diff --git a/TensorFlow/contrib/cv/ProtoAttend_ID2040_for_TensorFlow/test/train_performance_1p.sh b/TensorFlow/contrib/cv/ProtoAttend_ID2040_for_TensorFlow/test/train_performance_1p.sh index 8603750b9e7b96468626af37a0e8a1d1d619d4f7..501db886784e5912cc0094a994221ef500436a2c 100644 --- a/TensorFlow/contrib/cv/ProtoAttend_ID2040_for_TensorFlow/test/train_performance_1p.sh +++ b/TensorFlow/contrib/cv/ProtoAttend_ID2040_for_TensorFlow/test/train_performance_1p.sh @@ -113,7 +113,7 @@ if [ x"${modelarts_flag}" != x ]; then python3.7 ./main_protoattend.py --data_url=${data_path} --train_url=${output_path} --num_steps=500 --val_step=50 else - python3.7 ./main_protoattend.py --data_url=${data_path} --train_url=${output_path} --num_steps=500 --val_step=50 &> ${print_log} + python3.7 ./main_protoattend.py --data_url=${data_path}/dataset --train_url=${output_path} --num_steps=500 --val_step=50 > ${print_log} 2>&1 fi # 性能相关数据计算 @@ -121,7 +121,7 @@ StepTime=`grep "cost_time" ${print_log} | tail -n 10 | awk '{print $NF}' | awk ' FPS=`awk 'BEGIN{printf "%.2f\n", '${batch_size}'/'${StepTime}'}'` # 精度相关数据计算 -train_accuracy=`grep "Final Val Accuracy" ${print_log} | awk '{print $5}'` +#train_accuracy=`grep "Final Val Accuracy" ${print_log} | awk '{print $5}'` # 提取所有loss打印信息 grep "loss :" ${print_log} | awk -F ":" '{print $3}' | awk -F "-" '{print $1}' > ./test/output/${ASCEND_DEVICE_ID}/my_output_loss.txt