diff --git a/TensorFlow2/built-in/cv/image_classification/MNIST_ID2481_for_TensorFlow2.X/README.md b/TensorFlow2/built-in/cv/image_classification/MNIST_ID2481_for_TensorFlow2.X/README.md index 42959f171f2b7d11beab319080190a2bf35cf217..837522b1ac152bb22a13f18532af3115ba6f4f60 100644 --- a/TensorFlow2/built-in/cv/image_classification/MNIST_ID2481_for_TensorFlow2.X/README.md +++ b/TensorFlow2/built-in/cv/image_classification/MNIST_ID2481_for_TensorFlow2.X/README.md @@ -94,7 +94,7 @@ pip3 install requirements.txt ## 数据集准备 -1. 用户需自行下载ml-1m训练数据集,应有如下结构 +1. 用户需自行下载MNIST训练数据集,应有如下结构 ``` dataset/ ├── mnist diff --git a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh index 632d4525fb67313007945d08934b57988b6df877..1f48774f0634a8d2497bc06ec559a8cf74baf24b 100644 --- a/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh +++ b/TensorFlow2/built-in/nlp/Transformer_ID0633_for_TensorFlow2.X/test/train_full_1p_4096bs_dynamic_noeval.sh @@ -4,7 +4,8 @@ cur_path=`pwd` #集合通信参数,不需要修改 - +export DUMP_GE_GRAPH=2 +export DUMP_GRAPH_LEVEL=3 export RANK_SIZE=1 export JOB_ID=10087 export RANK_ID_START=0 @@ -22,7 +23,7 @@ Network="Transformer_ID0633_for_TensorFlow2.X" #训练batch_size batch_size=4096 #训练step -train_steps=400000 +train_steps=300 #TF2.X独有,不需要修改 #export NPU_ENABLE_PERF=true @@ -120,7 +121,7 @@ do --param_set=big \ --train_steps=${train_steps} \ --batch_size=${batch_size} \ - --steps_between_evals=10000 \ + --steps_between_evals=100 \ --max_length=64 \ --mode=train \ --decode_batch_size=32 \ @@ -130,7 +131,7 @@ do --dtype=fp16 \ --distribution_strategy='one_device' \ --enable_time_history=true \ - --log_steps=1000 \ + --log_steps=100 \ --loss_scale='dynamic' \ --precision_mode=${precision_mode} \ --over_dump=${over_dump} \ diff --git a/TensorFlow2/built-in/nlp/Word2vec_ID2350_for_TensorFlow2.X/README.md b/TensorFlow2/built-in/nlp/Word2vec_ID2350_for_TensorFlow2.X/README.md index 3787419458b2ba009e89de75373aa590acddbdb1..be1ce02464570b74499671e9e357c7fe78207350 100644 --- a/TensorFlow2/built-in/nlp/Word2vec_ID2350_for_TensorFlow2.X/README.md +++ b/TensorFlow2/built-in/nlp/Word2vec_ID2350_for_TensorFlow2.X/README.md @@ -32,7 +32,8 @@ ## 简述 -本项目是基于TensorFlow2.X的文本分类任务,通过直接配置可以支持:TextCNN/TextRNN/TextRCNN/Transformer/Bert/Albert/DistilBert基本分类模型;TextCNN/TextRNN/TextRCNN/Transformer的token可选用词粒度/子粒度;Word2Vec特征增强后接TextCNN/TextRNN/TextRCNN/Transformer;支持Attention-TextCNN/TextRNN;FGM和PGD两种对抗方法的引入训练;对比学习方法R-drop引入;支持二分类和多分类,支持FocalLoss;保存为pb文件可供部署;项目代码支持交互式测试和批量测试。 +本项目是基于TensorFlow2.X的文本分类任务,使用Word2vec词向量训练模型进行文本分类。Word2vec是一种将词转化成向量的方法,其中包含两种算法,分别是skip-gram和CBOW,它们最大的区别是skip-gram是通过中心词去预测中心词周围的词,而CBOW是通过周围的词去预测中心词。 + - 参考论文: