 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import numpy as np +import tensorflow as tf +import spatial_transformer + +# from train import batch_size +batch_size = 1 + + +def zoom_image(x, new_height, new_width): + assert len(x.shape) == 4 + delta = tf.zeros((tf.shape(x)[0], 2, new_height * new_width)) + zoomed_x = spatial_transformer.transformer(x, delta, (new_height, new_width)) + return tf.reshape(zoomed_x, [tf.shape(x)[0], new_height, new_width, x.shape[-1].value]) + + +class TVNet(object): + GRAD_IS_ZERO = 1e-12 + + def __init__(self): + pass + + def variable_with_weight_loss(self, shape, stddev): + var = tf.Variable(tf.truncated_normal(shape, stddev=stddev)) # tensorflow::ops::TruncatedNormal + return var + + def grey_scale_image(self, x): + assert len(x.shape) == 4 + assert x.shape[-1].value == 3, 'number of channels must be 3 (i.e. RGB)' + + ker_init = tf.constant_initializer([[0.114], [0.587], [0.299]]) + grey_x = tf.layers.conv2d(x, 1, [1, 1], padding='same', + kernel_initializer=ker_init, use_bias=False, trainable=False) + + return tf.floor(grey_x) + + def normalize_images(self, x1, x2): + reduction_axes = [i for i in range(1, len(x1.shape))] + min_x1 = tf.reduce_min(x1, axis=reduction_axes) + max_x1 = tf.reduce_max(x1, axis=reduction_axes) + + min_x2 = tf.reduce_min(x2, axis=reduction_axes) + max_x2 = tf.reduce_max(x2, axis=reduction_axes) + + min_val = tf.minimum(min_x1, min_x2) + max_val = tf.maximum(max_x1, max_x2) + + den = max_val - min_val + + expand_dims = [-1 if i == 0 else 1 for i in range(len(x1.shape))] + min_val_ex = tf.reshape(min_val, expand_dims) + den_ex = tf.reshape(den, expand_dims) + + x1_norm = tf.where(den > 0, 255. * (x1 - min_val_ex) / den_ex, x1) + x2_norm = tf.where(den > 0, 255. * (x2 - min_val_ex) / den_ex, x2) + + return x1_norm, x2_norm + + def gaussian_smooth(self, x): + assert len(x.shape) == 4 + ker_init = tf.constant_initializer([[0.000874, 0.006976, 0.01386, 0.006976, 0.000874], + [0.006976, 0.0557, 0.110656, 0.0557, 0.006976], + [0.01386, 0.110656, 0.219833, 0.110656, 0.01386], + [0.006976, 0.0557, 0.110656, 0.0557, 0.006976], + [0.000874, 0.006976, 0.01386, 0.006976, 0.000874]]) + smooth_x = tf.layers.conv2d(x, x.shape[-1].value, [5, 5], padding='same', + kernel_initializer=ker_init, use_bias=False, trainable=False) + + return smooth_x + + def warp_image(self, x, u, v): + assert len(x.shape) == 4 + assert len(u.shape) == 3 + assert len(v.shape) == 3 + u = u / x.shape[2].value * 2 + v = v / x.shape[1].value * 2 + + delta = tf.concat(axis=1, values=[u, v]) + return spatial_transformer.transformer(x, delta, (x.shape[-3].value, x.shape[-2].value)) + + def centered_gradient(self, x, name): + assert len(x.shape) == 4 + + with tf.variable_scope('centered_gradient'): + x_ker_init = tf.constant_initializer([-0.5, 0, 0.5]) # tf.constant_initializer([-0.5,0, 0.5]) + diff_x = tf.layers.conv2d(x, x.shape[-1].value, [1, 3], padding='same', + kernel_initializer=x_ker_init, use_bias=False, name=name + '_diff_x', + trainable=False) + + y_ker_init = tf.constant_initializer([[-0.5], [0], [0.5]]) + diff_y = tf.layers.conv2d(x, x.shape[-1].value, [3, 1], padding='same', + kernel_initializer=y_ker_init, use_bias=False, name=name + '_diff_y', + trainable=False) + # refine the boundary + + # x_ker_init = self.variable_with_weight_loss(shape=[1, 3, 1, 1], stddev=5e-2) + # diff_x = tf.nn.conv2d(x, x_ker_init, [1, 2, 2, 1], padding='SAME', name=name + '_diff_y') + + test1 = tf.slice(x, [0, 0, 1, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value]) + test2 = tf.slice(x, [0, 0, 0, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value]) + first_col = 0.5 * (tf.slice(x, [0, 0, 1, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value]) - + tf.slice(x, [0, 0, 0, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value])) + + last_col = 0.5 * ( + tf.slice(x, [0, 0, x.shape[2].value - 1, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value]) - + tf.slice(x, [0, 0, x.shape[2].value - 2, 0], [batch_size, x.shape[1].value, 1, x.shape[3].value])) + diff_x_valid = tf.slice(diff_x, begin=[0, 0, 1, 0], + size=[batch_size, x.shape[1].value, x.shape[2].value - 2, x.shape[3].value]) + diff_x = tf.concat(axis=2, values=[first_col, diff_x_valid, last_col]) + + first_row = 0.5 * (tf.slice(x, [0, 1, 0, 0], [batch_size, 1, x.shape[2].value, x.shape[3].value]) - + tf.slice(x, [0, 0, 0, 0], [batch_size, 1, x.shape[2].value, x.shape[3].value])) + last_row = 0.5 * ( + tf.slice(x, [0, x.shape[1].value - 1, 0, 0], [batch_size, 1, x.shape[2].value, x.shape[3].value]) - + tf.slice(x, [0, x.shape[1].value - 2, 0, 0], [batch_size, 1, x.shape[2].value, x.shape[3].value])) + diff_y_valid = tf.slice(diff_y, begin=[0, 1, 0, 0], + size=[batch_size, x.shape[1].value - 2, x.shape[2].value, x.shape[3].value]) + diff_y = tf.concat(axis=1, values=[first_row, diff_y_valid, last_row]) + + return diff_x, diff_y + + def forward_gradient(self, x, name): + assert len(x.shape) == 4 + + with tf.variable_scope('forward_gradient'): + x_ker_init = tf.constant_initializer([[-1, 1]]) + diff_x = tf.layers.conv2d(x, x.shape[-1].value, [1, 2], padding='same', + kernel_initializer=x_ker_init, use_bias=True, name=name + '_diff_x', + trainable=True) + + y_ker_init = tf.constant_initializer([[-1], [1]]) + diff_y = tf.layers.conv2d(x, x.shape[-1].value, [2, 1], padding='same', + kernel_initializer=y_ker_init, use_bias=True, name=name + '_diff_y', + trainable=True) + # refine the boundary + diff_x_valid = tf.slice(diff_x, begin=[0, 0, 0, 0], + size=[batch_size, x.shape[1].value, x.shape[2].value - 1, x.shape[3].value]) + last_col = tf.zeros([tf.shape(x)[0], x.shape[1].value, 1, x.shape[3].value], dtype=tf.float32) + diff_x = tf.concat(axis=2, values=[diff_x_valid, last_col]) + + diff_y_valid = tf.slice(diff_y, begin=[0, 0, 0, 0], + size=[batch_size, x.shape[1].value - 1, x.shape[2].value, x.shape[3].value]) + last_row = tf.zeros([tf.shape(x)[0], 1, x.shape[2].value, x.shape[3].value], dtype=tf.float32) + diff_y = tf.concat(axis=1, values=[diff_y_valid, last_row]) + + return diff_x, diff_y + + def divergence(self, x, y, name): + assert len(x.shape) == 4 + + with tf.variable_scope('divergence'): + x_valid = tf.slice(x, begin=[0, 0, 0, 0], + size=[batch_size, x.shape[1].value, x.shape[2].value - 1, x.shape[3].value]) + first_col = tf.zeros([tf.shape(x)[0], x.shape[1].value, 1, x.shape[3].value], dtype=tf.float32) + x_pad = tf.concat(axis=2, values=[first_col, x_valid]) + + y_valid = tf.slice(y, begin=[0, 0, 0, 0], + size=[batch_size, y.shape[1].value - 1, y.shape[2].value, y.shape[3].value]) + first_row = tf.zeros([tf.shape(y)[0], 1, y.shape[2].value, y.shape[3].value], dtype=tf.float32) + y_pad = tf.concat(axis=1, values=[first_row, y_valid]) + + x_ker_init = tf.constant_initializer([[-1, 1]]) + diff_x = tf.layers.conv2d(x_pad, x.shape[-1].value, [1, 2], padding='same', + kernel_initializer=x_ker_init, use_bias=True, name=name + '_diff_x', + trainable=True) + + y_ker_init = tf.constant_initializer([[-1], [1]]) + diff_y = tf.layers.conv2d(y_pad, y.shape[-1].value, [2, 1], padding='same', + kernel_initializer=y_ker_init, use_bias=True, name=name + '_diff_y', + trainable=True) + + div = diff_x + diff_y + return div + + def zoom_size(self, height, width, factor): + new_height = int(float(height) * factor + 0.5) + new_width = int(float(width) * factor + 0.5) + + return new_height, new_width + + def dual_tvl1_optic_flow(self, x1, x2, u1, u2, + tau=0.25, # time step + lbda=0.15, # weight parameter for the data term + theta=0.3, # weight parameter for (u - v)^2 + warps=5, # number of warpings per scale + max_iterations=50 # maximum number of iterations for optimization + ): + l_t = lbda * theta + taut = tau / theta + diff2_x, diff2_y = self.centered_gradient(x2, 'x2') # conv and slice + p11 = p12 = p21 = p22 = tf.zeros_like(x1) + for warpings in range(warps): # 1 + with tf.variable_scope('warping%d' % (warpings,)): + u1_flat = tf.reshape(u1, (tf.shape(x2)[0], 1, x2.shape[1].value * x2.shape[2].value)) + u2_flat = tf.reshape(u2, (tf.shape(x2)[0], 1, x2.shape[1].value * x2.shape[2].value)) + + x2_warp = self.warp_image(x2, u1_flat, u2_flat) + x2_warp = tf.reshape(x2_warp, tf.shape(x2)) + + diff2_x_warp = self.warp_image(diff2_x, u1_flat, u2_flat) + diff2_x_warp = tf.reshape(diff2_x_warp, tf.shape(diff2_x)) + + diff2_y_warp = self.warp_image(diff2_y, u1_flat, u2_flat) + diff2_y_warp = tf.reshape(diff2_y_warp, tf.shape(diff2_y)) + + diff2_x_sq = tf.square(diff2_x_warp) # square mat + diff2_y_sq = tf.square(diff2_y_warp) + + grad = diff2_x_sq + diff2_y_sq + self.GRAD_IS_ZERO + + rho_c = x2_warp - diff2_x_warp * u1 - diff2_y_warp * u2 - x1 + + for ii in range(max_iterations): # 50 + with tf.variable_scope('iter%d' % (ii,)): + rho = rho_c + diff2_x_warp * u1 + diff2_y_warp * u2 + self.GRAD_IS_ZERO + + masks1 = rho < -l_t * grad + d1_1 = tf.where(masks1, l_t * diff2_x_warp, tf.zeros_like(diff2_x_warp)) + d2_1 = tf.where(masks1, l_t * diff2_y_warp, tf.zeros_like(diff2_y_warp)) + + masks2 = rho > l_t * grad + d1_2 = tf.where(masks2, -l_t * diff2_x_warp, tf.zeros_like(diff2_x_warp)) + d2_2 = tf.where(masks2, -l_t * diff2_y_warp, tf.zeros_like(diff2_y_warp)) + masks3 = (~masks1) & (~masks2) & (grad > self.GRAD_IS_ZERO) + d1_3 = tf.where(masks3, -rho / grad * diff2_x_warp, tf.zeros_like(diff2_x_warp)) + d2_3 = tf.where(masks3, -rho / grad * diff2_y_warp, tf.zeros_like(diff2_y_warp)) + + v1 = d1_1 + d1_2 + d1_3 + u1 + v2 = d2_1 + d2_2 + d2_3 + u2 + + u1 = v1 + theta * self.divergence(p11, p12, 'div_p1') # slice->concat->conv->add + u2 = v2 + theta * self.divergence(p21, p22, 'div_p2') + + u1x, u1y = self.forward_gradient(u1, 'u1') + u2x, u2y = self.forward_gradient(u2, 'u2') + + p11 = (p11 + taut * u1x) / ( + 1.0 + taut * tf.sqrt(tf.square(u1x) + tf.square(u1y) + self.GRAD_IS_ZERO)) + p12 = (p12 + taut * u1y) / ( + 1.0 + taut * tf.sqrt(tf.square(u1x) + tf.square(u1y) + self.GRAD_IS_ZERO)) + p21 = (p21 + taut * u2x) / ( + 1.0 + taut * tf.sqrt(tf.square(u2x) + tf.square(u2y) + self.GRAD_IS_ZERO)) + p22 = (p22 + taut * u2y) / ( + 1.0 + taut * tf.sqrt(tf.square(u2x) + tf.square(u2y) + self.GRAD_IS_ZERO)) + return u1, u2, rho + + def tvnet_flow(self, x1, x2, + tau=0.25, # time step + lbda=0.15, # weight parameter for the data term + theta=0.3, # weight parameter for (u - v)^2 + warps=5, # number of warpings per scale + zfactor=0.5, # factor for building the image piramid + max_scales=5, # maximum number of scales for image piramid + max_iterations=50 # maximum number of iterations for optimization + ): + + for i in range(len(x1.shape)): + assert x1.shape[i].value == x2.shape[i].value + + zfactor = np.float32(zfactor) + + height = x1.shape[-3].value + width = x1.shape[-2].value + + n_scales = 1 + np.log(np.sqrt(height ** 2 + width ** 2) / 4.0) / np.log(1 / zfactor); # calculate n_scales + n_scales = min(n_scales, max_scales) + # n_scales = 1 + with tf.variable_scope('tvl1_flow'): + + grey_x1 = self.grey_scale_image(x1) # conv and floor + grey_x2 = self.grey_scale_image(x2) + + norm_imgs = self.normalize_images(grey_x1, grey_x2) # normalize to 0-255 + + smooth_x1 = self.gaussian_smooth(norm_imgs[0]) # conv + smooth_x2 = self.gaussian_smooth(norm_imgs[1]) + + for ss in range(n_scales - 1, -1, -1): + with tf.variable_scope('scale%d' % ss): + down_sample_factor = zfactor ** ss + down_height, down_width = self.zoom_size(height, width, down_sample_factor) + + if ss == n_scales - 1: + u1 = tf.get_variable('u1', shape=[1, down_height, down_width, 1], dtype=tf.float32, + initializer=tf.zeros_initializer) + u2 = tf.get_variable('u2', shape=[1, down_height, down_width, 1], dtype=tf.float32, + initializer=tf.zeros_initializer) + # print ([tf.shape(smooth_x1)[0], 1, 1, 1]) + + u1 = tf.tile(u1, [tf.shape(smooth_x1)[0], 1, 1, 1]) + u2 = tf.tile(u2, [tf.shape(smooth_x1)[0], 1, 1, 1]) + + down_x1 = zoom_image(smooth_x1, down_height, down_width) + down_x2 = zoom_image(smooth_x2, down_height, down_width) + + u1, u2, rho = self.dual_tvl1_optic_flow(down_x1, down_x2, u1, u2, + tau=tau, lbda=lbda, theta=theta, warps=warps, + max_iterations=max_iterations) + + if ss == 0: + return u1, u2, rho + + up_sample_factor = zfactor ** (ss - 1) + up_height, up_width = self.zoom_size(height, width, up_sample_factor) + u1 = zoom_image(u1, up_height, up_width) / zfactor + u2 = zoom_image(u2, up_height, up_width) / zfactor + + def get_loss(self, x1, x2, + tau=0.25, # time step + lbda=0.15, # weight parameter for the data term + theta=0.3, # weight parameter for (u - v)^2 + warps=5, # number of warpings per scale + zfactor=0.5, # factor for building the image piramid + max_scales=5, # maximum number of scales for image piramid + max_iterations=50 # maximum number of iterations for optimization + ): + + u1, u2, rho = self.tvnet_flow(x1, x2, + tau=tau, lbda=lbda, theta=theta, warps=warps, + zfactor=zfactor, max_scales=max_scales, + max_iterations=max_iterations) + + # computing loss + u1x, u1y = self.forward_gradient(u1, 'u1') + u2x, u2y = self.forward_gradient(u2, 'u2') + + u1_flat = tf.reshape(u1, (tf.shape(x2)[0], 1, x2.shape[1].value * x2.shape[2].value)) + u2_flat = tf.reshape(u2, (tf.shape(x2)[0], 1, x2.shape[1].value * x2.shape[2].value)) + + x2_warp = self.warp_image(x2, u1_flat, u2_flat) + x2_warp = tf.reshape(x2_warp, tf.shape(x2)) + loss = lbda * tf.reduce_mean(tf.abs(x2_warp - x1)) + tf.reduce_mean( + tf.abs(u1x) + tf.abs(u1y) + tf.abs(u2x) + tf.abs(u2y)) + return loss, u1, u2 diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/README.txt b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/README.txt new file mode 100644 index 0000000000000000000000000000000000000000..79ff23ed3092c998fafef546655beb2968ea44e2 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/README.txt @@ -0,0 +1,9 @@ +Some utilities for reading, writing, and color-coding .flo images. + +Written according to the c++ source code of Daniel Scharstein + +Deqing Sun, 11/03/07 + +see colorTest for visualizing the encoding scheme, reading and writing .flo files. + +Run visualize.m to visualize the result generated by TVNet. \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/colorTest.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/colorTest.m new file mode 100644 index 0000000000000000000000000000000000000000..626099c7e4c8812b25a717a204fed57753251860 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/colorTest.m @@ -0,0 +1,84 @@ +function colorTest() + +% colorTest() creates a test image showing the color encoding scheme + +% According to the c++ source code of Daniel Scharstein +% Contact: schar@middlebury.edu + +% Author: Deqing Sun, Department of Computer Science, Brown University +% Contact: dqsun@cs.brown.edu +% $Date: 2007-10-31 20:22:10 (Wed, 31 Oct 2006) $ + +% Copyright 2007, Deqing Sun. +% +% All Rights Reserved +% +% Permission to use, copy, modify, and distribute this software and its +% documentation for any purpose other than its incorporation into a +% commercial product is hereby granted without fee, provided that the +% above copyright notice appear in all copies and that both that +% copyright notice and this permission notice appear in supporting +% documentation, and that the name of the author and Brown University not be used in +% advertising or publicity pertaining to distribution of the software +% without specific, written prior permission. +% +% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY +% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR +% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +%% test color pattern of Daniel's c++ code + +truerange = 1; +height = 151; +width = 151; +range = truerange * 1.04; + +s2 = round(height/2); + +[x y] = meshgrid(1:width, 1:height); + +u = x*range/s2 - range; +v = y*range/s2 - range; + +img = computeColor(u/truerange, v/truerange); + +img(s2,:,:) = 0; +img(:,s2,:) = 0; + +figure; +imshow(img); +title('test color pattern'); +pause; close; + +% test read and write flow +F(:,:,1) = u; +F(:,:,2) = v; +writeFlowFile(F, 'colorTest.flo'); +F2 = readFlowFile('colorTest.flo'); + +u2 = F2(:,:,1); +v2 = F2(:,:,2); + +img2 = computeColor(u2/truerange, v2/truerange); + +img2(s2,:,:) = 0; +img2(:,s2,:) = 0; + +figure; imshow(img2); +title('saved and reloaded test color pattern'); +pause; close; + +% color encoding scheme for optical flow +img = computeColor(u/range/sqrt(2), v/range/sqrt(2)); + +img(s2,:,:) = 0; +img(:,s2,:) = 0; + +figure; +imshow(img); +title('optical flow color encoding scheme'); +pause; close; diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/computeColor.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/computeColor.m new file mode 100644 index 0000000000000000000000000000000000000000..3566f4e08792e02a2328b9c64d2a0773b3f3d44d --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/computeColor.m @@ -0,0 +1,115 @@ +function img = computeColor(u,v) + +% computeColor color codes flow field U, V + +% According to the c++ source code of Daniel Scharstein +% Contact: schar@middlebury.edu + +% Author: Deqing Sun, Department of Computer Science, Brown University +% Contact: dqsun@cs.brown.edu +% $Date: 2007-10-31 21:20:30 (Wed, 31 Oct 2006) $ + +% Copyright 2007, Deqing Sun. +% +% All Rights Reserved +% +% Permission to use, copy, modify, and distribute this software and its +% documentation for any purpose other than its incorporation into a +% commercial product is hereby granted without fee, provided that the +% above copyright notice appear in all copies and that both that +% copyright notice and this permission notice appear in supporting +% documentation, and that the name of the author and Brown University not be used in +% advertising or publicity pertaining to distribution of the software +% without specific, written prior permission. +% +% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY +% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR +% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +nanIdx = isnan(u) | isnan(v); +u(nanIdx) = 0; +v(nanIdx) = 0; + +colorwheel = makeColorwheel(); +ncols = size(colorwheel, 1); + +rad = sqrt(u.^2+v.^2); + +a = atan2(-v, -u)/pi; + +fk = (a+1) /2 * (ncols-1) + 1; % -1~1 maped to 1~ncols + +k0 = floor(fk); % 1, 2, ..., ncols + +k1 = k0+1; +k1(k1==ncols+1) = 1; + +f = fk - k0; + +for i = 1:size(colorwheel,2) + tmp = colorwheel(:,i); + col0 = tmp(k0)/255; + col1 = tmp(k1)/255; + col = (1-f).*col0 + f.*col1; + + idx = rad <= 1; + col(idx) = 1-rad(idx).*(1-col(idx)); % increase saturation with radius + + col(~idx) = col(~idx)*0.75; % out of range + + img(:,:, i) = uint8(floor(255*col.*(1-nanIdx))); +end; + +%% +function colorwheel = makeColorwheel() + +% color encoding scheme + +% adapted from the color circle idea described at +% http://members.shaw.ca/quadibloc/other/colint.htm + + +RY = 15; +YG = 6; +GC = 4; +CB = 11; +BM = 13; +MR = 6; + +ncols = RY + YG + GC + CB + BM + MR; + +colorwheel = zeros(ncols, 3); % r g b + +col = 0; +%RY +colorwheel(1:RY, 1) = 255; +colorwheel(1:RY, 2) = floor(255*(0:RY-1)/RY)'; +col = col+RY; + +%YG +colorwheel(col+(1:YG), 1) = 255 - floor(255*(0:YG-1)/YG)'; +colorwheel(col+(1:YG), 2) = 255; +col = col+YG; + +%GC +colorwheel(col+(1:GC), 2) = 255; +colorwheel(col+(1:GC), 3) = floor(255*(0:GC-1)/GC)'; +col = col+GC; + +%CB +colorwheel(col+(1:CB), 2) = 255 - floor(255*(0:CB-1)/CB)'; +colorwheel(col+(1:CB), 3) = 255; +col = col+CB; + +%BM +colorwheel(col+(1:BM), 3) = 255; +colorwheel(col+(1:BM), 1) = floor(255*(0:BM-1)/BM)'; +col = col+BM; + +%MR +colorwheel(col+(1:MR), 3) = 255 - floor(255*(0:MR-1)/MR)'; +colorwheel(col+(1:MR), 1) = 255; \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/flowToColor.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/flowToColor.m new file mode 100644 index 0000000000000000000000000000000000000000..3e39e8e42068509afaf077af572d18f4bedac0ea --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/flowToColor.m @@ -0,0 +1,90 @@ +function img = flowToColor(flow, varargin) + +% flowToColor(flow, maxFlow) flowToColor color codes flow field, normalize +% based on specified value, +% +% flowToColor(flow) flowToColor color codes flow field, normalize +% based on maximum flow present otherwise + +% According to the c++ source code of Daniel Scharstein +% Contact: schar@middlebury.edu + +% Author: Deqing Sun, Department of Computer Science, Brown University +% Contact: dqsun@cs.brown.edu +% $Date: 2007-10-31 18:33:30 (Wed, 31 Oct 2006) $ + +% Copyright 2007, Deqing Sun. +% +% All Rights Reserved +% +% Permission to use, copy, modify, and distribute this software and its +% documentation for any purpose other than its incorporation into a +% commercial product is hereby granted without fee, provided that the +% above copyright notice appear in all copies and that both that +% copyright notice and this permission notice appear in supporting +% documentation, and that the name of the author and Brown University not be used in +% advertising or publicity pertaining to distribution of the software +% without specific, written prior permission. +% +% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY +% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR +% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +UNKNOWN_FLOW_THRESH = 1e9; +UNKNOWN_FLOW = 1e10; % + +[height widht nBands] = size(flow); + +if nBands ~= 2 + error('flowToColor: image must have two bands'); +end; + +u = flow(:,:,1); +v = flow(:,:,2); + +maxu = -999; +maxv = -999; + +minu = 999; +minv = 999; +maxrad = -1; + + +% fix unknown flow +idxUnknown = (abs(u)> UNKNOWN_FLOW_THRESH) | (abs(v)> UNKNOWN_FLOW_THRESH) ; + +u(idxUnknown) = 0; +v(idxUnknown) = 0; +max(u(:)) +maxu = max(maxu, max(u(:))); +minu = min(minu, min(u(:))); + +maxv = max(maxv, max(v(:))); +minv = min(minv, min(v(:))); + +rad = sqrt(u.^2+v.^2); +maxrad = max(maxrad, max(rad(:))); + +fprintf('max flow: %.4f flow range: u = %.3f .. %.3f; v = %.3f .. %.3f\n', maxrad, minu, maxu, minv, maxv); + +if isempty(varargin) ==0 + maxFlow = varargin{1}; + if maxFlow > 0 + maxrad = maxFlow; + end; +end; + +u = u/(maxrad+eps); +v = v/(maxrad+eps); + +% compute color + +img = computeColor(u, v); + +% unknown flow +IDX = repmat(idxUnknown, [1 1 3]); +img(IDX) = 0; \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/readFlowFile.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/readFlowFile.m new file mode 100644 index 0000000000000000000000000000000000000000..568d9b6296b958a3ef94b73482eaccaf5fdc6ebd --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/readFlowFile.m @@ -0,0 +1,84 @@ +function img = readFlowFile(filename) + +% readFlowFile read a flow file FILENAME into 2-band image IMG + +% According to the c++ source code of Daniel Scharstein +% Contact: schar@middlebury.edu + +% Author: Deqing Sun, Department of Computer Science, Brown University +% Contact: dqsun@cs.brown.edu +% $Date: 2007-10-31 16:45:40 (Wed, 31 Oct 2006) $ + +% Copyright 2007, Deqing Sun. +% +% All Rights Reserved +% +% Permission to use, copy, modify, and distribute this software and its +% documentation for any purpose other than its incorporation into a +% commercial product is hereby granted without fee, provided that the +% above copyright notice appear in all copies and that both that +% copyright notice and this permission notice appear in supporting +% documentation, and that the name of the author and Brown University not be used in +% advertising or publicity pertaining to distribution of the software +% without specific, written prior permission. +% +% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY +% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR +% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +TAG_FLOAT = 202021.25; % check for this when READING the file + +% sanity check +if isempty(filename) == 1 + error('readFlowFile: empty filename'); +end; + +idx = findstr(filename, '.'); +idx = idx(end); + +if length(filename(idx:end)) == 1 + error('readFlowFile: extension required in filename %s', filename); +end; + +if strcmp(filename(idx:end), '.flo') ~= 1 + error('readFlowFile: filename %s should have extension ''.flo''', filename); +end; + +fid = fopen(filename, 'r'); +if (fid < 0) + error('readFlowFile: could not open %s', filename); +end; + +tag = fread(fid, 1, 'float32'); +width = fread(fid, 1, 'int32'); +height = fread(fid, 1, 'int32'); + +% sanity check + +if (tag ~= TAG_FLOAT) + error('readFlowFile(%s): wrong tag (possibly due to big-endian machine?)', filename); +end; + +if (width < 1 || width > 99999) + error('readFlowFile(%s): illegal width %d', filename, width); +end; + +if (height < 1 || height > 99999) + error('readFlowFile(%s): illegal height %d', filename, height); +end; + +nBands = 2; + +% arrange into matrix form +tmp = fread(fid, inf, 'float32'); +tmp = reshape(tmp, [width*nBands, height]); +tmp = tmp'; +img(:,:,1) = tmp(:, (1:width)*nBands-1); +img(:,:,2) = tmp(:, (1:width)*nBands); + +fclose(fid); + diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/untitled.fig b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/untitled.fig new file mode 100644 index 0000000000000000000000000000000000000000..f6e57e0f77e6d673d414bae0130b80681f1caf9b Binary files /dev/null and b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/untitled.fig differ diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/visualize.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/visualize.m new file mode 100644 index 0000000000000000000000000000000000000000..03cb0187dee005fd2f0fa6c8ac6146b8e6546e27 --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/visualize.m @@ -0,0 +1,6 @@ +flow_file = './1.mat'; +load(flow_file); +img = flowToColor(flow); +figure; +imshow(img) +saveas(gcf,'test','png') \ No newline at end of file diff --git a/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/writeFlowFile.m b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/writeFlowFile.m new file mode 100644 index 0000000000000000000000000000000000000000..5fba45de70b6787f63a4687b569a3f90df46da4f --- /dev/null +++ b/TensorFlow/contrib/cv/TVNet_ID0951_for_TensorFlow/visualize/writeFlowFile.m @@ -0,0 +1,76 @@ +function writeFlowFile(img, filename) + +% writeFlowFile writes a 2-band image IMG into flow file FILENAME + +% According to the c++ source code of Daniel Scharstein +% Contact: schar@middlebury.edu + +% Author: Deqing Sun, Department of Computer Science, Brown University +% Contact: dqsun@cs.brown.edu +% $Date: 2007-10-31 15:36:40 (Wed, 31 Oct 2006) $ + +% Copyright 2007, Deqing Sun. +% +% All Rights Reserved +% +% Permission to use, copy, modify, and distribute this software and its +% documentation for any purpose other than its incorporation into a +% commercial product is hereby granted without fee, provided that the +% above copyright notice appear in all copies and that both that +% copyright notice and this permission notice appear in supporting +% documentation, and that the name of the author and Brown University not be used in +% advertising or publicity pertaining to distribution of the software +% without specific, written prior permission. +% +% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, +% INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY +% PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR BROWN UNIVERSITY BE LIABLE FOR +% ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES +% WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN +% ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF +% OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + +TAG_STRING = 'PIEH'; % use this when WRITING the file + +% sanity check +if isempty(filename) == 1 + error('writeFlowFile: empty filename'); +end; + +idx = findstr(filename, '.'); +idx = idx(end); % in case './xxx/xxx.flo' + +if length(filename(idx:end)) == 1 + error('writeFlowFile: extension required in filename %s', filename); +end; + +if strcmp(filename(idx:end), '.flo') ~= 1 + error('writeFlowFile: filename %s should have extension ''.flo''', filename); +end; + +[height width nBands] = size(img); + +if nBands ~= 2 + error('writeFlowFile: image must have two bands'); +end; + +fid = fopen(filename, 'w'); +if (fid < 0) + error('writeFlowFile: could not open %s', filename); +end; + +% write the header +fwrite(fid, TAG_STRING); +fwrite(fid, width, 'int32'); +fwrite(fid, height, 'int32'); + +% arrange into matrix form +tmp = zeros(height, width*nBands); + +tmp(:, (1:width)*nBands-1) = img(:,:,1); +tmp(:, (1:width)*nBands) = squeeze(img(:,:,2)); +tmp = tmp'; + +fwrite(fid, tmp, 'float32'); + +fclose(fid); diff --git a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/README.md b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/README.md index c9611df9b4e87f0dceef398098df3475a755cb5f..4d85bbb21718170990b4de1bf2ba25a885b5a4ac 100644 --- a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/README.md @@ -106,7 +106,7 @@ cd {code_path} # 切换到模型代码所在路径,若仓库下只有 ## 模型训练 -在项目路径下执行如下 shell 命令进行训练: +在项目路径下执行如下 shell 命令进行训练与精度评估(顺序执行): ``` python3.7 modelarts_entry_acc.py ``` @@ -155,15 +155,6 @@ session = tf.Session(config=config) -## 模型评估 - -运行如下 shell 命令来评估预训练模型精度: -``` -sh bash/evaluate_voiced_void.sh -``` - -可以替换 shell 脚本中的 restore_path 和 output_path 路径来评估自己的 checkpoints 。 - ## 评估结果 | | MAE | RMSE | iMAE | iRMSE | diff --git a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/bash/evaluate_voiced_void.sh b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/bash/evaluate_voiced_void.sh deleted file mode 100644 index 94361b2ebe951c4d9d955e2cb62cd1cbb536fedc..0000000000000000000000000000000000000000 --- a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/bash/evaluate_voiced_void.sh +++ /dev/null @@ -1,24 +0,0 @@ -#!/bin/bash - -python src/evaluate_model.py \ ---image_path testing/void_test_image_1500.txt \ ---interp_depth_path testing/void_test_interp_depth_1500.txt \ ---validity_map_path testing/void_test_validity_map_1500.txt \ ---ground_truth_path testing/void_test_ground_truth_1500.txt \ ---start_idx 0 \ ---end_idx 800 \ ---n_batch 8 \ ---n_height 480 \ ---n_width 640 \ ---occ_threshold 1.5 \ ---occ_ksize 7 \ ---net_type vggnet11 \ ---im_filter_pct 0.75 \ ---sz_filter_pct 0.25 \ ---min_predict_z 0.1 \ ---max_predict_z 8.0 \ ---min_evaluate_z 0.2 \ ---max_evaluate_z 5.0 \ ---save_depth \ ---output_path trained_models/vggnet11_void_model/output \ ---restore_path trained_models/vggnet11_void_model/model.ckpt-100000 diff --git a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/src/evaluate_model.py b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/src/evaluate_model.py index 48cf8bbdbd966f1d8b652cabf1f3d807e5e8ca58..c834b6936f59ef04ea2a45d23398252634369bf7 100644 --- a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/src/evaluate_model.py +++ b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/src/evaluate_model.py @@ -177,7 +177,7 @@ with tf.Graph().as_default(): # Initialize Tensorflow session config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True - session = tf.Session(config=npu_config_proto(config_proto=config)) + session = tf.Session(config=config) # Load from checkpoint train_saver = tf.train.Saver() session.run(tf.global_variables_initializer()) diff --git a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/test/train_full_1p.sh index febcfdf2a4cbbe5efab3b411e74bb002d8f754c9..6c7127cc3f70ad653a15ba01d685c3dd74ba283d 100644 --- a/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/test/train_full_1p.sh +++ b/TensorFlow/contrib/cv/UDCVO_ID2359_for_TensorFlow/test/train_full_1p.sh @@ -1,5 +1,6 @@ #!/bin/bash - +export ASCEND_GLOBAL_LOG_LEVEL=0 +export ASCEND_SLOG_PRINT_TO_STDOUT=0 ########################################################## #########第3行 至 100行,请一定不要、不要、不要修改########## #########第3行 至 100行,请一定不要、不要、不要修改########## @@ -91,6 +92,33 @@ cd ${cur_path}/../ rm -rf ./test/output/${ASCEND_DEVICE_ID} mkdir -p ./test/output/${ASCEND_DEVICE_ID} +#move some data +cp -r ${data_path}/training ${cur_path}/../ +sed -i 's/^data//' training/void_train_image_1500.txt +sed -i "/void_voiced/s!^!${data_path}!" training/void_train_image_1500.txt + +sed -i 's/^data//' training/void_train_interp_depth_1500.txt +sed -i "/void_voiced/s!^!${data_path}!" training/void_train_interp_depth_1500.txt + +sed -i 's/^data//' training/void_train_validity_map_1500.txt +sed -i "/void_release/s!^!${data_path}!" training/void_train_validity_map_1500.txt + +sed -i 's/^data//' training/void_train_intrinsics_1500.txt +sed -i "/void_voiced/s!^!${data_path}!" training/void_train_intrinsics_1500.txt + +cp -r ${data_path}/testing ${cur_path}/../ +sed -i 's/^data//' testing/void_test_image_1500.txt +sed -i "/void_voiced/s!^!${data_path}!" testing/void_test_image_1500.txt + +sed -i 's/^data//' testing/void_test_interp_depth_1500.txt +sed -i "/void_voiced/s!^!${data_path}!" testing/void_test_interp_depth_1500.txt + +sed -i 's/^data//' testing/void_test_validity_map_1500.txt +sed -i "/void_release/s!^!${data_path}!" testing/void_test_validity_map_1500.txt + +sed -i 's/^data//' testing/void_test_ground_truth_1500.txt +sed -i "/void_release/s!^!${data_path}!" testing/void_test_ground_truth_1500.txt + # 训练开始时间记录,不需要修改 start_time=$(date +%s) ########################################################## @@ -112,11 +140,11 @@ batch_size=8 if [ x"${etp_flag}" != xtrue ]; then #python3.7 ./LeNet.py --data_path=${data_path} --output_path=${output_path} - python3.7 src/train_voiced.py \ - --train_image_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_image_1500.txt \ - --train_interp_depth_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_interp_depth_1500.txt \ - --train_validity_map_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_validity_map_1500.txt \ - --train_intrinsics_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_intrinsics_1500.txt \ + python3.7 ./src/train_voiced.py \ + --train_image_path training/void_train_image_1500.txt \ + --train_interp_depth_path training/void_train_interp_depth_1500.txt \ + --train_validity_map_path training/void_train_validity_map_1500.txt \ + --train_intrinsics_path training/void_train_intrinsics_1500.txt \ --n_batch 8 \ --n_height 480 \ --n_width 640 \ @@ -141,14 +169,38 @@ then --rot_param exponential \ --n_summary 1000 \ --n_checkpoint 5000 \ - --checkpoint_path /home/ma-user/modelarts/outputs/train_url_0/ + --checkpoint_path ${output_path} + + # 计算MAE,RMSE,iMAE,iRMSE + python3.7 ./src/evaluate_model.py \ + --image_path testing/void_test_image_1500.txt \ + --interp_depth_path testing/void_test_interp_depth_1500.txt \ + --validity_map_path testing/void_test_validity_map_1500.txt \ + --ground_truth_path testing/void_test_ground_truth_1500.txt \ + --start_idx 0 \ + --end_idx 800 \ + --n_batch 8 \ + --n_height 480 \ + --n_width 640 \ + --occ_threshold 1.5 \ + --occ_ksize 7 \ + --net_type vggnet11 \ + --im_filter_pct 0.75 \ + --sz_filter_pct 0.25 \ + --min_predict_z 0.1 \ + --max_predict_z 8.0 \ + --min_evaluate_z 0.2 \ + --max_evaluate_z 5.0 \ + --save_depth \ + --output_path ${output_path} \ + --restore_path ${output_path}/model.ckpt-103000 else #python3.7 ./LeNet.py --data_path=${data_path} --output_path=${output_path} > ${print_log} - python3.7 src/train_voiced.py \ - --train_image_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_image_1500.txt \ - --train_interp_depth_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_interp_depth_1500.txt \ - --train_validity_map_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_validity_map_1500.txt \ - --train_intrinsics_path /home/ma-user/modelarts/inputs/data_url_0/training/void_train_intrinsics_1500.txt \ + python3.7 ./src/train_voiced.py \ + --train_image_path training/void_train_image_1500.txt \ + --train_interp_depth_path training/void_train_interp_depth_1500.txt \ + --train_validity_map_path training/void_train_validity_map_1500.txt \ + --train_intrinsics_path training/void_train_intrinsics_1500.txt \ --n_batch 8 \ --n_height 480 \ --n_width 640 \ @@ -173,7 +225,31 @@ else --rot_param exponential \ --n_summary 1000 \ --n_checkpoint 5000 \ - --checkpoint_path /home/ma-user/modelarts/outputs/train_url_0/ + --checkpoint_path ${output_path} > ${print_log} 2>&1 + + # 计算MAE,RMSE,iMAE,iRMSE + python3.7 ./src/evaluate_model.py \ + --image_path testing/void_test_image_1500.txt \ + --interp_depth_path testing/void_test_interp_depth_1500.txt \ + --validity_map_path testing/void_test_validity_map_1500.txt \ + --ground_truth_path testing/void_test_ground_truth_1500.txt \ + --start_idx 0 \ + --end_idx 800 \ + --n_batch 8 \ + --n_height 480 \ + --n_width 640 \ + --occ_threshold 1.5 \ + --occ_ksize 7 \ + --net_type vggnet11 \ + --im_filter_pct 0.75 \ + --sz_filter_pct 0.25 \ + --min_predict_z 0.1 \ + --max_predict_z 8.0 \ + --min_evaluate_z 0.2 \ + --max_evaluate_z 5.0 \ + --save_depth \ + --output_path ${output_path} \ + --restore_path ${output_path}/model.ckpt-103000 >> ${print_log} 2>&1 fi # 性能相关数据计算 @@ -181,11 +257,10 @@ StepTime=`grep "StepTime: " ${print_log} | tail -n 10 | awk '{print $NF}' | awk FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` # 精度相关数据计算 -#train_accuracy=`grep "Final Accuracy accuracy" ${print_log} | awk '{print $NF}'` +train_accuracy=`cat ${print_log} | grep -Eo " [0-9]*\.[0-9]*" | awk '{print $1}' | tail -n 1` # 提取所有loss打印信息 grep "loss: " ${print_log} | awk -F ":" '{print $2}' | awk -F " " '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt - ########################################################### #########后面的所有内容请不要修改########################### #########后面的所有内容请不要修改########################### @@ -239,4 +314,5 @@ echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}. echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/README.md b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/README.md index 125090097c7ff7b94097ef2618aaa277522de077..c7e754b4c2f4ffae4c5410f1632697e76eceee5b 100644 --- a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/README.md +++ b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/README.md @@ -162,7 +162,7 @@ 1. 配置训练参数。 - 首先在train.py中,配置参数。 + 在train.py中,配置参数。 ``` classes_path 指向model_data下的voc_classes.txt @@ -171,7 +171,18 @@ val_annotation_path 指向2007_val.txt' ``` - 2. 启动训练。 + 2. 配置测试参数。 + + 在yolo.py中,配置参数。 + ``` + model_path 指向训练好的模型 + ``` + 在get_map.py中,配置参数。 + ``` + VOCdevkit_path 指向VOC数据集位置 + ``` + + 3. 启动训练和测试。 ``` bash train_full_1p.sh ``` diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/fusion_result.json b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/fusion_result.json deleted file mode 100644 index bb2fbca3d4ee5dc86205264ea67a7d338e02a8af..0000000000000000000000000000000000000000 --- a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/fusion_result.json +++ /dev/null @@ -1,1821 +0,0 @@ -{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1001" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_101" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1011" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1021" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1031" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1041" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1051" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1061" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1071" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1081" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1091" -}{ - "graph_fusion": { - "MulSquareFusionPass": { - "effect_times": "0", - "match_times": "62" - } - }, - "session_and_graph_id": "0_11" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1101" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_111" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1111" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1121" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1131" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1141" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1151" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1161" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1171" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1181" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1191" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1201" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_121" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1211" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1221" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1231" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1241" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_1251" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1261" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1271" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_1281" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_131" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_141" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_151" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_161" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_171" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_181" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_191" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_201" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_21" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_211" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_221" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_231" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_241" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_251" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_261" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_271" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_281" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_291" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_301" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_31" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_311" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_321" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_331" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_341" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_351" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_361" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_371" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_381" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_391" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_401" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_41" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_411" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_421" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_431" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_441" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_451" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_461" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_471" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_481" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_491" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_501" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_511" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_521" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_531" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_541" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_551" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_561" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_571" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_581" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_591" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_601" -}{ - "graph_fusion": { - "AABiasaddConvFusion": { - "effect_times": "6", - "match_times": "6" - }, - "AReduceMeanFusionPass": { - "effect_times": "0", - "match_times": "6" - }, - "AReduceSumFusionPass": { - "effect_times": "660", - "match_times": "814" - }, - "AddNFusionPass": { - "effect_times": "0", - "match_times": "726" - }, - "ApplyAddOutputPass": { - "effect_times": "366", - "match_times": "366" - }, - "BatchNorm3DFusionPass": { - "effect_times": "0", - "match_times": "236" - }, - "BatchNormBnInferFusionPass": { - "effect_times": "0", - "match_times": "118" - }, - "BatchNormGradBnInferGradFusion": { - "effect_times": "0", - "match_times": "118" - }, - "BatchNormGradInfGradFusion": { - "effect_times": "118", - "match_times": "118" - }, - "BatchNormGradPreprocessFusionPass": { - "effect_times": "236", - "match_times": "236" - }, - "BatchNormPreprocessFusionPass": { - "effect_times": "236", - "match_times": "236" - }, - "ConcatCToNOptimizeFusionPass": { - "effect_times": "0", - "match_times": "34" - }, - "ConstToAttrPass": { - "effect_times": "702", - "match_times": "702" - }, - "ConstToAttrReduceSumFusion": { - "effect_times": "154", - "match_times": "154" - }, - "ConstToAttrResizeNearestNeighborGradFusion": { - "effect_times": "4", - "match_times": "4" - }, - "ConstToAttrStridedSliceFusion": { - "effect_times": "110", - "match_times": "110" - }, - "Conv2DbpFilterMulFusionPass": { - "effect_times": "0", - "match_times": "124" - }, - "Conv2DbpInputDilationFusionPass": { - "effect_times": "0", - "match_times": "122" - }, - "ConvConcatFusionPass": { - "effect_times": "0", - "match_times": "34" - }, - "ConvToFullyConnectionFusionPass": { - "effect_times": "0", - "match_times": "124" - }, - "ConvWeightCompressFusionPass": { - "effect_times": "0", - "match_times": "124" - }, - "ExtremumGradFusionPass": { - "effect_times": "4", - "match_times": "4" - }, - "FIXPIPEAPREQUANTFUSIONPASS": { - "effect_times": "0", - "match_times": "370" - }, - "FIXPIPEFUSIONPASS": { - "effect_times": "0", - "match_times": "370" - }, - "FusedBatchNormBertFusionPass": { - "effect_times": "0", - "match_times": "236" - }, - "FusedBatchNormGradFusionPass": { - "effect_times": "118", - "match_times": "236" - }, - "MulAddFusionPass": { - "effect_times": "0", - "match_times": "222" - }, - "MulAddNL2LossFusionPass": { - "effect_times": "0", - "match_times": "266" - }, - "MulAddNPass": { - "effect_times": "0", - "match_times": "266" - }, - "MulGradFusionPass": { - "effect_times": "0", - "match_times": "12" - }, - "MulSquareFusionPass": { - "effect_times": "0", - "match_times": "1196" - }, - "PadConv2dFusionPass": { - "effect_times": "12", - "match_times": "12" - }, - "Pow2SquareFusionPass": { - "effect_times": "6", - "match_times": "12" - }, - "RealDiv2MulsFusionPass": { - "effect_times": "0", - "match_times": "114" - }, - "RefreshInt64ToInt32FusionPass": { - "effect_times": "2", - "match_times": "2" - }, - "SingleBatchNormFusion": { - "effect_times": "118", - "match_times": "236" - }, - "SplitConvConcatFusionPass": { - "effect_times": "0", - "match_times": "34" - }, - "SquareSumV1": { - "effect_times": "124", - "match_times": "124" - }, - "SquareSumV2": { - "effect_times": "0", - "match_times": "136" - }, - "StridedSliceGradFusionPass": { - "effect_times": "0", - "match_times": "72" - }, - "StridedSliceRemovePass": { - "effect_times": "0", - "match_times": "110" - }, - "SubFusionPass": { - "effect_times": "0", - "match_times": "556" - }, - "TileConstToAttrFusion": { - "effect_times": "24", - "match_times": "24" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "5373" - }, - "ZConcatExt2FusionPass": { - "effect_times": "0", - "match_times": "34" - } - }, - "session_and_graph_id": "0_61", - "ub_fusion": { - "AutomaticUbFusion": { - "effect_times": "536", - "match_times": "540" - }, - "TbeMultiOutputFusionPass": { - "effect_times": "160", - "match_times": "162" - } - } -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_611" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_621" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_631" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_641" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_651" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_661" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_671" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_681" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_691" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_701" -}{ - "graph_fusion": { - "AABiasaddConvFusion": { - "effect_times": "3", - "match_times": "3" - }, - "AReduceMeanFusionPass": { - "effect_times": "0", - "match_times": "3" - }, - "AReduceSumFusionPass": { - "effect_times": "0", - "match_times": "77" - }, - "AddNFusionPass": { - "effect_times": "0", - "match_times": "1" - }, - "BatchNorm3DFusionPass": { - "effect_times": "0", - "match_times": "59" - }, - "BatchNormBnInferFusionPass": { - "effect_times": "59", - "match_times": "59" - }, - "BatchNormPreprocessFusionPass": { - "effect_times": "59", - "match_times": "59" - }, - "ConcatCToNOptimizeFusionPass": { - "effect_times": "0", - "match_times": "17" - }, - "ConstToAttrPass": { - "effect_times": "5", - "match_times": "5" - }, - "ConstToAttrReduceSumFusion": { - "effect_times": "77", - "match_times": "77" - }, - "ConstToAttrStridedSliceFusion": { - "effect_times": "55", - "match_times": "55" - }, - "ConvBatchnormFusionPass": { - "effect_times": "0", - "match_times": "59" - }, - "ConvConcatFusionPass": { - "effect_times": "0", - "match_times": "17" - }, - "ConvToFullyConnectionFusionPass": { - "effect_times": "0", - "match_times": "62" - }, - "ConvWeightCompressFusionPass": { - "effect_times": "0", - "match_times": "62" - }, - "FIXPIPEAPREQUANTFUSIONPASS": { - "effect_times": "0", - "match_times": "62" - }, - "FIXPIPEFUSIONPASS": { - "effect_times": "0", - "match_times": "62" - }, - "FusedBatchNormBertFusionPass": { - "effect_times": "0", - "match_times": "59" - }, - "MulAddFusionPass": { - "effect_times": "0", - "match_times": "111" - }, - "MulGradFusionPass": { - "effect_times": "0", - "match_times": "6" - }, - "MulSquareFusionPass": { - "effect_times": "0", - "match_times": "180" - }, - "PadConv2dFusionPass": { - "effect_times": "6", - "match_times": "6" - }, - "Pow2SquareFusionPass": { - "effect_times": "3", - "match_times": "3" - }, - "RealDiv2MulsFusionPass": { - "effect_times": "0", - "match_times": "18" - }, - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "SingleBatchNormFusion": { - "effect_times": "0", - "match_times": "59" - }, - "SplitConvConcatFusionPass": { - "effect_times": "0", - "match_times": "17" - }, - "SquareSumV1": { - "effect_times": "65", - "match_times": "65" - }, - "SquareSumV2": { - "effect_times": "0", - "match_times": "65" - }, - "StridedSliceRemovePass": { - "effect_times": "0", - "match_times": "55" - }, - "SubFusionPass": { - "effect_times": "0", - "match_times": "36" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "596" - }, - "ZConcatExt2FusionPass": { - "effect_times": "0", - "match_times": "17" - } - }, - "session_and_graph_id": "0_71", - "ub_fusion": { - "AutomaticUbFusion": { - "effect_times": "92", - "match_times": "93" - }, - "TbeEltwiseFusionPass": { - "effect_times": "3", - "match_times": "3" - }, - "TbeMultiOutputFusionPass": { - "effect_times": "77", - "match_times": "77" - } - } -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_711" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_721" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_731" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_741" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_751" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_761" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_771" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_781" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_791" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_801" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - } - }, - "session_and_graph_id": "0_81" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_811" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_821" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_831" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_841" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_851" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_861" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_871" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_881" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_891" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_901" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_91" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_911" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_921" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_931" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_941" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_951" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_961" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "1" - } - }, - "session_and_graph_id": "0_971" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_981" -}{ - "graph_fusion": { - "RefreshInt64ToInt32FusionPass": { - "effect_times": "1", - "match_times": "1" - }, - "TransdataCastFusionPass": { - "effect_times": "0", - "match_times": "4" - } - }, - "session_and_graph_id": "0_991" -} \ No newline at end of file diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/get_map.py b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/get_map.py index 332fe1662f87c1dd054e78b41fadd02b2ac8a086..7fc37fe55a8a48df32ccddd7be4ec0280f6ab77e 100644 --- a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/get_map.py +++ b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/get_map.py @@ -26,6 +26,8 @@ # See the License for the specific language governing permissions and # limitations under the License. import os +import argparse + import xml.etree.ElementTree as ET from PIL import Image @@ -36,6 +38,11 @@ from utils.utils import get_classes from utils.utils_map import get_coco_map, get_map if __name__ == "__main__": + # 解析输入参数data_url + parser = argparse.ArgumentParser() + parser.add_argument("--data_url", type=str, default="/home/ma-user/modelarts/inputs/data_url_0") + config = parser.parse_args() + ''' Recall和Precision不像AP是一个面积的概念,在门限值不同时,网络的Recall和Precision值是不同的。 map计算结果中的Recall和Precision代表的是当预测时,门限置信度为0.5时,所对应的Recall和Precision值。 @@ -70,7 +77,7 @@ if __name__ == "__main__": # 指向VOC数据集所在的文件夹 # 默认指向根目录下的VOC数据集 #-------------------------------------------------------# - VOCdevkit_path = 'VOCdevkit' + VOCdevkit_path = config.data_url + '/VOCdevkit/' #-------------------------------------------------------# # 结果输出的文件夹,默认为map_out #-------------------------------------------------------# diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/model_data/simhei.ttf b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/model_data/simhei.ttf new file mode 100644 index 0000000000000000000000000000000000000000..5bd4687e7212775e23bea569f08fdd1cd7395dc3 Binary files /dev/null and b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/model_data/simhei.ttf differ diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_full_1p.sh b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_full_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..187030313808963456562bf6009350049b6a3504 --- /dev/null +++ b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_full_1p.sh @@ -0,0 +1,189 @@ +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +modelarts_flag=${MODELARTS_MODEL_PATH} +if [ x"${modelarts_flag}" != x ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo "### get your log here : ${print_log}" + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 基础参数,需要模型审视修改 +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=8 + +sed -i s#"/home/dingwei/yolov5"#"${data_path}"#g ./2007_train.txt +sed -i s#"/home/dingwei/yolov5"#"${data_path}"#g ./2007_val.txt + +if [ x"${modelarts_flag}" != x ]; +then + python3.7 ./train.py --freeze_flag=0 + python3.7 ./get_map.py --data_url=${data_path} +else + python3.7 ./train.py --freeze_flag=0 1>${print_log} 2>&1 + python3.7 ./get_map.py --data_url=${data_path} 1>>${print_log} 2>&1 +fi + +# 性能相关数据计算 +#StepTime=`grep "each step time" ${print_log} | tail -n 10 | awk '{print $NF}' | awk '{sum+=$1} END {print sum/NR}'` +#FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 精度相关数据计算 +train_accuracy=`grep "mAP =" ${print_log} | awk '{print $NF}'` +# 提取所有loss打印信息 +grep "loss:" ${print_log} | awk '{print $NF}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +#echo "Final Performance images/sec : $FPS" +#echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 输出训练精度 +echo "Final Train Accuracy : ${train_accuracy}" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_performance_1p.sh new file mode 100644 index 0000000000000000000000000000000000000000..809516f649713a40f39f885878dd9056aeb87a29 --- /dev/null +++ b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/test/train_performance_1p.sh @@ -0,0 +1,181 @@ +#!/bin/bash + +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## +# shell脚本所在路径 +cur_path=`echo $(cd $(dirname $0);pwd)` + +# 判断当前shell是否是performance +perf_flag=`echo $0 | grep performance | wc -l` + +# 当前执行网络的名称 +Network=`echo $(cd $(dirname $0);pwd) | awk -F"/" '{print $(NF-1)}'` + +export RANK_SIZE=1 +export RANK_ID=0 +export JOB_ID=10087 + +# 路径参数初始化 +data_path="" +output_path="" + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_performance_1P.sh " + echo " " + echo "parameter explain: + --data_path # dataset of training + --output_path # output of training + --train_steps # max_step for training + --train_epochs # max_epoch for training + --batch_size # batch size + -h/--help show help message + " + exit 1 +fi + +# 参数校验,不需要修改 +for para in $* +do + if [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --output_path* ]];then + output_path=`echo ${para#*=}` + elif [[ $para == --train_steps* ]];then + train_steps=`echo ${para#*=}` + elif [[ $para == --train_epochs* ]];then + train_epochs=`echo ${para#*=}` + elif [[ $para == --batch_size* ]];then + batch_size=`echo ${para#*=}` + fi +done + +# 校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be config" + exit 1 +fi + +# 校验是否传入output_path,不需要修改 +if [[ $output_path == "" ]];then + output_path="./test/output/${ASCEND_DEVICE_ID}" +fi + +# 设置打屏日志文件名,请保留,文件名为${print_log} +print_log="./test/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log" +modelarts_flag=${MODELARTS_MODEL_PATH} +if [ x"${modelarts_flag}" != x ]; +then + echo "running without etp..." + print_log_name=`ls /home/ma-user/modelarts/log/ | grep proc-rank` + print_log="/home/ma-user/modelarts/log/${print_log_name}" +fi +echo "### get your log here : ${print_log}" + +CaseName="" +function get_casename() +{ + if [ x"${perf_flag}" = x1 ]; + then + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'perf' + else + CaseName=${Network}_bs${batch_size}_${RANK_SIZE}'p'_'acc' + fi +} + +# 跳转到code目录 +cd ${cur_path}/../ +rm -rf ./test/output/${ASCEND_DEVICE_ID} +mkdir -p ./test/output/${ASCEND_DEVICE_ID} + +# 训练开始时间记录,不需要修改 +start_time=$(date +%s) +########################################################## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +#########第3行 至 100行,请一定不要、不要、不要修改########## +########################################################## + +#========================================================= +#========================================================= +#========训练执行命令,需要根据您的网络进行修改============== +#========================================================= +#========================================================= +# 基础参数,需要模型审视修改 +# 您的训练数据集在${data_path}路径下,请直接使用这个变量获取 +# 您的训练输出目录在${output_path}路径下,请直接使用这个变量获取 +# 您的其他基础参数,可以自定义增加,但是batch_size请保留,并且设置正确的值 +batch_size=8 + +sed -i s#"/home/dingwei/yolov5"#"${data_path}"#g ./2007_train.txt +sed -i s#"/home/dingwei/yolov5"#"${data_path}"#g ./2007_val.txt + +if [ x"${modelarts_flag}" != x ]; +then + python3.7 ./train.py --epochs=8 --steps=48 --freeze_flag=0 +else + python3.7 ./train.py --epochs=8 --steps=48 --freeze_flag=0 1>${print_log} 2>&1 +fi + +# 性能相关数据计算 +StepTime=`grep "48/48" ${print_log} | grep -v "val_loss" | tail -n 5 | awk -F"48/48" '{print $2}' | awk '{print $4}' | awk -F"ms" '{print $1/1000}' | awk '{sum+=$1} END {print sum/NR}'` +FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` + +# 提取所有loss打印信息 +grep "loss:" ${print_log} | awk '{print $NF}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt + + +########################################################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +#########后面的所有内容请不要修改########################### +########################################################### + +# 判断本次执行是否正确使用Ascend NPU +use_npu_flag=`grep "The model has been compiled on the Ascend AI processor" ${print_log} | wc -l` +if [ x"${use_npu_flag}" == x0 ]; +then + echo "------------------ ERROR NOTICE START ------------------" + echo "ERROR, your task haven't used Ascend NPU, please check your npu Migration." + echo "------------------ ERROR NOTICE END------------------" +else + echo "------------------ INFO NOTICE START------------------" + echo "INFO, your task have used Ascend NPU, please check your result." + echo "------------------ INFO NOTICE END------------------" +fi + +# 获取最终的casename,请保留,case文件名为${CaseName} +get_casename + +# 重命名loss文件 +if [ -f ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ]; +then + mv ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt ./test/output/${ASCEND_DEVICE_ID}/${CaseName}_loss.txt +fi + +# 训练端到端耗时 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +echo "------------------ Final result ------------------" +# 输出性能FPS/单step耗时/端到端耗时 +echo "Final Performance images/sec : $FPS" +echo "Final Performance sec/step : $StepTime" +echo "E2E Training Duration sec : $e2e_time" + +# 最后一个迭代loss值,不需要修改 +ActualLoss=(`awk 'END {print $NF}' $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}_loss.txt`) + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${batch_size}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = `uname -m`" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${FPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${StepTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train.py b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train.py index 52f68d694e3136267f1c13b981cba9c8c2851aab..4ffa36124e39f98dc6e1925db27808c95703a7ce 100644 --- a/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train.py +++ b/TensorFlow/contrib/cv/YOLOV5_ID0378_for_TensorFlow/train.py @@ -1,35 +1,7 @@ -# Copyright 2017 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================ -# Copyright 2021 Huawei Technologies Co., Ltd -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from npu_bridge.npu_init import * import datetime import os -import tensorflow as tf -from tensorflow.python.keras import backend as K + +import tensorflow.keras.backend as K from tensorflow.keras.callbacks import (EarlyStopping, LearningRateScheduler, ModelCheckpoint, TensorBoard) from tensorflow.keras.layers import Conv2D, Dense, DepthwiseConv2D @@ -42,29 +14,19 @@ from utils.callbacks import LossHistory from utils.dataloader import YoloDatasets from utils.utils import get_anchors, get_classes from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig +from npu_bridge.npu_init import * -''' -训练自己的目标检测模型一定需要注意以下几点: -1、训练前仔细检查自己的格式是否满足要求,该库要求数据集格式为VOC格式,需要准备好的内容有输入图片和标签 - 输入图片为.jpg图片,无需固定大小,传入训练前会自动进行resize。 - 灰度图会自动转成RGB图片进行训练,无需自己修改。 - 输入图片如果后缀非jpg,需要自己批量转成jpg后再开始训练。 - - 标签为.xml格式,文件中会有需要检测的目标信息,标签文件和输入图片文件相对应。 +import argparse -2、训练好的权值文件保存在logs文件夹中,每个epoch都会保存一次,如果只是训练了几个step是不会保存的,epoch和step的概念要捋清楚一下。 - 在训练过程中,该代码并没有设定只保存最低损失的,因此按默认参数训练完会有100个权值,如果空间不够可以自行删除。 - 这个并不是保存越少越好也不是保存越多越好,有人想要都保存、有人想只保存一点,为了满足大多数的需求,还是都保存可选择性高。 +if __name__ == "__main__": -3、损失值的大小用于判断是否收敛,比较重要的是有收敛的趋势,即验证集损失不断下降,如果验证集损失基本上不改变的话,模型基本上就收敛了。 - 损失值的具体大小并没有什么意义,大和小只在于损失的计算方式,并不是接近于0才好。如果想要让损失好看点,可以直接到对应的损失函数里面除上10000。 - 训练过程中的损失值会保存在logs文件夹下的loss_%Y_%m_%d_%H_%M_%S文件夹中 + # 解析输入参数data_url + parser = argparse.ArgumentParser() + parser.add_argument("--epochs", type=int, default=120) + parser.add_argument("--steps", type=int, default=-1) + parser.add_argument("--freeze_flag", type=int, default=1) + config = parser.parse_args() -4、调参是一门蛮重要的学问,没有什么参数是一定好的,现有的参数是我测试过可以正常训练的参数,因此我会建议用现有的参数。 - 但是参数本身并不是绝对的,比如随着batch的增大学习率也可以增大,效果也会好一些;过深的网络不要用太大的学习率等等。 - 这些都是经验上,只能靠各位同学多查询资料和自己试试了。 -''' -def main(): #---------------------------------------------------------------------# # classes_path 指向model_data下的txt,与自己训练的数据集相关 # 训练前一定要修改classes_path,使其对应自己的数据集 @@ -95,7 +57,6 @@ def main(): # 可以设置mosaic=True,直接随机初始化参数开始训练,但得到的效果仍然不如有预训练的情况。(像COCO这样的大数据集可以这样做) # 2、了解imagenet数据集,首先训练分类模型,获得网络的主干部分权值,分类模型的 主干部分 和该模型通用,基于此进行训练。 #----------------------------------------------------------------------------------------------------------------------------# - # model_path = 'model_data/yolov5_s.h5' model_path = '' #------------------------------------------------------# # input_shape 输入的shape大小,一定要是32的倍数 @@ -147,7 +108,7 @@ def main(): # (当Freeze_Train=False时失效) #------------------------------------------------------------------# Init_Epoch = 0 - Freeze_Epoch = 1 + Freeze_Epoch = 50 Freeze_batch_size = 16 #------------------------------------------------------------------# # 解冻阶段训练参数 @@ -156,14 +117,17 @@ def main(): # UnFreeze_Epoch 模型总共训练的epoch # Unfreeze_batch_size 模型在解冻后的batch_size #------------------------------------------------------------------# - UnFreeze_Epoch = 120 + UnFreeze_Epoch = config.epochs Unfreeze_batch_size = 8 #------------------------------------------------------------------# # Freeze_Train 是否进行冻结训练 # 默认先冻结主干训练后解冻训练。 # 如果设置Freeze_Train=False,建议使用优化器为sgd #------------------------------------------------------------------# - Freeze_Train = False + if config.freeze_flag != 0: + Freeze_Train = True + else: + Freeze_Train = False #------------------------------------------------------------------# # 其它训练参数:学习率、优化器、学习率下降有关 @@ -182,6 +146,7 @@ def main(): # 当使用SGD优化器时建议设置 Init_lr=1e-2 # momentum 优化器内部使用到的momentum参数 # weight_decay 权值衰减,可防止过拟合 + # adam会导致weight_decay错误,使用adam时建议设置为0。 #------------------------------------------------------------------# optimizer_type = "sgd" momentum = 0.937 @@ -193,7 +158,11 @@ def main(): #------------------------------------------------------------------# # save_period 多少个epoch保存一次权值,默认每个世代都保存 #------------------------------------------------------------------# - save_period = 1 + save_period = 20 + #------------------------------------------------------------------# + # save_dir 权值与日志文件保存的文件夹 + #------------------------------------------------------------------# + save_dir = 'logs' #------------------------------------------------------------------# # num_workers 用于设置是否使用多线程读取数据,1代表关闭多线程 # 开启后会加快数据读取速度,但是会占用更多内存 @@ -230,6 +199,8 @@ def main(): sess = tf.Session(config=sess_config) K.set_session(sess) + + #------------------------------------------------------# # 创建yolo模型 #------------------------------------------------------# @@ -239,8 +210,7 @@ def main(): # 载入预训练权重 #------------------------------------------------------# print('Load weights {}.'.format(model_path)) - model_body.load_weights(model_path, by_name=True) - # model_body.load_weights(model_path, by_name=True, skip_mismatch=True) + model_body.load_weights(model_path, by_name=False) model = get_train_model(model_body, input_shape, num_classes, anchors, anchors_mask, label_smoothing) @@ -281,12 +251,13 @@ def main(): start_epoch = Init_Epoch end_epoch = Freeze_Epoch if Freeze_Train else UnFreeze_Epoch + #-------------------------------------------------------------------# # 判断当前batch_size与64的差别,自适应调整学习率 #-------------------------------------------------------------------# nbs = 64 - Init_lr_fit = max(batch_size / nbs * Init_lr, 1e-4) - Min_lr_fit = max(batch_size / nbs * Min_lr, 1e-6) + Init_lr_fit = max(batch_size / nbs * Init_lr, 3e-4) + Min_lr_fit = max(batch_size / nbs * Min_lr, 3e-6) optimizer = { 'adam' : Adam(lr = Init_lr_fit, beta_1 = momentum), @@ -302,6 +273,10 @@ def main(): epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size + if config.steps != -1: + epoch_step = config.steps + epoch_step_val = config.steps + if epoch_step == 0 or epoch_step_val == 0: raise ValueError('数据集过小,无法进行训练,请扩充数据集。') @@ -316,14 +291,14 @@ def main(): # early_stopping 用于设定早停,val_loss多次不下降自动结束训练,表示模型基本收敛 #-------------------------------------------------------------------------------# time_str = datetime.datetime.strftime(datetime.datetime.now(),'%Y_%m_%d_%H_%M_%S') - log_dir = os.path.join('logs', "loss_" + str(time_str)) + log_dir = os.path.join(save_dir, "loss_" + str(time_str)) logging = TensorBoard(log_dir) loss_history = LossHistory(log_dir) - checkpoint = ModelCheckpoint('ckpt/ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5', + checkpoint = ModelCheckpoint(os.path.join(save_dir, "ep{epoch:03d}.h5"), monitor = 'val_loss', save_weights_only = True, save_best_only = False, period = save_period) early_stopping = EarlyStopping(monitor='val_loss', min_delta = 0, patience = 10, verbose = 1) lr_scheduler = LearningRateScheduler(lr_scheduler_func, verbose = 1) - callbacks = [logging, loss_history, checkpoint, lr_scheduler, early_stopping] + callbacks = [logging, loss_history, checkpoint, lr_scheduler] if start_epoch < end_epoch: print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size)) @@ -351,14 +326,14 @@ def main(): # 判断当前batch_size与64的差别,自适应调整学习率 #-------------------------------------------------------------------# nbs = 64 - Init_lr_fit = max(batch_size / nbs * Init_lr, 1e-4) - Min_lr_fit = max(batch_size / nbs * Min_lr, 1e-6) + Init_lr_fit = max(batch_size / nbs * Init_lr, 3e-4) + Min_lr_fit = max(batch_size / nbs * Min_lr, 3e-6) #---------------------------------------# # 获得学习率下降的公式 #---------------------------------------# lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) lr_scheduler = LearningRateScheduler(lr_scheduler_func, verbose = 1) - callbacks = [logging, loss_history, checkpoint, lr_scheduler, early_stopping] + callbacks = [logging, loss_history, checkpoint, lr_scheduler] for i in range(len(model.layers)): model.layers[i].trainable = True @@ -386,9 +361,3 @@ def main(): callbacks = callbacks ) sess.close() - -if __name__ == "__main__": - - print(1) - main() - \ No newline at end of file diff --git a/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/cfg.py b/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/cfg.py index a4a94ca5c3e2a17cdb907aeb4eb6d22a48e193e7..862f8a95766c33d41a709069255d4e55e401f06f 100644 --- a/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/cfg.py +++ b/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/cfg.py @@ -39,6 +39,7 @@ def make_config(FLAGS): custom_op = config.graph_options.rewrite_options.custom_optimizers.add() custom_op.name = "NpuOptimizer" custom_op.parameter_map["use_off_line"].b = True + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") config.graph_options.rewrite_options.remapping = RewriterConfig.OFF ## Auto Tune diff --git a/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/main.py b/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/main.py index 1af7f77f65cba4998449eb120231a2ac707b2ed1..f03b19841600fa7b736c1ea202bc620be5aead25 100644 --- a/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/main.py +++ b/TensorFlow/contrib/cv/fusiongan/FusionGAN_ID2124_for_TensorFlow/main.py @@ -75,7 +75,10 @@ def main(_): os.makedirs(FLAGS.checkpoint_dir) if not os.path.exists(FLAGS.sample_dir): os.makedirs(FLAGS.sample_dir) - + config_proto = tf.ConfigProto() + custom_op = config_proto.graph_options.rewrite_options.custom_optimizers.add() + custom_op.name = 'NpuOptimizer' + custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision") with tf.Session(config=config) as sess: srcnn = CGAN(sess, image_size=FLAGS.image_size, diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/ReadMe.md b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/ReadMe.md index 762b1b60f76d498b1eaeff8047263a6b4f56098b..4a333c10b6e37fafe9c3b193c6b0247215dc1292 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/ReadMe.md +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/ReadMe.md @@ -162,7 +162,9 @@ npu_device.global_options().precision_mode=FLAGS.precision_mode ├──eval_10k.tfrecord ``` +4、数据集pack (仅在使用pack策略进行训练时执行) +若训练时使用pack策略 (参看“模型训练” - 开始训练 - 4.pack策略), 须将数据集进行处理,生成为pack后的数据集。再使用pack后的数据集进行训练。 数据集转换脚本在bert/data_pack/目录下,具体可参看该文件夹内README文件。 数据集pack过后,在指定的目录下生成“strategy_record”开头的一系列文件。 ## 模型训练 - 下载训练脚本。 @@ -245,7 +247,10 @@ npu_device.global_options().precision_mode=FLAGS.precision_mode bash test/train_performance_8p_192bs.sh --data_path=/home/tfrecord --precision_mode=allow_mix_precision - + 4. pack策略 + + 4.1 含pack策略的训练脚本(./test/目录下名字带有“_pack”的shell脚本即为包含pack策略的训练脚本) + 使用pack策略进行训练时,需使用pack过后的数据集(train, eval)及对应的预训练模型。若无对应的tensorflow-v2版本packed预训练模型。可由tensorflow-v1版本进行转换得来。模型转换相关脚本为bert/tf2_encoder_checkpoint_converter.py, 详见:“迁移学习指导” - 脚本和事例代码 - 模型转换脚本

高级参考

@@ -255,6 +260,7 @@ npu_device.global_options().precision_mode=FLAGS.precision_mode |--bert #网络代码目录 | |--tf2_common | |--modeling +| |--data_pack #pack脚本及说明所在目录 | |--...... |--configs #配置文件目录 | |--bert_config.json @@ -265,6 +271,13 @@ npu_device.global_options().precision_mode=FLAGS.precision_mode | |--...... ``` +添加: + +模型转换脚本(仅tensorflow_v1版本checkpoint转化为tensorflow_v2版本时使用) + +tensorflow-v1的checkpoint与tensorflow-v2的checkpoint从结构和使用上具有较大差异。迁移原有tensorflow-v1生成的checkpoint, 使其转换为tensorflow-v2环境中可使用的checkpoint, 需使用转换脚本, 脚本位置:“./bert/tf2_encoder_checkpoint_converter.py”。 +脚本使用示例: python3 tf2_encoder_checkpoint_converter.py --bert_config_file=/path/to/your/tensorflow_v1/bert_config.json --checkpoint_to_convert=/path/to/your/tensorflow_v1/model.ckpt-28252 --converted_checkpoint_path=/path/to/save/output_ckpt/output_ckpt + ## 脚本参数 ``` diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/bert_models.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/bert_models.py index 567c0c12c83f5a22504fd642a9d3596002341ae2..6709f33df29b3de93bb58a4306dd531a36510ff6 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/bert_models.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/bert_models.py @@ -29,7 +29,8 @@ from modeling.networks import bert_pretrainer from modeling.networks import bert_span_labeler from modeling.layers import bert_dropout from metrics_sparse_int32 import sparse_categorical_accuracy_int32 - +from absl import flags +FLAGS=flags.FLAGS class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer): """Returns layer that computes custom loss and metrics for pretraining.""" @@ -43,7 +44,7 @@ class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer): def _add_metrics(self, lm_output, lm_labels, lm_label_weights, lm_example_loss, sentence_output, sentence_labels, - next_sentence_loss): + next_sentence_loss, next_sentence_weights=None): """Adds metrics.""" #masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy( # lm_labels, lm_output) @@ -59,6 +60,11 @@ class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer): #next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy( # sentence_labels, sentence_output) next_sentence_accuracy = sparse_categorical_accuracy_int32(sentence_labels, sentence_output) + if FLAGS.use_packed_model: + print("next_sentence_accuracy, next_sentence_weights=====", next_sentence_accuracy, next_sentence_weights) + next_sentence_numerator = tf.reduce_sum(next_sentence_accuracy * next_sentence_weights) + next_sentence_denominator = tf.reduce_sum(next_sentence_weights) + next_sentence_accuracy = next_sentence_numerator / next_sentence_denominator next_sentence_num = tf.reduce_sum(next_sentence_accuracy) next_sentence_denom = tf.size(next_sentence_accuracy) # self.add_metric( @@ -81,15 +87,24 @@ class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer): def call(self, lm_output, sentence_output, lm_label_ids, lm_label_weights, - sentence_labels): + sentence_labels, next_sentence_weights=None): """Implements call() for the layer.""" lm_label_weights = tf.cast(lm_label_weights, tf.float32) + if FLAGS.use_packed_model: + lm_label_weights = tf.minimum(lm_label_weights, 1.0) lm_output = tf.cast(lm_output, tf.float32) sentence_output = tf.cast(sentence_output, tf.float32) mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss( labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights) - sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss( + if FLAGS.use_packed_model: + # change shape [B, 3] to [B*3, ], keep batch normal + sentence_labels = tf.reshape(sentence_labels, [-1,]) + next_sentence_weights = tf.reshape(next_sentence_weights, [-1,]) + sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss( + labels=sentence_labels, predictions=sentence_output, weights=next_sentence_weights) + else: + sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss( labels=sentence_labels, predictions=sentence_output) loss = mask_label_loss + sentence_loss batch_shape = tf.slice(tf.shape(sentence_labels), [0], [1]) @@ -100,9 +115,15 @@ class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer): # TODO(b/122840926): metrics use distribution strategy merge_call() and do # not work with tf.function(compile=True). Either fix this issue or move # metric aggregation outside the model. - metric_outputs = self._add_metrics(lm_output, lm_label_ids, lm_label_weights, - mask_label_loss, sentence_output, sentence_labels, - sentence_loss) + if FLAGS.use_packed_model: + next_sentence_weights = tf.cast(next_sentence_weights,dtype=tf.float32) + metric_outputs = self._add_metrics(lm_output, lm_label_ids, lm_label_weights, + mask_label_loss, sentence_output, sentence_labels, + sentence_loss,next_sentence_weights) + else: + metric_outputs = self._add_metrics(lm_output, lm_label_ids, lm_label_weights, + mask_label_loss, sentence_output, sentence_labels, + sentence_loss) return final_loss, bs, metric_outputs @@ -194,8 +215,17 @@ def pretrain_model(bert_config, shape=(max_predictions_per_seq,), name='masked_lm_weights', dtype=tf.int32) - next_sentence_labels = tf.keras.layers.Input( - shape=(1,), name='next_sentence_labels', dtype=tf.int32) + + if FLAGS.use_packed_model: + next_sentence_weights = tf.keras.layers.Input( + shape=(FLAGS.max_sequences_per_pack,), name='next_sentence_weights', dtype=tf.int32) + next_sentence_positions = tf.keras.layers.Input( + shape=(FLAGS.max_sequences_per_pack,), dtype=tf.int32, name='next_sentence_positions') + next_sentence_labels = tf.keras.layers.Input( + shape=(FLAGS.max_sequences_per_pack,), name='next_sentence_labels', dtype=tf.int32) + else: + next_sentence_labels = tf.keras.layers.Input( + shape=(1,), name='next_sentence_labels', dtype=tf.int32) transformer_encoder = get_transformer_encoder(bert_config, seq_length) if initializer is None: @@ -208,15 +238,24 @@ def pretrain_model(bert_config, activation=tf_utils.get_activation(bert_config.hidden_act), initializer=initializer, output='predictions') - - lm_output, sentence_output = pretrainer_model( - [input_word_ids, input_mask, input_type_ids, masked_lm_positions]) + + if FLAGS.use_packed_model: + lm_output, sentence_output = pretrainer_model( + [input_word_ids, input_mask, input_type_ids, next_sentence_positions, masked_lm_positions]) + else: + lm_output, sentence_output = pretrainer_model( + [input_word_ids, input_mask, input_type_ids, masked_lm_positions]) pretrain_loss_layer = BertPretrainLossAndMetricLayer( vocab_size=bert_config.vocab_size) - output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids, - masked_lm_weights, next_sentence_labels) - keras_model = tf.keras.Model( + if FLAGS.use_packed_model: + output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids, + masked_lm_weights, next_sentence_labels, next_sentence_weights) + else: + output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids, + masked_lm_weights, next_sentence_labels) + if FLAGS.use_packed_model: + keras_model = tf.keras.Model( inputs={ 'input_word_ids': input_word_ids, 'input_mask': input_mask, @@ -225,6 +264,20 @@ def pretrain_model(bert_config, 'masked_lm_ids': masked_lm_ids, 'masked_lm_weights': masked_lm_weights, 'next_sentence_labels': next_sentence_labels, + 'next_sentence_weights': next_sentence_weights, + 'next_sentence_positions': next_sentence_positions, + }, + outputs=output_loss) + else: + keras_model = tf.keras.Model( + inputs={ + 'input_word_ids': input_word_ids, + 'input_mask': input_mask, + 'input_type_ids': input_type_ids, + 'masked_lm_positions': masked_lm_positions, + 'masked_lm_ids': masked_lm_ids, + 'masked_lm_weights': masked_lm_weights, + 'next_sentence_labels': next_sentence_labels, }, outputs=output_loss) return keras_model, transformer_encoder, pretrainer_model diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/input_pipeline.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/input_pipeline.py index 724d2887f2fe528b719eb37957a445d94c45eccb..37f34748d411ec1c5af8410d8ef5f986f417aace 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/input_pipeline.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/input_pipeline.py @@ -40,7 +40,8 @@ import npu_device as npu from npu_device.npu_device import global_npu_ctx import numpy as np from tf2_common.utils.dataset_unpad import _batch_examples - +from absl import flags +FLAGS=flags.FLAGS def decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" @@ -121,22 +122,44 @@ def create_pretrain_dataset(input_patterns, input_pipeline_context=None, num_eval_samples=None): """Creates input dataset from (tf)records files for pretraining.""" - name_to_features = { + if FLAGS.use_packed_model: + name_to_features = { 'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64), + 'positions_ids': + tf.io.FixedLenFeature([seq_length], tf.int64), 'masked_lm_positions': tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), 'masked_lm_ids': tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), 'masked_lm_weights': - tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32), - 'next_sentence_labels': - tf.io.FixedLenFeature([1], tf.int64), - } + tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), + + 'next_sentence_positions': tf.io.FixedLenFeature([FLAGS.max_sequences_per_pack], tf.int64), + 'next_sentence_labels': tf.io.FixedLenFeature([FLAGS.max_sequences_per_pack], tf.int64), + 'next_sentence_weights': tf.io.FixedLenFeature([FLAGS.max_sequences_per_pack], tf.int64), + } + else: + name_to_features = { + 'input_ids': + tf.io.FixedLenFeature([seq_length], tf.int64), + 'input_mask': + tf.io.FixedLenFeature([seq_length], tf.int64), + 'segment_ids': + tf.io.FixedLenFeature([seq_length], tf.int64), + 'masked_lm_positions': + tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), + 'masked_lm_ids': + tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), + 'masked_lm_weights': + tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32), + 'next_sentence_labels': + tf.io.FixedLenFeature([1], tf.int64), + } if use_synthetic: dataset = create_synthetic_pretrain_dataset( @@ -188,15 +211,28 @@ def create_pretrain_dataset(input_patterns, def _select_data_from_record(record): """Filter out features to use for pretraining.""" - x = { - 'input_word_ids': record['input_ids'], - 'input_mask': record['input_mask'], - 'input_type_ids': record['segment_ids'], - 'masked_lm_positions': record['masked_lm_positions'], - 'masked_lm_ids': record['masked_lm_ids'], - 'masked_lm_weights': record['masked_lm_weights'], - 'next_sentence_labels': record['next_sentence_labels'], - } + if FLAGS.use_packed_model: + x = { + 'input_word_ids': record['input_ids'], + 'input_mask': record['input_mask'], + 'input_type_ids': record['segment_ids'], + 'masked_lm_positions': record['masked_lm_positions'], + 'masked_lm_ids': record['masked_lm_ids'], + 'masked_lm_weights': record['masked_lm_weights'], + 'next_sentence_labels': record['next_sentence_labels'], + 'next_sentence_positions': record['next_sentence_positions'], + 'next_sentence_weights': record['next_sentence_weights'], + } + else: + x = { + 'input_word_ids': record['input_ids'], + 'input_mask': record['input_mask'], + 'input_type_ids': record['segment_ids'], + 'masked_lm_positions': record['masked_lm_positions'], + 'masked_lm_ids': record['masked_lm_ids'], + 'masked_lm_weights': record['masked_lm_weights'], + 'next_sentence_labels': record['next_sentence_labels'], + } y = record['masked_lm_weights'] diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/layers/self_attention_mask.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/layers/self_attention_mask.py index 7569e3c25b2407a44e97a3f87e96139cb7d1e722..edda39d164328bd403c096627a1c00097bdf85d9 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/layers/self_attention_mask.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/layers/self_attention_mask.py @@ -21,6 +21,8 @@ from __future__ import print_function import tensorflow as tf from tf2_common.modeling import tf_utils +from absl import flags +FLAGS=flags.FLAGS @tf.keras.utils.register_keras_serializable(package='Text') class SelfAttentionMask(tf.keras.layers.Layer): @@ -44,19 +46,30 @@ class SelfAttentionMask(tf.keras.layers.Layer): to_shape = tf_utils.get_shape_list(to_mask, expected_rank=2) to_seq_length = to_shape[1] - to_mask = tf.cast( - tf.reshape(to_mask, [batch_size, 1, to_seq_length]), - dtype=from_tensor.dtype) + if FLAGS.use_packed_model: + mask_tile = tf.tile(to_mask, [1, to_seq_length]) + mask_tile = tf.reshape(mask_tile, (batch_size * to_seq_length, to_seq_length)) + reshape_mask = tf.reshape(to_mask, (1, -1)) + broadcast_mask = tf.broadcast_to(reshape_mask, (to_seq_length, batch_size * to_seq_length)) + transpose_mask = tf.transpose(broadcast_mask, (1, 0)) + equal_mask = tf.equal(mask_tile, transpose_mask) + equal_mask = tf.cast(equal_mask, dtype=tf.float32) + mask = tf.reshape(equal_mask, [batch_size, to_seq_length, to_seq_length]) - # We don't assume that `from_tensor` is a mask (although it could be). We - # don't actually care if we attend *from* padding tokens (only *to* padding) - # tokens so we create a tensor of all ones. - # - # `broadcast_ones` = [batch_size, from_seq_length, 1] - broadcast_ones = tf.ones( - shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype) + else: + to_mask = tf.cast( + tf.reshape(to_mask, [batch_size, 1, to_seq_length]), + dtype=from_tensor.dtype) - # Here we broadcast along two dimensions to create the mask. - mask = broadcast_ones * to_mask + # We don't assume that `from_tensor` is a mask (although it could be). We + # don't actually care if we attend *from* padding tokens (only *to* padding) + # tokens so we create a tensor of all ones. + # + # `broadcast_ones` = [batch_size, from_seq_length, 1] + broadcast_ones = tf.ones( + shape=[batch_size, from_seq_length, 1], dtype=from_tensor.dtype) + + # Here we broadcast along two dimensions to create the mask. + mask = broadcast_ones * to_mask return mask diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/networks/transformer_encoder.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/networks/transformer_encoder.py index ec6a120ce7c2d5047024c1c7407f7d56a187a4b6..b1528c473b31807f927c9cc2b4c5bd200a1e6f02 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/networks/transformer_encoder.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/modeling/networks/transformer_encoder.py @@ -26,6 +26,10 @@ from modeling.layers import util from modeling.layers import bert_dropout from modeling.layers import bert_layernorm +from tf2_common.modeling import tf_utils +from absl import flags +FLAGS = flags.FLAGS + @tf.keras.utils.register_keras_serializable(package='Text') class TransformerEncoder(tf.keras.Model): """Bi-directional Transformer-based encoder network. @@ -106,6 +110,10 @@ class TransformerEncoder(tf.keras.Model): shape=(sequence_length,), dtype=tf.int32, name='input_mask') type_ids = tf.keras.layers.Input( shape=(sequence_length,), dtype=tf.int32, name='input_type_ids') + + if FLAGS.use_packed_model: + next_sentence_starts = tf.keras.layers.Input( + shape=([FLAGS.max_sequences_per_pack,]), dtype=tf.int32, name='next_sentence_positions') self._embedding_layer = layers.OnDeviceEmbedding( vocab_size=vocab_size, @@ -156,10 +164,20 @@ class TransformerEncoder(tf.keras.Model): self._transformer_layers.append(layer) data = layer([data, attention_mask]) encoder_outputs.append(data) - - first_token_tensor = ( - tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( - encoder_outputs[-1])) + if FLAGS.use_packed_model: + def first_token(args): + encoder_outputs, next_sentence_starts = args[0],args[1] + sequence_output = encoder_outputs[-1] + first_token_tensor = tf.gather(sequence_output, next_sentence_starts, axis=1, batch_dims=1, name=None) + first_token_tensor = tf.reshape(first_token_tensor, [-1, hidden_size]) + return first_token_tensor + + first_token_tensor = ( + tf.keras.layers.Lambda(first_token)([encoder_outputs, next_sentence_starts])) + else: + first_token_tensor = ( + tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( + encoder_outputs[-1])) cls_output = tf.keras.layers.Dense( units=hidden_size, activation='tanh', @@ -171,9 +189,12 @@ class TransformerEncoder(tf.keras.Model): outputs = [encoder_outputs, cls_output] else: outputs = [encoder_outputs[-1], cls_output] - - super(TransformerEncoder, self).__init__( - inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs) + if FLAGS.use_packed_model: + super(TransformerEncoder, self).__init__( + inputs=[word_ids, mask, type_ids, next_sentence_starts], outputs=outputs, **kwargs) + else: + super(TransformerEncoder, self).__init__( + inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs) def get_embedding_table(self): return self._embedding_layer.embeddings diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining.py index 1d5959077af10cfef9e12a6760941ed67791a89b..2f7a2efb79f2ed27391b41397eda44a6ad305b7e 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining.py @@ -120,6 +120,21 @@ flags.DEFINE_integer('num_accumulation_steps', 1, 'number of steps to accumulate with large batch size.') flags.DEFINE_float('stop_threshold', 0.912, 'Stop threshold for MLPerf.') flags.DEFINE_float('poly_power', 1.0, 'The power of poly decay.') + +flags.DEFINE_boolean(name='use_packed_model', default=False, help='whether to enable packed model, default is True.') +flags.DEFINE_integer( + "max_sequences_per_pack", 3, + "Maximum number of sequences per sequence. " + "Must match data generation.") +flags.DEFINE_float( + "average_sequences_per_sample", 1.999, + "average number of sequences per sample. " + "Must match data generation.") +flags.DEFINE_float( + "average_sequences_per_eval_sample", 1.73, + "average number of sequences per sample. " + "Must match data generation.") + common_flags.define_common_bert_flags() FLAGS = flags.FLAGS diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining_bucket.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining_bucket.py index f9b770b7c6dace47809f548895fd5ba96de1267b..a1f4dc045a1577559c3bd21bcfebc084eebe0e3b 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining_bucket.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/run_pretraining_bucket.py @@ -121,7 +121,7 @@ flags.DEFINE_integer('num_accumulation_steps', 1, flags.DEFINE_float('stop_threshold', 0.912, 'Stop threshold for MLPerf.') flags.DEFINE_float('poly_power', 1.0, 'The power of poly decay.') -flags.DEFINE_multi_integer("seq_len_buckets", [64,128,192,256,384,512], +flags.DEFINE_multi_integer("seq_len_buckets", [64,128,192,256,320,384,448,512], "sequence length bucketizations boundaries") flags.DEFINE_integer('max_tockens_num', 12288, 'max_tockens_num = bs * seq_len') @@ -132,9 +132,22 @@ FLAGS = flags.FLAGS def npu_config(): FLAGS = flags.FLAGS - npu_device.global_options().input_shape = "data_0:-1,-1;data_1:-1,-1;data_2:-1,-1;data_3:-1,-1;data_4:-1,-1;data_5:-1,-1;data_6:-1,-1" - npu_device.global_options().dynamic_node_type = "0" - npu_device.global_options().dynamic_dims = "192,64,192,64,192,64,192,76,192,76,192,76,192,1;96,128,96,128,96,128,96,76,96,76,96,76,96,1;64,192,64,192,64,192,64,76,64,76,64,76,64,1;48,256,48,256,48,256,48,76,48,76,48,76,48,1;32,384,32,384,32,384,32,76,32,76,32,76,32,1;24,512,24,512,24,512,24,76,24,76,24,76,24,1" + npu_device.global_options().experimental.multi_branches_config.input_shape = "data_0:-1,-1;" \ + "data_1:-1,-1;" \ + "data_2:-1,-1;" \ + "data_3:-1,-1;" \ + "data_4:-1,-1;" \ + "data_5:-1,-1;" \ + "data_6:-1,-1" + npu_device.global_options().experimental.multi_branches_config.dynamic_node_type = "0" + npu_device.global_options().experimental.multi_branches_config.dynamic_dims = "192,64,192,64,192,64,192,76,192,76,192,76,192,1;" \ + "96,128,96,128,96,128,96,76,96,76,96,76,96,1;" \ + "64,192,64,192,64,192,64,76,64,76,64,76,64,1;" \ + "48,256,48,256,48,256,48,76,48,76,48,76,48,1;" \ + "38,320,38,320,38,320,38,76,38,76,38,76,38,1;" \ + "32,384,32,384,32,384,32,76,32,76,32,76,32,1;" \ + "28,448,28,448,28,448,28,76,28,76,28,76,28,1;" \ + "24,512,24,512,24,512,24,76,24,76,24,76,24,1" if FLAGS.data_dump_flag: npu_device.global_options().dump_config.enable_dump = True diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/tf2_common/modeling/model_training_utils.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/tf2_common/modeling/model_training_utils.py index 1458b80d0a64c17e5db219c09a9d4dfc794baf1e..5dc20c6019a3ab9d03530489922a4d5db602cee8 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/tf2_common/modeling/model_training_utils.py +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/bert/tf2_common/modeling/model_training_utils.py @@ -36,6 +36,7 @@ import numpy as np import json import os import time +import math from absl import logging import tensorflow as tf @@ -44,6 +45,9 @@ from tf2_common.utils.misc import distribution_utils from tf2_common.utils.mlp_log import mlp_log import npu_device as npu +from absl import flags +FLAGS = flags.FLAGS + _SUMMARY_TXT = 'training_summary.txt' _MIN_SUMMARY_STEPS = 10 @@ -211,6 +215,8 @@ def run_customized_training_loop( by `model_fn` is None. """ mlperf_block_number = 1 + if FLAGS.use_packed_model: + eval_steps = int(math.floor(eval_steps / FLAGS.average_sequences_per_eval_sample)) if _sentinel is not None: raise ValueError('only call `run_customized_training_loop()` ' diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/set_ranktable.py b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/set_ranktable.py new file mode 100644 index 0000000000000000000000000000000000000000..c25b51462c5df2325462786688d4a206ee29fb9a --- /dev/null +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/set_ranktable.py @@ -0,0 +1,1740 @@ +import argparse +parser = argparse.ArgumentParser() +parser.add_argument('-n', '--npu_nums', type=int, default='2', help='nums of npu') +parser.add_argument('-c', '--conf_path', type=str, default='./', help='the path of server_info') +FLAGS = parser.parse_args() + +import json +import os +server = [] +server_conf = [] +server_list = ["0", "1", "2", "3", "4", "5", "6", "7"] +if os.path.isdir(FLAGS.conf_path): + for f in os.listdir(FLAGS.conf_path): + if (f.split("_")[-1]).split(".")[0] in server_list and (f.split("_")[-1]).split(".")[1] == 'info' and f.split("_")[0] == 'server': + server_conf.append(f) + + + + + + +rank_address = [] +for i in range(FLAGS.npu_nums): + for x in server_conf: + if (x.split("_")[-1]).split(".")[0] == str(i): + server.append(x.split("_")[1]) + l = FLAGS.conf_path + "/" + x + with open(l, "r") as a: + s = a.readlines() + for s_ in s: + if 'address_0' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_1' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_2' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_3' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_4' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_5' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_6' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + for s_ in s: + if 'address_7' in s_: + rank_address.append(s_.split("=")[-1][:-1]) + +if FLAGS.npu_nums == 1: + rank = { + "server_count":"1", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 2: + rank = { + "server_count":"2", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]} + ], + + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 3: + rank = { + "server_count":"3", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 4: + rank = { + "server_count":"4", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]} + ], + "status":"completed", + "version":"1.0" + } +elif FLAGS.npu_nums == 5: + rank = { + "server_count":"5", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + +elif FLAGS.npu_nums == 6: + rank = { + "server_count":"6", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + +elif FLAGS.npu_nums == 7: + rank = { + "server_count":"7", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +elif FLAGS.npu_nums == 8: + rank = { + "server_count":"8", + "server_list":[ + { + "server_id":server[0], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[0], + "rank_id":"0" + }, + { + "device_id":"1", + "device_ip":rank_address[1], + "rank_id":"1" + }, + { + "device_id":"2", + "device_ip":rank_address[2], + "rank_id":"2" + }, + { + "device_id":"3", + "device_ip":rank_address[3], + "rank_id":"3" + }, + { + "device_id":"4", + "device_ip":rank_address[4], + "rank_id":"4" + }, + { + "device_id":"5", + "device_ip":rank_address[5], + "rank_id":"5" + }, + { + "device_id":"6", + "device_ip":rank_address[6], + "rank_id":"6" + }, + { + "device_id":"7", + "device_ip":rank_address[7], + "rank_id":"7" + } + ]}, + + + { + "server_id":server[1], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[8], + "rank_id":"8" + }, + { + "device_id":"1", + "device_ip":rank_address[9], + "rank_id":"9" + }, + { + "device_id":"2", + "device_ip":rank_address[10], + "rank_id":"10" + }, + { + "device_id":"3", + "device_ip":rank_address[11], + "rank_id":"11" + }, + { + "device_id":"4", + "device_ip":rank_address[12], + "rank_id":"12" + }, + { + "device_id":"5", + "device_ip":rank_address[13], + "rank_id":"13" + }, + { + "device_id":"6", + "device_ip":rank_address[14], + "rank_id":"14" + }, + { + "device_id":"7", + "device_ip":rank_address[15], + "rank_id":"15" + } + ]}, + { + "server_id":server[2], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[16], + "rank_id":"16" + }, + { + "device_id":"1", + "device_ip":rank_address[17], + "rank_id":"17" + }, + { + "device_id":"2", + "device_ip":rank_address[18], + "rank_id":"18" + }, + { + "device_id":"3", + "device_ip":rank_address[19], + "rank_id":"19" + }, + { + "device_id":"4", + "device_ip":rank_address[20], + "rank_id":"20" + }, + { + "device_id":"5", + "device_ip":rank_address[21], + "rank_id":"21" + }, + { + "device_id":"6", + "device_ip":rank_address[22], + "rank_id":"22" + }, + { + "device_id":"7", + "device_ip":rank_address[23], + "rank_id":"23" + } + ]}, + { + "server_id":server[3], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[24], + "rank_id":"24" + }, + { + "device_id":"1", + "device_ip":rank_address[25], + "rank_id":"25" + }, + { + "device_id":"2", + "device_ip":rank_address[26], + "rank_id":"26" + }, + { + "device_id":"3", + "device_ip":rank_address[27], + "rank_id":"27" + }, + { + "device_id":"4", + "device_ip":rank_address[28], + "rank_id":"28" + }, + { + "device_id":"5", + "device_ip":rank_address[29], + "rank_id":"29" + }, + { + "device_id":"6", + "device_ip":rank_address[30], + "rank_id":"30" + }, + { + "device_id":"7", + "device_ip":rank_address[31], + "rank_id":"31" + } + ]}, + { + "server_id":server[4], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[32], + "rank_id":"32" + }, + { + "device_id":"1", + "device_ip":rank_address[33], + "rank_id":"33" + }, + { + "device_id":"2", + "device_ip":rank_address[34], + "rank_id":"34" + }, + { + "device_id":"3", + "device_ip":rank_address[35], + "rank_id":"35" + }, + { + "device_id":"4", + "device_ip":rank_address[36], + "rank_id":"36" + }, + { + "device_id":"5", + "device_ip":rank_address[37], + "rank_id":"37" + }, + { + "device_id":"6", + "device_ip":rank_address[38], + "rank_id":"38" + }, + { + "device_id":"7", + "device_ip":rank_address[39], + "rank_id":"39" + } + ]}, + { + "server_id":server[5], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[40], + "rank_id":"40" + }, + { + "device_id":"1", + "device_ip":rank_address[41], + "rank_id":"41" + }, + { + "device_id":"2", + "device_ip":rank_address[42], + "rank_id":"42" + }, + { + "device_id":"3", + "device_ip":rank_address[43], + "rank_id":"43" + }, + { + "device_id":"4", + "device_ip":rank_address[44], + "rank_id":"44" + }, + { + "device_id":"5", + "device_ip":rank_address[45], + "rank_id":"45" + }, + { + "device_id":"6", + "device_ip":rank_address[46], + "rank_id":"46" + }, + { + "device_id":"7", + "device_ip":rank_address[47], + "rank_id":"47" + } + ]}, + { + "server_id":server[6], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[48], + "rank_id":"48" + }, + { + "device_id":"1", + "device_ip":rank_address[49], + "rank_id":"49" + }, + { + "device_id":"2", + "device_ip":rank_address[50], + "rank_id":"50" + }, + { + "device_id":"3", + "device_ip":rank_address[51], + "rank_id":"51" + }, + { + "device_id":"4", + "device_ip":rank_address[52], + "rank_id":"52" + }, + { + "device_id":"5", + "device_ip":rank_address[53], + "rank_id":"53" + }, + { + "device_id":"6", + "device_ip":rank_address[54], + "rank_id":"54" + }, + { + "device_id":"7", + "device_ip":rank_address[55], + "rank_id":"55" + } + ]}, + { + "server_id":server[7], + "device":[ + { + "device_id":"0", + "device_ip":rank_address[56], + "rank_id":"56" + }, + { + "device_id":"1", + "device_ip":rank_address[57], + "rank_id":"57" + }, + { + "device_id":"2", + "device_ip":rank_address[58], + "rank_id":"58" + }, + { + "device_id":"3", + "device_ip":rank_address[59], + "rank_id":"59" + }, + { + "device_id":"4", + "device_ip":rank_address[60], + "rank_id":"60" + }, + { + "device_id":"5", + "device_ip":rank_address[61], + "rank_id":"61" + }, + { + "device_id":"6", + "device_ip":rank_address[62], + "rank_id":"62" + }, + { + "device_id":"7", + "device_ip":rank_address[63], + "rank_id":"63" + } + ]} + ], + "status":"completed", + "version":"1.0" + } + + + + +with open("rank_table.json", "w") as f: + json.dump(rank, f) + + + + + + diff --git a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_1p.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_1p_24bs_packed.sh similarity index 51% rename from TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_1p.sh rename to TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_1p_24bs_packed.sh index f6d490715962f2d7da47144fb144f11ff9609f6c..60d5c60352100e5a344766175e44272efbd988a1 100644 --- a/TensorFlow/built-in/nlp/BertNV_Series_for_TensorFlow/test/train_ID3067_BertLarge-128_full_1p.sh +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_1p_24bs_packed.sh @@ -1,171 +1,218 @@ -#!/bin/bash - -#当前路径,不需要修改 -cur_path=`pwd` - -#集合通信参数,不需要修改 -export RANK_SIZE=1 -export JOB_ID=99990001 -RANK_ID_START=0 - -# 数据集路径,保持为空,不需要修改 -data_path="" - -#基础参数,需要模型审视修改 -#网络名称,同目录名称 -Network="BertLarge-128_ID3067_for_TensorFlow" -#训练epoch -train_epochs=1 -#训练batch_size -batch_size=24 -#训练step -train_steps=100000 -#学习率 -learning_rate= - -#维测参数,precision_mode需要模型审视修改 -#precision_mode="allow_mix_precision" -#维持参数,以下不需要修改 -over_dump=False -data_dump_flag=False -data_dump_step="10" -profiling=False -autotune=False - -# 帮助信息,不需要修改 -if [[ $1 == --help || $1 == -h ]];then - echo"usage:./train_full_1p.sh " - echo " " - echo "parameter explain: - --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) - --over_dump if or not over detection, default is False - --data_dump_flag data dump flag, default is False - --data_dump_step data dump step, default is 10 - --profiling if or not profiling for performance debug, default is False - --autotune whether to enable autotune, default is False - --data_path source data of training - -h/--help show help message - " - exit 1 -fi - -#参数校验,不需要修改 -for para in $* -do - if [[ $para == --precision_mode* ]];then - precision_mode=`echo ${para#*=}` - elif [[ $para == --over_dump* ]];then - over_dump=`echo ${para#*=}` - over_dump_path=${cur_path}/output/overflow_dump - mkdir -p ${over_dump_path} - elif [[ $para == --data_dump_flag* ]];then - data_dump_flag=`echo ${para#*=}` - data_dump_path=${cur_path}/output/data_dump - mkdir -p ${data_dump_path} - elif [[ $para == --data_dump_step* ]];then - data_dump_step=`echo ${para#*=}` - elif [[ $para == --profiling* ]];then - profiling=`echo ${para#*=}` - profiling_dump_path=${cur_path}/output/profiling - mkdir -p ${profiling_dump_path} - elif [[ $para == --data_path* ]];then - data_path=`echo ${para#*=}` - fi -done - -#校验是否传入data_path,不需要修改 -if [[ $data_path == "" ]];then - echo "[Error] para \"data_path\" must be confing" - exit 1 -fi - -#训练开始时间,不需要修改 -start_time=$(date +%s) -#进入训练脚本目录,需要模型审视修改 -for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); -do - #设置环境变量,不需要修改 - echo "Device ID: $ASCEND_DEVICE_ID" - export RANK_ID=$RANK_ID - - #创建DeviceID输出目录,不需要修改 - if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then - rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - else - mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt${ASCEND_DEVICE_ID} - fi - - #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 - #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune - nohup python3.7 $cur_path/../src/run_pretraining.py --bert_config_file=${cur_path}/../configs/bert_large_config.json \ - --max_seq_length=128 \ - --max_predictions_per_seq=20 \ - --train_batch_size=${batch_size} \ - --learning_rate=1e-4 \ - --num_warmup_steps=10000 \ - --num_train_steps=${train_steps} \ - --optimizer_type=adam \ - --manual_fp16=True \ - --use_fp16_cls=True \ - --input_files_dir=${data_path}/train_phase1 \ - --eval_files_dir=${data_path}/eval_phase1 \ - --npu_bert_debug=False \ - --npu_bert_use_tdt=True \ - --do_train=True \ - --num_accumulation_steps=1 \ - --npu_bert_job_start_file= \ - --iterations_per_loop=1000 \ - --save_checkpoints_steps=1000 \ - --npu_bert_clip_by_global_norm=False \ - --distributed=False \ - --npu_bert_loss_scale=0 \ - --init_loss_scale_value=1 \ - --over_dump=${over_dump} \ - --over_dump_path=${over_dump_path} \ - --output_dir=${cur_path}/output/${ASCEND_DEVICE_ID}/ckpt${ASCEND_DEVICE_ID} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & -done -wait - -#训练结束时间,不需要修改 -end_time=$(date +%s) -e2e_time=$(( $end_time - $start_time )) - -#结果打印,不需要修改 -echo "------------------ Final result ------------------" -#输出性能FPS,需要模型审视修改 -ActualFPS=`grep Throughput ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log | awk 'END {print $6}'` -TrainingTime=`awk 'BEGIN{printf "%.2f\n", '${batch_size}' * '${RANK_SIZE}' / '${ActualFPS}'}'` -#打印,不需要修改 -echo "Final Performance images/sec : $ActualFPS" - -#输出训练精度,需要模型审视修改 -TrainAccuracy=`grep -A 1 top1 $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $3}'` -#打印,不需要修改 -echo "Final Train Accuracy : ${TrainAccuracy}" -echo "E2E Training Duration sec : $e2e_time" - -#稳定性精度看护结果汇总 -#训练用例信息,不需要修改 -BatchSize=${batch_size} -DeviceType=`uname -m` -CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'acc' - - -#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 -grep "tensorflow:loss =" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log | awk -F "loss = " '{print $2}' | awk -F "," '{print $1}' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt - -#最后一个迭代loss值,不需要修改 -ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` - -#关键信息打印到${CaseName}.log中,不需要修改 -echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log -echo "TrainAccuracy = ${TrainAccuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge_ID0634_for_TensorFlow2.X" + +#训练batch_size +eval_batch_size=4 +batch_size=24 +average_sequences_per_sample=2 +#训练step +train_steps=1000 +#训练epoch +train_epochs=`expr 768 / ${batch_size}` +#学习率 +learning_rate=0.000058711 + +#TF2.X独有,不需要修改 +#export NPU_LOOP_SIZE=${train_steps} +export NPU_LOOP_SIZE=1000 +export GE_USE_STATIC_MEMORY=1 + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +init_ckpt_path=${data_path}/'output_ckpt/model.ckpt-28252' #need modify to actual path +train_files_path=${data_path}/'train_packed/*' #need modify to actual path +eval_files_path=${data_path}/'eval_packed/*' #need modify to actual path + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup taskset -c $a-$c python3 ../bert/run_pretraining.py \ + --use_packed_model=True \ + --all_reduce_alg=nccl \ + --bert_config_file=../configs/bert_config.json \ + --beta_1=0.91063 \ + --beta_2=0.96497 \ + --device_warmup=False \ + --do_eval=True \ + --dtype=fp16 \ + --eval_batch_size=${eval_batch_size} \ + --init_checkpoint=${init_ckpt_path} \ + --train_files=${train_files_path} \ + --eval_files=${eval_files_path} \ + --learning_rate=${learning_rate} \ + --loss_scale=dynamic \ + --max_predictions_per_seq=79 \ + --max_seq_length=512 \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} \ + --num_accumulation_steps=1 \ + --distribution_strategy=one_device \ + --num_gpus=1 \ + --num_steps_per_epoch=8000 \ + --num_train_epochs=${train_epochs} \ + --optimizer_type=lamb \ + --scale_loss=False \ + --stop_threshold=0.95 \ + --steps_between_eval=1000 \ + --steps_per_loop=${NPU_LOOP_SIZE} \ + --stop_steps=100000 \ + --enable_checkpoint_and_summary=True \ + --train_batch_size=${batch_size} \ + --verbosity=0 \ + --warmup_steps=0 \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${batch_size}'*'${average_sequences_per_sample}'}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p_packed'_'acc' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log \ No newline at end of file diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_bucket.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_bucket.sh index c6e9d5be8bddb513a44ef59641a610de85af041c..9f6dac2b527452cd9eebf9cb5aa1135a68e7648a 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_bucket.sh +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_bucket.sh @@ -177,9 +177,14 @@ e2e_time=$(( $end_time - $start_time )) #############结果处理######################### echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 -single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` -avg_bs=`grep avg_bs $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` -FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${avg_bs}'*8}'` +FPS=0.0 +for((ID=0; ID<8; ID++)) +do + single_batch_step_sec=`grep TimeHistory $cur_path/output/${ID}/train_${ID}.log|awk 'END {print $8}'` + avg_bs=`grep avg_bs $cur_path/output/${ID}/train_${ID}.log|awk 'END {print $8}'` + PER_FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${avg_bs}'}'` + FPS=`awk 'BEGIN{printf "%.2f\n",'${PER_FPS}'+'${FPS}'}'` +done #打印,不需要修改 echo "Final Performance images/sec : $FPS" diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_packed.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_packed.sh new file mode 100644 index 0000000000000000000000000000000000000000..e7157da722666ba45a73ef09471b16a8fd4b8ff3 --- /dev/null +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_full_8p_192bs_packed.sh @@ -0,0 +1,229 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +#保证rank table file 文件rank_table_8p.json存放在和test同级的configs目录下 +export RANK_SIZE=8 +export RANK_TABLE_FILE=${cur_path}/../configs/rank_table_8p.json +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数 需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge_ID0634_for_TensorFlow2.X" + + +#训练batch_size +batch_size=192 +eval_batch_size=16 +average_sequences_per_sample=2 +#训练step +train_steps=1000 +#训练epoch +train_epochs=`expr 768 / ${batch_size}` +#学习率 +learning_rate=0.0002 + +#TF2.X独有,需要模型审视修改 +export NPU_LOOP_SIZE=1000 +export GE_USE_STATIC_MEMORY=1 + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_8p_32bs.sh " + + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is 0 + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,需要模型审视修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --bind_core* ]]; then + bind_core=`echo ${para#*=}` + name_bind="_bindcore" + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +init_ckpt_path=${data_path}/'output_ckpt/model.ckpt-28252' #need modify to actual path +train_files_path=${data_path}/'train_packed/*' #need modify to actual path +eval_files_path=${data_path}/'eval_packed/*' #need modify to actual path + + + +start_time=$(date +%s) +#############执行训练######################### +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + ASCEND_DEVICE_ID=$RANK_ID + + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + if [ "x${bind_core}" != x ];then + bind_core="taskset -c $a-$c" + fi + nohup ${bind_core} python3 ../bert/run_pretraining.py \ + --use_packed_model=True \ + --all_reduce_alg=nccl \ + --bert_config_file=../configs/bert_config.json \ + --beta_1=0.91063 \ + --beta_2=0.96497 \ + --device_warmup=False \ + --do_eval=True \ + --dtype=fp16 \ + --eval_batch_size=${eval_batch_size} \ + --init_checkpoint=${init_ckpt_path} \ + --train_files=${train_files_path} \ + --eval_files=${eval_files_path} \ + --learning_rate=${learning_rate} \ + --loss_scale=dynamic \ + --max_predictions_per_seq=79 \ + --max_seq_length=512 \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} \ + --num_accumulation_steps=1 \ + --distribution_strategy=one_device \ + --num_gpus=1 \ + --use_npu_lamb=True \ + --use_mixlist=True \ + --num_steps_per_epoch=8000 \ + --stop_threshold=0.95 \ + --num_train_epochs=${train_epochs} \ + --optimizer_type=lamb \ + --enable_checkpoint_and_summary=True \ + --scale_loss=False \ + --steps_between_eval=1000 \ + --steps_per_loop=${NPU_LOOP_SIZE} \ + --stop_steps=32000 \ + --train_batch_size=${batch_size} \ + --verbosity=0 \ + --warmup_steps=0 \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${batch_size}'*'${average_sequences_per_sample}'}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}${name_bind}_bs${BatchSize}_${RANK_SIZE}'p_packed'_'acc' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + sed -i "/AttributeError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log + sed -i "/ModuleNotFoundError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log +done \ No newline at end of file diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_16p_384bs.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_16p_384bs.sh new file mode 100644 index 0000000000000000000000000000000000000000..f2b82938dc2a36324d04e30a1ec70b9c73c6f02c --- /dev/null +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_16p_384bs.sh @@ -0,0 +1,231 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +#保证rank table file 文件rank_table_8p.json存放在和test同级的configs目录下 +export RANK_SIZE=16 +#export RANK_TABLE_FILE=${cur_path}/../configs/rank_table_8p.json +export JOB_ID=10087 +RANK_ID_START=0 + +# 数据集路径,保持为空,不需要修改 +data_path="" +server_index="" +conf_path="" +#基础参数 需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge_ID0634_for_TensorFlow2.X" +#训练batch_size +batch_size=384 +eval_batch_size=32 +#训练step +train_steps=1000 +#训练epoch +train_epochs=`expr 768 / ${batch_size}` +#学习率 +learning_rate=0.0007 + +#TF2.X独有,需要模型审视修改 +export NPU_LOOP_SIZE=100 +export GE_USE_STATIC_MEMORY=1 + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_8p_32bs.sh " + + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is 0 + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,需要模型审视修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --bind_core* ]]; then + bind_core=`echo ${para#*=}` + name_bind="_bindcore" + elif [[ $para == --server_index* ]];then + server_index=`echo ${para#*=}` + elif [[ $para == --conf_path* ]];then + conf_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +init_ckpt_path=${data_path}/tf2_ckpt/model.ckpt-28252 #need modify to actual path +train_files_path=${data_path}/'train/*' #need modify to actual path +eval_files_path=${data_path}/'eval/eval.tfrecord' #need modify to actual path + +rank_size=8 +nohup python3 set_ranktable.py --npu_nums=$((RANK_SIZE/rank_size)) --conf_path=$conf_path +export RANK_TABLE_FILE=${cur_path}/rank_table.json +export HCCL_CONNECT_TIMEOUT=600 +RANK_ID_START=0 + +start_time=$(date +%s) +#############执行训练######################### +for((RANK_ID=$((rank_size*server_index));RANK_ID<$((((server_index+1))*rank_size));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + ASCEND_DEVICE_ID=`expr ${RANK_ID} - $((rank_size*server_index))` + + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + if [ "x${bind_core}" != x ];then + bind_core="taskset -c $a-$c" + fi + nohup ${bind_core} python3 ../bert/run_pretraining.py \ + --all_reduce_alg=nccl \ + --bert_config_file=../configs/bert_config.json \ + --beta_1=0.91063 \ + --beta_2=0.96497 \ + --device_warmup=False \ + --do_eval=True \ + --dtype=fp16 \ + --init_checkpoint=${init_ckpt_path} \ + --eval_batch_size=${eval_batch_size} \ + --train_files=${train_files_path} \ + --eval_files=${eval_files_path} \ + --learning_rate=${learning_rate} \ + --loss_scale=dynamic \ + --max_predictions_per_seq=76 \ + --max_seq_length=512 \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} \ + --num_accumulation_steps=1 \ + --distribution_strategy=one_device \ + --num_gpus=1 \ + --enable_checkpoint_and_summary=True \ + --num_steps_per_epoch=1000 \ + --num_train_epochs=${train_epochs} \ + --optimizer_type=lamb \ + --scale_loss=False \ + --steps_between_eval=100 \ + --steps_per_loop=${NPU_LOOP_SIZE} \ + --stop_steps=200 \ + --train_batch_size=${batch_size} \ + --verbosity=0 \ + --warmup_steps=0 \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${batch_size}'}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}${name_bind}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + sed -i "/AttributeError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log + sed -i "/ModuleNotFoundError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log +done diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_1p_24bs_packed.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_1p_24bs_packed.sh new file mode 100644 index 0000000000000000000000000000000000000000..3ddc8aef045b7a786518437cead3bf1fc43b5c6f --- /dev/null +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_1p_24bs_packed.sh @@ -0,0 +1,219 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +RANK_ID_START=0 + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge_ID0634_for_TensorFlow2.X" +#训练batch_size +eval_batch_size=4 +batch_size=24 +average_sequences_per_sample=2 +#训练step +train_steps=1000 +#训练epoch +train_epochs=`expr 768 / ${batch_size}` +#学习率 +learning_rate=0.000058711 + +#TF2.X独有,不需要修改 +#export NPU_LOOP_SIZE=${train_steps} +export NPU_LOOP_SIZE=100 +export GE_USE_STATIC_MEMORY=1 +export NPU_ENABLE_PERF=true + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +init_ckpt_path=${data_path}/'output_ckpt/model.ckpt-28252' #need modify to actual path +train_files_path=${data_path}/'train_packed/*' #need modify to actual path +eval_files_path=${data_path}/'eval_packed/*' #need modify to actual path + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup taskset -c $a-$c python3 ../bert/run_pretraining.py \ + --use_packed_model=True \ + --all_reduce_alg=nccl \ + --bert_config_file=../configs/bert_config.json \ + --beta_1=0.91063 \ + --beta_2=0.96497 \ + --device_warmup=False \ + --do_eval=True \ + --dtype=fp16 \ + --eval_batch_size=${eval_batch_size} \ + --init_checkpoint=${init_ckpt_path} \ + --train_files=${train_files_path} \ + --eval_files=${eval_files_path} \ + --learning_rate=${learning_rate} \ + --loss_scale=dynamic \ + --max_predictions_per_seq=79 \ + --max_seq_length=512 \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} \ + --num_accumulation_steps=1 \ + --distribution_strategy=one_device \ + --num_gpus=1 \ + --num_steps_per_epoch=1000 \ + --num_train_epochs=${train_epochs} \ + --optimizer_type=lamb \ + --scale_loss=False \ + --steps_between_eval=100 \ + --steps_per_loop=${NPU_LOOP_SIZE} \ + --stop_steps=200 \ + --enable_checkpoint_and_summary=True \ + --train_batch_size=${batch_size} \ + --verbosity=0 \ + --warmup_steps=0 \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#结果打印,不需要修改 +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${batch_size}'*'${average_sequences_per_sample}'}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p_packed'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +sed -i "/AttributeError/d" $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log \ No newline at end of file diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs.sh index f40ad087a7c25549c789b02d7bf403961a0a15e5..b9832cc804195b14e5e6fae62ae2d204483da387 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs.sh +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs.sh @@ -1,4 +1,4 @@ -#!/bin/bash +#'!/bin/bash #当前路径,不需要修改 cur_path=`pwd` @@ -88,7 +88,7 @@ if [[ $data_path == "" ]];then exit 1 fi -init_ckpt_path=${data_path}/tf2_ckpt/model.ckpt-28252 #need modify to actual path +init_ckpt_path=${data_path}/'tf2_ckpt/model.ckpt-28252' #need modify to actual path train_files_path=${data_path}/'train/*' #need modify to actual path eval_files_path=${data_path}/'eval/eval.tfrecord' #need modify to actual path diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_bucket.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_bucket.sh index b82b734fe13b7551a3e5f5c42b5392d102c45a4d..225afcb73aa0ae9ac7ee01ef069df6d96b1a0225 100644 --- a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_bucket.sh +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_bucket.sh @@ -173,9 +173,14 @@ e2e_time=$(( $end_time - $start_time )) #############结果处理######################### echo "------------------ Final result ------------------" #输出性能FPS,需要模型审视修改 -single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` -avg_bs=`grep avg_bs $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` -FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${avg_bs}'*8}'` +FPS=0.0 +for((ID=0; ID<8; ID++)) +do + single_batch_step_sec=`grep TimeHistory $cur_path/output/${ID}/train_${ID}.log|awk 'END {print $8}'` + avg_bs=`grep avg_bs $cur_path/output/${ID}/train_${ID}.log|awk 'END {print $8}'` + PER_FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${avg_bs}'}'` + FPS=`awk 'BEGIN{printf "%.2f\n",'${PER_FPS}'+'${FPS}'}'` +done #打印,不需要修改 echo "Final Performance images/sec : $FPS" diff --git a/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_packed.sh b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_packed.sh new file mode 100644 index 0000000000000000000000000000000000000000..25e660e708e4e9df418cd224847613ffe1800547 --- /dev/null +++ b/TensorFlow2/built-in/nlp/BertLarge_ID0634_for_TensorFlow2.X/test/train_performance_8p_192bs_packed.sh @@ -0,0 +1,225 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 +#保证rank table file 文件rank_table_8p.json存放在和test同级的configs目录下 +export RANK_SIZE=8 +export RANK_TABLE_FILE=${cur_path}/../configs/rank_table_8p.json +export JOB_ID=10087 +RANK_ID_START=0 + +export NPU_ENABLE_PERF=true +# 数据集路径,保持为空,不需要修改 +data_path="" + +#基础参数 需要模型审视修改 +#网络名称,同目录名称 +Network="BertLarge_ID0634_for_TensorFlow2.X" +#训练batch_size +batch_size=192 +eval_batch_size=16 +average_sequences_per_sample=2 +#训练step +train_steps=1000 +#训练epoch +train_epochs=`expr 768 / ${batch_size}` +#学习率 +learning_rate=0.000144 + +#TF2.X独有,需要模型审视修改 +export NPU_LOOP_SIZE=100 +export GE_USE_STATIC_MEMORY=1 + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_fp32_to_fp16" +#维持参数,不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_8p_32bs.sh " + + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is 0 + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,需要模型审视修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + elif [[ $para == --bind_core* ]]; then + bind_core=`echo ${para#*=}` + name_bind="_bindcore" + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +init_ckpt_path=${data_path}/'output_ckpt/model.ckpt-28252' #need modify to actual path +train_files_path=${data_path}/'train_packed/*' #need modify to actual path +eval_files_path=${data_path}/'eval_packed/*' #need modify to actual path + + + +start_time=$(date +%s) +#############执行训练######################### +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $RANK_ID" + export RANK_ID=$RANK_ID + export ASCEND_DEVICE_ID=$RANK_ID + ASCEND_DEVICE_ID=$RANK_ID + + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + if [ "x${bind_core}" != x ];then + bind_core="taskset -c $a-$c" + fi + nohup ${bind_core} python3 ../bert/run_pretraining.py \ + --use_packed_model=True \ + --all_reduce_alg=nccl \ + --bert_config_file=../configs/bert_config.json \ + --beta_1=0.91063 \ + --beta_2=0.96497 \ + --device_warmup=False \ + --do_eval=True \ + --dtype=fp16 \ + --eval_batch_size=${eval_batch_size} \ + --init_checkpoint=${init_ckpt_path} \ + --train_files=${train_files_path} \ + --eval_files=${eval_files_path} \ + --learning_rate=${learning_rate} \ + --loss_scale=dynamic \ + --max_predictions_per_seq=79 \ + --max_seq_length=512 \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} \ + --num_accumulation_steps=1 \ + --distribution_strategy=one_device \ + --num_gpus=1 \ + --enable_checkpoint_and_summary=True \ + --num_steps_per_epoch=1000 \ + --num_train_epochs=${train_epochs} \ + --optimizer_type=lamb \ + --scale_loss=False \ + --steps_between_eval=100 \ + --steps_per_loop=${NPU_LOOP_SIZE} \ + --stop_steps=200 \ + --train_batch_size=${batch_size} \ + --verbosity=0 \ + --warmup_steps=0 \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############结果处理######################### +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'*'${batch_size}'*'${average_sequences_per_sample}'}'` +#打印,不需要修改 +echo "Final Performance images/sec : $FPS" + +#输出训练精度,需要模型审视修改 +train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}${name_bind}_bs${BatchSize}_${RANK_SIZE}'p_packed'_'perf' + +##获取性能数据 +#吞吐量,不需要修改 +ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + sed -i "/AttributeError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log + sed -i "/ModuleNotFoundError/d" $cur_path/output/${RANK_ID}/train_${RANK_ID}.log +done \ No newline at end of file diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh new file mode 100644 index 0000000000000000000000000000000000000000..632d4525fb67313007945d08934b57988b6df877 --- /dev/null +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh @@ -0,0 +1,220 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +export RANK_ID_START=0 +export PYTHONPATH=../transformer:$PYTHONPATH + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="Transformer_ID0633_for_TensorFlow2.X" +#训练batch_size +batch_size=4096 +#训练step +train_steps=400000 + +#TF2.X独有,不需要修改 +#export NPU_ENABLE_PERF=true + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup taskset -c $a-$c python3 ../transformer/official/nlp/transformer/transformer_main.py \ + --data_dir=${data_path} \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ + --vocab_file=${data_path}/vocab.ende.32768 \ + --param_set=big \ + --train_steps=${train_steps} \ + --batch_size=${batch_size} \ + --steps_between_evals=10000 \ + --max_length=64 \ + --mode=train \ + --decode_batch_size=32 \ + --decode_max_length=97 \ + --padded_decode=False \ + --num_gpus=1 \ + --dtype=fp16 \ + --distribution_strategy='one_device' \ + --enable_time_history=true \ + --log_steps=1000 \ + --loss_scale='dynamic' \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +# single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +# FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'}'` +#打印,不需要修改 +# echo "Final Performance images/sec : $FPS" + +# grep "Train history" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$8}'|sed 's/,//g'|sed 's/\[//g'|sed 's/\]//g' |sed 's/\}//g'>> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +# ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` +#输出训练精度,需要模型审视修改 +# grep "Train history" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$8}'|sed 's/,//g'|sed 's/\[//g'|sed 's/\]//g' |sed 's/\}//g'>> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt +# train_accuracy=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt` +#train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +# echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + + +#fail info +ModelStatus="图执行FAIL" +DTS_Number="DTS2022042410927" +error_msg="op\[SoftmaxCrossEntropyWithLogitsTiling\], not supported shape\[FUNC:DoNdTiling\]" +Status=`grep "${error_msg}" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|wc -l` +error_msg=`grep "${error_msg}" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tail -1` +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 + +#最后一个迭代loss值,不需要修改 + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ModelStatus = ${ModelStatus}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DTS_Number = ${DTS_Number}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "Status = ${Status}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "error_msg = ${error_msg}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +##获取性能数据 +#吞吐量,不需要修改 +# ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +# TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +#grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +#ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +#echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_6144bs_dynamic_noeval.sh b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_6144bs_dynamic_noeval.sh new file mode 100644 index 0000000000000000000000000000000000000000..adba4519454eeb9e1aca00cdfa9e12394192cc00 --- /dev/null +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_6144bs_dynamic_noeval.sh @@ -0,0 +1,221 @@ +#!/bin/bash + +#当前路径,不需要修改 +cur_path=`pwd` + +#集合通信参数,不需要修改 + +export RANK_SIZE=1 +export JOB_ID=10087 +export RANK_ID_START=0 +export PYTHONPATH=../transformer:$PYTHONPATH + + +# 数据集路径,保持为空,不需要修改 +data_path="" + +#设置默认日志级别,不需要修改 + +#基础参数,需要模型审视修改 +#网络名称,同目录名称 +Network="Transformer_ID0633_for_TensorFlow2.X" +#训练batch_size +batch_size=6144 +#训练step +train_steps=250000 + +#TF2.X独有,不需要修改 +#export NPU_ENABLE_PERF=true + +#维测参数,precision_mode需要模型审视修改 +precision_mode="allow_mix_precision" +#维持参数,以下不需要修改 +over_dump=False +data_dump_flag=False +data_dump_step="10" +profiling=False + + +# 帮助信息,不需要修改 +if [[ $1 == --help || $1 == -h ]];then + echo"usage:./train_full_1p.sh " + echo " " + echo "parameter explain: + --precision_mode precision mode(allow_fp32_to_fp16/force_fp16/must_keep_origin_dtype/allow_mix_precision) + --over_dump if or not over detection, default is False + --data_dump_flag data dump flag, default is False + --data_dump_step data dump step, default is 10 + --profiling if or not profiling for performance debug, default is False + --data_path source data of training + -h/--help show help message + " + exit 1 +fi + +#参数校验,不需要修改 +for para in $* +do + if [[ $para == --precision_mode* ]];then + precision_mode=`echo ${para#*=}` + elif [[ $para == --over_dump* ]];then + over_dump=`echo ${para#*=}` + over_dump_path=${cur_path}/output/overflow_dump + mkdir -p ${over_dump_path} + elif [[ $para == --data_dump_flag* ]];then + data_dump_flag=`echo ${para#*=}` + data_dump_path=${cur_path}/output/data_dump + mkdir -p ${data_dump_path} + elif [[ $para == --data_dump_step* ]];then + data_dump_step=`echo ${para#*=}` + elif [[ $para == --profiling* ]];then + profiling=`echo ${para#*=}` + profiling_dump_path=${cur_path}/output/profiling + mkdir -p ${profiling_dump_path} + elif [[ $para == --data_path* ]];then + data_path=`echo ${para#*=}` + fi +done + +#校验是否传入data_path,不需要修改 +if [[ $data_path == "" ]];then + echo "[Error] para \"data_path\" must be confing" + exit 1 +fi + +#训练开始时间,不需要修改 +start_time=$(date +%s) + +#进入训练脚本目录,需要模型审视修改 + +for((RANK_ID=$RANK_ID_START;RANK_ID<$((RANK_SIZE+RANK_ID_START));RANK_ID++)); +do + #设置环境变量,不需要修改 + echo "Device ID: $ASCEND_DEVICE_ID" + export RANK_ID=$RANK_ID + + + + #创建DeviceID输出目录,不需要修改 + if [ -d ${cur_path}/output/${ASCEND_DEVICE_ID} ];then + rm -rf ${cur_path}/output/${ASCEND_DEVICE_ID} + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + else + mkdir -p ${cur_path}/output/$ASCEND_DEVICE_ID/ckpt_${learning_rate} + fi + + #绑核,不需要绑核的模型删除,需要绑核的模型根据实际修改 + cpucount=`lscpu | grep "CPU(s):" | head -n 1 | awk '{print $2}'` + cpustep=`expr $cpucount / 8` + echo "taskset c steps:" $cpustep + let a=RANK_ID*$cpustep + let b=RANK_ID+1 + let c=b*$cpustep-1 + + #执行训练脚本,以下传参不需要修改,其他需要模型审视修改 + #--data_dir, --model_dir, --precision_mode, --over_dump, --over_dump_path,--data_dump_flag,--data_dump_step,--data_dump_path,--profiling,--profiling_dump_path,--autotune + nohup taskset -c $a-$c python3 ../transformer/official/nlp/transformer/transformer_main.py \ + --data_dir=${data_path} \ + --model_dir=${cur_path}/output/$ASCEND_DEVICE_ID/ckpt \ + --vocab_file=${data_path}/vocab.ende.32768 \ + --param_set=big \ + --train_steps=${train_steps} \ + --batch_size=${batch_size} \ + --steps_between_evals=10000 \ + --max_length=64 \ + --mode=train \ + --decode_batch_size=32 \ + --decode_max_length=97 \ + --padded_decode=False \ + --num_gpus=1 \ + --dtype=fp32 \ + --enable_metrics_in_training=true \ + --distribution_strategy='one_device' \ + --enable_time_history=true \ + --log_steps=1000 \ + --loss_scale='dynamic' \ + --precision_mode=${precision_mode} \ + --over_dump=${over_dump} \ + --over_dump_path=${over_dump_path} \ + --data_dump_flag=${data_dump_flag} \ + --data_dump_step=${data_dump_step} \ + --data_dump_path=${data_dump_path} \ + --profiling=${profiling} \ + --profiling_dump_path=${profiling_dump_path} > ${cur_path}/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log 2>&1 & +done +wait + +#训练结束时间,不需要修改 +end_time=$(date +%s) +e2e_time=$(( $end_time - $start_time )) + +#############冒烟看护######################### +BatchSize=${batch_size} +#设备类型 +DeviceType=`uname -m` +#用例名称 +CaseName=${Network}_bs${BatchSize}_${RANK_SIZE}'p'_'perf' + +echo "------------------ Final result ------------------" +#输出性能FPS,需要模型审视修改 +# single_batch_step_sec=`grep TimeHistory $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|awk 'END {print $8}'` +# FPS=`awk 'BEGIN{printf "%.2f\n",'${single_batch_step_sec}'}'` +#打印,不需要修改 +# echo "Final Performance images/sec : $FPS" + +# grep "Train history" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$8}'|sed 's/,//g'|sed 's/\[//g'|sed 's/\]//g' |sed 's/\}//g'>> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt +# ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` +#输出训练精度,需要模型审视修改 +# grep "Train history" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$8}'|sed 's/,//g'|sed 's/\[//g'|sed 's/\]//g' |sed 's/\}//g'>> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt +# train_accuracy=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_acc.txt` +#train_accuracy=`grep eval_accuracy $cur_path/output/${ASCEND_DEVICE_ID}/train_${ASCEND_DEVICE_ID}.log|grep -v mlp_log|awk 'END {print $5}'|sed 's/,//g'|cut -c 1-5` +#打印,不需要修改 +# echo "Final Train Accuracy : ${train_accuracy}" +echo "E2E Training Duration sec : $e2e_time" + + +#fail info +ModelStatus="图执行FAIL" +DTS_Number="DTS2022042214040" +error_msg="Param:owner_graph is nullptr, check invalid" +Status=`grep "${error_msg}" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|wc -l` +error_msg=`grep "${error_msg}" $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|tail -1` +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中,需要根据模型审视 + +#最后一个迭代loss值,不需要修改 + +#关键信息打印到${CaseName}.log中,不需要修改 +echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "ModelStatus = ${ModelStatus}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "DTS_Number = ${DTS_Number}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "Status = ${Status}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +echo "error_msg = ${error_msg}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log + +##获取性能数据 +#吞吐量,不需要修改 +# ActualFPS=${FPS} +#单迭代训练时长,不需要修改 +# TrainingTime=`awk 'BEGIN{printf "%.2f\n",'${BatchSize}'*'${RANK_SIZE}'*1000/'${FPS}'}'` + +##获取Loss +#从train_$ASCEND_DEVICE_ID.log提取Loss到train_${CaseName}_loss.txt中 +#grep loss $cur_path/output/$ASCEND_DEVICE_ID/train_$ASCEND_DEVICE_ID.log|awk '{print$11}'|grep -v instead|grep -v masked_lm_loss|sed 's/,//g'|sed '/^$/d' >> $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt + +#最后一个迭代loss值 +#ActualLoss=`awk 'END {print}' $cur_path/output/$ASCEND_DEVICE_ID/train_${CaseName}_loss.txt` + +#关键信息打印到${CaseName}.log中 +#echo "Network = ${Network}" > $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "RankSize = ${RANK_SIZE}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "BatchSize = ${BatchSize}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "DeviceType = ${DeviceType}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "CaseName = ${CaseName}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualFPS = ${ActualFPS}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainingTime = ${TrainingTime}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "TrainAccuracy = ${train_accuracy}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "ActualLoss = ${ActualLoss}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log +#echo "E2ETrainingTime = ${e2e_time}" >> $cur_path/output/$ASCEND_DEVICE_ID/${CaseName}.log diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/misc.py b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/misc.py index fd20e215d96aedacf4afd8d1f5ac9d02adf39e64..0678b396efb3f45c3a751d0ba1c9aa9e0f5807d7 100644 --- a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/misc.py +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/misc.py @@ -217,6 +217,11 @@ def define_transformer_flags(): 'If True, then only the model\'s weights will be saved ' '(`model.save_weights(filepath)`), else the full model is saved ' '(`model.save(filepath)`)')) + flags.DEFINE_bool( + name='dynamic_eval', + default=False, + help=flags_core.help_wrap( + 'use dynamic eval')) flags_core.set_defaults( data_dir='/tmp/translate_ende', diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/transformer_main.py b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/transformer_main.py index 5b650f074a2a5e7c2022438a2893e99af6102c19..8f52dec383785e603a5935962df6790d44cf3717 100644 --- a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/transformer_main.py +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/transformer_main.py @@ -233,6 +233,7 @@ class TransformerTask(object): params["steps_between_evals"] = flags_obj.steps_between_evals params["enable_checkpointing"] = flags_obj.enable_checkpointing params["save_weights_only"] = flags_obj.save_weights_only + params["dynamic_eval"] = flags_obj.dynamic_eval self.distribution_strategy = distribute_utils.get_distribution_strategy( distribution_strategy=flags_obj.distribution_strategy, diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/translate.py b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/translate.py index b0fb14827275b3434ab47d4afbd03102752c2aa7..485db5d75cace7a31b3d0fe18b795a12aa19b73c 100644 --- a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/translate.py +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/transformer/official/nlp/transformer/translate.py @@ -65,6 +65,31 @@ def _get_sorted_inputs(filename,batch_size): return sorted_inputs, sorted_keys +def _get_sorted_inputs_dynamic(filename): + """Read and sort lines from the file sorted by decreasing length. + Args: + filename: String name of file to read inputs from. + Returns: + Sorted list of inputs, and dictionary mapping original index->sorted index + of each element. + """ + with tf.io.gfile.GFile(filename) as f: + records = f.read().split("\n") + inputs = [record.strip() for record in records] + if not inputs[-1]: + inputs.pop() + + input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)] + sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True) + + sorted_inputs = [None] * len(sorted_input_lens) + sorted_keys = [0] * len(sorted_input_lens) + for i, (index, _) in enumerate(sorted_input_lens): + sorted_inputs[i] = inputs[index] + sorted_keys[index] = i + return sorted_inputs, sorted_keys + + def _encode_and_add_eos(line, subtokenizer): """Encode line with subtokenizer, and add EOS id to the end.""" return subtokenizer.encode(line) + [tokenizer.EOS_ID] @@ -107,7 +132,11 @@ def translate_file(model, # Read and sort inputs by length. Keep dictionary (original index-->new index # in sorted list) to write translations in the original order. - sorted_inputs, sorted_keys = _get_sorted_inputs(input_file,batch_size) + + if params['dynamic_eval']: + sorted_inputs, sorted_keys = _get_sorted_inputs_dynamic(input_file) + else: + sorted_inputs, sorted_keys = _get_sorted_inputs(input_file,batch_size) total_samples = len(sorted_inputs) num_decode_batches = (total_samples - 1) // batch_size + 1 #static input modify diff --git a/image.png b/image.png new file mode 100644 index 0000000000000000000000000000000000000000..84fcb3b5438eb548cf1b6e490d934b02948e2530 Binary files /dev/null and b/image.png differ