diff --git a/TensorFlow/built-in/cv/image_segmentation/DeepLabv3+out_ID0147_for_TensorFlow/DeepLabv3+_ID0147_for_TensorFlow/deeplab/model.py b/TensorFlow/built-in/cv/image_segmentation/DeepLabv3+out_ID0147_for_TensorFlow/DeepLabv3+_ID0147_for_TensorFlow/deeplab/model.py index 311aaa1acb13cb445053ac12fa09e354423e56df..4f2f87c2f2a9eb88f4cadac52561b2d18edea211 100644 --- a/TensorFlow/built-in/cv/image_segmentation/DeepLabv3+out_ID0147_for_TensorFlow/DeepLabv3+_ID0147_for_TensorFlow/deeplab/model.py +++ b/TensorFlow/built-in/cv/image_segmentation/DeepLabv3+out_ID0147_for_TensorFlow/DeepLabv3+_ID0147_for_TensorFlow/deeplab/model.py @@ -57,6 +57,7 @@ from tensorflow.contrib import slim as contrib_slim from deeplab.core import dense_prediction_cell from deeplab.core import feature_extractor from deeplab.core import utils +from npu_bridge.npu_init import * slim = contrib_slim @@ -529,11 +530,12 @@ def extract_features(images, if model_options.aspp_with_concat_projection: concat_logits = slim.conv2d( concat_logits, depth, 1, scope=CONCAT_PROJECTION_SCOPE) - concat_logits = slim.dropout( - concat_logits, - keep_prob=0.9, - is_training=is_training, - scope=CONCAT_PROJECTION_SCOPE + '_dropout') + if is_training: + concat_logits = npu_ops.dropout( + concat_logits, + keep_prob=0.9, + name=CONCAT_PROJECTION_SCOPE + '_dropout' + ) if (model_options.add_image_level_feature and model_options.aspp_with_squeeze_and_excitation): concat_logits *= image_feature